
Unified Extensible Firmware Interface
Specification

Version 2.5

April, 2015

Unified Extensible Firmware Interface Specification
Acknowledgements

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material contained
herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this information is
provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other
warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material
and any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE
SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR
SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY
WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH
PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2006-2015 Unified EFI, Inc. All Rights Reserved.
ii April, 2015 Version 2.5

Revision History

Revision Revision History (numbers = Mantis ticket numbers) Date

2.0 First release of specification. January 31,
2006

2.1 Second release January 23,
2007

2.1a UEFI 2.1 incorporating Errata through 4-27-07 April 27, 2007

2.1b 51 Long physical blocks updates December 11,
2007

2.1b 156 SendForm API Errata December 11,
2007

2.1b 158 Errata to the UEFI 2.1 configuration sections December 11,
2007

2.1b 159 Adjust some of the #define names in the Simple Text Input Ex protocol December 11,
2007

2.1b 160 Clean up references to PCIR December 11,
2007

2.1b 162 UEFI PIWG Device Path Errata December 11,
2007

2.1b 164 Update to USB2_HC_PROTOCOL Table December 11,
2007

2.1b 165 Fix EFI_GRAPHICS_OUTPUT_PIXEL December 11,
2007

2.1b 168 Remove LOAD_OPTION_GRAPHICS December 11,
2007

2.1b 170 (Addition of) Driver Family Override Protocol December 11,
2007

2.1b 172 Typo for ResetSystem() December 11,
2007

2.1b 173 Minor changes to the description of two of the fields in the Common
Platform Error Record, in Appendix N

December 11,
2007

2.1b 174 Error record addition for dma remapping units December 11,
2007

2.1b 175 Update to SendForm API December 11,
2007

2.1b 177 remove ending paragraph (editing text) in section 9.6 December 11,
2007

2.1b 181 Correct MNP GUID collision December 11,
2007

2.1b 182 Clarify EFI_MTFTP4_TOKEN December 11,
2007
Version 2.5 April, 2015 iii

Unified Extensible Firmware Interface Specification
2.1b 184 SNIA/DDF Wording Update December 11,
2007

2.1b 185 Change EFI term to UEFI for consistency December 11,
2007

2.1b 186 change PCIR struct to match PCI FW Spec 3.0 December 11,
2007

2.1b 187 Clarify input protocols. December 11,
2007

2.1b 190 Extensive errata form UCST including OP codes changes ro resolve
conflicts.

December 11,
2007

2.1b 197 EFI Loaded Image Device Path Protocol December 11,
2007

2.1b 205 Change LoadImage() parameter name from FilePath to DevicePath;
ends confusion with EFI_LOADED_IMAGE_PROTOCOL

December 11,
2007

2.1c 52 New GUID for Driver Diagnostics and Driver Configuration Protocols

with new GUID

June 5, 2008

2.1c 54 ACPI Table Protocol GUID Update June 5, 2008

2.1c 55 Clarification on UpdateCapsule June 5, 2008

2.1c 56 Clarification on ResetSystem June 5, 2008

2.1c 57 Clarify text for Extended SCSI Pass Thru Protocol.GetNextTargetLun() June 5, 2008

2.1c 58 Language update for EfiReservedMemory type usage June 5, 2008

2.1c 59 Add return code to Diagnostics Protocol June 5, 2008

2.1c 60 iSCSI Device Path Update June 5, 2008

2.1c 189 Graphics Output Protocol clarification June 5, 2008

2.1c 193 Loaded Image device paths for EFI Drivers loaded from PCI Option
ROMs

June 5, 2008

2.1c 203 Platform Error Record - x64 register state errata June 5, 2008

2.1c 206 Clarify return values for extended scsi passthru protocol June 5, 2008

2.1c 207 Updated Wording for the File Path June 5, 2008

2.1c 208 Driver Protocol Names and GUIDs June 5, 2008

2.1c 209 ESP number/location clarifications June 5, 2008

2.1c 213 UEFI HII Errata June 5, 2008

2.1c 214 Device_IO + typos June 5, 2008

2.1c 216 UEFI 2.1 text corrections June 5, 2008

2.1c 217
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Query()
Update

June 5, 2008

2.1c 218 SATA update to section 9.3.5.6 June 5, 2008

2.1c 219 IA-32 and x64 stack need to be 16-byte aligned June 5, 2008

2.1c 220 Replace references to RFC 3066 to RFC 4646 June 5, 2008

2.1c 221Image Block Structure name typos in 27.3.7.2 June 5, 2008

Revision Revision History (numbers = Mantis ticket numbers) Date
iv April, 2015 Version 2.5

2.1c 244 Replace references to EFI_FIRMWARE_VOLUME_INFO_PPI with
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI

June 5, 2008

2.1c 245 Remove extraneous text in Chapter 29 June 5, 2008

2.1c 246 New return code June 5, 2008

2.1c 248 Correction to text in Chapter 8.2 of UEFI 2.1b June 5, 2008

2.1c 249 Latest update to UCST Errata list June 5, 2008

2.1c 266 PKCS11.5 structure does not correctly specify the portion of the cited
RFC that pertains to the certificate struct/algorithm

June 5, 2008

2.1c 278 Change references to EFI_SIMPLE_INPUT_PROTOCOL into
EFI_SIMPLE_TEXT_INPUT_PROTOCOL

June 5, 2008

2.1c 280 Some minor errata to keyboard related topics June 5, 2008

2.1c 281 Runtime memory allocation June 5, 2008

2.1c 283 Minor update to clarify a typedef/return code in HII June 5, 2008

2.1c Re-format Revision History from bulleted lists to one row per Mantis ticket/
Engineering Change Request

June 5, 2008

2.2 157 Floating-Point ABI Changes For X86, X64 & Itanium July 25, 2008

2.2 169 EFI Driver Health Protocol July 25, 2008

2.2 198 GUID Partition Entry Attributes Clarification and Definition July 25, 2008

2.2 199 FTP API July 25, 2008

2.2 200 VLAN July 25, 2008

2.2 201EAP July 25, 2008

2.2 202 EAP Management July 25, 2008

2.2 210 UEFI HII Animation addition July 25, 2008

2.2 211UEFI Setup Question / Form Access Update July 25, 2008

2.2 212 UEFI HII Standards Mapping July 25, 2008

2.2 215 new Start() RemainingDevicePath Syntax July 25, 2008

2.2 237 UEFI User Identification Proposal (from USST) July 25, 2008

2.2 242 UEFI ATA Pass-Through Protocol July 25, 2008

2.2 279 Firmware/OS Trusted Key Exchange and Image Validation July 25, 2008

2.2 282 Updated Requirements Section For ATA Pass Through (M242) July 25, 2008

2.2 288 Additional wording fixes for GPT Entry Attribute Bit 1 July 25, 2008

2.2 291 HII Errata / Update July 25, 2008

2.2 294 LocateDevicePath with multi-instance device path July 25, 2008

2.2 299 PIWG Firmware File/Firmware Volume Typo Errata July 25, 2008

2.2 300 MTFTP errata July 25, 2008

2.2 301 Errata to the Authentication Protocol July 25, 2008

2.2 303 Add ability to have a capsule that initiates a reset & doesn’t return to
the caller

July 25, 2008

2.2 304 Errata to UpdateCapsule() July 25, 2008

2.2 306 Some errata to the animation support July 25, 2008

Revision Revision History (numbers = Mantis ticket numbers) Date
Version 2.5 April, 2015 v

Unified Extensible Firmware Interface Specification
2.2 309 IPv6 Address display format clarification July 25, 2008

2.2 310 EFI UDPv6 Protocol July 25, 2008

2.2 311EFI DHCPv6 Protocol July 25, 2008

2.2 312 EFI IPv6 Protocol July 25, 2008

2.2 313 EFI IPv6 Configuration Protocol July 25, 2008

2.2 314 EFI MTFTP6 Protocol July 25, 2008

2.2 315 EFI TCP6 Protocol July 25, 2008

2.2 319 UEFI IPSec protocol July 25, 2008

2.2 320 Clarifcation for WIN_CERTIFICATE types & relationship with signature
database types

July 25, 2008

2.2 321Enable PCIe 2.0 and beyond support in the UEFI error records July 25, 2008

2.2 322 Chapter 2 updates for IP6 net stack July 25, 2008

2.2 323 VLAN modification because of IPV6 July 25, 2008

2.2 324 ATA Pass-Thru ECR Update July 25, 2008

2.2 325 Minor correction 28.3.8.3.20 July 25, 2008

2.2 327 Clarify the support in DHCP4 protocol for "Inform" (DHCPINFORM)
messages.

Sept. 25, 2008

2.2 330 EFI_IFR_REF: Change cross reference to a question Sept. 25, 2008

2.2 331 Definition for EFI_BROWSER_ACTION and the related #defines were
not present--Insert.

Sept. 25, 2008

2.2 332 Correct SendForm description Type, PackageGuid and FormsetGuid
parameters

Sept. 25, 2008

2.2 333 Correct the incorrect ';' at the end of EFI_GUID #defines Sept. 25, 2008

2.2 335 User Authentication errata Sept. 25, 2008

2.2 337 Replace the EFI_CRYPT_HANDLE reference (in the IPSsec API)with
a self-contained, independent definition.

Sept. 25, 2008

2.2 339 Update missing TPL restrictions Sept. 25, 2008

2.2 340 UEFI 2.2 Editorial / Formatting Issues Sept. 25, 2008

2.2 343 Correct missing parameter for User() function in
EFI_USER_CREDENTIAL_PROTOCOL

Sept. 25, 2008

2.2 344 Correct missing status codes returned section for Form() in
EFI_USER_CREDENTIAL_PROTOCOL.

Sept. 25, 2008

2.2 346 Nest, Sections 10.11 & 10.12 Under 10.10 Sept. 25, 2008

2.2 347 Replace first paragraph of the “Description” section for the
ExitBootServices()

Sept. 25, 2008

2.2 334 Standardized "Unicode" References Jan. 11, 2009

2.2 348 EFI_IFR_RESET_BUTTON is incorrectly listed as a question Jan. 11, 2009

2.2 350 EFI_HII_STRING_PROTOCOL Typos Jan. 11, 2009

2.2 351 Fix an unaligned field in a device path Jan. 11, 2009

2.2 357 Clarify EFI_IFR_DISABLE_IF behavior with regard to dynamic values Jan. 11, 2009

2.2 394 Omission in EFI_USB2_HC_PROTOCOL Jan. 11, 2009

Revision Revision History (numbers = Mantis ticket numbers) Date
vi April, 2015 Version 2.5

2.2 397 PCI CopyMem() misspelling Jan. 11, 2009

2.2 398 Update to M348 to fix small typo Jan. 11, 2009

2.2 errata 358 Missing signature for UEFI 2.2. Feb. 12, 2009

2.2 errata 359 TPL Table Feb. 12, 2009

2.2 errata 361 UEFI 2.2 Typos & Formatting Issues Feb. 12, 2009

2.2 errata 362 UEFI 2.2 Typos (Next) Feb. 12, 2009

2.2 errata 364 UEFI 2.2 Typos & Formatting Issues (ch. 9) Feb. 12, 2009

2.2 errata 366 UEFI 2.x: Erroneous references to EFI_BOOT_SERVICES_TABLE,
EFI_RUNTIME_SERVICES_TABLE

Feb. 12, 2009

2.2 errata 368 EFI_FONT_DISPLAY_INFO.FontInfo description incorrect Feb. 12, 2009

2.2 errata 370 EFI_SYSTEM_TABLE Errata (UEFI 2.1/UEFI 2.2) Feb. 12, 2009

2.2 errata 371 UEFI 2.1 & UEFI 2.2 Typos (ch. 10) Feb. 12, 2009

2.2 errata 372 UEFI 2.2 remove "Draft for Review” Feb. 12, 2009

2.2 errata 373 UEFI 2.2, chs. 9.5 & 9.6.2 & 9.6.3 (Device Path) Errata Feb. 12, 2009

2.2 errata 374 UEFI 2.1 & UEFI 2.2 Errata (10.7-10.10) Feb. 12, 2009

2.2 errata 375 Extra periods errata in UEFI 2.2 Feb. 12, 2009

2.2 errata 377 Missing BLT buffer figure. Feb. 12, 2009

2.2 errata 378 UEFI 2.1 & UEFI 2.2 HII Callback Clarifications Feb. 12, 2009

2.2 errata 379 UEFI 2.1/UEFI 2.2 HII-Related Errata Feb. 12, 2009

2.2 errata 384 Fix HII package description omission. Feb. 12, 2009

2.2 errata 387 UEFI 2.1/UEFI 2.2 Errata (ch. 12) Feb. 12, 2009

2.2 errata 389 UEFI 2.2 HII-Related Formatting Issues Feb. 12, 2009

2.2 errata 390 UEFI 2.2 Miscellaneous HII-related errata Feb. 12, 2009

2.2 errata 391 Polarity of INCONSISTENT_IF and NO_SUBMIT_IF IFR opcodes
wrong

Feb. 12, 2009

2.2 errata 392 MBR errata in UEFI 2.2 Feb. 12, 2009

2.2 errata 393 UEFI 2.1/2.2 Boot Manager Behavior Clarification Feb. 12, 2009

2.2 errata 400 FreePool() description error Feb. 12, 2009

2.2 errata 404 Remove constraint form EFI_TIME.Year comment Feb. 12, 2009

2.2 errata 429 EFI_HASH_SERVICE_BINDING_PROTOCOL GUID define misses
_GUID

Feb. 12, 2009

2.3 326 Add Firmware Management Protocol Feb. 12, 2009
2.3 376 Add ARM processor binding to UEFI Jan. 12, 2009

2.3 388 Add HII callback types (FORM_OPEN, FORM_CLOSE) when a form
is opened or closed.

Feb. 12, 2009

2.3 394 Omission in EFI_USB2_HC_PROTOCOL Feb. 12, 2009

2.3 395 New "Non-removable Media Boot Behavior" section Feb. 12, 2009

2.3 406 Missing EFI System Table Revision In UEFI 2.3 Draft Feb. 12, 2009

2.3 408 ARM Binding corrections Feb. 12, 2009

2.3 431 UEFI 2.3 Feb Draft: Section 30.4 Feb. 12, 2009

Revision Revision History (numbers = Mantis ticket numbers) Date
Version 2.5 April, 2015 vii

Unified Extensible Firmware Interface Specification
2.3 432 UEFI 2.3 Feb Draft: Appendix M. Feb. 12, 2009

2.3 434 UEFI 2.3 Feb Draft: 28.3.8.3.58 Feb. 12, 2009

2.3 435 Partition Signature clarification Feb. 12, 2009

2.3 436 UEFI 2.3 split Figure 88 into 3 figures Feb. 12, 2009

2.3 410 UNDI buffer usage Feb 18, 2009

2.3 413 Correct the definition of UEFI_CONFIG_LANG Feb 18, 2009

2.3 418 Change Appendix O from "UEFI ACPI Table" to "UEFI ACPI Data Feb 18, 2009

2.3 437 Errata to 2.3 draft material from UEFI Spec 2_3_Draft_Jan29 Feb 18, 2009

2.3 438 UEFI 2.3 Feb 13 Draft: Chapter 28 Formatting Issues Feb 18, 2009

2.3 439 Incorrect definitions of UEFI_CONFIG_LANG and
UEFI_CONFIG_LANG_2 in UEFI 2.3 Feb18 draft

Feb 25, 2009

2.3 440 Change the defined type of EFI_STATUs from INTN to UINTN May 7, 2009

2.3 442 Section 28.3.8.3.64, EFI_IFR_SET, Prototype, lines 3-8, indent by 2
spaces

May 7, 2009

2.3 443 Section 28.3.8.3.38, EFI_IFR_MAP, Prototype, line 4, outdent 2
spaces.

May 7, 2009

2.3 444 Form Set Syntax: Section 28.2.5.1.1, section should be subheading,
not heading level 5; Section 28.2.5.1, Syntax, line 3, text after := is not
aligned with other text on line 2, 4

May 7, 2009

2.3 445 Table 194: EFI_IFR_FORM_MAP_OP, 2nd column should be 0x5d
(not 05xd)

May 7, 2009

2.3 446 Section 28.2.5.2 Forms, Syntax, change 3rd line to:
form := EFI_IFR_FORM form-tag-list |
 EFI_IFR_FORM_MAP form-tag-list

May 7, 2009

2.3 447Section 28.2.5.11.2 Moving Forms, Update line that starts with
EFI_IFR_FORM to: EFI_IFR_FORM or EFI_IFR_FORM_MAP (and all
references in EFI_IFR_REF)

May 7, 2009

2.3 448 Section 28.2.5.4 Questions, Syntax, Update question-option-tag; Add
EFI_IFR_READ and EFI_IFR_WRITE in the question syntax.

May 7, 2009

2.3 449 Add missing EFI_IFR_GET, EFI_IFR_SET and EFI_IFR_MAP to the
syntax.Section 28.2.5.7.

May 7, 2009

2.3 450 Missing opcode headers and formatting, section 28.3.8.3.x. May 7, 2009

2.3 452 Support to dynamically detect media errata - SNP May 7, 2009

2.3 453 Errata to support dynamic media detection - UNDI May 7, 2009

2.3 454 Dynamic support of media detection - network stack May 7, 2009

2.3 456 How to handle PXE boot w/o NII Section 21.3 May 7, 2009

2.3 457 Change KeyData.PackedValue to 0x40000200, page 63. May 7, 2009

2.3 460 Chapter 2.6 language update May 7, 2009

2.3 461IP4 Mode Data definition update May 7, 2009

2.3 462 ExitBootServices timers deavtivation May 7, 2009

2.3 463 Update EFI_IP6_PROTOCOL.Neighbors() API May 7, 2009

2.3 A 477 Text adjustment to ConfigAccess/ConfigRouting Sept 15, 2009

Revision Revision History (numbers = Mantis ticket numbers) Date
viii April, 2015 Version 2.5

2.3 A 478 Update to ALTCFG references Sept 15, 2009

2.3 A 490 Correction 28.2.5.6, Table 185. Information for Types of Storage Sept 15, 2009

2.3 A 505 TCP4/MTFTP4 status codes Sept 15, 2009

2.3 A 506 TCP6/MTFTP6 Status Code Definition Sept 15, 2009

2.3 A 513 add support for gateways in ipv4 & ipv6 device path nodes Sept 15, 2009

2.3 A 516 User Identity Protocol bugs Sept 15, 2009

2.3 A 517 IP stack related protocol update Sept 15, 2009

2.3 A 518 typos Sept 15, 2009

2.3 A 522 Bugs in EFI_CERT_BLOCK_RSA_2048_SHA256, ISCSI device path,

CHAP device path

Sept 15, 2009

2.3 B 215 previously added to Device Driver (wrong), now BusDriver (correct) Dec. 15, 2009

2.3 B 301 Errata to the Authentication Protocol Dec. 15, 2009

2.3 B 431 UEFI 2.3 Feb Draft: Section 30.4 Feb. 24, 2010

2.3 B 454 Dynamic support of media dectection - network stack Dec. 15, 2009

2.3 B 460 Section 2.6 language change Dec. 15, 2009

2.3 B 476 Text adjustment to ConfigAccess & ConfigRouting Dec. 15, 2009

2.3 B 479 TPM guideline added to section 2.6.2 Dec. 15, 2009

2.3 B 507 Clarify ACPI Protocol’s position on checksums Dec. 15, 2009

2.3 B 514 HII Configuration String Syntax Clarification Feb. 24, 2010

2.3 B 515 Authenticated Variables Clarification Feb. 24, 2010

2.3 B 518 Typos in the UEFI2.3 specification Feb. 24, 2010

2.3 B 519 Add console table (chapt 11) for
EFI_SIMPLE_TEXST_INPUT_EX_PROTOCOL

Dec. 15, 2009

2.3 B 531 Clarify HII Variable Storage Dec. 15, 2009

2.3 B 532 “Legacy BIOS Bootable” GPT attribute Dec. 15, 2009

2.3 B 533 GPT editorial cleanup Dec. 15, 2009

2.3 B 534 Size of Partition Entry restriction Dec. 15, 2009

2.3 B 536 IPSec errata Dec. 15, 2009

2.3 B 537 Add missing ACPI ADR Device Path Representation Dec. 15, 2009

2.3 B 539 CHAP node fix for iSCSI Dec. 15, 2009

2.3 B 540 Register name usage Dec. 15, 2009

2.3 B 542 Device Path Description Changes Dec. 15, 2009

2.3 B 545 Action parameter of the
EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack()

Dec. 15, 2009

2.3 B 546 typo in GOP definiton Dec. 15, 2009

2.3 B 547 Clean-Up In HII Sections Dec. 15, 2009

2.3 B 549 Binary prefix change Dec. 15, 2009

2.3 B 556 additional IPSec errata/issues Dec. 15, 2009

Revision Revision History (numbers = Mantis ticket numbers) Date
Version 2.5 April, 2015 ix

Unified Extensible Firmware Interface Specification
2.3 B 557 Corrected Image Execution Information omission & ambiguity Dec. 15, 2009

2.3 B 558 Clarify VLAN config publication requirements Dec. 15, 2009

2.3 B 559 Extraneous “default” tag in EFI_IFR_SECUITY grammar Dec. 15, 2009

2.3 B 560 Correct erroneous example in ExtractConfig() Dec. 15, 2009

2.3 B 566 Minor update to HII->NewString function description Dec. 15, 2009

2.3 B 567 Various miscellaneous typos/updates Feb. 24, 2010

2.3 B 568 ATA_STATUS_BLOCK name errata Dec. 15, 2009

2.3 B 572 EFI_IFR_SECURITY should be EFI_IFR_SECURITY_OP in Table
194

Dec. 15, 2009

2.3 B 573 EFI_DESCRIPTION_STRING and EFI_DESCRIPTION_BUNDLE
adjustments

Feb. 24, 2010

2.3 B 574 Add an "OPTIONAL" tag to a parameter in NewPackageList Dec. 15, 2009

2.3 B 576 Clarifications in the Routing Protocol Dec. 15, 2009

2.3 B 577 clarifications on the user identity protocol Dec. 15, 2009

2.3 B 578 ATA Passthrough updates / questions Dec. 15, 2009

2.3 B 580 ACPI_SUPPORT_PROTOCOL clarifications related to FADT and the

DSDT/FACS

Dec. 15, 2009

2.3 B 583 How do we know an EFI_HANDLE is Valid/Invalid Feb. 24, 2010

2.3 B 575 Machine hand-off/MP state modification Feb. 24, 2010

2.3 B 584 EFI_PXE_BASE_CODE_DHCPV6_PACKET missing for pxe bc
protocol

Feb. 24, 2010

2.3 B 585 Errata to EFI_IFR_SET op-code Feb. 24, 2010

2.3 B 586 clarification of PXE2.1 specification for IPV4 interoperability issues Feb. 24, 2010

2.3 B 587 UEFI User Identity - Naming consistency Feb. 24, 2010

2.3 B 588 UEFI User Identity - Return codes Feb. 24, 2010

2.3 B 589 Device path representation of IPv4/v6 text Feb. 24, 2010

2.3 B 590 Media detect clean-up Feb. 24, 2010

2.3 B 598 ARP is only an IPV4 concept. Feb. 24, 2010

2.3 B 600 Update to ConfigAccess/ConfigRouting Feb. 24, 2010

2.3 B 601 UNDI update as part of media detect changes Feb. 24, 2010

2.3 B 605 Clarify user identity Find API Feb. 24, 2010

2.3 B 608 more media detect clean-up Feb. 24, 2010

2.3 C 508 Update networking references, incl ipv6 July 14, 2010

2.3 C 583 How do we know an EFI_HANDLE is Valid/Invalid July 14, 2010

2.3 C 609 StartImage return code update July 14, 2010

2.3 C 610 RSA data structure clarification July 14, 2010

2.3 C 611 Language correction requested for InstallProtocolInterface() and

InstallConfigurationTable(), Ref# 583

July 14, 2010

Revision Revision History (numbers = Mantis ticket numbers) Date
x April, 2015 Version 2.5

2.3 C 613 PAUSE Key July 14, 2010

2.3 C 620 Carification of need for Path MTU support for IPV4 and IPV6 July 14, 2010

2.3 C 621 Typos in an EFI_HII_CONFIG_ACCESS_PROTOCOL.Callback()

member

July 14, 2010

2.3 C 622 Identify() function errata July 14, 2010

2.3 C 625 Minor typo in surrogate character description section July 14, 2010

2.3 C 632 Clarify Block IO ReadBlocks and WriteBlocks functions handling of

media state change events
July 14, 2010

2.3 C 633 Explicitly Specify ACPI Table Signature Format July 14, 2010

2.3 C 635 Missing GUID label for Config Access protocol July 14, 2010

2.3 C 636 Mistaken Reference to "Date" inside of Boolean question description July 14, 2010

2.3 C 637 Clarification for Date/Time Question usage in IFR expressions. July 14, 2010

2.3 C 639 Callback() does not describe FORM_OPEN/FORM_CLOSE behavior July 14, 2010

2.3 C 640 String Reference Cleanup July 14, 2010

2.3 D 538 IPV6 PXE Oct. 28, 2010

2.3 D 638 Add facility for dynamic IFR dynamic cross-references Oct. 28, 2010

2.3 D 650 networking support errata Oct. 28, 2010

2.3 D 651 update to IPSec for tunnel mode support Oct. 28, 2010

2.3 D 652 Clarification to the TimeZone value usage Oct. 28, 2010

2.3 D 653 Errata to the Appendix N (Common Platform Error Record) Oct. 28, 2010

2.3 D 659 Clarify section length definition in the error record Oct. 28, 2010

2.3 D 662 ARM ABI errata Oct. 28, 2010

2.3 D 663 Update ARM Platform binding to allow OS loader to assume unaligned
access support is enabled

Nov. 10, 2010

2.3 D 664 Appendix update for IPV6 network boot Oct. 28, 2010

2.3 D 667 Clarification to the UEFI Configuration Table definition Oct. 28, 2010

2.3.1 484 Key Management Service Protocol Oct. 28, 2010

2.3.1 612 UEFI system Partition FAT32 data Region Alignment Oct. 29, 2010

2.3.1 616 Security Protocol command to support encrypted HDD Oct. 29, 2010

2.3.1 634 Forms Browser Default Behavior Oct. 29, 2010

2.3.1 645 Non-blocking interface for BLOCK oriented devices (BLOCK_IO_EX
transition to BLOCK_IO_2)

Oct. 29, 2010

2.3.1 661 USB 3.0 Updates Oct. 29, 2010

2.3.1 484 Key Management Service (KMS) Protocol Oct. 29, 2010

2.3.1 616 Security Protocol Command to support encrypted HDD Jan. 17, 2011

2.3.1 634 Forms Browser Default Behavior Jan. 17, 2011

2.3.1 671 Errata: USB device path example is incorrect Jan. 17, 2011

Revision Revision History (numbers = Mantis ticket numbers) Date
Version 2.5 April, 2015 xi

Unified Extensible Firmware Interface Specification
2.3.1 674 Section 3.2: Missing variable type for SetupMode variable Jan. 17, 2011

2.3.1 677 Section 27.2.5 & 27.6.1: Typo in X509 Signature Type Jan. 17, 2011

2.3.1 678 Section 27.6.2: Imagehash reference needs to be removed Jan. 17, 2011

2.3.1 679 UEFI Authenticated Variable & Signature Database Updates Jan. 17, 2011

2.3.1 680 Netboot6 handle clarification Jan. 17, 2011

2.3.1 681 Typo: Pg. 56 Jan. 17, 2011

2.3.1 687 Update System Table with this new #define for 2.3.1 Jan. 17, 2011

2.3.1 668 LUN implementations are not consistent Feb. 3, 2011

2.3.1 682 [UCST] Modal Form Feb. 3, 2011

2.3.1 686 HII - Clarify Forms Browser 'standard' user interfactions. Feb. 3, 2011

2.3.1 685 HII - New op-code to enable event initiated refresh of browser context
data

Feb. 3, 2011

2.3.1 695 Add Port Ownership probing Feb. 3, 2011

2.3.1 696 Update System Table with this new #define for
EFI_SYSTEM_TABLE_REVISION

Feb. 3, 2011

2.3.1 702 Clarifications on Variable Storage for Questions Feb. 3, 2011

2.3.1 704 Unload() definition is wrong Feb. 3, 2011

2.3.1 705 REPC signature definition still confusing Feb. 3, 2011

2.3.1 707 Errata revision in the EFI_IFR_VERSION format Feb. 3, 2011

708 Errata (non-blocking BLOCK IO) April 5, 2011

2.3.1 709 New Callback() Action Requests Related To Individual Forms. Feb. 3, 2011

2.3.1 478 (REVISIT) Update to ALTCFG references March 11, 2011

2.3.1 711 SetVariable Update March 11, 2011

2.3.1 713 Remove the errata revision from the EFI_IFR_VERSION format. March 11, 2011

2.3.1 715 CPER Record and section field clarification March 11, 2011

2.3.1 716 EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget() IN OUT
parameter Target input value shall be 0xFFs

March 11, 2011

2.3.1 720 User Identification (UID) Errata – Credential Provider Enroll
Clarification

March 11, 2011

2.3.1 721 User Identification (UID) Errata – SetInfo Clarification March 11, 2011

2.3.1 722 User Identification (UID) Errata – Credential Provider Enroll
Clarification

April 5, 2011

2.3.1 723 User Identification (UID) Errata – EFI User Manager Notify & Enroll
Clarification

April 5, 2011

2.3.1 724 SetVariable Update 2 March 11, 2011

2.3.1 726 Errata/clean-up of EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN

definition

March 11, 2011

2.3.1 727 Errata on return code for User Info Identity policy record March 11, 2011

2.3.1 728 Netboot 6 errata - DUID-UUID March 11, 2011

2.3.1 729 Errata: clarification of Microsoft references in appendix Q March 11, 2011

Revision Revision History (numbers = Mantis ticket numbers) Date
xii April, 2015 Version 2.5

2.3.1 732 Amendment to Mantis 711: section 7.2.1.6 March 11, 2011

2.3.1 733 Errata: 27.6.1 signatureheadersize definition March 11, 2011

2.3.1 734 SecureBoot variable April 5, 2011

2.3.1 735 Clarification on Tape Header Format March 11, 2011

2.3.1 736 Insert SMM Communication ACPI Table and related data structures
to the UEFI Specification

April 5, 2011

2.3.1 740 Errata: signatureheadersize inconsistency corrections April 6, 2011

2.3.1 741 Errata: corrected text for section 7.2.1.4 step 7 March 11, 2011

2.3.1 744 Processor context information structure definition not clear March 11, 2011

2.3.1 748 Clarify Standard GUID Text Representation March 11, 2011

2.3.1 749 Fix Table 10 (Global Variables) With Correct Attributes March 11, 2011

2.3.1 750 Fix section 27.2.5 "related definitions" re: RSA public key exponent March 11, 2011

2.3.1 751 Fix USB HC2 erroneous references to IsSlowDevice March 11, 2011

2.3.1 754 USB timeout parameter mismatch. April 5, 2011

2.3.1 755 Errata in Legacy MBR table and Legacy MBR GUID April 5, 2011

2.3.1 759 UEFI Errata - wincerts for rest of hash algorithms April 5, 2011

2.3.1 760 Suggested changes to 2.3.1 final draft spec April 5, 2011

2.3.1 761 Table 195. Information for Types of Storage April 5, 2011

2.3.1 762 DevicePath in the Image Execution Information Table. April 5, 2011

2.3.1 765 ECR to limit the hash and encryption algorithms used with PKCS
certificates

April 5, 2011

2.3.1 A 212 (revisit) final sentence section 28.2.15 missing final words. April 21, 2011

2.3.1 A 767 The ReadBlocks function for BlockIO and BlockIO2 need
synchronization

August 17, 2011

2.3.1 A 770 Remove references to UEFI 2.1 spec August 17, 2011

2.3.1 A 772 Definition of EFI_IMAGE_SECURITY_DATABAE_GUID incorrect August 17, 2011

2.3.1 A 773 Clarify the value for opcode EFI_IFR_REFRESH_ID_OP August 17, 2011

2.3.1 A 774 Define EFI_BLOCK_IO_PROTOCOL_REVISION3 August 17, 2011

2.3.1 A 776 Clarifycomputation of EFI_VARIABLE_AUTHENTICATION_2 hash
value

August 17, 2011

2.3.1 A 777 Specified signature sizes incorrect in Section 27.6.1 August 17, 2011

2.3.1 A 778 EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack() Errata August 17, 2011

2.3.1 A 780 Errata in return code descriptions August 17, 2011

2.3.1 A 785 Allowing more general use of UEFI 2.3.1 Variable time-based
authentication

August 17, 2011

2.3.1 A 786 PCI I/O Dual Address Cycle attribute clarification August 17, 2011

2.3.1 A 788 SasEx entry in Table 86-Device Node Table contains optional
Reserved entry that does not exist in device path

August 17, 2011

2.3.1 A 789 Clarify HII opcode definition August 17, 2011

2.3.1 A 790 Add warning to ReadKeyStrokeEx for partial key press August 17, 2011

2.3.1 A 793 Inconsistent wording about RemainingDevicePath August 17, 2011

Revision Revision History (numbers = Mantis ticket numbers) Date
Version 2.5 April, 2015 xiii

Unified Extensible Firmware Interface Specification
2.3.1 A 794 Incomplete text describing clearing of Platform Key August 17, 2011

2.3.1 A 795 Typo in ReadKeyStrokeEx() August 17, 2011

2.3.1 A 796 Clarify IFR Opcode Summary and Description #1 August 17, 2011

2.3.1 A 797 Clarify IFR Opcode Summary and Description #2 August 17, 2011

2.3.1 A 800 Clarify IFR Opcode Summary and Description #3 August 17, 2011

2.3.1 A 801 ClarifyIFR Opcode Summary and Description #4 August 17, 2011

2.3.1 A 803 Fix AcpiExp device node text description. August 17, 2011

2.3.1 A 804 Clarify contraints and alternatives when enrolling PK, KeK, db or dbx
keys

August 17, 2011

2.3.1 A 805 Correct Wrong Palette Information in 28.3.7.2.3 example August 17, 2011

2.3.1 A 806 Text update to Driver Health Description - clarify role of user
interaction

August 17, 2011

2.3.1 A 819 ECR715 was not fully implemented August 17, 2011

2.3.1 A 820 Driver Health Needs to have Mantis 0000169 implemented August 17, 2011

2.3.1 A Minor corrections in toes to tickets 772, 785, 794, 804, also formatting
correction for _WIN_CERTIFICATE_UEFI_GUID typedef’s parameters

September 7,
2011

2.3.1 B 771 SHA1 and MD5 references April 10, 2012

2.3.1 B 807 Give specific TPL rules to Stall() boot services April 10, 2012

2.3.1 B 808 Errata – Boot File URL April 10, 2012

2.3.1 B 809 Errata – Messaging Device Path Clarification April 10, 2012

2.3.1 B 812 Errata – DUID-UUID usage April 10, 2012

2.3.1 B 819 Mantis 715 was not fully implemented April 10, 2012

2.3.1 B 825 DMTF SM CLP errata April 10, 2012

2.3.1 B 826 Comments against Mantis 790 April 10, 2012

2.3.1 B 828 Network Driver Options April 10, 2012

2.3.1 B 836 Structure comment for EFI_IFR_TYPE_VALUE references unknown
value type.

April 10, 2012

2.3.1 B 842 Text to explain how the UEFI revision is referred April 10, 2012

2.3.1 B 845 EFI_SCSI_PASS_THRU_PROTOCOL replacement April 10, 2012

2.3.1 B 847 When enrolling a PK, the platform shall not require a reboot to leave
SetupMode

April 10, 2012

2.3.1 B 848 Clarification of semantics of SecureBoot variable April 10, 2012

2.3.1 B 849 IFR EFI_IFR_MODAL_TAG_OP is also valid under
EFI_IFR_FORM_MAP_OP

April 10, 2012

2.3.1 B 850 Clarification of responsibility for array allocation in
EFI_HASH_PROTOCOL

April 10, 2012

2.3.1 B 851 For EFI_IFR_REFRESH opcode, clarify RefreshInterval = 0 means no
auto-refresh.

April 10, 2012

2.3.1 B 852 Various EFI_IFR_REFRESH_ID errata. April 10, 2012

2.3.1 B 853 The EFI_HASH_PROTOCOL.Hash() description needs clarification on
padding responsibilities

April 10, 2012

Revision Revision History (numbers = Mantis ticket numbers) Date
xiv April, 2015 Version 2.5

2.3.1 B 855 Clarification of UEFI driver signing/ code definitions April 10, 2012

2.3.1 B 857 Absolute pointer typo April 10, 2012

2.3.1 B 858 Superfluous and incorrect image hash description April 10, 2012

2.3.1 B 861 Globally Defined Variables Errata April 10, 2012

2.3.1 B 862 User identity typo April 10, 2012

2.3.1 B 863 Attributes of the Globally Defined Variables April 10, 2012

2.3.1 B 864 Typo in Question-Level Validation section April 10, 2012

2.3.1 B 865 Modify Protective MBR BootIndicator definition April 10, 2012

2.3.1 B 866 PK, KEK, db, dbx relations clarification April 10, 2012

2.3.1 B 867 Clarify requirment for use of
EFI_HASH_SERVICE_BINDING_PROTOCOL

April 10, 2012

2.3.1 B 869 Reference to FIPS 180 in Chapter 27.3 is obsolete and incorrect April 10, 2012

2.3.1 B 870 Clarify FrameBufferSize definition under
EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE struct

April 10, 2012

2.3.1 B 871 Typo in InstallMultipleProtocolInterfaces April 10, 2012

2.3.1 B 872 Change to
SIMPLE_TEXT_INPUT_EX_PROTOCOL.RegisterKeyNotify/
UnregisterKeyNotify

April 10, 2012

2.3.1 B 873 Section 9.3.7 incorrectly assumes that all uses of BBS device paths
are non-UEFI

April 10, 2012

2.3.1 B 876 To clarify EDID_OVERRIDE attribute definitions and expected
operations

April 10, 2012

2.3.1 B 877 Table checksum update by the
ACPI_TABLE_PROTOCOL.InstallAcpiTable

April 10, 2012

2.3.1 B 878 Updated HII "Selected Form" Behaviors to Reflect New Callback
Results

April 10, 2012

2.3.1 B 879 Reference to unsupported specification in SCSI Chapter (14.1) April 10, 2012

2.3.1 B 880 netboot6 clarification/errata April 10, 2012

2.3.1 B 881 netboot6 - multicast versus unicast April 10, 2012

2.3.1 B 884 EFI_BOOT_KEY_DATA relies on implementation-defined behavior April 10, 2012

2.3.1 B 885 Errata in the GPT Table structure comment April 10, 2012

2.3.1 B 887 union is declared twice in same section April 10, 2012

2.3.1 B 888 typo in EFI_USB_HC Protocol April 10, 2012

2.3.1 B 890 Drive Configuration Protocol Phantom. April 10, 2012

2.3.1 B 891 Component Name Protocol References April 10, 2012

2.3.1 B 893 SMM Communication ACPI Table Update April 10, 2012

2.3.1 B 896 StartImage and ConnectController return codes April 10, 2012

2.3.1 C 831 PXE Boot CSA Type definition cleanup June 13, 2012

2.3.1 C 874 Provide a mechanism for providing keys in setup mode June 13, 2012

2.3.1 C 882 Indications Variable - OS/FW feature & capability communication June 13, 2012

2.3.1 C 907 iSCSI Device Path error June 13, 2012

Revision Revision History (numbers = Mantis ticket numbers) Date
Version 2.5 April, 2015 xv

Unified Extensible Firmware Interface Specification
2.3.1 C 909 Update to return codes for AllocatePool / AllocatePages June 13, 2012

2.3.1 C 912 UEFI 2.3.1 Type June 13, 2012

2.3.1 C 913 Enum definition does not match what our current compilers implement. June 13, 2012

2.3.1 C 914 Error Descriptor Reset Flag clarification June 13, 2012

2.3.1 C 915 For x64, Change Floating Point Default Configuration to Double-
Extended Precision

June 13, 2012

2.3.1 C 917 UNDI drive does not need to be initialized as runtime driver June 13, 2012

2.3.1 C 921 Length of IPv6 Device Path is incorrect June 13, 2012

2.3.1 C 882 Indications Variable - OS/FW feature & capability communication June 13, 2012

2.3.1 D 924 New Error Code to handle reporting of IPV4 duplicate address
detection

April 3, 2013

2.3.1 D 926 UEFI Image Verification clarification April 3, 2013

2.3.1 D 928 Best Matching Language algorithm April 3, 2013

2.3.1 D 930 Clarify usage of EFI Variable Varstores in HII April 3, 2013

2.3.1 D 934 Missing Figures and typos April 3, 2013

2.3.1 D 935 Clarify chaining requirements with regards to the Platform Key April 3, 2013

2.3.1 D 938 InstallMultipleProtocolInterface() is missing Status Code Returned
values

April 3, 2013

2.3.1 D 941 Add OEM Status Code ranges to EFI Status Code Ranges Table April 3, 2013

2.3.1 D 942 ExportConfig() description does not make sense April 3, 2013

2.3.1 D 943 Errata - Proposed updates to required interfaces in chapter 2.6 April 3, 2013

2.3.1 D 944 Errata - Replace RFC reference April 3, 2013

2.3.1 D 949 PCI IO.GetBarAttributes needs adjustment - - Address Space
Granularity field

April 3, 2013

2.3.1 D 950 Indeterminate behavior for attribute modifications may cause security
issues

April 3, 2013

2.3.1 D 952 Clarification of requirements to update timestamp associated with
authenticated variable

April 3, 2013

2.3.1 D 953 Need text definitions for Device Path Media Type Subtype 6/7 April 3, 2013

2.3.1 D 954 LoadImage Errata April 3, 2013

2.3.1 D 955 Clearing The Platform Key Errata April 3, 2013

2.3.1 D 959 InstallAcpiTable() does not say what to do when an attempt is made to
install a duplicate table

April 3, 2013

2.3.1 D 960 Typo in netboot6 description April 3, 2013

2.3.1 D 962 Remove 2.3 table revision number April 3, 2013

2.3.1 D 965 File IO Async extenstion April 3, 2013

2.3.1 D 970 Typo section 28.3.8.3.41 EFI_IFR_MODAL_TAG April 3, 2013

2.3.1 D 971 typo April 3, 2013

2.3.1 D 972 ISCSI DHCP6 boot April 3, 2013

2.3.1 D 973 UNDI Mem_Map() Clarification April 3, 2013

2.3.1 D 974 UNDI Incorrect CPB function names ECR April 3, 2013

Revision Revision History (numbers = Mantis ticket numbers) Date
xvi April, 2015 Version 2.5

2.3.1 D 975 UNDI errata to add missing memory type definitions April 3, 2013

2.3.1 D 976 BrowserCallback text update to description April 3, 2013

2.3.1 D 977 missing statement April 3, 2013

2.3.1 D 978 Error Retun Indicates Capsule requires Boot Services April 3, 2013

2.3.1 D 980 Errata on SNP Media detect April 3, 2013

2.3.1 D 987 EFI_BLOCK_IO2_PROTOCOL has a copy paste bug describing the
Token Parameter

April 3, 2013

2.3.1 D 988 EFI_BLOCK_IO2_PROTOCOL blocks child from stopping while doing
non-blocking I/O

April 3, 2013

2.3.1 D 989 Clarify hot-remove responsibility of a Bus Driver April 3, 2013

2.3.1 D 990 EFI_ATA_PASS_THRU need one clarification if it supports ATAPI
device

April 3, 2013

2.3.1 D 994 Spec typos April 3, 2013

2.3.1 D 995 CSA link change April 3, 2013

2.3.1 D 996 UEFI 2.0 version number still in the 2.3.1C spec April 3, 2013

2.3.1 D 1000 Clarification to the IFR_REF4 opcode April 3, 2013

 2.3.1 D 1003 Missing “(“ in section 11.7 April 3, 2013

2.3.1 D 1011 Typo regarding Debug Port in UEFI Spec April 3, 2013

2.3.1 D 1012 Touchup to text of GPT April 3, 2013

2.3.1 D 1013 HII Errata April 3, 2013

2.3.1 D 1018 HII Font Errata April 3, 2013

2.3.1 D 1019 Alignment Requirements Clarification April 3, 2013

2.3.1 D 1020 Clarify HII variable store definitions. April 3, 2013

2.3.1 D 1021 ATA_PASS_THRU on ATAPI device handle. April 3, 2013

2.4 905 Need more granularity in EFI_RESET_TYPE to support platform
specific resets

April 25, 2013

2.4 920 Add a variable for indicating out of band key modification April 25, 2013

2.4 946 Forbid creation of non-spec variables in EFI_GLOBAL_VARIABLE
namespace

April 25, 2013

2.4 956 Require network drivers to return EFI_NO_MEDIA April 25, 2013

2.4 963 Add new device path node NVM Express devices April 25, 2013

2.4 964 Disk IO 2 Protocol to support Async IO April 25, 2013

2.4 966 Spec typos April 25, 2013

2.4 968 HII Forms op-code for displaying a warning message April 25, 2013

2.4 991 Greater than 256 NICs support on UNDI April 25, 2013

2.4 992 Adapter Information Protocol (AIP) April 25, 2013

2.4 993 (original ticket--superseded by 1026)

2.4 997 Driver Health Protocol error codes April 25, 2013

2.4 1002 Timestamp Protocol April 25, 2013

2.4 1007 Create a new Security Technologies section to avoid blurring with
Secure Boot

April 25, 2013

Revision Revision History (numbers = Mantis ticket numbers) Date
Version 2.5 April, 2015 xvii

Unified Extensible Firmware Interface Specification
2.4 1008 New Random Number Generator / Entropy Protocol April 25, 2013

2.4 1009 Enable hashes of certificates to be used for revocation, and
timestamp support

April 25, 2013

2.4 1015 Interruptible driver diagnostics April 25, 2013

2.4 1016 AIP Instance - Image Update April 25, 2013

2.4 1017 AIP Instance - FCOE SAN MAC Address April 25, 2013

2.4 1022 adapter information protocol for NIC iSCSI and FCoE boot
capabilities and current Booot Mode.

April 25, 2013

2.4 1023 Definition of Capsule format to deliver update image to firmware
management protocol

April 25, 2013

2.4 1024 Clarification to the NVMe Device Path text descriptions April 25, 2013

2.4 1026 (supersedes 993) Update to the AArch64 proposed Binding Change April 25, 2013

2.4 1029 Method for delivery of Capsule on disk; Method for reporting Capsule
processing status

April 25, 2013

2.4 1031 NVMe subtype conflict errata April 25, 2013

2.4 1032 HiiConfigRouting->ExtractConfig Status Codes Errata May 16, 2013

2.4 1033 HiiConfigAccess->ExtractConfig Status Codes Errata May 16, 2013

2.4 1036 Comments on April 25 Draft May 16, 2013

2.4 1037 Add 2.4 to the system table version May 16, 2013

2.4 1044 Corrections to Mantis 1015, Interruptible driver diagnostics May 16, 2013

2.4 1045 PCI OpROM Device List changes to section 14.2 June 28, 2013

2.4 1047 Comment on Feb 25th draft - fix alignment issue May 16, 2013

2.4 1048 Comment against UEFI 2.4 - NVMe related May 16, 2013

2.4 1049 2.4 Draft April 25 has missing text for ECR 1008 May 16, 2013

2.4 1050 2.4 Draft April 25 has missing text for ECR 1009 May 16, 2013

2.4 1052 UEFI 2.4 Draft April 25th - corrections to ARM sections May 16, 2013

2.4 A 1035 PCI Option ROM Errata (five figures) Nov. 6, 2013

2.4 A 1053 Reduce Name space of Capsule Result variable to increase
performance

Nov. 6, 2013

2.4 A 1054 Deprecate 6 Hash Algorithms with inconsistent usage Nov. 6, 2013

2.4 A 1055 Disk IO 2 errata Nov. 6, 2013

2.4 A 1056 text modification to definition of
EFI_FIRMWARE_IMAGE_DESCRIPTOR_VERSION 2

Nov. 6, 2013

2.4 A 1058 Correct mistake in the system table revision Nov. 6, 2013

2.4 A 1059 Clarification of a return status code of HASH protocol Nov. 6, 2013

2.4 A 1060 Slight Clarification to FMP Authentication Requirments Nov. 6, 2013

2.4 A 1061 UEFI 2.4 section 2.6.2 and 2.6.3 don't use protocol hyperlinks
consistently

Nov. 6, 2013

2.4 A 1062 EFI_CERT_X509_GUID does not specify the certificate encoding Nov. 6, 2013

2.4 A 1063 Correction to GPT expression for SizeofPartitionEntry Nov. 6, 2013

2.4 A 1064 AIP Errata Nov. 6, 2013

Revision Revision History (numbers = Mantis ticket numbers) Date
xviii April, 2015 Version 2.5

2.4 A 1066 Errata - ISCSI IPV6 Root Path Clarification Nov. 6, 2013

2.4 A 1073 Add requirement for EFI_USB_IO_PROTOCOL Nov. 6, 2013

2.4 A 1074 Add clarifications on DMA requirements for PCI_IO Nov. 6, 2013

2.4 A 1075 Clarifications to Table 88. Device Node Table (Device Node to Text
Conversion)

Nov. 6, 2013

2.4 A 1076 typo in UEFI v2.3.1d and v2.4 Nov. 6, 2013

2.4 A 1077 Fix wording in EVT_SIGNAL_EXIT_BOOT_SERVICES Nov. 6, 2013

2.4 A 1078 Adjust some text for handling
EFI_BROWSER_ACTION_CHANGING

Nov. 6, 2013

2.4 A 1079 UEFI 2.4: Remove repetitive "the" (typo) Nov. 6, 2013

2.4 A 1081 Update Install Table protocol to deal with duplicate tables Nov. 6, 2013

2.4 A 1082 Mistake in 2.3.5.1 / 2.3.6.2 Handoff State Nov. 6, 2013

2.4 A 1085 Issues with Interactive password Nov.14, 2013

2.4 A 1088 Add revision #define to EFI_FILE_PROTOCOL Nov. 6, 2013

2.4 A 1089 Short-term CPER Memory Section errata Nov. 14, 2013

2.4B 1014 HII Config Access Protocol Errata April 3, 2014

2.4 B 1092 Clarification to PCI Option ROM Driver Loading Description March 27, 2014

2.4 B 1101 Errata – ReinstallProtocolInterface March 27, 2014

2.4 B 1111 Errors in DisconnectController() return code descriptions March 27, 2014

2.4 B 1115 Clarification on the usage of XMM/FPU instructions from within a
UEFI Runtime Service on an x64 processor

March 27, 2014

2.4 B 1118 Network Performance Enhancements Concerning Volatile Variables March 27, 2014

2.4 B 1120 Make time stamp handling consistent around all of the networking
API’s

March 27, 2014

2.4 B 1122 Correct misleading language in the UEFI 2.4a specification about the
EFI_ADAPTER_INFORMATION_PROTOCOL.EFI_ADAPTER_INFO_GE
T_SUPPORTED_TYPES function

March 27, 2014

2.4 B 1124 Adding text description for NVMe device node March 27, 2014

2.4 B 1127 USB Errata - unnecessary restriction on UEFI interrupt transfer types March 27, 2014

2.4 B 1128 URI device path node redux--supersedes (defunct) 1119 April 4, 2014

2.4 B 1137 Typographic errors in the 2.4 Errata B draft April 16, 2014

2.4 B 1146 Typos and broken links April 17, 2014

2.4 B 1085 Error--added in missing text approved for 2.4A April 17, 2014

2.4 C 1042 Add Browser Action Request "reconnect" July 11, 2014

2.4 C 1043 Ability to refresh the entire form [new content] July 11, 2014

2.4 C 1066 Errata--reference to missing table (90) removed July 11, 2014

2.4 C 1139 UEFI Errata on the storage security command protocol July 11, 2014

2.4 C 1140UEFI Errata - image execution info table July 11, 2014

2.4 C 1141 UEFI errata - ia32/x64 vector register management July 11, 2014

2.4 C 1147 EFI_USB2_HC_PROTOCOL.AsyncInterruptTransfer() Errata July 11, 2014

2.4 C 1150 Missing Line Break Character (HII Errata) July 11, 2014

Revision Revision History (numbers = Mantis ticket numbers) Date
Version 2.5 April, 2015 xix

Unified Extensible Firmware Interface Specification
2.4 C 1162 Typo in ReinstallProtocolInterface() EFI 1.10 Extension section July 11, 2014

2.4 C 1165 Option rom layout errata July 11, 2014

2.4 C 1168 MTFTP Errata July 11, 2014

2.4 C 1169 Errata - volatile networking variable cleanup July 11, 2014

2.4 C 1170 Errata pxe bc api clarifiation July 11, 2014

2.4 C 1172 EfiACPIMemoryNVS definition missing S4 July 11, 2014

2.4 C 1173 EFI_IFR_NUMERIC Errata July 11, 2014

2.4 C 1174 errata - Error in EFI_IFR_PASSWORD logic flowchart January, 2015

2.4 C 1182 Errata - UEFI URI Device path issue January, 2015

2.4 C 1184 errata - snp mode clarification January, 2015

2.4 C 1185 errata - tcp api January, 2015

2.4 C 1186 AArch64 binding clarifications and errata January, 2015

2.4 C 1192 Cleanup GUID formatting issues January, 2015

2.4 C 1194 Add EFI_IFR_FLAG_RECONNECT_REQUIRED January, 2015

2.4 C 1198 EFI_ATA_PASS_THRU_PROTOCOL clarification January, 2015

2.4 C 1200 Universal Flash Storage (UFS) Device Path January, 2015

2.4 C 1205 Errata for Hii Set item January, 2015

2.4 C 1209 Errata - UEFI networking API chapter 2.6 requirements January, 2015

2.4 C 1211 EFI_LOAD_OPTION Definition January, 2015

2.4 C 1244 sections of the spec misarranged January, 2015

2.4 C 1257 Correct the typedef definitions for EFI_BOOT_SERVICES/
EFI_RUNTIME_SERVICES

January, 2015

2.4 C 1287 Errata: EFI Driver Supported EFI Version not matching the spec
revision

January, 2015

2.4 C 1308 Fix typo's found in the final/published UEFI 2.4 Errata B spec January, 2015

2.5 1071 New EFI_HASH2_PROTOCOL February, 2015

2.5 1090 ESRT: EFI System Resource Table and component firmware
updates

February, 2015

2.5 1091 Clarification of handle to host FMP February, 2015

2.5 1103 Longer term New CPER Memory Section February, 2015

2.5 1109 Smart Card Reader February, 2015

2.5 1121 IPV6 support from UNDI February, 2015

2.5 1147--REDACT February, 2015

2.5 1163 Inline Cryptographic Interface Protocol proposal February, 2015

2.5 1166 hash 2 protocol errata February, 2015

2.5 1158 errata - boot manager clarification February, 2015

2.5 1159 Proposal for System Prep Applications February, 2015

2.5 1167 Persistent Memory Type support February, 2015

2.5 1174 errata - Error in EFI_IFR_PASSWORD logic flowchart February, 2015

Revision Revision History (numbers = Mantis ticket numbers) Date
xx April, 2015 Version 2.5

2.5 1183 New Protocol with 2 Function for PKCS7 Signature Verification
Services

February, 2015

2.5 1186 AArch64 binding clarifications and errata February, 2015

2.5 1191 Add new SMBIOS3_TABLE_GUID in
EFI_CONFIGURATION_TABLE

February, 2015

2.5 1199 Add NVM Express Pass Thru Protocol February, 2015

2.5 1201 Exposing Memory Redundancy to OSPM February, 2015

2.5 1204 new UEFI USB Function I/O Protocol addition to the UEFI spec February, 2015

2.5 1212 UEFI.Next feature - HTTP API February, 2015

2.5 1213 UEFI.Next feature - HTTP helper API February, 2015

2.5 1214 UEFI.Next feature - HTTP Boot February, 2015

2.5 1215 UEFI.Next feature - DNS version 4 February, 2015

2.5 1216 UEFI.next feature - DNS version 6 February, 2015

2.5 1217 UEFI.Next feature - WIFI support February, 2015

2.5 1218 UEFI.Next feature - EAP2 Protocol February, 2015

2.5 1219 UEFI.Next Feature - UEFI TLS API February, 2015

2.5 1220 UEFI.Next feature - Bluetooth February, 2015

2.5 1221 UEFI.Next feature - REST Protocol February, 2015

2.5 1222 UEFI.Next feature - BMC/Service Processor Device Path February, 2015

2.5 1223 UEFI.Next networking features - chapter 2.6 requirements February, 2015

2.5 1224 UEFI.Next - Adding support for No executable data areas February, 2015

2.5 1227 UEFI.Next feature - Platform recovery February, 2015

2.5 1234 UEFI.Next feature - Smart card edge protocol February, 2015

2.5 1244 sections of the spec mis-arranged February, 2015

2.5 1251 EFI_REGULAR_EXPRESSION_PROTOCOL and
EFI_IFR_MATCH2 HII op-code

February, 2015

2.5 1254 SD Device Path February, 2015

2.5 1255 UFS Device Path Node Length February, 2015

2.5 1257 Correct the typedef definitions for EFI_BOOT_SERVICES/
EFI_RUNTIME_SERVICES--Reiterate

February, 2015

2.5 1263 Customized Deployment of Secure Boot February, 2015

2.5 1266 UEFI.Next Feature - IP_CONFIG2 Protocol February, 2015

2.5 1268 RAM Disk UEFI Device Path Node February, 2015

2.5 1269 Configuration Routing Protocol and Configuration String Updates February, 2015

2.5 1287 Errata: EFI Driver Supported EFI Version not matching the spec
revision

February, 2015

2.5 1288 The Macro definition conflict in
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetAttribute() in UEFI 2.4 B

February, 2015

2.5 1303 Update the UEFI version to reflect new revision February, 2015

2.5 1304 Add IMAGE_UPDATABLE_VALID_WITH_VENDOR_CODE to FMP
Check image

February, 2015

Revision Revision History (numbers = Mantis ticket numbers) Date
Version 2.5 April, 2015 xxi

Unified Extensible Firmware Interface Specification
2.5 1308 Fix typo's found in the final/published UEFI 2.4 Errata B spec February, 2015

2.5 1309 Disallow EFI_VARIABLE_AUTHENTICATION from Secure Boot
Policy Variables

April, 2015

2.5 1339 Errata in section 7.2.3.2 Hardware Error Record Variables April, 2015

2.5 1341 DNS4 - friendly amendment to be reviewed by USWG April, 2015

2.5 1342 DNS6 - friendly amendment for review by USWG April, 2015

2.5 1345 EFI_USB2_HC_PROTOCOL Errata April, 2015

2.5 1346 Mantis 1288 Errata April, 2015

2.5 1347 Boot Manager Policy Errata April, 2015

2.5 1348 ERRATA - Section 10.12
EFI_ADAPTER_INFORMATION_PROTOCOL Custom Types

April, 2015

2.5 1350 Keyword Strings Errata April, 2015

1352 Errata for 1263 and 1227

2.5 1353 SATA Device Path Node Errata April, 2015

2.5 1358 v2.5 amendment and v2.4 errata (missed implementation of Mantis
1089)

April, 2015

2.5 1360 Vendor Range for UEFI memory Types April, 2015

2.5 1362 HTTP boot typos/bugs April, 2015

2.5 1364 Extend supplicant data type for EAP April, 2015

Revision Revision History (numbers = Mantis ticket numbers) Date
xxii April, 2015 Version 2.5

Contents

1
Introduction... 1
1.1 UEFI Driver Model Extensions.. 1
1.2 Overview ... 2
1.3 Goals... 6
1.4 Target Audience.. 8
1.5 UEFI Design Overview.. 8
1.6 UEFI Driver Model .. 9

1.6.1 UEFI Driver Model Goals .. 10
1.6.2 Legacy Option ROM Issues .. 10

1.7 Migration Requirements.. 11
1.7.1 Legacy Operating System Support ... 11
1.7.2 Supporting the UEFI Specification on a Legacy Platform 11

1.8 Conventions Used in this Document... 11
1.8.1 Data Structure Descriptions .. 11
1.8.2 Protocol Descriptions .. 12
1.8.3 Procedure Descriptions... 12
1.8.4 Instruction Descriptions... 13
1.8.5 Pseudo-Code Conventions ... 13
1.8.6 Typographic Conventions ... 13
1.8.7 Number formats .. 14
1.8.8 Binary prefixes .. 15

2
Overview.. 17
2.1 Boot Manager ... 17

2.1.1 UEFI Images ... 18
2.1.2 Applications... 19
2.1.3 UEFI OS Loaders.. 19
2.1.4 UEFI Drivers.. 20

2.2 Firmware Core .. 20
2.2.1 UEFI Services ... 20
2.2.2 Runtime Services .. 21

2.3 Calling Conventions .. 22
2.3.1 Data Types.. 23
2.3.2 IA-32 Platforms ... 24

2.3.3 Intel® Itanium®-Based Platforms... 27
2.3.4 x64 Platforms .. 30
2.3.5 AArch32 Platforms .. 34
2.3.6 AArch64 Platforms .. 37

2.4 Protocols ... 42
2.5 UEFI Driver Model .. 47

2.5.1 Legacy Option ROM Issues .. 48
Version 2.5 April, 2015 xxiii

Unified Extensible Firmware Interface Specification
2.5.2 Driver Initialization... 50
2.5.3 Host Bus Controllers ... 52
2.5.4 Device Drivers... 54
2.5.5 Bus Drivers.. 55
2.5.6 Platform Components ... 57
2.5.7 Hot-Plug Events .. 58
2.5.8 EFI Services Binding... 58

2.6 Requirements.. 60
2.6.1 Required Elements.. 60
2.6.2 Platform-Specific Elements .. 61
2.6.3 Driver-Specific Elements... 64
2.6.4 Extensions to this Specification published elsewhere... 66

3
Boot Manager.. 69
3.1 Firmware Boot Manager ... 69

3.1.1 Boot Manager Programming ... 70
3.1.2 Load Option Processing.. 71
3.1.3 Load Options... 72
3.1.4 Boot Manager Capabilities .. 74
3.1.5 Launching Boot#### Applications... 75
3.1.6 Launching Boot#### Load Options Using Hot Keys ... 75
3.1.7 Required System Preparation Applications... 77

3.2 Boot Manager Policy Protocol... 78
3.3 Globally Defined Variables.. 81
3.4 Boot Option Recovery... 86

3.4.1 OS-Defined Boot Option Recovery ... 87
3.4.2 Platform-Defined Boot Option Recovery ... 87
3.4.3 Boot Option Variables Default Boot Behavior ... 88

3.5 Boot Mechanisms ... 88
3.5.1 Boot via the Simple File Protocol .. 88
3.5.2 Boot via LOAD_FILE PROTOCOL.. 90

4
EFI System Table.. 91
4.1 UEFI Image Entry Point .. 91
4.2 EFI Table Header.. 92
4.3 EFI System Table ... 94
4.4 EFI Boot Services Table ... 95
4.5 EFI Runtime Services Table ... 100
4.6 EFI Configuration Table & Properties Table ... 102
4.7 Image Entry Point Examples... 105

4.7.1 Image Entry Point Examples... 105
4.7.2 UEFI Driver Model Example.. 107
4.7.3 UEFI Driver Model Example (Unloadable) .. 108
4.7.4 EFI Driver Model Example (Multiple Instances) .. 109
xxiv April, 2015 Version 2.5

5
GUID Partition Table (GPT) Disk Layout .. 113
5.1 GPT and MBR disk layout comparison ... 113
5.2 LBA 0 Format.. 113

5.2.1 Legacy Master Boot Record (MBR) .. 113
5.2.2 OS Types .. 115
5.2.3 Protective MBR ... 115

5.3 GUID Partition Table (GPT) Disk Layout .. 117
5.3.1 GPT overview.. 117
5.3.2 GPT Header .. 120
5.3.3 GPT Partition Entry Array.. 122

6
Services — Boot Services ... 125
6.1 Event, Timer, and Task Priority Services.. 126
6.2 Memory Allocation Services.. 148
6.3 Protocol Handler Services .. 161
6.4 Image Services ... 208
6.5 Miscellaneous Boot Services .. 222

7
Services — Runtime Services ... 233
7.1 Runtime Services Rules and Restrictions... 234

7.1.1 Exception for Machine Check, INIT, and NMI. .. 234
7.2 Variable Services .. 235

7.2.1 Using the EFI_VARIABLE_AUTHENTICATION_2 descriptor (Recommended).....
245

7.2.2 Using the EFI_VARIABLE_AUTHENTICATION descriptor 247
7.2.3 Hardware Error Record Persistence ... 251

7.3 Time Services ... 252
7.4 Virtual Memory Services ... 260
7.5 Miscellaneous Runtime Services .. 264

7.5.1 Reset System.. 264
7.5.2 Get Next High Monotonic Count ... 266
7.5.3 Update Capsule .. 268
7.5.4 Exchanging information between the OS and Firmware................................... 276
7.5.5 Delivery of Capsules via file on Mass Storage device 278
7.5.6 UEFI variable reporting on the Success or any Errors encountered in processing

of capsules after restart ... 279

8
Protocols — EFI Loaded Image... 283
8.1 EFI Loaded Image Protocol .. 283
8.2 EFI Loaded Image Device Path Protocol.. 286

9
Protocols — Device Path Protocol ... 289
9.1 Device Path Overview... 289
Version 2.5 April, 2015 xxv

Unified Extensible Firmware Interface Specification
9.2 EFI Device Path Protocol .. 289
9.3 Device Path Nodes ... 290

9.3.1 Generic Device Path Structures.. 291
9.3.2 Hardware Device Path .. 292
9.3.3 ACPI Device Path ... 294
9.3.4 ACPI _ADR Device Path... 297
9.3.5 Messaging Device Path .. 297
9.3.6 Media Device Path .. 324
9.3.7 BIOS Boot Specification Device Path ... 328

9.4 Device Path Generation Rules.. 329
9.4.1 Housekeeping Rules ... 329
9.4.2 Rules with ACPI _HID and _UID... 330
9.4.3 Rules with ACPI _ADR.. 330
9.4.4 Hardware vs. Messaging Device Path Rules .. 331
9.4.5 Media Device Path Rules.. 331
9.4.6 Other Rules ... 332

9.5 Device Path Utilities Protocol .. 332
9.6 EFI Device Path Display Format Overview... 341

9.6.1 Design Discussion... 341
9.6.2 Device Path to Text Protocol... 360
9.6.3 Device Path from Text Protocol .. 363

10
Protocols — UEFI Driver Model .. 367
10.1 EFI Driver Binding Protocol... 367
10.2 EFI Platform Driver Override Protocol .. 389
10.3 EFI Bus Specific Driver Override Protocol .. 396
10.4 EFI Driver Diagnostics Protocol .. 399
10.5 EFI Component Name Protocol .. 403
10.6 EFI Service Binding Protocol .. 408
10.7 EFI Platform to Driver Configuration Protocol ... 418

10.7.1 DMTF SM CLP ParameterTypeGuid .. 424
10.8 EFI Driver Supported EFI Version Protocol .. 426
10.9 EFI Driver Family Override Protocol ... 426

10.9.1 Overview ... 426
10.10 EFI Driver Health Protocol .. 429

10.10.1 UEFI Boot Manager Algorithms .. 438
10.10.2 UEFI Driver Algorithms ... 443

10.11 EFI Adapter Information Protocol.. 444
10.12 EFI Adapter Information Protocol Information Types.. 451

10.12.1 Network Media State... 451
10.12.2 Network Boot... 452
10.12.3 SAN MAC Address ... 453
10.12.4 IPV6 Support from UNDI.. 453

11
Protocols — Console Support .. 455
11.1 Console I/O Protocol... 455
xxvi April, 2015 Version 2.5

11.1.1 Overview ... 455
11.1.2 ConsoleIn Definition ... 455

11.2 Simple Text Input Ex Protocol... 457
11.3 Simple Text Input Protocol.. 466

11.3.1 ConsoleOut or StandardError ... 469
11.4 Simple Text Output Protocol ... 470
11.5 Simple Pointer Protocol .. 486
11.6 EFI Simple Pointer Device Paths ... 491
11.7 Absolute Pointer Protocol ... 494
11.8 Serial I/O Protocol... 500
11.9 Graphics Output Protocol.. 511

11.9.1 Blt Buffer ... 512
11.10 Rules for PCI/AGP Devices .. 527

12
Protocols - Media Access .. 531
12.1 Load File Protocol ... 531
12.2 Load File 2 Protocol .. 533
12.3 File System Format... 536

12.3.1 System Partition .. 536
12.3.2 Partition Discovery .. 539
12.3.3 Number and Location of System Partitions... 540
12.3.4 Media Formats .. 541

12.4 Simple File System Protocol ... 542
12.5 EFI File Protocol ... 545
12.6 Tape Boot Support.. 574

12.6.1 Tape I/O Support... 574
12.6.2 Tape I/O Protocol .. 575
12.6.3 Tape Header Format... 585

12.7 Disk I/O Protocol ... 587
12.8 Disk I/O 2 Protocol ... 591
12.9 EFI Block I/O Protocol... 599
12.10 EFI Block I/O 2 Protocol.. 609
12.11 Inline Cryptographic Interface .. 617
12.12 ATA Pass Thru Protocol ... 633
12.13 Storage Security Command Protocol ... 653
12.14 NVM Express Pass Through Protocol .. 658

13
Protocols - PCI Bus Support ... 671
13.1 PCI Root Bridge I/O Support... 671

13.1.1 PCI Root Bridge I/O Overview .. 671
13.2 PCI Root Bridge I/O Protocol .. 676

13.2.1 PCI Root Bridge Device Paths .. 708
13.3 PCI Driver Model... 711

13.3.1 PCI Driver Initialization.. 712
13.3.2 PCI Bus Drivers... 714
13.3.3 PCI Device Drivers.. 719
Version 2.5 April, 2015 xxvii

Unified Extensible Firmware Interface Specification
13.4 EFI PCI I/O Protocol ... 720
13.4.1 PCI Device Paths ... 759
13.4.2 PCI Option ROMs ... 761
13.4.3 Nonvolatile Storage... 770
13.4.4 PCI Hot-Plug Events ... 771

14
Protocols — SCSI Driver Models and Bus Support 773
14.1 SCSI Driver Model Overview .. 773
14.2 SCSI Bus Drivers .. 774

14.2.1 Driver Binding Protocol for SCSI Bus Drivers ... 774
14.2.2 SCSI Enumeration .. 775

14.3 SCSI Device Drivers ... 775
14.3.1 Driver Binding Protocol for SCSI Device Drivers .. 775

14.4 EFI SCSI I/O Protocol ... 776
14.5 SCSI Device Paths ... 787

14.5.1 SCSI Device Path Example .. 787
14.5.2 ATAPI Device Path Example .. 788
14.5.3 Fibre Channel Device Path Example .. 789
14.5.4 InfiniBand Device Path Example... 790

14.6 SCSI Pass Thru Device Paths ... 791
14.7 Extended SCSI Pass Thru Protocol .. 793

15
Protocols - iSCSI Boot ... 815
15.1 Overview ... 815

15.1.1 iSCSI UEFI Driver Layering .. 815
15.2 EFI iSCSI Initiator Name Protocol... 815

16
Protocols — USB Support ... 819
16.1 USB2 Host Controller Protocol ... 819

16.1.1 USB Host Controller Protocol Overview.. 819
16.2 USB Driver Model ... 854

16.2.1 Scope .. 854
16.2.2 USB Bus Driver ... 855
16.2.3 USB Device Driver .. 856
16.2.4 USB I/O Protocol... 857

16.3 USB Function Protocol.. 885

17
Protocols - Debugger Support .. 919
17.1 Overview ... 919
17.2 EFI Debug Support Protocol ... 920

17.2.1 EFI Debug Support Protocol Overview ... 920
17.3 EFI Debugport Protocol .. 938

17.3.1 EFI Debugport Overview... 938
17.3.2 Debugport Device Path ... 943
xxviii April, 2015 Version 2.5

17.3.3 EFI Debugport Variable... 944
17.4 EFI Debug Support Table ... 945

17.4.1 Overview ... 945
17.4.2 EFI System Table Location ... 946
17.4.3 EFI Image Info... 946

18
Protocols - Compression Algorithm Specification 949
18.1 Algorithm Overview... 949
18.2 Data Format .. 950

18.2.1 Bit Order.. 950
18.2.2 Overall Structure ... 951
18.2.3 Block Structure.. 952

18.3 Compressor Design .. 955
18.3.1 Overall Process... 955
18.3.2 String Info Log... 956
18.3.3 Huffman Code Generation .. 959

18.4 Decompressor Design .. 961
18.5 Decompress Protocol.. 962

19
Protocols - ACPI Protocols.. 967

20
Protocols - String Services.. 971
20.1 Unicode Collation Protocol.. 971
20.2 Regular Expression Protocol ... 979

20.2.1 EFI Regular Expression Syntax Type Definitions ... 984

21
EFI Byte Code Virtual Machine.. 985
21.1 Overview ... 985

21.1.1 Processor Architecture Independence .. 985
21.1.2 OS Independent ... 986
21.1.3 EFI Compliant ... 986
21.1.4 Coexistence of Legacy Option ROMs ... 986
21.1.5 Relocatable Image .. 986
21.1.6 Size Restrictions Based on Memory Available ... 986

21.2 Memory Ordering .. 987
21.3 Virtual Machine Registers ... 987
21.4 Natural Indexing.. 988

21.4.1 Sign Bit.. 989
21.4.2 Bits Assigned to Natural Units... 989
21.4.3 Constant.. 989
21.4.4 Natural Units ... 990

21.5 EBC Instruction Operands .. 990
21.5.1 Direct Operands .. 990
21.5.2 Indirect Operands.. 991
Version 2.5 April, 2015 xxix

Unified Extensible Firmware Interface Specification
21.5.3 Indirect with Index Operands .. 991
21.5.4 Immediate Operands... 991

21.6 EBC Instruction Syntax .. 992
21.7 Instruction Encoding ... 992

21.7.1 Instruction Opcode Byte Encoding ... 992
21.7.2 Instruction Operands Byte Encoding... 993
21.7.3 Index/Immediate Data Encoding ... 993

21.8 EBC Instruction Set... 994
21.9 Runtime and Software Conventions ... 1041

21.9.1 Calling Outside VM ... 1041
21.9.2 Calling Inside VM .. 1041
21.9.3 Parameter Passing.. 1041
21.9.4 Return Values ... 1041
21.9.5 Binary Format.. 1041

21.10 Architectural Requirements... 1041
21.10.1 EBC Image Requirements .. 1041
21.10.2 EBC Execution Interfacing Requirements... 1042
21.10.3 Interfacing Function Parameters Requirements.. 1042
21.10.4 Function Return Requirements ... 1042
21.10.5 Function Return Values Requirements ... 1042

21.11 EBC Interpreter Protocol... 1042
21.12 EBC Tools... 1048

21.12.1 EBC C Compiler.. 1048
21.12.2 C Coding Convention .. 1048
21.12.3 EBC Interface Assembly Instructions.. 1049
21.12.4 Stack Maintenance and Argument Passing .. 1049
21.12.5 Native to EBC Arguments Calling Convention .. 1049
21.12.6 EBC to Native Arguments Calling Convention .. 1049
21.12.7 EBC to EBC Arguments Calling Convention... 1050
21.12.8 Function Returns... 1050
21.12.9 Function Return Values... 1050
21.12.10 Thunking ... 1050
21.12.11 EBC Linker .. 1052
21.12.12 Image Loader .. 1053
21.12.13 Debug Support .. 1053

21.13 VM Exception Handling... 1053
21.13.1 Divide By 0 Exception ... 1053
21.13.2 Debug Break Exception .. 1053
21.13.3 Invalid Opcode Exception ... 1054
21.13.4 Stack Fault Exception ... 1054
21.13.5 Alignment Exception ... 1054
21.13.6 Instruction Encoding Exception... 1054
21.13.7 Bad Break Exception... 1054
21.13.8 Undefined Exception ... 1054

21.14 Option ROM Formats.. 1054
21.14.1 EFI Drivers for PCI Add-in Cards .. 1055
21.14.2 Non-PCI Bus Support.. 1055
xxx April, 2015 Version 2.5

22
Firmware Update and Reporting ... 1057
22.1 Firmware Management Protocol ... 1057
22.2 Delivering Capsules Containing Updates to Firmware Management Protocol 1076

22.2.1 EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID............................ 1076
22.2.2 DEFINED FIRMWARE MANAGEMENT PROTOCOL DATA CAPSULE

STRUCTURE ... 1077
22.2.3 Firmware Processing of the Capsule Identified by

EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID................................. 1081
22.3 EFI System Resource Table ... 1083

22.3.1 Adding and Removing Devices from the ESRT .. 1085
22.3.2 ESRT and Firmware Management Protocol ... 1086
22.3.3 Mapping Firmware Management Protocol Descriptors to ESRT Entries 1086

23
Network Protocols - SNP, PXE, BIS and HTTP Boot 1089
23.1 Simple Network Protocol .. 1089
23.2 Network Interface Identifier Protocol ... 1116
23.3 PXE Base Code Protocol.. 1119

23.3.1 Netboot6.. 1158
23.4 PXE Base Code Callback Protocol ... 1164
23.5 Boot Integrity Services Protocol.. 1166
23.6 DHCP options for ISCSI on IPV6.. 1205
23.7 HTTP Boot .. 1205

23.7.1 Boot from URL .. 1205
23.7.2 Concept configuration for a typical HTTP Boot scenario 1207
23.7.3 Protocol Layout for UEFI HTTP Boot Client concept configuration for a typical

HTTP Boot scenario ... 1208
23.7.4 Concept of Message Exchange in a typical HTTP Boot scenario (IPv4 in

Corporate Environment) ... 1210
23.7.5 Concept of Message Exchange in HTTP Boot scenario (IPv6) 1213

24
Network Protocols — Managed Network ... 1215
24.1 EFI Managed Network Protocol .. 1215

25
Network Protocols — VLAN, EAP, Wi-Fi and Supplicant 1235
25.1 VLAN Configuration Protocol .. 1235
25.2 EAP Protocol... 1239

25.2.1 EAPManagement Protocol.. 1244
25.2.2 EFI EAP Management2 Protocol .. 1258
25.2.3 EFI EAP Configuration Protocol.. 1260

25.3 EFI Wireless MAC Connection Protocol ... 1265
25.4 EFI Supplicant Protocol .. 1290
Version 2.5 April, 2015 xxxi

Unified Extensible Firmware Interface Specification
26
Network Protocols - Bluetooth.. 1301
26.1 EFI Bluetooth Host Controller Protocol ... 1301
26.2 EFI Bluetooth Bus Protocol... 1314
26.3 EFI Bluetooth Configuration Protocol.. 1332

27
Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations ... 1353
27.1 EFI TCPv4 Protocol .. 1353

27.1.1 TCP4 Service Binding Protocol... 1353
27.1.2 TCP4 Protocol... 1354

27.2 EFI TCPv6 Protocol .. 1380
27.2.1 TCPv6 Service Binding Protocol ... 1380
27.2.2 TCPv6 Protocol ... 1382

27.3 EFI IPv4 Protocol .. 1406
27.3.1 IP4 Service Binding Protocol... 1407
27.3.2 IP4 Protocol... 1407

27.4 EFI IPv4 Configuration Protocol.. 1429
27.5 EFI IPv4 Configuration II Protocol... 1435
27.6 EFI IPv6 Protocol ... 1445

27.6.1 IPv6 Service Binding Protocol... 1446
27.6.2 IPv6 Protocol... 1446

27.7 EFI IPv6 Configuration Protocol... 1473
27.8 IPsec ... 1484

27.8.1 IPsec Overview ... 1484
27.8.2 EFI IPsec Configuration Protocol .. 1485
27.8.3 EFI IPsec Protocol ... 1505
27.8.4 EFI IPsec2 Protocol ... 1508

27.9 Network Protocol - EFI FTP Protocol .. 1512
27.10 EFI TLS Protocols... 1529

27.10.1 EFI TLS Service Binding Protocol... 1529
27.10.2 EFI TLS Protocol... 1530
27.10.3 EFI TLS Configuration Protocol .. 1542

28
Network Protocols - ARP, DHCP, DNS, HTTP and REST...................... 1547
28.1 ARP Protocol .. 1547
28.2 EFI DHCPv4 Protocol ... 1561
28.3 EFI DHCP6 Protocol .. 1587

28.3.1 DHCP6 Service Binding Protocol.. 1587
28.3.2 DHCP6 Protocol.. 1588

28.4 EFI DNSv4 Protocol.. 1616
28.5 EFI DNSv6 Protocol.. 1631

28.5.1 DNS6 Service Binding Protocol .. 1632
28.5.2 DNS6 Protocol .. 1632

28.6 EFI HTTP Protocols .. 1646
28.6.1 HTTP Service Binding Protocol... 1647
xxxii April, 2015 Version 2.5

28.6.2 EFI HTTP Protocol Specific Definitions .. 1648
28.6.3 HTTP Utilities Protocol .. 1669

28.7 EFI REST Protocol.. 1672
28.7.1 EFI REST Protocol Definitions ... 1673

29
Network Protocols — UDP and MTFTP .. 1677
29.1 EFI UDP Protocol.. 1677

29.1.1 UDP4 Service Binding Protocol .. 1677
29.1.2 UDP4 Protocol .. 1678

29.2 EFI UDPv6 Protocol.. 1697
29.2.1 UDP6 Service Binding Protocol .. 1697
29.2.2 EFI UDP6 Protocol.. 1698

29.3 EFI MTFTPv4 Protocol ... 1715
29.4 EFI MTFTPv6 Protocol ... 1744

29.4.1 MTFTP6 Service Binding Protocol .. 1745
29.4.2 MTFTP6 Protocol .. 1745

30
Secure Boot and Driver Signing .. 1773
30.1 Secure Boot .. 1773
30.2 UEFI Driver Signing Overview .. 1778

30.2.1 Digital Signatures .. 1778
30.2.2 Embedded Signatures... 1780
30.2.3 Creating Image Digests from Images.. 1781
30.2.4 Code Definitions.. 1781

30.3 Firmware/OS Key Exchange: creating trust relationships... 1785
30.3.1 Enrolling The Platform Key ... 1787
30.3.2 Clearing The Platform Key .. 1788
30.3.3 Transitioning to Audit Mode .. 1788
30.3.4 Transitioning to Deployed Mode ... 1788
30.3.5 Enrolling Key Exchange Keys ... 1788
30.3.6 Platform Firmware Key Storage Requirements... 1789

30.4 Firmware/OS Key Exchange: passing public keys .. 1789
30.4.1 Signature Database .. 1789
30.4.2 Image Execution Information Table .. 1795

30.5 UEFI Image Validation .. 1797
30.5.1 Overview ... 1797
30.5.2 Authorized User .. 1798
30.5.3 Signature Database Update.. 1798

30.6 Code Definitions.. 1803
30.6.1 UEFI Image Variable GUID & Variable Name... 1803

31
Human Interface Infrastructure Overview .. 1805
31.1 Goals... 1805
31.2 Design Discussion .. 1806

31.2.1 Drivers And Applications ... 1806
Version 2.5 April, 2015 xxxiii

Unified Extensible Firmware Interface Specification
31.2.2 Localization ... 1813
31.2.3 User Input.. 1814
31.2.4 Keyboard Layout ... 1815
31.2.5 Forms .. 1818
31.2.6 Strings ... 1848
31.2.7 Fonts ... 1852
31.2.8 Images .. 1858
31.2.9 HII Database ... 1859
31.2.10 Forms Browser.. 1859
31.2.11 Configuration Settings... 1864
31.2.12 Form Callback Logic ... 1867
31.2.13 Driver Model Interaction .. 1870
31.2.14 Human Interface Component Interactions .. 1871
31.2.15 Standards Map Forms... 1872

31.3 Code Definitions.. 1876
31.3.1 Package Lists and Package Headers ... 1877
31.3.2 Simplified Font Package ... 1879
31.3.3 Font Package .. 1881
31.3.4 Device Path Package.. 1892
31.3.5 GUID Package .. 1892
31.3.6 String Package.. 1893
31.3.7 Image Package ... 1909
31.3.8 Forms Package ... 1925
31.3.9 Keyboard Package.. 2000
31.3.10 Animations Package ... 2000

32
HII Protocols ... 2013
32.1 Font Protocol... 2013

32.1.1 Code Definitions.. 2023
32.2 String Protocol .. 2026
32.3 Image Protocol.. 2035
32.4 Database Protocol .. 2043

32.4.1 Database Structures ... 2067

33
HII Configuration Processing and Browser Protocol............................ 2071
33.1 Introduction ... 2071

33.1.1 Common Configuration Data Format .. 2071
33.1.2 Data Flow .. 2071

33.2 Configuration Strings .. 2071
33.2.1 String Syntax... 2071
33.2.2 String Types .. 2077

33.3 EFI Configuration Keyword Handler Protocol ... 2077
33.4 EFI HII Configuration Routing Protocol... 2083
33.5 EFI HII Configuration Access Protocol.. 2094
33.6 Form Browser Protocol ... 2105
xxxiv April, 2015 Version 2.5

34
User Identification .. 2113
34.1 User Identification Overview ... 2113

34.1.1 User Identify .. 2113
34.1.2 User Profiles.. 2115
34.1.3 Credential Providers.. 2116
34.1.4 Security Considerations .. 2117
34.1.5 Deferred Execution ... 2119

34.2 User Identification Process ... 2119
34.2.1 User Identification Process ... 2119
34.2.2 Changing The Current User Profile... 2120
34.2.3 Ready To Boot .. 2120

34.3 Code Definitions.. 2120
34.3.1 User Manager Protocol ... 2120
34.3.2 Credential Provider Protocols ... 2137
34.3.3 Deferred Image Load Protocol .. 2152

34.4 User Information ... 2155
34.4.1 EFI_USER_INFO_ACCESS_POLICY_RECORD .. 2156
34.4.2 EFI_USER_INFO_CBEFF_RECORD... 2160
34.4.3 EFI_USER_INFO_CREATE_DATE_RECORD .. 2161
34.4.4 EFI_USER_INFO_CREDENTIAL_PROVIDER_RECORD........................... 2161
34.4.5 EFI_USER_INFO_CREDENTIAL_PROVIDER_NAME_RECORD 2161
34.4.6 EFI_USER_INFO_CREDENTIAL_TYPE_RECORD 2162
34.4.7 EFI_USER_INFO_CREDENTIAL_TYPE_NAME_RECORD........................ 2162
34.4.8 EFI_USER_INFO_GUID_RECORD ... 2162
34.4.9 EFI_USER_INFO_FAR_RECORD ... 2163
34.4.10 EFI_USER_INFO_IDENTIFIER_RECORD .. 2163
34.4.11 EFI_USER_INFO_IDENTITY_POLICY_RECORD..................................... 2163
34.4.12 EFI_USER_INFO_NAME_RECORD .. 2165
34.4.13 EFI_USER_INFO_PKCS11_RECORD... 2165
34.4.14 EFI_USER_INFO_RETRY_RECORD .. 2166
34.4.15 EFI_USER_INFO_USAGE_DATE_RECORD .. 2166
34.4.16 EFI_USER_INFO_USAGE_COUNT_RECORD ... 2166

34.5 User Information Table ... 2167

35
Secure Technologies ... 2169
35.1 Hash Overview.. 2169

35.1.1 Hash References .. 2169
35.1.2 Other Code Definitions.. 2173

35.2 Hash2 Protocols.. 2175
35.2.1 EFI Hash2 Service Binding Protocol ... 2175
35.2.2 EFI Hash2 Protocol ... 2176
35.2.3 Other Code Definitions ... 2187

35.3 Key Management Service... 2188
35.4 PKCS7 Verify Protocol .. 2227
35.5 Random Number Generator Protocol ... 2236
Version 2.5 April, 2015 xxxv

Unified Extensible Firmware Interface Specification
35.5.1 EFI RNG Algorithm Definitions.. 2240
35.5.2 RNG References... 2240

35.6
Smart Card Reader and Smart Card Edge Protocols ... 2241

35.6.1 Smart Card Reader Protocol.. 2241
35.6.2 Smart Card Edge Protocol ... 2253

36
Protocols— Timestamp Protocol.. 2277
36.1 EFI Timestamp Protocol ... 2277

Appendix A
GUID and Time Formats... 2281

Appendix B
Console ... 2283
B.1 EFI_SIMPLE_TEXT_INPUT_PROTOCOL and EFI_SIMPLE_TEXT_INPUT_EX_PRO-

TOCOL.. 2283
B.2 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL... 2285

Appendix C
Device Path Examples ... 2287
C.1 Example Computer System.. 2287
C.2 Legacy Floppy .. 2288
C.3 IDE Disk ... 2289
C.4 Secondary Root PCI Bus with PCI to PCI Bridge... 2290
C.5 ACPI Terms.. 2291
C.6 EFI Device Path as a Name Space.. 2292

Appendix D
Status Codes... 2293

Appendix E
Universal Network Driver Interfaces... 2297
E.1 Introduction... 2297

E.1.1 Definitions .. 2297
E.1.2 Referenced Specifications ... 2298
E.1.3 OS Network Stacks.. 2301

E.2 Overview... 2302
E.2.1 32/64-bit UNDI Interface .. 2302
E.2.2 UNDI Command Format .. 2307

E.3 UNDI C Definitions ... 2309
E.3.1 Portability Macros .. 2309
E.3.2 Miscellaneous Macros ... 2312
E.3.3 Portability Types .. 2312
E.3.4 Simple Types ... 2313
E.3.5 Compound Types... 2326

E.4 UNDI Commands ... 2331
E.4.1 Command Linking and Queuing .. 2333
xxxvi April, 2015 Version 2.5

E.4.2 Get State.. 2334
E.4.3 Start ... 2336
E.4.4 Stop.. 2342
E.4.5 Get Init Info .. 2344
E.4.6 Get Config Info... 2347
E.4.7 Initialize .. 2349
E.4.8 Reset.. 2352
E.4.9 Shutdown... 2354
E.4.10 Interrupt Enables.. 2355
E.4.11 Receive Filters ... 2357
E.4.12 Station Address.. 2359
E.4.13 Statistics... 2361
E.4.14 MCast IP To MAC.. 2364
E.4.15 NvData ... 2365
E.4.16 Get Status .. 2368
E.4.17 Fill Header.. 2370
E.4.18 Transmit ... 2373
E.4.19 Receive .. 2376
E.4.20 PXE 2.1 specification wire protocol clarifications................................. 2378

Appendix F
Using the Simple Pointer Protocol ... 2381

Appendix G
Using the EFI Extended SCSI Pass Thru Protocol 2383

Appendix H
Compression Source Code ... 2387

Appendix I
Decompression Source Code ... 2415

Appendix J
EFI Byte Code Virtual Machine Opcode List ... 2431

Appendix K
Alphabetic Function Lists.. 2435

Appendix L
EFI 1.10 Protocol Changes and Deprecation List 2489
L.1 Protocol and GUID Name Changes from EFI 1.10 .. 2489
L.2 Deprecated Protocols ... 2491

Appendix M
Formats--Language Codes and Language Code Arrays 2493
M.1 Specifying individual language codes .. 2493

M.1.1 Specifying language code arrays: ... 2493

Appendix N
Common Platform Error Record ... 2495
N.1 Introduction... 2495
Version 2.5 April, 2015 xxxvii

Unified Extensible Firmware Interface Specification
N.2 Format ... 2495
N.2.1 Record Header .. 2495
N.2.2 Section Descriptor ... 2500
N.2.3 Non-standard Section Body... 2503
N.2.4 Processor Error Sections... 2503
N.2.5 Memory Error Section.. 2515
N.2.6 Memory Error Section 2... 2517
N.2.7 PCI Express Error Section... 2519
N.2.8 PCI/PCI-X Bus Error Section ... 2521
N.2.9 PCI/PCI-X Component Error Section... 2522
N.2.10 Firmware Error Record Reference... 2523
N.2.11 DMAr Error Sections.. 2523
N.2.12 Error Status.. 2526

Appendix O
 UEFI ACPI Data Table.. 2529

Appendix P
Hardware Error Record Persistence Usage ... 2533
P.1 Determining space.. 2533
P.2 Saving Hardware error records .. 2533
P.3 Clearing error record variables ... 2533

Appendix Q
References .. 2535
Q.1 Related Information.. 2535
Q.2 Prerequisite Specifications... 2541

Q.2.1 ACPI Specification... 2541
Q.2.2 Additional Considerations for Itanium-Based Platforms 2541

Appendix R
Glossary .. 2543
xxxviii April, 2015 Version 2.5

Tables

Table 1. Organization of the UEFI Specification ... 2
Table 2. SI prefixes ... 15
Table 3. Binary prefixes ... 15
Table 4. UEFI Image Memory Types .. 19
Table 5. UEFI Runtime Services... 21
Table 6. Common UEFI Data Types... 23
Table 7. Modifiers for Common UEFI Data Types .. 24
Table 8. Map: EFI memory types to AArch64 memory types ... 40
Table 9. UEFI Protocols.. 44
Table 10. Required UEFI Implementation Elements... 60
Table 11. Global Variables.. 82
Table 12. UEFI Image Types .. 89
Table 13. Legacy MBR ... 113
Table 14. Legacy MBR Partition Record... 114
Table 15. Protective MBR ... 115
Table 16. Protective MBR Partition Record protecting the entire disk 116
Table 17. GPT Header.. 120
Table 18. GPT Partition Entry ... 122
Table 19. Defined GPT Partition Entry - Partition Type GUIDs .. 123
Table 20. Defined GPT Partition Entry - Attributes ... 123
Table 21. Event, Timer, and Task Priority Functions .. 126
Table 22. TPL Usage .. 127
Table 23. TPL Restrictions.. 127
Table 24. Memory Allocation Functions.. 148
Table 25. Memory Type Usage before ExitBootServices().. 149
Table 26. Memory Type Usage after ExitBootServices()... 150
Table 27. Protocol Interface Functions ... 161
Table 28. Image Type Differences Summary ... 209
Table 29. Image Functions ... 210
Table 30. Miscellaneous Boot Services Functions ... 222
Table 31. Rules for Reentry Into Runtime Services.. 234
Table 32. Functions that may be called after Machine Check ,INIT and NMI 235
Table 33. Variable Services Functions ... 236
Table 34. Hardware Error Record Persistence Variables ... 251
Table 35. Time Services Functions... 252
Table 36. Virtual Memory Functions ... 260
Table 37. Miscellaneous Runtime Services .. 264
Table 38. Flag Firmware Behavior.. 271
Table 39. Variables Using EFI_CAPSULE_REPORT_GUID ... 280
Table 40. Generic Device Path Node Structure.. 291
Table 41. Device Path End Structure.. 292
Table 42. PCI Device Path.. 292
Table 43. PCCARD Device Path .. 293
Table 44. Memory Mapped Device Path... 293
Table 45. Vendor-Defined Device Path .. 293
Table 46. Controller Device Path .. 294
Table 47. BMC Device Path.. 294
Table 48. ACPI Device Path ... 295
Table 49. Expanded ACPI Device Path .. 296
Table 50. ACPI _ADR Device Path... 297
Version 2.5 April, 2015 xxxix

Unified Extensible Firmware Interface Specification
Table 51. ATAPI Device Path ... 297
Table 52. SCSI Device Path ... 297
Table 53. Fibre Channel Device Path ... 298
Table 54. Fibre Channel Ex Device Path ... 298
Table 55. Fibre Channel Ex Device Path Example... 299
Table 56. 1394 Device Path.. 300
Table 57. USB Device Path .. 300
Table 58. USB Device Path Examples ... 300
Table 59. Another USB Device Path Example.. 301
Table 60. SATA Device Path .. 302
Table 61. USB WWID Device Path... 303
Table 62. Device Logical Unit ... 303
Table 63. USB Class Device Path .. 304
Table 64. I2O Device Path.. 304
Table 65. MAC Address Device Path ... 304
Table 66. IPv4 Device Path .. 305
Table 67. IPv6 Device Path .. 305
Table 68. InfiniBand Device Path.. 306
Table 69. UART Device Path.. 306
Table 70. Vendor-Defined Messaging Device Path .. 307
Table 71. UART Flow Control Messaging Device Path .. 308
Table 72. Messaging Device Path Structure... 308
Table 73. Messaging Device Path Structure... 310
Table 74. iSCSI Device Path Node (Base Information) .. 311
Table 75. IPv4 configuration ... 312
Table 76. IPv6 configuration ... 317
Table 77. NVM Express Namespace Device Path ... 322
Table 78. URI Device Path ... 322
Table 79. UFS Device Path .. 322
Table 80. SD Device Path... 323
Table 81. Bluetooth Device Path ... 323
Table 82. Wi-Fi Device Path ... 323
Table 83. Hard Drive Media Device Path.. 324
Table 84. CD-ROM Media Device Path .. 325
Table 85. Vendor-Defined Media Device Path.. 325
Table 86. File Path Media Device Path... 326
Table 87. Media Protocol Media Device Path... 326
Table 88. PIWG Firmware Volume Device Path.. 327
Table 89. PIWG Firmware Volume Device Path... 327
Table 90. Relative Offset Range... 327
Table 91. RAM Disk Device Path.. 327
Table 92. BIOS Boot Specification Device Path ... 329
Table 93. ACPI _CRS to EFI Device Path Mapping ... 330
Table 94. ACPI _ADR to EFI Device Path Mapping ... 331
Table 95. EFI Device Path Option Parameter Values... 345
Table 96. Device Node Table ... 346
Table 97. Supported Unicode Control Characters .. 456
Table 98. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_PROTOCOL......................... 456
Table 99. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL 457
Table 100. EFI Cursor Location/Advance Rules... 476
Table 101. PS/2 Mouse Device Path .. 492
Table 102. Serial Mouse Device Path .. 493
Table 103. USB Mouse Device Path ... 494
Table 104. Blt Operation Table ... 522
Table 105. Attributes Definition Table... 526
xl April, 2015 Version 2.5

Table 106. Tape Header Formats... 586
Table 107. PATA device mapping to ports and port multiplier ports................................... 636
Table 108. Special programming considerations.. 642
Table 109. PCI Configuration Address ... 693
Table 110. ACPI 2.0 QWORD Address Space Descriptor.. 707
Table 111. ACPI 2.0 End Tag ... 708
Table 112. PCI Root Bridge Device Path for a Desktop System .. 709
Table 113. PCI Root Bridge Device Path for Bridge #0 in a Server System....................... 709
Table 114. PCI Root Bridge Device Path for Bridge #1 in a Server System....................... 710
Table 115. PCI Root Bridge Device Path for Bridge #2 in a Server System....................... 710
Table 116. PCI Root Bridge Device Path for Bridge #3 in a Server System....................... 710
Table 117. PCI Root Bridge Device Path Using Expanded ACPI Device Path 711
Table 118. ACPI 2.0 QWORD Address Space Descriptor.. 756
Table 119. ACPI 2.0 End Tag ... 756
Table 120. PCI Device 7, Function 0 on PCI Root Bridge 0 ... 760
Table 121. PCI Device 7, Function 0 behind PCI to PCI bridge ... 760
Table 122. Standard PCI Expansion ROM Header (Example from PCI Firmware Specification

3.0) ... 762
Table 123. PCI Expansion ROM Code Types (Example from PCI Firmware Specification 3.0)

763
Table 124. EFI PCI Expansion ROM Header ... 763
Table 125. Device Path for an EFI Driver loaded from PCI Option ROM 764
Table 126. Recommended PCI Device Driver Layout .. 769
Table 127. SCSI Device Path Examples .. 787
Table 128. ATAPI Device Path Examples .. 788
Table 129. Fibre Channel Device Path Examples .. 789
Table 130. InfiniBand Device Path Examples... 790
Table 131. Single Channel PCI SCSI Controller .. 791
Table 132. Single Channel PCI SCSI Controller behind a PCI Bridge 792
Table 133. Channel #3 of a PCI SCSI Controller behind a PCI Bridge 793
Table 134. USB Hub Port Status Bitmap .. 848
Table 135. Hub Port Change Status Bitmap... 849
Table 136. USB Port Features ... 852
Table 137. Payload-associated Messages and Descriptions ... 902
Table 138. Debugport Messaging Device Path .. 944
Table 139. Block Header Fields.. 952
Table 140. General Purpose VM Registers .. 987
Table 141. Dedicated VM Registers ... 988
Table 142. VM Flags Register .. 988
Table 143. Index Encoding ... 989
Table 144. Index Size in Index Encoding.. 989
Table 145. Opcode Byte Encoding ... 993
Table 146. Operand Byte Encoding.. 993
Table 147. ADD Instruction Encoding... 995
Table 148. AND Instruction Encoding ... 996
Table 149. ASHR Instruction Encoding .. 997
Table 150. VM Version Format ... 998
Table 151. BREAK Instruction Encoding .. 998
Table 152. CALL Instruction Encoding ... 1001
Table 153. CMP Instruction Encoding .. 1002
Table 154. CMPI Instruction Encoding ... 1004
Table 155. DIV Instruction Encoding .. 1006
Table 156. DIVU Instruction Encoding .. 1007
Table 157. EXTNDB Instruction Encoding .. 1008
Table 158. EXTNDD Instruction Encoding .. 1009
Version 2.5 April, 2015 xli

Unified Extensible Firmware Interface Specification
Table 159. EXTNDW Instruction Encoding... 1010
Table 160. JMP Instruction Encoding ... 1011
Table 161. JMP8 Instruction Encoding ... 1013
Table 162. LOADSP Instruction Encoding.. 1014
Table 163. MOD Instruction Encoding .. 1015
Table 164. MODU Instruction Encoding ... 1016
Table 165. MOV Instruction Encoding .. 1017
Table 166. MOVI Instruction Encoding ... 1019
Table 167. MOVIn Instruction Encoding ... 1021
Table 168. MOVn Instruction Encoding .. 1022
Table 169. MOVREL Instruction Encoding ... 1023
Table 170. MOVsn Instruction Encoding .. 1024
Table 171. MUL Instruction Encoding... 1026
Table 172. MULU Instruction Encoding .. 1027
Table 173. NEG Instruction Encoding ... 1028
Table 174. NOT Instruction Encoding ... 1029
Table 175. OR Instruction Encoding ... 1030
Table 176. POP Instruction Encoding... 1031
Table 177. POPn Instruction Encoding... 1032
Table 178. PUSH Instruction Encoding .. 1033
Table 179. PUSHn Instruction Encoding .. 1034
Table 180. RET Instruction Encoding ... 1035
Table 181. SHL Instruction Encoding ... 1036
Table 182. SHR Instruction Encoding... 1037
Table 183. STORESP Instruction Encoding ... 1038
Table 184. SUB Instruction Encoding ... 1039
Table 185. XOR Instruction Encoding... 1040
Table 186. ESRT and FMP Fields .. 1087
Table 187. PXE Tag Definitions for EFI .. 1129
Table 188. Destination IP Filter Operation.. 1147
Table 189. Destination UDP Port Filter Operation .. 1147
Table 190. Source IP Filter Operation .. 1147
Table 191. Source UDP Port Filter Operation... 1147
Table 192. DHCP4 Enumerations... 1565
Table 193. Field Descriptions ... 1593
Table 194. Callback Return Values .. 1599
Table 195. Descriptions of Parameters in MTFTPv4 Packet Structures........................... 1727
Table 196. Descriptions of Parameters in MTFTPv6 Packet Structures........................... 1755
Table 197. MTFTPPacket OpCode Descriptions.. 1757
Table 198. MTFTP ERROR Packet ErrorCode Descriptions.. 1758
Table 199. Generic Authentication Node Structure .. 1776
Table 200. CHAP Authentication Node Structure using RADIUS..................................... 1776
Table 201. CHAP Authentication Node Structure using Local Database 1777
Table 202. PE/COFF Certificates Types and UEFI Signature Database Certificate Types.....

1783
Table 203. Authorization process flow .. 1802
Table 204. Localization Issues.. 1814
Table 205. Information for Types of Storage .. 1838
Table 206. Common Control Codes for Font Display Information 1850
Table 207. Guidelines for UEFI System Fonts.. 1856
Table 208. Truth table: Mapping a single question to three configuration settings........... 1875
Table 209. Multiple configuration settings Example #2... 1875
Table 210. Values: .. 1876
Table 211. Package Types ... 1878
Table 212. Block Types .. 1910
xlii April, 2015 Version 2.5

Table 213. IFR Opcodes... 1928
Table 214. VarStoreType Descriptions ... 1949
Table 215. Animation Block Types ... 2001
Table 216. Callback Behavior ... 2102
Table 217. Record values and descriptions.. 2155
Table 218. Standard values for access to configure the platform..................................... 2158
Table 219. EFI Hash Algorithms ... 2175
Table 220. Identical hash results .. 2178
Table 221. Algorithms that may be used with EFI_HASH2_PROTOCOL 2186
Table 222. Encryption algorithm properties. ... 2195
Table 223. Details of Supported Signature Format.. 2228
Table 224. EFI GUID Format .. 2281
Table 225. Text representation relationships.. 2281
Table 226. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_PROTOCOL..................... 2284
Table 227. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.............. 2284
Table 228. Control Sequences to Implement EFI_SIMPLE_TEXT_INPUT_PROTOCOL .. 2285
Table 229. Legacy Floppy Device Path .. 2289
Table 230. IDE Disk Device Path.. 2290
Table 231. Secondary Root PCI Bus with PCI to PCI Bridge Device Path....................... 2291
Table 232. EFI_STATUS Code Ranges ... 2293
Table 233. EFI_STATUS Success Codes (High Bit Clear)... 2293
Table 234. EFI_STATUS Error Codes (High Bit Set) ... 2293
Table 235. EFI_STATUS Warning Codes (High Bit Clear) ... 2295
Table 236. Definitions ... 2297
Table 237. Referenced Specifications .. 2298
Table 238. Driver Types: Pros and Cons... 2301
Table 239. !PXE Structure Field Definitions.. 2303
Table 240. UNDI CDB Field Definitions .. 2308
Table 241. EBC Virtual Machine Opcode Summary... 2431
Table 242. Functions Listed in Alphabetic Order .. 2435
Table 243. Functions Listed Alphabetically within a Service or Protocol 2466
Table 244. Protocol Name changes.. 2489
Table 245. Revision Identifier Name Changes ... 2490
Table 246. Alias codes supported in addition to RFC 4646.. 2493
Table 247. Error record header... 2496
Table 248. Error Record Header Flags... 2499
Table 249. Section Descriptor... 2500
Table 250. Processor Generic Error Section .. 2504
Table 251. Processor Error Record .. 2506
Table 252. IA32/X64 Processor Error Information Structure .. 2507
Table 253. IA32/X64 Cache Check Structure ... 2507
Table 254. IA32/X64 TLB Check Structure... 2509
Table 255. IA32/X64 Bus Check Structure ... 2510
Table 256. IA32/X64 MS Check Field Description.. 2511
Table 257. IA32/X64 Processor Context Information.. 2512
Table 258. IA32 Register State... 2513
Table 259. X64 Register State.. 2513
Table 260. Memory Error Record ... 2515
Table 261. Memory Error Record 2 .. 2518
Table 262. PCI Express Error Record .. 2520
Table 263. PCI/PCI-X Bus Error Section .. 2521
Table 264. PCI/PCI-X Component Error Section.. 2522
Table 265. Firmware Error Record Reference.. 2523
Table 266. DMAr Generic Errors ... 2524
Table 267. Intel® VT for Directed I/O specific DMAr Errors.. 2525
Version 2.5 April, 2015 xliii

Unified Extensible Firmware Interface Specification
Table 268. IOMMU specific DMAr Errors.. 2526
Table 269. Error Status Fields .. 2526
Table 270. Error Types ... 2527
Table 271. UEFI Table Structure .. 2529
Table 272. SMM Communication ACPI Table. ... 2529
xliv April, 2015 Version 2.5

Figures

Figure 1. UEFI Conceptual Overview ... 9
Figure 2. Booting Sequence ... 17
Figure 3. Stack after AddressOfEntryPoint Called, IA- 32... 27
Figure 4. Stack after AddressOfEntryPoint Called, Itanium-based Systems................ 29
Figure 5. Construction of a Protocol ... 43
Figure 6. Desktop System... 47
Figure 7. Server System ... 48
Figure 8. Image Handle .. 51
Figure 9. Driver Image Handle.. 52
Figure 10. Host Bus Controllers.. 53
Figure 11. PCI Root Bridge Device Handle .. 53
Figure 12. Connecting Device Drivers .. 54
Figure 13. Connecting Bus Drivers ... 56
Figure 14. Child Device Handle with a Bus Specific Override .. 57
Figure 15. Software Service Relationships ... 59
Figure 16. MBRDisk Layout with legacy MBR example.. 115
Figure 17. GPT disk layout with protective MBR example.. 117
Figure 18. GPT disk layout with protective MBR on a disk with capacity exceeding LBA

0xFFFFFFFF example. .. 117
Figure 19. GUID Partition Table (GPT) example .. 118
Figure 20. Device Handle to Protocol Handler Mapping... 163
Figure 21. Handle Database ... 165
Figure 22. Scatter-Gather List of EFI_CAPSULE_BLOCK_DESCRIPTOR Structures 274
Figure 23. Text to Binary Conversion .. 342
Figure 24. Binary to Text Conversion ... 342
Figure 25. Device Path Text Representation .. 343
Figure 26. Text Device Node Names.. 344
Figure 27. Device Node Option Names .. 345
Figure 28. Driver Health Status States ... 431
Figure 29. Software BLT Buffer .. 513
Figure 30. Nesting of Legacy MBR Partition Records .. 539
Figure 31. Host Bus Controllers.. 672
Figure 32. Device Handle for a PCI Root Bridge Controller.. 673
Figure 33. Desktop System with One PCI Root Bridge .. 673
Figure 34. Server System with Four PCI Root Bridges... 674
Figure 35. Server System with Two PCI Segments.. 675
Figure 36. Server System with Two PCI Host Buses.. 675
Figure 37. Image Handle .. 712
Figure 38. PCI Driver Image Handle... 713
Figure 39. PCI Host Bus Controller... 714
Figure 40. Device Handle for a PCI Host Bus Controller .. 715
Figure 41. Physical PCI Bus Structure.. 716
Figure 42. Connecting a PCI Bus Driver... 717
Version 2.5 April, 2015 xlv

Unified Extensible Firmware Interface Specification
Figure 43. Child Handle Created by a PCI Bus Driver .. 717
Figure 44. Connecting a PCI Device Driver .. 720
Figure 45. Unsigned PCI Driver Image Layout ... 766
Figure 46. Signed and Compressed PCI Driver Image Flow .. 766
Figure 47. Signed and Compressed PCI Driver Image Layout ... 767
Figure 48. Signed but not Compressed PCI Driver Image Flow ... 768
Figure 49. Signed and Uncompressed PCI Driver Image Layout 769
Figure 50. Device Handle for a SCSI Bus Controller .. 774
Figure 51. Child Handle Created by a SCSI Bus Driver ... 775
Figure 52. Software Triggered State Transitions of a USB Host Controller 828
Figure 53. USB Bus Controller Handle ... 854
Figure 54. Sequence of Operations with Endpoint Policy Changes 918
Figure 55. Debug Support Table Indirection and Pointer Usage .. 946
Figure 56. Bit Sequence of Compressed Data ... 951
Figure 57. Compressed Data Structure .. 951
Figure 58. Block Structure .. 952
Figure 59. Block Body... 955
Figure 60. String Info Log Search Tree... 957
Figure 61. Node Split .. 959
Figure 62. Firmware Image with no Authentication Support ... 1064
Figure 63. Firmware Image with Authentication Support .. 1064
Figure 64. Optional Scatter-Gather Construction of Capsule Submitted to UpdateCapsule() ..

1077
Figure 65. Capsule Header and Firmware Management Capsule Header....................... 1078
Figure 66. Firmware Management and Firmware Image Management headers.............. 1079
Figure 67. IPv6-based PXE boot ... 1160
Figure 68. netboot6 (DHCP6 and ProxyDHCP6 reside on the same server) 1162
Figure 69. IPv6-based PXE boot (DHCP6 and ProxyDHCP6 reside on the different server)...

1163
Figure 70. HTTP Boot Network Topology Concept – Corporate Environment 1207
Figure 71. HTTP Boot Network Topology Concept2 – Home environments 1208
Figure 72. UEFI HTTP Boot Protocol Layout.. 1209
Figure 73. HTTP Boot overall flow ... 1211
Figure 74. Creating A Digital Signature .. 1779
Figure 75. Verifying a Digital Signature .. 1780
Figure 76. Embedded Digital Certificates ... 1781
Figure 77. Secure Boot Modes ... 1787
Figure 78. Signature lists .. 1791
Figure 79. Process for adding a new signature by the OS ... 1800
Figure 80. Platform Configuration Overview ... 1806
Figure 81. HII Resources In Drivers & Applications.. 1807
Figure 82. Creating UI Resources With Resource Files ... 1808
Figure 83. Creating UI Resources With Intermediate Source Representation 1809
Figure 84. The Platform and Standard User Interactions ... 1810
Figure 85. User and Platform Component Interaction .. 1810
Figure 86. User Interface Components... 1811
Figure 87. Connected Forms Browser/Processor... 1812
xlvi April, 2015 Version 2.5

Figure 88. Disconnected Forms Browser/Processor .. 1812
Figure 89. O/S-Present Forms Browser/Processor .. 1813
Figure 90. Platform Data Storage ... 1813
Figure 91. Keyboard Layout.. 1816
Figure 92. Forms-based Interface Example.. 1819
Figure 93. Platform Configuration Overview ... 1820
Figure 94. Question Value Retrieval Process ... 1829
Figure 95. Question Value Change Process... 1830
Figure 96. String Identifiers... 1848
Figure 97. Fonts.. 1853
Figure 98. Font Description Terms ... 1854
Figure 99. 16 x 19 Font Parameters ... 1855
Figure 100. Font Structure Layout .. 1856
Figure 101. Proportional Font Parameters and Byte Padding .. 1857
Figure 102. Aligning Glyphs.. 1857
Figure 103. HII Database.. 1859
Figure 104. Setup Browser ... 1860
Figure 105. Storing Configuration Settings ... 1865
Figure 106. OS Runtime Utilization... 1866
Figure 107. Standard Application Obtaining Setting Example .. 1867
Figure 108. Typical Forms Processor Decisions Necessitating a Callback (1)................. 1868
Figure 109. Typical Forms Processor Decisions Necessitating a Callback (2)................. 1869
Figure 110. Typical Forms Processor Decisions Necessitating a Callback (3)................. 1870
Figure 111. Driver Model Interactions... 1871
Figure 112. Managing Human Interface Components .. 1872
Figure 113. EFI IFR Form set configuration.. 1873
Figure 114. EFI IFR Form Set question changes ... 1874
Figure 115. Glyph Information Encoded in Blocks.. 1883
Figure 116. Glyph Block Processing... 1885
Figure 117. String Information Encoded in Blocks.. 1895
Figure 118. String Block Processing: Base Processing.. 1897
Figure 119. String Block Processing: SCSU Processing .. 1898
Figure 120. String Block Processing: UTF Processing ... 1899
Figure 121. Image Information Encoded in Blocks ... 1910
Figure 122. Palette Structure of a Black & White, One-Bit Image 1923
Figure 123. Palette Structure of a Four-Bit Image .. 1924
Figure 124. Palette Structure of a Four-Bit, Six-Color Image ... 1924
Figure 125. Simple Binary Object ... 1925
Figure 126. Password Flowchart (part one).. 1970
Figure 127. Password Flowchart (part two) .. 1970
Figure 128. Animation Information Encoded in Blocks ... 2001
Figure 129. Keyboard Layout.. 2063
Figure 130. User Identity... 2114
Figure 131. Hash workflow ... 2179
Figure 132. Example Computer System ... 2287
Figure 133. Partial ACPI Name Space for Example System .. 2288
Figure 134. EFI Device Path Displayed As a Name Space .. 2292
Version 2.5 April, 2015 xlvii

Unified Extensible Firmware Interface Specification
Figure 135. Network Stacks with Three Classes of Drivers.. 2301
Figure 136. !PXE Structures for H/W and S/W UNDI ... 2303
Figure 137. Issuing UNDI Commands .. 2307
Figure 138. UNDI Command Descriptor Block (CDB) .. 2308
Figure 139. Storage Types ... 2312
Figure 140. UNDI States, Transitions & Valid Commands ... 2332
Figure 141. Linked CDBs.. 2333
Figure 142. Queued CDBs.. 2334
Figure 143. Error Record Format.. 2495
xlviii April, 2015 Version 2.5

Version 2.5 April, 2015 xlix

Introduction
1
Introduction

This Unified Extensible Firmware Interface (hereafter known as UEFI) Specification describes an
interface between the operating system (OS) and the platform firmware. UEFI was preceded by the
Extensible Firmware Interface Specification 1.10 (EFI). As a result, some code and certain protocol
names retain the EFI designation. Unless otherwise noted, EFI designations in this specification may
be assumed to be part of UEFI.

The interface is in the form of data tables that contain platform-related information, and boot and
runtime service calls that are available to the OS loader and the OS. Together, these provide a
standard environment for booting an OS. This specification is designed as a pure interface
specification. As such, the specification defines the set of interfaces and structures that platform
firmware must implement. Similarly, the specification defines the set of interfaces and structures
that the OS may use in booting. How either the firmware developer chooses to implement the
required elements or the OS developer chooses to make use of those interfaces and structures is an
implementation decision left for the developer.

The intent of this specification is to define a way for the OS and platform firmware to communicate
only information necessary to support the OS boot process. This is accomplished through a formal
and complete abstract specification of the software-visible interface presented to the OS by the
platform and firmware.

Using this formal definition, a shrink-wrap OS intended to run on platforms compatible with
supported processor specifications will be able to boot on a variety of system designs without further
platform or OS customization. The definition will also allow for platform innovation to introduce
new features and functionality that enhance platform capability without requiring new code to be
written in the OS boot sequence.

Furthermore, an abstract specification opens a route to replace legacy devices and firmware code
over time. New device types and associated code can provide equivalent functionality through the
same defined abstract interface, again without impact on the OS boot support code.

The specification is applicable to a full range of hardware platforms from mobile systems to servers.
The specification provides a core set of services along with a selection of protocol interfaces. The
selection of protocol interfaces can evolve over time to be optimized for various platform market
segments. At the same time, the specification allows maximum extensibility and customization
abilities for OEMs to allow differentiation. In this, the purpose of UEFI is to define an evolutionary
path from the traditional “PC-AT”-style boot world into a legacy-API free environment.

1.1 UEFI Driver Model Extensions
Access to boot devices is provided through a set of protocol interfaces. One purpose of the UEFI
Driver Model is to provide a replacement for “PC-AT”-style option ROMs. It is important to point
out that drivers written to the UEFI Driver Model are designed to access boot devices in the preboot
environment. They are not designed to replace the high-performance, OS-specific drivers.
Version 2.5 April, 2015 1

Unified Extensible Firmware Interface Specification
The UEFI Driver Model is designed to support the execution of modular pieces of code, also known
as drivers, that run in the preboot environment. These drivers may manage or control hardware buses
and devices on the platform, or they may provide some software-derived, platform-specific service.

The UEFI Driver Model also contains information required by UEFI driver writers to design and
implement any combination of bus drivers and device drivers that a platform might need to boot a
UEFI-compliant OS.

The UEFI Driver Model is designed to be generic and can be adapted to any type of bus or device.
The UEFI Specification describes how to write PCI bus drivers, PCI device drivers, USB bus
drivers, USB device drivers, and SCSI drivers. Additional details are provided that allow UEFI
drivers to be stored in PCI option ROMs, while maintaining compatibility with legacy option ROM
images.

One of the design goals in the UEFI Specification is keeping the driver images as small as possible.
However, if a driver is required to support multiple processor architectures, a driver object file
would also be required to be shipped for each supported processor architecture. To address this
space issue, this specification also defines the EFI Byte Code Virtual Machine. A UEFI driver can be
compiled into a single EFI Byte Code object file. UEFI Specification-complaint firmware must
contain an EFI Byte Code interpreter. This allows a single EFI Byte Code object file that supports
multiple processor architectures to be shipped. Another space saving technique is the use of
compression. This specification defines compression and decompression algorithms that may be
used to reduce the size of UEFI Drivers, and thus reduce the overhead when UEFI Drivers are stored
in ROM devices.

The information contained in the UEFI Specification can be used by OSVs, IHVs, OEMs, and
firmware vendors to design and implement firmware conforming to this specification, drivers that
produce standard protocol interfaces, and operating system loaders that can be used to boot UEFI-
compliant operating systems.

1.2 Overview
The UEFI Specification is organized as listed in Table 1.

Table 1. Organization of the UEFI Specification

Section/Appendix Description

1. Introduction Introduces the UEFI Specification and topics related to using the
specification.

2. Overview Describes the major components of UEFI, including the boot
manager, firmware core, calling conventions, protocols, and
requirements.

3. Boot Manager Describes the boot manager, which is used to load drivers and
applications written to this specification.

4. EFI System Table Describes the EFI System Table that is passed to every compliant
driver and application.

5. GUID Partition Table (GPT) Format Defines a new partitioning scheme that must be supported by
firmware conforming to this specification.
2 April, 2015 Version 2.5

Introduction
6. Services — Boot Services Contains the definitions of the fundamental services that are
present in a UEFI-compliant system before an OS is booted.

7. Services — Runtime Services Contains definitions for the fundamental services that are present
in a compliant system before and after an OS is booted.

8. Protocols — EFI Loaded Image Defines the EFI Loaded Image Protocol that describes a UEFI
Image that has been loaded into memory.

9 Protocols — Device Path Protocol Defines the device path protocol and provides the information
needed to construct and manage device paths in the UEFI
environment.

10. Protocols — UEFI Driver Model Describes a generic driver model for UEFI. This includes the set
of services and protocols that apply to every bus and device type,
including the Driver Binding Protocol, the Platform Driver Override
Protocol, the Bus Specific Driver Override Protocol, the Driver
Diagnostics Protocol, the Driver Configuration Protocol, and the
Component Name Protocol.

11. Protocols — Console Support Defines the Console I/O protocols, which handle input and output
of text-based information intended for the system user while
executing in the boot services environment. These protocols
include the Simple Input Protocol, the Simple Text Output
Protocol, the Graphics Output Protocol, the Simple Pointer
Protocol, and the Serial I/O Protocol.

12. Protocols—Media Access Defines the Load File protocol, file system format and media
formats for handling removable media.

13. Protocols — PCI Bus Support Defines PCI Bus Drivers, PCI Device Drivers, and PCI Option
ROM layouts. The protocols described include the PCI Root
Bridge I/O Protocol and the PCI I/O Protocol.

14. Protocols — SCSI Driver Models
and Bus Support

Defines the SCSI I/O Protocol and the Extended SCSI Pass Thru
Protocol that is used to abstract access to a SCSI channel that is
produced by a SCSI host controller.

15. Protocols —iSCSI Boot The iSCSI protocol defines a transport for SCSI data over TCP/
IP.

16. Protocols — USB Support Defines USB Bus Drivers and USB Device Drivers. The protocols
described include the USB2 Host Controller Protocol and the USB
I/O Protocol.

17. Protocols — Debugger Support An optional set of protocols that provide the services required to
implement a source-level debugger for the UEFI environment.
The EFI Debug Port Protocol provides services to communicate
with a remote debug host. The Debug Support Protocol provides
services to hook processor exceptions, save the processor
context, and restore the processor context. These protocols can
be used in the implementation of a debug agent on the target
system that interacts with the remote debug host.

Section/Appendix Description
Version 2.5 April, 2015 3

Unified Extensible Firmware Interface Specification
18. Protocols — Compression Algorithm
Specification

Describes in detail the compression/decompression algorithm, as
well as the EFI Decompress Protocol. The EFI Decompress
Protocol provides a standard decompression interface for use at
boot time. The EFI Decompress Protocol is used by a PCI Bus
Driver to decompress UEFI drivers stored in PCI Option ROMs.

19. Protocols — ACPI Protocols Defines a protocol that may be used to install or remove an ACPI
table from a platform.

20. EFI Byte Code Virtual Machine Defines the EFI Byte Code virtual processor and its instruction
set. It also defines how EBC object files are loaded into memory,
and the mechanism for transitioning from native code to EBC
code and back to native code. The information in this document is
sufficient to implement an EFI Byte Code interpreter, an EFI Byte
Code compiler, and an EFI Byte Code linker.

21. Network Protocols—SNP, PXE, and
BIS

Defines the protocols that provide access to network devices
while executing in the UEFI boot services environment. These
protocols include the Simple Network Protocol, the PXE Base
Code Protocol, and the Boot Integrity services (BIS) Protocol.

22. Network Protocols—Managed
Network

Defines the EFI Managed Network Protocol, which provides raw
(unformatted) asynchronous network packet I/O services and
Managed Network Service Binding Protocol, which is used to
locate communication devices that are supported by an MNP
driver.

23. Network Protocols—VLAN and
EAP

Defines a protocol is to provide a manageability interface for
VLAN configurations.

24. Network Protocols—TCP, IP, IPsec,
FTP and Configuration

Defines the EFI TCPv4 (Transmission Control Protocol version 4)
Protocol and the EFI IPv4 (Internet Protocol version 4) Protocol
interface.

25. Network Protocols—ARP and
DHCP

Defines the EFI Address Resolution Protocol (ARP) Protocol
interface and the EFI DHCPv4 Protocol.

26. Network Protocols—UDPv4 and
MTFPv4

Defines the EFI UDPv4 (User Datagram Protocol version 4)
Protocol that interfaces over the EFI IPv4 Protocol and defines
the EFI MTFTPv4 Protocol interface that is built on the EFI
UDPv4 Protocol.

27. Secure Boot and Driver Signing Describes Secure Boot and a means of generating a digital
signature for UEFI.

28. Human Interface Infrastructure
Overview

Defines the core code and services that are required for an
implementation of the Human Interface Infrastructure (HII),
including basic mechanisms for managing user input and code
definitions for related protocols.

29. HII Protocols Provides code definitions for the HII-related protocols, functions,
and type definitions, including management of font, strings,
images and databases.

30. HII Configuration Processing and
Browser Protocol

Describes the data and APIs used to manage the system’s
configuration: the actual data that describes the knobs and
settings.

Section/Appendix Description
4 April, 2015 Version 2.5

Introduction
31. User Identification Describes services which describe the current user of the
platform.

32. Firmware Management Protocol Provides an abstraction for devices to provide firmware
management support.

33. Secure Technologies Describes the protocols for utilizing security technologies
including cryptographic hashing and key management.

34.Protocols - Timestamp Protocol Provides a platform independent interface for retrieving a high
resolution timestamp counter.

A. GUID and Time Formats Explains the GUID (Guaranteed Unique Identifier) format.

B. Console Describes the requirements for a basic text-based console
required by EFI-conformant systems to provide communication
capabilities.

C. Device Path Examples Examples of use of the data structures that define various
hardware devices to the boot services.

D. Status Codes Lists success, error, and warning codes returned by UEFI
interfaces.

E. Universal Network Driver Interfaces Defines the 32/64-bit hardware and software Universal Network
Driver Interfaces (UNDIs).

F. Using the Simple Pointer Protocol Provides the suggested usage of the Simple Pointer Protocol.

G. Using the EFI Extended SCSI Pass
Thru Protocol

Provides an example of how the SCSI Pass Thru Protocol can be
used.

H. Compression Source Code The C source code to an implementation of the Compression
Algorithm.

I. Decompression Source Code The C source code to an implementation of the EFI
Decompression Algorithm.

J. EFI Byte Code Virtual Machine
Opcode Lists

A summary of the opcodes in the instruction set of the EFI Byte
Code Virtual Machine.

K. Alphabetic Function List Lists all UEFI interface functions alphabetically.

L. EFI 1.10 Protocol Changes and
Deprecation Lists

Lists the Protocol, GUID, and revision identifier name changes
and the deprecated protocols compared to the EFI Specification
1.10.

M. Formats—Language Codes and
Language Code Arrays

Lists the formats for language codes and language code arrays.

N. Common Platform Error Record Describes the common platform error record format for
representing platform hardware errors.

O. UEFI ACPI Table Defines the UEFI ACPI table format.

P. Hardware Error Record Persistence
Usage

Defines Hardware Error Record Persistence usage.

Q. References Lists all necessary or useful specifications, web sites, and other
documentation that is referenced in this UEFI specification.

R. Glossary Briefly describes terms defined or referenced by this specification.

Index Provides an index to the key terms and concepts in the
specification.

Section/Appendix Description
Version 2.5 April, 2015 5

Unified Extensible Firmware Interface Specification
1.3 Goals
The “PC-AT” boot environment presents significant challenges to innovation within the industry.
Each new platform capability or hardware innovation requires firmware developers to craft
increasingly complex solutions, and often requires OS developers to make changes to their boot
code before customers can benefit from the innovation. This can be a time-consuming process
requiring a significant investment of resources.

The primary goal of the UEFI specification is to define an alternative boot environment that can
alleviate some of these considerations. In this goal, the specification is similar to other existing boot
specifications. The main properties of this specification can be summarized by these attributes:

• Coherent, scalable platform environment. The specification defines a complete solution for the
firmware to describe all platform features and surface platform capabilities to the OS during the
boot process. The definitions are rich enough to cover a range of contemporary processor
designs.

• Abstraction of the OS from the firmware. The specification defines interfaces to platform
capabilities. Through the use of abstract interfaces, the specification allows the OS loader to be
constructed with far less knowledge of the platform and firmware that underlie those interfaces.
The interfaces represent a well-defined and stable boundary between the underlying platform
and firmware implementation and the OS loader. Such a boundary allows the underlying
firmware and the OS loader to change provided both limit their interactions to the defined
interfaces.

• Reasonable device abstraction free of legacy interfaces. “PC-AT” BIOS interfaces require the
OS loader to have specific knowledge of the workings of certain hardware devices. This
specification provides OS loader developers with something different: abstract interfaces that
make it possible to build code that works on a range of underlying hardware devices without
having explicit knowledge of the specifics for each device in the range.

• Abstraction of Option ROMs from the firmware. This specification defines interfaces to
platform capabilities including standard bus types such as PCI, USB, and SCSI. The list of
supported bus types may grow over time, so a mechanism to extend to future bus types is
included. These defined interfaces, and the ability to extend to future bus types, are components
of the UEFI Driver Model. One purpose of the UEFI Driver Model is to solve a wide range of
issues that are present in existing “PC-AT” option ROMs. Like OS loaders, drivers use the
abstract interfaces so device drivers and bus drivers can be constructed with far less knowledge
of the platform and firmware that underlie those interfaces.

• Architecturally shareable system partition. Initiatives to expand platform capabilities and add
new devices often require software support. In many cases, when these platform innovations are
activated before the OS takes control of the platform, they must be supported by code that is
specific to the platform rather than to the customer’s choice of OS. The traditional approach to
this problem has been to embed code in the platform during manufacturing (for example, in flash
memory devices). Demand for such persistent storage is increasing at a rapid rate. This
specification defines persistent store on large mass storage media types for use by platform
support code extensions to supplement the traditional approach. The definition of how this
works is made clear in the specification to ensure that firmware developers, OEMs, operating
system vendors, and perhaps even third parties can share the space safely while adding to
platform capability.
6 April, 2015 Version 2.5

Introduction
Defining a boot environment that delivers these attributes could be accomplished in many ways.
Indeed, several alternatives, perhaps viable from an academic point of view, already existed at the
time this specification was written. These alternatives, however, typically presented high barriers to
entry given the current infrastructure capabilities surrounding supported processor platforms. This
specification is intended to deliver the attributes listed above, while also recognizing the unique
needs of an industry that has considerable investment in compatibility and a large installed base of
systems that cannot be abandoned summarily. These needs drive the requirements for the additional
attributes embodied in this specification:

• Evolutionary, not revolutionary. The interfaces and structures in the specification are designed
to reduce the burden of an initial implementation as much as possible. While care has been taken
to ensure that appropriate abstractions are maintained in the interfaces themselves, the design
also ensures that reuse of BIOS code to implement the interfaces is possible with a minimum of
additional coding effort. In other words, on PC-AT platforms the specification can be
implemented initially as a thin interface layer over an underlying implementation based on
existing code. At the same time, introduction of the abstract interfaces provides for migration
away from legacy code in the future. Once the abstraction is established as the means for the
firmware and OS loader to interact during boot, developers are free to replace legacy code
underneath the abstract interfaces at leisure. A similar migration for hardware legacy is also
possible. Since the abstractions hide the specifics of devices, it is possible to remove underlying
hardware, and replace it with new hardware that provides improved functionality, reduced cost,
or both. Clearly this requires that new platform firmware be written to support the device and
present it to the OS loader via the abstract interfaces. However, without the interface abstraction,
removal of the legacy device might not be possible at all.

• Compatibility by design. The design of the system partition structures also preserves all the
structures that are currently used in the “PC-AT” boot environment. Thus, it is a simple matter to
construct a single system that is capable of booting a legacy OS or an EFI-aware OS from the
same disk.

• Simplifies addition of OS-neutral platform value-add. The specification defines an open,
extensible interface that lends itself to the creation of platform “drivers.” These may be
analogous to OS drivers, providing support for new device types during the boot process, or they
may be used to implement enhanced platform capabilities, such as fault tolerance or security.
Furthermore, this ability to extend platform capability is designed into the specification from the
outset. This is intended to help developers avoid many of the frustrations inherent in trying to
squeeze new code into the traditional BIOS environment. As a result of the inclusion of
interfaces to add new protocols, OEMs or firmware developers have an infrastructure to add
capability to the platform in a modular way. Such drivers may potentially be implemented using
high-level coding languages because of the calling conventions and environment defined in the
specification. This in turn may help to reduce the difficulty and cost of innovation. The option of
a system partition provides an alternative to nonvolatile memory storage for such extensions.

• Built on existing investment. Where possible, the specification avoids redefining interfaces and
structures in areas where existing industry specifications provide adequate coverage. For
example, the ACPI specification provides the OS with all the information necessary to discover
and configure platform resources. Again, this philosophical choice for the design of the
specification is intended to keep barriers to its adoption as low as possible.
Version 2.5 April, 2015 7

Unified Extensible Firmware Interface Specification
1.4 Target Audience
This document is intended for the following readers:

• IHVs and OEMs who will be implementing UEFI drivers.

• OEMs who will be creating supported processor platforms intended to boot shrink-wrap
operating systems.

• BIOS developers, either those who create general-purpose BIOS and other firmware products or
those who modify these products for use in supported processor-based products.

• Operating system developers who will be adapting their shrink-wrap operating system products
to run on supported processor-based platforms.

1.5 UEFI Design Overview
The design of UEFI is based on the following fundamental elements:

• Reuse of existing table-based interfaces. In order to preserve investment in existing
infrastructure support code, both in the OS and firmware, a number of existing specifications
that are commonly implemented on platforms compatible with supported processor
specifications must be implemented on platforms wishing to comply with the UEFI
specification. (For additional information, see Appendix Q.)

• System partition. The System partition defines a partition and file system that are designed to
allow safe sharing between multiple vendors, and for different purposes. The ability to include a
separate, sharable system partition presents an opportunity to increase platform value-add
without significantly growing the need for nonvolatile platform memory.

• Boot services. Boot services provide interfaces for devices and system functionality that can be
used during boot time. Device access is abstracted through “handles” and “protocols.” This
facilitates reuse of investment in existing BIOS code by keeping underlying implementation
requirements out of the specification without burdening the consumer accessing the device.

• Runtime services. A minimal set of runtime services is presented to ensure appropriate
abstraction of base platform hardware resources that may be needed by the OS during its normal
operations.

Figure 1 shows the principal components of UEFI and their relationship to platform hardware and
OS software.
8 April, 2015 Version 2.5

Introduction
Figure 1. UEFI Conceptual Overview

Figure 1 illustrates the interactions of the various components of an UEFI specification-compliant
system that are used to accomplish platform and OS boot.

The platform firmware is able to retrieve the OS loader image from the System Partition. The
specification provides for a variety of mass storage device types including disk, CD-ROM, and DVD
as well as remote boot via a network. Through the extensible protocol interfaces, it is possible to add
other boot media types, although these may require OS loader modifications if they require use of
protocols other than those defined in this document.

Once started, the OS loader continues to boot the complete operating system. To do so, it may use
the EFI boot services and interfaces defined by this or other required specifications to survey,
comprehend, and initialize the various platform components and the OS software that manages
them. EFI runtime services are also available to the OS loader during the boot phase.

1.6 UEFI Driver Model
This section describes the goals of a driver model for firmware conforming to this specification. The
goal is for this driver model to provide a mechanism for implementing bus drivers and device drivers
for all types of buses and devices. At the time of writing, supported bus types include PCI, USB, and
so on.

As hardware architectures continue to evolve, the number and types of buses present in platforms are
increasing. This trend is especially true in high-end servers. However, a more diverse set of bus
types is being designed into desktop and mobile systems and even some embedded systems. This
increasing complexity means that a simple method for describing and managing all the buses and
devices in a platform is required in the preboot environment. The UEFI Driver Model provides this
simple method in the form of protocols services and boot services.

OM13141

ACPI
SMBIOS

(OTHER)

INTERFACES
FROM

OTHER
REQUIRED

SPECS PLATFORM HARDWARE

EFI BOOT SERVICES EFI RUNTIME
SERVICES

EFI OS LOADER

OPERATING SYSTEM

EFI SYSTEM PARTITION
EFI OS

LOADER
Version 2.5 April, 2015 9

Unified Extensible Firmware Interface Specification
1.6.1 UEFI Driver Model Goals
The UEFI Driver Model has the following goals:

• Compatible – Drivers conforming to this specification must maintain compatibility with the EFI
1.10 Specification and the UEFI Specification. This means that the UEFI Driver Model takes
advantage of the extensibility mechanisms in the UEFI 2. 0 Specification to add the required
functionality.

• Simple – Drivers that conform to this specification must be simple to implement and simple to
maintain. The UEFI Driver Model must allow a driver writer to concentrate on the specific
device for which the driver is being developed. A driver should not be concerned with platform
policy or platform management issues. These considerations should be left to the system
firmware.

• Scalable – The UEFI Driver Model must be able to adapt to all types of platforms. These
platforms include embedded systems, mobile, and desktop systems, as well as workstations and
servers.

• Flexible – The UEFI Driver Model must support the ability to enumerate all the devices, or to
enumerate only those devices required to boot the required OS. The minimum device
enumeration provides support for more rapid boot capability, and the full device enumeration
provides the ability to perform OS installations, system maintenance, or system diagnostics on
any boot device present in the system.

• Extensible – The UEFI Driver Model must be able to extend to future bus types as they are
defined.

• Portable – Drivers written to the UEFI Driver Model must be portable between platforms and
between supported processor architectures.

• Interoperable – Drivers must coexist with other drivers and system firmware and must do so
without generating resource conflicts.

• Describe complex bus hierarchies – The UEFI Driver Model must be able to describe a variety
of bus topologies from very simple single bus platforms to very complex platforms containing
many buses of various types.

• Small driver footprint – The size of executables produced by the UEFI Driver Model must be
minimized to reduce the overall platform cost. While flexibility and extensibility are goals, the
additional overhead required to support these must be kept to a minimum to prevent the size of
firmware components from becoming unmanageable.

• Address legacy option rom issues – The UEFI Driver Model must directly address and solve the
constraints and limitations of legacy option ROMs. Specifically, it must be possible to build
add-in cards that support both UEFI drivers and legacy option ROMs, where such cards can
execute in both legacy BIOS systems and UEFI-conforming platforms, without modifications to
the code carried on the card. The solution must provide an evolutionary path to migrate from
legacy option ROMs driver to UEFI drivers.

1.6.2 Legacy Option ROM Issues
This idea of supporting a driver model came from feedback on the UEFI Specification that provided
a clear, market-driven requirement for an alternative to the legacy option ROM (sometimes also
10 April, 2015 Version 2.5

Introduction
referred to as an expansion ROM). The perception is that the advent of the UEFI Specification
represents a chance to escape the limitations implicit in the construction and operation of legacy
option ROM images by replacing them with an alternative mechanism that works within the
framework of the UEFI Specification.

1.7 Migration Requirements
Migration requirements cover the transition period from initial implementation of this specification
to a future time when all platforms and operating systems implement to this specification. During
this period, two major compatibility considerations are important:

• The ability to continue booting legacy operating systems;

• The ability to implement UEFI on existing platforms by reusing as much existing firmware code
to keep development resource and time requirements to a minimum.

1.7.1 Legacy Operating System Support
The UEFI specification represents the preferred means for a shrink-wrap OS and firmware to
communicate during the boot process. However, choosing to make a platform that complies with this
specification in no way precludes a platform from also supporting existing legacy OS binaries that
have no knowledge of the UEFI specification.

The UEFI specification does not restrict a platform designer who chooses to support both the UEFI
specification and a more traditional “PC-AT” boot infrastructure. If such a legacy infrastructure is to
be implemented, it should be developed in accordance with existing industry practice that is defined
outside the scope of this specification. The choice of legacy operating systems that are supported on
any given platform is left to the manufacturer of that platform.

1.7.2 Supporting the UEFI Specification on a Legacy Platform
The UEFI specification has been carefully designed to allow for existing systems to be extended to
support it with a minimum of development effort. In particular, the abstract structures and services
defined in the UEFI specification can all be supported on legacy platforms.

For example, to accomplish such support on an existing and supported 32-bit-based platform that
uses traditional BIOS to support operating system boot, an additional layer of firmware code would
need to be provided. This extra code would be required to translate existing interfaces for services
and devices into support for the abstractions defined in this specification.

1.8 Conventions Used in this Document
This document uses typographic and illustrative conventions described below.

1.8.1 Data Structure Descriptions
Supported processors are “little endian” machines. This distinction means that the low-order byte of
a multibyte data item in memory is at the lowest address, while the high-order byte is at the highest
address. Some supported 64-bit processors may be configured for both “little endian” and “big
Version 2.5 April, 2015 11

Unified Extensible Firmware Interface Specification
endian” operation. All implementations designed to conform to this specification use “little endian”
operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

1.8.2 Protocol Descriptions
A protocol description generally has the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

1.8.3 Procedure Descriptions
A procedure description generally has the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this
procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
12 April, 2015 Version 2.5

Introduction
table. Additional error codes may be returned, but they will not be
tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

1.8.4 Instruction Descriptions
An instruction description for EBC instructions generally has the following format:

InstructionName The formal name of the instruction.

Syntax: A brief description of the instruction.

Description: A description of the functionality provided by the instruction
accompanied by a table that details the instruction encoding.

Operation: Details the operations performed on operands.

Behaviors and Restrictions:
An item-by-item description of the behavior of each operand
involved in the instruction and any restrictions that apply to the
operands or the instruction.

1.8.5 Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding to
the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be FIFO.

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the UEFI Specification.

1.8.6 Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the
descriptive text in a specification.

Plain text (blue) Any plain text that is underlined and in blue indicates an active
link to the cross-reference. Click on the word to follow the
hyperlink.

Bold In text, a Bold typeface identifies a processor register name. In
other instances, a Bold typeface can be used as a running head
within a paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a
new term or to indicate a manual or specification name.
Version 2.5 April, 2015 13

Unified Extensible Firmware Interface Specification
BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red
color. These code listings normally appear in one or more
separate paragraphs, though words or segments can also be
embedded in a normal text paragraph.

Bold Monospace Words in a Bold Monospace typeface that is underlined and
in blue indicate an active hyperlink to the code definition for that
function or type definition. Click on the word to follow the
hyperlink.

Note: Due to management and file size considerations, only the first occurrence of the reference on each
page is an active link. Subsequent references on the same page will not be actively linked to the
definition and will use the standard, nonunderlined BOLD Monospace typeface. Find the first
instance of the name (in the underlined BOLD Monospace typeface) on the page and click on
the word to jump to the function or type definition.

Italic Monospace In code or in text, words in Italic Monospace indicate
placeholder names for variable information that must be supplied
(i.e., arguments).

1.8.7 Number formats
A binary number is represented in this standard by any sequence of digits consisting of only the
Western-Arabic numerals 0 and 1 immediately followed by a lower-case b (e.g., 0101b).

 Underscores or spaces may be included between characters in binary number representations to
increase readability or delineate field boundaries (e.g., 0 0101 1010b or 0_0101_1010b).

1.8.7.1 Hexadecimal
A hexadecimal number is represented in this standard by 0x preceding any sequence of digits
consisting of only the Western-Arabic numerals 0 through 9 and/or the upper-case English letters A
through F (e.g., 0xFA23).

Underscores or spaces may be included between characters in hexadecimal number representations
to increase readability or delineate field boundaries (e.g., 0xB FD8C FA23 or 0xB_FD8C_FA23).

1.8.7.2 Decimal
A decimal number is represented in this standard by any sequence of digits consisting of only the
Arabic numerals 0 through 9 not immediately followed by a lower-case b or lower-case h (e.g., 25).

This standard uses the following conventions for representing decimal numbers:

• the decimal separator (i.e., separating the integer and fractional portions of the number) is a
period;

• the thousands separator (i.e., separating groups of three digits in a portion of the number) is a
comma;

• the thousands separator is used in the integer portion and is not used in the fraction portion of a
number.
14 April, 2015 Version 2.5

Introduction
1.8.8 Binary prefixes
This standard uses the prefixes defined in the International System of Units (SI) for values that are
powers of ten. See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading "SI
Binary Prefixes”.

Table 2. SI prefixes

This standard uses the binary prefixes defined in ISO/IEC 80000-13 Quantities and units -- Part 13:
Information science and technology and IEEE 1514 Standard for Prefixes for Binary Multiples for
values that are powers of two.

Table 3. Binary prefixes

For example, 4 KB means 4,000 bytes and 4 KiB means 4,096 bytes.

103 1,000 kilo K

106 1,000,000 mega M

109 1,000,000,000 giga G

Factor Factor Name Symbol

210 1,024 kibi Ki

220 1,048,576 mebi Mi

230 1,073,741,824 gibi Gi
Version 2.5 April, 2015 15

Unified Extensible Firmware Interface Specification
16 April, 2015 Version 2.5

Overview
2
Overview

UEFI allows the extension of platform firmware by loading UEFI driver and UEFI application
images. When UEFI drivers and UEFI applications are loaded they have access to all UEFI-defined
runtime and boot services. See Figure 2.

Figure 2. Booting Sequence

UEFI allows the consolidation of boot menus from the OS loader and platform firmware into a
single platform firmware menu. These platform firmware menus will allow the selection of any
UEFI OS loader from any partition on any boot medium that is supported by UEFI boot services. An
UEFI OS loader can support multiple options that can appear on the user interface. It is also possible
to include legacy boot options, such as booting from the A: or C: drive in the platform firmware
boot menus.

UEFI supports booting from media that contain an UEFI OS loader or an UEFI-defined System
Partition. An UEFI-defined System Partition is required by UEFI to boot from a block device. UEFI
does not require any change to the first sector of a partition, so it is possible to build media that will
boot on both legacy architectures and UEFI platforms.

2.1 Boot Manager
UEFI contains a boot manager that allows the loading of applications written to this specification
(including OS 1st stage loader) or UEFI drivers from any file on an UEFI-defined file system or
through the use of an UEFI-defined image loading service. UEFI defines NVRAM variables that are

OM13144

Standard
firmware
platform
initialization

Drivers and
applications
loaded
iteratively

Boot from
ordered list
of EFIOS
loaders

Operation
handed off
to OS loader

API specified Value add implementation

Boot Manager EFI binaries

Platform
Init

EFI Image
Load

EFI
OS Loader

Load

Boot
Services

Terminate

EFI
Driver

EFI
Application

EFI
Bootcode OS Loader

EFI APIRetry
Failure
Version 2.5 April, 2015 17

Unified Extensible Firmware Interface Specification
used to point to the file to be loaded. These variables also contain application-specific data that are
passed directly to the UEFI application. The variables also contain a human readable string that can
be displayed in a menu to the user.

The variables defined by UEFI allow the system firmware to contain a boot menu that can point to
all of the operating systems, and even multiple versions of the same operating systems. The design
goal of UEFI was to have one set of boot menus that could live in platform firmware. UEFI specifies
only the NVRAM variables used in selecting boot options. UEFI leaves the implementation of the
menu system as value added implementation space.

UEFI greatly extends the boot flexibility of a system over the current state of the art in the
PC-AT-class system. The PC-AT-class systems today are restricted to boot from the first floppy,
hard drive, CD-ROM, USB keys, or network card attached to the system. Booting from a common
hard drive can cause many interoperability problems between operating systems, and different
versions of operating systems from the same vendor.

2.1.1 UEFI Images
UEFI Images are a class of files defined by UEFI that contain executable code. The most
distinguishing feature of UEFI Images is that the first set of bytes in the UEFI Image file contains an
image header that defines the encoding of the executable image.

UEFI uses a subset of the PE32+ image format with a modified header signature. The modification
to the signature value in the PE32+ image is done to distinguish UEFI images from normal PE32
executables. The “+” addition to PE32 provides the 64-bit relocation fix-up extensions to standard
PE32 format.

For images with the UEFI image signature, the Subsystem values in the PE image header are
defined below. The major differences between image types are the memory type that the firmware
will load the image into, and the action taken when the image’s entry point exits or returns. An
application image is always unloaded when control is returned from the image’s entry point. A
driver image is only unloaded if control is passed back with a UEFI error code.
// PE32+ Subsystem type for EFI images
#define EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION 10
#define EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER 11
#define EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12

// PE32+ Machine type for EFI images
#define EFI_IMAGE_MACHINE_IA32 0x014c
#define EFI_IMAGE_MACHINE_IA64 0x0200
#define EFI_IMAGE_MACHINE_EBC 0x0EBC
#define EFI_IMAGE_MACHINE_x64 0x8664
#define EFI_IMAGE_MACHINE_ARMTHUMB_MIXED 0x01C2
#define EFI_IMAGE_MACHINE_AARCH64 0xAA64

Note: This image type is chosen to enable UEFI images to contain Thumb and Thumb2 instructions
while defining the EFI interfaces themselves to be in ARM mode.
18 April, 2015 Version 2.5

Overview
Table 4. UEFI Image Memory Types

The Machine value that is found in the PE image file header is used to indicate the machine code
type of the image. The machine code types for images with the UEFI image signature are defined
below. A given platform must implement the image type native to that platform and the image type
for EFI Byte Code (EBC). Support for other machine code types is optional to the platform.

A UEFI image is loaded into memory through the EFI_BOOT_SERVICES.LoadImage() Boot
Service. This service loads an image with a PE32+ format into memory. This PE32+ loader is
required to load all sections of the PE32+ image into memory. Once the image is loaded into
memory, and the appropriate fix-ups have been performed, control is transferred to a loaded image at
the AddressOfEntryPoint reference according to the normal indirect calling conventions of
applications based on supported 32-bit or supported 64-bit processors. All other linkage to and from
an UEFI image is done programmatically.

2.1.2 Applications
Applications written to this specification are loaded by the Boot Manager or by other UEFI
applications. To load an application the firmware allocates enough memory to hold the image,
copies the sections within the application to the allocated memory, and applies the relocation fix-ups
needed. Once done, the allocated memory is set to be the proper type for code and data for the
image. Control is then transferred to the application’s entry point. When the application returns from
its entry point, or when it calls the Boot Service EFI_BOOT_SERVICES.Exit(), the application
is unloaded from memory and control is returned to the UEFI component that loaded the application.

When the Boot Manager loads an application, the image handle may be used to locate the “load
options” for the application. The load options are stored in nonvolatile storage and are associated
with the application being loaded and executed by the Boot Manager.

2.1.3 UEFI OS Loaders
An OS loader is a special type of UEFI application that normally takes over control of the system
from firmware conforming to this specification. When loaded, the OS loader behaves like any other
UEFI application in that it must only use memory it has allocated from the firmware and can only
use UEFI services and protocols to access the devices that the firmware exposes. If the OS Loader
includes any boot service style driver functions, it must use the proper UEFI interfaces to obtain
access to the bus specific-resources. That is, I/O and memory-mapped device registers must be
accessed through the proper bus specific I/O calls like those that an UEFI driver would perform.

If the OS loader experiences a problem and cannot load its operating system correctly, it can release
all allocated resources and return control back to the firmware via the Boot Service Exit() call.
The Exit() call allows both an error code and ExitData to be returned. The ExitData
contains both a string and OS loader-specific data to be returned.

Subsystem Type Code Memory Type Data Memory Type

EFI_IMAGE_SUSBSYTEM_EFI_APPLICATION EfiLoaderCode EfiLoaderData

EFI_IMAGE_SUBSYSMTE_EFI_BOOT_SERVICES_
DRIVER

EfiBootServiceCode EfiBootServicesData

EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER EfiRuntimeServicesCode EfiRuntimeServicesData
Version 2.5 April, 2015 19

Unified Extensible Firmware Interface Specification
If the OS loader successfully loads its operating system, it can take control of the system by using
the Boot Service EFI_BOOT_SERVICES.ExitBootServices(). After successfully calling
ExitBootServices(), all boot services in the system are terminated, including memory
management, and the OS loader is responsible for the continued operation of the system.

2.1.4 UEFI Drivers
UEFI Drivers are loaded by the Boot Manager, firmware conforming to this specification, or by
other UEFI applications. To load an UEFI Driver the firmware allocates enough memory to hold the
image, copies the sections within the driver to the allocated memory and applies the relocation fix-
ups needed. Once done, the allocated memory is set to be the proper type for code and data for the
image. Control is then transferred to the driver’s entry point. When the driver returns from its entry
point, or when it calls the Boot Service EFI_BOOT_SERVICES.Exit(), the driver is optionally
unloaded from memory and control is returned to the component that loaded the driver. A driver is
not unloaded from memory if it returns a status code of EFI_SUCCESS. If the driver’s return code
is an error status code, then the driver is unloaded from memory.

There are two types of UEFI Drivers. These are Boot Service Drivers and Runtime Drivers. The only
difference between these two driver types is that Runtime Drivers are available after an OS Loader
has taken control of the platform with the Boot Service
EFI_BOOT_SERVICES.ExitBootServices().

Boot Service Drivers are terminated when ExitBootServices() is called, and all the memory
resources consumed by the Boot Service Drivers are released for use in the operating system
environment. A runtime driver of type EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER
gets fixed up with virtual mappings when the OS calls SetVirtualAddressMap().

2.2 Firmware Core
This section provides an overview of the services defined by UEFI. These include boot services and
runtime services.

2.2.1 UEFI Services
The purpose of the UEFI interfaces is to define a common boot environment abstraction for use by
loaded UEFI images, which include UEFI drivers, UEFI applications, and UEFI OS loaders. The
calls are defined with a full 64-bit interface, so that there is headroom for future growth. The goal of
this set of abstracted platform calls is to allow the platform and OS to evolve and innovate
independently of one another. Also, a standard set of primitive runtime services may be used by
operating systems.

Platform interfaces defined in this section allow the use of standard Plug and Play Option ROMs as
the underlying implementation methodology for the boot services. The interfaces have been
designed in such as way as to map back into legacy interfaces. These interfaces have in no way been
burdened with any restrictions inherent to legacy Option ROMs.

The UEFI platform interfaces are intended to provide an abstraction between the platform and the
OS that is to boot on the platform. The UEFI specification also provides abstraction between
diagnostics or utility programs and the platform; however, it does not attempt to implement a full
diagnostic OS environment. It is envisioned that a small diagnostic OS-like environment can be
20 April, 2015 Version 2.5

Overview
easily built on top of an UEFI system. Such a diagnostic environment is not described by this
specification.

Interfaces added by this specification are divided into the following categories and are detailed later
in this document:

• Runtime services

• Boot services interfaces, with the following subcategories:
— Global boot service interfaces
— Device handle-based boot service interfaces
— Device protocols
— Protocol services

2.2.2 Runtime Services
This section describes UEFI runtime service functions. The primary purpose of the runtime services
is to abstract minor parts of the hardware implementation of the platform from the OS. Runtime
service functions are available during the boot process and also at runtime provided the OS switches
into flat physical addressing mode to make the runtime call. However, if the OS loader or OS uses
the Runtime Service SetVirtualAddressMap() service, the OS will only be able to call
runtime services in a virtual addressing mode. All runtime interfaces are non-blocking interfaces and
can be called with interrupts disabled if desired.

In all cases memory used by the runtime services must be reserved and not used by the OS. runtime
services memory is always available to an UEFI function and will never be directly manipulated by
the OS or its components. UEFI is responsible for defining the hardware resources used by runtime
services, so the OS can synchronize with those resources when runtime service calls are made, or
guarantee that the OS never uses those resources.

Table 5 lists the Runtime Services functions.

Table 5. UEFI Runtime Services

Name Description

GetTime() Returns the current time, time context, and time keeping
capabilities.

SetTime() Sets the current time and time context.

GetWakeupTime() Returns the current wakeup alarm settings.

SetWakeupTime() Sets the current wakeup alarm settings.

GetVariable() Returns the value of a named variable.

GetNextVariableName() Enumerates variable names.

SetVariable() Sets, and if needed creates, a variable.

SetVirtualAddressMap() Switches all runtime functions from physical to virtual
addressing.

ConvertPointer() Used to convert a pointer from physical to virtual
addressing.

GetNextHighMonotonicCount() Subsumes the platform's monotonic counter
functionality.
Version 2.5 April, 2015 21

Unified Extensible Firmware Interface Specification
2.3 Calling Conventions
Unless otherwise stated, all functions defined in the UEFI specification are called through pointers
in common, architecturally defined, calling conventions found in C compilers. Pointers to the
various global UEFI functions are found in the EFI_RUNTIME_SERVICES and
EFI_BOOT_SERVICES tables that are located via the system table. Pointers to other functions
defined in this specification are located dynamically through device handles. In all cases, all pointers
to UEFI functions are cast with the word EFIAPI. This allows the compiler for each architecture to
supply the proper compiler keywords to achieve the needed calling conventions. When passing
pointer arguments to Boot Services, Runtime Services, and Protocol Interfaces, the caller has the
following responsibilities:

• It is the caller’s responsibility to pass pointer parameters that reference physical memory
locations. If a pointer is passed that does not point to a physical memory location (i.e., a memory
mapped I/O region), the results are unpredictable and the system may halt.

• It is the caller’s responsibility to pass pointer parameters with correct alignment. If an unaligned
pointer is passed to a function, the results are unpredictable and the system may halt.

• It is the caller’s responsibility to not pass in a NULL parameter to a function unless it is explicitly
allowed. If a NULL pointer is passed to a function, the results are unpredictable and the system
may hang.

• Unless otherwise stated, a caller should not make any assumptions regarding the state of pointer
parameters if the function returns with an error.

• A caller may not pass structures that are larger than native size by value and these structures
must be passed by reference (via a pointer) by the caller. Passing a structure larger than native
width (4 bytes on supported 32-bit processors; 8 bytes on supported 64-bit processor
instructions) on the stack will produce undefined results.

Calling conventions for supported 32-bit and supported 64-bit applications are described in more
detail below. Any function or protocol may return any valid return code.

All public interfaces of a UEFI module must follow the UEFI calling convention. Public interfaces
include the image entry point, UEFI event handlers, and protocol member functions. The type
EFIAPI is used to indicate conformance to the calling conventions defined in this section. Non
public interfaces, such as private functions and static library calls, are not required to follow the
UEFI calling conventions and may be optimized by the compiler.

ResetSystem() Resets all processors and devices and reboots the
system.

UpdateCapsule() Passes capsules to the firmware with both virtual and
physical mapping.

QueryCapsuleCapabilities() Returns if the capsule can be supported via

UpdateCapsule().

QueryVariableInfo() Returns information about the EFI variable store.

Name Description
22 April, 2015 Version 2.5

Overview
2.3.1 Data Types
Table 6 lists the common data types that are used in the interface definitions, and Table 7 lists their
modifiers. Unless otherwise specified all data types are naturally aligned. Structures are aligned on
boundaries equal to the largest internal datum of the structure and internal data are implicitly padded
to achieve natural alignment.

The values of the pointers passed into or returned by the UEFI interfaces must provide natural
alignment for the underlying types.

Table 6. Common UEFI Data Types

Mnemonic Description

BOOLEAN Logical Boolean. 1-byte value containing a 0 for FALSE or a 1 for TRUE. Other

values are undefined.

INTN Signed value of native width. (4 bytes on supported 32-bit processor instructions, 8
bytes on supported 64-bit processor instructions)

UINTN Unsigned value of native width. (4 bytes on supported 32-bit processor instructions,
8 bytes on supported 64-bit processor instructions)

INT8 1-byte signed value.

UINT8 1-byte unsigned value.

INT16 2-byte signed value.

UINT16 2-byte unsigned value.

INT32 4-byte signed value.

UINT32 4-byte unsigned value.

INT64 8-byte signed value.

UINT64 8-byte unsigned value.

CHAR8 1-byte character. Unless otherwise specified, all 1-byte or ASCII characters and
strings are stored in 8-bit ASCII encoding format, using the ISO-Latin-1 character
set.

CHAR16 2-byte Character. Unless otherwise specified all characters and strings are stored in
the UCS-2 encoding format as defined by Unicode 2.1 and ISO/IEC 10646
standards.

VOID Undeclared type.

EFI_GUID 128-bit buffer containing a unique identifier value. Unless otherwise specified,
aligned on a 64-bit boundary.

EFI_STATUS Status code. Type UINTN.

EFI_HANDLE A collection of related interfaces. Type VOID *.

EFI_EVENT Handle to an event structure. Type VOID *.

EFI_LBA Logical block address. Type UINT64.

EFI_TPL Task priority level. Type UINTN.

EFI_MAC_ADDRESS 32-byte buffer containing a network Media Access Control address.

EFI_IPv4_ADDRESS 4-byte buffer. An IPv4 internet protocol address.

EFI_IPv6_ADDRESS 16-byte buffer. An IPv6 internet protocol address.
Version 2.5 April, 2015 23

Unified Extensible Firmware Interface Specification
Table 7. Modifiers for Common UEFI Data Types

2.3.2 IA-32 Platforms
All functions are called with the C language calling convention. The general-purpose registers that
are volatile across function calls are eax, ecx, and edx. All other general-purpose registers are
nonvolatile and are preserved by the target function. In addition, unless otherwise specified by the
function definition, all other registers are preserved.

Firmware boot services and runtime services run in the following processor execution mode prior to
the OS calling ExitBootServices():

• Uniprocessor, as described in chapter 8.4 of:
— Intel 64 and IA-32 Architectures Software Developer's Manual
— Volume 3, System Programming Guide, Part 1
— Order Number: 253668-033US, December 2009
— See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading "Intel

Processor Manuals.

• Protected mode

• Paging mode may be enabled. If paging mode is enabled, PAE (Physical Address Extensions)
mode is recommended. If paging mode is enabled, any memory space defined by the UEFI
memory map is identity mapped (virtual address equals physical address). The mappings to
other regions are undefined and may vary from implementation to implementation.

• Selectors are set to be flat and are otherwise not used

• Interrupts are enabled–though no interrupt services are supported other than the UEFI boot
services timer functions (All loaded device drivers are serviced synchronously by “polling.”)

EFI_IP_ADDRESS 16-byte buffer aligned on a 4-byte boundary. An IPv4 or IPv6 internet protocol
address.

<Enumerated Type> Element of a standard ANSI C enum type declaration. Type INT32.or UINT32.

ANSI C does not define the size of sign of an enum so they should never be used in
structures. ANSI C integer promotion rules make INT32 or UINT32 interchangeable
when passed as an argument to a function.

sizeof (VOID *) 4 bytes on supported 32-bit processor instructions. 8 bytes on supported 64-bit
processor instructions.

Bitfields Bitfields are ordered such that bit 0 is the least significant bit.

Mnemonic Description

IN Datum is passed to the function.

OUT Datum is returned from the function.

OPTIONAL Passing the datum to the function is optional, and a NULL may be

passed if the value is not supplied.

CONST Datum is read-only.

EFIAPI Defines the calling convention for UEFI interfaces.

Mnemonic Description
24 April, 2015 Version 2.5

Overview
• Direction flag in EFLAGs is clear

• Other general purpose flag registers are undefined

• 128 KiB, or more, of available stack space

• The stack must be 16-byte aligned. Stack may be marked as non-executable in identity mapped
page tables.

• Floating-point control word must be initialized to 0x027F (all exceptions masked, double-
precision, round-to-nearest)

• Multimedia-extensions control word (if supported) must be initialized to 0x1F80 (all exceptions
masked, round-to-nearest, flush to zero for masked underflow).

• CR0.EM must be zero

• CR0.TS must be zero

An application written to this specification may alter the processor execution mode, but the UEFI
image must ensure firmware boot services and runtime services are executed with the prescribed
execution environment.

After an Operating System calls ExitBootServices(), firmware boot services are no longer
available and it is illegal to call any boot service. After ExitBootServices, firmware runtime services
are still available and may be called with paging enabled and virtual address pointers if
SetVirtualAddressMap() has been called describing all virtual address ranges used by the
firmware runtime service.

For an operating system to use any UEFI runtime services, it must:

• Preserve all memory in the memory map marked as runtime code and runtime data

• Call the runtime service functions, with the following conditions:
— In protected mode
— Paging may or may not be enabled, however if paging is enabled and

SetVirtualAddressMap() has not been called, any memory space defined by the
UEFI memory map is identity mapped (virtual address equals physical address). The
mappings to other regions are undefined and may vary from implementation to
implementation. See description of SetVirtualAddressMap() for details of memory
map after this function has been called.

— Direction flag in EFLAGs clear
— 4 KiB, or more, of available stack space
— The stack must be 16-byte aligned
— Floating-point control word must be initialized to 0x027F (all exceptions masked, double-

precision, round-to-nearest)
— Multimedia-extensions control word (if supported) must be initialized to 0x1F80 (all

exceptions masked, round-to-nearest, flush to zero for masked underflow)
— CR0.EM must be zero
— CR0.TS must be zero
— Interrupts disabled or enabled at the discretion of the caller

• ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must be
contained in memory of type EfiACPIMemoryNVS.
Version 2.5 April, 2015 25

Unified Extensible Firmware Interface Specification
• The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

• EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

• Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be aligned on
a 4 KiB boundary and must be a multiple of 4 KiB in size.

• An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If
the system memory map does not contain cacheability attributes, the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to be
non-cacheable.

• ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS.
The cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI
memory map. If no information about the table location exists in the UEFI memory map,
cacheability attributes may be obtained from ACPI memory descriptors. If no information about
the table location exists in the UEFI memory map or ACPI memory descriptors, the table is
assumed to be non-cached.

• In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the system
firmware must not request a virtual mapping), EfiBootServicesData,
EfiACPIReclaimMemory or EfiACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used for the storage of any EFI
Configuration Tables. The UEFI Specification intends to clarify the situation moving forward. Also,
only OSes conforming to the UEFI Specification are guaranteed to handle SMBIOS table in
memory of type EfiBootServicesData.

2.3.2.1 Handoff State
When a 32-bit UEFI OS is loaded, the system firmware hands off control to the OS in flat 32-bit
mode. All descriptors are set to their 4GiB limits so that all of memory is accessible from all
segments.

Figure 3 shows the stack after AddressOfEntryPoint in the image’s PE32+ header has been
called on supported 32-bit systems. All UEFI image entry points take two parameters. These are the
image handle of the UEFI image, and a pointer to the EFI System Table.
26 April, 2015 Version 2.5

Overview
Figure 3. Stack after AddressOfEntryPoint Called, IA- 32

2.3.2.2 Calling Convention
All functions are called with the C language calling convention. The general-purpose registers that
are volatile across function calls are eax, ecx, and edx. All other general-purpose registers are
nonvolatile and are preserved by the target function.

In addition, unless otherwise specified by the function definition, all other CPU registers (including
MMX and XMM) are preserved.

The floating point status register is not preserved by the target function. The floating point control
register and MMX control register are saved by the target function.

If the return value is a float or a double, the value is returned in ST(0).

2.3.3 Intel® Itanium®-Based Platforms
UEFI executes as an extension to the SAL execution environment with the same rules as laid out by
the SAL specification.

During boot services time the processor is in the following execution mode:

• Uniprocessor, as detailed in chapter 13.1.2 of:
— Intel Itanium Architecture Software Developer's Manual
— Volume 2: System Architecture
— Revision 2.2
— January 2006
— See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Intel

Itanium Documentation”.
— Document Number: 245318-005

• Physical mode

• 128 KiB, or more, of available stack space

• 16 KiB, or more, of available backing store space
— FPSR.traps:Set to all 1's (all exceptions disabled)
— FPSR.sf0:

• .pc:Precision Control - 11b (extended precision)

• .rc:Rounding Control - 0 (round to nearest)

• .wre:Widest Range Exponent - 0 (IEEE mode)

• .ftz:Flush-To-Zero mode - 0 (off)

OM13145

 Stack Location

EFI_SYSTEM_TABLE *

EFI_HANDLE

<return address>

ESP + 8

ESP + 4

ESP
Version 2.5 April, 2015 27

Unified Extensible Firmware Interface Specification
— FPSR.sf1:

• .td:Traps Disable = 1 (traps disabled)

• .pc:Precision Control - 11b (extended precision)

• .rc:Rounding Control - 0 (round to nearest)

• wreWidest Range Exponent - 1 (full register exponent range)

• ftzFlush-To-Zero mode - 0 (off)
— FPSR.sf2,3:

• .tdTraps Disable = 1 (traps disabled)

• pc:Precision Control - 11b (extended precision)

• .rc:Rounding Control - 0 (round to nearest)

• .wre:Widest Range Exponent - 0 (IEEE mode)

• .ftz:Flush-To-Zero mode - 0 (off)

An application written to this specification may alter the processor execution mode, but the UEFI
image must ensure firmware boot services and runtime services are executed with the prescribed
execution environment.

After an Operating System calls ExitBootServices(), firmware boot services are no longer available
and it is illegal to call any boot service. After ExitBootServices, firmware runtime services are still
available When calling runtime services, paging may or may not be enabled, however if paging is
enabled and SetVirtualAddressMap() has not been called, any memory space defined by the
UEFI memory map is identity mapped (virtual address equals physical address). The mappings to
other regions are undefined and may vary from implementation to implementation. See description
of SetVirtualAddressMap() for details of memory map after this function has been called.
After ExitBootServices(), runtime service functions may be called with interrupts disabled or
enabled at the discretion of the caller.

• ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must
be contained in memory of type EfiACPIMemoryNVS.

• The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

• EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS.
must be aligned on an 8 KiB boundary and must be a multiple of 8 KiB in size.

• Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be aligned
on an 8 KiB boundary and must be a multiple of 8 KiB in size.

• An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If
the system memory map does not contain cacheability attributes the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to be
non-cacheable.

• ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS.
The cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI
memory map. If no information about the table location exists in the UEFI memory map,
28 April, 2015 Version 2.5

Overview
cacheability attributes may be obtained from ACPI memory descriptors. If no information about
the table location exists in the UEFI memory map or ACPI memory descriptors, the table is
assumed to be non-cached.

• In general, Configuration Tables loaded at boot time (e.g., SMBIOS table) can be contained in
memory of type EfiRuntimeServicesData (recommended and the system firmware must
not request a virtual mapping), EfiBootServicesData, EfiACPIReclaimMemory or
EfiACPIMemoryNVS. Tables loaded at runtime must be contained in memory of type
EfiRuntimeServicesData (recommended) or EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. The UEFI
Specification intends to clarify the situation moving forward. Also, only OSes conforming to the
UEFI Specification are guaranteed to handle SMBIOS table in memory of type
EfiBootServicesData.

Refer to the IA-64 System Abstraction Layer Specification (see Appendix Q) for details.

UEFI procedures are invoked using the P64 C calling conventions defined for Intel® Itanium®-
based applications. Refer to the document 64 Bit Runtime Architecture and Software Conventions
for IA-64 (seeAppendix Q) for more information.

2.3.3.1 Handoff State
UEFI uses the standard P64 C calling conventions that are defined for Itanium-based operating
systems. Figure 4 shows the stack after ImageEntryPoint has been called on Itanium-based
systems. The arguments are also stored in registers: out0 contains EFI_HANDLE and out1 contains
the address of the EFI_SYSTEM_TABLE. The gp for the UEFI Image will have been loaded from
the plabel pointed to by the AddressOfEntryPoint in the image’s PE32+ header. All UEFI
image entry points take two parameters. These are the image handle of the image, and a pointer to
the System Table.

Figure 4. Stack after AddressOfEntryPoint Called, Itanium-based Systems

The SAL specification (see Appendix Q) defines the state of the system registers at boot handoff.
The SAL specification also defines which system registers can only be used after UEFI boot services
have been properly terminated.

2.3.3.2 Calling Convention
UEFI executes as an extension to the SAL execution environment with the same rules as laid out by

OM13146

EFI_SYSTEM_TABLE *

EFI_HANDLE

SP + 8

SP

out1

out0

Stack Location Register
Version 2.5 April, 2015 29

Unified Extensible Firmware Interface Specification
the SAL specification. UEFI procedures are invoked using the P64 C calling conventions defined for
Intel® Itanium®-based applications. Refer to the document 64 Bit Runtime Architecture and
Software Conventions for IA-64 (see Glossary for more information.

For floating point, functions may only use the lower 32 floating point registers Return values appear
in f8-f15 registers. Single, double, and extended values are all returned using the appropriate format.
Registers f6-f7 are local registers and are not preserved for the caller. All other floating point
registers are preserved. Note that, when compiling UEFI programs, a special switch will likely need
to be specified to guarantee that the compiler does not use f32-f127, which are not normally
preserved in the regular calling convention for Itanium. A procedure using one of the preserved
floating point registers must save and restore the caller's original contents without generating a NaT
consumption fault.

Floating point arguments are passed in f8-f15 registers when possible. Parameters beyond the
registers appear in memory, as explained in Section 8.5 of the Itanium Software Conventions and
Runtime Architecture Guide. Within the called function, these are local registers and are not
preserved for the caller. Registers f6-f7 are local registers and are not preserved for the caller. All
other floating point registers are preserved. Note that, when compiling UEFI programs, a special
switch will likely need to be specified to guarantee that the compiler does not use f32-f127, which
are not normally preserved in the regular calling convention for Itanium. A procedure using one of
the preserved floating point registers must save and restore the caller's original contents without
generating a NaT consumption fault.

The floating point status register must be preserved across calls to a target function. Flags fields in
SF1,2,3 are not preserved for the caller. Flags fields in SF0 upon return will reflect the value passed
in, and with bits set to 1 corresponding to any IEEE exceptions detected on non-speculative floating-
point operations executed as part of the callee.

Floating-point operations executed by the callee may require software emulation. The caller must be
prepared to handle FP Software Assist (FPSWA) interruptions. Callees should not raise IEEE traps
by changing FPSR.traps bits to 0 and then executing floating-point operations that raise such traps.

2.3.4 x64 Platforms
All functions are called with the C language calling convention. See Section 2.3.4.2 for more detail.

During boot services time the processor is in the following execution mode:

• Uniprocessor, as described in chapter 8.4 of:
— Intel 64 and IA-32 Architectures Software Developer's Manual
— Volume 3, System Programming Guide, Part 1
— Order Number: 253668-033US, December 2009
— See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Intel

Processor Manuals”.

• Long mode, in 64-bit mode

• Paging mode is enabled and any memory space defined by the UEFI memory map is identity
mapped (virtual address equals physical address). The mappings to other regions are undefined
and may vary from implementation to implementation.

• Selectors are set to be flat and are otherwise not used.
30 April, 2015 Version 2.5

Overview
• Interrupts are enabled–though no interrupt services are supported other than the UEFI boot
services timer functions (All loaded device drivers are serviced synchronously by “polling.”)

• Direction flag in EFLAGs is clear

• Other general purpose flag registers are undefined

• 128 KiB, or more, of available stack space

• The stack must be 16-byte aligned. Stack may be marked as non-executable in identity mapped
page tables.

• Floating-point control word must be initialized to 0x037F (all exceptions masked, double-
extended-precision, round-to-nearest)

• Multimedia-extensions control word (if supported) must be initialized to 0x1F80 (all exceptions
masked, round-to-nearest, flush to zero for masked underflow).

• CR0.EM must be zero

• CR0.TS must be zero

For an operating system to use any UEFI runtime services, it must:

• Preserve all memory in the memory map marked as runtime code and runtime data

• Call the runtime service functions, with the following conditions:

• In long mode, in 64-bit mode

• Paging enabled

• All selectors set to be flat with virtual = physical address. If the OS Loader or OS used
SetVirtualAddressMap() to relocate the runtime services in a virtual address space, then
this condition does not have to be met. See description of SetVirtualAddressMap() for
details of memory map after this function has been called.

• Direction flag in EFLAGs clear

• 4 KiB, or more, of available stack space

• The stack must be 16-byte aligned

• Floating-point control word must be initialized to 0x037F (all exceptions masked, double-
extended-precision, round-to-nearest)

• Multimedia-extensions control word (if supported) must be initialized to 0x1F80 (all exceptions
masked, round-to-nearest, flush to zero for masked underflow)

• CR0.EM must be zero

• CR0.TS must be zero

• Interrupts may be disabled or enabled at the discretion of the caller.

• ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must
be contained in memory of type EfiACPIMemoryNVS.

• The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

• EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.
Version 2.5 April, 2015 31

Unified Extensible Firmware Interface Specification
• Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be aligned
on a 4 KiB boundary and must be a multiple of 4 KiB in size.

• An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If
the system memory map does not contain cacheability attributes, the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to be
non-cacheable.

• ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS.
The cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI
memory map. If no information about the table location exists in the UEFI memory map,
cacheability attributes may be obtained from ACPI memory descriptors. If no information about
the table location exists in the UEFI memory map or ACPI memory descriptors, the table is
assumed to be non-cached.

• In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the system
firmware must not request a virtual mapping), EfiBootServicesData,
EfiACPIReclaimMemory or EfiACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. The UEFI
Specification intends to clarify the situation moving forward. Also, only OSes conforming to the
UEFI Specification are guaranteed to handle SMBIOS table in memory of type
EfiBootServicesData.

2.3.4.1 Handoff State
Rcx – EFI_HANDLE

Rdx – EFI_SYSTEM_TABLE *

RSP - <return address>

2.3.4.2 Detailed Calling Conventions
The caller passes the first four integer arguments in registers. The integer values are passed from left
to right in Rcx, Rdx, R8, and R9 registers. The caller passes arguments five and above onto the
stack. All arguments must be right-justified in the register in which they are passed. This ensures the
callee can process only the bits in the register that are required.

The caller passes arrays and strings via a pointer to memory allocated by the caller. The caller passes
structures and unions of size 8, 16, 32, or 64 bits as if they were integers of the same size. The caller
is not allowed to pass structures and unions of other than these sizes and must pass these unions and
structures via a pointer.

The callee must dump the register parameters into their shadow space if required. The most common
requirement is to take the address of an argument.
32 April, 2015 Version 2.5

Overview
If the parameters are passed through varargs then essentially the typical parameter passing applies,
including spilling the fifth and subsequent arguments onto the stack. The callee must dump the
arguments that have their address taken.

Return values that fix into 64-bits are returned in the Rax register. If the return value does not fit
within 64-bits, then the caller must allocate and pass a pointer for the return value as the first
argument, Rcx. Subsequent arguments are then shifted one argument to the right, so for example
argument one would be passed in Rdx. User-defined types to be returned must be 1,2,4,8,16,32, or
64 bits in length.

The registers Rax, Rcx Rdx R8, R9, R10, R11, and XMM0-XMM5 are volatile and are, therefore,
destroyed on function calls.

The registers RBX, RBP, RDI, RSI, R12, R13, R14, R15, and XMM6-XMM15 are considered
nonvolatile and must be saved and restored by a function that uses them.

Function pointers are pointers to the label of the respective function and don’t require special
treatment.

A caller must always call with the stack 16-byte aligned.

For MMX, XMM and floating-point values, return values that can fit into 64-bits are returned
through RAX (including MMX types). However, XMM 128-bit types, floats, and doubles are
returned in XMM0. The floating point status register is not saved by the target function. Floating-
point and double-precision arguments are passed in XMM0 - XMM3 (up to 4) with the integer slot
(RCX, RDX, R8, and R9) that would normally be used for that cardinal slot being ignored (see
example) and vice versa. XMM types are never passed by immediate value but rather a pointer will
be passed to memory allocated by the caller. MMX types will be passed as if they were integers of
the same size. Callees must not unmask exceptions without providing correct exception handlers.

In addition, unless otherwise specified by the function definition, all other CPU registers (including
MMX and XMM) are preserved.

2.3.4.3 Enabling Paging or Alternate Translations in an Application
Boot Services define an execution environment where paging is not enabled (supported 32-bit) or
where translations are enabled but mapped virtual equal physical (x64) and this section will describe
how to write an application with alternate translations or with paging enabled. Some Operating
Systems require the OS Loader to be able to enable OS required translations at Boot Services time.

If a UEFI application uses its own page tables, GDT or IDT, the application must ensure that the
firmware executes with each supplanted data structure. There are two ways that firmware
conforming to this specification can execute when the application has paging enabled.

• Explicit firmware call

• Firmware preemption of application via timer event

An application with translations enabled can restore firmware required mapping before each UEFI
call. However the possibility of preemption may require the translation enabled application to
disable interrupts while alternate translations are enabled. It’s legal for the translation enabled
application to enable interrupts if the application catches the interrupt and restores the EFI firmware
environment prior to calling the UEFI interrupt ISR. After the UEFI ISR context is executed it will
return to the translation enabled application context and restore any mappings required by the
application.
Version 2.5 April, 2015 33

Unified Extensible Firmware Interface Specification
2.3.5 AArch32 Platforms
All functions are called with the C language calling convention specified in Section 2.3.5.3. In
addition, the invoking OSs can assume that unaligned access support is enabled if it is present in the
processor.

During boot services time the processor is in the following execution mode:

• Unaligned access should be enabled if supported; Alignment faults are enabled
otherwise.

• Uniprocessor.

• A privileged mode.

• The MMU is enabled (CP15 c1 System Control Register (SCTLR) SCTLR.M=1) and any RAM
defined by the UEFI memory map is identity mapped (virtual address equals physical address).
The mappings to other regions are undefined and may vary from implementation to
implementation

• The core will be configured as follows (common across all processor architecture revisions):

• MMU enabled

• Instruction and Data caches enabled

• Access flag disabled

• Translation remap disabled

• Little endian mode

• Domain access control mechanism (if supported) will be configured to check access
permission bits in the page descriptor

• Fast Context Switch Extension (FCSE) must be disabled

This will be achieved by:

• Configuring the CP15 c1 System Control Register (SCTLR) as follows: I=1, C=1, B=0,
TRE=0, AFE=0, M=1

• Configuring the CP15 c3 Domain Access Control Register (DACR) to 0x33333333.

• Configuring the CP15 c1 System Control Register (SCTLR), A=1 on ARMv4 and ARMv5,
A=0, U=1 on ARMv6 and ARMv7.

The state of other system control register bits is not dictated by this specification.

• Implementations of boot services will enable architecturally manageable caches and TLBs i.e.,
those that can be managed directly using CP15 operations using mechanisms and procedures
defined in the ARM Architecture Reference Manual. They should not enable caches requiring
platform information to manage or invoke non-architectural cache/TLB lockdown mechanisms

• MMU configuration--Implementations must use only 4k pages and a single translation base
register. On devices supporting multiple translation base registers, TTBR0 must be used solely.
The binding does not mandate whether page tables are cached or un-cached.

• On processors implementing the ARMv4 through ARMv6K architecture definitions, the
core is additionally configured to disable extended page tables support, if present.

This will be achieved by configuring the CP15 c1 System Control Register (SCTLR) as
follows: XP=0
34 April, 2015 Version 2.5

Overview
• On processors implementing the ARMv7 and later architecture definitions, the core will be
configured to enable the extended page table format and disable the TEX remap mechanism.

This will be achieved by configuring the CP15 c1 System Control Register (SCTLR) as
follows: XP=1, TRE=0

• Interrupts are enabled–though no interrupt services are supported other than the UEFI boot
services timer functions (All loaded device drivers are serviced synchronously by “polling.”)

• 128 KiB or more of available stack space

For an operating system to use any runtime services, it must:

• Preserve all memory in the memory map marked as runtime code and runtime data

• Call the runtime service functions, with the following conditions:

• In a privileged mode.

• The system address regions described by all the entries in the EFI memory map that have the
EFI_MEMORY_RUNTIME bit set must be identity mapped as they were for the EFI boot
environment. If the OS Loader or OS used SetVirtualAddressMap() to relocate the runtime
services in a virtual address space, then this condition does not have to be met. See
description of SetVirtualAddressMap() for details of memory map after this function has
been called.

• The processor must be in a mode in which it has access to the system address regions
specified in the EFI memory map with the EFI_MEMORY_RUNTIME bit set.

• 4 KiB, or more, of available stack space

• Interrupts may be disabled or enabled at the discretion of the caller

An application written to this specification may alter the processor execution mode, but the invoking
OS must ensure firmware boot services and runtime services are executed with the prescribed
execution environment.

If ACPI is supported :

• ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must
be contained in memory of type EfiACPIMemoryNVS

• The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

• EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

• Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be aligned
on a 4 KiB boundary and must be a multiple of 4 KiB in size.

• An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If
the system memory map does not contain cacheability attributes, the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to be
non-cacheable.

• ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS.
The cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI
Version 2.5 April, 2015 35

Unified Extensible Firmware Interface Specification
memory map. If no information about the table location exists in the UEFI memory map,
cacheability attributes may be obtained from ACPI memory descriptors. If no information about
the table location exists in the UEFI memory map or ACPI memory descriptors, the table is
assumed to be non-cached.

• In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the system
firmware must not request a virtual mapping), EfiBootServicesData,
EfiACPIReclaimMemory or EfiACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. The UEFI
Specification intends to clarify the situation moving forward. Also, only OSes conforming to the
UEFI Specification are guaranteed to handle SMBIOS table in memory of type
EfiBootServicesData.

2.3.5.1 Handoff State
R0 – EFI_HANDLE

R1 – EFI_SYSTEM_TABLE *

R14 – Return Address

2.3.5.2 Enabling Paging or Alternate Translations in an Application
Boot Services define a specific execution environment. This section will describe how to write an
application that creates an alternative execution environment. Some Operating Systems require the
OS Loader to be able to enable OS required translations at Boot Services time, and make other
changes to the UEFI defined execution environment.

If a UEFI application uses its own page tables, or other processor state, the application must ensure
that the firmware executes with each supplanted functionality. There are two ways that firmware
conforming to this specification can execute in this alternate execution environment:

• Explicit firmware call

• Firmware preemption of application via timer event

An application with an alternate execution environment can restore the firmware environment before
each UEFI call. However the possibility of preemption may require the alternate execution-enabled
application to disable interrupts while the alternate execution environment is active. It's legal for the
alternate execution environment enabled application to enable interrupts if the application catches
the interrupt and restores the EFI firmware environment prior to calling the UEFI interrupt ISR.
After the UEFI ISR context is executed it will return to the alternate execution environment enabled
application context.

An alternate execution environment created by a UEFI application must not change the semantics or
behavior of the MMU configuration created by the UEFI firmware prior to invoking
ExitBootServices(), including the bit layout of the page table entries.

After an OS loader calls ExitBootServices() it should immediately configure the exception
vector to point to appropriate code.
36 April, 2015 Version 2.5

Overview
2.3.5.3 Detailed Calling Convention
The base calling convention for the ARM binding is defined here:

Procedure Call Standard for the ARM Architecture V2.06 (or later)
See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Arm Architecture
Base Calling Convention”.

This binding further constrains the calling convention in these ways:

• Calls to UEFI defined interfaces must be done assuming that the target code requires the ARM
instruction set state. Images are free to use other instruction set states except when invoking
UEFI interfaces.

• Floating point, SIMD, vector operations and other instruction set extensions must not be used.

• Only little endian operation is supported.

• The stack will maintain 8 byte alignment as described in the AAPCS for public interfaces.

• Use of coprocessor registers for passing call arguments must not be used

• Structures (or other types larger than 64-bits) must be passed by reference and not by value

• The EFI ARM platform binding defines register r9 as an additional callee-saved variable
register.

2.3.6 AArch64 Platforms
AArch64 UEFI will only execute 64-bit ARM code, as the ARMv8 architecture does not allow for
the mixing of 32-bit and 64-bit code at the same privilege level.

All functions are called with the C language calling convention specified in Detailed calling
Convention section below. During boot services only a single processor is used for execution. All
secondary processors must be either powered off or held in a quiescent state.

The primary processor is in the following execution mode:

• Unaligned access must be enabled.

• Use the highest 64 bit non secure privilege level available; Non-secure EL2 (Hyp) or Non-
secure EL1(Kernel).

• The MMU is enabled and any RAM defined by the UEFI memory map is identity mapped
(virtual address equals physical address). The mappings to other regions are undefined and may
vary from implementation to implementation

• The core will be configured as follows:

• MMU enabled

• Instruction and Data caches enabled

• Little endian mode

• Stack Alignment Enforced

• NOT Top Byte Ignored

• Valid Physical Address Space

• 4K Translation Granule

This will be achieved by:
Version 2.5 April, 2015 37

Unified Extensible Firmware Interface Specification
1. Configuring the System Control Register SCTLR_EL2 or SCTLR_EL1:

• EE=0, I=1, SA=1, C=1, A=1, M=1

2. Configuring the appropriate Translation Control Register:

• TCR_EL2

• TBI=0

• PS must contain the valid Physical Address Space Size.

• TG0=00

• TCR_EL1

• TBI0=0

• IPS must contain the valid Intermediate Physical Address Space Size.

• TG0=00

Note: The state of other system control register bits is not dictated by this specification.

• All floating point traps and exceptions will be disabled at the relevant exception levels
(FPCR=0, CPACR_EL1.FPEN=11, CPTR_EL2.TFP=0). This implies that the FP unit will be
enabled by default.

• Implementations of boot services will enable architecturally manageable caches and TLBs i.e.,
those that can be managed directly using implementation independent registers using
mechanisms and procedures defined in the ARM Architecture Reference Manual. They should
not enable caches requiring platform information to manage or invoke non-architectural cache/
TLB lockdown mechanisms.

• MMU configuration: Implementations must use only 4k pages and a single translation base
register. On devices supporting multiple translation base registers, TTBR0 must be used solely.
The binding does not mandate whether page tables are cached or un-cached.

• Interrupts are enabled, though no interrupt services are supported other than the UEFI boot
services timer functions (All loaded device drivers are serviced synchronously by “polling”). All
UEFI interrupts must be routed to the IRQ vector only.

• The architecture generic timer must be initialized and enabled. The Counter Frequency register
(CNTFRQ) must be programmed with the timer frequency. Timer access must be provided to
non-secure EL1 and EL0 by setting bits EL1PCTEN and EL1PCEN in register
CNTHCTL_EL2.

• 128 KiB or more of available stack space

• All 4KiB memory pages allocated for use by runtime services (of types
EfiRuntimeServicesCode, EfiRuntimeServicesData and
EfiACPIMemoryNVS) must use identical ARM Memory Page Attributes (as described in
Table 8) within the same physical 64KiB page. Mixed attribute mappings within a larger page
are not allowed.

Note: This constraint allows a 64K paged based Operating System to safely map runtime services
memory.

For an operating system to use any runtime services, Runtime services must:

• Support calls from either the EL1 or the EL2 exception levels.
38 April, 2015 Version 2.5

Overview
• Once called, only support the same exception level for the lifetime of the runtime services.
Simultaneous or nested calls from EL1 and EL2 are not permitted.

Runtime services are permitted to make synchronous SMC and HVC calls into higher exception
levels.

Note: These rules allow Boot Services to start at EL2, and Runtime services to be assigned to an EL1
Operating System. In this case a call to SetVirtualAddressMap()is expected to provided
an EL1 appropriate set of mappings.

For an operating system to use any runtime services, it must:

• Enable unaligned access support.

• Preserve all memory in the memory map marked as runtime code and runtime data

• Call the runtime service functions, with the following conditions:

• From either EL1 or EL2 exception levels.

• Consistently call runtime services from the same exception level. Sharing of runtime
services between different exception levels is not permitted.

• Runtime services must only be assigned to a single operating system or hypervisor. They
must not be shared between multiple guest operating systems.

• The system address regions described by all the entries in the EFI memory map that have the
EFI_MEMORY_RUNTIME bit set must be identity mapped as they were for the EFI boot
environment. If the OS Loader or OS used SetVirtualAddressMap() to relocate the
runtime services in a virtual address space, then this condition does not have to be met. See
description of SetVirtualAddressMap() for details of memory map after this
function has been called.

• The processor must be in a mode in which it has access to the system address regions
specified in the EFI memory map with the EFI_MEMORY_RUNTIME bit set.

• 8 KiB, or more, of available stack space.

• The stack must be 16-byte aligned (128-bit).

• Interrupts may be disabled or enabled at the discretion of the caller

An application written to this specification may alter the processor execution mode, but the invoking
OS must ensure firmware boot services and runtime services are executed with the prescribed
execution environment.

If ACPI is supported :

• ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS.

• ACPI FACS must be contained in memory of type EfiACPIMemoryNVS. The system
firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

• EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

• Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be aligned on
a 4 KiB boundary and must be a multiple of 4 KiB in size.
Version 2.5 April, 2015 39

Unified Extensible Firmware Interface Specification
• An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If
the system memory map does not contain cacheability attributes, the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to be
non-cacheable.

• ACPI tables loaded at runtime must be contained in memory of type EfiACPIMemoryNVS.
The cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI
memory map. If no information about the table location exists in the UEFI memory map,
cacheability attributes may be obtained from ACPI memory descriptors. If no information about
the table location exists in the UEFI memory map or ACPI memory descriptors, the table is
assumed to be non-cached.

• In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the system
firmware must not request a virtual mapping), EfiBootServicesdata,
EfiACPIReclaimMemory or EfiACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. UEFI 2.0 intends
to clarify the situation moving forward. Also, only OSes conforming to UEFI 2.0 are guaranteed to
handle SMBIOS table in memory of type EfiBootServicesdata.

2.3.6.1 Memory types

Table 8. Map: EFI memory types to AArch64 memory types

EFI Memory Type ARM Memory Type:

 MAIR attribute encoding

Attr<n> [7:4] [3:0]

ARM Memory Type:

Meaning

EFI_MEMORY_UC (Not
cacheable) 0000 0000

Device-nGnRnE
(Device non-Gathering,
non-Reordering,
no Early Write Acknowledgement)

EFI_MEMORY_WC (Write
combine)

0100 0100 Normal Memory
Outer non-cacheable
Inner non-cacheable

EFI_MEMORY_WT (Write
through)

1011 1011 Normal Memory
Outer Write-through non-transient
Inner Write-through non-transient

EFI_MEMORY_WB (Write back) 1111 1111 Normal Memory
Outer Write-back non-transient
Inner Write-back non-transient
40 April, 2015 Version 2.5

Overview
2.3.6.2 Handoff State
X0 – EFI_HANDLE

X1 – EFI_SYSTEM_TABLE *

X30 – Return Address

2.3.6.3 Enabling Paging or Alternate Translations in an Application
Boot Services define a specific execution environment. This section will describe how to write an
application that creates an alternative execution environment. Some Operating Systems require the
OS Loader to be able to enable OS required translations at Boot Services time, and make other
changes to the UEFI defined execution environment.

If a UEFI application uses its own page tables, or other processor state, the application must ensure
that the firmware executes with each supplanted functionality. There are two ways that firmware
conforming to this specification can execute in this alternate execution environment:

• Explicit firmware call

• Firmware preemption of application via timer event

An application with an alternate execution environment can restore the firmware environment before
each UEFI call. However the possibility of preemption may require the alternate execution-enabled
application to disable interrupts while the alternate execution environment is active. It's legal for the
alternate execution environment enabled application to enable interrupts if the application catches
the interrupt and restores the EFI firmware environment prior to calling the UEFI interrupt ISR.
After the UEFI ISR context is executed it will return to the alternate execution environment enabled
application context.

An alternate execution environment created by a UEFI application must not change the semantics or
behavior of the MMU configuration created by the UEFI firmware prior to invoking
ExitBootServices(), including the bit layout of the page table entries.

After an OS loader calls ExitBootServices() it should immediately configure the exception
vector to point to appropriate code.

2.3.6.4 Detailed Calling Convention
The base calling convention for the AArch64 binding is defined in the document Procedure Call
Standard for the ARM 64-bit Architecture Version A-0.06 (or later):

See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “ARM 64-bit Base
Calling Convention”

This binding further constrains the calling convention in these ways:

• The AArch64 execution state must not be modified by the callee.

• All code exits, normal and exceptional, must be from the A64 instruction set.

• Floating point and SIMD instructions may be used.

EFI_MEMORY_XP,
EFI_MEMORY_WP,
EFI_MEMORY_RP,
EFI_MEMORY_UCE

Not used or defined
Version 2.5 April, 2015 41

Unified Extensible Firmware Interface Specification
• Optional vector operations and other instruction set extensions may only be used:

• After dynamically checking for their existence.

• Saving and then later restoring any additional execution state context.

• Additional feature enablement or control, such as power, must be explicitly managed.

• Only little endian operation is supported.

• The stack will maintain 16 byte alignment.

• Structures (or other types larger than 64-bits) must be passed by reference and not by value.

• The EFI AArch64 platform binding defines the platform register (r18) as “do not use”. Avoiding
use of r18 in firmware makes the code compatible with both a fixed role for r18 defined by the
OS platform ABI and the use of r18 by the OS and its applications as a temporary register.

2.4 Protocols
The protocols that a device handle supports are discovered through the
EFI_BOOT_SERVICES.HandleProtocol() Boot Service or the
EFI_BOOT_SERVICES.OpenProtocol() Boot Service. Each protocol has a specification that
includes the following:

• The protocol’s globally unique ID (GUID)

• The Protocol Interface structure

• The Protocol Services

Unless otherwise specified a protocol’s interface structure is not allocated from runtime memory and
the protocol member functions should not be called at runtime. If not explicitly specified a protocol
member function can be called at a TPL level of less than or equal to TPL_NOTIFY (see
Section 6.1). Unless otherwise specified a protocol’s member function is not reentrant or MP safe.

Any status codes defined by the protocol member function definition are required to be
implemented, Additional error codes may be returned, but they will not be tested by standard
compliance tests, and any software that uses the procedure cannot depend on any of the extended
error codes that an implementation may provide.

To determine if the handle supports any given protocol, the protocol’s GUID is passed to
HandleProtocol() or OpenProtocol(). If the device supports the requested protocol, a
pointer to the defined Protocol Interface structure is returned. The Protocol Interface structure links
the caller to the protocol-specific services to use for this device.

Figure 5 shows the construction of a protocol. The UEFI driver contains functions specific to one or
more protocol implementations, and registers them with the Boot Service
EFI_BOOT_SERVICES.InstallProtocolInterface(). The firmware returns the
Protocol Interface for the protocol that is then used to invoke the protocol specific services. The
UEFI driver keeps private, device-specific context with protocol interfaces.
42 April, 2015 Version 2.5

Overview
Figure 5. Construction of a Protocol

The following C code fragment illustrates the use of protocols:

// There is a global “EffectsDevice” structure. This
// structure contains information pertinent to the device.

// Connect to the ILLUSTRATION_PROTOCOL on the EffectsDevice,
// by calling HandleProtocol with the device’s EFI device handle
// and the ILLUSTRATION_PROTOCOL GUID.

EffectsDevice.Handle = DeviceHandle;
Status = HandleProtocol (

EffectsDevice.EFIHandle,
&IllustrationProtocolGuid,
&EffectsDevice.IllustrationProtocol
);

// Use the EffectsDevice illustration protocol’s “MakeEffects”
// service to make flashy and noisy effects.

Status = EffectsDevice.IllustrationProtocol->MakeEffects (
EffectsDevice.IllustrationProtocol,
TheFlashyAndNoisyEffect
);

Table 9 lists the UEFI protocols defined by this specification.

OM13147

Protocol Interface
Function Pointer
Function Pointer

Device specific
context

...

GUID 1

GUID 2

Protocol
specific
functions

Protocol
specific
functions

EFI Driver

Invoking one of
the protocol
services

HandleProtocol (GUID, ...)

Handle

Device, or
next Driver
Version 2.5 April, 2015 43

Unified Extensible Firmware Interface Specification

OFF
Image().

orts a

selecting

e

lection of

EFI

 the

sole

yle text

balls.

acter

evice.

m an

 a UEFI

r

tyle

tyle

guration,
Table 9. UEFI Protocols

 Protocol Description

EFI_LOADED_IMAGE_PROTOCOL Provides information on the image.

EFI_LOADED_IMAGE_DEVICE_PATH_PROT
OCOL

Specifies the device path that was used when a PE/C
image was loaded through the EFI Boot Service Load

EFI_DEVICE_PATH_PROTOCOL Provides the location of the device.

EFI_DRIVER_BINDING_PROTOCOL Provides services to determine if an UEFI driver supp
given controller, and services to start and stop a given
controller.

EFI_DRIVER_FAMILY_OVERRIDE_PROTOC
OL

Provides a the Driver Family Override mechanism for
the best driver for a given controller.

EFI_PLATFORM_DRIVER_OVERRIDE_PROT
OCOL

Provide a platform specific override mechanism for th
selection of the best driver for a given controller.

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_
PROTOCOL

Provides a bus specific override mechanism for the se
the best driver for a given controller.

EFI_DRIVER_DIAGNOSTICS2_PROTOCOL Provides diagnostics services for the controllers that U
drivers are managing.

EFI_COMPONENT_NAME2_PROTOCOL Provides human readable names for UEFI Drivers and
controllers that the drivers are managing.

EFI_SIMPLE_TEXT_INPUT_PROTOCOL Protocol interfaces for devices that support simple con
style text input.

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL Protocol interfaces for devices that support console st
displaying.

EFI_SIMPLE_POINTER_PROTOCOL Protocol interfaces for devices such as mice and track

EFI_SERIAL_IO_PROTOCOL Protocol interfaces for devices that support serial char
transfer.

EFI_LOAD_FILE_PROTOCOL Protocol interface for reading a file from an arbitrary d

EFI_LOAD_FILE2_PROTOCOL Protocol interface for reading a non-boot option file fro
arbitrary device

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL Protocol interfaces for opening disk volume containing
file system.

EFI_FILE_PROTOCOL Provides access to supported file systems.

EFI_DISK_IO_PROTOCOL A protocol interface that layers onto any BLOCK_IO o
BLOCK_IO_EX interface.

EFI_BLOCK_IO_PROTOCOL Protocol interfaces for devices that support block I/O s
accesses.

EFI_BLOCK_IO2_PROTOCOL Protocol interfaces for devices that support block I/O s
accesses. This interface is capable of non-blocking
transactions.

EFI_UNICODE_COLLATION_PROTOCOL Protocol interfaces for string comparison operations.

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL Protocol interfaces to abstract memory, I/O, PCI confi
and DMA accesses to a PCI root bridge controller.
44 April, 2015 Version 2.5

Overview

guration,

ller.

ed

ooting.

y are

text and

tion

ode

output.

s to be

SI

output

put

de EDID
tocol

rted by
e MNP
EFI_PCI_IO_PROTOCOL Protocol interfaces to abstract memory, I/O, PCI confi
and DMA accesses to a PCI controller on a PCI bus.

EFI_USB_IO_PROTOCOL Protocol interfaces to abstract access to a USB contro

EFI_SIMPLE_NETWORK_PROTOCOL Provides interface for devices that support packet bas
transfers.

EFI_PXE_BASE_CODE_PROTOCOL Protocol interfaces for devices that support network b

EFI_BIS_PROTOCOL Protocol interfaces to validate boot images before the
loaded and invoked.

EFI_DEBUG_SUPPORT_PROTOCOL Protocol interfaces to save and restore processor con
hook processor exceptions.

EFI_DEBUGPORT_PROTOCOL Protocol interface that abstracts a byte stream connec
between a debug host and a debug target system.

EFI_DECOMPRESS_PROTOCOL Protocol interfaces to decompress an image that was
compressed using the EFI Compression Algorithm.

EFI_EBC_PROTOCOL Protocols interfaces required to support an EFI Byte C
interpreter.

EFI_GRAPHICS_OUTPUT_PROTOCOL Protocol interfaces for devices that support graphical

EFI_NVM_EXPRESS_PASS_THRU_PROTOCO
L

Protocol interfaces that allow NVM Express command
issued to an NVM Express controller.

EFI_EXT_SCSI_PASS_THRU_PROTOCOL Protocol interfaces for a SCSI channel that allows SC
Request Packets to be sent to SCSI devices.

EFI_USB2_HC_PROTOCOL Protocol interfaces to abstract access to a USB Host
Controller.

EFI_AUTHENTICATION_INFO_PROTOCOL Provides access for generic authentication information
associated with specific device paths

EFI_DEVICE_PATH_UTILITIES_PROTOCO
L

Aids in creating and manipulating device paths.

EFI_DEVICE_PATH_TO_TEXT_PROTOCOL Converts device nodes and paths to text.

EFI_DEVICE_PATH_FROM_TEXT_PROTOCO
L

Converts text to device paths and device nodes.

EFI_EDID_DISCOVERED_PROTOCOL Contains the EDID information retrieved from a video
device.

EFI_EDID_ACTIVE_PROTOCOL Contains the EDID information for an active video out
device.

EFI_EDID_OVERRIDE_PROTOCOL Produced by the platform to allow the platform to provi
information to the producer of the Graphics Output pro

EFI_ISCSI_INITIATOR_NAME_PROTOCOL Sets and obtains the iSCSI Initiator Name.

EFI_TAPE_IO_PROTOCOL Provides services to control and access a tape drive.

EFI_MANAGED_NETWORK_PROTOCOL Used to locate communication devices that are suppo
an MNP driver and create and destroy instances of th
child protocol driver that can use the underlying
communications devices.

 Protocol Description
Version 2.5 April, 2015 45

Unified Extensible Firmware Interface Specification

orted by
the ARP

 network

rted by
troy EFI
he

v4
XE boot

nd
ost using

rted by

 that can

- and
ol driver.

I IPv4

rted by
oy
iver that

nd

rted by
stroy
 driver

cast

 using

 driver
tocol so
services.
EFI_ARP_SERVICE_BINDING_PROTOCOL Used to locate communications devices that are supp
an ARP driver and to create and destroy instances of
child protocol driver.

EFI_ARP_PROTOCOL Used to resolve local network protocol addresses into
hardware addresses.

EFI_DHCP4_SERVICE_BINDING_PROTOCO
L

Used to locate communication devices that are suppo
an EFI DHCPv4 Protocol driver and to create and des
DHCPv4 Protocol child driver instances that can use t
underlying communications devices.

EFI_DHCP4_PROTOCOL Used to collect configuration information for the EFI IP
Protocol drivers and to provide DHCPv4 server and P
server discovery services.

EFI_TCP4_SERVICE_BINDING_PROTOCOL Used to locate EFI TCPv4Protocol drivers to create a
destroy child of the driver to communicate with other h
TCP protocol.

EFI_TCP4_PROTOCOL Provides services to send and receive data stream.

EFI_IP4_SERVICE_BINDING_PROTOCOL Used to locate communication devices that are suppo
an EFI IPv4 Protocol Driver and to create and destroy
instances of the EFI IPv4 Protocol child protocol driver
use the underlying communication device.

EFI_IP4_PROTOCOL Provides basic network IPv4 packet I/O services.

EFI_IP4_CONFIG_PROTOCOL The EFI IPv4 Config Protocol driver performs platform
policy-dependent configuration of the EFI IPv4 Protoc

EFI_IP4_CONFIG2_PROTOCOL The EFI IPv4 Configuration II Protocol driver performs
platform- and policy-dependent configuration of the EF
Protocol driver.

EFI_UDP4_SERVICE_BINDING_PROTOCOL Used to locate communication devices that are suppo
an EFI UDPv4 Protocol driver and to create and destr
instances of the EFI UDPv4 Protocol child protocol dr
can use the underlying communication device.

EFI_UDP4_PROTOCOL Provides simple packet-oriented services to transmit a
receive UDP packets.

EFI_MTFTP4_SERVICE_BINDING_PROTOC
OL

Used to locate communication devices that are suppo
an EFI MTFTPv4 Protocol driver and to create and de
instances of the EFI MTFTPv4 Protocol child protocol
that can use the underlying communication device.

EFI_MTFTP4_PROTOCOL Provides basic services for client-side unicast or multi
TFTP operations.

EFI_HASH_PROTOCOL Allows creating a hash of an arbitrary message digest
one or more hash algorithms.

EFI_HASH_SERVICE_BINDING_PROTOCOL Used to locate hashing services support provided by a
and create and destroy instances of the EFI Hash Pro
that a multiple drivers can use the underlying hashing

 Protocol Description
46 April, 2015 Version 2.5

Overview
2.5 UEFI Driver Model
The UEFI Driver Model is intended to simplify the design and implementation of device drivers, and
produce small executable image sizes. As a result, some complexity has been moved into bus drivers
and in a larger part into common firmware services.

A device driver is required to produce a Driver Binding Protocol on the same image handle on which
the driver was loaded. It then waits for the system firmware to connect the driver to a controller.
When that occurs, the device driver is responsible for producing a protocol on the controller’s device
handle that abstracts the I/O operations that the controller supports. A bus driver performs these
exact same tasks. In addition, a bus driver is also responsible for discovering any child controllers on
the bus, and creating a device handle for each child controller found.

One assumption is that the architecture of a system can be viewed as a set of one or more processors
connected to one or more core chipsets. The core chipsets are responsible for producing one or more
I/O buses. The UEFI Driver Model does not attempt to describe the processors or the core chipsets.
Instead, the UEFI Driver Model describes the set of I/O buses produced by the core chipsets, and any
children of these I/O buses. These children can either be devices or additional I/O buses. This can be
viewed as a tree of buses and devices with the core chipsets at the root of that tree.

The leaf nodes in this tree structure are peripherals that perform some type of I/O. This could include
keyboards, displays, disks, network, etc. The nonleaf nodes are the buses that move data between
devices and buses, or between different bus types. Figure 6 shows a sample desktop system with
four buses and six devices.

Figure 6. Desktop System

Figure 7 is an example of a more complex server system. The idea is to make the UEFI Driver
Model simple and extensible so more complex systems like the one below can be described and
managed in the preboot environment. This system contains six buses and eight devices.

OM13142

CPU

North
Bridge

USB

ATA

VGA

PCI-ISA
Bridge

PCI Bus

Hard
Drive

CD-ROM

Keyboard

MouseATA

USB Bus

Bus Controller

Device Controller

Other
Version 2.5 April, 2015 47

Unified Extensible Firmware Interface Specification
Figure 7. Server System

The combination of firmware services, bus drivers, and device drivers in any given platform is likely
to be produced by a wide variety of vendors including OEMs, IBVs, and IHVs. These different
components from different vendors are required to work together to produce a protocol for an I/O
device than can be used to boot a UEFI compliant operating system. As a result, the UEFI Driver
Model is described in great detail in order to increase the interoperability of these components.

This remainder of this section is a brief overview of the UEFI Driver Model. It describes the legacy
option ROM issues that the UEFI Driver Model is designed to address, the entry point of a driver,
host bus controllers, properties of device drivers, properties of bus drivers, and how the UEFI Driver
Model can accommodate hot-plug events.

2.5.1 Legacy Option ROM Issues
Legacy option ROMs have a number of constraints and limitations that restrict innovation on the
part of platform designers and adapter vendors. At the time of writing, both ISA and PCI adapters
use legacy option ROMs. For the purposes of this discussion, only PCI option ROMs will be
considered; legacy ISA option ROMs are not supported as part of the UEFI Specification.

The following is a list of the major constraints and limitations of legacy option ROMs. For each
issue, the design considerations that went into the design of the UEFI Driver Model are also listed.
Thus, the design of the UEFI Driver Model directly addresses the requirements for a solution to
overcome the limitations implicit to PC-AT-style legacy option ROMs.

2.5.1.1 32-bit/16-Bit Real Mode Binaries
Legacy option ROMs typically contain 16-bit real mode code for an IA-32 processor. This means
that the legacy option ROM on a PCI card cannot be used in platforms that do not support the
execution of IA-32 real mode binaries. Also, 16-bit real mode only allows the driver to access
directly the lower 1 MiB of system memory. It is possible for the driver to switch the processor into
modes other than real mode in order to access resources above 1 MiB, but this requires a lot of
additional code, and causes interoperability issues with other option ROMs and the system BIOS.

OM13143

CPU

North
Bridge

PCI-IBA
Bridge

USB

VGA

PCI Bus

KBD

MOUSE

USB Bus

CPU

SCSI

PCI Bus

Hard
Drive

Hard
Drive

Hard
Drive

Hard
Drive
48 April, 2015 Version 2.5

Overview
Also, option ROMs that switch the processor into to alternate execution modes are not compatible
with Itanium Processors.

UEFI Driver Model design considerations:

• Drivers need flat memory mode with full access to system components.

• Drivers need to be written in C so they are portable between processor architectures.

• Drivers may be compiled into a virtual machine executable, allowing a single binary driver to
work on machines using different processor architectures.

2.5.1.2 Fixed Resources for Working with Option ROMs
Since legacy option ROMs can only directly address the lower 1 MiB of system memory, this means
that the code from the legacy option ROM must exist below 1 MiB. In a PC-AT platform, memory
from 0x00000-0x9FFFF is system memory. Memory from 0xA0000-0xBFFFF is VGA memory,
and memory from 0xF0000-0xFFFFF is reserved for the system BIOS. Also, since system BIOS has
become more complex over the years, many platforms also use 0xE0000-0xEFFFF for system
BIOS. This leaves 128 KiB of memory from 0xC0000-0xDFFFF for legacy option ROMs. This
limits how many legacy option ROMs can be run during BIOS POST.

Also, it is not easy for legacy option ROMs to allocate system memory. Their choices are to allocate
memory from Extended BIOS Data Area (EBDA), allocate memory through a Post Memory
Manager (PMM), or search for free memory based on a heuristic. Of these, only EBDA is standard,
and the others are not used consistently between adapters, or between BIOS vendors, which adds
complexity and the potential for conflicts.

UEFI Driver Model design considerations:

• Drivers need flat memory mode with full access to system components.

• Drivers need to be capable of being relocated so that they can be loaded anywhere in memory
(PE/COFF Images)

• Drivers should allocate memory through the boot services. These are well-specified interfaces,
and can be guaranteed to function as expected across a wide variety of platform
implementations.

2.5.1.3 Matching Option ROMs to their Devices
It is not clear which controller may be managed by a particular legacy option ROM. Some legacy
option ROMs search the entire system for controllers to manage. This can be a lengthy process
depending on the size and complexity of the platform. Also, due to limitation in BIOS design, all the
legacy option ROMs must be executed, and they must scan for all the peripheral devices before an
operating system can be booted. This can also be a lengthy process, especially if SCSI buses must be
scanned for SCSI devices. This means that legacy option ROMs are making policy decision about
how the platform is being initialized, and which controllers are managed by which legacy option
ROMs. This makes it very difficult for a system designer to predict how legacy option ROMs will
interact with each other. This can also cause issues with on-board controllers, because a legacy
option ROM may incorrectly choose to manage the on-board controller.

UEFI Driver Model design considerations:

• Driver to controller matching must be deterministic
Version 2.5 April, 2015 49

Unified Extensible Firmware Interface Specification
• Give OEMs more control through Platform Driver Override Protocol and Driver Configuration
Protocol

• It must be possible to start only the drivers and controllers required to boot an operating system.

2.5.1.4 Ties to PC-AT System Design
Legacy option ROMs assume a PC-AT-like system architecture. Many of them include code that
directly touches hardware registers. This can make them incompatible on legacy-free and headless
platforms. Legacy option ROMs may also contain setup programs that assume a PC-AT-like system
architecture to interact with a keyboard or video display. This makes the setup application
incompatible on legacy-free and headless platforms.

UEFI Driver Model design considerations:

• Drivers should use well-defined protocols to interact with system hardware, system input
devices, and system output devices.

2.5.1.5 Ambiguities in Specification and Workarounds Born of Experience
Many legacy option ROMs and BIOS code contain workarounds because of incompatibilities
between legacy option ROMs and system BIOS. These incompatibilities exist in part because there
are no clear specifications on how to write a legacy option ROM or write a system BIOS.

Also, interrupt chaining and boot device selection is very complex in legacy option ROMs. It is not
always clear which device will be the boot device for the OS.

UEFI Driver Model design considerations:

• Drivers and firmware are written to follow this specification. Since both components have a
clearly defined specification, compliance tests can be developed to prove that drivers and system
firmware are compliant. This should eliminate the need to build workarounds into either drivers
or system firmware (other than those that might be required to address specific hardware issues).

• Give OEMs more control through Platform Driver Override Protocol and Driver Configuration
Protocol and other OEM value-add components to manage the boot device selection process.

2.5.2 Driver Initialization
The file for a driver image must be loaded from some type of media. This could include ROM,
FLASH, hard drives, floppy drives, CD-ROM, or even a network connection. Once a driver image
has been found, it can be loaded into system memory with the boot service
EFI_BOOT_SERVICES.LoadImage(). LoadImage() loads a PE/COFF formatted image
into system memory. A handle is created for the driver, and a Loaded Image Protocol instance is
placed on that handle. A handle that contains a Loaded Image Protocol instance is called an Image
Handle. At this point, the driver has not been started. It is just sitting in memory waiting to be
started. Figure 8 shows the state of an image handle for a driver after LoadImage() has been
called.
50 April, 2015 Version 2.5

Overview
Figure 8. Image Handle

After a driver has been loaded with the boot service LoadImage(), it must be started with the boot
service EFI_BOOT_SERVICES.StartImage(). This is true of all types of UEFI Applications
and UEFI Drivers that can be loaded and started on an UEFI-compliant system. The entry point for a
driver that follows the UEFI Driver Model must follow some strict rules. First, it is not allowed to
touch any hardware. Instead, the driver is only allowed to install protocol instances onto its own
Image Handle. A driver that follows the UEFI Driver Model is required to install an instance of the
Driver Binding Protocol onto its own Image Handle. It may optionally install the Driver
Configuration Protocol, the Driver Diagnostics Protocol, or the Component Name Protocol. In
addition, if a driver wishes to be unloadable it may optionally update the Loaded Image Protocol
(see Section 8) to provide its own Unload() function. Finally, if a driver needs to perform any
special operations when the boot service EFI_BOOT_SERVICES.ExitBootServices() is
called, it may optionally create an event with a notification function that is triggered when the boot
service ExitBootServices() is called. An Image Handle that contains a Driver Binding
Protocol instance is known as a Driver Image Handle. Figure 9 shows a possible configuration for
the Image Handle from Figure 8 after the boot service StartImage() has been called.

Image Handle

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

OM13148

EFI_LOADED_IMAGE_PROTOCOL
Version 2.5 April, 2015 51

Unified Extensible Firmware Interface Specification
Figure 9. Driver Image Handle

2.5.3 Host Bus Controllers
Drivers are not allowed to touch any hardware in the driver’s entry point. As a result, drivers will be
loaded and started, but they will all be waiting to be told to manage one or more controllers in the
system. A platform component, like the Boot Manager, is responsible for managing the connection
of drivers to controllers. However, before even the first connection can be made, there has to be
some initial collection of controllers for the drivers to manage. This initial collection of controllers is
known as the Host Bus Controllers. The I/O abstractions that the Host Bus Controllers provide are
produced by firmware components that are outside the scope of the UEFI Driver Model. The device
handles for the Host Bus Controllers and the I/O abstraction for each one must be produced by the
core firmware on the platform, or a driver that may not follow the UEFI Driver Model. See the PCI
Root Bridge I/O Protocol Specification for an example of an I/O abstraction for PCI buses.

A platform can be viewed as a set of processors and a set of core chipset components that may
produce one or more host buses. Figure 10 shows a platform with n processors (CPUs), and a set of
core chipset components that produce m host bridges.

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

EFI_DRIVER_DIAGNOSTICS2_PROTOCOL

EFI_COMPONENT_NAME2_PROTOCOL

EFI_LOADED_IMAGE_PROTOCOL

Image Handle

EFI _DRIVER _FAM ILY_OVERRIDE_PROTOCOL

EFI_DRIVER_BINDING_PROTOCOL

Optional

Optional

Optional
52 April, 2015 Version 2.5

Overview
Figure 10. Host Bus Controllers

Each host bridge is represented in UEFI as a device handle that contains a Device Path Protocol
instance, and a protocol instance that abstracts the I/O operations that the host bus can perform.
For example, a PCI Host Bus Controller supports one or more PCI Root Bridges that are abstracted
by the PCI Root Bridge I/O Protocol. Figure 11 shows an example device handle for a PCI
Root Bridge.

Figure 11. PCI Root Bridge Device Handle

A PCI Bus Driver could connect to this PCI Root Bridge, and create child handles for each of the
PCI devices in the system. PCI Device Drivers should then be connected to these child handles, and
produce I/O abstractions that may be used to boot a UEFI compliant OS. The following section
describes the different types of drivers that can be implemented within the UEFI Driver Model. The
UEFI Driver Model is very flexible, so all the possible types of drivers will not be discussed here.

OM13150

Core Chipset Components

. . .

. . .

CPU 2 CPU n

Front Side Bus

CPU 1

HB 2 HB mHB 1

OM13151

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_ROOT_BRIDGE_PROTOCOL
Version 2.5 April, 2015 53

Unified Extensible Firmware Interface Specification
Instead, the major types will be covered that can be used as a starting point for designing and
implementing additional driver types.

2.5.4 Device Drivers
A device driver is not allowed to create any new device handles. Instead, it installs additional
protocol interfaces on an existing device handle. The most common type of device driver will attach
an I/O abstraction to a device handle that was created by a bus driver. This I/O abstraction may be
used to boot a UEFI compliant OS. Some example I/O abstractions would include Simple Text
Output, Simple Input, Block I/O, and Simple Network Protocol. Figure 12 shows a device handle
before and after a device driver is connected to it. In this example, the device handle is a child of the
XYZ Bus, so it contains an XYZ I/O Protocol for the I/O services that the XYZ bus supports. It also
contains a Device Path Protocol that was placed there by the XYZ Bus Driver. The Device Path
Protocol is not required for all device handles. It is only required for device handles that represent
physical devices in the system. Handles for virtual devices will not contain a Device Path Protocol.

Figure 12. Connecting Device Drivers

The device driver that connects to the device handle in Figure 12 must have installed a Driver
Binding Protocol on its own image handle. The Driver Binding Protocol (see Section 10.1) contains
three functions called Supported(), Start(), and Stop(). The Supported() function
tests to see if the driver supports a given controller. In this example, the driver will check to see if the
device handle supports the Device Path Protocol and the XYZ I/O Protocol. If a driver’s

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

EFI_BLOCK_I/O_PROTOCOL

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

OM13152

Stop()
Start()

Installed by Start()
Uninstalled by Stop()
54 April, 2015 Version 2.5

Overview
Supported() function passes, then the driver can be connected to the controller by calling the
driver’s Start() function. The Start() function is what actually adds the additional I/O
protocols to a device handle. In this example, the Block I/O Protocol is being installed. To provide
symmetry, the Driver Binding Protocol also has a Stop() function that forces the driver to stop
managing a device handle. This will cause the device driver to uninstall any protocol interfaces that
were installed in Start().

The Supported(), Start(), and Stop() functions of the EFI Driver Binding Protocol are
required to make use of the boot service EFI_BOOT_SERVICES.OpenProtocol() to get a
protocol interface and the boot service EFI_BOOT_SERVICES.CloseProtocol() to release a
protocol interface. OpenProtocol() and CloseProtocol() update the handle database
maintained by the system firmware to track which drivers are consuming protocol interfaces. The
information in the handle database can be used to retrieve information about both drivers and
controllers. The new boot service EFI_BOOT_SERVICES.OpenProtocolInformation()
can be used to get the list of components that are currently consuming a specific protocol interface.

2.5.5 Bus Drivers
Bus drivers and device drivers are virtually identical from the UEFI Driver Model’s point of view.
The only difference is that a bus driver creates new device handles for the child controllers that the
bus driver discovers on its bus. As a result, bus drivers are slightly more complex than device
drivers, but this in turn simplifies the design and implementation of device drivers. There are two
major types of bus drivers. The first creates handles for all child controllers on the first call to
Start(). The other type allows the handles for the child controllers to be created across multiple
calls to Start(). This second type of bus driver is very useful in supporting a rapid boot
capability. It allows a few child handles or even one child handle to be created. On buses that take a
long time to enumerate all of their children (e.g. SCSI), this can lead to a very large timesaving in
booting a platform. Figure 13 shows the tree structure of a bus controller before and after Start()
is called. The dashed line coming into the bus controller node represents a link to the bus controller’s
parent controller. If the bus controller is a Host Bus Controller, then it will not have a parent
controller. Nodes A, B, C ,D, and E represent the child controllers of the bus controller.
Version 2.5 April, 2015 55

Unified Extensible Firmware Interface Specification
Figure 13. Connecting Bus Drivers

A bus driver that supports creating one child on each call to Start() might choose to create child
C first, and then child E, and then the remaining children A, B, and D. The Supported(),
Start(), and Stop() functions of the Driver Binding Protocol are flexible enough to allow this
type of behavior.

A bus driver must install protocol interfaces onto every child handle that is creates. At a minimum, it
must install a protocol interface that provides an I/O abstraction of the bus’s services to the child
controllers. If the bus driver creates a child handle that represents a physical device, then the bus
driver must also install a Device Path Protocol instance onto the child handle. A bus driver may
optionally install a Bus Specific Driver Override Protocol onto each child handle. This protocol is
used when drivers are connected to the child controllers. The boot service
EFI_BOOT_SERVICES.ConnectController() uses architecturally defined precedence
rules to choose the best set of drivers for a given controller. The Bus Specific Driver Override
Protocol has higher precedence than a general driver search algorithm, and lower precedence than
platform overrides. An example of a bus specific driver selection occurs with PCI. A PCI Bus Driver
gives a driver stored in a PCI controller’s option ROM a higher precedence than drivers stored
elsewhere in the platform. Figure 14 shows an example child device handle that was created by the
XYZ Bus Driver that supports a bus specific driver override mechanism.

OM13153

Bus Controller Bus Controller
Start()

Stop() A B C D E
56 April, 2015 Version 2.5

Overview
Figure 14. Child Device Handle with a Bus Specific Override

2.5.6 Platform Components
Under the UEFI Driver Model, the act of connecting and disconnecting drivers from controllers in a
platform is under the platform firmware’s control. This will typically be implemented as part of the
UEFI Boot Manager, but other implementations are possible. The boot services
EFI_BOOT_SERVICES.ConnectController() and
EFI_BOOT_SERVICES.DisconnectController() can be used by the platform firmware to
determine which controllers get started and which ones do not. If the platform wishes to perform
system diagnostics or install an operating system, then it may choose to connect drivers to all
possible boot devices. If a platform wishes to boot a preinstalled operating system, it may choose to
only connect drivers to the devices that are required to boot the selected operating system. The UEFI
Driver Model supports both these modes of operation through the boot services
ConnectController() and DisconnectController(). In addition, since the platform
component that is in charge of booting the platform has to work with device paths for console
devices and boot options, all of the services and protocols involved in the UEFI Driver Model are
optimized with device paths in mind.

Since the platform firmware may choose to only connect the devices required to produce consoles
and gain access to a boot device, the OS present device drivers cannot assume that a UEFI driver for
a device has been executed. The presence of a UEFI driver in the system firmware or in an option
ROM does not guarantee that the UEFI driver will be loaded, executed, or allowed to manage any
devices in a platform. All OS present device drivers must be able to handle devices that have been
managed by a UEFI driver and devices that have not been managed by an UEFI driver.

The platform may also choose to produce a protocol named the Platform Driver Override Protocol.
This is similar to the Bus Specific Driver Override Protocol, but it has higher priority. This gives the
platform firmware the highest priority when deciding which drivers are connected to which
controllers. The Platform Driver Override Protocol is attached to a handle in the system. The boot
service ConnectController() will make use of this protocol if it is present in the system.

OM13154

Optional

Child Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL
Version 2.5 April, 2015 57

Unified Extensible Firmware Interface Specification
2.5.7 Hot-Plug Events
In the past, system firmware has not had to deal with hot-plug events in the preboot environment.
However, with the advent of buses like USB, where the end user can add and remove devices at any
time, it is important to make sure that it is possible to describe these types of buses in the UEFI
Driver Model. It is up to the bus driver of a bus that supports the hot adding and removing of devices
to provide support for such events. For these types of buses, some of the platform management is
going to have to move into the bus drivers. For example, when a keyboard is hot added to a USB bus
on a platform, the end user would expect the keyboard to be active. A USB Bus driver could detect
the hot-add event and create a child handle for the keyboard device. However, because drivers are
not connected to controllers unless EFI_BOOT_SERVICES.ConnectController() is called,
the keyboard would not become an active input device. Making the keyboard driver active requires
the USB Bus driver to call ConnectController() when a hot-add event occurs. In addition,
the USB Bus Driver would have to call
EFI_BOOT_SERVICES.DisconnectController()when a hot-remove event occurs. If
EFI_BOOT_SERVICES.DisconnectController() returns an error the USB Bus Driver
needs to retry the EFI_BOOT_SERVICES.DisconnectController() from a timer event
until it succeeds.

Device drivers are also affected by these hot-plug events. In the case of USB, a device can be
removed without any notice. This means that the Stop() functions of USB device drivers will have
to deal with shutting down a driver for a device that is no longer present in the system. As a result,
any outstanding I/O requests will have to be flushed without actually being able to touch the device
hardware.

In general, adding support for hot-plug events greatly increases the complexity of both bus drivers
and device drivers. Adding this support is up to the driver writer, so the extra complexity and size of
the driver will need to be weighed against the need for the feature in the preboot environment.

2.5.8 EFI Services Binding
The UEFI Driver Model maps well onto hardware devices, hardware bus controllers, and simple
combinations of software services that layer on top of hardware devices. However, the UEFI driver
Model does not map well onto complex combinations of software services. As a result, an additional
set of complementary protocols are required for more complex combinations of software services.

Figure 15 contains three examples showing the different ways that software services relate to each
other. In the first two cases, each service consumes one or more other services, and at most one other
service consumes all of the services. Case #3 differs because two different services consume
service A. The EFI_DRIVER_BINDING_PROTOCOL can be used to model cases #1 and #2, but it
cannot be used to model case #3 because of the way that the UEFI Boot Service
OpenProtocol()behaves. When used with the BY_DRIVER open mode,
OpenProtocol()allows each protocol to have only at most one consumer. This feature is very
useful and prevents multiple drivers from attempting to manage the same controller. However, it
makes it difficult to produce sets of software services that look like case #3.
58 April, 2015 Version 2.5

Overview
Figure 15. Software Service Relationships

The EFI_SERVICE_BINDING_PROTOCOL provides the mechanism that allows protocols to have
more than one consumer. The EFI_SERVICE_BINDING_PROTOCOL is used with the
EFI_DRIVER_BINDING_PROTOCOL. A UEFI driver that produces protocols that need to be
available to more than one consumer at the same time will produce both the
EFI_DRIVER_BINDING_PROTOCOL and the EFI_SERVICE_BINDING_PROTOCOL. This
type of driver is a hybrid driver that will produce the EFI_DRIVER_BINDING_PROTOCOL in its
driver entry point.

When the driver receives a request to start managing a controller, it will produce the
EFI_SERVICE_BINDING_PROTOCOL on the handle of the controller that is being started. The
EFI_SERVICE_BINDING_PROTOCOL is slightly different from other protocols defined in the
UEFI Specification. It does not have a GUID associated with it. Instead, this protocol instance
structure actually represents a family of protocols. Each software service driver that requires an
EFI_SERVICE_BINDING_PROTOCOL instance will be required to generate a new GUID for its
own type of EFI_SERVICE_BINDING_PROTOCOL. This requirement is why the various network
protocols in this specification contain two GUIDs. One is the
EFI_SERVICE_BINDING_PROTOCOL GUID for that network protocol, and the other GUID is
for the protocol that contains the specific member services produced by the network driver. The
mechanism defined here is not limited to network protocol drivers. It can be applied to any set of
protocols that the EFI_DRIVER_BINDING_PROTOCOL cannot directly map because the
protocols contain one or more relationships like case #3 in Figure 15.

Neither the EFI_DRIVER_BINDING_PROTOCOL nor the combination of the
EFI_DRIVER_BINDING_PROTOCOL and the EFI_SERVICE_BINDING_PROTOCOL can
handle circular dependencies. There are methods to allow circular references, but they require that
the circular link be present for short periods of time. When the protocols across the circular link are
used, these methods also require that the protocol must be opened with an open mode of
EXCLUSIVE, so that any attempts to deconstruct the set of protocols with a call to

A

B

C

Case #1: Linear Stack

A

B C

Case #2: Multiple Dependencies

B C

A

Case #3: Multiple Consumers
Version 2.5 April, 2015 59

Unified Extensible Firmware Interface Specification
DisconnectController() will fail. As soon as the driver is finished with the protocol across
the circular link, the protocol should be closed.

2.6 Requirements
This document is an architectural specification. As such, care has been taken to specify architecture
in ways that allow maximum flexibility in implementation. However, there are certain requirements
on which elements of this specification must be implemented to ensure that operating system loaders
and other code designed to run with UEFI boot services can rely upon a consistent environment.

For the purposes of describing these requirements, the specification is broken up into required and
optional elements. In general, an optional element is completely defined in the section that matches
the element name. For required elements however, the definition may in a few cases not be entirely
self contained in the section that is named for the particular element. In implementing required
elements, care should be taken to cover all the semantics defined in this specification that relate to
the particular element.

2.6.1 Required Elements
Table 10 lists the required elements. Any system that is designed to conform to this specification
must provide a complete implementation of all these elements. This means that all the required
service functions and protocols must be present and the implementation must deliver the full
semantics defined in the specification for all combinations of calls and parameters. Implementers of
applications, drivers or operating system loaders that are designed to run on a broad range of systems
conforming to the UEFI specification may assume that all such systems implement all the required
elements.

A system vendor may choose not to implement all the required elements, for example on specialized
system configurations that do not support all the services and functionality implied by the required
elements. However, since most applications, drivers and operating system loaders are written
assuming all the required elements are present on a system that implements the UEFI specification;
any such code is likely to require explicit customization to run on a less than complete
implementation of the required elements in this specification.

Table 10. Required UEFI Implementation Elements

Element Description

EFI_SYSTEM_TABLE Provides access to UEFI Boot Services, UEFI Runtime Services,
consoles, firmware vendor information, and the system
configuration tables.

EFI_BOOT_SERVICES All functions defined as boot services.

EFI_RUNTIME_SERVICES All functions defined as runtime services.

EFI_LOADED_IMAGE_PROTOCO
L

Provides information on the image.

EFI_LOADED_IMAGE_DEVICE_
PATH_PROTOCOL

Specifies the device path that was used when a PE/COFF image
was loaded through the EFI Boot Service LoadImage().

EFI_DEVICE_PATH_PROTOCOL Provides the location of the device.
60 April, 2015 Version 2.5

Overview
2.6.2 Platform-Specific Elements
There are a number of elements that can be added or removed depending on the specific features that
a platform requires. Platform firmware developers are required to implement UEFI elements based
upon the features included. The following is a list of potential platform features and the elements
that are required for each feature type:

1. If a platform includes console devices, the EFI_SIMPLE_TEXT_INPUT_PROTOCOL,
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL, and
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL must be implemented.

2. If a platform includes a configuration infrastructure, then the
EFI_HII_DATABASE_PROTOCOL, EFI_HII_STRING_PROTOCOL,
EFI_HII_CONFIG_ROUTING_PROTOCOL, and
EFI_HII_CONFIG_ACCESS_PROTOCOL are required. If you support bitmapped fonts, you
must support EFI_HII_FONT_PROTOCOL.

3. If a platform includes graphical console devices, then the
EFI_GRAPHICS_OUTPUT_PROTOCOL, EFI_EDID_DISCOVERED_PROTOCOL, and
EFI_EDID_ACTIVE_PROTOCOL must be implemented. In order to support the
EFI_GRAPHICS_OUTPUT_PROTOCOL, a platform must contain a driver to consume
EFI_GRAPHICS_OUTPUT_PROTOCOL and produce
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL even if the
EFI_GRAPHICS_OUTPUT_PROTOCOL is produced by an external driver.

4. If a platform includes a pointer device as part of its console support, the
EFI_SIMPLE_POINTER_PROTOCOL must be implemented.

5. If a platform includes the ability to boot from a disk device, then the
EFI_BLOCK_IO_PROTOCOL, the EFI_DISK_IO_PROTOCOL, the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, and the
EFI_UNICODE_COLLATION_PROTOCOL are required. In addition, partition support for
MBR, GPT, and El Torito must be implemented. For disk devices supporting the security
commands of the SPC-4 or ATA8-ACS command set, the
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL is also required._An external driver may
produce the Block I/O Protocol and the EFI_STORAGE_SECURITY_COMMAND_PROTOCOL.
All other protocols required to boot from a disk device must be carried as part of the platform.

6. If a platform includes the ability to perform a TFTP-based boot from a network device, then the
EFI_PXE_BASE_CODE_PROTOCOL is required. The platform must be prepared to produce
this protocol on any of EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL (UNDI),
EFI_SIMPLE_NETWORK_PROTOCOL, or the EFI_MANAGED_NETWORK_PROTOCOL If a
platform includes the ability to validate a boot image received through a network device, it is
also required that image verification be supported, including SetupMode equal zero and the
boot image hash or a verification certificate corresponding to the image exist in the 'db' variable
and not in the 'dbx' variable. An external driver may produce the UNDI interface. All other
protocols required to boot from a network device must be carried by the platform.

EFI_DECOMPRESS_PROTOCOL Protocol interfaces to decompress an image that was compressed
using the EFI Compression Algorithm.

EFI_DEVICE_PATH_UTILITIE
S_PROTOCOL

Protocol interfaces to create and manipulate UEFI device paths
and UEFI device path nodes.

Element Description
Version 2.5 April, 2015 61

Unified Extensible Firmware Interface Specification
7. If a platform supports UEFI general purpose network applications, then the
EFI_MANAGED_NETWORK_PROTOCOL,
EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL, EFI_ARP_PROTOCOL,
EFI_ARP_SERVICE_BINDING_PROTOCOL, EFI_DHCP4_PROTOCOL,
EFI_DHCP4_SERVICE_BINDING_PROTOCOL, EFI_TCP4_PROTOCOL,
EFI_TCP4_SERVICE_BINDING_PROTOCOL,
EFI_IP4_SERVICE_BINDING_PROTOCOL, EFI_IP4_CONFIG2_PROTOCOL,
EFI_UDP4_PROTOCOL, and EFI_UDP4_SERVICE_BINDING_PROTOCOL are required. If
additional IPv6 support is needed for the platform, then EFI_DHCP6_PROTOCOL,
EFI_DHCP6_SERVICE_BINDING_PROTOCOL, EFI_TCP6_PROTOCOL,
EFI_TCP6_SERVICE_BINDING_PROTOCOL,
EFI_IP6_SERVICE_BINDING_PROTOCOL, EFI_IP6_CONFIG_PROTOCOL,
EFI_UDP6_PROTOCOL, and EFI_UDP6_SERVICE_BINDING_PROTOCOL are
additionally required. If the network application requires DNS capability,
EFI_DNS4_SERVICE_BINDING_PROTOCOL and EFI_DNS4_PROTOCOL are required
for the IPv4 stack. EFI_DNS6_SERVICE_BINDING_PROTOCOL and
EFI_DNS6_PROTOCOL are required for the IPv6 stack. If the network environment requires
TLS features, EFI_TLS_SERVICE_BINDING_PROTOCOL,EFI_TLS_PROTOCOL and
EFI_TLS_CONFIGURATION_PROTOCOL are required. If the network environment requires
VLAN features, EFI_VLAN_CONFIG_PROTOCOL is required.

8. If a platform includes a byte-stream device such as a UART, then the
EFI_SERIAL_IO_PROTOCOL must be implemented.

9. If a platform includes PCI bus support, then the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL,
the EFI_PCI_IO_PROTOCOL, must be implemented.

10. If a platform includes USB bus support, then the EFI_USB2_HC_PROTOCOL and the
EFI_USB_IO_PROTOCOL must be implemented. An external device can support USB by
producing a USB Host Controller Protocol.

11. . If a platform includes an NVM Express controller, then the
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL must be implemented.

12. If a platform supports booting from a block-oriented NVM Express controller, then the
EFI_BLOCK_IO_PROTOCOL must be implemented. An external driver may produce the
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL . All other protocols required to boot from
an NVM Express subsystem must be carried by the platform.

13. If a platform includes an I/O subsystem that utilizes SCSI command packets, then the
EFI_EXT_SCSI_PASS_THRU_PROTOCOL must be implemented.

14. If a platform supports booting from a block oriented SCSI peripheral, then the
EFI_SCSI_IO_PROTOCOL and EFI_BLOCK_IO_PROTOCOL must be implemented. An
external driver may produce the EFI_EXT_SCSI_PASS_THRU_PROTOCOL. All other
protocols required to boot from a SCSI I/O subsystem must be carried by the platform.

15. If a platform supports booting from an iSCSI peripheral, then the
EFI_ISCSI_INITIATOR_NAME_PROTOCOL and the
EFI_AUTHENTICATION_INFO_PROTOCOL must be implemented.

16. If a platform includes debugging capabilities, then the EFI_DEBUG_SUPPORT_PROTOCOL,
the EFI_DEBUGPORT_PROTOCOL, and the EFI Image Info Table must be implemented.

17. If a platform includes the ability to override the default driver to the controller matching
algorithm provided by the UEFI Driver Model, then the
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL must be implemented.
62 April, 2015 Version 2.5

Overview
18. If a platform includes an I/O subsystem that utilizes ATA command packets, then the
EFI_ATA_PASS_THRU_PROTOCOL must be implemented

19. If a platform supports option ROMs from devices not permanently attached to the platform and
it supports the ability to authenticate those option ROMs, then it must support the option ROM
validation methods described in Network Protocols — UDP and MTFTP and the authenticated
EFI variables described in Section 7.2.

20. If a platform includes the ability to authenticate UEFI images and the platform potentially
supports more than one OS loader, it must support the methods described in Network Protocols
— UDP and MTFTP and the authenticated UEFI variables described in Section 7.2.

21. If a platform policy supports the inclusion or addition of any device that provides a container for
one or more UEFI Drivers that are required for initialization of that device then an EBC
interpreter must be implemented. If an EBC interpreter is implemented, then it must produce the
EFI_EBC_PROTOCOL interface.

22. If a platform includes the ability to perform a HTTP-based boot from a network device, then the
EFI_HTTP_SERVICE_BINDING_PROTOCOL, EFI_HTTP_PROTOCOL and
EFI_HTTP_UTILITIES_PROTOCOL are required. If it includes the ability to perform a
HTTPS-based boot from network device, besides above protocols,
EFI_TLS_SERVICE_BINDING_PROTOCOL, EFI_TLS_PROTOCOL and
EFI_TLS_CONFIGURATION_PROTOCOL are also required. If it includes the ability to
perform a HTTP(S)-based boot with DNS feature, then
EFI_DNS4_SERVICE_BINDING_PROTOCOL, EFI_DNS4_PROTOCOL are required for
the IPv4 stack; EFI_DNS6_SERVICE_BINDING_PROTOCOL and EFI_DNS6_PROTOCOL
are required for the IPv6 stack.

23. If a platform includes the ability to perform a wireless boot from a network device with EAP
feature, and if this platform provides a standalone wireless EAP driver, then
EFI_EAP_PROTOCOL, EFI_EAP_CONFIGURATION_PROTOCOL, and
EFI_EAP_MANAGEMENT2_PROTOCOL are required; if the platform provides a standalone
wireless supplicant, then EFI_SUPPLICANT_PROTOCOL and
EFI_EAP_CONFIGURATION_PROTOCOL are required. If it includes the ability to perform a
wireless boot with TLS feature, then EFI_TLS_SERVICE_BINDING_PROTOCOL,
EFI_TLS_PROTOCOL and EFI_TLS_CONFIGURATION_PROTOCOL are required.

24. If a platform supports classic Bluetooth, then EFI_BLUETOOTH_HC_PROTOCOL,
EFI_BLUETOOTH_IO_PROTOCOL, and EFI_BLUETOOTH_CONFIG_PROTOCOL must be
implemented. If a platform support Bluetooth Smart (Bluetooth Low Energy), then
EFI_BLUETOOTH_HC_PROTOCOL, EFI_BLUETOOTH_IO_PROTOCOL and
EFI_BLUETOOTH_CONFIG_PROTOCOL may be implemented.

25. 24. If a platform supports RESTful communication over HTTP or over an in-band path to a
BMC, then the EFI_REST_PROTOCOL must be implemented.

26. If a platform includes the ability to use a hardware feature to create high quality random
numbers, this capability should be exposed by instance of EFI_RNG_PROTOCOL with at least
one EFI RNG Algorithm supported.

27. If a platform permits the installation of Load Option Variables, (Boot####, or Driver####, or
SysPrep####), the platform must support and recognize all defined values for Attributes within
the variable and report these capabilities in BootOptionSupport. If a platform supports
installation of Load Option Variables of type Driver####, all installed Driver#### variables
must be processed and the indicated driver loaded and initialized during every boot. And all
installed SysPrep#### options must be processed prior to processing Boot#### options.
Version 2.5 April, 2015 63

Unified Extensible Firmware Interface Specification
28. If the platform supports UEFI secure boot as described in Secure Boot and Driver Signing , the
platform must provide the PKCS verification functions described in Section 35.4.

2.6.3 Driver-Specific Elements
There are a number of UEFI elements that can be added or removed depending on the features that a
specific driver requires. Drivers can be implemented by platform firmware developers to support
buses and devices in a specific platform. Drivers can also be implemented by add-in card vendors for
devices that might be integrated into the platform hardware or added to a platform through an
expansion slot.

 The following list includes possible driver features, and the UEFI elements that are required for
each feature type:

1. If a driver follows the driver model of this specification, the
EFI_DRIVER_BINDING_PROTOCOL must be implemented. It is strongly recommended that
all drivers that follow the driver model of this specification also implement the
EFI_COMPONENT_NAME2_PROTOCOL.

2. If a driver requires configuration information, the driver must use the
EFI_HII_DATABASE_PROTOCOL. A driver should not otherwise display information to the
user or request information from the user.

3. If a driver requires diagnostics, the EFI_DRIVER_DIAGNOSTICS2_PROTOCOL must be
implemented. In order to support low boot times, limit diagnostics during normal boots. Time
consuming diagnostics should be deferred until the
EFI_DRIVER_DIAGNOSTICS2_PROTOCOL is invoked.

4. If a bus supports devices that are able to provide containers for drivers (e.g. option ROMs), then
the bus driver for that bus type must implement the
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL.

5. If a driver is written for a console output device, then the
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL must be implemented.

6. If a driver is written for a graphical console output device, then the
EFI_GRAPHICS_OUTPUT_PROTOCOL, EFI_EDID_DISCOVERED_PROTOCOL and
EFI_EDID_ACTIVE_PROTOCOL must be implemented.

7. If a driver is written for a console input device, then the
EFI_SIMPLE_TEXT_INPUT_PROTOCOL and
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL must be implemented.

8. If a driver is written for a pointer device, then the EFI_SIMPLE_POINTER_PROTOCOL must
be implemented.

9. If a driver is written for a network device, then the
EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL,
EFI_SIMPLE_NETWORK_PROTOCOL or EFI_MANAGED_NETWORK_PROTOCOL must be
implemented. If VLAN is supported in hardware, then driver for the network device may
implement the EFI_VLAN_CONFIG_PROTOCOL. If a network device chooses to only produce
the EFI_MANAGED_NETWORK_PROTOCOL, then the driver for the network device must
implement the EFI_VLAN_CONFIG_PROTOCOL. . If a driver is written for a network device
to supply wireless feature, besides above protocols,
EFI_ADAPTER_INFORMATION_PROTOCOL must be implemented. If the wireless driver
does not provide user configuration capability,
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL must be implemented. If the wireless
64 April, 2015 Version 2.5

Overview
driver is written for a platform which provides a standalone wireless EAP driver,
EFI_EAP_PROTOCOL must be implemented.

10. If a driver is written for a disk device, then the EFI_BLOCK_IO_PROTOCOL and the
EFI_BLOCK_IO2_PROTOCOL must be implemented. In addition, the
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL must be implemented for disk devices
supporting the security commands of the SPC-4 or ATA8-ACS command set. In addition, for
devices that support incline encryption in the host storage controller, the
EFI_BLOCK_IO_CRYPTO_PROTOCOL must be supported.

11. If a driver is written for a disk device, then the EFI_BLOCK_IO_PROTOCOL and the
EFI_BLOCK_IO2_PROTOCOL must be implemented. In addition, the
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL must be implemented for disk devices
supporting the security commands of the SPC-4 or ATA8-ACS command set.

12. If a driver is written for a device that is not a block oriented device but one that can provide a file
system-like interface, then the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL must be
implemented.

13. If a driver is written for a PCI root bridge, then the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL and the EFI_PCI_IO_PROTOCOL must be
implemented.

14. If a driver is written for an NVM Express controller, then the
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL must be implemented.

15. If a driver is written for a USB host controller, then the EFI_USB2_HC_PROTOCOL and the
EFI_USB_IO_PROTOCOL must be implemented.If a driver is written for a USB host
controller, then the must be implemented.

16. If a driver is written for a SCSI controller, then the
EFI_EXT_SCSI_PASS_THRU_PROTOCOL must be implemented.

17. If a driver is digitally signed, it must embed the digital signature in the PE/COFF image as
described in Section “Embedded Signatures” on page 1780.

18. If a driver is written for a boot device that is not a block-oriented device, a file system-based
device, or a console device, then the EFI_LOAD_FILE_PROTOCOL must be implemented.

19. If a driver follows the driver model of this specification, and the driver wants to produce
warning or error messages for the user, then the EFI_DRIVER_HEALTH_PROTOCOL must be
used to produce those messages. The Boot Manager may optionally display the messages to the
user.

20. If a driver follows the driver model of this specification, and the driver needs to perform a repair
operation that is not part of the normal initialization sequence, and that repair operation requires
an extended period of time, then the EFI_DRIVER_HEALTH_PROTOCOL must be used to
provide the repair feature. If the Boot Manager detects a boot device that requires a repair
operation, then the Boot Manager must use the EFI_DRIVER_HEALTH_PROTOCOL to
perform the repair operation. The Boot Manager can optionally display progress indicators as
the repair operation is performed by the driver.

21. If a driver follows the driver model of this specification, and the driver requires the user to make
software and/or hardware configuration changes before the boot devices that the driver manages
can be used, then the EFI_DRIVER_HEALTH_PROTOCOL must be produced. If the Boot
Manager detects a boot device that requires software and/or hardware configuration changes to
make the boot device usable, then the Boot Manager may optionally allow the user to make
those configuration changes.
Version 2.5 April, 2015 65

Unified Extensible Firmware Interface Specification
22. If a driver is written for an ATA controller, then the EFI_ATA_PASS_THRU_PROTOCOL
must be implemented.

23. If a driver follows the driver model of this specification, and the driver wants to be used with
higher priority than the Bus Specific Driver Override Protocol when selecting the best driver for
controller, then the EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL must be produced on
the same handle as the EFI_DRIVER_BINDING_PROTOCOL.

24. If a driver supports firmware management by an external agent or application, then the
EFI_FIRMWARE_MANAGEMENT_PROTOCOL must be used to support firmware management.

25. If a driver follows the driver model of this specification and a driver is a device driver as defined
in Section 2.5, it must perform bus transactions via the bus abstraction protocol produced by a
parent bus driver. Thus a driver for a device that conforms to the PCI specification must use
EFI_PCI_IO_PROTOCOL for all PCI memory space, PCI I/O, PCI configuration space, and
DMA operations.

26. . If a driver is written for a classic Bluetooth controller, then
EFI_BLUETOOTH_HC_PROTOCOL, EFI_BLUETOOTH_IO_PROTOCOL and
EFI_BLUETOOTH_CONFIG_PROTOCOL must be implemented. If a driver written for a
Bluetooth Smart (Bluetooth Low Energy) controller, then EFI_BLUETOOTH_HC_PROTOCOL,
EFI_BLUETOOTH_IO_PROTOCOL and EFI_BLUETOOTH_CONFIG_PROTOCOL may be
implemented.

2.6.4 Extensions to this Specification published elsewhere
This specification has been extended over time to include support for new devices and technologies.
As the name of the specification implies, the original intent in its definition was to create a baseline
for firmware interfaces that is extensible without the need to include extensions in the main body of
this specification.

Readers of this specification may find that a feature or type of device is not treated by the
specification. This does not necessarily mean that there is no agreed "standard" way to support the
feature or device in implementations that claim conformance to this Specification. On occasion, it
may be more appropriate for other standards organizations to publish their own extensions that are
designed to be used in concert with the definitions presented here. This may for example allow
support for new features in a more timely fashion than would be accomplished by waiting for a
revision to this specification or perhaps that such support is defined by a group with a specific
expertise in the subject area. Readers looking for means to access features or devices that are not
treated in this document are therefore recommended to inquire of appropriate standards groups to
ascertain if appropriate extension publications already exist before creating their own extensions.

By way of examples, at the time of writing the UEFI Forum is aware of a number of extension
publications that are compatible with and designed for use with this specification. Such extensions
include:

Developers Interface Guide for Itanium® Architecture Based Servers: published and
hosted by the DIG64 group (See “Links to UEFI-Related Documents” (http://uefi.org/
uefi) under the heading “Developers Interface Guide for Itanium® Architecture Based
Servers”). This document is a set of technical guidelines that define hardware,
firmware, and operating system compatibility for Itanium™-based servers;

TCG EFI Platform Specification: published and hosted by the Trusted Computing
Group (See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the
66 April, 2015 Version 2.5

Overview
heading “TCG EFI Platform Specification”). This document is about the processes
that boot an EFI platform and boot an OS on that platform. Specifically, this
specification contains the requirements for measuring boot events into TPM PCRs and
adding boot event entries into the Event Log.

TCG EFI Protocol Specification: published and hosted by the Trusted Computing
Group (See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the
heading “TCG EFI Protocol Specification”). This document defines a standard
interface to the TPM on an EFI platform.

Other extension documents may exist outside the view of the UEFI Forum or may have been created
since the last revision of this document.
Version 2.5 April, 2015 67

Unified Extensible Firmware Interface Specification
68 April, 2015 Version 2.5

Boot Manager
3
Boot Manager

The UEFI boot manager is a firmware policy engine that can be configured by modifying
architecturally defined global NVRAM variables. The boot manager will attempt to load UEFI
drivers and UEFI applications (including UEFI OS boot loaders) in an order defined by the global
NVRAM variables. The platform firmware must use the boot order specified in the global NVRAM
variables for normal boot. The platform firmware may add extra boot options or remove invalid boot
options from the boot order list.

The platform firmware may also implement value added features in the boot manager if an
exceptional condition is discovered in the firmware boot process. One example of a value added
feature would be not loading a UEFI driver if booting failed the first time the driver was loaded.
Another example would be booting to an OEM-defined diagnostic environment if a critical error was
discovered in the boot process.

The boot sequence for UEFI consists of the following:

• The boot order list is read from a globally defined NVRAM variable. Modifications to this
variable are only guaranteed to take effect after the next platform reset. The boot order list
defines a list of NVRAM variables that contain information about what is to be booted. Each
NVRAM variable defines a name for the boot option that can be displayed to a user.

• The variable also contains a pointer to the hardware device and to a file on that hardware device
that contains the UEFI image to be loaded.

• The variable might also contain paths to the OS partition and directory along with other
configuration specific directories.

The NVRAM can also contain load options that are passed directly to the UEFI image. The platform
firmware has no knowledge of what is contained in the load options. The load options are set by
higher level software when it writes to a global NVRAM variable to set the platform firmware boot
policy. This information could be used to define the location of the OS kernel if it was different than
the location of the UEFI OS loader.

3.1 Firmware Boot Manager
The boot manager is a component in firmware conforming to this specification that determines
which drivers and applications should be explicitly loaded and when. Once compliant firmware is
initialized, it passes control to the boot manager. The boot manager is then responsible for
determining what to load and any interactions with the user that may be required to make such a
decision.

The actions taken by the boot manager depend upon the system type and the policies set by the
system designer. For systems that allow the installation of new Boot Variables (Section 3.4), the
Boot Manger must automatically or upon the request of the loaded item, initialize at least one system
console, as well as perform all required initialization of the device indicated within the primary boot
Version 2.5 April, 2015 69

Unified Extensible Firmware Interface Specification
target. For such systems, the Boot Manger is also required to honor the priorities set in BootOrder
variable.

In particular, likely implementation options might include any console interface concerning boot,
integrated platform management of boot selections, and possible knowledge of other internal
applications or recovery drivers that may be integrated into the system through the boot manager.

3.1.1 Boot Manager Programming
Programmatic interaction with the boot manager is accomplished through globally defined variables.
On initialization the boot manager reads the values which comprise all of the published load options
among the UEFI environment variables. By using the SetVariable() function the data that
contain these environment variables can be modified. Such modifications are guaranteed to take
effect after the next system boot commences. However, boot manager implementations may choose
to improve on this guarantee and have changes take immediate effect for all subsequent accesses to
the variables that affect boot manager behavior without requiring any form of system reset

Each load option entry resides in a Boot####, Driver####, SysPrep####,
OsRecovery#### or PlatformRecovery#### variable where #### is replaced by a unique
option number in printable hexadecimal representation using the digits 0–9, and the upper case
versions of the characters A–F (0000–FFFF).

The #### must always be four digits, so small numbers must use leading zeros. The load options
are then logically ordered by an array of option numbers listed in the desired order. There are two
such option ordering lists when booting normally. The first is DriverOrder that orders the
Driver#### load option variables into their load order. The second is BootOrder that orders
the Boot#### load options variables into their load order.

For example, to add a new boot option, a new Boot#### variable would be added. Then the
option number of the new Boot#### variable would be added to the BootOrder ordered list and
the BootOrder variable would be rewritten. To change boot option on an existing Boot####,
only the Boot#### variable would need to be rewritten. A similar operation would be done to add,
remove, or modify the driver load list.

If the boot via Boot#### returns with a status of EFI_SUCCESS, platform firmware supports boot
manager menu, and if firmware is configured to boot in an interactive mode, the boot manager will
stop processing the BootOrder variable and present a boot manager menu to the user. If any of the
above-mentioned conditions is not satisfied, the next Boot#### in the BootOrder variable will
be tried until all possibilities are exhausted. In this case, boot option recovery must be performed
(see Section 3.4).

The boot manager may perform automatic maintenance of the database variables. For example, it
may remove unreferenced load option variables or any load option variables that cannot be parsed,
and it may rewrite any ordered list to remove any load options that do not have corresponding load
option variables. The boot manager can also, at its own discretion, provide an administrator with the
ability to invoke manual maintenance operations as well. Examples include choosing the order of
any or all load options, activating or deactivating load options, initiating OS-defined or platform-
defined recovery, etc. In addition, if a platform intends to create PlatformRecovery####,
before attempting to load and execute any DriverOrder or BootOrder entries, the firmware
must create any and all PlatformRecovery#### variables (see Section 3.4.2). The firmware
should not, under normal operation, automatically remove any correctly formed Boot#### variable
70 April, 2015 Version 2.5

Boot Manager
currently referenced by the BootOrder or BootNext variables. Such removal should be limited
to scenarios where the firmware is guided by direct user interaction.

The contents of PlatformRecovery#### represent the final recovery options the firmware
would have attempted had recovery been initiated during the current boot, and need not include
entries to reflect contingencies such as significant hardware reconfiguration, or entries
corresponding to specific hardware that the firmware is not yet aware of.

The behavior of the UEFI Boot Manager is impacted when Secure Boot is enabled, See Section 30.4.

3.1.2 Load Option Processing
The boot manager is required to process the Driver load option entries before the Boot load option
entries. If the EFI_OS_INDICATIONS_START_OS_RECOVERY bit has been set in
OsIndications, the firmware shall attempt OS-defined recovery (see Section 3.4.1) rather than
normal boot processing. If the EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY bit
has been set in OsIndications, the firmware shall attempt platform-defined recovery (see
Section 3.4.2) rather than normal boot processing or handling of the
EFI_OS_INDICATIONS_START_OS_RECOVERY bit. In either case, both bits should be cleared.

Otherwise, the boot manager is also required to initiate a boot of the boot option specified by the
BootNext variable as the first boot option on the next boot, and only on the next boot. The boot
manager removes the BootNext variable before transferring control to the BootNext boot
option. After the BootNext boot option is tried, the normal BootOrder list is used. To prevent
loops, the boot manager deletes BootNext before transferring control to the preselected boot
option.

If all entries of BootNext and BootOrder have been exhausted without success, or if the
firmware has been instructed to attempt boot order recovery, the firmware must attempt boot option
recovery (see Section 3.4).

The boot manager must call EFI_BOOT_SERVICES.LoadImage() which supports at least
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL and EFI_LOAD_FILE_PROTOCOL for resolving
load options. If LoadImage() succeeds, the boot manager must enable the watchdog timer for 5
minutes by using the EFI_BOOT_SERVICES.SetWatchdogTimer() boot service prior to
calling EFI_BOOT_SERVICES.StartImage(). If a boot option returns control to the boot
manager, the boot manager must disable the watchdog timer with an additional call to the
SetWatchdogTimer() boot service.

If the boot image is not loaded via EFI_BOOT_SERVICES.LoadImage() the boot manager is
required to check for a default application to boot. Searching for a default application to boot
happens on both removable and fixed media types. This search occurs when the device path of the
boot image listed in any boot option points directly to an
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL device and does not specify the exact file to load.
The file discovery method is explained in Section 3.4. The default media boot case of a protocol
other than EFI_SIMPLE_FILE_SYSTEM_PROTOCOL is handled by the
EFI_LOAD_FILE_PROTOCOL for the target device path and does not need to be handled by the
boot manager.

The UEFI boot manager must support booting from a short-form device path that starts with the first
element being a USB WWID (see Table 61) or a USB Class (see Table 63) device path. For USB
WWID, the boot manager must use the device vendor ID, device product id, and serial number, and
Version 2.5 April, 2015 71

Unified Extensible Firmware Interface Specification
must match any USB device in the system that contains this information. If more than one device
matches the USB WWID device path, the boot manager will pick one arbitrarily. For USB Class, the
boot manager must use the vendor ID, Product ID, Device Class, Device Subclass, and Device
Protocol, and must match any USB device in the system that contains this information. If any of the
ID, Product ID, Device Class, Device Subclass, or Device Protocol contain all F's (0xFFFF or
0xFF), this element is skipped for the purpose of matching. If more than one device matches the
USB Class device path, the boot manager will pick one arbitrarily.

The boot manager must also support booting from a short-form device path that starts with the first
element being a hard drive media device path (see Table 83). The boot manager must use the GUID
or signature and partition number in the hard drive device path to match it to a device in the system.
If the drive supports the GPT partitioning scheme the GUID in the hard drive media device path is
compared with the UniquePartitionGuid field of the GUID Partition Entry (see Table 18). If
the drive supports the PC-AT MBR scheme the signature in the hard drive media device path is
compared with the UniqueMBRSignature in the Legacy Master Boot Record (see Table 13). If a
signature match is made, then the partition number must also be matched. The hard drive device path
can be appended to the matching hardware device path and normal boot behavior can then be used.
If more than one device matches the hard drive device path, the boot manager will pick one
arbitrarily. Thus the operating system must ensure the uniqueness of the signatures on hard drives to
guarantee deterministic boot behavior.

The boot manager must also support booting from a short-form device path that starts with the first
element being a File Path Media Device Path (see Table 86). When the boot manager attempts to
boot a short-form File Path Media Device Path, it will enumerate all removable media devices,
followed by all fixed media devices, creating boot options for each device. The boot option
FilePathList[0] is constructed by appending short-form File Path Media Device Path to the device
path of a media. The order within each group is undefined. These new boot options must not be
saved to non volatile storage, and may not be added to BootOrder. The boot manager will then
attempt to boot from each boot option. If a device does not support the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, but supports the EFI_BLOCK_IO_PROTOCOL
protocol, then the EFI Boot Service ConnectController must be called for this device with
DriverImageHandle and RemainingDevicePath set to NULL and the Recursive flag is set
to TRUE. The firmware will then attempt to boot from any child handles produced using the
algorithms outlined above.

3.1.3 Load Options
Each load option variable contains an EFI_LOAD_OPTION descriptor that is a byte packed buffer
of variable length fields.
typedef struct _EFI_LOAD_OPTION {

 UINT32 Attributes;
 UINT16 FilePathListLength;
 // CHAR16 Description[];
 // EFI_DEVICE_PATH_PROTOCOL FilePathList[];
 // UINT8 OptionalData[];
} EFI_LOAD_OPTION;
72 April, 2015 Version 2.5

Boot Manager
Parameters
Attributes The attributes for this load option entry. All unused bits must be

zero and are reserved by the UEFI specification for future growth.
See “Related Definitions.”

FilePathListLength Length in bytes of the FilePathList. OptionalData
starts at offset sizeof(UINT32) + sizeof(UINT16) +
StrSize(Description) + FilePathListLength of
the EFI_LOAD_OPTION descriptor.

Description The user readable description for the load option. This field ends
with a Null character.

FilePathList A packed array of UEFI device paths. The first element of the
array is a device path that describes the device and location of the
Image for this load option. The FilePathList[0] is specific
to the device type. Other device paths may optionally exist in the
FilePathList, but their usage is OSV specific. Each element
in the array is variable length, and ends at the device path end
structure. Because the size of Description is arbitrary, this
data structure is not guaranteed to be aligned on a natural
boundary. This data structure may have to be copied to an
aligned natural boundary before it is used.

OptionalData The remaining bytes in the load option descriptor are a binary
data buffer that is passed to the loaded image. If the field is zero
bytes long, a NULL pointer is passed to the loaded image. The
number of bytes in OptionalData can be computed by
subtracting the starting offset of OptionalData from total size
in bytes of the EFI_LOAD_OPTION.

Related Definitions
//***
// Attributes
//***
#define LOAD_OPTION_ACTIVE 0x00000001

#define LOAD_OPTION_FORCE_RECONNECT 0x00000002

#define LOAD_OPTION_HIDDEN 0x00000008

#define LOAD_OPTION_CATEGORY 0x00001F00

#define LOAD_OPTION_CATEGORY_BOOT 0x00000000

#define LOAD_OPTION_CATEGORY_APP 0x00000100

// All values 0x00000200-0x00001F00 are reserved

Description
Calling SetVariable() creates a load option. The size of the load option is the same as the size
of the DataSize argument to the SetVariable() call that created the variable. When creating
a new load option, all undefined attribute bits must be written as zero. When updating a load option,
all undefined attribute bits must be preserved.
Version 2.5 April, 2015 73

Unified Extensible Firmware Interface Specification
If a load option is marked as LOAD_OPTION_ACTIVE, the boot manager will attempt to boot
automatically using the device path information in the load option. This provides an easy way to
disable or enable load options without needing to delete and re-add them.

If any Driver#### load option is marked as LOAD_OPTION_FORCE_RECONNECT, then all of
the UEFI drivers in the system will be disconnected and reconnected after the last Driver####
load option is processed. This allows a UEFI driver loaded with a Driver#### load option to
override a UEFI driver that was loaded prior to the execution of the UEFI Boot Manager.

The executable indicated by FilePathList[0] in Driver#### load option must be of type
EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER or
EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER otherwise the indicated executable will not
be entered for initialization.

The executable indicated by FilePathList[0] in SysPrep###, Boot####, or
OsRecovery#### load option must be of type
EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION, otherwise the indicated executable will not be
entered.

The LOAD_OPTION_CATEGORY is a sub-field of Attributes that provides details to the boot
manager to describe how it should group the Boot#### load options. This field is ignored for
variables of the form Driver####, SysPrep####,or OsRecovery####.

Boot#### load options with LOAD_OPTION_CATEGORY set to
LOAD_OPTION_CATEGORY_BOOT are meant to be part of the normal boot processing.

Boot#### load options with LOAD_OPTION_CATEGORY set to
LOAD_OPTION_CATEGORY_APP are executables which are not part of the normal boot
processing but can be optionally chosen for execution if boot menu is provided, or via Hot Keys. See
Section 3.1.6 for details.

Boot options with reserved category values, will be ignored by the boot manager.

If any Boot#### load option is marked as LOAD_OPTION_HIDDEN, then the load option will
not appear in the menu (if any) provided by the boot manager for load option selection.

3.1.4 Boot Manager Capabilities
The boot manager can report its capabilities through the global variable BootOptionSupport. If
the global variable is not present, then an installer or application must act as if a value of 0 was
returned.

#define EFI_BOOT_OPTION_SUPPORT_KEY 0x00000001
#define EFI_BOOT_OPTION_SUPPORT_APP 0x00000002
#define EFI_BOOT_OPTION_SUPPORT_SYSPREP 0x00000010
#define EFI_BOOT_OPTION_SUPPORT_COUNT 0x00000300

If EFI_BOOT_OPTION_SUPPORT_KEY is set then the boot manager supports launching of
Boot#### load options using key presses. If EFI_BOOT_OPTION_SUPPORT_APP is set then
the boot manager supports boot options with LOAD_OPTION_CATEGORY_APP. If
EFI_BOOT_OPTION_SUPPORT_SYSPREP is set then the boot manager supports boot options of
form SysPrep####.

The value specified in EFI_BOOT_OPTION_SUPPORT_COUNT describes the maximum number
of key presses which the boot manager supports in the
74 April, 2015 Version 2.5

Boot Manager
EFI_KEY_OPTION.KeyData.InputKeyCount. This value is only valid if
EFI_BOOT_OPTION_SUPPORT_KEY is set. Key sequences with more keys specified are
ignored.

3.1.5 Launching Boot#### Applications
The boot manager may support a separate category of Boot#### load option for applications. The
boot manager indicates that it supports this separate category by setting the
EFI_BOOT_OPTION_SUPPORT_APP in the BootOptionSupport global variable.

When an application’s Boot#### option is being added to the BootOrder, the installer should
clear LOAD_OPTION_ACTIVE so that the boot manager does not attempt to automatically “boot”
the application. If the boot manager indicates that it supports a separate application category, as
described above, the installer should set LOAD_OPTION_CATEGORY_APP. If not, it should set
LOAD_OPTION_CATEGORY_BOOT.

3.1.6 Launching Boot#### Load Options Using Hot Keys
The boot manager may support launching a Boot#### load option using a special key press. If so,
the boot manager reports this capability by setting EFI_BOOT_OPTION_SUPPORT_KEY in the
BootOptionSupport global variable.

A boot manager which supports key press launch reads the current key information from the
console. Then, if there was a key press, it compares the key returned against zero or more Key####
global variables. If it finds a match, it verifies that the Boot#### load option specified is valid and,
if so, attempts to launch it immediately. The #### in the Key#### is a printable hexadecimal
number (‘0’-‘9’, ‘A’-‘F’) with leading zeroes. The order which the Key#### variables are checked
is implementation-specific.

The boot manager may ignore Key#### variables where the hot keys specified overlap with those
used for internal boot manager functions. It is recommended that the boot manager delete these keys.

The Key#### variables have the following format:

Prototype
typedef struct _EFI_KEY_OPTION {
 EFI_BOOT_KEY_DATA KeyData;
 UINT32 BootOptionCrc;
 UINT16 BootOption;
// EFI_INPUT_KEY Keys[];
} EFI_KEY_OPTION;

Parameters
KeyData

Specifies options about how the key will be processed. Type
EFI_BOOT_KEY_DATA is defined in “Related Definitions” below.
Version 2.5 April, 2015 75

Unified Extensible Firmware Interface Specification
BootOptionCrc

The CRC-32 which should match the CRC-32 of the entire EFI_LOAD_OPTION to
which BootOption refers. If the CRC-32s do not match this value, then this key
option is ignored.

BootOption

The Boot#### option which will be invoked if this key is pressed and the boot option
is active (LOAD_OPTION_ACTIVE is set).

Keys

The key codes to compare against those returned by the
EFI_SIMPLE_TEXT_INPUT and EFI_SIMPLE_TEXT_INPUT_EX protocols.
The number of key codes (0-3) is specified by the EFI_KEY_CODE_COUNT field in
KeyOptions.

Related Definitions
typedef union {
 struct {
 UINT32 Revision : 8;
 UINT32 ShiftPressed : 1;
 UINT32 ControlPressed : 1;
 UINT32 AltPressed : 1;
 UINT32 LogoPressed : 1;
 UINT32 MenuPressed : 1;
 UINT32 SysReqPressed : 1;
 UINT32 Reserved : 16;
 UINT32 InputKeyCount : 2;
 } Options;
 UINT32 PackedValue;
} EFI_BOOT_KEY_DATA;

Revision

Indicates the revision of the EFI_KEY_OPTION structure. This revision level should
be 0.

ShiftPressed

Either the left or right Shift keys must be pressed (1) or must not be pressed (0).

ControlPressed

Either the left or right Control keys must be pressed (1) or must not be pressed (0).

AltPressed

Either the left or right Alt keys must be pressed (1) or must not be pressed (0).

LogoPressed

Either the left or right Logo keys must be pressed (1) or must not be pressed (0).
76 April, 2015 Version 2.5

Boot Manager
MenuPressed

The Menu key must be pressed (1) or must not be pressed (0).

SysReqPressed

The SysReq key must be pressed (1) or must not be pressed (0).

InputKeyCount

Specifies the actual number of entries in EFI_KEY_OPTION.Keys, from 0-3. If
zero, then only the shift state is considered. If more than one, then the boot option will
only be launched if all of the specified keys are pressed with the same shift state.

Example #1: ALT is the hot key. KeyData.PackedValue = 0x00000400.

Example #2: CTRL-ALT-P-R. KeyData.PackedValue = 0x80000600.

Example #3: CTRL-F1. KeyData.PackedValue = 0x40000200.

3.1.7 Required System Preparation Applications
A load option of the form SysPrep#### is intended to designate a UEFI application that is
required to execute in order to complete system preparation prior to processing of any Boot####
variables. The execution order of SysPrep#### applications is determined by the contents of the
variable SysPrepOrder in a way directly analogous to the ordering of Boot#### options by
BootOrder.

The platform is required to examine all SysPrep#### variables referenced in SysPrepOrder.
If Attributes bit LOAD_OPTION_ACTIVE is set, and the application referenced by
FilePathList[0] is present, the UEFI Applications thus identified must be loaded and
launched in the order they appear in SysPrepOrder and prior to the launch of any load options of type
Boot####.

When launched, the platform is required to provide the application loaded by SysPrep####, with
the same services such as console and network as are normally provided at launch to applications
referenced by a Boot#### variable. SysPrep#### application must exit and may not call
ExitBootServices(). Processing of any Error Code returned at exit is according to system
policy and does not necessarily change processing of following boot options. Any driver portion of
the feature supported by SysPrep#### boot option that is required to remain resident should be
loaded by use of Driver#### variable.

The Attributes option LOAD_OPTION_FORCE_RECONNECT is ignored for SysPrep####
variables, and in the event that an application so launched performs some action that adds to the
available hardware or drivers, the system preparation application shall itself utilize appropriate calls
to ConnectController() or DisconnectController() to revise connections between
drivers and hardware.

After all SysPrep#### variables have been launched and exited, the platform shall notify
EFI_EVENT_GROUP_READY_TO_BOOT event group and begin to evaluate Boot#### variables
with Attributes set to LOAD_OPTION_CATEGORY_BOOT according to the order defined by
BootOrder. The FilePathList of variables marked LOAD_OPTION_CATEGORY_BOOT
shall not be evaluated prior to the completion of EFI_EVENT_GROUP_READY_TO_BOOT event
group processing.
Version 2.5 April, 2015 77

Unified Extensible Firmware Interface Specification
3.2 Boot Manager Policy Protocol

EFI_BOOT_MANAGER_POLICY_PROTOCOL

Summary
This protocol is used by EFI Applications to request the UEFI Boot Manager to connect devices
using platform policy.

GUID
#define EFI_BOOT_MANAGER_POLICY_PROTOCOL_GUID \
 { 0xFEDF8E0C, 0xE147, 0x11E3,\
 { 0x99, 0x03, 0xB8, 0xE8, 0x56, 0x2C, 0xBA, 0xFA } }

Protocol Interface Structure
typedef struct _EFI_BOOT_MANAGER_POLICY_PROTOCOL
EFI_BOOT_MANAGER_POLICY_PROTOCOL;
struct _EFI_BOOT_MANAGER_POLICY_PROTOCOL {
 UINT64 Revision;
 EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_PATH ConnectDevicePath;
 EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_CLASS
ConnectDeviceClass;
};

ConnectDevicePath Connect a Device Path following the platforms EFI Boot
Manager policy.

ConnectDeviceClass Connect a class of devices, named by EFI_GUID, following the
platforms UEFI Boot Manger policy.

Description
The EFI_BOOT_MANAGER_PROTOCOL is produced by the platform firmware to expose Boot
Manager policy and platform specific EFI_BOOT_SERVICES.ConnectController()
behavior.

Related Definitions
#define EFI_BOOT_MANAGER_POLICY_PROTOCOL_REVISION 0x00010000
78 April, 2015 Version 2.5

Boot Manager
EFI_BOOT_MANAGER_PROTOCOL.ConnectDevicePath()

Summary
Connect a device path following the platforms EFI Boot Manager policy.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_PATH)(
 IN EFI_BOOT_MANAGER_POLICY_PROTOCOL *This,
 IN EFI_DEVICE_PATH *DevicePath,
 IN BOOLEAN Recursive
);

Parameters
This A pointer to the EFI_BOOT_MANAGER_POLICY_PROTOCOL

instance. Type EFI_BOOT_MANAGER_POLICY_PROTOCOL
defined above.

DevicePath Points to the start of the EFI device path to connect. If
DevicePath is NULL then all the controllers in the system will
be connected using the platforms EFI Boot Manager policy.

Recursive If TRUE, then ConnectController() is called recursively
until the entire tree of controllers below the controller specified
by DevicePath have been created. If FALSE, then the tree of
controllers is only expanded one level. If DevicePath is
NULL then Recursive is ignored.

Description
The ConnectDevicePath() function allows the caller to connect a DevicePath using the
same policy as the EFI Boot Manger.

If Recursive is TRUE, then ConnectController() is called recursively until the entire tree
of controllers below the controller specified by DevicePath have been created. If Recursive is
FALSE, then the tree of controllers is only expanded one level. If DevicePath is NULL then
Recursive is ignored.

Status Codes Returned

EFI_SUCCESS The DevicePath was connected

EFI_NOT_FOUND The DevicePath was not found

EFI_NOT_FOUND No driver was connected to DevicePath.

EFI_SECURITY_VIOLATION The user has no permission to start UEFI device drivers on the

DevicePath.

EFI_UNSUPPORTED The current TPL is not TPL_APPLICATION.
Version 2.5 April, 2015 79

Unified Extensible Firmware Interface Specification
EFI_BOOT_MANAGER_PROTOCOL.ConnectDeviceClass()

Summary
Connect a class of devices using the platform Boot Manager policy.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_CLASS)(
 IN EFI_BOOT_MANAGER_POLICY_PROTOCOL *This,
 IN EFI_GUID *Class
);

Parameters
This A pointer to the EFI_BOOT_MANAGER_POLICY_PROTOCOL

instance. Type EFI_BOOT_MANAGER_POLICY_PROTOCOL is
defined above.

Class A pointer to an EFI_GUID that represents a class of devices that
will be connected using the Boot Mangers platform policy.

Description
The ConnectDeviceClass() function allows the caller to request that the Boot Manager
connect a class of devices.

If Class is EFI_BOOT_MANAGER_POLICY_CONSOLE_GUID then the Boot Manager will use
platform policy to connect consoles. Some platforms may restrict the number of consoles connected
as they attempt to fast boot, and calling ConnectDeviceClass() with a Class value of
EFI_BOOT_MANAGER_POLICY_CONSOLE_GUID must connect the set of consoles that follow
the Boot Manager platform policy, and the EFI_SIMPLE_TEXT_INPUT_PROTOCOL,
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL, and the
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL are produced on the connected handles. The Boot
Manager may restrict which consoles get connect due to platform policy, for example a security
policy may require that a given console is not connected.

If Class is EFI_BOOT_MANAGER_POLICY_NETWORK_GUID then the Boot Manager will
connect the protocols the platforms supports for UEFI general purpose network applications on one
or more handles. The protocols associated with UEFI general purpose network applications are
defined in Section 2.6.2, list item number 7. If more than one network controller is available a
platform will connect, one, many, or all of the networks based on platform policy. Connecting UEFI
networking protocols, like EFI_DHCP4_PROTOCOL, does not establish connections on the
network. The UEFI general purpose network application that called ConnectDeviceClass()
may need to use the published protocols to establish the network connection. The Boot Manager can
optionally have a policy to establish a network connection.

If Class is EFI_BOOT_MANAGER_POLICY_CONNECT_ALL_GUID then the Boot Manager
will connect all UEFI drivers using the UEFI Boot Service
EFI_BOOT_SERVICES.ConnectController(). If the Boot Manager has policy associated
with connect all UEFI drivers this policy will be used.
80 April, 2015 Version 2.5

Boot Manager
A platform can also define platform specific Class values as a properly generated EFI_GUID
would never conflict with this specification.

Related Definitions
#define EFI_BOOT_MANAGER_POLICY_CONSOLE_GUID \
 { 0xCAB0E94C, 0xE15F, 0x11E3,\
 { 0x91, 0x8D, 0xB8, 0xE8, 0x56, 0x2C, 0xBA, 0xFA } }
#define EFI_BOOT_MANAGER_POLICY_NETWORK_GUID \
 { 0xD04159DC, 0xE15F, 0x11E3,\
 { 0xB2, 0x61, 0xB8, 0xE8, 0x56, 0x2C, 0xBA, 0xFA } }
#define EFI_BOOT_MANAGER_POLICY_CONNECT_ALL_GUID \
 { 0x113B2126, 0xFC8A, 0x11E3,\
 { 0xBD, 0x6C, 0xB8, 0xE8, 0x56, 0x2C, 0xBA, 0xFA } }

Status Codes Returned

3.3 Globally Defined Variables
This section defines a set of variables that have architecturally defined meanings. In addition to the
defined data content, each such variable has an architecturally defined attribute that indicates when
the data variable may be accessed. The variables with an attribute of NV are nonvolatile. This
means that their values are persistent across resets and power cycles. The value of any environment
variable that does not have this attribute will be lost when power is removed from the system and the
state of firmware reserved memory is not otherwise preserved. The variables with an attribute of BS
are only available before EFI_BOOT_SERVICES.ExitBootServices() is called. This
means that these environment variables can only be retrieved or modified in the preboot
environment. They are not visible to an operating system. Environment variables with an attribute
of RT are available before and after ExitBootServices() is called. Environment variables of
this type can be retrieved and modified in the preboot environment, and from an operating system.
The variables with an attribute of AT are variables with a time-based authenticated write access
defined in Section 7.2.1. All architecturally defined variables use the EFI_GLOBAL_VARIABLE
VendorGuid:

#define EFI_GLOBAL_VARIABLE\
{0x8BE4DF61,0x93CA,0x11d2,\

 {0xAA,0x0D,0x00,0xE0,0x98,0x03,0x2B,0x8C}}

To prevent name collisions with possible future globally defined variables, other internal firmware
data variables that are not defined here must be saved with a unique VendorGuid other than
EFI_GLOBAL_VARIABLE or any other GUID defined by the UEFI Specification.

EFI_SUCCESS At least one devices of the Class was connected.

EFI_DEVICE_ERROR Devices were not connected due to an error.

EFI_NOT_FOUND The Class is not supported by the platform.

EFI_UNSUPPORTED The current TPL is not TPL_APPLICATION.
Version 2.5 April, 2015 81

Unified Extensible Firmware Interface Specification
Implementations must only permit the creation of variables with a UEFI Specification-defined
VendorGuid when these variables are documented in the UEFI Specification.

Table 11. Global Variables

Variable Name Attribute Description

AuditMode BS, RT Whether the system is operating in Audit Mode (1) or not
(0). All other values are reserved. Should be treated as
read-only except when DeployedMode is 0. Always
becomes read-only after ExitBootServices() is called.

Boot#### NV, BS, RT A boot load option. #### is a printed hex value. No 0x or
h is included in the hex value.

BootCurrent BS, RT The boot option that was selected for the current boot.

BootNext NV, BS, RT The boot option for the next boot only.

BootOrder NV, BS, RT The ordered boot option load list.

BootOptionSupport BS,RT, The types of boot options supported by the boot
manager. Should be treated as read-only.

ConIn NV, BS, RT The device path of the default input console.

ConInDev BS, RT The device path of all possible console input devices.

ConOut NV, BS, RT The device path of the default output console.

ConOutDev BS, RT The device path of all possible console output devices.

dbDefault BS, RT The OEM's default secure boot signature store. Should
be treated as read-only.

dbrDefault BS, RT The OEM's default OS Recovery signature store. Should
be treated as read-only.

dbtDefault BS, RT The OEM's default secure boot timestamp signature
store. Should be treated as read-only.

dbxDefault BS, RT The OEM's default secure boot blacklist signature store.
Should be treated as read-only.

DeployedMode BS, RT Whether the system is operating in Deployed Mode (1) or
not (0). All other values are reserved. Should be treated
as read-only when its value is 1. Always becomes read-
only after ExitBootServices() is called.

Driver#### NV, BS, RT A driver load option. #### is a printed hex value.

DriverOrder NV, BS, RT The ordered driver load option list.

ErrOut NV, BS, RT The device path of the default error output device.

ErrOutDev BS, RT The device path of all possible error output devices.

HwErrRecSupport NV, BS, RT Identifies the level of hardware error record persistence
support implemented by the platform. This variable is
only modified by firmware and is read-only to the OS.

KEK NV, BS, RT,AT The Key Exchange Key Signature Database.

KEKDefault BS, RT The OEM's default Key Exchange Key Signature
Database. Should be treated as read-only.

Key#### NV, BS, RT Describes hot key relationship with a Boot#### load
option.
82 April, 2015 Version 2.5

Boot Manager
The PlatformLangCodes variable contains a null- terminated ASCII string representing the
language codes that the firmware can support. At initialization time the firmware computes the
supported languages and creates this data variable. Since the firmware creates this value on each
initialization, its contents are not stored in nonvolatile memory. This value is considered read-only.
PlatformLangCodes is specified in Native RFC 4646 format. See Appendix M. LangCodes
is deprecated and may be provided for backwards compatibility.

The PlatformLang variable contains a null- terminated ASCII string language code that the
machine has been configured for. This value may be changed to any value supported by

Lang NV, BS, RT The language code that the system is configured for. This
value is deprecated.

LangCodes BS, RT The language codes that the firmware supports. This
value is deprecated.

OsIndications NV, BS, RT Allows the OS to request the firmware to enable certain
features and to take certain actions.

OsIndicationsSupported BS, RT Allows the firmware to indicate supported features and
actions to the OS.

OsRecoveryOrder BS,RT,NV,AT OS-specified recovery options.

PK NV, BS, RT,AT The public Platform Key.

PKDefault BS, RT The OEM's default public Platform Key. Should be treated
as read-only.

PlatformLangCodes BS, RT The language codes that the firmware supports.

PlatformLang NV, BS, RT The language code that the system is configured for.

PlatformRecovery#### BS, RT Platform-specified recovery options. These variables are
only modified by firmware and are read-only to the OS.

SignatureSupport BS, RT Array of GUIDs representing the type of signatures
supported by the platform firmware. Should be treated as
read-only.

SecureBoot BS, RT Whether the platform firmware is operating in Secure boot
mode (1) or not (0). All other values are reserved. Should
be treated as read-only.

SetupMode BS, RT Whether the system should require authentication on
SetVariable() requests to Secure Boot policy variables (0)
or not (1). Should be treated as read-only.
The system is in "Setup Mode" when SetupMode==1,
AuditMode==0, and DeployedMode==0.

SysPrep#### NV, BS, RT A System Prep application load option containing a

EFI_LOAD_OPTION descriptor. #### is a printed hex

value.

SysPrepOrder NV, BS, RT The ordered System Prep Application load option list.

Timeout NV, BS, RT The firmware’s boot managers timeout, in seconds,
before initiating the default boot selection.

VendorKeys BS, RT Whether the system is configured to use only vendor-
provided keys or not. Should be treated as read-only.

Variable Name Attribute Description
Version 2.5 April, 2015 83

Unified Extensible Firmware Interface Specification
PlatformLangCodes. If this change is made in the preboot environment, then the change will
take effect immediately. If this change is made at OS runtime, then the change does not take effect
until the next boot. If the language code is set to an unsupported value, the firmware will choose a
supported default at initialization and set PlatformLang to a supported value. PlatformLang
is specified in Native RFC 4646 array format. See Appendix M. Lang is deprecated and may be
provided for backwards compatibility.

Lang has been deprecated. If the platform supports this variable, it must map any changes in the
Lang variable into PlatformLang in the appropriate format.

Langcodes has been deprecated. If the platform supports this variable, it must map any changes in
the Langcodes variable into PlatformLang in the appropriate format.

The Timeout variable contains a binary UINT16 that supplies the number of seconds that the
firmware will wait before initiating the original default boot selection. A value of 0 indicates that
the default boot selection is to be initiated immediately on boot. If the value is not present, or
contains the value of 0xFFFF then firmware will wait for user input before booting. This means the
default boot selection is not automatically started by the firmware.

The ConIn, ConOut, and ErrOut variables each contain an EFI_DEVICE_PATH_PROTOCOL
descriptor that defines the default device to use on boot. Changes to these values made in the
preboot environment take effect immediately. Changes to these values at OS runtime do not take
effect until the next boot. If the firmware cannot resolve the device path, it is allowed to
automatically replace the values, as needed, to provide a console for the system. If the device path
starts with a USB Class device path (see Table 63), then any input or output device that matches the
device path must be used as a console if it is supported by the firmware.

The ConInDev, ConOutDev, and ErrOutDev variables each contain an
EFI_DEVICE_PATH_PROTOCOL descriptor that defines all the possible default devices to use on
boot. These variables are volatile, and are set dynamically on every boot. ConIn, ConOut, and
ErrOut are always proper subsets of ConInDev, ConOutDev, and ErrOutDev.

Each Boot#### variable contains an EFI_LOAD_OPTION. Each Boot#### variable is the
name “Boot” appended with a unique four digit hexadecimal number. For example, Boot0001,
Boot0002, Boot0A02, etc.

The OsRecoveryOrder variable contains an array of EFI_GUID structures. Each EFI_GUID
structure specifies a namespace for variables containing OS-defined recovery entries (see
Section 3.4.1). Write access to this variable is controlled by the security key database dbr (see
Section 7.2.1).

PlatformRecovery#### variables share the same structure as Boot#### variables. These
variables are processed when the system is performing recovery of boot options

The BootOrder variable contains an array of UINT16’s that make up an ordered list of the
Boot#### options. The first element in the array is the value for the first logical boot option, the
second element is the value for the second logical boot option, etc. The BootOrder order list is
used by the firmware’s boot manager as the default boot order.

The BootNext variable is a single UINT16 that defines the Boot#### option that is to be tried
first on the next boot. After the BootNext boot option is tried the normal BootOrder list is used.
To prevent loops, the boot manager deletes this variable before transferring control to the
preselected boot option.
84 April, 2015 Version 2.5

Boot Manager
The BootCurrent variable is a single UINT16 that defines the Boot#### option that was
selected on the current boot.

The BootOptionSupport variable is a UINT32 that defines the types of boot options
supported by the boot manager.

Each Driver#### variable contains an EFI_LOAD_OPTION. Each load option variable is
appended with a unique number, for example Driver0001, Driver0002, etc.

The DriverOrder variable contains an array of UINT16’s that make up an ordered list of the
Driver#### variable. The first element in the array is the value for the first logical driver load
option, the second element is the value for the second logical driver load option, etc. The
DriverOrder list is used by the firmware’s boot manager as the default load order for UEFI
drivers that it should explicitly load.

The Key#### variable associates a key press with a single boot option. Each Key#### variable
is the name "Key" appended with a unique four digit hexadecimal number. For example, Key0001,
Key0002, Key00A0, etc.

The HwErrRecSupport variable contains a binary UINT16 that supplies the level of support for
Hardware Error Record Persistence (see Section 7.2.3) that is implemented by the platform. If the
value is not present, then the platform implements no support for Hardware Error Record
Persistence. A value of zero indicates that the platform implements no support for Hardware Error
Record Persistence. A value of 1 indicates that the platform implements Hardware Error Record
Persistence as defined in Section 7.2.3. Firmware initializes this variable. All other values are
reserved for future use.

The SetupMode variable is an 8-bit unsigned integer that defines whether the system is should
require authentication (0) or not (1) on SetVariable() requests to Secure Boot Policy Variables.
Secure Boot Policy Variables include:

• The global variables PK, KEK, and OsRecoveryOrder

• All variables named OsRecovery#### under all VendorGuids

• All variables with the VendorGuid EFI_IMAGE_SECURITY_DATABASE_GUID.

Secure Boot Policy Variables must be created using the EFI_VARIABLE_AUTHENTICATION_2
structure.

The AuditMode variable is an 8-bit unsigned integer that defines whether the system is currently
operating in Audit Mode.

The DeployedMode variable is an 8-bit unsigned integer that defines whether the system is
currently operating in Deployed Mode.

The KEK variable contains the current Key Exchange Key database.

The PK variable contains the current Platform Key.

The VendorKeys variable is an 8-bit unsigned integer that defines whether the Security Boot
Policy Variables have been modified by anyone other than the platform vendor or a holder of the
vendor-provided keys. A value of 0 indicates that someone other than the platform vendor or a
holder of the vendor-provided keys has modified the Secure Boot Policy Variables Otherwise, the
value will be 1.

The KEKDefault variable, if present, contains the platform-defined Key Exchange Key database.
This is not used at runtime but is provided in order to allow the OS to recover the OEM's default key
Version 2.5 April, 2015 85

Unified Extensible Firmware Interface Specification
setup. The contents of this variable do not include an EFI_VARIABLE_AUTHENTICATION or
EFI_VARIABLE_AUTHENTICATION2 structure.

The PKDefault variable, if present, contains the platform-defined Platform Key. This is not used
at runtime but is provided in order to allow the OS to recover the OEM's default key setup. The
contents of this variable do not include an EFI_VARIABLE_AUTHENTICATION2 structure.

The dbDefault variable, if present, contains the platform-defined secure boot signature database.
This is not used at runtime but is provided in order to allow the OS to recover the OEM's default key
setup. The contents of this variable do not include an EFI_VARIABLE_AUTHENTICATION2
structure.

The dbrDefault variable, if present, contains the platform-defined secure boot authorized
recovery signature database. This is not used at runtime but is provided in order to allow the OS to
recover the OEM's default key setup. The contents of this variable do not include an
EFI_VARIABLE_AUTHENTICATION2 structure.

The dbtDefault variable, if present, contains the platform-defined secure boot timestamp
signature database. This is not used at runtime but is provided in order to allow the OS to recover the
OEM's default key setup. The contents of this variable do not include an
EFI_VARIABLE_AUTHENTICATION2 structure.

The dbxDefault variable, if present, contains the platform-defined secure boot blacklist signature
database. This is not used at runtime but is provided in order to allow the OS to recover the OEM's
default key setup. The contents of this variable do not include an
EFI_VARIABLE_AUTHENTICATION2 structure.

The SignatureSupport variable returns an array of GUIDs, with each GUID representing a
type of signature which the platform firmware supports for images and other data. The different
signature types are described in "Signature Database".

The SecureBoot variable is an 8-bit unsigned integer that defines if the platform firmware is
operating in secure boot mode. A value of 1 indicates that platform firmware performs driver and
boot application signature verification as specified in Section 30.5 during the current boot. A value
of 0 indicates that driver and boot application signature verification is not active during the current
boot. The platform firmware is operating in secure boot mode if the value of the SetupMode
variable is 0 and the SecureBoot variable is set to 1. A platform cannot operate in secure boot
mode if the SetupMode variable is set to 1. The SecureBoot variable should be treated as read-
only.

The OsIndicationsSupported variable indicates which of the OS indication features and
actions that the firmware supports. This variable is recreated by firmware every boot, and cannot be
modified by the OS (see SetVariable()Attributes usage rules once ExitBootServices()
is performed).

The OsIndications variable is used to indicate which features the OS wants firmware to enable
or which actions the OS wants the firmware to take. The OS will supply this data with a
SetVariable() call. See Section 7.5.4 for the variable definition.

3.4 Boot Option Recovery
Boot option recovery consists of two independent parts, operating system-defined recovery and
platform-defined recovery. OS-defined recovery is an attempt to allow installed operating systems to
86 April, 2015 Version 2.5

Boot Manager
recover any needed boot options, or to launch full operating system recovery. Platform-defined
recovery includes any remedial actions performed by the platform as a last resort when no operating
system is found, such as the Default Boot Behavior (see Section 3.3.3). This could include behaviors
such as warranty service reconfiguration or diagnostic options.

In the event that boot option recovery must be performed, the boot manager must first attempt OS-
defined recovery, re-attempt normal booting via Boot#### and BootOrder variables, and finally
attempt platform-defined recovery if no options have succeeded.

3.4.1 OS-Defined Boot Option Recovery
If the EFI_OS_INDICATIONS_START_OS_RECOVERY bit is set in OsIndications, or if
processing of BootOrder does not result in success, the platform must process OS-defined
recovery options. In the case where OS-defined recovery is entered due to OsIndications,
SysPrepOrder and SysPrep#### variables should not be processed. Note that in order to
avoid ambiguity in intent, this bit is ignored in OsIndications if
EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY is set.

OS-defined recovery uses the OsRecoveryOrder variable, as well as variables created with
vendor specific VendorGuid values and a name following the pattern OsRecovery####. Each
of these variables must be an authenticated variable with the
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute set.

To process these variables, the boot manager iterates over the array of EFI_GUID structures in the
OsRecoveryOrder variable, and each GUID specified is treated as a VendorGuid associated
with a series of variable names. For each GUID, the firmware attempts to load and execute, in
hexadecimal sort order, every variable with that GUID and a name following the pattern
OsRecovery####. These variables have the same format as Boot#### variables, and the boot
manager must verify that each variable it attempts to load was created with a public key that is
associated with a certificate chaining to one listed in the authorized recovery signature database dbr
or the Key Exchange Key database KEK, or by the current Platform Key PK.

If the boot manager finishes processing OsRecovery#### options without
EFI_BOOT_SERVICES.ExitBootServices() or ResetSystem() having been called, it
must attempt to process BootOrder a second time. If booting does not succeed during that process,
OS-defined recovery has failed, and the boot manager must attempt platform-based recovery.

If, while processing OsRecovery#### variables, the boot manager encounters an entry which
cannot be loaded or executed due to a security policy violation, it must ignore that variable.

3.4.2 Platform-Defined Boot Option Recovery
If the EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY bit is set in
OsIndications, or if OS-defined recovery has failed, the system firmware must commence with
platform-specific recovery by iterating its PlatformRecovery#### variables in the same
manner as OsRecovery####, but must stop processing if any entry is successful. In the case
where platform-specific recovery is entered due to OsIndications, SysPrepOrder and
SysPrep#### variables should not be processed.
Version 2.5 April, 2015 87

Unified Extensible Firmware Interface Specification
3.4.3 Boot Option Variables Default Boot Behavior
The default state of globally-defined variables is firmware vendor specific. However the boot
options require a standard default behavior in the exceptional case that valid boot options are not
present on a platform. The default behavior must be invoked any time the BootOrder variable
does not exist or only points to nonexistent boot options, or if no entry in BootOrder can
successfully be executed.

If system firmware supports boot option recovery as described in Section 3.4, system firmware must
include a PlatformRecovery#### variable specifying a short-form File Path Media Device
Path (see Table 3.1.2) containing the platform default file path for removable media (see Table 12).
It is recommended for maximal compatibility with prior versions of this specification that this entry
be the first such variable, though it may be at any position within the list.

It is expected that this default boot will load an operating system or a maintenance utility. If this is an
operating system setup program it is then responsible for setting the requisite environment variables
for subsequent boots. The platform firmware may also decide to recover or set to a known set of boot
options.

3.5 Boot Mechanisms
EFI can boot from a device using the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL or the
EFI_LOAD_FILE_PROTOCOL. A device that supports the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL must materialize a file system protocol for that
device to be bootable. If a device does not wish to support a complete file system it may produce an
EFI_LOAD_FILE_PROTOCOL which allows it to materialize an image directly. The Boot
Manager will attempt to boot using the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL first. If that
fails, then the EFI_LOAD_FILE_PROTOCOL will be used.

3.5.1 Boot via the Simple File Protocol
When booting via the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, the FilePath will start with
a device path that points to the device that “speaks” the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL. The next part of the FilePath will point to the file
name, including sub directories that contain the bootable image. If the file name is a null device
path, the file name must be discovered on the media using the rules defined for removable media
devices with ambiguous file names (see Section 3.5.1.1 below).

The format of the file system specified is contained in Section 12.3. While the firmware must
produce an EFI_SIMPLE_FILE_SYSTEM_PROTOCOL that understands the UEFI file system,
any file system can be abstracted with the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL interface.

3.5.1.1 Removable Media Boot Behavior
On a removable media device it is not possible for the FilePath to contain a file name, including
sub directories. FilePathList[0] is stored in non volatile memory in the platform and cannot
possibly be kept in sync with a media that can change at any time. A FilePathList[0] for a
removable media device will point to a device that supports the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL or EFI_BLOCK_IO_PROTOCOL. The
FilePathList[0] will not contain a file name or sub directories.
88 April, 2015 Version 2.5

Boot Manager
If FilePathList[0] points to a device that supports the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, then the system firmware will attempt to boot from a
removable media FilePathList[0] by adding a default file name in the form
\EFI\BOOT\BOOT{machine type short-name}.EFI. Where machine type short-name defines a
PE32+ image format architecture. Each file only contains one UEFI image type, and a system may
support booting from one or more images types. Table 12 lists the UEFI image types.

Table 12. UEFI Image Types

A media may support multiple architectures by simply having a \EFI\BOOT\BOOT{machine type
short-name}.EFI file of each possible machine type.

If FilePathList[0] device does not support the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, but support the EFI_BLOCK_IO_PROTOCOL
protocol, then the EFI Boot Service EFI_BOOT_SERVICES.ConnectController() must be
called for FilePathList[0] with DriverImageHandle and RemainingDevicePath
set to NULL and the Recursive flag is set to TRUE.The firmware will then attempt to boot from
any child handles produced using the algorithms outlined above.

3.5.1.2 Non-removable Media Boot Behavior
It is expected that on a non-removable media device, a complete FilePath can be used which
includes sub directories and a file name for the boot target and the platform will boot using this
FilePath according to normal system policy.

However, in the case where all the Boot#### variables that are referenced in the BootOrder
variable point to devices that are not present, the boot devices have timed out, the specific boot file
did not exist, or there was no valid boot variable, boot option recovery must be performed. (See
Section 3.4.)

If a system does not support boot option recovery, then default boot processing will consist of the
boot manager searching non-removable media that supports the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL or EFI_BLOCK_IO_PROTOCOL. In general the
boot manager will search all candidate media but platform policy may optionally limit the search to
a subset of all possible devices connected to a given system; choices for such policy limits are
implementation specific. If the device supports the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL
layered on an EFI system partition, then the system firmware will attempt to boot from the media by
executing a default file name in the form \EFI\BOOT\BOOT{machine type short-name}.EFI. Where
machine type short-name defines a PE32+ image format architecture. Each file only contains one
UEFI image type, and a system may support booting from one or more images types. The target file

File Name Convention PE Executable Machine Type *

32-bit BOOTIA32.EFI 0x14c

x64 BOOTx64.EFI 0x8664

Itanium architecture BOOTIA64.EFI 0x200

AArch32 architecture BOOTARM.EFI 0x01c2

AArch64 architecture BOOTAA64.EFI 0xAA64

Note: * The PE Executable machine type is contained in the machine field of the COFF file header as
defined in the Microsoft Portable Executable and Common Object File Format Specification, Revision 6.0
Version 2.5 April, 2015 89

Unified Extensible Firmware Interface Specification
names will follow the naming convention specified in the removable media boot behavior section. A
media may support multiple architectures by simply having a \EFI\BOOT\BOOT{machine type
short-name}.EFI file of each possible machine type.

If the device does not support the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, but supports the
EFI_BLOCK_IO_PROTOCOL protocol, then the EFI Boot Service ConnectController must be
called for this device with DriverImageHandle and RemainingDevicePath set to NULL
and the Recursive flag is set to TRUE. The firmware will then attempt to boot from any child handles
produced using the algorithms outlined above.

When boot option recovery is supported, this default behavior is handled as a part of Platform-
defined boot option recovery (see Section 3.4.2).

3.5.2 Boot via LOAD_FILE PROTOCOL
When booting via the EFI_LOAD_FILE_PROTOCOL protocol, the FilePath is a device path
that points to a device that “speaks” the EFI_LOAD_FILE_PROTOCOL. The image is loaded
directly from the device that supports the EFI_LOAD_FILE_PROTOCOL. The remainder of the
FilePath will contain information that is specific to the device. Firmware passes this device-
specific data to the loaded image, but does not use it to load the image. If the remainder of the
FilePath is a null device path it is the loaded image's responsibility to implement a policy to find
the correct boot device.

The EFI_LOAD_FILE_PROTOCOL is used for devices that do not directly support file systems.
Network devices commonly boot in this model where the image is materialized without the need of a
file system.

3.5.2.1 Network Booting
Network booting is described by the Preboot eXecution Environment (PXE) BIOS Support
Specification that is part of the Wired for Management Baseline specification. PXE specifies UDP,
DHCP, and TFTP network protocols that a booting platform can use to interact with an intelligent
system load server. UEFI defines special interfaces that are used to implement PXE. These
interfaces are contained in the EFI_PXE_BASE_CODE_PROTOCOL (see Section 23.3).

3.5.2.2 Future Boot Media
Since UEFI defines an abstraction between the platform and the OS and its loader it should be
possible to add new types of boot media as technology evolves. The OS loader will not necessarily
have to change to support new types of boot. The implementation of the UEFI platform services
may change, but the interface will remain constant. The OS will require a driver to support the
new type of boot media so that it can make the transition from UEFI boot services to OS control of
the boot media.
90 April, 2015 Version 2.5

EFI System Table
4
EFI System Table

This section describes the entry point to a UEFI image and the parameters that are passed to that
entry point. There are three types of UEFI images that can be loaded and executed by firmware
conforming to this specification. These are UEFI Applications, OS Loaders, and drivers. There are
no differences in the entry point for these three image types.

4.1 UEFI Image Entry Point
The most significant parameter that is passed to an image is a pointer to the System Table. This
pointer is EFI_IMAGE_ENTRY_POINT (see definition immediately below), the main entry point
for a UEFI Image. The System Table contains pointers to the active console devices, a pointer to the
Boot Services Table, a pointer to the Runtime Services Table, and a pointer to the list of system
configuration tables such as ACPI, SMBIOS, and the SAL System Table. This section describes the
System Table in detail.

EFI_IMAGE_ENTRY_POINT

Summary
This is the main entry point for a UEFI Image. This entry point is the same for UEFI Applications,
UEFI OS Loaders, and UEFI Drivers including both device drivers and bus drivers.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_IMAGE_ENTRY_POINT) (

 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
);

Parameters
ImageHandle The firmware allocated handle for the UEFI image.

SystemTable A pointer to the EFI System Table.

Description
This function is the entry point to an EFI image. An EFI image is loaded and relocated in system
memory by the EFI Boot Service EFI_BOOT_SERVICES.LoadImage(). An EFI image is
invoked through the EFI Boot Service EFI_BOOT_SERVICES.StartImage().

The first argument is the image’s image handle. The second argument is a pointer to the image’s
system table. The system table contains the standard output and input handles, plus pointers to the
Version 2.5 April, 2015 91

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES and EFI_RUNTIME_SERVICES tables. The service tables contain the
entry points in the firmware for accessing the core EFI system functionality. The handles in the
system table are used to obtain basic access to the console. In addition, the System Table contains
pointers to other standard tables that a loaded image may use if the associated pointers are initialized
to nonzero values. Examples of such tables are ACPI, SMBIOS, SAL System Table, etc.

The ImageHandle is a firmware-allocated handle that is used to identify the image on various
functions. The handle also supports one or more protocols that the image can use. All images support
the EFI_LOADED_IMAGE_PROTOCOL and the
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL that returns the source location of the image,
the memory location of the image, the load options for the image, etc. The exact
EFI_LOADED_IMAGE_PROTOCOL and EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL
structures are defined in Section 8.

If the image is an application written to this specification, then the application executes and either
returns or calls the EFI Boot Services EFI_BOOT_SERVICES.Exit(). An applications written
to this specification is always unloaded from memory when it exits, and its return status is returned
to the component that started the application.

If the EFI image is an EFI OS Loader, then the EFI OS Loader executes and either returns, calls the
EFI Boot Service Exit(), or calls the EFI Boot Service
EFI_BOOT_SERVICES.ExitBootServices(). If the EFI OS Loader returns or calls
Exit(), then the load of the OS has failed, and the EFI OS Loader is unloaded from memory and
control is returned to the component that attempted to boot the EFI OS Loader. If
ExitBootServices() is called, then the OS Loader has taken control of the platform, and EFI
will not regain control of the system until the platform is reset. One method of resetting the platform
is through the EFI Runtime Service ResetSystem().

If the image is a UEFI Driver, then the driver executes and either returns or calls the Boot Service
Exit(). If a driver returns an error, then the driver is unloaded from memory. If the driver returns
EFI_SUCCESS, then it stays resident in memory. If the driver does not follow the UEFI Driver
Model, then it performs any required initialization and installs its protocol services before returning.
If the driver does follow the UEFI Driver Model, then the entry point is not allowed to touch any
device hardware. Instead, the entry point is required to create and install the
EFI_DRIVER_BINDING_PROTOCOL (see Section 10.1) on the ImageHandle of the UEFI
driver. If this process is completed, then EFI_SUCCESS is returned. If the resources are not
available to complete the driver initialization, then EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

4.2 EFI Table Header
The data type EFI_TABLE_HEADER is the data structure that precedes all of the standard EFI table
types. It includes a signature that is unique for each table type, a revision of the table that may be
updated as extensions are added to the EFI table types, and a 32-bit CRC so a consumer of an EFI
table type can validate the contents of the EFI table.

EFI_SUCCESS The driver was initialized.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
92 April, 2015 Version 2.5

EFI System Table
EFI_TABLE_HEADER

Summary
Data structure that precedes all of the standard EFI table types.

Related Definitions
typedef struct {

 UINT64 Signature;
 UINT32 Revision;
 UINT32 HeaderSize;
 UINT32 CRC32;
 UINT32 Reserved;
} EFI_TABLE_HEADER;

Parameters
Signature A 64-bit signature that identifies the type of table that follows.

Unique signatures have been generated for the EFI System Table,
the EFI Boot Services Table, and the EFI Runtime Services
Table.

Revision The revision of the EFI Specification to which this table
conforms. The upper 16 bits of this field contain the major
revision value, and the lower 16 bits contain the minor revision
value. The minor revision values are binary coded decimals and
are limited to the range of 00..99.

When printed or displayed UEFI spec revision is referred as
(Major revision).(Minor revision upper decimal).(Minor revision
lower decimal) or (Major revision).(Minor revision upper
decimal) in case Minor revision lower decimal is set to 0. For
example:

A specification with the revision value ((2<<16) | (30)) would be
referred as 2.3;

A specification with the revision value ((2<<16) | (31)) would be
referred as 2.3.1

HeaderSize The size, in bytes, of the entire table including the
EFI_TABLE_HEADER.

CRC32 The 32-bit CRC for the entire table. This value is computed by
setting this field to 0, and computing the 32-bit CRC for
HeaderSize bytes.

Reserved Reserved field that must be set to 0.

Note: The capabilities found in the EFI system table, runtime table and boot services table may change
over time. The first field in each of these tables is an EFI_TABLE_HEADER. This header’s
Revision field is incremented when new capabilities and functions are added to the functions in the
table. When checking for capabilities, code should verify that Revision is greater than or equal to
Version 2.5 April, 2015 93

Unified Extensible Firmware Interface Specification
the revision level of the table at the point when the capabilities were added to the UEFI
specification.

Note: Unless otherwise specified, UEFI uses a standard CCITT32 CRC algorithm with a seed
polynomial value of 0x04c11db7 for its CRC calculations.

Note: The size of the system table, runtime services table, and boot services table may increase over
time. It is very important to always use the HeaderSize field of the EFI_TABLE_HEADER to
determine the size of these tables.

4.3 EFI System Table
UEFI uses the EFI System Table, which contains pointers to the runtime and boot services tables.
The definition for this table is shown in the following code fragments. Except for the table header,
all elements in the service tables are pointers to functions as defined in Section 6 and Section 7. Prior
to a call to EFI_BOOT_SERVICES.ExitBootServices(), all of the fields of the EFI System
Table are valid. After an operating system has taken control of the platform with a call to
ExitBootServices(), only the Hdr, FirmwareVendor, FirmwareRevision,
RuntimeServices, NumberOfTableEntries, and ConfigurationTable fields are
valid.

EFI_SYSTEM_TABLE

Summary
Contains pointers to the runtime and boot services tables.

Related Definitions
#define EFI_SYSTEM_TABLE_SIGNATURE 0x5453595320494249
#define EFI_2_50_SYSTEM_TABLE_REVISION ((2<<16) | (50))
#define EFI_2_40_SYSTEM_TABLE_REVISION ((2<<16) | (40))
#define EFI_2_31_SYSTEM_TABLE_REVISION ((2<<16) | (31))
#define EFI_2_30_SYSTEM_TABLE_REVISION ((2<<16) | (30))
#define EFI_2_20_SYSTEM_TABLE_REVISION ((2<<16) | (20))
#define EFI_2_10_SYSTEM_TABLE_REVISION ((2<<16) | (10))
#define EFI_2_00_SYSTEM_TABLE_REVISION ((2<<16) | (00))
#define EFI_1_10_SYSTEM_TABLE_REVISION ((1<<16) | (10))
#define EFI_1_02_SYSTEM_TABLE_REVISION ((1<<16) | (02))
#define EFI_SPECIFICATION_VERSION EFI_SYSTEM_TABLE_REVISION
#define EFI_SYSTEM_TABLE_REVISION EFI_2_50_SYSTEM_TABLE_REVISION

typedef struct {
 EFI_TABLE_HEADER Hdr;
 CHAR16 *FirmwareVendor;
 UINT32 FirmwareRevision;
 EFI_HANDLE ConsoleInHandle;
 EFI_SIMPLE_TEXT_INPUT_PROTOCOL *ConIn;
 EFI_HANDLE ConsoleOutHandle;
94 April, 2015 Version 2.5

EFI System Table
 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *ConOut;
 EFI_HANDLE StandardErrorHandle;
 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *StdErr;
 EFI_RUNTIME_SERVICES *RuntimeServices;
 EFI_BOOT_SERVICES *BootServices;
 UINTN NumberOfTableEntries;
 EFI_CONFIGURATION_TABLE *ConfigurationTable;
} EFI_SYSTEM_TABLE;

Parameters
Hdr The table header for the EFI System Table. This header contains

the EFI_SYSTEM_TABLE_SIGNATURE and
EFI_SYSTEM_TABLE_REVISION values along with the size
of the EFI_SYSTEM_TABLE structure and a 32-bit CRC to
verify that the contents of the EFI System Table are valid.

FirmwareVendor A pointer to a null terminated string that identifies the vendor that
produces the system firmware for the platform.

FirmwareRevision A firmware vendor specific value that identifies the revision of
the system firmware for the platform.

ConsoleInHandle The handle for the active console input device. This handle must
support EFI_SIMPLE_TEXT_INPUT_PROTOCOL and
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.

ConIn A pointer to the EFI_SIMPLE_TEXT_INPUT_PROTOCOL
interface that is associated with ConsoleInHandle.

ConsoleOutHandle The handle for the active console output device. This handle
must support the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.

ConOut A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL
interface that is associated with ConsoleOutHandle.

StandardErrorHandleThe handle for the active standard error console device. This
handle must support the
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.

StdErr A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL
interface that is associated with StandardErrorHandle.

RuntimeServices A pointer to the EFI Runtime Services Table. See Section 4.5.

BootServices A pointer to the EFI Boot Services Table. See Section 4.4.

NumberOfTableEntriesThe number of system configuration tables in the buffer
ConfigurationTable.

ConfigurationTable A pointer to the system configuration tables. The number of
entries in the table is NumberOfTableEntries.

4.4 EFI Boot Services Table
UEFI uses the EFI Boot Services Table, which contains a table header and pointers to all of the boot
services. The definition for this table is shown in the following code fragments. Except for the table
Version 2.5 April, 2015 95

Unified Extensible Firmware Interface Specification
header, all elements in the EFI Boot Services Tables are prototypes of function pointers to functions
as defined in Section 6. The function pointers in this table are not valid after the operating system
has taken control of the platform with a call to
EFI_BOOT_SERVICES.ExitBootServices().

EFI_BOOT_SERVICES

Summary
Contains a table header and pointers to all of the boot services.

Related Definitions
#define EFI_BOOT_SERVICES_SIGNATURE 0x56524553544f4f42

#define EFI_BOOT_SERVICES_REVISION EFI_SPECIFICATION_VERSION

typedef struct {

 EFI_TABLE_HEADER Hdr;

 //

 // Task Priority Services

 //

 EFI_RAISE_TPL RaiseTPL; // EFI 1.0+
 EFI_RESTORE_TPL RestoreTPL; // EFI 1.0+

 //

 // Memory Services

 //

 EFI_ALLOCATE_PAGES AllocatePages; // EFI 1.0+
 EFI_FREE_PAGES FreePages; // EFI 1.0+
 EFI_GET_MEMORY_MAP GetMemoryMap; // EFI 1.0+
 EFI_ALLOCATE_POOL AllocatePool; // EFI 1.0+
 EFI_FREE_POOL FreePool; // EFI 1.0+

 //

 // Event & Timer Services

 //

 EFI_CREATE_EVENT CreateEvent; // EFI 1.0+
 EFI_SET_TIMER SetTimer; // EFI 1.0+
 EFI_WAIT_FOR_EVENT WaitForEvent; // EFI 1.0+
 EFI_SIGNAL_EVENT SignalEvent; // EFI 1.0+
 EFI_CLOSE_EVENT CloseEvent; // EFI 1.0+
 EFI_CHECK_EVENT CheckEvent; // EFI 1.0+

96 April, 2015 Version 2.5

EFI System Table
 //

 // Protocol Handler Services

 //

 EFI_INSTALL_PROTOCOL_INTERFACE InstallProtocolInterface; // EFI
1.0+

 EFI_REINSTALL_PROTOCOL_INTERFACE ReinstallProtocolInterface; //
EFI 1.0+

 EFI_UNINSTALL_PROTOCOL_INTERFACE UninstallProtocolInterface; // EFI
1.0+

 EFI_HANDLE_PROTOCOL HandleProtocol; // EFI 1.0+
 VOID* Reserved; // EFI 1.0+
 EFI_REGISTER_PROTOCOL_NOTIFY RegisterProtocolNotify; // EFI

1.0+
 EFI_LOCATE_HANDLE LocateHandle; // EFI 1.0+
 EFI_LOCATE_DEVICE_PATH LocateDevicePath; // EFI 1.0+
 EFI_INSTALL_CONFIGURATION_TABLE InstallConfigurationTable; // EFI

1.0+

 //

 // Image Services

 //

 EFI_IMAGE_LOAD LoadImage; // EFI 1.0+
 EFI_IMAGE_START StartImage; // EFI 1.0+
 EFI_EXIT Exit; // EFI 1.0+
 EFI_IMAGE_UNLOAD UnloadImage; // EFI 1.0+
 EFI_EXIT_BOOT_SERVICES ExitBootServices; // EFI 1.0+

 //

 // Miscellaneous Services

 //

 EFI_GET_NEXT_MONOTONIC_COUNT GetNextMonotonicCount; // EFI
1.0+

 EFI_STALL Stall; // EFI 1.0+
 EFI_SET_WATCHDOG_TIMER SetWatchdogTimer; // EFI 1.0+

 //

 // DriverSupport Services

 //

 EFI_CONNECT_CONTROLLER ConnectController; // EFI 1.1
 EFI_DISCONNECT_CONTROLLER DisconnectController;// EFI 1.1+

 //
Version 2.5 April, 2015 97

Unified Extensible Firmware Interface Specification
 // Open and Close Protocol Services

 //

 EFI_OPEN_PROTOCOL OpenProtocol; // EFI 1.1+
 EFI_CLOSE_PROTOCOL CloseProtocol; // EFI
1.1+
 EFI_OPEN_PROTOCOL_INFORMATION OpenProtocolInformation; // EFI

1.1+

 //

 // Library Services

 //

 EFI_PROTOCOLS_PER_HANDLE ProtocolsPerHandle; // EFI
1.1+

 EFI_LOCATE_HANDLE_BUFFER LocateHandleBuffer; // EFI
1.1+

 EFI_LOCATE_PROTOCOL LocateProtocol; // EFI
1.1+

 EFI_INSTALL_MULTIPLE_PROTOCOL_INTERFACES InstallMultipleProtocolInt
erfaces; // EFI 1.1+
 EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES UninstallMultipleProtocol
Interfaces; // EFI 1.1+

 //

 // 32-bit CRC Services

 //

 EFI_CALCULATE_CRC32 CalculateCrc32; // EFI
1.1+

 //

 // Miscellaneous Services

 //

 EFI_COPY_MEM CopyMem; // EFI 1.1+
 EFI_SET_MEM SetMem; // EFI 1.1+
 EFI_CREATE_EVENT_EX CreateEventEx; // UEFI 2.0+
 } EFI_BOOT_SERVICES;

Parameters
Hdr The table header for the EFI Boot Services Table. This header

contains the EFI_BOOT_SERVICES_SIGNATURE and
EFI_BOOT_SERVICES_REVISION values along with the size
of the EFI_BOOT_SERVICES structure and a 32-bit CRC to
verify that the contents of the EFI Boot Services Table are valid.

RaiseTPL Raises the task priority level.
98 April, 2015 Version 2.5

EFI System Table
RestoreTPL Restores/lowers the task priority level.

AllocatePages Allocates pages of a particular type.

FreePages Frees allocated pages.

GetMemoryMap Returns the current boot services memory map and memory map
key.

AllocatePool Allocates a pool of a particular type.

FreePool Frees allocated pool.

CreateEvent Creates a general-purpose event structure.

SetTimer Sets an event to be signaled at a particular time.

WaitForEvent Stops execution until an event is signaled.

SignalEvent Signals an event.

CloseEvent Closes and frees an event structure.

CheckEvent Checks whether an event is in the signaled state.

InstallProtocolInterface
Installs a protocol interface on a device handle.

ReinstallProtocolInterface
Reinstalls a protocol interface on a device handle.

UninstallProtocolInterface
Removes a protocol interface from a device handle.

HandleProtocol Queries a handle to determine if it supports a specified protocol.

Reserved Reserved. Must be NULL.

RegisterProtocolNotify
Registers an event that is to be signaled whenever an interface is
installed for a specified protocol.

LocateHandle Returns an array of handles that support a specified protocol.

LocateDevicePath Locates all devices on a device path that support a specified
protocol and returns the handle to the device that is closest to the
path.

InstallConfigurationTable
Adds, updates, or removes a configuration table from the EFI
System Table.

LoadImage Loads an EFI image into memory.

StartImage Transfers control to a loaded image’s entry point.

Exit Exits the image’s entry point.

UnloadImage Unloads an image.

ExitBootServices Terminates boot services.

GetNextMonotonicCount
Returns a monotonically increasing count for the platform.

Stall Stalls the processor.

SetWatchdogTimer Resets and sets a watchdog timer used during boot services time.
Version 2.5 April, 2015 99

Unified Extensible Firmware Interface Specification
ConnectController Uses a set of precedence rules to find the best set of drivers to
manage a controller.

DisconnectController
Informs a set of drivers to stop managing a controller.

OpenProtocol Adds elements to the list of agents consuming a protocol
interface.

CloseProtocol Removes elements from the list of agents consuming a protocol
interface.

OpenProtocolInformation
Retrieve the list of agents that are currently consuming a protocol
interface.

ProtocolsPerHandle Retrieves the list of protocols installed on a handle. The return
buffer is automatically allocated.

LocateHandleBuffer Retrieves the list of handles from the handle database that meet
the search criteria. The return buffer is automatically allocated.

LocateProtocol Finds the first handle in the handle database the supports the
requested protocol.

InstallMultipleProtocolInterfaces
Installs one or more protocol interfaces onto a handle.

UninstallMultipleProtocolInterfaces
Uninstalls one or more protocol interfaces from a handle.

CalculateCrc32 Computes and returns a 32-bit CRC for a data buffer.

CopyMem Copies the contents of one buffer to another buffer.

SetMem Fills a buffer with a specified value.

CreateEventEx Creates an event structure as part of an event group.

4.5 EFI Runtime Services Table
UEFI uses the EFI Runtime Services Table, which contains a table header and pointers to all of the
runtime services. The definition for this table is shown in the following code fragments. Except for
the table header, all elements in the EFI Runtime Services Tables are prototypes of function pointers
to functions as defined in Section 7. Unlike the EFI Boot Services Table, this table, and the function
pointers it contains are valid after the operating system has taken control of the platform with a call
to EFI_BOOT_SERVICES.ExitBootServices(). If a call to
SetVirtualAddressMap() is made by the OS, then the function pointers in this table are fixed
up to point to the new virtually mapped entry points.

EFI_RUNTIME_SERVICES

Summary
Contains a table header and pointers to all of the runtime services.

Related Definitions
#define EFI_RUNTIME_SERVICES_SIGNATURE 0x56524553544e5552
100 April, 2015 Version 2.5

EFI System Table
#define EFI_RUNTIME_SERVICES_REVISION EFI_SPECIFICATION_VERSION

typedef struct {
 EFI_TABLE_HEADER Hdr;

 //
 // Time Services
 //
 EFI_GET_TIME GetTime;
 EFI_SET_TIME SetTime;
 EFI_GET_WAKEUP_TIME GetWakeupTime;
 EFI_SET_WAKEUP_TIME SetWakeupTime;

 //
 // Virtual Memory Services
 //
 EFI_SET_VIRTUAL_ADDRESS_MAP SetVirtualAddressMap;
 EFI_CONVERT_POINTER ConvertPointer;

 //

 // Variable Services
 //
 EFI_GET_VARIABLE GetVariable;
 EFI_GET_NEXT_VARIABLE_NAME GetNextVariableName;
 EFI_SET_VARIABLE SetVariable;

 //
 // Miscellaneous Services
 //
 EFI_GET_NEXT_HIGH_MONO_COUNT GetNextHighMonotonicCount;
 EFI_RESET_SYSTEM ResetSystem;

 //
 // UEFI 2.0 Capsule Services
 //
 EFI_UPDATE_CAPSULE UpdateCapsule;
 EFI_QUERY_CAPSULE_CAPABILITIES QueryCapsuleCapabilities;

 //
 // Miscellaneous UEFI 2.0 Service
 //
 EFI_QUERY_VARIABLE_INFO QueryVariableInfo;
} EFI_RUNTIME_SERVICES;
Version 2.5 April, 2015 101

Unified Extensible Firmware Interface Specification
Parameters
Hdr The table header for the EFI Runtime Services Table. This

header contains the EFI_RUNTIME_SERVICES_SIGNATURE
and EFI_RUNTIME_SERVICES_REVISION values along
with the size of the EFI_RUNTIME_SERVICES structure and a
32-bit CRC to verify that the contents of the EFI Runtime
Services Table are valid.

GetTime Returns the current time and date, and the time-keeping
capabilities of the platform.

SetTime Sets the current local time and date information.

GetWakeupTime Returns the current wakeup alarm clock setting.

SetWakeupTime Sets the system wakeup alarm clock time.

SetVirtualAddressMap
Used by an OS loader to convert from physical addressing to
virtual addressing.

ConvertPointer Used by EFI components to convert internal pointers when
switching to virtual addressing.

GetVariable Returns the value of a variable.

GetNextVariableNameEnumerates the current variable names.

SetVariable Sets the value of a variable.

GetNextHighMonotonicCount
Returns the next high 32 bits of the platform’s monotonic
counter.

ResetSystem Resets the entire platform.

UpdateCapsule Passes capsules to the firmware with both virtual and physical
mapping.

QueryCapsuleCapabilities
Returns if the capsule can be supported via
UpdateCapsule().

QueryVariableInfo Returns information about the EFI variable store.

4.6 EFI Configuration Table & Properties Table
The EFI Configuration Table is the ConfigurationTable field in the EFI System Table. This
table contains a set of GUID/pointer pairs. Each element of this table is described by the
EFI_CONFIGURATION_TABLE structure below. The number of types of configuration tables is
expected to grow over time. This is why a GUID is used to identify the configuration table type. The
EFI Configuration Table may contain at most once instance of each table type.

EFI_CONFIGURATION_TABLE

Summary
Contains a set of GUID/pointer pairs comprised of the ConfigurationTable field in the EFI
System Table.
102 April, 2015 Version 2.5

EFI System Table
Related Definitions
typedef struct{

 EFI_GUID VendorGuid;
 VOID *VendorTable;
} EFI_CONFIGURATION_TABLE;

Parameters
The following list shows the GUIDs for tables defined in some of the industry standards. These
industry standards define tables accessed as UEFI Configuration Tables on UEFI-based systems.
This list is not exhaustive and does not show GUIDS for all possible UEFI Configuration tables.

VendorGuid The 128-bit GUID value that uniquely identifies the system
configuration table.

VendorTable A pointer to the table associated with VendorGuid.Whether
this pointer is a physical address or a virtual address during
runtime is determined by the VendorGuid. The VendorGuid
associated with a given VendorTable pointer defines whether
or not a particular address reported in the table gets fixed up when
a call to SetVirtualAddressMap() is made. It is the
responsibility of the specification defining the VendorTable to
specify whether to convert the addresses reported in the table.

The following list shows the GUIDs for tables defined in some of the industry standards. These
industry standards define tables accessed as UEFI Configuration Tables on UEFI-based systems. All
the addresses reported in these table entries will be referenced as physical and will not be fixed up
when transition from preboot to runtime phase. This list is not exhaustive and does not show GUIDs
for all possible UEFI Configuration tables.
Version 2.5 April, 2015 103

Unified Extensible Firmware Interface Specification
#define EFI_ACPI_20_TABLE_GUID \
 {0x8868e871,0xe4f1,0x11d3,\
 {0xbc,0x22,0x00,0x80,0xc7,0x3c,0x88,0x81}}

#define ACPI_TABLE_GUID \
 {0xeb9d2d30,0x2d88,0x11d3,\
 {0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

#define SAL_SYSTEM_TABLE_GUID \
 {0xeb9d2d32,0x2d88,0x11d3,\
 {0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

#define SMBIOS_TABLE_GUID \
 {0xeb9d2d31,0x2d88,0x11d3,\
 {0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

#define SMBIOS3_TABLE_GUID \
 {0xf2fd1544, 0x9794, 0x4a2c,\
 {0x99,0x2e,0xe5,0xbb,0xcf,0x20,0xe3,0x94})

#define MPS_TABLE_GUID \
 {0xeb9d2d2f,0x2d88,0x11d3,\
 {0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}
//
// ACPI 2.0 or newer tables should use EFI_ACPI_TABLE_GUID
//
#define EFI_ACPI_TABLE_GUID \
 {0x8868e871,0xe4f1,0x11d3,\
 {0xbc,0x22,0x00,0x80,0xc7,0x3c,0x88,0x81}}

#define ACPI_10_TABLE_GUID \
 {0xeb9d2d30,0x2d88,0x11d3,\
 {0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

#define EFI_PROPERTIES_TABLE_GUID \
 {0x880aaca3, 0x4adc, 0x4a04,\
 {0x90,0x79,0xb7,0x47,0x34,0x8,0x25,0xe5}}

EFI_PROPERTIES_TABLE

This table is published if the platform meets some of the construction requirements listed in the
MemoryProtectionAttributes.
104 April, 2015 Version 2.5

EFI System Table
typedef struct {
 UINT32 Version;
 UINT32 Length;
 UINT64 MemoryProtectionAttribute;
} EFI_PROPERTIES_TABLE;

Version This is revision of the table. Successive version may populate
additional bits and growth the table length. In the case of the
latter, the Length field will be adjusted appropriately

#define EFI_PROPERTIES_TABLE_VERSION 0x00010000

Length This is the size of the entire EFI_PROPERTIES_TABLE
structure, including the version. The initial version will be of
length 16.

MemoryProtectionAttribute

This field is a bit mask. Any bits not defined shall be considered
reserved. A set bit means that the underlying firmware has been
constructed responsive to the given property.

//
// Memory attribute (Not defined bits are reserved)
//
#define
EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA
0x1 \
 // BIT 0 – description – implies the runtime data is separated
from the code

This bit implies that the UEFI runtime code and data sections of the executable image are separate
and aligned to at least a 4KiB boundary. This bit also implies that the data pages do no have any
executable code.

4.7 Image Entry Point Examples
The examples in the following sections show how the various table examples are presented in
the UEFI environment.

4.7.1 Image Entry Point Examples
The following example shows the image entry point for a UEFI Application. This application makes
use of the EFI System Table, the EFI Boot Services Table, and the EFI Runtime Services Table.

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;

EfiApplicationEntryPoint(
Version 2.5 April, 2015 105

Unified Extensible Firmware Interface Specification
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;
 EFI_TIME *Time;

 gST = SystemTable;
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

 //
 // Use EFI System Table to print “Hello World” to the active console output
 // device.
 //
 Status = gST->ConOut->OutputString (gST->ConOut, L”Hello World\n\r”);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Use EFI Boot Services Table to allocate a buffer to store the current time
 // and date.
 //
 Status = gBS->AllocatePool (
 EfiBootServicesData,
 sizeof (EFI_TIME),
 (VOID **)&Time
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Use the EFI Runtime Services Table to get the current time and date.
 //
 Status = gRT->GetTime (Time, NULL)
 if (EFI_ERROR (Status)) {
 return Status;
 }

 return Status;
}

The following example shows the UEFI image entry point for a driver that does not follow the UEFI
Driver Model. Since this driver returns EFI_SUCCESS, it will stay resident in memory after it
exits.

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;

EfiDriverEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 gST = SystemTable;
106 April, 2015 Version 2.5

EFI System Table
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

 //
 // Implement driver initialization here.
 //

 return EFI_SUCCESS;
}

The following example shows the UEFI image entry point for a driver that also does not follow the
UEFI Driver Model. Since this driver returns EFI_DEVICE_ERROR, it will not stay resident in
memory after it exits.

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;

EfiDriverEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 gST = SystemTable;
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

 //
 // Implement driver initialization here.
 //

 return EFI_DEVICE_ERROR;
}

4.7.2 UEFI Driver Model Example
The following is an UEFI Driver Model example that shows the driver initialization routine for the
ABC device controller that is on the XYZ bus. The EFI_DRIVER_BINDING_PROTOCOL and the
function prototypes for AbcSupported(), AbcStart(), and AbcStop() are defined in
Section 10.1.This function saves the driver’s image handle and a pointer to the EFI boot services
table in global variables, so the other functions in the same driver can have access to these values. It
then creates an instance of the EFI_DRIVER_BINDING_PROTOCOL and installs it onto the
driver's image handle.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;
static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {
 AbcSupported,
 AbcStart,
 AbcStop,
 1,
 NULL,
 NULL
};

AbcEntryPoint(
Version 2.5 April, 2015 107

Unified Extensible Firmware Interface Specification
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;

 gBS = SystemTable->BootServices;

 mAbcDriverBinding->ImageHandle = ImageHandle;
 mAbcDriverBinding->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBinding->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);
 return Status;
}

4.7.3 UEFI Driver Model Example (Unloadable)
The following is the same UEFI Driver Model example as above, except it also includes the code
required to allow the driver to be unloaded through the boot service Unload(). Any protocols
installed or memory allocated in AbcEntryPoint() must be uninstalled or freed in the
AbcUnload().
extern EFI_GUID gEfiLoadedImageProtocolGuid;
extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;
static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {
 AbcSupported,
 AbcStart,
 AbcStop,
 1,
 NULL,
 NULL
};

EFI_STATUS
AbcUnload (
 IN EFI_HANDLE ImageHandle
);

AbcEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;
 EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;

 gBS = SystemTable->BootServices;

 Status = gBS->OpenProtocol (
 ImageHandle,
 &gEfiLoadedImageProtocolGuid,
 &LoadedImage,
 ImageHandle,
108 April, 2015 Version 2.5

EFI System Table
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }
 LoadedImage->Unload = AbcUnload;

 mAbcDriverBinding->ImageHandle = ImageHandle;
 mAbcDriverBinding->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBinding->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);

 return Status;
}

EFI_STATUS
AbcUnload (
 IN EFI_HANDLE ImageHandle
)

{
 EFI_STATUS Status;

 Status = gBS->UninstallMultipleProtocolInterfaces (
 ImageHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);
 return Status;
}

4.7.4 EFI Driver Model Example (Multiple Instances)
The following is the same as the first UEFI Driver Model example, except it produces three
EFI_DRIVER_BINDING_PROTOCOL instances. The first one is installed onto the driver’s image
handle. The other two are installed onto newly created handles.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingA = {
 AbcSupportedA,
 AbcStartA,
 AbcStopA,
 1,
 NULL,
 NULL
};

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingB = {
 AbcSupportedB,
 AbcStartB,
 AbcStopB,
 1,
Version 2.5 April, 2015 109

Unified Extensible Firmware Interface Specification
 NULL,
 NULL
};

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingC = {
 AbcSupportedC,
 AbcStartC,
 AbcStopC,
 1,
 NULL,
 NULL
};

AbcEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;

 gBS = SystemTable->BootServices;

 //
 // Install mAbcDriverBindingA onto ImageHandle
 //
 mAbcDriverBindingA->ImageHandle = ImageHandle;
 mAbcDriverBindingA->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingA->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingA,
 NULL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Install mAbcDriverBindingB onto a newly created handle
 //
 mAbcDriverBindingB->ImageHandle = ImageHandle;
 mAbcDriverBindingB->DriverBindingHandle = NULL;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingB->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingB,
 NULL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Install mAbcDriverBindingC onto a newly created handle
 //
 mAbcDriverBindingC->ImageHandle = ImageHandle;
 mAbcDriverBindingC->DriverBindingHandle = NULL;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingC->DriverBindingHandle,
110 April, 2015 Version 2.5

EFI System Table
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingC,
 NULL
);

 return Status;
}

Version 2.5 April, 2015 111

Unified Extensible Firmware Interface Specification
112 April, 2015 Version 2.5

GUID Partition Table (GPT) Disk Layout
5
GUID Partition Table (GPT) Disk Layout

5.1 GPT and MBR disk layout comparison
This specification defines the GUID Partition table (GPT) disk layout (i.e., partitioning scheme).
The following list outlines the advantages of using the GPT disk layout over the legacy Master Boot
Record (MBR) disk layout:

• Logical Block Addresses (LBAs) are 64 bits (rather than 32 bits).

• Supports many partitions (rather than just four primary partitions).

• Provides both a primary and backup partition table for redundancy.

• Uses version number and size fields for future expansion.

• Uses CRC32 fields for improved data integrity.

• Defines a GUID for uniquely identifying each partition.

• Uses a GUID and attributes to define partition content type.

• Each partition contains a 36 character human readable name.

5.2 LBA 0 Format
LBA 0 (i.e., the first logical block) of the hard disk contains either

• a legacy Master Boot Record (MBR) (see Section 5.2.1)

• or a protective MBR (see Section 5.2.2).

5.2.1 Legacy Master Boot Record (MBR)
A legacy MBR may be located at LBA 0 (i.e., the first logical block) of the disk if it is not using the
GPT disk layout (i.e., if it is using the MBR disk layout). The boot code on the MBR is not executed
by UEFI firmware.

Table 13. Legacy MBR

Mnemonic

Byte
Offset

Byte
Length

Description

BootCode 0 424 x86 code used on a non-UEFI system to select
an MBR partition record and load the first
logical block of that partition . This code shall
not be executed on UEFI systems.

UniqueMBRDiskSigna
ture

440 4 Unique Disk Signature This may be used by
the OS to identify the disk from other disks in
the system. This value is always written by the
OS and is never written by EFI firmware.
Version 2.5 April, 2015 113

Unified Extensible Firmware Interface Specification
The MBR contains four partition records (see Table 11) that each define the beginning and ending
LBAs that a partition consumes on a disk.

Table 14. Legacy MBR Partition Record

 If an MBR partition has an OSType field of 0xEF (i.e., UEFI System Partition), then the firmware
must add the UEFI System Partition GUID to the handle for the MBR partition using
InstallProtocolInterface(). This allows drivers and applications, including OS loaders,
to easily search for handles that represent UEFI System Partitions.The following test must be
performed to determine if a legacy MBR is valid:

• The Signature must be 0xaa55.

• A Partition Record that contains an OSType value of zero or a SizeInLBA value of zero may
be ignored.

Otherwise:

• The partition defined by each MBR Partition Record must physically reside on the disk (i.e., not
exceed the capacity of the disk).

• Each partition must not overlap with other partitions.

Figure 16 shows an example of an MBR disk layout with four partitions.

Unknown 444 2 Unknown. This field shall not be used by UEFI
firmware.

PartitionRecord 446 16*4 Array of four legacy MBR partition records (see
Table 14).

Signature 510 2 Set to 0xAA55 (i.e., byte 510 contains 0x55 and
byte 5 11 contains 0xAA).

Reserved 512 Logical
BlockSize - 512

The rest of the logical block, if any, is reserved.

Mnemonic

Byte
Offset

Byte
Length

Description

BootIndicator 0 1 0x80 indicates that this is the bootable legacy partition. Other
values indicate that this is not a bootable legacy partition.
This field shall not be used by UEFI firmware.

StartingCHS 1 3 Start of partition in CHS address format. This field shall not
be used by UEFI firmware.

OSType 4 1 Type of partition. See Section 5.2.2.

EndingCHS 5 3 End of partition in CHS address format. This field shall not be
used by UEFI firmware.

StartingLBA 8 4 Starting LBA of the partition on the disk. This field is used by
UEFI firmware to determine the start of the partition.

SizeInLBA 12 4 Size of the partition in LBA units of logical blocks. This field is
used by UEFI firmware to determine the size of the partition.
114 April, 2015 Version 2.5

GUID Partition Table (GPT) Disk Layout
Figure 16. MBRDisk Layout with legacy MBR example

5.2.2 OS Types
Unique types defined by this specification (other values are not defined by this specification):

• 0xEF (i.e., UEFI System Partition) defines a UEFI system partition.

• 0xEE (i.e., GPT Protective) is used by a protective MBR (see 5.2.2) to define a fake partition
covering the entire disk.

Other values are used by legacy operating systems, and are allocated independently of the UEFI
specification.

Note: “Partition types” by Andries Brouwer: See “Links to UEFI-Related Documents” (http://uefi.org/uefi)
under the heading “OS Type values used in the MBR disk layout”.

5.2.3 Protective MBR
A Protective MBR may be located at LBA 0 (i.e., the first logical block) of the disk if it is using the
GPT disk layout. The Protective MBR precedes the GUID Partition Table Header to maintain
compatibility with existing tools that do not understand GPT partition structures.

Table 15. Protective MBR

Mnemonic Byte
Offset

Byte
Length

Contents

Boot Code 0 440 Unused by UEFI systems.

Unique MBR
Disk Signature

440 4 Unused. Set to zero.

Unknown 444 2 Unused. Set to zero.

Partition
Record

446 16*4 Array of four MBR partition records. Contains:
• one partition record as defined Table 16; and

• three partition records each set to zero.

Signature 510 2 Set to 0xAA55 (i.e., byte 510 contains 0x55 and byte 511 contains
0xAA).

 Partition Legacy
MBR

Partition Partition Partition

LBA 0 LBA z
Version 2.5 April, 2015 115

Unified Extensible Firmware Interface Specification
One of the Partition Records shall be as defined in table 12, reserving the entire space on the disk
after the Protective MBR itself for the GPT disk layout.

Table 16. Protective MBR Partition Record protecting the entire disk

The remaining Partition Records shall each be set to zeros.

Figure 17 shows an example of a GPT disk layout with four partitions with a protective MBR.

Reserved 512 Logical
Block Size
- 512

The rest of the logical block, if any, is reserved. Set to zero.

Mnemonic

Byte
Offset

Byte
Length

Description

BootIndicator 0 1 Set to 0x00 to indicate a non-bootable partition. If set to
any value other than 0x00 the behavior of this flag on
non-UEFI systems is undefined. Must be ignored by
UEFI implementations.

StartingCHS 1 3 Set to 0x000200, corresponding to the Starting LBA

field.

OSType 4 1 Set to 0xEE (i.e., GPT Protective)

EndingCHS 5 3 Set to the CHS address of the last logical block on the
disk. Set to 0xFFFFFF if it is not possible to represent
the value in this field.

StartingLBA 8 4 Set to 0x00000001 (i.e., the LBA of the GPT Partition
Header).

SizeInLBA 12 4 Set to the size of the disk minus one. Set to
0xFFFFFFFF if the size of the disk is too large to be
represented in this field.

Mnemonic Byte
Offset

Byte
Length

Contents
116 April, 2015 Version 2.5

GUID Partition Table (GPT) Disk Layout
Figure 17. GPT disk layout with protective MBR example

Figure 18 shows an example of a GPT disk layout with four partitions with a protective MBR, where
the disk capacity exceeds LBA 0xFFFFFFFF.

Figure 18. GPT disk layout with protective MBR on a disk with capacity exceeding LBA
0xFFFFFFFF example.

5.3 GUID Partition Table (GPT) Disk Layout

5.3.1 GPT overview
The GPT partitioning scheme is depicted in Figure 19. The GPT Header (see Section 5.3.2) includes
a signature and a revision number that specifies the format of the data bytes in the partition header.
The GUID Partition Table Header contains a header size field that is used in calculating the CRC32
that confirms the integrity of the GPT Header. While the GPT Header’s size may increase in the
future it cannot span more than one logical block on the device.

 Partition Backup GPT

MBR view:

Partition PartitionPrimary
GPT

UEFI
system

partition

LBA 0 LBA z

GPT Protective partition

Protective
MBR

 Partition Backup
GPT

MBR view:

Partition Partition Primary
GPT

UEFI
system

partition

LBA 0 LBA z

GPT Protective partition

Protective
MBR

LBA 0xFFFFFFFF
Version 2.5 April, 2015 117

Unified Extensible Firmware Interface Specification
LBA 0 (i.e., the first logical block) contains a protective MBR (see Section 5.2.2).

Two GPT Header structures are stored on the device: the primary and the backup. The primary GPT
Header must be located in LBA 1 (i.e., the second logical block), and the backup GPT Header must
be located in the last LBA of the device. Within the GPT Header the My LBA field contains the
LBA of the GPT Header itself, and the Alternate LBA field contains the LBA of the other GPT
Header. For example, the primary GPT Header's My LBA value would be 1 and its Alternate
LBA would be the value for the last LBA of the device. The backup GPT Header's fields would be
reversed.

The GPT Header defines the range of LBAs that are usable by GPT Partition Entries. This range is
defined to be inclusive of First Usable LBA through Last Usable LBA on the logical
device. All data stored on the volume must be stored between the First Usable LBA through
Last Usable LBA, and only the data structures defined by UEFI to manage partitions may reside
outside of the usable space. The value of Disk GUID is a GUID that uniquely identifies the entire
GPT Header and all its associated storage. This value can be used to uniquely identify the disk. The
start of the GPT Partition Entry Array is located at the LBA indicated by the Partition Entry
LBA field. The size of a GUID Partition Entry element is defined in the Size Of Partition
Entry field. There is a 32-bit CRC of the GPT Partition Entry Array that is stored in the GPT
Header in Partition Entry Array CRC32 field. The size of the GPT Partition Entry Array
is Size Of Partition Entry multiplied by Number Of Partition Entries. If the
size of the GUID Partition Entry Array is not an even multiple of the logical block size, then any
space left over in the last logical block is Reserved and not covered by the Partition Entry
Array CRC32 field. When a GUID Partition Entry is updated, the Partition Entry Array
CRC32 must be updated. When the Partition Entry Array CRC32 is updated, the GPT
Header CRC must also be updated, since the Partition Entry Array CRC32 is stored in the
GPT Header.

Figure 19. GUID Partition Table (GPT) example

Partition 1

Start partition

OM13160

P
M

B
R

P
artition

T
able H

D
R

LBA0 LBA1

First useable block

P
artition

T
able H

D
R

Last useable block

LBAn

0 1 n

End partition

Primary Partition
Table

Backup Partition
Table

Start partition
End partition

0 1 n
118 April, 2015 Version 2.5

GUID Partition Table (GPT) Disk Layout
The primary GPT Partition Entry Array must be located after the primary GPT Header and end
before the First Usable LBA. The backup GPT Partition Entry Array must be located after the
Last Usable LBA and end before the backup GPT Header.

Therefore the primary and backup GPT Partition EntryArrays are stored in separate locations on the
disk. Each GPT Partition Entry defines a partition that is contained in a range that is within the
usable space declared by the GPT Header. Zero or more GPT Partition Entries may be in use in the
GPT Partition Entry Array. Each defined partition must not overlap with any other defined partition.
If all the fields of a GUID Partition Entry are zero, the entry is not in use. A minimum of 16,384
bytes of space must be reserved for the GPT Partition Entry Array.

If the block size is 512, the First Usable LBA must be greater than or equal to 34 (allowing 1
block for the Protective MBR, 1 block for the Partition Table Header, and 32 blocks for the GPT
Partition Entry Array); if the logical block size is 4096, the First Useable LBA must be greater
than or equal to 6 (allowing 1 block for the Protective MBR, 1 block for the GPT Header, and 4
blocks for the GPT Partition Entry Array).

The device may present a logical block size that is not 512 bytes long. In ATA, this is called the
Long Logical Sector feature set; an ATA device reports support for this feature set in IDENTIFY
DEVICE data word 106 bit 12 and reports the number of words (i.e., 2 bytes) per logical sector in
IDENTIFY DEVICE data words 117-118 (see ATA8-ACS). A SCSI device reports its logical block
size in the READ CAPACITY parameter data Block Length In Bytes field (see SBC-3).

The device may present a logical block size that is smaller than the physical block size (e.g., present
a logical block size of 512 bytes but implement a physical block size of 4,096 bytes). In ATA, this is
called the Long Physical Sector feature set; an ATA device reports support for this feature set in
IDENTIFY DEVICE data word 106 bit 13 and reports the Physical Sector Size/Logical Sector Size
exponential ratio in IDENTIFY DEVICE data word 106 bits 3-0 (See ATA8-ACS). A SCSI device
reports its logical block size/physical block exponential ratio in the READ CAPACITY (16)

parameter data Logical Blocks Per Physical Block Exponent field (see SBC-3).These fields return 2x

logical sectors per physical sector (e.g., 3 means 23=8 logical sectors per physical sector).

A device implementing long physical blocks may present logical blocks that are not aligned to the
underlying physical block boundaries. An ATA device reports the alignment of logical blocks within
a physical block in IDENTIFY DEVICE data word 209 (see ATA8-ACS). A SCSI device reports its
alignment in the READ CAPACITY (16) parameter data Lowest Aligned Logical Block Address
field (see SBC-3). Note that the ATA and SCSI fields are defined differently (e.g., to make LBA 63
aligned, ATA returns a value of 1 while SCSI returns a value of 7).

In SCSI devices, the Block Limits VPD page Optimal Transfer Length Granularity field (see SBC-3)
may also report a granularity that is important for alignment purposes (e.g., RAID controllers may
return their RAID stripe depth in that field)

GPT partitions should be aligned to the larger of:

a the physical block boundary, if any

b the optimal transfer length granularity, if any.

For example

a If the logical block size is 512 bytes, the physical block size is 4,096 bytes (i.e., 512 bytes x
8 logical blocks), there is no optimal transfer length granularity, and logical block 0 is
Version 2.5 April, 2015 119

Unified Extensible Firmware Interface Specification
aligned to a physical block boundary, then each GPT partition should start at an LBA that is
a multiple of 8.

b If the logical block size is 512 bytes, the physical block size is 8,192 bytes (i.e., 512 bytes x
16 logical blocks), the optimal transfer length granularity is 65,536 bytes (i.e., 512 bytes x
128 logical blocks), and logical block 0 is aligned to a physical block boundary, then each
GPT partition should start at an LBA that is a multiple of 128.

To avoid the need to determine the physical block size and the optimal transfer length granularity,
software may align GPT partitions at significantly larger boundaries. For example, assuming logical
block 0 is aligned, it may use LBAs that are multiples of 2,048 to align to 1,048,576 byte (1 MiB)
boundaries, which supports most common physical block sizes and RAID stripe sizes.

References are as follows:

ISO/IEC 24739-200 [ANSI INCITS 452-2008] AT Attachment 8 - ATA/ATAPI Command Set
(ATA8-ACS). By the INCITS T13 technical committee. (See “Links to UEFI-Related Documents”
(http://uefi.org/uefi under the headings “InterNational Committee on Information Technology
Standards (INCITS)” and “INCITs T13 technical committee”).

ISO/IEC 14776-323 [T10/1799-D] SCSI Block Commands - 3 (SBC-3). Available from
www.incits.org. By the INCITS T10 technical committee (See “Links to UEFI-Related Documents”
(http://uefi.org/uefi under the headings “InterNational Committee on Information Technology
Standards (INCITS)” and “SCSI Block Commands”).

5.3.2 GPT Header
Table 17 defines the GPT Header.

Table 17. GPT Header

Mnemonic

Byte
Offset

Byte
Length

Description

Signature 0 8 Identifies EFI-compatible partition table
header. This value must contain the ASCII
string “EFI PART”, encoded as the 64-bit
constant 0x5452415020494645.

Revision 8 4 The revision number for this header. This
revision value is not related to the UEFI
Specification version. This header is version
1.0, so the correct value is 0x00010000.

HeaderSize 12 4 Size in bytes of the GPT Header. The

HeaderSize must be greater than or

equal to 92 and must be less than or equal to
the logical block size.

HeaderCRC32 16 4 CRC32 checksum for the GPT Header
structure. This value is computed by
setting this field to 0, and computing the 32-bit

CRC for HeaderSize bytes.

Reserved 20 4 Must be zero.
120 April, 2015 Version 2.5

GUID Partition Table (GPT) Disk Layout
The following test must be performed to determine if a GPT is valid:

• Check the Signature

• Check the Header CRC

• Check that the MyLBA entry points to the LBA that contains the GUID Partition Table

• Check the CRC of the GUID Partition Entry Array

If the GPT is the primary table, stored at LBA 1:

• Check the AlternateLBA to see if it is a valid GPT

If the primary GPT is corrupt, software must check the last LBA of the device to see if it has a valid
GPT Header and point to a valid GPT Partition Entry Array. If it points to a valid GPT Partition
Entry Array, then software should restore the primary GPT if allowed by platform policy settings
(e.g. a platform may require a user to provide confirmation before restoring the table, or may allow
the table to be restored automatically). Software must report whenever it restores a GPT.

MyLBA 24 8 The LBA that contains this data structure.

AlternateLBA 32 8 LBA address of the alternate GPT Header.

FirstUsableLBA 40 8 The first usable logical block that may be used
by a partition described by a GUID Partition
Entry.

LastUsableLBA 48 8 The last usable logical block that may be used
by a partition described by a GUID Partition
Entry.

DiskGUID 56 16 GUID that can be used to uniquely identify the
disk.

PartitionEntryLBA 72 8 The starting LBA of the GUID Partition Entry
array.

NumberOfPartitionEntrie
s

80 4 The number of Partition Entries in the GUID
Partition Entry array.

SizeOfPartitionEntry 84 4 The size, in bytes, of each the GUID Partition
Entry structures in the GUID Partition Entry
array. This field shall be set to a value of 128 x

2n where n is an integer greater than or equal
to zero (e.g., 128, 256, 512, etc.).
NOTE: Previous versions of this specification
allowed any multiple of 8..

PartitionEntryArrayCRC3
2

88 4 The CRC32 of the GUID Partition Entry array.

Starts at PartitionEntryLBA and is

computed over a byte length of

NumberOfPartitionEntries *
SizeOfPartitionEntry.

Reserved 92 BlockSi
ze – 92

The rest of the block is reserved by UEFI and
must be zero.

Mnemonic

Byte
Offset

Byte
Length

Description
Version 2.5 April, 2015 121

Unified Extensible Firmware Interface Specification
Software should ask a user for confirmation before restoring the primary GPT and must report
whenever it does modify the media to restore a GPT. If a GPT formatted disk is reformatted to the
legacy MBR format by legacy software, the last logical block might not be overwritten and might
still contain a stale GPT. If GPT-cognizant software then accesses the disk and honors the stale GPT,
it will misinterpret the contents of the disk. Software may detect this scenario if the legacy MBR
contains valid partitions rather than a protective MBR (see Section 5.2.1).

Any software that updates the primary GPT must also update the backup GPT. Software may
update the GPT Header and GPT Partition Entry Array in any order, since all the CRCs are stored in
the GPT Header. Software must update the backup GPT before the primary GPT, so if the size of
device has changed (e.g. volume expansion) and the update is interrupted, the backup GPT is in the
proper location on the disk

If the primary GPT is invalid, the backup GPT is used instead and it is located on the last logical
block on the disk. If the backup GPT is valid it must be used to restore the primary GPT. If the
primary GPT is valid and the backup GPT is invalid software must restore the backup GPT. If both
the primary and backup GPTs are corrupted this block device is defined as not having a valid GUID
Partition Header.

Both the primary and backup GPTs must be valid before an attempt is made to grow the size of a
physical volume. This is due to the GPT recovery scheme depending on locating the backup GPT at
the end of the device. A volume may grow in size when disks are added to a RAID device. As soon
as the volume size is increased the backup GPT must be moved to the end of the volume and the
primary and backup GPT Headers must be updated to reflect the new volume size.

5.3.3 GPT Partition Entry Array
The GPT Partition Entry Array contains an array of GPT Partition Entries. Table 18 defines the GPT
Partition Entry.

Table 18. GPT Partition Entry

Mnemonic

Byte
Offset

Byte
Length

Description

PartitionTypeGUID 0 16 Unique ID that defines the purpose
and type of this Partition. A value of
zero defines that this partition entry
is not being used.

UniquePartitionGUID 16 16 GUID that is unique for every
partition entry. Every partition ever
created will have a unique GUID.
This GUID must be assigned when
the GPT Partition Entry is created.
The GPT Partition Entry is created
whenever the

NumberOfPartitionEntr
ies in the GPT Header is

increased to include a larger range
of addresses.
122 April, 2015 Version 2.5

GUID Partition Table (GPT) Disk Layout
The SizeOfPartitionEntry variable in the GPT Header defines the size of each GUID
Partition Entry. Each partition entry contains a Unique Partition GUID value that uniquely
identifies every partition that will ever be created. Any time a new partition entry is created a new
GUID must be generated for that partition, and every partition is guaranteed to have a unique GUID.
The partition is defined as all the logical blocks inclusive of the StartingLBA and EndingLBA.

The PartitionTypeGUID field identifies the contents of the partition. This GUID is similar to
the OS Type field in the MBR. Each filesystem must publish its unique GUID. The
Attributes field can be used by utilities to make broad inferences about the usage of a partition
and is defined in Table 19.

The firmware must add the PartitionTypeGuid to the handle of every active GPT partition
using EFI_BOOT_SERVICES.InstallProtocolInterface(). This will allow drivers
and applications, including OS loaders, to easily search for handles that represent EFI System
Partitions or vendor specific partition types.

Software that makes copies of GPT-formatted disks and partitions must generate new Disk
GUID values in the GPT Headers and new Unique Partition GUID values in each GPT
Partition Entry. If GPT-cognizant software encounters two disks or partitions with identical GUIDs,
results will be indeterminate.

Table 19. Defined GPT Partition Entry - Partition Type GUIDs

OS vendors need to generate their own Partition Type GUIDs to identify their partition types.

Table 20. Defined GPT Partition Entry - Attributes

StartingLBA 32 8 Starting LBA of the partition defined
by this entry.

EndingLBA 40 8 Ending LBA of the partition defined
by this entry.

Attributes 48 8 Attribute bits, all bits reserved by
UEFI (see Table 19).

PartitionName 56 72 Null-terminated string containing a
human-readable name of the
partition.

Reserved 128 SizeOfPartiti
onEntry - 128

The rest of the GPT Partition Entry,
if any, is reserved by UEFI and
must be zero.

Description GUID Value

Unused Entry 00000000-0000-0000-0000-000000000000

EFI System Partition C12A7328-F81F-11D2-BA4B-00A0C93EC93B

Partition containing a legacy MBR 024DEE41-33E7-11D3-9D69-0008C781F39F

Bits Name Description
Version 2.5 April, 2015 123

Unified Extensible Firmware Interface Specification
Bit 0 Required
Partition

If this bit is set, the partition is required for the platform to function. The owner/
creator of the partition indicates that deletion or modification of the contents
can result in loss of platform features or failure for the platform to boot or
operate. The system cannot function normally if this partition is removed, and it
should be considered part of the hardware of the system. Actions such as
running diagnostics, system recovery, or even OS install or boot could
potentially stop working if this partition is removed. Unless OS software or
firmware recognizes this partition, it should never be removed or modified as
the UEFI firmware or platform hardware may become non-functional.

Bit 1 No Block IO
Protocol

If this bit is set, then firmware must not produce an

EFI_BLOCK_IO_PROTOCOL device for this partition. See Section 12.3.2

for more details. By not producing an EFI_BLOCK_IO_PROTOCOL

partition, file system mappings will not be created for this partition in UEFI.

Bit 2 Legacy
BIOS
Bootable

This bit is set aside by this specification to let systems with traditional PC-AT
BIOS firmware implementations inform certain limited, special-purpose
software running on these systems that a GPT partition may be bootable. For
systems with firmware implementations conforming to this specification, the
UEFI boot manager (see chapter 3) must ignore this bit when selecting a UEFI-
compliant application, e.g., an OS loader (see 2.1.3). Therefore there is no
need for this specification to define the exact meaning of this bit.

Bits 3-47 Undefined and must be zero. Reserved for expansion by future versions of the
UEFI specification.

Bits 48-63 Reserved for GUID specific use. The use of these bits will vary depending on

the PartitionTypeGUID. Only the owner of the

PartitionTypeGUID is allowed to modify these bits. They must be

preserved if Bits 0–47 are modified.
124 April, 2015 Version 2.5

Services — Boot Services
6
Services — Boot Services

This section discusses the fundamental boot services that are present in a compliant system. The
services are defined by interface functions that may be used by code running in the UEFI
environment. Such code may include protocols that manage device access or extend platform
capability, as well as applications running in the preboot environment, and OS loaders.

Two types of services apply in an compliant system:

Boot Services Functions that are available before a successful call to
EFI_BOOT_SERVICES.ExitBootServices(). These
functions are described in this section.

Runtime Services Functions that are available before and after any call to
ExitBootServices(). These functions are described in
Section 7.

During boot, system resources are owned by the firmware and are controlled through boot services
interface functions. These functions can be characterized as “global” or “handle-based.” The term
“global” simply means that a function accesses system services and is available on all platforms
(since all platforms support all system services). The term “handle-based” means that the function
accesses a specific device or device functionality and may not be available on some platforms (since
some devices are not available on some platforms). Protocols are created dynamically. This section
discusses the “global” functions and runtime functions; subsequent sections discuss the “handle-
based.”

UEFI applications (including OS loaders) must use boot services functions to access devices and
allocate memory. On entry, an Image is provided a pointer to a system table which contains the Boot
Services dispatch table and the default handles for accessing the console. All boot services
functionality is available until an OS loader loads enough of its own environment to take control of
the system’s continued operation and then terminates boot services with a call to
ExitBootServices().

In principle, the ExitBootServices() call is intended for use by the operating system to
indicate that its loader is ready to assume control of the platform and all platform resource
management. Thus boot services are available up to this point to assist the OS loader in preparing to
boot the operating system. Once the OS loader takes control of the system and completes the
operating system boot process, only runtime services may be called. Code other than the OS loader,
however, may or may not choose to call ExitBootServices(). This choice may in part depend
upon whether or not such code is designed to make continued use of boot services or the boot
services environment.

The rest of this section discusses individual functions. Global boot services functions fall into these
categories:

• Event, Timer, and Task Priority Services (Section 6.1)

• Memory Allocation Services (Section 6.2)

• Protocol Handler Services (Section 6.3)
Version 2.5 April, 2015 125

Unified Extensible Firmware Interface Specification
• Image Services (Section 6.4)

• Miscellaneous Services (Section 6.5)

6.1 Event, Timer, and Task Priority Services
The functions that make up the Event, Timer, and Task Priority Services are used during preboot to
create, close, signal, and wait for events; to set timers; and to raise and restore task priority levels.
See Table 21.

Table 21. Event, Timer, and Task Priority Functions

Execution in the boot services environment occurs at different task priority levels, or TPLs. The
boot services environment exposes only three of these levels to UEFI applications and drivers:

• TPL_APPLICATION, the lowest priority level

• TPL_CALLBACK, an intermediate priority level

• TPL_NOTIFY, the highest priority level

Tasks that execute at a higher priority level may interrupt tasks that execute at a lower priority level.
For example, tasks that run at the TPL_NOTIFY level may interrupt tasks that run at the
TPL_APPLICATION or TPL_CALLBACK level. While TPL_NOTIFY is the highest level
exposed to the boot services applications, the firmware may have higher task priority items it deals
with. For example, the firmware may have to deal with tasks of higher priority like timer ticks and
internal devices. Consequently, there is a fourth TPL, TPL_HIGH_LEVEL, designed for use
exclusively by the firmware.

The intended usage of the priority levels is shown in Table 22 from the lowest level
(TPL_APPLICATION) to the highest level (TPL_HIGH_LEVEL). As the level increases, the
duration of the code and the amount of blocking allowed decrease. Execution generally occurs at the
TPL_APPLICATION level. Execution occurs at other levels as a direct result of the triggering of
an event notification function(this is typically caused by the signaling of an event). During timer
interrupts, firmware signals timer events when an event’s “trigger time” has expired. This allows
event notification functions to interrupt lower priority code to check devices (for example). The
notification function can signal other events as required. After all pending event notification
functions execute, execution continues at the TPL_APPLICATION level.

Name Type Description

CreateEvent Boot Creates a general-purpose event structure.

CreateEventEx Boot Creates an event structure as part of an event group

CloseEvent Boot Closes and frees an event structure.

SignalEvent Boot Signals an event.

WaitForEvent Boot Stops execution until an event is signaled.

CheckEvent Boot Checks whether an event is in the signaled state.

SetTimer Boot Sets an event to be signaled at a particular time.

RaiseTPL Boot Raises the task priority level.

RestoreTPL Boot Restores/lowers the task priority level.
126 April, 2015 Version 2.5

Services — Boot Services
Table 22. TPL Usage

Executing code can temporarily raise its priority level by calling the
EFI_BOOT_SERVICES.RaiseTPL() function. Doing this masks event notifications from code
running at equal or lower priority levels until the EFI_BOOT_SERVICES.RestoreTPL()
function is called to reduce the priority to a level below that of the pending event notifications.
There are restrictions on the TPL levels at which many UEFI service functions and protocol
interface functions can execute. Table 23 summarizes the restrictions.

Table 23. TPL Restrictions

Task Priority Level Usage

TPL_APPLICATION This is the lowest priority level. It is the level of execution which occurs when
no event notifications are pending and which interacts with the user. User I/O
(and blocking on User I/O) can be performed at this level. The boot manager
executes at this level and passes control to other UEFI applications at this level.

TPL_CALLBACK Interrupts code executing below TPL_CALLBACK level

. Long term operations (such as file system operations and disk I/O) can occur
at this level.

TPL_NOTIFY Interrupts code executing below TPL_NOTIFY level

. Blocking is not allowed at this level. Code executes to completion and
returns. If code requires more processing, it needs to signal an event to wait to
obtain control again at whatever level it requires. This level is typically used to
process low level IO to or from a device.

(Firmware Interrupts) This level is internal to the firmware
. It is the level at which internal interrupts occur. Code running at this level

interrupts code running at the TPL_NOTIFY level (or lower levels). If the

interrupt requires extended time to complete, firmware signals another event
(or events) to perform the longer term operations so that other interrupts can
occur.

TPL_HIGH_LEVEL Interrupts code executing below TPL_HIGH_LEVEL
. This is the highest priority level. It is not interruptible (interrupts are disabled)
and is used sparingly by firmware to synchronize operations that need to be
accessible from any priority level. For example, it must be possible to signal
events while executing at any priority level. Therefore, firmware manipulates
the internal event structure while at this priority level.

Name Restrictions Task Priority Level

Protocol Handler Services <= TPL_NOTIIFY

Block I/O Protocol <= TPL_CALLBACK

CheckEvent() < TPL_HIGH_LEVEL

CloseEvent() < TPL_HIGH_LEVEL

CreateEvent() < TPL_HIGH_LEVEL

Disk I/O Protocol <= TPL_CALLBACK
Version 2.5 April, 2015 127

Unified Extensible Firmware Interface Specification
Event Notification Levels >

<=

TPL_APPLICATION

TPL_HIGH_LEVEL

Exit() <= TPL_CALLBACK

ExitBootServices() = TPL_APPLICATION

LoadImage() < TPL_CALLBACK

Memory Allocation Services <= TPL_NOTIFY

PXE Base Code Protocol <= TPL_CALLBACK

Serial I/O Protocol <= TPL_CALLBACK

SetTimer() < TPL_HIGH_LEVEL

SignalEvent() <= TPL_HIGH_LEVEL

Stall() <= TPL_HIGH_LEVEL

Simple File System Protocol <= TPL_CALLBACK

Simple Input Protocol <= TPL_APPLICATION

Simple Network Protocol <= TPL_CALLBACK

Simple Text Output Protocol <= TPL_NOTIFY

StartImage() < TPL_CALLBACK

Time Services <= TPL_CALLBACK

UnloadImage() <= TPL_CALLBACK

Variable Services <= TPL_CALLBACK

WaitForEvent() = TPL_APPLICATION

ACPI Table Protocol < TPL_NOTIFY

Authentication Info <= TPL_NOTIFY

Device Path Utilities <= TPL_NOTIFY

Device Path From Text <= TPL_NOTIFY

EDID Discovered <= TPL_NOTIFY

EDID Active <= TPL_NOTIFY

Graphics Output EDID Override <= TPL_NOTIFY

iSCSI Initiator Name <= TPL_NOTIFY

Tape IO <= TPL_NOTIFY

Managed Network Service Binding <= TPL_CALLBACK

ARP Service Binding <= TPL_CALLBACK

ARP <= TPL_CALLBACK

DHCP4 Service Binding <= TPL_CALLBACK

DHCP4 <= TPL_CALLBACK

TCP4 Service Binding <= TPL_CALLBACK

TCP4 <= TPL_CALLBACK

IP4 Service Binding <= TPL_CALLBACK

Name Restrictions Task Priority Level
128 April, 2015 Version 2.5

Services — Boot Services
IP4 <= TPL_CALLBACK

IP4 Config <= TPL_CALLBACK

IP4 Config2 <= TPL_CALLBACK

UDP4 Service Binding <= TPL_CALLBACK

UDP4 <= TPL_CALLBACK

MTFTP4 Service Binding <= TPL_CALLBACK

MTFTP4 <= TPL_CALLBACK

VLAN Configuration <= TPL_CALLBACK

EAP <= TPL_CALLBACK

EAP Management <= TPL_CALLBACK

FTP <= TPL_CALLBACK

IPSec Configuration <= TPL_CALLBACK

TCP6 <= TPL_CALLBACK

TCP6 Service Binding <= TPL_CALLBACK

IP6 <= TPL_CALLBACK

IP6 Config <= TPL_CALLBACK

UDP6 <= TPL_CALLBACK

UDP6 Service Binding <= TPL_CALLBACK

DHCP6 <= TPL_CALLBACK

DHCP6 Service Binding <= TPL_CALLBACK

MTFTP6 <= TPL_CALLBACK

MTFTP6 Service Binding <= TPL_CALLBACK

User Manager Protocol <= TPL_NOTIFY

User Manager Protocol/Identify() = TPL_APPLICATION

User Credential Protocol <= TPL_NOTIFY

User Info Protocol <= TPL_NOTIFY

Deferred Image Load Protocol <= TPL_NOTIFY

HII Protocols <= TPL_NOTIFY

Form Browser2 Protocol/SendForm = TPL_APPLICATION

Driver Health <= TPL_NOTIFY

EAP Mangement2 <= TPL_CALLBACK

EAP Configuration <= TPL_CALLBACK

Supplicant <= TPL_CALLBACK

HTTP Service Binding <= TPL_CALLBACK

HTTP <= TPL_CALLBACK

HTTP Utilities <= TPL_CALLBACK

DNS4 Service Binding <= TPL_CALLBACK

Name Restrictions Task Priority Level
Version 2.5 April, 2015 129

Unified Extensible Firmware Interface Specification
DNS4 <= TPL_CALLBACK

DNS6 Service Binding <= TPL_CALLBACK

DNS6 <= TPL_CALLBACK

TLS Service Binding <= TPL_CALLBACK

TLS <= TPL_CALLBACK

TLS Configuration <= TPL_CALLBACK

Wireless MAC Connection <= TPL_CALLBACK

Bluetooth Host Controller <= TPL_CALLBACK

Bluetooth IO Service Binding <= TPL_CALLBACK

Bluetooth IO <= TPL_CALLBACK

Bluetooth Configuration <= TPL_CALLBACK

REST <= TPL_CALLBACK

Other protocols and services, if not
listed above

<= TPL_NOTIFY

Name Restrictions Task Priority Level
130 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.CreateEvent()

Summary
Creates an event.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_CREATE_EVENT) (

 IN UINT32 Type,
 IN EFI_TPL NotifyTpl,
 IN EFI_EVENT_NOTIFY NotifyFunction, OPTIONAL
 IN VOID *NotifyContext, OPTIONAL
 OUT EFI_EVENT *Event
);

Parameters
Type The type of event to create and its mode and attributes. The

#define statements in “Related Definitions” can be used to
specify an event’s mode and attributes.

NotifyTpl The task priority level of event notifications, if needed. See
EFI_BOOT_SERVICES.RaiseTPL().

NotifyFunction Pointer to the event’s notification function, if any. See “Related
Definitions.”

NotifyContext Pointer to the notification function’s context; corresponds to
parameter Context in the notification function.

Event Pointer to the newly created event if the call succeeds; undefined
otherwise.

Related Definitions
//***
// EFI_EVENT
//***
typedef VOID*EFI_EVENT

//***
// Event Types //***
// These types can be “ORed” together as needed – for example,
// EVT_TIMER might be “Ored” with EVT_NOTIFY_WAIT or
// EVT_NOTIFY_SIGNAL.
#define EVT_TIMER 0x80000000
#define EVT_RUNTIME 0x40000000

#define EVT_NOTIFY_WAIT 0x00000100
#define EVT_NOTIFY_SIGNAL 0x00000200
Version 2.5 April, 2015 131

Unified Extensible Firmware Interface Specification
#define EVT_SIGNAL_EXIT_BOOT_SERVICES 0x00000201
#define EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE 0x60000202

EVT_TIMER The event is a timer event and may be passed to
EFI_BOOT_SERVICES.SetTimer(). Note that timers only
function during boot services time.

EVT_RUNTIME The event is allocated from runtime memory. If an event is to be
signaled after the call to
EFI_BOOT_SERVICES.ExitBootServices(), the
event’s data structure and notification function need to be
allocated from runtime memory. For more information, see
SetVirtualAddressMap().

EVT_NOTIFY_WAIT If an event of this type is not already in the signaled state, then the
event’s NotificationFunction will be queued at the
event’s NotifyTpl whenever the event is being waited on via
EFI_BOOT_SERVICES.WaitForEvent() or
EFI_BOOT_SERVICES.CheckEvent().

EVT_NOTIFY_SIGNAL The event’s NotifyFunction is queued whenever the event
is signaled.

EVT_SIGNAL_EXIT_BOOT_SERVICES
This event is to be notified by the system when
ExitBootServices() is invoked. This event is of type
EVT_NOTIFY_SIGNAL and should not be combined with any
other event types. The notification function for this event is not
allowed to use the Memory Allocation Services, or call any
functions that use the Memory Allocation Services and must only
call functions that are known not to use Memory Allocation
Services, because these services modify the current memory
map.The notification function must not depend on timer events
since timer services will be deactivated before any notification
functions are called.

EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
The event is to be notified by the system when
SetVirtualAddressMap() is performed. This event type is
a composite of EVT_NOTIFY_SIGNAL, EVT_RUNTIME, and
EVT_RUNTIME_CONTEXT and should not be combined with
any other event types.

//***
// EFI_EVENT_NOTIFY
//***
typedef
VOID
(EFIAPI *EFI_EVENT_NOTIFY) (
 IN EFI_EVENT Event,
 IN VOID *Context
132 April, 2015 Version 2.5

Services — Boot Services
);

Event Event whose notification function is being invoked.

Context Pointer to the notification function’s context, which is
implementation-dependent. Context corresponds to
NotifyContext in
EFI_BOOT_SERVICES.CreateEventEx().

Description
The CreateEvent() function creates a new event of type Type and returns it in the location
referenced by Event. The event’s notification function, context, and task priority level are
specified by NotifyFunction, NotifyContext, and NotifyTpl, respectively.

Events exist in one of two states, “waiting” or “signaled.” When an event is created, firmware puts
it in the “waiting” state. When the event is signaled, firmware changes its state to “signaled” and, if
EVT_NOTIFY_SIGNAL is specified, places a call to its notification function in a FIFO queue.
There is a queue for each of the “basic” task priority levels defined in Section 6.1
(TPL_CALLBACK, and TPL_NOTIFY). The functions in these queues are invoked in FIFO order,
starting with the highest priority level queue and proceeding to the lowest priority queue that is
unmasked by the current TPL. If the current TPL is equal to or greater than the queued notification,
it will wait until the TPL is lowered via EFI_BOOT_SERVICES.RestoreTPL().

In a general sense, there are two “types” of events, synchronous and asynchronous. Asynchronous
events are closely related to timers and are used to support periodic or timed interruption of program
execution. This capability is typically used with device drivers. For example, a network device
driver that needs to poll for the presence of new packets could create an event whose type includes
EVT_TIMER and then call the EFI_BOOT_SERVICES.SetTimer() function. When the timer
expires, the firmware signals the event.

Synchronous events have no particular relationship to timers. Instead, they are used to ensure that
certain activities occur following a call to a specific interface function. One example of this is the
cleanup that needs to be performed in response to a call to the
EFI_BOOT_SERVICES.ExitBootServices() function. ExitBootServices() can
clean up the firmware since it understands firmware internals, but it cannot clean up on behalf of
drivers that have been loaded into the system. The drivers have to do that themselves by creating an
event whose type is EVT_SIGNAL_EXIT_BOOT_SERVICES and whose notification function is a
function within the driver itself. Then, when ExitBootServices() has finished its cleanup, it
signals each event of type EVT_SIGNAL_EXIT_BOOT_SERVICES.

Another example of the use of synchronous events occurs when an event of type
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE is used in conjunction with the
SetVirtualAddressMap().

The EVT_NOTIFY_WAIT and EVT_NOTIFY_SIGNAL flags are exclusive. If neither flag is
specified, the caller does not require any notification concerning the event and the NotifyTpl,
NotifyFunction, and NotifyContext parameters are ignored. If EVT_NOTIFY_WAIT is
specified and the event is not in the signaled state, then the EVT_NOTIFY_WAIT notify function
is queued whenever a consumer of the event is waiting for the event (via
EFI_BOOT_SERVICES.WaitForEvent() or EFI_BOOT_SERVICES.CheckEvent()).
Version 2.5 April, 2015 133

Unified Extensible Firmware Interface Specification
If the EVT_NOTIFY_SIGNAL flag is specified then the event’s notify function is queued whenever
the event is signaled.

Note: Because its internal structure is unknown to the caller, Event cannot be modified by the caller.
The only way to manipulate it is to use the published event interfaces.

Status Codes Returned

EFI_SUCCESS The event structure was created.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_INVALID_PARAMETER Event is NULL.

EFI_INVALID_PARAMETER Type has an unsupported bit set.

EFI_INVALID_PARAMETER Type has both EVT_NOTIFY_SIGNAL and

EVT_NOTIFY_WAIT set.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY_SIGNAL or

EVT_NOTIFY_WAIT set and NotifyFunction is

NULL.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY_SIGNAL or

EVT_NOTIFY_WAIT set and NotifyTpl is not a

supported TPL level.

EFI_OUT_OF_RESOURCES The event could not be allocated.
134 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.CreateEventEx()

Summary
Creates an event in a group.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CREATE_EVENT_EX) (
 IN UINT32 Type,
 IN EFI_TPL NotifyTpl,
 IN EFI_EVENT_NOTIFY NotifyFunction OPTIONAL,
 IN CONST VOID *NotifyContext OPTIONAL,
 IN CONST EFI_GUID *EventGroup OPTIONAL,
 OUT EFI_EVENT *Event
);

Parameters
Type The type of event to create and its mode and attributes.

NotifyTpl The task priority level of event notifications, if needed. See
EFI_BOOT_SERVICES.RaiseTPL().

NotifyFunction Pointer to the event’s notification function, if any.

NotifyContext Pointer to the notification function’s context; corresponds to
parameter Context in the notification function.

EventGroup Pointer to the unique identifier of the group to which this event
belongs. If this is NULL, then the function behaves as if the
parameters were passed to CreateEvent.

Event Pointer to the newly created event if the call succeeds; undefined
otherwise.

Description
The CreateEventEx function creates a new event of type Type and returns it in the specified
location indicated by Event. The event’s notification function, context and task priority are
specified by NotifyFunction, NotifyContext, and NotifyTpl, respectively. The event
will be added to the group of events identified by EventGroup.

If no group is specified by EventGroup, then this function behaves as if the same parameters had
been passed to CreateEvent.

Event groups are collections of events identified by a shared EFI_GUID where, when one member
event is signaled, all other events are signaled and their individual notification actions are taken (as
described in CreateEvent). All events are guaranteed to be signaled before the first notification
action is taken. All notification functions will be executed in the order specified by their
NotifyTpl.
Version 2.5 April, 2015 135

Unified Extensible Firmware Interface Specification
A single event can only be part of a single event group. An event may be removed from an event
group by using CloseEvent.

The Type of an event uses the same values as defined in CreateEvent except that
EVT_SIGNAL_EXIT_BOOT_SERVICES and EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
are not valid.

If Type has EVT_NOTIFY_SIGNAL or EVT_NOTIFY_WAIT, then NotifyFunction must
be non- NULL and NotifyTpl must be a valid task priority level. Otherwise these parameters are
ignored.

More than one event of type EVT_TIMER may be part of a single event group. However, there is no
mechanism for determining which of the timers was signaled.

Configuration Table Groups
The GUID for a configuration table also defines a corresponding event group GUID with the same
value . If the data represented by a configuration table is changed,
InstallConfigurationTable() should be called. When
InstallConfigurationTable() is called, the corresponding event is signaled. When this
event is signaled, any components that cache information from the configuration table can optionally
update their cached state.

For example, EFI_ACPI_TABLE_GUID defines a configuration table for ACPI data. When ACPI
data is changed, InstallConfigurationTable() is called. During the execution of
InstallConfigurationTable(), a corresponding event group with
EFI_ACPI_TABLE_GUID is signaled, allowing an application to invalidate any cached ACPI
data.

Pre-Defined Event Groups
This section describes the pre-defined event groups used by the UEFI specification.

EFI_EVENT_GROUP_EXIT_BOOT_SERVICES

This event group is notified by the system when ExitBootServices() is
invoked. The notification function for this event is not allowed to use the Memory
Allocation Services, or call any functions that use the Memory Allocation Services,
because these services modify the current memory map. The notification function
must not depend on timer events since timer services will be deactivated before any
notification functions are called. This is functionally equivalent to the
EVT_SIGNAL_EXIT_BOOT_SERVICES flag for the Type argument of
CreateEvent.

EFI_EVENT_GROUP_VIRTUAL_ADDRESS_CHANGE

This event group is notified by the system when SetVirtualAddressMap() is
invoked. This is functionally equivalent to the
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE flag for the Type argument of
CreateEvent.
136 April, 2015 Version 2.5

Services — Boot Services
EFI_EVENT_GROUP_MEMORY_MAP_CHANGE

This event group is notified by the system when the memory map has changed. The
notification function for this event should not use Memory Allocation Services to
avoid reentrancy complications.

EFI_EVENT_GROUP_READY_TO_BOOT

This event group is notified by the system when the Boot Manager is about to load and
execute a boot option.

Related Definitions
EFI_EVENT is defined in CreateEvent.

EVT_SIGNAL_EXIT_BOOT_SERVICES and EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
are defined in CreateEvent.

#define EFI_EVENT_GROUP_EXIT_BOOT_SERVICES \
 {0x27abf055, 0xb1b8, 0x4c26, 0x80, 0x48, 0x74, 0x8f, 0x37,\
 0xba, 0xa2, 0xdf}}

#define EFI_EVENT_GROUP_VIRTUAL_ADDRESS_CHANGE \
 {0x13fa7698, 0xc831, 0x49c7, 0x87, 0xea, 0x8f, 0x43, 0xfc,\
 0xc2, 0x51, 0x96}

#define EFI_EVENT_GROUP_MEMORY_MAP_CHANGE \
 {0x78bee926, 0x692f, 0x48fd, 0x9e, 0xdb, 0x1, 0x42, 0x2e, \
 0xf0, 0xd7, 0xab}

#define EFI_EVENT_GROUP_READY_TO_BOOT \
 {0x7ce88fb3, 0x4bd7, 0x4679, 0x87, 0xa8, 0xa8, 0xd8, 0xde,\
 0xe5,0xd, 0x2b}

Status Codes Returned

EFI_SUCCESS The event structure was created.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_INVALID_PARAMETER Event is NULL.

EFI_INVALID_PARAMETER Type has an unsupported bit set.

EFI_INVALID_PARAMETER Type has both EVT_NOTIFY_SIGNAL and

EVT_NOTIFY_WAIT set.

EFI_INVALID_PARAMETER

Type has either EVT_NOTIFY_SIGNAL or

EVT_NOTIFY_WAIT set and NotifyFunction is

NULL.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY_SIGNAL or

EVT_NOTIFY_WAIT set and NotifyTpl is not a

supported TPL level.
Version 2.5 April, 2015 137

Unified Extensible Firmware Interface Specification
EFI_OUT_OF_RESOURCES The event could not be allocated.
138 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.CloseEvent()

Summary
Closes an event.

Prototype

typedef

EFI_STATUS
(EFIAPI *EFI_CLOSE_EVENT) (
 IN EFI_EVENT Event
);

Parameters
Event The event to close. Type EFI_EVENT is defined in the

CreateEvent() function description.

Description
The CloseEvent() function removes the caller’s reference to the event, removes it from any
event group to which it belongs, and closes it. Once the event is closed, the event is no longer valid
and may not be used on any subsequent function calls.

Status Codes Returned

EFI_SUCCESS The event has been closed.
Version 2.5 April, 2015 139

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.SignalEvent()

Summary
Signals an event.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIGNAL_EVENT) (
 IN EFI_EVENT Event

);

Parameters
Event The event to signal. Type EFI_EVENT is defined in the

EFI_BOOT_SERVICES.CheckEvent() function
description.

Description
The supplied Event is placed in the signaled state. If Event is already in the signaled state, then
EFI_SUCCESS is returned. If Event is of type EVT_NOTIFY_SIGNAL, then the event’s
notification function is scheduled to be invoked at the event’s notification task priority level.
SignalEvent() may be invoked from any task priority level.

If the supplied Event is a part of an event group, then all of the events in the event group are also
signaled and their notification functions are scheduled.

When signaling an event group, it is possible to create an event in the group, signal it and then close
the event to remove it from the group. For example:

EFI_EVENT Event;
EFI_GUID gMyEventGroupGuid = EFI_MY_EVENT_GROUP_GUID;
gBS->CreateEventEx (
 0,
 0,
 NULL,
 NULL,
 &gMyEventGroupGuid,
 &Event
);

gBS->SignalEvent (Event);
gBS->CloseEvent (Event);

Status Codes Returned

EFI_SUCCESS The event was signaled.
140 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.WaitForEvent()

Summary
Stops execution until an event is signaled.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_WAIT_FOR_EVENT) (

 IN UINTN NumberOfEvents,
 IN EFI_EVENT *Event,
 OUT UINTN *Index
);

Parameters
NumberOfEvents The number of events in the Event array.

Event An array of EFI_EVENT. Type EFI_EVENT is defined in the
CreateEvent() function description.

Index Pointer to the index of the event which satisfied the wait
condition.

Description
This function must be called at priority level TPL_APPLICATION. If an attempt is made to call it
at any other priority level, EFI_UNSUPPORTED is returned.

The list of events in the Event array are evaluated in order from first to last, and this evaluation is
repeated until an event is signaled or an error is detected. The following checks are performed on
each event in the Event array.

• If an event is of type EVT_NOTIFY_SIGNAL, then EFI_INVALID_PARAMETER is returned
and Index indicates the event that caused the failure.

• If an event is in the signaled state, the signaled state is cleared and EFI_SUCCESS is returned,
and Index indicates the event that was signaled.

• If an event is not in the signaled state but does have a notification function, the notification
function is queued at the event’s notification task priority level. If the execution of the event’s
notification function causes the event to be signaled, then the signaled state is cleared,
EFI_SUCCESS is returned, and Index indicates the event that was signaled.

To wait for a specified time, a timer event must be included in the Event array.

To check if an event is signaled without waiting, an already signaled event can be used as the last
event in the list being checked, or the CheckEvent() interface may be used.

Status Codes Returned

EFI_SUCCESS The event indicated by Index was signaled.

EFI_INVALID_PARAMETER NumberOfEvents is 0.
Version 2.5 April, 2015 141

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER The event indicated by Index is of type

EVT_NOTIFY_SIGNAL.

EFI_UNSUPPORTED The current TPL is not TPL_APPLICATION.
142 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.CheckEvent()

Summary
Checks whether an event is in the signaled state.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_CHECK_EVENT) (

 IN EFI_EVENT Event
);

Parameters
Event The event to check. Type EFI_EVENT is defined in the

CreateEvent() function description.

Description
The CheckEvent() function checks to see whether Event is in the signaled state. If Event is
of type EVT_NOTIFY_SIGNAL, then EFI_INVALID_PARAMETER is returned. Otherwise, there
are three possibilities:

• If Event is in the signaled state, it is cleared and EFI_SUCCESS is returned.

• If Event is not in the signaled state and has no notification function, EFI_NOT_READY is
returned.

• If Event is not in the signaled state but does have a notification function, the notification
function is queued at the event’s notification task priority level. If the execution of the
notification function causes Event to be signaled, then the signaled state is cleared and
EFI_SUCCESS is returned; if the Event is not signaled, then EFI_NOT_READY is returned.

Status Codes Returned

EFI_SUCCESS The event is in the signaled state.

EFI_NOT_READY The event is not in the signaled state.

EFI_INVALID_PARAMETER Event is of type EVT_NOTIFY_SIGNAL.
Version 2.5 April, 2015 143

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.SetTimer()

Summary
Sets the type of timer and the trigger time for a timer event.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_SET_TIMER) (

 IN EFI_EVENT Event,
 IN EFI_TIMER_DELAY Type,
 IN UINT64 TriggerTime
);

Parameters
Event The timer event that is to be signaled at the specified time. Type

EFI_EVENT is defined in the CreateEvent() function
description.

Type The type of time that is specified in TriggerTime. See the
timer delay types in “Related Definitions.”

TriggerTime The number of 100ns units until the timer expires. A
TriggerTime of 0 is legal. If Type is TimerRelative and
TriggerTime is 0, then the timer event will be signaled on the
next timer tick. If Type is TimerPeriodic and
TriggerTime is 0, then the timer event will be signaled on
every timer tick.

Related Definitions

//***
//EFI_TIMER_DELAY
//***
typedef enum {
 TimerCancel,
 TimerPeriodic,
 TimerRelative
} EFI_TIMER_DELAY;

TimerCancel The event’s timer setting is to be cancelled and no timer trigger is
to be set. TriggerTime is ignored when canceling a timer.

TimerPeriodic The event is to be signaled periodically at TriggerTime
intervals from the current time. This is the only timer trigger
Type for which the event timer does not need to be reset for each
notification. All other timer trigger types are “one shot.”

TimerRelative The event is to be signaled in TriggerTime 100ns units.
144 April, 2015 Version 2.5

Services — Boot Services
Description
The SetTimer() function cancels any previous time trigger setting for the event, and sets the new
trigger time for the event. This function can only be used on events of type EVT_TIMER.

Status Codes Returned

EFI_SUCCESS The event has been set to be signaled at the requested time.

EFI_INVALID_PARAMETER Event or Type is not valid.
Version 2.5 April, 2015 145

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.RaiseTPL()

Summary
Raises a task’s priority level and returns its previous level.

Prototype
typedef

EFI_TPL

(EFIAPI *EFI_RAISE_TPL) (

 IN EFI_TPL NewTpl
);

Parameters
NewTpl The new task priority level. It must be greater than or equal to the

current task priority level. See “Related Definitions.”

Related Definitions
//***
// EFI_TPL
//***
typedef UINTN EFI_TPL

//***
// Task Priority Levels
//***
#define TPL_APPLICATION 4
#define TPL_CALLBACK 8
#define TPL_NOTIFY 16
#define TPL_HIGH_LEVEL 31

Description
The EFI_BOOT_SERVICES.RaiseTPL() function raises the priority of the currently executing
task and returns its previous priority level.

Only three task priority levels are exposed outside of the firmware during boot services execution.
The first is TPL_APPLICATION where all normal execution occurs. That level may be interrupted
to perform various asynchronous interrupt style notifications, which occur at the TPL_CALLBACK
or TPL_NOTIFY level. By raising the task priority level to TPL_NOTIFY such notifications are
masked until the task priority level is restored, thereby synchronizing execution with such
notifications. Synchronous blocking I/O functions execute at TPL_NOTIFY. TPL_CALLBACK is
the typically used for application level notification functions. Device drivers will typically use
TPL_CALLBACK or TPL_NOTIFY for their notification functions. Applications and drivers may
also use TPL_NOTIFY to protect data structures in critical sections of code.

The caller must restore the task priority level with EFI_BOOT_SERVICES.RestoreTPL() to
the previous level before returning.
146 April, 2015 Version 2.5

Services — Boot Services
Note: If NewTpl is below the current TPL level, then the system behavior is indeterminate. Additionally,
only TPL_APPLICATION, TPL_CALLBACK, TPL_NOTIFY, and TPL_HIGH_LEVEL may be
used. All other values are reserved for use by the firmware; using them will result in unpredictable
behavior. Good coding practice dictates that all code should execute at its lowest possible TPL
level, and the use of TPL levels above TPL_APPLICATION must be minimized. Executing at
TPL levels above TPL_APPLICATION for extended periods of time may also result in
unpredictable behavior.

Status Codes Returned
Unlike other UEFI interface functions, EFI_BOOT_SERVICES.RaiseTPL() does not return a
status code. Instead, it returns the previous task priority level, which is to be restored later with a
matching call to RestoreTPL().
Version 2.5 April, 2015 147

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.RestoreTPL()

Summary
Restores a task’s priority level to its previous value.

Prototype

typedef

VOID

(EFIAPI *EFI_RESTORE_TPL) (

 IN EFI_TPL OldTpl
)

Parameters
OldTpl The previous task priority level to restore (the value from a

previous, matching call to
EFI_BOOT_SERVICES.RaiseTPL()). Type EFI_TPL is
defined in the RaiseTPL() function description.

Description
The RestoreTPL() function restores a task’s priority level to its previous value. Calls to
RestoreTPL() are matched with calls to RaiseTPL().

Note: If OldTpl is above the current TPL level, then the system behavior is indeterminate. Additionally,
only TPL_APPLICATION, TPL_CALLBACK, TPL_NOTIFY, and TPL_HIGH_LEVEL may be
used. All other values are reserved for use by the firmware; using them will result in unpredictable
behavior. Good coding practice dictates that all code should execute at its lowest possible TPL
level, and the use of TPL levels above TPL_APPLICATION must be minimized. Executing at
TPL levels above TPL_APPLICATION for extended periods of time may also result in
unpredictable behavior.

Status Codes Returned
None.

6.2 Memory Allocation Services
The functions that make up Memory Allocation Services are used during preboot to allocate and free
memory, and to obtain the system’s memory map. See Table 24.

Table 24. Memory Allocation Functions

Name Type Description

AllocatePages Boot Allocates pages of a particular type.

FreePages Boot Frees allocated pages.

GetMemoryMap Boot Returns the current boot services memory map and memory map key.

AllocatePool Boot Allocates a pool of a particular type.
148 April, 2015 Version 2.5

Services — Boot Services
The way in which these functions are used is directly related to an important feature of UEFI
memory design. This feature, which stipulates that EFI firmware owns the system’s memory map
during preboot, has three major consequences:

• During preboot, all components (including executing EFI images) must cooperate with the
firmware by allocating and freeing memory from the system with the functions
EFI_BOOT_SERVICES.AllocatePages(),
EFI_BOOT_SERVICES.AllocatePool(), EFI_BOOT_SERVICES.FreePages(),
and EFI_BOOT_SERVICES.FreePool(). The firmware dynamically maintains the
memory map as these functions are called.

• During preboot, an executing EFI Image must only use the memory it has allocated.

• Before an executing EFI image exits and returns control to the firmware, it must free all
resources it has explicitly allocated. This includes all memory pages, pool allocations, open file
handles, etc. Memory allocated by the firmware to load an image is freed by the firmware when
the image is unloaded.

When memory is allocated, it is “typed” according to the values in EFI_MEMORY_TYPE (see the
description for EFI_BOOT_SERVICES.AllocatePages()). Some of the types have a
different usage before EFI_BOOT_SERVICES.ExitBootServices() is called than they do
afterwards. Table 25 lists each type and its usage before the call; Table 26 lists each type and its
usage after the call. The system firmware must follow the processor-specific rules outlined in
Section 2.3.2 and Section 2.3.4 in the layout of the EFI memory map to enable the OS to make the
required virtual mappings.

Table 25. Memory Type Usage before ExitBootServices()

FreePool Boot Frees allocated pool.

Mnemonic Description

*EfiReservedMemoryType Not used.

EfiLoaderCode The code portions of a loaded application. (Note that UEFI OS loaders
are UEFI applications.)

EfiLoaderData The data portions of a loaded application and the default data allocation
type used by an application to allocate pool memory.

EfiBootServicesCode The code portions of a loaded Boot Services Driver.

EfiBootServicesData The data portions of a loaded Boot Serves Driver, and the default data
allocation type used by a Boot Services Driver to allocate pool memory.

EfiRuntimeServicesCode The code portions of a loaded Runtime Services Driver.

EfiRuntimeServicesData The data portions of a loaded Runtime Services Driver and the default
data allocation type used by a Runtime Services Driver to allocate pool
memory.

EfiConventionalMemory Free (unallocated) memory.

EfiUnusableMemory Memory in which errors have been detected.

EfiACPIReclaimMemory Memory that holds the ACPI tables.

EfiACPIMemoryNVS Address space reserved for use by the firmware.

Name Type Description
Version 2.5 April, 2015 149

Unified Extensible Firmware Interface Specification
Note: There is only one region of type EfiMemoryMappedIoPortSpace defined in the
architecture for Itanium-based platforms. As a result, there should be one and only one region of
type EfiMemoryMappedIoPortSpace in the EFI memory map of an Itanium-based platform.

Table 26. Memory Type Usage after ExitBootServices()

EfiMemoryMappedIO Used by system firmware to request that a memory-mapped IO region
be mapped by the OS to a virtual address so it can be accessed by EFI
runtime services.

EfiMemoryMappedIOPortSpace System memory-mapped IO region that is used to translate memory
cycles to IO cycles by the processor.

EfiPalCode Address space reserved by the firmware for code that is part of the
processor.

EfiPersistentMemory A memory region that operates as EfiConventionalMemory.

However, it happens to also support byte-addressable non-volatility.

Mnemonic Description

EfiReservedMemoryType Not used.

EfiLoaderCode The Loader and/or OS may use this memory as they see fit. Note: the
OS loader that called

EFI_BOOT_SERVICES.ExitBootServices() is utilizing

one or more EfiLoaderCode ranges.

EfiLoaderData The Loader and/or OS may use this memory as they see fit. Note: the

OS loader that called ExitBootServices() is utilizing one or

more EfiLoaderData ranges.

EfiBootServicesCode Memory available for general use.

EfiBootServicesData Memory available for general use.

EfiRuntimeServicesCode The memory in this range is to be preserved by the loader and OS in
the working and ACPI S1–S3 states.

EfiRuntimeServicesData The memory in this range is to be preserved by the loader and OS in
the working and ACPI S1–S3 states.

EfiConventionalMemory Memory available for general use.

EfiUnusableMemory Memory that contains errors and is not to be used.

EfiACPIReclaimMemory This memory is to be preserved by the loader and OS until ACPI is
enabled. Once ACPI is enabled, the memory in this range is available
for general use.

EfiACPIMemoryNVS This memory is to be preserved by the loader and OS in the working
and ACPI S1–S3 states.

EfiMemoryMappedIO This memory is not used by the OS. All system memory-mapped IO
information should come from ACPI tables.

EfiMemoryMappedIOPortSpace This memory is not used by the OS. All system memory-mapped IO
port space information should come from ACPI tables.

Mnemonic Description
150 April, 2015 Version 2.5

Services — Boot Services
Note: An image that calls ExitBootServices() first calls
EFI_BOOT_SERVICES.GetMemoryMap() to obtain the current memory map. Following the
ExitBootServices() call, the image implicitly owns all unused memory in the map. This
includes memory types EfiLoaderCode, EfiLoaderData, EfiBootServicesCode,
EfiBootServicesData, and EfiConventionalMemory. An EFI-compatible loader and
operating system must preserve the memory marked as EfiRuntimeServicesCode and
EfiRuntimeServicesData.

EfiPalCode This memory is to be preserved by the loader and OS in the working
and ACPI S1–S4 states. This memory may also have other attributes
that are defined by the processor implementation.

EfiPersistentMemory A memory region that operates as EfiConventionalMemory.

However, it happens to also support byte-addressable non-volatility.
Version 2.5 April, 2015 151

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.AllocatePages()

Summary
Allocates memory pages from the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ALLOCATE_PAGES) (

IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN OUT EFI_PHYSICAL_ADDRESS*Memory
);

Parameters
Type The type of allocation to perform. See “Related Definitions.”

MemoryType The type of memory to allocate. The type EFI_MEMORY_TYPE
is defined in “Related Definitions” below. These memory types
are also described in more detail in Table 25 and Table 26.
Normal allocations (that is, allocations by any UEFI application)
are of type EfiLoaderData. MemoryType values in the
range 0x70000000..0x7FFFFFFF are reserved for OEM use.
MemoryType values in the range 0x80000000..0xFFFFFFFF
are reserved for use by UEFI OS loaders that are provided by
operating system vendors. The only illegal memory type values
are those in the range EfiMaxMemoryType..0x6FFFFFFF.

Pages The number of contiguous 4 KiB pages to allocate.

Memory Pointer to a physical address. On input, the way in which the
address is used depends on the value of Type. See “Description”
for more information. On output the address is set to the base of
the page range that was allocated. See “Related Definitions.”

Note: UEFI Applications, UEFI Drivers, and UEFI OS Loaders must not allocate memory of type
EfiReservedMemoryType.

Related Definitions

//***
//EFI_ALLOCATE_TYPE
//***
// These types are discussed in the “Description” section below.
typedef enum {

AllocateAnyPages,
AllocateMaxAddress,
AllocateAddress,
MaxAllocateType
152 April, 2015 Version 2.5

Services — Boot Services
 } EFI_ALLOCATE_TYPE;

//***
//EFI_MEMORY_TYPE
//***
// These type values are discussed in Table 25 and Table 26.
typedef enum {
 EfiReservedMemoryType,
 EfiLoaderCode,
 EfiLoaderData,
 EfiBootServicesCode,
 EfiBootServicesData,
 EfiRuntimeServicesCode,
 EfiRuntimeServicesData,
 EfiConventionalMemory,
 EfiUnusableMemory,
 EfiACPIReclaimMemory,
 EfiACPIMemoryNVS,
 EfiMemoryMappedIO,
 EfiMemoryMappedIOPortSpace,
 EfiPalCode,
 EfiPersistentMemory
 EfiMaxMemoryType
} EFI_MEMORY_TYPE;

//***
//EFI_PHYSICAL_ADDRESS
//***
typedef UINT64 EFI_PHYSICAL_ADDRESS;

Description
The AllocatePages() function allocates the requested number of pages and returns a pointer to
the base address of the page range in the location referenced by Memory. The function scans the
memory map to locate free pages. When it finds a physically contiguous block of pages that is large
enough and also satisfies the allocation requirements of Type, it changes the memory map to
indicate that the pages are now of type MemoryType.

In general, UEFI OS loaders and applications should allocate memory (and pool) of type
EfiLoaderData. Boot service drivers must allocate memory (and pool) of type
EfiBootServicesData. Runtime drivers should allocate memory (and pool) of type
EfiRuntimeServicesData (although such allocation can only be made during boot services
time).

Allocation requests of Type AllocateAnyPages allocate any available range of pages that
satisfies the request. On input, the address pointed to by Memory is ignored.

Allocation requests of Type AllocateMaxAddress allocate any available range of pages whose
uppermost address is less than or equal to the address pointed to by Memory on input.
Version 2.5 April, 2015 153

Unified Extensible Firmware Interface Specification
Allocation requests of Type AllocateAddress allocate pages at the address pointed to by
Memory on input.

Allocation requests of MemoryType EfiPersistentMemory will result in the
AllocatePages() service returning EFI_INVALID_PARAMETER.

Note: UEFI drivers and applications that are not targeted for a specific implementation must perform
memory allocations for the following runtime types using AllocateAnyPages address mode:

EfiACPIReclaimMemory,

EfiACPIMemoryNVS,

EfiRuntimeServicesCode,

EfiRuntimeServicesData,

EfiReservedMemoryType.

Status Codes Returned

EFI_SUCCESS The requested pages were allocated.

EFI_OUT_OF_RESOURCES The pages could not be allocated.

EFI_INVALID_PARAMETER Type is not AllocateAnyPages or

AllocateMaxAddress or AllocateAddress.

EFI_INVALID_PARAMETER MemoryType is in the range

EfiMaxMemoryType..0x7FFFFFFF.

EFI_INVALID_PARAMETER MemoryType was EfiPersistentMemory.

EFI_INVALID_PARAMETER PoolType was EfiPersistentMemory.

EFI_INVALID_PARAMETER Memory was NULL.

EFI_NOT_FOUND The requested pages could not be found.
154 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.FreePages()

Summary
Frees memory pages.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FREE_PAGES) (
IN EFI_PHYSICAL_ADDRESS Memory,
IN UINTN Pages
);

Parameters
Memory The base physical address of the pages to be freed. Type

EFI_PHYSICAL_ADDRESS is defined in the
EFI_BOOT_SERVICES.AllocatePages() function
description.

Pages The number of contiguous 4 KiB pages to free.

Description
The FreePages() function returns memory allocated by AllocatePages() to the firmware.

Status Codes Returned

EFI_SUCCESS The requested memory pages were freed.

EFI_NOT_FOUND The requested memory pages were not allocated with

AllocatePages().

EFI_INVALID_PARAMETER Memory is not a page-aligned address or Pages is invalid.
Version 2.5 April, 2015 155

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.GetMemoryMap()

Summary
Returns the current memory map.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_MEMORY_MAP) (
 IN OUT UINTN *MemoryMapSize,
 IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,
 OUT UINTN *MapKey,
 OUT UINTN *DescriptorSize,
 OUT UINT32 *DescriptorVersion
);

Parameters
MemoryMapSize A pointer to the size, in bytes, of the MemoryMap buffer. On

input, this is the size of the buffer allocated by the caller. On
output, it is the size of the buffer returned by the firmware if the
buffer was large enough, or the size of the buffer needed to
contain the map if the buffer was too small.

MemoryMap A pointer to the buffer in which firmware places the current
memory map. The map is an array of
EFI_MEMORY_DESCRIPTORs. See “Related Definitions.”

MapKey A pointer to the location in which firmware returns the key for the
current memory map.

DescriptorSize A pointer to the location in which firmware returns the size, in
bytes, of an individual EFI_MEMORY_DESCRIPTOR.

DescriptorVersion A pointer to the location in which firmware returns the version
number associated with the EFI_MEMORY_DESCRIPTOR. See
“Related Definitions.”

Related Definitions
//***
//EFI_MEMORY_DESCRIPTOR
//***
typedef struct {
 UINT32 Type;
 EFI_PHYSICAL_ADDRESS PhysicalStart;
 EFI_VIRTUAL_ADDRESS VirtualStart;
 UINT64 NumberOfPages;
 UINT64 Attribute;
} EFI_MEMORY_DESCRIPTOR;
156 April, 2015 Version 2.5

Services — Boot Services
Type Type of the memory region. Type EFI_MEMORY_TYPE is
defined in the AllocatePages() function description.

PhysicalStart Physical address of the first byte in the memory region. Physical
start must be aligned on a 4 KiB boundary. Type
EFI_PHYSICAL_ADDRESS is defined in the
AllocatePages() function description.

VirtualStart Virtual address of the first byte in the memory region. Virtual
start must be aligned on a 4 KiB boundary. Type
EFI_VIRTUAL_ADDRESS is defined in “Related Definitions.”

NumberOfPages Number of 4 KiB pages in the memory region.

Attribute Attributes of the memory region that describe the bit mask of
capabilities for that memory region, and not necessarily the
current settings for that memory region. See the following
“Memory Attribute Definitions.”

//***
// Memory Attribute Definitions
//***
// These types can be “ORed” together as needed.
#define EFI_MEMORY_UC 0x0000000000000001
#define EFI_MEMORY_WC 0x0000000000000002
#define EFI_MEMORY_WT 0x0000000000000004
#define EFI_MEMORY_WB 0x0000000000000008
#define EFI_MEMORY_UCE 0x0000000000000010
#define EFI_MEMORY_WP 0x0000000000001000
#define EFI_MEMORY_RP 0x0000000000002000
#define EFI_MEMORY_XP 0x0000000000004000
#define EFI_MEMORY_NV 0x0000000000008000
#define EFI_MEMORY_MORE_RELIABLE 0x0000000000010000
#define EFI_MEMORY_RO 0x0000000000020000
#define EFI_MEMORY_RUNTIME 0x8000000000000000

EFI_MEMORY_UC Memory cacheability attribute: The memory region supports
being configured as not cacheable.

EFI_MEMORY_WC Memory cacheability attribute: The memory region supports
being configured as write combining.

EFI_MEMORY_WT Memory cacheability attribute: The memory region supports
being configured as cacheable with a “write through” policy.
Writes that hit in the cache will also be written to main memory.

EFI_MEMORY_WB Memory cacheability attribute: The memory region supports
being configured as cacheable with a “write back” policy. Reads
and writes that hit in the cache do not propagate to main memory.
Dirty data is written back to main memory when a new cache line
is allocated.

EFI_MEMORY_UCE Memory cacheability attribute: The memory region supports
being configured as not cacheable, exported, and supports the
“fetch and add” semaphore mechanism.
Version 2.5 April, 2015 157

Unified Extensible Firmware Interface Specification
EFI_MEMORY_WP Physical memory protection attribute: The memory region
supports being configured as write-protected by system hardware.
This is typically used as a cacheability attribute today. The
memory region supports being configured as cacheable with a
"write protected" policy. Reads come from cache lines when
possible, and read misses cause cache fills. Writes are propagated
to the system bus and cause corresponding cache lines on all
processors on the bus to be invalidated.

Note: UEFI spec 2.5 and following: use EFI_MEMORY_RO as write-protected physical memory
protection attribute. Also, EFI_MEMORY_WP means cacheability attribute.

EFI_MEMORY_RP Physical memory protection attribute: The memory region
supports being configured as read-protected by system hardware.

EFI_MEMORY_XP Physical memory protection attribute: The memory region
supports being configured so it is protected by system hardware
from executing code.

EFI_MEMORY_NV Runtime memory attribute: The memory region refers to
persistent memory

EFI_MEMORY_MORE_RELIABLE

The memory region provides higher reliability relative to other
memory in the system. If all memory has the same reliability,
then this bit is not used.

EFI_MEMORY_RO Physical memory protection attribute: The memory region
supports making this memory range read-only by system
hardware.

EFI_MEMORY_RUNTIME Runtime memory attribute: The memory region needs to be
given a virtual mapping by the operating system when
SetVirtualAddressMap() is called (described in
Section 7.4.

//***
//EFI_VIRTUAL_ADDRESS
//***
typedef UINT64 EFI_VIRTUAL_ADDRESS;

//***
// Memory Descriptor Version Number
//***
#define EFI_MEMORY_DESCRIPTOR_VERSION 1

Description
The GetMemoryMap() function returns a copy of the current memory map. The map is an array
of memory descriptors, each of which describes a contiguous block of memory. The map describes
all of memory, no matter how it is being used. That is, it includes blocks allocated by
EFI_BOOT_SERVICES.AllocatePages() and
158 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.AllocatePool(), as well as blocks that the firmware is using for its
own purposes. The memory map is only used to describe memory that is present in the system.
Memory descriptors are never used to describe holes in the system memory map.

Until EFI_BOOT_SERVICES.ExitBootServices() is called, the memory map is owned by
the firmware and the currently executing EFI Image should only use memory pages it has explicitly
allocated.

If the MemoryMap buffer is too small, the EFI_BUFFER_TOO_SMALL error code is returned and
the MemoryMapSize value contains the size of the buffer needed to contain the current
memory map. The actual size of the buffer allocated for the consequent call to GetMemoryMap()
should be bigger then the value returned in MemoryMapSize, since allocation of the new buffer
may potentially increase memory map size.

On success a MapKey is returned that identifies the current memory map. The firmware’s key is
changed every time something in the memory map changes. In order to successfully invoke
EFI_BOOT_SERVICES.ExitBootServices() the caller must provide the current memory
map key.

The GetMemoryMap() function also returns the size and revision number of the
EFI_MEMORY_DESCRIPTOR. The DescriptorSize represents the size in bytes of an
EFI_MEMORY_DESCRIPTOR array element returned in MemoryMap. The size is returned to
allow for future expansion of the EFI_MEMORY_DESCRIPTOR in response to hardware
innovation. The structure of the EFI_MEMORY_DESCRIPTOR may be extended in the future but it
will remain backwards compatible with the current definition. Thus OS software must use the
DescriptorSize to find the start of each EFI_MEMORY_DESCRIPTOR in the MemoryMap
array.

Status Codes Returned

EFI_SUCCESS The memory map was returned in the MemoryMap buffer.

EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current buffer size

needed to hold the memory map is returned in MemoryMapSize.

EFI_INVALID_PARAMETER MemoryMapSize is NULL.

EFI_INVALID_PARAMETER The MemoryMap buffer is not too small and MemoryMap is

NULL.
Version 2.5 April, 2015 159

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.AllocatePool()

Summary
Allocates pool memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ALLOCATE_POOL) (
 IN EFI_MEMORY_TYPE PoolType,
 IN UINTN Size,
 OUT VOID **Buffer
);

Parameters
PoolType The type of pool to allocate. Type EFI_MEMORY_TYPE is

defined in the EFI_BOOT_SERVICES.AllocatePages()
function description. PoolType values in the range
0x70000000..0x7FFFFFFF are reserved for OEM use.
PoolType values in the range 0x80000000..0xFFFFFFFF are
reserved for use by UEFI OS loaders that are provided by
operating system vendors. The only illegal memory type values
are those in the range EfiMaxMemoryType..0x6FFFFFFF.

Size The number of bytes to allocate from the pool.

Buffer A pointer to a pointer to the allocated buffer if the call succeeds;
undefined otherwise.

Note: UEFI Applications, UEFI Drivers, and UEFI OS Loaders must not allocate memory of type
EfiReservedMemoryType.

Description
The AllocatePool() function allocates a memory region of Size bytes from memory of type
PoolType and returns the address of the allocated memory in the location referenced by Buffer.
This function allocates pages from EfiConventionalMemory as needed to grow the requested
pool type. All allocations are eight-byte aligned.

The allocated pool memory is returned to the available pool with the
EFI_BOOT_SERVICES.FreePool() function.

Status Codes Returned

EFI_SUCCESS The requested number of bytes was allocated.

EFI_OUT_OF_RESOURCES The pool requested could not be allocated.

EFI_INVALID_PARAMETER PoolType was invalid.

EFI_INVALID_PARAMETER Buffer was NULL.
160 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.FreePool()

Summary
Returns pool memory to the system.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FREE_POOL) (

IN VOID *Buffer
);

Parameters
Buffer Pointer to the buffer to free.

Description
The FreePool() function returns the memory specified by Buffer to the system. On return, the
memory’s type is EfiConventionalMemory. The Buffer that is freed must have been
allocated by AllocatePool().

Status Codes Returned

6.3 Protocol Handler Services
In the abstract, a protocol consists of a 128-bit globally unique identifier (GUID) and a Protocol
Interface structure. The structure contains the functions and instance data that are used to access a
device. The functions that make up Protocol Handler Services allow applications to install a
protocol on a handle, identify the handles that support a given protocol, determine whether a handle
supports a given protocol, and so forth. See Table 27.

Table 27. Protocol Interface Functions

EFI_SUCCESS The memory was returned to the system.

EFI_INVALID_PARAMETER Buffer was invalid.

Name Type Description

InstallProtocolInterface Boot Installs a protocol interface on a device handle.

UninstallProtocolInterface Boot Removes a protocol interface from a device handle.

ReinstallProtocolInterface Boot Reinstalls a protocol interface on a device handle.

RegisterProtocolNotify Boot Registers an event that is to be signaled whenever an
interface is installed for a specified protocol.

LocateHandle Boot Returns an array of handles that support a specified
protocol.
Version 2.5 April, 2015 161

Unified Extensible Firmware Interface Specification
The Protocol Handler boot services have been modified to take advantage of the information that is
now being tracked with the EFI_BOOT_SERVICES.OpenProtocol() and
EFI_BOOT_SERVICES.CloseProtocol() boot services. Since the usage of protocol
interfaces is being tracked with these new boot services, it is now possible to safely uninstall and
reinstall protocol interfaces that are being consumed by UEFI drivers.

As depicted in Figure 20, the firmware is responsible for maintaining a “data base” that shows which
protocols are attached to each device handle. (The figure depicts the “data base” as a linked list, but
the choice of data structure is implementation-dependent.) The “data base” is built dynamically by
calling the EFI_BOOT_SERVICES.InstallProtocolInterface() function. Protocols
can only be installed by UEFI drivers or the firmware itself. In the figure, a device handle
(EFI_HANDLE) refers to a list of one or more registered protocol interfaces for that handle. The
first handle in the system has four attached protocols, and the second handle has two attached
protocols. Each attached protocol is represented as a GUID/Interface pointer pair. The GUID is the
name of the protocol, and Interface points to a protocol instance. This data structure will typically
contain a list of interface functions, and some amount of instance data.

Access to devices is initiated by calling the EFI_BOOT_SERVICES.HandleProtocol()
function, which determines whether a handle supports a given protocol. If it does, a pointer to the
matching Protocol Interface structure is returned.

HandleProtocol Boot Queries a handle to determine if it supports a specified
protocol.

LocateDevicePath Boot Locates all devices on a device path that support a
specified protocol and returns the handle to the device
that is closest to the path.

OpenProtocol Boot Adds elements to the list of agents consuming a protocol
interface.

CloseProtocol Boot Removes elements from the list of agents consuming a
protocol interface.

OpenProtocolInformation Boot Retrieve the list of agents that are currently consuming a
protocol interface.

ConnectController Boot Uses a set of precedence rules to find the best set of
drivers to manage a controller.

DisconnectController Boot Informs a set of drivers to stop managing a controller.

ProtocolsPerHandle Boot Retrieves the list of protocols installed on a handle. The
return buffer is automatically allocated.

LocateHandleBuffer Boot Retrieves the list of handles from the handle database
that meet the search criteria. The return buffer is
automatically allocated.

LocateProtocol Boot Finds the first handle in the handle database the supports
the requested protocol.

InstallMultipleProtocolInterfaces Boot Installs one or more protocol interfaces onto a handle.

UninstallMultipleProtocolInterfaces Boot Uninstalls one or more protocol interfaces from a handle.

Name Type Description
162 April, 2015 Version 2.5

Services — Boot Services
When a protocol is added to the system, it may either be added to an existing device handle or it may
be added to create a new device handle. Figure 20 shows that protocol handlers are listed for each
device handle and that each protocol handler is logically a UEFI driver.

Figure 20. Device Handle to Protocol Handler Mapping

The ability to add new protocol interfaces as new handles or to layer them on existing interfaces
provides great flexibility. Layering makes it possible to add a new protocol that builds on a device’s
basic protocols. An example of this might be to layer on a
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL support that would build on the handle’s underlying
EFI_SERIAL_IO_PROTOCOL.

The ability to add new handles can be used to generate new devices as they are found, or even to
generate abstract devices. An example of this might be to add a multiplexing device that replaces
ConsoleOut with a virtual device that multiplexes the
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL protocol onto multiple underlying device handles.

Driver Model Boot Services
Following is a detailed description of the new UEFI boot services that are required by the UEFI
Driver Model. These boot services are being added to reduce the size and complexity of the bus
drivers and device drivers. This, in turn, will reduce the amount of ROM space required by drivers
that are programmed into ROMs on adapters or into system FLASH, and reduce the development
and testing time required by driver writers.

OM13155

Device Handle

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

Device Handle

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

First Handle
Version 2.5 April, 2015 163

Unified Extensible Firmware Interface Specification
These new services fall into two categories. The first group is used to track the usage of protocol
interfaces by different agents in the system. Protocol interfaces are stored in a handle database. The
handle database consists of a list of handles, and on each handle there is a list of one or more
protocol interfaces. The boot services
EFI_BOOT_SERVICES.InstallProtocolInterface(),
EFI_BOOT_SERVICES.UninstallProtocolInterface(), and
EFI_BOOT_SERVICES.ReinstallProtocolInterface() are used to add, remove, and
replace protocol interfaces in the handle database. The boot service
EFI_BOOT_SERVICES.HandleProtocol() is used to look up a protocol interface in the
handle database. However, agents that call HandleProtocol() are not tracked, so it is not safe
to call UninstallProtocolInterface() or ReinstallProtocolInterface()
because an agent may be using the protocol interface that is being removed or replaced.

The solution is to track the usage of protocol interfaces in the handle database itself. To accomplish
this, each protocol interface includes a list of agents that are consuming the protocol interface.
Figure 21 shows an example handle database with these new agent lists. An agent consists of an
image handle, a controller handle, and some attributes. The image handle identifies the driver or
application that is consuming the protocol interface. The controller handle identifies the controller
that is consuming the protocol interface. Since a driver may manage more than one controller, the
combination of a driver's image handle and a controller's controller handle uniquely identifies the
agent that is consuming the protocol interface. The attributes show how the protocol interface is
being used.
164 April, 2015 Version 2.5

Services — Boot Services
Figure 21. Handle Database

In order to maintain these agent lists in the handle database, some new boot services are required.
These are EFI_BOOT_SERVICES.OpenProtocol(),
EFI_BOOT_SERVICES.CloseProtocol(), and
EFI_BOOT_SERVICES.OpenProtocolInformation(). OpenProtocol() adds
elements to the list of agents consuming a protocol interface. CloseProtocol() removes
elements from the list of agents consuming a protocol interface, and
EFI_BOOT_SERVICES.OpenProtocolInformation() retrieves the entire list of agents
that are currently using a protocol interface.

The second group of boot services is used to deterministically connect and disconnect drivers to
controllers. The boot services in this group are
EFI_BOOT_SERVICES.ConnectController()) and
EFI_BOOT_SERVICES.DisconnectController(). These services take advantage of the
new features of the handle database along with the new protocols described in this document to
manage the drivers and controllers present in the system. ConnectController() uses a set of
strict precedence rules to find the best set of drivers for a controller. This provides a deterministic
matching of drivers to controllers with extensibility mechanisms for OEMs, IBVs, and IHVs.
DisconnectController() allows drivers to be disconnected from controllers in a controlled
manner, and by using the new features of the handle database it is possible to fail a disconnect
request because a protocol interface cannot be released at the time of the disconnect request.

OM13156

Device Handle

GUID
Interface

Protocol
Interface
Instance
Data

GUID
Interface

Protocol
Interface
Instance
Data

Device Handle

GUID
Interface

Protocol
Interface
Instance
Data

Image Handle
Controller Handle
Attributes

First Handle

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes
Version 2.5 April, 2015 165

Unified Extensible Firmware Interface Specification
The third group of boot services is designed to help simplify the implementation of drivers, and
produce drivers with smaller executable footprints. The
EFI_BOOT_SERVICES.LocateHandleBuffer() is a new version of
EFI_BOOT_SERVICES.LocateHandle() that allocates the required buffer for the caller. This
eliminates two calls to LocateHandle() and a call to
EFI_BOOT_SERVICES.AllocatePool() from the caller's code.
EFI_BOOT_SERVICES.LocateProtocol() searches the handle database for the first
protocol instance that matches the search criteria. The
EFI_BOOT_SERVICES.InstallMultipleProtocolInterfaces() and
EFI_BOOT_SERVICES.UninstallMultipleProtocolInterfaces() are very useful
to driver writers. These boot services allow one or more protocol interfaces to be added or removed
from a handle. In addition, InstallMultipleProtocolInterfaces() guarantees that a
duplicate device path is never added to the handle database. This is very useful to bus drivers that
can create one child handle at a time, because it guarantees that the bus driver will not inadvertently
create two instances of the same child handle.
166 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.InstallProtocolInterface()

Summary
Installs a protocol interface on a device handle. If the handle does not exist, it is created and added
to the list of handles in the system. InstallMultipleProtocolInterfaces() performs
more error checking than InstallProtocolInterface(), so it is recommended that
InstallMultipleProtocolInterfaces() be used in place of
InstallProtocolInterface()

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_INSTALL_PROTOCOL_INTERFACE) (
 IN OUT EFI_HANDLE *Handle,
 IN EFI_GUID *Protocol,
 IN EFI_INTERFACE_TYPE InterfaceType,
 IN VOID *Interface
);

Parameters
Handle A pointer to the EFI_HANDLE on which the interface is to be

installed. If *Handle is NULL on input, a new handle is created
and returned on output. If *Handle is not NULL on input, the
protocol is added to the handle, and the handle is returned
unmodified. The type EFI_HANDLE is defined in “Related
Definitions.” If *Handle is not a valid handle, then
EFI_INVALID_PARAMETER is returned.

Protocol The numeric ID of the protocol interface. The type EFI_GUID
is defined in “Related Definitions.” It is the caller’s
responsibility to pass in a valid GUID. See “Wired For
Management Baseline” for a description of valid GUID values.

InterfaceType Indicates whether Interface is supplied in native form. This
value indicates the original execution environment of the request.
See “Related Definitions.”

Interface A pointer to the protocol interface. The Interface must
adhere to the structure defined by Protocol. NULL can be
used if a structure is not associated with Protocol.

Related Definitions

//***
//EFI_HANDLE
//***
typedef VOID *EFI_HANDLE;
Version 2.5 April, 2015 167

Unified Extensible Firmware Interface Specification
//***
//EFI_GUID
//***
typedef struct {
 UINT32 Data1;
 UINT16 Data2;
 UINT16 Data3;
 UINT8 Data4[8];
} EFI_GUID;

//***
//EFI_INTERFACE_TYPE
//***
typedef enum {
 EFI_NATIVE_INTERFACE
} EFI_INTERFACE_TYPE;

Description
The InstallProtocolInterface() function installs a protocol interface (a GUID/Protocol
Interface structure pair) on a device handle. The same GUID cannot be installed more than once
onto the same handle. If installation of a duplicate GUID on a handle is attempted, an
EFI_INVALID_PARAMETER will result.

Installing a protocol interface allows other components to locate the Handle, and the interfaces
installed on it.

When a protocol interface is installed, the firmware calls all notification functions that have
registered to wait for the installation of Protocol. For more information, see the
EFI_BOOT_SERVICES.RegisterProtocolNotify() function description.

Status Codes Returned

EFI_SUCCESS The protocol interface was installed.

EFI_OUT_OF_RESOURCES Space for a new handle could not be allocated.

EFI_INVALID_PARAMETER Handle is NULL

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER InterfaceType is not

EFI_NATIVE_INTERFACE.

EFI_INVALID_PARAMETER Protocol is already installed on the handle

specified by Handle.
168 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.UninstallProtocolInterface()

Summary
Removes a protocol interface from a device handle. It is recommended that
UninstallMultipleProtocolInterfaces() be used in place of
UninstallProtocolInterface().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UNINSTALL_PROTOCOL_INTERFACE) (
 IN EFI_HANDLE Handle,
 IN EFI_GUID *Protocol,
 IN VOID *Interface
);

Parameters
Handle The handle on which the interface was installed. If Handle is

not a valid handle, then EFI_INVALID_PARAMETER is
returned. Type EFI_HANDLE is defined in the
EFI_BOOT_SERVICES.InstallProtocolInterface(
) function description.

Protocol The numeric ID of the interface. It is the caller’s responsibility to
pass in a valid GUID. See “Wired For Management Baseline”
for a description of valid GUID values. Type EFI_GUID is
defined in the InstallProtocolInterface() function
description.

Interface A pointer to the interface. NULL can be used if a structure is not
associated with Protocol.

Description
The UninstallProtocolInterface() function removes a protocol interface from the
handle on which it was previously installed. The Protocol and Interface values define the
protocol interface to remove from the handle.

The caller is responsible for ensuring that there are no references to a protocol interface that has been
removed. In some cases, outstanding reference information is not available in the protocol, so the
protocol, once added, cannot be removed. Examples include Console I/O, Block I/O, Disk I/O, and
(in general) handles to device protocols.

If the last protocol interface is removed from a handle, the handle is freed and is no longer valid.

EFI 1.10 Extension
The extension to this service directly addresses the limitations described in the section above. There
may be some drivers that are currently consuming the protocol interface that needs to be uninstalled,
so it may be dangerous to just blindly remove a protocol interface from the system. Since the usage
of protocol interfaces is now being tracked for components that use the
Version 2.5 April, 2015 169

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.OpenProtocol() and
EFI_BOOT_SERVICES.CloseProtocol() boot services, a safe version of this function can
be implemented. Before the protocol interface is removed, an attempt is made to force all the drivers
that are consuming the protocol interface to stop consuming that protocol interface. This is done by
calling the boot service EFI_BOOT_SERVICES.DisconnectController() for the driver
that currently have the protocol interface open with an attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER or EFI_OPEN_PROTOCOL_BY_DRIVER |
EFI_OPEN_PROTOCOL_EXCLUSIVE.

If the disconnect succeeds, then those agents will have called the boot service
EFI_BOOT_SERVICES.CloseProtocol() to release the protocol interface. Lastly, all of the
agents that have the protocol interface open with an attribute of
EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL, or EFI_OPEN_PROTOCOL_TEST_PROTOCOL are
closed. If there are any agents remaining that still have the protocol interface open, the protocol
interface is not removed from the handle and EFI_ACCESS_DENIED is returned. In addition, all
of the drivers that were disconnected with the boot service DisconnectController() earlier,
are reconnected with the boot service EFI_BOOT_SERVICES.ConnectController(). If
there are no agents remaining that are consuming the protocol interface, then the protocol interface is
removed from the handle as described above.

Status Codes Returned

EFI_SUCCESS The interface was removed.

EFI_NOT_FOUND The interface was not found.

EFI_ACCESS_DENIED The interface was not removed because the interface is
still being used by a driver.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER Protocol is NULL.
170 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.ReinstallProtocolInterface()

Summary
Reinstalls a protocol interface on a device handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_REINSTALL_PROTOCOL_INTERFACE) (
 IN EFI_HANDLE Handle,
 IN EFI_GUID *Protocol,
 IN VOID *OldInterface,
 IN VOID *NewInterface
);

Parameters
Handle Handle on which the interface is to be reinstalled. If Handle is

not a valid handle, then EFI_INVALID_PARAMETER is
returned. Type EFI_HANDLE is defined in the
EFI_BOOT_SERVICES.InstallProtocolInterface(
) function description.

Protocol The numeric ID of the interface. It is the caller’s responsibility to
pass in a valid GUID. See “Wired For Management Baseline” for
a description of valid GUID values. Type EFI_GUID is defined
in the InstallProtocolInterface() function
description.

OldInterface A pointer to the old interface. NULL can be used if a structure is
not associated with Protocol.

NewInterface A pointer to the new interface. NULL can be used if a structure is
not associated with Protocol.

Description
The ReinstallProtocolInterface() function reinstalls a protocol interface on a device
handle. The OldInterface for Protocol is replaced by the NewInterface.
NewInterface may be the same as OldInterface. If it is, the registered protocol notifies
occur for the handle without replacing the interface on the handle.

As with InstallProtocolInterface(), any process that has registered to wait for the
installation of the interface is notified.

The caller is responsible for ensuring that there are no references to the OldInterface that is
being removed.

EFI 1.10 Extension
The extension to this service directly addresses the limitations described in the section above. There
may be some number of drivers currently consuming the protocol interface that is being reinstalled.
In this case, it may be dangerous to replace a protocol interface in the system. It could result in an
Version 2.5 April, 2015 171

Unified Extensible Firmware Interface Specification
unstable state, because a driver may attempt to use the old protocol interface after a new one has
been reinstalled. Since the usage of protocol interfaces is now being tracked for components that use
the EFI_BOOT_SERVICES.OpenProtocol() and
EFI_BOOT_SERVICES.CloseProtocol() boot services, a safe version of this function can
be implemented.

When this function is called, a call is first made to the boot service
UninstallProtocolInterface(). This will guarantee that all of the agents are currently
consuming the protocol interface OldInterface will stop using OldInterface. If
UninstallProtocolInterface() returns EFI_ACCESS_DENIED, then this function
returns EFI_ACCESS_DENIED, OldInterface remains on Handle, and the protocol notifies
are not processed because NewInterface was never installed.

If UninstallProtocolInterface() succeeds, then a call is made to the boot service
EFI_BOOT_SERVICES.InstallProtocolInterface() to put the NewInterface onto
Handle.

Finally, the boot service EFI_BOOT_SERVICES.ConnectController() is called so all
agents that were forced to release OldInterface with UninstallProtocolInterface()
can now consume the protocol interface NewInterface that was installed with
InstallProtocolInterface(). After OldInterface has been replaced with
NewInterface, any process that has registered to wait for the installation of the interface is
notified.

Status Codes Returned

EFI_SUCCESS The protocol interface was reinstalled.

EFI_NOT_FOUND The OldInterface on the handle was not found.

EFI_ACCESS_DENIED The protocol interface could not be reinstalled, because

OldInterface is still being used by a driver that will not release

it.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER Protocol is NULL.
172 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.RegisterProtocolNotify()

Summary
Creates an event that is to be signaled whenever an interface is installed for a specified protocol.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_REGISTER_PROTOCOL_NOTIFY) (
 IN EFI_GUID *Protocol,
 IN EFI_EVENT Event,
 OUT VOID **Registration
);

Parameters
Protocol The numeric ID of the protocol for which the event is to be

registered. Type EFI_GUID is defined in the
EFI_BOOT_SERVICES.InstallProtocolInterface(
) function description.

Event Event that is to be signaled whenever a protocol interface is
registered for Protocol. The type EFI_EVENT is defined in
the CreateEvent() function description. The same
EFI_EVENT may be used for multiple protocol notify
registrations.

Registration A pointer to a memory location to receive the registration value.
This value must be saved and used by the notification function of
Event to retrieve the list of handles that have added a protocol
interface of type Protocol.

Description
The RegisterProtocolNotify() function creates an event that is to be signaled whenever a
protocol interface is installed for Protocol by InstallProtocolInterface() or
EFI_BOOT_SERVICES.ReinstallProtocolInterface().

Once Event has been signaled, the EFI_BOOT_SERVICES.LocateHandle() function can be
called to identify the newly installed, or reinstalled, handles that support Protocol. The
Registration parameter in EFI_BOOT_SERVICES.RegisterProtocolNotify()
corresponds to the SearchKey parameter in LocateHandle(). Note that the same handle may
be returned multiple times if the handle reinstalls the target protocol ID multiple times. This is
typical for removable media devices, because when such a device reappears, it will reinstall the
Block I/O protocol to indicate that the device needs to be checked again. In response, layered Disk
I/O and Simple File System protocols may then reinstall their protocols to indicate that they can be
re-checked, and so forth.
Version 2.5 April, 2015 173

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS The notification event has been registered.

EFI_OUT_OF_RESOURCES Space for the notification event could not be allocated.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER Event is NULL.

EFI_INVALID_PARAMETER Registration is NULL.
174 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.LocateHandle()

Summary
Returns an array of handles that support a specified protocol.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_LOCATE_HANDLE) (
 IN EFI_LOCATE_SEARCH_TYPE SearchType,
 IN EFI_GUID *Protocol OPTIONAL,
 IN VOID *SearchKey OPTIONAL,
 IN OUT UINTN *BufferSize,
 OUT EFI_HANDLE *Buffer
);

Parameters
SearchType Specifies which handle(s) are to be returned. Type

EFI_LOCATE_SEARCH_TYPE is defined in “Related
Definitions.”

Protocol Specifies the protocol to search by. This parameter is only valid
if SearchType is ByProtocol. Type EFI_GUID is defined
in the
EFI_BOOT_SERVICES.InstallProtocolInterface(
) function description.

SearchKey Specifies the search key. This parameter is ignored if
SearchType is AllHandles or ByProtocol. If
SearchType is ByRegisterNotify, the parameter must be
the Registration value returned by function
EFI_BOOT_SERVICES.RegisterProtocolNotify().

BufferSize On input, the size in bytes of Buffer. On output, the size in
bytes of the array returned in Buffer (if the buffer was large
enough) or the size, in bytes, of the buffer needed to obtain the
array (if the buffer was not large enough).

Buffer The buffer in which the array is returned. Type EFI_HANDLE is
defined in the InstallProtocolInterface() function
description.

Related Definitions
//***
// EFI_LOCATE_SEARCH_TYPE
//***
typedef enum {
 AllHandles,
 ByRegisterNotify,
Version 2.5 April, 2015 175

Unified Extensible Firmware Interface Specification
 ByProtocol
} EFI_LOCATE_SEARCH_TYPE;

AllHandles Protocol and SearchKey are ignored and the function
returns an array of every handle in the system.

ByRegisterNotify SearchKey supplies the Registration value returned by
EFI_BOOT_SERVICES.RegisterProtocolNotify().
The function returns the next handle that is new for the
registration. Only one handle is returned at a time, starting with
the first, and the caller must loop until no more handles are
returned. Protocol is ignored for this search type.

ByProtocol All handles that support Protocol are returned. SearchKey
is ignored for this search type.

Description
The LocateHandle() function returns an array of handles that match the SearchType request.
If the input value of BufferSize is too small, the function returns EFI_BUFFER_TOO_SMALL
and updates BufferSize to the size of the buffer needed to obtain the array.

Status Codes Returned

EFI_SUCCESS The array of handles was returned.

EFI_NOT_FOUND No handles match the search.

EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize
has been updated with the size needed to complete the
request.

EFI_INVALID_PARAMETER SearchType is not a member of

EFI_LOCATE_SEARCH_TYPE.

EFI_INVALID_PARAMETER SearchType is ByRegisterNotify and

SearchKey is NULL.

EFI_INVALID_PARAMETER SearchType is ByProtocol and Protocol is

NULL.

EFI_INVALID_PARAMETER One or more matches are found and BufferSize is

NULL.

EFI_INVALID_PARAMETER BufferSize is large enough for the result and Buffer

is NULL.
176 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.HandleProtocol()

Summary
Queries a handle to determine if it supports a specified protocol.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HANDLE_PROTOCOL) (
 IN EFI_HANDLE Handle,
 IN EFI_GUID *Protocol,
 OUT VOID **Interface
);

Parameters
Handle The handle being queried. If Handle isNULL, then

EFI_INVALID_PARAMETER is returned. Type EFI_HANDLE
is defined in the
EFI_BOOT_SERVICES.InstallProtocolInterface(
) function description.

Protocol The published unique identifier of the protocol. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For
Management Baseline” for a description of valid GUID values.
Type EFI_GUID is defined in the
InstallProtocolInterface() function description.

Interface Supplies the address where a pointer to the corresponding
Protocol Interface is returned. NULL will be returned in
*Interface if a structure is not associated with Protocol.

Description
The HandleProtocol() function queries Handle to determine if it supports Protocol. If it
does, then on return Interface points to a pointer to the corresponding Protocol Interface.
Interface can then be passed to any protocol service to identify the context of the request.

EFI 1.10 Extension
The HandleProtocol() function is still available for use by old EFI applications and drivers.
However, all new applications and drivers should use
EFI_BOOT_SERVICES.OpenProtocol() in place of HandleProtocol(). The following
code fragment shows a possible implementation of HandleProtocol() using
OpenProtocol(). The variable EfiCoreImageHandle is the image handle of the EFI core.

EFI_STATUS
HandleProtocol (
 IN EFI_HANDLE Handle,
 IN EFI_GUID *Protocol,
 OUT VOID **Interface
Version 2.5 April, 2015 177

Unified Extensible Firmware Interface Specification
)
{
 return OpenProtocol (
 Handle,
 Protocol,
 Interface,
 EfiCoreImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL
);
}

Status Codes Returned

EFI_SUCCESS The interface information for the specified protocol was returned.

EFI_UNSUPPORTED The device does not support the specified protocol.

EFI_INVALID_PARAMETER Handle is NULL..

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER Interface is NULL.
178 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.LocateDevicePath()

Summary
Locates the handle to a device on the device path that supports the specified protocol.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_LOCATE_DEVICE_PATH) (
 IN EFI_GUID *Protocol,
 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath,
 OUT EFI_HANDLE *Device
);

Parameters
Protocol The protocol to search for. Type EFI_GUID is defined in the

EFI_BOOT_SERVICES.InstallProtocolInterface(
) function description.

DevicePath On input, a pointer to a pointer to the device path. On output, the
device path pointer is modified to point to the remaining part of
the device path—that is, when the function finds the closest
handle, it splits the device path into two parts, stripping off the
front part, and returning the remaining portion.
EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

 Device A pointer to the returned device handle. Type EFI_HANDLE is
defined in the InstallProtocolInterface() function
description.

Description
The LocateDevicePath() function locates all devices on DevicePath that support
Protocol and returns the handle to the device that is closest to DevicePath. DevicePath is
advanced over the device path nodes that were matched.

This function is useful for locating the proper instance of a protocol interface to use from a logical
parent device driver. For example, a target device driver may issue the request with its own device
path and locate the interfaces to perform I/O on its bus. It can also be used with a device path that
contains a file path to strip off the file system portion of the device path, leaving the file path and
handle to the file system driver needed to access the file.

If the handle for DevicePath supports the protocol (a direct match), the resulting device path is
advanced to the device path terminator node. If DevicePath is a multi-instance device path, the
function will operate on the first instance.

Status Codes Returned

EFI_SUCCESS The resulting handle was returned.

EFI_NOT_FOUND No handles matched the search.
Version 2.5 April, 2015 179

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER Protocol is NULL

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI_INVALID_PARAMETER A handle matched the search and Device is NULL.
180 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.OpenProtocol()

Summary
Queries a handle to determine if it supports a specified protocol. If the protocol is supported by the
handle, it opens the protocol on behalf of the calling agent. This is an extended version of the EFI
boot service EFI_BOOT_SERVICES.HandleProtocol().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_OPEN_PROTOCOL) (
 IN EFI_HANDLE Handle,
 IN EFI_GUID *Protocol,
 OUT VOID **Interface OPTIONAL,
 IN EFI_HANDLE AgentHandle,
 IN EFI_HANDLE ControllerHandle,
 IN UINT32 Attributes
);

Parameters
Handle The handle for the protocol interface that is being opened.

Protocol The published unique identifier of the protocol. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For
Management Baseline” for a description of valid GUID values.

Interface Supplies the address where a pointer to the corresponding
Protocol Interface is returned. NULL will be returned in
*Interface if a structure is not associated with Protocol.
This parameter is optional, and will be ignored if Attributes
is EFI_OPEN_PROTOCOL_TEST_PROTOCOL.

AgentHandle The handle of the agent that is opening the protocol interface
specified by Protocol and Interface. For agents that
follow the UEFI Driver Model, this parameter is the handle that
contains the EFI_DRIVER_BINDING_PROTOCOL instance
that is produced by the UEFI driver that is opening the protocol
interface. For UEFI applications, this is the image handle of the
UEFI application that is opening the protocol interface. For
applications that use HandleProtocol() to open a protocol
interface, this parameter is the image handle of the EFI firmware.

ControllerHandle If the agent that is opening a protocol is a driver that follows the
UEFI Driver Model, then this parameter is the controller handle
that requires the protocol interface. If the agent does not follow
the UEFI Driver Model, then this parameter is optional and may
be NULL.

Attributes The open mode of the protocol interface specified by Handle
and Protocol. See "Related Definitions" for the list of legal
attributes.
Version 2.5 April, 2015 181

Unified Extensible Firmware Interface Specification
Description
This function opens a protocol interface on the handle specified by Handle for the protocol
specified by Protocol. The first three parameters are the same as
EFI_BOOT_SERVICES.HandleProtocol(). The only difference is that the agent that is
opening a protocol interface is tracked in an EFI's internal handle database. The tracking is used by
the UEFI Driver Model, and also used to determine if it is safe to uninstall or reinstall a protocol
interface.

The agent that is opening the protocol interface is specified by AgentHandle,
ControllerHandle, and Attributes. If the protocol interface can be opened, then
AgentHandle, ControllerHandle, and Attributes are added to the list of agents that are
consuming the protocol interface specified by Handle and Protocol. In addition, the protocol
interface is returned in Interface, and EFI_SUCCESS is returned. If Attributes is
TEST_PROTOCOL, then Interface is optional, and can be NULL.

There are a number of reasons that this function call can return an error. If an error is returned, then
AgentHandle, ControllerHandle, and Attributes are not added to the list of agents
consuming the protocol interface specified by Handle and Protocol, and Interface is
returned unmodified. The following is the list of conditions that must be checked before this
function can return EFI_SUCCESS.

If Protocol is NULL, then EFI_INVALID_PARAMETER is returned.

If Interface is NULL and Attributes is not TEST_PROTOCOL, then
EFI_INVALID_PARAMETER is returned.

If Handle is NULL, then EFI_INVALID_PARAMETER is returned.

If Handle does not support Protocol, then EFI_UNSUPPORTED is returned.

If Attributes is not a legal value, then EFI_INVALID_PARAMETER is returned. The legal
values are listed in “Related Definitions.”

If Attributes is BY_CHILD_CONTROLLER, BY_DRIVER, EXCLUSIVE, or
BY_DRIVER|EXCULSIVE, and AgentHandle is NULL, then EFI_INVALID_PARAMETER is
returned.

If Attributes is BY_CHILD_CONTROLLER, BY_DRIVER, or BY_DRIVER|EXCULSIVE,
and ControllerHandle is NULL, then EFI_INVALID_PARAMETER is returned.

If Attributes is BY_CHILD_CONTROLLER and Handle is identical to
ControllerHandle, then EFI_INVALID_PARAMETER is returned.

If Attributes is BY_DRIVER , BY_DRIVER|EXCLUSIVE, or EXCLUSIVE, and there are any
items on the open list of the protocol interface with an attribute of EXCLUSIVE or
BY_DRIVER|EXCLUSIVE, then EFI_ACCESS_DENIED is returned.

If Attributes is BY_DRIVER, and there are any items on the open list of the protocol interface
with an attribute of BY_DRIVER, and AgentHandle is the same agent handle in the open list
item, then EFI_ALREADY_STARTED is returned.

If Attributes is BY_DRIVER, and there are any items on the open list of the protocol interface
with an attribute of BY_DRIVER, and AgentHandle is different than the agent handle in the open
list item, then EFI_ACCESS_DENIED is returned.
182 April, 2015 Version 2.5

Services — Boot Services
If Attributes is BY_DRIVER|EXCLUSIVE, and there are any items on the open list of the
protocol interface with an attribute of BY_DRIVER|EXCLUSIVE, and AgentHandle is the same
agent handle in the open list item, then EFI_ALREADY_STARTED is returned.

If Attributes is BY_DRIVER|EXCLUSIVE, and there are any items on the open list of the
protocol interface with an attribute of BY_DRIVER|EXCLUSIVE, and AgentHandle is different
than the agent handle in the open list item, then EFI_ACCESS_DENIED is returned.

If Attributes is BY_DRIVER|EXCLUSIVE or EXCLUSIVE, and there is an item on the open
list of the protocol interface with an attribute of BY_DRIVER, then the boot service
EFI_BOOT_SERVICES.DisconnectController() is called for the driver on the open list.
If there is an item in the open list of the protocol interface with an attribute of BY_DRIVER
remaining after the DisconnectController() call has been made, EFI_ACCESS_DENIED
is returned.

Related Definitions
#define EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL 0x00000001
#define EFI_OPEN_PROTOCOL_GET_PROTOCOL 0x00000002
#define EFI_OPEN_PROTOCOL_TEST_PROTOCOL 0x00000004
#define EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER 0x00000008
#define EFI_OPEN_PROTOCOL_BY_DRIVER 0x00000010
#define EFI_OPEN_PROTOCOL_EXCLUSIVE 0x00000020

The following is the list of legal values for the Attributes parameter, and how each value is
used.

BY_HANDLE_PROTOCOL Used in the implementation of
EFI_BOOT_SERVICES.HandleProtocol(). Since
EFI_BOOT_SERVICES.OpenProtocol() performs the
same function as HandleProtocol() with additional
functionality, HandleProtocol() can simply call
OpenProtocol() with this Attributes value.

GET_PROTOCOL Used by a driver to get a protocol interface from a handle. Care
must be taken when using this open mode because the driver that
opens a protocol interface in this manner will not be informed if
the protocol interface is uninstalled or reinstalled. The caller is
also not required to close the protocol interface with
EFI_BOOT_SERVICES.CloseProtocol().

TEST_PROTOCOL Used by a driver to test for the existence of a protocol interface on
a handle. Interface is optional for this attribute value, so it is
ignored, and the caller should only use the return status code.
The caller is also not required to close the protocol interface with
CloseProtocol().

BY_CHILD_CONTROLLERUsed by bus drivers to show that a protocol interface is being
used by one of the child controllers of a bus. This information is
used by the boot service
EFI_BOOT_SERVICES.ConnectController() to
recursively connect all child controllers and by the boot service
Version 2.5 April, 2015 183

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.DisconnectController() to
get the list of child controllers that a bus driver created.

BY_DRIVER Used by a driver to gain access to a protocol interface. When this
mode is used, the driver’s Stop() function will be called by
EFI_BOOT_SERVICES.DisconnectController() if
the protocol interface is reinstalled or uninstalled. Once a
protocol interface is opened by a driver with this attribute, no
other drivers will be allowed to open the same protocol interface
with the BY_DRIVER attribute.

BY_DRIVER|EXCLUSIVEUsed by a driver to gain exclusive access to a protocol interface.
If any other drivers have the protocol interface opened with an
attribute of BY_DRIVER, then an attempt will be made to remove
them with DisconnectController().

EXCLUSIVE Used by applications to gain exclusive access to a protocol
interface. If any drivers have the protocol interface opened with
an attribute of BY_DRIVER, then an attempt will be made to
remove them by calling the driver’s Stop() function.

Status Codes Returned

EFI_SUCCESS An item was added to the open list for the protocol interface, and the

protocol interface was returned in Interface.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER Interface is NULL, and Attributes is not

TEST_PROTOCOL.

EFI_INVALID_PARAMETER Handle is NULL..

EFI_UNSUPPORTED Handle does not support Protocol.

EFI_INVALID_PARAMETER Attributes is not a legal value.

EFI_INVALID_PARAMETER Attributes is BY_CHILD_CONTROLLER and AgentHandle

is NULL..

EFI_INVALID_PARAMETER Attributes is BY_DRIVER and AgentHandle is NULL.

EFI_INVALID_PARAMETER Attributes is BY_DRIVER|EXCLUSIVE and AgentHandle

is NULL.

EFI_INVALID_PARAMETER Attributes is EXCLUSIVE and AgentHandle is NULL.

EFI_INVALID_PARAMETER Attributes is BY_CHILD_CONTROLLER and

ControllerHandle is NULL.

EFI_INVALID_PARAMETER Attributes is BY_DRIVER and ControllerHandle is

NULL.

EFI_INVALID_PARAMETER Attributes is BY_DRIVER|EXCLUSIVE and

ControllerHandle is NULL.

EFI_INVALID_PARAMETER Attributes is BY_CHILD_CONTROLLER and Handle is

identical to ControllerHandle.
184 April, 2015 Version 2.5

Services — Boot Services
Examples
EFI_BOOT_SERVICES *gBS;
EFI_HANDLE ImageHandle;
EFI_DRIVER_BINDING_PROTOCOL *This;
IN EFI_HANDLE ControllerHandle,
extern EFI_GUID gEfiXyzIoProtocol;
EFI_XYZ_IO_PROTOCOL *XyzIo;
EFI_STATUS Status;

//
// EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL example
// Retrieves the XYZ I/O Protocol instance from ControllerHandle
// The application that is opening the protocol is identified by ImageHandle
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 ImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL

EFI_ACCESS_DENIED Attributes is BY_DRIVER and there is an item on the open list

with an attribute of BY_DRIVER|EXCLUSIVE or EXCLUSIVE.

EFI_ACCESS_DENIED Attributes is BY_DRIVER|EXCLUSIVE and there is an item on

the open list with an attribute of EXCLUSIVE.

EFI_ACCESS_DENIED Attributes is EXCLUSIVE and there is an item on the open list

with an attribute of BY_DRIVER|EXCLUSIVE or EXCLUSIVE.

EFI_ALREADY_STARTED Attributes is BY_DRIVER and there is an item on the open list

with an attribute of BY_DRIVER whose agent handle is the same as

AgentHandle.

EFI_ACCESS_DENIED Attributes is BY_DRIVER and there is an item on the open list

with an attribute of BY_DRIVER whose agent handle is different than

AgentHandle.

EFI_ALREADY_STARTED Attributes is BY_DRIVER|EXCLUSIVE and there is an item on

the open list with an attribute of BY_DRIVER|EXCLUSIVE whose

agent handle is the same as AgentHandle.

EFI_ACCESS_DENIED Attributes is BY_DRIVER|EXCLUSIVE and there is an item on

the open list with an attribute of BY_DRIVER|EXCLUSIVE whose

agent handle is different than AgentHandle.

EFI_ACCESS_DENIED Attributes is BY_DRIVER|EXCLSUIVE or EXCLUSIVE and

there are items in the open list with an attribute of BY_DRIVER that

could not be removed when

EFI_BOOT_SERVICES.DisconnectController() was

called for that open item.
Version 2.5 April, 2015 185

Unified Extensible Firmware Interface Specification
);

//
// EFI_OPEN_PROTOCOL_GET_PROTOCOL example
// Retrieves the XYZ I/O Protocol instance from ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);

//
// EFI_OPEN_PROTOCOL_TEST_PROTOCOL example
// Tests to see if the XYZ I/O Protocol is present on ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 NULL,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_TEST_PROTOCOL
);

//
// EFI_OPEN_PROTOCOL_BY_DRIVER example
// Opens the XYZ I/O Protocol on ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
// EFI_ALREADY_STARTED : The protocol is already opened by the driver
// EFI_ACCESS_DENIED : The protocol is managed by a different driver
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_BY_DRIVER
186 April, 2015 Version 2.5

Services — Boot Services
);

//
// EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE example
// Opens the XYZ I/O Protocol on ControllerHandle
// The driver that is opening the protocol is identified by the
// Driver Binding Protocol instance This. This->DriverBindingHandle
// identifies the agent that is opening the protocol interface, and it
// is opening this protocol on behalf of ControllerHandle.
// Possible return status codes:
// EFI_SUCCESS : The protocol was opened and returned in XyzIo. If /
/ a different driver had the XYZ I/O Protocol opened
// BY_DRIVER, then that driver was disconnected to
// allow this driver to open the XYZ I/O Protocol.
// EFI_UNSUPPORTED : The protocol is not present on ControllerHandle
// EFI_ALREADY_STARTED : The protocol is already opened by the driver
// EFI_ACCESS_DENIED : The protocol is managed by a different driver that /
/ already has the protocol opened with an EXCLUSIVE //
attribute.
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE
);
Version 2.5 April, 2015 187

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.CloseProtocol()

Summary
Closes a protocol on a handle that was opened using
EFI_BOOT_SERVICES.OpenProtocol().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CLOSE_PROTOCOL) (
 IN EFI_HANDLE Handle,
 IN EFI_GUID *Protocol,
 IN EFI_HANDLE AgentHandle,
 IN EFI_HANDLE ControllerHandle
);

Parameters
Handle The handle for the protocol interface that was previously opened

with OpenProtocol(), and is now being closed.

Protocol The published unique identifier of the protocol. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For
Management Baseline” for a description of valid GUID values.

AgentHandle The handle of the agent that is closing the protocol interface. For
agents that follow the UEFI Driver Model, this parameter is the
handle that contains the EFI_DRIVER_BINDING_PROTOCOL
instance that is produced by the UEFI driver that is opening the
protocol interface. For UEFI applications, this is the image
handle of the UEFI application. For applications that used
EFI_BOOT_SERVICES.HandleProtocol() to open the
protocol interface, this will be the image handle of the EFI
firmware.

ControllerHandle If the agent that opened a protocol is a driver that follows the
UEFI Driver Model, then this parameter is the controller handle
that required the protocol interface. If the agent does not follow
the UEFI Driver Model, then this parameter is optional and may
be NULL.

Description
This function updates the handle database to show that the protocol instance specified by Handle
and Protocol is no longer required by the agent and controller specified AgentHandle and
ControllerHandle.

If Handle or AgentHandle is NULL, then EFI_INVALID_PARAMETER is returned. If
ControllerHandle is not NULL, and ControllerHandle is NULL, then
EFI_INVALID_PARAMETER is returned. If Protocol is NULL, then
EFI_INVALID_PARAMETER is returned.
188 April, 2015 Version 2.5

Services — Boot Services
If the interface specified by Protocol is not supported by the handle specified by Handle, then
EFI_NOT_FOUND is returned.

If the interface specified by Protocol is supported by the handle specified by Handle, then a
check is made to see if the protocol instance specified by Protocol and Handle was opened by
AgentHandle and ControllerHandle with EFI_BOOT_SERVICES.OpenProtocol().
If the protocol instance was not opened by AgentHandle and ControllerHandle, then
EFI_NOT_FOUND is returned. If the protocol instance was opened by AgentHandle and
ControllerHandle, then all of those references are removed from the handle database, and
EFI_SUCCESS is returned.

Status Codes Returned

Examples
EFI_BOOT_SERVICES *gBS;
EFI_HANDLE ImageHandle;
EFI_DRIVER_BINDING_PROTOCOL *This;
IN EFI_HANDLE ControllerHandle,
extern EFI_GUID gEfiXyzIoProtocol;
EFI_STATUS Status;

//
// Close the XYZ I/O Protocol that was opened on behalf of ControllerHandle
//
Status = gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 This->DriverBindingHandle,
 ControllerHandle
);

//
// Close the XYZ I/O Protocol that was opened with BY_HANDLE_PROTOCOL
//
Status = gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 ImageHandle,
 NULL
);

EFI_SUCCESS The protocol instance was closed.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER AgentHandle is NULL.

EFI_INVALID_PARAMETER ControllerHandle is not NULL and

ControllerHandle is NULL.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_NOT_FOUND Handle does not support the protocol specified by Protocol.

EFI_NOT_FOUND The protocol interface specified by Handle and Protocol is

not currently open by AgentHandle and

ControllerHandle.
Version 2.5 April, 2015 189

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.OpenProtocolInformation()

Summary
Retrieves the list of agents that currently have a protocol interface opened.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_OPEN_PROTOCOL_INFORMATION) (
 IN EFI_HANDLE Handle,
 IN EFI_GUID *Protocol,
 OUT EFI_OPEN_PROTOCOL_INFORMATION_ENTRY **EntryBuffer,
 OUT UINTN *EntryCount
);

Parameters
Handle The handle for the protocol interface that is being queried.

Protocol The published unique identifier of the protocol. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For
Management Baseline” for a description of valid GUID values.

EntryBuffer A pointer to a buffer of open protocol information in the form of
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY structures.
See "Related Definitions" for the declaration of this type. The
buffer is allocated by this service, and it is the caller's
responsibility to free this buffer when the caller no longer
requires the buffer's contents.

EntryCount A pointer to the number of entries in EntryBuffer.

Related Definitions
typedef struct {
 EFI_HANDLE AgentHandle;
 EFI_HANDLE ControllerHandle;
 UINT32 Attributes;
 UINT32 OpenCount;
} EFI_OPEN_PROTOCOL_INFORMATION_ENTRY;

Description
This function allocates and returns a buffer of EFI_OPEN_PROTOCOL_INFORMATION_ENTRY
structures. The buffer is returned in EntryBuffer, and the number of entries is returned in
EntryCount.

If the interface specified by Protocol is not supported by the handle specified by Handle, then
EFI_NOT_FOUND is returned.

If the interface specified by Protocol is supported by the handle specified by Handle, then
EntryBuffer is allocated with the boot service EFI_BOOT_SERVICES.AllocatePool(),
190 April, 2015 Version 2.5

Services — Boot Services
and EntryCount is set to the number of entries in EntryBuffer. Each entry of
EntryBuffer is filled in with the image handle, controller handle, and attributes that were passed
to EFI_BOOT_SERVICES.OpenProtocol() when the protocol interface was opened. The
field OpenCount shows the number of times that the protocol interface has been opened by the
agent specified by ImageHandle, ControllerHandle, and Attributes. After the contents
of EntryBuffer have been filled in, EFI_SUCCESS is returned. It is the caller’s responsibility
to call EFI_BOOT_SERVICES.FreePool() on EntryBuffer when the caller no longer
required the contents of EntryBuffer.

If there are not enough resources available to allocate EntryBuffer, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

Examples
See example in the EFI_BOOT_SERVICES.LocateHandleBuffer() function description
for an example on how LocateHandleBuffer(),
EFI_BOOT_SERVICES.ProtocolsPerHandle(), OpenProtocol(), and
EFI_BOOT_SERVICES.OpenProtocolInformation() can be used to traverse the entire
handle database.

EFI_SUCCESS The open protocol information was returned in EntryBuffer,

and the number of entries was returned EntryCount.

EFI_NOT_FOUND Handle does not support the protocol specified by Protocol.

EFI_OUT_OF_RESOURCES There are not enough resources available to allocate

EntryBuffer.
Version 2.5 April, 2015 191

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.ConnectController()

Summary
Connects one or more drivers to a controller.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_CONNECT_CONTROLLER) (

 IN EFI_HANDLE ControllerHandle,

 IN EFI_HANDLE *DriverImageHandle OPTIONAL,

 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL,

 IN BOOLEAN Recursive

);

Parameters
ControllerHandle The handle of the controller to which driver(s) are to be

connected.

DriverImageHandle A pointer to an ordered list handles that support the
EFI_DRIVER_BINDING_PROTOCOL. The list is terminated
by a NULL handle value. These handles are candidates for the
Driver Binding Protocol(s) that will manage the controller
specified by ControllerHandle. This is an optional
parameter that may be NULL. This parameter is typically used to
debug new drivers.

RemainingDevicePathA pointer to the device path that specifies a child of the controller
specified by ControllerHandle. This is an optional
parameter that may be NULL. If it is NULL, then handles for all
the children of ControllerHandle will be created. This
parameter is passed unchanged to the Supported() and
Start() services of the
EFI_DRIVER_BINDING_PROTOCOL attached to
ControllerHandle.

Recursive If TRUE, then ConnectController() is called recursively
until the entire tree of controllers below the controller specified
by ControllerHandle have been created. If FALSE, then
the tree of controllers is only expanded one level.

Description
This function connects one or more drivers to the controller specified by ControllerHandle. If
ControllerHandle isNULL, then EFI_INVALID_PARAMETER is returned. If there are no
EFI_DRIVER_BINDING_PROTOCOL instances present in the system, then return
EFI_NOT_FOUND. If there are not enough resources available to complete this function, then
EFI_OUT_OF_RESOURCES is returned.
192 April, 2015 Version 2.5

Services — Boot Services
If the platform supports user authentication, as specified in Section 34, the device path associated
with ControllerHandle is checked against the connect permissions in the current user profile.
If forbidden, then EFI_SECURITY_VIOLATION is returned. Then, before connecting any of the
DriverImageHandles, the device path associated with the handle is checked against the
connect permissions in the current user profile.

If Recursive is FALSE, then this function returns after all drivers have been connected to
ControllerHandle. If Recursive is TRUE, then ConnectController() is called
recursively on all of the child controllers of ControllerHandle. The child controllers can be
identified by searching the handle database for all the controllers that have opened
ControllerHandle with an attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

This functions uses five precedence rules when deciding the order that drivers are tested against
controllers. These five rules from highest precedence to lowest precedence are as follows:

1. Context Override : DriverImageHandle is an ordered list of handles that support the
EFI_DRIVER_BINDING_PROTOCOL. The highest priority image handle is the first element
of the list, and the lowest priority image handle is the last element of the list. The list is
terminated with a NULL image handle.

2. Platform Driver Override : If an EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL
instance is present in the system, then the GetDriver() service of this protocol is used to
retrieve an ordered list of image handles for ControllerHandle. From this list, the image
handles found in rule (1) above are removed. The first image handle returned from
GetDriver() has the highest precedence, and the last image handle returned from
GetDriver() has the lowest precedence. The ordered list is terminated when
GetDriver() returns EFI_NOT_FOUND. It is legal for no image handles to be returned by
GetDriver(). There can be at most a single instance in the system of the
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL. If there is more than one, then the
system behavior is not deterministic.

3. Driver Family Override Search : The list of available driver image handles can be found by
using the boot service EFI_BOOT_SERVICES.LocateHandle()with a SearchType of
ByProtocol for the GUID of the EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL. From
this list, the image handles found in rules (1), and (2) above are removed. The remaining image
handles are sorted from highest to lowest based on the value returned from the GetVersion()
function of the EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL associated with each image
handle.

4. Bus Specific Driver Override : If there is an instance of the
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL attached to
ControllerHandle, then the GetDriver() service of this protocol is used to retrieve an
ordered list of image handle for ControllerHandle. From this list, the image handles
found in rules (1), (2), and (3) above are removed. The first image handle returned from
GetDriver() has the highest precedence, and the last image handle returned from
GetDriver() has the lowest precedence. The ordered list is terminated when
GetDriver() returns EFI_NOT_FOUND. It is legal for no image handles to be returned by
GetDriver().

5. Driver Binding Search : The list of available driver image handles can be found by using the
boot service EFI_BOOT_SERVICES.LocateHandle() with a SearchType of
ByProtocol for the GUID of the EFI_DRIVER_BINDING_PROTOCOL. From this list, the
image handles found in rules (1), (2), (3), and (4) above are removed. The remaining image
Version 2.5 April, 2015 193

Unified Extensible Firmware Interface Specification
handles are sorted from highest to lowest based on the Version field of the
EFI_DRIVER_BINDING_PROTOCOL instance associated with each image handle.

Each of the five groups of image handles listed above is tested against ControllerHandle in
order by using the EFI_DRIVER_BINDING_PROTOCOL service Supported().
RemainingDevicePath is passed into Supported() unmodified. The first image handle
whose Supported() service returns EFI_SUCCESS is marked so the image handle will not be
tried again during this call to ConnectController(). Then, the Start() service of the
EFI_DRIVER_BINDING_PROTOCOL is called for ControllerHandle. Once again,
RemainingDevicePath is passed in unmodified. Every time Supported() returns
EFI_SUCCESS, the search for drivers restarts with the highest precedence image handle. This
process is repeated until no image handles pass the Supported() check.

If at least one image handle returned EFI_SUCCESS from its Start() service, then
EFI_SUCCESS is returned.

If no image handles returned EFI_SUCCESS from their Start() service then EFI_NOT_FOUND
is returned unless RemainingDevicePath is not NULL, and RemainingDevicePath is an
End Node. In this special case, EFI_SUCCESS is returned because it is not an error to fail to start a
child controller that is specified by an End Device Path Node.

Status Codes Returned

Examples
//
// Connect All Handles Example
// The following example recursively connects all controllers in a platform.
//

EFI_STATUS Status;
EFI_BOOT_SERVICES *gBS;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN HandleIndex;

//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (

EFI_SUCCESS One or more drivers were connected to ControllerHandle.

EFI_SUCCESS No drivers were connected to ControllerHandle, but

RemainingDevicePath is not NULL, and it is an End

Device Path Node.

EFI_INVALID_PARAMETER ControllerHandle is NULL.

EFI_NOT_FOUND There are no EFI_DRIVER_BINDING_PROTOCOL

instances present in the system.

EFI_NOT_FOUND No drivers were connected to ControllerHandle.

EFI_SECURITY_VIOLATION The user has no permission to start UEFI device drivers on the

device path associated with the ControllerHandle or

specified by the RemainingDevicePath.
194 April, 2015 Version 2.5

Services — Boot Services
 AllHandles,
 NULL,
 NULL,
 &HandleCount,
 &HandleBuffer
);
if (!EFI_ERROR (Status)) {
 for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {
 Status = gBS->ConnectController (
 HandleBuffer[HandleIndex],
 NULL,
 NULL,
 TRUE
);
 }
 gBS->FreePool(HandleBuffer);
}

//
// Connect Device Path Example
// The following example walks the device path nodes of a device path, and
// connects only the drivers required to force a handle with that device path
// to be present in the handle database. This algorithms guarantees that
// only the minimum number of devices and drivers are initialized.
//

EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath;
EFI_HANDLE Handle;

do {
 //
 // Find the handle that best matches the Device Path. If it is only a
 // partial match the remaining part of the device path is returned in
 // RemainingDevicePath.
 //
 RemainingDevicePath = DevicePath;
 Status = gBS->LocateDevicePath (
 &gEfiDevicePathProtocolGuid,
 &RemainingDevicePath,
 &Handle
);
 if (EFI_ERROR(Status)) {
 return EFI_NOT_FOUND;
 }

 //
 // Connect all drivers that apply to Handle and RemainingDevicePath
 // If no drivers are connected Handle, then return EFI_NOT_FOUND
 // The Recursive flag is FALSE so only one level will be expanded.
 //
 Status = gBS->ConnectController (
 Handle,
 NULL,
 RemainingDevicePath,
 FALSE
);
 if (EFI_ERROR(Status)) {
 return EFI_NOT_FOUND;
 }
Version 2.5 April, 2015 195

Unified Extensible Firmware Interface Specification

 //
 // Loop until RemainingDevicePath is an empty device path
 //
} while (!IsDevicePathEnd (RemainingDevicePath));

//
// A handle with DevicePath exists in the handle database
//
return EFI_SUCCESS;
196 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.DisconnectController()

Summary
Disconnects one or more drivers from a controller.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_DISCONNECT_CONTROLLER) (

 IN EFI_HANDLE ControllerHandle,

 IN EFI_HANDLE DriverImageHandle OPTIONAL,

 IN EFI_HANDLE ChildHandle OPTIONAL

);

Parameters
ControllerHandle The handle of the controller from which driver(s) are to be

disconnected.

DriverImageHandle The driver to disconnect from ControllerHandle. If
DriverImageHandle is NULL, then all the drivers currently
managing ControllerHandle are disconnected from
ControllerHandle.

ChildHandle The handle of the child to destroy. If ChildHandle is NULL,
then all the children of ControllerHandle are destroyed
before the drivers are disconnected from ControllerHandle.

Description
This function disconnects one or more drivers from the controller specified by
ControllerHandle. If DriverImageHandle is NULL, then all of the drivers currently
managing ControllerHandle are disconnected from ControllerHandle. If
DriverImageHandle is not NULL, then only the driver specified by DriverImageHandle is
disconnected from ControllerHandle. If ChildHandle is NULL, then all of the children of
ControllerHandle are destroyed before the drivers are disconnected from
ControllerHandle. If ChildHandle is not NULL, then only the child controller specified by
ChildHandle is destroyed. If ChildHandle is the only child of ControllerHandle, then
the driver specified by DriverImageHandle will be disconnected from ControllerHandle.
A driver is disconnected from a controller by calling the Stop() service of the
EFI_DRIVER_BINDING_PROTOCOL. The EFI_DRIVER_BINDING_PROTOCOL is on the
driver image handle, and the handle of the controller is passed into the Stop() service. The list of
drivers managing a controller, and the list of children for a specific controller can be retrieved from
the handle database with the boot service
EFI_BOOT_SERVICES.OpenProtocolInformation(). If all the required drivers are
disconnected from ControllerHandle, then EFI_SUCCESS is returned.

If ControllerHandle is NULL, then EFI_INVALID_PARAMETER is returned. If no drivers
are managing ControllerHandle, then EFI_SUCCESS is returned. If
DriverImageHandle is not NULL, and DriverImageHandle is NULL, then
Version 2.5 April, 2015 197

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER is returned. If DriverImageHandle is not NULL, and
DriverImageHandle is not currently managing ControllerHandle, then EFI_SUCCESS
is returned. If ChildHandle is not NULL, and ChildHandle is NULL, then
EFI_INVALID_PARAMETER is returned. If there are not enough resources available to disconnect
drivers from ControllerHandle, then EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

Examples
//
// Disconnect All Handles Example
// The following example recursively disconnects all drivers from all
// controllers in a platform.
//

EFI_STATUS Status;
EFI_BOOT_SERVICES *gBS;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN HandleIndex;

//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (
 AllHandles,
 NULL,
 NULL,
 &HandleCount,
 &HandleBuffer
);
if (!EFI_ERROR (Status)) {
 for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {
 Status = gBS->DisconnectController (
 HandleBuffer[HandleIndex],
 NULL,

EFI_SUCCESS One or more drivers were disconnected from the controller.

EFI_SUCCESS On entry, no drivers are managing ControllerHandle.

EFI_SUCCESS DriverImageHandle is not NULL, and on entry DriverImageHandle
is not managing ControllerHandle.

EFI_INVALID_PARAMETER ControllerHandle is NULL.

EFI_INVALID_PARAMETER DriverImageHandle is not NULL, and it is not a valid

EFI_HANDLE.

EFI_INVALID_PARAMETER ChildHandle is not NULL, and it is not a valid

EFI_HANDLE.

EFI_OUT_OF_RESOURCES There are not enough resources available to disconnect any drivers

from ControllerHandle.

EFI_DEVICE_ERROR The controller could not be disconnected because of a device error.

EFI_INVALID_PARAMETER DriverImageHandle does not support the

EFI_DRIVER_BINDING_PROTOCOL.
198 April, 2015 Version 2.5

Services — Boot Services
 NULL
);
 }
 gBS->FreePool(HandleBuffer);
Version 2.5 April, 2015 199

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.ProtocolsPerHandle()

Summary
Retrieves the list of protocol interface GUIDs that are installed on a handle in a buffer allocated from
pool.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PROTOCOLS_PER_HANDLE) (
 IN EFI_HANDLE Handle,
 OUT EFI_GUID ***ProtocolBuffer,
 OUT UINTN *ProtocolBufferCount
);

Parameters
Handle The handle from which to retrieve the list of protocol interface

GUIDs.

ProtocolBuffer A pointer to the list of protocol interface GUID pointers that are
installed on Handle. This buffer is allocated with a call to the
Boot Service EFI_BOOT_SERVICES.AllocatePool(). It
is the caller's responsibility to call the Boot Service
EFI_BOOT_SERVICES.FreePool() when the caller no
longer requires the contents of ProtocolBuffer.

ProtocolBufferCountA pointer to the number of GUID pointers present in
ProtocolBuffer.

Description
The ProtocolsPerHandle() function retrieves the list of protocol interface GUIDs that are
installed on Handle. The list is returned in ProtocolBuffer, and the number of GUID pointers
in ProtocolBuffer is returned in ProtocolBufferCount.

If Handle is NULL or Handle is NULL, then EFI_INVALID_PARAMETER is returned.

If ProtocolBuffer is NULL, then EFI_INVALID_PAREMETER is returned.

If ProtocolBufferCount is NULL, then EFI_INVALID_PARAMETER is returned.

If there are not enough resources available to allocate ProtocolBuffer, then
EFI_OUT_OF_RESOURCES is returned.
200 April, 2015 Version 2.5

Services — Boot Services
Status Codes Returned

Examples
See example in the EFI_BOOT_SERVICES.LocateHandleBuffer() function description
for an example on how LocateHandleBuffer(),
EFI_BOOT_SERVICES.ProtocolsPerHandle(),
EFI_BOOT_SERVICES.OpenProtocol(), and
EFI_BOOT_SERVICES.OpenProtocolInformation() can be used to traverse the entire
handle database.

EFI_SUCCESS The list of protocol interface GUIDs installed on Handle was

returned in ProtocolBuffer. The number of protocol

interface GUIDs was returned in ProtocolBufferCount.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER ProtocolBuffer is NULL.

EFI_INVALID_PARAMETER ProtocolBufferCount is NULL.

EFI_OUT_OF_RESOURCES There is not enough pool memory to store the results.
Version 2.5 April, 2015 201

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.LocateHandleBuffer()

Summary
Returns an array of handles that support the requested protocol in a buffer allocated from pool.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LOCATE_HANDLE_BUFFER) (
 IN EFI_LOCATE_SEARCH_TYPE SearchType,
 IN EFI_GUID *Protocol OPTIONAL,
 IN VOID *SearchKey OPTIONAL,
 IN OUT UINTN *NoHandles,
 OUT EFI_HANDLE **Buffer
);

Parameters
SearchType Specifies which handle(s) are to be returned.

Protocol Provides the protocol to search by. This parameter is only valid
for a SearchType of ByProtocol.

SearchKey Supplies the search key depending on the SearchType.

NoHandles The number of handles returned in Buffer.

Buffer A pointer to the buffer to return the requested array of handles
that support Protocol. This buffer is allocated with a call to the
Boot Service EFI_BOOT_SERVICES.AllocatePool(). It
is the caller's responsibility to call the Boot Service
EFI_BOOT_SERVICES.FreePool() when the caller no
longer requires the contents of Buffer.

Description
The LocateHandleBuffer() function returns one or more handles that match the
SearchType request. Buffer is allocated from pool, and the number of entries in Buffer is
returned in NoHandles. Each SearchType is described below:

AllHandles Protocol and SearchKey are ignored and the function
returns an array of every handle in the system.

ByRegisterNotify SearchKey supplies the Registration returned by
EFI_BOOT_SERVICES.RegisterProtocolNotify().
The function returns the next handle that is new for the
Registration. Only one handle is returned at a time, and the caller
must loop until no more handles are returned. Protocol is
ignored for this search type.

ByProtocol All handles that support Protocol are returned. SearchKey
is ignored for this search type.

If NoHandles is NULL, then EFI_INVALID_PARAMETER is returned.

If Buffer is NULL, then EFI_INVALID_PARAMETER is returned.
202 April, 2015 Version 2.5

Services — Boot Services
If there are no handles in the handle database that match the search criteria, then EFI_NOT_FOUND
is returned.

If there are not enough resources available to allocate Buffer, then EFI_OUT_OF_RESOURCES
is returned.

Status Codes Returned

Examples
//
// The following example traverses the entire handle database. First all of
// the handles in the handle database are retrieved by using
// LocateHandleBuffer(). Then it uses ProtocolsPerHandle() to retrieve the
// list of protocol GUIDs attached to each handle. Then it uses OpenProtocol()
// to get the protocol instance associated with each protocol GUID on the
// handle. Finally, it uses OpenProtocolInformation() to retrieve the list of
// agents that have opened the protocol on the handle. The caller of these
// functions must make sure that they free the return buffers with FreePool()
// when they are done.
//

EFI_STATUS Status;
EFI_BOOT_SERVICES *gBS;
EFI_HANDLE ImageHandle;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN HandleIndex;
EFI_GUID **ProtocolGuidArray;
UINTN ArrayCount;
UINTN ProtocolIndex;
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfo;
UINTN OpenInfoCount;
UINTN OpenInfoIndex;

//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (
 AllHandles,
 NULL,
 NULL,
 &HandleCount,
 &HandleBuffer
);
if (!EFI_ERROR (Status)) {
 for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {
 //
 // Retrieve the list of all the protocols on each handle

EFI_SUCCESS The array of handles was returned in Buffer, and the number of

handles in Buffer was returned in NoHandles.

EFI_INVALID_PARAMETER NoHandles is NULL

EFI_INVALID_PARAMETER Buffer is NULL

EFI_NOT_FOUND No handles match the search.

EFI_OUT_OF_RESOURCES There is not enough pool memory to store the matching results.
Version 2.5 April, 2015 203

Unified Extensible Firmware Interface Specification
 //
 Status = gBS->ProtocolsPerHandle (
 HandleBuffer[HandleIndex],
 &ProtocolGuidArray,
 &ArrayCount
);
 if (!EFI_ERROR (Status)) {
 for (ProtocolIndex = 0; ProtocolIndex < ArrayCount; ProtocolIndex++) {
 //
 // Retrieve the protocol instance for each protocol
 //
 Status = gBS->OpenProtocol (
 HandleBuffer[HandleIndex],
 ProtocolGuidArray[ProtocolIndex],
 &Instance,
 ImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);

 //
 // Retrieve the list of agents that have opened each protocol
 //
 Status = gBS->OpenProtocolInformation (
 HandleBuffer[HandleIndex],
 ProtocolGuidArray[ProtocolIndex],
 &OpenInfo,
 &OpenInfoCount
);
 if (!EFI_ERROR (Status)) {
 for (OpenInfoIndex=0;OpenInfoIndex<OpenInfoCount;OpenInfoIndex++) {
 //
 // HandleBuffer[HandleIndex] is the handle
 // ProtocolGuidArray[ProtocolIndex] is the protocol GUID
 // Instance is the protocol instance for the protocol
 // OpenInfo[OpenInfoIndex] is an agent that has opened a protocol
 //
 }
 if (OpenInfo != NULL) {
 gBS->FreePool(OpenInfo);
 }
 }
 }
 if (ProtocolGuidArray != NULL) {
 gBS->FreePool(ProtocolGuidArray);
 }
 }
 }
 if (HandleBuffer != NULL) {
 gBS->FreePool (HandleBuffer);
 }
}

204 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.LocateProtocol()

Summary
Returns the first protocol instance that matches the given protocol.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LOCATE_PROTOCOL) (
 IN EFI_GUID *Protocol,
 IN VOID *Registration OPTIONAL,
 OUT VOID **Interface

);

Parameters
Protocol Provides the protocol to search for.

Registration Optional registration key returned from
EFI_BOOT_SERVICES.RegisterProtocolNotify().
If Registration is NULL, then it is ignored.

Interface On return, a pointer to the first interface that matches Protocol
and Registration.

Description
The LocateProtocol() function finds the first device handle that support Protocol, and
returns a pointer to the protocol interface from that handle in Interface. If no protocol instances
are found, then Interface is set to NULL.

If Interface is NULL, then EFI_INVALID_PARAMETER is returned.

If Registration is NULL, and there are no handles in the handle database that support
Protocol, then EFI_NOT_FOUND is returned.

If Registration is not NULL, and there are no new handles for Registration, then
EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS A protocol instance matching Protocol was found and returned

in Interface.

EFI_INVALID_PARAMETER Interface is NULL.

EFI_NOT_FOUND No protocol instances were found that match Protocol and
Registration .
Version 2.5 April, 2015 205

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.InstallMultipleProtocolInterfaces()

Summary
Installs one or more protocol interfaces into the boot services environment.

Prototype
typedef

EFI_STATUS

EFIAPI *EFI_INSTALL_MULTIPLE_PROTOCOL_INTERFACES) (
 IN OUT EFI_HANDLE *Handle,

 ...

);

Parameters

Handle The pointer to a handle to install the new protocol interfaces on, or a
pointer to NULL if a new handle is to be allocated.

... A variable argument list containing pairs of protocol GUIDs and protocol
interfaces.

Description
This function installs a set of protocol interfaces into the boot services environment. It removes
arguments from the variable argument list in pairs. The first item is always a pointer to the
protocol’s GUID, and the second item is always a pointer to the protocol’s interface. These pairs are
used to call the boot service EFI_BOOT_SERVICES.InstallProtocolInterface() to
add a protocol interface to Handle. If Handle is NULL on entry, then a new handle will be
allocated. The pairs of arguments are removed in order from the variable argument list until a NULL
protocol GUID value is found. If any errors are generated while the protocol interfaces are being
installed, then all the protocols installed prior to the error will be uninstalled with the boot service
EFI_BOOT_SERVICES.UninstallProtocolInterface() before the error is returned.
The same GUID cannot be installed more than once onto the same handle.

It is illegal to have two handles in the handle database with identical device paths. This service
performs a test to guarantee a duplicate device path is not inadvertently installed on two different
handles. Before any protocol interfaces are installed onto Handle, the list of GUID/pointer pair
parameters are searched to see if a Device Path Protocol instance is being installed. If a Device Path
Protocol instance is going to be installed onto Handle, then a check is made to see if a handle is
already present in the handle database with an identical Device Path Protocol instance. If an
identical Device Path Protocol instance is already present in the handle database, then no protocols
are installed onto Handle, and EFI_ALREADY_STARTED is returned.

Status Codes Returned

EFI_SUCCESS All the protocol interfaces were installed.

EFI_ALREADY_STARTED A Device Path Protocol instance was passed in that is already
present in the handle database.
206 April, 2015 Version 2.5

Services — Boot Services
EFI_OUT_OF_RESOURCES There was not enough memory in pool to install all the protocols.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER Protocol is already installed on the handle specified by Handle.
Version 2.5 April, 2015 207

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.UninstallMultipleProtocolInterfaces()

Summary
Removes one or more protocol interfaces into the boot services environment.

Prototype
typedef

EFI_STATUS

EFIAPI *EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES) (
 IN EFI_HANDLE Handle,

 ...

);

Parameters

Handle The handle to remove the protocol interfaces from.

...A variable argument list containing pairs of protocol GUIDs and protocol interfaces.

Description
This function removes a set of protocol interfaces from the boot services environment. It removes
arguments from the variable argument list in pairs. The first item is always a pointer to the
protocol’s GUID, and the second item is always a pointer to the protocol’s interface. These pairs are
used to call the boot service EFI_BOOT_SERVICES.UninstallProtocolInterface() to
remove a protocol interface from Handle. The pairs of arguments are removed in order from the
variable argument list until a NULL protocol GUID value is found. If all of the protocols are
uninstalled from Handle, then EFI_SUCCESS is returned. If any errors are generated while the
protocol interfaces are being uninstalled, then the protocols uninstalled prior to the error will be
reinstalled with the boot service EFI_BOOT_SERVICES.InstallProtocolInterface()
and the status code EFI_INVALID_PARAMETER is returned.

Status Codes Returned

6.4 Image Services
Three types of images can be loaded: applications written to this specification, EFI Boot Services
Drivers, and EFI Runtime Services Drivers. An OS Loader is a type of application. The most
significant difference between these image types is the type of memory into which they are loaded
by the firmware’s loader. Table 28 summarizes the differences between images.

EFI_SUCCESS All the protocol interfaces were removed.

EFI_INVALID_PARAMETER One of the protocol interfaces was not previously installed on

Handle.
208 April, 2015 Version 2.5

Services — Boot Services
Table 28. Image Type Differences Summary

UEFI Application EFI Boot Services Driver EFI Runtime Services Driver

Description A transient application
that is loaded during boot
services time. I
Applications written to
this specification are
either unloaded when
they complete, or they
take responsibility for the
continued operation of
the system via

ExitBootService
s().
The applications are
loaded in sequential
order by the boot
manager, but one
application may
dynamically load another.

A program that is loaded into
boot services memory and
stays resident until boot
services terminates.

A program that is loaded into
runtime services memory and
stays resident during runtime.
The memory required for a
Runtime Services Driver must
be performed in a single
memory allocation, and marked
as

EfiRuntimeServices
Data. (Note that the memory

only stays resident when
booting an EFI-compatible
operating system. Legacy
operating systems will reuse
the memory.)

Loaded into
memory
type

EfiLoaderCode,

EfiLoaderData
EfiBootServicesCod
e,

EfiBootServicesDat
a

EfiRuntimeServicesCode,
EfiRuntimeServicesData

Default pool
allocations
from
memory
type

EfiLoaderData EfiBootServicesData EfiRuntimeServices
Data

Exit
behavior

When an application
exits, firmware frees the
memory used to hold its
image.

When a boot services driver
exits with an error code,
firmware frees the memory
used to hold its image.
When a boot services driver’s
entry point completes with

EFI_SUCCESS, the image

is retained in memory.

When a runtime services driver
exits with an error code,
firmware frees the memory
used to hold its image.
When a runtime services
driver’s entry point completes

with EFI_SUCCESS, the

image is retained in memory.

Notes This type of image would
not install any protocol
interfaces or handles.

This type of image would
typically use

InstallProtocolInt
erface().

A runtime driver can only
allocate runtime memory
during boot services time. Due
to the complexity of performing
a virtual relocation for a runtime
image, this driver type is
discouraged unless it is
absolutely required.
Version 2.5 April, 2015 209

Unified Extensible Firmware Interface Specification
Most images are loaded by the boot manager. When an application or driver is installed, the
installation procedure registers itself with the boot manager for loading. However, in some cases an
application or driver may want to programmatically load and start another EFI image. This can be
done with the EFI_BOOT_SERVICES.LoadImage() and
EFI_BOOT_SERVICES.StartImage() interfaces. Drivers may only load applications during
the driver’s initialization entry point. Table 29 lists the functions that make up Image Services.

Table 29. Image Functions

The Image boot services have been modified to take advantage of the information that is now being
tracked with the EFI_BOOT_SERVICES.OpenProtocol() and
EFI_BOOT_SERVICES.CloseProtocol() boot services. Since the usage of protocol
interfaces is being tracked with these new boot services, it is now possible to automatically close
protocol interfaces when an application or a driver is unloaded or exited.

Name Type Description

LoadImage Boot Loads an EFI image into memory.

StartImage Boot Transfers control to a loaded image’s entry point.

UnloadImage Boot Unloads an image.

EFI_IMAGE_ENTRY_POINT Boot Prototype of an EFI Image’s entry point.

Exit Boot Exits the image’s entry point.

ExitBootServices Boot Terminates boot services.
210 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.LoadImage()

Summary
Loads an EFI image into memory.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_IMAGE_LOAD) (
 IN BOOLEAN BootPolicy,
 IN EFI_HANDLE ParentImageHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *DevicePath,
 IN VOID *SourceBuffer OPTIONAL,
 IN UINTN SourceSize,
 OUT EFI_HANDLE *ImageHandle
);

Parameters
BootPolicy If TRUE, indicates that the request originates from the boot

manager, and that the boot manager is attempting to load
DevicePath as a boot selection. Ignored if SourceBuffer
is not NULL.

ParentImageHandle The caller’s image handle. Type EFI_HANDLE is defined in the
EFI_BOOT_SERVICES.InstallProtocolInterface(
) function description. This field is used to initialize the
ParentHandle field of the
EFI_LOADED_IMAGE_PROTOCOL for the image that is being
loaded.

DevicePath The DeviceHandle specific file path from which the image is
loaded. EFI_DEVICE_PATH_PROTOCOL is defined in
Section 9.2.

SourceBuffer If not NULL, a pointer to the memory location containing a copy
of the image to be loaded.

SourceSize The size in bytes of SourceBuffer. Ignored if
SourceBuffer is NULL.

ImageHandle Pointer to the returned image handle that is created when the
image is successfully loaded. Type EFI_HANDLE is defined in
the InstallProtocolInterface() function description.

Related Definitions
#define EFI_HII_PACKAGE_LIST_PROTOCOL_GUID \
 { 0x6a1ee763, 0xd47a, 0x43b4, \
 { 0xaa, 0xbe, 0xef, 0x1d, 0xe2, 0xab, 0x56, 0xfc } }
Version 2.5 April, 2015 211

Unified Extensible Firmware Interface Specification
typedef EFI_HII_PACKAGE_LIST_HEADER
*EFI_HII_PACKAGE_LIST_PROTOCOL;

Description
The LoadImage() function loads an EFI image into memory and returns a handle to the image.
The image is loaded in one of two ways.

• If SourceBuffer is not NULL, the function is a memory-to-memory load in which
SourceBuffer points to the image to be loaded and SourceSize indicates the image’s size
in bytes. In this case, the caller has copied the image into SourceBuffer and can free the
buffer once loading is complete.

• If SourceBuffer is NULL, the function is a file copy operation that uses the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL.

If there is no instance of EFI_SIMPLE_FILE_SYSTEM_PROTOCOL associated with file path,
then this function will attempt to use EFI_LOAD_FILE_PROTOCOL (BootPolicy is TRUE) or
EFI_LOAD_FILE2_PROTOCOL, and then EFI_LOAD_FILE_PROTOCOL (BootPolicy is
FALSE).

In all cases, this function will use the instance of these protocols associated with the handle that most
closely matches DevicePath will be used. See the boot service description for more information
on how the closest handle is located.

• In the case of EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, the path name from the File Path
Media Device Path node(s) of DevicePath is used.

• In the case of EFI_LOAD_FILE_PROTOCOL, the remaining device path nodes of
DevicePath and the BootPolicy flag are passed to the
EFI_LOAD_FILE_PROTOCOL.LoadFile() function. The default image responsible for
booting is loaded when DevicePath specifies only the device (and there are no further
device nodes). For more information see the discussion of the EFI_LOAD_FILE_PROTOCOL
in Section 12.1.

• In the case of EFI_LOAD_FILE2_PROTOCOL, the behavior is the same as above, except that
it is only used if BootOption is FALSE. For more information, see the discussion of the
EFI_LOAD_FILE2_PROTOCOL.

• If the platform supports driver signing, as specified in Section 30.4.2, and the image signature is
not valid, then information about the image is recorded (see Image Execution Information Table
in Section 30.4.2) and EFI_SECURITY_VIOLATION is returned.

• If the platform supports user authentication, as described in Section 34, and loading of images
on the specified FilePath is forbidden in the current user profile, then the information about
the image is recorded (see Deferred Execution in Section 34.1.5) and
EFI_SECURITY_VIOLATION is returned.

Once the image is loaded, firmware creates and returns an EFI_HANDLE that identifies the image
and supports EFI_LOADED_IMAGE_PROTOCOL and the
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL. The caller may fill in the image’s “load
options” data, or add additional protocol support to the handle before passing control to the newly
loaded image by calling EFI_BOOT_SERVICES.StartImage(). Also, once the image is
212 April, 2015 Version 2.5

Services — Boot Services
loaded, the caller either starts it by calling StartImage() or unloads it by calling
EFI_BOOT_SERVICES.UnloadImage().

Once the image is loaded, LoadImage() installs EFI_HII_PACKAGE_LIST_PROTOCOL on
the handle if the image contains a custom PE/COFF resource with the type 'HII'. The protocol's
interface pointer points to the HII package list which is contained in the resource's data. The format
of this is in Section 31.3.1.

Status Codes Returned

EFI_SUCCESS Image was loaded into memory correctly.

EFI_NOT_FOUND Both SourceBuffer and DevicePath are NULL.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_INVALID_PARAMETER ImageHandle is NULL.

EFI_INVALID_PARAMETER ParentImageHandle is NULL.

EFI_INVALID_PARAMETER ParentImageHandle is NULL.

EFI_UNSUPPORTED The image type is not supported.

EFI_OUT_OF_RESOURCES Image was not loaded due to insufficient resources.

EFI_LOAD_ERROR Image was not loaded because the image format was corrupt or not
understood.

EFI_DEVICE_ERROR Image was not loaded because the device returned a read error.

EFI_ACCESS_DENIED Image was not loaded because the platform policy prohibits the

image from being loaded. NULL is returned in *ImageHandle.

EFI_SECURITY_VIOLATION Image was loaded and an ImageHandle was created with a

valid EFI_LOADED_IMAGE_PROTOCOL.. However, the current
platform policy specifies that the image should not be started.
Version 2.5 April, 2015 213

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.StartImage()

Summary
Transfers control to a loaded image’s entry point.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IMAGE_START) (
 IN EFI_HANDLE ImageHandle,
 OUT UINTN *ExitDataSize,
 OUT CHAR16 **ExitData OPTIONAL
);

Parameters
ImageHandle Handle of image to be started. Type EFI_HANDLE is defined in

the
EFI_BOOT_SERVICES.InstallProtocolInterface(
) function description.

ExitDataSize Pointer to the size, in bytes, of ExitData. If ExitData is
NULL, then this parameter is ignored and the contents of
ExitDataSize are not modified.

ExitData Pointer to a pointer to a data buffer that includes a Null-
terminated string, optionally followed by additional binary data.
The string is a description that the caller may use to further
indicate the reason for the image’s exit.

Description
The StartImage() function transfers control to the entry point of an image that was loaded by
EFI_BOOT_SERVICES.LoadImage(). The image may only be started one time.

Control returns from StartImage() when the loaded image’s EFI_IMAGE_ENTRY_POINT
returns or when the loaded image calls EFI_BOOT_SERVICES.Exit(). When that call is
made, the ExitData buffer and ExitDataSize from Exit() are passed back through the
ExitData buffer and ExitDataSize in this function. The caller of this function is responsible
for returning the ExitData buffer to the pool by calling EFI_BOOT_SERVICES.FreePool()
when the buffer is no longer needed. Using Exit() is similar to returning from the image’s
EFI_IMAGE_ENTRY_POINT except that Exit() may also return additional ExitData.
Exit() function description defines clean up procedure performed by the firmware once loaded
image returns control.

EFI 1.10 Extension
To maintain compatibility with UEFI drivers that are written to the EFI 1.02 Specification,
StartImage() must monitor the handle database before and after each image is started. If any
handles are created or modified when an image is started, then
EFI_BOOT_SERVICES.ConnectController() must be called with the Recursive
214 April, 2015 Version 2.5

Services — Boot Services
parameter set to TRUE for each of the newly created or modified handles before StartImage()
returns.

Status Codes Returned

EFI_INVALID_PARAMETER ImageHandle is either an invalid image handle or the image

has already been initialized with StartImage

Exit code from image Exit code from image.

EFI_SECURITY_VIOLATION The current platform policy specifies that the image should not be
started.
Version 2.5 April, 2015 215

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.UnloadImage()

Summary
Unloads an image.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IMAGE_UNLOAD) (
 IN EFI_HANDLE ImageHandle
);

Parameters
ImageHandle Handle that identifies the image to be unloaded.

Description
The UnloadImage() function unloads a previously loaded image.

There are three possible scenarios. If the image has not been started, the function unloads the image
and returns EFI_SUCCESS.

If the image has been started and has an Unload() entry point, control is passed to that entry point.
If the image’s unload function returns EFI_SUCCESS, the image is unloaded; otherwise, the error
returned by the image’s unload function is returned to the caller. The image unload function is
responsible for freeing all allocated memory and ensuring that there are no references to any freed
memory, or to the image itself, before returning EFI_SUCCESS.

If the image has been started and does not have an Unload() entry point, the function returns
EFI_UNSUPPORTED.

EFI 1.10 Extension
All of the protocols that were opened by ImageHandle using the boot service
EFI_BOOT_SERVICES.OpenProtocol() are automatically closed with the boot service
EFI_BOOT_SERVICES.CloseProtocol(). If all of the open protocols are closed, then
EFI_SUCCESS is returned. If any call to CloseProtocol() fails, then the error code from
CloseProtocol() is returned.
216 April, 2015 Version 2.5

Services — Boot Services
Status Codes Returned

EFI_IMAGE_ENTRY_POINT

Summary
This is the declaration of an EFI image entry point. This can be the entry point to an application
written to this specification, an EFI boot service driver, or an EFI runtime driver.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_IMAGE_ENTRY_POINT) (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
);

Parameters
ImageHandle Handle that identifies the loaded image. Type EFI_HANDLE is

defined in the
EFI_BOOT_SERVICES.InstallProtocolInterface(
) function description.

SystemTable System Table for this image. Type EFI_SYSTEM_TABLE is
defined in Section 4.

Description
An image’s entry point is of type EFI_IMAGE_ENTRY_POINT. After firmware loads an image
into memory, control is passed to the image’s entry point. The entry point is responsible for
initializing the image. The image’s ImageHandle is passed to the image. The ImageHandle
provides the image with all the binding and data information it needs. This information is available
through protocol interfaces. However, to access the protocol interfaces on ImageHandle requires
access to boot services functions. Therefore, EFI_BOOT_SERVICES.LoadImage() passes to
the EFI_IMAGE_ENTRY_POINT a SystemTable that is inherited from the current scope of
LoadImage().

All image handles support the EFI_LOADED_IMAGE_PROTOCOL and the
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL . These protocol can be used to obtain
information about the loaded image’s state—for example, the device from which the image was
loaded and the image’s load options. In addition, the ImageHandle may support other protocols
provided by the parent image.

EFI_SUCCESS The image has been unloaded.

EFI_UNSUPPORTED The image has been started, and does not support unload.

EFI_INVALID_PARAMETER ImageHandle is not a valid image handle.

Exit code from Unload handler Exit code from the image’s unload function.
Version 2.5 April, 2015 217

Unified Extensible Firmware Interface Specification
If the image supports dynamic unloading, it must supply an unload function in the
EFI_LOADED_IMAGE_PROTOCOL structure before returning control from its entry point.

In general, an image returns control from its initialization entry point by calling
EFI_BOOT_SERVICES.Exit() or by returning control from its entry point. If the image returns
control from its entry point, the firmware passes control to Exit() using the return code as the
ExitStatus parameter to Exit().

See Exit() below for entry point exit conditions.
218 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.Exit()

Summary
Terminates a loaded EFI image and returns control to boot services.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EXIT) (
 IN EFI_HANDLE ImageHandle,
 IN EFI_STATUS ExitStatus,
 IN UINTN ExitDataSize,
 IN CHAR16 *ExitData OPTIONAL
);

Parameters
ImageHandle Handle that identifies the image. This parameter is passed to the

image on entry.

ExitStatus The image’s exit code.

ExitDataSize The size, in bytes, of ExitData. Ignored if ExitStatus is
EFI_SUCCESS.

ExitData Pointer to a data buffer that includes a Null-terminated string,
optionally followed by additional binary data. The string is a
description that the caller may use to further indicate the reason
for the image’s exit. ExitData is only valid if ExitStatus
is something other than EFI_SUCCESS. The ExitData buffer
must be allocated by calling
EFI_BOOT_SERVICES.AllocatePool().

Description
The Exit() function terminates the image referenced by ImageHandle and returns control to
boot services. This function may not be called if the image has already returned from its entry point
(EFI_IMAGE_ENTRY_POINT) or if it has loaded any child images that have not exited (all child
images must exit before this image can exit).

Using Exit() is similar to returning from the image’s EFI_IMAGE_ENTRY_POINT except that
Exit() may also return additional ExitData.

When an application exits a compliant system, firmware frees the memory used to hold the image.
The firmware also frees its references to the ImageHandle and the handle itself. Before exiting,
the application is responsible for freeing any resources it allocated. This includes memory (pages
and/or pool), open file system handles, and so forth. The only exception to this rule is the
ExitData buffer, which must be freed by the caller of
EFI_BOOT_SERVICES.StartImage(). (If the buffer is needed, firmware must allocate it by
calling EFI_BOOT_SERVICES.AllocatePool() and must return a pointer to it to the caller of
StartImage().)
Version 2.5 April, 2015 219

Unified Extensible Firmware Interface Specification
When an EFI boot service driver or runtime service driver exits, firmware frees the image only if the
ExitStatus is an error code; otherwise the image stays resident in memory. The driver must not
return an error code if it has installed any protocol handlers or other active callbacks into the system
that have not (or cannot) be cleaned up. If the driver exits with an error code, it is responsible for
freeing all resources before exiting. This includes any allocated memory (pages and/or pool), open
file system handles, and so forth.

It is valid to call Exit() or UnloadImage() for an image that was loaded by
EFI_BOOT_SERVICES.LoadImage() before calling
EFI_BOOT_SERVICES.StartImage(). This will free the image from memory without
having started it.

EFI 1.10 Extension
If ImageHandle is a UEFI application, then all of the protocols that were opened by
ImageHandle using the boot service EFI_BOOT_SERVICES.OpenProtocol() are
automatically closed with the boot service EFI_BOOT_SERVICES.CloseProtocol(). If
ImageHandle is an EFI boot services driver or runtime service driver, and ExitStatus is an
error code, then all of the protocols that were opened by ImageHandle using the boot service
OpenProtocol() are automatically closed with the boot service CloseProtocol(). If
ImageHandle is an EFI boot services driver or runtime service driver, and ExitStatus is not
an error code, then no protocols are automatically closed by this service.

Status Codes Returned

(Does not return.) Image exit. Control is returned to the StartImage() call that

invoked the image specified by ImageHandle.

EFI_SUCCESS The image specified by ImageHandle was unloaded. This

condition only occurs for images that have been loaded with

LoadImage() but have not been started with

StartImage().

EFI_INVALID_PARAMETER The image specified by ImageHandle has been loaded and

started with LoadImage() and StartImage(), but the

image is not the currently executing image.
220 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.ExitBootServices()

Summary
Terminates all boot services.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EXIT_BOOT_SERVICES) (
 IN EFI_HANDLEImageHandle,
 IN UINTN MapKey
);

Parameters
ImageHandle Handle that identifies the exiting image. Type EFI_HANDLE is

defined in the
EFI_BOOT_SERVICES.InstallProtocolInterface(
) function description.

MapKey Key to the latest memory map.

Description
The ExitBootServices() function is called by the currently executing EFI OS loader image to
terminate all boot services. On success, the loader becomes responsible for the continued operation
of the system. All events of type EVT_SIGNAL_EXIT_BOOT_SERVICES must be signaled
before ExitBootServices() returns EFI_SUCCESS. The events are only signaled once even
if ExitBootServices() is called multiple times.

An EFI OS loader must ensure that it has the system’s current memory map at the time it calls
ExitBootServices(). This is done by passing in the current memory map’s MapKey value as
returned by EFI_BOOT_SERVICES.GetMemoryMap(). Care must be taken to ensure that the
memory map does not change between these two calls. It is suggested that GetMemoryMap()be
called immediately before calling ExitBootServices(). If MapKey value is incorrect,
ExitBootServices() returns EFI_INVALID_PARAMETER and GetMemoryMap() with
ExitBootServices() must be called again. Firmware implementation may choose to do a
partial shutdown of the boot services during the first call to ExitBootServices(). EFI OS
loader should not make calls to any boot service function other then GetMemoryMap() after the
first call to ExitBootServices().

On success, the EFI OS loader owns all available memory in the system. In addition, the loader can
treat all memory in the map marked as EfiBootServicesCode and
EfiBootServicesData as available free memory. No further calls to boot service functions or
EFI device-handle-based protocols may be used, and the boot services watchdog timer is disabled.
On success, several fields of the EFI System Table should be set to NULL. These include
ConsoleInHandle, ConIn, ConsoleOutHandle, ConOut, StandardErrorHandle,
StdErr, and BootServicesTable. In addition, since fields of the EFI System Table are being
modified, the 32-bit CRC for the EFI System Table must be recomputed.
Version 2.5 April, 2015 221

Unified Extensible Firmware Interface Specification
Firmware must ensure that timer event activity is stopped before any of the
EXIT_BOOT_SERVICES handlers are called within drivers. Drivers must not rely on timer event
functionality in order to accomplish ExitBootServices handling since timer events will be disabled.

Status Codes Returned

6.5 Miscellaneous Boot Services
This section contains the remaining function definitions for boot services not defined elsewhere but
which are required to complete the definition of the EFI environment. Table 30 lists the
Miscellaneous Boot Services Functions.

Table 30. Miscellaneous Boot Services Functions

The EFI_BOOT_SERVICES.CalculateCrc32() service was added because there are several
places in EFI that 32-bit CRCs are used. These include the EFI System Table, the EFI Boot Services
Table, the EFI Runtime Services Table, and the GUID Partition Table (GPT) structures. The
CalculateCrc32() service allows new 32-bit CRCs to be computed, and existing 32-bit CRCs
to be validated.

EFI_SUCCESS Boot services have been terminated.

EFI_INVALID_PARAMETER MapKey is incorrect.

Name Type Description

SetWatchDogTimer Boot Resets and sets a watchdog timer used during boot services time.

Stall Boot Stalls the processor.

CopyMem Boot Copies the contents of one buffer to another buffer.

SetMem Boot Fills a buffer with a specified value.

GetNextMonotonicCount Boot Returns a monotonically increasing count for the platform.

InstallConfigurationTable Boot Adds, updates, or removes a configuration table from the EFI
System Table.

CalculateCrc32 Boot Computes and returns a 32-bit CRC for a data buffer.
222 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.SetWatchdogTimer()

Summary
Sets the system’s watchdog timer.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_SET_WATCHDOG_TIMER) ((
 IN UINTN Timeout,
 IN UINT64 WatchdogCode,
 IN UINTN DataSize,
 IN CHAR16 *WatchdogData OPTIONAL
);

Parameters
Timeout The number of seconds to set the watchdog timer to. A value of

zero disables the timer.

WatchdogCode The numeric code to log on a watchdog timer timeout event. The
firmware reserves codes 0x0000 to 0xFFFF. Loaders and
operating systems may use other timeout codes.

DataSize The size, in bytes, of WatchdogData.

WatchdogData A data buffer that includes a Null-terminated string, optionally
followed by additional binary data. The string is a description
that the call may use to further indicate the reason to be logged
with a watchdog event.

Description
The SetWatchdogTimer() function sets the system’s watchdog timer.

If the watchdog timer expires, the event is logged by the firmware. The system may then either reset
with the Runtime Service ResetSystem(), or perform a platform specific action that must
eventually cause the platform to be reset. The watchdog timer is armed before the firmware's boot
manager invokes an EFI boot option. The watchdog must be set to a period of 5 minutes. The EFI
Image may reset or disable the watchdog timer as needed. If control is returned to the firmware's
boot manager, the watchdog timer must be disabled.

The watchdog timer is only used during boot services. On successful completion of
EFI_BOOT_SERVICES.ExitBootServices() the watchdog timer is disabled.

The accuracy of the watchdog timer is +/- 1 second from the requested Timeout.

Status Codes Returned

EFI_SUCCESS The timeout has been set.

EFI_INVALID_PARAMETER The supplied WatchdogCode is invalid.

EFI_UNSUPPORTED The system does not have a watchdog timer.
Version 2.5 April, 2015 223

Unified Extensible Firmware Interface Specification
EFI_DEVICE_ERROR The watch dog timer could not be programmed due to a hardware
error.
224 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.Stall()

Summary
Induces a fine-grained stall.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_STALL) (
 IN UINTN Microseconds
)

Parameters
Microseconds The number of microseconds to stall execution.

Description
The Stall() function stalls execution on the processor for at least the requested number of
microseconds. Execution of the processor is not yielded for the duration of the stall.

Status Codes Returned

EFI_SUCCESS Execution was stalled at least the requested number of
Microseconds.
Version 2.5 April, 2015 225

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.CopyMem()

Summary
The CopyMem() function copies the contents of one buffer to another buffer.

Prototype
typedef
VOID
(EFIAPI *EFI_COPY_MEM) (
 IN VOID *Destination,
 IN VOID *Source,
 IN UINTN Length
);

Parameters

Destination Pointer to the destination buffer of the memory copy.

Source Pointer to the source buffer of the memory copy.

Length Number of bytes to copy from Source to Destination.

Description
The CopyMem() function copies Length bytes from the buffer Source to the buffer
Destination.

The implementation of CopyMem() must be reentrant, and it must handle overlapping Source
and Destination buffers. This means that the implementation of CopyMem() must choose the
correct direction of the copy operation based on the type of overlap that exists between the Source
and Destination buffers. If either the Source buffer or the Destination buffer crosses the
top of the processor’s address space, then the result of the copy operation is unpredictable.

The contents of the Destination buffer on exit from this service must match the contents of the
Source buffer on entry to this service. Due to potential overlaps, the contents of the Source
buffer may be modified by this service. The following rules can be used to guarantee the correct
behavior:

1. If Destination and Source are identical, then no operation should be performed.

2. If Destination > Source and Destination < (Source + Length), then the data
should be copied from the Source buffer to the Destination buffer starting from the end of
the buffers and working toward the beginning of the buffers.

3. Otherwise, the data should be copied from the Source buffer to the Destination buffer
starting from the beginning of the buffers and working toward the end of the buffers.

Status Codes Returned
None.
226 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.SetMem()

Summary
The SetMem() function fills a buffer with a specified value.

Prototype
typedef
VOID
EFIAPI *EFI_SET_MEM) (
 IN VOID *Buffer,
 IN UINTN Size,
 IN UINT8 Value
);

Parameters

Buffer Pointer to the buffer to fill.

Size Number of bytes in Buffer to fill.

Value Value to fill Buffer with.

Description
This function fills Size bytes of Buffer with Value. The implementation of SetMem() must
be reentrant. If Buffer crosses the top of the processor’s address space, the result of the
SetMem() operation is unpredictable.

Status Codes Returned
None.
Version 2.5 April, 2015 227

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.GetNextMonotonicCount()

Summary
Returns a monotonically increasing count for the platform.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_GET_NEXT_MONOTONIC_COUNT) (
 OUT UINT64 *Count
);

Parameters
Count Pointer to returned value.

Description
The GetNextMonotonicCount() function returns a 64-bit value that is numerically larger then
the last time the function was called.

The platform’s monotonic counter is comprised of two parts: the high 32 bits and the low 32 bits.
The low 32-bit value is volatile and is reset to zero on every system reset. It is increased by 1 on
every call to GetNextMonotonicCount(). The high 32-bit value is nonvolatile and is
increased by one on whenever the system resets or the low 32-bit counter overflows.

Status Codes Returned

EFI_SUCCESS The next monotonic count was returned.

EFI_DEVICE_ERROR The device is not functioning properly.

EFI_INVALID_PARAMETER Count is NULL.
228 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.InstallConfigurationTable()

Summary
Adds, updates, or removes a configuration table entry from the EFI System Table.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_INSTALL_CONFIGURATION_TABLE) (
 IN EFI_GUID *Guid,
 IN VOID *Table
);

Parameters
Guid A pointer to the GUID for the entry to add, update, or remove.

Table A pointer to the configuration table for the entry to add, update,
or remove. May be NULL.

Description
The InstallConfigurationTable() function is used to maintain the list of configuration
tables that are stored in the EFI System Table. The list is stored as an array of (GUID, Pointer) pairs.
The list must be allocated from pool memory with PoolType set to
EfiRuntimeServicesData.

If Guid is NULL, EFI_INVALID_PARAMETER is returned. If Guid is valid, there are four
possibilities:

• If Guid is not present in the System Table, and Table is not NULL, then the (Guid, Table)
pair is added to the System Table. See Note below.

• If Guid is not present in the System Table, and Table is NULL, then EFI_NOT_FOUND
is returned.

• If Guid is present in the System Table, and Table is not NULL, then the (Guid, Table) pair
is updated with the new Table value.

• If Guid is present in the System Table, and Table is NULL, then the entry associated with
Guid is removed from the System Table.

If an add, modify, or remove operation is completed, then EFI_SUCCESS is returned.

Note: If there is not enough memory to perform an add operation, then EFI_OUT_OF_RESOURCES is
returned.

Status Codes Returned

EFI_SUCCESS The (Guid, Table) pair was added, updated, or removed.

EFI_INVALID_PARAMETER Guid is NULL.

EFI_NOT_FOUND An attempt was made to delete a nonexistent entry.
Version 2.5 April, 2015 229

Unified Extensible Firmware Interface Specification
EFI_OUT_OF_RESOURCES There is not enough memory available to complete the operation.
230 April, 2015 Version 2.5

Services — Boot Services
EFI_BOOT_SERVICES.CalculateCrc32()

Summary
Computes and returns a 32-bit CRC for a data buffer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CALCULATE_CRC32)
 IN VOID *Data,
 IN UINTN DataSize,
 OUT UINT32 *Crc32
);

Parameters
Data A pointer to the buffer on which the 32-bit CRC is to be

computed.

DataSize The number of bytes in the buffer Data.

Crc32 The 32-bit CRC that was computed for the data buffer specified
by Data and DataSize.

Description
This function computes the 32-bit CRC for the data buffer specified by Data and DataSize. If
the 32-bit CRC is computed, then it is returned in Crc32 and EFI_SUCCESS is returned.

If Data is NULL, then EFI_INVALID_PARAMETER is returned.

If Crc32 is NULL, then EFI_INVALID_PARAMETER is returned.

If DataSize is 0, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned

EFI_SUCCESS The 32-bit CRC was computed for the data buffer and returned in

Crc32.

EFI_INVALID_PARAMETER Data is NULL.

EFI_INVALID_PARAMETER Crc32 is NULL.

EFI_INVALID_PARAMETER DataSize is 0.
Version 2.5 April, 2015 231

Unified Extensible Firmware Interface Specification
232 April, 2015 Version 2.5

Services — Runtime Services
7
Services — Runtime Services

This section discusses the fundamental services that are present in a compliant system. The services
are defined by interface functions that may be used by code running in the EFI environment. Such
code may include protocols that manage device access or extend platform capability, as well as
applications running in the preboot environment and EFI OS loaders.

Two types of services are described here:

• Boot Services. Functions that are available before a successful call to
EFI_BOOT_SERVICES.ExitBootServices(). These functions are described in
Section 6.

• Runtime Services. Functions that are available before and after any call to
ExitBootServices(). These functions are described in this section.

During boot, system resources are owned by the firmware and are controlled through boot services
interface functions. These functions can be characterized as “global” or “handle-based.” The term
“global” simply means that a function accesses system services and is available on all platforms
(since all platforms support all system services). The term “handle-based” means that the function
accesses a specific device or device functionality and may not be available on some platforms (since
some devices are not available on some platforms). Protocols are created dynamically. This section
discusses the “global” functions and runtime functions; subsequent sections discuss the “handle-
based.”

Applications written to this specification (including OS loaders) must use boot services functions to
access devices and allocate memory. On entry, an image is provided a pointer to a system table
which contains the Boot Services dispatch table and the default handles for accessing the console.
All boot services functionality is available until an EFI OS loader loads enough of its own
environment to take control of the system’s continued operation and then terminates boot services
with a call to ExitBootServices().

In principle, the ExitBootServices() call is intended for use by the operating system to
indicate that its loader is ready to assume control of the platform and all platform resource
management. Thus boot services are available up to this point to assist the OS loader in preparing to
boot the operating system. Once the OS loader takes control of the system and completes the
operating system boot process, only runtime services may be called. Code other than the OS loader,
however, may or may not choose to call ExitBootServices(). This choice may in part depend
upon whether or not such code is designed to make continued use of EFI boot services or the boot
services environment.

The rest of this section discusses individual functions. Runtime Services fall into these categories:

• Runtime Rules and Restrictions (Section 7.1)

• Variable Services (Section 7.2)

• Time Services (Section 7.3)

• Virtual Memory Services (Section 7.4)
Version 2.5 April, 2015 233

Unified Extensible Firmware Interface Specification
• Miscellaneous Services (Section 7.5)

7.1 Runtime Services Rules and Restrictions
All of the Runtime Services may be called with interrupts enabled if desired. The Runtime Service
functions will internally disable interrupts when it is required to protect access to hardware
resources. The interrupt enable control bit will be returned to its entry state after the access to the
critical hardware resources is complete.

All callers of Runtime Services are restricted from calling the same or certain other Runtime Service
functions prior to the completion and return of a previous Runtime Service call. These restrictions
apply to:

• Runtime Services that have been interrupted

• Runtime Services that are active on another processor.

Callers are prohibited from using certain other services from another processor or on the same
processor following an interrupt as specified in Table 31. For this table ‘Busy’ is defined as the state
when a Runtime Service has been entered and has not returned to the caller.

The consequence of a caller violating these restrictions is undefined except for certain
special cases described below.

Table 31. Rules for Reentry Into Runtime Services

7.1.1 Exception for Machine Check, INIT, and NMI.
Certain asynchronous events (e.g., NMI on IA-32 and x64 systems, Machine Check and
INIT on Itanium systems) can not be masked and may occur with any setting of interrupt

If previous call is busy in Forbidden to call

Any SetVirtualAddressMap()

ConvertPointer() ConvertPointer()

SetVariable(),
UpdateCapsule(),
SetTime()
SetWakeupTime(),
GetNextHighMonotonicCount()

ResetSystem()

GetVariable()
GetNextVariableName()
SetVariable()
QueryVariableInfo()
UpdateCapsule()
QueryCapsuleCapabilities()
GetNextHighMonotonicCount()

GetVariable(),
GetNextVariableName(),
SetVariable(),
QueryVariableInfo(),
UpdateCapsule(),
QueryCapsuleCapabilities(),
GetNextHighMonotonicCount()

GetTime()
SetTime()
GetWakeupTime()
SetWakeupTime()

GetTime()
SetTime()
GetWakeupTime()
SetWakeupTime()
234 April, 2015 Version 2.5

Services — Runtime Services
enabled. These events also may require OS level handler's involvement that may involve the
invocation of some of the runtime services (see below).

If SetVirtualAddressMap() has been called, all calls to runtime services after Machine Check, INIT,
or NMI, must be made using the virtual address map set by that call.

A Machine Check may have interrupted a runtime service (see below). If the OS determines that the
Machine Check is recoverable, the OS level handler must follow the normal restrictions in Table 31.

If the OS determines that the Machine Check is non-recoverable, the OS level handler may ignore
the normal restrictions and may invoke the runtime services described in Table 32 even in the case
where a previous call was busy. The system firmware will honor the new runtime service call(s) and
the operation of the previous interrupted call is not guaranteed. Any interrupted runtime functions
will not be restarted.

The INIT and NMI events follow the same restrictions.

Note: On Itanium systems, the OS Machine Check Handler must not call ResetSystem(). If a reset is
required, the OS Machine Check Handler may request SAL to reset upon return to SAL_CHECK.

The platform implementations are required to clear any runtime services in progress in order to
enable the OS handler to invoke these runtime services even in the case where a previous call was
busy. In this case, the proper operation of the original interrupted call is not guaranteed.

Table 32. Functions that may be called after Machine Check ,INIT and NMI

7.2 Variable Services
Variables are defined as key/value pairs that consist of identifying information plus attributes (the
key) and arbitrary data (the value). Variables are intended for use as a means to store data that is
passed between the EFI environment implemented in the platform and EFI OS loaders and other
applications that run in the EFI environment.

Although the implementation of variable storage is not defined in this specification, variables must
be persistent in most cases. This implies that the EFI implementation on a platform must arrange it
so that variables passed in for storage are retained and available for use each time the system boots,
at least until they are explicitly deleted or overwritten. Provision of this type of nonvolatile storage
may be very limited on some platforms, so variables should be used sparingly in cases where other
means of communicating information cannot be used.

Function Called after Machine Check, INIT and NMI

GetTime() Yes, even if previously busy.

GetVariable() Yes, even if previously busy

GetNextVariableName() Yes, even if previously busy

QueryVariableInfo() Yes, even if previously busy

SetVariable() Yes, even if previously busy

UpdateCapsule() Yes, even if previously busy

QueryCapsuleCapabilities() Yes, even if previously busy

ResetSystem() Yes, even if previously busy
Version 2.5 April, 2015 235

Unified Extensible Firmware Interface Specification
Table 33 lists the variable services functions described in this section:

Table 33. Variable Services Functions

Name Type Description

GetVariable Runtime Returns the value of a variable.

GetNextVariableName Runtime Enumerates the current variable names.

SetVariable Runtime Sets the value of a variable.

QueryVariableInfo() Runtime Returns information about the EFI variables
236 April, 2015 Version 2.5

Services — Runtime Services
GetVariable()

Summary
Returns the value of a variable.

Prototype

typedef
EFI_STATUS
GetVariable (
 IN CHAR16 *VariableName,
 IN EFI_GUID *VendorGuid,
 OUT UINT32 *Attributes OPTIONAL,
 IN OUT UINTN *DataSize,
 OUT VOID *Data
);

Parameters
VariableName A Null-terminated string that is the name of the vendor’s

variable.

VendorGuid A unique identifier for the vendor. Type EFI_GUID is defined in
the
EFI_BOOT_SERVICES.InstallProtocolInterface(
) function description.

Attributes If not NULL, a pointer to the memory location to return the
attributes bitmask for the variable. See “Related Definitions.”

DataSize On input, the size in bytes of the return Data buffer.
On output the size of data returned in Data.

Data The buffer to return the contents of the variable.
Version 2.5 April, 2015 237

Unified Extensible Firmware Interface Specification
Related Definitions

//***
// Variable Attributes
//***
#define EFI_VARIABLE_NON_VOLATILE 0x00000001
#define EFI_VARIABLE_BOOTSERVICE_ACCESS 0x00000002
#define EFI_VARIABLE_RUNTIME_ACCESS 0x00000004
#define EFI_VARIABLE_HARDWARE_ERROR_RECORD 0x00000008
//This attribute is identified by the mnemonic 'HR' elsewhere in
this specification.
#define EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS 0x00000010
#define EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS \
0x00000020
#define EFI_VARIABLE_APPEND_WRITE 0x00000040

Description
Each vendor may create and manage its own variables without the risk of name conflicts by using a
unique VendorGuid. When a variable is set its Attributes are supplied to indicate how the
data variable should be stored and maintained by the system. The attributes affect when the variable
may be accessed and volatility of the data. Any attempts to access a variable that does not have the
attribute set for runtime access will yield the EFI_NOT_FOUND error.

If the Data buffer is too small to hold the contents of the variable, the error
EFI_BUFFER_TOO_SMALL is returned and DataSize is set to the required buffer size to obtain
the data.

The EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS and the
EFI_VARIABLE_ AUTHENTICATED_WRITE_ACCESS attributes may both be set in the
returned Attributes bitmask parameter of a GetVariable() call. The
EFI_VARIABLE_APPEND_WRITE attribute will never be set in the returned Attributes
bitmask parameter.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NOT_FOUND The variable was not found.

EFI_BUFFER_TOO_SMALL The DataSize is too small for the result. DataSize has been

updated with the size needed to complete the request.

EFI_INVALID_PARAMETER VariableName is NULL.

EFI_INVALID_PARAMETER VendorGuid is NULL.

EFI_INVALID_PARAMETER DataSize is NULL.

EFI_INVALID_PARAMETER The DataSize is not too small and Data is NULL.

EFI_DEVICE_ERROR The variable could not be retrieved due to a hardware error.

EFI_SECURITY_VIOLATION The variable could not be retrieved due to an authentication failure.
238 April, 2015 Version 2.5

Services — Runtime Services
GetNextVariableName()

Summary
Enumerates the current variable names.

Prototype

typedef
EFI_STATUS
GetNextVariableName (
 IN OUT UINTN *VariableNameSize,
 IN OUT CHAR16 *VariableName,
 IN OUT EFI_GUID *VendorGuid
);

Parameters
VariableNameSize The size of the VariableName buffer.

VariableName On input, supplies the last VariableName that was returned by
GetNextVariableName(). On output, returns the Null-
terminated string of the current variable.

VendorGuid On input, supplies the last VendorGuid that was returned by
GetNextVariableName(). On output, returns the
VendorGuid of the current variable. Type EFI_GUID is
defined in the
EFI_BOOT_SERVICES.InstallProtocolInterface(
) function description.

Description
GetNextVariableName() is called multiple times to retrieve the VariableName and
VendorGuid of all variables currently available in the system. On each call to
GetNextVariableName() the previous results are passed into the interface, and on output the
interface returns the next variable name data. When the entire variable list has been returned, the
error EFI_NOT_FOUND is returned.

Note that if EFI_BUFFER_TOO_SMALL is returned, the VariableName buffer was too small for
the next variable. When such an error occurs, the VariableNameSize is updated to reflect the
size of buffer needed. In all cases when calling GetNextVariableName() the
VariableNameSize must not exceed the actual buffer size that was allocated for
VariableName.

To start the search, a Null-terminated string is passed in VariableName; that is, VariableName
is a pointer to a Null character. This is always done on the initial call to
GetNextVariableName(). When VariableName is a pointer to a Null character,
VendorGuid is ignored. GetNextVariableName() cannot be used as a filter to return
variable names with a specific GUID. Instead, the entire list of variables must be retrieved, and the
caller may act as a filter if it chooses. Calls to SetVariable() between calls to
GetNextVariableName() may produce unpredictable results. Passing in a VariableName
Version 2.5 April, 2015 239

Unified Extensible Firmware Interface Specification
parameter that is neither a Null-terminated string nor a value that was returned on the previous call to
GetNextVariableName() may also produce unpredictable results.

Once EFI_BOOT_SERVICES.ExitBootServices() is performed, variables that are only
visible during boot services will no longer be returned. To obtain the data contents or attribute for a
variable returned by GetNextVariableName(), the GetVariable() interface is used.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NOT_FOUND The next variable was not found.

EFI_BUFFER_TOO_SMALL The VariableNameSize is too small for the result.

VariableNameSize has been updated with the size needed

to complete the request.

EFI_INVALID_PARAMETER VariableNameSize is NULL.

EFI_INVALID_PARAMETER VariableName is NULL.

EFI_INVALID_PARAMETER VendorGuid is NULL.

EFI_DEVICE_ERROR The variable name could not be retrieved due to a hardware error.
240 April, 2015 Version 2.5

Services — Runtime Services
SetVariable()

Summary
Sets the value of a variable.

Prototype
typedef
EFI_STATUS
SetVariable (
 IN CHAR16 *VariableName,
 IN EFI_GUID *VendorGuid,
 IN UINT32 Attributes,
 IN UINTN DataSize,
 IN VOID *Data
);

Parameters
VariableName A Null-terminated string that is the name of the vendor’s

variable. Each VariableName is unique for each
VendorGuid. VariableName must contain 1 or more
characters. If VariableName is an empty string, then
EFI_INVALID_PARAMETER is returned.

VendorGuid A unique identifier for the vendor. Type EFI_GUID is defined in
the
EFI_BOOT_SERVICES.InstallProtocolInterface(
) function description.

Attributes Attributes bitmask to set for the variable. Refer to the
GetVariable() function description.

DataSize The size in bytes of the Data buffer. Unless the
EFI_VARIABLE_APPEND_WRITE,
EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS, or
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE
_ACCESS attribute is set, a size of zero causes the variable to be
deleted. When the EFI_VARIABLE_APPEND_WRITE attribute
is set, then a SetVariable() call with a DataSize of zero
will not cause any change to the variable value (the timestamp
associated with the variable may be updated however, even if no
new data value is provided;see the description of the
EFI_VARIABLE_AUTHENTICATION_2 descriptor below). In
this case the DataSize will not be zero since the
EFI_VARIABLE_AUTHENTICATION_2 descriptor will be
populated).

Data The contents for the variable.
Version 2.5 April, 2015 241

Unified Extensible Firmware Interface Specification
Related Definitions
//***
// Variable Attributes
//***

//
// EFI_VARIABLE_AUTHENTICATION descriptor
//
// A counter-based authentication method descriptor template
//
typedef struct {
 UINT64 MonotonicCount;
 WIN_CERTIFICATE_UEFI_GUID AuthInfo;
} EFI_VARIABLE_AUTHENTICATION;

MonotonicCount

Included in the signature of AuthInfo. Used to ensure freshness/no replay.
Incremented during each "Write" access.

AuthInfo

Provides the authorization for the variable access. It is a signature across the variable
data and the Monotonic Count value. Caller uses Private key that is associated with a
public key that has been provisioned via the key exchange.

//
// EFI_VARIABLE_AUTHENTICATION_2 descriptor
//
// A time-based authentication method descriptor template
//
typedef struct {
 EFI_TIME TimeStamp;
 WIN_CERTIFICATE_UEFI_GUID AuthInfo;
 } EFI_VARIABLE_AUTHENTICATION_2;

TimeStamp

Time associated with the authentication descriptor. For the TimeStamp value,
components Pad1, Nanosecond, TimeZone, Daylight and Pad2 shall be set to
0. This means that the time shall always be expressed in GMT.

AuthInfo

Provides the authorization for the variable access. Only a CertType of
EFI_CERT_TYPE_PKCS7_GUID is accepted.
242 April, 2015 Version 2.5

Services — Runtime Services
Description
Variables are stored by the firmware and may maintain their values across power cycles. Each
vendor may create and manage its own variables without the risk of name conflicts by using a unique
VendorGuid.

Each variable has Attributes that define how the firmware stores and maintains the data value.
If the EFI_VARIABLE_NON_VOLATILE attribute is not set, the firmware stores the variable in
normal memory and it is not maintained across a power cycle. Such variables are used to pass
information from one component to another. An example of this is the firmware’s language code
support variable. It is created at firmware initialization time for access by EFI components that may
need the information, but does not need to be backed up to nonvolatile storage.

EFI_VARIABLE_NON_VOLATILE variables are stored in fixed hardware that has a limited
storage capacity; sometimes a severely limited capacity. Software should only use a nonvolatile
variable when absolutely necessary. In addition, if software uses a nonvolatile variable it should use
a variable that is only accessible at boot services time if possible.

A variable must contain one or more bytes of Data. Unless the
EFI_VARIABLE_APPEND_WRITE, EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS,
or EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute is set (see
below), using SetVariable() with a DataSize of zero will cause the entire variable to be
deleted. The space consumed by the deleted variable may not be available until the next power cycle.

The Attributes have the following usage rules:

• If a preexisting variable is rewritten with different attributes, SetVariable()shall not
modify the variable and shall return EFI_INVALID_PARAMETER. The only exception to this
is when the only attribute differing is EFI_VARIABLE_APPEND_WRITE. In such cases the
call's successful outcome or not is determined by the actual value being written. There are two
exceptions to this rule:
— If a preexisting variable is rewritten with no access attributes specified, the variable will be

deleted.
— EFI_VARIABLE_APPEND_WRITE attribute presents a special case. It is acceptable to

rewrite the variable with or without EFI_VARIABLE_APPEND_WRITE attribute.

• Setting a data variable with no access attributes causes it to be deleted.

• Unless the EFI_VARIABLE_APPEND_WRITE,
EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS, or
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute is set,
setting a data variable with zero DataSize specified, causes it to be deleted.

• Runtime access to a data variable implies boot service access. Attributes that have
EFI_VARIABLE_RUNTIME_ACCESS set must also have
EFI_VARIABLE_BOOTSERVICE_ACCESS set. The caller is responsible for following this
rule.

• Once EFI_BOOT_SERVICES.ExitBootServices() is performed, data variables that did
not have EFI_VARIABLE_RUNTIME_ACCESS set are no longer visible to
GetVariable().

• Once ExitBootServices() is performed, only variables that have
EFI_VARIABLE_RUNTIME_ACCESS and EFI_VARIABLE_NON_VOLATILE set can be
Version 2.5 April, 2015 243

Unified Extensible Firmware Interface Specification
set with SetVariable(). Variables that have runtime access but that are not nonvolatile are
read-only data variables once ExitBootServices() is performed

• When the EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute
is set in a SetVariable() call, the authentication shall use the
EFI_VARIABLE_AUTHENTICATION_2 descriptor.

• If both the EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS attribute and the
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute are set in a
SetVariable() call, then the firmware must return EFI_INVALID_PARAMETER.

• If the EFI_VARIABLE_APPEND_WRITE attribute is set in a SetVariable() call, then any
existing variable value shall be appended with the value of the Data parameter. If the firmware
does not support the append operation, then the SetVariable() call shall return
EFI_INVALID_PARAMETER.

• If the EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute is set
in a SetVariable() call, and firmware does not support signature type of the certificate
included in the EFI_VARIABLE_AUTHENTICATION_2 descriptor, then the
SetVariable() call shall return EFI_INVALID_PARAMETER. The list of signature types
supported by the firmware is defined by the SignatureSupport variable. Signature type of the
certificate is defined by its digest and encryption algorithms.

• If the EFI_VARIABLE_HARDWARE_ERROR_RECORD attribute is set, VariableName and
VendorGuid must comply with the rules stated in Section 7.2.3.2 and Appendix P. Otherwise,
the SetVariable() call shall return EFI_INVALID_PARAMETER.

• Globally Defined Variables defined in Section 3.3 must be created with the attributes defined in
the Table 11. If a globally defined variable is created with the wrong attributes, the result is
indeterminate and may vary between implementations.

• With the exception of the PK variables, Secure Boot Policy Variable must be created with the
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute set, and the
authentication shall use the EFI_VARIABLE_AUTHENTICATION_2 descriptor. If the
appropriate attribute bit is not set, then the firmware shall return EFI_INVALID_PARAMETER.
PK may be created with this attribute, or with no authentication, but any updates to it must use
this attribute.

The only rules the firmware must implement when saving a nonvolatile variable is that it has
actually been saved to nonvolatile storage before returning EFI_SUCCESS, and that a partial save
is not performed. If power fails during a call to SetVariable() the variable may contain its
previous value, or its new value. In addition there is no read, write, or delete security protection.

To delete a variable created with the EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS or
the EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute,
SetVariable must be used with attributes matching the existing variable and the DataSize
set to the size of the AuthInfo descriptor. The Data buffer must contain an instance of the
AuthInfo descriptor which will be validated according to the steps in the appropriate section
above referring to updates of Authenticated variables. An attempt to delete a variable created
with the EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS or
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute for which the
prescribed AuthInfo validation fails or when called using DataSize of zero will fail with an
EFI_SECURITY_VIOLATION status.
244 April, 2015 Version 2.5

Services — Runtime Services
Status Codes Returned

7.2.1 Using the EFI_VARIABLE_AUTHENTICATION_2 descriptor
(Recommended)

When the attribute EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS is set,
then the Data buffer shall begin with an instance of a complete (and serialized)
EFI_VARIABLE_AUTHENTICATION_2 descriptor. The descriptor shall be followed by the new
variable value and DataSize shall reflect the combined size of the descriptor and the new variable
value. The authentication descriptor is not part of the variable data and is not returned by subsequent
calls to GetVariable().

A caller that invokes the SetVariable() service with the
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute set shall do the
following prior to invoking the service:

1. Create a descriptor

Create an EFI_VARIABLE_AUTHENTICATION_2 descriptor where:

• TimeStamp is set to the current time.

Note: In certain environments a reliable time source may not be available. In this case, an implementation may
still add values to an authenticated variable since the EFI_VARIABLE_APPEND_WRITE attribute,
when set, disables timestamp verification (see below). In these instances, the special time value where every
component of the EFI_TIME struct including the Day and Month is set to 0 shall be used.

• AuthInfo.CertType is set to EFI_CERT_TYPE_PKCS7_GUID.

2. Hash the serialization

Hash the serialization of the values of the VariableName, VendorGuid and Attributes
parameters of the SetVariable() call and the TimeStamp component of the
EFI_VARIABLE_AUTHENTICATION_2 descriptor followed by the variable’s new value (i.e.

EFI_SUCCESS The firmware has successfully stored the variable and its data as
defined by the Attributes.

EFI_INVALID_PARAMETER An invalid combination of attribute bits, name, and GUID was

supplied, or the DataSize exceeds the maximum allowed.

EFI_INVALID_PARAMETER VariableName is an empty string.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the variable and its data.

EFI_DEVICE_ERROR The variable could not be saved due to a hardware failure.

EFI_WRITE_PROTECTED The variable in question is read-only.

EFI_WRITE_PROTECTED The variable in question cannot be deleted.

EFI_SECURITY_VIOLATION The variable could not be written due to

EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS
or

EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WR
ITE_ACESS being set, but the AuthInfo does NOT pass

the validation check carried out by the firmware.

EFI_NOT_FOUND The variable trying to be updated or deleted was not found.
Version 2.5 April, 2015 245

Unified Extensible Firmware Interface Specification
the Data parameter’s new variable content). That is, digest = hash (VariableName,
VendorGuid, Attributes, TimeStamp, DataNew_variable_content). The NULL
character terminating the VariableName value shall not be included in the hash computation.

3. Sign the resulting digest

Sign the resulting digest using a selected signature scheme (e.g. PKCS #1 v1.5)

4. Construct a DER-encoded PKCS

Construct a DER-encoded PKCS #7 version 1.5 SignedData (see [RFC2315]) with the signed
content as follows:

a SignedData.version shall be set to 1

b SignedData.digestAlgorithms shall contain the digest algorithm used when preparing the
signature. Only a digest algorithm of SHA-256 is accepted.

c SignedData.contentInfo.contentType shall be set to id-data

d SignedData.contentInfo.content shall be absent (the content is provided in the Data
parameter to the SetVariable() call)

e SignedData.certificates shall contain, at a minimum, the signer’s DER-encoded X.509
certificate

f SignedData.crls is optional.

g SignedData.signerInfos shall be constructed as:
— SignerInfo.version shall be set to 1
— SignerInfo.issuerAndSerial shall be present and as in the signer’s certificate
— SignerInfo.authenticatedAttributes shall not be present.
— SignerInfo.digestEncryptionAlgorithm shall be set to the algorithm used to sign the data.

Only a digest encryption algorithm of RSA with PKCS #1 v1.5 padding (RSASSA_PKCS1-
v1_5). is accepted.

— SiginerInfo.encryptedDigest shall be present
— SignerInfo.unauthenticatedAttributes shall not be present.

5. Set AuthInfo.CertData

Set AuthInfo.CertData to the DER-encoded PKCS #7 SignedData value.

6. Construct Data parameter

Construct the SetVariable()’s Data parameter by concatenating the complete, serialized
EFI_VARIABLE_AUTHENTICATION_2 descriptor with the new value of the variable
(DataNew_variable_content).

Firmware that implements the SetVariable() service and supports the
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute shall do the
following in response to being called:

1. Verify that the correct AuthInfo.CertType (EFI_CERT_TYPE_PKCS7_GUID) has been
used and that the AuthInfo.CertData value parses correctly as a PKCS #7 SignedData
value

2. Verify that Pad1, Nanosecond, TimeZone, Daylight and Pad2 components of the TimeStamp
value are set to zero. Unless the EFI_VARIABLE_APPEND_WRITE attribute is set, verify that
the TimeStamp value is later than the current timestamp value associated with the variable.
246 April, 2015 Version 2.5

Services — Runtime Services
3. If the variable SetupMode==1, and the variable is a secure boot policy variable, then the
firmware implementation shall consider the checks in the following steps 4 and 5 to have passed,
and proceed with updating the variable value as outlined below.

4. Verify the signature by:
— extracting the EFI_VARIABLE_AUTHENTICATION_2 descriptor from the Data buffer;
— using the descriptor contents and other parameters to

a construct the input to the digest algorithm;

b computing the digest; and

c comparing the digest with the result of applying the signer’s public key to the signature.

5. If the variable is the global PK variable or the global KEK variable, verify that the signature has
been made with the current Platform Key.

If the variable is the “db”, “dbt”, “dbr”, or “dbx” variable mentioned in step 3, verify that the
signer’s certificate chains to a certificate in the Key Exchange Key database (or that the
signature was made with the current Platform Key).

If the variable is the "OsRecoveryOrder" variable mentioned in step 3, verify that the signer's
certificate chains to a certificate in the "dbr" database, the Key Exchange Key database, or that
the signature was made with the current Platform Key.

If the variable isn’t one of the variables mentioned in step 3, and the variable previously existed,
verify that the public key used to verify the signature is the public key already associated with
the variable

The driver shall update the value of the variable only if all of these checks pass. If any of the checks
fails, firmware must return EFI_SECURITY_VIOLATION.

The firmware shall perform an append to an existing variable value only if the
EFI_VARIABLE_APPEND_WRITE attribute is set.

For variables with the GUID EFI_IMAGE_SECURITY_DATABASE_GUID (i.e. where the data
buffer is formatted as EFI_SIGNATURE_LIST), the driver shall not perform an append of
EFI_SIGNATURE_DATA values that are already part of the existing variable value .

Note: This situation is not considered an error, and shall in itself not cause a status code other than
EFI_SUCCESS to be returned or the timestamp associated with the variable not to be updated.

The firmware shall associate the new timestamp with the updated value (in the case when the
EFI_VARIABLE_APPEND_WRITE attribute is set, this only applies if the new TimeStamp value
is later than the current timestamp associated with the variable).

If the variable did not previously exist, and is not one of the variables listed in step 3 above, then
firmware shall associate the signer's public key with the variable for future verification purposes

7.2.2 Using the EFI_VARIABLE_AUTHENTICATION descriptor
When the attribute EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS is set, but the
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS is not set (i.e. when the
EFI_VARIABLE_AUTHENTICATION descriptor is used), then the Data buffer shall begin with
an instance of the authentication descriptor AuthInfo prior to the data payload and DataSize
should reflect the data and descriptor size. The authentication descriptor is not part of the variable
data and is not returned by the subsequent calls to GetVariable. The caller shall digest the
Version 2.5 April, 2015 247

Unified Extensible Firmware Interface Specification
Monotonic Count value and the associated data for the variable update using the SHA-256 1-way
hash algorithm. The ensuing the 32-byte digest will be signed using the private key associated w/ the
public 2048-bit RSA key PublicKey described in the
EFI_CERT_BLOCK_RSA_2048_SHA256 structure.

The WIN_CERTIFICATE shall be used to describe the signature of the Variable data *Data. In
addition, the signature will also include the MonotonicCount value to guard against replay
attacks. The MonotonicCount value must be increased by the caller prior to an update of the
*Data when the EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS is set.

From the EFI_CERT_BLOCK_RSA_2048_SHA256, the HashType will be
EFI_SHA256_HASH and the ANYSIZE_ARRAY of Signature will be 256.The
WIN_CERTIFICATE_PKCS1_15 could have been used but was not for the following reason:
There are possibly various different principals to create authenticated variables, so the public key
corresponding to a given principal is added to the EFI_CERT_BLOCK_RSA_2048_SHA256
within the WIN_CERTIFICATE. This does not lend cryptographic value so much as it provides
something akin to a handle for the platform firmware to use during its verification operation.

The MonotonicCount value must be strictly greater for each successive variable update
operation. This allows for ensuring freshness of the update operation and defense against replay
attacks (i.e., if someone had the value of a former AuthInfo, such as a Man-in-the-Middle they
could not re-invoke that same update session). For maintenance, the party who initially provisioned
the variable (i.e., caller of SetVariable) and set the monotonic count will have to pass the credential
(key-pair and monotonic count) to any party who is delegated to make successive updates to the
variable with the EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS set. This 3-tuple of
{public key, private key, monotonic count} becomes part of the management metadata for these
access-controlled items.

The responsibility of the caller that invokes the SetVariable() service with the
EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS attribute will do the following prior to
invoking the service:

• Update the Monotonic Count value.

• Hash the variable contents (Data, Size, Monotonic count) using the HashType in the
AuthInfo structure.

• Sign the resultant hash of above step using a caller private key and create the digital signature
Signature. Ensure that the public key associated with signing private key is in the
AuthInfo structure.

• Invoke SetVariables with EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS attribute
set.

The responsibility of the firmware that implements the SetVariable() service and supports the
EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS attribute will do the following in
response to being called:

• The first time it uses SetVariable with the
EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS attribute set. Use the public key in
the AuthInfo structure for subsequent verification.

• Hash the variable contents (Data, Size, Monotonic count) using the HashType in the
AuthInfo structure.
248 April, 2015 Version 2.5

Services — Runtime Services
• Compare the public key in the AuthInfo structure with the public key passed in on the first
invocation.

• Verify the digital signature Signature of the signed hash using the stored public key
associated with the variable.

• Compare the verification of the signature with the instance generated by the caller

• If comparison fails, return EFI_SECURITY_VIOLATION.

• Compare the new monotonic count and ensure that it is greater than the last SetVariable
operation with the EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS attribute set.

• If new monotonic count is not strictly greater, then return
EFI_SECURITY_VIOLATION.
Version 2.5 April, 2015 249

Unified Extensible Firmware Interface Specification
QueryVariableInfo()

Summary
Returns information about the EFI variables.

Prototype
typedef
EFI_STATUS
QueryVariableInfo (
 IN UINT32 Attributes,
 OUT UINT64 *MaximumVariableStorageSize,
 OUT UINT64 *RemainingVariableStorageSize,
 OUT UINT64 *MaximumVariableSize
);

Attributes Attributes bitmask to specify the type of variables on which to
return information. Refer to the GetVariable() function
description. The EFI_VARIABLE_APPEND_WRITE attribute,
if set in the attributes bitmask, will be ignored.

MaximumVariableStorageSize
On output the maximum size of the storage space available for
the EFI variables associated with the attributes specified.

RemainingVariableStorageSize
Returns the remaining size of the storage space available for EFI
variables associated with the attributes specified.

MaximumVariableSize
Returns the maximum size of an individual EFI variable
associated with the attributes specified.

Description
The QueryVariableInfo() function allows a caller to obtain the information about the
maximum size of the storage space available for the EFI variables, the remaining size of the storage
space available for the EFI variables and the maximum size of each individual EFI variable,
associated with the attributes specified.

The MaximumVariableSize value will reflect the overhead associated with the saving of a
single EFI variable with the exception of the overhead associated with the length of the string name
of the EFI variable.

The returned MaximumVariableStorageSize, RemainingVariableStorageSize,
MaximumVariableSize information may change immediately after the call based on other
runtime activities including asynchronous error events. Also, these values associated with different
attributes are not additive in nature.

After the system has transitioned into runtime (after ExitBootServices() is called), an
implementation may not be able to accurately return information about the Boot Services variable
store. In such cases, EFI_INVALID_PARAMETER should be returned.
250 April, 2015 Version 2.5

Services — Runtime Services
Status Codes Returned

7.2.3 Hardware Error Record Persistence
This section defines how Hardware Error Record Persistence is to be implemented. By
implementing support for Hardware Error Record Persistence, the platform enables the OS to utilize
the EFI Variable Services to save hardware error records so they are persistent and remain available
across OS sessions until they are explicitly cleared or overwritten by their creator.

7.2.3.1 Hardware Error Record Non-Volatile Store
 A platform which implements support hardware error record persistence is required to guarantee
some amount of NVR is available to the OS for saving hardware error records. The platform
communicates the amount of space allocated for error records via the QueryVariableInfo routine as
described in Appendix P.

7.2.3.2 Hardware Error Record Variables
This section defines a set of Hardware Error Record variables that have architecturally defined
meanings. In addition to the defined data content, each such variable has an architecturally defined
attribute that indicates when the data variable may be accessed. The variables with an attribute of
HR are stored in the portion of NVR allocated for error records. NV, BS and RT have the meanings
defined in section 3.2. All hardware error record variables use the
EFI_HARDWARE_ERROR_VARIABLE VendorGuid:
#define EFI_HARDWARE_ERROR_VARIABLE\
{0x414E6BDD,0xE47B,0x47cc,{0xB2,0x44,0xBB,0x61,0x02,0x0C,0xF5,0x16}}

Table 34. Hardware Error Record Persistence Variables

The HwErrRec#### variable contains a hardware error record. Each HwErrRec#### variable is the
name "HwErrRec" appended with a unique 4-digit hexidecimal number. For example,
HwErrRec0001, HwErrRec0002, HwErrRecF31A, etc. The HR attribute indicates that this variable
is to be stored in the portion of NVR allocated for error records.

7.2.3.3 Common Platform Error Record Format
Error record variables persisted using this interface are encoded in the Common Platform Error
Record format, which is described in appendix N of the UEFI Specification. Because error records

EFI_SUCCESS Valid answer returned.

EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied

EFI_UNSUPPORTED The attribute is not supported on this platform, and the

MaximumVariableStorageSize,

RemainingVariableStorageSize,

MaximumVariableSize are undefined.

Variable Name Attribute Description

HwErrRec#### NV, BS, RT, HR A hardware error record. #### is a printed hex value. No
0x or h is included in the hex value
Version 2.5 April, 2015 251

Unified Extensible Firmware Interface Specification
persisted using this interface conform to this standardized format, the error information may be used
by entities other than the OS.

7.3 Time Services
This section contains function definitions for time-related functions that are typically needed by
operating systems at runtime to access underlying hardware that manages time information and
services. The purpose of these interfaces is to provide operating system writers with an abstraction
for hardware time devices, thereby relieving the need to access legacy hardware devices directly.
There is also a stalling function for use in the preboot environment. Table 35 lists the time services
functions described in this section:

Table 35. Time Services Functions

Name Type Description

GetTime Runtime Returns the current time and date, and the time-keeping capabilities of the
platform.

SetTime Runtime Sets the current local time and date information.

GetWakeupTime Runtime Returns the current wakeup alarm clock setting.

SetWakeupTime Runtime Sets the system wakeup alarm clock time.
252 April, 2015 Version 2.5

Services — Runtime Services
GetTime()

Summary
Returns the current time and date information, and the time-keeping capabilities of the hardware
platform.

Prototype
typedef
EFI_STATUS
GetTime (
 OUT EFI_TIME *Time,
 OUT EFI_TIME_CAPABILITIES *Capabilities OPTIONAL
);

Parameters
Time A pointer to storage to receive a snapshot of the current time.

Type EFI_TIME is defined in “Related Definitions.”

Capabilities An optional pointer to a buffer to receive the real time clock
device’s capabilities. Type EFI_TIME_CAPABILITIES is
defined in “Related Definitions.”

Related Definitions

//***
//EFI_TIME
//***
// This represents the current time information

typedef struct {

 UINT16 Year; // 1900 – 9999

 UINT8 Month; // 1 – 12

 UINT8 Day; // 1 – 31

 UINT8 Hour; // 0 – 23

 UINT8 Minute; // 0 – 59

 UINT8 Second; // 0 – 59

 UINT8 Pad1;

 UINT32 Nanosecond; // 0 – 999,999,999

 INT16 TimeZone; // -1440 to 1440 or 2047

 UINT8 Daylight;

 UINT8 Pad2;

} EFI_TIME;

//***
// Bit Definitions for EFI_TIME.Daylight. See below.
Version 2.5 April, 2015 253

Unified Extensible Firmware Interface Specification
//***
#define EFI_TIME_ADJUST_DAYLIGHT 0x01

#define EFI_TIME_IN_DAYLIGHT 0x02

//***
// Value Definition for EFI_TIME.TimeZone. See below.
//***
#define EFI_UNSPECIFIED_TIMEZONE 0x07FF

Year, Month, Day The current local date.

Hour, Minute, Second, Nanosecond

The current local time. Nanoseconds report the current fraction of
a second in the device. The format of the time is
hh:mm:ss.nnnnnnnnn. A battery backed real time clock
device maintains the date and time.

TimeZone The time's offset in minutes from UTC. If the value is
EFI_UNSPECIFIED_TIMEZONE, then the time is interpreted
as a local time. The TimeZone is the number of minutes that the
local time is relative to UTC. To calculate the TimeZone value,
follow this equation: Localtime = UTC - TimeZone.

To further illustrate this, an example is given below:

PST (Pacific Standard Time is 12PM) = UTC (8PM) - 8 hours
(480 minutes)

In this case, the value for Timezone would be 480 if referencing
PST.

Daylight A bitmask containing the daylight savings time information for
the time.

The EFI_TIME_ADJUST_DAYLIGHT bit indicates if the time
is affected by daylight savings time or not. This value does not
indicate that the time has been adjusted for daylight savings time.
It indicates only that it should be adjusted when the EFI_TIME
enters daylight savings time.

If EFI_TIME_IN_DAYLIGHT is set, the time has been adjusted
for daylight savings time.

All other bits must be zero.

When entering daylight saving time, if the time is affected, but
hasn't been adjusted (DST = 1), use the new calculation:
1. The date/time should be increased by the appropriate amount.
2. The TimeZone should be decreased by the appropriate
amount (EX: +480 changes to +420 when moving from PST to
PDT).
3. The Daylight value changes to 3.

254 April, 2015 Version 2.5

Services — Runtime Services
When exiting daylight saving time, if the time is affected and has
been adjusted (DST = 3), use the new calculation:.

1. The date/time should be decreased by the appropriate amount.
2. The TimeZone should be increased by the appropriate
amount.
3. The Daylight value changes to 1.

//***
// EFI_TIME_CAPABILITIES
//***
// This provides the capabilities of the

// real time clock device as exposed through the EFI interfaces.

typedef struct {

 UINT32 Resolution;

 UINT32 Accuracy;

 BOOLEAN SetsToZero;

} EFI_TIME_CAPABILITIES;

Resolution Provides the reporting resolution of the real-time clock device in
counts per second. For a normal PC-AT CMOS RTC device, this
value would be 1 Hz, or 1, to indicate that the device only reports
the time to the resolution of 1 second.

Accuracy Provides the timekeeping accuracy of the real-time clock in an
error rate of 1E-6 parts per million. For a clock with an accuracy
of 50 parts per million, the value in this field would be
50,000,000.

SetsToZero A TRUE indicates that a time set operation clears the device’s
time below the Resolution reporting level. A FALSE
indicates that the state below the Resolution level of the
device is not cleared when the time is set. Normal PC-AT CMOS
RTC devices set this value to FALSE.

Description
The GetTime() function returns a time that was valid sometime during the call to the function.
While the returned EFI_TIME structure contains TimeZone and Daylight savings time
information, the actual clock does not maintain these values. The current time zone and daylight
saving time information returned by GetTime() are the values that were last set via SetTime().

The GetTime() function should take approximately the same amount of time to read the time each
time it is called. All reported device capabilities are to be rounded up.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling GetTime().

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER Time is NULL.
Version 2.5 April, 2015 255

Unified Extensible Firmware Interface Specification
EFI_DEVICE_ERROR The time could not be retrieved due to a hardware error.
256 April, 2015 Version 2.5

Services — Runtime Services
SetTime()

Summary
Sets the current local time and date information.

Prototype

typedef
EFI_STATUS
SetTime (
 IN EFI_TIME *Time
);

Parameters
Time A pointer to the current time. Type EFI_TIME is defined in the

GetTime() function description. Full error checking is
performed on the different fields of the EFI_TIME structure
(refer to the EFI_TIME definition in the GetTime() function
description for full details), and EFI_INVALID_PARAMETER
is returned if any field is out of range.

Description
The SetTime() function sets the real time clock device to the supplied time, and records the
current time zone and daylight savings time information. The SetTime() function is not allowed
to loop based on the current time. For example, if the device does not support a hardware reset for
the sub-resolution time, the code is not to implement the feature by waiting for the time to wrap.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling SetTime().

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER A time field is out of range.

EFI_DEVICE_ERROR The time could not be set due to a hardware error.
Version 2.5 April, 2015 257

Unified Extensible Firmware Interface Specification
GetWakeupTime()

Summary
Returns the current wakeup alarm clock setting.

Prototype
typedef
EFI_STATUS
GetWakeupTime (
 OUT BOOLEAN *Enabled,
 OUT BOOLEAN *Pending,
 OUT EFI_TIME *Time
);

Parameters
Enabled Indicates if the alarm is currently enabled or disabled.

Pending Indicates if the alarm signal is pending and requires
acknowledgement.

Time The current alarm setting. Type EFI_TIME is defined in the
GetTime() function description.

Description
The alarm clock time may be rounded from the set alarm clock time to be within the resolution of the
alarm clock device. The resolution of the alarm clock device is defined to be one second.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling GetWakeupTime().

Status Codes Returned

EFI_SUCCESS The alarm settings were returned.

EFI_INVALID_PARAMETER Enabled is NULL.

EFI_INVALID_PARAMETER Pending is NULL.

EFI_INVALID_PARAMETER Time is NULL.

EFI_DEVICE_ERROR The wakeup time could not be retrieved due to a hardware error.

EFI_UNSUPPORTED A wakeup timer is not supported on this platform.
258 April, 2015 Version 2.5

Services — Runtime Services
SetWakeupTime()

Summary
Sets the system wakeup alarm clock time.

Prototype

typedef
EFI_STATUS
SetWakeupTime (
 IN BOOLEAN Enable,
 IN EFI_TIME *Time OPTIONAL
);

Parameters
Enable Enable or disable the wakeup alarm.

Time If Enable is TRUE, the time to set the wakeup alarm for. Type
EFI_TIME is defined in the GetTime() function description.
If Enable is FALSE, then this parameter is optional, and may be
NULL.

Description
Setting a system wakeup alarm causes the system to wake up or power on at the set time. When the
alarm fires, the alarm signal is latched until it is acknowledged by calling SetWakeupTime() to
disable the alarm. If the alarm fires before the system is put into a sleeping or off state, since the
alarm signal is latched the system will immediately wake up. If the alarm fires while the system is
off and there is insufficient power to power on the system, the system is powered on when power
is restored.

For an ACPI-aware operating system, this function only handles programming the wakeup alarm for
the desired wakeup time. The operating system still controls the wakeup event as it normally would
through the ACPI Power Management register set.

The resolution for the wakeup alarm is defined to be 1 second.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling SetWakeupTime().
Version 2.5 April, 2015 259

Unified Extensible Firmware Interface Specification
Status Codes Returned

7.4 Virtual Memory Services
This section contains function definitions for the virtual memory support that may be optionally used
by an operating system at runtime. If an operating system chooses to make EFI runtime service calls
in a virtual addressing mode instead of the flat physical mode, then the operating system must use
the services in this section to switch the EFI runtime services from flat physical addressing to virtual
addressing. Table 36 lists the virtual memory service functions described in this section. The system
firmware must follow the processor-specific rules outlined in Section 2.3.2 through Section 2.3.4 in
the layout of the EFI memory map to enable the OS to make the required virtual mappings.

Table 36. Virtual Memory Functions

EFI_SUCCESS If Enable is TRUE, then the wakeup alarm was enabled. If

Enable is FALSE, then the wakeup alarm was disabled.

EFI_INVALID_PARAMETER A time field is out of range.

EFI_DEVICE_ERROR The wakeup time could not be set due to a hardware error.

EFI_UNSUPPORTED A wakeup timer is not supported on this platform.

Name Type Description

SetVirtualAddressMap Runtime Used by an OS loader to convert from physical addressing to virtual
addressing.

ConvertPointer Runtime Used by EFI components to convert internal pointers when switching
to virtual addressing.
260 April, 2015 Version 2.5

Services — Runtime Services
SetVirtualAddressMap()

Summary
Changes the runtime addressing mode of EFI firmware from physical to virtual.

Prototype
typedef
EFI_STATUS
SetVirtualAddressMap (
 IN UINTN MemoryMapSize,
 IN UINTN DescriptorSize,
 IN UINT32 DescriptorVersion,
 IN EFI_MEMORY_DESCRIPTOR *VirtualMap
);

Parameters
MemoryMapSize The size in bytes of VirtualMap.

DescriptorSize The size in bytes of an entry in the VirtualMap.

DescriptorVersion The version of the structure entries in VirtualMap.

VirtualMap An array of memory descriptors which contain new virtual
address mapping information for all runtime ranges. Type
EFI_MEMORY_DESCRIPTOR is defined in the
EFI_BOOT_SERVICES.GetMemoryMap() function
description.

Description
The SetVirtualAddressMap() function is used by the OS loader. The function can only be
called at runtime, and is called by the owner of the system’s memory map: i.e., the component which
called EFI_BOOT_SERVICES.ExitBootServices(). All events of type
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE must be signaled before
SetVirtualAddressMap() returns.

This call changes the addresses of the runtime components of the EFI firmware to the new virtual
addresses supplied in the VirtualMap. The supplied VirtualMap must provide a new virtual
address for every entry in the memory map at ExitBootServices() that is marked as being
needed for runtime usage. All of the virtual address fields in the VirtualMap must be aligned on
4 KiB boundaries.

The call to SetVirtualAddressMap() must be done with the physical mappings. On
successful return from this function, the system must then make any future calls with the newly
assigned virtual mappings. All address space mappings must be done in accordance to the
cacheability flags as specified in the original address map.

When this function is called, all events that were registered to be signaled on an address map change
are notified. Each component that is notified must update any internal pointers for their new
addresses. This can be done with the ConvertPointer() function. Once all events have been
notified, the EFI firmware reapplies image “fix-up” information to virtually relocate all runtime
Version 2.5 April, 2015 261

Unified Extensible Firmware Interface Specification
images to their new addresses. In addition, all of the fields of the EFI Runtime Services Table except
SetVirtualAddressMap and ConvertPointer must be converted from physical pointers to
virtual pointers using the ConvertPointer() service. The SetVirtualAddressMap() and
ConvertPointer() services are only callable in physical mode, so they do not need to be
converted from physical pointers to virtual pointers. Several fields of the EFI System Table must be
converted from physical pointers to virtual pointers using the ConvertPointer() service. These
fields include FirmwareVendor, RuntimeServices, and ConfigurationTable.
Because contents of both the EFI Runtime Services Table and the EFI System Table are modified by
this service, the 32-bit CRC for the EFI Runtime Services Table and the EFI System Table must be
recomputed.

A virtual address map may only be applied one time. Once the runtime system is in virtual mode,
calls to this function return EFI_UNSUPPORTED.

Status Codes Returned

EFI_SUCCESS The virtual address map has been applied.

EFI_UNSUPPORTED EFI firmware is not at runtime, or the EFI firmware is already in
virtual address mapped mode.

EFI_INVALID_PARAMETER DescriptorSize or DescriptorVersion is

invalid.

EFI_NO_MAPPING A virtual address was not supplied for a range in the memory
map that requires a mapping.

EFI_NOT_FOUND A virtual address was supplied for an address that is not found
in the memory map.
262 April, 2015 Version 2.5

Services — Runtime Services
ConvertPointer()

Summary
Determines the new virtual address that is to be used on subsequent memory accesses.

Prototype
typedef
EFI_STATUS
ConvertPointer (
 IN UINTN DebugDisposition,
 IN VOID **Address
);

Parameters
DebugDisposition Supplies type information for the pointer being converted. See

“Related Definitions.”

Address A pointer to a pointer that is to be fixed to be the value needed for
the new virtual address mappings being applied.

Related Definitions

//***
// EFI_OPTIONAL_PTR
//***
#define EFI_OPTIONAL_PTR 0x00000001

Description
The ConvertPointer() function is used by an EFI component during the
SetVirtualAddressMap() operation. ConvertPointer()must be called using physical
address pointers during the execution of SetVirtualAddressMap().

The ConvertPointer() function updates the current pointer pointed to by Address to be the
proper value for the new address map. Only runtime components need to perform this operation. The
EFI_BOOT_SERVICES.CreateEvent() function is used to create an event that is to be
notified when the address map is changing. All pointers the component has allocated or assigned
must be updated.

If the EFI_OPTIONAL_PTR flag is specified, the pointer being converted is allowed to be NULL.

Once all components have been notified of the address map change, firmware fixes any compiled in
pointers that are embedded in any runtime image.
Version 2.5 April, 2015 263

Unified Extensible Firmware Interface Specification
Status Codes Returned

7.5 Miscellaneous Runtime Services
This section contains the remaining function definitions for runtime services not defined elsewhere
but which are required to complete the definition of the EFI environment. Table 37 lists the
Miscellaneous Runtime Services.

Table 37. Miscellaneous Runtime Services

7.5.1 Reset System
This section describes the reset system runtime service and its associated data structures.

EFI_SUCCESS The pointer pointed to by Address was modified.

EFI_NOT_FOUND The pointer pointed to by Address was not found to be part of

the current memory map. This is normally fatal.

EFI_INVALID_PARAMETER Address is NULL.

EFI_INVALID_PARAMETER *Address is NULL and DebugDisposition does not

have the EFI_OPTIONAL_PTR bit set.

Name Type Description

GetNextHighMonotonicCount Runtime Returns the next high 32 bits of the platform’s monotonic
counter.

ResetSystem Runtime Resets the entire platform.

UpdateCapsule Runtime Pass capsules to the firmware. The firmware may process the
capsules immediately or return a value to be passed into

ResetSystem() that will cause the capsule to be

processed by the firmware as part of the reset process.

QueryCapsuleCapabilities Runtime Returns if the capsule can be supported via

UpdateCapsule()
264 April, 2015 Version 2.5

Services — Runtime Services
ResetSystem()

Summary
Resets the entire platform.

Prototype
typedef
VOID
ResetSystem (
 IN EFI_RESET_TYPE ResetType,
 IN EFI_STATUS ResetStatus,
 IN UINTN DataSize,
 IN VOID *ResetData OPTIONAL
);

Parameters
ResetType The type of reset to perform. Type EFI_RESET_TYPE is

defined in “Related Definitions” below.

ResetStatus The status code for the reset. If the system reset is part of a
normal operation, the status code would be EFI_SUCCESS. If
the system reset is due to some type of failure the most
appropriate EFI Status code would be used.

DataSize The size, in bytes, of ResetData.

ResetData For a ResetType of EfiResetCold, EfiResetWarm, or
EfiResetShutdown the data buffer starts with a Null-
terminated string, optionally followed by additional binary data.
The string is a description that the caller may use to further
indicate the reason for the system reset. ResetData is only
valid if ResetStatus is something other than EFI_SUCCESS
unless the ResetType is EfiResetPlatformSpecific
where a minimum amount of ResetData is always required.
For a ResetType of EfiRestUpdate the data buffer also
starts with a Null-terminated string that is followed by an
EFI_GUID that describes the specific type of reset to perform.
Version 2.5 April, 2015 265

Unified Extensible Firmware Interface Specification
Related Definitions
//***
// EFI_RESET_TYPE
//***
typedef enum {
 EfiResetCold,
 EfiResetWarm,
 EfiResetShutdown
 EfiResetPlatformSpecific
} EFI_RESET_TYPE;

Description
The ResetSystem()function resets the entire platform, including all processors and devices, and
reboots the system.

Calling this interface with ResetType of EfiResetCold causes a system-wide reset. This sets
all circuitry within the system to its initial state. This type of reset is asynchronous to system
operation and operates without regard to cycle boundaries. EfiResetCold is tantamount to a
system power cycle.

Calling this interface with ResetType of EfiResetWarm causes a system-wide initialization.
The processors are set to their initial state, and pending cycles are not corrupted. If the system does
not support this reset type, then an EfiResetCold must be performed.

Calling this interface with ResetType of EfiResetShutdown causes the system to enter a
power state equivalent to the ACPI G2/S5 or G3 states. If the system does not support this reset type,
then when the system is rebooted, it should exhibit the EfiResetCold attributes.

Calling this interface with ResetType of EfiResetPlatformSpecific causes a system-
wide reset. The exact type of the reset is defined by the EFI_GUID that follows the Null-terminated
Unicode string passed into ResetData. If the platform does not recognize the EFI_GUID in
ResetData the platform must pick a supported reset type to perform.The platform may optionally
log the parameters from any non-normal reset that occurs.

The ResetSystem() function does not return.

7.5.2 Get Next High Monotonic Count
This section describes the GetNextHighMonotonicCount runtime service and its associated data
structures.
266 April, 2015 Version 2.5

Services — Runtime Services
GetNextHighMonotonicCount()

Summary
Returns the next high 32 bits of the platform’s monotonic counter.

Prototype
typedef
EFI_STATUS
GetNextHighMonotonicCount (
 OUT UINT32 *HighCount
);

Parameters
HighCount Pointer to returned value.

Description
The GetNextHighMonotonicCount() function returns the next high 32 bits of the platform’s
monotonic counter.

The platform’s monotonic counter is comprised of two 32-bit quantities: the high 32 bits and the low
32 bits. During boot service time the low 32-bit value is volatile: it is reset to zero on every system
reset and is increased by 1 on every call to GetNextMonotonicCount(). The high 32-bit value
is nonvolatile and is increased by 1 whenever the system resets or whenever the low 32-bit count
(returned by GetNextMonoticCount()) overflows.

The EFI_BOOT_SERVICES.GetNextMonotonicCount() function is only available at boot
services time. If the operating system wishes to extend the platform monotonic counter to runtime, it
may do so by utilizing GetNextHighMonotonicCount(). To do this, before calling
EFI_BOOT_SERVICES.ExitBootServices() the operating system would call
GetNextMonotonicCount() to obtain the current platform monotonic count. The operating
system would then provide an interface that returns the next count by:

• Adding 1 to the last count.

• Before the lower 32 bits of the count overflows, call GetNextHighMonotonicCount().
This will increase the high 32 bits of the platform’s nonvolatile portion of the monotonic count
by 1.

This function may only be called at Runtime.

Status Codes Returned

EFI_SUCCESS The next high monotonic count was returned.

EFI_DEVICE_ERROR The device is not functioning properly.

EFI_INVALID_PARAMETER HighCount is NULL.
Version 2.5 April, 2015 267

Unified Extensible Firmware Interface Specification
7.5.3 Update Capsule
This runtime function allows a caller to pass information to the firmware. Update Capsule is
commonly used to update the firmware FLASH or for an operating system to have information
persist across a system reset.
268 April, 2015 Version 2.5

Services — Runtime Services
UpdateCapsule()

Summary
Passes capsules to the firmware with both virtual and physical mapping. Depending on the intended
consumption, the firmware may process the capsule immediately. If the payload should persist
across a system reset, the reset value returned from EFI_QueryCapsuleCapabilities must
be passed into ResetSystem() and will cause the capsule to be processed by the firmware as part
of the reset process.

Prototype
typedef
EFI_STATUS
UpdateCapsule (
 IN EFI_CAPSULE_HEADER **CapsuleHeaderArray,
 IN UINTN CapsuleCount,
 IN EFI_PHYSICAL_ADDRESS ScatterGatherList OPTIONAL
);

Parameters
CapsuleHeaderArray Virtual pointer to an array of virtual pointers to the capsules being

passed into update capsule. Each capsules is assumed to stored in
contiguous virtual memory. The capsules in the
CapsuleHeaderArray must be the same capsules as the
ScatterGatherList. The CapsuleHeaderArray must
have the capsules in the same order as the
ScatterGatherList.

CapsuleCount Number of pointers to EFI_CAPSULE_HEADER in
CaspuleHeaderArray.

ScatterGatherList Physical pointer to a set of
EFI_CAPSULE_BLOCK_DESCRIPTOR that describes the
location in physical memory of a set of capsules. See "Related
Definitions" for an explanation of how more than one capsule is
passed via this interface. The capsules in the
ScatterGatherList must be in the same order as the
CapsuleHeaderArray. This parameter is only referenced if
the capsules are defined to persist across system reset.

Related Definitions
typedef struct (
 UINT64 Length;
 union {
 EFI_PHYSICAL_ADDRESS DataBlock;
 EFI_PHYSICAL_ADDRESS ContinuationPointer;
 }Union;
) EFI_CAPSULE_BLOCK_DESCRIPTOR;
Version 2.5 April, 2015 269

Unified Extensible Firmware Interface Specification
Length Length in bytes of the data pointed to by DataBlock/
ContinuationPointer.

DataBlock Physical address of the data block. This member of the union is
used if Length is not equal to zero.

ContinuationPointerPhysical address of another block of
EFI_CAPSULE_BLOCK_DESCRIPTOR structures. This
member of the union is used if Length is equal to zero. If
ContinuationPointer is zero this entry represents the end
of the list.

This data structure defines the ScatterGatherList list the OS passes to the firmware.
ScatterGatherList represents an array of structures and is terminated with a structure
member whose Length is 0 and DataBlock physical address is 0. If Length is 0 and
DataBlock physical address is not 0, the specified physical address is known as a “continuation
pointer” and it points to a further list of EFI_CAPSULE_BLOCK_DESCRIPTOR structures. A
continuation pointer is used to allow the scatter gather list to be contained in physical memory that is
not contiguous. It also is used to allow more than a single capsule to be passed at one time.

typedef struct {
 EFI_GUID CapsuleGuid;
 UINT32 HeaderSize;
 UINT32 Flags;
 UINT32 CapsuleImageSize;
} EFI_CAPSULE_HEADER;

CapsuleGuid A GUID that defines the contents of a capsule.

HeaderSize The size of the capsule header. This may be larger than the size of
the EFI_CAPSULE_HEADER since CapsuleGuid may imply
extended header entries.

Flags Bit-mapped list describing the capsule attributes. The Flag values
of 0x0000 – 0xFFFF are defined by CapsuleGuid. Flag values
of 0x10000 – 0xFFFFFFFF are defined by this specification

CapsuleImageSize Size in bytes of the capsule.

#define CAPSULE_FLAGS_PERSIST_ACROSS_RESET 0x00010000
#define CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE 0x00020000
#define CAPSULE_FLAGS_INITIATE_RESET 0x00040000

Note: A capsule which has the CAPSULE_FLAGS_INITIATE_RESET Flag must have
CAPSULE_FLAGS_PERSIST_ACROSS_RESET set in its header as well. Firmware that
encounters a capsule which has the CAPSULE_FLAGS_INITIATE_RESET Flag set in its header
270 April, 2015 Version 2.5

Services — Runtime Services
will initiate a reset of the platform which is compatible with the passed-in capsule request and will
not return back to the caller.

Description
The UpdateCapsule()function allows the operating system to pass information to firmware.
The UpdateCapsule() function supports passing capsules in operating system virtual memory
back to firmware. Each capsule is contained in a contiguous virtual memory range in the operating
system, but both a virtual and physical mapping for the capsules are passed to the firmware.

If a capsule has the CAPSULE_FLAGS_PERSIST_ACROSS_RESET Flag set in its header, the
firmware will process the capsules after system reset. The caller must ensure to reset the system
using the required reset value obtained from QueryCapsuleCapabilities. If this flag is not set, the
firmware will process the capsules immediately.

A capsule which has the CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE Flag must have
CAPSULE_FLAGS_PERSIST_ACROSS_RESET set in its header as well. Firmware that
processes a capsule that has the CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE Flag set in
its header will coalesce the contents of the capsule from the ScatterGatherList into a contiguous
buffer and must then place a pointer to this coalesced capsule in the EFI System Table after the
system has been reset. Agents searching for this capsule will look in the
EFI_CONFIGURATION_TABLE and search for the capsule’s GUID and associated pointer to
retrieve the data after the reset.

Table 38. Flag Firmware Behavior

Flags Firmware Behavior

No Specification defined flags Firmware attempts to immediately processes or
launch the capsule. If capsule is not recognized, can
expect an error.

CAPSULE_FLAGS_PERSIST_ACROSS_RESET Firmware will attempt to process or launch the
capsule across a reset. If capsule is not recognized,
can expect an error. If the processing requires a reset
which is unsupported by the platform, expect an
error.

CAPSULE_FLAGS_PERSIST_ACROSS_RESET +
CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE

Firmware will coalesce the capsule from the
ScatterGatherList into a contiguous buffer and place
a pointer to the coalesced capsule in the EFI System
Table. Platform recognition of the capsule type is not
required. If the action requires a reset which is
unsupported by the platform, expect an error.

CAPSULE_FLAGS_PERSIST_ACROSS_RESET +
CAPSULE_FLAGS_INITIATE_RESET

Firmware will attempt to process or launch the
capsule across a reset. The firmware will initiate a
reset which is compatible with the passed-in capsule
request and will not return back to the caller. If the
capsule is not recognized, can expect an error. If the
processing requires a reset which is unsupported by
the platform, expect an error.
Version 2.5 April, 2015 271

Unified Extensible Firmware Interface Specification
The EFI System Table entry must use the GUID from the CapsuleGuid field of the
EFI_CAPSULE_HEADER. The EFI System Table entry must point to an array of capsules that
contain the same CapsuleGuid value. The array must be prefixed by a UINT32 that represents
the size of the array of capsules.

The set of capsules is pointed to by ScatterGatherList and CapsuleHeaderArray so
the firmware will know both the physical and virtual addresses of the operating system allocated
buffers. The scatter-gather list supports the situation where the virtual address range of a capsule is
contiguous, but the physical addresses are not.

If any of the capsules that are passed into this function encounter an error, the entire set of capsules
will not be processed and the error encountered will be returned to the caller.

Status Codes Returned

7.5.3.1 Capsule Definition
A capsule is simply a contiguous set of data that starts with an EFI_CAPSULE_HEADER. The
CapsuleGuid field in the header defines the format of the capsule.

CAPSULE_FLAGS_PERSIST_ACROSS_RESET +
CAPSULE_FLAGS_INITIATE_RESET +
CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE

The firmware will initiate a reset which is compatible
with the passed-in capsule request and not return
back to the caller. Upon resetting, the firmware will
coalesce the capsule from the ScatterGatherList into
a contiguous buffer and place a pointer to the
coalesced capsule in the EFI System Table. Platform
recognition of the capsule type is not required. If the
action requires a reset which is unsupported by the
platform, expect an error.

EFI_SUCCESS Valid capsule was passed. If
CAPSULE_FLAGS_PERSIST_ACROSS_RESET is not set, the
capsule has been successfully processed by the firmware.

EFI_INVALID_PARAMETER CapsuleSize , or an incompatible set of flags were
set in the capsule header.

EFI_INVALID_PARAMETER CapsuleCount is 0

EFI_DEVICE_ERROR The capsule update was started, but failed due to a device error.

EFI_UNSUPPORTED The capsule type is not supported on this platform.

EFI_OUT_OF_RESOURCES When ExitBootServices() has been previously

called this error indicates the capsule is compatible with this
platform but is not capable of being submitted or processed in
runtime. The caller may resubmit the capsule prior to

ExitBootServices().

EFI_OUT_OF_RESOURCES When ExitBootServices()has not been previously

called then this error indicates the capsule is compatible with
this platform but there are insufficient resources to process.

Flags Firmware Behavior
272 April, 2015 Version 2.5

Services — Runtime Services
The capsule contents are designed to be communicated from an OS-present environment to the
system firmware. To allow capsules to persist across system reset, a level of indirection is required
for the description of a capsule, since the OS primarily uses virtual memory and the firmware at boot
time uses physical memory. This level of abstraction is accomplished via the
EFI_CAPSULE_BLOCK_DESCRIPTOR. The EFI_CAPSULE_BLOCK_DESCRIPTOR allows
the OS to allocate contiguous virtual address space and describe this address space to the firmware
as a discontinuous set of physical address ranges. The firmware is passed both physical and virtual
addresses and pointers to describe the capsule so the firmware can process the capsule immediately
or defer processing of the capsule until after a system reset.

In most instruction sets and OS architecture, allocation of physical memory is possible only on a
“page” granularity (which can range for 4 KiB to at least 1 MiB). The
EFI_CAPSULE_BLOCK_DESCRIPTOR must have the following properties to ensure the safe and
well defined transition of the data:

• Each new capsule must start on a new page of memory.

• All pages except for the last must be completely filled by the capsule.
— It is legal to pad the header to make it consume an entire page of data to enable the passing

of page aligned data structures via a capsule. The last page must have at least one byte of
capsule in it.

• Pages must be naturally aligned

• Pages may not overlap on another

• Firmware may never make an assumption about the page sizes the operating system is using.

Multiple capsules can be concatenated together and passed via a single call to
UpdateCapsule().The physical address description of capsules are concatenated by converting

the terminating EFI_CAPSULE_BLOCK_DESCRIPTOR entry of the 1st capsule into a continuation
pointer by making it point to the EFI_CAPSULE_BLOCK_DESCRIPTOR that represents the start

of the 2nd capsule. There is only a single terminating EFI_CAPSULE_BLOCK_DESCRIPTOR
entry and it is at the end of the last capsule in the chain.

The following algorithm must be used to find multiple capsules in a single scatter gather list:

• Look at the capsule header to determine the size of the capsule
— The first Capsule header is always pointed to by the first

EFI_CAPSULE_BLOCK_DESCRIPTOR entry

• Walk the EFI_CAPSULE_BLOCK_DESCRIPTOR list keeping a running count of the size each
entry represents.

• If the EFI_CAPSULE_BLOCK_DESCRIPTOR entry is a continuation pointer and the running
current capsule size count is greater than or equal to the size of the current capsule this is the
start of the next capsule.

• Make the new capsules the current capsule and repeat the algorithm.

Figure 22 shows a Scatter-Gather list of EFI_CAPSULE_BLOCK_DESCRIPTOR structures that
describes two capsules. The left side of the figure shows OS view of the capsules as two separate
contiguous virtual memory buffers. The center of the figure shows the layout of the data in system
memory. The right hand side of the figure shows the ScatterGatherList list passed into the
Version 2.5 April, 2015 273

Unified Extensible Firmware Interface Specification
firmware. Since there are two capsules two independent EFI_CAPSULE_BLOCK_DESCRIPTOR
lists exist that were joined together via a continuation pointer in the first list.

Figure 22. Scatter-Gather List of EFI_CAPSULE_BLOCK_DESCRIPTOR Structures

Page N

Page M+1

Page M

System Memory

Capsule A header

Capsule B header

Capsule Body

Capsule Body

Capsule BodyPage N+1

Page N+2

Capsule Block Descriptor
ScatterGather

OS view of Capsules
FW view of Capsules

Page X

Page Y

NULL
274 April, 2015 Version 2.5

Services — Runtime Services
QueryCapsuleCapabilities()

Summary
Returns if the capsule can be supported via UpdateCapsule().

Prototype

typedef
EFI_STATUS
QueryCapsuleCapabilities (
 IN EFI_CAPSULE_HEADER **CapsuleHeaderArray,
 IN UINTN CapsuleCount,
 OUT UINT64 *MaximumCapsuleSize,
 OUT EFI_RESET_TYPE *ResetType
);

CapsuleHeaderArray

Virtual pointer to an array of virtual pointers to the capsules being passed into update
capsule. The capsules are assumed to stored in contiguous virtual memory.

CapsuleCount

Number of pointers to EFI_CAPSULE_HEADER in CaspuleHeaderArray.

MaximumCapsuleSize

On output the maximum size in bytes that UpdateCapsule() can support as an
argument to UpdateCapsule() via CapsuleHeaderArray and
ScatterGatherList. Undefined on input.

ResetType

Returns the type of reset required for the capsule update. Undefined on input.

Description
The QueryCapsuleCapabilities() function allows a caller to test to see if a capsule or
capsules can be updated via UpdateCapsule(). The Flags values in the capsule header and
size of the entire capsule is checked.

If the caller needs to query for generic capsule capability a fake EFI_CAPSULE_HEADER can be
constructed where CapsuleImageSize is equal to HeaderSize that is equal to sizeof
(EFI_CAPSULE_HEADER). To determine reset requirements,
CAPSULE_FLAGS_PERSIST_ACROSS_RESET should be set in the Flags field of the
EFI_CAPSULE_HEADER.
Version 2.5 April, 2015 275

Unified Extensible Firmware Interface Specification
Status Codes Returned

7.5.4 Exchanging information between the OS and Firmware
The firmware and an Operating System may exchange information through the
OsIndicationsSupported and the OSIndications variables as follows:

• The OsIndications variable returns a UINT64 bitmask owned by the OS and is used to
indicate which features the OS wants firmware to enable or which actions the OS wants the
firmware to take. The OS will supply this data with a SetVariable()call.

• The OsIndicationsSupported variable returns a UINT64 bitmask owned by the
firmware and indicates which of the OS indication features and actions that the firmware
supports. This variable is recreated by firmware every boot, and cannot be modified by the OS .

The EFI_OS_INDICATIONS_BOOT_TO_FW_UI bit can be set in the
OsIndicationsSupported variable by the firmware, if the firmware supports OS requests to
stop at a firmware user interface. The EFI_OS_INDICATIONS_BOOT_TO_FW_UI bit can be set
by the OS in the OsIndications variable, if the OS desires for the firmware to stop at a firmware
user interface on the next boot. Once the firmware consumes this bit in the OsIndications
variable and stops at the firmware user interface, the firmware should clear the bit from the
OsIndications variable in order to acknowledge to the OS that the information was consumed
and, more importantly, to prevent the firmware user interface from showing again on subsequent
boots.

The EFI_OS_INDICATIONS_TIMESTAMP_REVOCATION bit can be set in the
OSIndicationsSupported variable by the firmware, if the firmware supports timestamp
based revocation and the "dbt" authorized timestamp database variable.

The EFI_OS_INDICATIONS_FMP_CAPSULE_SUPPORTED bit is set in
OsIndicationsSupported variable if platform supports processing of Firmware Management
Protocol update capsule as defined in Section 22.2. If set in OsIndications variable, the
EFI_OS_INDICATIONS_FMP_CAPSULE_SUPPORTED bit has no function and is cleared on the
next reboot.

EFI_SUCCESS Valid answer returned.

EFI_INVALID_PARAMETER MaximumCapsuleSize is NULL.

EFI_UNSUPPORTED The capsule type is not supported on this platform, and

MaximumCapsuleSize and ResetType are

undefined.

EFI_OUT_OF_RESOURCES When ExitBootServices() has been previously

called this error indicates the capsule is compatible with this
platform but is not capable of being submitted or processed in
runtime. The caller may resubmit the capsule prior to

ExitBootServices().

EFI_OUT_OF_RESOURCES When ExitBootServices()has not been previously

called then this error indicates the capsule is compatible with
this platform but there are insufficient resources to process.
276 April, 2015 Version 2.5

Services — Runtime Services
The EFI_OS_INDICATIONS_FILE_CAPSULE_DELIVERY_SUPPORTED bit in
OsIndicationsSupported variable is set if platform supports processing of file capsules per
Section 7.5.5.

When submitting capsule via the Mass Storage Device method of Section 7.5.5, the bit
EFI_OS_INDICATIONS_FILE_CAPSULE_DELIVERY_SUPPORTED in OsIndications
variable must be set by submitter to trigger processing of submitted capsule on next reboot. This bit
will be cleared from OsIndications by system firmware in all cases during processing
following reboot.

The EFI_OS_INDICATIONS_CAPSULE_RESULT_VAR_SUPPORTED bit is set in
OsIndicationsSupported variable if platform supports reporting of deferred capsule
processing by creation of result variable as defined in Section 7.5.6. This bit has no function if set in
OsIndications.

The EFI_OS_INDICATIONS_START_OS_RECOVERY bit is set in the
OsIndicationsSupported variable if the platform supports both the ability for an OS to
indicate that OS-defined recovery should commence upon reboot, as well as support for the short-
form File Path Media Device Path (see Section 3.1.2). If this bit is set in OsIndications, the
platform firmware must bypass processing of the BootOrder variable during boot, and skip
directly to OS-defined recovery (see Section 3.4.1) followed by Platform-defined recovery (see
Section 3.4.2). System firmware must clear this bit in OsIndications when it starts OS-defined
recovery.

The EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY bit is set in the
OsIndicationsSupported variable if the platform supports both the ability for an OS to
indicate that Platform-defined recovery should commence upon reboot, as well as support for the
short-form File Path Media Device Path (see Section 3.1.2). If this bit is set in OsIndications,
the platform firmware must bypass processing of the BootOrder variable during boot, and skip
directly to platform-defined recovery (see Section 3.4.2). System firmware must clear this bit in
OsIndications when it starts Platform-defined recovery.

In all cases, if either of EFI_OS_INDICATIONS_START_OS_RECOVERY or
EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY is set in
OsIndicationsSupported, both must be set and supported.
Version 2.5 April, 2015 277

Unified Extensible Firmware Interface Specification
Related Definitions
#define EFI_OS_INDICATIONS_BOOT_TO_FW_UI 0x0000000000000001

#define EFI_OS_INDICATIONS_TIMESTAMP_REVOCATION \
0x0000000000000002

#define EFI_OS_INDICATIONS_FILE_CAPSULE_DELIVERY_SUPPORTED
0x0000000000000004

#define EFI_OS_INDICATIONS_FMP_CAPSULE_SUPPORTED \
0x0000000000000008

#define EFI_OS_INDICATIONS_CAPSULE_RESULT_VAR_SUPPORTED
0x0000000000000010

#define EFI_OS_INDICATIONS_START_OS_RECOVERY 0x0000000000000020

#define EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY \
0x0000000000000040

7.5.5 Delivery of Capsules via file on Mass Storage device
As an alternative to the UpdateCapsule() runtime API, capsules of any type supported by
platform may also be delivered to firmware via a file within the EFI system partition on the mass
storage device targeted for boot. Capsules staged using this method are processed on the next system
restart. This method is only available when booting from mass storage devices which are formatted
with GPT (Section 5.3) and contain an EFI System Partition in the device image. System firmware
will search for capsule when
EFI_OS_INDICATIONS_FILE_CAPSULE_DELIVERY_SUPPORTED bit in
OsIndications is set as described in Section 7.5.4.

The directory \EFI\UpdateCapsule (letter case ignored) within the active EFI System Partition
is defined for delivery of capsule to firmware. The binary structure of a capsule file on mass storage
device is identical to the contents of capsule delivered via the EFI RunTime API except that
fragmentation using EFI_CAPSULE_BLOCK_DESCRIPTOR is not supported and the single
capsule must be stored in contiguous bytes within the file starting with EFI_CAPSULE_HEADER.
The size of the file must equal EFI_CAPSULE_HEADER.CapsuleImageSize or error will be
generated and the capsule ignored. Only a single capsule with a single EFI_CAPSULE_HEADER
may be submitted within a file but more than one file each containing a capsule may be submitted
during a single restart.

The file name of the capsule shall be chosen by submitter using 8-bit ASCII characters appropriate
to the file system of the EFI system partition (Section 12.3.1). After examination and processing of
a file placed in this directory the file will (if possible) be deleted by firmware. The deletion is
performed in case of successful processing and also in the case of error but failure to successfully
delete is not itself a reportable error.

More than one capsule file each containing a single capsule image may be stored in the specified
directory. In case of multiple files, the system firmware shall process files in alphabetical order using
278 April, 2015 Version 2.5

Services — Runtime Services
sort based on CHAR16 numerical value of file name characters, compared left to right. Lower case
letter characters will be converted to upper case before compare. When comparing file names of
unequal length, the space character shall be used to pad shorter file names. In case of file name
containing one or more period characters (.), the right-most period, and the text to the right of the
right-most period in the file name, will be removed before compare. In case of any file names with
identical text after excluding any text after the right-most period, the order of processing shall be
determined by sorting of any text found to right of the right-most period in file name string.

If a capsule processing is terminated by error any remaining additional capsule files will be
processed normally.

The directory \EFI\UpdateCapsule is checked for capsules only within the EFI system
partition on the device specified in the active boot option determine by reference to BootNext
variable or BootOrder variable processing. The active Boot Variable is the variable with highest
priority BootNext or within BootOrder that refers to a device found to be present. Boot
variables in BootOrder but referring to devices not present are ignored when determining active
boot variable.

The device to be checked for \EFI\UpdateCapsule is identified by reference to
FilePathList field within the selected active Boot#### variable. The system firmware is
not required to check mass storage devices that do not contain boot target that is highest priority for
boot nor to check a second EFI system partition not the target of the active boot variable.

In all cases that a capsule is identified for processing the system is restarted after capsule processing
is completed. In case where BootNext variable was set, this variable is cleared when capsule
processing is performed without actual boot of the variable indicated.

7.5.6 UEFI variable reporting on the Success or any Errors
encountered in processing of capsules after restart

In cases where the processing of capsules is (1) delivered by call to UpdateCapsule() API but
deferred to next restart, or (2) when capsules are delivered via mass storage device, a UEFI variable
is created by firmware to indicate to capsule provider the status of the capsule processing. In the case
were multiple capsules are delivered in calls to UpdateCapsule(), or multiple files on disk as
described in Section 7.5.5, or when a capsule contains multiple payloads as described in
Section 22.2, a separate result variable will be created for each capsule payload processed. The
firmware will over-write result variables when calculated variable name already exists. However, to
avoid unnecessarily consuming system variable store the result variable should be deleted by capsule
provider after result status is examined.

UEFI variable reports will not be used when the entirety of capsule processing occurs within the call
to UpdateCapsule() function.

The reporting variable attributes will be EFI_VARIABLE_NON_VOLATILE +
EFI_VARIABLE_BOOTSERVICE_ACCESS + EFI_VARIABLE_RUNTIME_ACCESS.

The Vendor GUID of the reporting variable will be EFI_CAPSULE_REPORT_GUID. The name of
the reporting variable will be CapsuleNNNN where NNNN is 4-digit hex number chosen by the
firmware. The values of NNNN will be incremented by firmware starting at Capsule0000 and
continuing up to the platform-defined maximum.
Version 2.5 April, 2015 279

Unified Extensible Firmware Interface Specification
The platform will publish the platform maximum in a read-only variable named
EFI_CAPSULE_REPORT_GUID:CapsuleMax. The contents of CapsuleMax will be the string
"CapsuleNNNN" where NNNN is the highest value used by platform before rolling over to
Capsule0000.The platform will also publish the name of the last variable created in
EFI_CAPSULE_REPORT_GUID:CapsuleLast.

When creating a new result variable, any previous variable with the same name will be overwritten.
In case where variable storage is limited system firmware may optionally delete oldest report
variables to create free space. If sufficient variable space cannot be freed the variable is not created.

Table 39. Variables Using EFI_CAPSULE_REPORT_GUID

EFI_CAPSULE_REPORT_GUID
// {39B68C46-F7FB-441B-B6EC-16B0F69821F3}
#define EFI_CAPSULE_REPORT_GUID \
 { 0x39b68c46, 0xf7fb, 0x441b, \
 {0xb6, 0xec, 0x16, 0xb0, 0xf6, 0x98, 0x21, 0xf3 }};

Structure of the Capsule Processing Result Variable
The Capsule Processing Result Variable contents always begin with the
EFI_CAPSULE_RESULT_VARIABLE_HEADER structure. The value of CapsuleGuid
determines any additional data that may follow within the instance of the Result Variable contents.
For some values of CapsuleGuid no additional data may be defined.

As noted below, VariableTotalSize is the size of complete result variable including the entire
header and any additional data required for particular CapsuleGuid types.

typedef struct {
 UINT32 VariableTotalSize;
 UINT32 Reserved; //for alignment
 EFI_GUID CapsuleGuid;
 EFI_TIME CapsuleProcessed;
 EFI_STATUS CapsuleStatus;
} EFI_CAPSULE_RESULT_VARIABLE_HEADER;

VariableTotalSize

Size in bytes of the variable including any data beyond header as specified by
CapsuleGuid.

Variable Name Attributes Internal Format

Capsule0000,
Capsule0001, … up to max

NV, BS, RT EFI_CAPSULE_RESULT_VARIABLE

CapsuleMax BS, RT, Read-Only CHAR16[11]
(no zero terminator)

CapsuleLast NV, BS, RT, Read-Only CHAR16[11]
(no zero terminator)
280 April, 2015 Version 2.5

Services — Runtime Services
CapsuleGuid

Guid from EFI_CAPSULE_HEADER

CapsuleProcessed

Timestamp using system time when processing completed.

CapsuleStatus

Result of the capsule processing. Exact interpretation of any error code may depend
upon type of capsule processed.

Additional Structure When CapsuleGuid is
EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID

The Capsule Processing Result Variable contents always begin with
EFI_CAPSULE_RESULT_VARIABLE_HEADER. When CapsuleGuid is
EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID, the header is followed by additional data
as defined by EFI_CAPSULE_RESULT_VARIABLE_FMP.

typedef struct {
 UINT16 Version;
 UINT8 PayloadIndex;
 UINT8 UpdateImageIndex;

 EFI_GUID UpdateImageTypeId;
 // CHAR16 CapsuleFileName[];
 // CHAR16 CapsuleTarget[];
} EFI_CAPSULE_RESULT_VARIABLE_FMP;

Version The version of this structure, currently 0x00000001.

PayloadIndex The index, starting from zero, of the payload within the FMP
capsule which was processed to generate this report.

UpdateImageIndex The UpdateImageIndex from
EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADE
R (after unsigned conversion from UINT8 to UINT16).

UpdateImageTypeId The UpdateImageTypeId Guid from
EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADE
R.

CapsuleFileName In case of capsule loaded from disk, the zero-terminated array
containing file name of capsule that was processed. In case of
capsule submitted directly to UpdateCapsule() there is no
file name, and this field is required to contain a single 16-bit zero
character which is included in VariableTotalSize.

CapsuleTarget This field will contain a zero-terminated CHAR16 string
containing the text representation of the device path of device
publishing Firmware Management Protocol (if present). In case
where device path is not present and the target is not otherwise
known to firmware, or when payload was blocked by policy, or
Version 2.5 April, 2015 281

Unified Extensible Firmware Interface Specification
skipped, this field is required to contain a single 16-bit zero
character which is included in VariableTotalSize.

Status Codes Returned in CapsuleStatus

EFI_SUCCESS Valid capsule was passed and the capsule has been successfully
processed by the firmware.

EFI_INVALID_PARAMETER Invalid CapsuleSize, or an incompatible set of flags were set in

the capsule header. In the case of a capsule file, the file size was
not valid or an error was detected in the internal structure of the file.

EFI_DEVICE_ERROR The capsule update was started, but failed due to a device error.

EFI_ACCESS_DENIED Image within capsule was not loaded because the platform policy
prohibits the image from being loaded.

EFI_LOAD_ERROR For capsule with included driver, no driver with correct format for
the platform was found.

EFI_UNSUPPORTED The capsule type is not supported on this platform. Or the capsule
internal structures were not recognized as valid by the platform.

EFI_OUT_OF_RESOURCES There were insufficient resources to process the capsule.

EFI_NOT_READY Capsule payload blocked by platform policy.

EFI_ABORTED Capsule payload was skipped.
282 April, 2015 Version 2.5

Protocols — EFI Loaded Image
8
Protocols — EFI Loaded Image

This section defines EFI_LOADED_IMAGE_PROTOCOL and the
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL. Respectively, these protocols describe an
Image that has been loaded into memory and specifies the device path used when a PE/COFF image
was loaded through the EFI Boot Service LoadImage(). These descriptions include the source
from which the image was loaded, the current location of the image in memory, the type of memory
allocated for the image, and the parameters passed to the image when it was invoked.

8.1 EFI Loaded Image Protocol

EFI_LOADED_IMAGE_PROTOCOL

Summary
Can be used on any image handle to obtain information about the loaded image.
Version 2.5 April, 2015 283

Unified Extensible Firmware Interface Specification
GUID
#define EFI_LOADED_IMAGE_PROTOCOL_GUID\
 {0x5B1B31A1,0x9562,0x11d2,\
 {0x8E,0x3F,0x00,0xA0,0xC9,0x69,0x72,0x3B}}

Revision Number
#define EFI_LOADED_IMAGE_PROTOCOL_REVISION 0x1000

Protocol Interface Structure
typedef struct {
 UINT32 Revision;
 EFI_HANDLE ParentHandle;
 EFI_SYSTEM_TABLE *SystemTable;

 // Source location of the image
 EFI_HANDLE DeviceHandle;
 EFI_DEVICE_PATH_PROTOCOL *FilePath;
 VOID *Reserved;

 // Image’s load options
 UINT32 LoadOptionsSize;
 VOID *LoadOptions;

 // Location where image was loaded
 VOID *ImageBase;
 UINT64 ImageSize;
 EFI_MEMORY_TYPE ImageCodeType;
 EFI_MEMORY_TYPE ImageDataType;
 EFI_IMAGE_UNLOAD Unload;
} EFI_LOADED_IMAGE_PROTOCOL;

Parameters
Revision Defines the revision of the EFI_LOADED_IMAGE_PROTOCOL

structure. All future revisions will be backward compatible to the
current revision.

ParentHandle Parent image’s image handle. NULL if the image is loaded
directly from the firmware’s boot manager. Type EFI_HANDLE
is defined in Section 6.

SystemTable The image’s EFI system table pointer. Type
EFI_SYSTEM_TABLE is defined in Section 4.

DeviceHandle The device handle that the EFI Image was loaded from. Type
EFI_HANDLE is defined in Section 6.

FilePath A pointer to the file path portion specific to DeviceHandle
that the EFI Image was loaded from.
EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.
284 April, 2015 Version 2.5

Protocols — EFI Loaded Image
Reserved Reserved. DO NOT USE.

LoadOptionsSize The size in bytes of LoadOptions.

LoadOptions A pointer to the image’s binary load options.

ImageBase The base address at which the image was loaded.

ImageSize The size in bytes of the loaded image.

ImageCodeType The memory type that the code sections were loaded as. Type
EFI_MEMORY_TYPE is defined in Section 6.

ImageDataType The memory type that the data sections were loaded as. Type
EFI_MEMORY_TYPE is defined in Section 6.

Unload Function that unloads the image. See Unload().

Description
Each loaded image has an image handle that supports EFI_LOADED_IMAGE_PROTOCOL. When
an image is started, it is passed the image handle for itself. The image can use the handle to obtain
its relevant image data stored in the EFI_LOADED_IMAGE_PROTOCOL structure, such as its load
options.
Version 2.5 April, 2015 285

Unified Extensible Firmware Interface Specification
EFI_LOADED_IMAGE_PROTOCOL.Unload()

Summary
Unloads an image from memory.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_IMAGE_UNLOAD) (
 IN EFI_HANDLE ImageHandle,
);

Parameters
ImageHandle The handle to the image to unload. Type EFI_HANDLE is

defined in Section .

Description
The Unload() function is a callback that a driver registers to do cleanup when the UnloadImage
boot service function is called.

Status Codes Returned

8.2 EFI Loaded Image Device Path Protocol

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

Summary
When installed, the Loaded Image Device Path Protocol specifies the device path that was used
when a PE/COFF image was loaded through the EFI Boot Service LoadImage().

GUID
#define EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL_GUID \
{0xbc62157e,0x3e33,0x4fec,\

 {0x99,0x20,0x2d,0x3b,0x36,0xd7,0x50,0xdf}}

Description
The Loaded Image Device Path Protocol uses the same protocol interface structure as the Device
Path Protocol defined in Chapter 9. The only difference between the Device Path Protocol and the
Loaded Image Device Path Protocol is the protocol GUID value.

EFI_SUCCESS The image was unloaded.

EFI_INVALID_PARAMETER The ImageHandle was not valid.
286 April, 2015 Version 2.5

Protocols — EFI Loaded Image
The Loaded Image Device Path Protocol must be installed onto the image handle of a PE/COFF
image loaded through the EFI Boot Service LoadImage(). A copy of the device path specified by
the DevicePath parameter to the EFI Boot Service LoadImage() is made before it is installed
onto the image handle. It is legal to call LoadImage() for a buffer in memory with a NULL
DevicePath parameter. In this case, the Loaded Image Device Path Protocol is installed with a
NULL interface pointer.

Version 2.5 April, 2015 287

Unified Extensible Firmware Interface Specification
288 April, 2015 Version 2.5

Protocols — Device Path Protocol
9
Protocols — Device Path Protocol

This section contains the definition of the device path protocol and the information needed to
construct and manage device paths in the UEFI environment. A device path is constructed and used
by the firmware to convey the location of important devices, such as the boot device and console,
consistent with the software-visible topology of the system.

9.1 Device Path Overview
A Device Path is used to define the programmatic path to a device. The primary purpose of a Device
Path is to allow an application, such as an OS loader, to determine the physical device that the
interfaces are abstracting.

A collection of device paths is usually referred to as a name space. ACPI, for example, is rooted
around a name space that is written in ASL (ACPI Source Language). Given that EFI does not
replace ACPI and defers to ACPI when ever possible, it would seem logical to utilize the ACPI
name space in EFI. However, the ACPI name space was designed for usage at operating system
runtime and does not fit well in platform firmware or OS loaders. Given this, EFI defines its own
name space, called a Device Path.

A Device Path is designed to make maximum leverage of the ACPI name space. One of the key
structures in the Device Path defines the linkage back to the ACPI name space. The Device Path also
is used to fill in the gaps where ACPI defers to buses with standard enumeration algorithms. The
Device Path is able to relate information about which device is being used on buses with standard
enumeration mechanisms. The Device Path is also used to define the location on a medium where a
file should be, or where it was loaded from. A special case of the Device Path can also be used to
support the optional booting of legacy operating systems from legacy media.

The Device Path was designed so that the OS loader and the operating system could tell which
devices the platform firmware was using as boot devices. This allows the operating system to
maintain a view of the system that is consistent with the platform firmware. An example of this is a
“headless” system that is using a network connection as the boot device and console. In such a case,
the firmware will convey to the operating system the network adapter and network protocol
information being used as the console and boot device in the device path for these devices.

9.2 EFI Device Path Protocol
This section provides a detailed description of EFI_DEVICE_PATH_PROTOCOL.

EFI_DEVICE_PATH_PROTOCOL

Summary
Can be used on any device handle to obtain generic path/location information concerning the
physical device or logical device. If the handle does not logically map to a physical device, the
Version 2.5 April, 2015 289

Unified Extensible Firmware Interface Specification
handle may not necessarily support the device path protocol. The device path describes the location
of the device the handle is for. The size of the Device Path can be determined from the structures
that make up the Device Path.

GUID
#define EFI_DEVICE_PATH_PROTOCOL_GUID \
 {0x09576e91,0x6d3f,0x11d2,\
 {0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,0x3b}}

Protocol Interface Structure
//***
// EFI_DEVICE_PATH_PROTOCOL
//***
typedef struct _EFI_DEVICE_PATH_PROTOCOL {
 UINT8 Type;
 UINT8 SubType;
 UINT8 Length[2];
} EFI_DEVICE_PATH_PROTOCOL;

Description
The executing EFI Image may use the device path to match its own device drivers to the particular
device. Note that the executing UEFI OS loader and UEFI application images must access all
physical devices via Boot Services device handles until
EFI_BOOT_SERVICES.ExitBootServices() is successfully called. A UEFI driver may
access only a physical device for which it provides functionality.

9.3 Device Path Nodes
There are six major types of Device Path nodes:

• Hardware Device Path. This Device Path defines how a device is attached to the resource
domain of a system, where resource domain is simply the shared memory, memory mapped I/O,
and I/O space of the system.

• ACPI Device Path. This Device Path is used to describe devices whose enumeration is not
described in an industry-standard fashion. These devices must be described using ACPI AML in
the ACPI name space; this Device Path is a linkage to the ACPI name space.

• Messaging Device Path. This Device Path is used to describe the connection of devices outside
the resource domain of the system. This Device Path can describe physical messaging
information such as a SCSI ID, or abstract information such as networking protocol IP
addresses.

• Media Device Path. This Device Path is used to describe the portion of a medium that is being
abstracted by a boot service. For example, a Media Device Path could define which partition on
a hard drive was being used.
290 April, 2015 Version 2.5

Protocols — Device Path Protocol
• BIOS Boot Specification Device Path. This Device Path is used to point to boot legacy operating
systems; it is based on the BIOS Boot Specification Version 1.01. Refer to Appendix Q for
details on obtaining this specification.

• End of Hardware Device Path. Depending on the Sub-Type, this Device Path node is used to
indicate the end of the Device Path instance or Device Path structure.

9.3.1 Generic Device Path Structures
A Device Path is a variable-length binary structure that is made up of variable-length generic Device
Path nodes. Table 40 defines the structure of a variable-length generic Device Path node and the
lengths of its components. The table defines the type and sub-type values corresponding to the
Device Paths described in Section 9.3; all other type and sub-type values are Reserved.

Table 40. Generic Device Path Node Structure

A Device Path is a series of generic Device Path nodes. The first Device Path node starts at byte
offset zero of the Device Path. The next Device Path node starts at the end of the previous Device
Path node. Therefore all nodes are byte-packed data structures that may appear on any byte
boundary. All code references to device path notes must assume all fields are unaligned. Since every
Device Path node contains a length field in a known place, it is possible to traverse Device Path
nodes that are of an unknown type. There is no limit to the number, type, or sequence of nodes in a
Device Path.

A Device Path is terminated by an End of Hardware Device Path node. This type of node has two
sub-types (see Table 41):

• End This Instance of a Device Path (sub-type 0x01). This type of node terminates one Device
Path instance and denotes the start of another. This is only required when an environment
variable represents multiple devices. An example of this would be the ConsoleOut
environment variable that consists of both a VGA console and serial output console. This
variable would describe a console output stream that is sent to both VGA and serial concurrently
and thus has a Device Path that contains two complete Device Paths.

• End Entire Device Path (sub-type 0xFF). This type of node terminates an entire Device Path.
Software searches for this sub-type to find the end of a Device Path. All Device Paths must end
with this sub-type.

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 0x01 – Hardware Device Path
Type 0x02 – ACPI Device Path
Type 0x03 – Messaging Device Path
Type 0x04 – Media Device Path
Type 0x05 – BIOS Boot Specification Device Path
Type 0x7F – End of Hardware Device Path

Sub-Type 1 1 Sub-Type – Varies by Type. (See Table 41.)

Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.

Specific Device Path Data 4 n Specific Device Path data. Type and Sub-Type define
type of data. Size of data is included in Length.
Version 2.5 April, 2015 291

Unified Extensible Firmware Interface Specification
Table 41. Device Path End Structure

9.3.2 Hardware Device Path
This Device Path defines how a device is attached to the resource domain of a system, where
resource domain is simply the shared memory, memory mapped I/O, and I/O space of the system. It
is possible to have multiple levels of Hardware Device Path such as a PCCARD device that was
attached to a PCCARD PCI controller.

9.3.2.1 PCI Device Path
The Device Path for PCI defines the path to the PCI configuration space address for a PCI device.
There is one PCI Device Path entry for each device and function number that defines the path from
the root PCI bus to the device. Because the PCI bus number of a device may potentially change, a
flat encoding of single PCI Device Path entry cannot be used. An example of this is when a PCI
device is behind a bridge, and one of the following events occurs:

• OS performs a Plug and Play configuration of the PCI bus.

• A hot plug of a PCI device is performed.

• The system configuration changes between reboots.

The PCI Device Path entry must be preceded by an ACPI Device Path entry that uniquely identifies
the PCI root bus. The programming of root PCI bridges is not defined by any PCI specification and
this is why an ACPI Device Path entry is required.

Table 42. PCI Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 0x7F – End of Hardware Device Path

Sub-Type 1 1 Sub-Type 0xFF – End Entire Device Path, or
Sub-Type 0x01 – End This Instance of a Device Path and start a new
Device Path

Length 2 2 Length of this structure in bytes. Length is 4 bytes.

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 1 – Hardware Device Path

Sub-Type 1 1 Sub-Type 1 – PCI

Length 2 2 Length of this structure is 6 bytes

Function 4 1 PCI Function Number

Device 5 1 PCI Device Number
292 April, 2015 Version 2.5

Protocols — Device Path Protocol
9.3.2.2 PCCARD Device Path

Table 43. PCCARD Device Path

9.3.2.3 Memory Mapped Device Path

Table 44. Memory Mapped Device Path

9.3.2.4 Vendor Device Path
The Vendor Device Path allows the creation of vendor-defined Device Paths. A vendor must
allocate a Vendor GUID for a Device Path. The Vendor GUID can then be used to define the
contents on the n bytes that follow in the Vendor Device Path node.

Table 45. Vendor-Defined Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 1 – Hardware Device Path

Sub-Type 1 1 Sub-Type 2 – PCCARD

Length 2 2 Length of this structure in bytes. Length is 5 bytes.

Function Number 4 1 Function Number (0 = First Function)

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 1 – Hardware Device Path.

Sub-Type 1 1 Sub-Type 3 – Memory Mapped.

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Memory Type 4 4 EFI_MEMORY_TYPE. Type EFI_MEMORY_TYPE is

defined in the

EFI_BOOT_SERVICES.AllocatePages()

function description.

Start Address 8 8 Starting Memory Address.

End Address 16 8 Ending Memory Address.

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 1 – Hardware Device Path.

Sub-Type 1 1 Sub-Type 4 – Vendor.

Length 2 2 Length of this structure in bytes. Length is 20 + n bytes.

Vendor_GUID 4 16 Vendor-assigned GUID that defines the data that follows.

Vendor Defined Data 20 n Vendor-defined variable size data.
Version 2.5 April, 2015 293

Unified Extensible Firmware Interface Specification
9.3.2.5 Controller Device Path

Table 46. Controller Device Path

9.3.2.6 BMC Device Path
 The Device Path for a Baseboard Management Controller (BMC) host interface.

Table 47. BMC Device Path

9.3.3 ACPI Device Path
This Device Path contains ACPI Device IDs that represent a device’s Plug and Play Hardware ID
and its corresponding unique persistent ID. The ACPI IDs are stored in the ACPI _HID, _CID, and
_UID device identification objects that are associated with a device. The ACPI Device Path
contains values that must match exactly the ACPI name space that is provided by the platform
firmware to the operating system. Refer to the ACPI specification for a complete description of the
_HID, _CID, and _UID device identification objects.

The _HID and _CID values are optional device identification objects that appear in the ACPI name
space. If only _HID is present, the _HID must be used to describe any device that will be enumerated
by the ACPI driver. The _CID, if present, contains information that is important for the OS to attach
generic driver (e.g., PCI Bus Driver), while the _HID contains information important for the OS to
attach device-specific driver. The ACPI bus driver only enumerates a device when no standard bus
enumerator exists for a device.

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 1 – Hardware Device Path.

Sub-Type 1 1 Sub-Type 5 – Controller.

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

Controller Number 4 4 Controller number.

Mnemonic Byte
Offset

Byte
Length

Description

Type 0 1 Type 1 – Hardware Device Path.

Sub-Type 1 1 Sub Type 6 – BMC

Length 2 2 Length of this structure in bytes. Length is 13 bytes.

Interface Type 4 1 The Baseboard Management Controller (BMC) host interface type:

0x00: Unknown
0x01: KCS: Keyboard Controller Style
0x02: SMIC: Server Management Interface Chip
0x03: BT: Block Transfer

Base Address 5 8 Base address (either memory-mapped or I/O) of the BMC.
If the least-significant bit of the field is a 1, the address is in
I/O space; otherwise, the address is memory-mapped. Refer to the
IPMI Interface Specification for usage details.
294 April, 2015 Version 2.5

Protocols — Device Path Protocol
The _UID object provides the OS with a serial number-style ID for a device that does not change
across reboots. The object is optional, but is required when a system contains two devices that report
the same _HID. The _UID only needs to be unique among all device objects with the same _HID
value. If no _UID exists in the APCI name space for a _HID the value of zero must be stored in the
_UID field of the ACPI Device Path.

The ACPI Device Path is only used to describe devices that are not defined by a Hardware Device
Path. An _HID (along with _CID if present) is required to represent a PCI root bridge, since the PCI
specification does not define the programming model for a PCI root bridge. There are two subtypes
of the ACPI Device Path: a simple subtype that only includes the _HID and _UID fields, and an
extended subtype that includes the _HID, _CID, and _UID fields.

The ACPI Device Path node only supports numeric 32-bit values for the _HID and _UID values.
The Expanded ACPI Device Path node supports both numeric and string values for the _HID, _UID,
and _CID values. As a result, the ACPI Device Path node is smaller and should be used if possible to
reduce the size of device paths that may potentially be stored in nonvolatile storage. If a string value
is required for the _HID field, or a string value is required for the _UID field, or a _CID field is
required, then the Expanded ACPI Device Path node must be used. If a string field of the Expanded
ACPI Device Path node is present, then the corresponding numeric field is ignored.

The _HID and _CID fields in the ACPI Device Path node and Expanded ACPI Device Path node are
stored as a 32-bit compressed EISA-type IDs. The following macro can be used to compute these
EISA-type IDs from a Plug and Play Hardware ID. The Plug and Play Hardware IDs used to
compute the _HID and _CID fields in the EFI device path nodes must match the Plug and Play
Hardware IDs used to build the matching entries in the ACPI tables. The compressed EISA-type IDs
produced by this macro differ from the compressed EISA-type IDs stored in ACPI tables. As a
result, the compressed EISA-type IDs from the ACPI Device Path nodes cannot be directly
compared to the compressed EISA-type IDs from the ACPI table.
#define EFI_PNP_ID(ID) (UINT32)(((ID) << 16) | 0x41D0)

#define EISA_PNP_ID(ID) EFI_PNP_ID(ID)

Table 48. ACPI Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 2 – ACPI Device Path.

Sub-Type 1 1 Sub-Type 1 ACPI Device Path.

Length 2 2 Length of this structure in bytes. Length is 12 bytes.

_HID 4 4 Device’s PnP hardware ID stored in a numeric 32-bit
compressed EISA-type ID. This value must match the
corresponding _HID in the ACPI name space.

_UID 8 4 Unique ID that is required by ACPI if two devices have the
same _HID. This value must also match the corresponding
_UID/_HID pair in the ACPI name space. Only the 32-bit
numeric value type of _UID is supported; thus strings must
not be used for the _UID in the ACPI name space.
Version 2.5 April, 2015 295

Unified Extensible Firmware Interface Specification
Table 49. Expanded ACPI Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 2 – ACPI Device Path.

Sub-Type 1 1 Sub-Type 2 Expanded ACPI Device Path.

Length 2 2 Length of this structure in bytes. Minimum length is 19 bytes.
The actual size will depend on the size of the _HIDSTR,
_UIDSTR, and _CIDSTR fields.

_HID 4 4 Device’s PnP hardware ID stored in a numeric 32-bit
compressed EISA-type ID. This value must match the
corresponding _HID in the ACPI name space.

_UID 8 4 Unique ID that is required by ACPI if two devices have the
same _HID. This value must also match the corresponding
_UID/_HID pair in the ACPI name space.

_CID 12 4 Device’s compatible PnP hardware ID stored in a numeric
32-bit compressed EISA-type ID. This value must match at
least one of the compatible device IDs returned by the
corresponding _CID in the ACPI name space.

_HIDSTR 16 >=1 Device’s PnP hardware ID stored as a null-terminated ASCII
string. This value must match the corresponding _HID in the
ACPI name space. If the length of this string not including the
null-terminator is 0, then the _HID field is used. If the length
of this null-terminated string is greater than 0, then this field
supersedes the _HID field.

_UIDSTR Varies >=1 Unique ID that is required by ACPI if two devices have the
same _HID. This value must also match the corresponding
_UID/_HID pair in the ACPI name space. This value is stored
as a null-terminated ASCII string. If the length of this string
not including the null-terminator is 0, then the _UID field is
used. If the length of this null-terminated string is greater than
0, then this field supersedes the _UID field. The Byte Offset
of this field can be computed by adding 16 to the size of the
_HIDSTR field.

_CIDSTR Varies >=1 Device’s compatible PnP hardware ID stored as a null-
terminated ASCII string. This value must match at least one
of the compatible device IDs returned by the corresponding
_CID in the ACPI name space. If the length of this string not
including the null-terminator is 0, then the _CID field is used.
If the length of this null-terminated string is greater than 0,
then this field supersedes the _CID field. The Byte Offset of
this field can be computed by adding 16 to the sum of the
sizes of the _HIDSTR and _UIDSTR fields.
296 April, 2015 Version 2.5

Protocols — Device Path Protocol
9.3.4 ACPI _ADR Device Path
The _ADR device path is used to contain video output device attributes to support the Graphics
Output Protocol. The device path can contain multiple _ADR entries if multiple video output
devices are displaying the same output.

Table 50. ACPI _ADR Device Path

9.3.5 Messaging Device Path
This Device Path is used to describe the connection of devices outside the resource domain of the
system. This Device Path can describe physical messaging information like SCSI ID, or abstract
information like networking protocol IP addresses.

9.3.5.1 ATAPI Device Path

Table 51. ATAPI Device Path

9.3.5.2 SCSI Device Path

Table 52. SCSI Device Path

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 2 – ACPI Device Path

Sub-Type 1 1 Sub-Type3 _ADR Device Path

Length 2 2 Length of this structure in bytes. Minimum length is 8.

_ADR 4 4 _ADR value. For video output devices the value of this
field comes from Table B-2 ACPI 3.0 specification. At
least one _ADR value is required

Additional _ADR 8 N This device path may optionally contain more than
one _ADR entry.

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 1 – ATAPI

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

PrimarySecondary 4 1 Set to zero for primary or one for secondary

SlaveMaster 5 1 Set to zero for master or one for slave mode

Logical Unit Number 6 2 Logical Unit Number

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 2 – SCSI

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

Target ID 4 2 Target ID on the SCSI bus (PUN)
Version 2.5 April, 2015 297

Unified Extensible Firmware Interface Specification
9.3.5.3 Fibre Channel Device Path

Table 53. Fibre Channel Device Path

Table 54. Fibre Channel Ex Device Path

The Fibre Channel Ex device path clarifies the definition of the Logical Unit Number field to
conform with the T-10 SCSI Architecture Model 4 specification. The 8 byte Logical Unit Number
field in the device path must conform with a logical unit number returned by a SCSI REPORT
LUNS command.

When the Fibre Channel Ex Device Path is used with the Extended SCSI Pass Thru Protocol the
UINT64 LUN argument must be converted to the eight byte array Logical Unit Number field in the
device path by treating the eight byte array as an EFI UINT64.For example a Logical Unit Number
array of { 0,1,2,3,4,5,6,7 } becomes a UINT64 of 0x0706050403020100.

When an application client displays or otherwise makes a 64-bit LUN visible to a user, it should be
done in conformance with SAM-4. SAM-4 requires a LUN to be displayed in hexadecimal format
with byte 0 first (i.e., on the left) and byte 7 last (i.e., on the right) regardless of the internal
representation of the LUN. UEFI defines all data structures a “little endian” and SCSI defines all
data structures as “big endian”.Fibre Channel Ex Device Path Example shows an example device
path for a Fibre Channel controller on a typical UEFI platform. This Fibre Channel Controller is
connected to the port 0 of the root hub, and its interface number is 0. The Fibre Channel Host

Logical Unit Number 6 2 Logical Unit Number (LUN)

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 3 – Fibre Channel

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Reserved 4 4 Reserved

World Wide Name 8 8 Fibre Channel World Wide Name

Logical Unit Number 16 8 Fibre Channel Logical Unit Number

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 21 – Fibre Channel Ex

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Reserved 4 4 Reserved

World Wide Name 8 8 8 byte array containing Fibre Channel End Device Port Name
(a.k.a., World Wide Name)

Logical Unit Number 16 8 8 byte array containing Fibre Channel Logical Unit Number
298 April, 2015 Version 2.5

Protocols — Device Path Protocol
Controller is a PCI device whose PCI device number 0x1F and PCI function 0x00. So, the whole
device path for this Fibre Channel Controller consists an ACPI Device Path Node, a PCI Device
Path Node, a Fibre Channel Device Path Node and a Device Path End Structure. The _HID and
_UID must match the ACPI table description of the PCI Root Bridge. The Fibre Channel WWN and
LUN were picked to show byte order and they are not typical real world values. The shorthand
notation for this device path is:

PciRoot(0)/PCI(31,0)/FibreEx(0x0001020304050607, 0x0001020304050607)

Table 55. Fibre Channel Ex Device Path Example

Byte
Offset

Byte
Length

Data

Description

0 1 0x02 Generic Device Path Header – Type ACPI Device Path

1 1 0x01 Sub type – ACPI Device Path

2 2 0x0C Length – 0x0C bytes

4 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

8 4 0x0000 _UID

12 1 0x01 Generic Device Path Header – Type Hardware Device Path

13 1 0x01 Sub type – PCI

14 2 0x06 Length – 0x06 bytes

16 1 0x0 PCI Function

17 1 0x1F PCI Device

18 1 0x03 Generic Device Path Header – Type Message Device Path

19 1 0x15 Sub type – Fibre Channel Ex

20 2 0x14 Length – 20 bytes

21 1 0x00 8 byte array containing Fibre Channel End Device Port Name (a.k.a., World
Wide Name)

22 1 0x01

23 1 0x02

24 1 0x03

25 1 0x04

26 1 0x05

27 1 0x06

28 1 0x07

29 1 0x00 8 byte array containing Fibre Channel Logical Unit Number

30 1 0x01

31 1 0x02

32 1 0x03

33 1 0x04

34 1 0x05

35 1 0x06
Version 2.5 April, 2015 299

Unified Extensible Firmware Interface Specification
9.3.5.4 1394 Device Path

Table 56. 1394 Device Path

9.3.5.5 USB Device Paths

Table 57. USB Device Path

9.3.5.5.1 USB Device Path Example

Table 58 shows an example device path for a USB controller on a desktop platform. This USB
Controller is connected to the port 0 of the root hub, and its interface number is 0. The USB Host
Controller is a PCI device whose PCI device number 0x1F and PCI function 0x02. So, the whole
device path for this USB Controller consists an ACPI Device Path Node, a PCI Device Path Node, a
USB Device Path Node and a Device Path End Structure. The _HID and _UID must match the ACPI
table description of the PCI Root Bridge. The shorthand notation for this device path is:

PciRoot(0)/PCI(31,2)/USB(0,0).

Table 58. USB Device Path Examples

36 1 0x07

37 1 0xFF Generic Device Path Header – Type End of Hardware Device Path

38 1 0xFF Sub type – End of Entire Device Path

39 2 0x04 Length – 0x04 bytes

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 4 – 1394

Length 2 2 Length of this structure in bytes. Length is 16 bytes.

Reserved 4 4 Reserved

GUID1 8 8 1394 Global Unique ID (GUID)1

Note: 1 The usage of the term GUID is per the 1394 specification. This is not the same as the

EFI_GUID type defined in the EFI Specification.

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 5 – USB

Length 2 2 Length of this structure in bytes. Length is 6 bytes.

USB Parent Port Number 4 1 USB Parent Port Number

Interface 5 1 USB Interface Number

Byte
Offset

Byte
Length

Data

Description
300 April, 2015 Version 2.5

Protocols — Device Path Protocol
Another example is a USB Controller (interface number 0) that is connected to port 3 of a USB Hub
Controller (interface number 0), and this USB Hub Controller is connected to the port 1 of the root
hub. The shorthand notation for this device path is:

PciRoot(0)/PCI(31,2)/USB(1,0)/USB(3,0).

Table 58 shows the device path for this USB Controller.

Table 59. Another USB Device Path Example

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x02 PCI Function

0x11 0x01 0x1F PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x05 Sub type – USB

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 Parent Hub Port Number

0x17 0x01 0x00 Controller Interface Number

0x18 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x19 0x01 0xFF Sub type – End of Entire Device Path

0x1A 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x02 PCI Function
Version 2.5 April, 2015 301

Unified Extensible Firmware Interface Specification
9.3.5.6 SATA Device Path

Table 60. SATA Device Path

9.3.5.7 USB Device Paths (WWID)
This device path describes a USB device using its serial number.

Specifications, such as the USB Mass Storage class, bulk-only transport subclass, require that some
portion of the suffix of the device’s serial number be unique with respect to the vendor and product
id for the device. So, in order to avoid confusion and overlap of WWID’s, the interface’s class,
subclass, and protocol are included.

0x11 0x01 0x1F PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x05 Sub type – USB

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x01 Parent Hub Port Number

0x17 0x01 0x00 Controller Interface Number

0x18 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x19 0x01 0x05 Sub type – USB

0x1A 0x02 0x06 Length – 0x06 bytes

0x1C 0x01 0x03 Parent Hub Port Number

0x1D 0x01 0x00 Controller Interface Number

0x1E 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x1F 0x01 0xFF Sub type – End of Entire Device Path

0x20 0x02 0x04 Length – 0x04 bytes

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 18 – SATA

Length 2 2 Length of this structure in bytes. Length is 10 bytes.

HBA Port Number 4 2 The HBA port number that facilitates the connection to the
device or a port multiplier. The value 0xFFFF is reserved.

Port Multiplier Port
Number

6 2 The Port multiplier port number that facilitates the connection
to the device. Must be set to 0xFFFF if the device is directly
connected to the HBA.

Logical Unit Number 8 2 Logical Unit Number.

Byte
Offset

Byte
Length

Data

Description
302 April, 2015 Version 2.5

Protocols — Device Path Protocol
Table 61. USB WWID Device Path

Devices that do not have a serial number string must use with the USB Device Path (type 5) as
described in Section 9.3.5.5.

Including the interface as part of this node allows distinction for multi-interface devices, e.g., an
HID interface and a Mass Storage interface on the same device, or two Mass Storage interfaces.

Section 3.1.2 defines special rules for processing the USB WWID Device Path. These special rules
enable a device location to change and still have the system boot from the device.

9.3.5.8 Device Logical Unit
For some classes of devices, such as USB Mass Storage, it is necessary to specify the Logical Unit
Number (LUN), since a single device may have multiple logical units. In order to boot from one of
these logical units of the device, the Device Logical Unit device node is appended to the device path.
The EFI path node subtype is defined, as in Table 62.

Table 62. Device Logical Unit

Section 3.1.2 defines special rules for processing the USB Class Device Path. These special rules
enable a device location to change and still have the system recognize the device.

Section 3.3 defines how the ConIn, ConOut, and ErrOut variables are processed and contains
special rules for processing the USB Class device path. These special rules allow all USB keyboards
to be specified as valid input devices.

Mnemonic Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub-Type 16– USB WWID

Length 2 2 Length of this structure in bytes. Length is 10+

• Interface Number 4 2 USB interface number

• Device Vendor Id 6 2 USB vendor id of the device

• Device Product Id 8 2 USB product id of the device

• Serial Number 10 n Last 64-or-fewer UTF-16 characters of the USB
serial number. The length of the string is
determined by the Length field less the offset of the
Serial Number field (10)

Mnemonic Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub-Type 17 – Device Logical unit

Length 2 2 Length of this structure in bytes. Length is 5

LUN 4 1 Logical Unit Number for the interface
Version 2.5 April, 2015 303

Unified Extensible Firmware Interface Specification
9.3.5.9 USB Device Path (Class)

Table 63. USB Class Device Path

9.3.5.10 I2O Device Path

Table 64. I2O Device Path

9.3.5.11 MAC Address Device Path

Table 65. MAC Address Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 - Messaging Device Path.

Sub-Type 1 1 Sub-Type 15 - USB Class.

Length 2 2 Length of this structure in bytes. Length is 11 bytes.

Vendor ID 4 2 Vendor ID assigned by USB-IF. A value of 0xFFFF will
match any Vendor ID.

Product ID 6 2 Product ID assigned by USB-IF. A value of 0xFFFF will
match any Product ID.

Device Class 8 1 The class code assigned by the USB-IF. A value of 0xFF
will match any class code.

Device Subclass 9 1 The subclass code assigned by the USB-IF. A value of
0xFF will match any subclass code.

Device Protocol 10 1 The protocol code assigned by the USB-IF. A value of 0xFF
will match any protocol code.

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 6 – I2O Random Block Storage Class

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

TID 4 4 Target ID (TID) for a device

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 11 – MAC Address for a network interface

Length 2 2 Length of this structure in bytes. Length is 37 bytes.

MAC Address 4 32 The MAC address for a network interface padded with 0s

IfType 36 1 Network interface type(i.e., 802.3, FDDI). See RFC 3232
304 April, 2015 Version 2.5

Protocols — Device Path Protocol
9.3.5.12 IPv4 Device Path
Previous versions of the specification only defined a 19 byte IPv4 device path. To access fields at
off-set 19 or greater, the size of the device path must be checked first.

Table 66. IPv4 Device Path

9.3.5.13 IPv6 Device Path

Table 67. IPv6 Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 12 – IPv4

Length 2 2 Length of this structure in bytes. Length is 27 bytes.

Local IP Address 4 4 The local IPv4 address

Remote IP Address 8 4 The remote IPv4 address

Local Port 12 2 The local port number

Remote Port 14 2 The remote port number

Protocol 16 2 The network protocol(i.e., UDP, TCP). See RFC 3232

StaticIPAddress 18 1 0x00 - The Source IP Address was assigned though DHCP
0x01 - The Source IP Address is statically bound

GatewayIPAddress 19 4 The Gateway IP Address

Subnet Mask 23 4 Subnet mask

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 13 – IPv6

Length 2 2 Length of this structure in bytes. Length is 60 bytes.

Local IP Address 4 16 The local IPv6 address

Remote IP Address 20 16 The remote IPv6 address

Local Port 36 2 The local port number

Remote Port 38 2 The remote port number

Protocol 40 2 The network protocol (i.e., UDP, TCP). See RFC 3232

IPAddressOrigin 42 1 0x00 - The Local IP Address was manually configured.
0x01 - The Local IP Address is assigned through IPv6
stateless auto-configuration.
0x02 - The Local IP Address is assigned through IPv6stateful
configuration.

PrefixLength 43 1 The Prefix Length

GatewayIPAddress 44 16 The Gateway IP Address
Version 2.5 April, 2015 305

Unified Extensible Firmware Interface Specification
9.3.5.14 2.VLAN device path node

9.3.5.15 InfiniBand Device Path

Table 68. InfiniBand Device Path

9.3.5.16 UART Device Path

Table 69. UART Device Path

Mnemonic Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 20 – Vlan (802.1q)

Length 2 2 Length of this device node

VlanId 4 2 VLAN identifier (0-4094)

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 9 – InfiniBand

Length 2 2 Length of this structure in bytes. Length is 48 bytes.

Resource Flags 4 4 Flags to help identify/manage InfiniBand device path
elements:
• Bit 0 – IOC/Service (0b = IOC, 1b = Service)

• Bit 1 – Extend Boot Environment

• Bit 2 – Console Protocol

• Bit 3 – Storage Protocol

• Bit 4 – Network Protocol

All other bits are reserved.

PORT GID 8 16 128-bit Global Identifier for remote fabric port

IOC GUID/Service ID 24 8 64-bit unique identifier to remote IOC or server process.
Interpretation of field specified by Resource Flags (bit 0)

Target Port ID 32 8 64-bit persistent ID of remote IOC port

Device ID 40 8 64-bit persistent ID of remote device

Note: The usage of the terms GUID and GID is per the InfiniBand Specification. The term GUID is not the

same as the EFI_GUID type defined in this EFI Specification.

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 14 – UART

Length 2 2 Length of this structure in bytes. Length is 19 bytes.

Reserved 4 4 Reserved
306 April, 2015 Version 2.5

Protocols — Device Path Protocol
9.3.5.17 Vendor-Defined Messaging Device Path

Table 70. Vendor-Defined Messaging Device Path

The following GUIDs are used with a Vendor-Defined Messaging Device Path to describe the
transport protocol for use with PC-ANSI, VT-100, VT-100+, and VT-UTF8 terminals. Device paths
can be constructed with this node as the last node in the device path. The rest of the device path
describes the physical device that is being used to transmit and receive data. The PC-ANSI, VT-100,
VT-100+, and VT-UTF8 GUIDs define the format of the data that is being sent though the physical
device. Additional GUIDs can be generated to describe additional transport protocols.

#define EFI_PC_ANSI_GUID \
 { 0xe0c14753,0xf9be,0x11d2,{0x9a,0x0c,0x00,0x90,0x27,0x3f,0xc1,0x4d }}

#define EFI_VT_100_GUID \
 { 0xdfa66065,0xb419,0x11d3,{0x9a,0x2d,0x00,0x90,0x27,0x3f,0xc1,0x4d }}

#define EFI_VT_100_PLUS_GUID \
 { 0x7baec70b,0x57e0,0x4c76,{0x8e,0x87,0x2f,0x9e,0x28,0x08,0x83,0x43 }}

Baud Rate 8 8 The baud rate setting for the UART style device. A value of 0
means that the device's default baud rate will be used.

Data Bits 16 1 The number of data bits for the UART style device. A value of
0 means that the device's default number of data bits will be
used.

Parity 17 1 The parity setting for the UART style device.
Parity 0x00 - Default Parity
Parity 0x01 - No Parity
Parity 0x02 - Even Parity
Parity 0x03 - Odd Parity
Parity 0x04 - Mark Parity
Parity 0x05 - Space Parity

Stop Bits 18 1 The number of stop bits for the UART style device.
Stop Bits 0x00 - Default Stop Bits
Stop Bits 0x01 - 1 Stop Bit
Stop Bits 0x02 - 1.5 Stop Bits
Stop Bits 0x03 - 2 Stop Bits

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 10 – Vendor

Length 2 2 Length of this structure in bytes. Length is 20 + n bytes.

Vendor GUID 4 16 Vendor-assigned GUID that defines the data that follows

Vendor Defined Data 20 n Vendor-defined variable size data
Version 2.5 April, 2015 307

Unified Extensible Firmware Interface Specification
#define EFI_VT_UTF8_GUID \
 { 0xad15a0d6,0x8bec,0x4acf,{0xa0,0x73,0xd0,0x1d,0xe7,0x7e,0x2d,0x88 }}

9.3.5.18 UART Flow Control Messaging Path
The UART messaging device path defined in the EFI 1.02 specification does not contain a provision
for flow control. Therefore, a new device path node is needed to declare flow control characteristics.
It is a vendor-defined messaging node which may be appended to the UART node in a device path. It
has the following definition:

#define DEVICE_PATH_MESSAGING_UART_FLOW_CONTROL \

{0x37499a9d,0x542f,0x4c89,{0xa0,0x26,0x35,0xda,0x14,0x20,0x94,0xe4}}

Table 71. UART Flow Control Messaging Device Path

A debugport driver that implements Xon/Xoff flow control would produce a device path similar to
the following:

PciRoot(0)/Pci(0x1f,0)/ACPI(PNP0501,0)/UART(115200,N,8,1)/
UartFlowCtrl(2)/DebugPort()

Note: If no bits are set in the Flow_Control_Map, this indicates there is no flow control and is equivalent
to leaving the flow control node out of the device path completely.

9.3.5.19 Serial Attached SCSI (SAS) Device Path
This section defines the device node for Serial Attached SCSI (SAS) devices.

Table 72. Messaging Device Path Structure

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 10 – Vendor

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Vendor GUID 4 16 DEVICE_PATH_MESSAGING_UART_FLOW_CONTROL

Flow_Control_Map 20 4 Bitmap of supported flow control types.
• Bit 0 set indicates hardware flow control.

• Bit 1 set indicates Xon/Xoff flow control.

• All other bits are reserved and are clear.

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type -3 Messaging

Sub Type 1 1 10 (Vendor)

Length 2 2 Length of this Structure.

Vendor GUID 4 16 d487ddb4-008b-11d9-afdc-001083ffca4d

Reserved 20 4 Reserved for future use.

SAS Address 24 8 SAS Address for Serial Attached SCSI Target.
308 April, 2015 Version 2.5

Protocols — Device Path Protocol
Summary
The device node represented by the structure in Table 72 (above) shall be appended after the
Hardware Device Path node in the device path.

There are two cases for boot devices connected with SAS HBA’s. Each of the cases is described
below with an example of the expected Device Path for these.

• SAS Device anywhere in an SAS domain accessed through SSP Protocol.
PciRoot(0)/PCI(1,0)/Sas(0x31000004CF13F6BD, 0)
The first 64-bit number represents the SAS address of the target SAS device.
The second number is the boot LUN of the target SAS device.
The third number is the Relative Target Port (RTP)

• SATA Device connected directly to a HBA port.
PciRoot(0)/PCI(1,0)/Sas(0x31000004CF13F6BD)
The first number represents either a real SAS address reserved by the HBA for above
connections, or a fake but unique SAS address generated by the HBA to represent the SATA
device.

9.3.5.19.1 Device and Topology Information

First Byte (At offset 40 into the structure):

Bits 0:3:

Value 0x0 -> No Additional Information about device topology.

Value 0x1 -> More Information about device topology valid in this byte.

Value 0x2 -> More Information about device topology valid in this and next 1 byte.

Values 0x3 thru 0xF -> Reserved.

Bits 4:5: Device Type (Valid only if the More Information field above is non-zero)

Value 0x0 -> SAS Internal Device

Value 0x1 -> SATA Internal Device

Value 0x2 -> SAS External Device

Value 0x3 -> SATA External Device

Bits 6:7: Topology / Interconnect (Valid only if the More Information field above is non-zero)

Value 0x0 -> Direct Connect (Connected directly with the HBA Port/Phy)

Value 0x1 -> Expander Connect (Connected thru/via one or more Expanders)

Value 0x2 and 0x3 > Reserved

Logical Unit Number 32 8 SAS Logical Unit Number.

SAS/SATA device and
Topology Info

40 2 More Information about the device and its
interconnect

Relative Target Port 42 2 Relative Target Port (RTP)
Version 2.5 April, 2015 309

Unified Extensible Firmware Interface Specification
9.3.5.19.2 Device and Topology Information

Second Byte (At offset 41 into the structure). Valid only if bits 0-3 of More Information in Byte 40
have a value of 2:

Bits 0-7: Internal Drive/Bay Id (Only applicable if Internal Drive is indicated in Device Type)

Value 0x0 thru 0xFF -> Drive 1 thru Drive 256

9.3.5.19.3 Relative Target Port

At offset 42 into the structure:

This two-byte field shall contain the “Relative Target Port” of the target SAS port. Relative Target
Port can be obtained by performing an INQUIRY command to VPD page 0x83 in the target.
Implementation of RTP is mandatory for SAS targets as defined in Section 10.2.10 of sas1r07
specification (or later).

Note: If a LUN is seen thru multiple RTPs in a given target, then the UEFI driver shall create separate
device path instances for both paths. RTP in the device path shall distinguish these two device
path instantiations.

Note: Changing the values of the SAS/SATA device topology information or the RTP fields of the device
path will make UEFI think this is a different device.

9.3.5.19.4 Examples Of Correct Device Path Display Format

Case 1: When Additional Information is not Valid or Not Present (Bits 0:3 of Byte 40 have a value
of 0)

PciRoot(0)/PCI(1,0)/SAS(0x31000004CF13F6BD, 0)

Case 2: When Additional Information is Valid and present (Bits 0:3 of Byte 40 have a value of 1 or
2)

• If Bits 4-5 of Byte 40 (Device and Topology information) indicate an SAS device (Internal or
External) i.e., has values 0x0 or 0x2, then the following format shall be used.

PciRoot(0)/PCI(1,0)/SAS(0x31000004CF13F6BD, 0, SAS)

• If Bits 4-5 of Byte 40 (Device and Topology information) indicate a SATA device (Internal or
External) i.e., has a value of 0x1 or 0x3, then the following format shall be used.

ACPI(PnP)/PCI(1,0)/SAS(0x31000004CF13F6BD, SATA)

9.3.5.20 Serial Attached SCSI (SAS) Ex Device Path
This section defines the extended device node for Serial Attached SCSI (SAS) devices. In this
device path the SAS Address and LUN are now defined as arrays to remove the need to endian swap
the values.

Table 73. Messaging Device Path Structure

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type -3 Messaging

Sub Type 1 1 Sub-type 22 SAS Ex
310 April, 2015 Version 2.5

Protocols — Device Path Protocol
The SAS Ex device path clarifies the definition of the Logical Unit Number field to conform with
the T-10 SCSI Architecture Model 4 specification. The 8 byte Logical Unit Number field in the
device path must conform with a logical unit number returned by a SCSI REPORT LUNS
command.

When the SAS Device Path Ex is used with the Extended SCSI Pass Thru Protocol, the UINT64
LUN must be converted to the eight byte array Logical Unit Number field in the device path by
treating the eight byte array as an EFI UINT64. For example, a Logical Unit Number array of {
0,1,2,3,4,5,6,7 } becomes a UINT64 of 0x0706050403020100.

When an application client displays or otherwise makes a 64-bit LUN (8 byte array) visible to a user,
it should be done in conformance with SAM-4. SAM-4 requires a LUN to be displayed in
hexadecimal format with byte 0 first (i.e., on the left) and byte 7 last (i.e., on the right) regardless of
the internal representation of the LUN. UEFI defines all data structures a “little endian” and SCSI
defines all data structures as “big endian”.

9.3.5.21 iSCSI Device Path

Table 74. iSCSI Device Path Node (Base Information)

9.3.5.21.1 iSCSI Login Options

The iSCSI Device Node Options describe the iSCSI login options for the key values:

Length 2 2 Length of this Structure. 32 bytes

SAS Address 4 8 8-byte array of the SAS Address for Serial Attached
SCSI Target Port.

Logical Unit Number 20 8 8-byte array of the SAS Logical Unit Number.

SAS/SATA device and
Topology Info

28 2 More Information about the device and its
interconnect

Relative Target Port 30 2 Relative Target Port (RTP)

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 19 – (iSCSI)

Length 2 2 Length of this structure in bytes. Length is (18 + n)
bytes

Protocol 4 2 Network Protocol (0 = TCP, 1+ = reserved)

Options 6 2 iSCSI Login Options

Logical Unit Number 8 8 8 byte array containing the iSCSI Logical Unit
Number

Target Portal group tag 16 2 iSCSI Target Portal group tag the initiator intends
to establish a session with.

iSCSI Target Name 18 n iSCSI NodeTarget Name. The length of the name
is determined by subtracting the offset of this field
from Length.
Version 2.5 April, 2015 311

Unified Extensible Firmware Interface Specification
Bits 0:1:

0 = No Header Digest

2 = Header Digest Using CRC32C

Bits 2-3:

0 = No Data Digest

2 = Data Digest Using CRC32C

Bits 4:9:

Reserved for future use

Bits 10-11:

0 = AuthMethod_CHAP

2 = AuthMethod_None

Bit 12:

0 = CHAP_BI

1 = CHAP_UNI

For each specific login key, none, some or all of the defined values may be configured. If none of the
options are defined for a specific key, the iSCSI driver shall propose “None” as the value. If more
than one option is configured for a specific key, all the configured values will be proposed (ordering
of the values is implementation dependent).

• Portal Group Tag: defines the iSCSI portal group the initiator intends to establish Session with.

• Logical Unit Number: defines the 8 byte SCSI LUN. The Logical Unit Number field must
conform to the T-10 SCSI Architecture Model 4 specification. The 8 byte Logical Unit Number
field in the device path must conform with a logical unit number returned by a SCSI REPORT
LUNS command.

• iSCSI Target Name: defines the iSCSI Target Name for the iSCSI Node. The size of the iSCSI
Target Name can be up to a maximum of 223 bytes.

9.3.5.21.2 Device Path Examples

Some examples for the Device Path for the case the boot device connected to iSCSI bootable
controller:

• With IPv4 configuration:
PciRoot(0)/Pci(19|0)/Mac(001320F5FA77,0x01)/
IPv4(192.168.0.100,TCP,Static,192.168.0.1)/ iSCSI(iqn.1991-
05.com.microsoft:iscsitarget-iscsidisk-
target,0x1,0x0,None,None,None,TCP)/ HD(1,GPT,15E39A00-1DD2-1000-
8D7F-00A0C92408FC,0x22,0x2710000)

Table 75. IPv4 configuration

Byte
Offset

Byte
Length

Data

Description

0x00 1 0x02 Generic Device Path Header – Type ACPI Device Path
312 April, 2015 Version 2.5

Protocols — Device Path Protocol
0x01 1 0x01 Sub type – ACPI Device Path

0x02 2 0x0C Length – 0x0C bytes

0x04 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 4 0x0000 _UID

0x0C 1 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 1 0x01 Sub type – PCI

0x0E 2 0x06 Length – 0x06 bytes

0x10 1 0x0 PCI Function

0x11 1 0x19 PCI Device

0x12 1 0x03 Generic Device Path Header – Messaging Device Path

0x13 1 0x0B Sub type – MAC Address Device path

0x14 2 0x25 Length – 0x25

0x16 32 0x00,
0x13,
0x20,
0xF5,
0xFA,
0x77,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00

MAC address for a network interface padded with zeros

0x36 1 0x01 Network Interface Type - other
Version 2.5 April, 2015 313

Unified Extensible Firmware Interface Specification
0x37 1 0x03 Generic Device Path Header – Messaging Device Path

0x38 1 0x0c Sub type – IPv4

0x39 2 0x1B Length – 27

0x3b 4 0xC0,
0xA8,
0x00,
0x01

Local IPv4 address – 192.168.0.1

0x3F 4 0xC0,
0xA8,
0x00,
0x64

Remote IPv4 address – 192.168.0.100

0x43 2 0x0000 Local Port Number – 0

0x45 2 0x0CBC Remote Port Number – 3260

0x47 2 0x6 Network Protocol. See RFC 3232. TCP

0x49 1 1 Static IP Address

0x4A 4 Gateway IP Address

0x4E 4 Subnet mask

0x52 1 0x03 Generic Device Path Header – Messaging Device Path

0x53 1 0x13 Sub type – iSCSI

0x54 2 0x49 Length – 0x49

0x56 2 0x00 Network Protocol

0x58 2 0x800 iSCSI Login Options – AuthMethod_None

0x5A 8 0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00

iSCSI LUN

0x62 2 0x01 Target Portal group tag
314 April, 2015 Version 2.5

Protocols — Device Path Protocol
0x64 55 0x69,
0x71,
0x6E,
0x2E,
0x31,
0x39,
0x39,
0x31,
0x2D,
0x30,
0x35,
0x2E,
0x63,
0x6F,
0x6D,
0x2E,
0x6D,
0x69,
0x63,
0x72,
0x6F,
0x73,
0x6F,
0x66,
0x74,

iSCSI node name.
Version 2.5 April, 2015 315

Unified Extensible Firmware Interface Specification
0x64
(cont.)

55
(cont.)

0x3A,
0x69,
0x73,
0x63,
0x73,
0x69,
0x74,
0x61,
0x72,
0x67,
0x65,
0x74,
0x2D,
0x69,
0x73,
0x63,
0x73,
0x69,
0x64,
0x69,
0x73,
0x6B,
0x2D,
0x74,
0x61,
0x72,
0x67,
0x65,
0x74,
0x00

iSCSI node name
(cont.)

0x9B 1 0x04 Generic Device Path Header – Media Device Path

0x9C 1 0x01 Sub type – Hard Drive

0x9D 2 0x2A Length – 0x2a

0x9F 4 0x1 Partition Number

0xA3 8 0x22 Partition Start

0xAB 8 0x27100
00

Partition Size
316 April, 2015 Version 2.5

Protocols — Device Path Protocol
• With IPv6 configuration:
PciRoot(0x0)/Pci(0x1C,0x2)/Pci(0x0,0x0)/MAC(001517215593,0x0)/
IPv6(2001:4898:000A:1005:95A6:EE6C:BED3:4859,TCPDHCP,2001:4898:0
00A:1005:0215:17FF:FE21:5593)/iSCSI(iqn.1991-
05.com.microsoft:iscsiipv6-ipv6test-
target,0x1,0x0,None,None,None,TCP)/
HD(1,MBR,0xA0021243,0x800,0x2EE000)

Table 76. IPv6 configuration

0xB3 16 0x00,
0x9A,
0xE3,
0x15,
0xD2,
0x1D,
0x00,
0x10,
0x8D,
0x7F,
0x00,
0xA0,
0xC9,
0x24,
0x08,
0xFC

Partition Signature

0xC3 1 0x02 Partition Format – GPT

0xC4 1 0x02 Signature Type – GUID

0xC5 1 0xFF Generic Device Path Header – Type End of Hardware Device Path

0xC6 1 0xFF Sub type – End of Entire Device Path

0xC7 2 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length

Data

Description

0x00 1 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 1 0x01 Sub type – ACPI Device Path

0x02 2 0x0C Length – 0x0C bytes

0x04 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 4 0x0000 _UID

0x0C 1 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 1 0x01 Sub type – PCI

0x0E 2 0x06 Length – 0x06 bytes

0x10 1 0x02 PCI Function

0x11 1 0x1C PCI Device
Version 2.5 April, 2015 317

Unified Extensible Firmware Interface Specification
0x12 1 0x01 Generic Device Path Header – Type Hardware Device Path

0x13 1 0x01 Sub type – PCI

0x14 2 0x06 Length – 0x06 bytes

0x16 1 0x00 PCI Function

0x17 1 0x00 PCI Device

0x18 1 0x03 Generic Device Path Header – Messaging Device Path

0x19 1 0x0B Sub type – MAC Address Device path

0x1A 2 0x25 Length – 0x25

0x1C 32 0x00,
0x15,
0x17,
0x21,
0x55,
0x93,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00

MAC address for a network interface padded with zeros

0x3C 1 0x01 Network Interface Type - other

0x3D 1 0x03 Generic Device Path Header – Messaging Device Path

0x3E 1 0x0C Sub type – IPv6

0x3F 2 0x3C Length – 0x3C
318 April, 2015 Version 2.5

Protocols — Device Path Protocol
0x41 16 0x20,
0x01,
0x48,
0x98,
0x00,
0x0A,
0x10,
0x05,
0x02,
0x15,
0x17,
0xFF,
0xFE,
0x21,
0x55,
0x93

Local IPv6 address – 2001:4898:000A:1005:0215:17FF:FE21:5593

0x51 16 0x20,
0x01,
0x48,
0x98,
0x00,
0x0A,
0x10,
0x05,
0x95,
0xA6,
0xEE,
0x6C,
0xBE,
0xD3,
0x48,
0x59

Remote IPv6 address – 2001:4898:000A:1005:95A6:EE6C:BED3:4859

0x61 2 0x0000 Local Port Number – 0

0x63 2 0x0CBC Remote Port Number – 3260

0x65 2 0x6 Network Protocol. See RFC 3232. TCP

0x66 1 1 IP Address Origin

0x67 1 The Prefix Length

0x68 16 The Gateway IP Address

0x78 1 0x03 Generic Device Path Header – Messaging Device Path

0x79 1 0x13 Sub type – iSCSI

0x7A 2 0x46 Length – 0x46

0x7C 2 0x00 Network Protocol

0x7E 2 0x800 iSCSI Login Options – AuthMethod_None
Version 2.5 April, 2015 319

Unified Extensible Firmware Interface Specification
0x81 8 0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00

iSCSI LUN

0x89 2 0x01 Target Portal group tag

0x8B 52 0x69,
0x71,
0x6E,
0x2E,
0x31,
0x39,
0x39,
0x31,
0x2D,
0x30,
0x35,
0x2E,
0x63,
0x6F,
0x6D,
0x2E,
0x6D,
0x69,
0x63,
0x72,
0x6F,
0x73,
0x6F,
0x66,
0x74,
0x3A,
0x69,
0x73,
0x63,
0x73,
0x69,
0x69,
0x70,
0x76,

iSCSI node name.
320 April, 2015 Version 2.5

Protocols — Device Path Protocol
0x8B
(cont.)

52
(cont.)

0x36,
0x2D,
0x69,
0x70,
0x76,
0x36,
0x74,
0x65,
0x73,
0x74,
0x2D,
0x74,
0x61,
0x72,
0x67,
0x65,
0x74,
0x00

iSCSI node name
(cont.)

0xBF 1 0x04 Generic Device Path Header – Media Device Path

0xC0 1 0x01 Sub type – Hard Drive

0xC1 2 0x2A Length – 0x2a

0xC3 4 0x1 Partition Number

0xC7 8 0x800 Partition Start

0xCF 8 0x2EE0
00

Partition Size

0xDF 16 0x43,
0x12,
0x02,
0xA0,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00

Partition Signature

0xEF 1 0x01 Partition Format – MBR

0xF0 1 0x01 Signature Type – 32bit signature

0xF1 1 0xFF Generic Device Path Header – Type End of Hardware Device Path

0xF2 1 0xFF Sub type – End of Entire Device Path

0xF3 2 0x04 Length – 0x04 bytes
Version 2.5 April, 2015 321

Unified Extensible Firmware Interface Specification
9.3.5.22 NVM Express namespace messaging device path node

Table 77. NVM Express Namespace Device Path

Refer to the latest NVM Express specification for descriptions of Namespace Identifier (NSID) and
IEEE Extended Unique Identifier (EUI-64):See “Links to UEFI-Related Documents” (http://
uefi.org/uefi under the headings “NVM Express Specification”.

9.3.5.23 Uniform Resource Identifiers (URI) Device Path
Refer to RFC 3986 for details on the URI contents.

Table 78. URI Device Path

9.3.5.24 UFS (Universal Flash Storage) device messaging device path node

Table 79. UFS Device Path

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub Type 23 – NVM Express Namespace

Length 2 2 Length of this structure in bytes. Length is 16
bytes.

Namespace Identifier 4 4 Namespace identifier (NSID). The values of 0
and 0xFFFFFFFF are invalid.

IEEE Extended Unique
Identifier

8 8 This field contains the IEEE Extended Unique
Identifier (EUI-64). Devices without an EUI-64
value must initialize this field with a value of 0.

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub Type 24 – Universal Resource
Identifier (URI) Device Path

Length 2 2 Length of this structure in bytes. Length is
4 + n bytes.

…Uri 4 n Instance of the URI pursuant to RFC 3986

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 25 – UFS

Length 2 2 Length of this structure in bytes. Length is 6
bytes.

Target ID 4 1 Target ID on the UFS interface (PUN).

LUN 5 1 Logical Unit Number (LUN).
322 April, 2015 Version 2.5

http://www.nvmexpress.org/index.php/download_file/view/102/1/
http://www.nvmexpress.org/index.php/download_file/view/102/1/

Protocols — Device Path Protocol
Refer to the UFS 2.0 specification for additional LUN descriptions: See “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading “UFS 2.0 Specification”.

• PUN field: According to current available UFS 2.0 spec, the topology is one device per UFS
port. A topology to support multiple devices on a single interface is planned for future revision.
So suggest to reserve/introduce this field to support multiple devices per UFS port. This value
should be 0 for current UFS2.0 spec compliance.

• LUN field: This field is used to specify up to 8 normal LUNs(0-7) and 4 well-known LUNs(81h,
D0h, B0h and C4h). For those well-known LUNs, the BIT7 is set. See Figure 10.2 of UFS 2.0
spec for details.

9.3.5.25 SD (Secure Digital) Device Path

Table 80. SD Device Path

9.3.5.26 EFI Bluetooth Device Path

Table 81. Bluetooth Device Path

9.3.5.27 Wireless Device Path

Table 82. Wi-Fi Device Path

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 26 – SD

Length 2 2 Length of this structure in bytes. Length is 5
bytes.

Slot Number 4 1 Slot Number

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 27 – Bluetooth

Length 2 2 Length of this structure in bytes. Length is 10
bytes.

Bluetooth Device
Address

4 6 48-bit Bluetooth device address.

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub Type 28 – Wi-Fi Device Path

Length 2 2 Length of this structure in bytes.
Length is 36
bytes.

SSID 4 32 SSID in octet string
Version 2.5 April, 2015 323

Unified Extensible Firmware Interface Specification
9.3.6 Media Device Path
This Device Path is used to describe the portion of the medium that is being abstracted by a boot
service. An example of Media Device Path would be defining which partition on a hard drive was
being used.

9.3.6.1 Hard Drive
The Hard Drive Media Device Path is used to represent a partition on a hard drive. Each partition has
at least Hard Drive Device Path node, each describing an entry in a partition table. EFI supports
MBR and GPT partitioning formats. Partitions are numbered according to their entry in their
respective partition table, starting with 1. Partitions are addressed in EFI starting at LBA zero. A
partition number of zero can be used to represent the raw hard drive or a raw extended partition.

The partition format is stored in the Device Path to allow new partition formats to be supported in
the future. The Hard Drive Device Path also contains a Disk Signature and a Disk Signature Type.
The disk signature is maintained by the OS and only used by EFI to partition Device Path nodes. The
disk signature enables the OS to find disks even after they have been physically moved in a system.

Section 3.1.2 defines special rules for processing the Hard Drive Media Device Path. These special
rules enable a disk’s location to change and still have the system boot from the disk.

Table 83. Hard Drive Media Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 4 – Media Device Path

Sub-Type 1 1 Sub-Type 1 – Hard Drive

Length 2 2 Length of this structure in bytes. Length is 42 bytes.

Partition Number 4 4 Describes the entry in a partition table, starting with entry 1.
Partition number zero represents the entire device. Valid
partition numbers for a MBR partition are [1, 4]. Valid partition
numbers for a GPT partition are [1,
NumberOfPartitionEntries].

Partition Start 8 8 Starting LBA of the partition on the hard drive

Partition Size 16 8 Size of the partition in units of Logical Blocks

Partition Signature 24 16 Signature unique to this partition:
• If SignatureType is 0, this field has to be initialized with 16

zeroes.

• If SignatureType is 1, the MBR signature is stored in the
first 4 bytes of this field. The other 12 bytes are initialized
with zeroes.

• If SignatureType is 2, this field contains a 16 byte
signature.
324 April, 2015 Version 2.5

Protocols — Device Path Protocol
9.3.6.2 CD-ROM Media Device Path
The CD-ROM Media Device Path is used to define a system partition that exists on a CD-ROM. The
CD-ROM is assumed to contain an ISO-9660 file system and follow the CD-ROM “El Torito”
format. The Boot Entry number from the Boot Catalog is how the “El Torito” specification defines
the existence of bootable entities on a CD-ROM. In EFI the bootable entity is an EFI System
Partition that is pointed to by the Boot Entry.

Table 84. CD-ROM Media Device Path

9.3.6.3 Vendor-Defined Media Device Path

Table 85. Vendor-Defined Media Device Path

Partition Format 40 1 Partition Format: (Unused values reserved)
0x01 – PC-AT compatible legacy MBR (see Section 5.2.1).
Partition Start and Partition Size come from
PartitionStartingLBA and PartitionSizeInLBA for
the partition.
0x02 – GUID Partition Table (see Section 5.3.2).

Signature Type 41 1 Type of Disk Signature: (Unused values reserved)
0x00 – No Disk Signature.
0x01 – 32-bit signature from address 0x1b8 of the type
0x01 MBR.
0x02 – GUID signature.

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 2 – CD-ROM “El Torito” Format.

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Boot Entry 4 4 Boot Entry number from the Boot Catalog. The Initial/Default
entry is defined as zero.

Partition Start 8 8 Starting RBA of the partition on the medium. CD-ROMs use
Relative logical Block Addressing.

Partition Size 16 8 Size of the partition in units of Blocks, also called Sectors.

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 3 – Vendor.

Length 2 2 Length of this structure in bytes. Length is 20 + n bytes.

Vendor GUID 4 16 Vendor-assigned GUID that defines the data that follows.

Vendor Defined Data 20 n Vendor-defined variable size data.

Mnemonic

Byte
Offset

Byte
Length

Description
Version 2.5 April, 2015 325

Unified Extensible Firmware Interface Specification
9.3.6.4 File Path Media Device Path

Table 86. File Path Media Device Path

 Rules for Path Name conversion:

• When concatenating two Path Names, ensure that the resulting string does not contain a double-
separator "\\". If it does, convert that double-separator to a single-separator.

• In the case where a Path Name which has no end separator is being concatenated to a Path Name
with no beginning separator, a separator will need to be inserted between the Path Names.

• Single file path nodes with no directory path data are presumed to have their files located in the
root directory of the device.

9.3.6.5 Media Protocol Device Path
The Media Protocol Device Path is used to denote the protocol that is being used in a device path at
the location of the path specified. Many protocols are inherent to the style of device path.

Table 87. Media Protocol Media Device Path

9.3.6.6 PIWG Firmware File
This type is used by systems implementing the UEFI PI Specification to describe a firmware file.
The exact format and usage are defined in that specification.

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 4 – File Path.

Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.

Path Name 4 N A NULL-terminated Path string including directory and file
names. The length of this string n can be determined by
subtracting 4 from the Length entry. A device path may
contain one or more of these nodes. Each node can
optionally add a "\" separator to the beginning and/or the end
of the Path Name string. The complete path to a file can be
found by logically concatenating all the Path Name strings in
the File Path Media Device Path nodes. This is typically used
to describe the directory path in one node, and the filename
in another node.

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 5 – Media Protocol.

Length 2 2 Length of this structure in bytes. Length is 20 bytes.

Protocol GUID 4 16 The ID of the protocol.
326 April, 2015 Version 2.5

Protocols — Device Path Protocol
Table 88. PIWG Firmware Volume Device Path

9.3.6.7 PIWG Firmware Volume
This type is used by systems implementing the UEFI PI Specification to describe a firmware
volume. The exact format and usage are defined in that specification.

Table 89. PIWG Firmware Volume Device Path

9.3.6.8 Relative Offset Range
This device path node specifies a range of offsets relative to the first byte available on the device.
The starting offset is the first byte of the range and the ending offset is the last byte of the range (not
the last byte + 1).

Table 90. Relative Offset Range

9.3.6.9 RAM Disk

Table 91. RAM Disk Device Path

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 6 – PIWG Firmware File.

Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.

... 4 n Contents are defined in the UEFI PI Specification.

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 7 – PIWG Firmware Volume.

Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.

... 4 n Contents are defined in the UEFI PI Specification.

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 4 – Media Device Path

Sub-Type 1 1 Sub-Type 8 – Relative Offset Range

Length 2 2 Length of this structure in bytes.

Reserved 4 4 Reserved for future use.

Starting Offset 8 8 Offset of the first byte, relative to the parent device node.

Ending Offset 16 8 Offset of the last byte, relative to the parent device node.

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 4 – Media Device Path

Sub-Type 1 1 Sub Type 9 – RAM Disk Device Path
Version 2.5 April, 2015 327

Unified Extensible Firmware Interface Specification
The following GUIDs are used with a RAM Disk Device Path to describe the RAM Disk Type.
Additional GUIDs can be generated to describe additional RAM Disk Types. The Disk Type GUID
values used in the RAM Disk device path must match the corresponding values in the Address
Range Type GUID of the ACPI NFIT table. Refer to the ACPI specification for details.

 This GUID defines a RAM Disk supporting a raw disk format in volatile memory:
#define EFI_VIRTUAL_DISK_GUID \
{ 0x77AB535A,0x45FC,0x624B,\
 {0x55,0x60,0xF7,0xB2,0x81,0xD1,0xF9,0x6E }}

This GUID defines a RAM Disk supporting an ISO image in volatile memory:
#define EFI_VIRTUAL_CD_GUID \
{ 0x3D5ABD30,0x4175,0x87CE,\
 {0x6D,0x64,0xD2,0xAD,0xE5,0x23,0xC4,0xBB }}

This GUID defines a RAM Disk supporting a raw disk format in persistent memory:
#define EFI_PERSISTENT_VIRTUAL_DISK_GUID \
{ 0x5CEA02C9,0x4D07,0x69D3,\
 {0x26,0x9F,0x44,0x96,0xFB,0xE0,0x96,0xF9 }}

This GUID defines a RAM Disk supporting an ISO image in persistent memory:
#define EFI_PERSISTENT_VIRTUAL_CD_GUID \
{ 0x08018188,0x42CD,0xBB48,\
 {0x10,0x0F,0x53,0x87,0xD5,0x3D,0xED,0x3D }}

9.3.7 BIOS Boot Specification Device Path
This Device Path is used to describe the booting of non-EFI-aware operating systems. This Device
Path is based on the IPL and BCV table entry data structures defined in Appendix A of the BIOS
Boot Specification. The BIOS Boot Specification Device Path defines a complete Device Path and is
not used with other Device Path entries. This Device Path is only needed to enable platform
firmware to select a legacy non-EFI OS as a boot option.

Length 2 2 Length of this structure in bytes. Length is 38 bytes.

Starting Address 4 8 Starting Memory Address.

Ending Address 12 8 Ending Memory Address.

Disk Type GUID 20 16 GUID that defines the type of the RAM Disk. The GUID
can be any of the values defined below, or a vendor
defined GUID.

Disk Instance 36 2 RAM Disk instance number, if supported. The default
value is zero.
328 April, 2015 Version 2.5

Protocols — Device Path Protocol
Table 92. BIOS Boot Specification Device Path

Example BIOS Boot Specification Device Types include:

• 00h = Reserved

• 01h = Floppy

• 02h = Hard Disk

• 03h = CD-ROM

• 04h = PCMCIA

• 05h = USB

• 06h = Embedded network

• 07h..7Fh = Reserved

• 80h = BEV device

• 81h..FEh = Reserved

• FFh = Unknown

Note: When UEFI Secure Boot is enabled, attempts to boot non-UEFI OS shall fail; see Section 30.4.

9.4 Device Path Generation Rules

9.4.1 Housekeeping Rules
The Device Path is a set of Device Path nodes. The Device Path must be terminated by an End of
Device Path node with a sub-type of End the Entire Device Path. A NULL Device Path consists of a
single End Device Path Node. A Device Path that contains a NULL pointer and no Device Path
structures is illegal.

All Device Path nodes start with the generic Device Path structure. Unknown Device Path types can
be skipped when parsing the Device Path since the length field can be used to find the next Device
Path structure in the stream. Any future additions to the Device Path structure types will always start
with the current standard header. The size of a Device Path can be determined by traversing the
generic Device Path structures in each header and adding up the total size of the Device Path. This
size will include the four bytes of the End of Device Path structure.

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 5 – BIOS Boot Specification Device Path.

Sub-Type 1 1 Sub-Type 1 – BIOS Boot Specification Version 1.01.

Length 2 2 Length of this structure in bytes. Length is 8 + n bytes.

Device Type 4 2 Device Type as defined by the BIOS Boot Specification.

Status Flag 6 2 Status Flags as defined by the BIOS Boot Specification

Description String 8 n A null-terminated ASCII string that describes the boot device
to a user. The size of this string n can be determined by
subtracting 8 from the Length entry.
Version 2.5 April, 2015 329

Unified Extensible Firmware Interface Specification
Multiple hardware devices may be pointed to by a single Device Path. Each hardware device will
contain a complete Device Path that is terminated by the Device Path End Structure. The Device
Path End Structures that do not end the Device Path contain a sub-type of End This Instance of the
Device Path. The last Device Path End Structure contains a sub-type of End Entire Device Path.

9.4.2 Rules with ACPI _HID and _UID
As described in the ACPI specification, ACPI supports several different kinds of device
identification objects, including _HID, _CID and _UID. The _UID device identification objects are
optional in ACPI and only required if more than one _HID exists with the same ID. The ACPI
Device Path structure must contain a zero in the _UID field if the ACPI name space does not
implement _UID. The _UID field is a unique serial number that persists across reboots.

If a device in the ACPI name space has a _HID and is described by a _CRS (Current Resource
Setting) then it should be described by an ACPI Device Path structure. A _CRS implies that a device
is not mapped by any other standard. A _CRS is used by ACPI to make a nonstandard device into a
Plug and Play device. The configuration methods in the ACPI name space allow the ACPI driver to
configure the device in a standard fashion. The presence of a _CID determines whether the ACPI
Device Path node or the Expanded ACPI Device Path node should be used.

Table 93 maps ACPI _CRS devices to EFI Device Path.

Table 93. ACPI _CRS to EFI Device Path Mapping

Support of root PCI bridges requires special rules in the EFI Device Path. A root PCI bridge is a PCI
device usually contained in a chipset that consumes a proprietary bus and produces a PCI bus. In
typical desktop and mobile systems there is only one root PCI bridge. On larger server systems there
are typically multiple root PCI bridges. The operation of root PCI bridges is not defined in any
current PCI specification. A root PCI bridge should not be confused with a PCI to PCI bridge that
both consumes and produces a PCI bus. The operation and configuration of PCI to PCI bridges is
fully specified in current PCI specifications.

Root PCI bridges will use the plug and play ID of PNP0A03, This will be stored in the ACPI Device
Path _HID field, or in the Expanded ACPI Device Path _CID field to match the ACPI name space.
The _UID in the ACPI Device Path structure must match the _UID in the ACPI name space.

9.4.3 Rules with ACPI _ADR
If a device in the ACPI name space can be completely described by a _ADR object then it will map
to an EFI ACPI, Hardware, or Message Device Path structure. A _ADR method implies a bus with a
standard enumeration algorithm. If the ACPI device has a _ADR and a _CRS method, then it should
also have a _HID method and follow the rules for using _HID.

ACPI _CRS Item EFI Device Path

PCI Root Bus ACPI Device Path: _HID PNP0A03, _UID

Floppy ACPI Device Path: _HID PNP0604, _UID drive select encoding 0-3

Keyboard ACPI Device Path: _HID PNP0301, _UID 0

Serial Port ACPI Device Path: _HID PNP0501, _UID Serial Port COM number 0-3

Parallel Port ACPI Device Path: _HID PNP0401, _UID LPT number 0-3
330 April, 2015 Version 2.5

Protocols — Device Path Protocol
Table 94 relates the ACPI _ADR bus definition to the EFI Device Path:

Table 94. ACPI _ADR to EFI Device Path Mapping

9.4.4 Hardware vs. Messaging Device Path Rules
Hardware Device Paths are used to define paths on buses that have a standard enumeration algorithm
and that relate directly to the coherency domain of the system. The coherency domain is defined as a
global set of resources that is visible to at least one processor in the system. In a typical system this
would include the processor memory space, IO space, and PCI configuration space.

Messaging Device Paths are used to define paths on buses that have a standard enumeration
algorithm, but are not part of the global coherency domain of the system. SCSI and Fibre Channel
are examples of this kind of bus. The Messaging Device Path can also be used to describe virtual
connections over network-style devices. An example would be the TCP/IP address of an internet
connection.

Thus Hardware Device Path is used if the bus produces resources that show up in the coherency
resource domain of the system. A Message Device Path is used if the bus consumes resources from
the coherency domain and produces resources out side the coherency domain of the system.

9.4.5 Media Device Path Rules
The Media Device Path is used to define the location of information on a medium. Hard Drives are
subdivided into partitions by the MBR and a Media Device Path is used to define which partition is
being used. A CD-ROM has boot partitions that are defined by the “El Torito” specification, and the
Media Device Path is used to point to these partitions.

An EFI_BLOCK_IO_PROTOCOL is produced for both raw devices and partitions on devices. This
allows the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL protocol to not have to understand media
formats. The EFI_BLOCK_IO_PROTOCOL for a partition contains the same Device Path as the
parent EFI_BLOCK_IO_PROTOCOL for the raw device with the addition of a Media Device Path
that defines which partition is being abstracted.

The Media Device Path is also used to define the location of a file in a file system. This Device Path
is used to load files and to represent what file an image was loaded from.

ACPI _ADR Bus EFI Device Path

EISA Not supported

Floppy Bus ACPI Device Path: _HID PNP0604, _UID drive select encoding 0-3

IDE Controller ATAPI Message Device Path: Maser/Slave : LUN

IDE Channel ATAPI Message Device Path: Maser/Slave : LUN

PCI PCI Hardware Device Path

PCMCIA Not Supported

PC CARD PC CARD Hardware Device Path

SMBus Not Supported

SATA bus SATA Messaging Device Path
Version 2.5 April, 2015 331

Unified Extensible Firmware Interface Specification
9.4.6 Other Rules
The BIOS Boot Specification Device Path is not a typical Device Path. A Device Path containing the
BIOS Boot Specification Device Path should only contain the required End Device Path structure
and no other Device Path structures. The BIOS Boot Specification Device Path is only used to allow
the EFI boot menus to boot a legacy operating system from legacy media.

The EFI Device Path can be extended in a compatible fashion by assigning your own vendor GUID
to a Hardware, Messaging, or Media Device Path. This extension is guaranteed to never conflict
with future extensions of this specification.

The EFI specification reserves all undefined Device Path types and subtypes. Extension is only
permitted using a Vendor GUID Device Path entry.

9.5 Device Path Utilities Protocol
This section describes the EFI_DEVICE_PATH_UTILITIES_PROTOCOL, which aids in creating
and manipulating device paths.

EFI_DEVICE_PATH_UTILITIES_PROTOCOL

Summary
Creates and manipulates device paths and device nodes.

GUID
// {0379BE4E-D706-437d-B037-EDB82FB772A4}
#define EFI_DEVICE_PATH_UTILITIES_PROTOCOL_GUID \
 {0x379be4e,0xd706,0x437d,\
 {0xb0,0x37,0xed,0xb8,0x2f,0xb7,0x72,0xa4 }}

Protocol Interface Structure
typedef struct _EFI_DEVICE_PATH_UTILITIES_PROTOCOL {
 EFI_DEVICE_PATH_UTILS_GET_DEVICE_PATH_SIZE GetDevicePathSize;
 EFI_DEVICE_PATH_UTILS_DUP_DEVICE_PATH DuplicateDevicePath;
 EFI_DEVICE_PATH_UTILS_APPEND_PATH AppendDevicePath;
 EFI_DEVICE_PATH_UTILS_APPEND_NODE AppendDeviceNode;
 EFI_DEVICE_PATH_UTILS_APPEND_INSTANCE
 AppendDevicePathInstance;
 EFI_DEVICE_PATH_UTILS_GET_NEXT_INSTANCE
 GetNextDevicePathInstance;
 EFI_DEVICE_PATH_UTILS_IS_MULTI_INSTANCE
 IsDevicePathMultiInstance;
 EFI_DEVICE_PATH_UTILS_CREATE_NODE CreateDeviceNode;
} EFI_DEVICE_PATH_UTILITIES_PROTOCOL;

Parameters
GetDevicePathSize Returns the size of the specified device path, in bytes.
332 April, 2015 Version 2.5

Protocols — Device Path Protocol
DuplicateDevicePathDuplicates a device path structure.

AppendDeviceNode Appends the device node to the specified device path.

AppendDevicePath Appends the device path to the specified device path.

AppendDevicePathInstance
Appends a device path instance to another device path.

GetNextDevicePathInstance
Retrieves the next device path instance from a device path data
structure.

IsDevicePathMultiInstance
Returns TRUE if this is a multi-instance device path.

CreateDeviceNode Allocates memory for a device node with the specified type and
sub-type.

Description
The EFI_DEVICE_PATH_UTILITIES_PROTOCOL provides common utilities for creating a
manipulating device paths and device nodes.
Version 2.5 April, 2015 333

Unified Extensible Firmware Interface Specification
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetDevicePathSize()

Summary
Returns the size of the device path, in bytes.

Prototype
typedef
UINTN
(EFIAPI *EFI_DEVICE_PATH_UTILS_GET_DEVICE_PATH_SIZE) (
 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);

Parameters
DevicePath Points to the start of the EFI device path.

Description
This function returns the size of the specified device path, in bytes, including the end-of-path tag. If
DevicePath is NULL then zero is returned.

Related Definitions
EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.
334 April, 2015 Version 2.5

Protocols — Device Path Protocol
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.DuplicateDevicePath()

Summary
Create a duplicate of the specified path.

Prototype
typedef
EFI_DEVICE_PATH_PROTOCOL*
(EFIAPI *EFI_DEVICE_PATH_UTILS_DUP_DEVICE_PATH) (
 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
);

Parameters
DevicePath Points to the source device path.

Description
This function creates a duplicate of the specified device path. The memory is allocated from EFI
boot services memory. It is the responsibility of the caller to free the memory allocated. If
DevicePath is NULL then NULL will be returned and no memory will be allocated.

Related Definitions
EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns
This function returns a pointer to the duplicate device path or NULL if there was insufficient
memory.
Version 2.5 April, 2015 335

Unified Extensible Firmware Interface Specification
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePath()

Summary
Create a new path by appending the second device path to the first.

Prototype
typedef
EFI_DEVICE_PATH_PROTOCOL*
(EFIAPI *EFI_DEVICE_PATH_UTILS_APPEND_PATH) (
 IN CONST EFI_DEVICE_PATH_PROTOCOL *Src1,
 IN CONST EFI_DEVICE_PATH_PROTOCOL *Src2
);

Parameters
Src1 Points to the first device path.

Src2 Points to the second device path.

Description
This function creates a new device path by appending a copy of the second device path to a copy of
the first device path in a newly allocated buffer. Only the end-of-device-path device node from the
second device path is retained. If Src1 is NULL and Src2 is non-NULL, then a duplicate of Src2
is returned. If Src1 is non-NULL and Src2 is NULL, then a duplicate of Src1 is returned. If
Src1 and Src2 are both NULL, then a copy of an end-of-device-path is returned.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions
EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns
This function returns a pointer to the newly created device path or NULL if memory could not be
allocate.
336 April, 2015 Version 2.5

Protocols — Device Path Protocol
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDeviceNode()

Summary
Creates a new path by appending the device node to the device path.

Prototype
typedef
EFI_DEVICE_PATH_PROTOCOL*
(EFIAPI *EFI_DEVICE_PATH_UTILS_APPEND_NODE) (
 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
 IN CONST EFI_DEVICE_PATH_PROTOCOL *DeviceNode
);

Parameters
DevicePath Points to the device path.

DeviceNode Points to the device node.

Description
This function creates a new device path by appending a copy of the specified device node to a copy
of the specified device path in an allocated buffer. The end-of-device-path device node is moved
after the end of the appended device node. If DeviceNode is NULL then a copy of DevicePath
is returned. If DevicePath is NULL then a copy of DeviceNode, followed by an end-of-device
path device node is returned. If both DeviceNode and DevicePath are NULL then a copy of an
end-of-device-path device node is returned.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions
EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns
This function returns a pointer to the allocated device path, or NULL if there was insufficient
memory.
Version 2.5 April, 2015 337

Unified Extensible Firmware Interface Specification
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePathInstan
ce()

Summary
Creates a new path by appending the specified device path instance to the specified device path.

Prototype
typedef
EFI_DEVICE_PATH_PROTOCOL*
(EFIAPI *EFI_DEVICE_PATH_UTILS_APPEND_INSTANCE) (
 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePathInstance
);

Parameters
DevicePath Points to the device path. If NULL, then ignored.

DevicePathInstance Points to the device path instance

Description
This function creates a new device path by appending a copy of the specified device path instance to
a copy of the specified device path in an allocated buffer. The end-of-device-path device node is
moved after the end of the appended device node and a new end-of-device-path-instance node is
inserted between. If DevicePath is NULL, then a copy if DevicePathInstance is returned
instead.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions
EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns
This function returns a pointer to the newly created device path or NULL if
DevicePathInstance is NULL or there was insufficient memory.
338 April, 2015 Version 2.5

Protocols — Device Path Protocol
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetNextDevicePathInstan
ce()

Summary
Creates a copy of the current device path instance and returns a pointer to the next device path
instance.

Prototype
typedef
EFI_DEVICE_PATH_PROTOCOL*
(EFIAPI *EFI_DEVICE_PATH_UTILS_GET_NEXT_INSTANCE) (
 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePathInstance,
 OUT UINTN *DevicePathInstanceSize OPTIONAL
);

Parameters
DevicePathInstance On input, this holds the pointer to the current device path

instance. On output, this holds the pointer to the next device path
instance or NULL if there are no more device path instances in
the device path.

DevicePathInstanceSize
On output, this holds the size of the device path instance, in bytes
or zero, if DevicePathInstance is NULL. If NULL, then the
instance size is not output.

Description
This function creates a copy of the current device path instance. It also updates
DevicePathInstance to point to the next device path instance in the device path (or NULL if
no more) and updates DevicePathInstanceSize to hold the size of the device path instance
copy.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions
EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns
This function returns a pointer to the copy of the current device path instance or NULL if
DevicePathInstance was NULL on entry or there was insufficient memory.
Version 2.5 April, 2015 339

Unified Extensible Firmware Interface Specification
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.CreateDeviceNode()

Summary
Creates a device node

Prototype
typedef
EFI_DEVICE_PATH_PROTOCOL*
(EFIAPI *EFI_DEVICE_PATH_UTILS_CREATE_NODE) (
 IN UINT8 NodeType,
 IN UINT8 NodeSubType,
 IN UINT16 NodeLength
);

Parameters
NodeType NodeType is the device node type

(EFI_DEVICE_PATH_PROTOCOL.Type) for the new device
node.

NodeSubType NodeSubType is the device node sub-type
(EFI_DEVICE_PATH_PROTOCOL.SubType) for the new
device node.

NodeLength NodeLength is the length of the device node
(EFI_DEVICE_PATH_PROTOCOL.Length) for the new
device node.

Description
This function creates a new device node in a newly allocated buffer.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions
EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns
This function returns a pointer to the created device node or NULL if NodeLength is less than the
size of the header or there was insufficient memory.
340 April, 2015 Version 2.5

Protocols — Device Path Protocol
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.IsDevicePathMultiInstanc
e()

Summary
Returns whether a device path is multi-instance.

Prototype
typedef
BOOLEAN
(EFIAPI *EFI_DEVICE_PATH_UTILS_IS_MULTI_INSTANCE) (
 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);

Parameters
DevicePath Points to the device path. If NULL, then ignored.

Description
This function returns whether the specified device path has multiple path instances.

Related Definitions
EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns
This function returns TRUE if the device path has more than one instance or FALSE if it is empty or
contains only a single instance.

9.6 EFI Device Path Display Format Overview
This section describes the recommended conversion between an EFI Device Path Protocol and text.
It also describes standard protocols for implementing these. The goals are:

• Standardized display format. This allows documentation and test tools to understand output
coming from drivers provided by multiple vendors.

• Increase Readability. Device paths need to be read by people, so the format should be in a form
which can be deciphered, maintaining as much as possible the industry standard means of
presenting data. In this case, there are two forms, a display-only form and a parse-able form.

• Round-trip conversion from text to binary form and back to text without loss, if desired.

• Ease of command-line parsing. Since device paths can appear on the command-lines of UEFI
applications executed from a shell, the conversion format should not prohibit basic command-
line processing, either by the application or by a shell.

9.6.1 Design Discussion
The following subsections describe the design considerations for conversion to and from the EFI
Device Path Protocol binary format and its corresponding text form.
Version 2.5 April, 2015 341

Unified Extensible Firmware Interface Specification
9.6.1.1 Standardized Display Format
Before the UEFI 2.0, there was no standardized format for the conversion from the EFI Device Path
protocol and text. Some de-facto standards arose, either as part of the standard implementation or in
descriptive text in the EFI Device Driver Writer’s Guide, although they didn’t agree. The
standardized format attempts to maintain at least the spirit of these earlier ideas.

9.6.1.2 Readability
Since these are conversions to text and, in many cases, users have to read and understand the text
form of the EFI Device Path, it makes sense to make them as readable as reasonably possible.
Several strategies are used to accomplish this:

• Creating simplified forms for well-known device paths. For example, a PCI root Bridge can be
represented as Acpi(PNP0A03,0), but makes more sense as PciRoot(0). When converting from
text to binary form, either form is accepted, but when converting from binary form to text, the
latter is preferred.

• Omitting the conversion of fields which have empty or default values. By doing this, the average
display length is greatly shortened, which improves readability.

9.6.1.3 Round-Trip Conversion
The conversions specified here guarantee at least that conversion to and from the binary
representation of the EFI Device Path will be semantically identical.

Text1 Binary1 Text2 Binary2

Figure 23. Text to Binary Conversion

In Figure 23, the process described in this section is applied to Text1, converting it to Binary1.
Subsequently, Binary1 is converted to Text2. Finally, the Text2 is converted to Binary2. In these
cases, Binary1 and Binary2 will always be identical. Text1 and Text2 may or may not be identical.
This is the result of the fact that the text representation has, in some cases, more than one way of
representing the same EFI Device Path node.

Binary1 Text1 Binary2 Text2

Figure 24. Binary to Text Conversion

In Figure 24 the process described in this section is applied to Binary1, converting it to Text1.
Subsequently, Text1 is converted to Binary2. Finally, Binary2 is converted to Text2. In these cases,
Binary1 and Binary2 will always be identical and Text1 and Text2 will always be identical.

Another consideration in round-trip conversion is potential ambiguity in parsing. This happens when
the text representation could be converted into more than type of device node, thus requiring
information beyond that contained in the text representation in order to determine the correct
conversion to apply. In the case of EFI Device Paths, this causes problems primarily with literal
strings in the device path, such as those found in file names, volumes or directories.
342 April, 2015 Version 2.5

Protocols — Device Path Protocol
For example, the file name Acpi(PNP0A03,0) might be a legal FAT32 file name. However, in
parsing this, it is not clear whether it refers to an Acpi device node or a file name. Thus, it is
ambiguous. In order to prevent ambiguity, certain characters may only be used for device node
keywords and may not be used in file names or directories.

9.6.1.4 Command-Line Parsing
Applications written to this specification need to accept the text representation of EFI device paths
as command-line parameters, possibly in the context of a command-prompt or shell. In order to do
this, the text representation must follow simple guidelines concerning its format.

Command-line parsing generally involves three separate concepts: substitution, redirection and
division.

In substitution, the invoker of the application modifies the actual contents of the command-line
before it is passed to the application. For example:

copy *.xyz

In redirection, the invoker of the application gleans from the command line parameters which it uses
to, for example, redirect or pipe input or output. For example:

echo This text is copied to a file >abc

dir | more

Finally, in division, the invoker or the application startup code divides the command-line up into
individual arguments. The following line, for example, has (at least) three arguments, divided by
whitespace.

copy /b file1.info file2.info

9.6.1.5 Text Representation Basics
This section describes the basic rules for the text representation of device nodes and device paths.
The formal grammar describing appears later.

The text representation of a device path (or text device path) consists of one or more text device
nodes, each preceded by a ‘/’ or ‘\’ character. The behavior of a device path where the first node is
not preceded by one of these characters is undefined. Some implementations may treat it as a relative
path from a current working directory.

Spaces are not allowed at any point within the device path except when quoted with double quotes
(“). The ‘|” (bar), ‘<’ (less than) and ‘>’ (greater than) characters are likewise reserved for use by the
shell.

Figure 25. Device Path Text Representation

device-path:= \device-node

/device-node

\device-path device-node

/device-path device-node
Version 2.5 April, 2015 343

Unified Extensible Firmware Interface Specification
There are two types of text device nodes : file-name/directory or canonical. Canonical text device
nodes are prefixed by an option name consisting of only alphanumerical characters, followed by a
parenthesis, followed by option-specific parameters separated by a ‘,’ (comma). File names and
directories have no prefixes.

Figure 26. Text Device Node Names

The canonical device node can have zero or more option parameters between the parentheses.
Multiple option parameters are separated by a comma. The meaning of the option parameters
depends primarily on the option name, then the parameter-identifier (if present) and then the order of
appearance in the parameter list. The parameter identifier allows the text representation to only
contain the non-default option parameter value, even if it would normally appear fourth in the list of
option parameters. Missing parameters do not require the comma unless needed as a placeholder to
correctly increment the parameter count for a subsequent parameter.

Consider

AcpiEx(HWP0002, PNP0A03,0)

Which could also be written:

AcpiEx(HWP0002,CID=PNP0A03) or

AcpiEx(HWP0002,PNP0A03)

Since CID and UID are optional parameters. Or consider:

 Acpi(HWP0002,0)

Which could also be written:

 Acpi(HWP0002)

Since UID is an optional parameter.

device-node := standard-device-node | file-name/directory

standard-device-node :=option-name(option-parameters)

file-name/directory := any character except ‘/’ ‘\’ ‘|’ ‘>’ ‘<’
344 April, 2015 Version 2.5

Protocols — Device Path Protocol
Figure 27. Device Node Option Names

9.6.1.6 Text Device Node Reference
In each of the following table rows, a specific device node type and sub-type are given, along with
the most general form of the text representation. Any parameters for the device node are listed in
italics. In each case, the type is listed and along with it what is required or optional, and any default
value, if applicable.

On subsequent lines, alternate representations are listed. In general, these alternate representations
are simplified by the assumption that one or more of the parameters is set to a specific value.

Parameter Types
This section describes the various types of option parameter values.

Table 95. EFI Device Path Option Parameter Values

GUID An EFI GUID in standard format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx. See “GUID and
Time Formats” on page 2281.

Keyword In some cases, one of a series of keywords must be listed.

Integer Unless otherwise specified, this indicates an unsigned integer in the range of 0 to 2^32-1.
The value is decimal, unless preceded by “0x” or “0X”, in which case it is hexadecimal.

EISAID A seven character text identifier in the format used by the ACPI specification. The first
three characters must be alphabetic, either upper or lower case. The second four
characters are hexadecimal digits, either numeric, upper case or lower case. Optionally, it
can be the number 0.

String Series of alphabetic, numeric and punctuation characters not including a right parenthesis
‘)’, bar ‘|’ less-than ‘<’ or greater than ‘>’ character.

HexDump Series of bytes, represented by two hexadecimal characters per byte. Unless otherwise
indicated, the size is only limited by the length of the device node.

IPv4 Address Series of four integer values (each between 0-255), separated by a ‘.’ Optionally, followed
by a ‘:’ and an integer value between 0-65555. If the ‘:’ is not present, then the port value is
zero.

option-name := alphanumerical characters string

option-parameters :=option-parameter

option-parameters,option-parameter

option-parameter :=parameter-value

parameter-identifier=parameter-value
Version 2.5 April, 2015 345

Unified Extensible Firmware Interface Specification
Table 96. Device Node Table

IPv6 Address IPv6 Address is expressed in the format [address]:port. The 'address' is expressed in the
way defined in RFC4291 Section 2.2. The ':port' after the [address] is optional. If present,
the 'port' is an integer value between 0-65535 to represent the port number, or else, port
number is zero..

Device Node Type/SubType/
Other

Description

(when type is not recognized)
Path (type, subtype, data)
The type is an integer from 0-255.
The sub-type is an integer from 0-255.
The data is a hex dump.

Type: 1 (Hardware Device Path)

(when subtype is not recognized)

HardwarePath(subtype, data)

The subtype is an integer from 0-255.
The data is a hex dump.

Type: 1 (Hardware Device Path)
SubType: 1 (PCI)

Pci(Device, Function)

The Device is an integer from 0-31 and is required.
The Function is an integer from 0-7 and is required.

Type: 1 (Hardware Device Path)
SubType: 2 (PcPcard)

PcCard(Function)

The Function is an integer from 0-255 and is required.

Type: 1 (Hardware Device Path)
SubType: 3 (Memory Mapped)

MemoryMapped(EfiMemoryType,StartingAddress, EndingAddress)

The EfiMemoryType is a 32-bit integer and is required.
The StartingAddress and EndingAddress are both 64-bit integers and
are both required.

Type: 1 (Hardware Device Path)
SubType: 4 (Vendor)

VenHw(Guid, Data)

The Guid is a GUID and is required.
The Data is a Hex Dump and is optional. The default value is zero
bytes.

Type: 1 (Hardware Device Path)
SubType: 5 (Controller)

Ctrl(Controller)

The Controller is an integer and is required.

Type: 1 (Hardware Device Path)
SubType: 6 (BMC)

BMC(Type,Address)

The Type is an integer from 0-255, and is required.
The Address is an unsigned 64-bit integer, and is required.

Type 2 (ACPI Device Path)

(when subtype is not recognized)

AcpiPath (subtype, data)

The subtype is an integer from 0-255.
The data is a hex dump.
346 April, 2015 Version 2.5

Protocols — Device Path Protocol
Type: 2 (ACPI Device Path)
SubType: 1 (ACPI Device Path)

Acpi(HID,UID)

The HID parameter is an EISAID and is required.
The UID parameter is an integer and is optional. The default value is
zero.

Type: 2 (ACPI Device Path)
SubType: 1 (ACPI Device Path)
HID=PNP0A03

PciRoot(UID)

The UID parameter is an integer. It is optional but required for display.
The default value is zero.

Type: 2 (ACPI Device Path)
SubType: 1 (ACPI Device Path)
HID=PNP0A08

PcieRoot(UID)

The UID parameter is an integer. It is optional but required for display.
The default value is zero.

Type: 2 (ACPI Device Path)
SubType: 1 (ACPI Device Path)
HID=PNP0604

Floppy(UID)

The UID parameter is an integer. It is optional for input but required for
display. The default value is zero.

Type: 2 (ACPI Device Path)
SubType: 1 (ACPI Device Path)
HID=PNP0301

Keyboard(UID)

The UID parameter is an integer. It is optional for input but required for
display. The default value is 0.

Type: 2 (ACPI Device Path)
SubType: 1 (ACPI Device Path)
HID=PNP0501

Serial(UID)

The UID parameter is an integer. It is optional for input but required for
display. The default value is 0.

Type: 2 (ACPI Device Path)
SubType: 1 (ACPI Device Path)
HID=PNP0401

ParallelPort(UID)

The UID parameter is an integer. It is optional for input but required for
display. The default value is 0.

Type: 2 (ACPI Device Path)
SubType: 2 (ACPI Expanded
Device Path)

AcpiEx(HID,CID,UID,HIDSTR,CIDSTR,UIDSTR)
AcpiEx(HID|HIDSTR,(CID|CIDSTR,UID|UIDSTR))(Display Only)

The HID parameter is an EISAID. The default value is 0. Either HID or
HIDSTR must be present.
The CID parameter is an EISAID. The default value is 0. Either CID
must be 0 or CIDSTR must be empty.
The UID parameter is an integer. The default value is 0. Either UID
must be 0 or UIDSTR must be empty.
The HIDSTR is a string. The default value is the empty string. Either
HID or HIDSTR must be present.
The CIDSTR is a string. The default value is an empty string. Either
CID must be 0 or CIDSTR must be empty.
The UIDSTR is a string. The default value is an empty string. Either
UID must be 0 or UIDSTR must be empty.

Device Node Type/SubType/
Other

Description
Version 2.5 April, 2015 347

Unified Extensible Firmware Interface Specification
Type: 2 (ACPI Device Path)
SubType: 2 (ACPI Expanded
Device Path)
HIDSTR=empty
CIDSTR=empty
UID STR!=empty

AcpiExp(HID,CID,UIDSTR)

The HID parameter is an EISAID. It is required.
The CID parameter is an EISAID. It is optional and has a default value
of 0.
The UIDSTR parameter is a string. If UID is 0 and UIDSTR is empty,
then use AcpiEx format.

Type: 2 (ACPI Device Path)
SubType: 2 (ACPI Expanded
Device Path)
HID=PNP0A03 or CID=PNP0A03
and HID != PNP0A08.

PciRoot(UID|UIDSTR) (Display Only)

Type: 2 (ACPI Device Path)
SubType: 2 (ACPI Expanded
Device Path)
HID=PNP0A08 or CID=PNP0A08.

PcieRoot(UID|UIDSTR) (Display Only)

Type: 2 (ACPI Device Path)
SubType: 3 (ACPI ADR Device
Path)

AcpiAdr(DisplayDevice[, DisplayDevice...])

The DisplayDevice parameter is an Integer. There may be one or
more, separated by a comma.

Type: 3 MessagingPath

(when subtype is not recognized)

Msg(subtype, data)

The subtype is an integer from 0-255.
The data is a hex dump.

Type: 3 (Messaging Device Path)
SubType: 1 (ATAPI)

Ata(Controller,Drive,LUN)
Ata(LUN) (Display only)

The Controller is either an integer with a value of 0 or 1 or else the
keyword Primary (0) or Secondary (1). It is required.
The Drive is either an integer with the value of 0 or 1 or else the
keyword Master (0) or Slave (1). It is required.
The LUN is a 16-bit integer. It is required.

Type: 3 (Messaging Device Path)
SubType: 2 (SCSI)

Scsi(PUN,LUN)

The PUN is an integer between 0 and 65535 and is required.
The LUN is an integer between 0 and 65535 and is required.

Type: 3 (Messaging Device Path)
SubType: 3 (Fibre Channel)

Fibre(WWN,LUN)

The WWN is a 64-bit unsigned integer and is required.
The LUN is a 64-bit unsigned integer and is required.

Device Node Type/SubType/
Other

Description
348 April, 2015 Version 2.5

Protocols — Device Path Protocol
Type: 3 (Messaging Device Path)
SubType: 21 (Fibre Channel Ex)

FibreEx(WWN,LUN)

The WWN is an 8 byte array that is displayed in hexadecimal format
with byte 0 first (i.e., on the left) and byte 7 last (i.e., on the right), and
is required.
The LUN is an 8 byte array that is displayed in hexadecimal format
with byte 0 first (i.e., on the left) and byte 7 last (i.e., on the right), and
is required.

Type: 3 (Messaging Device Path)
SubType: 4 (1394)

I1394(GUID)

The GUID is a GUID and is required.

Type: 3 (Messaging Device Path)
SubType: 5 (USB)

USB(Port,Interface)

The Port is an integer between 0 and 255 and is required.
The Interface is an integer between 0 and 255 and is required.

Type: 3 (Messaging Device Path)
SubType: 6 (I2O)

I2O(TID)

The TID is an integer and is required.

Type: 3 (Messaging Device Path)
SubType: 9 (Infiniband)

Infiniband(Flags, Guid, ServiceId, TargetId, DeviceId)

Flags is an integer.
Guid is a guid.
ServiceId, TargetId and DeviceId are 64-bit unsigned integers.
All fields are required.

Type: 3 (Messaging Device Path)
SubType: 10 (Vendor)

VenMsg(Guid, Data)

The Guid is a GUID and is required.
The Data is a Hex Dump and is option. The default value is zero
bytes.

Type: 3 (Messaging Device Path)
SubType: 10 (Vendor)
GUID=EFI_PC_ANSI_GUID

VenPcAnsi()

Type: 3 (Messaging Device Path)
SubType: 10 (Vendor)
GUID=EFI_VT_100_GIUD

VenVt100()

Type: 3 (Messaging Device Path)
SubType: 10 (Vendor)
GUID=EFI_VT_100_PLUS_GUID

VenVt100Plus()

Type: 3 (Messaging Device Path)
SubType: 10 (Vendor)
GUID=EFI_VT_UTF8_GUID

VenUtf8()

Type: 3 (Messaging Device Path)
SubType: 10 (Vendor)
GUID=DEVICE_PATH_MESSAGIN
G_UART_FLOW_CONTROL

UartFlowCtrl(Value)

The Value is either an integer with the value 0, 1 or 2 or the keywords
XonXoff (2) or Hardware (1) or None (0).

Device Node Type/SubType/
Other

Description
Version 2.5 April, 2015 349

Unified Extensible Firmware Interface Specification
Type: 3 (Messaging Device Path)
SubType: 10 (Serial Attached SCSI)
Vendor GUID: d487ddb4-008b-
11d9-afdc-001083ffca4d

SAS (Address, LUN, RTP, SASSATA, Location, Connect, DriveBay,
Reserved)

The Address is a 64-bit unsigned integer representing the SAS
Address and is required.
The LUN is a 64-bit unsigned integer representing the Logical Unit
Number and is optional. The default value is 0.
The RTP is a 16-bit unsigned integer representing the Relative Target
Port and is optional. The default value is 0.
The SASSATA is a keyword SAS or SATA or NoTopology or an
unsigned 16-bit integer and is optional. The default is NoTopology. If
NoTopology or an integer are specified, then Location, Connect and
DriveBay are prohibited. If SAS or SATA is specified, then Location
and Connect are required, but DriveBay is optional. If an integer is
specified, then the topology information is filled with the integer value.
The Location is an integer between 0 and 1 or else the keyword
Internal (0) or External (1) and is optional. If SASSATA is an integer
or NoToplogy, it is prohibited. The default value is 0.
The Connect is an integer between 0 and 3 or else the keyword
Direct (0) or Expanded (1) and is optional. If SASSATA is an integer
or NoTopology, it is prohibited. The default value is 0.
The DriveBay is an integer between 1 and 256 and is optional unless
SASSATA is an integer or NoTopology, in which case it is prohibited.

The Reserved field is an integer and is optional. The default value is
0.

Type: 3 (Messaging Device Path)
SubType: 10 (Vendor)
GUID=EFI_DEBUGPORT_
PROTOCOL_GUID

DebugPort()

Type: 3 (Messaging Device Path)
SubType: 11 (MAC Address)

MAC(MacAddr, IfType)

The MacAddr is a Hex Dump and is required. If IfType is 0 or 1, then
the MacAddr must be exactly six bytes.
The IfType is an integer from 0-255 and is optional. The default is
zero.

Device Node Type/SubType/
Other

Description
350 April, 2015 Version 2.5

Protocols — Device Path Protocol
Type: 3 (Messaging Device Path)
SubType: 12 (IPv4)

IPv4(RemoteIp, Protocol, Type, LocalIp, GatewayIPAddress,
SubnetMask)
IPv4(RemoteIp) (Display Only)

The RemoteIp is an IP Address and is required.
The Protocol is an integer between 0 and 255 or else the keyword
UDP (17) or TCP (6). The default value is UDP.
The Type is a keyword, either Static (1) or DHCP (0). It is optional.
The default value is DHCP.
The LocalIp is an IP Address and is optional. The default value is all
zeroes.
The GatewayIPAddress is an IP Address and is optional. The default
value is all zeroes.
The SubnetMask is an IP Address and is optional. The default value is
all zeroes.

Type: 3 (Messaging Device Path)
SubType: 13 (IPv6)

IPv6(RemoteIp, Protocol, IPAddressOrigin, LocalIp,
GatewayIPAddress, SubnetMask)
IPv6(RemoteIp) (Display Only)

The RemoteIp is an IPv6 Address and is required.
The Protocol is an integer between 0 and 255 or else the keyword
UDP (17) or TCP (6). The default
value is UDP.
The IPAddressOrigin is a keyword, could be Static (0),
StatelessAutoConfigure (1), or StatefulAutoConfigure (2).
The LocalIp is the IPv6 Address and is optional. The default value is
all zeroes.
The GatewayIPAddress is an IP Address. The PrefixLength is the
prefix length of the Local IPv6 Address.
The GatewayIPAddress is the IPv6 Address of the Gateway.

Type: 3 (Messaging Device Path)
SubType: 14 (UART)

Uart(Baud, DataBits, Parity, StopBits)
The Baud is a 64-bit integer and is optional. The default value is
115200.
The DataBits is an integer from 0 to 255 and is optional. The default
value is 8.
The Parity is either an integer from 0-255 or else a keyword and
should be D (0), N (1), E (2), O (3), M (4) or S (5). It is optional. The
default value is 0.
The StopBits is a either an integer from 0-255 or else a keyword and
should be D (0), 1 (1), 1.5 (2), 2 (3). It is optional. The default value is
0.

Device Node Type/SubType/
Other

Description
Version 2.5 April, 2015 351

Unified Extensible Firmware Interface Specification
Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)

UsbClass(VID,PID,Class,SubClass,Protocol)
The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The Class is an integer between 0 and 255 and is optional. The
default value is 0xFF.
The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 1

UsbAudio(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 2

UsbCDCControl(VID,PID,SubClass,Protocol)

The VID is an optional integer between 0 and 65535 and is optional.
The default value is 0xFFFF.
The PID is an optional integer between 0 and 65535 and is optional.
The default value is 0xFFFF.
The SubClass is an optional integer between 0 and 255 and is
optional. The default value is 0xFF.
The Protocol is an optional integer between 0 and 255 and is optional.
The default value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 3

UsbHID(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Device Node Type/SubType/
Other

Description
352 April, 2015 Version 2.5

Protocols — Device Path Protocol
Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 6

UsbImage(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 7

UsbPrinter(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 8

UsbMassStorage(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 9

UsbHub(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Device Node Type/SubType/
Other

Description
Version 2.5 April, 2015 353

Unified Extensible Firmware Interface Specification
Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 10

UsbCDCData(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 11

UsbSmartCard(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 14

UsbVideo(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 220

UsbDiagnostic(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Device Node Type/SubType/
Other

Description
354 April, 2015 Version 2.5

Protocols — Device Path Protocol
Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 224

UsbWireless(VID,PID,SubClass,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The SubClass is an integer between 0 and 255 and is optional. The
default value is 0xFF.
The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 254
SubClass: 1

UsbDeviceFirmwareUpdate(VID,PID,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 254
SubClass: 2

UsbIrdaBridge(VID,PID,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 15 (USB Class)
Class 254
SubClass: 3

UsbTestAndMeasurement(VID,PID,Protocol)

The VID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The PID is an integer between 0 and 65535 and is optional. The
default value is 0xFFFF.
The Protocol is an integer between 0 and 255 and is optional. The
default value is 0xFF.

Type: 3 (Messaging Device Path)
SubType: 16 (USB WWID Class)

UsbWwid(VID,PID,InterfaceNumber,”WWID”)

The VID is an integer between 0 and 65535 and is required.
The PID is an integer between 0 and 65535 and is required.
The InterfaceNumber is an integer between 0 and 255 and is
required.
The WWID is a string and is required.

Type: 3 (Messaging Device Path)
SubType: 17 (Logical Unit Class)

Unit(LUN)

The LUN is an integer and is required.

Device Node Type/SubType/
Other

Description
Version 2.5 April, 2015 355

Unified Extensible Firmware Interface Specification
Type: 3 (Messaging Device Path)
SubType: 18 (SATA)

Sata (HPN, PMPN, LUN)

The HPN is an integer between 0 and 65534 and is required.
The PMPN is an integer between 0 and 65535 and is optional. If not
provided, the default is 0xFFFF, which implies no port multiplier.
The LUN is a 16-bit integer. It is required. Note that LUN is applicable
to ATAPI devices only, and most ATAPI devices assume LUN=0

Type: 3 (Messaging Device Path)
SubType: 19 (iSCSI)

iSCSI (TargetName, PortalGroup, LUN, HeaderDigest, DataDigest,
Authentication, Protocol)

The TargetName is a string and is required.
The PortalGroup is an unsigned 16-bit integer and is required.
The LUN is an 8 byte array that is displayed in hexadecimal format
with byte 0 first (i.e., on the left) and byte 7 last (i.e, on the right), and
is required.
The HeaderDigest is a keyword None or CRC32C is optional. The
default is None.
The DataDigest is a keyword None or CRC32C is optional. The
default is None.
The Authentication is a keyword None or CHAP_BI or CHAP_UNI and
optional. The default is None.
The Protocol defines the network protocol used by iSCSI and is
optional. The default is TCP.

Type: 3 (Messaging Device Path)
Sub-type: 20 (VLAN)

Vlan (VlanId)

Device Node Type/SubType/
Other

Description
356 April, 2015 Version 2.5

Protocols — Device Path Protocol
Type: 3 (Messaging Device Path)
SubType: 22 (Serial Attached SCSI
Ex)

SasEx (Address, LUN, RTP, SASSATA, Location, Connect,
DriveBay)

The Address is an 8 byte array that is displayed in hexadecimal
format with byte 0 first (i.e., on the left) and byte 7 last (i.e., on the
right), and is required.
The LUN is an 8 byte array that is displayed in hexadecimal format
with byte 0 first (i.e., on the left) and byte 7 last (i.e., on the right), and
is optional. The default value is 0.
The RTP is a 16-bit unsigned integer representing the Relative Target
Port and is optional. The default value is 0.
The SASSATA is a keyword SAS or SATA or NoTopology or an
unsigned 16-bit integer and is optional. The default is NoTopology. If
NoTopology or an integer are specified, then Location, Connect and
DriveBay are prohibited. If SAS or SATA is specified, then Location
and Connect are required, but DriveBay is optional. If an integer is
specified, then the topology information is filled with the integer value.
The Location is an integer between 0 and 1 or else the keyword
Internal (0) or External (1) and is optional. If SASSATA is an integer
or NoToplogy, it is prohibited. The default value is 0.
The Connect is an integer between 0 and 3 or else the keyword Direct
(0) or Expanded (1) and is optional. If SASSATA is an integer or
NoTopology, it is prohibited. The default value is 0.
The DriveBay is an integer between 1 and 256 and is optional unless
SASSATA is an integer or NoTopology, in which case it is prohibited.

Type: 3 (Messaging Device Path)
SubType: 23 (NVM Express
Namespace)

NVMe (NSID,EUI)

The NSID is a namespace identifier that is displayed in hexadecimal
format with an integer value between 0 and 0xFFFFFFFF.
The EUI is the IEEE Extended Unique Identifier (EUI-64) that is
displayed in hexadecimal format represented as a set of octets
separated by dashes (hexadecimal notation), e.g., FF-FF-FF-FF-FF-
FF-FF-FF.

Type: 3 (Messaging Device Path)
SubType: 24 (URI)

Uri (Uri)

Type: 3 (Messaging Device Path)
SubType: 25 (Universal Flash
Storage)

UFS (PUN,LUN)
The PUN is 0 for current UFS2.0 spec. For future UFS specs which
support multiple devices on a UFS port, it would reflect the device ID
on the UFS port.
The LUN is 0-7 for common LUNs or 81h, D0h, B0h and C4h for well-
known LUNs supported by UFS.

Type: 3 (Messaging Device Path)
SubType: 26 (SD)

SD (Slot Number)
SlotNumber is an integer. It is optional and has a default value of 0.

Type: 3 (Messaging Device Path)
SubType: 27 (Bluetooth)

Bluetooth (BD_ADDR)

BD_ADDR is HEX dump of 48-bit Bluetooth device address.

Device Node Type/SubType/
Other

Description
Version 2.5 April, 2015 357

Unified Extensible Firmware Interface Specification
Type: 3 (Messaging Device Path)|
SubType: 28 (Wi-Fi)

Wi-Fi (SSID)

The SSID is a string and is required.

Type: 4 (Media Device Path)

(when subtype is not recognized)

MediaPath (subtype, data)

The subtype is an integer from 0-255 and is required.
The data is a hex dump.

Type: 4 (Media Device Path)
SubType: 1 (Hard Drive)

HD(Partition,Type,Signature,Start, Size)
HD(Partition,Type,Signature) (Display Only)

The Partition is an integer representing the partition number. It is
optional and the default is 0. If Partition is 0, then Start and Size are
prohibited.
The Type is an integer between 0-255 or else the keyword MBR (1) or
GPT (2). The type is optional and the default is 2.
The Signature is an integer if Type is 1 or else GUID if Type is 2. The
signature is required.
The Start is a 64-bit unsigned integer. It is prohibited if Partition is 0.
Otherwise it is required.
The Size is a 64-bit unsigned integer. It is prohibited if Partition is 0.
Otherwise it is required.

Type: 4 (Media Device Path)
SubType: 2 (CD-ROM)

CDROM(Entry,Start,Size)
CDROM(Entry) (Display Only)

The Entry is an integer representing the Boot Entry from the Boot
Catalog. It is optional and the default is 0.
The Start is a 64-bit integer and is required.
The Size is a 64-bit integer and is required.

Type: 4 (Media Device Path)
SubType: 3 (Vendor)

VenMedia(GUID, Data)

The Guid is a GUID and is required.
The Data is a Hex Dump and is option. The default value is zero
bytes.

Type: 4 (Media Device Path)
SubType: 4 (File Path)

String

The String is the file path and is a string.

Type: 4 (Media Device Path)
SubType: 5 (Media Protocol)

Media(Guid)

The Guid is a GUID and is required.

Type: 4 (Media Device Path)
SubType: 6 (PIWG Firmware File)

Contents are defined in the UEFI PI Specification.

Type: 4 (Media Device Path)
SubType: 7 (PIWG Firmware
Volume)

Contents are defined in the UEFI PI Specification.

Device Node Type/SubType/
Other

Description
358 April, 2015 Version 2.5

Protocols — Device Path Protocol
Type: 4 (Media Device Path)
SubType: 8 (Relative Offset Range)

Offset(StartingOffset,EndingOffset)
The StartingOffset is an unsigned 64-bit integer. The EndingOffset is
an unsigned 64-bit integer.

Type: 4 (Media Device Path)
SubType: 9 (RAM Disk)

RamDisk
(StartingAddress,EndingAddress,DiskInstance,DiskTypeGuid)

The StartingAddress and EndingAddress are both 64-bit integers and
are both required.
The DiskInstance is a 16-bit integer and is optional. The default value
is 0.
The DiskTypeGuid is a GUID and is required.

Type: 4 (Media Device Path)
SubType: 9 (RAM Disk)
Disk Type GUID=
EFI_VIRTUAL_DISK_GUID

VirtualDisk (StartingAddress,EndingAddress,DiskInstance)

The StartingAddress and EndingAddress are both 64-bit integers and
are both required.
The DiskInstance is a 16-bit integer and is optional. The default value
is 0.

Type: 4 (Media Device Path)
SubType: 9 (RAM Disk)
Disk Type GUID=
EFI_VIRTUAL_CD_GUID

VirtualCD (StartingAddress,EndingAddress,DiskInstance)

The StartingAddress and EndingAddress are both 64-bit integers and
are both required.
The DiskInstance is a 16-bit integer and is optional. The default value
is 0.

Type: 4 (Media Device Path)
SubType: 9 (RAM Disk)
Disk Type GUID=
EFI_PERSISTENT_VIRTUAL_DIS
K_GUID

PersistentVirtualDisk
(StartingAddress,EndingAddress,DiskInstance)

The StartingAddress and EndingAddress are both 64-bit integers and
are both required.
The DiskInstance is a 16-bit integer and is optional. The default value
is 0.

Type: 4 (Media Device Path)
SubType: 9 (RAM Disk)
Disk Type GUID=
EFI_PERSISTENT_VIRTUAL_CD_
GUID

PersistentVirtualCD (StartingAddress,EndingAddress,DiskInstance)
The StartingAddress and EndingAddress are both 64-bit integers and
are both required.
The DiskInstance is a 16-bit integer and is optional. The default value
is 0.

Type: 5 (Media Device Path)

(when subtype is not recognized)

BbsPath (subtype, data)

The subtype is an integer from 0-255.
The data is a hex dump.

Type: 5 – BIOS Boot Specification
Device Path
SubType: 1 (BBS 1.01)

BBS(Type,Id,Flags)
BBS(Type, Id) (Display Only)
The Type is an integer from 0-65535 or else one of the following
keywords: Floppy (1), HD (2), CDROM (3), PCMCIA (4), USB (5),
Network (6). It is required.
The Id is a string and is required.
The Flags are an integer and are optional. The default value is 0.

Device Node Type/SubType/
Other

Description
Version 2.5 April, 2015 359

Unified Extensible Firmware Interface Specification
9.6.2 Device Path to Text Protocol

EFI_DEVICE_PATH_TO_TEXT_PROTOCOL

Summary
Convert device nodes and paths to text

GUID
#define EFI_DEVICE_PATH_TO_TEXT_PROTOCOL_GUID \
 {0x8b843e20,0x8132,0x4852,\
 {0x90,0xcc,0x55,0x1a,0x4e,0x4a,0x7f,0x1c}}

Protocol Interface Structure
typedef struct _EFI_DEVICE_PATH_TO_TEXT_PROTOCOL {
 EFI_DEVICE_PATH_TO_TEXT_NODE ConvertDeviceNodeToText;
 EFI_DEVICE_PATH_TO_TEXT_PATH ConvertDevicePathToText;
} EFI_DEVICE_PATH_TO_TEXT_PROTOCOL;

Parameters
ConvertDeviceNodeToText Converts a device node to text.

ConvertDevicePathToText Converts a device path to text.

Description
The EFI_DEVICE_PATH_TO_TEXT_PROTOCOL provides common utility functions for
converting device nodes and device paths to a text representation.
360 April, 2015 Version 2.5

Protocols — Device Path Protocol
EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDeviceNodeToTex
t()

Summary
Convert a device node to its text representation.

Prototype
typedef
CHAR16*
(EFIAPI *EFI_DEVICE_PATH_TO_TEXT_NODE) (
 IN CONST EFI_DEVICE_PATH_PROTOCOL* DeviceNode,
 IN BOOLEAN DisplayOnly,
 IN BOOLEAN AllowShortcuts
);

Parameters
DeviceNode Points to the device node to be converted.

DisplayOnly If DisplayOnly is TRUE, then the shorter text representation
of the display node is used, where applicable. If DisplayOnly
is FALSE, then the longer text representation of the display node
is used.

AllowShortcuts If AllowShortcuts is TRUE, then the shortcut forms of text
representation for a device node can be used, where applicable.

Description
The ConvertDeviceNodeToText function converts a device node to its text representation and copies
it into a newly allocated buffer.

The DisplayOnly parameter controls whether the longer (parseable) or shorter (display-only)
form of the conversion is used.

The AllowShortcuts is FALSE, then the shortcut forms of text representation for a device node
cannot be used. A shortcut form is one which uses information other than the type or subtype.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions
EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns
This function returns the pointer to the allocated text representation of the device node data or else
NULL if DeviceNode was NULL or there was insufficient memory.
Version 2.5 April, 2015 361

Unified Extensible Firmware Interface Specification
EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDevicePathToText
()

Summary
Convert a device path to its text representation.

Prototype
typedef
CHAR16*
(EFIAPI *EFI_DEVICE_PATH_TO_TEXT_PATH) (
 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
 IN BOOLEAN DisplayOnly,
 IN BOOLEAN AllowShortcuts
);

Parameters
DeviceNode Points to the device path to be converted.

DisplayOnly If DisplayOnly is TRUE, then the shorter text representation
of the display node is used, where applicable. If DisplayOnly
is FALSE, then the longer text representation of the display node
is used.

AllowShortcuts The AllowShortcuts is FALSE, then the shortcut forms of
text representation for a device node cannot be used.

Description
This function converts a device path into its text representation and copies it into an allocated buffer.

The DisplayOnly parameter controls whether the longer (parseable) or shorter (display-only)
form of the conversion is used.

The AllowShortcuts is FALSE, then the shortcut forms of text representation for a device node
cannot be used. A shortcut form is one which uses information other than the type or subtype.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions
EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns
This function returns a pointer to the allocated text representation of the device node or NULL if
DevicePath was NULL or there was insufficient memory.
362 April, 2015 Version 2.5

Protocols — Device Path Protocol
9.6.3 Device Path from Text Protocol

EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL

Summary
Convert text to device paths and device nodes.

GUID
#define EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL_GUID \
 {0x5c99a21,0xc70f,0x4ad2,\
 {0x8a,0x5f,0x35,0xdf,0x33,0x43,0xf5, 0x1e}}

Protocol Interface Structure
typedef struct _EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL {
 EFI_DEVICE_PATH_FROM_TEXT_NODE ConvertTextToDevicNode;
 EFI_DEVICE_PATH_FROM_TEXT_PATH ConvertTextToDevicPath;
} EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL;

Parameters
ConvertTextToDeviceNodeConverts text to a device node.

ConvertTextToDevicePathConverts text to a device path.

Description
The EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL provides common utilities for converting
text to device paths and device nodes.
Version 2.5 April, 2015 363

Unified Extensible Firmware Interface Specification
EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL.ConvertTextToDeviceN
ode()

Summary
Convert text to the binary representation of a device node.

Prototype
typedef
EFI_DEVICE_PATH_PROTOCOL*
(EFIAPI *EFI_DEVICE_PATH_FROM_TEXT_NODE) (
 IN CONST CHAR16* TextDeviceNode,
);

Parameters
TextDeviceNode TextDeviceNode points to the text representation of a device

node. Conversion starts with the first character and continues
until the first non-device node character.

Description
This function converts text to its binary device node representation and copies it into an allocated
buffer.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions
EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns
This function returns a pointer to the EFI device node or NULL if TextDeviceNode is NULL or
there was insufficient memory.
364 April, 2015 Version 2.5

Protocols — Device Path Protocol
EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL.ConvertTextToDeviceP
ath()

Summary
Convert a text to its binary device path representation.

Prototype
typedef
EFI_DEVICE_PATH_PROTOCOL*
(EFIAPI *EFI_DEVICE_PATH_FROM_TEXT_PATH) (
 IN CONST CHAR16* TextDevicePath,
);

Parameters
TextDevicePath TextDevicePath points to the text representation of a device

path. Conversion starts with the first character and continues until
the first non-device path character.

Description
This function converts text to its binary device path representation and copies it into an allocated
buffer.

The memory is allocated from EFI boot services memory. It is the responsibility of the caller to free
the memory allocated.

Related Definitions
EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

Returns
This function returns a pointer to the allocated device path or NULL if TextDevicePath is
NULL or there was insufficient memory.
Version 2.5 April, 2015 365

Unified Extensible Firmware Interface Specification
366 April, 2015 Version 2.5

Protocols — UEFI Driver Model
10
Protocols — UEFI Driver Model

EFI drivers that follow the UEFI Driver Model are not allowed to search for controllers to manage.
When a specific controller is needed, the EFI boot service
EFI_BOOT_SERVICES.ConnectController() is used along with the
EFI_DRIVER_BINDING_PROTOCOL services to identify the best drivers for a controller. Once
ConnectController() has identified the best drivers for a controller, the start service in the
EFI_DRIVER_BINDING_PROTOCOL is used by ConnectController() to start each driver
on the controller. Once a controller is no longer needed, it can be released with the EFI boot service
EFI_BOOT_SERVICES.DisconnectController(). DisconnectController()
calls the stop service in each EFI_DRIVER_BINDING_PROTOCOL to stop the controller.

The driver initialization routine of an UEFI driver is not allowed to touch any device hardware.
Instead, it just installs an instance of the EFI_DRIVER_BINDING_PROTOCOL on the
ImageHandle of the UEFI driver. The test to determine if a driver supports a given controller
must be performed in as little time as possible without causing any side effects on any of the
controllers it is testing. As a result, most of the controller initialization code is present in the start
and stop services of the EFI_DRIVER_BINDING_PROTOCOL.

10.1 EFI Driver Binding Protocol
This section provides a detailed description of the EFI_DRIVER_BINDING_PROTOCOL. This
protocol is produced by every driver that follows the UEFI Driver Model, and it is the central
component that allows drivers and controllers to be managed. It provides a service to test if a
specific controller is supported by a driver, a service to start managing a controller, and a service to
stop managing a controller. These services apply equally to drivers for both bus controllers and
device controllers.

EFI_DRIVER_BINDING_PROTOCOL

Summary
Provides the services required to determine if a driver supports a given controller. If a controller is
supported, then it also provides routines to start and stop the controller.

GUID
#define EFI_DRIVER_BINDING_PROTOCOL_GUID \
{0x18A031AB,0xB443,0x4D1A,\
 {0xA5,0xC0,0x0C,0x09,0x26,0x1E,0x9F,0x71}}

Protocol Interface Structure
typedef struct _EFI_DRIVER_BINDING_PROTOCOL {

 EFI_DRIVER_BINDING_PROTOCOL_SUPPORTED Supported;
Version 2.5 April, 2015 367

Unified Extensible Firmware Interface Specification
 EFI_DRIVER_BINDING_PROTOCOL_START Start;
 EFI_DRIVER_BINDING_PROTOCOL_STOP Stop;
 UINT32 Version;
 EFI_HANDLE ImageHandle;
 EFI_HANDLE DriverBindingHandle;
} EFI_DRIVER_BINDING_PROTOCOL;

Parameters
Supported Tests to see if this driver supports a given controller. This service

is called by the EFI boot service
EFI_BOOT_SERVICES.ConnectController(). In order
to make drivers as small as possible, there are a few calling
restrictions for this service. ConnectController() must
follow these calling restrictions. If any other agent wishes to call
Supported() it must also follow these calling restrictions.
See the Supported() function description.

Start Starts a controller using this driver. This service is called by the
EFI boot service ConnectController(). In order to make
drivers as small as possible, there are a few calling restrictions for
this service. ConnectController() must follow these
calling restrictions. If any other agent wishes to call Start() it
must also follow these calling restrictions. See the Start()
function description.

Stop Stops a controller using this driver. This service is called by the
EFI boot service
EFI_BOOT_SERVICES.DisconnectController(). In
order to make drivers as small as possible, there are a few calling
restrictions for this service. DisconnectController()
must follow these calling restrictions. If any other agent wishes
to call Stop() it must also follow these calling restrictions.
See the Stop() function description.

Version The version number of the UEFI driver that produced the
EFI_DRIVER_BINDING_PROTOCOL. This field is used by
the EFI boot service ConnectController() to determine
the order that driver's Supported() service will be used when
a controller needs to be started. EFI Driver Binding Protocol
instances with higher Version values will be used before ones
with lower Version values. The Version values of 0x0-
0x0f and 0xfffffff0-0xffffffff are reserved for
platform/OEM specific drivers. The Version values of 0x10-
0xffffffef are reserved for IHV-developed drivers.

ImageHandle The image handle of the UEFI driver that produced this instance
of the EFI_DRIVER_BINDING_PROTOCOL.

DriverBindingHandleThe handle on which this instance of the
EFI_DRIVER_BINDING_PROTOCOL is installed. In most
cases, this is the same handle as ImageHandle. However, for
UEFI drivers that produce more than one instance of the
368 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_DRIVER_BINDING_PROTOCOL, this value may not be
the same as ImageHandle.

Description
The EFI_DRIVER_BINDING_PROTOCOL provides a service to determine if a driver supports a
given controller. If a controller is supported, then it also provides services to start and stop the
controller. All UEFI drivers are required to be reentrant so they can manage one or more controllers.
This requires that drivers not use global variables to store device context. Instead, they must allocate
a separate context structure per controller that the driver is managing. Bus drivers must support
starting and stopping the same bus multiple times, and they must also support starting and stopping
all of their children, or just a subset of their children.
Version 2.5 April, 2015 369

Unified Extensible Firmware Interface Specification
EFI_DRIVER_BINDING_PROTOCOL.Supported()

Summary
Tests to see if this driver supports a given controller. If a child device is provided, it further tests to
see if this driver supports creating a handle for the specified child device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_BINDING_PROTOCOL_SUPPORTED) (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
);

Parameters
This A pointer to the EFI_DRIVER_BINDING_PROTOCOL

instance.

ControllerHandle The handle of the controller to test. This handle must support a
protocol interface that supplies an I/O abstraction to the driver.
Sometimes just the presence of this I/O abstraction is enough for
the driver to determine if it supports ControllerHandle.
Sometimes, the driver may use the services of the I/O abstraction
to determine if this driver supports ControllerHandle.

RemainingDevicePathA pointer to the remaining portion of a device path. For bus
drivers, if this parameter is not NULL, then the bus driver must
determine if the bus controller specified
by ControllerHandle and the child controller specified
by RemainingDevicePath are both supported by this
bus driver.

Description
This function checks to see if the driver specified by This supports the device specified by
ControllerHandle. Drivers will typically use the device path attached to
ControllerHandle and/or the services from the bus I/O abstraction attached to
ControllerHandle to determine if the driver supports ControllerHandle. This function
may be called many times during platform initialization. In order to reduce boot times, the tests
performed by this function must be very small, and take as little time as possible to execute. This
function must not change the state of any hardware devices, and this function must be aware that the
device specified by ControllerHandle may already be managed by the same driver or a
different driver. This function must match its calls to
EFI_BOOT_SERVICES.AllocatePages() with EFI_BOOT_SERVICES.FreePages(),
EFI_BOOT_SERVICES.AllocatePool() with EFI_BOOT_SERVICES.FreePool(),
and EFI_BOOT_SERVICES.OpenProtocol() with
EFI_BOOT_SERVICES.CloseProtocol(). Since ControllerHandle may have been
previously started by the same driver, if a protocol is already in the opened state, then it must not be
370 April, 2015 Version 2.5

Protocols — UEFI Driver Model
closed with CloseProtocol(). This is required to guarantee the state of
ControllerHandle is not modified by this function.

If any of the protocol interfaces on the device specified by ControllerHandle that are required
by the driver specified by This are already open for exclusive access by a different driver or
application, then EFI_ACCESS_DENIED is returned.

If any of the protocol interfaces on the device specified by ControllerHandle that are required
by the driver specified by This are already opened by the same driver, then
EFI_ALREADY_STARTED is returned. However, if the driver specified by This is a bus driver,
then it is not an error, and the bus driver should continue with its test of ControllerHandle and
RemainingDevicePath. This allows a bus driver to create one child handle on the first call to
Supported() and Start(), and create additional child handles on additional calls to
Supported() and Start().This also allows a bus driver to create no child handle on the first
call to Supported() and Start() by specifying an End of Device Path Node
RemainingDevicePath, and create additional child handles on additional calls to
Supported() and Start().

If ControllerHandle is not supported by This, then EFI_UNSUPPORTED is returned.

If This is a bus driver that creates child handles with an EFI_DEVICE_PATH_PROTOCOL, then
ControllerHandle must support the EFI_DEVICE_PATH_PROTOCOL. If it does not, then
EFI_UNSUPPORTED is returned.

If ControllerHandle is supported by This, and This is a device driver, then EFI_SUCCESS
is returned.

If ControllerHandle is supported by This, and This is a bus driver, and
RemainingDevicePath is NULLor the first Device Path Node is the End of Device Path Node,
then EFI_SUCCESS is returned.

If ControllerHandle is supported by This, and This is a bus driver, and
RemainingDevicePath is not NULL, then RemainingDevicePath must be analyzed. If
the first node of RemainingDevicePath is the End of Device Path Node or an EFI Device Path
node that the bus driver recognizes and supports, then EFI_SUCCESS is returned. Otherwise,
EFI_UNSUPPORTED is returned.

The Supported() function is designed to be invoked from the EFI boot service
EFI_BOOT_SERVICES.ConnectController(). As a result, much of the error checking on
the parameters to Supported() has been moved into this common boot service. It is legal to call
Supported() from other locations, but the following calling restrictions must be followed or the
system behavior will not be deterministic.

ControllerHandle must be a valid EFI_HANDLE. If RemainingDevicePath is not
NULL, then it must be a pointer to a naturally aligned EFI_DEVICE_PATH_PROTOCOL.
Version 2.5 April, 2015 371

Unified Extensible Firmware Interface Specification
Status Codes Returned

Examples

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_HANDLE DriverImageHandle;
EFI_HANDLE ControllerHandle;
EFI_DRIVER_BINDING_PROTOCOL *DriverBinding;
EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath;

//
// Use the DriverImageHandle to get the Driver Binding Protocol instance
//
Status = gBS->OpenProtocol (
 DriverImageHandle,
 &gEfiDriverBindingProtocolGuid,
 &DriverBinding,
 DriverImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
 return Status;
}

//
// EXAMPLE #1
//
// Use the Driver Binding Protocol instance to test to see if the
// driver specified by DriverImageHandle supports the controller
// specified by ControllerHandle
//
Status = DriverBinding->Supported (
 DriverBinding,
 ControllerHandle,
 NULL
);
return Status;

//
// EXAMPLE #2

EFI_SUCCESS The device specified by ControllerHandle and

RemainingDevicePath is supported by the driver specified by

This.

EFI_ALREADY_STARTED The device specified by ControllerHandle and

RemainingDevicePath is already being managed by the driver

specified by This.

EFI_ACCESS_DENIED The device specified by ControllerHandle and

RemainingDevicePath is already being managed by a different

driver or an application that requires exclusive access.

EFI_UNSUPPORTED The device specified by ControllerHandle and

RemainingDevicePath is not supported by the driver specified by

This.
372 April, 2015 Version 2.5

Protocols — UEFI Driver Model
//
// The RemainingDevicePath parameter can be used to initialize only
// the minimum devices required to boot. For example, maybe we only
// want to initialize 1 hard disk on a SCSI channel. If DriverImageHandle
// is a SCSI Bus Driver, and ControllerHandle is a SCSI Controller, and
// we only want to create a child handle for PUN=3 and LUN=0, then the
// RemainingDevicePath would be SCSI(3,0)/END. The following example
// would return EFI_SUCCESS if the SCSI driver supports creating the
// child handle for PUN=3, LUN=0. Otherwise it would return an error.
//
Status = DriverBinding->Supported (
 DriverBinding,
 ControllerHandle,
 RemainingDevicePath
);
return Status;

Pseudo Code
Listed below are the algorithms for the Supported() function for three different types of drivers.
How the Start() function of a driver is implemented can affect how the Supported() function
is implemented. All of the services in the EFI_DRIVER_BINDING_PROTOCOL need to work
together to make sure that all resources opened or allocated in Supported() and Start() are
released in Stop().

The first algorithm is a simple device driver that does not create any additional handles. It only
attaches one or more protocols to an existing handle. The second is a bus driver that always creates
all of its child handles on the first call to Start(). The third is a more advanced bus driver that
can either create one child handles at a time on successive calls to Start(), or it can create all of
its child handles or all of the remaining child handles in a single call to Start().

Device Driver:

1. Ignore the parameter RemainingDevicePath.

2. Open all required protocols with EFI_BOOT_SERVICES.OpenProtocol(). A standard
driver should use an Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver
needs exclusive access to a protocol interface, and it requires any drivers that may be using the
protocol interface to disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE.

3. If any of the calls to OpenProtocol() in (2) returned an error, then close all of the protocols
opened in (2) with EFI_BOOT_SERVICES.CloseProtocol(), and return the status code
from the call to OpenProtocol() that returned an error.

4. Use the protocol instances opened in (2) to test to see if this driver supports the controller.
Sometimes, just the presence of the protocols is enough of a test. Other times, the services of the
protocols opened in (2) are used to further check the identity of the controller. If any of these
tests fails, then close all the protocols opened in (2) with CloseProtocol() and return
EFI_UNSUPPORTED.

5. Close all protocols opened in (2) with CloseProtocol().

6. Return EFI_SUCCESS.

Bus Driver that creates all of its child handles on the first call to Start():

1. Check the contents of the first Device Path Node of RemainingDevicePath to make sure it
is the End of Device Path Node or a legal Device Path Node for this bus driver’s children. If it is
not, then return EFI_UNSUPPORTED.
Version 2.5 April, 2015 373

Unified Extensible Firmware Interface Specification
2. Open all required protocols with EFI_BOOT_SERVICES.OpenProtocol(). A standard
driver should use an Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver
needs exclusive access to a protocol interface, and it requires any drivers that may be using the
protocol interface to disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE.

3. If any of the calls to OpenProtocol() in (2) returned an error, then close all of the protocols
opened in (2) with EFI_BOOT_SERVICES.CloseProtocol(), and return the status code
from the call to OpenProtocol() that returned an error.

4. Use the protocol instances opened in (2) to test to see if this driver supports the controller.
Sometimes, just the presence of the protocols is enough of a test. Other times, the services of the
protocols opened in (2) are used to further check the identity of the controller. If any of these
tests fails, then close all the protocols opened in (2) with CloseProtocol() and return
EFI_UNSUPPORTED.

5. Close all protocols opened in (2) with CloseProtocol().

6. Return EFI_SUCCESS.

Bus Driver that is able to create all or one of its child handles on each call to Start():

1. Check the contents of the first Device Path Node of RemainingDevicePath to make sure it
is the End of Device Path Node or a legal Device Path Node for this bus driver’s children. If it is
not, then return EFI_UNSUPPORTED.

2. Open all required protocols with OpenProtocol(). A standard driver should use an
Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver needs exclusive access
to a protocol interface, and it requires any drivers that may be using the protocol interface to
disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE.

3. If any of the calls to OpenProtocol() in (2) failed with an error other than
EFI_ALREADY_STARTED, then close all of the protocols opened in (2) that did not return
EFI_ALREADY_STARTED with CloseProtocol(), and return the status code from the
OpenProtocol() call that returned an error.

4. Use the protocol instances opened in (2) to test to see if this driver supports the controller.
Sometimes, just the presence of the protocols is enough of a test. Other times, the services of the
protocols opened in (2) are used to further check the identity of the controller. If any of these
tests fails, then close all the protocols opened in (2) that did not return
EFI_ALREADY_STARTED with CloseProtocol() and return EFI_UNSUPPORTED.

5. Close all protocols opened in (2) that did not return EFI_ALREADY_STARTED with
CloseProtocol().

6. Return EFI_SUCCESS.

Listed below is sample code of the Supported() function of device driver for a device on the
XYZ bus. The XYZ bus is abstracted with the EFI_XYZ_IO_PROTOCOL. Just the presence of the
EFI_XYZ_IO_PROTOCOL on ControllerHandle is enough to determine if this driver
supports ControllerHandle. The gBS variable is initialized in this driver’s entry point. See
Section 4.

extern EFI_GUID gEfiXyzIoProtocol;
EFI_BOOT_SERVICES *gBS;

EFI_STATUS
AbcSupported (
374 April, 2015 Version 2.5

Protocols — UEFI Driver Model
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
)

{
 EFI_STATUS Status;
 EFI_XYZ_IO_PROTOCOL *XyzIo;

 Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_BY_DRIVER
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 This->DriverBindingHandle,
 ControllerHandle
);

 return EFI_SUCCESS;
}

Version 2.5 April, 2015 375

Unified Extensible Firmware Interface Specification
EFI_DRIVER_BINDING_PROTOCOL.Start()

Summary
Starts a device controller or a bus controller. The Start() and Stop() services of the
EFI_DRIVER_BINDING_PROTOCOL mirror each other.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_BINDING_PROTOCOL_START) (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
);

Parameters
This A pointer to the EFI_DRIVER_BINDING_PROTOCOL

instance.

ControllerHandle The handle of the controller to start. This handle must support a
protocol interface that supplies an I/O abstraction to the driver.

RemainingDevicePathA pointer to the remaining portion of a device path. For a bus
driver, if this parameter is NULL, then handles for all the children
of Controller are created by this driver.

If this parameter is not NULL and the first Device Path Node is
not the End of Device Path Node, then only the handle for the
child device specified by the first Device Path Node of
RemainingDevicePath is created by this driver.

If the first Device Path Node of RemainingDevicePath is
the End of Device Path Node, no child handle is created by this
driver.

Description
This function starts the device specified by Controller with the driver specified by This.
Whatever resources are allocated in Start() must be freed in Stop(). For example, every
EFI_BOOT_SERVICES.AllocatePool(), EFI_BOOT_SERVICES.AllocatePages(),
EFI_BOOT_SERVICES.OpenProtocol(), and
EFI_BOOT_SERVICES.InstallProtocolInterface() in Start() must be matched
with a EFI_BOOT_SERVICES.FreePool(), EFI_BOOT_SERVICES.FreePages(),
EFI_BOOT_SERVICES.CloseProtocol(), and
EFI_BOOT_SERVICES.UninstallProtocolInterface() in Stop().

If Controller is started, then EFI_SUCCESS is returned.

If Controller could not be started, but can potentially be repaired with configuration or repair
operations using the EFI_DRIVER_HEALTH_PROTOCOL and this driver produced an instance of
the EFI_DRIVER_HEALTH_PROTOCOL for Controller, then return EFI_SUCESS.
376 April, 2015 Version 2.5

Protocols — UEFI Driver Model
If Controller cannot be started due to a device error and the driver does not produce the
EFI_DRIVER_HEALTH_PROTOCOL for Controller, then return EFI_DEVICE_ERROR.

If the driver does not support Controller then EFI_DEVICE_ERROR is returned. This
condition will only be met if Supported() returns EFI_SUCCESS and a more extensive
supported check in Start() fails.

If there are not enough resources to start the device or bus specified by Controller, then
EFI_OUT_OF_RESOURCES is returned.

If the driver specified by This is a device driver, then RemainingDevicePath is ignored.

If the driver specified by This is a bus driver, and RemainingDevicePath is NULL, then all
of the children of Controller are discovered and enumerated, and a device handle is created for
each child.

If the driver specified by This is a bus driver, and RemainingDevicePath is not NULL and
begins with the End of Device Path node, then the driver must not enumerate any of the children of
Controller nor create any child device handle. Only the controller initialization should be
performed. If the driver implements EFI_DRIVER_DIAGNOSTICS2_PROTOCOL,
EFI_COMPONENT_NAME2_PROTOCOL, EFI_SERVICE_BINDING_PROTOCOL,
EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL, or EFI_DRIVER_HEALTH_PROTOCOL, the
driver still should install the implemented protocols. If the driver supports
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL, the driver still should retrieve
and process the configuration information.

If the driver specified by This is a bus driver that is capable of creating one child handle at a time
and RemainingDevicePath is not NULL and does not begin with the End of Device Path node,
then an attempt is made to create the device handle for the child device specified by
RemainingDevicePath. Depending on the bus type, all of the child devices may need to be
discovered and enumerated, but at most only the device handle for the one child specified by
RemainingDevicePath shall be created.

The Start() function is designed to be invoked from the EFI boot service
EFI_BOOT_SERVICES.ConnectController(). As a result, much of the error checking on
the parameters to Start() has been moved into this common boot service. It is legal to call
Start() from other locations, but the following calling restrictions must be followed or the system
behavior will not be deterministic.

• ControllerHandle must be a valid EFI_HANDLE.

• If RemainingDevicePath is not NULL, then it must be a pointer to a naturally aligned
EFI_DEVICE_PATH_PROTOCOL.

• Prior to calling Start(), the Supported() function for the driver specified by This must
have been called with the same calling parameters, and Supported() must have returned
EFI_SUCCESS.
Version 2.5 April, 2015 377

Unified Extensible Firmware Interface Specification
Status Codes Returned

Examples

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_HANDLE DriverImageHandle;
EFI_HANDLE ControllerHandle;
EFI_DRIVER_BINDING_PROTOCOL *DriverBinding;
EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath;

//
// Use the DriverImageHandle to get the Driver Binding Protocol instance
//
Status = gBS->OpenProtocol (
 DriverImageHandle,
 &gEfiDriverBindingProtocolGuid,
 &DriverBinding,
 DriverImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
 return Status;
}

//
// EXAMPLE #1
//
// Use the Driver Binding Protocol instance to test to see if the
// driver specified by DriverImageHandle supports the controller
// specified by ControllerHandle
//
Status = DriverBinding->Supported (
 DriverBinding,
 ControllerHandle,
 NULL
);
if (!EFI_ERROR (Status)) {
 Status = DriverBinding->Start (
 DriverBinding,
 ControllerHandle,
 NULL
);
}

EFI_SUCCESS The device was started.

EFI_SUCCESS The device could not be started because the device needs to

be configured by the user or requires a repair operation, and

the driver produced the Driver Health Protocol that will return

the required configuration and repair operations for this device.

EFI_DEVICE_ERROR The driver does not produce the Driver Health Protocol and the

device could not be started due to a device error.

EFI_DEVICE_ERROR The driver produces the Driver Health Protocol, and the driver

does not support the device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
378 April, 2015 Version 2.5

Protocols — UEFI Driver Model
return Status;

//
// EXAMPLE #2
//
// The RemainingDevicePath parameter can be used to initialize only
// the minimum devices required to boot. For example, maybe we only
// want to initialize 1 hard disk on a SCSI channel. If DriverImageHandle
// is a SCSI Bus Driver, and ControllerHandle is a SCSI Controller, and
// we only want to create a child handle for PUN=3 and LUN=0, then the
// RemainingDevicePath would be SCSI(3,0)/END. The following example
// would return EFI_SUCCESS if the SCSI driver supports creating the
// child handle for PUN=3, LUN=0. Otherwise it would return an error.
//
Status = DriverBinding->Supported (
 DriverBinding,
 ControllerHandle,
 RemainingDevicePath
);
if (!EFI_ERROR (Status)) {
 Status = DriverBinding->Start (
 DriverBinding,
 ControllerHandle,
 RemainingDevicePath
);
}

return Status;

Pseudo Code
Listed below are the algorithms for the Start() function for three different types of drivers. How
the Start() function of a driver is implemented can affect how the Supported() function is
implemented. All of the services in the EFI_DRIVER_BINDING_PROTOCOL need to work
together to make sure that all resources opened or allocated in Supported() and Start() are
released in Stop().

The first algorithm is a simple device driver that does not create any additional handles. It only
attaches one or more protocols to an existing handle. The second is a simple bus driver that always
creates all of its child handles on the first call to Start(). It does not attach any additional
protocols to the handle for the bus controller. The third is a more advanced bus driver that can either
create one child handles at a time on successive calls to Start(), or it can create all of its child
handles or all of the remaining child handles in a single call to Start(). Once again, it does not
attach any additional protocols to the handle for the bus controller.

Device Driver:

1. Ignore the parameter RemainingDevicePath..

2. Open all required protocols with EFI_BOOT_SERVICES.OpenProtocol(). A standard
driver should use an Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver
needs exclusive access to a protocol interface, and it requires any drivers that may be using the
protocol interface to disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE. It must
use the same Attribute value that was used in Supported().
Version 2.5 April, 2015 379

Unified Extensible Firmware Interface Specification
3. If any of the calls to OpenProtocol() in (2) returned an error, then close all of the protocols
opened in (2) with EFI_BOOT_SERVICES.CloseProtocol(), and return the status code
from the call to OpenProtocol() that returned an error.

4. Initialize the device specified by ControllerHandle. If the driver does not support the
device specified by ControllerHandle, then close all of the protocols opened in (2) with
CloseProtocol(), and return EFI_DEVICE_ERROR. If the driver does support the device
specified by ControllerHandle and an error is detected, and that error can not be resolved with
the EFI_DRIVER_HEALTH_PROTOCOL, then close all of the protocols opened in (2) with
CloseProtocol(), and return EFI_DEVICE_ERROR. If the driver does support the device
specified by ControllerHandle and an error is detected, and that error can be resolved with the
EFI_DRIVER_HEALTH_PROTOCOL, then produce the
EFI_DRIVER_HEALTH_PROTOCOL for ControllerHandle and make sure
EFI_SUCESS is returned from Start(). In this case, depending on the type of error
detected, not all of the following steps may be completed

5. Allocate and initialize all of the data structures that this driver requires to manage the device
specified by ControllerHandle. This would include space for public protocols and space
for any additional private data structures that are related to ControllerHandle. If an error
occurs allocating the resources, then close all of the protocols opened in (2) with
CloseProtocol(), and return EFI_OUT_OF_RESOURCES.

6. Install all the new protocol interfaces onto ControllerHandle using
EFI_BOOT_SERVICES.InstallMultipleProtocolInterfaces(). If an error
occurs, close all of the protocols opened in (1) with CloseProtocol(), and return the error
from InstallMultipleProtocolInterfaces().

7. Return EFI_SUCCESS.

Bus Driver that creates all of its child handles on the first call to Start():

1. Ignore the parameter RemainingDevicePath. with the exception that if the first Device
Path Node is the End of Device Path Node, skip steps 5-8.

2. Open all required protocols with EFI_BOOT_SERVICES.OpenProtocol(). A standard
driver should use an Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver
needs exclusive access to a protocol interface, and it requires any drivers that may be using the
protocol interface to disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE. It must
use the same Attribute value that was used in Supported().

3. If any of the calls to OpenProtocol() in (2) returned an error, then close all of the protocols
opened in (2) with EFI_BOOT_SERVICES.CloseProtocol(), and return the status code
from the call to OpenProtocol() that returned an error.

4. Initialize the device specified by ControllerHandle. If the driver does not support the
device specified by ControllerHandle, then close all of the protocols opened in (2) with
CloseProtocol(), and return EFI_DEVICE_ERROR. If the driver does support the device
specified by ControllerHandle and an error is detected, and that error can not be resolved
with the EFI_DRIVER_HEALTH_PROTOCOL, then close all of the protocols opened in (2)
with CloseProtocol(), and return EFI_DEVICE_ERROR. If the driver does support the
device specified by ControllerHandle and an error is detected, and that error can be
resolved with the EFI_DRIVER_HEALTH_PROTOCOL, then produce the
EFI_DRIVER_HEALTH_PROTOCOL for ControllerHandle and make sure
EFI_SUCESS is returned from Start(). In this case, depending on the type of error
detected, not all of the following steps may be completed.
380 April, 2015 Version 2.5

Protocols — UEFI Driver Model
5. Discover all the child devices of the bus controller specified by ControllerHandle.

6. If the bus requires it, allocate resources to all the child devices of the bus controller specified by
ControllerHandle.

7. FOR each child C of ControllerHandle:

a Allocate and initialize all of the data structures that this driver requires to manage the child
device C. This would include space for public protocols and space for any additional private
data structures that are related to the child device C. If an error occurs allocating the
resources, then close all of the protocols opened in (2) with CloseProtocol(), and
return EFI_OUT_OF_RESOURCES.

b If the bus driver creates device paths for the child devices, then create a device path for the
child C based upon the device path attached to ControllerHandle.

c Initialize the child device C. If an error occurs, close all of the protocols opened in (2) with
CloseProtocol(), and return EFI_DEVICE_ERROR.

d Create a new handle for C, and install the protocol interfaces for child device C using
EFI_BOOT_SERVICES.InstallMultipleProtocolInterfaces(). This may
include the EFI_DEVICE_PATH_PROTOCOL.

e Call OpenProtocol() on behalf of the child C with an Attribute of
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

8. END FOR

9. If the bus driver also produces protocols on ControllerHandle, then install all the new
protocol interfaces onto ControllerHandle using
InstallMultipleProtocolInterfaces(). If an error occurs, close all of the
protocols opened in (2) with CloseProtocol(), and return the error from
InstallMultipleProtocolInterfaces().

10. Return EFI_SUCCESS.

Bus Driver that is able to create all or one of its child handles on each call to Start():

1. Open all required protocols with EFI_BOOT_SERVICES.OpenProtocol(). A standard
driver should use an Attribute of EFI_OPEN_PROTOCOL_BY_DRIVER. If this driver
needs exclusive access to a protocol interface, and it requires any drivers that may be using the
protocol interface to disconnect, then the driver should use an Attribute of
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE. It must
use the same Attribute value that was used in Supported().

2. If any of the calls to OpenProtocol() in (1) returned an error, then close all of the protocols
opened in (1) with EFI_BOOT_SERVICES.CloseProtocol(), and return the status code
from the call to OpenProtocol() that returned an error.

3. Initialize the device specified by ControllerHandle. If the driver does not support the
device specified by ControllerHandle, then close all of the protocols opened in (1) with
CloseProtocol(), and return EFI_DEVICE_ERROR. If the driver does support the device
specified by ControllerHandle and an error is detected, and that error can not be resolved
with the EFI_DRIVER_HEALTH_PROTOCOL, then close all of the protocols opened in (1)
with CloseProtocol(), and return EFI_DEVICE_ERROR. If the driver does support the
device specified by ControllerHandle and an error is detected, and that error can be
resolved with the EFI_DRIVER_HEALTH_PROTOCOL, then produce the
EFI_DRIVER_HEALTH_PROTOCOL for ControllerHandle and make sure
Version 2.5 April, 2015 381

Unified Extensible Firmware Interface Specification
EFI_SUCESS is returned from Start(). In this case, depending on the type of error
detected, not all of the following steps may be completed.

4. IF RemainingDevicePath is not NULL, THEN

a C is the child device specified by RemainingDevicePath. If the first Device Path Node
is the End of Device Path Node, proceed to step 6.

b Allocate and initialize all of the data structures that this driver requires to manage the child
device C. This would include space for public protocols and space for any additional private
data structures that are related to the child device C. If an error occurs allocating the
resources, then close all of the protocols opened in (1) with CloseProtocol(), and
return EFI_OUT_OF_RESOURCES.

c If the bus driver creates device paths for the child devices, then create a device path for the
child C based upon the device path attached to ControllerHandle.

d Initialize the child device C.

e Create a new handle for C, and install the protocol interfaces for child device C using
EFI_BOOT_SERVICES.InstallMultipleProtocolInterfaces(). This may
include the EFI_DEVICE_PATH_PROTOCOL.

f Call OpenProtocol() on behalf of the child C with an Attribute of
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

ELSE

a Discover all the child devices of the bus controller specified by ControllerHandle.

b If the bus requires it, allocate resources to all the child devices of the bus controller specified
by ControllerHandle.

c FOR each child C of ControllerHandle

Allocate and initialize all of the data structures that this driver requires to manage the child
device C. This would include space for public protocols and space for any additional private
data structures that are related to the child device C. If an error occurs allocating the
resources, then close all of the protocols opened in (1) with CloseProtocol(), and
return EFI_OUT_OF_RESOURCES.

If the bus driver creates device paths for the child devices, then create a device path for the
child C based upon the device path attached to ControllerHandle.

Initialize the child device C.

Create a new handle for C, and install the protocol interfaces for child device C using
InstallMultipleProtocolInterfaces(). This may include the
EFI_DEVICE_PATH_PROTOCOL.

Call EFI_BOOT_SERVICES.OpenProtocol() on behalf of the child C with an
Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

d END FOR

5. END IF

6. If the bus driver also produces protocols on ControllerHandle, then install all the new
protocol interfaces onto ControllerHandle using
InstallMultipleProtocolInterfaces(). If an error occurs, close all of the
protocols opened in (2) with CloseProtocol(), and return the error from
InstallMultipleProtocolInterfaces().
382 April, 2015 Version 2.5

Protocols — UEFI Driver Model
7. Return EFI_SUCCESS.

Listed below is sample code of the Start() function of a device driver for a device on the XYZ
bus. The XYZ bus is abstracted with the EFI_XYZ_IO_PROTOCOL. This driver does allow the
EFI_XYZ_IO_PROTOCOL to be shared with other drivers, and just the presence of the
EFI_XYZ_IO_PROTOCOL on ControllerHandle is enough to determine if this driver
supports ControllerHandle. This driver installs the EFI_ABC_IO_PROTOCOL on
ControllerHandle. The gBS variable is initialized in this driver’s entry point as shown in the
UEFI Driver Model examples in Section 1.6.

extern EFI_GUID gEfiXyzIoProtocol;
extern EFI_GUID gEfiAbcIoProtocol;
EFI_BOOT_SERVICES *gBS;

EFI_STATUS
AbcStart (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
)

{
 EFI_STATUS Status;
 EFI_XYZ_IO_PROTOCOL *XyzIo;
 EFI_ABC_DEVICE AbcDevice;

 //
 // Open the Xyz I/O Protocol that this driver consumes
 //
 Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocol,
 &XyzIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_BY_DRIVER
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Allocate and zero a private data structure for the Abc device.
 //
 Status = gBS->AllocatePool (
 EfiBootServicesData,
 sizeof (EFI_ABC_DEVICE),
 &AbcDevice
);
 if (EFI_ERROR (Status)) {
 goto ErrorExit;
 }
 ZeroMem (AbcDevice, sizeof (EFI_ABC_DEVICE));

 //
 // Initialize the contents of the private data structure for the Abc device.
 // This includes the XyzIo protocol instance and other private data fields
 // and the EFI_ABC_IO_PROTOCOL instance that will be installed.
 //
Version 2.5 April, 2015 383

Unified Extensible Firmware Interface Specification
 AbcDevice->Signature = EFI_ABC_DEVICE_SIGNATURE;
 AbcDevice->XyzIo = XyzIo;

 AbcDevice->PrivateData1 = PrivateValue1;
 AbcDevice->PrivateData2 = PrivateValue2;
 . . .
 AbcDevice->PrivateDataN = PrivateValueN;

 AbcDevice->AbcIo.Revision = EFI_ABC_IO_PROTOCOL_REVISION;
 AbcDevice->AbcIo.Func1 = AbcIoFunc1;
 AbcDevice->AbcIo.Func2 = AbcIoFunc2;
 . . .
 AbcDevice->AbcIo.FuncN = AbcIoFuncN;

 AbcDevice->AbcIo.Data1 = Value1;
 AbcDevice->AbcIo.Data2 = Value2;
 . . .
 AbcDevice->AbcIo.DataN = ValueN;

 //
 // Install protocol interfaces for the ABC I/O device.
 //
 Status = gBS->InstallMultipleProtocolInterfaces (
 &ControllerHandle,
 &gEfiAbcIoProtocolGuid, &AbcDevice->AbcIo,
 NULL
);
 if (EFI_ERROR (Status)) {
 goto ErrorExit;
 }

 return EFI_SUCCESS;

ErrorExit:
 //
 // When there is an error, the private data structures need to be freed and
 // the protocols that were opened need to be closed.
 //
 if (AbcDevice != NULL) {
 gBS->FreePool (AbcDevice);
 }
 gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocolGuid,
 This->DriverBindingHandle,
 ControllerHandle
);
 return Status;
}

384 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_DRIVER_BINDING_PROTOCOL.Stop()

Summary
Stops a device controller or a bus controller. The Start() and Stop() services of the
EFI_DRIVER_BINDING_PROTOCOL mirror each other.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_BINDING_PROTOCOL_STOP) (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN UINTN NumberOfChildren,
 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
);

Parameters
This A pointer to the EFI_DRIVER_BINDING_PROTOCOL

instance. Type EFI_DRIVER_BINDING_PROTOCOL is
defined in Section 10.1.

ControllerHandle A handle to the device being stopped. The handle must support a
bus specific I/O protocol for the driver to use to stop the device.

NumberOfChildren The number of child device handles in ChildHandleBuffer.

ChildHandleBuffer An array of child handles to be freed. May be NULL if
NumberOfChildren is 0.

Description
This function performs different operations depending on the parameter NumberOfChildren. If
NumberOfChildren is not zero, then the driver specified by This is a bus driver, and it is being
requested to free one or more of its child handles specified by NumberOfChildren and
ChildHandleBuffer. If all of the child handles are freed, then EFI_SUCCESS is returned. If
NumberOfChildren is zero, then the driver specified by This is either a device driver or a bus
driver, and it is being requested to stop the controller specified by ControllerHandle. If
ControllerHandle is stopped, then EFI_SUCCESS is returned. In either case, this function is
required to undo what was performed in Start(). Whatever resources are allocated in Start()
must be freed in Stop(). For example, every EFI_BOOT_SERVICES.AllocatePool(),
EFI_BOOT_SERVICES.AllocatePages(), EFI_BOOT_SERVICES.OpenProtocol(),
and EFI_BOOT_SERVICES.InstallProtocolInterface() in Start() must be
matched with a EFI_BOOT_SERVICES.FreePool(),
EFI_BOOT_SERVICES.FreePages(), EFI_BOOT_SERVICES.CloseProtocol(), and
EFI_BOOT_SERVICES.UninstallProtocolInterface() in Stop().

If ControllerHandle cannot be stopped, then EFI_DEVICE_ERROR is returned. If, for some
reason, there are not enough resources to stop ControllerHandle, then
EFI_OUT_OF_RESOURCES is returned.
Version 2.5 April, 2015 385

Unified Extensible Firmware Interface Specification
The Stop() function is designed to be invoked from the EFI boot service
EFI_BOOT_SERVICES.DisconnectController(). As a result, much of the error
checking on the parameters to Stop() has been moved into this common boot service. It is legal to
call Stop() from other locations, but the following calling restrictions must be followed or the
system behavior will not be deterministic.

• ControllerHandle must be a valid EFI_HANDLE that was used on a previous call to this
same driver’s Start() function.

• The first NumberOfChildren handles of ChildHandleBuffer must all be a valid
EFI_HANDLE. In addition, all of these handles must have been created in this driver’s
Start() function, and the Start() function must have called
EFI_BOOT_SERVICES.OpenProtocol() on ControllerHandle with an
Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.

Status Codes Returned

Examples

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_HANDLE DriverImageHandle;
EFI_HANDLE ControllerHandle;
EFI_HANDLE ChildHandle;
EFI_DRIVER_BINDING_PROTOCOL *DriverBinding;

//
// Use the DriverImageHandle to get the Driver Binding Protocol instance
//
Status = gBS->OpenProtocol (
 DriverImageHandle,
 &gEfiDriverBindingProtocolGuid,
 &DriverBinding,
 DriverImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
 return Status;
}

//
// Use the Driver Binding Protocol instance to free the child
// specified by ChildHandle. Then, use the Driver Binding
// Protocol to stop ControllerHandle.
//
Status = DriverBinding->Stop (
 DriverBinding,
 ControllerHandle,
 1,
 &ChildHandle
);

Status = DriverBinding->Stop (

EFI_SUCCESS The device was stopped.

EFI_DEVICE_ERROR The device could not be stopped due to a device error.
386 April, 2015 Version 2.5

Protocols — UEFI Driver Model
 DriverBinding,
 ControllerHandle,
 0,
 NULL
);

Pseudo Code
Device Driver:

1. Uninstall all the protocols that were installed onto ControllerHandle in Start().

2. Close all the protocols that were opened on behalf of ControllerHandle in Start().

3. Free all the structures that were allocated on behalf of ControllerHandle in Start().

4. Return EFI_SUCCESS.

Bus Driver that creates all of its child handles on the first call to Start():

Bus Driver that is able to create all or one of its child handles on each call to Start():

1. IF NumberOfChildren is zero THEN:

a Uninstall all the protocols that were installed onto ControllerHandle in Start().

b Close all the protocols that were opened on behalf of ControllerHandle in Start().

c Free all the structures that were allocated on behalf of ControllerHandle in Start().

2. ELSE

a FOR each child C in ChildHandleBuffer

Uninstall all the protocols that were installed onto C in Start().

Close all the protocols that were opened on behalf of C in Start().

Free all the structures that were allocated on behalf of C in Start().

b END FOR

3. END IF

4. Return EFI_SUCCESS.

Listed below is sample code of the Stop() function of a device driver for a device on the XYZ bus.
The XYZ bus is abstracted with the EFI_XYZ_IO_PROTOCOL. This driver does allow the
EFI_XYZ_IO_PROTOCOL to be shared with other drivers, and just the presence of the
EFI_XYZ_IO_PROTOCOL on ControllerHandle is enough to determine if this driver
supports ControllerHandle. This driver installs the EFI_ABC_IO_PROTOCOL on
ControllerHandle in Start(). The gBS variable is initialized in this driver’s entry point.
See Section 4.
extern EFI_GUID gEfiXyzIoProtocol;
extern EFI_GUID gEfiAbcIoProtocol;
EFI_BOOT_SERVICES *gBS;

EFI_STATUS
AbcStop (
 IN EFI_DRIVER_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle
 IN UINTN NumberOfChildren,
 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL
)

{

Version 2.5 April, 2015 387

Unified Extensible Firmware Interface Specification
 EFI_STATUS Status;
 EFI_ABC_IO AbcIo;
 EFI_ABC_DEVICE AbcDevice;

 //
 // Get our context back
 //
 Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiAbcIoProtocolGuid,
 &AbcIo,
 This->DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
 if (EFI_ERROR (Status)) {
 return EFI_UNSUPPORTED;
 }

 //
 // Use Containment Record Macro to get AbcDevice structure from
 // a pointer to the AbcIo structure within the AbcDevice structure.
 //
 AbcDevice = ABC_IO_PRIVATE_DATA_FROM_THIS (AbcIo);

 //
 // Uninstall the protocol installed in Start()
 //
 Status = gBS->UninstallMultipleProtocolInterfaces (
 ControllerHandle,
 &gEfiAbcIoProtocolGuid, &AbcDevice->AbcIo,
 NULL
);
 if (!EFI_ERROR (Status)) {

 //
 // Close the protocol opened in Start()
 //
 Status = gBS->CloseProtocol (
 ControllerHandle,
 &gEfiXyzIoProtocolGuid,
 This->DriverBindingHandle,
 ControllerHandle
);

 //
 // Free the structure allocated in Start().
 //
 gBS->FreePool (AbcDevice);
 }

 return Status;

}

388 April, 2015 Version 2.5

Protocols — UEFI Driver Model
10.2 EFI Platform Driver Override Protocol
This section provides a detailed description of the
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL. This protocol can override the default
algorithm for matching drivers to controllers.

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL

Summary
This protocol matches one or more drivers to a controller. A platform driver produces this protocol,
and it is installed on a separate handle. This protocol is used by the
EFI_BOOT_SERVICES.ConnectController() boot service to select the best driver for a
controller. All of the drivers returned by this protocol have a higher precedence than drivers found
from an EFI Bus Specific Driver Override Protocol or drivers found from the general UEFI driver
Binding search algorithm. If more than one driver is returned by this protocol, then the drivers are
returned in order from highest precedence to lowest precedence.

GUID
#define EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL_GUID \
{0x6b30c738,0xa391,0x11d4,\
 {0x9a,0x3b,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

Protocol Interface Structure
typedef struct _EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL {
 EFI_PLATFORM_DRIVER_OVERRIDE_GET_DRIVER GetDriver;
 EFI_PLATFORM_DRIVER_OVERRIDE_GET_DRIVER_PATH GetDriverPath;
 EFI_PLATFORM_DRIVER_OVERRIDE_DRIVER_LOADED DriverLoaded;
} EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL;

Parameters
GetDriver Retrieves the image handle of a platform override driver for a

controller in the system. See the GetDriver() function
description.

GetDriverPath Retrieves the device path of a platform override driver for a
controller in the system. See the GetDriverPath() function
description.

DriverLoaded This function is used after a driver has been loaded using a device
path returned by GetDriverPath(). This function associates
a device path to an image handle, so the image handle can be
returned the next time that GetDriver() is called for the
same controller. See the DriverLoaded() function
description.

Description
The EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL is used by the EFI boot service
EFI_BOOT_SERVICES.ConnectController() to determine if there is a platform specific
Version 2.5 April, 2015 389

Unified Extensible Firmware Interface Specification
driver override for a controller that is about to be started. The bus drivers in a platform will use a bus
defined matching algorithm for matching drivers to controllers. This protocol allows the platform to
override the bus driver's default driver matching algorithm. This protocol can be used to specify the
drivers for on-board devices whose drivers may be in a system ROM not directly associated with the
on-board controller, or it can even be used to manage the matching of drivers and controllers in add-
in cards. This can be very useful if there are two adapters that are identical except for the revision of
the driver in the adapter's ROM. This protocol, along with a platform configuration utility, could
specify which of the two drivers to use for each of the adapters.

The drivers that this protocol returns can be either in the form of an image handle or a device path.
EFI_BOOT_SERVICES.ConnectController() can only use image handles, so
ConnectController() is required to use the GetDriver() service. A different component,
such as the Boot Manager, will have to use the GetDriverPath() service to retrieve the list of
drivers that need to be loaded from I/O devices. Once a driver has been loaded and started, this same
component can use the DriverLoaded() service to associate the device path of a driver with the
image handle of the loaded driver. Once this association has been established, the image handle can
then be returned by the GetDriver() service the next time it is called by
ConnectController().
390 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriver()

Summary
Retrieves the image handle of the platform override driver for a controller in the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PLATFORM_DRIVER_OVERRIDE_GET_DRIVER) (
 IN EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN OUT EFI_HANDLE *DriverImageHandle
);

Parameters
This A pointer to the

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL instance.

ControllerHandle The device handle of the controller to check if a driver override
exists.

DriverImageHandle On input, a pointer to the previous driver image handle returned
by GetDriver(). On output, a pointer to the next driver image
handle. Passing in a NULL, will return the first driver image
handle for ControllerHandle.

Description
This function is used to retrieve a driver image handle that is selected in a platform specific manner.
The first driver image handle is retrieved by passing in a DriverImageHandle value of NULL.
This will cause the first driver image handle to be returned in DriverImageHandle. On each
successive call, the previous value of DriverImageHandle must be passed in. If a call to this
function returns a valid driver image handle, then EFI_SUCCESS is returned. This process is
repeated until EFI_NOT_FOUND is returned. If a DriverImageHandle is passed in that was
not returned on a prior call to this function, then EFI_INVALID_PARAMETER is returned. If
ControllerHandle isNULL, then EFI_INVALID_PARAMETER is returned. The first driver
image handle has the highest precedence, and the last driver image handle has the lowest
precedence. This ordered list of driver image handles is used by the boot service
EFI_BOOT_SERVICES.ConnectController() to search for the best driver for a controller.

Status Codes Returned

EFI_SUCCESS The driver override for ControllerHandle was returned in

DriverImageHandle.

EFI_NOT_FOUND A driver override for ControllerHandle was not found.

EFI_INVALID_PARAMETER The handle specified by ControllerHandle is not a valid

handle.
Version 2.5 April, 2015 391

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER DriverImageHandle is not a handle that was returned on a

previous call to GetDriver().
392 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriverPath()

Summary
Retrieves the device path of the platform override driver for a controller in the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PLATFORM_DRIVER_OVERRIDE_GET_DRIVER_PATH) (
 IN EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN OUT EFI_DEVICE_PATH_PROTOCOL **DriverImagePath
);

Parameters
This A pointer to the

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL instance.

ControllerHandle The device handle of the controller to check if a driver override
exists.

DriverImagePath On input, a pointer to the previous driver device path returned by
GetDriverPath(). On output, a pointer to the next driver
device path. Passing in a pointer to NULL, will return the first
driver device path for ControllerHandle.

Description
This function is used to retrieve a driver device path that is selected in a platform specific manner.
The first driver device path is retrieved by passing in a DriverImagePath value that is a pointer
to NULL. This will cause the first driver device path to be returned in DriverImagePath. On
each successive call, the previous value of DriverImagePath must be passed in. If a call to this
function returns a valid driver device path, then EFI_SUCCESS is returned. This process is
repeated until EFI_NOT_FOUND is returned. If a DriverImagePath is passed in that was not
returned on a prior call to this function, then EFI_INVALID_PARAMETER is returned. If
ControllerHandle is NULL, then EFI_INVALID_PARAMETER is returned. The first driver
device path has the highest precedence, and the last driver device path has the lowest precedence.
This ordered list of driver device paths is used by a platform specific component, such as the EFI
Boot Manager, to load and start the platform override drivers by using the EFI boot services
EFI_BOOT_SERVICES.LoadImage() and EFI_BOOT_SERVICES.StartImage(). Each
time one of these drivers is loaded and started, the DriverLoaded() service is called.

Status Codes Returned

EFI_SUCCESS The driver override for ControllerHandle was returned in

DriverImagePath.

EFI_UNSUPPORTED The operation is not supported.

EFI_NOT_FOUND A driver override for ControllerHandle was not found.
Version 2.5 April, 2015 393

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER The handle specified by ControllerHandle is not a valid

handle.

EFI_INVALID_PARAMETER DriverImagePath is not a device path that was returned on a

previous call to GetDriverPath().
394 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.DriverLoaded()

Summary
Used to associate a driver image handle with a device path that was returned on a prior call to the
GetDriverPath() service. This driver image handle will then be available through the
GetDriver() service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PLATFORM_DRIVER_OVERRIDE_DRIVER_LOADED) (
 IN EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_DEVICE_PATH_PROTOCOL *DriverImagePath,
 IN EFI_HANDLE DriverImageHandle
);

Parameters
This A pointer to the

EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL instance.

ControllerHandle The device handle of a controller. This must match the controller
handle that was used in a prior call to GetDriver() to retrieve
DriverImagePath.

DriverImagePath A pointer to the driver device path that was returned in a prior call
to GetDriverPath().

DriverImageHandle The driver image handle that was returned by
EFI_BOOT_SERVICES.LoadImage() when the driver
specified by DriverImagePath was loaded into memory.

Description
This function associates the image handle specified by DriverImageHandle with the device
path of a driver specified by DriverImagePath. DriverImagePath must be a value that was
returned on a prior call to GetDriverPath() for the controller specified by
ControllerHandle. Once this association has been established, then the service
GetDriver() must return DriverImageHandle as one of the override drivers for the
controller specified by ControllerHandle.

If the association between the image handle specified by DriverImageHandle and the device
path specified by DriverImagePath is established for the controller specified by
ControllerHandle, then EFI_SUCCESS is returned. If ControllerHandle is NULL, or
DriverImagePath is not a valid device path, or DriverImageHandle is NULL, then
EFI_INVALID_PARAMETER is returned. If DriverImagePath is not a device path that was
returned on a prior call to GetDriver() for the controller specified by ControllerHandle,
then EFI_NOT_FOUND is returned.
Version 2.5 April, 2015 395

Unified Extensible Firmware Interface Specification
Status Codes Returned

10.3 EFI Bus Specific Driver Override Protocol
This section provides a detailed description of the
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL. Bus drivers that have a bus specific
algorithm for matching drivers to controllers are required to produce this protocol for each
controller. For example, a PCI Bus Driver will produce an instance of this protocol for every PCI
controller that has a PCI option ROM that contains one or more UEFI drivers. The protocol instance
is attached to the handle of the PCI controller.

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

Summary
This protocol matches one or more drivers to a controller. This protocol is produced by a bus driver,
and it is installed on the child handles of buses that require a bus specific algorithm for matching
drivers to controllers. This protocol is used by the
EFI_BOOT_SERVICES.ConnectController() boot service to select the best driver for a
controller. All of the drivers returned by this protocol have a higher precedence than drivers found in
the general EFI Driver Binding search algorithm, but a lower precedence than those drivers returned
by the EFI Platform Driver Override Protocol. If more than one driver image handle is returned by
this protocol, then the drivers image handles are returned in order from highest precedence to lowest
precedence.

EFI_SUCCESS The association between DriverImagePath and

DriverImageHandle was established for the controller

specified by ControllerHandle.

EFI_UNSUPPORTED The operation is not supported.

EFI_NOT_FOUND DriverImagePath is not a device path that was returned on a

prior call to GetDriverPath() for the controller specified by

ControllerHandle.

EFI_INVALID_PARAMETER ControllerHandle is not a valid device handle.

EFI_INVALID_PARAMETER DriverImagePath is not a valid device path.

EFI_INVALID_PARAMETER DriverImageHandle is not a valid image handle.
396 April, 2015 Version 2.5

Protocols — UEFI Driver Model
GUID
#define EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL_GUID \
{0x3bc1b285,0x8a15,0x4a82,\
 {0xaa,0xbf,0x4d,0x7d,0x13,0xfb,0x32,0x65}}

Protocol Interface Structure
typedef struct _EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL {
 EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_GET_DRIVER GetDriver;
} EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL;

Parameters
GetDriver Uses a bus specific algorithm to retrieve a driver image handle for

a controller. See the GetDriver() function description.

Description
The EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL provides a mechanism for bus
drivers to override the default driver selection performed by the ConnectController() boot
service. This protocol is attached to the handle of a child device after the child handle is created by
the bus driver. The service in this protocol can return a bus specific override driver to
ConnectController(). ConnectController() must call this service until all of the bus
specific override drivers have been retrieved. ConnectController() uses this information
along with the EFI Platform Driver Override Protocol and all of the EFI Driver Binding protocol
instances to select the best drivers for a controller. Since a controller can be managed by more than
one driver, this protocol can return more than one bus specific override driver.
Version 2.5 April, 2015 397

Unified Extensible Firmware Interface Specification
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL.GetDriver()

Summary
Uses a bus specific algorithm to retrieve a driver image handle for a controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_GET_DRIVER) (
 IN EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL*This,
 IN OUT EFI_HANDLE *DriverImageHandle
);

Parameters
This A pointer to the

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL
instance.

DriverImageHandle On input, a pointer to the previous driver image handle returned
by GetDriver(). On output, a pointer to the next driver
image handle. Passing in a NULL, will return the first driver
image handle.

Description
This function is used to retrieve a driver image handle that is selected in a bus specific manner. The
first driver image handle is retrieved by passing in a DriverImageHandle value of NULL. This
will cause the first driver image handle to be returned in DriverImageHandle. On each
successive call, the previous value of DriverImageHandle must be passed in. If a call to this
function returns a valid driver image handle, then EFI_SUCCESS is returned. This process is
repeated until EFI_NOT_FOUND is returned. If a DriverImageHandle is passed in that was
not returned on a prior call to this function, then EFI_INVALID_PARAMETER is returned. The
first driver image handle has the highest precedence, and the last driver image handle has the lowest
precedence. This ordered list of driver image handles is used by the boot service
EFI_BOOT_SERVICES.ConnectController() to search for the best driver for a controller.
398 April, 2015 Version 2.5

Protocols — UEFI Driver Model
Status Codes Returned

10.4 EFI Driver Diagnostics Protocol
This section provides a detailed description of the EFI_DRIVER_DIAGNOSTICS2_PROTOCOL.
This is a protocol that allows a UEFI driver to perform diagnostics on a controller that the driver is
managing.

EFI_DRIVER_DIAGNOSTICS2_PROTOCOL

Summary
Used to perform diagnostics on a controller that a UEFI driver is managing.

GUID
#define EFI_DRIVER_DIAGNOSTICS_PROTOCOL_GUID \
{0x4d330321,0x025f,0x4aac,\
 {0x90,0xd8,0x5e,0xd9,0x00,0x17,0x3b,0x63}}

Protocol Interface Structure
typedef struct _EFI_DRIVER_DIAGNOSTICS2_PROTOCOL {
 EFI_DRIVER_DIAGNOSTICS2_RUN_DIAGNOSTICS RunDiagnostics;
 CHAR8 *SupportedLanguages;
} EFI_DRIVER_DIAGNOSTICS2_PROTOCOL;

Parameters
RunDiagnostics Runs diagnostics on a controller. See the RunDiagnostics()

function description.

SupportedLanguages A Null-terminated ASCII string that contains one or more
supported language codes. This is the list of language codes that
this protocol supports. The number of languages supported by a
driver is up to the driver writer. SupportedLanguages is
specified in RFC 4646 format. See Appendix M for the format of
language codes and language code arrays.

Description
The EFI_DRIVER_DIAGNOSTICS2_PROTOCOL is used by a platform management utility to
allow the user to run driver specific diagnostics on a controller. This protocol is optionally attached
to the image handle of driver in the driver's entry point. The platform management utility can collect

EFI_SUCCESS A bus specific override driver is returned in

DriverImageHandle.

EFI_NOT_FOUND The end of the list of override drivers was reached. A bus specific

override driver is not returned in DriverImageHandle.

EFI_INVALID_PARAMETER DriverImageHandle is not a handle that was returned on a

previous call to GetDriver().
Version 2.5 April, 2015 399

Unified Extensible Firmware Interface Specification
all the EFI_DRIVER_DIAGNOSTICS2_PROTOCOL instances present in the system, and present
the user with a menu of the controllers that have diagnostic capabilities. This platform management
utility is invoked through a platform component such as the EFI Boot Manager.
400 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_DRIVER_DIAGNOSTICS2_PROTOCOL.RunDiagnostics()

Summary
Runs diagnostics on a controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_DIAGNOSTICS2_RUN_DIAGNOSTICS) (
 IN EFI_DRIVER_DIAGNOSTICS2_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE ChildHandle OPTIONAL,
 IN EFI_DRIVER_DIAGNOSTIC_TYPE DiagnosticType,
 IN CHAR8 *Language,
 OUT EFI_GUID **ErrorType,
 OUT UINTN *BufferSize,
 OUT CHAR16 **Buffer
);

Parameters
This A pointer to the EFI_DRIVER_DIAGNOSTICS2_PROTOCOL

instance.

ControllerHandle The handle of the controller to run diagnostics on.

ChildHandle The handle of the child controller to run diagnostics on. This is
an optional parameter that may be NULL. It will be NULL for
device drivers. It will also be NULL for a bus drivers that attempt
to run diagnostics on the bus controller. It will not be NULL for a
bus driver that attempts to run diagnostics on one of its child
controllers.

DiagnosticType Indicates type of diagnostics to perform on the controller
specified by ControllerHandle and ChildHandle. See
“Related Definitions” for the list of supported types.

Language A pointer to a Null-terminated ASCII string array indicating the
language. This is the language in which the optional error
message should be returned in Buffer, and it must match one of
the languages specified in SupportedLanguages. The number of
languages supported by a driver is up to the driver writer.
Language is specified in RFC 4646 language code format. See
Appendix M for the format of language codes.

Callers of interfaces that require RFC 4646 language codes to
retrieve a Unicode string must use the RFC 4647 algorithm to
lookup the Unicode string with the closest matching RFC 4646
language code.

ErrorType A GUID that defines the format of the data returned in Buffer.

BufferSize The size, in bytes, of the data returned in Buffer.
Version 2.5 April, 2015 401

Unified Extensible Firmware Interface Specification
Buffer A buffer that contains a Null-terminated string plus some
additional data whose format is defined by ErrorType.
Buffer is allocated by this function with
EFI_BOOT_SERVICES.AllocatePool(), and it is the
caller’s responsibility to free it with a call to
EFI_BOOT_SERVICES.FreePool().

Description
This function runs diagnostics on the controller specified by ControllerHandle and
ChildHandle. DiagnoticType specifies the type of diagnostics to perform on the controller
specified by ControllerHandle and ChildHandle. If the driver specified by This does not
support the language specified by Language, then EFI_UNSUPPORTED is returned. If the
controller specified by ControllerHandle and ChildHandle is not supported by the driver
specified by This, then EFI_UNSUPPORTED is returned. If the diagnostics type specified by
DiagnosticType is not supported by this driver, then EFI_UNSUPPORTED is returned. If there
are not enough resources available to complete the diagnostic, then EFI_OUT_OF_RESOURCES is
returned. If the controller specified by ControllerHandle and ChildHandle passes the
diagnostic, then EFI_SUCCESS is returned. Otherwise, EFI_DEVICE_ERROR is returned.

If the language specified by Language is supported by this driver, then status information is
returned in ErrorType, BufferSize, and Buffer. Buffer contains a Null-terminated string
followed by additional data whose format is defined by ErrorType. BufferSize is the size of
Buffer is bytes, and it is the caller's responsibility to call FreePool() on Buffer when the
caller is done with the return data. If there are not enough resources available to return the status
information, then EFI_OUT_OF_RESOURCES is returned.

Related Definitions
//***
// EFI_DRIVER_DIAGNOSTIC_TYPE
//***
typedef enum {
 EfiDriverDiagnosticTypeStandard = 0,
 EfiDriverDiagnosticTypeExtended = 1,
 EfiDriverDiagnosticTypeManufacturing = 2,
 EfiDriverDiagnosticTypeCancel = 3,
 EfiDriverDiagnosticTypeMaximum
} EFI_DRIVER_DIAGNOSTIC_TYPE;

EfiDriverDiagnosticTypeStandard

Performs standard diagnostics on the controller. This diagnostic type is required to be
supported by all implementations of this protocol.

EfiDriverDiagnosticTypeExtended

This is an optional diagnostic type that performs diagnostics on the controller that may
take an extended amount of time to execute.
402 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EfiDriverDiagnosticTypeManufacturing

This is an optional diagnostic type that performs diagnostics on the controller that are
suitable for a manufacturing and test environment.

EfiDriverDiagnosticTypeCancel

This is an optional diagnostic type that would only be used in the situation where an
EFI_NOT_READY had been returned by a previous call to RunDiagnostics()
and there is a desire to cancel the current running diagnostics operation.

Status Codes Returned

10.5 EFI Component Name Protocol
This section provides a detailed description of the EFI_COMPONENT_NAME2_PROTOCOL. This
is a protocol that allows an driver to provide a user readable name of a UEFI Driver, and a user
readable name for each of the controllers that the driver is managing. This protocol is used by

EFI_SUCCESS The controller specified by ControllerHandle and

ChildHandle passed the diagnostic.

EFI_ACCESS_DENIED The request for initiating diagnostics was unable to be completed
due to some underlying hardware or software state.

EFI_INVALID_PARAMETER ControllerHandle is NULL.

EFI_INVALID_PARAMETER The driver specified by This is not a device driver, and

ChildHandle is not NULL.

EFI_INVALID_PARAMETER Language is NULL.

EFI_INVALID_PARAMETER ErrorType is NULL.

EFI_INVALID_PARAMETER BufferSize is NULL.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED The driver specified by This does not support running diagnostics

for the controller specified by ControllerHandle and

ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the type of

diagnostic specified by DiagnosticType.

EFI_UNSUPPORTED The driver specified by This does not support the language

specified by Language.

EFI_OUT_OF_RESOURCES There are not enough resources available to complete the
diagnostics.

EFI_OUT_OF_RESOURCES There are not enough resources available to return the status

information in ErrorType, BufferSize, and Buffer.

EFI_DEVICE_ERROR The controller specified by ControllerHandle and

ChildHandle did not pass the diagnostic.

EFI_NOT_READY The diagnostic operation was started, but not yet completed.
Version 2.5 April, 2015 403

Unified Extensible Firmware Interface Specification
platform management utilities that wish to display names of components. These names may include
the names of expansion slots, external connectors, embedded devices, and add-in devices.

EFI_COMPONENT_NAME2_PROTOCOL

Summary
Used to retrieve user readable names of drivers and controllers managed by UEFI Drivers.

GUID
#define EFI_COMPONENT_NAME2_PROTOCOL_GUID \
{0x6a7a5cff, 0xe8d9, 0x4f70,\
 {0xba, 0xda, 0x75, 0xab, 0x30,0x25, 0xce, 0x14}}

Protocol Interface Structure
typedef struct _EFI_COMPONENT_NAME2_PROTOCOL {
 EFI_COMPONENT_NAME_GET_DRIVER_NAME GetDriverName;
 EFI_COMPONENT_NAME_GET_CONTROLLER_NAME GetControllerName;
 CHAR8 *SupportedLanguages;
} EFI_COMPONENT_NAME2_PROTOCOL;

Parameters
GetDriverName Retrieves a string that is the user readable name of the driver. See

the GetDriverName() function description.

GetControllerName Retrieves a string that is the user readable name of a controller
that is being managed by a driver. See the
GetControllerName() function description.

SupportedLanguages A Null-terminated ASCII string array that contains one or more
supported language codes. This is the list of language codes that
this protocol supports. The number of languages supported by a
driver is up to the driver writer. SupportedLanguages is
specified in RFC 4646 format. See Appendix M for the format of
language codes and language code arrays.

Description
The EFI_COMPONENT_NAME2_PROTOCOL is used retrieve a driver's user readable name and the
names of all the controllers that a driver is managing from the driver's point of view. Each of these
names is returned as a Null-terminated string. The caller is required to specify the language in which
the string is returned, and this language must be present in the list of languages that this protocol
supports specified by SupportedLanguages.
404 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_COMPONENT_NAME2_PROTOCOL.GetDriverName()

Summary
Retrieves a string that is the user readable name of the driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_COMPONENT_NAME_GET_DRIVER_NAME) (
 IN EFI_COMPONENT_NAME2_PROTOCOL *This,
 IN CHAR8 *Language,
 OUT CHAR16 **DriverName
);

Parameters
This A pointer to the EFI_COMPONENT_NAME2_PROTOCOL

instance.

Language A pointer to a Null-terminated ASCII string array indicating the
language. This is the language of the driver name that the caller
is requesting, and it must match one of the languages specified in
SupportedLanguages. The number of languages supported by a
driver is up to the driver writer. Language is specified in RFC
4646 language code format. See Appendix M for the format of
language codes.

Callers of interfaces that require RFC 4646 language codes to
retrieve a Unicode string must use the RFC 4647 algorithm to
lookup the Unicode string with the closest matching RFC 4646
language code.

DriverName A pointer to the string to return. This string is the name of the
driver specified by This in the language specified by
Language.

Description
This function retrieves the user readable name of a driver in the form of a string. If the driver
specified by This has a user readable name in the language specified by Language, then a pointer
to the driver name is returned in DriverName, and EFI_SUCCESS is returned. If the driver
specified by This does not support the language specified by Language, then
EFI_UNSUPPORTED is returned.

Status Codes Returned

EFI_SUCCESS The string for the user readable name in the language specified by

Language for the driver specified by This was returned in

DriverName.

EFI_INVALID_PARAMETER Language is NULL.
Version 2.5 April, 2015 405

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER DriverName is NULL.

EFI_UNSUPPORTED The driver specified by This does not support the language

specified by Language.
406 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_COMPONENT_NAME2_PROTOCOL.GetControllerName()

Summary
Retrieves a string that is the user readable name of the controller that is being managed by a driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_COMPONENT_NAME_GET_CONTROLLER_NAME) (
 IN EFI_COMPONENT_NAME2_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE ChildHandle OPTIONAL,
 IN CHAR8 *Language,
 OUT CHAR16 **ControllerName
);

Parameters
This A pointer to the EFI_COMPONENT_NAME2_PROTOCOL

instance.

ControllerHandle The handle of a controller that the driver specified by This is
managing. This handle specifies the controller whose name is to
be returned.

ChildHandle The handle of the child controller to retrieve the name of. This is
an optional parameter that may be NULL. It will be NULL for
device drivers. It will also be NULL for bus drivers that attempt
to retrieve the name of the bus controller. It will not be NULL for
a bus driver that attempts to retrieve the name of a child
controller.

Language A pointer to a Null- terminated ASCII string array indicating the
language. This is the language of the controller name that the
caller is requesting, and it must match one of the languages
specified in SupportedLanguages. The number of languages
supported by a driver is up to the driver writer. Language is
specified in RFC 4646 language code format. See Appendix M
for the format of language codes.

Callers of interfaces that require RFC 4646 language codes to
retrieve a Unicode string must use the RFC 4647 algorithm to
lookup the Unicode string with the closest matching RFC 4646
language code.

ControllerName A pointer to the string to return. This string is the name of the
controller specified by ControllerHandle and
ChildHandle in the language specified by Language from
the point of view of the driver specified by This.
Version 2.5 April, 2015 407

Unified Extensible Firmware Interface Specification
Description
This function retrieves the user readable name of the controller specified by ControllerHandle
and ChildHandle in the form of a string. If the driver specified by This has a user readable
name in the language specified by Language, then a pointer to the controller name is returned in
ControllerName, and EFI_SUCCESS is returned.

If the driver specified by This is not currently managing the controller specified by
ControllerHandle and ChildHandle, then EFI_UNSUPPORTED is returned.

If the driver specified by This does not support the language specified by Language, then
EFI_UNSUPPORTED is returned.

Status Codes Returned

10.6 EFI Service Binding Protocol
This section provides a detailed description of the EFI_SERVICE_BINDING_PROTOCOL. This
protocol may be produced only by drivers that follow the UEFI Driver Model. Use this protocol with
the EFI_DRIVER_BINDING_PROTOCOL to produce a set of protocols related to a device. The
EFI_DRIVER_BINDING_PROTOCOL supports simple layering of protocols on a device, but it
does not support more complex relationships such as trees or graphs. The
EFI_SERVICE_BINDING_PROTOCOL provides a member function to create a child handle with
a new protocol installed on it, and another member function to destroy a previously created child
handle. These member functions apply equally to all drivers.

EFI_SUCCESS The string for the user readable name specified by This,
ControllerHandle, ChildHandle, and Language was
returned in ControllerName.

EFI_INVALID_PARAMETER ControllerHandle is NULL.

EFI_INVALID_PARAMETER The driver specified by This is not a device driver, and

ChildHandle is not NULL.

EFI_INVALID_PARAMETER Language is NULL.

EFI_INVALID_PARAMETER ControllerName is NULL.

EFI_UNSUPPORTED The driver specified by This is a device driver and

ChildHandle is not NULL.

EFI_UNSUPPORTED The driver specified by This is not currently managing the

controller specified by ControllerHandle and

ChildHandle.

EFI_UNSUPPORTED The driver specified by This does not support the language

specified by Language.
408 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_SERVICE_BINDING_PROTOCOL

Summary
Provides services that are required to create and destroy child handles that support a given set of
protocols.

GUID
This protocol does not have its own GUID. Instead, drivers for other protocols will define a GUID
that shares the same protocol interface as the EFI_SERVICE_BINDING_PROTOCOL. The
protocols defined in this document that have this property include the following:

• EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL

• EFI_ARP_SERVICE_BINDING_PROTOCOL

• EFI_EAP_SERVICE_BINDING_PROTOCOL

• EFI_IP4_SERVICE_BINDING_PROTOCOL

• EFI_TCP4_SERVICE_BINDING_PROTOCOL

• EFI_UDP4_SERVICE_BINDING_PROTOCOL

• EFI_MTFTP4_SERVICE_BINDING_PROTOCOL

• EFI_DHCP4_SERVICE_BINDING_PROTOCOL

Protocol Interface Structure
typedef struct _EFI_SERVICE_BINDING_PROTOCOL {
 EFI_SERVICE_BINDING_CREATE_CHILD CreateChild;
 EFI_SERVICE_BINDING_DESTROY_CHILD DestroyChild;
} EFI_SERVICE_BINDING_PROTOCOL;

Parameters
CreateChild Creates a child handle and installs a protocol. See the

CreateChild() function description.

DestroyChild Destroys a child handle with a protocol installed on it. See the
DestroyChild() function description.

Description
The EFI_SERVICE_BINDING_PROTOCOL provides member functions to create and destroy
child handles. A driver is responsible for adding protocols to the child handle in CreateChild()
and removing protocols in DestroyChild(). It is also required that the CreateChild()
function opens the parent protocol BY_CHILD_CONTROLLER to establish the parent-child
relationship, and closes the protocol in DestroyChild().The pseudo code for
CreateChild() and DestroyChild() is provided to specify the required behavior, not to
specify the required implementation. Each consumer of a software protocol is responsible for calling
CreateChild() when it requires the protocol and calling DestroyChild() when it is
finished with that protocol.
Version 2.5 April, 2015 409

Unified Extensible Firmware Interface Specification
EFI_SERVICE_BINDING_PROTOCOL.CreateChild()

Summary
Creates a child handle and installs a protocol.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SERVICE_BINDING_CREATE_CHILD) (
 IN EFI_SERVICE_BINDING_PROTOCOL *This,
 IN OUT EFI_HANDLE *ChildHandle
);

Parameters
This Pointer to the EFI_SERVICE_BINDING_PROTOCOL instance.

ChildHandle Pointer to the handle of the child to create. If it is a pointer to
NULL, then a new handle is created. If it is a pointer to an existing
UEFI handle, then the protocol is added to the existing UEFI
handle.

Description
The CreateChild() function installs a protocol on ChildHandle. If ChildHandle is a
pointer to NULL, then a new handle is created and returned in ChildHandle. If ChildHandle is
not a pointer to NULL, then the protocol installs on the existing ChildHandle.

Status Codes Returned

Examples
The following example shows how a consumer of the EFI ARP Protocol would use the
CreateChild() function of the EFI_SERVICE_BINDING_PROTOCOL to create a child
handle with the EFI ARP Protocol installed on that handle.

EFI_SUCCESS The protocol was added to ChildHandle.

EFI_INVALID_PARAMETER ChildHandle is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources available to create the child.

Other The child handle was not created.
410 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_HANDLE ControllerHandle;
EFI_HANDLE DriverBindingHandle;
EFI_HANDLE ChildHandle;
EFI_ARP_SERVICE_BINDING_PROTOCOL *ArpSb;
EFI_ARP_PROTOCOL *Arp;

//
// Get the ArpServiceBinding Protocol
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiArpServiceBindingProtocolGuid,
 (VOID **)&ArpSb,
 DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
 return Status;
}
//
// Initialize a ChildHandle
//
ChildHandle = NULL;
//
// Create a ChildHandle with the Arp Protocol
//
Status = ArpSb->CreateChild (ArpSb, &ChildHandle);
if (EFI_ERROR (Status)) {
 goto ErrorExit;
}

//
// Retrieve the Arp Protocol from ChildHandle
//
Status = gBS->OpenProtocol (
 ChildHandle,
 &gEfiArpProtocolGuid,
 (VOID **)&Arp,
 DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
 goto ErrorExit;
}

Version 2.5 April, 2015 411

Unified Extensible Firmware Interface Specification
Pseudo Code
The following is the general algorithm for implementing the CreateChild() function:

1. Allocate and initialize any data structures that are required to produce the requested protocol on
a child handle. If the allocation fails, then return EFI_OUT_OF_RESOURCES.

2. Install the requested protocol onto ChildHandle. If ChildHandle is a pointer to NULL,
then the requested protocol installs onto a new handle.

3. Open the parent protocol BY_CHILD_CONTROLLER to establish the parent-child relationship.
If the parent protocol cannot be opened, then destroy the ChildHandle created in step 2, free
the data structures allocated in step 1, and return an error.

4. Increment the number of children created by CreateChild().

5. Return EFI_SUCCESS.

Listed below is sample code of the CreateChild() function of the EFI ARP Protocol driver.
This driver looks up its private context data structure from the instance of the
EFI_SERVICE_BINDING_PROTOCOL produced on the handle for the network controller. After
retrieving the private context data structure, the driver can use its contents to build the private
context data structure for the child being created. The EFI ARP Protocol driver then installs the
EFI_ARP_PROTOCOL onto ChildHandle.
EFI_STATUS
EFIAPI
ArpServiceBindingCreateChild (
 IN EFI_SERVICE_BINDING_PROTOCOL *This,
 IN EFI_HANDLE *ChildHandle
)
{
 EFI_STATUS Status;
 ARP_PRIVATE_DATA *Private;
 ARP_PRIVATE_DATA *PrivateChild;

 //
 // Retrieve the Private Context Data Structure
 //
 Private = ARP_PRIVATE_DATA_FROM_SERVICE_BINDING_THIS (This);

 //
 // Create a new child
 //
 PrivateChild = EfiLibAllocatePool (sizeof (ARP_PRIVATE_DATA));
 if (PrivateChild == NULL) {
 return EFI_OUT_OF_RESOURCES;
 }
412 April, 2015 Version 2.5

Protocols — UEFI Driver Model
 //
 // Copy Private Context Data Structure
 //
 gBS->CopyMem (PrivateChild, Private, sizeof (ARP_PRIVATE_DATA));

 //
 // Install Arp onto ChildHandle
 //
 Status = gBS->InstallMultipleProtocolInterfaces (
 ChildHandle,
 &gEfiArpProtocolGuid, &PrivateChild->Arp,
 NULL
);
 if (EFI_ERROR (Status)) {
 gBS->FreePool (PrivateChild);
 return Status;
 }

 Status = gBS->OpenProtocol (
 Private->ChildHandle,
 &gEfiManagedNetworkProtocolGuid,
 (VOID **)&PrivateChild->ManagedNetwork,
 gArpDriverBinding.DriverBindingHandle,
 *ChildHandle,
 EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER
);
 if (EFI_ERROR (Status)) {
 ArpSB->DestroyChild (This, ChildHandle);
 return Status;
 }

 //
 // Increase number of children created
 //
 Private->NumberCreated++;

 return EFI_SUCCESS;
}

Version 2.5 April, 2015 413

Unified Extensible Firmware Interface Specification
EFI_SERVICE_BINDING_PROTOCOL.DestroyChild()

Summary
Destroys a child handle with a protocol installed on it.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SERVICE_BINDING_DESTROY_CHILD) (
IN EFI_SERVICE_BINDING_PROTOCOL*This,
IN EFI_HANDLE ChildHandle
);

Parameters
This Pointer to the EFI_SERVICE_BINDING_PROTOCOL instance.

ChildHandle Handle of the child to destroy.

Description
The DestroyChild() function does the opposite of CreateChild(). It removes a protocol
that was installed by CreateChild() from ChildHandle. If the removed protocol is the last
protocol on ChildHandle, then ChildHandle is destroyed.

Status Codes Returned

Examples
The following example shows how a consumer of the EFI ARP Protocol would use the
DestroyChild() function of the EFI_SERVICE_BINDING_PROTOCOL to destroy a child
handle with the EFI ARP Protocol installed on that handle.

EFI_SUCCESS The protocol was removed from ChildHandle.

EFI_UNSUPPORTED ChildHandle does not support the protocol that is being

removed.

EFI_INVALID_PARAMETER ChildHandle is not a valid UEFI handle.

EFI_ACCESS_DENIED The protocol could not be removed from the ChildHandle

because its services are being used.

Other The child handle was not destroyed.
414 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_HANDLE ControllerHandle;
EFI_HANDLE DriverBindingHandle;
EFI_HANDLE ChildHandle;
EFI_ARP_SERVICE_BINDING_PROTOCOL *Arp;

//
// Get the Arp Service Binding Protocol
//
Status = gBS->OpenProtocol (
 ControllerHandle,
 &gEfiArpServiceBindingProtocolGuid,
 (VOID **)&ArpSb,
 DriverBindingHandle,
 ControllerHandle,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
 return Status;
}

//
// Destroy the ChildHandle with the Arp Protocol
//
Status = ArpSb->DestroyChild (ArpSb, ChildHandle);
if (EFI_ERROR (Status)) {
 return Status;
}

Pseudo Code
The following is the general algorithm for implementing the DestroyChild() function:

1. Retrieve the protocol from ChildHandle. If this retrieval fails, then return EFI_SUCCESS
because the child has already been destroyed.

2. If this call is a recursive call to destroy the same child, then return EFI_SUCCESS.

3. Close the parent protocol with CloseProtocol().

4. Set a flag to detect a recursive call to destroy the same child.

5. Remove the protocol from ChildHandle. If this removal fails, then reopen the parent protocol
and clear the flag to detect a recursive call to destroy the same child.

6. Free any data structures that allocated in CreateChild().

7. Decrement the number of children that created with CreateChild().

8. Return EFI_SUCCESS.

Listed below is sample code of the DestroyChild() function of the EFI ARP Protocol driver.
This driver looks up its private context data structure from the instance of the
EFI_SERVICE_BINDING_PROTOCOL produced on the handle for the network controller. The
driver attempts to retrieve the EFI_ARP_PROTOCOL from ChildHandle. If that fails, then
EFI_SUCCESS is returned. The EFI_ARP_PROTOCOL is then used to retrieve the private context
Version 2.5 April, 2015 415

Unified Extensible Firmware Interface Specification
data structure for the child. The private context data stores the flag that detects if
DestroyChild() is being called recursively. If a recursion is detected, then EFI_SUCCESS is
returned. Otherwise, the EFI_ARP_PROTOCOL is removed from ChildHandle, the number of
children are decremented, and EFI_SUCESS is returned.
416 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_STATUS
EFIAPI
ArpServiceBindingDestroyChild (
 IN EFI_SERVICE_BINDING_PROTOCOL *This,
 IN EFI_HANDLE ChildHandle
)
{
 EFI_STATUS Status;
 EFI_ARP_PROTOCOL *Arp;
 ARP_PRIVATE_DATA *Private;
 ARP_PRIVATE_DATA *PrivateChild;

 //
 // Retrieve the Private Context Data Structure
 //
 Private = ARP_PRIVATE_DATA_FROM_SERVICE_BINDING_THIS (This);

 //
 // Retrieve Arp Protocol from ChildHandle
 //
 Status = gBS->OpenProtocol (
 ChildHandle,
 &gEfiArpProtocolGuid,
 (VOID **)&Arp,
 gArpDriverBinding.DriverBindingHandle,
 ChildHandle,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
 if (EFI_ERROR (Status)) {
 return EFI_SUCCESS;
 }

 //
 // Retrieve Private Context Data Structure
 //
 PrivateChild = ARP_PRIVATE_DATA_FROM_ARP_THIS (Arp);
 if (PrivateChild->Destroy) {
 return EFI_SUCCESS;
 }

 //
 // Close the ManagedNetwork Protocol
 //
 gBS->CloseProtocol (
 Private->ChildHandle,
 &gEfiManagedNetworkProtocolGuid,
 gArpDriverBinding.DriverBindingHandle,
Version 2.5 April, 2015 417

Unified Extensible Firmware Interface Specification
 ChildHandle
);

 PrivateChild->Destroy = TRUE;

 //
 // Uninstall Arp from ChildHandle
 //
 Status = gBS->UninstallMultipleProtocolInterfaces (
 ChildHandle,
 &gEfiArpProtocolGuid, &PrivateChild->Arp,
 NULL
);
 if (EFI_ERROR (Status)) {
 //
 // Uninstall failed, so reopen the parent Arp Protocol and
 // return an error
 //
 PrivateChild->Destroy = FALSE;
 gBS->OpenProtocol (
 Private->ChildHandle,
 &gEfiManagedNetworkProtocolGuid,
 (VOID **)&PrivateChild->ManagedNetwork,
 gArpDriverBinding.DriverBindingHandle,
 ChildHandle,
 EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER
);
 return Status;
 }

 //
 // Free Private Context Data Structure
 //
 gBS->FreePool (PrivateChild);

 //
 // Decrease number of children created
 //
 Private->NumberCreated--;

 return EFI_SUCCESS;

10.7 EFI Platform to Driver Configuration Protocol
This section provides a detailed description of the
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL. This is a protocol that is
418 April, 2015 Version 2.5

Protocols — UEFI Driver Model
optionally produced by the platform and optionally consumed by a UEFI Driver in its Start()
function. This protocol allows the driver to receive configuration information as part of being
started.

EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL

Summary
Used to retrieve configuration information for a device that a UEFI driver is about to start.

GUID
#define EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL_GUID \
 { 0x642cd590, 0x8059, 0x4c0a,\
 { 0xa9, 0x58, 0xc5, 0xec, 0x07, 0xd2, 0x3c, 0x4b } }

Protocol Interface Structure
typedef struct _EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL {
 EFI_PLATFORM_TO_DRIVER_CONFIGURATION_QUERY Query;
 EFI_PLATFORM_TO_DRIVER_CONFIGURATION_RESPONSE Response;
} EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL;

Parameters
Query Called by the UEFI Driver Start() function to get

configuration information from the platform.

Response Called by the UEFI Driver Start() function to let the platform
know how UEFI driver processed the data return from Query.

Description
The EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL is used by the UEFI driver
to query the platform for configuration information. The UEFI driver calls Query() multiple times
to get configuration information from the platform. For every call to Query() there must be a
matching call to Response() so the UEFI driver can inform the platform how it used the
information passed in from Query().

It’s legal for a UEFI driver to use Response() to inform the platform it does not understand the
data returned via Query() and thus no action was taken.
Version 2.5 April, 2015 419

Unified Extensible Firmware Interface Specification
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Query()

Summary
Allows the UEFI driver to query the platform for configuration information needed to complete the
drivers Start() operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PLATFORM_TO_DRIVER_CONFIGURATION_QUERY) (
 IN EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE ChildHandle OPTIONAL,
 IN UINTN *Instance,
 OUT EFI_GUID **ParameterTypeGuid,
 OUT VOID **ParameterBlock,
 OUT UINTN *ParameterBlockSize
);

Parameters
This A pointer to the

EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOC
OL instance.

ControllerHandle The handle the platform will return configuration information
about.

ChildHandle The handle of the child controller to return information on. This
is an optional parameter that may be NULL. It will be NULL for
device drivers, and for bus drivers that attempt to get options for
the bus controller. It will not be NULL for a bus driver that
attempts to get options for one of its child controllers.

Instance Pointer to the Instance value. Zero means return the first query
data. The caller should increment this value by one each time to
retrieve successive data.

ParameterTypeGuid An EFI_GUID that defines the contents of ParameterBlock.
UEFI drivers must use the ParameterTypeGuid to
determine how to parse the ParameterBlock.The caller
should not attempt to free ParameterTypeGuid.

ParameterBlock The platform returns a pointer to the ParameterBlock
structure which contains details about the configuration
parameters specific to the ParameterTypeGuid. This
structure is defined based on the protocol and may be different for
different protocols. UEFI driver decodes this structure and its
contents based on ParameterTypeGuid.
ParameterBlock is allocated by the platform and the
420 April, 2015 Version 2.5

Protocols — UEFI Driver Model
platform is responsible for freeing the ParameterBlock after
Response is called.

ParameterBlockSize The platform returns the size of the ParameterBlock in bytes.

Description
The UEFI driver must call Query early in the Start() function before any time consuming
operations are performed. If ChildHandle is NULL the driver is requesting information from the
platform about the ControllerHandle that is being started. Information returned from Query
may lead to the drivers Start() function failing.

If the UEFI driver is a bus driver and producing a ChildHandle the driver must call Query after
the child handle has been created and an EFI_DEVICE_PATH_PROTOCOL has been placed on that
handle, but before any time consuming operation is performed. If information return by Query may
lead the driver to decide to not create the ChildHandle. The driver must then cleanup and remove
the ChildHandle from the system.

The UEFI driver repeatedly calls Query, processes the information returned by the platform, and
calls Response passing in the arguments returned from Query. The Instance value passed
into Response must be the same value passed to the corresponding call to Query. The UEFI
driver must continuously call Query and Response until EFI_NOT_FOUND is returned by
Query.

An Instance value of zero means return the first ParameterBlock in the set of unprocessed
parameter blocks. The driver should increment the Instance value by one for each successive call
to Query.

Status Codes Returned

EFI_SUCCESS The platform return parameter information for

ControllerHandle.

EFI_NOT_FOUND No more unread Instance exists.

EFI_INVALID_PARAMETER ControllerHandle is NULL.

EFI_INVALID_PARAMETER Instance is NULL.

EFI_DEVICE_ERROR A device error occurred while attempting to return parameter block
information for the controller specified by

ControllerHandle and ChildHandle.

EFI_OUT_RESOURCES There are not enough resources available to set the configuration

options for the controller specified by ControllerHandle

and ChildHandle.
Version 2.5 April, 2015 421

Unified Extensible Firmware Interface Specification
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Respon
se()

Summary
Tell the platform what actions where taken by the driver after processing the data returned from
Query.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PLATFORM_TO_DRIVER_CONFIGURATION_RESPONSE) (
 IN EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE ChildHandle OPTIONAL,
 IN UINTN *Instance,
 IN EFI_GUID *ParameterTypeGuid,
 IN VOID *ParameterBlock,
 IN UINTN ParameterBlockSize ,
 IN EFI_PLATFORM_CONFIGURATION_ACTION ConfigurationAction
);

Parameters
This A pointer to the

EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOC
OL instance.

ControllerHandle The handle the driver is returning configuration information
about.

ChildHandle The handle of the child controller to return information on. This
is an optional parameter that may be NULL. It will be NULL for
device drivers, and for bus drivers that attempt to get options for
the bus controller. It will not be NULL for a bus driver that
attempts to get options for one of its child controllers.

Instance Instance data passed to Query().

ParameterTypeGuid ParameterTypeGuid returned from Query.

ParameterBlock ParameterBlock returned from Query.

ParameterBlockSize The ParameterBlock size returned from Query.

ConfigurationActionThe driver tells the platform what action is required for
ParameterBlock to take effect. See ”Related Definitions”
for a list of actions.

Description
The UEFI driver repeatedly calls Query, processes the information returned by the platform, and
calls Response passing in the arguments returned from Query. The UEFI driver must
continuously call Query until EFI_NOT_FOUND is returned. For every call to Query that returns
EFI_SUCCESS a corresponding call to Response is required passing in the same
422 April, 2015 Version 2.5

Protocols — UEFI Driver Model
ContollerHandle, ChildHandle, Instance, ParameterTypeGuid, ParameterBlock,
and ParameterBlockSize. The UEFI driver may update values in ParameterBlock based
on rules defined by ParameterTypeGuid.

The platform is responsible for freeing ParameterBlock and the UEFI driver must not try to free
it.

Related Definitions
typedef enum {
 EfiPlatformConfigurationActionNone = 0,
 EfiPlatformConfigurationActionStopController = 1,
 EfiPlatformConfigurationActionRestartController = 2,
 EfiPlatformConfigurationActionRestartPlatform = 3,
 EfiPlatformConfigurationActionNvramFailed = 4,
 EfiPlatformConfigurationActionMaximum
} EFI_PLATFORM_CONFIGURATION_ACTION;

EfiPlatformConfigurationActionNone
The controller specified by ControllerHandle is still in a
usable state, it’s configuration has been updated via parsing the
ParameterBlock. If required by the parameter block and the
module supports an NVRAM store the configuration information
from ParameterBlock was successfully saved to the
NVRAM. No actions are required before this controller can be
used again with the updated configuration settings

EfiPlatformConfigurationStopController
The driver has detected that the controller specified by
ControllerHandle is not in a usable state, and it needs to be
stopped. The calling agent can use the
EFI_BOOT_SERVICES.DisconnectController()
service to perform this operation, and it should be performed as
soon as possible.

EfiPlatformConfigurationRestartController
This controller specified by ControllerHandle needs to be
stopped and restarted before it can be used again. The calling
agent can use the DisconnectController() and
EFI_BOOT_SERVICES.ConnectController() services
to perform this operation. The restart operation can be delayed
until all of the configuration options have been set.

EfiPlatformConfigurationRestartPlatform
A configuration change has been made that requires the platform
to be restarted before the controller specified by
ControllerHandle can be used again. The calling agent can
use the ResetSystem() services to perform this operation.
The restart operation can be delayed until all of the configuration
options have been set.

EfiPlatformConfigurationActionNvramFailed
The controller specified by ControllerHandle is still in a
Version 2.5 April, 2015 423

Unified Extensible Firmware Interface Specification
usable state; its configuration has been updated via parsing the
ParameterBlock. The driver tried to update the driver’s
private NVRAM store with information from
ParameterBlock and failed. No actions are required before
this controller can be used again with the updated configuration
settings, but these configuration settings are not guaranteed to
persist after ControllerHandle is stopped.

Status Codes Returned

10.7.1 DMTF SM CLP ParameterTypeGuid
The following parameter protocol ParameterTypeGuid provides the support for parameters
communicated through the DMTF SM CLP Specification 1.0 Final Standard to be used to configure
the UEFI driver.

In this section the producer of the
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL is platform firmware and the
consumer is the UEFI driver.

Note: If future versions of the DMTF SM CLP Specification require changes to the parameter block
definition, newer ParameterTypeGuid will be used.

GUID
#define EFI_PLATFORM_TO_DRIVER_CONFIGURATION_CLP_GUID \
 {0x345ecc0e, 0xcb6, 0x4b75, \
 {0xbb, 0x57, 0x1b, 0x12, 0x9c, 0x47, 0x33,0x3e}}

Parameter Block
typedef struct {
 CHAR8 *CLPCommand;
 UINT32 CLPCommandLength;
 CHAR8 *CLPReturnString;
 UINT32 CLPReturnStringLength;
 UINT8 CLPCmdStatus;
 UINT8 CLPErrorValue;
 UINT16 CLPMsgCode;
} EFI_CONFIGURE_CLP_PARAMETER_BLK;

Structure Member Definitions
CLPCommand A pointer to the null-terminated UTF-8 string that specifies the

DMTF SM CLP command line that the driver is required to parse
and process when this function is called. See the DMTF SM CLP

EFI_SUCCESS The platform return parameter information for

ControllerHandle.

EFI_NOT_FOUND Instance was not found.

EFI_INVALID_PARAMETER ControllerHandle is NULL.
424 April, 2015 Version 2.5

Protocols — UEFI Driver Model
Specification 1.0 Final Standard for details on the format and
syntax of the CLP command line string.

CLPCommand buffer is allocated by the producer of the
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOC
OL.

CLPCommandLength The length of the CLP Command in bytes.

CLPReturnString A pointer to the null-terminated UTF-8 string that indicates the
CLP return status that the driver is required to provide to the
calling agent. The calling agent may parse and/or pass this for
processing and user feedback. The SM CLP Command Response
string buffer is filled in by the UEFI driver in the
“keyword=value” format described in the SM CLP Specification
(see section 3.table 101, “Output Data”), unless otherwise
requested via the SM CLP –output option in the Command Line
string buffer. UEFI driver’s support for this default
“keyword=value” output format is required if the UEFI driver
supports this protocol, while support for other SM CLP output
formats is optional. (The UEFI Driver should set
CLPCmdStatus=2 (COMMAND PROCESSING FAILED) and
CLPErrorValue=249 (OUTPUT FORMAT NOT SUPPORTED)
if the SM CLP –output option requested by the caller is not
supported by the UEFI Driver.).

CLPReturnString buffer is allocated by the consumer of the
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOC
OL and undefined prior to the call to Response().

CLPReturnStringLength
The length of the CLP return status string in bytes.

CLPCmdStatus SM CLP Command Status (see DMTF SM CLP Specification 1.0
Final Standard - Table 4)

CLPErrorValue SM CLP Processing Error Value (see DMTF SM CLP
Specification 1.0 Final Standard - Table 6).

This field is filled in by the consumer of the
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOC
OL and undefined prior to the call to Response().

CLPMsgCode Bit 15: OEM Message Code Flag
0 = Message Code is an SM CLP Probable Cause Value.

 (see SM CLP Specification Table 11)

1 = Message Code is OEM Specific

Bits 14-0: Message Code

This field is filled in by the consumer of the
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOC
OL and undefined prior to the call to Response().
Version 2.5 April, 2015 425

Unified Extensible Firmware Interface Specification
10.8 EFI Driver Supported EFI Version Protocol

EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL

Summary
Provides information about the version of the EFI specification that a driver is following. This
protocol is required for EFI drivers that are on PCI and other plug in cards.

GUID
#define EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL_GUID \
 { 0x5c198761, 0x16a8, 0x4e69, \
 { 0x97, 0x2c, 0x89, 0xd6, 0x79, 0x54, 0xf8, 0x1d } }

Protocol Interface Structure
typedef struct _EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL {
 UINT32 Length;
 UINT32 FirmwareVersion;
} EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL;

Parameters
Length The size, in bytes, of the entire structure. Future versions of this

specification may grow the size of the structure.

FirmwareVersion The latest version of the UEFI Specification that this driver
conforms to. Refer to the EFI_SPECIFICATION_VERSION
definition in Section 4.3.

Description
The EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL provides a mechanism for an EFI
driver to publish the version of the EFI specification it conforms to. This protocol must be placed on
the drivers image handle when the driver’s entry point is called.

10.9 EFI Driver Family Override Protocol

10.9.1 Overview
This section defines the Driver Family Override Protocol, and contains the following:

• Description and code definitions of the Driver Family Override Protocol.

• Required updates to the EFI Boot Services ConnectController().

• Typical production of the Driver Family Override Protocol by an EFI Driver that follows the
EFI Driver Model.

The Driver Family Override Protocol provides a method for an EFI Driver to opt-in to a higher
priority rule for connecting drivers to controllers in the EFI Boot Service
426 April, 2015 Version 2.5

Protocols — UEFI Driver Model
ConnectController(). This new rule is higher priority than the Bus Specific Driver Override
Protocol rule and lower priority than the Platform Driver Override Rule.

The Driver Family Override Protocol is a backwards compatible extension to the EFI Driver Model
and is only available during boot time. The Driver Family Override Protocol may be optionally
produced by a driver that follows the EFI Driver Model. If this protocol is produced, it must be
installed onto the Driver Image Handle. Drivers that follow the EFI Driver Model typically install
the EFI Driver Binding Protocol onto the driver's image handle. In this case, the Driver Family
Override Protocol must also be installed onto the driver's image handle. If a single EFI Driver
produces more than one instance of the EFI Driver Binding Protocol, then the Driver Family
Override Protocol must be installed onto the same handle as the EFI Driver Binding Protocol that is
associated with the Driver Family Override Protocol. Since it is legal for a single EFI Driver to
produce multiple EFI Driver Binding Protocol instances, it is also legal for a single EFI Driver to
produce multiple Driver Family Override Protocol instances.

EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL

Summary
When installed, the Driver Family Override Protocol informs the UEFI Boot Service
ConnectController() that this driver is higher priority than the list of drivers returned by the
Bus Specific Driver Override Protocol.

GUID
#define EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL_GUID \
 {0xb1ee129e,0xda36,0x4181,\
 {0x91,0xf8,0x04,0xa4,0x92,0x37,0x66,0xa7}}

Protocol Interface Structure
typedef struct _EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL {
 EFI_DRIVER_FAMILY_OVERRIDE_GET_VERSION GetVersion;
} EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL;

Parameters
GetVersion Retrieves the version of the driver that is used by the EFI Boot

Service ConnectController() to sort the set of Driver
Binding Protocols in order from highest priority to lowest
priority. For drivers that support the Driver Family Override
Protocol, those drivers are sorted so that the drivers with higher
values returned by GetVersion() are high priority that drivers
that return lower values from GetVersion().

Description
This protocol contains a single service that returns a version value for the driver that produces this
protocol. High values are higher priority than lower values when evaluated by the EFI Boot Service
ConnectController(). This is an optional protocol that may be produced by an EFI Driver
that follows the EFI Driver Model. If this protocol is produced, it must be installed onto a handle
that also contains the EFI Driver Binding Protocol.
Version 2.5 April, 2015 427

Unified Extensible Firmware Interface Specification
If this protocol is not produced by an EFI Driver, then the rules used to connect a driver to a
controller from highest priority to lowest priority are as follows:

• Context Override

• Platform Driver Override

• Bus Specific Driver Override Protocol

• Driver Binding Search

If this protocol is produced by an EFI Driver, then the rules used to connect a driver to a controller
from highest priority to lowest priority are as follows:

• Context Override

• Platform Driver Override

• Driver Family Override

• Bus Specific Driver Override

• Driver Binding Search
428 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL.GetVersion ()

Summary
Retrieves the version of the driver that is used by the EFI Boot Service ConnectController()
to sort the set of Driver Binding Protocols in order from highest priority to lowest priority. For
drivers that support the Driver Family Override Protocol, those drivers are sorted so that the drivers
with higher values returned by GetVersion() are high priority that drivers that return lower
values from GetVersion().

Prototype
typedef
UINT32
(EFIAPI *EFI_DRIVER_FAMILY_OVERRIDE_GET_VERSION) (
 IN EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL *This
);

Parameters
This

A pointer to the EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL instance.

Description
This function returns the version value associated with the driver specified by This.

10.10 EFI Driver Health Protocol
This section contains the basic definitions of the Driver Health Protocol.

EFI_DRIVER_HEALTH_PROTOCOL

Summary
When installed, the Driver Health Protocol produces a collection of services that allow the health
status for a controller to be retrieved. If a controller is not in a usable state, status messages may be
reported to the user, repair operations can be invoked, and the user may be asked to make software
and/or hardware configuration changes. All display, as well as interaction, with the user must be
handled by the consumer of the Driver Health Protocol.

GUID
#define EFI_DRIVER_HEALTH_PROTOCOL_GUID \
 {0x2a534210,0x9280,0x41d8,\
 {0xae,0x79,0xca,0xda,0x01,0xa2,0xb1,0x27 }}
Version 2.5 April, 2015 429

Unified Extensible Firmware Interface Specification
Protocol Interface Structure
typedef struct _EFI_DRIVER_HEALTH_PROTOCOL {
 EFI_DRIVER_HEALTH_GET_HEALTH_STATUS GetHealthStatus;
 EFI_DRIVER_HEALTH_REPAIR Repair;
} EFI_DRIVER_HEALTH_PROTOCOL;

Parameters
GetHealthStatus Retrieves the health status of a controller in the platform. This

function can also optionally return warning messages, error
messages, and an HII Form that may be used to repair a controller
that is not properly configured.

Repair Performs a repair operation on a controller in the platform. This
function can optionally report repair progress information back to
the platform.

Description
The Driver Health Protocol is optionally produced by a driver that follows the EFI Driver Model. If
an EFI Driver needs to report health status to the platform, provide warning or error messages to the
user, perform length repair operations, or request the user to make hardware or software
configuration changes, then the Driver Health Protocol must be produced.

A controller that is managed by driver that follows the EFI Driver Model and produces the Driver
Health Protocol must report the current health of the controllers that the driver is currently
managing. The controller can initially be healthy, failed, require repair, or require configuration. If
a controller requires configuration, and the user make configuration changes, the controller may then
need to be reconnected or the system may need to be rebooted for the configuration changes to take
effect. Figure 2-1 below shows all the possible health states of a controller, the set of initial states,
the set of terminal states, and the legal transitions between the health states.
430 April, 2015 Version 2.5

Protocols — UEFI Driver Model
Figure 28. Driver Health Status States

Configuration
Required *

Repair
Required *

Reconnect
Required **

Failed *, **Reboot
Required **

Healthy *, **

* Initial State
** Terminal State
Version 2.5 April, 2015 431

Unified Extensible Firmware Interface Specification
EFI_DRIVER_HEALTH_PROTOCOL.GetHealthStatus()

Summary
Retrieves the health status of a controller in the platform. This function can also optionally return
warning messages, error messages, and an HII Form that may be used to repair a controller that is
not proper configured.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_HEALTH_GET_HEALTH_STATUS) (
 IN EFI_DRIVER_HEALTH_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle, OPTIONAL
 IN EFI_HANDLE ChildHandle, OPTIONAL
 OUT EFI_DRIVER_HEALTH_STATUS *HealthStatus,
 OUT EFI_DRIVER_HEALTH_HII_MESSAGE **MessageList, OPTIONAL
 OUT EFI_HII_HANDLE *FormHiiHandle OPTIONAL
);

Parameters
This A pointer to the EFI_DRIVER_HEALTH_PROTOCOL instance.

ControllerHandle The handle of the controller to retrieve the health status on. This
is an optional parameter that may be NULL. If this parameter is
NULL, then the value of ChildHandle is ignored, and the
combined health status of all the devices that the driver is
managing is returned.

ChildHandle The handle of the child controller to retrieve the health status on.
This is an optional parameter that may be NULL. It will be NULL
for device drivers. It will also be NULL for bus drivers when an
attempt is made to collect the health status of the bus controller.
If will not be NULL when an attempt is made to collect the health
status for a child controller produced by the driver. If
ControllerHandle is NULL, then this parameter is ignored.

HealthStatus A pointer to the health status that is returned by this function.
The health status for the controller specified by
ControllerHandle and ChildHandle is returned.

MessageList A pointer to an array of warning or error messages associated
with the controller specified by ControllerHandle and
ChildHandle. This is an optional parameter that may be
NULL. MessageList is allocated by this function with the EFI
Boot Service AllocatePool(), and it is the caller’s
responsibility to free MessageList with the EFI Boot Service
FreePool(). Each message is specified by tuple of an
EFI_HII_HANDLE and an EFI_STRING_ID. The array of
messages is terminated by tuple containing a
EFI_HII_HANDLE with a value of NULL. The
EFI_HII_STRING_PROTOCOL.GetString() function can
432 April, 2015 Version 2.5

Protocols — UEFI Driver Model
be used to retrieve the warning or error message as a Null-
terminated string in a specific language. Messages may be
returned for any of the HealthStatus values except
EfiDriverHealthStatusReconnectRequired and
EfiDriverHealthStatusRebootRequired.

FormHiiHandle A pointer to the HII handle containing the HII form used when
configuration is required. The HII handle is associated with
the controller specified by ControllerHandle and
ChildHandle. If this is NULL, then no HII form is available.
An HII handle will only be returned with a HealthStatus
value of
EfiDriverHealthStatusConfigurationRequired.

Description
This function returns the health status associated with the controller specified by
ControllerHandle and ChildHandle. If ControllerHandle is not NULL and the
driver specified by This is not currently managing the controller specified by
ControllerHandle and ChildHandle, then EFI_UNSUPPORTED is returned. If
HealthStatus is NULL, then EFI_INVALID_PARAMETER is returned.

If ControllerHandle is NULL, then the cumulative health status of all the controllers
managed by the EFI driver is returned. If all the controller manages by the driver are healthy, then
EfiDriverHealthStatusHealthy must be returned in HealthStatus. If one or more
of the controllers managed by the EFI Driver is not healthy, then
EfiDriverHealthStatusFailed must be returned.

If ControllerHandle is not NULL and ChildHandle is NULL, then the health status of the
controller specified by ControllerHandle is returned in HealthStatus and
EFI_SUCCESS is returned.

If ControllerHandle is not NULL and ChildHandle is not NULL, then the health status of
the child controller specified by ControllerHandle and ChildHandle is returned in
HealthStatus and EFI_SUCCESS is returned.

If MessageList is NULL, then no messages are returned from this function.

If MessageList is not NULL, and HealthStatus is
EfiDriverHealthStatusReconnectRequired or
EfiDriverHealthStatusRebootRequired then no messages are returned and
*MessageList must be set to NULL.

If MessageList is not NULL, and there are no warning or error messages associated with the
controller specified by ControllerHandle and ChildHandle, then *MessageList must
be set to NULL.

If MessageList is not NULL, and there are one or more warning or error messages associated
with the controller specified by ControllerHandle and ChildHandle, then
*MessageList must point to a buffer allocated with the EFI Boot Service AllocatePool().
The number of EFI_DRIVER_HEALTH_HII_MESSAGE structures allocated in the buffer must
be one more than the total number of warning or error messages, and the HiiHandle field of the
last EFI_DRIVER_HEALTH_HII_MESSAGE structure must be set to NULL to terminate the list
of messages. It is the caller’s responsibility to free the buffer returned in *MessageList using
Version 2.5 April, 2015 433

Unified Extensible Firmware Interface Specification
the EFI Boot Service FreePool(). Each message is specified by an EFI_HII_HANDLE and an
EFI_STRING_ID. The caller may use the EFI_HII_STRING_PROTOCOL.GetString()
function to convert each message into a Null-terminated string that can may be displayed on a
console device.

If FormHiiHandle is NULL, then no forms are returned from this function.

If FormHiiHandle is not NULL, and HealthStatus is not
EfiDriverHealthStatusConfigurationRequired, then no forms are returned and
*FormHiiHandle must be set to NULL.

If FormHiiHandle is not NULL, and FormSetGuid is not NULL, and HealthStatus is
EfiDriverHealthStatusConfigurationRequired, then FormHiiHandle is assigned
to the HII handle which contains the HII form required to perform the configuration operation.

Related Definitions
//***
// EFI_DRIVER_HEALTH_STATUS
//***
typedef enum {
 EfiDriverHealthStatusHealthy,
 EfiDriverHealthStatusRepairRequired,
 EfiDriverHealthStatusConfigurationRequired,
 EfiDriverHealthStatusFailed,
 EfiDriverHealthStatusReconnectRequired,
 EfiDriverHealthStatusRebootRequired
} EFI_DRIVER_HEALTH_STATUS;

EfiDriverHealthStatusHealthy

The controller is in a healthy state.

EfiDriverHealthStatusRepairRequired

The controller requires a repair operation that will take an extended period of time to
perform. The EFI Boot Manager is required to call the Repair() function when this
state is detected. After the Repair() function completed, the health status may be
EfiDriverHealthStatusHealthy,
EfiDriverHealthStatusConfigurationRequired, or
EfiDriverHealthStatusFailed.

EfiDriverHealthStatusConfigurationRequired

The controller requires the user to make software or hardware configuration changes
in order to put the controller into a healthy state. The set of software configuration
changes are specified by the FormHiiHandle and FormSetGuid parameters.
The EFI Boot Manager may call the
EFI_FORM_BROWSER2_PROTOCOL.SendForm() function to display
configuration information and allow the user to make the required configuration
changes. The HII form is the first enabled form in the form set class
EFI_HII_DRIVER_HEALTH_FORMSET_GUID, which is installed on the returned
HII handle FormHiiHandle. The MessageList parameter may be used to
434 April, 2015 Version 2.5

Protocols — UEFI Driver Model
identify additional user configuration operations required to place the controller in a
healthy state. After the FormHiiHandle and MessageList have been processed
by the EFI Boot Manager, the health status may be
EfiDriverHealthStatusHealthy,
EfiDriverHealthStatusConfigurationRequired,
EfiDriverHealthStatusRepairRequired,
EfiDriverHealthStatusFailed,
EfiDriverHealthStatusReconnectRequired, or
EfiDriverHealthStatusRebootRequired.

EfiDriverHealthStatusFailed

The controller is in a failed state, and there no actions that can place the controller
into a healthy state. This controller can not be used as a boot device and no boot
devices behind this controller can be used as a boot device.

EfiDriverHealthStatusReconnectRequired

A hardware and/or software configuration change was performed by the user, and the
controller needs to be reconnected before the controller can be placed in a healthy
state. The EFI Boot Manager is required to call the EFI Boot Service Disconnect-
Controller() followed by the EFI Boot Service ConnectController() to
reconnect the controller.

EfiDriverHealthStatusRebootRequired

A hardware and/or software configuration change was performed by the user, and the
controller requires the entire platform to be rebooted before the controller can be
placed in a healthy state. The EFI Boot Manager should complete the configuration
and repair operations on all the controllers that are not in a healthy state before
rebooting the system.

//***
// EFI_DRIVER_HEALTH_HII_MESSAGE
//***
typedef struct {
 EFI_HII_HANDLE HiiHandle;
 EFI_STRING_ID StringId;
 UINT64 MessageCode;
} EFI_DRIVER_HEALTH_HII_MESSAGE;

HiiHandle The EFI_HII_HANDLE that was returned by
EFI_HII_DATABASE_PROTOCOL.NewPackageList()
when the string pack containing StringId was registered with the
HII Database.

StringId The identifier for a single string token in the string pack
associated with HiiHandle.

MessageCode 64-bit numeric value of the warning/error specified by this
message. A value of 0x0000000000000000 is used to
indicate that MessageCode is not specified.
Version 2.5 April, 2015 435

Unified Extensible Firmware Interface Specification
The values 0x0000000000000001 to
0x0fffffffffffffff are reserved for allocation by the
UEFI Specification.

The values 0x1000000000000000 to
0x1fffffffffffffff are reserved for IHV-developed
drivers.

The values 0x8000000000000000 to
0x8fffffffffffffff is reserved for platform/OEM drivers.

All other values are reserved and should not be used.

Status Codes Returned

EFI_SUCCESS The health status of the controller specified by
ControllerHandle and ChildHandle was returned in
HealthStatus. A list of warning and error messages may be
optionally returned in MessageList, and an HII Form may be
optionally specified by FormHiiHandle.

EFI_UNSUPPORTED ControllerHandle is not NULL, and the controller specified
by ControllerHandle and ChildHandle is not currently
being managed by the driver specified by This.

EFI_INVALID_PARAMETER HealthStatus is NULL.

EFI_OUT_OF_RESOURCES MessageList is not NULL, and there are not enough resource
available to allocate memory for MessageList.
436 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_DRIVER_HEALTH_PROTOCOL.Repair ()

Summary
Performs a repair operation on a controller in the platform. This function can optionally report
repair progress information back to the platform.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_HEALTH_REPAIR) (
 IN EFI_DRIVER_HEALTH_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 IN EFI_HANDLE ChildHandle OPTIONAL,
 IN EFI_DRIVER_HEALTH_REPAIR_NOTIFY RepairNotify OPTIONAL
);

Parameters
This A pointer to the EFI_DRIVER_HEALTH_PROTOCOL instance.

ControllerHandle The handle of the controller to repair.

ChildHandle The handle of the child controller to repair. This is an optional
parameter that may be NULL. It will be NULL for device drivers.
It will also be NULL for bus drivers when an attempt is made to
repair a bus controller. If will not be NULL when an attempt is
made to repair a child controller produced by the driver.

RepairNotify A notification function that may be used by a driver to report the
progress of the repair operation. This is an optional parameter
that may be NULL.

Description
This function repairs the controller specified by ControllerHandle and ChildHandle. If
the driver specified by This is not currently managing the controller specified by
ControllerHandle and ChildHandle, then EFI_UNSUPPORTED is returned. If there are
not enough resource available to complete the repair operation, then EFI_OUT_OF_RESOURCES is
returned. Otherwise, EFI_SUCCESS is returned. A return value of EFI_SUCCESS does not
guarantee that the controller is in a healthy state. The EFI Boot Manager must call the
GetHealthStatus() function to determine the result of the repair operation.

If RepairNotify is not NULL, and the repair operation requires an extended period of time to
execute, then the driver performing the repair operation may intermittently call the
RepairNotify function to inform the EFI Boot Manager of the progress of the repair operation.
The RepairNotify function take two parameters to specify the current progress value and the
limit value. These two values may be used by the EFI Boot Manager to present status information
for the current repair operation.
Version 2.5 April, 2015 437

Unified Extensible Firmware Interface Specification
Related Definitions
//***
// EFI_DRIVER_HEALTH_REPAIR_NOTIFY
//***
typedef
EFI_STATUS
(EFIAPI *EFI_DRIVER_HEALTH_REPAIR_NOTIFY) (
 IN UINTN Value,
 IN UINTN Limit
);

Value A value between 0 and Limit that identifies the current progress
of the repair operation.

Limit The maximum value of Value for the current repair operation. If
Limit is 0, then the completion progress is indeterminate. For
example, a driver that wants to specify progress in percent would
use a Limit value of 100.

Status Codes Returned

10.10.1 UEFI Boot Manager Algorithms
This section contains example algorithms that a UEI Boot Manager or UEFI Application could use
to interact with one or more instances of the EFI Driver Health Protocol present in the platform.

10.10.1.1 All Controllers Healthy
This section contains example algorithms that a UEI Boot Manager or UEFI Application could use
to interact with one or more instances of the EFI Driver Health Protocol present in the platform.

The following algorithm collects all the EFI Driver Health Protocols currently present in the EFI
Handle Database, and queries each EFI Driver Health Protocol to determine if one or more of the
controllers managed by each EFI Driver Health Protocol instance are not healthy. The variable
AllHealthy is TRUE if all the controllers in the platform are healthy. AllHealthy is FALSE
if one of more of the controllers in the platform are not healthy.

EFI_SUCCESS An attempt to repair the controller specified by
ControllerHandle and ChildHandle was performed. The
result of the repair operation can bet determined by calling
GetHealthStatus().

EFI_UNSUPPORTED The driver specified by This is not currently managing the
controller specified by ControllerHandle and
ChildHandle.

EFI_OUT_OF_RESOURCES There are not enough resources to perform the repair operation.
438 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_STATUS Status;
UINTN NoHandles;
EFI_HANDLE *Handles;
UINTN Index;
EFI_DRIVER_HEALTH_PROTOCOL *DriverHealth;
BOOLEAN AllHealthy;

Status = gBS->LocateHandleBuffer (
 ByProtocol,
 &gEfiDriverHealthProtocolGuid,
 NULL,
 &NoHandles,
 &Handles
);
if (EFI_ERROR (Status)) {
 return;
}

AllHealthy = TRUE;
for (Index = 0; Index < NoHandles; Index++) {
 Status = gBS->HandleProtocol (
 Handles[Index],
 &gEfiDriverHealthProtocolGuid,
 (VOID **)&DriverHealth
);
 if (!EFI_ERROR (Status)) {
 Status = DriverHealth->GetHealthStatus (
 DriverHealth,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL
);
 if (EFI_ERROR (Status)) {
 AllHealthy = FALSE;
 }
 }
}

10.10.1.2 Process a Controller Until Terminal State Reached
The following algorithm processes a single controller using the EFI Driver Health Protocol
associated with that controller. This algorithm continues to query the GetHealthStatus()
service until one of the legal terminal states of the EFI Driver Health Protocol is reached. This may
require the processing of HII Messages, HII Form, and invocation of repair operations.
Version 2.5 April, 2015 439

Unified Extensible Firmware Interface Specification
EFI_STATUS Status;
EFI_DRIVER_HEALTH_PROTOCOL *DriverHealth;
EFI_HANDLE ControllerHandle;
EFI_HANDLE ChildHandle;
EFI_DRIVER_HEALTH_HEALTH_STATUS HealthStatus;
EFI_DRIVER_HEALTH_HII_MESSAGE *MessageList;
EFI_HII_HANDLE FormHiiHandle;

do {
 HealthStatus = EfiDriverHealthStatusHealthy;
 Status = DriverHealth->GetHealthStatus (

 DriverHealth,
 ControllerHandle,
 ChildHandle,
 &HealthStatus,
 &MessageList,
 &FormHiiHandle
);
 ProcessMessages (MessageList);
 if (HealthStatus == EfiDriverHealthStatusRepairRequired) {
 Status = DriverHealth->Repair (

 DriverHealth,
 ControllerHandle,
 ChildHandle,

 RepairNotify
);
 }
 if (HealthStatus == EfiDriverHealthStatusConfigurationRequired) {
 ProcessForm (FormHiiHandle);
 }
} while (HealthStatus == EfiDriverHealthStatusConfigurationRequired ||
 HealthStatus == EfiDriverHealthStatusRepairRequired);
//
// Check for RebootRequired or ReconnectRequired

//

10.10.1.3 Repair Notification Function
The following is an example repair notification function.
440 April, 2015 Version 2.5

Protocols — UEFI Driver Model
VOID
RepairNotify (

 UINTN Value,
 UINTN Limit
)
{

 UINTN Percent;

 if (Limit == 0) {
 Print (L"Repair Progress Undefined\n\r”);
 } else {
 Percent = Value * 100 / Limit;
 Print (L"Repair Progress = %3d%%", Percent);
 }
}

10.10.1.4 Process Message List
The following algorithm processes a set of messages returned by the GetHealthStatus()
service of the EFI Driver Health Protocol.
Version 2.5 April, 2015 441

Unified Extensible Firmware Interface Specification
EFI_STATUS Status;
EFI_DRIVER_HEALTH_HII_MESSAGE *MessageList;
UINTN MessageIndex;
EFI_HII_STRING_PROTOCOL *HiiString;
EFI_STRING MessageString[200];

for (MessageIndex = 0;
 MessageList[MessageIndex].HiiHandle != 0;
 MessageIndex++) {
 MessageLength = sizeof (MessageString);
 Status = HiiString->GetString (

 HiiString,
 NULL,
 MessageList[MessageIndex].HiiHandle,
 MessageList[MessageIndex].StringId,
 MessageString
 &MessageLength,
 NULL
);
 if (!EFI_ERROR (Status)) {
 // Log or Print or Display MessageString
 }
}

10.10.1.5 Process HII Form
The following algorithm processes an HII Form returned by the GetHealthStatus() service of
the EFI Driver Health Protocol.
442 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_STATUS Status;
EFI_FORM_BROWSER2_PROTOCOL *FormBrowser;
EFI_HII_HANDLE FormHiiHandle;

Status = FormBrowser->SendForm (

 FormBrowser,
 &FormHiiHandle,
 1,
 &gEfiHiiDriverHealthFormsetGuid,
 ,
 0,
 NULL,
 NULL
);

10.10.2 UEFI Driver Algorithms
A UEFI Driver that supports the EFI Driver Health Protocol will typically make the following
changes:

10.10.2.1 Driver Entry Point Updates
Install Driver Health Protocol on the driver image handle.

Register HII String/IFR packs with the HII Database

• HII String/IFR packs can also be carried in a PE/COFF image extension eliminating the need for
the driver to perform the registration

• The HII String and HII Forms may be produced dynamically when the GetHealthStatus()
service is called.

10.10.2.2 Add global variable
Add global variable to track combined health status of all controllers managed by the driver. The
variable is TRUE if all the controllers managed by the driver are healthy. The variable is FALSE if
one or more controllers managed by the drover are not healthy.

10.10.2.3 Update private context structure
Update private context structure to track health status of each controller managed by the driver. This
may also include the current set of HII Strings and HII Forms associated with the controllers that are
not healthy.

10.10.2.4 Implement GetHealthStatus()service
Implement GetHealthStatus()service of the EFI Driver Health Protocol

• Make sure only legal state transitions are implemented

• Evaluate configuration data and repair status
Version 2.5 April, 2015 443

Unified Extensible Firmware Interface Specification
• Return HII Strings for message(s) associated with the current state

• If configuration required, return HII Form to be processed

10.10.2.5 Implement Repair() service
Implement Repair() service of the EFI Driver Health Protocol

• Calling Repair Notification callback is optional, but recommended.

• Update health status in private context structure before returning

• Make sure only legal state transitions are implemented

10.11 EFI Adapter Information Protocol
This section provides a detailed description of the EFI_ADAPTER_INFORMATION_PROTOCOL.
The EFI Adapter Information Protocol is used to dynamically and quickly discover or set device
information for an adapter. The discovery of information and state of an adapter should be quick and
only return dynamic information. The information should never be cached or stale. The setting
information for the adapter should also be fast and simple. The only information that should be set is
operating state information, like setting a speed. This protocol is meant to be light weight and non-
blocking.

EFI_ADAPTER_INFORMATION_PROTOCOL

SUMMARY
Since this protocol will return and set information for the adapter, the adapter device driver must
publish the EFI_ADAPTER_INFORMATION_PROTOCOL.

There are many kinds of adapters. The set and get adapter information functions should be used to
determine the current state of the adapter, or to set a state for an adapter, like device speed.

GUID
#define EFI_ADAPTER_INFORMATION_PROTOCOL_GUID \
 { 0xE5DD1403, 0xD622, 0xC24E, \
 { 0x84, 0x88, 0xC7, 0x1B, 0x17, 0xF5, 0xE8, 0x02 } }

Protocol Interface Structure
typedef struct _EFI_ADAPTER_INFORMATION_PROTOCOL {
 EFI_ADAPTER_INFO_GET_INFO GetInformation;
 EFI_ADAPTER_INFO_SET_INFO SetInformation;
 EFI_ADAPTER_INFO_GET_SUPPORTED_TYPES GetSupportedTypes;
} EFI_ADAPTER_INFORMATION_PROTOCOL;

Parameters
GetInformation Gets device state information from adapter. See

GetInformation() for more function description.

SetInformation Sets device information for adapter. See SetInformation()
for more function description.
444 April, 2015 Version 2.5

Protocols — UEFI Driver Model
GetSupportedTypes Gets a list of supported information types for this instance of the
protocol.

Description
The EFI_ADAPTER_INFORMATION_PROTOCOL is used to get or set the state for an adapter.
Version 2.5 April, 2015 445

Unified Extensible Firmware Interface Specification
EFI_ADAPTER_INFORMATION_PROTOCOL.
EFI_ADAPTER_GET_INFO()

Summary
Returns the current state information for the adapter.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ADAPTER_INFO_GET_INFO) (
 IN EFI_ADAPTER_INFORMATION_PROTOCOL *This,
 IN EFI_GUID *InformationType,
 OUT VOID **InformationBlock,
 OUT UINTN *InformationBlockSize
);

Parameters
This A pointer to the EFI_ADAPTER_INFORMATION_PROTOCOL

instance.

InformationType A pointer to an EFI_GUID that defines the contents of
InformationBlock. The caller must use the
InformationType to specify the information it needs to
retrieve from this service and to determine how to parse the
InformationBlock. The driver should not attempt to free
InformationType.

InformationBlock This service returns a pointer to the buffer with the
InformationBlock structure which contains details about
the data specific to InformationType. This structure is
defined based on the type of data returned, and will be different
for different data types. This service and caller decode this
structure and its contents based on InformationType. This
buffer is allocated by this service, and it is the responsibility of
the caller to free it after using it.

InformationBlockSize

The driver returns the size of the InformationBlock in
bytes.

Description
The GetInformation() function returns information of type InformationType from the
adapter. If an adapter does not support the requested informational type, then EFI_UNSUPPORTED
is returned.

Status Codes Returned

EFI_SUCCESS The InformationType information was retrieved.

EFI_UNSUPPORTED The InformationType is not known.
446 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_DEVICE_ERROR The device reported an error.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources

EFI_INVALID_PARAMETER This is NULL

EFI_INVALID_PARAMETER InformationBlock is NULL

EFI_INVALID_PARAMETER InformationBlockSize is NULL
Version 2.5 April, 2015 447

Unified Extensible Firmware Interface Specification
EFI_ADAPTER_INFORMATION_PROTOCOL.
EFI_ADAPTER_INFO_SET_INFO()

Summary
Sets state information for an adapter.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ADAPTER_INFO_SET_INFO) (
 IN EFI_ADAPTER_INFORMATION_PROTOCOL *This,
 IN EFI_GUID *InformationType,
 IN VOID *InformationBlock,
 IN UINTN InformationBlockSize
);

Parameters
This A pointer to the EFI_ADAPTER_INFORMATION_PROTOCOL

instance.

InformationType A pointer to an EFI_GUID that defines the contents of
InformationBlock. The caller must use the
InformationType to specify the information it wants the
service.

InformationBlock A pointer to the InformationBlock structure which contains
details about the data specific to InformationType. This
structure is defined based on the type of data sent, and will be
different for different data types. The driver and caller decode this
structure and its contents based on InformationType. This
buffer is allocated by the caller. It is the responsibility of the
caller to free it after the caller has set the requested parameters.

InformationBlockSizeThe size of the InformationBlock in bytes.

Description
The SetInformation() function sends information of type InformationType for an
adapter. If an adapter does not support the requested informational type, then EFI_UNSUPPORTED
is returned.

Related Definitions

Status Codes Returned

EFI_SUCCESS The information was received and interpreted successfully.

EFI_UNSUPPORTED The InformationType is not known.

EFI_DEVICE_ERROR The device reported an error.

EFI_INVALID_PARAMETER This is NULL
448 April, 2015 Version 2.5

Protocols — UEFI Driver Model
EFI_INVALID_PARAMETER InformationBlock is NULL

EFI_WRITE_PROTECTED The InformationType cannot be modified using

EFI_ADAPTER_INFO_SET_INFO()
Version 2.5 April, 2015 449

Unified Extensible Firmware Interface Specification
EFI_ADAPTER_INFORMATION_PROTOCOL.
EFI_ADAPTER_INFO_GET_SUPPORTED_TYPES()

Summary
Get a list of supported information types for this instance of the protocol.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ADAPTER_INFO_GET_SUPPORTED_TYPES) (
 IN EFI_ADAPTER_INFORMATION_PROTOCOL *This,
 OUT EFI_GUID **InfoTypesBuffer,
 OUT UINTN *InfoTypesBufferCount
) ;

Parameters
This A pointer to the EFI_ADAPTER_INFORMATION_PROTOCOL

instance.

InfoTypesBuffer A pointer to the array of InformationType GUIDs that are
supported by This. This buffer is allocated by this service, and it
is the responsibility of the caller to free it after using it

InfoTypesBufferCountA pointer to the number of GUIDs present in
InfoTypesBuffer.

Description
The GetSupportedTypes() function returns a list of InformationType GUIDs that are
supported on an adapter with this instance of EFI_ADAPTER_INFORMATION_PROTOCOL. The
list is returned in InfoTypesBuffer, and the number of GUID pointers in InfoTypesBuffer
is returned in InfoTypesBufferCount.
450 April, 2015 Version 2.5

Protocols — UEFI Driver Model

s

s
Status Codes Returned

10.12 EFI Adapter Information Protocol Information Types

Note: In addition to the information block types defined in this section, driver writers may define
additional information type blocks for their own use provided all such blocks are each identified by
a unique GUID created by the definer.

 Clients of the protocol should ignore any unrecognized block types returned by
GetSupportedTypes().

10.12.1 Network Media State
For network adapters, the EFI_ADAPTER_INFORMATION_PROTOCOL must be installed on the
same handle as the UNDI protocol. If SNP or MNP protocol, instead of the UNDI protocol, is
installed on adapter handle, then the EFI_ADAPTER_INFORMATION_PROTOCOL must be
installed on the same handle as the SNP or MNP protocol.

InformationType
#define EFI_ADAPTER_INFO_MEDIA_STATE_GUID \
 {0xD7C74207, 0xA831, 0x4A26 \
 {0xB1,0xF5,0xD1,0x93,0x06,0x5C,0xE8,0xB6}}

Corresponding InformationBlock:
typedef struct {
 EFI_STATUS MediaState;
} EFI_ADAPTER_INFO_MEDIA_STATE;

MediaState Returns the current media state status

MediaState Returns the current media state status. MediaState can have
any of the following values:

EFI_SUCCESS: There is media attached to the network adapter.

EFI_NOT_READY: This detects a bounced state. There was
media attached to the network adapter, but it was removed and
reattached.

EFI_NO_MEDIA: There is not any media attached to the network

EFI_SUCCESS The list of information type GUIDs that are supported on this adapter wa

returned in InfoTypesBuffer. The number of information type GUID

was returned in InfoTypesBufferCount.

EFI_INVALID_PARAMETER This is NULL

EFI_INVALID_PARAMETER InfoTypesBuffer is NULL

EFI_INVALID_PARAMETER InfoTypesBufferCount is NULL

EFI_OUT_OF_RESOURCES There is not enough pool memory to store the results
Version 2.5 April, 2015 451

Unified Extensible Firmware Interface Specification
10.12.2 Network Boot
For iSCSI and FCoE HBA adapters, the EFI_ADAPTER_INFORMATION_PROTOCOL must be
installed on the same handle as the EFI_EXT_SCSI_PASS_THRU_PROTOCOL.

InformationType
#define EFI_ADAPTER_INFO_NETWORK_BOOT_GUID \
 {0x1FBD2960, 0x4130, 0x41E5,\
 {0x94,0xAC,0xD2, 0xCF, 0x03, 0x7F, 0xB3, 0x7C}}

Corresponding InformationBlock:
typedef struct {
 BOOLEAN iSsciIpv4BootCapablity;
 BOOLEAN iScsiIpv6BootCapablity;
 BOOLEAN FCoeBootCapablity;
 BOOLEAN OffloadCapability;
 BOOLEAN iScsiMpioCapability
 BOOLEAN iScsiIpv4Boot;
 BOOLEAN iScsiIpv6Boot;
 BOOLEAN FCoeBoot;
} EFI_ADAPTER_INFO_NETWORK_BOOT;

iScsiIpv4BootCapablity

TRUE if the adapter supports booting from iSCSI IPv4 targets.

iScsiIpv6BootCapablity

TRUE if the adapter supports booting from iSCSI IPv6 targets.

FCoeBootCapablity TRUE if the adapter supports booting from FCoE targets.

OffloadCapability TRUE if the adapter supports an offload engine (such as TCP
Offload Engine (TOE) for its iSCSI or FCoE boot operations.

iScsiMpioCapability

TRUE if the adapter supports multipath I/O (MPIO) for its iSCSI
boot operations.

iScsiIpv4Boot TRUE if the adapter is currently configured to boot from iSCSI
IPv4 targets.

iScsiIpv6Boot TRUE if the adapter is currently configured to boot from iSCSI
IPv6 targets.

FCoeBoot TRUE if the adapter is currently configured to boot from FCoE
targets.
452 April, 2015 Version 2.5

Protocols — UEFI Driver Model
Note: The adapter should set the iScsiIpv4BootCapablity, iScsiIpv6BootCapablity , or
FCoeBootCapablity fields to TRUE if it supports that boot capability, even if that capability is currently
disabled or not configured.

10.12.3 SAN MAC Address

SUMMARY
Since this instance of a data blocks for a EFI_ADAPTER_INFORMATION_PROTOCOL support
additional information for ascertaining the SAN MAC address for an FCOE-aware network interface
controller. Details on the Get() method.

SAN MAC Address - Get

Note: An instance of the EFI_ADAPTER_INFORMATION_PROTOCOL supporting this GUID must be
installed on the same handle as the NII protocol.

SAN MAC address information
InformationType

#define EFI_ADAPTER_INFO_SAN_MAC_ADDRESS_GUID \
{0x114da5ef, 0x2cf1, 0x4e12,\
 {0x9b, 0xbb, 0xc4, 0x70, 0xb5, 0x52, 0x05, 0xd9}}

Corresponding InformationBlock:
typedef struct {
 EFI_MAC_ADDRESS SanMacAddress;
} EFI_ADAPTER_INFO_SAN_MAC_ADDRESS;

SanMacAddress Returns the SAN MAC address for the adapter.

For adapters that support today’s 802.3 ethernet networking and Fibre-Channel Over Ethernet
(FCOE), this conveys the FCOE SAN MAC address from the adapter

10.12.4 IPV6 Support from UNDI
For network adapters, the EFI_ADAPTER_INFORMATION_PROTOCOL must be installed on the
same handle as the UNDI protocol.

• Ipv6Support returns capability of UNDI to support IPV6 traffic.

• Ipv6Support can have any of the following values::
TRUE: The UNDI supports IPV6.

FALSE: This UNDI does not support IPV6 traffic.
Version 2.5 April, 2015 453

Unified Extensible Firmware Interface Specification
InformationType
#define EFI_ADAPTER_INFO_UNDI_IPV6_SUPPORT_GUID \
{ 0x4bd56be3, 0x4975, 0x4d8a, \
{0xa0, 0xad, 0xc4, 0x91, 0x20, 0x4b, 0x5d, 0x4d}}

Corresponding InformationBlock:
typedef struct {
 BOOLEAN Ipv6Support;
} EFI_ADAPTER_INFO_UNDI_IPV6_SUPPORT;
454 April, 2015 Version 2.5

Protocols — Console Support
11
Protocols — Console Support

This section explores console support protocols, including Simple Text Input, Simple Text Output,
Simple Pointer, Serial IO, and Graphics Output protocols.

11.1 Console I/O Protocol
This section defines the Console I/O protocol. This protocol is used to handle input and output of
text-based information intended for the system user during the operation of code in the boot services
environment. Also included here are the definitions of three console devices: one for input and one
each for normal output and errors.

These interfaces are specified by function call definitions to allow maximum flexibility in
implementation. For example, there is no requirement for compliant systems to have a keyboard or
screen directly connected to the system. Implementations may choose to direct information passed
using these interfaces in arbitrary ways provided that the semantics of the functions are preserved (in
other words, provided that the information is passed to and from the system user).

11.1.1 Overview
The UEFI console is built out of the EFI_SIMPLE_TEXT_INPUT_PROTOCOL and the
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL. These two protocols implement a basic text-based
console that allows platform firmware, applications written to this specification, and UEFI OS
loaders to present information to and receive input from a system administrator. The UEFI console
supported 16-bit Unicode character codes, a simple set of input control characters (Scan Codes), and
a set of output-oriented programmatic interfaces that give functionality equivalent to an intelligent
terminal. The console does not support pointing devices on input or bitmaps on output.

This specification requires that the EFI_SIMPLE_TEXT_INPUT_PROTOCOL support the same
languages as the corresponding EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL. The
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is recommended to support at least the printable
Basic Latin Unicode character set to enable standard terminal emulation software to be used with an
EFI console. The Basic Latin Unicode character set implements a superset of ASCII that has been
extended to 16-bit characters. Any number of other Unicode character sets may be optionally
supported.

11.1.2 ConsoleIn Definition
The EFI_SIMPLE_TEXT_INPUT_PROTOCOL defines an input stream that contains Unicode
characters and required EFI scan codes. Only the control characters defined in Table 97 have
meaning in the Unicode input or output streams. The control characters are defined to be characters
U+0000 through U+001F. The input stream does not support any software flow control.
Version 2.5 April, 2015 455

Unified Extensible Firmware Interface Specification
Table 97. Supported Unicode Control Characters

The input stream supports Scan Codes in addition to Unicode characters. If the Scan Code is set to
0x00 then the Unicode character is valid and should be used. If the Scan Code is set to a non-0x00
value it represents a special key as defined by Table 98.

Table 98. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_PROTOCOL

Mnemonic Unicode Description

Null U+0000 Null character ignored when received.

BS U+0008 Backspace. Moves cursor left one column. If the cursor is at the left
margin, no action is taken.

TAB U+0x0009 Tab.

LF U+000A Linefeed. Moves cursor to the next line.

CR U+000D Carriage Return. Moves cursor to left margin of the current line.

EFI Scan Code Description

0x00 Null scan code.

0x01 Move cursor up 1 row.

0x02 Move cursor down 1 row.

0x03 Move cursor right 1 column.

0x04 Move cursor left 1 column.

0x05 Home.

0x06 End.

0x07 Insert.

0x08 Delete.

0x09 Page Up.

0x0a Page Down.

0x0b Function 1.

0x0c Function 2.

0x0d Function 3.

0x0e Function 4.

0x0f Function 5.

0x10 Function 6.

0x11 Function 7.

0x12 Function 8.

0x13 Function 9.

0x14 Function 10.

0x17 Escape.
456 April, 2015 Version 2.5

Protocols — Console Support
Table 99. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL

11.2 Simple Text Input Ex Protocol
The Simple Text Input Ex protocol defines an extension to the Simple Text Input protocol which
enables various new capabilities describes in this section.

EFI Scan Code

Description

0x15 Function 11

0x16 Function 12

0x68 Function 13

0x69 Function 14

0x6A Function 15

0x6B Function 16

0x6C Function 17

0x6D Function 18

0x6E Function 19

0x6F Function 20

0x70 Function 21

0x71 Function 22

0x72 Function 23

0x73 Function 24

0x7F Mute

0x80 Volume Up

0x81 Volume Down

0x100 Brightness Up

0x101 Brightness Down

0x102 Suspend

0x103 Hibernate

0x104 Toggle Display

0x105 Recovery

0x106 Eject

0x8000-0xFFFF OEM Reserved
Version 2.5 April, 2015 457

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL

Summary
This protocol is used to obtain input from the ConsoleIn device. The EFI specification requires that
the EFI_SIMPLE_TEXT_INPUT_PROTOCOL supports the same languages as the corresponding
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.

GUID
#define EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL_GUID \
 {0xdd9e7534, 0x7762, 0x4698, \
 {0x8c, 0x14, 0xf5, 0x85, 0x17, 0xa6, 0x25, 0xaa}}

Protocol Interface Structure
typedef struct _EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL{
 EFI_INPUT_RESET_EX Reset;
 EFI_INPUT_READ_KEY_EX ReadKeyStrokeEx;
 EFI_EVENT WaitForKeyEx;
 EFI_SET_STATE SetState;
 EFI_REGISTER_KEYSTROKE_NOTIFY RegisterKeyNotify;
 EFI_UNREGISTER_KEYSTROKE_NOTIFY UnregisterKeyNotify;
} EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL;

Parameters
Reset Reset the ConsoleIn device. See Reset().

ReadKeyStrokeEx Returns the next input character. See ReadKeyStrokeEx().

WaitForKeyEx Event to use with WaitForEvent() to wait for a key to be
available. An Event will only be triggered if KeyData.Key has
information contained within it.

SetState Set the EFI_KEY_TOGGLE_STATE state settings for the input
device.

RegisterKeyNotify Register a notification function to be called when a given key
sequence is hit.

UnregisterKeyNotifyRemoves a specific notification function.

Description
The EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL is used on the ConsoleIn device. It is an
extension to the Simple Text Input protocol which allows a variety of extended shift state
information to be returned.
458 April, 2015 Version 2.5

Protocols — Console Support
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.Reset()

Summary
Resets the input device hardware.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_INPUT_RESET_EX) (
 IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
);

Parameters
This A pointer to the

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL instance. Type
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL is defined in
this section.

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description
The Reset() function resets the input device hardware.

The implementation of Reset is required to clear the contents of any input queues resident in
memory used for buffering keystroke data and put the input stream in a known empty state.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the
firmware may take an extended amount of time to verify the device is operating on reset. Otherwise
the reset operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Status Codes Returned

EFI_SUCCESS The device was reset.

EFI_DEVICE_ERROR The device is not functioning correctly and could not be reset.
Version 2.5 April, 2015 459

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.ReadKeyStrokeEx()

Summary
Reads the next keystroke from the input device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_INPUT_READ_KEY_EX) (
 IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
 OUT EFI_KEY_DATA *KeyData
);

Parameters
This A pointer to the

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL instance. Type
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL is defined in
this section.

KeyData A pointer to a buffer that is filled in with the keystroke state data
for the key that was pressed. Type EFI_KEY_DATA is defined
in "Related Definitions" below.

Related Definitions
//***
// EFI_KEY_DATA
//***
typedef struct {
 EFI_INPUT_KEY Key;
 EFI_KEY_STATE KeyState;
} EFI_KEY_DATA

Key The EFI scan code and Unicode value returned from the input
device.

KeyState The current state of various toggled attributes as well as input
modifier values.
460 April, 2015 Version 2.5

Protocols — Console Support
//***
// EFI_KEY_STATE
//***
//
// Any Shift or Toggle State that is valid should have
// high order bit set.
//
typedef struct EFI_KEY_STATE {
 UINT32 KeyShiftState;
 EFI_KEY_TOGGLE_STATE KeyToggleState;
} EFI_KEY_STATE;

KeyShiftState Reflects the currently pressed shift modifiers for the input device.
The returned value is valid only if the high order bit has been set.

KeyToggleState Reflects the current internal state of various toggled attributes.
The returned value is valid only if the high order bit has been set.

#define EFI_SHIFT_STATE_VALID 0x80000000
#define EFI_RIGHT_SHIFT_PRESSED 0x00000001
#define EFI_LEFT_SHIFT_PRESSED 0x00000002
#define EFI_RIGHT_CONTROL_PRESSED 0x00000004
#define EFI_LEFT_CONTROL_PRESSED 0x00000008
#define EFI_RIGHT_ALT_PRESSED 0x00000010
#define EFI_LEFT_ALT_PRESSED 0x00000020
#define EFI_RIGHT_LOGO_PRESSED 0x00000040
#define EFI_LEFT_LOGO_PRESSED 0x00000080
#define EFI_MENU_KEY_PRESSED 0x00000100
#define EFI_SYS_REQ_PRESSED 0x00000200

//***
// EFI_KEY_TOGGLE_STATE
//***
typedef UINT8 EFI_KEY_TOGGLE_STATE;

#define EFI_TOGGLE_STATE_VALID 0x80
#define EFI_KEY_STATE_EXPOSED 0x40
#define EFI_SCROLL_LOCK_ACTIVE 0x01
#define EFI_NUM_LOCK_ACTIVE 0x02
#define EFI_CAPS_LOCK_ACTIVE 0x04

Description
The ReadKeyStrokeEx() function reads the next keystroke from the input device. If there is no
pending keystroke the function returns EFI_NOT_READY. If there is a pending keystroke, then
KeyData.Key.ScanCode is the EFI scan code defined in Table 98. The
KeyData.Key.UnicodeChar is the actual printable character or is zero if the key does not
represent a printable character (control key, function key, etc.). The KeyData.KeyState is the
Version 2.5 April, 2015 461

Unified Extensible Firmware Interface Specification
modifier shift state for the character reflected in KeyData.Key.UnicodeChar or
KeyData.Key.ScanCode. This function mirrors the behavior of ReadKeyStroke(in the
Simple Input Protocol in that a keystroke will only be returned when KeyData.Key has data
within it.

When interpreting the data from this function, it should be noted that if a class of printable characters
that are normally adjusted by shift modifiers (e.g. Shift Key + "f" key) would be presented solely as
a KeyData.Key.UnicodeChar without the associated shift state. So in the previous example
of a Shift Key + "f" key being pressed, the only pertinent data returned would be
KeyData.Key.UnicodeChar with the value of "F". This of course would not typically be the
case for non-printable characters such as the pressing of the Right Shift Key + F10 key since the
corresponding returned data would be reflected both in the
KeyData.KeyState.KeyShiftState and KeyData.Key.ScanCode values.

UEFI drivers which implement the EFI_SIMPLE_TEXT_INPUT_EX protocol are required to
return KeyData.Key and KeyData.KeyState values. These drivers must always return the
most current state of KeyData.KeyState.KeyShiftState and
KeyData.KeyState.KeyToggleState. It should also be noted that certain input devices
may not be able to produce shift or toggle state information, and in those cases the high order bit in
the respective Toggle and Shift state fields should not be active.

If the EFI_KEY_STATE_EXPOSED bit is turned on, then this instance of the
EFI_SIMPLE_INPUT_EX_PROTOCOL supports the ability to return partial keystrokes. With
EFI_KEY_STATE_EXPOSED bit enabled, the ReadKeyStrokeEx function will allow the return
of incomplete keystrokes such as the holding down of certain keys which are expressed as a part of
KeyState when there is no Key data.

Status Codes Returned

EFI_SUCCESS The keystroke information was returned.

EFI_NOT_READY There was no keystroke data available.

EFI_DEVICE_ERROR The keystroke information was not returned due to hardware errors.
462 April, 2015 Version 2.5

Protocols — Console Support
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.SetState()

Summary
Set certain state for the input device.

Prototype
typedef

EFI_STATUS
(EFIAPI *EFI_SET_STATE) (
 IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
 IN EFI_KEY_TOGGLE_STATE *KeyToggleState
);

Parameters
This A pointer to the

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL instance. Type
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL is defined in
this section.

KeyToggleState Pointer to the EFI_KEY_TOGGLE_STATE to set the state for
the input device. Type EFI_KEY_TOGGLE_STATE is defined in
"Related Definitions" for
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.ReadKeySt
rokeEx(), above.

The SetState() function allows the input device hardware to have state settings adjusted. By calling
the SetState() function with the EFI_KEY_STATE_EXPOSED bit active in the
KeyToggleState parameter, this will enable the ReadKeyStrokeEx function to return
incomplete keystrokes such as the holding down of certain keys which are expressed as a part of
KeyState when there is no Key data.

Status Codes Returned

EFI_SUCCESS The device state was set appropriately.

EFI_DEVICE_ERROR The device is not functioning correctly and could not have the setting
adjusted.

EFI_UNSUPPORTED The device does not support the ability to have its state set or the
requested state change was not supported.
Version 2.5 April, 2015 463

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.RegisterKeyNotify()

Summary
Register a notification function for a particular keystroke for the input device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_REGISTER_KEYSTROKE_NOTIFY) (
 IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
 IN EFI_KEY_DATA *KeyData,
 IN EFI_KEY_NOTIFY_FUNCTION KeyNotificationFunction,
 OUT VOID **NotifyHandle
);

Parameters
This A pointer to the

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL is
defined in this section.

KeyData A pointer to a buffer that is filled in with the keystroke
information for the key that was pressed.

KeyNotificationFunction
Points to the function to be called when the key sequence is typed
specified by KeyData. See EFI_KEY_NOTIFY_FUNCTION
below.

NotifyHandle Points to the unique handle assigned to the registered notification.

Description
The RegisterKeystrokeNotify() function registers a function which will be called when a
specified keystroke will occur. The keystroke being specified can be for any combination of
KeyData.Key or KeyData.KeyState information.

Related Definitions
//***
// EFI_KEY_NOTIFY
//***
typedef
EFI_STATUS
(EFIAPI *EFI_KEY_NOTIFY_FUNCTION) (
 IN EFI_KEY_DATA *KeyData
);

Status Codes Returned

EFI_SUCCESS The device state was set appropriately.
464 April, 2015 Version 2.5

Protocols — Console Support
EFI_OUT_OF_RESOURCES Unable to allocate necessary data structures.
Version 2.5 April, 2015 465

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.UnregisterKeyNotify()

Summary
Set certain state for the input device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UNREGISTER_KEYSTROKE_NOTIFY) (
 IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
 IN VOID *NotificationHandle
);

Parameters
This A pointer to the

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL instance.
Type EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL is defined
in this section.

NotificationHandle The handle of the notification function being unregistered.

Description
The UnregisterKeystrokeNotify() function removes the notification which was
previously registered.

Status Codes Returned

11.3 Simple Text Input Protocol
The Simple Text Input protocol defines the minimum input required to support the ConsoleIn
device.

EFI_SIMPLE_TEXT_INPUT_PROTOCOL

Summary
This protocol is used to obtain input from the ConsoleIn device. The EFI specification requires
that the EFI_SIMPLE_TEXT_INPUT_PROTOCOL supports the same languages as the
corresponding EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.

EFI_SUCCESS The device state was set appropriately.

EFI_INVALID_PARAMETER The NotificationHandle is invalid.
466 April, 2015 Version 2.5

Protocols — Console Support
GUID
#define EFI_SIMPLE_TEXT_INPUT_PROTOCOL_GUID \
{0x387477c1,0x69c7,0x11d2,\
 {0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,0x3b}}

Protocol Interface Structure
typedef struct _EFI_SIMPLE_TEXT_INPUT_PROTOCOL {
 EFI_INPUT_RESET Reset;
 EFI_INPUT_READ_KEY ReadKeyStroke;
 EFI_EVENT WaitForKey;
} EFI_SIMPLE_TEXT_INPUT_PROTOCOL;

Parameters
Reset Reset the ConsoleIn device. See Reset().

ReadKeyStroke Returns the next input character. See ReadKeyStroke().

WaitForKey Event to use with
EFI_BOOT_SERVICES.WaitForEvent() to wait for a key
to be available.

Description
The EFI_SIMPLE_TEXT_INPUT_PROTOCOL is used on the ConsoleIn device. It is the
minimum required protocol for ConsoleIn.
Version 2.5 April, 2015 467

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_TEXT_INPUT_PROTOCOL.Reset()

Summary
Resets the input device hardware.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_INPUT_RESET) (
 IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
);

Parameters
This A pointer to the EFI_SIMPLE_TEXT_INPUT_PROTOCOL

instance. Type EFI_SIMPLE_TEXT_INPUT_PROTOCOL is
defined in Section 11.3

ExtendedVerification
Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description
The Reset() function resets the input device hardware.

The implementation of Reset is required to clear the contents of any input queues resident in
memory used for buffering keystroke data and put the input stream in a known empty state.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the firmware
may take an extended amount of time to verify the device is operating on reset. Otherwise the reset
operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Status Codes Returned

EFI_SUCCESS The device was reset.

EFI_DEVICE_ERROR The device is not functioning correctly and could not be reset.
468 April, 2015 Version 2.5

Protocols — Console Support
EFI_SIMPLE_TEXT_INPUT_PROTOCOL.ReadKeyStroke()

Summary
Reads the next keystroke from the input device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_INPUT_READ_KEY) (
 IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,
 OUT EFI_INPUT_KEY *Key
);

Parameters
This A pointer to the EFI_SIMPLE_TEXT_INPUT_PROTOCOL

instance. Type EFI_SIMPLE_TEXT_INPUT_PROTOCOL is
defined in Section 11.3.

Key A pointer to a buffer that is filled in with the keystroke
information for the key that was pressed. Type
EFI_INPUT_KEY is defined in “Related Definitions” below.

Related Definitions
//***
// EFI_INPUT_KEY
//***
typedef struct {
 UINT16 ScanCode;
 CHAR16 UnicodeChar;
} EFI_INPUT_KEY;

Description
The ReadKeyStroke() function reads the next keystroke from the input device. If there is
no pending keystroke the function returns EFI_NOT_READY. If there is a pending keystroke,
then ScanCode is the EFI scan code defined in Table 98. The UnicodeChar is the actual
printable character or is zero if the key does not represent a printable character (control key, function
key, etc.).

Status Codes Returned

11.3.1 ConsoleOut or StandardError
The EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL must implement the same Unicode code pages as
the EFI_SIMPLE_TEXT_INPUT_PROTOCOL. The protocol must also support the Unicode

EFI_SUCCESS The keystroke information was returned.

EFI_NOT_READY There was no keystroke data available.

EFI_DEVICE_ERROR The keystroke information was not returned due to hardware errors.
Version 2.5 April, 2015 469

Unified Extensible Firmware Interface Specification
control characters defined in Table 97. The EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL supports
special manipulation of the screen by programmatic methods and therefore does not support the EFI
scan codes defined in Table 98.

11.4 Simple Text Output Protocol
The Simple Text Output protocol defines the minimum requirements for a text-based ConsoleOut
device. The EFI specification requires that the EFI_SIMPLE_TEXT_INPUT_PROTOCOL
support the same languages as the corresponding EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

Summary
This protocol is used to control text-based output devices.

GUID
#define EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL_GUID \
 {0x387477c2,0x69c7,0x11d2,\
 {0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,0x3b}}

Protocol Interface Structure
typedef struct _EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL {
 EFI_TEXT_RESET Reset;
 EFI_TEXT_STRING OutputString;
 EFI_TEXT_TEST_STRING TestString;
 EFI_TEXT_QUERY_MODE QueryMode;
 EFI_TEXT_SET_MODE SetMode;
 EFI_TEXT_SET_ATTRIBUTE SetAttribute;
 EFI_TEXT_CLEAR_SCREEN ClearScreen;
 EFI_TEXT_SET_CURSOR_POSITION SetCursorPosition;
 EFI_TEXT_ENABLE_CURSOR EnableCursor;
 SIMPLE_TEXT_OUTPUT_MODE *Mode;
} EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL;

Parameters
Reset Reset the ConsoleOut device. See Reset().

OutputString Displays the string on the device at the current cursor location.
See OutputString().

TestString Tests to see if the ConsoleOut device supports this string. See
TestString().

QueryMode Queries information concerning the output device’s supported
text mode. See QueryMode().

SetMode Sets the current mode of the output device. See SetMode().

SetAttribute Sets the foreground and background color of the text that is
output. See SetAttribute().
470 April, 2015 Version 2.5

Protocols — Console Support
ClearScreen Clears the screen with the currently set background color. See
ClearScreen().

SetCursorPosition Sets the current cursor position. See
SetCursorPosition().

EnableCursor Turns the visibility of the cursor on/off. See
EnableCursor().

Mode Pointer to SIMPLE_TEXT_OUTPUT_MODE data. Type
SIMPLE_TEXT_OUTPUT_MODE is defined in “Related
Definitions” below.

The following data values in the SIMPLE_TEXT_OUTPUT_MODE interface are read-only and are
changed by using the appropriate interface functions:

MaxMode The number of modes supported by QueryMode() and
SetMode().

Mode The text mode of the output device(s).

Attribute The current character output attribute.

CursorColumn The cursor’s column.

CursorRow The cursor’s row.

CursorVisible The cursor is currently visible or not.

Related Definitions

//***
// SIMPLE_TEXT_OUTPUT_MODE
//***
typedef struct {
 INT32 MaxMode;
 // current settings
 INT32 Mode;
 INT32 Attribute;
 INT32 CursorColumn;
 INT32 CursorRow;
 BOOLEAN CursorVisible;
} SIMPLE_TEXT_OUTPUT_MODE;

Description
The SIMPLE_TEXT_OUTPUT protocol is used to control text-based output devices. It is the
minimum required protocol for any handle supplied as the ConsoleOut or StandardError
device. In addition, the minimum supported text mode of such devices is at least 80 x 25 characters.

A video device that only supports graphics mode is required to emulate text mode functionality.
Output strings themselves are not allowed to contain any control codes other than those defined in
Table 97. Positional cursor placement is done only via the SetCursorPosition() function. It
is highly recommended that text output to the StandardError device be limited to sequential
Version 2.5 April, 2015 471

Unified Extensible Firmware Interface Specification
string outputs. (That is, it is not recommended to use ClearScreen() or
SetCursorPosition() on output messages to StandardError.)

If the output device is not in a valid text mode at the time of the
EFI_BOOT_SERVICES.HandleProtocol() call, the device is to indicate that its
CurrentMode is –1. On connecting to the output device the caller is required to verify the mode
of the output device, and if it is not acceptable to set it to something it can use.
472 April, 2015 Version 2.5

Protocols — Console Support
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.Reset()

Summary
Resets the text output device hardware.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TEXT_RESET) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
);

Parameters
This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

instance. Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is
defined in the “Related Definitions” of Section 11.4.

ExtendedVerificationIndicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description
The Reset() function resets the text output device hardware. The cursor position is set to (0, 0),
and the screen is cleared to the default background color for the output device.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the firmware
may take an extended amount of time to verify the device is operating on reset. Otherwise the reset
operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Status Codes Returned

EFI_SUCCESS The text output device was reset.

EFI_DEVICE_ERROR The text output device is not functioning correctly and could not be reset.
Version 2.5 April, 2015 473

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.OutputString()

Summary
Writes a string to the output device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TEXT_STRING) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
 IN CHAR16 *String
);

Parameters
This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

instance. Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is
defined in the “Related Definitions” of Section 11.4.

String The Null-terminated string to be displayed on the output
device(s). All output devices must also support the Unicode
drawing character codes defined in “Related Definitions.”
474 April, 2015 Version 2.5

Protocols — Console Support
Related Definitions

//***
// UNICODE DRAWING CHARACTERS
//***

#define BOXDRAW_HORIZONTAL 0x2500
#define BOXDRAW_VERTICAL 0x2502
#define BOXDRAW_DOWN_RIGHT 0x250c
#define BOXDRAW_DOWN_LEFT 0x2510
#define BOXDRAW_UP_RIGHT 0x2514
#define BOXDRAW_UP_LEFT 0x2518
#define BOXDRAW_VERTICAL_RIGHT 0x251c
#define BOXDRAW_VERTICAL_LEFT 0x2524
#define BOXDRAW_DOWN_HORIZONTAL 0x252c
#define BOXDRAW_UP_HORIZONTAL 0x2534
#define BOXDRAW_VERTICAL_HORIZONTAL 0x253c

#define BOXDRAW_DOUBLE_HORIZONTAL 0x2550
#define BOXDRAW_DOUBLE_VERTICAL 0x2551
#define BOXDRAW_DOWN_RIGHT_DOUBLE 0x2552
#define BOXDRAW_DOWN_DOUBLE_RIGHT 0x2553
#define BOXDRAW_DOUBLE_DOWN_RIGHT 0x2554
#define BOXDRAW_DOWN_LEFT_DOUBLE 0x2555
#define BOXDRAW_DOWN_DOUBLE_LEFT 0x2556
#define BOXDRAW_DOUBLE_DOWN_LEFT 0x2557

#define BOXDRAW_UP_RIGHT_DOUBLE 0x2558
#define BOXDRAW_UP_DOUBLE_RIGHT 0x2559
#define BOXDRAW_DOUBLE_UP_RIGHT 0x255a

#define BOXDRAW_UP_LEFT_DOUBLE 0x255b
#define BOXDRAW_UP_DOUBLE_LEFT 0x255c
#define BOXDRAW_DOUBLE_UP_LEFT 0x255d

#define BOXDRAW_VERTICAL_RIGHT_DOUBLE 0x255e
#define BOXDRAW_VERTICAL_DOUBLE_RIGHT 0x255f
#define BOXDRAW_DOUBLE_VERTICAL_RIGHT 0x2560

#define BOXDRAW_VERTICAL_LEFT_DOUBLE 0x2561
#define BOXDRAW_VERTICAL_DOUBLE_LEFT 0x2562
#define BOXDRAW_DOUBLE_VERTICAL_LEFT 0x2563

#define BOXDRAW_DOWN_HORIZONTAL_DOUBLE 0x2564
#define BOXDRAW_DOWN_DOUBLE_HORIZONTAL 0x2565
#define BOXDRAW_DOUBLE_DOWN_HORIZONTAL 0x2566
Version 2.5 April, 2015 475

Unified Extensible Firmware Interface Specification
#define BOXDRAW_UP_HORIZONTAL_DOUBLE 0x2567
#define BOXDRAW_UP_DOUBLE_HORIZONTAL 0x2568
#define BOXDRAW_DOUBLE_UP_HORIZONTAL 0x2569

#define BOXDRAW_VERTICAL_HORIZONTAL_DOUBLE 0x256a
#define BOXDRAW_VERTICAL_DOUBLE_HORIZONTAL 0x256b
#define BOXDRAW_DOUBLE_VERTICAL_HORIZONTAL 0x256c

//***
// EFI Required Block Elements Code Chart
//***

#define BLOCKELEMENT_FULL_BLOCK 0x2588
#define BLOCKELEMENT_LIGHT_SHADE 0x2591

//***
// EFI Required Geometric Shapes Code Chart
//***

#define GEOMETRICSHAPE_UP_TRIANGLE 0x25b2
#define GEOMETRICSHAPE_RIGHT_TRIANGLE 0x25ba
#define GEOMETRICSHAPE_DOWN_TRIANGLE 0x25bc
#define GEOMETRICSHAPE_LEFT_TRIANGLE 0x25c4

//***
// EFI Required Arrow shapes
//***

#define ARROW_UP 0x2191
#define ARROW_DOWN 0x2193

Description
The OutputString() function writes a string to the output device. This is the most basic output
mechanism on an output device. The String is displayed at the current cursor location on the
output device(s) and the cursor is advanced according to the rules listed in Table 100.

Table 100. EFI Cursor Location/Advance Rules

Mnemonic Unicode Description

Null U+0000 Ignore the character, and do not move the cursor.

BS U+0008 If the cursor is not at the left edge of the display, then move the cursor left one
column.

LF U+000A If the cursor is at the bottom of the display, then scroll the display one row, and do
not update the cursor position. Otherwise, move the cursor down one row.

CR U+000D Move the cursor to the beginning of the current row.
476 April, 2015 Version 2.5

Protocols — Console Support
Note: If desired, the system’s NVRAM environment variables may be used at install time to determine
the configured locale of the system or the installation procedure can query the user for the proper
language support. This is then used to either install the proper EFI image/loader or to configure
the installed image’s strings to use the proper text for the selected locale.

Status Codes Returned

Other U+XXXX Print the character at the current cursor position and move the cursor right one
column. If this moves the cursor past the right edge of the display, then the line
should wrap to the beginning of the next line. This is equivalent to inserting a CR
and an LF. Note that if the cursor is at the bottom of the display, and the line
wraps, then the display will be scrolled one line.

EFI_SUCCESS The string was output to the device.

EFI_DEVICE_ERROR The device reported an error while attempting to output
the text.

EFI_UNSUPPORTED The output device’s mode is not currently in a defined text
mode.

EFI_WARN_UNKNOWN_GLYPH This warning code indicates that some of the characters in
the string could not be rendered and were skipped.

Mnemonic Unicode Description
Version 2.5 April, 2015 477

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.TestString()

Summary
Verifies that all characters in a string can be output to the target device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TEXT_TEST_STRING) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
 IN CHAR16 *String
);

Parameters
This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

instance. Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is
defined in the “Related Definitions” of Section 11.4.

String The Null-terminated string to be examined for the output
device(s).

Description
The TestString() function verifies that all characters in a string can be output to the target
device.

This function provides a way to know if the desired character codes are supported for rendering on
the output device(s). This allows the installation procedure (or EFI image) to at least select character
codes that the output devices are capable of displaying. Since the output device(s) may be changed
between boots, if the loader cannot adapt to such changes it is recommended that the loader call
OutputString() with the text it has and ignore any “unsupported” error codes. Devices that are
capable of displaying the Unicode character codes will do so.

Status Codes Returned

EFI_SUCCESS The device(s) are capable of rendering the output string.

EFI_UNSUPPORTED Some of the characters in the string cannot be rendered by one or
more of the output devices mapped by the EFI handle.
478 April, 2015 Version 2.5

Protocols — Console Support
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.QueryMode()

Summary
Returns information for an available text mode that the output device(s) supports.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TEXT_QUERY_MODE) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
 IN UINTN ModeNumber,
 OUT UINTN *Columns,
 OUT UINTN *Rows
);

Parameters
This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

instance. Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is
defined in the “Related Definitions” of Section 11.4.

ModeNumber The mode number to return information on.

Columns, Rows Returns the geometry of the text output device for the request
ModeNumber.

Description
The QueryMode() function returns information for an available text mode that the output
device(s) supports.

It is required that all output devices support at least 80x25 text mode. This mode is defined to be
mode 0. If the output devices support 80x50, that is defined to be mode 1. All other text dimensions
supported by the device will follow as modes 2 and above. If an output device supports modes 2 and
above, but does not support 80x50, then querying for mode 1 will return EFI_UNSUPPORTED.

Status Codes Returned

EFI_SUCCESS The requested mode information was returned.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The mode number was not valid.
Version 2.5 April, 2015 479

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetMode()

Summary
Sets the output device(s) to a specified mode.

Prototype
typedef
EFI_STATUS
(* EFIAPI EFI_TEXT_SET_MODE) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
 IN UINTN ModeNumber
);

Parameters
This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

instance. Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is
defined in the “Related Definitions” of Section 11.4.

ModeNumber The text mode to set.

Description
The SetMode() function sets the output device(s) to the requested mode. On success the device is
in the geometry for the requested mode, and the device has been cleared to the current background
color with the cursor at (0,0).

Status Codes Returned

EFI_SUCCESS The requested text mode was set.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The mode number was not valid.
480 April, 2015 Version 2.5

Protocols — Console Support
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetAttribute()

Summary
Sets the background and foreground colors for theOutputString() and ClearScreen()
functions.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TEXT_SET_ATTRIBUTE) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
 IN UINTN Attribute
);

Parameters
This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

instance. Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is
defined in the “Related Definitions” of Section 11.4.

Attribute The attribute to set. Bits 0..3 are the foreground color, and bits
4..6 are the background color. All other bits are reserved. See
“Related Definitions” below.

Related Definitions
Version 2.5 April, 2015 481

Unified Extensible Firmware Interface Specification
//***
// Attributes
//***
#define EFI_BLACK 0x00
#define EFI_BLUE 0x01
#define EFI_GREEN 0x02
#define EFI_CYAN 0x03
#define EFI_RED 0x04
#define EFI_MAGENTA 0x05
#define EFI_BROWN 0x06
#define EFI_LIGHTGRAY 0x07
#define EFI_BRIGHT 0x08
#define EFI_DARKGRAY(EFI_BLACK | EFI_BRIGHT) 0x08
#define EFI_LIGHTBLUE 0x09
#define EFI_LIGHTGREEN 0x0A
#define EFI_LIGHTCYAN 0x0B
#define EFI_LIGHTRED 0x0C
#define EFI_LIGHTMAGENTA 0x0D
#define EFI_YELLOW 0x0E
#define EFI_WHITE 0x0F

#define EFI_BACKGROUND_BLACK 0x00
#define EFI_BACKGROUND_BLUE 0x10
#define EFI_BACKGROUND_GREEN 0x20
#define EFI_BACKGROUND_CYAN 0x30
#define EFI_BACKGROUND_RED 0x40
#define EFI_BACKGROUND_MAGENTA 0x50
#define EFI_BACKGROUND_BROWN 0x60
#define EFI_BACKGROUND_LIGHTGRAY 0x70
//
// Macro to accept color values in their raw form to create
// a value that represents both a foreground and background
// color in a single byte.
// For Foreground, and EFI_* value is valid from EFI_BLACK(0x00)
// to EFI_WHITE (0x0F).
// For Background, only EFI_BLACK, EFI_BLUE, EFI_GREEN,
// EFI_CYAN, EFI_RED, EFI_MAGENTA, EFI_BROWN, and EFI_LIGHTGRAY
// are acceptable.
//
// Do not use EFI_BACKGROUND_xxx values with this macro.
//#define EFI_TEXT_ATTR(Foreground,Background) \
((Foreground) | ((Background) << 4))

Description
The SetAttribute() function sets the background and foreground colors for the
OutputString() and ClearScreen() functions.
482 April, 2015 Version 2.5

Protocols — Console Support
The color mask can be set even when the device is in an invalid text mode.

Devices supporting a different number of text colors are required to emulate the above colors to the
best of the device’s capabilities.

Status Codes Returned

EFI_SUCCESS The requested attributes were set.

EFI_DEVICE_ERROR The device had an error and could not complete the request.
Version 2.5 April, 2015 483

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.ClearScreen()

Summary
Clears the output device(s) display to the currently selected background color.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TEXT_CLEAR_SCREEN) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This
);

Parameters
This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

instance. Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is
defined in the “Related Definitions” of Section 11.4.

Description
The ClearScreen() function clears the output device(s) display to the currently selected
background color. The cursor position is set to (0, 0).

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The output device is not in a valid text mode.
484 April, 2015 Version 2.5

Protocols — Console Support
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetCursorPosition()

Summary
Sets the current coordinates of the cursor position.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TEXT_SET_CURSOR_POSITION) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
 IN UINTN Column,
 IN UINTN Row
);

Parameters
This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

instance. Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is
defined in the “Related Definitions” of Section 11.4.

Column, Row The position to set the cursor to. Must greater than or equal to
zero and less than the number of columns and rows returned by
QueryMode().

Description
The SetCursorPosition() function sets the current coordinates of the cursor position. The
upper left corner of the screen is defined as coordinate (0, 0).

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The output device is not in a valid text mode, or the cursor
position is invalid for the current mode.
Version 2.5 April, 2015 485

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.EnableCursor()

Summary
Makes the cursor visible or invisible.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TEXT_ENABLE_CURSOR) (
 IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
 IN BOOLEAN Visible
);

Parameters
This A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

instance. Type EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL is
defined in the “Related Definitions” of Section 11.4.

Visible If TRUE, the cursor is set to be visible. If FALSE, the cursor is
set to be invisible.

Description
The EnableCursor() function makes the cursor visible or invisible.

Status Codes Returned

11.5 Simple Pointer Protocol
This section defines the Simple Pointer Protocol and a detailed description of the
EFI_SIMPLE_POINTER_PROTOCOL. The intent of this section is to specify a simple method for
accessing pointer devices. This would include devices such as mice and trackballs.

The EFI_SIMPLE_POINTER_PROTOCOL allows information about a pointer device to be
retrieved. This would include the status of buttons and the motion of the pointer device since the last
time it was accessed. This protocol is attached the device handle of a pointer device, and can be used
for input from the user in the preboot environment.

EFI_SIMPLE_POINTER_PROTOCOL

Summary
Provides services that allow information about a pointer device to be retrieved.

EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request or the
device does not support changing the cursor mode.

EFI_UNSUPPORTED The output device does not support visibility control of the cursor.
486 April, 2015 Version 2.5

Protocols — Console Support
GUID
#define EFI_SIMPLE_POINTER_PROTOCOL_GUID \
 {0x31878c87,0xb75,0x11d5,\
 {0x9a,0x4f,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

Protocol Interface Structure
typedef struct _EFI_SIMPLE_POINTER_PROTOCOL {
 EFI_SIMPLE_POINTER_RESET Reset;
 EFI_SIMPLE_POINTER_GET_STATE GetState;
 EFI_EVENT WaitForInput;
 EFI_SIMPLE_INPUT_MODE *Mode;
} EFI_SIMPLE_POINTER_PROTOCOL;

Parameters
Reset Resets the pointer device. See the Reset() function

description.

GetState Retrieves the current state of the pointer device. See the
GetState() function description.

WaitForInput Event to use with
EFI_BOOT_SERVICES.WaitForEvent() to wait for input
from the pointer device.

Mode Pointer to EFI_SIMPLE_POINTER_MODE data. The type
EFI_SIMPLE_POINTER_MODE is defined in “Related
Definitions” below.

Related Definitions
//***
// EFI_SIMPLE_POINTER_MODE
//***
typedef struct {
 UINT64 ResolutionX;
 UINT64 ResolutionY;
 UINT64 ResolutionZ;
 BOOLEAN LeftButton;
 BOOLEAN RightButton;
} EFI_SIMPLE_POINTER_MODE;

The following data values in the EFI_SIMPLE_POINTER_MODE interface are read-only and are
changed by using the appropriate interface functions:

ResolutionX The resolution of the pointer device on the x-axis in counts/mm.
If 0, then the pointer device does not support an x-axis.

ResolutionY The resolution of the pointer device on the y-axis in counts/mm.
If 0, then the pointer device does not support a y-axis.

ResolutionZ The resolution of the pointer device on the z-axis in counts/mm.
If 0, then the pointer device does not support a z-axis.
Version 2.5 April, 2015 487

Unified Extensible Firmware Interface Specification
LeftButton TRUE if a left button is present on the pointer device. Otherwise
FALSE.

RightButton TRUE if a right button is present on the pointer device. Otherwise
FALSE.

Description
The EFI_SIMPLE_POINTER_PROTOCOL provides a set of services for a pointer device that
can use used as an input device from an application written to this specification. The services
include the ability to reset the pointer device, retrieve get the state of the pointer device, and retrieve
the capabilities of the pointer device.
488 April, 2015 Version 2.5

Protocols — Console Support
EFI_SIMPLE_POINTER_PROTOCOL.Reset()

Summary
Resets the pointer device hardware.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_POINTER_RESET) (
 IN EFI_SIMPLE_POINTER_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
);

Parameters
This A pointer to the EFI_SIMPLE_POINTER_PROTOCOL

instance. Type EFI_SIMPLE_POINTER_PROTOCOL is
defined in Section 11.5.

ExtendedVerification
Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description
This Reset() function resets the pointer device hardware.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the firmware
may take an extended amount of time to verify the device is operating on reset. Otherwise the reset
operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Status Codes Returned

EFI_SUCCESS The device was reset.

EFI_DEVICE_ERROR The device is not functioning correctly and could not be reset.
Version 2.5 April, 2015 489

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_POINTER_PROTOCOL.GetState()

Summary
Retrieves the current state of a pointer device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_POINTER_GET_STATE)
 IN EFI_SIMPLE_POINTER_PROTOCOL *This,
 IN OUT EFI_SIMPLE_POINTER_STATE *State
);

Parameters
This A pointer to the EFI_SIMPLE_POINTER_PROTOCOL

instance. Type EFI_SIMPLE_POINTER_PROTOCOL is
defined in Section 11.5.

State A pointer to the state information on the pointer device. Type
EFI_SIMPLE_POINTER_STATE is defined in “Related
Definitions” below.

Related Definitions
//***
// EFI_SIMPLE_POINTER_STATE
//***
typedef struct {
 INT32 RelativeMovementX;
 INT32 RelativeMovementY;
 INT32 RelativeMovementZ;
 BOOLEAN LeftButton;
 BOOLEAN RightButton;
} EFI_SIMPLE_POINTER_STATE;

RelativeMovementX The signed distance in counts that the pointer device has been
moved along the x-axis. The actual distance moved is
RelativeMovementX / ResolutionX millimeters. If the
ResolutionX field of the EFI_SIMPLE_POINTER_MODE
structure is 0, then this pointer device does not support an x-axis,
and this field must be ignored.

RelativeMovementY The signed distance in counts that the pointer device has been
moved along the y-axis. The actual distance moved is
RelativeMovementY / ResolutionY millimeters. If the
ResolutionY field of the EFI_SIMPLE_POINTER_MODE
structure is 0, then this pointer device does not support a y-axis,
and this field must be ignored.
490 April, 2015 Version 2.5

Protocols — Console Support
RelativeMovementZ The signed distance in counts that the pointer device has been
moved along the z-axis. The actual distance moved is
RelativeMovementZ / ResolutionZ millimeters. If the
ResolutionZ field of the EFI_SIMPLE_POINTER_MODE
structure is 0, then this pointer device does not support a z-axis,
and this field must be ignored.

LeftButton If TRUE, then the left button of the pointer device is being
pressed. If FALSE, then the left button of the pointer device is
not being pressed. If the LeftButton field of the
EFI_SIMPLE_POINTER_MODE structure is FALSE, then this
field is not valid, and must be ignored.

RightButton If TRUE, then the right button of the pointer device is being
pressed. If FALSE, then the right button of the pointer device is
not being pressed. If the RightButton field of the
EFI_SIMPLE_POINTER_MODE structure is FALSE, then this
field is not valid, and must be ignored.

Description
The GetState() function retrieves the current state of a pointer device. This includes
information on the buttons associated with the pointer device and the distance that each of the axes
associated with the pointer device has been moved. If the state of the pointer device has not changed
since the last call to GetState(), then EFI_NOT_READY is returned. If the state of the pointer
device has changed since the last call to GetState(), then the state information is placed in
State, and EFI_SUCCESS is returned. If a device error occurs while attempting to retrieve the
state information, then EFI_DEVICE_ERROR is returned.

Status Codes Returned

11.6 EFI Simple Pointer Device Paths
An EFI_SIMPLE_POINTER_PROTOCOL must be installed on a handle for its services to be
available to drivers and applications written to this specification. In addition to the
EFI_SIMPLE_POINTER_PROTOCOL, an EFI_DEVICE_PATH_PROTOCOL must also be
installed on the same handle. See Section 9.2 for a detailed description of the
EFI_DEVICE_PATH_PROTOCOL.

A device path describes the location of a hardware component in a system from the processor’s point
of view. This includes the list of busses that lie between the processor and the pointer controller.
The UEFI Specification takes advantage of the ACPI Specification to name system components.
The following set of examples shows sample device paths for a PS/2* mouse, a serial mouse, and a
USB mouse.

EFI_SUCCESS The state of the pointer device was returned in State.

EFI_NOT_READY The state of the pointer device has not changed since the last call to

GetState().

EFI_DEVICE_ERROR A device error occurred while attempting to retrieve the pointer device's
current state.
Version 2.5 April, 2015 491

Unified Extensible Firmware Interface Specification
Table 101 shows an example device path for a PS/2 mouse that is located behind a PCI to ISA bridge
that is located at PCI device number 0x07 and PCI function 0x00, and is directly attached to a PCI
root bridge. This device path consists of an ACPI Device Path Node for the PCI Root Bridge, a PCI
Device Path Node for the PCI to ISA bridge, an ACPI Device Path Node for the PS/2 mouse, and a
Device Path End Structure. The _HID and _UID of the first ACPI Device Path Node must match the
ACPI table description of the PCI Root Bridge. The shorthand notation for this device path is:
ACPI(PNP0A03,0)/PCI(7,0)/ACPI(PNP0F03,0)

Table 101. PS/2 Mouse Device Path

Table 102 shows an example device path for a serial mouse that is located on COM 1 behind a PCI
to ISA bridge that is located at PCI device number 0x07 and PCI function 0x00. The PCI to ISA
bridge is directly attached to a PCI root bridge, and the communications parameters for COM 1 are
1200 baud, no parity, 8 data bits, and 1 stop bit. This device path consists of an ACPI Device Path
Node for the PCI Root Bridge, a PCI Device Path Node for the PCI to ISA bridge, an ACPI Device
Path Node for COM 1, a UART Device Path Node for the communications parameters, an ACPI
Device Path Node for the serial mouse, and a Device Path End Structure. The _HID and _UID of the
first ACPI Device Path Node must match the ACPI table description of the PCI Root Bridge. The
shorthand notation for this device path is:

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes. The compression method is described in the ACPI
Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x13 0x01 0x01 Sub type – ACPI Device Path

0x14 0x02 0x0C Length – 0x0C bytes

0x16 0x04 0x41D0,
0x0F03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes. The compression method is described in the ACPI
Specification.

0x1A 0x04 0x0000 _UID

0x1E 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x1F 0x01 0xFF Sub type – End of Entire Device Path

0x20 0x02 0x04 Length – 0x04 bytes
492 April, 2015 Version 2.5

Protocols — Console Support
ACPI(PNP0A03,0)/PCI(7,0)/ACPI(PNP0501,0)/UART(1200,N,8,1)/
ACPI(PNP0F01,0)

Table 102. Serial Mouse Device Path

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x13 0x01 0x01 Sub type – ACPI Device Path

0x14 0x02 0x0C Length – 0x0C bytes

0x16 0x04 0x41D0,
0x0501

_HID PNP0501 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x1A 0x04 0x0000 _UID

0x1E 0x01 0x03 Generic Device Path Header – Messaging Device Path

0x1F 0x01 0x0E Sub type – UART Device Path

0x20 0x02 0x13 Length – 0x13 bytes

0x22 0x04 0x00 Reserved

0x26 0x08 1200 Baud Rate

0x2E 0x01 0x08 Data Bits

0x2F 0x01 0x01 Parity

0x30 0x01 0x01 Stop Bits

0x31 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x32 0x01 0x01 Sub type – ACPI Device Path

0x33 0x02 0x0C Length – 0x0C bytes

0x35 0x04 0x41D0,
0x0F01

_HID PNP0F01 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x39 0x04 0x0000 _UID

0x3D 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x3E 0x01 0xFF Sub type – End of Entire Device Path
Version 2.5 April, 2015 493

Unified Extensible Firmware Interface Specification
Table 103 shows an example device path for a USB mouse that is behind a PCI to USB host
controller that is located at PCI device number 0x07 and PCI function 0x02. The PCI to USB host
controller is directly attached to a PCI root bridge. This device path consists of an ACPI Device
Path Node for the PCI Root Bridge, a PCI Device Path Node for the PCI to USB controller, a USB
Device Path Node, and a Device Path End Structure. The _HID and _UID of the first ACPI Device
Path Node must match the ACPI table description of the PCI Root Bridge. The shorthand notation
for this device path is:
ACPI(PNP0A03,0)/PCI(7,2)/USB(0,0)

Table 103. USB Mouse Device Path

11.7 Absolute Pointer Protocol
This section defines the Absolute Pointer Protocol and a detailed description of the
EFI_ABSOLUTE_POINTER_PROTOCOL. The intent of this section is to specify a simple method

for accessing absolute pointer devices. This would include devices like touch screens, and digitizers.

The EFI_ABSOLUTE_POINTER_PROTOCOL allows information about a pointer device to be

0x3F 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x02 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Messaging Device Path

0x13 0x01 0x05 Sub type – USB

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 USB Port Number

0x17 0x01 0x00 USB Endpoint Number

0x18 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x19 0x01 0xFF Sub type – End of Entire Device Path

0x1A 0x02 0x04 Length – 0x04 bytes
494 April, 2015 Version 2.5

Protocols — Console Support
retrieved. This would include the status of buttons and the coordinates of the pointer device on the
last time it was activated. This protocol is attached to the device handle of an absolute pointer
device, and can be used for input from the user in the preboot environment.

Supported devices may return 1, 2, or 3 axis of information. The Z axis may optionally be used to
return pressure data measurements derived from user pen force.

All supported devices must support a touch-active status. Supported devices may optionally support
a second input button, for example a pen side-button.

EFI_ABSOLUTE_POINTER_PROTOCOL

Summary
Provides services that allow information about a absolute pointer device to be retrieved.

GUID
#define EFI_ABSOLUTE_POINTER_PROTOCOL_GUID \
 {0x8D59D32B, 0xC655, 0x4AE9, \
 {0x9B, 0x15, 0xF2, 0x59, 0x04, 0x99, 0x2A, 0x43}}

Protocol Interface Structure
typedef struct _EFI_ABSOLUTE_POINTER_PROTOCOL {
 EFI_ABSOLUTE_POINTER_RESET Reset;
 EFI_ABSOLUTE_POINTER_GET_STATE GetState;
 EFI_EVENT WaitForInput;
 EFI_ABSOLUTE_POINTER_MODE *Mode;
} EFI_ABSOLUTE_POINTER_PROTOCOL;

Parameters
Reset Resets the pointer device. See the Reset() function description.

GetState Retrieves the current state of the pointer device. See the
GetState() function description.

WaitForInput Event to use with WaitForEvent() to wait for input from the
pointer device.

*Mode Pointer to EFI_ABSOLUTE_POINTER_MODE data. The type
EFI_ABSOLUTE_POINTER_MODE is defined in "Related
Definitions" below.
Version 2.5 April, 2015 495

Unified Extensible Firmware Interface Specification
Related Definitions
//***
// EFI_ABSOLUTE_POINTER_MODE
//***
typedef struct {
 UINT64 AbsoluteMinX;
 UINT64 AbsoluteMinY;
 UINT64 AbsoluteMinZ;
 UINT64 AbsoluteMaxX;
 UINT64 AbsoluteMaxY;
 UINT64 AbsoluteMaxZ;
 UINT32 Attributes;
} EFI_ABSOLUTE_POINTER_MODE;

The following data values in the EFI_ABSOLUTE_POINTER_MODE interface are read-only and
are changed by using the appropriate interface functions:

AbsoluteMinX The Absolute Minimum of the device on the x-axis

AbsoluteMinY The Absolute Minimum of the device on the y -axis.

AbsoluteMinZ The Absolute Minimum of the device on the z-axis.

AbsoluteMaxX The Absolute Maximum of the device on the x-axis. If 0, and the
AbsoluteMinX is 0, then the pointer device does not support a x-
axis.

AbsoluteMaxY The Absolute Maximum of the device on the y -axis. If 0,, and the
AbsoluteMinX is 0, then the pointer device does not support a y-
axis.

AbsoluteMaxZ The Absolute Maximum of the device on the z-axis. If 0 , and the
AbsoluteMinX is 0, then the pointer device does not support a z-
axis.

Attributes The following bits are set as needed (or'd together) to indicate the
capabilities of the device supported. The remaining bits are
undefined and should be returned as 0.

#define EFI_ABSP_SupportsAltActive 0x00000001
#define EFI_ABSP_SupportsPressureAsZ 0x00000002

EFI_ABSP_SupportsAltActive
If set, indicates this device supports an alternate button input.

EFI_ABSP_SupportsPressureAsZ
If set, indicates this device returns pressure data in parameter
CurrentZ.

The driver is not permitted to return all zeros for all three pairs of Min and Max as this would
indicate no axis supported.
496 April, 2015 Version 2.5

Protocols — Console Support
Description
The EFI_ABSOLUTE_POINTER_PROTOCOL provides a set of services for a pointer device that
can be used as an input device from an application written to this specification. The services include
the ability to reset the pointer device, retrieve the state of the pointer device, and retrieve the
capabilities of the pointer device. In addition certain data items describing the device are provided.
Version 2.5 April, 2015 497

Unified Extensible Firmware Interface Specification
EFI_ABSOLUTE_POINTER_PROTOCOL.Reset()

Summary
Resets the pointer device hardware.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ABSOLUTE_POINTER_RESET) (
 IN EFI_ABSOLUTE_POINTER_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
);

Parameters
This A pointer to the EFI_ABSOLUTE_POINTER_PROTOCOL

instance. Type EFI_ABSOLUTE_POINTER_PROTOCOL is
defined in this section.

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description
This Reset() function resets the pointer device hardware. As part of initialization process, the
firmware/device will make a quick but reasonable attempt to verify that the device is functioning. If
the ExtendedVerification flag is TRUE the firmware may take an extended amount of time to verify
the device is operating on reset. Otherwise the reset operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Codes Returned

EFI_SUCCESS The device was reset.

EFI_DEVICE_ERROR The device is not functioning correctly and could not be reset.
498 April, 2015 Version 2.5

Protocols — Console Support
EFI_ABSOLUTE_POINTER_PROTOCOL.GetState()

Summary
Retrieves the current state of a pointer device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ABSOLUTE_POINTER_GET_STATE) (
 IN EFI_ABSOLUTE_POINTER_PROTOCOL *This,
 IN OUT EFI_ABSOLUTE_POINTER_STATE *State
);

Parameters
This A pointer to the EFI_ABSOLUTE_POINTER_PROTOCOL

instance. Type EFI_ABSOLUTE_POINTER_PROTOCOL is
defined in Section 11.7.

State A pointer to the state information on the pointer device. Type
EFI_ABSOLUTE_POINTER_STATE is defined in "Related
Definitions" below.

Related Definitions
//***
// EFI_ABSOLUTE_POINTER_STATE
//***
typedef struct {
 UINT64 CurrentX;
 UINT64 CurrentY;
 UINT64 CurrentZ;
 UINT32 ActiveButtons;
} EFI_ABSOLUTE_POINTER_STATE;

CurrentX The unsigned position of the activation on the x axis If the
AboluteMinX and the AboluteMaxX fields of the
EFI_ABSOLUTE_POINTER_MODE structure are both 0, then
this pointer device does not support an x-axis, and this field must
be ignored.

CurrentY The unsigned position of the activation on the y axis If the
AboluteMinY and the AboluteMaxY fields of the
EFI_ABSOLUTE_POINTER_MODE structure are both 0, then
this pointer device does not support a y-axis, and this field must
be ignored.

CurrentZ The unsigned position of the activation on the z axis, or the
pressure measurement. If the AboluteMinZ and the AboluteMaxZ
fields of the EFI_ABSOLUTE_POINTER_MODE structure are
Version 2.5 April, 2015 499

Unified Extensible Firmware Interface Specification
both 0, then this pointer device does not support a z-axis, and this
field must be ignored.

ActiveButtons Bits are set to 1 in this structure item to indicate that device
buttons are active.

Related Definitions
//******************************
//definitions of bits within ActiveButtons
//******************************
#define EFI_ABSP_TouchActive 0x00000001
#define EFI_ABS_AltActive 0x00000002

EFI_ABSP_TouchActiveThis bit is set if the touch sensor is active

EFI_ABS_AltActive This bit is set if the alt sensor, such as pen-side button, is active.

Description
The GetState() function retrieves the current state of a pointer device. This includes information on
the active state associated with the pointer device and the current position of the axes associated with
the pointer device. If the state of the pointer device has not changed since the last call to
GetState(), then EFI_NOT_READY is returned. If the state of the pointer device has changed
since the last call to GetState(), then the state information is placed in State, and
EFI_SUCCESS is returned. If a device error occurs while attempting to retrieve the state
information, then EFI_DEVICE_ERROR is returned.

Status Codes Returned

11.8 Serial I/O Protocol
This section defines the Serial I/O protocol. This protocol is used to abstract byte stream devices.

EFI_SERIAL_IO_PROTOCOL

Summary
This protocol is used to communicate with any type of character-based I/O device.

EFI_SUCCESS The state of the pointer device was returned in State.

EFI_NOT_READY The state of the pointer device has not changed since the last call to

GetState().

EFI_DEVICE_ERROR A device error occurred while attempting to retrieve the pointer
device's current state.
500 April, 2015 Version 2.5

Protocols — Console Support
GUID
#define EFI_SERIAL_IO_PROTOCOL_GUID \
 {0xBB25CF6F,0xF1D4,0x11D2,\
 {0x9a,0x0c,0x00,0x90,0x27,0x3f,0xc1,0xfd}}

Revision Number
#define EFI_SERIAL_IO_PROTOCOL_REVISION 0x00010000

Protocol Interface Structure
typedef struct {
 UINT32 Revision;
 EFI_SERIAL_RESET Reset;
 EFI_SERIAL_SET_ATTRIBUTES SetAttributes;
 EFI_SERIAL_SET_CONTROL_BITS SetControl;
 EFI_SERIAL_GET_CONTROL_BITS GetControl;
 EFI_SERIAL_WRITE Write;
 EFI_SERIAL_READ Read;
 SERIAL_IO_MODE *Mode;
} EFI_SERIAL_IO_PROTOCOL;

Parameters
Revision The revision to which the EFI_SERIAL_IO_PROTOCOL

adheres. All future revisions must be backwards compatible. If a
future version is not back wards compatible, it is not the same
GUID.

Reset Resets the hardware device.

SetAttributes Sets communication parameters for a serial device. These
include the baud rate, receive FIFO depth, transmit/receive time
out, parity, data bits, and stop bit attributes.

SetControl Sets the control bits on a serial device. These include Request to
Send and Data Terminal Ready.

GetControl Reads the status of the control bits on a serial device. These
include Clear to Send, Data Set Ready, Ring Indicator, and
Carrier Detect.

Write Sends a buffer of characters to a serial device.

Read Receives a buffer of characters from a serial device.

Mode Pointer to SERIAL_IO_MODE data. Type SERIAL_IO_MODE
is defined in “Related Definitions” below.

Related Definitions
Version 2.5 April, 2015 501

Unified Extensible Firmware Interface Specification
//***
// SERIAL_IO_MODE
//***
typedef struct {
UINT32 ControlMask;

 // current Attributes
 UINT32 Timeout;
 UINT64 BaudRate;
 UINT32 ReceiveFifoDepth;
 UINT32 DataBits;
 UINT32 Parity;
 UINT32 StopBits;
} SERIAL_IO_MODE;

The data values in the SERIAL_IO_MODE are read-only and are updated by the code that produces
the EFI_SERIAL_IO_PROTOCOL functions:

ControlMask A mask of the Control bits that the device supports. The device
must always support the Input Buffer Empty control bit.

Timeout If applicable, the number of microseconds to wait before timing
out a Read or Write operation.

BaudRate If applicable, the current baud rate setting of the device;
otherwise, baud rate has the value of zero to indicate that device
runs at the device’s designed speed.

ReceiveFifoDepth The number of characters the device will buffer on input.

DataBits The number of data bits in each character.

Parity If applicable, this is the EFI_PARITY_TYPE that is computed
or checked as each character is transmitted or received. If the
device does not support parity the value is the default parity
value.

StopBits If applicable, the EFI_STOP_BITS_TYPE number of stop bits
per character. If the device does not support stop bits the value is
the default stop bit value.
502 April, 2015 Version 2.5

Protocols — Console Support
//***
// EFI_PARITY_TYPE
//***
typedef enum {
 DefaultParity,
 NoParity,
 EvenParity,
 OddParity,
 MarkParity,
 SpaceParity
} EFI_PARITY_TYPE;

//***
// EFI_STOP_BITS_TYPE
//***
typedef enum {
 DefaultStopBits,
 OneStopBit, // 1 stop bit
 OneFiveStopBits, // 1.5 stop bits
 TwoStopBits // 2 stop bits
} EFI_STOP_BITS_TYPE;

Description
The Serial I/O protocol is used to communicate with UART-style serial devices. These can be
standard UART serial ports in PC-AT systems, serial ports attached to a USB interface, or
potentially any character-based I/O device.

The Serial I/O protocol can control byte I/O style devices from a generic device, to a device with
features such as a UART. As such many of the serial I/O features are optional to allow for the case
of devices that do not have UART controls. Each of these options is called out in the specific serial
I/O functions.

The default attributes for all UART-style serial device interfaces are: 115,200 baud, a 1 byte receive
FIFO, a 1,000,000 microsecond timeout per character, no parity, 8 data bits, and 1 stop bit. Flow
control is the responsibility of the software that uses the protocol. Hardware flow control can be
implemented through the use of the GetControl() and SetControl() functions (described
below) to monitor and assert the flow control signals. The XON/XOFF flow control algorithm can
be implemented in software by inserting XON and XOFF characters into the serial data stream as
required.

Special care must be taken if a significant amount of data is going to be read from a serial device.
Since UEFI drivers are polled mode drivers, characters received on a serial device might be missed.
It is the responsibility of the software that uses the protocol to check for new data often enough to
guarantee that no characters will be missed. The required polling frequency depends on the baud
rate of the connection and the depth of the receive FIFO.
Version 2.5 April, 2015 503

Unified Extensible Firmware Interface Specification
EFI_SERIAL_IO_PROTOCOL.Reset()

Summary
Resets the serial device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SERIAL_RESET) (
 IN EFI_SERIAL_IO_PROTOCOL *This
);

Parameters
This A pointer to the EFI_SERIAL_IO_PROTOCOL instance.

Type EFI_SERIAL_IO_PROTOCOL is defined in Section 11.8.

Description
The Reset() function resets the hardware of a serial device.

Status Codes Returned

EFI_SUCCESS The serial device was reset.

EFI_DEVICE_ERROR The serial device could not be reset.
504 April, 2015 Version 2.5

Protocols — Console Support
EFI_SERIAL_IO_PROTOCOL.SetAttributes()

Summary
Sets the baud rate, receive FIFO depth, transmit/receive time out, parity, data bits, and stop bits on a
serial device.

EFI_STATUS
(EFIAPI *EFI_SERIAL_SET_ATTRIBUTES) (
 IN EFI_SERIAL_IO_PROTOCOL *This,
 IN UINT64 BaudRate,
 IN UINT32 ReceiveFifoDepth,
 IN UINT32 Timeout
 IN EFI_PARITY_TYPE Parity,
 IN UINT8 DataBits,
 IN EFI_STOP_BITS_TYPE StopBits
);

Parameters
This A pointer to the EFI_SERIAL_IO_PROTOCOL instance. Type

EFI_SERIAL_IO_PROTOCOL is defined in Section 11.8.

BaudRate The requested baud rate. A BaudRate value of 0 will use the
device’s default interface speed.

ReceiveFifoDepth The requested depth of the FIFO on the receive side of the serial
interface. A ReceiveFifoDepth value of 0 will use the
device’s default FIFO depth.

Timeout The requested time out for a single character in microseconds.
This timeout applies to both the transmit and receive side of the
interface. A Timeout value of 0 will use the device’s default
time out value.

Parity The type of parity to use on this serial device. A Parity value
of DefaultParity will use the device’s default parity value.
Type EFI_PARITY_TYPE is defined in “Related Definitions”
in Section 11.8.

DataBits The number of data bits to use on this serial device. A
DataBits value of 0 will use the device’s default data bit
setting.

StopBits The number of stop bits to use on this serial device. A
StopBits value of DefaultStopBits will use the device’s
default number of stop bits. Type EFI_STOP_BITS_TYPE is
defined in “Related Definitions” in Section 11.8.

Description
The SetAttributes() function sets the baud rate, receive-FIFO depth, transmit/receive time
out, parity, data bits, and stop bits on a serial device.
Version 2.5 April, 2015 505

Unified Extensible Firmware Interface Specification
The controller for a serial device is programmed with the specified attributes. If the Parity,
DataBits, or StopBits values are not valid, then an error will be returned. If the specified
BaudRate is below the minimum baud rate supported by the serial device, an error will be
returned. The nearest baud rate supported by the serial device will be selected without exceeding the
BaudRate parameter. If the specified ReceiveFifoDepth is below the smallest FIFO size
supported by the serial device, an error will be returned. The nearest FIFO size supported by the
serial device will be selected without exceeding the ReceiveFifoDepth parameter.

Status Codes Returned

EFI_SUCCESS The new attributes were set on the serial device.

EFI_INVALID_PARAMETER One or more of the attributes has an unsupported value.

EFI_DEVICE_ERROR The serial device is not functioning correctly.
506 April, 2015 Version 2.5

Protocols — Console Support
EFI_SERIAL_IO_PROTOCOL.SetControl()

Summary
Sets the control bits on a serial device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SERIAL_SET_CONTROL_BITS) (
 IN EFI_SERIAL_IO_PROTOCOL *This,
 IN UINT32 Control
);

Parameters
This A pointer to the EFI_SERIAL_IO_PROTOCOL instance. Type

EFI_SERIAL_IO_PROTOCOL is defined in Section 11.8.

Control Sets the bits of Control that are settable. See “Related
Definitions” below.

Related Definitions
//***
// CONTROL BITS
//***

#define EFI_SERIAL_CLEAR_TO_SEND 0x0010
#define EFI_SERIAL_DATA_SET_READY 0x0020
#define EFI_SERIAL_RING_INDICATE 0x0040
#define EFI_SERIAL_CARRIER_DETECT 0x0080
#define EFI_SERIAL_REQUEST_TO_SEND 0x0002
#define EFI_SERIAL_DATA_TERMINAL_READY 0x0001
#define EFI_SERIAL_INPUT_BUFFER_EMPTY 0x0100
#define EFI_SERIAL_OUTPUT_BUFFER_EMPTY 0x0200
#define EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE 0x1000
#define EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE 0x2000
#define EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE 0x4000

Description
The SetControl() function is used to assert or deassert the control signals on a serial device.
The following signals are set according their bit settings:

• Request to Send

• Data Terminal Ready

Only the REQUEST_TO_SEND, DATA_TERMINAL_READY, HARDWARE_LOOPBACK_ENABLE,
SOFTWARE_LOOPBACK_ENABLE, and HARDWARE_FLOW_CONTROL_ENABLE bits can be set
with SetControl(). All the bits can be read with GetControl().
Version 2.5 April, 2015 507

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS The new control bits were set on the serial device.

EFI_UNSUPPORTED The serial device does not support this operation.

EFI_DEVICE_ERROR The serial device is not functioning correctly.
508 April, 2015 Version 2.5

Protocols — Console Support
EFI_SERIAL_IO_PROTOCOL.GetControl()

Summary
Retrieves the status of the control bits on a serial device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SERIAL_GET_CONTROL_BITS) (
 IN EFI_SERIAL_IO_PROTOCOL *This,
 OUT UINT32 *Control
);

Parameters
This A pointer to the EFI_SERIAL_IO_PROTOCOL instance. Type

EFI_SERIAL_IO_PROTOCOL is defined in Section 11.8.

Control A pointer to return the current control signals from the
serial device. See “Related Definitions” below.

Related Definitions
//***
// CONTROL BITS
//***

#define EFI_SERIAL_CLEAR_TO_SEND 0x0010
#define EFI_SERIAL_DATA_SET_READY 0x0020
#define EFI_SERIAL_RING_INDICATE 0x0040
#define EFI_SERIAL_CARRIER_DETECT 0x0080
#define EFI_SERIAL_REQUEST_TO_SEND 0x0002
#define EFI_SERIAL_DATA_TERMINAL_READY 0x0001
#define EFI_SERIAL_INPUT_BUFFER_EMPTY 0x0100
#define EFI_SERIAL_OUTPUT_BUFFER_EMPTY 0x0200
#define EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE 0x1000
#define EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE 0x2000
#define EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE 0x4000

Description
The GetControl() function retrieves the status of the control bits on a serial device.

Status Codes Returned

EFI_SUCCESS The control bits were read from the serial device.

EFI_DEVICE_ERROR The serial device is not functioning correctly.
Version 2.5 April, 2015 509

Unified Extensible Firmware Interface Specification
EFI_SERIAL_IO_PROTOCOL.Write()

Summary
Writes data to a serial device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SERIAL_WRITE) (
 IN EFI_SERIAL_IO_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 IN VOID *Buffer
);

Parameters
This A pointer to the EFI_SERIAL_IO_PROTOCOL instance. Type

EFI_SERIAL_IO_PROTOCOL is defined in Section 11.8.

BufferSize On input, the size of the Buffer. On output, the amount of data
actually written.

Buffer The buffer of data to write.

Description
The Write() function writes the specified number of bytes to a serial device. If a time out error
occurs while data is being sent to the serial port, transmission of this buffer will terminate, and
EFI_TIMEOUT will be returned. In all cases the number of bytes actually written to the serial
device is returned in BufferSize.

Status Codes Returned

EFI_SUCCESS The data was written.

EFI_DEVICE_ERROR The device reported an error.

EFI_TIMEOUT The data write was stopped due to a timeout.
510 April, 2015 Version 2.5

Protocols — Console Support
EFI_SERIAL_IO_PROTOCOL.Read()

Summary
Reads data from a serial device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SERIAL_READ) (
 IN EFI_SERIAL_IO_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_SERIAL_IO_PROTOCOL instance. Type

EFI_SERIAL_IO_PROTOCOL is defined in Section 11.8.

BufferSize On input, the size of the Buffer. On output, the amount of data
returned in Buffer.

Buffer The buffer to return the data into.

Description
The Read() function reads a specified number of bytes from a serial device. If a time out error or
an overrun error is detected while data is being read from the serial device, then no more characters
will be read, and an error will be returned. In all cases the number of bytes actually read is returned
in BufferSize.

Status Codes Returned

11.9 Graphics Output Protocol
The goal of this section is to replace the functionality that currently exists with VGA hardware and
its corresponding video BIOS. The Graphics Output Protocol is a software abstraction and its goal is
to support any foreseeable graphics hardware and not require VGA hardware, while at the same time
also lending itself to implementation on the current generation of VGA hardware.

Graphics output is important in the pre-boot space to support modern firmware features. These
features include the display of logos, the localization of output to any language, and setup and
configuration screens.

Graphics output may also be required as part of the startup of an operating system. There are
potentially times in modern operating systems prior to the loading of a high performance OS
graphics driver where access to graphics output device is required. The Graphics Output Protocol

EFI_SUCCESS The data was read.

EFI_DEVICE_ERROR The serial device reported an error.

EFI_TIMEOUT The operation was stopped due to a timeout or overrun.
Version 2.5 April, 2015 511

Unified Extensible Firmware Interface Specification
supports this capability by providing the EFI OS loader access to a hardware frame buffer and
enough information to allow the OS to draw directly to the graphics output device.

The EFI_GRAPHICS_OUTPUT_PROTOCOL supports three member functions to support the
limited graphics needs of the pre-boot environment. These member functions allow the caller to
draw to a virtualized frame buffer, retrieve the supported video modes, and to set a video mode.
These simple primitives are sufficient to support the general needs of pre-OS firmware code.

The EFI_GRAPHICS_OUTPUT_PROTOCOL also exports enough information about the current
mode for operating system startup software to access the linear frame buffer directly.

The interface structure for the Graphics Output protocol is defined in this section. A unique
Graphics Output protocol must represent each video frame buffer in the system that is driven out to
one or more video output devices.

11.9.1 Blt Buffer
The basic graphics operation in the EFI_GRAPHICS_OUTPUT_PROTOCOL is the Block Transfer
or Blt. The Blt operation allows data to be read or written to the video adapter’s video memory. The
Blt operation abstracts the video adapters hardware implementation by introducing the concept of a
software Blt buffer.

The frame buffer abstracts the video display as an array of pixels. Each pixels location on the video
display is defined by its X and Y coordinates. The X coordinate represents a scan line. A scan line
is a horizontal line of pixels on the display. The Y coordinate represents a vertical line on the
display. The upper left hand corner of the video display is defined as (0, 0) where the notation
(X, Y) represents the X and Y coordinate of the pixel. The lower right corner of the video display is
represented by (Width –1, Height -1).

The software Blt buffer is structured as an array of pixels. Pixel (0, 0) is the first element of the
software Blt buffer. The Blt buffer can be thought of as a set of scan lines. It is possible to convert a
pixel location on the video display to the Blt buffer using the following algorithm: Blt buffer array
index = Y * Width + X.

Each software Blt buffer entry represents a pixel that is comprised of a 32-bit quantity. Byte zero of
the Blt buffer entry represents the Red component of the pixel. Byte one of the Blt buffer entry
represents the Green component of the pixel. Byte two of the Blt buffer entry represents the Blue
component of the pixel. Byte three of the Blt buffer entry is reserved and must be zero. The byte
values for the red, green, and blue components represent the color intensity. This color intensity
value range from a minimum intensity of 0 to maximum intensity of 255.
512 April, 2015 Version 2.5

Protocols — Console Support
Figure 29. Software BLT Buffer

EFI_GRAPHICS_OUTPUT_PROTOCOL

Summary
Provides a basic abstraction to set video modes and copy pixels to and from the graphics controller’s
frame buffer. The linear address of the hardware frame buffer is also exposed so software can write
directly to the video hardware.

GUID
#define EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID \
 {0x9042a9de,0x23dc,0x4a38,\
 {0x96,0xfb,0x7a,0xde,0xd0,0x80,0x51,0x6a}}

Protocol Interface Structure
typedef struct EFI_GRAPHICS_OUTPUT_PROTCOL {
 EFI_GRAPHICS_OUTPUT_PROTOCOL_QUERY_MODE QueryMode;
 EFI_GRAPHICS_OUTPUT_PROTOCOL_SET_MODE SetMode;
 EFI_GRAPHICS_OUTPUT_PROTOCOL_BLT Blt;
 EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE *Mode;
} EFI_GRAPHICS_OUTPUT_PROTOCOL;

Parameters
QueryMode Returns information for an available graphics mode that the

graphics device and the set of active video output devices
supports.

OM13157

Software BLT Buffer

(0, 0) X-axis
(Width -1, 0)

Y-axis

Pixel

Scan Line

(0, Height - 1) (Width -1, Height - 1)
Version 2.5 April, 2015 513

Unified Extensible Firmware Interface Specification
SetMode Set the video device into the specified mode and clears the visible
portions of the output display to black.

Blt Software abstraction to draw on the video device’s frame buffer.

Mode Pointer to EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE data.
Type EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE is defined
in “Related Definitions” below.

Related Definitions
typedef struct {
 UINT32 RedMask;
 UINT32 GreenMask;
 UINT32 BlueMask;
 UINT32 ReservedMask;
} EFI_PIXEL_BITMASK;

If a bit is set in RedMask, GreenMask, or BlueMask then those bits of the pixel represent the
corresponding color. Bits in RedMask, GreenMask, BlueMask, and ReserverdMask must
not over lap bit positions. The values for the red, green, and blue components in the bit mask
represent the color intensity. The color intensities must increase as the color values for a each color
mask increase with a minimum intensity of all bits in a color mask clear to a maximum intensity of
all bits in a color mask set.

typedef enum {
 PixelRedGreenBlueReserved8BitPerColor,
 PixelBlueGreenRedReserved8BitPerColor,
 PixelBitMask,
 PixelBltOnly,
 PixelFormatMax
} EFI_GRAPHICS_PIXEL_FORMAT;

PixelRedGreenBlueReserved8BitPerColor
A pixel is 32-bits and byte zero represents red, byte one
represents green, byte two represents blue, and byte three is
reserved. This is the definition for the physical frame buffer. The
byte values for the red, green, and blue components represent the
color intensity. This color intensity value range from a minimum
intensity of 0 to maximum intensity of 255.

PixelBlueGreenRedReserved8BitPerColor
A pixel is 32-bits and byte zero represents blue, byte one
represents green, byte two represents red, and byte three is
reserved. This is the definition for the physical frame buffer. The
byte values for the red, green, and blue components represent the
color intensity. This color intensity value range from a minimum
intensity of 0 to maximum intensity of 255.

PixelBitMask The pixel definition of the physical frame buffer is defined by
EFI_PIXEL_BITMASK.

PixelBltOnly This mode does not support a physical frame buffer.
514 April, 2015 Version 2.5

Protocols — Console Support
PixelFormatMax Valid EFI_GRAPHICS_PIXEL_FORMAT enum values are less
than this value.

typedef struct {
 UINT32 Version;
 UINT32 HorizontalResolution;
 UINT32 VerticalResolution;
 EFI_GRAPHICS_PIXEL_FORMAT PixelFormat;
 EFI_PIXEL_BITMASK PixelInformation;
 UINT32 PixelsPerScanLine;
} EFI_GRAPHICS_OUTPUT_MODE_INFORMATION;

Version The version of this data structure. A value of zero represents the
EFI_GRAPHICS_OUTPUT_MODE_INFORMATION structure
as defined in this specification. Future version of this
specification may extend this data structure in a backwards
compatible way and increase the value of Version.

HorizontalResolution
The size of video screen in pixels in the X dimension.

VerticalResolution The size of video screen in pixels in the Y dimension.

PixelFormat Enumeration that defines the physical format of the pixel. A
value of PixelBltOnly implies that a linear frame buffer is
not available for this mode.

PixelInformation This bit-mask is only valid if PixelFormat is set to
PixelPixelBitMask. A bit being set defines what bits are
used for what purpose such as Red, Green, Blue, or Reserved.

PixelsPerScanLine Defines the number of pixel elements per video memory line. For
performance reasons, or due to hardware restrictions, scan lines
may be padded to an amount of memory alignment. These
padding pixel elements are outside the area covered by
HorizontalResolution and are not visible. For direct
frame buffer access, this number is used as a span between starts
of pixel lines in video memory. Based on the size of an individual
pixel element and PixelsPerScanline, the offset in video
memory from pixel element (x, y) to pixel element (x, y+1) has
to be calculated as "sizeof(PixelElement) * PixelsPerScanLine",
not "sizeof(PixelElement) * HorizontalResolution", though in
many cases those values can coincide. This value can depend on
video hardware and mode resolution. GOP implementation is
responsible for providing accurate value for this field.
Version 2.5 April, 2015 515

Unified Extensible Firmware Interface Specification
Note: The following code sample is an example of the intended field usage:

INTN
GetPixelElementSize (
 IN EFI_PIXEL_BITMASK *PixelBits
)
{
 INTN HighestPixel = -1;

 INTN BluePixel;
 INTN RedPixel;
 INTN GreenPixel;
 INTN RsvdPixel;

 BluePixel = FindHighestSetBit (PixelBits->BlueMask);
 RedPixel = FindHighestSetBit (PixelBits->RedMask);
 GreenPixel = FindHighestSetBit (PixelBits->GreenMask);
 RsvdPixel = FindHighestSetBit (PixelBits->ReservedMask);

 HighestPixel = max (BluePixel, RedPixel);
 HighestPixel = max (HighestPixel, GreenPixel);
 HighestPixel = max (HighestPixel, RsvdPixel);

 return HighestPixel;
}

EFI_PHYSICAL_ADDRESS NewPixelAddress;
EFI_PHYSICAL_ADDRESS CurrentPixelAddress;
EFI_GRAPHICS_OUTPUT_MODE_INFORMATION OutputInfo;
INTN PixelElementSize;

switch (OutputInfo.PixelFormat) {
 case PixelBitMask:
 PixelElementSize =
 GetPixelElementSize (&OutputInfo.PixelInformation);
 break;

 case PixelBlueGreenRedReserved8BitPerColor:
 case PixelRedGreenBlueReserved8BitPerColor:
 PixelElementSize =
 sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL);
 break;
}

//
// NewPixelAddress after execution points to the pixel
// positioned one line below the one pointed by
516 April, 2015 Version 2.5

Protocols — Console Support
// CurrentPixelAddress
//
NewPixelAddress = CurrentPixelAddress +
 (PixelElementSize *
 OutputInfo.PixelsPerScanLine);

End of note code sample.

typedef struct {
 UINT32 MaxMode;
 UINT32 Mode;
 EFI_GRAPHICS_OUTPUT_MODE_INFORMATION *Info;
 UINTN SizeOfInfo;
 EFI_PHYSICAL_ADDRESS FrameBufferBase;
 UINTN FrameBufferSize;
} EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE;

The EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE is read-only and values are only changed by
using the appropriate interface functions:

MaxMode The number of modes supported by QueryMode() and
SetMode().

Mode Current Mode of the graphics device. Valid mode numbers are 0
to MaxMode -1.

Info Pointer to read-only
EFI_GRAPHICS_OUTPUT_MODE_INFORMATION data.

SizeOfInfo Size of Info structure in bytes. Future versions of this
specification may increase the size of the
EFI_GRAPHICS_OUTPUT_MODE_INFORMATION data.

FrameBufferBase Base address of graphics linear frame buffer. Info contains
information required to allow software to draw directly to the
frame buffer without using Blt().Offset zero in
FrameBufferBase represents the upper left pixel of the
display.

FrameBufferSize Amount of frame buffer needed to support the active mode as
defined by PixelsPerScanLine x
VerticalResolution x PixelElementSize.

Description
The EFI_GRAPHICS_OUTPUT_PROTOCOL provides a software abstraction to allow pixels to be
drawn directly to the frame buffer. The EFI_GRAPHICS_OUTPUT_PROTOCOL is designed to be
lightweight and to support the basic needs of graphics output prior to Operating System boot.
Version 2.5 April, 2015 517

Unified Extensible Firmware Interface Specification
EFI_GRAPHICS_OUTPUT_PROTOCOL.QueryMode()

Summary
Returns information for an available graphics mode that the graphics device and the set of active
video output devices supports.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GRAPHICS_OUTPUT_PROTOCOL_QUERY_MODE) (
 IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,
 IN UINT32 ModeNumber,
 OUT UINTN *SizeOfInfo
 OUT EFI_GRAPHICS_OUTPUT_MODE_INFORMATION **Info
);

Parameters
This The EFI_GRAPHICS_OUTPUT_PROTOCOL instance. Type

EFI_GRAPHICS_OUTPUT_PROTOCOL is defined in this
section.

ModeNumber The mode number to return information on. The current mode
and valid modes are read-only values in the Mode structure of the
EFI_GRAPHICS_OUTPUT_PROTOCOL.

SizeOfInfo A pointer to the size, in bytes, of the Info buffer.

Info A pointer to a callee allocated buffer that returns information
about ModeNumber.

Description
The QueryMode() function returns information for an available graphics mode that the graphics
device and the set of active video output devices supports. If ModeNumber is not between 0 and
MaxMode – 1, then EFI_INVALID_PARAMETER is returned. MaxMode is available from the
Mode structure of the EFI_GRAPHICS_OUTPUT_PROTOCOL.

The size of the Info structure should never be assumed and the value of SizeOfInfo is the only
valid way to know the size of Info.

If the EFI_GRAPHICS_OUTPUT_PROTOCOL is installed on the handle that represents a single
video output device, then the set of modes returned by this service is the subset of modes supported
by both the graphics controller and the video output device.

If the EFI_GRAPHICS_OUTPUT_PROTOCOL is installed on the handle that represents a
combination of video output devices, then the set of modes returned by this service is the subset of
modes supported by the graphics controller and the all of the video output devices represented by the
handle.

Status Codes Returned

EFI_SUCCESS Valid mode information was returned.
518 April, 2015 Version 2.5

Protocols — Console Support
EFI_DEVICE_ERROR A hardware error occurred trying to retrieve the video mode.

EFI_INVALID_PARAMETER ModeNumber is not valid.
Version 2.5 April, 2015 519

Unified Extensible Firmware Interface Specification
EFI_GRAPHICS_OUTPUT_PROTOCOL.SetMode()

Summary
Set the video device into the specified mode and clears the visible portions of the output display to
black.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GRAPHICS_OUTPUT_PROTOCOL_SET_MODE) (
 IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,
 IN UINT32 ModeNumber
);

Parameters
This The EFI_GRAPHICS_OUTPUT_PROTOCOL instance. Type

EFI_GRAPHICS_OUTPUT_PROTOCOL is defined in this
section.

ModeNumber Abstraction that defines the current video mode. The current
mode and valid modes are read-only values in the Mode structure
of the EFI_GRAPHICS_OUTPUT_PROTOCOL.

Description
This SetMode() function sets the graphics device and the set of active video output devices to the
video mode specified by ModeNumber. If ModeNumber is not supported EFI_UNSUPPORTED
is returned.

If a device error occurs while attempting to set the video mode, then EFI_DEVICE_ERROR is
returned. Otherwise, the graphics device is set to the requested geometry, the set of active output
devices are set to the requested geometry, the visible portion of the hardware frame buffer is cleared
to black, and EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The graphics mode specified by ModeNumber was selected.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED ModeNumber is not supported by this device.
520 April, 2015 Version 2.5

Protocols — Console Support
EFI_GRAPHICS_OUTPUT_PROTOCOL.Blt()

Summary
Blt a rectangle of pixels on the graphics screen. Blt stands for BLock Transfer.

Prototype
typedef struct {
 UINT8 Blue;
 UINT8 Green;
 UINT8 Red;
 UINT8 Reserved;
} EFI_GRAPHICS_OUTPUT_BLT_PIXEL;

typedef enum {
 EfiBltVideoFill,
 EfiBltVideoToBltBuffer,
 EfiBltBufferToVideo,
 EfiBltVideoToVideo,
 EfiGraphicsOutputBltOperationMax
} EFI_GRAPHICS_OUTPUT_BLT_OPERATION;

typedef
EFI_STATUS
(EFIAPI *EFI_GRAPHICS_OUTPUT_PROTOCOL_BLT) (
 IN EFI_GRAPHICS_OUTPUT_PROTOCOL *This,
 IN OUT EFI_GRAPHICS_OUTPUT_BLT_PIXEL *BltBuffer, OPTIONAL
 IN EFI_GRAPHICS_OUTPUT_BLT_OPERATION BltOperation,
 IN UINTN SourceX,
 IN UINTN SourceY,
 IN UINTN DestinationX,
 IN UINTN DestinationY,
 IN UINTN Width,
 IN UINTN Height,
 IN UINTN Delta OPTIONAL
);

Parameters
This The EFI_GRAPHICS_OUTPUT_PROTOCOL instance.

BltBuffer The data to transfer to the graphics screen. Size is at least
Width*Height*sizeof(EFI_GRAPHICS_OUTPUT_BLT_PI
XEL).

BltOperation The operation to perform when copying BltBuffer on to the
graphics screen.

SourceX The X coordinate of the source for the BltOperation. The
origin of the screen is 0, 0 and that is the upper left-hand corner of
the screen.
Version 2.5 April, 2015 521

Unified Extensible Firmware Interface Specification
SourceY The Y coordinate of the source for the BltOperation. The
origin of the screen is 0, 0 and that is the upper left-hand corner of
the screen.

DestinationX The X coordinate of the destination for the BltOperation.
The origin of the screen is 0, 0 and that is the upper left-hand
corner of the screen.

DestinationY The Y coordinate of the destination for the BltOperation.
The origin of the screen is 0, 0 and that is the upper left-hand
corner of the screen.

Width The width of a rectangle in the blt rectangle in pixels. Each pixel
is represented by an EFI_GRAPHICS_OUTPUT_BLT_PIXEL
element.

Height The height of a rectangle in the blt rectangle in pixels. Each pixel
is represented by an EFI_GRAPHICS_OUTPUT_BLT_PIXEL
element.

Delta Not used for EfiBltVideoFill or the
EfiBltVideoToVideo operation. If a Delta of zero is
used, the entire BltBuffer is being operated on. If a
subrectangle of the BltBuffer is being used then Delta
represents the number of bytes in a row of the BltBuffer.

Description
The Blt() function is used to draw the BltBuffer rectangle onto the video screen.

The BltBuffer represents a rectangle of Height by Width pixels that will be drawn on the
graphics screen using the operation specified by BltOperation. The Delta value can be used
to enable the BltOperation to be performed on a sub-rectangle of the BltBuffer.

Table 104 describes the BltOperations that are supported on rectangles. Rectangles have
coordinates (left, upper) (right, bottom):

Table 104. Blt Operation Table

Blt Operation Operation

EfiBltVideoFill Write data from the BltBuffer pixel (0,0) directly to every pixel
of the video display rectangle (DestinationX, DestinationY)
(DestinationX + Width, DestinationY + Height). Only one
pixel will be used from the BltBuffer. Delta is NOT used.

EfiBltVideoToBltBuffer Read data from the video display rectangle (SourceX, SourceY)
(SourceX + Width, SourceY + Height) and place it in the
BltBuffer rectangle (DestinationX, DestinationY)
(DestinationX + Width, DestinationY + Height). If
DestinationX or DestinationY is not zero then Delta
must be set to the length in bytes of a row in the BltBuffer.
522 April, 2015 Version 2.5

Protocols — Console Support
Status Codes Returned

EFI_EDID_DISCOVERED_PROTOCOL

Summary
This protocol contains the EDID information retrieved from a video output device.

GUID
#define EFI_EDID_DISCOVERED_PROTOCOL_GUID \
 {0x1c0c34f6,0xd380,0x41fa,\
 {0xa0,0x49,0x8a,0xd0,0x6c,0x1a,0x66,0xaa}}

Protocol Interface Structure
typedef struct {
 UINT32 SizeOfEdid;
 UINT8 *Edid;
} EFI_EDID_DISCOVERED_PROTOCOL;

Parameter
SizeOfEdid The size, in bytes, of the Edid buffer. 0 if no EDID information

is available from the video output device. Otherwise, it must be a
minimum of 128 bytes.

Edid A pointer to a read-only array of bytes that contains the EDID
information for a video output device. This pointer is NULL if no
EDID information is available from the video output device. The
minimum size of a valid Edid buffer is 128 bytes. EDID

EfiBltBufferToVideo Write data from the BltBuffer rectangle (SourceX, SourceY)
(SourceX + Width, SourceY + Height) directly to the video
display rectangle (DestinationX, DestinationY)
(DestinationX + Width, DestinationY + Height). If
SourceX or SourceY is not zero then Delta must be set to
the length in bytes of a row in the BltBuffer.

EfiBltVideoToVideo Copy from the video display rectangle (SourceX, SourceY)
(SourceX + Width, SourceY + Height) to the video display
rectangle(DestinationX, DestinationY) (DestinationX +
Width, DestinationY + Height. The BltBuffer and Delta
are not used in this mode. There is no limitation on the
overlapping of the source and destination rectangles.

EFI_SUCCESS BltBuffer was drawn to the graphics screen.

EFI_INVALID_PARAMETER BltOperation is not valid.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

Blt Operation Operation
Version 2.5 April, 2015 523

Unified Extensible Firmware Interface Specification
information is defined in the E-EDID EEPROM specification
published by VESA (www.vesa.org).

Description
EFI_EDID_DISCOVERED_PROTOCOL represents the EDID information that is returned from a
video output device. If the video output device does not contain any EDID information, then the
SizeOfEdid field must set to zero and the Edid field must be set to NULL. The
EFI_EDID_DISCOVERED_PROTOCOL must be placed on every child handle that represents a
possible video output device. The EFI_EDID_DISCOVERED_PROTOCOL is never placed on
child handles that represent combinations of two or more video output devices.

EFI_EDID_ACTIVE_PROTOCOL

Summary
This protocol contains the EDID information for an active video output device. This is either the
EDID information retrieved from the EFI_EDID_OVERRIDE_PROTOCOL if an override is
available, or an identical copy of the EDID information from the
EFI_EDID_DISCOVERED_PROTOCOL if no overrides are available.

GUID

#define EFI_EDID_ACTIVE_PROTOCOL_GUID \
 {0xbd8c1056,0x9f36,0x44ec,\
 {0x92,0xa8,0xa6,0x33,0x7f,0x81,0x79,0x86}}

Protocol Interface Structure
typedef struct {
 UINT32 SizeOfEdid;
 UINT8 *Edid;
} EFI_EDID_ACTIVE_PROTOCOL;

Parameter
SizeOfEdid The size, in bytes, of the Edid buffer. 0 if no EDID information

is available from the video output device. Otherwise, it must be a
minimum of 128 bytes.

Edid A pointer to a read-only array of bytes that contains the EDID
information for an active video output device. This pointer is
NULL if no EDID information is available for the video output
device. The minimum size of a valid Edid buffer is 128 bytes.
EDID information is defined in the E-EDID EEPROM
specification published by VESA (www.vesa.org).

Description
When the set of active video output devices attached to a frame buffer are selected, the
EFI_EDID_ACTIVE_PROTOCOL must be installed onto the handles that represent the each of
524 April, 2015 Version 2.5

www.vesa.org

Protocols — Console Support
those active video output devices. If the EFI_EDID_OVERRIDE_PROTOCOL has override EDID
information for an active video output device, then the EDID information specified by GetEdid()
is used for the EFI_EDID_ACTIVE_PROTOCOL. Otherwise, the EDID information from the
EFI_EDID_DISCOVERED_PROTOCOL is used for the EFI_EDID_ACTIVE_PROTOCOL.
Since all EDID information is read-only, it is legal for the pointer associated with the
EFI_EDID_ACTIVE_PROTOCOL to be the same as the pointer associated with the
EFI_EDID_DISCOVERED_PROTOCOL when no overrides are present.

EFI_EDID_OVERRIDE_PROTOCOL

Summary
This protocol is produced by the platform to allow the platform to provide EDID information to the
producer of the Graphics Output protocol.

GUID
#define EFI_EDID_OVERRIDE_PROTOCOL_GUID \
 {0x48ecb431,0xfb72,0x45c0,\
 {0xa9,0x22,0xf4,0x58,0xfe,0x04,0x0b,0xd5}}

Protocol Interface Structure
typedef struct _EFI_EDID_OVERRIDE_PROTOCOL {
 EFI_EDID_OVERRIDE_PROTOCOL_GET_EDID GetEdid;
} EFI_EDID_OVERRIDE_PROTOCOL;

Parameter
GetEdid Returns EDID values and attributes that the Video BIOS must use

Description
This protocol is produced by the platform to allow the platform to provide EDID information to the
producer of the Graphics Output protocol.
Version 2.5 April, 2015 525

Unified Extensible Firmware Interface Specification
EFI_EDID_OVERRIDE_PROTOCOL.GetEdid()

Summary
Returns policy information and potentially a replacement EDID for the specified video output
device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EDID_OVERRIDE_PROTOCOL_GET_EDID) (
 IN EFI_EDID_OVERRIDE_PROTOCOL *This,
 IN EFI_HANDLE *ChildHandle,
 OUT UINT32 *Attributes,
 IN OUT UINTN *EdidSize,
 IN OUT UINT8 **Edid
);

Parameters
This The EFI_EDID_OVERRIDE_PROTOCOL instance. Type

EFI_EDID_OVERRIDE_PROTOCOL is defined in
Section 11.10.

ChildHandle A child handle that represents a possible video output device.

Attributes A pointer to the attributes associated with ChildHandle video
output device.

EdidSize A pointer to the size, in bytes, of the Edid buffer.

Edid A pointer to the callee allocated buffer that contains the EDID
information associated with ChildHandle. If EdidSize is
0, then a pointer to NULL is returned.

Related Definitions
#define EFI_EDID_OVERRIDE_DONT_OVERRIDE 0x01
#define EFI_EDID_OVERRIDE_ENABLE_HOT_PLUG 0x02

Table 105. Attributes Definition Table

Attribute Bit EdidSize Operation

EFI_EDID_OVERRIDE_DONT_OVERRIDE=0 0 No override support for the display
device.

EFI_EDID_OVERRIDE_DONT_OVERRIDE=0 != 0 Always use returned override EDID
for the display device.

EFI_EDID_OVERRIDE_DONT_OVERRIDE!=0 0 No override support for the display
device.

EFI_EDID_OVERRIDE_DONT_OVERRIDE!=0 != 0 Only use returned override EDID if
the display device has no EDID or the
EDID is incorrect. Otherwise, use the
EDID from the display device.
526 April, 2015 Version 2.5

Protocols — Console Support
Description
This protocol is optionally provided by the platform to override or provide EDID information and/or
output device display properties to the producer of the Graphics Output protocol. If ChildHandle
does not represent a video output device, or there are no override for the video output device
specified by ChildHandle, then EFI_UNSUPPORTED is returned. Otherwise, the
Attributes, EdidSize, and Edid parameters are returned along with a status of
EFI_SUCCESS. Table 105 defines the behavior for the combinations of the Attribute and
EdidSize parameters when EFI_SUCCESS is returned.

Status Codes Returned

11.10 Rules for PCI/AGP Devices
A UEFI driver that produces the Graphics Output Protocol must follow the UEFI driver model,
produce an EFI_DRIVER_BINDING_PROTOCOL, and follow the rules on implementing the
Supported(), Start(), and Stop(). The Start() function must not update the video
output device in any way that is visible to the user. The Start() function must create child handle
for each physical video output device and each supported combination of video output devices. The
driver must retrieve the EDID information from each physical video output device and produce a
EFI_EDID_DISCOVERED_PROTOCOL on the child handle that corresponds each physical video
output device. The following summary describes the common initialization steps for a driver that
produces the EFI_GRAPHICS_OUTPUT_PROTOCOL. This summary assumes the graphics

EFI_EDID_OVERRIDE_ENABLE_HOT_PLUG=0 0 No hot plug support for the display
device. AGraphics Output protocol
will not be installed if no display
device is not present.

EFI_EDID_OVERRIDE_ENABLE_HOT_PLUG=0 != 0 No hot plug support for the display
device. The returned override EDID
should be used according to the

EFI_EDID_OVERRIDE_DONT_OV
ERRIDE attribute bit if the display
device is present.

EFI_EDID_OVERRIDE_ENABLE_HOT_PLUG!=0 0 Invalid. The client of this protocol will
not enable hot plug for the display
device, and a Graphics Output
protocol will not be installed if no
other display is present.

EFI_EDID_OVERRIDE_ENABLE_HOT_PLUG!=0 != 0 Enable hot plug for the display
device. A Graphics Output protocol
will be installed even if the display
device is not present.

EFI_SUCCESS Valid over rides returned for ChildHandle.

EFI_UNSUPPORTED ChildHandle has no over rides.

Attribute Bit EdidSize Operation
Version 2.5 April, 2015 527

Unified Extensible Firmware Interface Specification
controller supports a single frame buffer. If a graphics device supports multiple frame buffers, then
handles for the frame buffers must be created first, and then the handles for the video output devices
can be created as children of the frame buffer handles.

Summary of Initialization Steps:

• "If RemainingDevicePath is NULL or the first Device Path Node is the End of Device
Path Node, then Supported() returns EFI_SUCCESS. Otherwise, if the first node of
RemainingDevicePath is not an ACPI _ADR node or the first two nodes of
RemainingDevicePath are not a Controller node followed by an ACPI _ADR node, then
Supported() returns EFI_UNSUPPORTED.

• "If Supported() returned EFI_SUCCESS, system calls Start().

• "If RemainingDevicePath is NULL, then a default set of active video output devices are
selected by the driver.

• "If the first Device Path Node of RemainingDevicePath is the End of Device Path Node,
then skip to the "The EFI Driver must provide EFI_COMPONENT_NAME2_PROTOCOL" step.

• Start() function creates a ChildHandle for each physical video output device and installs
the EFI_DEVICE_PATH_PROTOCOL onto the created ChildHandle. The
EFI_DEVICE_PATH_PROTOCOL is constructed by appending an ACPI _ADR device path
node describing the physical video output device to the end of the device path installed on the
ControllerHandle passed into Start().

• Start()function retrieves EDID information for each physical video output device and
installs the EFI_EDID_DISCOVERED_PROTOCOL onto the ChildHandle for each
physical video output device. If no EDID data is available from the video output device, then
SizeOfEdid is set to zero, and Edid is set to NULL.

• Start()function create a ChildHandle for each valid combination of two or more video
output devices, and installs the EFI_DEVICE_PATH_PROTOCOL onto the created
ChildHandle. The EFI_DEVICE_PATH_PROTOCOL is constructed by appending an
ACPI _ADR device path node describing the combination of video output devices to the end of
the device path installed on the ControllerHandle passed into Start(). The ACPI
_ADR entry can represent complex topologies of devices and it is possible to have more than
one ACPI _ADR entry in a single device path node. Support of complex video output device
topologies is an optional feature.

• Start()function evaluates the RemainingDevicePath to select the set of active video
output devices. If RemainingDevicePath is NULL, then Start() selects a default set of
video output devices. If RemainingDevicePath is not NULL, and ACPI _ADR device path
node of RemainingDevicePath does not match any of the created ChildHandles, then
Start()must destroy all its ChildHandles and return EFI_UNSUPPORTED. Otherwise,
Start() selects the set of active video output devices specified by the ACPI _ADR device
path node in RemainingDevicePath.

• Start() retrieves the ChildHandle associated with each active video output device. Only
ChildHandles that represent a physical video output device are considered. Start() calls
the EFI_EDID_OVERRIDE_PROTOCOL.GetEdid() service passing in ChildHandle.
Depending on the return values from GetEdid(), either the override EDID information or the
EDID information from the EFI_EDID_DISCOVERED_PROTOCOL on ChildHandle is
selected. See GetEdid() for a detailed description of this decision. The selected EDID
528 April, 2015 Version 2.5

Protocols — Console Support
information is used to produce the EFI_EDID_ACTIVE_PROTOCOL, and that protocol is
installed onto ChildHandle.

• Start() retrieves the one ChildHandle that represents the entire set of active video output
devices. If this set is a single video output device, then this ChildHandle will be the same as
the one used in the previous step. If this set is a combination of video output devices, then this
will not be one of the ChildHandles used in the previous two steps. The
EFI_GRAPHICS_OUTPUT_PROTOCOL is installed onto this ChildHandle.

• The QueryMode() service of the EFI_GRAPHICS_OUTPUT_PROTOCOL returns the set of
modes that both the graphics controller and the set of active video output devices all support. If
a different set of active video output device is selected, then a different set of modes will likely
be produced by QueryMode().

• Start()function optionally initializes video frame buffer hardware. The EFI driver has the
option of delaying this operation until SetMode() is called.

• The EFI Driver must provide EFI_COMPONENT_NAME2_PROTOCOL
GetControllerName() support for ControllerHandle and all the ChildHandles
created by this driver. The name returned for ControllerHandle must return the name of
the graphics device. The name returned for each of the ChildHandles allow the user to pick
output display settings and should be constructed with this in mind.

• The EFI Driver’s Stop() function must cleanly undo what the Start() function created.

• An EFI_GRAPHICS_OUTPUT_PROTOCOL must be implemented for every video frame
buffer that exists on a video adapter. In most cases there will be a single
EFI_GRAPHICS_OUTPUT_PROTOCOL placed on one of the a children of the
ControllerHandle passed into the EFI_DRIVER_BINDING.Start() function.

If a single PCI device/function contains multiple frame buffers the
EFI_GRAPHICS_OUTPUT_PROTOCOL must create child handles of the PCI handle that inherit its
PCI device path and appends a controller device path node. The handles for the video output devices
are children of the handles that represent the frame buffers.

A video device can support an arbitrary number of geometries, but it must support one or more of the
following modes to conform to this specification:

Onboard graphics device

• A mode required in a platform design guide

• Native mode of the display

Plug in graphics device

• A mode required in a platform design guide

• 800 x 600 with 32-bit color depth or 640 x 480 with 32-bit color depth and a pixel format
described by PixelRedGreenBlueReserved8BitPerColor or
PixelBlueGreenRedReserved8BitPerColor.

If graphics output device supports both landscape and portrait mode displays it must return a
different mode via QueryMode(). For example landscape mode could be 800 horizontal and
600 vertical while the equivalent portrait mode would be 600 horizontal and 800 vertical.
Version 2.5 April, 2015 529

Unified Extensible Firmware Interface Specification
530 April, 2015 Version 2.5

Protocols - Media Access
12
Protocols - Media Access

12.1 Load File Protocol
This section defines the Load File protocol. This protocol is designed to allow code running in the
boot services environment to find and load other modules of code.

EFI_LOAD_FILE_PROTOCOL

Summary
Is used to obtain files from arbitrary devices.

GUID
#define EFI_LOAD_FILE_PROTOCOL_GUID \
 {0x56EC3091,0x954C,0x11d2,\
 {0x8e,0x3f,0x00,0xa0, 0xc9,0x69,0x72,0x3b}}

Protocol Interface Structure
typedef struct _EFI_LOAD_FILE_PROTOCOL {
 EFI_LOAD_FILE LoadFile;
} EFI_LOAD_FILE_PROTOCOL;

Parameters
LoadFile Causes the driver to load the requested file. See the

LoadFile() function description.

Description
The EFI_LOAD_FILE_PROTOCOL is a simple protocol used to obtain files from arbitrary devices.

When the firmware is attempting to load a file, it first attempts to use the device’s Simple File
System protocol to read the file. If the file system protocol is found, the firmware implements the
policy of interpreting the File Path value of the file being loaded. If the device does not support the
file system protocol, the firmware then attempts to read the file via the
EFI_LOAD_FILE_PROTOCOL and the LoadFile() function. In this case the LoadFile()
function implements the policy of interpreting the File Path value.
Version 2.5 April, 2015 531

Unified Extensible Firmware Interface Specification
EFI_LOAD_FILE_PROTOCOL.LoadFile()

Summary
Causes the driver to load a specified file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LOAD_FILE) (
 IN EFI_LOAD_FILE_PROTOCOL *This,
 IN EFI_DEVICE_PATH_PROTOCOL *FilePath,
 IN BOOLEAN BootPolicy,
 IN OUT UINTN *BufferSize,
 IN VOID *Buffer OPTIONAL
);

Parameters
This Indicates a pointer to the calling context. Type

EFI_LOAD_FILE_PROTOCOL is defined in Section 12.1.

FilePath The device specific path of the file to load. Type
EFI_DEVICE_PATH_PROTOCOL is defined in Section 9.2.

BootPolicy If TRUE, indicates that the request originates from the boot
manager, and that the boot manager is attempting to load
FilePath as a boot selection. If FALSE, then FilePath must
match an exact file to be loaded.

BufferSize On input the size of Buffer in bytes. On output with a return
code of EFI_SUCCESS, the amount of data transferred to
Buffer.
On output with a return code of EFI_BUFFER_TOO_SMALL,
the size of Buffer required to retrieve the requested file.

Buffer The memory buffer to transfer the file to. If Buffer is NULL,
then the size of the requested file is returned in BufferSize.

Description
The LoadFile() function interprets the device-specific FilePath parameter, returns the entire
file into Buffer, and sets BufferSize to the amount of data returned. If Buffer is NULL, then
the size of the file is returned in BufferSize. If Buffer is not NULL, and BufferSize is not
large enough to hold the entire file, then EFI_BUFFER_TOO_SMALL is returned, and
BufferSize is updated to indicate the size of the buffer needed to obtain the file. In this case, no
data is returned in Buffer.

If BootPolicy is FALSE the FilePath must match an exact file to be loaded. If no such file
exists, EFI_NOT_FOUND is returned. If BootPolicy is FALSE, and an attempt is being made to
perform a network boot through the PXE Base Code protocol, EFI_UNSUPPORTED is returned.

If BootPolicy is TRUE the firmware’s boot manager is attempting to load an EFI image that is a
boot selection. In this case, FilePath contains the file path value in the boot selection option.
532 April, 2015 Version 2.5

Protocols - Media Access
Normally the firmware would implement the policy on how to handle an inexact boot file path;
however, since in this case the firmware cannot interpret the file path, the LoadFile() function is
responsible for implementing the policy. For example, in the case of a network boot through the
PXE Base Code protocol, FilePath merely points to the root of the device, and the firmware
interprets this as wanting to boot from the first valid loader. The following is a list of events that
LoadFile() will implement for a PXE boot:

• Perform DHCP.

• Optionally prompt the user with a menu of boot selections.

• Discover the boot server and the boot file.

• Download the boot file into Buffer and update BufferSize with the size of the boot file.

Status Codes Returned

12.2 Load File 2 Protocol

EFI_LOAD_FILE2_PROTOCOL

Summary
Used to obtain files from arbitrary devices but are not used as boot options.

GUID
#define EFI_LOAD_FILE2_PROTOCOL_GUID \
 { 0x4006c0c1, 0xfcb3, 0x403e, \
 { 0x99, 0x6d, 0x4a, 0x6c, 0x87, 0x24, 0xe0, 0x6d }}

Protocol Interface Structure
typedef EFI_LOAD_FILE_PROTOCOL EFI_LOAD_FILE2_PROTOCOL;

EFI_SUCCESS The file was loaded.

EFI_UNSUPPORTED The device does not support the provided BootPolicy.

EFI_INVALID_PARAMETER FilePath is not a valid device path, or BufferSize is NULL.

EFI_NO_MEDIA No medium was present to load the file.

EFI_DEVICE_ERROR The file was not loaded due to a device error.

EFI_NO_RESPONSE The remote system did not respond.

EFI_NOT_FOUND The file was not found.

EFI_ABORTED The file load process was manually cancelled.

EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the current directory entry.

BufferSize has been updated with the size needed to complete

the request.
Version 2.5 April, 2015 533

Unified Extensible Firmware Interface Specification
Parameters
LoadFile

Causes the driver to load the requested file. See the LoadFile() functional
description.

Description
The EFI_LOAD_FILE2_PROTOCOL is a simple protocol used to obtain files from arbitrary
devices that are not boot options. It is used by LoadImage() when it's BootOption parameter is
FALSE and the FilePath does not have an instance of the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL.
534 April, 2015 Version 2.5

Protocols - Media Access
EFI_LOAD_FILE2_PROTOCOL.LoadFile()

Summary
Causes the driver to load a specified file.

Prototype
The same prototype as EFI_LOAD_FILE_PROTOCOL.LoadFile().

Parameters
This

Indicates a pointer to the calling context.

FilePath

The device specific path of the file to load.

BootPolicy

Should always be FALSE.

BufferSize

On input the size of Buffer in bytes. On output with a return code of
EFI_SUCCESS, the amount of data transferred to Buffer. On output with a return
code of EFI_BUFFER_TOO_SMALL, the size of Buffer required to retrieve the
requested file.

Buffer

The memory buffer to transfer the file to. If Buffer is NULL, then no the size of the
requested file is returned in BufferSize.

Description
The LoadFile() function interprets the device-specific FilePath parameter, returns the entire
file into Buffer, and sets BufferSize to the amount of data returned. If Buffer is NULL, then
the size of the file is returned in BufferSize. If Buffer is not NULL, and BufferSize is not
large enough to hold the entire file, then EFI_BUFFER_TOO_SMALL is returned, and
BufferSize is updated to indicate the size of the buffer needed to obtain the file. In this case, no
data is returned in Buffer.

FilePath contains the file path value in the boot selection option. Normally the firmware would
implement the policy on how to handle an inexact boot file path; however, since in this case the
firmware cannot interpret the file path, the LoadFile() function is responsible for implementing
the policy.
Version 2.5 April, 2015 535

Unified Extensible Firmware Interface Specification
Status Codes Returned

12.3 File System Format
The file system supported by the Extensible Firmware Interface is based on the FAT file system. EFI
defines a specific version of FAT that is explicitly documented and testable. Conformance to the EFI
specification and its associate reference documents is the only definition of FAT that needs to be
implemented to support EFI. To differentiate the EFI file system from pure FAT, a new partition file
system type has been defined.

EFI encompasses the use of FAT32 for a system partition, and FAT12 or FAT16 for removable
media. The FAT32 system partition is identified by an OSType value other than that used to identify
previous versions of FAT. This unique partition type distinguishes an EFI defined file system from a
normal FAT file system. The file system supported by EFI includes support for long file names.

The definition of the EFI file system will be maintained by specification and will not evolve over
time to deal with errata or variant interpretations in OS file system drivers or file system utilities.
Future enhancements and compatibility enhancements to FAT will not be automatically included in
EFI file systems. The EFI file system is a target that is fixed by the EFI specification, and other
specifications explicitly referenced by the EFI specification.

For more information about the EFI file system and file image format, visit the web site from which
this document was obtained.

12.3.1 System Partition
A System Partition is a partition in the conventional sense of a partition on a legacy system. For a
hard disk, a partition is a contiguous grouping of sectors on the disk where the starting sector and
size are defined by the Master Boot Record (MBR), which resides on LBA 0 (i.e., the first sector of
the hard disk) (see Section 5.2), or the GUID Partition Table (GPT), which resides on logical block 1
(the second sector of the hard disk) (see Section 5.3.1). For a diskette (floppy) drive, a partition is
defined to be the entire media. A System Partition can reside on any media that is supported by EFI
Boot Services.

A System Partition supports backward compatibility with legacy systems by reserving the first block
(sector) of the partition for compatibility code. On legacy systems, the first block (sector) of a
partition is loaded into memory and execution is transferred to this code. EFI firmware does not

EFI_SUCCESS The file was loaded.

EFI_UNSUPPORTED BootPolicy is TRUE.

EFI_INVALID_PARAME
TER

FilePath is not a valid device path, or BufferSize is NULL.

EFI_NO_MEDIA No medium was present to load the file.

EFI_DEVICE_ERROR The file was not loaded due to a device error.

EFI_NO_RESPONSE The remote system did not respond.

EFI_NOT_FOUND The file was not found.

EFI_ABORTED The file load process was manually cancelled.

EFI_BUFFER_TOO_SM
ALL

The BufferSize is too small to read the current directory entry. BufferSize has
been updated with the size needed to complete the request.
536 April, 2015 Version 2.5

Protocols - Media Access
execute the code in the MBR. The EFI firmware contains knowledge about the partition structure of
various devices, and can understand legacy MBR, GPT, and “El Torito.”

The System Partition contains directories, data files, and UEFI Images. UEFI Images can contain a
OS Loader, an driver to extend platform firmware capability, or an application that provides a
transient service to the system. Applications written to this specification could include things such as
a utility to create partitions or extended diagnostics. A System Partition can also support data files,
such as error logs, that can be defined and used by various OS or system firmware software
components.

12.3.1.1 File System Format
The first block (sector) of a partition contains a data structure called the BIOS Parameter Block
(BPB) that defines the type and location of FAT file system on the drive. The BPB contains a data
structure that defines the size of the media, the size of reserved space, the number of FAT tables, and
the location and size of the root directory (not used in FAT32). The first block (sector) also contains
code that will be executed as part of the boot process on a legacy system. This code in the first block
(sector) usually contains code that can read a file from the root directory into memory and transfer
control to it. Since EFI firmware contains a file system driver, EFI firmware can load any file from
the file system with out needing to execute any code from the media.

The EFI firmware must support the FAT32, FAT16, and FAT12 variants of the EFI file system.
What variant of EFI FAT to use is defined by the size of the media. The rules defining the
relationship between media size and FAT variants is defined in the specification for the EFI
file system.

The UEFI system partition FAT32 Data region should be aligned to the physical block boundary and
optimal transfer length granularity of the device(see Section 5.3.1). This is controlled by the
BPB_RsvdSecCnt field and the applicable BPB_FATSz field (e.g., formatting software may set the
BPB_RsvdSecCnt field to a value that results in alignment and/or may set the BPB_FATSz field to a
value that ensures alignment).

12.3.1.2 File Names
FAT stores file names in two formats. The original FAT format limited file names to eight characters
with three extension characters. This type of file name is called an 8.3, pronounced eight dot three,
file name. FAT was extended to include support for long file names (LFN).

FAT 8.3 file names are always stored as uppercase ASCII characters. LFN can either be stored as
ASCII or UCS-2 characters and are stored case sensitive. The string that was used to open or create
the file is stored directly into LFN. FAT defines that all files in a directory must have a unique name,
and unique is defined as a case insensitive match. The following are examples of names that are
considered to be the same and cannot exist in a single directory:

• “ThisIsAnExampleDirectory.Dir”

• “thisisanexamppledirectory.dir”

• THISISANEXAMPLEDIRECTORY.DIR

• ThisIsAnExampleDirectory.DIR
Version 2.5 April, 2015 537

Unified Extensible Firmware Interface Specification
Note: Although the FAT32 specification allows file names to be encoded using UTF-16, this
specification only recognizes the UCS-2 subset for the purposes of sorting or collation.

12.3.1.3 Directory Structure
An EFI system partition that is present on a hard disk must contain an EFI defined directory in the
root directory. This directory is named EFI. All OS loaders and applications will be stored in
subdirectories below EFI. Applications that are loaded by other applications or drivers are not
required to be stored in any specific location in the EFI system partition. The choice of the
subdirectory name is up to the vendor, but all vendors must pick names that do not collide with any
other vendor’s subdirectory name. This applies to system manufacturers, operating system vendors,
BIOS vendors, and third party tool vendors, or any other vendor that wishes to install files on an EFI
system partition. There must also only be one executable EFI image for each supported processor
architecture in each vendor subdirectory. This guarantees that there is only one image that can be
loaded from a vendor subdirectory by the EFI Boot Manager. If more than one executable EFI image
is present, then the boot behavior for the system will not be deterministic. There may also be an
optional vendor subdirectory called BOOT.

This directory contains EFI images that aide in recovery if the boot selections for the software
installed on the EFI system partition are ever lost. Any additional UEFI-compliant executables must
be in subdirectories below the vendor subdirectory. The following is a sample directory structure for
an EFI system partition present on a hard disk.

\EFI
\<OS Vendor 1 Directory>

<OS Loader Image>
\<OS Vendor 2 Directory>

<OS Loader Image>
. . .
\<OS Vendor N Directory>

<OS Loader Image>
\<OEM Directory>

<OEM Application Image>
\<BIOS Vendor Directory>

<BIOS Vendor Application Image>
\<Third Party Tool Vendor Directory>

<Third Party Tool Vendor Application Image>
\BOOT

BOOT{machine type short name}.EFI

For removable media devices there must be only one UEFI-compliant system partition, and that
partition must contain an UEFI-defined directory in the root directory. The directory will be named
EFI. All OS loaders and applications will be stored in a subdirectory below EFI called BOOT.
There must only be one executable EFI image for each supported processor architecture in the BOOT
directory. For removable media to be bootable under EFI, it must be built in accordance with the
rules laid out in Section 3.5.1.1. This guarantees that there is only one image that can be
automatically loaded from a removable media device by the EFI Boot Manager. Any additional EFI
executables must be in directories other than BOOT. The following is a sample directory structure for
an EFI system partition present on a removable media device.
538 April, 2015 Version 2.5

Protocols - Media Access
\EFI
\BOOT
BOOT{machine type short name}.EFI

12.3.2 Partition Discovery
This specification requires the firmware to be able to parse the legacy master boot record(MBR) (see
Section 5.2.1), GUID Partition Table (GPT)(see Section 5.3.1), and El Torito (see Section 12.3.2.1)
logical device volumes. The EFI firmware produces a logical EFI_BLOCK_IO_PROTOCOL device
for:

• each GUID Partition Entry (see table 16 in 5.3.3) with bit 1 set to zero;

• each El Torito logical device volume; and

• if no GPT is present, each partition found in the legacy MBR partition tables.

LBA zero of the EFI_BLOCK_IO_PROTOCOL device will correspond to the first logical block of
the partition. See Figure 30. If a GPT Partition Entry has Attribute bit 1 set then a logical
EFI_BLOCK_IO_PROTOCOL device must not be created.

Figure 30. Nesting of Legacy MBR Partition Records

The following is the order in which a block device must be scanned to determine if it contains
partitions. When a check for a valid partitioning scheme succeeds, the search terminates.

1. Check for GUID Partition Table Headers.

2. Follow ISO-9660 specification to search for ISO-9660 volume structures on the magic LBA.

3. Check for an “El Torito” volume extension and follow the “El Torito” CD-ROM specification.

4. If none of the above, check LBA 0 for a legacy MBR partition table.

5. No partition found on device.

BLOCK_I/O
DISK

Partition Partition

Partition Table

Pointers
to partitions

Partition Table

Pointers
to partitions

Partition Partition

OM13159
Version 2.5 April, 2015 539

Unified Extensible Firmware Interface Specification
If a disk contains a recognized RAID structure (e.g. DDF structure as defined in The Storage
Networking Industry Association Common RAID Disk Data Format Specification--see Glossary),
the data on the disk must be ignored, unless the driver is using the RAID structure to produce a
logical RAID volume.

EFI supports the nesting of legacy MBR partitions, by allowing any legacy MBR partition to contain
more legacy MBR partitions. This is accomplished by supporting the same partition discovery
algorithm on every logical block device. It should be noted that the GUID Partition Table does not
allow nesting of GUID Partition Table Headers. Nesting is not needed since a GUID Partition Table
Header can support an arbitrary number of partitions (the addressability limits of a 64-bit LBA are
the limiting factor).

12.3.2.1 ISO-9660 and El Torito
IS0-9660 is the industry standard low level format used on CD-ROM and DVD-ROM. The CD-
ROM format is completely described by the “El Torito” Bootable CD-ROM Format Specification
Version 1.0. To boot from a CD-ROM or DVD-ROM in the boot services environment, an EFI
System partition is stored in a “no emulation” mode as defined by the “El Torito” specification. A
Platform ID of 0xEF indicates an EFI System Partition. The Platform ID is in either the Section
Header Entry or the Validation Entry of the Booting Catalog as defined by the “El Torito”
specification. EFI differs from “El Torito” “no emulation” mode in that it does not load the “no
emulation” image into memory and jump to it. EFI interprets the “no emulation” image as an EFI
system partition. EFI interprets the Sector Count in the Initial/Default Entry or the Section Header
Entry to be the size of the EFI system partition. If the value of Sector Count is set to 0 or 1, EFI will
assume the system partition consumes the space from the beginning of the “no emulation” image to
the end of the CD-ROM.

DVD-ROM images formatted as required by the UDF 2.0 specification (OSTA Universal Disk
Format Specification, Revision 2.0) can be booted by EFI. EFI supports booting from an ISO-9660
file system that conforms to the “El Torito” Bootable CD-ROM Format Specification on a DVD-
ROM. A DVD-ROM that contains an ISO-9660 file system is defined as a “UDF Bridge” disk.
Booting from CD-ROM and DVD-ROM is accomplished using the same methods.

Since the EFI file system definition does not use the same Initial/Default entry as a legacy CD-ROM
it is possible to boot personal computers using an EFI CD-ROM or DVD-ROM. The inclusion of
boot code for personal computers is optional and not required by EFI.

12.3.3 Number and Location of System Partitions
UEFI does not impose a restriction on the number or location of System Partitions that can exist on a
system. System Partitions are discovered when required by UEFI firmware by examining the
partition GUID and verifying that the contents of the partition conform to the FAT file system as
defined in Section 12.3.1.1. Further, UEFI implementations may allow the use of conforming FAT
partitions which do not use the ESP GUID. Partition creators may prevent UEFI firmware from
examining and using a specific partition by setting bit 1 of the Partition Attributes (see 5.3.3) which
will exclude the partition as a potential ESP.

Software installation may choose to create and locate an ESP on each target OS boot disk, or may
choose to create a single ESP independent of the location of OS boot disks and OS partitions. It is
outside of the scope of this specification to attempt to coordinate the specification of size and
540 April, 2015 Version 2.5

Protocols - Media Access
location of an ESP that can be shared by multiple OS or Diagnostics installations, or to manage
potential namespace collisions in directory naming in a single (central) ESP.

12.3.4 Media Formats
This section describes how booting from different types of removable media is handled. In general
the rules are consistent regardless of a media’s physical type and whether it is removable or not.

12.3.4.1 Removable Media
Removable media may contain a standard FAT12, FAT16, or FAT32 file system.

Booting from a removable media device can be accomplished the same way as any other boot. The
boot file path provided to the boot manager can consist of a UEFI application image to load, or can
merely be the path to a removable media device. In the first case, the path clearly indicates the image
that is to be loaded. In the later case, the boot manager implements the policy to load the default
application image from the device.

For removable media to be bootable under EFI, it must be built in accordance with the rules laid
out in Section 3.5.1.1

12.3.4.2 Diskette
EFI bootable diskettes follow the standard formatting conventions used on personal computers. The
diskette contains only a single partition that complies to the EFI file system type. For diskettes to be
bootable under EFI, it must be built in accordance with the rules laid out in Section 3.5.1.1.

Since the EFI file system definition does not use the code in the first block of the diskette, it is
possible to boot personal computers using a diskette that is also formatted as an EFI bootable
removable media device. The inclusion of boot code for personal computers is optional and not
required by EFI.

Diskettes include the legacy 3.5-inch diskette drives as well as the newer larger capacity removable
media drives such as an Iomega* Zip*, Fujitsu MO, or MKE LS-120/SuperDisk*.

12.3.4.3 Hard Drive
Hard drives may contain multiple partitions as defined in Section 12.3.2 on partition discovery. Any
partition on the hard drive may contain a file system that the EFI firmware recognizes. Images that
are to be booted must be stored under the EFI subdirectory as defined in Section 12.3.1 and
Section 12.3.2.

EFI code does not assume a fixed block size.

Since EFI firmware does not execute the MBR code and does not depend on the BootIndicator field
in the legacy MBR partition records, the hard disk can still boot and function normally.

12.3.4.4 CD-ROM and DVD-ROM
A CD-ROM or DVD-ROM may contain multiple partitions as defined Section 12.3.1 and
Section 12.3.2 and in the “El Torito” specification.

EFI code does not assume a fixed block size.
Version 2.5 April, 2015 541

Unified Extensible Firmware Interface Specification
Since the EFI file system definition does not use the same Initial/Default entry as a legacy
CD-ROM, it is possible to boot personal computers using an EFI CD-ROM or DVD-ROM. The
inclusion of boot code for personal computers is optional and not required by EFI.

12.3.4.5 Network
To boot from a network device, the Boot Manager uses the Load File Protocol to perform a
LoadFile() on the network device. This uses the PXE Base Code Protocol to perform DHCP and
Discovery. This may result in a list of possible boot servers along with the boot files available on
each server. The Load File Protocol for a network boot may then optionally produce a menu of these
selections for the user to choose from. If this menu is presented, it will always have a timeout, so the
Load File Protocol can automatically boot the default boot selection. If there is only one possible
boot file, then the Load File Protocol can automatically attempt to load the one boot file.

The Load File Protocol will download the boot file using the MTFTP service in the PXE Base Code
Protocol. The downloaded image must be an EFI image that the platform supports.

12.4 Simple File System Protocol
This section defines the Simple File System protocol. This protocol allows code running in the EFI
boot services environment to obtain file based access to a device.
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL is used to open a device volume and return an
EFI_FILE_PROTOCOL that provides interfaces to access files on a device volume.

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL

Summary
Provides a minimal interface for file-type access to a device.

GUID
#define EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_GUID \
 {0x0964e5b22,0x6459,0x11d2,\
 {0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,0x3b}}

Revision Number
#define EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_SIMPLE_FILE_SYSTEM_PROTOCOL {
 UINT64 Revision;
 EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_OPEN_VOLUME OpenVolume;
} EFI_SIMPLE_FILE_SYSTEM_PROTOCOL;

Parameters
Revision The version of the EFI_FILE_PROTOCOL. The version

specified by this specification is 0x00010000. All future revisions
542 April, 2015 Version 2.5

Protocols - Media Access
must be backwards compatible. If a future version is not
backwards compatible, it is not the same GUID.

OpenVolume Opens the volume for file I/O access. See the OpenVolume()
function description.

Description
The EFI_SIMPLE_FILE_SYSTEM_PROTOCOL provides a minimal interface for file-type access
to a device. This protocol is only supported on some devices.

Devices that support the Simple File System protocol return an EFI_FILE_PROTOCOL. The only
function of this interface is to open a handle to the root directory of the file system on the volume.
Once opened, all accesses to the volume are performed through the volume’s file handles, using the
EFI_FILE_PROTOCOL protocol. The volume is closed by closing all the open file handles.

The firmware automatically creates handles for any block device that supports the following file
system formats:

• FAT12

• FAT16

• FAT32
Version 2.5 April, 2015 543

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_FILE SYSTEM_PROTOCOL.OpenVolume()

Summary
Opens the root directory on a volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_OPEN_VOLUME) (
 IN EFI_SIMPLE_FILE_SYSTEM PROTOCOL *This,
 OUT EFI_FILE_PROTOCOL **Root
);

Parameters
This A pointer to the volume to open the root directory of. See the type

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL description.

Root A pointer to the location to return the opened file handle for the
root directory. See the type EFI_FILE_PROTOCOL description.

Description
The OpenVolume() function opens a volume, and returns a file handle to the volume’s root
directory. This handle is used to perform all other file I/O operations. The volume remains open until
all the file handles to it are closed.

If the medium is changed while there are open file handles to the volume, all file handles to the
volume will return EFI_MEDIA_CHANGED. To access the files on the new medium, the volume
must be reopened with OpenVolume(). If the new medium is a different file system than the one
supplied in the EFI_HANDLE’s DevicePath for the EFI_SIMPLE_SYSTEM_PROTOCOL,
OpenVolume() will return EFI_UNSUPPORTED.
544 April, 2015 Version 2.5

Protocols - Media Access
Status Codes Returned

12.5 EFI File Protocol
The protocol and functions described in this section support access to EFI-supported file systems.

EFI_FILE_PROTOCOL

Summary
Provides file based access to supported file systems.

EFI_SUCCESS The file volume was opened.

EFI_UNSUPPORTED The volume does not support the requested file system type.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_ACCESS_DENIED The service denied access to the file.

EFI_OUT_OF_RESOURCES The file volume was not opened.

EFI_MEDIA_CHANGED The device has a different medium in it or the medium is no
longer supported. Any existing file handles for this volume are
no longer valid. To access the files on the new medium, the

volume must be reopened with OpenVolume().
Version 2.5 April, 2015 545

Unified Extensible Firmware Interface Specification
Revision Number
#define EFI_FILE_PROTOCOL_REVISION 0x00010000
#define EFI_FILE_PROTOCOL_REVISION2 0x00020000
#define EFI_FILE_PROTOCOL_LATEST_REVISION
EFI_FILE_PROTOCOL_REVISION2

Protocol Interface Structure
typedef struct _EFI_FILE_PROTOCOL {
 UINT64 Revision;
 EFI_FILE_OPEN Open;
 EFI_FILE_CLOSE Close;
 EFI_FILE_DELETE Delete;
 EFI_FILE_READ Read;
 EFI_FILE_WRITE Write;
 EFI_FILE_GET_POSITION GetPosition;
 EFI_FILE_SET_POSITION SetPosition;
 EFI_FILE_GET_INFO GetInfo;
 EFI_FILE_SET_INFO SetInfo;
 EFI_FILE_FLUSH Flush;
 EFI_FILE_OPEN_EX OpenEx; // Added for revision 2
 EFI_FILE_READ_EX ReadEx; // Added for revision 2
 EFI_FILE_WRITE_EX WriteEx; // Added for revision 2
 EFI_FILE_FLUSH_EX FlushEx; // Added for revision 2
} EFI_FILE_PROTOCOL;

Parameters
Revision The version of the EFI_FILE_PROTOCOL interface. The

version specified by this specification is
EFI_FILE_PROTOCOL_LATEST_REVISION. Future
versions are required to be backward compatible to version 1.0.

Open Opens or creates a new file. See the Open() function
description.

Close Closes the current file handle. See the Close() function
description.

Delete Deletes a file. See the Delete() function description.

Read Reads bytes from a file. See the Read() function description.

Write Writes bytes to a file. See the Write() function description.

GetPosition Returns the current file position. See the GetPosition()
function description.

SetPosition Sets the current file position. See the SetPosition() function
description.

GetInfo Gets the requested file or volume information. See the
GetInfo() function description.
546 April, 2015 Version 2.5

Protocols - Media Access
SetInfo Sets the requested file information. See the SetInfo()
function description.

Flush Flushes all modified data associated with the file to the device.
See the Flush() function description.

OpenEx Opens a new file relative to the source directory’s location.

ReadEx Reads data from a file.

WriteEx Writes data to a file.

FlushEx Flushes all modified data associated with a file to a device.

Description
The EFI_FILE_PROTOCOL provides file IO access to supported file systems.

An EFI_FILE_PROTOCOL provides access to a file’s or directory’s contents, and is also a
reference to a location in the directory tree of the file system in which the file resides. With any
given file handle, other files may be opened relative to this file’s location, yielding new file handles.

On requesting the file system protocol on a device, the caller gets the EFI_FILE_PROTOCOL to
the volume. This interface is used to open the root directory of the file system when needed. The
caller must Close() the file handle to the root directory, and any other opened file handles before
exiting. While there are open files on the device, usage of underlying device protocol(s) that the file
system is abstracting must be avoided. For example, when a file system that is layered on a
EFI_DISK_IO_PROTOCOL / EFI_BLOCK_IO_PROTOCOL, direct block access to the device for
the blocks that comprise the file system must be avoided while there are open file handles to the
same device.

A file system driver may cache data relating to an open file. A Flush() function is provided that
flushes all dirty data in the file system, relative to the requested file, to the physical medium. If the
underlying device may cache data, the file system must inform the device to flush as well.

Implementations must account for cases where there is pending queued asynchronous I/O when a
call is received on a blocking protocol interface. In these cases the pending I/O will be processed
and completed before the blocking function is executed so that operation are carried out in the order
they were requested.
Version 2.5 April, 2015 547

Unified Extensible Firmware Interface Specification
EFI_FILE_PROTOCOL.Open()

Summary
Opens a new file relative to the source file’s location.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_OPEN) (
 IN EFI_FILE_PROTOCOL *This,
 OUT EFI_FILE_PROTOCOL **NewHandle,
 IN CHAR16 *FileName,
 IN UINT64 OpenMode,
 IN UINT64 Attributes
);

Parameters
This A pointer to the EFI_FILE_PROTOCOL instance that is the file

handle to the source location. This would typically be an open
handle to a directory. See the type EFI_FILE_PROTOCOL
description.

NewHandle A pointer to the location to return the opened handle for the new
file. See the type EFI_FILE_PROTOCOL description.

FileName The Null-terminated string of the name of the file to be opened.
The file name may contain the following path modifiers: “\”, “.”,
and “..”.

OpenMode The mode to open the file. The only valid combinations that the
file may be opened with are: Read, Read/Write, or Create/Read/
Write. See “Related Definitions” below.

Attributes Only valid for EFI_FILE_MODE_CREATE, in which case these
are the attribute bits for the newly created file. See “Related
Definitions” below.
548 April, 2015 Version 2.5

Protocols - Media Access
Related Definitions
//***
// Open Modes
//***
#define EFI_FILE_MODE_READ 0x0000000000000001
#define EFI_FILE_MODE_WRITE 0x0000000000000002
#define EFI_FILE_MODE_CREATE 0x8000000000000000

//***
// File Attributes
//***
#define EFI_FILE_READ_ONLY 0x0000000000000001
#define EFI_FILE_HIDDEN 0x0000000000000002
#define EFI_FILE_SYSTEM 0x0000000000000004
#define EFI_FILE_RESERVED 0x0000000000000008
#define EFI_FILE_DIRECTORY 0x0000000000000010
#define EFI_FILE_ARCHIVE 0x0000000000000020
#define EFI_FILE_VALID_ATTR 0x0000000000000037

Description
The Open()function opens the file or directory referred to by FileName relative to the location of
This and returns a NewHandle. The FileName may include the following path modifiers:

“\” If the filename starts with a “\” the relative location is the root
directory that This resides on; otherwise “\” separates name
components. Each name component is opened in turn, and the
handle to the last file opened is returned.

“.” Opens the current location.

“..” Opens the parent directory for the current location. If the location
is the root directory the request will return an error, as there is no
parent directory for the root directory.

If EFI_FILE_MODE_CREATE is set, then the file is created in the directory. If the final location of
FileName does not refer to a directory, then the operation fails. If the file does not exist in the
directory, then a new file is created. If the file already exists in the directory, then the existing file is
opened.

If the medium of the device changes, all accesses (including the File handle) will result in
EFI_MEDIA_CHANGED. To access the new medium, the volume must be reopened.

Status Codes Returned

EFI_SUCCESS The file was opened.

EFI_NOT_FOUND The specified file could not be found on the device.

EFI_NO_MEDIA The device has no medium.

EFI_MEDIA_CHANGED The device has a different medium in it or the medium is no
longer supported.

EFI_DEVICE_ERROR The device reported an error.
Version 2.5 April, 2015 549

Unified Extensible Firmware Interface Specification
EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED An attempt was made to create a file, or open a file for write
when the media is write-protected.

EFI_ACCESS_DENIED The service denied access to the file.

EFI_OUT_OF_RESOURCES Not enough resources were available to open the file.

EFI_VOLUME_FULL The volume is full.
550 April, 2015 Version 2.5

Protocols - Media Access
EFI_FILE_PROTOCOL.Close()

Summary
Closes a specified file handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_CLOSE) (
 IN EFI_FILE_PROTOCOL *This
);

Parameters
This A pointer to the EFI_FILE_PROTOCOL instance that is the file

handle to close. See the type EFI_FILE_PROTOCOL
description.

Description
The Close() function closes a specified file handle. All “dirty” cached file data is flushed to the
device, and the file is closed. In all cases the handle is closed. The operation will wait for all pending
asynchronous I/O requests to complete before completing.

Status Codes Returned

EFI_SUCCESS The file was closed.
Version 2.5 April, 2015 551

Unified Extensible Firmware Interface Specification
EFI_FILE_PROTOCOL.Delete()

Summary
Closes and deletes a file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_DELETE) (
 IN EFI_FILE_PROTOCOL *This
);

Parameters
This A pointer to the EFI_FILE_PROTOCOL instance that is the

handle to the file to delete. See the type EFI_FILE_PROTOCOL
description.

Description
The Delete() function closes and deletes a file. In all cases the file handle is closed. If the file
cannot be deleted, the warning code EFI_WARN_DELETE_FAILURE is returned, but the handle is
still closed.

Status Codes Returned

EFI_SUCCESS The file was closed and deleted, and the handle was closed.

EFI_WARN_DELETE_FAILURE The handle was closed, but the file was not deleted.
552 April, 2015 Version 2.5

Protocols - Media Access
EFI_FILE_PROTOCOL.Read()

Summary
Reads data from a file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_READ) (
 IN EFI_FILE_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_FILE_PROTOCOL instance that is the file

handle to read data from. See the type EFI_FILE_PROTOCOL
description.

BufferSize On input, the size of the Buffer. On output, the amount of data
returned in Buffer. In both cases, the size is measured in bytes.

Buffer The buffer into which the data is read.

Description
The Read() function reads data from a file.

If This is not a directory, the function reads the requested number of bytes from the file at the
file’s current position and returns them in Buffer. If the read goes beyond the end of the file, the
read length is truncated to the end of the file. The file’s current position is increased by the number
of bytes returned.

If This is a directory, the function reads the directory entry at the file’s current position and returns
the entry in Buffer. If the Buffer is not large enough to hold the current directory entry, then
EFI_BUFFER_TOO_SMALL is returned and the current file position is not updated. BufferSize
is set to be the size of the buffer needed to read the entry. On success, the current position is updated
to the next directory entry. If there are no more directory entries, the read returns a zero-length
buffer. EFI_FILE_INFO is the structure returned as the directory entry.

Status Codes Returned

EFI_SUCCESS The data was read.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_DEVICE_ERROR An attempt was made to read from a deleted file.

EFI_DEVICE_ERROR On entry, the current file position is beyond the end of the file.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.
Version 2.5 April, 2015 553

Unified Extensible Firmware Interface Specification
EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the current directory

entry. BufferSize has been updated with the size

needed to complete the request.
554 April, 2015 Version 2.5

Protocols - Media Access
EFI_FILE_PROTOCOL.Write()

Summary
Writes data to a file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_WRITE) (
 IN EFI_FILE_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 IN VOID *Buffer
);

Parameters
This A pointer to the EFI_FILE_PROTOCOL instance that is the file

handle to write data to. See the type EFI_FILE_PROTOCOL
description.

BufferSize On input, the size of the Buffer. On output, the amount of data
actually written. In both cases, the size is measured in bytes.

Buffer The buffer of data to write.

Description
The Write() function writes the specified number of bytes to the file at the current file position.
The current file position is advanced the actual number of bytes written, which is returned in
BufferSize. Partial writes only occur when there has been a data error during the write attempt
(such as “file space full”). The file is automatically grown to hold the data if required.

Direct writes to opened directories are not supported.

Status Codes Returned

EFI_SUCCESS The data was written.

EFI_UNSUPPORT Writes to open directory files are not supported.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_DEVICE_ERROR An attempt was made to write to a deleted file.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write-protected.

EFI_ACCESS_DENIED The file was opened read only.

EFI_VOLUME_FULL The volume is full.
Version 2.5 April, 2015 555

Unified Extensible Firmware Interface Specification
EFI_FILE_PROTOCOL.OpenEx()

Summary
Opens a new file relative to the source directory’s location.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_OPEN) (
IN EFI_FILE_PROTOCOL *This,
OUT EFI_FILE_PROTOCOL **NewHandle,
IN CHAR16 *FileName,
IN UINT64 OpenMode,
IN UINT64 Attributes,
IN OUT EFI_FILE_IO_TOKEN *Token
);

Parameters
This A pointer to the EFI_FILE_PROTOCOL instance that is the file

handle to read data from. See the type EFI_FILE_PROTOCOL
description.

NewHandle A pointer to the location to return the opened handle for the new
file. See the type EFI_FILE_PROTOCOL description. For
asynchronous I/O, this pointer must remain valid for the duration
of the asynchronous operation.

FileName The Null-terminated string of the name of the file to be opened.
The file name may contain the following path modifiers: “\”, “.”,
and “..”.

OpenMode The mode to open the file. The only valid combinations that the
file may be opened with are: Read, Read/Write, or Create/Read/
Write. See “Related Definitions” below.

Attributes Only valid for EFI_FILE_MODE_CREATE, in which case these
are the attribute bits for the

Token A pointer to the token associated with the transaction. Type
EFI_FILE_IO_TOKEN is defined in "Related Definitions"
below.

Description
The OpenEx()function opens the file or directory referred to by FileName relative to the
location of This and returns a NewHandle. The FileName may include the path modifiers
described previously in Open().

If EFI_FILE_MODE_CREATE is set, then the file is created in the directory. If the final location of
FileName does not refer to a directory, then the operation fails. If the file does not exist in the
directory, then a new file is created. If the file already exists in the directory, then the existing file is
opened.
556 April, 2015 Version 2.5

Protocols - Media Access
If the medium of the device changes, all accesses (including the File handle) will result in
EFI_MEDIA_CHANGED. To access the new medium, the volume must be reopened.

If an error is returned from the call to OpenEx() and non-blocking I/O is being requested, the
Event associated with this request will not be signaled. If the call to OpenEx() succeeds then
the Event will be signaled upon completion of the open or if an error occurs during the processing
of the request. The status of the read request can be determined from the Status field of the Token
once the event is signaled.

Related Definitions
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 UINTN BufferSize;
 VOID *Buffer;
 } EFI_FILE_IO_TOKEN;

Event If Event is NULL, then blocking I/O is performed. If Event is
not NULL and non-blocking I/O is supported, then non-blocking
I/O is performed, and Event will be signaled when the read
request is completed. The caller must be prepared to handle the
case where the callback associated with Event occurs before the
original asynchronous I/O request call returns.

Status Defines whether or not the signaled event encountered an error.

BufferSize For OpenEx(): Not Used, ignored

For ReadEx():On input, the size of the Buffer. On output,
the amount of data returned in Buffer. In both cases, the size is
measured in bytes.

For WriteEx(): On input, the size of the Buffer. On output,
the amount of data actually written. In both cases, the size is
measured in bytes.

For FlushEx(): Not used, ignored

Buffer For OpenEx(): Not Used, ignored

For ReadEx(): The buffer into which the data is read.

For WriteEx(): The buffer of data to write.

For FlushEx(): Not Used, ignored

Status Codes Returned

EFI_SUCCESS Returned from the call OpenEx()
If Event is NULL (blocking I/O):

The file was opened successfully.

If Event is not NULL (asynchronous I/O):

The request was successfully queued for processing.

Event will be signaled upon completion.

Returned in the token after signaling Event
The file was opened successfully.
Version 2.5 April, 2015 557

Unified Extensible Firmware Interface Specification
EFI_NOT_FOUND The device has no medium.

EFI_NO_MEDIA The specified file could not be found on the device.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED An attempt was made to create a file, or open a file for
write when the media is write-protected.

EFI_ACCESS_DENIED The service denied access to the file.

EFI_OUT_OF_RESOURCES Unable to queue the request or open the file due to lack of
resources.

EFI_VOLUME_FULL The volume is full.
558 April, 2015 Version 2.5

Protocols - Media Access
EFI_FILE_PROTOCOL.ReadEx()

Summary
Reads data from a file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_READ_EX) (
 IN EFI_FILE_PROTOCOL *This,
 IN OUT EFI_FILE_IO_TOKEN *Token
);

Parameters
This A pointer to the EFI_FILE_PROTOCOL instance that is the file

handle to read data from. See the type EFI_FILE_PROTOCOL
description.

Token A pointer to the token associated with the transaction. Type
EFI_FILE_IO_TOKEN is defined in "Related Definitions"
below.

Description
The ReadEx() function reads data from a file.

If This is not a directory, the function reads the requested number of bytes from the file at the
file’s current position and returns them in Buffer. If the read goes beyond the end of the file, the
read length is truncated to the end of the file. The file’s current position is increased by the number
of bytes returned.

If This is a directory, the function reads the directory entry at the file’s current position and returns
the entry in Buffer. If the Buffer is not large enough to hold the current directory entry, then
EFI_BUFFER_TOO_SMALL is returned and the current file position is not updated.
BufferSize is set to be the size of the buffer needed to read the entry. On success, the current
position is updated to the next directory entry. If there are no more directory entries, the read returns
a zero-length buffer. EFI_FILE_INFO is the structure returned as the directory entry.

If non-blocking I/O is used the file pointer will be advanced based on the order that read requests
were submitted.

If an error is returned from the call to ReadEx() and non-blocking I/O is being requested, the
Event associated with this request will not be signaled. If the call to ReadEx() succeeds then
the Event will be signaled upon completion of the read or if an error occurs during the processing
of the request. The status of the read request can be determined from the Status field of the
Token once the event is signaled.
Version 2.5 April, 2015 559

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS Returned from the call ReadEx()
If Event is NULL (blocking I/O):

The data was read successfully.

If Event is not NULL (asynchronous I/O):

The request was successfully queued for processing.
Event will be signaled upon completion.

Returned in the token after signaling Event
The data was read successfully.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_DEVICE_ERROR An attempt was made to read from a deleted file.

EFI_DEVICE_ERROR On entry, the current file position is beyond the end of the
file.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_OUT_OF_RESOURCES Unable to queue the request due to lack of resources.
560 April, 2015 Version 2.5

Protocols - Media Access
EFI_FILE_PROTOCOL.WriteEx()

Summary
Writes data to a file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_WRITE_EX) (
 IN EFI_FILE_PROTOCOL *This,
 IN OUT EFI_FILE_IO_TOKEN *Token
);

Parameters
This A pointer to the EFI_FILE_PROTOCOL instance that is the file

handle to write data to. See the type EFI_FILE_PROTOCOL
description.

Token A pointer to the token associated with the transaction. Type
EFI_FILE_IO_TOKEN is defined in "Related Definitions"
above.

Description

The WriteEx() function writes the specified number of bytes to the file at the current file
position. The current file position is advanced the actual number of bytes written, which is
returned in BufferSize. Partial writes only occur when there has been a data error during
the write attempt (such as “file space full”). The file is automatically grown to hold the data if
required.

Direct writes to opened directories are not supported.

If non-blocking I/O is used the file pointer will be advanced based on the order that write
requests were submitted.

If an error is returned from the call to WriteEx() and non-blocking I/O is being requested,
the Event associated with this request will not be signaled. If the call to WriteEx()
succeeds then the Event will be signaled upon completion of the write or if an error occurs
during the processing of the request. The status of the write request can be determined from
the Status field of the Token once the event is signaled.
Version 2.5 April, 2015 561

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS Returned from the call WriteEx()
If Event is NULL (blocking I/O):

The data was written successfully.

If Event is not NULL (asynchronous I/O):

The request was successfully queued for processing.

Event will be signaled upon completion.

Returned in the token after signaling Event
The data was written successfully.

EFI_UNSUPPORTED Writes to open directory files are not supported.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_DEVICE_ERROR An attempt was made to write to a deleted file.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write-protected.

EFI_ACCESS_DENIED The file was opened read only.

EFI_VOLUME_FULL The volume is full.

EFI_OUT_OF_RESOURCES Unable to queue the request due to lack of resources.
562 April, 2015 Version 2.5

Protocols - Media Access
EFI_FILE_PROTOCOL.FlushEx()

Summary
Flushes all modified data associated with a file to a device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_FLUSH_EX) (
 IN EFI_FILE_PROTOCOL *This,
 IN OUT EFI_FILE_IO_TOKEN *Token
);

Parameters
This A pointer to the EFI_FILE_PROTOCOL instance that is the file

handle to flush. See the type EFI_FILE_PROTOCOL
description.

Token A pointer to the token associated with the transaction. Type
EFI_FILE_IO_TOKEN is defined in "Related Definitions"
above. The BufferSize and Buffer fields are not used for a
FlushEx operation.

Description
The FlushEx() function flushes all modified data associated with a file to a device.

For non-blocking I/O all writes submitted before the flush request will be flushed.

If an error is returned from the call to FlushEx() and non-blocking I/O is being requested, the
Event associated with this request will not be signaled.

Status Codes Returned

EFI_SUCCESS Returned from the call FlushEx()
If Event is NULL (blocking I/O):

The data was flushed successfully.

If Event is not NULL (asynchronous I/O):

The request was successfully queued for processing.
Event will be signaled upon completion.

Returned in the token after signaling Event
The data was flushed successfully.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write-protected.

EFI_ACCESS_DENIED The file was opened read-only.

EFI_VOLUME_FULL The volume is full.
Version 2.5 April, 2015 563

Unified Extensible Firmware Interface Specification
EFI_OUT_OF_RESOURCES Unable to queue the request due to lack of resources.
564 April, 2015 Version 2.5

Protocols - Media Access
EFI_FILE_PROTOCOL.SetPosition()

Summary
Sets a file’s current position.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_SET_POSITION) (
 IN EFI_FILE_PROTOCOL *This,
 IN UINT64 Position
);

Parameters
This A pointer to the EFI_FILE_PROTOCOL instance that is the he

file handle to set the requested position on. See the type
EFI_FILE_PROTOCOL description.

Position The byte position from the start of the file to set.

Description
The SetPosition() function sets the current file position for the handle to the position supplied.
With the exception of seeking to position 0xFFFFFFFFFFFFFFFF, only absolute positioning is
supported, and seeking past the end of the file is allowed (a subsequent write would grow the file).
Seeking to position 0xFFFFFFFFFFFFFFFF causes the current position to be set to the end of the
file.

If This is a directory, the only position that may be set is zero. This has the effect of starting the
read process of the directory entries over.

Status Codes Returned

EFI_SUCCESS The position was set.

EFI_UNSUPPORTED The seek request for nonzero is not valid on open
directories.

EFI_DEVICE_ERROR An attempt was made to set the position of a deleted file.
Version 2.5 April, 2015 565

Unified Extensible Firmware Interface Specification
EFI_FILE_PROTOCOL.GetPosition()

Summary
Returns a file’s current position.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_GET_POSITION) (
 IN EFI_FILE_PROTOCOL *This,
 OUT UINT64 *Position
);

Parameters
This A pointer to the EFI_FILE_PROTOCOL instance that is the file

handle to get the current position on. See the type
EFI_FILE_PROTOCOL description.

Position The address to return the file’s current position value.

Description
The GetPosition() function returns the current file position for the file handle. For directories,
the current file position has no meaning outside of the file system driver and as such the operation is
not supported. An error is returned if This is a directory.

Status Codes Returned

EFI_SUCCESS The position was returned.

EFI_UNSUPPORTED The request is not valid on open directories.

EFI_DEVICE_ERROR An attempt was made to get the position from a deleted file.
566 April, 2015 Version 2.5

Protocols - Media Access
EFI_FILE_PROTOCOL.GetInfo()

Summary
Returns information about a file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_GET_INFO) (
 IN EFI_FILE_PROTOCOL *This,
 IN EFI_GUID *InformationType,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_FILE_PROTOCOL instance that is the file

handle the requested information is for. See the type
EFI_FILE_PROTOCOL description.

InformationType The type identifier for the information being requested. Type
EFI_GUID is defined on page 168. See the EFI_FILE_INFO
and EFI_FILE_SYSTEM_INFO descriptions for the related
GUID definitions.

BufferSize On input, the size of Buffer. On output, the amount of data
returned in Buffer. In both cases, the size is measured in bytes.

Buffer A pointer to the data buffer to return. The buffer’s type is
indicated by InformationType.

Description
The GetInfo() function returns information of type InformationType for the requested file.
If the file does not support the requested information type, then EFI_UNSUPPORTED is returned. If
the buffer is not large enough to fit the requested structure, EFI_BUFFER_TOO_SMALL is
returned and the BufferSize is set to the size of buffer that is required to make the request.

The information types defined by this specification are required information types that all file
systems must support.

Status Codes Returned

EFI_SUCCESS The information was set.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.
Version 2.5 April, 2015 567

Unified Extensible Firmware Interface Specification
EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the current directory entry.

BufferSize has been updated with the size needed to complete

the request.
568 April, 2015 Version 2.5

Protocols - Media Access
EFI_FILE_PROTOCOL.SetInfo()

Summary
Sets information about a file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_SET_INFO) (
 IN EFI_FILE_PROTOCOL *This,
 IN EFI_GUID *InformationType,
 IN UINTN BufferSize,
 IN VOID *Buffer
);

Parameters
This A pointer to the EFI_FILE_PROTOCOL instance that is the file

handle the information is for. See the type
EFI_FILE_PROTOCOL description.

InformationType The type identifier for the information being set. Type
EFI_GUID is defined in page 168. See the EFI_FILE_INFO
and EFI_FILE_SYSTEM_INFO descriptions in this section for
the related GUID definitions.

BufferSize The size, in bytes, of Buffer.

Buffer A pointer to the data buffer to write. The buffer’s type is
indicated by InformationType.

Description
The SetInfo() function sets information of type InformationType on the requested file.
Because a read-only file can be opened only in read-only mode, an InformationType of
EFI_FILE_INFO_ID can be used with a read-only file because this method is the only one that
can be used to convert a read-only file to a read-write file. In this circumstance, only the
Attribute field of the EFI_FILE_INFO structure may be modified. One or more calls to
SetInfo() to change the Attribute field are permitted before it is closed. The file attributes
will be valid the next time the file is opened with Open().

An InformationType of EFI_FILE_SYSTEM_INFO_ID or
EFI_FILE_SYSTEM_VOLUME_LABEL_ID may not be used on read-only media.

Status Codes Returned

EFI_SUCCESS The information was set.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.
Version 2.5 April, 2015 569

Unified Extensible Firmware Interface Specification
EFI_WRITE_PROTECTED InformationType is EFI_FILE_INFO_ID
and the media is read-only.

EFI_WRITE_PROTECTED InformationType is

EFI_FILE_PROTOCOL_SYSTEM_INFO_ID
and the media is read only.

EFI_WRITE_PROTECTED InformationType is

EFI_FILE_SYSTEM_VOLUME_LABEL_ID
and the media is read-only.

EFI_ACCESS_DENIED An attempt is made to change the name of a file to a
file that is already present.

EFI_ACCESS_DENIED An attempt is being made to change the

EFI_FILE_DIRECTORY Attribute.

EFI_ACCESS_DENIED An attempt is being made to change the size of a
directory.

EFI_ACCESS_DENIED InformationType is EFI_FILE_INFO_ID

and the file was opened read-only and an attempt is
being made to modify a field other than

Attribute.

EFI_VOLUME_FULL The volume is full.

EFI_BAD_BUFFER_SIZE BufferSize is smaller than the size of the type

indicated by InformationType.
570 April, 2015 Version 2.5

Protocols - Media Access
EFI_FILE_PROTOCOL.Flush()

Summary
Flushes all modified data associated with a file to a device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FILE_FLUSH) (
 IN EFI_FILE_PROTOCOL *This
);

Parameters
This A pointer to the EFI_FILE_PROTOCOL instance that is the file

handle to flush. See the type EFI_FILE_PROTOCOL
description.

Description
The Flush() function flushes all modified data associated with a file to a device.

Status Codes Returned

EFI_FILE_INFO

Summary
Provides a GUID and a data structure that can be used with EFI_FILE_PROTOCOL.SetInfo()
and EFI_FILE_PROTOCOL.GetInfo() to set or get generic file information.

EFI_SUCCESS The data was flushed.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write-protected.

EFI_ACCESS_DENIED The file was opened read-only.

EFI_VOLUME_FULL The volume is full.
Version 2.5 April, 2015 571

Unified Extensible Firmware Interface Specification
GUID
#define EFI_FILE_INFO_ID \
 {0x09576e92,0x6d3f,0x11d2,\
 {0x8e39,0x00,0xa0,0xc9,0x69,0x72,0x3b}}

Related Definitions
typedef struct {
 UINT64 Size;
 UINT64 FileSize;
 UINT64 PhysicalSize;
 EFI_TIME CreateTime;
 EFI_TIME LastAccessTime;
 EFI_TIME ModificationTime;
 UINT64 Attribute;
 CHAR16 FileName[];
} EFI_FILE_INFO;

//***
// File Attribute Bits
//***

#define EFI_FILE_READ_ONLY 0x0000000000000001
#define EFI_FILE_HIDDEN 0x0000000000000002
#define EFI_FILE_SYSTEM 0x0000000000000004
#define EFI_FILE_RESERVED 0x0000000000000008
#define EFI_FILE_DIRECTORY 0x0000000000000010
#define EFI_FILE_ARCHIVE 0x0000000000000020
#define EFI_FILE_VALID_ATTR 0x0000000000000037

Parameters
Size Size of the EFI_FILE_INFO structure, including the Null-

terminated FileName string.

FileSize The size of the file in bytes.

PhysicalSize The amount of physical space the file consumes on the file
system volume.

CreateTime The time the file was created.

LastAccessTime The time when the file was last accessed.

ModificationTime The time when the file’s contents were last modified.

Attribute The attribute bits for the file. See “Related Definitions” above.

FileName The Null-terminated name of the file.

Description
The EFI_FILE_INFO data structure supports GetInfo() and SetInfo() requests. In the case
of SetInfo(), the following additional rules apply:
572 April, 2015 Version 2.5

Protocols - Media Access
• On directories, the file size is determined by the contents of the directory and cannot be changed
by setting FileSize. On directories, FileSize is ignored during a SetInfo().

• The PhysicalSize is determined by the FileSize and cannot be changed. This value
is ignored during a SetInfo() request.

• The EFI_FILE_DIRECTORY attribute bit cannot be changed. It must match the file’s
actual type.

• A value of zero in CreateTime, LastAccess, or ModificationTime causes the fields
to be ignored (and not updated).

EFI_FILE_SYSTEM_INFO

Summary
Provides a GUID and a data structure that can be used with EFI_FILE_PROTOCOL.GetInfo()
to get information about the system volume, and EFI_FILE_PROTOCOL.SetInfo() to set the
system volume’s volume label.

GUID
#define EFI_FILE_SYSTEM_INFO_ID \
 {0x09576e93,0x6d3f,0x11d2,0x8e39,0x00,0xa0,0xc9,0x69,0x72,\
 0x3b}

Related Definitions
typedef struct {
 UINT64 Size;
 BOOLEAN ReadOnly;
 UINT64 VolumeSize;
 UINT64 FreeSpace;
 UINT32 BlockSize;
 CHAR16 VolumeLabel[];
} EFI_FILE_SYSTEM_INFO;

Parameters
Size Size of the EFI_FILE_SYSTEM_INFO structure, including the

Null-terminated VolumeLabel string.

ReadOnly TRUE if the volume only supports read access.

VolumeSize The number of bytes managed by the file system.

FreeSpace The number of available bytes for use by the file system.

BlockSize The nominal block size by which files are typically grown.

VolumeLabel The Null-terminated string that is the volume’s label.

Description
The EFI_FILE_SYSTEM_INFO data structure is an information structure that can be obtained on
the root directory file handle. The root directory file handle is the file handle first obtained on the
Version 2.5 April, 2015 573

Unified Extensible Firmware Interface Specification
initial call to the EFI_BOOT_SERVICES.HandleProtocol() function to open the file system
interface. All of the fields are read-only except for VolumeLabel. The system volume’s
VolumeLabel can be created or modified by calling EFI_FILE_PROTOCOL.SetInfo() with
an updated VolumeLabel field.

EFI_FILE_SYSTEM_VOLUME_LABEL

Summary
Provides a GUID and a data structure that can be used with EFI_FILE_PROTOCOL.GetInfo()
or EFI_FILE_PROTOCOL.SetInfo() to get or set information about the system’s volume
label.

GUID
#define EFI_FILE_SYSTEM_VOLUME_LABEL_ID \
{0xdb47d7d3,0xfe81,0x11d3,0x9a35,\
 {0x00,0x90,0x27,0x3f,0xC1,0x4d}}

Related Definitions
typedef struct {
 CHAR16 VolumeLabel[];
} EFI_FILE_SYSTEM_VOLUME_LABEL;

Parameters
VolumeLabel The Null-terminated string that is the volume’s label.

Description
The EFI_FILE_SYSTEM_VOLUME_LABEL data structure is an information structure that can be
obtained on the root directory file handle. The root directory file handle is the file handle first
obtained on the initial call to the EFI_BOOT_SERVICES.HandleProtocol() function to
open the file system interface. The system volume’s VolumeLabel can be created or modified by
calling EFI_FILE_PROTOCOL.SetInfo() with an updated VolumeLabel field.

12.6 Tape Boot Support

12.6.1 Tape I/O Support
This section defines the Tape I/O Protocol and standard tape header format. These enable the
support of booting from tape on UEFI systems. This protocol is used to abstract the tape drive
operations to support applications written to this specification.

Mission-critical server systems provide reliability and availability. Traditional RISC servers have
long supported native tape boot to perform system recovery tasks. Industry standard servers have not
traditionally provided native tape boot support. Some workarounds have been provided, e.g., One-
button Disaster Recovery (which makes a tape drive appear as a CD device after a special start-up
574 April, 2015 Version 2.5

Protocols - Media Access
sequence; Dual Media support where one boots from CD but recovers from tape; Hard Drive used
for back-up; DVD±RW for backup.

These alternatives have not satisfied customers. They want to migrate native tape boot support to
industry standard servers because most of them do not staff the technical expertise to perform the
human intervention involved, or, they do not perceive the media as reliable or having enough
capacity.

As a result, high-profile customers base their purchases on the promise of the native tape boot
support.

After considering the existing Disk IO Protocol, GPT Disk and File System IO Protocol supporting
the hard disk boot, it was decided that the best approach to support the tape boot is to define a new
Tape IO protocol and a standard tape header format to enable tape-based OS bootloaders to be run
using the EFI Load File Protocol.

12.6.2 Tape I/O Protocol
This section defines the Tape I/O Protocol and its functions. This protocol is used to abstract the tape
drive operations to support applications written to this specification.

EFI_TAPE_IO_PROTOCOL

Summary
The EFI Tape IO protocol provides services to control and access a tape device.

GUID
#define EFI_TAPE_IO_PROTOCOL_GUID \
 {0x1e93e633,0xd65a,0x459e, \
 {0xab,0x84,0x93,0xd9,0xec,0x26,0x6d,0x18}}

Protocol Interface Structure
typedef struct _EFI_TAPE_IO_PROTOCOL {
 EFI_TAPE_READ TapeRead;
 EFI_TAPE_WRITE TapeWrite;
 EFI_TAPE_REWIND TapeRewind;
 EFI_TAPE_SPACE TapeSpace;
 EFI_TAPE_WRITEFM TapeWriteFM;
 EFI_TAPE_RESET TapeReset;
} EFI_TAPE_IO_PROTOCOL;

Parameters
TapeRead Read a block of data from the tape. See the TapeRead()

description.

TapeWrite Write a block of data to the tape. See the TapeWrite()
description.

TapeRewind Rewind the tape. See the TapeRewind() description.
Version 2.5 April, 2015 575

Unified Extensible Firmware Interface Specification
TapeSpace Position the tape. See the TapeSpace() description.

TapeWriteFM Write filemarks to the tape. See the TapeWriteFM()
description.

TapeReset Reset the tape device or its parent bus. See the TapeReset()
description.

Description
The EFI_TAPE_IO_PROTOCOL provides basic sequential operations for tape devices. These
include read, write, rewind, space, write filemarks and reset functions. Per this specification, a boot
application uses the services of this protocol to load the bootloader image from tape.

No provision is made for controlling or determining media density or compression settings. The
protocol relies on devices to behave normally and select settings appropriate for the media loaded.
No support is included for tape partition support, setmarks or other tapemarks such as End of Data.
Boot tapes are expected to use normal variable or fixed block size formatting and filemarks.
576 April, 2015 Version 2.5

Protocols - Media Access
EFI_TAPE_IO_PROTOCOL.TapeRead()

Summary
Reads from the tape.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TAPE_READ) (
 IN EFI_TAPE_IO_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

BufferSize Size of the buffer in bytes pointed to by Buffer.

Buffer Pointer to the buffer for data to be read into.

Description
This function will read up to BufferSize bytes from media into the buffer pointed to by Buffer
using an implementation-specific timeout. BufferSize will be updated with the number of bytes
transferred.

Each read operation for a device that operates in variable block size mode reads one media data
block. Unread bytes which do not fit in the buffer will be skipped by the next read operation. The
number of bytes transferred will be limited by the actual media block size. Best practice is for the
buffer size to match the media data block size. When a filemark is encountered in variable block size
mode the read operation will indicate that 0 bytes were transferred and the function will return an
EFI_END_OF_FILE error condition.

In fixed block mode the buffer is expected to be a multiple of the data block size. Each read
operation for a device that operates in fixed block size mode may read multiple media data blocks.
The number of bytes transferred will be limited to an integral number of complete media data
blocks. BufferSize should be evenly divisible by the device’s fixed block size. When a filemark
is encountered in fixed block size mode the read operation will indicate that the number of bytes
transferred is less than the number of blocks that would fit in the provided buffer (possibly 0 bytes
transferred) and the function will return an EFI_END_OF_FILE error condition.

Two consecutive filemarks are normally used to indicate the end of the last file on the media.

The value specified for BufferSize should correspond to the actual block size used on the media.
If necessary, the value for BufferSize may be larger than the actual media block size.

Specifying a BufferSize of 0 is valid but requests the function to provide read-related status
information instead of actual media data transfer. No data will be attempted to be read from the
device however this operation is classified as an access for status handling. The status code returned
may be used to determine if a filemark has been encountered by the last read request with a non-zero
Version 2.5 April, 2015 577

Unified Extensible Firmware Interface Specification
size, and to determine if media is loaded and the device is ready for reading. A NULL value for
Buffer is valid when BufferSize is zero.

Status Codes Returned

EFI_SUCCESS Data was successfully transferred from the media.

EFI_END_OF_FILE A filemark was encountered which limited the data transferred
by the read operation or the head is positioned just after a
filemark.

EFI_NO_MEDIA No media is loaded in the device.

EFI_MEDIA_CHANGED The media in the device was changed since the last access.
The transfer was aborted since the current position of the media
may be incorrect.

EFI_DEVICE_ERROR A device error occurred while attempting to transfer data from
the media.

EFI_INVALID_PARAMETER A NULL Buffer was specified with a non-zero

BufferSize or the device is operating in fixed block size

mode and the BufferSize was not a multiple of device’s

fixed block size

EFI_NOT_READY The transfer failed since the device was not ready (e.g. not
online). The transfer may be retried at a later time.

EFI_UNSUPPORTED The device does not support this type of transfer.

EFI_TIMEOUT The transfer failed to complete within the timeout specified.
578 April, 2015 Version 2.5

Protocols - Media Access
EFI_TAPE_IO_PROTOCOL.TapeWrite()

Summary
Write to the tape.

Prototype
Typedef EFI_STATUS
(EFIAPI *EFI_TAPE_WRITE) (
 IN EFI_TAPE_IO_PROTOCOL *This,
 IN UINTN *BufferSize,
 IN VOID *Buffer
);

Parameters
This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

BufferSize Size of the buffer in bytes pointed to by Buffer.

Buffer Pointer to the buffer for data to be written from.

Description
This function will write BufferSize bytes from the buffer pointed to by Buffer to media using
an implementation-specific timeout.

Each write operation for a device that operates in variable block size mode writes one media data
block of BufferSize bytes.

Each write operation for a device that operates in fixed block size mode writes one or more media
data blocks of the device’s fixed block size. BufferSize must be evenly divisible by the device’s
fixed block size.

Although sequential devices in variable block size mode support a wide variety of block sizes, many
issues may be avoided in I/O software, adapters, hardware and firmware if common block sizes are
used such as: 32768, 16384, 8192, 4096, 2048, 1024, 512, and 80.

BufferSize will be updated with the number of bytes transferred.

When a write operation occurs beyond the logical end of media an EFI_END_OF_MEDIA error
condition will occur. Normally data will be successfully written and BufferSize will be updated
with the number of bytes transferred. Additional write operations will continue to fail in the same
manner. Excessive writing beyond the logical end of media should be avoided since the physical end
of media may be reached.

Specifying a BufferSize of 0 is valid but requests the function to provide write-related status
information instead of actual media data transfer. No data will be attempted to be written to the
device however this operation is classified as an access for status handling. The status code returned
may be used to determine if media is loaded, writable and if the logical end of media point has been
reached. A NULL value for Buffer is valid when BufferSize is zero.

Status Codes Returned

EFI_SUCCESS Data was successfully transferred to the media.
Version 2.5 April, 2015 579

Unified Extensible Firmware Interface Specification
EFI_END_OF_MEDIA The logical end of media has been reached. Data may have
been successfully transferred to the media.

EFI_NO_MEDIA No media is loaded in the device.

EFI_MEDIA_CHANGED The media in the device was changed since the last access.
The transfer was aborted since the current position of the media
may be incorrect.

EFI_WRITE_PROTECTED The media in the device is write-protected. The transfer was
aborted since a write cannot be completed.

EFI_DEVICE_ERROR A device error occurred while attempting to transfer data from
the media.

EFI_INVALID_PARAMETER A NULL Buffer was specified with a non-zero

BufferSize or the device is operating in fixed block size

mode and BufferSize was not a multiple of device’s fixed

block size.

EFI_NOT_READY The transfer failed since the device was not ready (e.g. not
online). The transfer may be retried at a later time.

EFI_UNSUPPORTED The device does not support this type of transfer.

EFI_TIMEOUT The transfer failed to complete within the timeout specified.
580 April, 2015 Version 2.5

Protocols - Media Access
EFI_TAPE_IO_PROTOCOL.TapeRewind()

Summary
Rewinds the tape.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TAPE_REWIND) (
 IN EFI_TAPE_IO_PROTOCOL *This,
);

Parameters
This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

Description
This function will rewind the media using an implementation-specific timeout. The function will
check if the media was changed since the last access and reinstall the EFI_TAPE_IO_PROTOCOL
interface for the device handle if needed.

Status Codes Returned

EFI_SUCCESS The media was successfully repositioned.

EFI_NO_MEDIA No media is loaded in the device.

EFI_DEVICE_ERROR A device error occurred while attempting to reposition the media.

EFI_NOT_READY Repositioning the media failed since the device was not ready (e.g.
not online). The transfer may be retried at a later time.

EFI_UNSUPPORTED The device does not support this type of media repositioning.

EFI_TIMEOUT Repositioning of the media did not complete within the timeout
specified.
Version 2.5 April, 2015 581

Unified Extensible Firmware Interface Specification
EFI_TAPE_IO_PROTOCOL.TapeSpace()

Summary
Positions the tape.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TAPE_SPACE) (
 IN EFI_TAPE_IO_PROTOCOL *This,
 IN INTN Direction,
 IN UINTN Type
);

Parameters
This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

Direction Direction and number of data blocks or filemarks to space over
on media.

Type Type of mark to space over on media.

Description
This function will position the media using an implementation-specific timeout.

A positive Direction value will indicate the number of data blocks or filemarks to forward space
the media. A negative Direction value will indicate the number of data blocks or filemarks to
reverse space the media.

The following Type marks are mandatory:

Space operations position the media past the data block or filemark. Forward space operations leave
media positioned with the tape device head after the data block or filemark. Reverse space
operations leave the media positioned with the tape device head before the data block or filemark.

If beginning of media is reached before a reverse space operation passes the requested number of
data blocks or filemarks an EFI_END_OF_MEDIA error condition will occur. If end of recorded
data or end of physical media is reached before a forward space operation passes the requested
number of data blocks or filemarks an EFI_END_OF_MEDIA error condition will occur. An
EFI_END_OF_MEDIA error condition will not occur due to spacing over data blocks or filemarks
past the logical end of media point used to indicate when write operations should be limited.

Status Codes Returned

Type of Tape Mark MarkType

BLOCK 0

FILEMARK 1

EFI_SUCCESS The media was successfully repositioned.
582 April, 2015 Version 2.5

Protocols - Media Access
EFI_END_OF_MEDIA Beginning or end of media was reached before the indicated
number of data blocks or filemarks were found.

EFI_NO_MEDIA No media is loaded in the device.

EFI_MEDIA_CHANGED The media in the device was changed since the last access.
Repositioning the media was aborted since the current
position of the media may be incorrect.

EFI_DEVICE_ERROR A device error occurred while attempting to reposition the
media.

EFI_NOT_READY Repositioning the media failed since the device was not
ready (e.g. not online). The transfer may be retried at a later
time.

EFI_UNSUPPORTED The device does not support this type of media
repositioning.

EFI_TIMEOUT Repositioning of the media did not complete within the
timeout specified.
Version 2.5 April, 2015 583

Unified Extensible Firmware Interface Specification
EFI_TAPE_IO_PROTOCOL.TapeWriteFM()

Summary
Writes filemarks to the media.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TAPE_WRITEFM) (
 IN EFI_TAPE_IO_PROTOCOL *This,
 IN UINTN Count
);

Parameters
This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

Count Number of filemarks to write to the media.

Description
This function will write filemarks to the tape using an implementation-specific timeout.

Writing filemarks beyond logical end of tape does not result in an error condition unless physical
end of media is reached.

Status Codes Returned

EFI_SUCCESS Data was successfully transferred from the media.

EFI_NO_MEDIA No media is loaded in the device.

EFI_MEDIA_CHANGED The media in the device was changed since the last access. The
transfer was aborted since the current position of the media may be
incorrect.

EFI_DEVICE_ERROR A device error occurred while attempting to transfer data from the
media.

EFI_NOT_READY The transfer failed since the device was not ready (e.g. not online).
The transfer may be retried at a later time.

EFI_UNSUPPORTED The device does not support this type of transfer.

EFI_TIMEOUT The transfer failed to complete within the timeout specified.
584 April, 2015 Version 2.5

Protocols - Media Access
EFI_TAPE_IO_PROTOCOL.TapeReset()

Summary
Resets the tape device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TAPE_RESET) (
 IN EFI_TAPE_IO_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
);

Parameters
This A pointer to the EFI_TAPE_IO_PROTOCOL instance.

ExtendedVerification
Indicates whether the parent bus should also be reset.

Description
This function will reset the tape device. If ExtendedVerification is set to true, the function
will reset the parent bus (e.g., SCSI bus). The function will check if the media was changed since the
last access and reinstall the EFI_TAPE_IO_PROTOCOL interface for the device handle if needed.
Note media needs to be loaded and device online for the reset, otherwise, EFI_DEVICE_ERROR is
returned.

Status Codes Returned

12.6.3 Tape Header Format
The boot tape will contain a Boot Tape Header to indicate it is a valid boot tape. The Boot Tape
Header must be located within the first 20 blocks on the tape. One or more tape filemarks may
appear prior to the Boot Tape Header so that boot tapes may include tape label files. The Boot Tape
Header must begin on a block boundary and be contained completely within a block. The Boot Tape
Header will have the following format:

EFI_SUCCESS The bus and/or device were successfully reset.

EFI_NO_MEDIA No media is loaded in the device.

EFI_DEVICE_ERROR A device error occurred while attempting to reset the bus and/or
device.

EFI_NOT_READY The reset failed since the device and/or bus was not ready. The
reset may be retried at a later time.

EFI_UNSUPPORTED The device does not support this type of reset.

EFI_TIMEOUT The reset did not complete within the timeout allowed.
Version 2.5 April, 2015 585

Unified Extensible Firmware Interface Specification
Table 106. Tape Header Formats

All numeric values will be specified in binary format. Note that all values are specified in Little
Endian byte ordering.

The Boot Tape Header can also be represented as the following data structure:

Bytes (Dec) Value Purpose

0-7 0x544f4f4220494645 Signature (‘EFI BOOT’ in ASCII)

8-11 1 Revision

12-15 1024 Tape Header Size in bytes

16-19 calculated Tape Header CRC

20-35 { 0x8befa29a, 0x3511, 0x4cf7,
{ 0xa2, 0xeb, 0x5f, 0xe3, 0x7c,
0x3b, 0xf5, 0x5b } }

EFI Boot Tape GUID
(same for all EFI Boot Tapes, like EFI Disk GUID)

36-51 User Defined EFI Boot Tape Type GUID
(bootloader / OS specific, like EFI Partition Type GUID)

52-67 User Defined EFI Boot Tape Unique GUID
(unique for every EFI Boot Tape)

68-71 e.g. 2 File Number of EFI Bootloader relative to the Boot Tape
Header
(first file immediately after the Boot Tape Header is file
number 1, ANSI labels are counted)

72-75 e.g. 0x400 EFI Bootloader Block Size in bytes

76-79 e.g. 0x20000 EFI Bootloader Total Size in bytes

80-119 e.g. HPUX 11.23 OS Version (ASCII)

120-159 e.g. Ignite-UX C.6.2.241 Application Version (ASCII)

160-169 e.g.1993-02-28 EFI Boot Tape creation date (UTC)
(yyyy-mm-dd ASCII)

170-179 e.g. 13:24:55 EFI Boot Tape creation time (UTC)
(hh:mm:ss in ASCII)

180-435 e.g. testsys1
(alt e.g. testsys1.xyzcorp.com)

Computer System Name (UTF-8, ref: RFC 2044)

436-555 e.g. Primary Disaster Recovery Boot Tape Title / Comment (UTF-8, ref: RFC 2044)

556-1023 reserved
586 April, 2015 Version 2.5

Protocols - Media Access
typedef struct EFI_TAPE_HEADER {
 UINT64 Signature;
 UINT32 Revision;
 UINT32 BootDescSize;
 UINT32 BootDescCRC;
 EFI_GUID TapeGUID;
 EFI_GUID TapeType;
 EFI_GUID TapeUnique;
 UINT32 BLLocation;
 UINT32 BLBlocksize;
 UINT32 BLFilesize;
 CHAR8 OSVersion[40];
 CHAR8 AppVersion[40];
 CHAR8 CreationDate[10];
 CHAR8 CreationTime[10];
 CHAR8 SystemName[256]; // UTF-8
 CHAR8 TapeTitle[120]; // UTF-8
 CHAR8 pad[468]; // pad to 1024
} EFI_TAPE_HEADER;

12.7 Disk I/O Protocol
This section defines the Disk I/O protocol. This protocol is used to abstract the block accesses of the
Block I/O protocol to a more general offset-length protocol. The firmware is responsible for adding
this protocol to any Block I/O interface that appears in the system that does not already have a Disk
I/O protocol. File systems and other disk access code utilize the Disk I/O protocol.

EFI_DISK_IO_PROTOCOL

Summary
This protocol is used to abstract Block I/O interfaces.
Version 2.5 April, 2015 587

Unified Extensible Firmware Interface Specification
GUID
#define EFI_DISK_IO_PROTOCOL_GUID \
 {0xCE345171,0xBA0B,0x11d2,\
 {0x8e,0x4F,0x00,0xa0,0xc9,0x69,0x72,0x3b}}

Revision Number
#define EFI_DISK_IO_PROTOCOL_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_DISK_IO_PROTOCOL {
 UINT64 Revision;
 EFI_DISK_READ ReadDisk;
 EFI_DISK_WRITE WriteDisk;
} EFI_DISK_IO_PROTOCOL;

Parameters
Revision The revision to which the disk I/O interface adheres. All future

revisions must be backwards compatible. If a future version is not
backwards compatible, it is not the same GUID.

ReadDisk Reads data from the disk. See the ReadDisk() function
description.

WriteDisk Writes data to the disk. See the WriteDisk() function
description.

Description
The EFI_DISK_IO_PROTOCOL is used to control block I/O interfaces.

The disk I/O functions allow I/O operations that need not be on the underlying device’s block
boundaries or alignment requirements. This is done by copying the data to/from internal buffers as
needed to provide the proper requests to the block I/O device. Outstanding write buffer data is
flushed by using the FlushBlocks() function of the EFI_BLOCK_IO_PROTOCOL on the
device handle.

The firmware automatically adds an EFI_DISK_IO_PROTOCOL interface to any
EFI_BLOCK_IO_PROTOCOL interface that is produced. It also adds file system, or logical block I/
O, interfaces to any EFI_DISK_IO_PROTOCOL interface that contains any recognized file system
or logical block I/O devices. The firmware must automatically support the following required
formats:

• The EFI FAT12, FAT16, and FAT32 file system type.

• The legacy master boot record partition block. (The presence of this on any block I/O device
is optional, but if it is present the firmware is responsible for allocating a logical device for
each partition).

• The extended partition record partition block.

• The El Torito logical block devices.
588 April, 2015 Version 2.5

Protocols - Media Access
EFI_DISK_IO_PROTOCOL.ReadDisk()

Summary
Reads a specified number of bytes from a device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DISK_READ) (
 IN EFI_DISK_IO_PROTOCOL *This,
 IN UINT32 MediaId,
 IN UINT64 Offset,
 IN UINTN BufferSize,
 OUT VOID *Buffer
);

Parameters
This Indicates a pointer to the calling context. Type

EFI_DISK_IO_PROTOCOL is defined in the
EFI_DISK_IO_PROTOCOL description.

MediaId ID of the medium to be read.

Offset The starting byte offset on the logical block I/O device to read
from.

BufferSize The size in bytes of Buffer. The number of bytes to read from
the device.

Buffer A pointer to the destination buffer for the data. The caller is
responsible for either having implicit or explicit ownership of the
buffer.

Description
The ReadDisk() function reads the number of bytes specified by BufferSize from the device.
All the bytes are read, or an error is returned. If there is no medium in the device, the function returns
EFI_NO_MEDIA. If the MediaId is not the ID of the medium currently in the device, the function
returns EFI_MEDIA_CHANGED.

Status Codes Returned

EFI_SUCCESS The data was read correctly from the device.

EFI_DEVICE_ERROR The device reported an error while performing the read operation.

EFI_NO_MEDIA There is no medium in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current medium.

EFI_INVALID_PARAMETER The read request contains device addresses that are not valid for the
device.
Version 2.5 April, 2015 589

Unified Extensible Firmware Interface Specification
EFI_DISK_IO_PROTOCOL.WriteDisk()

Summary
Writes a specified number of bytes to a device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DISK_WRITE) (
 IN EFI_DISK_IO_PROTOCOL *This,
 IN UINT32 MediaId,
 IN UINT64 Offset,
 IN UINTN BufferSize,
 IN VOID *Buffer
);

Parameters
This Indicates a pointer to the calling context. Type

EFI_DISK_IO_PROTOCOL is defined in the
EFI_DISK_IO_PROTOCOL protocol description.

MediaId ID of the medium to be written.

Offset The starting byte offset on the logical block I/O device to write.

BufferSize The size in bytes of Buffer. The number of bytes to write to
the device.

Buffer A pointer to the buffer containing the data to be written.

Description
The WriteDisk() function writes the number of bytes specified by BufferSize to the device.
All bytes are written, or an error is returned. If there is no medium in the device, the function returns
EFI_NO_MEDIA. If the MediaId is not the ID of the medium currently in the device, the function
returns EFI_MEDIA_CHANGED.

Status Codes Returned

EFI_SUCCESS The data was written correctly to the device.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no medium in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current medium.

EFI_DEVICE_ERROR The device reported an error while performing the write operation.

EFI_INVALID_PARAMETER The write request contains device addresses that are not valid for
the device.
590 April, 2015 Version 2.5

Protocols - Media Access
12.8 Disk I/O 2 Protocol
The Disk I/O 2 protocol defines an extension to the Disk I/O protocol to enable non-blocking /
asynchronous byte-oriented disk operation.

EFI_DISK_IO2_PROTOCOL

Summary
This protocol is used to abstract Block I/O interfaces in a non-blocking manner.

GUID
#define EFI_DISK_IO2_PROTOCOL_GUID \
 { 0x151c8eae, 0x7f2c, 0x472c, \
 {0x9e, 0x54, 0x98, 0x28, 0x19, 0x4f, 0x6a, 0x88 }}

Revision Number
#define EFI_DISK_IO2_PROTOCOL_REVISION 0x00020000

Protocol Interface Structure
typedef struct _EFI_DISK_IO2_PROTOCOL {
 UINT64 Revision;
 EFI_DISK_CANCEL_EX Cancel;
 EFI_DISK_READ_EX ReadDiskEx;
 EFI_DISK_WRITE_EX WriteDiskEx;
 EFI_DISK_FLUSH_EX FlushDiskEx;
} EFI_DISK_IO2_PROTOCOL;

Parameters

Revision The revision to which the disk I/O interface adheres. All future
revisions must be backwards compatible.

Cancel Terminate outstanding requests. See the Cancel() function
description.

ReadDiskEx Reads data from the disk. See the ReadDiskEx() function
description.

WriteDiskEx Writes data to the disk. See the WriteDiskEx() function
description.

FlushDiskEx Flushes all modified data to the physical device. See the
FlushDiskEx() function description.

Description
The EFI_DISK_IO2_PROTOCOL is used to control block I/O interfaces.

The disk I/O functions allow I/O operations that need not be on the underlying device’s block
boundaries or alignment requirements. This is done by copying the data to/from internal buffers as
needed to provide the proper requests to the block I/O device. Outstanding write buffer data is
Version 2.5 April, 2015 591

Unified Extensible Firmware Interface Specification
flushed by using the FlushBlocksEx() function of the EFI_BLOCK_IO2_PROTOCOL on
the device handle.

The firmware automatically adds an EFI_DISK_IO2_PROTOCOL interface to any
EFI_BLOCK_IO2_PROTOCOL interface that is produced. It also adds file system, or logical block
I/O, interfaces to any EFI_DISK_IO2_PROTOCOL interface that contains any recognized file
system or logical block I/O devices.

Implementations must account for cases where there is pending queued asynchronous I/O when a
call is received on a blocking protocol interface. In these cases the pending I/O will be processed
and completed before the blocking function is executed so that operation are carried out in the order
they were requested.
592 April, 2015 Version 2.5

Protocols - Media Access
EFI_DISK_IO2_PROTOCOL.Cancel()

Summary
Terminate outstanding asynchronous requests to a device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DISK_CANCEL_EX) (
 IN EFI_DISK_IO2_PROTOCOL *This
);

Parameters
This Indicates a pointer to the calling context. Type

EFI_DISK_IO2_PROTOCOL is defined in the
EFI_DISK_IO2_PROTOCOL description.

Description
The Cancel() function will terminate any in-flight non-blocking I/O requests by signaling the
EFI_DISK_IO2_TOKEN Event and with TransactionStatus set to EFI_ABORTED. After
the Cancel() function returns it is safe to free any Token or Buffer data structures that were
allocated as part of the non-blocking I/O operation.

Status Codes Returned

EFI_SUCCESS All outstanding requests were successfully terminated.

EFI_DEVICE_ERROR The device reported an error while performing the cancel
operation.
Version 2.5 April, 2015 593

Unified Extensible Firmware Interface Specification
EFI_DISK_IO2_PROTOCOL.ReadDiskEx()

Summary
Reads a specified number of bytes from a device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DISK_READ_EX) (
 IN EFI_DISK_IO2_PROTOCOL *This,
 IN UINT32 MediaId,
 IN UINT64 Offset,
 IN OUT EFI_DISK_IO2_TOKEN *Token,
 IN UINTN BufferSize,
 OUT VOID *Buffer
);

Parameters
This Indicates a pointer to the calling context. Type

EFI_DISK_IO2_PROTOCOL is defined in the
EFI_DISK_IO2_PROTOCOL description.

MediaId ID of the medium to be read.

Offset The starting byte offset on the logical block I/O device to read
from.

Token A pointer to the token associated with the transaction. Type
EFI_DISK_IO2_TOKEN is defined in "Related Definitions"
below. If this field is NULL, synchronous/blocking IO is
performed.

BufferSize The size in bytes of Buffer. The number of bytes to read from
the device.

Buffer A pointer to the destination buffer for the data. The caller is
responsible either having implicit or explicit ownership of the
buffer.

Description
The ReadDiskEx() function reads the number of bytes specified by BufferSize from the
device. All the bytes are read, or an error is returned. If there is no medium in the device, the
function returns EFI_NO_MEDIA. If the MediaId is not the ID of the medium currently in the
device, the function returns EFI_MEDIA_CHANGED.

If an error is returned from the call to ReadDiskEx() and non-blocking I/O is being requested, the
Event associated with this request will not be signaled. If the call to ReadDiskEx() succeeds
then the Event will be signaled upon completion of the read or if an error occurs during the
processing of the request. The status of the read request can be determined from the Status field of
the Token once the event is signaled.
594 April, 2015 Version 2.5

Protocols - Media Access
Related Definitions
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS TransactionStatus;
 } EFI_DISK_IO2_TOKEN;

Event If Event is NULL, then blocking I/O is performed. If Event is
not NULL and non-blocking I/O is supported, then non-blocking
I/O is performed, and Event will be signaled when the I/O
request is completed. The caller must be prepared to handle the
case where the callback associated with Event occurs before the
original asynchronous I/O request call returns.

TransactionStatus Defines whether or not the signaled event encountered an error.

Status Codes Returned

EFI_SUCCESS Returned from the call ReadDiskEx()
If Event is NULL (blocking I/O):
The data was read correctly from the device.
If Event is not NULL (asynchronous I/O):
The request was successfully queued for processing.
Event will be signaled upon completion.
Returned in the token after signaling Event
The data was read correctly from the device.

EFI_DEVICE_ERROR The device reported an error while performing the read
operation.

EFI_NO_MEDIA There is no medium in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current medium.

EFI_INVALID_PARAMETER The read request contains device addresses that are not
valid for the device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of
resources
Version 2.5 April, 2015 595

Unified Extensible Firmware Interface Specification
EFI_DISK_IO2_PROTOCOL.WriteDiskEx()

Summary
Writes a specified number of bytes to a device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DISK_WRITE_EX) (
 IN EFI_DISK_IO2_PROTOCOL *This,
 IN UINT32 MediaId,
 IN UINT64 Offset,
 IN OUT EFI_DISK_IO2_TOKEN *Token,
 IN UINTN BufferSize,
 IN VOID *Buffer
);

Parameters
This Indicates a pointer to the calling context. Type

EFI_DISK_IO2_PROTOCOL is defined in the
EFI_DISK_IO2_PROTOCOL description.

MediaId ID of the medium to be written.

Offset The starting byte offset on the logical block I/O device to write
to.

Token A pointer to the token associated with the transaction. Type
EFI_DISK_IO2_TOKEN is defined in "Related Definitions"
below. If this field is NULL, synchronous/blocking IO is
performed.

BufferSize The size in bytes of Buffer. The number of bytes to write to the
device.

Buffer A pointer to the source buffer for the data. The caller is
responsible.

Description
The WriteDiskEx() function writes the number of bytes specified by BufferSize to the
device. All bytes are written, or an error is returned. If there is no medium in the device, the function
returns EFI_NO_MEDIA. If the MediaId is not the ID of the medium currently in the device, the
function returns EFI_MEDIA_CHANGED.

If an error is returned from the call to WriteDiskEx() and non-blocking I/O is being requested,
the Event associated with this request will not be signaled. If the call to WriteDiskEx()
succeeds then the Event will be signaled upon completion of the write or if an error occurs during
the processing of the request. The status of the write request can be determined from the Status
field of the Token once the event is signaled.
596 April, 2015 Version 2.5

Protocols - Media Access
Status Codes Returned

EFI_SUCCESS Returned from the call WriteDiskEx()

If Event is NULL (blocking I/O):

• The data was written correctly to the device.

If Event is not NULL (asynchronous I/O):

• The request was successfully queued for processing.
Event will be signaled upon completion.

Returned in the token after signaling Event
• The data was written correctly to the device.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_DEVICE_ERROR The device reported an error while performing the write
operation.

EFI_NO_MEDIA There is no medium in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current medium.

EFI_INVALID_PARAMETER The read request contains device addresses that are not
valid for the device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of
resources
Version 2.5 April, 2015 597

Unified Extensible Firmware Interface Specification
EFI_DISK_IO2_PROTOCOL.FlushDiskEx()

Summary
Flushes all modified data to the physical device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DISK_FLUSH_EX) (
 IN EFI_DISK_IO2_PROTOCOL *This,
 IN OUT EFI_DISK_IO2_TOKEN *Token
);

Parameters
This Indicates a pointer to the calling context. Type

EFI_DISK_IO2_PROTOCOL is defined in the
EFI_DISK_IO2_PROTOCOL description.

Token A pointer to the token associated with the transaction. Type
EFI_DISK_IO2_TOKEN is defined in "Related Definitions"
below. If this field is NULL, synchronous/blocking IO is
performed.

Description
The FlushDiskEx() function flushes all modified data to the physical device. If an error is
returned from the call to FlushDiskEx() and non-blocking I/O is being requested, the Event
associated with this request will not be signaled. If the call to FlushDiskEx() succeeds then the
Event will be signaled upon completion of the flush or if an error occurs during the processing of
the request. The status of the flush request can be determined from the Status field of the Token
once the event is signaled.
598 April, 2015 Version 2.5

Protocols - Media Access
Status Codes Returned

12.9 EFI Block I/O Protocol
This section defines the Block I/O protocol. This protocol is used to abstract mass storage devices to
allow code running in the EFI boot services environment to access them without specific knowledge
of the type of device or controller that manages the device. Functions are defined to read and write
data at a block level from mass storage devices as well as to manage such devices in the EFI boot
services environment.

EFI_BLOCK_IO_PROTOCOL

Summary
This protocol provides control over block devices.

EFI_SUCCESS Returned from the call FlushDiskEx()

If Event is NULL (blocking I/O):

• The data was flushed successfully to the device.

If Event is not NULL (asynchronous I/O):

• The request was successfully queued for processing.
Event will be signaled upon completion.

Returned in the token after signaling Event
The data was flushed successfully to the device.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_DEVICE_ERROR The device reported an error while performing the flush
operation.

EFI_NO_MEDIA There is no medium in the device.

EFI_MEDIA_CHANGED The medium in the device has changed since the last
access.

EFI_INVALID_PARAMETER Token is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of
resources
Version 2.5 April, 2015 599

Unified Extensible Firmware Interface Specification
GUID
#define EFI_BLOCK_IO_PROTOCOL_GUID \
 {0x964e5b21,0x6459,0x11d2,\
 {0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,0x3b}}

Revision Number
#define EFI_BLOCK_IO_PROTOCOL_REVISION2 0x00020001
#define EFI_BLOCK_IO_PROTOCOL_REVISION3 ((2<<16) | (31))

Protocol Interface Structure
typedef struct _EFI_BLOCK_IO_PROTOCOL {
 UINT64 Revision;
 EFI_BLOCK_IO_MEDIA *Media;
 EFI_BLOCK_RESET Reset;
 EFI_BLOCK_READ ReadBlocks;
 EFI_BLOCK_WRITE WriteBlocks;
 EFI_BLOCK_FLUSH FlushBlocks;
} EFI_BLOCK_IO_PROTOCOL;

Parameters
Revision The revision to which the block IO interface adheres. All future

revisions must be backwards compatible. If a future version is not
back wards compatible it is not the same GUID.

Media A pointer to the EFI_BLOCK_IO_MEDIA data for this device.
Type EFI_BLOCK_IO_MEDIA is defined in “Related
Definitions” below.

Reset Resets the block device hardware. See the Reset() function
description.

ReadBlocks Reads the requested number of blocks from the device. See the
ReadBlocks() function description.

WriteBlocks Writes the requested number of blocks to the device. See the
WriteBlocks() function description.

FlushBlocks Flushes and cache blocks. This function is optional and only
needs to be supported on block devices that cache writes. See the
FlushBlocks() function description.
600 April, 2015 Version 2.5

Protocols - Media Access
Related Definitions
//***
// EFI_BLOCK_IO_MEDIA
//***

typedef struct {
 UINT32 MediaId;
 BOOLEAN RemovableMedia;
 BOOLEAN MediaPresent;
 BOOLEAN LogicalPartition;
 BOOLEAN ReadOnly;
 BOOLEAN WriteCaching;
 UINT32 BlockSize;
 UINT32 IoAlign;
 EFI_LBA LastBlock;

 EFI_LBA LowestAlignedLba; //added in Revision 2
 UINT32 LogicalBlocksPerPhysicalBlock;
//added in Revision 2
UINT32 OptimalTransferLengthGranularity;
// added in Revision 3
} EFI_BLOCK_IO_MEDIA;

//***
// EFI_LBA
//***
typedef UINT64 EFI_LBA;

The following data values in EFI_BLOCK_IO_MEDIA are read-only and are updated by the code
that produces the EFI_BLOCK_IO_PROTOCOL functions:

MediaId The current media ID. If the media changes, this value is
changed.

RemovableMedia TRUE if the media is removable; otherwise, FALSE.

MediaPresent TRUE if there is a media currently present in the device;
otherwise, FALSE. This field shows the media present status as
of the most recent ReadBlocks() or WriteBlocks() call.

LogicalPartition TRUE if the EFI_BLOCK_IO_PROTOCOL was produced to
abstract partition structures on the disk. FALSE if the
BLOCK_IO protocol was produced to abstract the logical blocks
on a hardware device.

ReadOnly TRUE if the media is marked read-only otherwise, FALSE. This
field shows the read-only status as of the most recent
WriteBlocks() call.

WriteCaching TRUE if the WriteBlocks() function caches write data.

BlockSize The intrinsic block size of the device. If the media changes, then
this field is updated.Returns the number of bytes per logical
Version 2.5 April, 2015 601

Unified Extensible Firmware Interface Specification
block. For ATA devices, this is reported in IDENTIFY DEVICE
data words 117-118 (i.e., Words per Logical Sector) (see ATA8-
ACS). For SCSI devices, this is reported in the READ
CAPACITY (16) parameter data Logical Block Length In Bytes
field (see SBC-3).

IoAlign Supplies the alignment requirement for any buffer used in a data
transfer. IoAlign values of 0 and 1 mean that the buffer can be
placed anywhere in memory. Otherwise, IoAlign must be a
power of 2, and the requirement is that the start address of a
buffer must be evenly divisible by IoAlign with no remainder.

LastBlock The last LBA on the device. If the media changes, then this field
is updated. For ATA devices, this is reported in IDENTIFY
DEVICE data words 60-61 (i.e., Total number of user
addressable logical sectors) (see ATA8-ACS) minus one. For
SCSI devices, this is reported in the READ CAPACITY (16)
parameter data Returned Logical Block Address field (see SBC-
3) minus one.

LowestAlignedLba Only present if EFI_BLOCK_IO_PROTOCOL.Revision is
greater than or equal to
EFI_BLOCK_IO_PROTOCOL_REVISION2. Returns the first
LBA that is aligned to a physical block boundary (see
Section 5.3.1). Note that this field follows the SCSI definition,
not the ATA definition. If LogicalPartition is TRUE this
value will be zero.

LogicalBlocksPerPhysicalBlock

Only present if EFI_BLOCK_IO_PROTOCOL.Revision is
greater than or equal to
EFI_BLOCK_IO_PROTOCOL_REVISION2. Returns the
number of logical blocks per physical block (see Section 5.3.1).
Unlike the ATA and SCSI fields that provide the information for
this field, this field does not contain an exponential value. A
value of 0 means there is either one logical block per physical
block, or there are more than one physical block per logical
block. If LogicalPartition is TRUE this value will be
zero.

OptimalTransferLengthGranularity

Only present if EFI_BLOCK_IO_PROTOCOL.Revision is
greater than or equal to
EFI_BLOCK_IO_PROTOCOL_REVISION3. Returns the
optimal transfer length granularity as a number of logical blocks
(see Section 5.3.1). A value of 0 means there is no reported
optimal transfer length granularity. If LogicalPartition is
TRUE this value will be zero.

Description
The LogicalPartition is TRUE if the device handle is for a partition. For media that have
only one partition, the value will always be TRUE. For media that have multiple partitions, this
602 April, 2015 Version 2.5

Protocols - Media Access
value is FALSE for the handle that accesses the entire device. The firmware is responsible for
adding device handles for each partition on such media.

The firmware is responsible for adding an EFI_DISK_IO_PROTOCOL interface to every
EFI_BLOCK_IO_PROTOCOL interface in the system. The EFI_DISK_IO_PROTOCOL interface
allows byte-level access to devices.
Version 2.5 April, 2015 603

Unified Extensible Firmware Interface Specification
EFI_BLOCK_IO_PROTOCOL.Reset()

Summary
Resets the block device hardware.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLOCK_RESET) (
 IN EFI_BLOCK_IO_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
);

Parameters
This Indicates a pointer to the calling context. Type

EFI_BLOCK_IO_PROTOCOL is defined in the
EFI_BLOCK_IO_PROTOCOL description.

ExtendedVerification
Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description
The Reset() function resets the block device hardware.

As part of the initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the firmware
may take an extended amount of time to verify the device is operating on reset. Otherwise the reset
operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Status Codes Returned

EFI_SUCCESS The block device was reset.

EFI_DEVICE_ERROR The block device is not functioning correctly and could not be reset.
604 April, 2015 Version 2.5

Protocols - Media Access
EFI_BLOCK_IO_PROTOCOL.ReadBlocks()

Summary
Reads the requested number of blocks from the device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLOCK_READ) (
 IN EFI_BLOCK_IO_PROTOCOL *This,
 IN UINT32 MediaId,
 IN EFI_LBA LBA,
 IN UINTN BufferSize,
 OUT VOID *Buffer
);

Parameters
This Indicates a pointer to the calling context. Type

EFI_BLOCK_IO_PROTOCOL is defined in the
EFI_BLOCK_IO_PROTOCOL description.

MediaId The media ID that the read request is for.

LBA The starting logical block address to read from on the device.
Type EFI_LBA is defined in the EFI_BLOCK_IO_PROTOCOL
description.

BufferSize The size of the Buffer in bytes. This must be a multiple of the
intrinsic block size of the device.

Buffer A pointer to the destination buffer for the data. The caller is
responsible for either having implicit or explicit ownership of the
buffer.

Description
The ReadBlocks() function reads the requested number of blocks from the device. All the
blocks are read, or an error is returned.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not the
ID for the current media in the device, the function returns EFI_MEDIA_CHANGED. The function
must return EFI_NO_MEDIA or EFI_MEDIA_CHANGED even if LBA, BufferSize, or
Buffer are invalid so the caller can probe for changes in media state.

Status Codes Returned

EFI_SUCCESS The data was read correctly from the device.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the read
operation.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.
Version 2.5 April, 2015 605

Unified Extensible Firmware Interface Specification
EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block
size of the device.

EFI_INVALID_PARAMETER The read request contains LBAs that are not valid, or the buffer is not
on proper alignment.
606 April, 2015 Version 2.5

Protocols - Media Access
EFI_BLOCK_IO_PROTOCOL.WriteBlocks()

Summary
Writes a specified number of blocks to the device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLOCK_WRITE) (
 IN EFI_BLOCK_IO_PROTOCOL *This,
 IN UINT32 MediaId,
 IN EFI_LBA LBA,
 IN UINTN BufferSize,
 IN VOID *Buffer
);

Parameters
This Indicates a pointer to the calling context. Type is defined in the

EFI_BLOCK_IO_PROTOCOL description.

MediaId The media ID that the write request is for.

LBA The starting logical block address to be written. The caller is
responsible for writing to only legitimate locations. Type
EFI_LBA is defined in the EFI_BLOCK_IO_PROTOCOL
description.

BufferSize The size in bytes of Buffer. This must be a multiple of the
intrinsic block size of the device.

Buffer A pointer to the source buffer for the data.

Description
The WriteBlocks() function writes the requested number of blocks to the device. All blocks are
written, or an error is returned.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not
the ID for the current media in the device, the function returns EFI_MEDIA_CHANGED. The
function must return EFI_NO_MEDIA or EFI_MEDIA_CHANGED even if LBA, BufferSize,
or Buffer are invalid so the caller can probe for changes in media state.

Status Codes Returned

EFI_SUCCESS The data were written correctly to the device.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the write
operation.
Version 2.5 April, 2015 607

Unified Extensible Firmware Interface Specification
EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic

block size of the device.

EFI_INVALID_PARAMETER The write request contains LBAs that are not valid, or the buffer is
not on proper alignment.
608 April, 2015 Version 2.5

Protocols - Media Access
EFI_BLOCK_IO_PROTOCOL.FlushBlocks()

Summary
Flushes all modified data to a physical block device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLOCK_FLUSH) (
 IN EFI_BLOCK_IO_PROTOCOL *This
);

Parameters
This Indicates a pointer to the calling context. Type

EFI_BLOCK_IO_PROTOCOL is defined in the
EFI_BLOCK_IO_PROTOCOL protocol description.

Description
The FlushBlocks() function flushes all modified data to the physical block device.

All data written to the device prior to the flush must be physically written before returning
EFI_SUCCESS from this function. This would include any cached data the driver may have
cached, and cached data the device may have cached. A flush may cause a read request following
the flush to force a device access.

Status Codes Returned

12.10 EFI Block I/O 2 Protocol
The Block I/O Ex protocol defines an extension to the Block I/O protocol which enables the ability
to read and write data at a block level in a non-blocking manner.

EFI_BLOCK_IO2_PROTOCOL

Summary
This protocol provides control over block devices.

EFI_SUCCESS All outstanding data were written correctly to the device.

EFI_DEVICE_ERROR The device reported an error while attempting to write data.

EFI_NO_MEDIA There is no media in the device.
Version 2.5 April, 2015 609

Unified Extensible Firmware Interface Specification
GUID
#define EFI_BLOCK_IO2_PROTOCOL_GUID \
 {0xa77b2472, 0xe282, 0x4e9f, \
 {0xa2, 0x45, 0xc2, 0xc0, 0xe2, 0x7b, 0xbc, 0xc1}}

Protocol Interface Structure
typedef struct _EFI_BLOCK_IO2_PROTOCOL {
 EFI_BLOCK_IO_MEDIA *Media;
 EFI_BLOCK_RESET_EX Reset;
 EFI_BLOCK_READ_EX ReadBlocksEx;
 EFI_BLOCK_WRITE_EX WriteBlocksEx;
 EFI_BLOCK_FLUSH_EX FlushBlocksEx;
} EFI_BLOCK_IO2_PROTOCOL;

Parameters
Media A pointer to the EFI_BLOCK_IO_MEDIA data for this device.

Type EFI_BLOCK_IO_MEDIA is defined in the
EFI_BLOCK_IO_PROTOCOL section.

Reset Resets the block device hardware. See the Reset() function
description following below.

ReadBlocksEx Reads the requested number of blocks from the device. See the
EFI_BLOCK_IO2_PROTOCOL.ReadBlocksEx() function
description.

WriteBlocksEx Writes the requested number of blocks to the device. See the
WriteBlocksEx() function description.

FlushBlocksEx Flushes and cache blocks. This function is optional and only
needs to be supported on block devices that cache writes. See the
FlushBlocksEx() function description.
610 April, 2015 Version 2.5

Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.IE5/PQ5U3T1C/Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.Outlook/6H253MQU/Protocols Media Access.fm
Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.IE5/PQ5U3T1C/Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.Outlook/6H253MQU/Protocols Media Access.fm
Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.IE5/PQ5U3T1C/Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.Outlook/6H253MQU/Protocols Media Access.fm
Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.IE5/PQ5U3T1C/Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.Outlook/6H253MQU/Protocols Media Access.fm
Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.IE5/PQ5U3T1C/Documents and Settings/marothma/Local Settings/Temporary Internet Files/Content.Outlook/6H253MQU/Protocols Media Access.fm

Protocols - Media Access
EFI_BLOCK_IO2_PROTOCOL.Reset()

Summary
Resets the block device hardware.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLOCK_RESET_EX) (
 IN EFI_BLOCK_IO2_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
);

Parameters
This Indicates a pointer to the calling context. Type

EFI_BLOCK_IO2_PROTOCOL is defined in the
EFI_BLOCK_IO2_PROTOCOL description.

ExtendedVerification
Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description
The Reset() function resets the block device hardware.

As part of the initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the firmware
may take an extended amount of time to verify the device is operating on reset. Otherwise the reset
operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

The Reset() function will terminate any in-flight non-blocking I/O requests by signaling an
EFI_ABORTED in the TransactionStatus member of the EFI_BLOCK_IO2_TOKEN for the
non-blocking I/O. After the Reset() function returns it is safe to free any Token or Buffer
data structures that were allocated to initiate the non-blocking I/O requests that were in-flight for
this device.

Status Codes Returned

EFI_SUCCESS The block device was reset.

EFI_DEVICE_ERROR The block device is not functioning correctly and could not be reset.
Version 2.5 April, 2015 611

Unified Extensible Firmware Interface Specification
EFI_BLOCK_IO2_PROTOCOL.ReadBlocksEx()

Summary
Reads the requested number of blocks from the device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLOCK_READ_EX) (
 IN EFI_BLOCK_IO2_PROTOCOL *This,
 IN UINT32 MediaId,
 IN EFI_LBA LBA,
 IN OUT EFI_BLOCK_IO2_TOKEN *Token,
 IN UINTN BufferSize,
 OUT VOID *Buffer
);

Parameters
This Indicates a pointer to the calling context. Type

EFI_BLOCK_IO2_PROTOCOL is defined in the
EFI_BLOCK_IO2_PROTOCOL description.

MediaId The media ID that the read request is for.

LBA The starting logical block address to read from on the device.
Type EFI_LBA is defined in the
EFI_BLOCK_IO_PROTOCOL description.

Token A pointer to the token associated with the transaction. Type
EFI_BLOCK_IO2_TOKEN is defined in "Related Definitions"
below.

BufferSize The size of the Buffer in bytes. This must be a multiple of the
intrinsic block size of the device.

Buffer A pointer to the destination buffer for the data. The caller is
responsible for either having implicit or explicit ownership of the
buffer.

Description
The ReadBlocksEx() function reads the requested number of blocks from the device. All the
blocks are read, or an error is returned.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not
the ID for the current media in the device, the function returns EFI_MEDIA_CHANGED. The
function must return EFI_NO_MEDIA or EFI_MEDIA_CHANGED even if LBA, BufferSize,
or Buffer are invalid so the caller can probe for changes in media state.

If EFI_DEVICE_ERROR, EFI_NO_MEDIA,_or EFI_MEDIA_CHANGED is returned and non-
blocking I/O is being used, the Event associated with this request will not be signaled.
612 April, 2015 Version 2.5

Protocols - Media Access
Related Definitions
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS TransactionStatus;
} EFI_BLOCK_IO2_TOKEN;

Event If Event is NULL, then blocking I/O is performed. If Event is
not NULL and non-blocking I/O is supported, then non-blocking
I/O is performed, and Event will be signaled when the read
request is completed.

TransactionStatus Defines whether the signaled event encountered an error.

Status Codes Returned

EFI_SUCCESS The read request was queued if Token-> Event is not NULL. The
data was read correctly from the device if theToken-> Event is NULL.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the read
operation.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block

size of the device.

EFI_INVALID_PARAMETER The read request contains LBAs that are not valid, or the buffer is not
on proper alignment.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources
Version 2.5 April, 2015 613

Unified Extensible Firmware Interface Specification
EFI_BLOCK_IO2_PROTOCOL.WriteBlocksEx()

Summary
Writes a specified number of blocks to the device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLOCK_WRITE_EX) (
 IN EFI_BLOCK_IO2_PROTOCOL *This,
 IN UINT32 MediaId,
 IN EFI_LBA LBA,
 IN OUT EFI_BLOCK_IO2_TOKEN *Token,
 IN UINTN BufferSize,
 IN VOID *Buffer
);

Parameters
This Indicates a pointer to the calling context. Type

EFI_BLOCK_IO2_PROTOCOL is defined in the
EFI_BLOCK_IO2_PROTOCOL description.

MediaId The media ID that the write request is for.

LBA The starting logical block address to be written. The caller is
responsible for writing to only legitimate locations. Type
EFI_LBA is defined in the EFI_BLOCK_IO2_PROTOCOL
description.

Token A pointer to the token associated with the transaction. Type
EFI_BLOCK_IO2_TOKEN is defined in
EFI_BLOCK_IO2_PROTOCOL.ReadBlocksEx(,)
"Related Definitions".

BufferSize The size in bytes of Buffer. This must be a multiple of the
intrinsic block size of the device.

Buffer A pointer to the source buffer for the data.

Description
The WriteBlocksEx() function writes the requested number of blocks to the device. All blocks
are written, or an error is returned.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not the
ID for the current media in the device, the function returns EFI_MEDIA_CHANGED. The function
must return EFI_NO_MEDIA or EFI_MEDIA_CHANGED even if LBA, BufferSize, or
Buffer are invalid so the caller can probe for changes in media state.

If EFI_DEVICE_ERROR, EFI_NO_MEDIA,_EFI_WRITE_PROTECTED or
EFI_MEDIA_CHANGED is returned and non-blocking I/O is being used, the Event associated with
this request will not be signaled.
614 April, 2015 Version 2.5

Protocols - Media Access
Related Definitions
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS TransactionStatus;
} EFI_BLOCK_IO2_TOKEN;

Event If Event is NULL, then blocking I/O is performed. If Event is
not NULL and non-blocking I/O is supported, then non-blocking
I/O is performed, and Event will be signaled when the write
request is completed.

TransactionStatus Defines whether the signaled event encountered an error.

Status Codes Returned

EFI_SUCCESS The write request was queued if Event is not NULL. The data was
written correctly to the device if the Event is NULL.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the write
operation.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic

block size of the device.

EFI_INVALID_PARAMETER The write request contains LBAs that are not valid, or the buffer is
not on proper alignment.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources
Version 2.5 April, 2015 615

Unified Extensible Firmware Interface Specification
EFI_BLOCK_IO2_PROTOCOL.FlushBlocksEx()

Summary
Flushes all modified data to a physical block device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLOCK_FLUSH_EX) (
 IN EFI_BLOCK_IO2_PROTOCOL *This,
 IN OUT EFI_BLOCK_IO2_TOKEN *Token,
);

Parameters
This Indicates a pointer to the calling context. Type

EFI_BLOCK_IO2_PROTOCOL is defined in the
EFI_BLOCK_IO2_PROTOCOL protocol description.

Token A pointer to the token associated with the transaction. Type
EFI_BLOCK_IO2_TOKEN is defined in
EFI_BLOCK_IO2_PROTOCOL.ReadBlocksEx(),
"Related Definitions" .

Related Definitions
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS TransactionStatus;
} EFI_BLOCK_IO2_TOKEN;

Event If Event is NULL, then blocking I/O is performed. If Event
is not NULL and non-blocking I/O is supported, then non-
blocking I/O is performed, and Event will be signaled when the
write request is completed.

TransactionStatus Defines whether the signaled event encountered an error.

Description
The FlushBlocksEx() function flushes all modified data to the physical block device.

All data written to the device prior to the flush must be physically written before returning
EFI_SUCCESS from this function. This would include any cached data the driver may have
cached, and cached data the device may have cached. A flush may cause a read request following
the flush to force a device access.

If EFI_DEVICE_ERROR, EFI_NO_MEDIA,_EFI_WRITE_PROTECTED or
EFI_MEDIA_CHANGED is returned and non-blocking I/O is being used, the Event associated with
this request will not be signaled.
616 April, 2015 Version 2.5

Protocols - Media Access
Status Codes Returned

12.11 Inline Cryptographic Interface

EFI_BLOCK_IO_CRYPTO_PROTOCOL

Summary
The UEFI Inline Cryptographic Interface protocol provides services to abstract access to inline
cryptographic capabilities.

The usage model of this protocol is similar to the one of the
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL where FDE (Full Disk Encryption)
solutions leave ESP partition unprotected (unencrypted) allowing storage clients to continue using
EFI_BLOCK_IO_PROTOCOL or EFI_BLOCK_IO2_PROTOCOL protocol interfaces to load OS
boot components from ESP partition. For other partitions boot apps (including OS boot app) that are
enlightened to take advantage of inline cryptographic capability will be empowered to use this new
protocol.

EFI_SUCCESS The flush request was queued if Event is not NULL. All
outstanding data was written correctly to the device if the
Event is NULL.

EFI_DEVICE_ERROR The device reported an error while attempting to write data.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of
resources
Version 2.5 April, 2015 617

Unified Extensible Firmware Interface Specification
GUID
#define EFI_BLOCK_IO_CRYPTO_PROTOCOL_GUID \
 {0xa00490ba,0x3f1a,0x4b4c,\
 {0xab,0x90,0x4f,0xa9,0x97,0x26,0xa1,0xe8}}

Protocol Interface Structure
typedef struct _EFI_BLOCK_IO_CRYPTO_PROTOCOL {
 EFI_BLOCK_IO_MEDIA *Media;
 EFI_BLOCK_IO_CRYPTO_RESET Reset;
 EFI_BLOCK_IO_CRYPTO_GET_CAPABILITIES GetCapabilities;
 EFI_BLOCK_IO_CRYPTO_SET_CONFIGURATION SetConfiguration;
 EFI_BLOCK_IO_CRYPTO_GET_CONFIGURATION GetConfiguration;
 EFI_BLOCK_IO_CRYPTO_READ_DEVICE_EXTENDED ReadExtended;
 EFI_BLOCK_IO_CRYPTO_WRITE_DEVICE_EXTENDED WriteExtended;
 EFI_BLOCK_IO_CRYPTO_FLUSH FlushBlocks;
} EFI_BLOCK_IO_CRYPTO_PROTOCOL;

Parameters
Media A pointer to the EFI_BLOCK_IO_MEDIA data for this device.

Type EFI_BLOCK_IO_MEDIA is defined in the
EFI_BLOCK_IO_PROTOCOL section.

Reset Reset the block device hardware.

GetCapabilities Get the current capabilities of the ICI.

SetConfiguration Set the configuration for the ICI instance.

GetConfiguration Get the configuration for the ICI instance.

ReadExtended Provide an extended version of the storage device read command.

WriteExtended Provide an extended version of the storage device write
command.

FlushBlocks Flush any cache blocks. This function is optional and only needs
to be supported on block devices that cache writes.

Related Definitions
Some functions defined for this protocol require the caller to specify the device capabilities, keys
and/or attributes of the keys to be used. These parameters must be consistent with the supported
capabilities as reported by the device.

typedef struct {
 EFI_GUID Algorithm;
 UINT64 KeySize;
 UINT64 CryptoBlockSizeBitMask;
} EFI_BLOCK_IO_CRYPTO_CAPABILITY;

Algorithm GUID of the algorithm.

KeySize Specifies KeySize in bits used with this Algorithm.

CryptoBlockSizeBitMask
618 April, 2015 Version 2.5

Protocols - Media Access
Specifies bitmask of block sizes supported by this algorithm. Bit j
being set means that 2^j bytes crypto block size is supported.

#define EFI_BLOCK_IO_CRYPTO_ALGO_GUID_AES_XTS \
 {0x2f87ba6a,\
 0x5c04,0x4385,0xa7,0x80,0xf3,0xbf,0x78,0xa9,0x7b,0xec}

EFI_BLOCK_IO_CRYPTO_ALGO_GUID_AES_XTS GUID represents Inline Cryptographic
Interface capability supporting AES XTS crypto algorithm as described in IEEE Std 1619-2007:
IEEE Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices.

typedef struct {
 EFI_BLOCK_IO_CRYPTO_IV_INPUT Header;
 UINT64 CryptoBlockNumber;
 UINT64 CryptoBlockByteSize;
} EFI_BLOCK_IO_CRYPTO_IV_INPUT_AES_XTS;

EFI_BLOCK_IO_CRYPTO_IV_INPUT_AES_XTS structure is used as CryptoIvInput parameter
to the ReadExtended and WriteExtended methods for Inline Cryptographic Interface supporting and
using AES XTS algorithm with IV input as defined for AES XTS algorithm. IO operation (read or
write) range should consist of one or more blocks of CryptoBlockByteSize size.
CryptoBlockNumber is used as the AES XTS IV for the first crypto block and is incremented by
one for each consecutive crypto block in the IO operation range.

#define
EFI_BLOCK_IO_CRYPTO_ALGO_GUID_AES_CBC_MICROSOFT_BITLOCKER \
{0x689e4c62,\
 0x70bf,0x4cf3,0x88,0xbb,0x33,0xb3,0x18,0x26,0x86,0x70}

EFI_BLOCK_IO_CRYPTO_ALGO_GUID_AES_CBC_MICROSOFT_BITLOCKER GUID
represents Inline Cryptographic Interface capability supporting AES CBC crypto algorithm in the
non-diffuser mode as described in following Microsoft white paper, section 4: See “Links to UEFI-
Related Documents” (http://uefi.org/uefi) under the heading “Inline Cryptographic Interface--Bit
Locker Cipher”. It is important to note that when excluding diffuser operations (A diffuser and B
diffuser) described in the above document one should also exclude derivation of sector key and
XOR-ing it with plaintext as that operation is part of the diffuser part of the algorithm and does not
belong to the AES-CBC Microsoft BitLocker algorithm being referred to here.

typedef struct {
EFI_BLOCK_IO_CRYPTO_IV_INPUT Header;
 UINT64 CryptoBlockByteOffset;
 UINT64 CryptoBlockByteSize;
} EFI_BLOCK_IO_CRYPTO_IV_INPUT_AES_CBC_MICROSOFT_BITLOCKER;

EFI_BLOCK_IO_CRYPTO_IV_INPUT_AES_CBC_MICROSOFT_BITLOCKER structure is used to
pass as CryptoIvInput parameter to the ReadExtended and WriteExtended methods for Inline
Cryptographic Interface supporting and using AES CBC algorithm with IV input as defined for Microsoft
BitLocker Drive Encryption. IO operation (read or write) range should consist of one or more blocks of
CryptoBlockByteSize size. CryptoBlockByteOffset is used as the AES CBC Microsoft
Bitlocker algorithm IV for the first crypto block and is incremented by CryptoBlockByteSize for
each consecutive crypto block in the IO operation range.
Version 2.5 April, 2015 619

Unified Extensible Firmware Interface Specification
typedef struct {
 UINT64 InputSize;
} EFI_BLOCK_IO_CRYPTO_IV_INPUT;

EFI_BLOCK_IO_CRYPTO_IV_INPUT structure is used as a common header in CryptoIvInput
parameters passed to the ReadExtended and WriteExtended methods for Inline Cryptographic Interface. Its
purpose is to pass size of the entire CryptoIvInput parameter memory buffer to the Inline
Cryptographic Interface.
Further extensions of crypto algorithm support by Inline Cryptographic Interface should follow the same
pattern established above for the AES XTS and AES CBC Microsoft BitLocker algorithms. In particular
each added crypto algorithm should:

• Define its crypto algorithm GUID using following pattern:
#define EFI_BLOCK_IO_CRYPTO_ALGO_GUID_<algo-name> {<algo-guid>}

• Define its corresponding CryptoIvInput parameter structure and describe how it is
populated for each IO operation (read / write):

typedef struct {
 EFI_BLOCK_IO_CRYPTO_IV_INPUT Header;
 <TBD> <TBD>;
} EFI_BLOCK_IO_CRYPTO_IV_INPUT_<algo-name>;

#define EFI_BLOCK_IO_CRYPTO_INDEX_ANY 0xFFFFFFFFFFFFFFFF
typedef struct {
 BOOLEAN Supported;
 UINT64 KeyCount;
 UINT64 CapabilityCount;
 EFI_BLOCK_IO_CRYPTO_CAPABILITY Capabilities[1];
} EFI_BLOCK_IO_CRYPTO_CAPABILITIES;

Supported Is inline cryptographic capability supported on this device.

KeyCount Maximum number of keys that can be configured at the same
time.

CapabilityCount Number of supported capabilities.

Capabilities Array of supported capabilities.

typedef struct {
 UINT64 Index;
 EFI_GUID KeyOwnerGuid;
 EFI_BLOCK_IO_CRYPTO_CAPABILITY Capability;
 VOID *CryptoKey;
} EFI_BLOCK_IO_CRYPTO_CONFIGURATION_TABLE_ENTRY;
620 April, 2015 Version 2.5

Protocols - Media Access
Index Configuration table index. A special Index
EFI_BLOCK_IO_CRYPTO_INDEX_ANY can be used to set
any available entry in the configuration table.

KeyOwnerGuid Identifies the owner of the configuration table entry. Entry can
also be used with the Nil value to clear key from the
configuration table index.

Capability A supported capability to be used. The
CryptoBlockSizeBitMask field of the structure should
have only one bit set from the supported mask.

CryptoKey Pointer to the key. The size of the key is defined by the KeySize
field of the capability specified by the Capability parameter.

typedef struct {
 UINT64 Index;
 EFI_GUID KeyOwnerGuid;
 EFI_BLOCK_IO_CRYPTO_CAPABILITY Capability;
} EFI_BLOCK_IO_CRYPTO_RESPONSE_CONFIGURATION_ENTRY;

Index Configuration table index.

KeyOwnerGuid Identifies the current owner of the entry.

Capability The capability to be used. The CryptoBlockSizeBitMask
field of the structure has only one bit set from the supported
mask.

Description
The EFI_BLOCK_IO_CRYPTO_PROTOCOL defines a UEFI protocol that can be used by UEFI
drivers and applications to perform block encryption on a storage device, such as UFS.

The EFI_BLOCK_IO_CRYPTO_PROTOCOL instance will be on the same handle as the device
path of the inline encryption device.

While this protocol is intended to abstract the encryption process for block device access, the
protocol user does not have to be aware of the specific underlying encryption hardware.
Version 2.5 April, 2015 621

Unified Extensible Firmware Interface Specification
EFI_BLOCK_IO_CRYPTO_PROTOCOL.Reset()

Summary
Resets the block device hardware.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLOCK_IO_CRYPTO_RESET) (
 IN EFI_BLOCK_IO_CRYPTO_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
);

Parameters
This Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL

instance.

ExtendedVerification

Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description
The Reset() function resets the block device hardware.

As part of the initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the firmware
may take an extended amount of time to verify the device is operating on reset. Otherwise the reset
operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware or driver to implement.

Status Codes Returned

EFI_SUCCESS The block device was reset.

EFI_DEVICE_ERROR The block device is not functioning correctly
and could not be reset.

EFI_INVALID_PARAMETER This is NULL.
622 April, 2015 Version 2.5

Protocols - Media Access
EFI_BLOCK_IO_CRYPTO_PROTOCOL.GetCapabilities()

Summary
Get the capabilities of the underlying inline cryptographic interface.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_BLOCK_IO_CRYPTO_GET_CAPABILITIES) (
 IN EFI_BLOCK_IO_CRYPTO_PROTOCOL *This,
 OUT EFI_BLOCK_IO_CRYPTO_CAPABILITIES *Capabilities
);

Parameters
This Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance.

Capabilities Pointer to the EFI_BLOCK_IO_CRYPTO_CAPABILITIES
structure.

Description
The GetCapabilities() function determines whether pre-OS controllable inline crypto is
supported by the system for the current disk and, if so, returns the capabilities of the crypto engine.

The caller is responsible for providing the Capabilities structure with a sufficient number of entries.
If the structure is too small, the EFI_BUFFER_TOO_SMALL error code is returned and the
CapabilityCount field contains the number of entries needed to contain the capabilities.

Status Codes Returned

EFI_SUCCESS The ICI is ready for use.

EFI_BUFFER_TOO_SMALL The Capabilities structure was too small. The number of entries
needed is returned in the CapabilityCount field of the structure.

EFI_NO_RESPONSE No response was received from the ICI

EFI_DEVICE_ERROR An error occurred when attempting to access the ICI

EFI_INVALID_PARAMETER This is NULL.
EFI_INVALID_PARAMETER Capabilities is NULL
Version 2.5 April, 2015 623

Unified Extensible Firmware Interface Specification
EFI_BLOCK_IO_CRYPTO_PROTOCOL.SetConfiguration()

Summary
Set the configuration of the underlying inline cryptographic interface.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_BLOCK_IO_CRYPTO_SET_CONFIGURATION) (
 IN EFI_BLOCK_IO_CRYPTO_PROTOCOL *This,
 IN UINT64 ConfigurationCount,
 IN EFI_BLOCK_IO_CRYPTO_CONFIGURATION_TABLE_ENTRY
*ConfigurationTable,
 OUT EFI_BLOCK_IO_CRYPTO_RESPONSE_CONFIGURATION_ENTRY
*ResultingTable OPTIONAL

);

Parameters
This Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance.

ConfigurationCount Number of entries being configured with this call.

ConfigurationTable Pointer to a table used to populate the configuration table.

ResultingTable Optional pointer to a table that receives the newly configured
entries.

Description
The SetConfiguration() function allows the user to set the current configuration of the inline
cryptographic interface and should be called before attempting any crypto operations.

This configures the configuration table entries with algorithms, key sizes and keys. Each configured
entry can later be referred to by index at the time of storage transaction.

The configuration table index will refer to the combination of KeyOwnerGuid, Algorithm, and
CryptoKey.

KeyOwnerGuid identifies the component taking ownership of the entry. It helps components to
identify their own entries, cooperate with other owner components, and avoid conflicts. This Guid
identifier is there to help coordination between cooperating components and not a security or
synchronization feature. The Nil GUID can be used by a component to release use of entry owned. It
is also used to identify potentially available entries (see GetConfiguration).

CryptoKey specifies algorithm-specific key material to use within parameters of selected crypto
capability.

This function is called infrequently – typically once, on device start, before IO starts. It can be
called at later times in cases the number of keys used on the drive is higher than what can be
configured at a time or a new key has to be added.

Components setting or changing an entry or entries for a given index or indices must ensure that
IO referencing affected indices is temporarily blocked (run-down) at the time of change.
624 April, 2015 Version 2.5

Protocols - Media Access
Indices parameters in each parameter table entry allow to set only a portion of the available table
entries in the crypto module anywhere from single entry to entire table supported.

If corresponding table entry or entries being set are already in use by another owner the call should
be failed and none of the entries should be modified. The interface implementation must enforce
atomicity of this operation (should either succeed fully or fail completely without modifying state).
Note that components using GetConfiguration command to discover available entries should be
prepared that by the time of calling SetConfiguration the previously available entry may have
become occupied. Such components should be prepared to re-try the sequence of operations.
Alternatively EFI_BLOCK_IO_CRYPTO_INDEX_ANY can be used to have the implementation
discover and allocate available, if any, indices atomically.

An optional ResultingTable pointer can be provided by the caller to receive the newly configured
entries. The array provided by the caller must have at least ConfigurationCount of entries.

Status Codes Returned

EFI_SUCCESS The ICI is ready for use.

EFI_NO_RESPONSE No response was received from the ICI

EFI_DEVICE_ERROR An error occurred when attempting to access the ICI

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER ConfigurationTable is NULL

EFI_INVALID_PARAMETER ConfigurationCount is 0

EFI_OUT_OF_RESOURCES Could not find the requested number of available entries in the
configuration table.
Version 2.5 April, 2015 625

Unified Extensible Firmware Interface Specification
EFI_BLOCK_IO_CRYPTO_PROTOCOL.GetConfiguration()

Summary
Get the configuration of the underlying inline cryptographic interface.

Prototype
 typedef EFI_STATUS
(EFIAPI *EFI_BLOCK_IO_CRYPTO_GET_CONFIGURATION) (
 IN EFI_BLOCK_IO_CRYPTO_PROTOCOL *This,
 IN UINT64 StartIndex,
 IN UINT64 ConfigurationCount,
 IN EFI_GUID *KeyOwnerGuid OPTIONAL,
 OUT EFI_BLOCK_IO_CRYPTO_RESPONSE_CONFIGURATION_ENTRY
*ConfigurationTable
);

Parameters
This Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance.

StartIndex Configuration table index at which to start the configuration
query.

ConfigurationCount Number of entries to return in the response table.

KeyOwnerGuid Optional parameter to filter response down to entries with a given
owner. A pointer to the Nil value can be used to return available
entries. Set to NULL when no owner filtering is required.

ConfigurationTable Table of configured configuration table entries (with no
CryptoKey returned): configuration table index,
KeyOwnerGuid, Capability. Should have sufficient space to
store up to ConfigurationCount entries.

Description
The GetConfiguration() function allows the user to get the configuration of the inline
cryptographic interface.

Retrieves, entirely or partially, the currently configured key table. Note that the keys themselves are
not retrieved, but rather just indices, owner GUIDs and capabilities.

If fewer entries than specified by ConfigurationCount are returned, the Index field of the
unused entries is set to EFI_BLOCK_IO_CRYPTO_INDEX_ANY.

Status Codes Returned

EFI_SUCCESS The ICI is ready for use.

EFI_NO_RESPONSE No response was received from the ICI

EFI_DEVICE_ERROR An error occurred when attempting to access the ICI

EFI_INVALID_PARAMETER This is NULL.
626 April, 2015 Version 2.5

Protocols - Media Access
EFI_INVALID_PARAMETER Configuration table is NULL

EFI_INVALID_PARAMETER StartIndex is out of bounds
Version 2.5 April, 2015 627

Unified Extensible Firmware Interface Specification
EFI_BLOCK_IO_CRYPTO_PROTOCOL.ReadExtended()

Summary
Reads the requested number of blocks from the device and optionally decrypts them inline.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_BLOCK_IO_CRYPTO_READ_EXTENDED) (
 IN EFI_BLOCK_IO_CRYPTO_PROTOCOL *This,
 IN UINT32 MediaId,
 IN EFI_LBA LBA,
 IN OUT EFI_BLOCK_IO_CRYPTO_TOKEN *Token,
 IN UINT64 BufferSize,
 OUT VOID *Buffer,
 IN UINT64 *Index OPTIONAL,
 IN VOID *CryptoIvInput OPTIONAL
);

Parameters
This Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOLinstance.

MediaId The media ID that the read request is for.

LBA The starting logical block address to read from on the device.
Type EFI_LBA is defined in the EFI_BLOCK_IO_PROTOCOL
description.

Token A pointer to the token associated with the transaction. Type
EFI_BLOCK_IO_CRYPTO_TOKEN is defined in “Related
Definitions” below.

BufferSize The size of the Buffer in bytes. This must be a multiple of
the intrinsic block size of the device.

Buffer A pointer to the destination buffer for the data. The caller is
responsible for either having implicit or explicit ownership of the
buffer.

Index A pointer to the configuration table index. This is optional.
CryptoIvInput A pointer to a buffer that contains additional cryptographic

parameters as required by the capability referenced by the
configuration table index, such as cryptographic initialization
vector.

Description
The ReadExtended() function allows the caller to perform a storage device read operation. The
function reads the requested number of blocks from the device and then if Index is specified
decrypts them inline. All the blocks are read and decrypted (if decryption requested), or an error is
returned.
628 April, 2015 Version 2.5

Protocols - Media Access
If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not the
ID for the current media in the device, the function returns EFI_MEDIA_CHANGED.

If EFI_DEVICE_ERROR, EFI_NO_MEDIA, or EFI_MEDIA_CHANGED is returned and non-
blocking I/O is being used, the Event associated with this request will not be signaled.

In addition to standard storage transaction parameters (LBA, IO size, and buffer), this command will
also specify a configuration table Index and CryptoIvInput when data has to be decrypted
inline by the controller after being read from the storage device. If an Index parameter is not
specified, no decryption is performed.

Related Definitions
typedef struct {
EFI_EVENT Event;
EFI_STATUS TransactionStatus;
} EFI_BLOCK_IO_CRYPTO_TOKEN;

Event If Event is NULL, then blocking I/O is performed. If Event is
not NULL and non-blocking I/O is supported, then non- blocking
I/O is performed, and Event will be signaled when the read
request is completed and data was decrypted (when Index was
specified).

TransactionStatus Defines whether or not the signaled event encountered an

error.

Status Codes Returned

EFI_SUCCESS The read request was queued if Token-> Event is not NULL.
The data was read correctly from the device if the Token->
Event is NULL.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the
read operation and/or decryption operation.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.
EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the

intrinsic block size of the device.
EFI_INVALID_PARAMETER This is NULL, or the read request contains LBAs that

are not valid, or the buffer is not on proper alignment

EFI_INVALID_PARAMETER CryptoIvInput is incorrect.
EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
Version 2.5 April, 2015 629

Unified Extensible Firmware Interface Specification
EFI_BLOCK_IO_CRYPTO_PROTOCOL.WriteExtended()

Summary
Optionally encrypts a specified number of blocks inline and then writes to the device.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_BLOCK_IO_CRYPTO_WRITE_EXTENDED) (
 IN EFI_BLOCK_IO_CRYPTO_PROTOCOL *This,
 IN UINT32 MediaId,
 IN EFI_LBA LBA,
 IN OUT EFI_BLOCK_IO_CRYPTO_TOKEN *Token,
 IN UINT64 BufferSize,
 IN VOID *Buffer,
 IN UINT64 *Index, OPTIONAL
 IN VOID *CryptoIvInput OPTIONAL

);

Parameters
This Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance.

MediaId The media ID that the read request is for.

LBA The starting logical block address to read from on the device.
Type EFI_LBA is defined in the EFI_BLOCK_IO_PROTOCOL
description.

Token A pointer to the token associated with the transaction. Type
EFI_BLOCK_IO_CRYPTO_TOKEN is defined in “Related
Definitions” section for ReadExtended() function above.

BufferSize The size of the Buffer in bytes. This must be a multiple of
the intrinsic block size of the device.

Buffer A pointer to the source buffer for the data.

Index A pointer to the configuration table index. This is optional.

CryptoIvInput A pointer to a buffer that contains additional cryptographic

parameters as required by the capability referenced by the
configuration table index, such as cryptographic initialization
vector.

Description
The WriteExtended() function allows the caller to perform a storage device write operation.
The function encrypts the requested number of blocks inline if Index is specified and then writes
them to the device. All the blocks are encrypted (if encryption requested) and written, or an error is
returned.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not the
ID for the current media in the device, the function returns EFI_MEDIA_CHANGED.
630 April, 2015 Version 2.5

Protocols - Media Access
If EFI_DEVICE_ERROR, EFI_NO_MEDIA, EFI_WRITE_PROTECTED or

EFI_MEDIA_CHANGED is returned and non-blocking I/O is being used, the Event

associated with this request will not be signaled.

In addition to standard storage transaction parameters (LBA, IO size, and buffer), this command will
also specify a configuration table Index and a CryptoIvInput when data has to be encrypted
inline by the controller before being written to the storage device. If no Index parameter is
specified, no encryption is performed.

Status Codes Returned

EFI_SUCCESS The request to encrypt (optionally) and write was queued if
Event is not NULL. The data was encrypted (optionally) and
written correctly to the device if the Event is NULL.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_DEVICE_ERROR The device reported an error while attempting to encrypt blocks
or to perform the write operation.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the
intrinsic block size of the device.

EFI_INVALID_PARAMETER This is NULL, or the write request contains LBAs that
are not valid, or the buffer is not on proper alignment.

EFI_INVALID_PARAMETER CryptoIvInput is incorrect.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
Version 2.5 April, 2015 631

Unified Extensible Firmware Interface Specification
EFI_BLOCK_IO_CRYPTO_PROTOCOL.FlushBlocks()

Summary
Flushes all modified data to a physical block device.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_BLOCK_IO_CRYPTO_FLUSH) (
 IN EFI_BLOCK_IO_CRYPTO_PROTOCOL *This,
 IN OUT EFI_BLOCK_IO_CRYPTO_TOKEN *Token
);

Parameters
This Pointer to the EFI_BLOCK_IO_CRYPTO_PROTOCOL instance.

Token A pointer to the token associated with the transaction. Type
EFI_BLOCK_IO_CRYPTO_TOKEN is defined in “Related
Definitions” section for ReadExtended() function above.

Description
The FlushBlocks() function flushes all modified data to the physical block device. Any
modified data that has to be encrypted must have been already encrypted as a part of
WriteExtended() operation – inline crypto operation cannot be a part of flush operation.

All data written to the device prior to the flush must be physically written before returning
EFI_SUCCESS from this function. This would include any cached data the driver may have cached,
and cached data the device may have cached. A flush may cause a read request following the flush to
force a device access.

 If EFI_DEVICE_ERROR, EFI_NO_MEDIA, EFI_WRITE_PROTECTED or
EFI_MEDIA_CHANGED is returned and non-blocking I/O is being used, the Event associated with
this request will not be signaled.

Status Codes Returned

EFI_SUCCESS The flush request was queued if Event is not NULL. All
outstanding data was written correctly to the device if
the Event is NULL.

EFI_DEVICE_ERROR The device reported an error while attempting to write data.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_INVALID_PARAMETER This is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
632 April, 2015 Version 2.5

Protocols - Media Access
12.12 ATA Pass Thru Protocol

EFI_ATA_PASS_THRU_PROTOCOL

This section provides a detailed description of the EFI_ATA_PASS_THRU_PROTOCOL.

Summary
Provides services that allow ATA commands to be sent to ATA Devices attached to an ATA
controller. Packet-based commands would be sent to ATAPI devices only through the Extended
SCSI Pass Thru Protocol. While the ATA_PASS_THRU interface would expose an interface to the
underlying ATA devices on an ATA controller, EXT_SCSI_PASS_THRU is responsible for
exposing a packet-based command interface for the ATAPI devices on the same ATA controller.

GUID
#define EFI_ATA_PASS_THRU_PROTOCOL_GUID \
 {0x1d3de7f0,0x807,0x424f,\
 {0xaa,0x69,0x11,0xa5,0x4e,0x19,0xa4,0x6f}}

Protocol Interface Structure
typedef struct _EFI_ATA_PASS_THRU_PROTOCOL {
 EFI_ATA_PASS_THRU_MODE *Mode;
 EFI_ATA_PASS_THRU_PASSTHRU PassThru;
 EFI_ATA_PASS_THRU_GET_NEXT_PORT GetNextPort;
 EFI_ATA_PASS_THRU_GET_NEXT_DEVICE GetNextDevice;
 EFI_ATA_PASS_THRU_BUILD_DEVICE_PATH BuildDevicePath;
 EFI_ATA_PASS_THRU_GET_DEVICE GetDevice;
 EFI_ATA_PASS_THRU_RESET_PORT ResetPort;
 EFI_ATA_PASS_THRU_RESET_DEVICE ResetDevice;
} EFI_ATA_PASS_THRU_PROTOCOL;

Parameters
Mode

A pointer to the EFI_ATA_PASS_THRU_MODE data for this ATA controller.
EFI_ATA_PASS_THRU_MODE is defined in “Related Definitions” below.

PassThru

Sends an ATA command to an ATA device that is connected to the ATA controller.
See the PassThru() function description.

GetNextPort

Retrieves the list of legal ports for ATA devices on an ATA controller. See the
GetNextPort() function description.

GetNextDevice

Retrieves the list of legal ATA devices on a specific port of an ATA controller. See
the GetNextDevice() function description.
Version 2.5 April, 2015 633

Unified Extensible Firmware Interface Specification
BuildDevicePath

Allocates and builds a device path node for an ATA Device on an ATA controller. See
the BuildDevicePath() function description.

GetDevice

Translates a device path node to a port and port multiplier port. See the
GetDevice() function description.

ResetPort

Resets an ATA port or channel (PATA). This operation resets all the ATA devices
connected to the ATA port or channel. See the ResetPort() function description.

ResetDevice

Resets an ATA device that is connected to the ATA controller. See the
ResetDevice() function description.

Note: The following data values in the EFI_ATA_PASS_THRU_MODE interface are read-only.

Attributes

Additional information on the attributes of the ATA controller. See “Related
Definitions” below for the list of possible attributes.

IoAlign

Supplies the alignment requirement for any buffer used in a data transfer. IoAlign
values of 0 and 1 mean that the buffer can be placed anywhere in memory. Otherwise,
IoAlign must be a power of 2, and the requirement is that the start address
of a buffer must be evenly divisible by IoAlign with no remainder.

Related Definitions
typedef struct {
 UINT32 Attributes;
 UINT32 IoAlign;
} EFI_ATA_PASS_THRU_MODE;

#define EFI_ATA_PASS_THRU_ATTRIBUTES_PHYSICAL 0x0001
#define EFI_ATA_PASS_THRU_ATTRIBUTES_LOGICAL 0x0002
#define EFI_ATA_PASS_THRU_ATTRIBUTES_NONBLOCKIO 0x0004

EFI_ATA_PASS_THRU_ATTRIBUTES_PHYSICAL

If this bit is set, then the EFI_ATA_PASS_THRU_PROTOCOL interface is for
physical devices on the ATA controller.

EFI_ATA_PASS_THRU_ATTRIBUTES_LOGICAL

If this bit is set, then the EFI_ATA_PASS_THRU_PROTOCOL interface is for logical
devices on the ATA controller.
634 April, 2015 Version 2.5

Protocols - Media Access
EFI_ATA_PASS_THRU_ATTRIBUTES_NONBLOCKIO

If this bit is set, then the EFI_ATA_PASS_THRU_PROTOCOL interface supports non
blocking I/O. Every EFI_ATA_PASS_THRU_PROTOCOL must support blocking I/
O. The support of non-blocking I/O is optional.

Description
The EFI_ATA_PASS_THRU_PROTOCOL provides information about an ATA controller and the
ability to send ATA Command Blocks to any ATA device attached to that ATA controller. To send
ATAPI command blocks to ATAPI device attached to that ATA controller, use the
EXT_SCSI_PASS_THRU_PROTOCOL interface.

The ATAPI devices support a small set of the non-packet-based ATA commands. The
EFI_ATA_PASS_THRU_PROTOCOL may be used to send such ATA commands to ATAPI
devices.

The printable name for the controller can be provided through the
EFI_COMPONENT_NAME2_PROTOCOL for multiple languages.

The Attributes field of the Mode member of the EFI_ATA_PASS_THRU_PROTOCOL
interface tells if the interface is for physical ATA devices or logical ATA devices. Drivers for non-
RAID ATA controllers will set both the EFI_ATA_PASS_THRU_ATTRIBUTES_PHYSICAL,
and the EFI_ATA_PASS_THRU_ATTRIBUTES_LOGICAL bits.

Drivers for RAID controllers that allow access to the physical devices and logical devices will
produce two EFI_ATA_PASS_THRU_PROTOCOL interfaces: one with the just the
EFI_ATA_PASS_THRU_ATTRIBUTES_PHYSICAL bit set and another with just the
EFI_ATA_PASS_THRU_ATTRIBUTES_LOGICAL bit set. One interface can be used to access
the physical devices attached to the RAID controller, and the other can be used to access the logical
devices attached to the RAID controller for its current configuration.

Drivers for RAID controllers that do not allow access to the physical devices will produce one
EFI_ATA_PASS_THROUGH_PROTOCOL interface with just the
EFI_ATA_PASS_THRU_LOGICAL bit set. The interface for logical devices can also be used by a
file system driver to mount the RAID volumes. An EFI_ATA_PASS_THRU_PROTOCOL with
neither EFI_ATA_PASS_THRU_ATTRIBUTES_LOGICAL nor
EFI_ATA_PASS_THRU_ATTRIBUTES_PHYSICAL set is an illegal configuration.

The Attributes field also contains the EFI_ATA_PASS_THRU_ATTRIBUTES_NONBLOCKIO
bit. All EFI_ATA_PASS_THRU_PROTOCOL interfaces must support blocking I/O. If this bit is
set, then the interface supports both blocking I/O and non-blocking I/O.

Each EFI_ATA_PASS_THRU_PROTOCOL instance must have an associated device path.
Typically this will have an ACPI device path node and a PCI device path node, although variation
will exist.

Additional information about the ATA controller can be obtained from protocols attached to the
same handle as the EFI_ATA_PASS_THRU_PROTOCOL, or one of its parent handles. This would
include the device I/O abstraction used to access the internal registers and functions of the ATA
controller.

This protocol may also be used for PATA devices (or devices in a PATA-compatible mode). PATA
devices are mapped to ports and port multiplier ports using the following table:
Version 2.5 April, 2015 635

Unified Extensible Firmware Interface Specification
Table 107. PATA device mapping to ports and port multiplier ports

PATA Device Connection Emulated Port Number Emulated Port Multiplier Port Number

Primary Master 0 0

Primary Slave 0 1

Secondary Master 1 0

Secondary Slave 1 1
636 April, 2015 Version 2.5

Protocols - Media Access
EFI_ATA_PASS_THRU_PROTOCOL.PassThru()

Summary
Sends an ATA command to an ATA device that is attached to the ATA controller. This function
supports both blocking I/O and non-blocking I/O. The blocking I/O functionality is required, and the
non-blocking I/O functionality is optional.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ATA_PASS_THRU_PASSTHRU) (
 IN EFI_ATA_PASS_THRU_PROTOCOL *This,
 IN UINT16 Port,
 IN UINT16 PortMultiplierPort,
 IN OUT EFI_ATA_PASS_THRU_COMMAND_PACKET *Packet,
 IN EFI_EVENT Event OPTIONAL
);

Parameters
This

A pointer to the EFI_ATA_PASS_THRU_PROTOCOL instance.

Port

The port number of the ATA device to send the command.

PortMultiplierPort

The port multiplier port number of the ATA device to send the command. If there is
no port multiplier, then specify 0.

Packet

A pointer to the ATA command to send to the ATA device specified by Port and
PortMultiplierPort. See “Related Definitions” below for a description of
EFI_ATA_PASS_THRU_COMMAND_PACKET.

Event

If non-blocking I/O is not supported then Event is ignored, and blocking I/O is
performed. If Event is NULL, then blocking I/O is performed. If Event is not
NULL and non blocking I/O is supported, then non-blocking I/O is performed, and
Event will be signaled when the ATA command completes.
Version 2.5 April, 2015 637

Unified Extensible Firmware Interface Specification
Related Definitions
typedef struct {
 EFI_ATA_STATUS_BLOCK *Asb;
 EFI_ATA_COMMAND_BLOCK *Acb;
 UINT64 Timeout;
 VOID *InDataBuffer;
 VOID *OutDataBuffer;
 UINT32 InTransferLength;
 UINT32 OutTransferLength;
 EFI_ATA_PASS_THRU_CMD_PROTOCOL Protocol;
 EFI_ATA_PASS_THRU_LENGTH Length;
} EFI_ATA_PASS_THRU_COMMAND_PACKET;

Timeout

The timeout, in 100 ns units, to use for the execution of this ATA command. A
Timeout value of 0 means that this function will wait indefinitely for the ATA
command to execute. If Timeout is greater than zero, then this function will return
EFI_TIMEOUT if the time required to execute the ATA command is greater than
Timeout.

InDataBuffer

A pointer to the data buffer to transfer between the ATA controller and the ATA
device for read and bidirectional commands. For all write and non data commands
where InTransferLength is 0 this field is optional and may be NULL. If this
field is not NULL, then it must be aligned on the boundary specified by the IoAlign
field in the EFI_ATA_PASS_THRU_MODE structure.

OutDataBuffer

A pointer to the data buffer to transfer between the ATA controller and the ATA
device for write or bidirectional commands. For all read and non data commands
where OutTransferLength is 0 this field is optional and may be NULL. If this
field is not NULL, then it must be aligned on the boundary specified by the IoAlign
field in the EFI_ATA_PASS_THRU_MODE structure.

InTransferLength

On input, the size, in bytes, of InDataBuffer. On output, the number of bytes
transferred between the ATA controller and the ATA device. If
InTransferLength is larger than the ATA controller can handle, no data will be
transferred, InTransferLength will be updated to contain the number of bytes
that the ATA controller is able to transfer, and EFI_BAD_BUFFER_SIZE will be
returned.

OutTransferLength

On Input, the size, in bytes of OutDataBuffer. On Output, the Number of bytes
transferred between ATA Controller and the ATA device. If OutTransferLength
is larger than the ATA controller can handle, no data will be transferred,
638 April, 2015 Version 2.5

Protocols - Media Access
OutTransferLength will be updated to contain the number of bytes that the ATA
controller is able to transfer, and EFI_BAD_BUFFER_SIZE will be returned.

Asb

A pointer to the sense data that was generated by the execution of the ATA command.
It must be aligned to the boundary specified in the IoAlign field in the
EFI_ATA_PASS_THRU_MODE structure.

Acb

A pointer to buffer that contains the Command Data Block to send to the ATA device
specified by Port and PortMultiplierPort.

Protocol

Specifies the protocol used when the ATA device executes the command. Type
EFI_ATA_PASS_THRU_CMD_PROTOCOL is defined below.

Length

Specifies the way in which the ATA command length is encoded. Type
EFI_ATA_PASS_THRU_LENGTH is defined below.
Version 2.5 April, 2015 639

Unified Extensible Firmware Interface Specification
typedef struct _EFI_ATA_COMMAND_BLOCK {
 UINT8 Reserved1[2];
 UINT8 AtaCommand;
 UINT8 AtaFeatures;
 UINT8 AtaSectorNumber;
 UINT8 AtaCylinderLow;
 UINT8 AtaCylinderHigh;
 UINT8 AtaDeviceHead;
 UINT8 AtaSectorNumberExp;
 UINT8 AtaCylinderLowExp;
 UINT8 AtaCylinderHighExp;
 UINT8 AtaFeaturesExp;
 UINT8 AtaSectorCount;
 UINT8 AtaSectorCountExp;
 UINT8 Reserved2[6];
} EFI_ATA_COMMAND_BLOCK;

typedef struct _EFI_ATA_STATUS_BLOCK {
 UINT8 Reserved1[2];
 UINT8 AtaStatus;
 UINT8 AtaError;
 UINT8 AtaSectorNumber;
 UINT8 AtaCylinderLow;
 UINT8 AtaCylinderHigh;
 UINT8 AtaDeviceHead;
 UINT8 AtaSectorNumberExp;
 UINT8 AtaCylinderLowExp;
 UINT8 AtaCylinderHighExp;
 UINT8 Reserved2;
 UINT8 AtaSectorCount;
 UINT8 AtaSectorCountExp;
 UINT8 Reserved3[6];
} EFI_ATA_STATUS_BLOCK;

typedef UINT8 EFI_ATA_PASS_THRU_CMD_PROTOCOL;

#define EFI_ATA_PASS_THRU_PROTOCOL_ATA_HARDWARE_RESET 0x00
#define EFI_ATA_PASS_THRU_PROTOCOL_ATA_SOFTWARE_RESET 0x01
#define EFI_ATA_PASS_THRU_PROTOCOL_ATA_NON_DATA 0x02
#define EFI_ATA_PASS_THRU_PROTOCOL_PIO_DATA_IN 0x04
#define EFI_ATA_PASS_THRU_PROTOCOL_PIO_DATA_OUT 0x05
#define EFI_ATA_PASS_THRU_PROTOCOL_DMA 0x06
#define EFI_ATA_PASS_THRU_PROTOCOL_DMA_QUEUED 0x07
#define EFI_ATA_PASS_THRU_PROTOCOL_DEVICE_DIAGNOSTIC 0x08
#define EFI_ATA_PASS_THRU_PROTOCOL_DEVICE_RESET 0x09
640 April, 2015 Version 2.5

Protocols - Media Access
#define EFI_ATA_PASS_THRU_PROTOCOL_UDMA_DATA_IN 0x0A
#define EFI_ATA_PASS_THRU_PROTOCOL_UDMA_DATA_OUT 0x0B
#define EFI_ATA_PASS_THRU_PROTOCOL_FPDMA 0x0C
#define EFI_ATA_PASS_THRU_PROTOCOL_RETURN_RESPONSE 0xFF

typedef UINT8 EFI_ATA_PASS_THRU_LENGTH;

#define EFI_ATA_PASS_THRU_LENGTH_BYTES 0x80

#define EFI_ATA_PASS_THRU_LENGTH_MASK 0x70
#define EFI_ATA_PASS_THRU_LENGTH_NO_DATA_TRANSFER 0x00
#define EFI_ATA_PASS_THRU_LENGTH_FEATURES 0x10
#define EFI_ATA_PASS_THRU_LENGTH_SECTOR_COUNT 0x20
#define EFI_ATA_PASS_THRU_LENGTH_TPSIU 0x30

#define EFI_ATA_PASS_THRU_LENGTH_COUNT 0x0F

Description
The PassThru() function sends the ATA command specified by Packet to the ATA device
specified by Port and PortMultiplierPort. If the driver supports non-blocking I/O and
Event is not NULL, then the driver will return immediately after the command is sent to the
selected device, and will later signal Event when the command has completed.

If the driver supports non-blocking I/O and Event is NULL, then the driver will send the command
to the selected device and block until it is complete. If the driver does not support non-blocking I/O,
then the Event parameter is ignored, and the driver will send the command to the selected device
and block until it is complete.

If Packet is successfully sent to the ATA device, then EFI_SUCCESS is returned. If Packet
cannot be sent because there are too many packets already queued up, then EFI_NOT_READY is
returned. The caller may retry Packet at a later time. If a device error occurs while sending the
Packet, then EFI_DEVICE_ERROR is returned. If a timeout occurs during the execution of
Packet, then EFI_TIMEOUT is returned.

If Port or PortMultiplierPort are not in a valid range for the ATA controller, then
EFI_INVALID_PARAMETER is returned. If InDataBuffer, OutDataBuffer or Asb do
not meet the alignment requirement specified by the IoAlign field of the
EFI_ATA_PASS_THRU_MODE structure, then EFI_INVALID_PARAMETER is returned. If any
of the other fields of Packet are invalid, then EFI_INVALID_PARAMETER is returned.

If the data buffer described by InDataBuffer and InTransferLength is too big to be
transferred in a single command, then no data is transferred and EFI_BAD_BUFFER_SIZE is
returned. The number of bytes that can be transferred in a single command are returned in
InTransferLength. If the data buffer described by OutDataBuffer and
OutTransferLength is too big to be transferred in a single command, then no data is transferred
and EFI_BAD_BUFFER_SIZE is returned. The number of bytes that can be transferred in a single
command are returned in OutTransferLength.
Version 2.5 April, 2015 641

Unified Extensible Firmware Interface Specification
If the command described in Packet is not supported by the host adapter, then
EFI_UNSUPPORTED is returned.

If EFI_SUCCESS, EFI_BAD_BUFFER_SIZE, EFI_DEVICE_ERROR, or EFI_TIMEOUT is
returned, then the caller must examine Asb.

If non-blocking I/O is being used, then the status fields in Packet will not be valid until the Event
associated with Packet is signaled.

If EFI_NOT_READY, EFI_INVALID_PARAMETER or EFI_UNSUPPORTED is returned, then
Packet was never sent, so the status fields in Packet are not valid. If non-blocking I/O is being
used, the Event associated with Packet will not be signaled.

This function will determine if data transfer is necessary based on the Acb->Protocol and Acb-
>Length fields. The Acb->AtaCommand field is ignored except to copy it into the ATA
Command register. The following table describes special programming considerations based on the
protocol specified by Acb->Protocol.

Table 108. Special programming considerations

The ATA host and the ATA device should already be configured for the PIO, DMA, and UDMA
transfer rates that are supported by the ATA controller and the ATA device. The results of changing
the device’s timings using this function are undefined.

If Packet->Length is not set to EFI_ATA_PASS_THRU_LENGTH_NO_DATA_TRANSFER,
then if EFI_ATA_PASS_THRU_LENGTH_BYTES is set in Packet->Length, then
Packet->InTransferLength and Packet->OutTransferLength are interpreted as
bytes.

If Packet->Length is not set to
EFI_ATA_PASS_THRU_LENGTH_NO_DATA_TRANSFER, then if
EFI_ATA_PASS_THRU_LENGTH_BYTES is clear in Packet->Length, then Packet-
>InTransferLength and Packet->OutTransferLength are interpreted as blocks.

If Packet->Length is set to EFI_ATA_PASS_THRU_LENGTH_SECTOR_COUNT, then the
transfer length will be programmed into Acb->AtaSectorCount.

Protocol Value Description

EFI_ATA_PASS_THRU_PROTOCOL_ATA_HARD-
WARE_RESET

For PATA devices, then RST- is

asserted. For SATA devices, then

COMRESET will be issued.

EFI_ATA_PASS_THRU_PROTOCOL_ATA_SOFTWA-
RE_RESET

A software reset will be issued to the
ATA device.

EFI_ATA_PASS_THRU_PROTOCOL_PIO_DATA_IN -
EFI_ATA_PASS_THRU_PROTOCOL_FPDMA

The command is sent to the ATA
device. If the value is inappropriate for

the command specified by Acb-
>AtaCommand, the results are

undefined.

EFI_ATA_PASS_THRU_RETURN_RESPONSE This command will only return the
contents of the ATA status block.
642 April, 2015 Version 2.5

Protocols - Media Access
If Packet->Length is set to EFI_ATA_PASS_THRU_LENGTH_TPSIU, then the transfer
length will be programmed into the TPSIU.

• For PIO data transfers, the number of sectors to transfer is 2
 (Packet->Length &

EFI_ATA_PASS_THRU_LENGTH_COUNT).

For all commands, the contents of the ATA status block will be returned in Asb.

Status Codes Returned

EFI_SUCCESS The ATA command was sent by the host. For bi-directional commands,

InTransferLength bytes were transferred from
InDataBuffer. For write and bi-directional commands,
OutTransferLength bytes were transferred by

OutDataBuffer. See Asb for additional status information.

EFI_BAD_BUFFER_SIZE The ATA command was not executed. The number of bytes that could be

transferred is returned in InTransferLength. For write and bi-

directional commands, OutTransferLength bytes were transferred

by OutDataBuffer. See Asb for additional status information.

EFI_NOT_READY The ATA command could not be sent because there are too many ATA
commands already queued. The caller may retry again later.

EFI_DEVICE_ERROR A device error occurred while attempting to send the ATA command. See

Asb for additional status information.

EFI_INVALID_PARAMETER Port, PortMultiplierPort, or the contents of Acb are invalid.

The ATA command was not sent, so no additional status information is
available.

EFI_UNSUPPORTED The command described by the ATA command is not supported by the host
adapter. The ATA command was not sent, so no additional status
information is available.

EFI_TIMEOUT A timeout occurred while waiting for the ATA command to execute. See

Asb for additional status information.
Version 2.5 April, 2015 643

Unified Extensible Firmware Interface Specification
EFI_ATA_PASS_THRU_PROTOCOL.GetNextPort()

Summary
Used to retrieve the list of legal port numbers for ATA devices on an ATA controller. These can
either be the list of ports where ATA devices are actually present or the list of legal port numbers for
the ATA controller. Regardless, the caller of this function must probe the port number returned to
see if an ATA device is actually present at that location on the ATA controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ATA_PASS_THRU_GET_NEXT_PORT) (
 IN EFI_ATA_PASS_THRU_PROTOCOL *This,
 IN OUT UINT16 *Port
);

Parameters
This

A pointer to the EFI_ATA_PASS_THRU_PROTOCOL instance.

Port

On input, a pointer to the port number on the ATA controller. On output, a pointer to
the next port number on the ATA controller. An input value of 0xFFFF retrieves the
first port number on the ATA controller.

Description
The GetNextPort() function retrieves the port number on an ATA controller. If on input Port is
0xFFFF, then the port number of the first port on the ATA controller is returned in Port and
EFI_SUCCESS is returned.

If Port is the port number that was returned on the previous call to GetNextPort(), then the port
number of the next port on the ATA controller is returned in Port, and EFI_SUCCESS is returned.

If Port is not 0xFFFF and Port was not returned on the previous call to GetNextPort(),
then EFI_INVALID_PARAMETER is returned.

If Port is the port number of the last port on the ATA controller, then EFI_NOT_FOUND is
returned.

Status Codes Returned

EFI_SUCCESS The next port number on the ATA controller was returned in Port.

EFI_NOT_FOUND There are no more ports on this ATA controller.

EFI_INVALID_PARAMETER Port is not 0xFFFF and Port was not returned on a

previous call to GetNextPort().
644 April, 2015 Version 2.5

Protocols - Media Access
EFI_ATA_PASS_THRU_PROTOCOL.GetNextDevice()

Summary
Used to retrieve the list of legal port multiplier port numbers for ATA devices on a port of an ATA
controller. These can either be the list of port multiplier ports where ATA devices are actually
present on port or the list of legal port multiplier ports on that port. Regardless, the caller of this
function must probe the port number and port multiplier port number returned to see if an ATA
device is actually present.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ATA_PASS_THRU_GET_NEXT_DEVICE) (
 IN EFI_ATA_PASS_THRU_PROTOCOL *This,
 IN UINT16 Port,
 IN OUT UINT16 *PortMultiplierPort
);

Parameters
This

A pointer to the EFI_ATA_PASS_THRU_PROTOCOL instance.

Port

The port number present on the ATA controller.

PortMultiplierPort

On input, a pointer to the port multiplier port number of an ATA device present on the
ATA controller. If on input a PortMultiplierPort of 0xFFFF is specified,
then the port multiplier port number of the first ATA device is returned. On output, a
pointer to the port multiplier port number of the next ATA device present on an ATA
controller.

Description
The GetNextDevice() function retrieves the port multiplier port number of an ATA device
present on a port of an ATA controller.

If PortMultiplierPort points to a port multiplier port number value that was returned on a
previous call to GetNextDevice(), then the port multiplier port number of the next ATA device
on the port of the ATA controller is returned in PortMultiplierPort, and EFI_SUCCESS is
returned.

If PortMultiplierPort points to 0xFFFF, then the port multiplier port number of the first
ATA device on port of the ATA controller is returned in PortMultiplierPort and
EFI_SUCCESS is returned.

If PortMultiplierPort is not 0xFFFF and the value pointed to by PortMultiplierPort
was not returned on a previous call to GetNextDevice(), then EFI_INVALID_PARAMETER
is returned.
Version 2.5 April, 2015 645

Unified Extensible Firmware Interface Specification
If PortMultiplierPort is the port multiplier port number of the last ATA device on the port of
the ATA controller, then EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS The port multiplier port number of the next ATA device on the port of the

ATA controller was returned in PortMultiplierPort.

EFI_NOT_FOUND There are no more ATA devices on this port of the ATA controller.

EFI_INVALID_PARAMETER PortMultiplierPort is not 0xFFFF, and

PortMultiplierPort was not returned on a previous call to

GetNextDevice().
646 April, 2015 Version 2.5

Protocols - Media Access
EFI_ATA_PASS_THRU_PROTOCOL.BuildDevicePath()

Summary
Used to allocate and build a device path node for an ATA device on an ATA controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ATA_PASS_THRU_BUILD_DEVICE_PATH) (
 IN EFI_ATA_PASS_THRU_PROTOCOL *This,
 IN UINT16 Port,
 IN UINT16 PortMultiplierPort,
 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath
);

Parameters
This

A pointer to the EFI_ATA_PASS_THRU_PROTOCOL instance.

Port

Port specifies the port number of the ATA device for which a device path node is to be
allocated and built.

PortMultiplierPort

The port multiplier port number of the ATA device for which a device path node is to
be allocated and built. If there is no port multiplier, then specify 0.

DevicePath

A pointer to a single device path node that describes the ATA device specified by
Port and PortMultiplierPort. This function is responsible for allocating the
buffer DevicePath with the boot service AllocatePool(). It is the caller’s
responsibility to free DevicePath when the caller is finished with DevicePath.

Description
The BuildDevicePath() function allocates and builds a single device node for the ATA device
specified by Port and PortMultiplierPort. If the ATA device specified by Port and
PortMultiplierPort is not present on the ATA controller, then EFI_NOT_FOUND is
returned. If DevicePath is NULL, then EFI_INVALID_PARAMETER is returned. If there are
not enough resources to allocate the device path node, then EFI_OUT_OF_RESOURCES is
returned.

Otherwise, DevicePath is allocated with the boot service AllocatePool(), the contents of
DevicePath are initialized to describe the ATA device specified by Port and
PortMultiplierPort, and EFI_SUCCESS is returned.
Version 2.5 April, 2015 647

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS The device path node that describes the ATA device specified by Port
and PortMultiplierPort was allocated and returned in

DevicePath.

EFI_NOT_FOUND The ATA device specified by Port and PortMultiplierPort
does not exist on the ATA controller.

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to allocate DevicePath.
648 April, 2015 Version 2.5

Protocols - Media Access
EFI_ATA_PASS_THRU_PROTOCOL.GetDevice()

Summary
Used to translate a device path node to a port number and port multiplier port number.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ATA_PASS_THRU_GET_DEVICE) (
 IN EFI_ATA_PASS_THRU_PROTOCOL *This,
 IN EFI_DEVICE_PATH_PROTOCOL *DevicePath,
 OUT UINT16 *Port,
 OUT UINT16 *PortMultiplierPort
);

Parameters
This

A pointer to the EFI_ATA_PASS_THRU_PROTOCOL instance.

DevicePath

A pointer to the device path node that describes an ATA device on the ATA
controller.

Port

On return, points to the port number of an ATA device on the ATA controller.

PortMultiplierPort

On return, points to the port multiplier port number of an ATA device on the ATA
controller.

Description
The GetDevice() function determines the port and port multiplier port number associated with
the ATA device described by DevicePath. If DevicePath is a device path node type that the
ATA Pass Thru driver supports, then the ATA Pass Thru driver will attempt to translate the contents
DevicePath into a port number and port multiplier port number.

If this translation is successful, then that port number and port multiplier port number are returned in
Port and PortMultiplierPort, and EFI_SUCCESS is returned.

If DevicePath, Port, or PortMultiplierPort are NULL, then
EFI_INVALID_PARAMETER is returned.

If DevicePath is not a device path node type that the ATA Pass Thru driver supports, then
EFI_UNSUPPORTED is returned.

If DevicePath is a device path node type that the ATA Pass Thru driver supports, but there is not
a valid translation from DevicePath to a port number and port multiplier port number, then
EFI_NOT_FOUND is returned.
Version 2.5 April, 2015 649

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS DevicePath was successfully translated to a port number and port

multiplier port number, and they were returned in Port and

PortMultiplierPort.

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI_INVALID_PARAMETER Port is NULL

EFI_INVALID_PARAMETER PortMultiplierPort is NULL

EFI_UNSUPPORTED This driver does not support the device path node type in DevicePath.

EFI_NOT_FOUND A valid translation from DevicePath to a port number and port

multiplier port number does not exist.
650 April, 2015 Version 2.5

Protocols - Media Access
EFI_ATA_PASS_THRU_PROTOCOL.ResetPort()

Summary
Resets a specific port on the ATA controller. This operation also resets all the ATA devices
connected to the port.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ATA_PASS_THRU_RESET_PORT) (
 IN EFI_ATA_PASS_THRU_PROTOCOL *This,
 IN UINT16 Port
);

Parameters
This

A pointer to the EFI_ATA_PASS_THRU_PROTOCOL instance.

Port

The port number on the ATA controller.

Description
The ResetChannel() function resets an a specific port on an ATA controller. This operation
resets all the ATA devices connected to that port. If this ATA controller does not support a reset port
operation, then EFI_UNSUPPORTED is returned.

If a device error occurs while executing that port reset operation, then EFI_DEVICE_ERROR is
returned.

If a timeout occurs during the execution of the port reset operation, then EFI_TIMEOUT is returned.
If the port reset operation is completed, then EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The ATA controller port was reset.

EFI_UNSUPPORTED The ATA controller does not support a port reset operation.

EFI_DEVICE_ERROR A device error occurred while attempting to reset the ATA port.

EFI_TIMEOUT A timeout occurred while attempting to reset the ATA port.
Version 2.5 April, 2015 651

Unified Extensible Firmware Interface Specification
EFI_ATA_PASS_THRU_PROTOCOL.ResetDevice()

Summary
Resets an ATA device that is connected to an ATA controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ATA_PASS_THRU_RESET_DEVICE) (
 IN EFI_ATA_PASS_THRU_PROTOCOL *This,
 IN UINT16 Port,
 IN UINT16 PortMultiplierPort
);

Parameters
This

A pointer to the EFI_ATA_PASS_THRU_PROTOCOL instance.

Port

Port represents the port number of the ATA device to be reset.

PortMultiplierPort

The port multiplier port number of the ATA device to reset. If there is no port
multiplier, then specify 0.

Description
The ResetDevice() function resets the ATA device specified by Port and
PortMultiplierPort. If this ATA controller does not support a device reset operation, then
EFI_UNSUPPORTED is returned.

If Port or PortMultiplierPort are not in a valid range for this ATA controller, then
EFI_INVALID_PARAMETER is returned.

If a device error occurs while executing that device reset operation, then EFI_DEVICE_ERROR is
returned.

If a timeout occurs during the execution of the device reset operation, then EFI_TIMEOUT is
returned.

If the device reset operation is completed, then EFI_SUCCESS is returned.
652 April, 2015 Version 2.5

Protocols - Media Access
Status Codes Returned

12.13 Storage Security Command Protocol
This section defines the storage security command protocol. This protocol is used to abstract mass
storage devices to allow code running in the EFI boot services environment to send security protocol
commands to mass storage devices without specific knowledge of the type of device or controller
that manages the device. Functions are defined to send or retrieve security protocol defined data to
and from mass storage devices. This protocol shall be supported on all physical and logical storage
devices supporting the EFI_BLOCK_IO_PROTOCOL in the EFI boot services environment and one
of the following command sets (or their alternative) at the bus level:

• TRUSTED SEND/RECEIVE commands of the ATA8-ACS command set or its successor

• SECURITY PROTOCOL IN/OUT commands of the SPC-4 command set or its successor.

EFI_STORAGE_SECURITY_COMMAND_PROTOCOL

Summary
This protocol provides ability to send security protocol commands to mass storage devices.

GUID
#define EFI_STORAGE_SECURITY_COMMAND_PROTOCOL_GUID \
 {0xc88b0b6d, 0x0dfc, 0x49a7,\
 {0x9c, 0xb4, 0x49, 0x7, 0x4b, 0x4c, 0x3a, 0x78}}

Protocol Interface Structure
typedef struct _EFI_STORAGE_SECURITY_COMMAND_PROTOCOL {
 EFI_STORAGE_SECURITY_RECEIVE_DATA ReceiveData;
 EFI_STORAGE_SECURITY_SEND_DATA SendData;
} EFI_STORAGE_SECURITY_COMMAND_PROTOCOL;

Parameters
ReceiveData Issues a security protocol command to the requested device that

receives data and/or the result of one or more commands sent by
SendData. See the ReceiveData() function description.

EFI_SUCCESS The ATA device specified by Port and PortMultiplierPort
was reset

EFI_UNSUPPORTED The ATA controller does not support a device reset operation.

EFI_INVALID_PARAMETER Port or PortMultiplierPort are invalid.

EFI_DEVICE_ERROR A device error occurred while attempting to reset the ATA device specified

by Port and PortMultiplierPort.

EFI_TIMEOUT A timeout occurred while attempting to reset the ATA device specified by

Port and PortMultiplierPort.
Version 2.5 April, 2015 653

Unified Extensible Firmware Interface Specification
SendData Issues a security protocol command to the requested device. See
the SendData() function description.

Description
The EFI_STORAGE_SECURITY_COMMAND_PROTOCOL is used to send security protocol
commands to a mass storage device. Two types of security protocol commands are supported.
SendData sends a command with data to a device. ReceiveData sends a command that receives
data and/or the result of one or more commands sent by SendData.

The security protocol command formats supported shall be based on the definition of the
SECURITY PROTOCOL IN and SECURITY PROTOCOL OUT commands defined in SPC-4. If
the device uses the SCSI command set, no translation is needed in the firmware and the firmware
can package the parameters into a SECURITY PROTOCOL IN or SECURITY PROTOCOL OUT
command and send the command to the device. If the device uses a non-SCSI command set, the
firmware shall map the command and data payload to the corresponding command and payload
format defined in the non-SCSI command set (for example, TRUSTED RECEIVE and TRUSTED
SEND in ATA8-ACS).

The firmware shall automatically add an EFI_STORAGE_SECURITY_COMMAND_PROTOCOL for
any storage devices detected during system boot that support SPC-4, ATA8-ACS or their successors.
654 April, 2015 Version 2.5

Protocols - Media Access
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL.ReceiveData()

Summary
Send a security protocol command to a device that receives data and/or the result of one or more
commands sent by SendData.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_STORAGE_SECURITY_RECEIVE_DATA) (
 IN EFI_STORAGE_SECURITY_COMMAND_PROTOCOL *This,
 IN UINT32 MediaId,
 IN UINT64 Timeout,
 IN UINT8 SecurityProtocol,
 IN UINT16 SecurityProtocolSpecificData,
 IN UINTN PayloadBufferSize,
 OUT VOID *PayloadBuffer,
 OUT UINTN *PayloadTransferSize
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_STORAGE_SECURITY_COMMAND_PROTOCOL is
defined in the
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL
description.

 MediaId ID of the medium to receive data from.

 Timeout The timeout, in 100ns units, to use for the execution of the
security protocol command. A Timeout value of 0 means that
this function will wait indefinitely for the security protocol
command to execute. If Timeout is greater than zero, then this
function will return EFI_TIMEOUT if the time required to
execute the receive data command is greater than Timeout.

 SecurityProtocolId

The value of the “Security Protocol” parameter of the security
protocol command to be sent.

 SecurityProtocolSpecificData

The value of the “Security Protocol Specific” parameter of the
security protocol command to be sent. This value is in big-endian
format.

 PayloadBufferSize Size in bytes of the payload data buffer.

 PayloadBuffer A pointer to a destination buffer to store the security protocol
command specific payload data for the security protocol
command. The caller is responsible for having either implicit or
explicit ownership of the buffer.
Version 2.5 April, 2015 655

Unified Extensible Firmware Interface Specification

ta

and
 PayloadTransferSize

A pointer to a buffer to store the size in bytes of the data written
to the payload data buffer.

Description
The ReceiveData function sends a security protocol command to the given MediaId. The
security protocol command sent is defined by SecurityProtocolId and contains the security
protocol specific data SecurityProtocolSpecificData. The function returns the data from
the security protocol command in PayloadBuffer.

For devices supporting the SCSI command set, the security protocol command is sent using the
SECURITY PROTOCOL IN command defined in SPC-4.

For devices supporting the ATA command set, the security protocol command is sent using one of
the TRUSTED RECEIVE commands defined in ATA8-ACS if PayloadBufferSize is non-
zero. If the PayloadBufferSize is zero, the security protocol command is sent using the
Trusted Non-Data command defined in ATA8-ACS.

If PayloadBufferSize is too small to store the available data from the security protocol
command, the function shall copy PayloadBufferSize bytes into the PayloadBuffer and
return EFI_WARN_BUFFER_TOO_SMALL.

If PayloadBuffer or PayloadTransferSize is NULL and PayloadBufferSize is non-
zero, the function shall return EFI_INVALID_PARAMETER.

If the given MediaId does not support security protocol commands, the function shall return
EFI_UNSUPPORTED. If there is no media in the device, the function returns EFI_NO_MEDIA. If
the MediaId is not the ID for the current media in the device, the function returns
EFI_MEDIA_CHANGED.

If the security protocol fails to complete within the Timeout period, the function shall return
EFI_TIMEOUT.

If the security protocol command completes without an error, the function shall return
EFI_SUCCESS. If the security protocol command completes with an error, the function shall return
EFI_DEVICE_ERROR.

Status Codes Returned

EFI_SUCCESS The security protocol command completed successfully.

EFI_WARN_BUFFER_TOO_SMALL The PayloadBufferSize was too small to store the available da

from the device. The PayloadBuffer contains the truncated data.

EFI_UNSUPPORTED The given MediaId does not support security protocol commands.

EFI_DEVICE_ERROR The security protocol command completed with an error.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_INVALID_PARAMETER The PayloadBuffer or PayloadTransferSize is NULL

PayloadBufferSize is non-zero.

EFI_TIMEOUT A timeout occurred while waiting for the security protocol command to
execute.
656 April, 2015 Version 2.5

Protocols - Media Access
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL.SendData()

Summary
 Send a security protocol command to a device.

Prototype
typedef
 EFI_STATUS
 (EFIAPI *EFI_STORAGE_SECURITY_SEND_DATA) (
 IN EFI_STORAGE_SECURITY_COMMAND_PROTOCOL *This,
 IN UINT32 MediaId,
 IN UINT64 Timeout,
 IN UINT8 SecurityProtocolId,
 IN UINT16 SecurityProtocolSpecificData,
 IN UINTN PayloadBufferSize,
 IN VOID *PayloadBuffer
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_STORAGE_SECURITY_COMMAND_PROTOCOL is
defined in the
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL
description.

 MediaId ID of the medium to send data to.

 Timeout The timeout, in 100ns units, to use for the execution of the
security protocol command. A Timeout value of 0 means that
this function will wait indefinitely for the security protocol
command to execute. If Timeout is greater than zero, then this
function will return EFI_TIMEOUT if the time required to
execute the receive data command is greater than Timeout.

 SecurityProtocolId

The value of the “Security Protocol” parameter of the security
protocol command to be sent.

 SecurityProtocolSpecificData

The value of the “Security Protocol Specific” parameter of the
security protocol command to be sent.

 PayloadBufferSize Size in bytes of the payload data buffer.

 PayloadBuffer A pointer to a buffer containing the security protocol command
specific payload data for the security protocol command.

Description
The SendData function sends a security protocol command containing the payload
PayloadBuffer to the given MediaId. The security protocol command sent is defined by
SecurityProtocolId and contains the security protocol specific data
Version 2.5 April, 2015 657

Unified Extensible Firmware Interface Specification

 non-
SecurityProtocolSpecificData. If the underlying protocol command requires a specific
padding for the command payload, the SendData function shall add padding bytes to the command
payload to satisfy the padding requirements.

For devices supporting the SCSI command set, the security protocol command is sent using the
SECURITY PROTOCOL OUT command defined in SPC-4.

For devices supporting the ATA command set, the security protocol command is sent using one of
the TRUSTED SEND commands defined in ATA8-ACS if PayloadBufferSize is non-zero. If
the PayloadBufferSize is zero, the security protocol command is sent using the Trusted Non-
Data command defined in ATA8-ACS.

If PayloadBuffer is NULL and PayloadBufferSize is non-zero, the function shall return
EFI_INVALID_PARAMETER.

If the given MediaId does not support security protocol commands, the function shall return
EFI_UNSUPPORTED. If there is no media in the device, the function returns EFI_NO_MEDIA. If
the MediaId is not the ID for the current media in the device, the function returns
EFI_MEDIA_CHANGED.

If the security protocol fails to complete within the Timeout period, the function shall return
EFI_TIMEOUT.

If the security protocol command completes without an error, the function shall return
EFI_SUCCESS. If the security protocol command completes with an error, the function shall return
EFI_DEVICE_ERROR.

Status Codes Returned

12.14 NVM Express Pass Through Protocol

EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL

This section provides a detailed description of the
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.

EFI_SUCCESS The security protocol command completed successfully.

EFI_UNSUPPORTED The given MediaId does not support security protocol commands.

EFI_DEVICE_ERROR The security protocol command completed with an error.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_INVALID_PARAMETER The PayloadBuffer is NULL and PayloadBufferSize is

zero.

EFI_TIMEOUT A timeout occurred while waiting for the security protocol command to
execute.
658 April, 2015 Version 2.5

Protocols - Media Access
Summary
This protocol provides services that allow NVM Express commands to be sent to an NVM Express
controller or to a specific namespace in a NVM Express controller. This protocol interface is
optimized for storage.

GUID
#define EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL_GUID \
 { 0x52c78312, 0x8edc, 0x4233,\
 { 0x98, 0xf2, 0x1a, 0x1a, 0xa5, 0xe3, 0x88, 0xa5 } };

 Protocol Interface Structure
typedef struct _EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL {
EFI_NVM_EXPRESS_PASS_THRU_MODE *Mode;
EFI_NVM_EXPRESS_PASS_THRU_PASSTHRU PassThru;
EFI_NVM_EXPRESS_PASS_THRU_GET_NEXT_NAMESPACE GetNextNamespace;
EFI_NVM_EXPRESS_PASS_THRU_BUILD_DEVICE_PATH BuildDevicePath;
EFI_NVM_EXPRESS_PASS_THRU_GET_NAMESPACE GetNamespace;
} EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL;

 Parameters
Mode A pointer to the EFI_NVM_EXPRESS_PASS_THRU_MODE

data for this NVM Express controller.
EFI_NVM_EXPRESS_PASS_THRU_MODE is defined in
“Related Definitions” below.

PassThru Sends an NVM Express Command Packet to an NVM Express
controller. See the
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.PassThru
() function description.

GetNextNamespace Retrieves the next namespace ID for this NVM Express
controller. See the
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNextN
amespace() function description.

BuildDevicePath Allocates and builds a device path node for a namespace on an
NVM Express controller. See the
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.BuildDev
icePath() function description.

GetNamespace Translates a device path node to a namespace ID. See the
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNames
pace() function description.

The following data values in the EFI_NVM_EXPRESS_PASS_THRU_MODE interface are read-
only.

Attributes Additional information on the attributes of the NVM Express
controller. See “Related Definitions” below for the list of
possible attributes.

IoAlign Supplies the alignment requirement for any buffer used in a data
transfer. IoAlign values of 0 and 1 mean that the buffer can be
Version 2.5 April, 2015 659

Unified Extensible Firmware Interface Specification
placed anywhere in memory. Otherwise, IoAlign must be a
power of 2, and the requirement is that the start address of a
buffer must be evenly divisible by IoAlign with no remainder.

NvmeVersion Indicates the version of the NVM Express specification that the
controller implementation supports. The format of this field is
defined in the Version field of the Controller Registers in the
NVM Express Specification.

Related Definitions
typedef struct {
UINT32 Attributes;
UINT32 IoAlign;
UINT32 NvmeVersion;
} EFI_NVM_EXPRESS_PASS_THRU_MODE;

#define EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_PHYSICAL
0x0001
#define EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_LOGICAL
0x0002
#define EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_NONBLOCKIO 0x0004
#define EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_CMD_SET_NVM 0x0008

EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_PHYSICAL

If this bit is set, then the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL interface
is for directly addressable namespaces.

EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_LOGICAL

If this bit is set, then the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL interface
is for a single volume logical namespace comprised of multiple namespaces.

EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_NONBLOCKIO

If this bit is set, then the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL interface
supports non-blocking I/O.

EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_CMD_SET_NVM

If this bit is set, then the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL interface
supports NVM command set.

Description
The EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL provides information about an NVM
Express controller and the ability to send NVM Express commands to an NVM Express controller or
to a specific namespace in a NVM Express controller.

The printable name for the NVM Express controller can be provided through the
EFI_COMPONENT_NAME_PROTOCOL and the EFI_COMPONENT_NAME2_PROTOCOL for
multiple languages.

The Attributes field of the EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL interface tells if
the interface is for physical NVM Express controllers or logical NVM Express controllers. Drivers
660 April, 2015 Version 2.5

Protocols - Media Access
for non-RAID NVM Express controllers will set both the
EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_PHYSICAL, and the
EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_LOGICAL bits.

Drivers for RAID controllers that allow access to the physical controllers and logical controllers will
produce two EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL interfaces: one with the just the
EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_PHYSICAL bit set and another with just the
EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_LOGICAL bit set. One interface can be used
to access the physical controllers attached to the RAID controller, and the other can be used to
access the logical controllers attached to the RAID controller for its current configuration.

Drivers for RAID controllers that do not allow access to the physical controllers will produce one
EFI_NVM_EXPRESS_PASS_THROUGH_PROTOCOL interface with just the
EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_LOGICAL bit set. The interface for logical
controllers can also be used by a file system driver to mount the RAID volumes. An
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL with neither
EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_LOGICAL nor
EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_PHYSICAL set is an illegal configuration.

The Attributes field also contains the
EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_NONBLOCKIO bit. All
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL interfaces must support blocking I/O. If this bit
is set, then the interface supports both blocking I/O and non-blocking I/O.

The Attributes field also contains the
EFI_NVM_EXPRESS_PASS_THRU_ATTRIBUTES_CMD_SET_NVM bit. If this bit is set, the
controller supports the NVM Express command set.

Each EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL instance must have an associated device
path. Typically this will have an ACPI device path node and a PCI device path node, although
variation will exist.
Version 2.5 April, 2015 661

Unified Extensible Firmware Interface Specification
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.PassThru()

 Summary
Sends an NVM Express Command Packet to an NVM Express controller or namespace. This
function supports both blocking I/O and non-blocking I/O. The blocking I/O functionality is
required, and the non-blocking I/O functionality is optional.

 Prototype
typedef EFI_STATUS
 (EFIAPI *EFI_NVM_EXPRESS_PASS_THRU_PASSTHRU) (
 IN EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *This,
 IN UINT32 NamespaceId,
 IN OUT EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET *Packet,
 IN EFI_EVENT Event OPTIONAL
);

 Parameters
This A pointer to the

EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL instance.
Type EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL is
defined in Section 12.14, above.

NamespaceId A 32 bit namespace ID as defined in the NVMe specification to
which the NVM Express Command Packet will be sent. A value
of 0 denotes the NVM Express controller, a value of all 0xFF’s
(all bytes are 0xFF) in the namespace ID specifies that the
command packet should be sent to all valid namespaces.

Packet A pointer to the NVM Express Command Packet. See “Related
Definitions” below for a description of
EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET.

Event If non-blocking I/O is not supported then Event is ignored, and
blocking I/O is performed. If Event is NULL, then blocking I/O
is performed. If Event is not NULL and non-blocking I/O is
supported, then non-blocking I/O is performed, and Event will
be signaled when the NVM Express Command Packet completes.
662 April, 2015 Version 2.5

Protocols - Media Access
 Related Definitions
typedef struct {
UINT64 CommandTimeout;
VOID *TransferBuffer OPTIONAL;
UINT32 TransferLength OPTIONAL;
VOID *MetaDataBuffer OPTIONAL;
UINT32 MetadataLength OPTIONAL;
UINT8 QueueType;
EFI_NVM_EXPRESS_COMMAND *NvmeCmd;
EFI_NVM_EXPRESS_COMPLETION *NvmeCompletion;
} EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET;

CommandTimeout The timeout in 100 ns units to use for the execution of this NVM
Express Command Packet. A Timeout value of 0 means that
this function will wait indefinitely for the command to execute. If
Timeout is greater than zero, then this function will return
EFI_TIMEOUT if the time required to execute the NVM
Express command is greater than Timeout.

TransferBuffer A pointer to the data buffer to transfer between the host and the
NVM Express controller for read, write, and bi-directional
commands. For all write and non-data commands where
TransferLength is 0 this field is optional and may be NULL.
If this field is not NULL, then it must be aligned on the boundary
specified by the IoAlign field in the
EFI_NVM_EXPRESS_PASS_THRU_MODE structure.

TransferLength On input, the size in bytes of TransferBuffer. On output, the
number of bytes transferred to or from the NVM Express
controller or namespace.

MetadataBuffer A pointer to the optional metadata buffer to transfer between the
host and the NVM Express controller. For all commands where
no metadata is transferred between the host and the controller,
this field is optional and may be NULL. If this field is not NULL,
then it must be aligned on the boundary specified by the
IoAlign field in the
EFI_NVM_EXPRESS_PASS_THRU_MODE structure.

MetadataLength On input, the size in bytes of MetadataBuffer. On output, the
number of bytes transferred to or from the NVM Express
controller or namespace.

QueueType The type of the queue that the NVMe command should be posted
to. A value of 0 indicates it should be posted to the Admin
Submission Queue. A value of 1 indicates it should be posted to
an I/O Submission Queue.

NvmeCmd A pointer to an NVM Express Command Packet.

NvmeCompletion The raw NVM Express completion queue entry as defined in the
NVM Express Specification.
Version 2.5 April, 2015 663

Unified Extensible Firmware Interface Specification
 Description
The PassThru() function sends the NVM Express Command Packet specified by Packet to
the NVM Express controller. If the driver supports non-blocking I/O and Event is not NULL, then
the driver will return immediately after the command is sent to the selected controller, and will later
signal Event when the command has completed.

If the driver supports non-blocking I/O and Event is NULL, then the driver will send the
command to the selected device and block until it is complete.

If the driver does not support non-blocking I/O, then the Event parameter is ignored, and the driver
will send the command to the selected device and block until it is complete.

If Packet is successfully sent to the NVM Express controller, then EFI_SUCCESS is returned.

If a device error occurs while sending the Packet, then EFI_DEVICE_ERROR is returned.

If a timeout occurs during the execution of Packet, then EFI_TIMEOUT is returned.

If NamespaceId is invalid for the NVM Express controller, then EFI_INVALID_PARAMETER
is returned.

If TransferBuffer or MetadataBuffer do not meet the alignment requirement specified by
the IoAlign field of the EFI_NVM_EXPRESS_PASS_THRU_MODE structure, then
EFI_INVALID_PARAMETER is returned. If the QueueType is not 0 (Admin Submission Queue)
or 1 (I/O Submission Queue), then EFI_INVALID_PARAMETER is returned. If any of the other
fields of Packet are invalid, then EFI_INVALID_PARAMETER is returned.

If the data buffer described by TransferBuffer and TransferLength is too big to be
transferred in a single command, then no data is transferred and EFI_BAD_BUFFER_SIZE is
returned. The number of bytes that can be transferred in a single command are returned in
TransferLength.

If EFI_SUCCESS, EFI_DEVICE_ERROR, or EFI_TIMEOUT is returned, then the caller must
examine the NvmeCompletion field in Packet.

If non-blocking I/O is being used, then the NvmeCompletion field in Packet will not be valid
until the Event associated with Packet is signaled.

If EFI_NOT_READY, EFI_INVALID_PARAMETER, EFI_BAD_BUFFER_SIZE, or
EFI_UNSUPPORTED is returned, then Packet was never sent, so the NvmeCompletion field in
Packet is not valid. If non-blocking I/O is being used, the Event associated with Packet will
not be signaled.
664 April, 2015 Version 2.5

Protocols - Media Access

h

t

not

cket.

e

 is

d by
o no

ute.
Status Codes Returned

Related Definitions
 typedef struct {
 UINT32 OpCode : 8;
 UINT32 FusedOperation : 2;
 UINT32 Reserved : 22;
 } NVME_CDW0;

//***
// FusedOperation
//***
#define NORMAL_CMD 0x00
#define FUSED_FIRST_CMD 0x01
#define FUSED_SECOND_CMD 0x02

typedef struct {
 NVME_CDW0 Cdw0;
 UINT8 Flags;
 UINT32 Nsid;
 UINT32 Cdw2;
 UINT32 Cdw3;
 UINT32 Cdw10;
 UINT32 Cdw11;

EFI_SUCCESS The NVM Express Command Packet was sent by the host. TransferLengt
bytes were transferred to or from TransferBuffer. See

NvmeCompletion (above) for additional status information.

EFI_BAD_BUFFER_SIZE The NVM Express Command Packet was not executed. The number of bytes tha

could be transferred is returned in TransferLength.

EFI_NOT_READY The NVM Express Command Packet could not be sent because the controller is
ready. The caller may retry again later.

EFI_DEVICE_ERROR A device error occurred while attempting to send the NVM Express Command Pa

See NvmeCompletion (above) for additional status information.

EFI_INVALID_PARAMETER NamespaceId or the contents of

EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET are invalid. Th

NVM Express Command Packet was not sent, so no additional status information
available.

EFI_UNSUPPORTED The command described by the NVM Express Command Packet is not supporte
the NVM Express controller. The NVM Express Command Packet was not sent s
additional status information is available.

EFI_TIMEOUT A timeout occurred while waiting for the NVM Express Command Packet to exec

See NvmeCompletion (above) for additional status information.
Version 2.5 April, 2015 665

Unified Extensible Firmware Interface Specification
 UINT32 Cdw12;
 UINT32 Cdw13;
 UINT32 Cdw14;
 UINT32 Cdw15;
} EFI_NVM_EXPRESS_COMMAND;

//***
// Flags
//***
#define CDW2_VALID0x01
#define CDW3_VALID0x02
#define CDW10_VALID0x04
#define CDW11_VALID0x08
#define CDW12_VALID0x10
#define CDW13_VALID0x20
#define CDW14_VALID0x40
#define CDW15_VALID0x80

//
// This structure maps to the NVM Express specification
Completion Queue Entry
//
typedef struct {
 UINT32 DW0;
 UINT32 DW1;
 UINT32 DW2;
 UINT32 DW3;
} EFI_NVM_EXPRESS_COMPLETION;
666 April, 2015 Version 2.5

Protocols - Media Access
 EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNextNamespace()

Summary
Used to retrieve the next namespace ID for this NVM Express controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_NVM_EXPRESS_PASS_THRU_GET_NEXT_NAMESPACE) (
IN EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *This,
IN OUT UINT32 *NamespaceId
);

Parameters
This A pointer to the

EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL instance.

NamespaceId On input, a pointer to a valid namespace ID on this NVM Express
controller or a pointer to the value 0xFFFFFFFF. A pointer to
the value 0xFFFFFFFF retrieves the first valid namespace ID on
this NVM Express controller.

Description
The EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNextNamespace()function
retrieves the next valid namespace ID on this NVM Express controller. If on input the value pointed
to by NamespaceId is 0xFFFFFFFF, then the first valid namespace ID defined on the NVM
Express controller is returned in the location pointed to by NamespaceId and a status of
EFI_SUCCESS is returned.

If on input the value pointed to by NamespaceId is an invalid namespace ID other than
0xFFFFFFFF, then EFI_INVALID_PARAMETER is returned.

If on input the value pointed to by NamespaceId is a valid namespace ID, then the next valid
namespace ID on the NVM Express controller is returned in the location pointed to by
NamespaceId, and EFI_SUCCESS is returned.

If the value pointed to by NamespaceId is the namespace ID of the last namespace on the NVM
Express controller, then EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS The Namespace ID of the next Namespace was returned.

EFI_NOT_FOUND There are no more namespaces defined on this controller.

EFI_INVALID_PARAMETER NamespaceId is an invalid value other than 0xFFFFFFFF.
Version 2.5 April, 2015 667

Unified Extensible Firmware Interface Specification
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.BuildDevicePath()

Summary
Used to allocate and build a device path node for an NVM Express namespace on an NVM Express
controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_NVM_EXPRESS_PASS_THRU_BUILD_DEVICE_PATH) (
IN EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *This,
IN UINT32 NamespaceId,
IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath
);

Parameters
This A pointer to the

EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL instance.
Type EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL is
defined in Section 12.14.

NamespaceId The NVM Express namespace ID for which a device path node is
to be allocated and built.

DevicePath A pointer to a single device path node that describes the NVM
Express namespace specified by NamespaceId. This function
is responsible for allocating the buffer DevicePath with the
boot service AllocatePool(). It is the caller’s responsibility
to free DevicePath when the caller is finished with
DevicePath.

Description
The EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.BuildDevicePath() function
allocates and builds a single device path node for the NVM Express namespace specified by
NamespaceId. If the NamespaceId is not valid, then EFI_NOT_FOUND is returned. If
DevicePath is NULL, then EFI_INVALID_PARAMETER is returned. If there are not enough
resources to allocate the device path node, then EFI_OUT_OF_RESOURCES is returned.
Otherwise, DevicePath is allocated with the boot service AllocatePool(), the contents of
DevicePath are initialized to describe the NVM Express namespace specified by
NamespaceId, and EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The device path node that describes the NVM Express namespace

specified by NamespaceId was allocated and returned in

DevicePath.

EFI_NOT_FOUND The NamespaceId is not valid.

EFI_INVALID_PARAMETER DevicePath is NULL.
668 April, 2015 Version 2.5

Protocols - Media Access
EFI_OUT_OF_RESOURCES There are not enough resources to allocate the DevicePath node.
Version 2.5 April, 2015 669

Unified Extensible Firmware Interface Specification
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNamespace()

Summary
Used to translate a device path node to a namespace ID.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_NVM_EXPRESS_PASS_THRU_GET_NAMESPACE) (
IN EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *This,
IN EFI_DEVICE_PATH_PROTOCOL *DevicePath,
OUT UINT32 *NamespaceId
);

Parameters
This A pointer to the

EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL instance.
Type EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL is
defined in Section 12.14.

DevicePath A pointer to the device path node that describes an NVM Express
namespace on the NVM Express controller.

NamespaceId The NVM Express namespace ID contained in the device path
node.

Description
The EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNamespace() function determines
the namespace ID associated with the namespace described by DevicePath. If DevicePath is
a device path node type that the NVM Express Pass Thru driver supports, then the NVM Express
Pass Thru driver will attempt to translate the contents DevicePath into a namespace ID. If this
translation is successful, then that namespace ID is returned in NamespaceId, and
EFI_SUCCESS is returned.

Status Codes Returned

 EFI_INVALID_PARAMETER If DevicePath or NamespaceId are NULL, then

EFI_INVALID_PARAMETER is returned.

EFI_UNSUPPORTED If DevicePath is not a device path node type that the NVM Express Pass

Thru driver supports, then EFI_UNSUPPORTED is returned.

EFI_NOT_FOUND If DevicePath is a device path node type that the NVM Express Pass Thru

driver supports, but there is not a valid translation from DevicePath to a

namespace ID, then EFI_NOT_FOUND is returned.
670 April, 2015 Version 2.5

Protocols - PCI Bus Support
13
Protocols - PCI Bus Support

13.1 PCI Root Bridge I/O Support
Section 13.1 and Section 13.2 describe the PCI Root Bridge I/O Protocol. This protocol provides an
I/O abstraction for a PCI Root Bridge that is produced by a PCI Host Bus Controller. A PCI Host
Bus Controller is a hardware component that allows access to a group of PCI devices that share a
common pool of PCI I/O and PCI Memory resources. This protocol is used by a PCI Bus Driver to
perform PCI Memory, PCI I/O, and PCI Configuration cycles on a PCI Bus. It also provides
services to perform different types of bus mastering DMA on a PCI bus. PCI device drivers will not
directly use this protocol. Instead, they will use the I/O abstraction produced by the PCI Bus Driver.
Only drivers that require direct access to the entire PCI bus should use this protocol. In particular,
this chapter defines functions for managing PCI buses, although other bus types may be supported in
a similar fashion as extensions to this specification.

All the services described in this chapter that generate PCI transactions follow the ordering rules
defined in the PCI Specification. If the processor is performing a combination of PCI transactions
and system memory transactions, then there is no guarantee that the system memory transactions
will be strongly ordered with respect to the PCI transactions. If strong ordering is required, then
processor-specific mechanisms may be required to guarantee strong ordering. Some 64-bit systems
may require the use of memory fences to guarantee ordering.

13.1.1 PCI Root Bridge I/O Overview
The interfaces provided in the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL are for performing
basic operations to memory, I/O, and PCI configuration space. The system provides abstracted
access to basic system resources to allow a driver to have a programmatic method to access these
basic system resources.

The EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL allows for future innovation of the platform. It
abstracts device-specific code from the system memory map. This allows system designers to make
changes to the system memory map without impacting platform independent code that is consuming
basic system resources.

A platform can be viewed as a set of processors and a set of core chipset components that may
produce one or more host buses. Figure 31 shows a platform with n processors (CPUs in the figure),
and a set of core chipset components that produce m host bridges.
Version 2.5 April, 2015 671

Unified Extensible Firmware Interface Specification
Figure 31. Host Bus Controllers

Simple systems with one PCI Host Bus Controller will contain a single instance of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. More complex system may contain multiple
instances of this protocol. It is important to note that there is no relationship between the number of
chipset components in a platform and the number of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
instances. This protocol abstracts access to a PCI Root Bridge from a software point of view, and it
is attached to a device handle that represents a PCI Root Bridge. A PCI Root Bridge is a chipset
component(s) that produces a physical PCI Bus. It is also the parent to a set of PCI devices that
share common PCI I/O, PCI Memory, and PCI Prefetchable Memory regions. A PCI Host Bus
Controller is composed of one or more PCI Root Bridges.

A PCI Host Bridge and PCI Root Bridge are different than a PCI Segment. A PCI Segment is a
collection of up to 256 PCI busses that share the same PCI Configuration Space. Depending on
the chipset, a single EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL may abstract a portion of a PCI
Segment, or an entire PCI Segment. A PCI Host Bridge may produce one or more PCI Root
Bridges. When a PCI Host Bridge produces multiple PCI Root Bridges, it is possible to have
more than one PCI Segment.

PCI Root Bridge I/O Protocol instances are either produced by the system firmware or by a UEFI
driver. When a PCI Root Bridge I/O Protocol is produced, it is placed on a device handle along with
an EFI Device Path Protocol instance. Figure 32 shows a sample device handle for a PCI Root
Bridge Controller that includes an instance of the EFI_DEVICE_PATH_PROTOCOL and the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Section 13.2 describes the PCI Root Bridge I/O
Protocol in detail, and Section 13.2.1 describes how to build device paths for PCI Root Bridges. The
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL does not abstract access to the chipset-specific
registers that are used to manage a PCI Root Bridge. This functionality is hidden within the system
firmware or the driver that produces the handles that represent the PCI Root Bridges.

OM13150

Core Chipset Components

. . .

. . .

CPU 2 CPU n

Front Side Bus

CPU 1

HB 2 HB mHB 1
672 April, 2015 Version 2.5

Protocols - PCI Bus Support
Figure 32. Device Handle for a PCI Root Bridge Controller

13.1.1.1 Sample PCI Architectures
The PCI Root Bridge I/O Protocol is designed to provide a software abstraction for a wide variety of
PCI architectures including the ones described in this section. This section is not intended to be an
exhaustive list of the PCI architectures that the PCI Root Bridge I/O Protocol can support. Instead, it
is intended to show the flexibility of this protocol to adapt to current and future platform designs.

Figure 33 shows an example of a PCI Host Bus with one PCI Root Bridge. This PCI Root Bridge
produces one PCI Local Bus that can contain PCI Devices on the motherboard and/or PCI slots. This
would be typical of a desktop system. A higher end desktop system might contain a second PCI Root
Bridge for AGP devices. The firmware for this platform would produce one instance of the PCI Root
Bridge I/O Protocol.

Figure 33. Desktop System with One PCI Root Bridge

OM13151

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_ROOT_BRIDGE_PROTOCOL

OM13161

PCI Local Bus

Core Chipset Components

PCI Host Bus

PCI Root Bridge
Version 2.5 April, 2015 673

Unified Extensible Firmware Interface Specification
Figure 34 shows an example of a larger server with one PCI Host Bus and four PCI Root Bridges.
The PCI devices attached to the PCI Root Bridges are all part of the same coherency domain. This
means they share a common PCI I/O Space, a common PCI Memory Space, and a common PCI
Prefetchable Memory Space. Each PCI Root Bridge produces one PCI Local Bus that can contain
PCI Devices on the motherboard or PCI slots. The firmware for this platform would produce four
instances of the PCI Root Bridge I/O Protocol.

Figure 34. Server System with Four PCI Root Bridges

Figure 35 shows an example of a server with one PCI Host Bus and two PCI Root Bridges. Each of
these PCI Root Bridges is a different PCI Segment which allows the system to have up to 512 PCI
Buses. A single PCI Segment is limited to 256 PCI Buses. These two segments do not share the same
PCI Configuration Space, but they do share the same PCI I/O, PCI Memory, and PCI Prefetchable
Memory Space. This is why it can be described by a single PCI Host Bus. The firmware for this
platform would produce two instances of the PCI Root Bridge I/O Protocol.

OM13162

Core Chipset Components

PCI RB PCI RB PCI RB PCI RB

PCI Host Bus

PCI Bus PCI Bus PCI Bus PCI Bus
674 April, 2015 Version 2.5

Protocols - PCI Bus Support
Figure 35. Server System with Two PCI Segments

Figure 36 shows a server system with two PCI Host Buses and one PCI Root Bridge per PCI Host
Bus. This system supports up to 512 PCI Buses, but the PCI I/O, PCI Memory Space, and PCI
Prefetchable Memory Space are not shared between the two PCI Root Bridges. The firmware for this
platform would produce two instances of the PCI Root Bridge I/O Protocol.

Figure 36. Server System with Two PCI Host Buses

OM13163

PCI Segment 0

Core Chipset Components

PCI Host Bus

PCI RB

PCI Segment 1

PCI RB

OM13164

PCI Segment 0

Core Chipset Components

PCI Host Bus 0

PCI RB

PCI Segment 1

PCI RB

PCI Host Bus 1
Version 2.5 April, 2015 675

Unified Extensible Firmware Interface Specification
13.2 PCI Root Bridge I/O Protocol
This section provides detailed information on the PCI Root Bridge I/O Protocol and its functions.

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

Summary
Provides the basic Memory, I/O, PCI configuration, and DMA interfaces that are used to abstract
accesses to PCI controllers behind a PCI Root Bridge Controller.

GUID
#define EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GUID \
 {0x2F707EBB,0x4A1A,0x11d4,\
 {0x9A,0x38,0x00,0x90,0x27,0x3F,0xC1,0x4D}}

Protocol Interface Structure
typedef struct _EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL {

 EFI_HANDLE ParentHandle;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM PollMem;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM PollIo;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Mem;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Io;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS Pci;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_COPY_MEM CopyMem;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_MAP Map;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_UNMAP Unmap;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ALLOCATE_BUFFER AllocateBuffer;
 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FREE_BUFFER FreeBuffer;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FLUSH Flush;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GET_ATTRIBUTES GetAttributes;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_SET_ATTRIBUTES SetAttributes;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION Configuration;

 UINT32 SegmentNumber;

} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL;

Parameters
ParentHandle The EFI_HANDLE of the PCI Host Bridge of which this PCI

Root Bridge is a member.

PollMem Polls an address in memory mapped I/O space until an exit
condition is met, or a timeout occurs. See the PollMem()
function description.

PollIo Polls an address in I/O space until an exit condition is met, or a
timeout occurs. See the PollIo() function description.
676 April, 2015 Version 2.5

Protocols - PCI Bus Support
Mem.Read Allows reads from memory mapped I/O space. See the
Mem.Read() function description.

Mem.Write Allows writes to memory mapped I/O space. See the
Mem.Write() function description.

Io.Read Allows reads from I/O space. See the Io.Read() function
description.

Io.Write Allows writes to I/O space. See the Io.Write() function
description.

Pci.Read Allows reads from PCI configuration space. See the
Pci.Read() function description.

Pci.Write Allows writes to PCI configuration space. See the
Pci.Write() function description.

CopyMem Allows one region of PCI root bridge memory space to be copied
to another region of PCI root bridge memory space. See the
CopyMem() function description.

Map Provides the PCI controller–specific addresses needed to access
system memory for DMA. See the Map() function description.

Unmap Releases any resources allocated by Map(). See the Unmap()
function description.

AllocateBuffer Allocates pages that are suitable for a common buffer mapping.
See the AllocateBuffer() function description.

FreeBuffer Free pages that were allocated with AllocateBuffer(). See
the FreeBuffer() function description.

Flush Flushes all PCI posted write transactions to system memory. See
the Flush() function description.

GetAttributes Gets the attributes that a PCI root bridge supports setting with
SetAttributes(), and the attributes that a PCI root bridge is
currently using. See the GetAttributes() function
description.

SetAttributes Sets attributes for a resource range on a PCI root bridge. See the
SetAttributes() function description.

Configuration Gets the current resource settings for this PCI root bridge. See
the Configuration() function description.

SegmentNumber The segment number that this PCI root bridge resides.

Related Definitions
//***
// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH
//***
typedef enum {
 EfiPciWidthUint8,
 EfiPciWidthUint16,
 EfiPciWidthUint32,
 EfiPciWidthUint64,
 EfiPciWidthFifoUint8,
Version 2.5 April, 2015 677

Unified Extensible Firmware Interface Specification
 EfiPciWidthFifoUint16,
 EfiPciWidthFifoUint32,
 EfiPciWidthFifoUint64,
 EfiPciWidthFillUint8,
 EfiPciWidthFillUint16,
 EfiPciWidthFillUint32,
 EfiPciWidthFillUint64,
 EfiPciWidthMaximum
} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH;

//***
// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM) (
 IN struct EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);

//***
// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

//***
// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS
//***
typedef struct {

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM Read;

 EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM Write;

} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS;
678 April, 2015 Version 2.5

Protocols - PCI Bus Support
//***
// EFI PCI Root Bridge I/O Protocol Attribute bits
//***
#define EFI_PCI_ATTRIBUTE_ISA_MOTHERBOARD_IO 0x0001
#define EFI_PCI_ATTRIBUTE_ISA_IO 0x0002
#define EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO 0x0004
#define EFI_PCI_ATTRIBUTE_VGA_MEMORY 0x0008
#define EFI_PCI_ATTRIBUTE_VGA_IO 0x0010
#define EFI_PCI_ATTRIBUTE_IDE_PRIMARY_IO 0x0020
#define EFI_PCI_ATTRIBUTE_IDE_SECONDARY_IO 0x0040
#define EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE 0x0080
#define EFI_PCI_ATTRIBUTE_MEMORY_CACHED 0x0800
#define EFI_PCI_ATTRIBUTE_MEMORY_DISABLE 0x1000
#define EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE 0x8000
#define EFI_PCI_ATTRIBUTE_ISA_IO_16 0x10000
#define EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16 0x20000
#define EFI_PCI_ATTRIBUTE_VGA_IO_16 0x40000

EFI_PCI_ATTRIBUTE_ISA_IO_16
If this bit is set, then the PCI I/O cycles between 0x100 and
0x3FF are forwarded onto a PCI root bridge using a 16-bit
address decoder on address bits 0..15. Address bits 16..31 must
be zero. This bit is used to forward I/O cycles for legacy ISA
devices onto a PCI root bridge. This bit may not be combined
with EFI_PCI_ATTRIBUTE_ISA_IO.

EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16
If this bit is set, then the PCI I/O write cycles for 0x3C6, 0x3C8,
and 0x3C9 are forwarded onto a PCI root bridge using a 16-bit
address decoder on address bits 0..15. Address bits 16..31 must
be zero. This bit is used to forward I/O write cycles to the VGA
palette registers onto a PCI root bridge. This bit may not be
combined with EFI_PCI_ATTRIBUTE_VGA_IO or
EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO.

EFI_PCI_ATTRIBUTE_VGA_IO_16
If this bit is set, then the PCI I/O cycles in the ranges 0x3B0–
0x3BB and 0x3C0–0x3DF are forwarded onto a PCI root bridge
using a 16-bit address decoder on address bits 0..15. Address bits
16..31 must be zero. This bit is used to forward I/O cycles for a
VGA controller onto a PCI root bridge. This bit may not be
combined with EFI_PCI_ATTRIBUTE_VGA_IO or
EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO. Because
EFI_PCI_ATTRIBUTE_VGA_IO_16 also includes the I/O
range described by
EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16, the
EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO_16 bit is
ignored if EFI_PCI_ATTRIBUTE_VGA_IO_16 is set.

EFI_PCI_ATTRIBUTE_ISA_MOTHERBOARD_IO
If this bit is set, then the PCI I/O cycles between 0x00000000 and
Version 2.5 April, 2015 679

Unified Extensible Firmware Interface Specification
0x000000FF are forwarded onto a PCI root bridge. This bit is
used to forward I/O cycles for ISA motherboard devices onto a
PCI root bridge.

EFI_PCI_ATTRIBUTE_ISA_IO
|If this bit is set, then the PCI I/O cycles between 0x100 and
0x3FF are forwarded onto a PCI root bridge using a 10-bit
address decoder on address bits 0..9. Address bits 10..15 are not
decoded, and address bits 16..31 must be zero. This bit is used to
forward I/O cycles for legacy ISA devices onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_VGA_PALETTE_IO
If this bit is set, then the PCI I/O write cycles for 0x3C6, 0x3C8,
and 0x3C9 are forwarded onto a PCI root bridge using a 10 bit
address decoder on address bits 0..9. Address bits 10..15 are not
decoded, and address bits 16..31 must be zero. This bit is used to
forward I/O write cycles to the VGA palette registers onto a PCI
root bridge.

EFI_PCI_ATTRIBUTE_VGA_MEMORY
If this bit is set, then the PCI memory cycles between 0xA0000
and 0xBFFFF are forwarded onto a PCI root bridge. This bit is
used to forward memory cycles for a VGA frame buffer onto a
PCI root bridge.

EFI_PCI_ATTRIBUTE_VGA_IO
If this bit is set, then the PCI I/O cycles in the ranges 0x3B0-
0x3BB and 0x3C0-0x3DF are forwarded onto a PCI root bridge
using a 10-bit address decoder on address bits 0..9. Address bits
10..15 are not decoded, and the address bits 16..31 must be zero.
This bit is used to forward I/O cycles for a VGA controller onto a
PCI root bridge. Since
EFI_PCI_ATTRIBUTE_ENABLE_VGA_IO also includes the
I/O range described by
EFI_PCI_ATTRIBUTE_ENABLE_VGA_PALETTE_IO, the
EFI_PCI_ATTRIBUTE_ENABLE_VGA_PALETTE_IO bit is
ignored if EFI_PCI_ATTRIBUTE_ENABLE_VGA_IO is set.

EFI_PCI_ATTRIBUTE_IDE_PRIMARY_IO
If this bit is set, then the PCI I/O cycles in the ranges 0x1F0-
0x1F7 and 0x3F6-0x3F7 are forwarded onto a PCI root bridge
using a 16-bit address decoder on address bits 0..15. Address bits
16..31 must be zero. This bit is used to forward I/O cycles for a
Primary IDE controller onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_IDE_SECONDARY_IO
If this bit is set, then the PCI I/O cycles in the ranges 0x170-
0x177 and 0x376-0x377 are forwarded onto a PCI root bridge
using a 16-bit address decoder on address bits 0..15. Address bits
16..31 must be zero. This bit is used to forward I/O cycles for a
Secondary IDE controller onto a PCI root bridge.

EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE
If this bit is set, then this platform supports changing the
attributes of a PCI memory range so that the memory range is
680 April, 2015 Version 2.5

Protocols - PCI Bus Support
accessed in a write combining mode. By default, PCI memory
ranges are not accessed in a write combining mode.

EFI_PCI_ATTRIBUTE_MEMORY_CACHED
If this bit is set, then this platform supports changing the
attributes of a PCI memory range so that the memory range is
accessed in a cached mode. By default, PCI memory ranges are
accessed noncached.

EFI_PCI_ATTRIBUTE_MEMORY_DISABLE
If this bit is set, then this platform supports changing the
attributes of a PCI memory range so that the memory range is
disabled, and can no longer be accessed. By default, all PCI
memory ranges are enabled.

EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE
This bit may only be used in the Attributes parameter to
AllocateBuffer(). If this bit is set, then the PCI controller
that is requesting a buffer through AllocateBuffer() is
capable of producing PCI Dual Address Cycles, so it is able to
access a 64-bit address space. If this bit is not set, then the PCI
controller that is requesting a buffer through
AllocateBuffer() is not capable of producing PCI Dual
Address Cycles, so it is only able to access a 32-bit address space.

//***
// EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION
//***
typedef enum {
 EfiPciOperationBusMasterRead,
 EfiPciOperationBusMasterWrite,
 EfiPciOperationBusMasterCommonBuffer,
 EfiPciOperationBusMasterRead64,
 EfiPciOperationBusMasterWrite64,
 EfiPciOperationBusMasterCommonBuffer64,
 EfiPciOperationMaximum
} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION;

EfiPciOperationBusMasterRead

A read operation from system memory by a bus master that is not capable of
producing PCI dual address cycles.

EfiPciOperationBusMasterWrite

A write operation to system memory by a bus master that is not capable of producing
PCI dual address cycles.

EfiPciOperationBusMasterCommonBuffer

Provides both read and write access to system memory by both the processor and a
bus master that is not capable of producing PCI dual address cycles. The buffer is
coherent from both the processor’s and the bus master’s point of view.
Version 2.5 April, 2015 681

Unified Extensible Firmware Interface Specification
EfiPciOperationBusMasterRead64

A read operation from system memory by a bus master that is capable of producing
PCI dual address cycles.

EfiPciOperationBusMasterWrite64

A write operation to system memory by a bus master that is capable of producing PCI
dual address cycles.

EfiPciOperationBusMasterCommonBuffer64

Provides both read and write access to system memory by both the processor and a
bus master that is capable of producing PCI dual address cycles. The buffer is
coherent from both the processor’s and the bus master’s point of view.

Description
The EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL provides the basic Memory, I/O, PCI
configuration, and DMA interfaces that are used to abstract accesses to PCI controllers. There is one
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance for each PCI root bridge in a system.
Embedded systems, desktops, and workstations will typically only have one PCI root bridge. High-
end servers may have multiple PCI root bridges. A device driver that wishes to manage a PCI bus in
a system will have to retrieve the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance that is
associated with the PCI bus to be managed. A device handle for a PCI Root Bridge will minimally
contain an EFI_DEVICE_PATH_PROTOCOL instance and an
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance. The PCI bus driver can look at the
EFI_DEVICE_PATH_PROTOCOL instances to determine which
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance to use.

Bus mastering PCI controllers can use the DMA services for DMA operations. There are three basic
types of bus mastering DMA that is supported by this protocol. These are DMA reads by a bus
master, DMA writes by a bus master, and common buffer DMA. The DMA read and write
operations may need to be broken into smaller chunks. The caller of Map() must pay attention to
the number of bytes that were mapped, and if required, loop until the entire buffer has been
transferred. The following is a list of the different bus mastering DMA operations that are
supported, and the sequence of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL APIs that are used for
each DMA operation type. See “Related Definitions” above for the definition of the different DMA
operation types.

DMA Bus Master Read Operation

• Call Map() for EfiPciOperationBusMasterRead or
EfiPciOperationBusMasterRead64.

• Program the DMA Bus Master with the DeviceAddress returned by Map().

• Start the DMA Bus Master.

• Wait for DMA Bus Master to complete the read operation.

• Call Unmap().

DMA Bus Master Write Operation

• Call Map() for EfiPciOperationBusMasterWrite or
EfiPciOperationBusMasterRead64.
682 April, 2015 Version 2.5

Protocols - PCI Bus Support
• Program the DMA Bus Master with the DeviceAddress returned by Map().

• Start the DMA Bus Master.

• Wait for DMA Bus Master to complete the write operation.

• Perform a PCI controller specific read transaction to flush all PCI write buffers (See PCI
Specification Section 3.2.5.2) .

• Call Flush().

• Call Unmap().

DMA Bus Master Common Buffer Operation

• Call AllocateBuffer() to allocate a common buffer.

• Call Map() for EfiPciOperationBusMasterCommonBuffer or
EfiPciOperationBusMasterCommonBuffer64.

• Program the DMA Bus Master with the DeviceAddress returned by Map().

• The common buffer can now be accessed equally by the processor and the DMA bus master.

• Call Unmap().

• Call FreeBuffer().
Version 2.5 April, 2015 683

Unified Extensible Firmware Interface Specification
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollMem()

Summary
Reads from the memory space of a PCI Root Bridge. Returns when either the polling exit criteria is
satisfied or after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);

Parameters
This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 13.2.

Width Signifies the width of the memory operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is
defined in Section 13.2.

Address The base address of the memory operations. The caller is
responsible for aligning Address if required.

Mask Mask used for the polling criteria. Bytes above Width in Mask
are ignored. The bits in the bytes below Width which are zero in
Mask are ignored when polling the memory address.

Value The comparison value used for the polling exit criteria.

Delay The number of 100 ns units to poll. Note that timer available may
be of poorer granularity.

Result Pointer to the last value read from the memory location.

Description
This function provides a standard way to poll a PCI memory location. A PCI memory read
operation is performed at the PCI memory address specified by Address for the width specified by
Width. The result of this PCI memory read operation is stored in Result. This PCI memory read
operation is repeated until either a timeout of Delay 100 ns units has expired, or (Result &
Mask) is equal to Value.

This function will always perform at least one PCI memory read access no matter how small Delay
may be. If Delay is zero, then Result will be returned with a status of EFI_SUCCESS even if
Result does not match the exit criteria. If Delay expires, then EFI_TIMEOUT is returned.
684 April, 2015 Version 2.5

Protocols - PCI Bus Support
If Width is not EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then EFI_INVALID_PARAMETER is returned.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying
any alignment and memory width restrictions that a PCI Root Bridge on a platform might require.
For example on some platforms, width requests of EfiPciWidthUint64 are not supported.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns. However, if the memory mapped I/O region being accessed by this function has
the EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the transactions will follow the
ordering rules defined by the processor architecture.

Status Codes Returned

EFI_SUCCESS The last data returned from the access matched the poll exit criteria.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Result is NULL.

EFI_TIMEOUT Delay expired before a match occurred.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
Version 2.5 April, 2015 685

Unified Extensible Firmware Interface Specification
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollIo()

Summary
Reads from the I/O space of a PCI Root Bridge. Returns when either the polling exit criteria is
satisfied or after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);

Parameters
This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 13.2.

Width Signifies the width of the I/O operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is
defined in Section 13.2.

Address The base address of the I/O operations. The caller is responsible
for aligning Address if required.

Mask Mask used for the polling criteria. Bytes above Width in Mask
are ignored. The bits in the bytes below Width which are zero in
Mask are ignored when polling the I/O address.

Value The comparison value used for the polling exit criteria.

Delay The number of 100 ns units to poll. Note that timer available may
be of poorer granularity.

Result Pointer to the last value read from the memory location.

Description
This function provides a standard way to poll a PCI I/O location. A PCI I/O read operation is
performed at the PCI I/O address specified by Address for the width specified by Width.
The result of this PCI I/O read operation is stored in Result. This PCI I/O read operation is
repeated until either a timeout of Delay 100 ns units has expired, or (Result & Mask) is equal
to Value.

This function will always perform at least one I/O access no matter how small Delay may be. If
Delay is zero, then Result will be returned with a status of EFI_SUCCESS even if Result
does not match the exit criteria. If Delay expires, then EFI_TIMEOUT is returned.
686 April, 2015 Version 2.5

Protocols - PCI Bus Support
If Width is not EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then EFI_INVALID_PARAMETER is returned.

The I/O operations are carried out exactly as requested. The caller is responsible satisfying any
alignment and I/O width restrictions that the PCI Root Bridge on a platform might require. For
example on some platforms, width requests of EfiPciWidthUint64 do not work.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns.

Status Codes Returned

EFI_SUCCESS The last data returned from the access matched the poll exit criteria.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Result is NULL.

EFI_TIMEOUT Delay expired before a match occurred.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
Version 2.5 April, 2015 687

Unified Extensible Firmware Interface Specification
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Write()

Summary
Enables a PCI driver to access PCI controller registers in the PCI root bridge memory space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 13.2.

Width Signifies the width of the memory operation. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is
defined in Section 13.2.

Address The base address of the memory operation. The caller is
responsible for aligning the Address if required.

Count The number of memory operations to perform. Bytes moved is
Width size * Count, starting at Address.

Buffer For read operations, the destination buffer to store the results.
For write operations, the source buffer to write data from.

Description
The Mem.Read(), and Mem.Write() functions enable a driver to access PCI controller registers
in the PCI root bridge memory space.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying
any alignment and memory width restrictions that a PCI Root Bridge on a platform might require.
For example on some platforms, width requests of EfiPciWidthUint64 do not work.

If Width is EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciWidthFifoUint8, EfiPciWidthFifoUint16,
EfiPciWidthFifoUint32, or EfiPciWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is performed
Count times on the same Address.
688 April, 2015 Version 2.5

Protocols - PCI Bus Support
If Width is EfiPciWidthFillUint8, EfiPciWidthFillUint16,
EfiPciWidthFillUint32, or EfiPciWidthFillUint64, then only Address is
incremented for each of the Count operations performed. The read or write operation is performed
Count times from the first element of Buffer.

All the PCI read transactions generated by this function are guaranteed to be completed before
this function returns. All the PCI write transactions generated by this function will follow the
write ordering and completion rules defined in the PCI Specification. However, if the memory-
mapped I/O region being accessed by this function has the
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the transactions will follow the
ordering rules defined by the processor architecture.

Status Codes Returned

EFI_SUCCESS The data was read from or written to the PCI root bridge.

EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
Version 2.5 April, 2015 689

Unified Extensible Firmware Interface Specification
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Write()

Summary
Enables a PCI driver to access PCI controller registers in the PCI root bridge I/O space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 13.2.

Width Signifies the width of the memory operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is
defined in Section 13.2.

Address The base address of the I/O operation. The caller is responsible
for aligning the Address if required.

Count The number of I/O operations to perform. Bytes moved is
Width size * Count, starting at Address.

Buffer For read operations, the destination buffer to store the results.
For write operations, the source buffer to write data from.

Description
The Io.Read(), and Io.Write() functions enable a driver to access PCI controller registers in
the PCI root bridge I/O space.

The I/O operations are carried out exactly as requested. The caller is responsible for satisfying any
alignment and I/O width restrictions that a PCI root bridge on a platform might require. For example
on some platforms, width requests of EfiPciWidthUint64 do not work.

If Width is EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciWidthFifoUint8, EfiPciWidthFifoUint16,
EfiPciWidthFifoUint32, or EfiPciWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is performed
Count times on the same Address.
690 April, 2015 Version 2.5

Protocols - PCI Bus Support
If Width is EfiPciWidthFillUint8, EfiPciWidthFillUint16,
EfiPciWidthFillUint32, or EfiPciWidthFillUint64, then only Address is
incremented for each of the Count operations performed. The read or write operation is performed
Count times from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns.

Status Codes Returned

EFI_SUCCESS The data was read from or written to the PCI root bridge.

EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
Version 2.5 April, 2015 691

Unified Extensible Firmware Interface Specification
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read()
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write()

Summary
Enables a PCI driver to access PCI controller registers in a PCI root bridge’s configuration space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_IO_MEM) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 13.2.

Width Signifies the width of the memory operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is
defined in Section 13.2.

Address The address within the PCI configuration space for the PCI
controller. See Table 109 for the format of Address.

Count The number of PCI configuration operations to perform. Bytes
moved is Width size * Count, starting at Address.

Buffer For read operations, the destination buffer to store the results.
For write operations, the source buffer to write data from.

Description
The Pci.Read() and Pci.Write() functions enable a driver to access PCI configuration
registers for a PCI controller.

The PCI Configuration operations are carried out exactly as requested. The caller is responsible for
any alignment and PCI configuration width issues that a PCI Root Bridge on a platform might
require. For example on some platforms, width requests of EfiPciWidthUint64 do not work.

If Width is EfiPciWidthUint8, EfiPciWidthUint16, EfiPciWidthUint32, or
EfiPciWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciWidthFifoUint8, EfiPciWidthFifoUint16,
EfiPciWidthFifoUint32, or EfiPciWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is performed
Count times on the same Address.
692 April, 2015 Version 2.5

Protocols - PCI Bus Support
If Width is EfiPciWidthFillUint8, EfiPciWidthFillUint16,
EfiPciWidthFillUint32, or EfiPciWidthFillUint64, then only Address is
incremented for each of the Count operations performed. The read or write operation is performed
Count times from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns.

Table 109. PCI Configuration Address

Status Codes Returned

Mnemonic

Byte
Offset

Byte
Length

Description

Register 0 1 The register number on the PCI Function.

Function 1 1 The PCI Function number on the PCI Device.

Device 2 1 The PCI Device number on the PCI Bus.

Bus 3 1 The PCI Bus number.

ExtendedRegister 4 4 The register number on the PCI Function. If this field is zero,
then the Register field is used for the register number. If this
field is nonzero, then the Register field is ignored, and the
ExtendedRegister field is used for the register number.

EFI_SUCCESS The data was read from or written to the PCI root bridge.

EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
Version 2.5 April, 2015 693

Unified Extensible Firmware Interface Specification
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.CopyMem()

Summary
Enables a PCI driver to copy one region of PCI root bridge memory space to another region of PCI
root bridge memory space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_COPY_MEM) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH Width,
 IN UINT64 DestAddress,
 IN UINT64 SrcAddress,
 IN UINTN Count
);

Parameters
This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

instance. Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is
defined in Section 13.2.

Width Signifies the width of the memory operations. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_WIDTH is
defined in Section 13.2.

DestAddress The destination address of the memory operation. The caller is
responsible for aligning the DestAddress if required.

SrcAddress The source address of the memory operation. The caller is
responsible for aligning the SrcAddress if required.

Count The number of memory operations to perform. Bytes moved is
Width size * Count, starting at DestAddress and
SrcAddress.

Description
The CopyMem() function enables a PCI driver to copy one region of PCI root bridge memory space
to another region of PCI root bridge memory space. This is especially useful for video scroll
operation on a memory mapped video buffer.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying
any alignment and memory width restrictions that a PCI root bridge on a platform might require.
For example on some platforms, width requests of EfiPciWidthUint64 do not work.

If Width is EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32,
or EfiPciIoWidthUint64, then Count read/write transactions are performed to move the
contents of the SrcAddress buffer to the DestAddress buffer. The implementation must be
reentrant, and it must handle overlapping SrcAddress and DestAddress buffers. This means
that the implementation of CopyMem() must choose the correct direction of the copy operation
based on the type of overlap that exists between the SrcAddress and DestAddress buffers. If
694 April, 2015 Version 2.5

Protocols - PCI Bus Support
either the SrcAddress buffer or the DestAddress buffer crosses the top of the processor’s
address space, then the result of the copy operation is unpredictable.

The contents of the DestAddress buffer on exit from this service must match the contents of the
SrcAddress buffer on entry to this service. Due to potential overlaps, the contents of the
SrcAddress buffer may be modified by this service. The following rules can be used to guarantee
the correct behavior:

• If DestAddress > SrcAddress and DestAddress < (SrcAddress + Width size *
Count), then the data should be copied from the SrcAddress buffer to the DestAddress
buffer starting from the end of buffers and working toward the beginning of the buffers.

• Otherwise, the data should be copied from the SrcAddress buffer to the DestAddress
buffer starting from the beginning of the buffers and working toward the end of the buffers.

All the PCI transactions generated by this function are guaranteed to be completed before
this function returns. All the PCI write transactions generated by this function will follow the
write ordering and completion rules defined in the PCI Specification. However, if the memory-
mapped I/O region being accessed by this function has the
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the transactions will follow the
ordering rules defined by the processor architecture.

Status Codes Returned

EFI_SUCCESS The data was copied from one memory region to another memory
region.

EFI_INVALID_PARAMETER Width is invalid for this PCI root bridge.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
Version 2.5 April, 2015 695

Unified Extensible Firmware Interface Specification
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Map()

Summary
Provides the PCI controller–specific addresses required to access system memory from a
DMA bus master.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_MAP) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION Operation,
 IN VOID *HostAddress,
 IN OUT UINTN *NumberOfBytes,
 OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
 OUT VOID **Mapping
);

Parameters
This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 13.2.

Operation Indicates if the bus master is going to read or write to system
memory. Type
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_OPERATION is
defined in Section 13.2.

HostAddress The system memory address to map to the PCI controller.

NumberOfBytes On input the number of bytes to map. On output the number of
bytes that were mapped.

DeviceAddress The resulting map address for the bus master PCI controller to
use to access the system memory’s HostAddress. Type
EFI_PHYSICAL_ADDRESS is defined in Section 6.2,
EFI_BOOT_SERVICES.AllocatePages(). This address
cannot be used by the processor to access the contents of the
buffer specified by HostAddress.

Mapping The value to pass to Unmap() when the bus master DMA
operation is complete.

Description
The Map() function provides the PCI controller specific addresses needed to access system
memory. This function is used to map system memory for PCI bus master DMA accesses.

All PCI bus master accesses must be performed through their mapped addresses and such mappings
must be freed with Unmap() when complete. If the bus master access is a single read or single
write data transfer, then EfiPciOperationBusMasterRead,
EfiPciOperationBusMasterRead64, EfiPciOperationBusMasterWrite, or
696 April, 2015 Version 2.5

Protocols - PCI Bus Support
EfiPciOperationBusMasterWrite64 is used and the range is unmapped to complete the
operation. If performing an EfiPciOperationBusMasterRead or
EfiPciOperationBusMasterRead64 operation, all the data must be present in system
memory before Map() is performed. Similarly, if performing an EfiPciOperation-
BusMasterWrite or EfiPciOperationBusMasterWrite64 the data cannot be properly
accessed in system memory until Unmap() is performed.

Bus master operations that require both read and write access or require multiple host device
interactions within the same mapped region must use EfiPciOperation-
BusMasterCommonBuffer or EfiPciOperationBusMasterCommonBuffer64.
However, only memory allocated via the AllocateBuffer() interface can be mapped for this
type of operation.

In all mapping requests the resulting NumberOfBytes actually mapped may be less than the
requested amount. In this case, the DMA operation will have to be broken up into smaller chunks.
The Map() function will map as much of the DMA operation as it can at one time. The caller may
have to loop on Map() and Unmap() in order to complete a large DMA transfer.

Status Codes Returned

EFI_SUCCESS The range was mapped for the returned NumberOfBytes.

EFI_INVALID_PARAMETER Operation is invalid.

EFI_INVALID_PARAMETER HostAddress is NULL.

EFI_INVALID_PARAMETER NumberOfBytes is NULL.

EFI_INVALID_PARAMETER DeviceAddress is NULL.

EFI_INVALID_PARAMETER Mapping is NULL.

EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer.

EFI_DEVICE_ERROR The system hardware could not map the requested address.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
Version 2.5 April, 2015 697

Unified Extensible Firmware Interface Specification
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Unmap()

Summary
Completes the Map() operation and releases any corresponding resources.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_UNMAP) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN VOID *Mapping
);

Parameters
This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 13.2.

Mapping The mapping value returned from Map().

Description
The Unmap() function completes the Map() operation and releases any corresponding resources.
If the operation was an EfiPciOperationBusMasterWrite or
EfiPciOperationBusMasterWrite64, the data is committed to the target system memory.
Any resources used for the mapping are freed.

Status Codes Returned

EFI_SUCCESS The range was unmapped.

EFI_INVALID_PARAMETER Mapping is not a value that was returned by Map().

EFI_DEVICE_ERROR The data was not committed to the target system memory.
698 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.AllocateBuffer()

Summary
Allocates pages that are suitable for an EfiPciOperationBusMasterCommonBuffer or
EfiPciOperationBusMasterCommonBuffer64 mapping.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ALLOCATE_BUFFER) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN EFI_ALLOCATE_TYPE Type,
 IN EFI_MEMORY_TYPE MemoryType,
 IN UINTN Pages,
 OUT VOID **HostAddress,
 IN UINT64 Attributes
);

Parameters
This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 13.2.1.

Type This parameter is not used and must be ignored.

MemoryType The type of memory to allocate, EfiBootServicesData or
EfiRuntimeServicesData. Type EFI_MEMORY_TYPE is
defined in Section 6.2,
EFI_BOOT_SERVICES.AllocatePages().

Pages The number of pages to allocate.

HostAddress A pointer to store the base system memory address of the
allocated range.

Attributes The requested bit mask of attributes for the allocated range. Only
the attributes
EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE,
EFI_PCI_ATTRIBUTE_MEMORY_CACHED, and
EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE may be
used with this function. If any other bits are set, then
EFI_UNSUPPORTED is returned. This function may choose to
ignore this bit mask. The
EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE, and
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attributes provide
a hint to the implementation that may improve the performance of
the calling driver. The implementation may choose any default
for the memory attributes including write combining, cached,
both, or neither as long as the allocated buffer can be seen equally
by both the processor and the PCI bus master.
Version 2.5 April, 2015 699

Unified Extensible Firmware Interface Specification
Description
The AllocateBuffer() function allocates pages that are suitable for an
EfiPciOperationBusMasterCommonBuffer or
EfiPciOperationBusMasterCommonBuffer64 mapping. This means that the buffer
allocated by this function must support simultaneous access by both the processor and a PCI Bus
Master. The device address that the PCI Bus Master uses to access the buffer can be retrieved with a
call to Map().

If the EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE bit of Attributes is set, then when
the buffer allocated by this function is mapped with a call to Map(), the device address that is
returned by Map() must be within the 64-bit device address space of the PCI Bus Master.

If the EFI_PCI_ATTRIBUTE_DUAL_ADDRESS_CYCLE bit of Attributes is clear, then
when the buffer allocated by this function is mapped with a call to Map(), the device address that is
returned by Map() must be within the 32-bit device address space of the PCI Bus Master.

If the memory allocation specified by MemoryType and Pages cannot be satisfied, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The requested memory pages were allocated.

EFI_INVALID_PARAMETER MemoryType is invalid.

EFI_INVALID_PARAMETER HostAddress is NULL.

EFI_UNSUPPORTED Attributes is unsupported. The only legal attribute bits are

MEMORY_WRITE_COMBINE, MEMORY_CACHED, and

DUAL_ADDRESS_CYCLE.

EFI_OUT_OF_RESOURCES The memory pages could not be allocated.
700 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.FreeBuffer()

Summary
Frees memory that was allocated with AllocateBuffer().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FREE_BUFFER) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN UINTN Pages,
 IN VOID *HostAddress
);

Parameters
This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 13.2.

Pages The number of pages to free.

HostAddress The base system memory address of the allocated range.

Description
The FreeBuffer() function frees memory that was allocated with AllocateBuffer().

Status Codes Returned

EFI_SUCCESS The requested memory pages were freed.

EFI_INVALID_PARAMETER The memory range specified by HostAddress and Pages

was not allocated with AllocateBuffer().
Version 2.5 April, 2015 701

Unified Extensible Firmware Interface Specification
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Flush()

Summary
Flushes all PCI posted write transactions from a PCI host bridge to system memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FLUSH) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This
);

Parameters
This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 13.2.1.

Description
The Flush() function flushes any PCI posted write transactions from a PCI host bridge to system
memory. Posted write transactions are generated by PCI bus masters when they perform write
transactions to target addresses in system memory.

This function does not flush posted write transactions from any PCI bridges. A PCI controller
specific action must be taken to guarantee that the posted write transactions have been flushed from
the PCI controller and from all the PCI bridges into the PCI host bridge. This is typically done with
a PCI read transaction from the PCI controller prior to calling Flush().

If the PCI controller specific action required to flush the PCI posted write transactions has been
performed, and this function returns EFI_SUCCESS, then the PCI bus master’s view and the
processor’s view of system memory are guaranteed to be coherent. If the PCI posted write
transactions cannot be flushed from the PCI host bridge, then the PCI bus master and processor are
not guaranteed to have a coherent view of system memory, and EFI_DEVICE_ERROR is returned.

Status Codes Returned

EFI_SUCCESS The PCI posted write transactions were flushed from the PCI host
bridge to system memory.

EFI_DEVICE_ERROR The PCI posted write transactions were not flushed from the PCI
host bridge due to a hardware error.
702 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes()

Summary
Gets the attributes that a PCI root bridge supports setting with SetAttributes(), and the
attributes that a PCI root bridge is currently using.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GET_ATTRIBUTES) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 OUT UINT64 *Supports OPTIONAL,
 OUT UINT64 *Attributes OPTIONAL
);

Parameters
This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 13.2.

Supports A pointer to the mask of attributes that this PCI root bridge
supports setting with SetAttributes(). The available
attributes are listed in Section 13.2. This is an optional parameter
that may be NULL.

Attributes A pointer to the mask of attributes that this PCI root bridge is
currently using. The available attributes are listed in
Section 13.2. This is an optional parameter that may be NULL.

Description
The GetAttributes() function returns the mask of attributes that this PCI root bridge supports
and the mask of attributes that the PCI root bridge is currently using. If Supports is not NULL,
then Supports is set to the mask of attributes that the PCI root bridge supports. If Attributes
is not NULL, then Attributes is set to the mask of attributes that the PCI root bridge is currently
using. If both Supports and Attributes are NULL, then EFI_INVALID_PARAMETER is
returned. Otherwise, EFI_SUCCESS is returned.

If a bit is set in Supports, then the PCI root bridge supports this attribute type, and a call can be
made to SetAttributes() using that attribute type. If a bit is set in Attributes, then the
PCI root bridge is currently using that attribute type. Since a PCI host bus may be composed of
more than one PCI root bridge, different Attributes values may be returned by different PCI
root bridges.
Version 2.5 April, 2015 703

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS If Supports is not NULL, then the attributes that the PCI root

bridge supports is returned in Supports. If Attributes is

not NULL, then the attributes that the PCI root bridge is currently

using is returned in Attributes.

EFI_INVALID_PARAMETER Both Supports and Attributes are NULL.
704 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.SetAttributes()

Summary
Sets attributes for a resource range on a PCI root bridge.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_SET_ATTRIBUTES) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 IN UINT64 Attributes,
 IN OUT UINT64 *ResourceBase OPTIONAL,
 IN OUT UINT64 *ResourceLength OPTIONAL
);

Parameters
This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 13.2.

Attributes The mask of attributes to set. If the attribute bit
MEMORY_WRITE_COMBINE, MEMORY_CACHED, or
MEMORY_DISABLE is set, then the resource range is specified
by ResourceBase and ResourceLength. If
MEMORY_WRITE_COMBINE, MEMORY_CACHED, and
MEMORY_DISABLE are not set, then ResourceBase and
ResourceLength are ignored, and may be NULL. The
available attributes are listed in Section 13.2.

ResourceBase A pointer to the base address of the resource range to be modified
by the attributes specified by Attributes. On return,
*ResourceBase will be set the actual base address of the
resource range. Not all resources can be set to a byte boundary,
so the actual base address may differ from the one passed in by
the caller. This parameter is only used if the
MEMORY_WRITE_COMBINE bit, the MEMORY_CACHED bit, or
the MEMORY_DISABLE bit of Attributes is set. Otherwise,
it is ignored, and may be NULL.

ResourceLength A pointer to the length of the resource range to be modified by the
attributes specified by Attributes. On return,
*ResourceLength will be set the actual length of the resource
range. Not all resources can be set to a byte boundary, so the
actual length may differ from the one passed in by the caller.
This parameter is only used if the MEMORY_WRITE_COMBINE
bit, the MEMORY_CACHED bit, or the MEMORY_DISABLE bit of
Attributes is set. Otherwise, it is ignored, and may be NULL.
Version 2.5 April, 2015 705

Unified Extensible Firmware Interface Specification
Description
The SetAttributes() function sets the attributes specified in Attributes for the PCI root
bridge on the resource range specified by ResourceBase and ResourceLength. Since the
granularity of setting these attributes may vary from resource type to resource type, and from
platform to platform, the actual resource range and the one passed in by the caller may differ. As a
result, this function may set the attributes specified by Attributes on a larger resource range
than the caller requested. The actual range is returned in ResourceBase and
ResourceLength. The caller is responsible for verifying that the actual range for which the
attributes were set is acceptable.

If the attributes are set on the PCI root bridge, then the actual resource range is returned in
ResourceBase and ResourceLength, and EFI_SUCCESS is returned.

If the attributes specified by Attributes are not supported by the PCI root bridge, then
EFI_UNSUPPORTED is returned. The set of supported attributes for a PCI root bridge can be found
by calling GetAttributes().

If either ResourceBase or ResourceLength are NULL, and a resource range is required for
the attributes specified in Attributes, then EFI_INVALID_PARAMETER is returned.

If more than one resource range is required for the set of attributes specified by Attributes, then
EFI_INVALID_PARAMETER is returned.

If there are not enough resources available to set the attributes, then EFI_OUT_OF_RESOURCES is
returned.

Status Codes Returned

EFI_SUCCESS The set of attributes specified by Attributes for the resource

range specified by ResourceBase and ResourceLength

were set on the PCI root bridge, and the actual resource range is

returned in ResuourceBase and ResourceLength.

EFI_UNSUPPORTED A bit is set in Attributes that is not supported by the PCI Root

Bridge. The supported attribute bits are reported by

GetAttributes().

EFI_INVALID_PARAMETER More than one attribute bit is set in Attributes that requires a

resource range.

EFI_INVALID_PARAMETER A resource range is required, and ResourceBase is NULL.

EFI_INVALID_PARAMETER A resource range is required, and ResourceLength is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to set the attributes on the

resource range specified by BaseAddress and Length.
706 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()

Summary
Retrieves the current resource settings of this PCI root bridge in the form of a set of ACPI 2.0
resource descriptors.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION) (
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *This,
 OUT VOID **Resources
);

Parameters
This A pointer to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Type EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL is defined in
Section 13.2.

Resources A pointer to the ACPI 2.0 resource descriptors that describe the
current configuration of this PCI root bridge. The storage for the
ACPI 2.0 resource descriptors is allocated by this function. The
caller must treat the return buffer as read-only data, and the buffer
must not be freed by the caller. See “Related Definitions” for the
ACPI 2.0 resource descriptors that may be used.

Related Definitions
There are only two resource descriptor types from the ACPI Specification that may be used to
describe the current resources allocated to a PCI root bridge. These are the QWORD Address Space
Descriptor (ACPI 2.0 Section 6.4.3.5.1), and the End Tag (ACPI 2.0 Section 6.4.2.8). The QWORD
Address Space Descriptor can describe memory, I/O, and bus number ranges for dynamic or fixed
resources. The configuration of a PCI root bridge is described with one or more QWORD Address
Space Descriptors followed by an End Tag. Table 27 and Table 111 contains these two descriptor
types. Please see the ACPI Specification for details on the field values.

Table 110. ACPI 2.0 QWORD Address Space Descriptor

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x8A QWORD Address Space Descriptor

0x01 0x02 0x2B Length of this descriptor in bytes not including the first two fields

0x03 0x01 Resource Type
 0 – Memory Range
 1 – I/O Range
 2 – Bus Number Range

0x04 0x01 General Flags

0x05 0x01 Type Specific Flags
Version 2.5 April, 2015 707

Unified Extensible Firmware Interface Specification
Table 111. ACPI 2.0 End Tag

Description
The Configuration() function retrieves a set of ACPI 2.0 resource descriptors that contains the
current configuration of this PCI root bridge. If the current configuration can be retrieved, then it is
returned in Resources and EFI_SUCCESS is returned. See “Related Definitions” below for the
resource descriptor types that are supported by this function. If the current configuration cannot be
retrieved, then EFI_UNSUPPORTED is returned.

Status Codes Returned

13.2.1 PCI Root Bridge Device Paths
An EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL must be installed on a handle for its services to be
available to drivers. In addition to the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL, an
EFI_DEVICE_PATH_PROTOCOL must also be installed on the same handle. See Section 9 for a
detailed description of EFI_DEVICE_PATH_PROTOCOL.

Typically, an ACPI Device Path Node is used to describe a PCI Root Bridge. Depending on the bus
hierarchy in the system, additional device path nodes may precede this ACPI Device Path Node. A
desktop system will typically contain only one PCI Root Bridge, so there would be one handle with
a EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL and an EFI_DEVICE_PATH_PROTOCOL A
server system may contain multiple PCI Root Bridges, so it would contain a handle for each PCI
Root Bridge present, and on each of those handles would be an
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL and an EFI_DEVICE_PATH_PROTOCOL. In all
cases, the contents of the ACPI Device Path Nodes for PCI Root Bridges must match the
information present in the ACPI tables for that system.

0x06 0x08 Address Space Granularity. Used to differentiate between a 32-bit memory
request and a 64-bit memory request. For a 32-bit memory request, this
field should be set to 32. For a 64-bit memory request, this field should be
set to 64.

0x0E 0x08 Address Range Minimum

0x16 0x08 Address Range Maximum

0x1E 0x08 Address Translation Offset

0x26 0x08 Address Length

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x79 End Tag

0x01 0x01 0x00 Checksum. If 0, then checksum is assumed to be valid.

EFI_SUCCESS The current configuration of this PCI root bridge was returned in

Resources.

EFI_UNSUPPORTED The current configuration of this PCI root bridge could not be
retrieved.
708 April, 2015 Version 2.5

Protocols - PCI Bus Support
Table 112 shows an example device path for a PCI Root Bridge in a desktop system. Today, a
desktop system typically contains one PCI Root Bridge. This device path consists of an ACPI
Device Path Node, and a Device Path End Structure. The _HID and _UID must match the ACPI
table description of the PCI Root Bridge. For a system with only one PCI Root Bridge, the _UID
value is usually 0x0000. The shorthand notation for this device path is ACPI(PNP0A03,0).

Table 112. PCI Root Bridge Device Path for a Desktop System

Table 113 through Table 116 show example device paths for the PCI Root Bridges in a server
system with four PCI Root Bridges. Each of these device paths consists of an ACPI Device Path
Node, and a Device Path End Structure. The _HID and _UID must match the ACPI table description
of the PCI Root Bridges. The only difference between each of these device paths is the _UID field.
The shorthand notation for these four device paths is ACPI(PNP0A03,0), ACPI(PNP0A03,1),
ACPI(PNP0A03,2), and ACPI(PNP0A03,3).

Table 113. PCI Root Bridge Device Path for Bridge #0 in a Server System

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes
Version 2.5 April, 2015 709

Unified Extensible Firmware Interface Specification
Table 114. PCI Root Bridge Device Path for Bridge #1 in a Server System

Table 115. PCI Root Bridge Device Path for Bridge #2 in a Server System

Table 116. PCI Root Bridge Device Path for Bridge #3 in a Server System

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0001 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0002 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0003 _UID

0x0C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x0D 0x01 0xFF Sub type – End of Entire Device Path

0x0E 0x02 0x04 Length – 0x04 bytes
710 April, 2015 Version 2.5

Protocols - PCI Bus Support
Table 117 shows an example device path for a PCI Root Bridge using an Expanded ACPI Device
Path. This device path consists of an Expanded ACPI Device Path Node, and a Device Path End
Structure. The _UID and _CID fields must match the ACPI table description of the PCI Root
Bridge. For a system with only one PCI Root Bridge, the _UID value is usually 0x0000. The
shorthand notation for this device path is ACPI(12345678,0,PNP0A03).

Table 117. PCI Root Bridge Device Path Using Expanded ACPI Device Path

13.3 PCI Driver Model
Section 13.3 and Section 13.4 describe the PCI Driver Model. This includes the behavior of PCI
Bus Drivers, the behavior of a PCI Device Drivers, and a detailed description of the PCI I/O
Protocol. The PCI Bus Driver manages PCI buses present in a system, and PCI Device Drivers
manage PCI controllers present on PCI buses. The PCI Device Drivers produce an I/O abstraction
that can be used to boot an EFI compliant operating system.

This document provides enough material to implement a PCI Bus Driver, and the tools required to
design and implement a PCI Device Drivers. It does not provide any information on specific PCI
devices.

The material contained in this section is designed to extend this specification and the UEFI Driver
Model in a way that supports PCI device drivers and PCI bus drivers. These extensions are provided
in the form of PCI-specific protocols. This section provides the information required to implement a
PCI Bus Driver in system firmware. The section also contains the information required by driver
writers to design and implement PCI Device Drivers that a platform may need to boot a UEFI-
compliant OS.

The PCI Driver Model described here is intended to be a foundation on which a PCI Bus Driver and
a wide variety of PCI Device Drivers can be created.

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x02 Sub type – Expanded ACPI Device Path

0x02 0x02 0x10 Length – 0x10 bytes

0x04 0x04 0x1234,
0x5678

_HID-device specific

0x08 0x04 0x0000 _UID

0x0C 0x04 0x41D0,
0x0A03

_CID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x10 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x11 0x01 0xFF Sub type – End of Entire Device Path

0x12 0x02 0x04 Length – 0x04 bytes
Version 2.5 April, 2015 711

Unified Extensible Firmware Interface Specification
13.3.1 PCI Driver Initialization
There are very few differences between a PCI Bus Driver and PCI Device Driver in the entry point
of the driver. The file for a driver image must be loaded from some type of media. This could
include ROM, FLASH, hard drives, floppy drives, CD-ROM, or even a network connection. Once a
driver image has been found, it can be loaded into system memory with the Boot Service
EFI_BOOT_SERVICES.LoadImage(). LoadImage() loads a PE/COFF formatted image
into system memory. A handle is created for the driver, and a Loaded Image Protocol instance is
placed on that handle. A handle that contains a Loaded Image Protocol instance is called an Image
Handle. At this point, the driver has not been started. It is just sitting in memory waiting to be
started. Figure 37 shows the state of an image handle for a driver after LoadImage() has been
called.

Figure 37. Image Handle

After a driver has been loaded with the Boot Service EFI_BOOT_SERVICES.LoadImage(), it
must be started with the Boot Service EFI_BOOT_SERVICES.StartImage(). This is true of
all types of applications and drivers that can be loaded and started on an UEFI compliant system.
The entry point for a driver that follows the UEFI Driver Model must follow some strict rules. First,
it is not allowed to touch any hardware. Instead, it is only allowed to install protocol instances onto
its own Image Handle. A driver that follows the UEFI Driver Model is required to install an
instance of the Driver Binding Protocol onto its own Image Handle. It may optionally install the
Driver Diagnostics Protocol or the Component Name Protocol. In addition, if a driver wishes to be
unloadable it may optionally update the Loaded Image Protocol to provide its own Unload()
function. Finally, if a driver needs to perform any special operations when the Boot Service
EFI_BOOT_SERVICES is called, it may optionally create an event with a notification function that
is triggered when the Boot Service ExitBootServices() is called. An Image Handle that
contains a Driver Binding Protocol instance is known as a Driver Image Handle. Figure 38 shows a
possible configuration for the Image Handle from Figure 37 after the Boot Service
StartImage() has been called.

Image Handle

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

OM13148

EFI_LOADED_IMAGE_PROTOCOL
712 April, 2015 Version 2.5

Protocols - PCI Bus Support
Figure 38. PCI Driver Image Handle

13.3.1.1 Driver Diagnostics Protocol
If a PCI Bus Driver or a PCI Device Driver requires diagnostics, then an
EFI_DRIVER_DIAGNOSTICS2_PROTOCOL must be installed on the image handle in the entry
point for the driver. This protocol contains functions to perform diagnostics on a controller. The
EFI_DRIVER_DIAGNOSTICS2_PROTOCOL is not allowed to interact with the user. Instead, it
must return status information through a buffer. The functions of this protocol will be invoked by a
platform management utility.

13.3.1.2 Component Name Protocol
Both a PCI Bus Driver and a PCI Device Driver are able to produce user readable names for the PCI
drivers and/or the set of PCI controllers that the PCI drivers are managing. This is accomplished by
installing an instance of the EFI_COMPONENT_NAME2_PROTOCOL on the image handle of the
driver. This protocol can produce driver and controller names in the form of a string in one of
several languages. This protocol can be used by a platform management utility to display user
readable names for the drivers and controllers present in a system. Please see the EFI Driver Model
Specification for details on the EFI_COMPONENT_NAME2_PROTOCOL.

13.3.1.3 Driver Family Override Protocol
If a PCI Bus Driver or PCI Device Driver always wants the PCI driver delivered in a PCI Option
ROM to manage the PCI controller associated with the PCI Option ROM, then the Driver Family
Override Protocol must not be produced.

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

EFI_DRIVER_DIAGNOSTICS2_PROTOCOL

EFI_COMPONENT_NAME2_PROTOCOL

EFI_LOADED_IMAGE_PROTOCOL

Image Handle

EFI _DRIVER _FAM ILY_OVERRIDE_PROTOCOL

EFI_DRIVER_BINDING_PROTOCOL

Optional

Optional

Optional
Version 2.5 April, 2015 713

Unified Extensible Firmware Interface Specification
If a PCI Bus Driver or PCI Device Driver always wants the PCI driver with the highest Version
value in the Driver Binding Protocol to manage all the PCI Controllers in the same family of PCI
controllers, then the Driver Family Override Protocol must be produced on the same handle as the
Driver Binding Protocol.

13.3.2 PCI Bus Drivers
A PCI Bus Driver manages PCI Host Bus Controllers that can contain one or more PCI Root
Bridges. Figure 39 shows an example of a desktop system that has one PCI Host Bus Controller
with one PCI Root Bridge.

Figure 39. PCI Host Bus Controller

The PCI Host Bus Controller in Figure 39 is abstracted in software with the PCI Root Bridge I/O
Protocol. A PCI Bus Driver will manage handles that contain this protocol. Figure 40 shows an
example device handle for a PCI Host Bus Controller. It contains a Device Path Protocol instance
and a PCI Root Bridge I/O Protocol Instance.

OM13161

PCI Local Bus

Core Chipset Components

PCI Host Bus

PCI Root Bridge
714 April, 2015 Version 2.5

Protocols - PCI Bus Support
Figure 40. Device Handle for a PCI Host Bus Controller

13.3.2.1 Driver Binding Protocol for PCI Bus Drivers
The Driver Binding Protocol contains three services. These are Supported(), Start(), and
Stop(). Supported() tests to see if the PCI Bus Driver can manage a device handle. A PCI
Bus Driver can only manage device handles that contain the Device Path Protocol and the PCI Root
Bridge I/O Protocol, so a PCI Bus Driver must look for these two protocols on the device handle that
is being tested.

The Start() function tells the PCI Bus Driver to start managing a device handle. The device
handle should support the protocols shown in Figure 40. The PCI Root Bridge I/O Protocols
provides access to the PCI I/O, PCI Memory, PCI Prefetchable Memory, and PCI DMA functions.
The PCI Controllers behind a PCI Root Bridge may exist on one or more PCI Buses. The standard
mechanism for expanding the number of PCI Buses on a single PCI Root Bridge is to use PCI to PCI
Bridges. Once a PCI Enumerator configures these bridges, they are invisible to software. As a
result, the PCI Bus Driver flattens the PCI Bus hierarchy when it starts managing a device handle
that represents a PCI Host Controller. Figure 41 shows the physical tree structure for a set of PCI
Device denoted by A, B, C, D, and E. Device A and C are PCI to PCI Bridges.

OM13151

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_ROOT_BRIDGE_PROTOCOL
Version 2.5 April, 2015 715

Unified Extensible Firmware Interface Specification
Figure 41. Physical PCI Bus Structure

Figure 42 shows the tree structure generated by a PCI Bus Driver before and after Start() is
called. This is a logical view of set of PCI controller, and not a physical view. The physical tree is
flattened, so any PCI to PCI bridge devices are invisible. In this example, the PCI Bus Driver finds
the five child PCI Controllers on the PCI Bus from Figure 41. A device handle is created for every
PCI Controller including all the PCI to PCI Bridges. The arrow with the dashed line coming into the
PCI Host Bus Controller represents a link to the PCI Host Bus Controller's parent. If the PCI Host
Bus Controller is a Root Bus Controller, then it will not have a parent. The PCI Driver Model does
not require that a PCI Host Bus Controller be a Root Bus Controller. A PCI Host Bus Controller can
be present at any location in the tree, and the PCI Bus Driver should be able to manage the PCI Host
Bus Controller.

OM13166

PCI Bus 1

PCI ROOT BRIDGE

A - PPB B C - PPB

D

PCI Bus 2

E

716 April, 2015 Version 2.5

Protocols - PCI Bus Support
Figure 42. Connecting a PCI Bus Driver

The PCI Bus Driver has the option of creating all of its children in one call to Start(), or
spreading it across several calls to Start(). In general, if it is possible to design a bus driver to
create one child at a time, it should do so to support the rapid boot capability in the UEFI Driver
Model. Each of the child device handles created in Start() must contain a Device Path Protocol
instance, a PCI I/O protocol instance, and optionally a Bus Specific Driver Override Protocol
instance. The PCI I/O Protocol is described in Section 13.4. The format of device paths for PCI
Controllers is described in Section 2.6, and details on the Bus Specific Driver Override Protocol can
be found in the EFI Driver Model Specification. Figure 43 shows an example child device handle
that is created by a PCI Bus Driver for a PCI Controller.

Figure 43. Child Handle Created by a PCI Bus Driver

A PCI Bus Driver must perform several steps to manage a PCI Host Bus Controller, as follows:

• Initialize the PCI Host Bus Controller.

OM13153

Bus Controller Bus Controller
Start()

Stop() A B C D E

OM13167

PCI Controller Device Handle

Optional

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_I/O_PROTOCOL

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL
Version 2.5 April, 2015 717

Unified Extensible Firmware Interface Specification
• If the PCI buses have not been initialized by a previous agent, perform PCI Enumeration on all
the PCI Root Bridges that the PCI Host Bus Controller contains. This involves assigning a PCI
bus number, allocating PCI I/O resources, PCI Memory resources, and PCI Prefetchable
Memory resources.

• Discover all the PCI Controllers on all the PCI Root Bridges. If a PCI Controller is a PCI to PCI
Bridge, then the I/O, Memory, and Bus Master bits in the Control register of the PCI
Configuration Header should be placed in the enabled state. The PCI Bus Driver should disable
the I/O, Memory, and Bus Master bits for PCI Controllers that respond to legacy ISA resources
(e.g. VGA). It is a PCI Device Driver’s responsibility to enable the I/O, Memory, and Bus
Master bits (if they are not already enabled by the PCI bus driver) of the Control register as
required with a call to the Attributes() service when the PCI Device Driver is started. A
similar call to the Attributes() service should be made when the PCI Device Driver is
stopped to restore original Attributes() state, including the I/O, Memory, and Bus Master
bits of the Control register.

• Create a device handle for each PCI Controller found. If a request is being made to start only
one PCI Controller, then only create one device handle.

• Install a Device Path Protocol instance and a PCI I/O Protocol instance on the device handle
created for each PCI Controller.

• If the PCI Controller has a PCI Option ROM, then allocate a memory buffer that is the same size
as the PCI Option ROM, and copy the PCI Option ROM contents to the memory buffer.

• If the PCI Option ROM contains any UEFI drivers, then attach a Bus Specific Driver Override
Protocol to the device handle of the PCI Controller that is associated with the PCI Option ROM.

The Stop() function tells the PCI Bus Driver to stop managing a PCI Host Bus Controller. The
Stop() function can destroy one or more of the device handles that were created on a previous call
to Start(). If all of the child device handles have been destroyed, then Stop() will place the
PCI Host Bus Controller in a quiescent state. The functionality of Stop() mirrors Start(), as
follows:

1. Complete all outstanding transactions to the PCI Host Bus Controller.

2. If the PCI Host Bus Controller is being stopped, then place it in a quiescent state.

3. If one or more child handles are being destroyed, then:

a Uninstall all the protocols from the device handles for the PCI Controllers found
in Start().

b Free any memory buffers allocated for PCI Option ROMs.

c Destroy the device handles for the PCI controllers created in Start().

13.3.2.2 PCI Enumeration
The PCI Enumeration process is a platform-specific operation that depends on the properties of the
chipset that produces the PCI bus. As a result, details on PCI Enumeration are outside the scope of
this document. A PCI Bus Driver requires that PCI Enumeration has been performed, so it either
needs to have been done prior to the PCI Bus Driver starting, or it must be part of the PCI Bus
Driver’s implementation.
718 April, 2015 Version 2.5

Protocols - PCI Bus Support
13.3.3 PCI Device Drivers
PCI Device Drivers manage PCI Controllers. Device handles for PCI Controllers are created by PCI
Bus Drivers. A PCI Device Driver is not allowed to create any new device handles. Instead, it
attaches protocol instance to the device handle of the PCI Controller. These protocol instances are I/
O abstractions that allow the PCI Controller to be used in the preboot environment. The most
common I/O abstractions are used to boot an EFI compliant OS.

13.3.3.1 Driver Binding Protocol for PCI Device Drivers
The Driver Binding Protocol contains three services. These are Supported(), Start(), and
Stop(). Supported() tests to see if the PCI Device Driver can manage a device handle. A PCI
Device Driver can only manage device handles that contain the Device Path Protocol and the PCI I//
O Protocol, so a PCI Device Driver must look for these two protocols on the device handle that is
being tested. In addition, it needs to check to see if the device handle represents a PCI Controller
that the PCI Device Driver knows how to manage. This is typically done by using the services of the
PCI I/O Protocol to read the PCI Configuration Header for the PCI Controller, and looking at the
VendorId, DeviceId, and SubsystemId fields.

The Start() function tells the PCI Device Driver to start managing a PCI Controller. A PCI
Device Driver is not allowed to create any new device handles. Instead, it installs one or more
addition protocol instances on the device handle for the PCI Controller. A PCI Device Driver is not
allowed to modify the resources allocated to a PCI Controller. These resource allocations are owned
by the PCI Bus Driver or some other firmware component that initialized the PCI Bus prior to the
execution of the PCI Bus Driver. This means that the PCI BARs (Base Address Registers) and the
configuration of any PCI to PCI bridge controllers must not be modified by a PCI Device Driver. A
PCI Bus Driver will leave a PCI Device in a disabled safe initial state. A PCI Device Driver should
save the original Attributes() state. It is a PCI Device Driver's responsibility to call
Attributes() to enable the I/O, Memory, and Bus Master decodes if they are not already
enabled by the PCI bus driver.

The Stop() function mirrors the Start() function, so the Stop() function completes any
outstanding transactions to the PCI Controller and removes the protocol interfaces that were
installed in Start(). Figure 44 shows the device handle for a PCI Controller before and after
Start() is called. In this example, a PCI Device Driver is adding the Block I/O Protocol to the
device handle for the PCI Controller. It is also a PCI Device Driver’s responsibility to restore
original Attributes() state, including the I/O, Memory, and Bus Master decodes by calling
Attributes().
Version 2.5 April, 2015 719

Unified Extensible Firmware Interface Specification
Figure 44. Connecting a PCI Device Driver

13.4 EFI PCI I/O Protocol
This section provides a detailed description of the EFI_PCI_IO_PROTOCOL. This protocol is
used by code, typically drivers, running in the EFI boot services environment to access memory and
I/O on a PCI controller. In particular, functions for managing devices on PCI buses are defined here.

The interfaces provided in the EFI_PCI_IO_PROTOCOL are for performing basic operations to
memory, I/O, and PCI configuration space. The system provides abstracted access to basic system
resources to allow a driver to have a programmatic method to access these basic system resources.
The main goal of this protocol is to provide an abstraction that simplifies the writing of device
drivers for PCI devices. This goal is accomplished by providing the following features:

• A driver model that does not require the driver to search the PCI busses for devices to manage.
Instead, drivers are provided the location of the device to manage or have the capability to be
notified when a PCI controller is discovered.

• A device driver model that abstracts the I/O addresses, Memory addresses, and PCI
Configuration addresses from the PCI device driver. Instead, BAR (Base Address Register)
relative addressing is used for I/O and Memory accesses, and device relative addressing is used
for PCI Configuration accesses. The BAR relative addressing is specified in the PCI I/O
services as a BAR index. A PCI controller may contain a combination of 32-bit and 64-bit

OM13168

PCI Controller Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_I/O_PROTOCOL

EFI_BLOCK_I/O_PROTOCOL

PCI Controller Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_I/O_PROTOCOL

Stop() : Closes PCI I/O

Start() : Opens PCI I/O

Installed by Start()
Uninstalled by Stop()
720 April, 2015 Version 2.5

Protocols - PCI Bus Support
BARs. The BAR index represents the logical BAR number in the standard PCI configuration
header starting from the first BAR. The BAR index does not represent an offset into the
standard PCI Configuration Header because those offsets will vary depending on the
combination and order of 32-bit and 64-bit BARs.

• The Device Path for the PCI device can be obtained from the same device handle that the
EFI_PCI_IO_PROTOCOL resides.

• The PCI Segment, PCI Bus Number, PCI Device Number, and PCI Function Number of the PCI
device if they are required. The general idea is to abstract these details away from the PCI
device driver. However, if these details are required, then they are available.

• Details on any nonstandard address decoding that is not covered by the PCI device's Base
Address Registers.

• Access to the PCI Root Bridge I/O Protocol for the PCI Host Bus for which the PCI device is a
member.

• A copy of the PCI Option ROM if it is present in system memory.

• Functions to perform bus mastering DMA. This includes both packet based DMA and common
buffer DMA.

EFI_PCI_IO_PROTOCOL

Summary
Provides the basic Memory, I/O, PCI configuration, and DMA interfaces that a driver uses to access
its PCI controller.
Version 2.5 April, 2015 721

Unified Extensible Firmware Interface Specification
GUID
#define EFI_PCI_IO_PROTOCOL_GUID \
 {0x4cf5b200,0x68b8,0x4ca5,\
 {0x9e,0xec,0xb2,0x3e,0x3f,0x50,0x02,0x9a}}

Protocol Interface Structure
typedef struct _EFI_PCI_IO_PROTOCOL {
 EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollMem;
 EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollIo;
 EFI_PCI_IO_PROTOCOL_ACCESS Mem;
 EFI_PCI_IO_PROTOCOL_ACCESS Io;
 EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS Pci;
 EFI_PCI_IO_PROTOCOL_COPY_MEM CopyMem;
 EFI_PCI_IO_PROTOCOL_MAP Map;
 EFI_PCI_IO_PROTOCOL_UNMAP Unmap;
 EFI_PCI_IO_PROTOCOL_ALLOCATE_BUFFER AllocateBuffer;
 EFI_PCI_IO_PROTOCOL_FREE_BUFFER FreeBuffer;
 EFI_PCI_IO_PROTOCOL_FLUSH Flush;
 EFI_PCI_IO_PROTOCOL_GET_LOCATION GetLocation;
 EFI_PCI_IO_PROTOCOL_ATTRIBUTES Attributes;
 EFI_PCI_IO_PROTOCOL_GET_BAR_ATTRIBUTES GetBarAttributes;
 EFI_PCI_IO_PROTOCOL_SET_BAR_ATTRIBUTES SetBarAttributes;
 UINT64 RomSize;
 VOID *RomImage;
} EFI_PCI_IO_PROTOCOL;

Parameters
PollMem Polls an address in PCI memory space until an exit condition is

met, or a timeout occurs. See the PollMem() function
description.

PollIo Polls an address in PCI I/O space until an exit condition is met, or
a timeout occurs. See the PollIo() function description.

Mem.Read Allows BAR relative reads to PCI memory space. See the
Mem.Read() function description.

Mem.Write Allows BAR relative writes to PCI memory space. See the
Mem.Write() function description.

Io.Read Allows BAR relative reads to PCI I/O space. See the
Io.Read() function description.

Io.Write Allows BAR relative writes to PCI I/O space. See the
Io.Write() function description.

Pci.Read Allows PCI controller relative reads to PCI configuration space.
See the Pci.Read() function description.

Pci.Write Allows PCI controller relative writes to PCI configuration space.
See the Pci.Write() function description.
722 April, 2015 Version 2.5

Protocols - PCI Bus Support
CopyMem Allows one region of PCI memory space to be copied to another
region of PCI memory space. See the CopyMem() function
description.

Map Provides the PCI controller–specific address needed to access
system memory for DMA. See the Map() function description.

Unmap Releases any resources allocated by Map(). See the Unmap()
function description.

AllocateBuffer Allocates pages that are suitable for a common buffer mapping.
See the AllocateBuffer() function description.

FreeBuffer Frees pages that were allocated with AllocateBuffer().
See the FreeBuffer() function description.

Flush Flushes all PCI posted write transactions to system memory. See
the Flush() function description.

GetLocation Retrieves this PCI controller’s current PCI bus number, device
number, and function number. See the GetLocation()
function description.

Attributes Performs an operation on the attributes that this PCI controller
supports. The operations include getting the set of supported
attributes, retrieving the current attributes, setting the current
attributes, enabling attributes, and disabling attributes. See the
Attributes() function description.

GetBarAttributes Gets the attributes that this PCI controller supports setting on a
BAR using SetBarAttributes(), and retrieves the list of
resource descriptors for a BAR. See the
GetBarAttributes() function description.

SetBarAttributes Sets the attributes for a range of a BAR on a PCI controller. See
the SetBarAttributes() function description.

RomSize The size, in bytes, of the ROM image.

RomImage A pointer to the in memory copy of the ROM image. The PCI
Bus Driver is responsible for allocating memory for the ROM
image, and copying the contents of the ROM to memory. The
contents of this buffer are either from the PCI option ROM that
can be accessed through the ROM BAR of the PCI controller, or
it is from a platform-specific location. The Attributes()
function can be used to determine from which of these two
sources the RomImage buffer was initialized.
Version 2.5 April, 2015 723

Unified Extensible Firmware Interface Specification
Related Definitions
//***
// EFI_PCI_IO_PROTOCOL_WIDTH
//***
typedef enum {
 EfiPciIoWidthUint8,
 EfiPciIoWidthUint16,
 EfiPciIoWidthUint32,
 EfiPciIoWidthUint64,
 EfiPciIoWidthFifoUint8,
 EfiPciIoWidthFifoUint16,
 EfiPciIoWidthFifoUint32,
 EfiPciIoWidthFifoUint64,
 EfiPciIoWidthFillUint8,
 EfiPciIoWidthFillUint16,
 EfiPciIoWidthFillUint32,
 EfiPciIoWidthFillUint64,
 EfiPciIoWidthMaximum
} EFI_PCI_IO_PROTOCOL_WIDTH;

#define EFI_PCI_IO_PASS_THROUGH_BAR 0xff

//***
// EFI_PCI_IO_PROTOCOL_POLL_IO_MEM
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_POLL_IO_MEM) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);
//***
// EFI_PCI_IO_PROTOCOL_IO_MEM
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_IO_MEM) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
724 April, 2015 Version 2.5

Protocols - PCI Bus Support
 IN UINTN Count,
 IN OUT VOID *Buffer
);

//***
// EFI_PCI_IO_PROTOCOL_ACCESS
//***
typedef struct {
 EFI_PCI_IO_PROTOCOL_IO_MEM Read;
 EFI_PCI_IO_PROTOCOL_IO_MEM Write;
} EFI_PCI_IO_PROTOCOL_ACCESS;

//***
// EFI_PCI_IO_PROTOCOL_CONFIG
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_CONFIG) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT32 Offset,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

//***
// EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS
//***
typedef struct {
 EFI_PCI_IO_PROTOCOL_CONFIG Read;
 EFI_PCI_IO_PROTOCOL_CONFIG Write;
} EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS;
//***
// EFI PCI I/O Protocol Attribute bits
//***
#define EFI_PCI_IO_ATTRIBUTE_ISA_MOTHERBOARD_IO 0x0001
#define EFI_PCI_IO_ATTRIBUTE_ISA_IO 0x0002
#define EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO 0x0004
#define EFI_PCI_IO_ATTRIBUTE_VGA_MEMORY 0x0008
#define EFI_PCI_IO_ATTRIBUTE_VGA_IO 0x0010
#define EFI_PCI_IO_ATTRIBUTE_IDE_PRIMARY_IO 0x0020
#define EFI_PCI_IO_ATTRIBUTE_IDE_SECONDARY_IO 0x0040
#define EFI_PCI_IO_ATTRIBUTE_MEMORY_WRITE_COMBINE 0x0080
#define EFI_PCI_IO_ATTRIBUTE_IO 0x0100
#define EFI_PCI_IO_ATTRIBUTE_MEMORY 0x0200
#define EFI_PCI_IO_ATTRIBUTE_BUS_MASTER 0x0400
#define EFI_PCI_IO_ATTRIBUTE_MEMORY_CACHED 0x0800
Version 2.5 April, 2015 725

Unified Extensible Firmware Interface Specification
#define EFI_PCI_IO_ATTRIBUTE_MEMORY_DISABLE 0x1000
#define EFI_PCI_IO_ATTRIBUTE_EMBEDDED_DEVICE 0x2000
#define EFI_PCI_IO_ATTRIBUTE_EMBEDDED_ROM 0x4000
#define EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE 0x8000
#define EFI_PCI_IO_ATTRIBUTE_ISA_IO_16 0x10000
#define EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16 0x20000
#define EFI_PCI_IO_ATTRIBUTE_VGA_IO_16 0x40000

EFI_PCI_IO_ATTRIBUTE_ISA_IO_16

If this bit is set, then the PCI I/O cycles between 0x100 and 0x3FF are forwarded to
the PCI controller using a 16-bit address decoder on address bits 0..15. Address bits
16..31 must be zero. This bit is used to forward I/O cycles for legacy ISA devices. If
this bit is set, then the PCI Host Bus Controller and all the PCI to PCI bridges between
the PCI Host Bus Controller and the PCI Controller are configured to forward these
PCI I/O cycles. This bit may not be combined with
EFI_PCI_IO_ATTRIBUTE_ISA_IO.

EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16

If this bit is set, then the PCI I/O write cycles for 0x3C6, 0x3C8, and 0x3C9 are
forwarded to the PCI controller using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O write cycles to the
VGA palette registers on a PCI controller. If this bit is set, then the PCI Host Bus
Controller and all the PCI to PCI bridges between the PCI Host Bus Controller and the
PCI Controller are configured to forward these PCI I/O cycles. This bit may not be
combined with EFI_PCI_IO_ATTRIBUTE_VGA_IO or
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO.

EFI_PCI_IO_ATTRIBUTE_VGA_IO_16

If this bit is set, then the PCI I/O cycles in the ranges 0x3B0–0x3BB and 0x3C0–
0x3DF are forwarded to the PCI controller using a 16-bit address decoder on address
bits 0..15. Address bits 16..31 must be zero. This bit is used to forward I/O cycles for
a VGA controller to a PCI controller. If this bit is set, then the PCI Host Bus
Controller and all the PCI to PCI bridges between the PCI Host Bus Controller and the
PCI Controller are configured to forward these PCI I/O cycles. This bit may not be
combined with EFI_PCI_IO_ATTRIBUTE_VGA_IO or
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO. Because
EFI_PCI_IO_ATTRIBUTE_VGA_IO_16 also includes the I/O range described by
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16, the
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16 bit is ignored if
EFI_PCI_IO_ATTRIBUTE_VGA_IO_16 is set.

EFI_PCI_IO_ATTRIBUTE_ISA_MOTHERBOARD_IO

If this bit is set, then the PCI I/O cycles between 0x00000000 and 0x000000FF are
forwarded to the PCI controller. This bit is used to forward I/O cycles for ISA
motherboard devices. If this bit is set, then the PCI Host Bus Controller and all the
PCI to PCI bridges between the PCI Host Bus Controller and the PCI Controller are
configured to forward these PCI I/O cycles.
726 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_PCI_IO_ATTRIBUTE_ISA_IO

If this bit is set, then the PCI I/O cycles between 0x100 and 0x3FF are forwarded to
the PCI controller using a 10-bit address decoder on address bits 0..9. Address bits
10..15 are not decoded, and address bits 16..31 must be zero. This bit is used to
forward I/O cycles for legacy ISA devices. If this bit is set, then the PCI Host Bus
Controller and all the PCI to PCI bridges between the PCI Host Bus Controller and the
PCI Controller are configured to forward these PCI I/O cycles.

EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO

If this bit is set, then the PCI I/O write cycles for 0x3C6, 0x3C8, and 0x3C9 are
forwarded to the PCI controller using a 10-bit address decoder on address bits 0..9.
Address bits 10..15 are not decoded, and address bits 16..31 must be zero. This bit is
used to forward I/O write cycles to the VGA palette registers on a PCI controller. If
this bit is set, then the PCI Host Bus Controller and all the PCI to PCI bridges between
the PCI Host Bus Controller and the PCI Controller are configured to forward these
PCI I/O cycles.

EFI_PCI_IO_ATTRIBUTE_VGA_MEMORY

If this bit is set, then the PCI memory cycles between 0xA0000 and 0xBFFFF are
forwarded to the PCI controller. This bit is used to forward memory cycles for a VGA
frame buffer on a PCI controller. If this bit is set, then the PCI Host Bus Controller
and all the PCI to PCI bridges between the PCI Host Bus Controller and the PCI
Controller are configured to forward these PCI Memory cycles.

EFI_PCI_IO_ATTRIBUTE_VGA_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x3B0-0x3BB and 0x3C0-
0x3DF are forwarded to the PCI controller using a 10-bit address decoder on address
bits 0..9. Address bits 10..15 are not decoded, and the address bits 16..31 must be
zero. This bit is used to forward I/O cycles for a VGA controller to a PCI controller.
If this bit is set, then the PCI Host Bus Controller and all the PCI to PCI bridges
between the PCI Host Bus Controller and the PCI Controller are configured to
forward these PCI I/O cycles. Since EFI_PCI_IO_ATTRIBUTE_VGA_IO also
includes the I/O range described by
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO, the
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO bit is ignored if
EFI_PCI_IO_ATTRIBUTE_VGA_IO is set.

EFI_PCI_IO_ATTRIBUTE_IDE_PRIMARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x1F0-0x1F7 and 0x3F6-0x3F7
are forwarded to a PCI controller using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O cycles for a Primary
IDE controller to a PCI controller. If this bit is set, then the PCI Host Bus Controller
and all the PCI to PCI bridges between the PCI Host Bus Controller and the PCI
Controller are configured to forward these PCI I/O cycles.

EFI_PCI_IO_ATTRIBUTE_IDE_SECONDARY_IO

If this bit is set, then the PCI I/O cycles in the ranges 0x170-0x177 and 0x376-0x377
are forwarded to a PCI controller using a 16-bit address decoder on address bits 0..15.
Address bits 16..31 must be zero. This bit is used to forward I/O cycles for a
Version 2.5 April, 2015 727

Unified Extensible Firmware Interface Specification
Secondary IDE controller to a PCI controller. If this bit is set, then the PCI Host Bus
Controller and all the PCI to PCI bridges between the PCI Host Bus Controller and the
PCI Controller are configured to forward these PCI I/O cycles.

EFI_PCI_IO_ATTRIBUTE_MEMORY_WRITE_COMBINE

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is accessed in a write combining mode. This bit is
used to improve the write performance to a memory buffer on a PCI controller. By
default, PCI memory ranges are not accessed in a write combining mode.

EFI_PCI_IO_ATTRIBUTE_MEMORY_CACHED

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is accessed in a cached mode. By default, PCI
memory ranges are accessed noncached.

EFI_PCI_IO_ATTRIBUTE_IO

If this bit is set, then the PCI device will decode the PCI I/O cycles that the device is
configured to decode.

EFI_PCI_IO_ATTRIBUTE_MEMORY

If this bit is set, then the PCI device will decode the PCI Memory cycles that the
device is configured to decode.

EFI_PCI_IO_ATTRIBUTE_BUS_MASTER

If this bit is set, then the PCI device is allowed to act as a bus master on the PCI bus.

EFI_PCI_IO_ATTRIBUTE_MEMORY_DISABLE

If this bit is set, then this platform supports changing the attributes of a PCI memory
range so that the memory range is disabled, and can no longer be accessed. By default,
all PCI memory ranges are enabled.

EFI_PCI_IO_ATTRIBUTE_EMBEDDED_DEVICE

If this bit is set, then the PCI controller is an embedded device that is typically a
component on the system board. If this bit is clear, then this PCI controller is part of
an adapter that is populating one of the systems PCI slots.

EFI_PCI_IO_ATTRIBUTE_EMBEDDED_ROM

If this bit is set, then the PCI option ROM described by the RomImage and RomSize
fields is not from ROM BAR of the PCI controller. If this bit is clear, then the
RomImage and RomSize fields were initialized based on the PCI option ROM
found through the ROM BAR of the PCI controller.

EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE

If this bit is set, then the PCI controller is capable of producing PCI Dual Address
Cycles, so it is able to access a 64-bit address space. If this bit is not set, then the PCI
controller is not capable of producing PCI Dual Address Cycles, so it is only able to
access a 32-bit address space.

If this bit is set, then the PCI Host Bus Controller and all the PCI to PCI bridges
between the PCI Host Bus Controller and the PCI Controller are capable of producing
PCI Dual Address Cycles. If any of them is not capable of producing PCI Dual
728 April, 2015 Version 2.5

Protocols - PCI Bus Support
Address Cycles, attempt to perform Set or Enable operation using Attributes()
function with this bit set will fail with the EFI_UNSUPPORTED error code.

//***
// EFI_PCI_IO_PROTOCOL_OPERATION
//***
typedef enum {
 EfiPciIoOperationBusMasterRead,
 EfiPciIoOperationBusMasterWrite,
 EfiPciIoOperationBusMasterCommonBuffer,
 EfiPciIoOperationMaximum
} EFI_PCI_IO_PROTOCOL_OPERATION;

EfiPciIoOperationBusMasterRead

A read operation from system memory by a bus master.

EfiPciIoOperationBusMasterWrite

A write operation to system memory by a bus master.

EfiPciIoOperationBusMasterCommonBuffer

Provides both read and write access to system memory by both the processor and a
bus master. The buffer is coherent from both the processor’s and the bus master’s
point of view.

Description
The EFI_PCI_IO_PROTOCOL provides the basic Memory, I/O, PCI configuration, and DMA
interfaces that are used to abstract accesses to PCI controllers. There is one
EFI_PCI_IO_PROTOCOL instance for each PCI controller on a PCI bus. A device driver that
wishes to manage a PCI controller in a system will have to retrieve the EFI_PCI_IO_PROTOCOL
instance that is associated with the PCI controller. A device handle for a PCI controller will
minimally contain an EFI_DEVICE_PATH_PROTOCOL instance and an
EFI_PCI_IO_PROTOCOL instance.

Bus mastering PCI controllers can use the DMA services for DMA operations. There are three basic
types of bus mastering DMA that is supported by this protocol. These are DMA reads by a bus
master, DMA writes by a bus master, and common buffer DMA. The DMA read and write
operations may need to be broken into smaller chunks. The caller of Map() must pay attention to
the number of bytes that were mapped, and if required, loop until the entire buffer has been
transferred. The following is a list of the different bus mastering DMA operations that are
supported, and the sequence of EFI_PCI_IO_PROTOCOL interfaces that are used for each DMA
operation type.

DMA Bus Master Read Operation

Call Map() for EfiPciIoOperationBusMasterRead.

Program the DMA Bus Master with the DeviceAddress returned by Map().

Start the DMA Bus Master.

Wait for DMA Bus Master to complete the read operation.
Version 2.5 April, 2015 729

Unified Extensible Firmware Interface Specification
Call Unmap().

DMA Bus Master Write Operation

Call Map() for EfiPciOperationBusMasterWrite.

Program the DMA Bus Master with the DeviceAddress returned by Map().

Start the DMA Bus Master.

Wait for DMA Bus Master to complete the write operation.

Perform a PCI controller specific read transaction to flush all PCI write buffers (See PCI
Specification Section 3.2.5.2) .

Call Flush().

Call Unmap().

DMA Bus Master Common Buffer Operation

Call AllocateBuffer() to allocate a common buffer.

Call Map() for EfiPciIoOperationBusMasterCommonBuffer.

Program the DMA Bus Master with the DeviceAddress returned by Map().

The common buffer can now be accessed equally by the processor and the DMA bus master.

Call Unmap().

Call FreeBuffer().
730 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_PCI_IO_PROTOCOL.PollMem()

Summary
Reads from the memory space of a PCI controller. Returns when either the polling exit criteria is
satisfied or after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_POLL_IO_MEM) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);

Parameters
This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type

EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 13.4.

BarIndex The BAR index of the standard PCI Configuration header to use
as the base address for the memory operation to perform. This
allows all drivers to use BAR relative addressing. The legal
range for this field is 0..5. However, the value
EFI_PCI_IO_PASS_THROUGH_BAR can be used to bypass
the BAR relative addressing and pass Offset to the PCI Root
Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in
Section 13.4.

Offset The offset within the selected BAR to start the memory
operation.

Mask Mask used for the polling criteria. Bytes above Width in Mask
are ignored. The bits in the bytes below Width which are zero in
Mask are ignored when polling the memory address.

Value The comparison value used for the polling exit criteria.

Delay The number of 100 ns units to poll. Note that timer available may
be of poorer granularity.

Result Pointer to the last value read from the memory location.
Version 2.5 April, 2015 731

Unified Extensible Firmware Interface Specification
Description
This function provides a standard way to poll a PCI memory location. A PCI memory read
operation is performed at the PCI memory address specified by BarIndex and Offset for the
width specified by Width. The result of this PCI memory read operation is stored in Result.
This PCI memory read operation is repeated until either a timeout of Delay 100 ns units has
expired, or (Result & Mask) is equal to Value.

This function will always perform at least one memory access no matter how small Delay may be.
If Delay is 0, then Result will be returned with a status of EFI_SUCCESS even if Result does
not match the exit criteria. If Delay expires, then EFI_TIMEOUT is returned.

If Width is not EfiPciIoWidthUint8, EfiPciIoWidthUint16,
EfiPciIoWidthUint32, or EfiPciIoWidthUint64, then EFI_INVALID_PARAMETER
is returned.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying
any alignment and memory width restrictions that a PCI controller on a platform might require. For
example on some platforms, width requests of EfiPciIoWidthUint64 do not work.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns. However, if the memory mapped I/O region being accessed by this function has
the EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the transactions will follow the
ordering rules defined by the processor architecture.

Status Codes Returned

EFI_SUCCESS The last data returned from the access matched the poll exit criteria.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Result is NULL.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_UNSUPPORTED Offset is not valid for the BarIndex of this PCI controller.

EFI_TIMEOUT Delay expired before a match occurred.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
732 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_PCI_IO_PROTOCOL.PollIo()

Summary
Reads from the I/O space of a PCI controller. Returns when either the polling exit criteria is
satisfied or after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_POLL_IO_MEM) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
 IN UINT64 Mask,
 IN UINT64 Value,
 IN UINT64 Delay,
 OUT UINT64 *Result
);

Parameters
This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type

EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Width Signifies the width of the I/O operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 13.4.

BarIndex The BAR index of the standard PCI Configuration header to use
as the base address for the I/O operation to perform. This allows
all drivers to use BAR relative addressing. The legal range for
this field is 0..5. However, the value
EFI_PCI_IO_PASS_THROUGH_BAR can be used to bypass
the BAR relative addressing and pass Offset to the PCI Root
Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in
Section 13.4.

Offset The offset within the selected BAR to start the I/O operation.

Mask Mask used for the polling criteria. Bytes above Width in Mask
are ignored. The bits in the bytes below Width which are zero in
Mask are ignored when polling the I/O address.

Value The comparison value used for the polling exit criteria.

Delay The number of 100 ns units to poll. Note that timer available may
be of poorer granularity.

Result Pointer to the last value read from the memory location.
Version 2.5 April, 2015 733

Unified Extensible Firmware Interface Specification
Description
This function provides a standard way to poll a PCI I/O location. A PCI I/O read operation is
performed at the PCI I/O address specified by BarIndex and Offset for the width specified by
Width. The result of this PCI I/O read operation is stored in Result. This PCI I/O read operation
is repeated until either a timeout of Delay 100 ns units has expired, or (Result & Mask) is
equal to Value.

This function will always perform at least one I/O access no matter how small Delay may be. If
Delay is 0, then Result will be returned with a status of EFI_SUCCESS even if Result does
not match the exit criteria. If Delay expires, then EFI_TIMEOUT is returned.

If Width is not EfiPciIoWidthUint8, EfiPciIoWidthUint16,
EfiPciIoWidthUint32, or EfiPciIoWidthUint64, then EFI_INVALID_PARAMETER
is returned.

The I/O operations are carried out exactly as requested. The caller is responsible satisfying any
alignment and I/O width restrictions that the PCI controller on a platform might require. For
example on some platforms, width requests of EfiPciIoWidthUint64 do not work.

All the PCI read transactions generated by this function are guaranteed to be completed before this
function returns.

Status Codes Returned

EFI_SUCCESS The last data returned from the access matched the poll exit criteria.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Result is NULL.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_UNSUPPORTED Offset is not valid for the PCI BAR specified by BarIndex.

EFI_TIMEOUT Delay expired before a match occurred.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
734 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_PCI_IO_PROTOCOL.Mem.Read()
EFI_PCI_IO_PROTOCOL.Mem.Write()

Summary
Enable a PCI driver to access PCI controller registers in the PCI memory space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_MEM) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type

EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 13.4.

BarIndex The BAR index of the standard PCI Configuration header to use
as the base address for the memory operation to perform. This
allows all drivers to use BAR relative addressing. The legal
range for this field is 0..5. However, the value
EFI_PCI_IO_PASS_THROUGH_BAR can be used to bypass
the BAR relative addressing and pass Offset to the PCI Root
Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in
Section 13.4.

Offset The offset within the selected BAR to start the memory
operation.

Count The number of memory operations to perform. Bytes moved is
Width size * Count, starting at Offset.

Buffer For read operations, the destination buffer to store the results.
For write operations, the source buffer to write data from.

Description
The Mem.Read(), and Mem.Write() functions enable a driver to access controller registers in
the PCI memory space.

The I/O operations are carried out exactly as requested. The caller is responsible for any alignment
and I/O width issues which the bus, device, platform, or type of I/O might require. For example on
some platforms, width requests of EfiPciIoWidthUint64 do not work.
Version 2.5 April, 2015 735

Unified Extensible Firmware Interface Specification
If Width is EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32,
or EfiPciIoWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciIoWidthFifoUint8, EfiPciIoWidthFifoUint16,
EfiPciIoWidthFifoUint32, or EfiPciIoWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is performed
Count times on the same Address.

If Width is EfiPciIoWidthFillUint8, EfiPciIoWidthFillUint16,
EfiPciIoWidthFillUint32, or EfiPciIoWidthFillUint64, then only Address
is incremented for each of the Count operations performed. The read or write operation is
performed Count times from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before
this function returns. All the PCI write transactions generated by this function will follow the
write ordering and completion rules defined in the PCI Specification. However, if the memory-
mapped I/O region being accessed by this function has the
EFI_PCI_ATTRIBUTE_MEMORY_CACHED attribute set, then the transactions will follow the
ordering rules defined by the processor architecture.

Status Codes Returned

EFI_SUCCESS The data was read from or written to the PCI controller.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_UNSUPPORTED The address range specified by Offset, Width, and Count is

not valid for the PCI BAR specified by BarIndex.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
736 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_PCI_IO_PROTOCOL.Io.Read()
EFI_PCI_IO_PROTOCOL.Io.Write()

Summary
Enable a PCI driver to access PCI controller registers in the PCI I/O space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_MEM) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 BarIndex,
 IN UINT64 Offset,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type

EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 13.4.

BarIndex The BAR index in the standard PCI Configuration header to use
as the base address for the I/O operation to perform. This allows
all drivers to use BAR relative addressing. The legal range for
this field is 0..5. However, the value
EFI_PCI_IO_PASS_THROUGH_BAR can be used to bypass
the BAR relative addressing and pass Offset to the PCI Root
Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in
Section 13.4.

Offset The offset within the selected BAR to start the I/O operation.

Count The number of I/O operations to perform. Bytes moved is
Width size * Count, starting at Offset.

Buffer For read operations, the destination buffer to store the results.
For write operations, the source buffer to write data from.

Description
The Io.Read(), and Io.Write() functions enable a driver to access PCI controller registers in
PCI I/O space.

The I/O operations are carried out exactly as requested. The caller is responsible for any alignment
and I/O width issues which the bus, device, platform, or type of I/O might require. For example on
some platforms, width requests of EfiPciIoWidthUint64 do not work.
Version 2.5 April, 2015 737

Unified Extensible Firmware Interface Specification
If Width is EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32,
or EfiPciIoWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciIoWidthFifoUint8, EfiPciIoWidthFifoUint16,
EfiPciIoWidthFifoUint32, or EfiPciIoWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is performed
Count times on the same Address.

If Width is EfiPciIoWidthFillUint8, EfiPciIoWidthFillUint16,
EfiPciIoWidthFillUint32, or EfiPciIoWidthFillUint64, then only Address is
incremented for each of the Count operations performed. The read or write operation is performed
Count times from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns.

Status Codes Returned

EFI_SUCCESS The data was read from or written to the PCI controller.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_UNSUPPORTED The address range specified by Offset, Width, and Count is

not valid for the PCI BAR specified by BarIndex.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
738 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_PCI_IO_PROTOCOL.Pci.Read()
EFI_PCI_IO_PROTOCOL.Pci.Write()

Summary
Enable a PCI driver to access PCI controller registers in PCI configuration space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_CONFIG) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT32 Offset,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type

EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 13.4.

Offset The offset within the PCI configuration space for the PCI
controller.

Count The number of PCI configuration operations to perform. Bytes
moved is Width size * Count, starting at Offset.

Buffer For read operations, the destination buffer to store the results.
For write operations, the source buffer to write data from.

Description
The Pci.Read() and Pci.Write() functions enable a driver to access PCI configuration
registers for the PCI controller.

The PCI Configuration operations are carried out exactly as requested. The caller is responsible for
any alignment and I/O width issues which the bus, device, platform, or type of I/O might require.
For example on some platforms, width requests of EfiPciIoWidthUint64 do not work.

If Width is EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32,
or EfiPciIoWidthUint64, then both Address and Buffer are incremented for each of the
Count operations performed.

If Width is EfiPciIoWidthFifoUint8, EfiPciIoWidthFifoUint16,
EfiPciIoWidthFifoUint32, or EfiPciIoWidthFifoUint64, then only Buffer is
incremented for each of the Count operations performed. The read or write operation is performed
Count times on the same Address.

If Width is EfiPciIoWidthFillUint8, EfiPciIoWidthFillUint16,
EfiPciIoWidthFillUint32, or EfiPciIoWidthFillUint64, then only Address is
Version 2.5 April, 2015 739

Unified Extensible Firmware Interface Specification
incremented for each of the Count operations performed. The read or write operation is performed
Count times from the first element of Buffer.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns.

Status Codes Returned

EFI_SUCCESS The data was read from or written to the PCI controller.

EFI_INVALID_PARAMETER Width is invalid.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED The address range specified by Offset, Width, and Count is

not valid for the PCI configuration header of the PCI controller.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
740 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_PCI_IO_PROTOCOL.CopyMem()

Summary
Enables a PCI driver to copy one region of PCI memory space to another region of PCI
memory space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_COPY_MEM) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
 IN UINT8 DestBarIndex,
 IN UINT64 DestOffset,
 IN UINT8 SrcBarIndex,
 IN UINT64 SrcOffset,
 IN UINTN Count
);

Parameters
This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type

EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Width Signifies the width of the memory operations. Type
EFI_PCI_IO_PROTOCOL_WIDTH is defined in Section 13.4.

DestBarIndex The BAR index in the standard PCI Configuration header to use
as the base address for the memory operation to perform. This
allows all drivers to use BAR relative addressing. The legal
range for this field is 0..5. However, the value
EFI_PCI_IO_PASS_THROUGH_BAR can be used to bypass
the BAR relative addressing and pass Offset to the PCI Root
Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in
Section 13.4.

DestOffset The destination offset within the BAR specified by
DestBarIndex to start the memory writes for the copy
operation. The caller is responsible for aligning the
DestOffset if required.

SrcBarIndex The BAR index in the standard PCI Configuration header to use
as the base address for the memory operation to perform. This
allows all drivers to use BAR relative addressing. The legal
range for this field is 0..5. However, the value
EFI_PCI_IO_PASS_THROUGH_BAR can be used to bypass
the BAR relative addressing and pass Offset to the PCI Root
Bridge I/O Protocol unchanged. Type
EFI_PCI_IO_PASS_THROUGH_BAR is defined in
Section 13.4.
Version 2.5 April, 2015 741

Unified Extensible Firmware Interface Specification
SrcOffset The source offset within the BAR specified by SrcBarIndex
to start the memory reads for the copy operation. The caller is
responsible for aligning the SrcOffset if required.

Count The number of memory operations to perform. Bytes moved is
Width size * Count, starting at DestOffset and
SrcOffset.

Description
The CopyMem() function enables a PCI driver to copy one region of PCI memory space to another
region of PCI memory space on a PCI controller. This is especially useful for video scroll
operations on a memory mapped video buffer.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying
any alignment and memory width restrictions that a PCI controller on a platform might require. For
example on some platforms, width requests of EfiPciIoWidthUint64 do not work.

If Width is EfiPciIoWidthUint8, EfiPciIoWidthUint16, EfiPciIoWidthUint32,
or EfiPciIoWidthUint64, then Count read/write transactions are performed to move the
contents of the SrcOffset buffer to the DestOffset buffer. The implementation must be
reentrant, and it must handle overlapping SrcOffset and DestOffset buffers. This means that
the implementation of CopyMem() must choose the correct direction of the copy operation based
on the type of overlap that exists between the SrcOffset and DestOffset buffers. If either the
SrcOffset buffer or the DestOffset buffer crosses the top of the processor’s address space,
then the result of the copy operation is unpredictable.

The contents of the DestOffset buffer on exit from this service must match the contents of the
SrcOffset buffer on entry to this service. Due to potential overlaps, the contents of the
SrcOffset buffer may be modified by this service. The following rules can be used to guarantee
the correct behavior:

• If DestOffset > SrcOffset and DestOffset < (SrcOffset + Width size * Count),
then the data should be copied from the SrcOffset buffer to the DestOffset buffer
starting from the end of buffers and working toward the beginning of the buffers.

• Otherwise, the data should be copied from the SrcOffset buffer to the DestOffset buffer
starting from the beginning of the buffers and working toward the end of the buffers.

All the PCI transactions generated by this function are guaranteed to be completed before this
function returns. All the PCI write transactions generated by this function will follow the write
ordering and completion rules defined in the PCI Specification. However, if the memory-mapped I/
O region being accessed by this function has the EFI_PCI_ATTRIBUTE_MEMORY_CACHED
attribute set, then the transactions will follow the ordering rules defined by the processor
architecture.

Status Codes Returned

EFI_SUCCESS The data was copied from one memory region to another memory
region.

EFI_INVALID_PARAMETER Width is invalid.

EFI_UNSUPPORTED DestBarIndex not valid for this PCI controller.
742 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_UNSUPPORTED SrcBarIndex not valid for this PCI controller.

EFI_UNSUPPORTED The address range specified by DestOffset, Width, and

Count is not valid for the PCI BAR specified by

DestBarIndex.

EFI_UNSUPPORTED The address range specified by SrcOffset, Width, and

Count is not valid for the PCI BAR specified by

SrcBarIndex.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
Version 2.5 April, 2015 743

Unified Extensible Firmware Interface Specification
EFI_PCI_IO_PROTOCOL.Map()

Summary
Provides the PCI controller–specific addresses needed to access system memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_MAP) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_OPERATION Operation,
 IN VOID *HostAddress,
 IN OUT UINTN *NumberOfBytes,
 OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
 OUT VOID **Mapping
);

Parameters
This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type

EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Operation Indicates if the bus master is going to read or write to system
memory. Type EFI_PCI_IO_PROTOCOL_OPERATION is
defined in Section 13.4.

HostAddress The system memory address to map to the PCI controller.

NumberOfBytes On input the number of bytes to map. On output the number of
bytes that were mapped.

DeviceAddress The resulting map address for the bus master PCI controller to
use to access the hosts HostAddress. Type
EFI_PHYSICAL_ADDRESS is defined in Section 6.2. This
address cannot be used by the processor to access the contents of
the buffer specified by HostAddress.

Mapping A resulting value to pass to Unmap().

Description
The Map() function provides the PCI controller–specific addresses needed to access system
memory. This function is used to map system memory for PCI bus master DMA accesses.

All PCI bus master accesses must be performed through their mapped addresses and such mappings
must be freed with Unmap() when complete. If the bus master access is a single read or write data
transfer, then EfiPciIoOperationBusMasterRead or EfiPciIoOperation-
BusMasterWrite is used and the range is unmapped to complete the operation. If performing an
EfiPciIoOperationBusMasterRead operation, all the data must be present in system
memory before the Map() is performed. Similarly, if performing an EfiPciIoOperation-
BusMasterWrite, the data cannot be properly accessed in system memory until Unmap()
is performed.
744 April, 2015 Version 2.5

Protocols - PCI Bus Support
Bus master operations that require both read and write access or require multiple host device
interactions within the same mapped region must use EfiPciIoOperation-
BusMasterCommonBuffer. However, only memory allocated via the AllocateBuffer()
interface can be mapped for this operation type.

In all mapping requests the resulting NumberOfBytes actually mapped may be less than the
requested amount. In this case, the DMA operation will have to be broken up into smaller chunks.
The Map() function will map as much of the DMA operation as it can at one time. The caller may
have to loop on Map() and Unmap() in order to complete a large DMA transfer.

Status Codes Returned

EFI_SUCCESS The range was mapped for the returned NumberOfBytes.

EFI_INVALID_PARAMETER Operation is invalid.

EFI_INVALID_PARAMETER HostAddress is NULL.

EFI_INVALID_PARAMETER NumberOfBytes is NULL.

EFI_INVALID_PARAMETER DeviceAddress is NULL.

EFI_INVALID_PARAMETER Mapping is NULL.

EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer.

EFI_DEVICE_ERROR The system hardware could not map the requested address.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
Version 2.5 April, 2015 745

Unified Extensible Firmware Interface Specification
EFI_PCI_IO_PROTOCOL.Unmap()

Summary
Completes the Map() operation and releases any corresponding resources.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_UNMAP) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN VOID *Mapping
);

Parameters
This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type

EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Mapping The mapping value returned from Map().

Description
The Unmap() function completes the Map() operation and releases any corresponding resources.
If the operation was an EfiPciIoOperationBusMasterWrite, the data is committed to the
target system memory. Any resources used for the mapping are freed.

Status Codes Returned

EFI_SUCCESS The range was unmapped.

EFI_DEVICE_ERROR The data was not committed to the target system memory.
746 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_PCI_IO_PROTOCOL.AllocateBuffer()

Summary
Allocates pages that are suitable for an EfiPciIoOperationBusMasterCommonBuffer
mapping.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_ALLOCATE_BUFFER) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_ALLOCATE_TYPE Type,
 IN EFI_MEMORY_TYPE MemoryType,
 IN UINTN Pages,
 OUT VOID **HostAddress,
 IN UINT64 Attributes
);

Parameters
This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type

EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Type This parameter is not used and must be ignored.

MemoryType The type of memory to allocate, EfiBootServicesData or
EfiRuntimeServicesData. Type EFI_MEMORY_TYPE is
defined in Chapter Section 6.2.

Pages The number of pages to allocate.

HostAddress A pointer to store the base system memory address of the
allocated range.

Attributes The requested bit mask of attributes for the allocated range. Only
the attributes
EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE, and
EFI_PCI_ATTRIBUTE_MEMORY_CACHED may be used with
this function. If any other bits are set, then EFI_UNSUPPORTED
is returned. This function may choose to ignore this bit mask.
The EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE,
and EFI_PCI_ATTRIBUTE_MEMORY_CACHED attributes
provide a hint to the implementation that may improve the
performance of the calling driver. The implementation may
choose any default for the memory attributes including write
combining, cached, both, or neither as long as the allocated buffer
can be seen equally by both the processor and the PCI bus master.

Description
The AllocateBuffer() function allocates pages that are suitable for an
EfiPciIoOperationBusMasterCommonBuffer mapping. This means that the buffer
allocated by this function must support simultaneous access by both the processor and a PCI Bus
Version 2.5 April, 2015 747

Unified Extensible Firmware Interface Specification
Master. The device address that the PCI Bus Master uses to access the buffer can be retrieved with a
call to Map().

If the current attributes of the PCI controller has the
EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE bit set, then when the buffer allocated by
this function is mapped with a call to Map(), the device address that is returned by Map() must be
within the 64-bit device address space of the PCI Bus Master. The attributes for a PCI controller can
be managed by calling Attributes().

If the current attributes for the PCI controller has the
EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE bit clear, then when the buffer allocated
by this function is mapped with a call to Map(), the device address that is returned by Map() must
be within the 32-bit device address space of the PCI Bus Master. The attributes for a PCI controller
can be managed by calling Attributes().

If the memory allocation specified by MemoryType and Pages cannot be satisfied, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The requested memory pages were allocated.

EFI_INVALID_PARAMETER MemoryType is invalid.

EFI_INVALID_PARAMETER HostAddress is NULL.

EFI_UNSUPPORTED Attributes is unsupported. The only legal attribute bits are

MEMORY_WRITE_COMBINE and MEMORY_CACHED.

EFI_OUT_OF_RESOURCES The memory pages could not be allocated.
748 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_PCI_IO_PROTOCOL.FreeBuffer()

Summary
Frees memory that was allocated with AllocateBuffer() .

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_FREE_BUFFER) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN UINTN Pages,
 IN VOID *HostAddress
);

Parameters
This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type

EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Pages The number of pages to free.

HostAddress The base system memory address of the allocated range.

Description
The FreeBuffer() function frees memory that was allocated with AllocateBuffer().

Status Codes Returned

EFI_SUCCESS The requested memory pages were freed.

EFI_INVALID_PARAMETER The memory range specified by HostAddress and Pages

was not allocated with AllocateBuffer().
Version 2.5 April, 2015 749

Unified Extensible Firmware Interface Specification
EFI_PCI_IO_PROTOCOL.Flush()

Summary
Flushes all PCI posted write transactions from a PCI host bridge to system memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_FLUSH) (
 IN EFI_PCI_IO_PROTOCOL *This
);

Parameters
This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type

EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Description
The Flush() function flushes any PCI posted write transactions from a PCI host bridge to system
memory. Posted write transactions are generated by PCI bus masters when they perform write
transactions to target addresses in system memory.

This function does not flush posted write transactions from any PCI bridges. A PCI controller
specific action must be taken to guarantee that the posted write transactions have been flushed from
the PCI controller and from all the PCI bridges into the PCI host bridge. This is typically done with
a PCI read transaction from the PCI controller prior to calling Flush().

If the PCI controller specific action required to flush the PCI posted write transactions has been
performed, and this function returns EFI_SUCCESS, then the PCI bus master’s view and the
processor’s view of system memory are guaranteed to be coherent. If the PCI posted write
transactions cannot be flushed from the PCI host bridge, then the PCI bus master and processor are
not guaranteed to have a coherent view of system memory, and EFI_DEVICE_ERROR is returned.

Status Codes Returned

EFI_SUCCESS The PCI posted write transactions were flushed from the PCI host
bridge to system memory.

EFI_DEVICE_ERROR The PCI posted write transactions were not flushed from the PCI
host bridge due to a hardware error.
750 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_PCI_IO_PROTOCOL.GetLocation()

Summary
Retrieves this PCI controller’s current PCI bus number, device number, and function number.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_GET_LOCATION) (
 IN EFI_PCI_IO_PROTOCOL *This,
 OUT UINTN *SegmentNumber,
 OUT UINTN *BusNumber,
 OUT UINTN *DeviceNumber,
 OUT UINTN *FunctionNumber
);

Parameters
This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type

EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

SegmentNumber The PCI controller’s current PCI segment number.

BusNumber The PCI controller’s current PCI bus number.

DeviceNumber The PCI controller’s current PCI device number.

FunctionNumber The PCI controller’s current PCI function number.

Description
The GetLocation() function retrieves a PCI controller’s current location on a PCI Host Bridge.
This is specified by a PCI segment number, PCI bus number, PCI device number, and PCI function
number. These values can be used with the PCI Root Bridge I/O Protocol to perform PCI
configuration cycles on the PCI controller, or any of its peer PCI controller’s on the same PCI Host
Bridge.

Status Codes Returned

EFI_SUCCESS The PCI controller location was returned.

EFI_INVALID_PARAMETER SegmentNumber is NULL.

EFI_INVALID_PARAMETER BusNumber is NULL.

EFI_INVALID_PARAMETER DeviceNumber is NULL.

EFI_INVALID_PARAMETER FunctionNumber is NULL.
Version 2.5 April, 2015 751

Unified Extensible Firmware Interface Specification
EFI_PCI_IO_PROTOCOL.Attributes()

Summary
Performs an operation on the attributes that this PCI controller supports. The operations include
getting the set of supported attributes, retrieving the current attributes, setting the current attributes,
enabling attributes, and disabling attributes.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_ATTRIBUTES) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION Operation,
 IN UINT64 Attributes,
 OUT UINT64 *Result OPTIONAL
);

Parameters
This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type

EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Operation The operation to perform on the attributes for this PCI controller.
Type EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION
is defined in “Related Definitions” below.

Attributes The mask of attributes that are used for Set, Enable, and
Disable operations. The available attributes are listed in
Section 13.4.

Result A pointer to the result mask of attributes that are returned for the
Get and Supported operations. This is an optional parameter
that may be NULL for the Set, Enable, and Disable
operations. The available attributes are listed in Section 13.4.

Related Definitions
//***
// EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION
//***
typedef enum {
 EfiPciIoAttributeOperationGet,
 EfiPciIoAttributeOperationSet,
 EfiPciIoAttributeOperationEnable,
 EfiPciIoAttributeOperationDisable,
 EfiPciIoAttributeOperationSupported,
 EfiPciIoAttributeOperationMaximum
} EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION;
752 April, 2015 Version 2.5

Protocols - PCI Bus Support
EfiPciIoAttributeOperationGet

Retrieve the PCI controller’s current attributes, and return them in Result. If
Result is NULL, then EFI_INVALID_PARAMER is returned. For this operation,
Attributes is ignored.

EfiPciIoAttributeOperationSet

Set the PCI controller’s current attributes to Attributes. If a bit is set in
Attributes that is not supported by this PCI controller or one of its parent bridges,
then EFI_UNSUPPORTED is returned. For this operation, Result is an optional
parameter that may be NULL.

EfiPciIoAttributeOperationEnable

Enable the attributes specified by the bits that are set in Attributes for this PCI
controller. Bits in Attributes that are clear are ignored. If a bit is set in
Attributes that is not supported by this PCI controller or one of its parent bridges,
then EFI_UNSUPPORTED is returned. For this operation, Result is an optional
parameter that may be NULL.

EfiPciIoAttributeOperationDisable

Disable the attributes specified by the bits that are set in Attributes for this PCI
controller. Bits in Attributes that are clear are ignored. If a bit is set in
Attributes that is not supported by this PCI controller or one of its parent bridges,
then EFI_UNSUPPORTED is returned. For this operation, Result is an optional
parameter that may be NULL.

EfiPciIoAttributeOperationSupported

Retrieve the PCI controller's supported attributes, and return them in Result. If
Result is NULL, then EFI_INVALID_PARAMER is returned. For this operation,
Attributes is ignored.

Description
The Attributes() function performs an operation on the attributes associated with this PCI
controller. If Operation is greater than or equal to the maximum operation value, then
EFI_INVALID_PARAMETER is returned. If Operation is Get or Supported, and Result
is NULL, then EFI_INVALID_PARAMETER is returned. If Operation is Set, Enable, or
Disable for an attribute that is not supported by the PCI controller, then EFI_UNSUPPORTED is
returned. Otherwise, the operation is performed as described in “Related Definitions” and
EFI_SUCCESS is returned. It is possible for this function to return EFI_UNSUPPORTED even if
the PCI controller supports the attribute. This can occur when the PCI root bridge does not support
the attribute. For example, if VGA I/O and VGA Memory transactions cannot be forwarded onto
PCI root bridge #2, then a request by a PCI VGA driver to enable the VGA_IO and VGA_MEMORY
bits will fail even though a PCI VGA controller behind PCI root bridge #2 is able to decode these
transactions.

This function will also return EFI_UNSUPPORTED if more than one PCI controller on the same
PCI root bridge has already successfully requested one of the ISA addressing attributes. For
example, if one PCI VGA controller had already requested the VGA_IO and VGA_MEMORY
attributes, then a second PCI VGA controller on the same root bridge cannot succeed in requesting
those same attributes. This restriction applies to the ISA-, VGA-, and IDE-related attributes.
Version 2.5 April, 2015 753

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS The operation on the PCI controller's attributes was completed. If

the operation was Get or Supported, then the attribute mask is

returned in Result.

EFI_INVALID_PARAMETER Operation is greater than or equal to

EfiPciIoAttributeOperationMaximum.

EFI_INVALID_PARAMETER Operation is Get and Result is NULL.

EFI_INVALID_PARAMETER Operation is Supported and Result is NULL.

EFI_UNSUPPORTED Operation is Set, and one or more of the bits set in

Attributes are not supported by this PCI controller or one of

its parent bridges.

EFI_UNSUPPORTED Operation is Enable, and one or more of the bits set in

Attributes are not supported by this PCI controller or one of

its parent bridges.

EFI_UNSUPPORTED Operation is Disable, and one or more of the bits set in

Attributes are not supported by this PCI controller or one of

its parent bridges.
754 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_PCI_IO_PROTOCOL.GetBarAttributes()

Summary
Gets the attributes that this PCI controller supports setting on a BAR using
SetBarAttributes(), and retrieves the list of resource descriptors for a BAR.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_GET_BAR_ATTRIBUTES) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN UINT8 BarIndex,
 OUT UINT64 *Supports OPTIONAL,
 OUT VOID **Resources OPTIONAL
);

Parameters
This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type

EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

BarIndex The BAR index of the standard PCI Configuration header to use
as the base address for resource range. The legal range for this
field is 0..5.

Supports A pointer to the mask of attributes that this PCI controller
supports setting for this BAR with SetBarAttributes().
The list of attributes is listed in Section 13.4. This is an optional
parameter that may be NULL.

Resources A pointer to the ACPI 2.0 resource descriptors that describe the
current configuration of this BAR of the PCI controller. This
buffer is allocated for the caller with the Boot Service
EFI_BOOT_SERVICES.AllocatePool(). It is the caller’s
responsibility to free the buffer with the Boot Service
EFI_BOOT_SERVICES.FreePool(). See “Related
Definitions” below for the ACPI 2.0 resource descriptors that
may be used. This is an optional parameter that may be NULL.

Related Definitions
There are only two resource descriptor types from the ACPI Specification that may be used to
describe the current resources allocated to BAR of a PCI Controller. These are the QWORD
Address Space Descriptor (ACPI 2.0 Section 6.4.3.5.1), and the End Tag (ACPI 2.0 Section 6.4.2.8).
The QWORD Address Space Descriptor can describe memory, I/O, and bus number ranges for
dynamic or fixed resources. The configuration of a BAR of a PCI Controller is described with one
or more QWORD Address Space Descriptors followed by an End Tag. Table 118 and Table 119
contain these two descriptor types. Please see the ACPI Specification for details on the field values.
Version 2.5 April, 2015 755

Unified Extensible Firmware Interface Specification
Table 118. ACPI 2.0 QWORD Address Space Descriptor

Table 119. ACPI 2.0 End Tag

Description
The GetBarAttributes() function returns in Supports the mask of attributes that the PCI
controller supports setting for the BAR specified by BarIndex. It also returns in Resources a
list of ACPI 2.0 resource descriptors for the BAR specified by BarIndex. Both Supports and
Resources are optional parameters. If both Supports and Resources are NULL, then
EFI_INVALID_PARAMETER is returned. It is the caller’s responsibility to free Resources with
the Boot Service EFI_BOOT_SERVICES.FreePool() when the caller is done with the contents
of Resources. If there are not enough resources to allocate Resources, then
EFI_OUT_OF_RESOURCES is returned.

If a bit is set in Supports, then the PCI controller supports this attribute type for the BAR
specified by BarIndex, and a call can be made to SetBarAttributes() using that
attribute type.

Status Codes Returned

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x8A QWORD Address Space Descriptor

0x01 0x02 0x2B Length of this descriptor in bytes not including the first two fields

0x03 0x01 Resource Type
 0 – Memory Range
 1 – I/O Range
 2 – Bus Number Range

0x04 0x01 General Flags

0x05 0x01 Type Specific Flags

0x06 0x08 Address Space Granularity

0x0E 0x08 Address Range Minimum

0x16 0x08 Address Range Maximum

0x1E 0x08 Address Translation Offset

0x26 0x08 Address Length

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x79 End Tag

0x01 0x01 0x00 Checksum. If 0, then checksum is assumed to be valid.

EFI_SUCCESS If Supports is not NULL, then the attributes that the PCI

controller supports are returned in Supports. If Resources

is not NULL, then the ACPI 2.0 resource descriptors that the PCI

controller is currently using are returned in Resources.
756 April, 2015 Version 2.5

Protocols - PCI Bus Support
EFI_OUT_OF_RESOURCES There are not enough resources available to allocate

Resources.

EFI_UNSUPPORTED BarIndex not valid for this PCI controller.

EFI_INVALID_PARAMETER Both Supports and Attributes are NULL.
Version 2.5 April, 2015 757

Unified Extensible Firmware Interface Specification
EFI_PCI_IO_PROTOCOL.SetBarAttributes()

Summary
Sets the attributes for a range of a BAR on a PCI controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_IO_PROTOCOL_SET_BAR_ATTRIBUTES) (
 IN EFI_PCI_IO_PROTOCOL *This,
 IN UINT64 Attributes,
 IN UINT8 BarIndex,
 IN OUT UINT64 *Offset,
 IN OUT UINT64 *Length

);

Parameters
This A pointer to the EFI_PCI_IO_PROTOCOL instance. Type

EFI_PCI_IO_PROTOCOL is defined in Section 13.4.

Attributes The mask of attributes to set for the resource range specified by
BarIndex, Offset, and Length.

BarIndex The BAR index of the standard PCI Configuration header to use
as the base address for the resource range. The legal range for
this field is 0..5.

Offset A pointer to the BAR relative base address of the resource range
to be modified by the attributes specified by Attributes. On
return, *Offset will be set to the actual base address of the
resource range. Not all resources can be set to a byte boundary,
so the actual base address may differ from the one passed in by
the caller.

Length A pointer to the length of the resource range to be modified by the
attributes specified by Attributes. On return, *Length will
be set to the actual length of the resource range. Not all resources
can be set to a byte boundary, so the actual length may differ
from the one passed in by the caller.

Description
The SetBarAttributes() function sets the attributes specified in Attributes for the PCI
controller on the resource range specified by BarIndex, Offset, and Length. Since the
granularity of setting these attributes may vary from resource type to resource type, and from
platform to platform, the actual resource range and the one passed in by the caller may differ. As a
result, this function may set the attributes specified by Attributes on a larger resource range
than the caller requested. The actual range is returned in Offset and Length. The caller is
responsible for verifying that the actual range for which the attributes were set is acceptable.

If the attributes are set on the PCI controller, then the actual resource range is returned in Offset
and Length, and EFI_SUCCESS is returned. Many of the attribute types also require that the state
758 April, 2015 Version 2.5

Protocols - PCI Bus Support
of the PCI Host Bus Controller and the state of any PCI to PCI bridges between the PCI Host Bus
Controller and the PCI Controller to be modified. This function will only return EFI_SUCCESS is
all of these state changes are made. The PCI Controller may support a combination of attributes, but
unless the PCI Host Bus Controller and the PCI to PCI bridges also support that same combination
of attributes, then this call will return an error.

If the attributes specified by Attributes, or the resource range specified by BarIndex,
Offset, and Length are not supported by the PCI controller, then EFI_UNSUPPORTED is
returned. The set of supported attributes for the PCI controller can be found by calling
GetBarAttributes().

If either Offset or Length is NULL then EFI_INVALID_PARAMETER is returned.

If there are not enough resources available to set the attributes, then EFI_OUT_OF_RESOURCES is
returned.

Status Codes Returned

13.4.1 PCI Device Paths
An EFI_PCI_IO_PROTOCOL must be installed on a handle for its services to be available to PCI
device drivers. In addition to the EFI_PCI_IO_PROTOCOL, an
EFI_DEVICE_PATH_PROTOCOL must also be installed on the same handle. See Chapter
Section 9 for a detailed description of the EFI_DEVICE_PATH_PROTOCOL.

Typically, an ACPI Device Path Node is used to describe a PCI Root Bridge. Depending on the bus
hierarchy in the system, additional device path nodes may precede this ACPI Device Path Node. A
PCI device path is described with PCI Device Path Nodes. There will be one PCI Device Path node
for the PCI controller itself, and one PCI Device Path Node for each PCI to PCI Bridge that is
between the PCI controller and the PCI Root Bridge.

Table 120 shows an example device path for a PCI controller that is located at PCI device number
0x07 and PCI function 0x00, and is directly attached to a PCI root bridge. This device path consists
of an ACPI Device Path Node, a PCI Device Path Node, and a Device Path End Structure. The
_HID and _UID must match the ACPI table description of the PCI Root Bridge. The shorthand
notation for this device path is:

ACPI(PNP0A03,0)/PCI(7,0).

EFI_SUCCESS The set of attributes specified by Attributes for the resource

range specified by BarIndex, Offset, and Length were set

on the PCI controller, and the actual resource range is returned in

Offset and Length.

EFI_UNSUPPORTED The set of attributes specified by Attributes is not supported

by the PCI controller for the resource range specified by

BarIndex, Offset, and Length.

EFI_INVALID_PARAMETER Offset is NULL.

EFI_INVALID_PARAMETER Length is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to set the attributes on the resource

range specified by BarIndex, Offset, and Length.
Version 2.5 April, 2015 759

Unified Extensible Firmware Interface Specification
Table 120. PCI Device 7, Function 0 on PCI Root Bridge 0

Table 121 shows an example device path for a PCI controller that is located behind a PCI to PCI
bridge at PCI device number 0x07 and PCI function 0x00. The PCI to PCI bridge is directly
attached to a PCI root bridge, and it is at PCI device number 0x05 and PCI function 0x00. This
device path consists of an ACPI Device Path Node, two PCI Device Path Nodes, and a Device Path
End Structure. The _HID and _UID must match the ACPI table description of the PCI Root Bridge.
The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(5,0)/PCI(7,0).

Table 121. PCI Device 7, Function 0 behind PCI to PCI bridge

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x13 0x01 0xFF Sub type – End of Entire Device Path

0x14 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x05 PCI Device
760 April, 2015 Version 2.5

Protocols - PCI Bus Support
13.4.2 PCI Option ROMs
EFI takes advantage of both the PCI Firmware Specification and the PE/COFF Specification to
store EFI images in a PCI Option ROM. There are several rules that must be followed when
constructing a PCI Option ROM:

• A PCI Option ROM can be no larger than 16 MiB.

• A PCI Option ROM may contain one or more images.

• Each image must being on a 512-byte boundary.

• Each image must be an even multiple of 512 bytes in length. This means that images that are not
an even multiple of 512 bytes in length must be padded to the next 512-byte boundary.

• Legacy Option ROM images begin with a Standard PCI Expansion ROM Header (Table 122).

• EFI Option ROM images begin with an EFI PCI Expansion ROM Header (Table 126).

• Each image must contain a PCIR data structure in the first 64 KiB of the image.

• The image data for an EFI Option ROM image must begin in the first 64 KiB of the image.

• The image data for an EFI Option ROM image must be a PE/COFF image or a compressed PE/
COFF image following the UEFI Compression Algorithm, and referencing Appendix H for the
Compression Source Code.

• The PCIR data structure must begin on a 4-byte boundary.

• If the PCI Option ROM contains a Legacy Option ROM image, it must be the first image.

• The images are placed in the PCI Option ROM in order from highest to lowest priority. This
priority is used to build the ordered list of Driver Image Handles that are produced by the Bus
Specific Driver Override Protocol for a PCI Controller.

• When PCI device provides an EFI option ROM that is signed in accordance with Chapter 27, use
of UEFI Compression Algorithm storage option is preferred. When performing signature
validation upon compressed driver, the size returned by
EFI_DECOMPRESS_PROTOCOL.GetInfo()will be used as driver size and input to
signature validation process. Thus any post-driver padding required to reach exact multiple of
512 bytes per Figure 45 is ignored by signature validation.

• When PCI device provides an EFI option ROM that is signed in accordance with Chapter 27 and
stored uncompressed, the end of the driver for signature validation will be the assumed to be the

0x12 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x13 0x01 0x01 Sub type – PCI

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 PCI Function

0x17 0x01 0x07 PCI Device

0x18 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x19 0x01 0xFF Sub type – End of Entire Device Path

0x1A 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length

Data

Description
Version 2.5 April, 2015 761

Unified Extensible Firmware Interface Specification
512-byte boundary indicated by the ‘Initialization Size’ value in the EFI PCI Expansion ROM
Header (see Table 124). As the signed driver may not exactly fill the indicated ‘Initialization
Size’, it is recommended that the value ‘Offset to EFI Image’ (also Table 124) be adjusted to
ensure the last byte of the signed, uncompressed driver, coincides with the end of the ROM as
indicated by ‘Initialization Size’. And any required padding bytes are to be inserted ahead of the
signed uncompressed driver image.

There are several options available when building a PCI option ROM for a PCI adapter. A PCI
Option ROM can choose to support only a legacy PC-AT platform, only an EFI compliant platform,
or both. This flexibility allows a migration path from adapters that support only legacy PC-AT
platforms, to adapters that support both PC-AT platforms and EFI compliant platforms, to adapters
that support only EFI compliant platforms. The following is a list of the image combinations that
may be placed in a PCI option ROM. This is not an exhaustive list. Instead, it provides what will
likely be the most common PCI option ROM layouts. EFI complaint system firmware must work
with all of these PCI option ROM layouts, plus any other layouts that are possible within the PCI
Firmware Specification. The format of a Legacy Option ROM image is defined in the PCI
Firmware Specification.

• Legacy Option ROM image

• Legacy Option ROM image + IA-32 EFI driver

• Legacy Option ROM image + Itanium Processor Family EFI driver

• Legacy Option ROM image + IA-32 EFI driver + Itanium Processor Family EFI driver

• Legacy Option ROM image + IA-32 EFI driver + x64 EFI driver

• Legacy Option ROM image + EBC Driver

• IA-32 UEFI driver

• Itanium Processor Family EFI driver

• IA-32 UEFI driver + Itanium Processor Family EFI driver

• EBC Driver

In addition to combinations of UEFI drivers with different processor binding, it is also possible to
include multiple drivers of different function but the same processor binding. When processing
option ROM contents, all drivers of appropriate processor binding type must be loaded and added to
ordered list of drivers previously mentioned.

It is also possible to place a application written to this specification in a PCI Option ROM.
However, the PCI Bus Driver will ignore these images. The exact mechanism by which applications
can be loaded and executed from a PCI Option ROM is outside the scope of this document.

Table 122. Standard PCI Expansion ROM Header (Example from PCI Firmware Specification
3.0)

Offset Byte Length Value Description

0x00 1 0x55 ROM Signature, byte 1

0x01 1 0xAA ROM Signature, byte 2

0x02-0x17 22 XX Reserved per processor architecture unique data

0x18-0x19 2 XX Pointer to PCIR Data Structure
762 April, 2015 Version 2.5

Protocols - PCI Bus Support
Table 123. PCI Expansion ROM Code Types (Example from PCI Firmware Specification 3.0)

Table 124. EFI PCI Expansion ROM Header

13.4.2.1 PCI Bus Driver Responsibilities
A PCI Bus Driver must scan a PCI Option ROM for PCI Device Drivers. If a PCI Option ROM is
found during PCI Enumeration, then a copy of the PCI Option ROM is placed in a memory buffer.
The PCI Bus Driver will use the memory copy of the PCI Option ROM to search for UEFI drivers
after PCI Enumeration. The PCI Bus Driver will search the list of images in a PCI Option ROM for
the ones that have a Code Type of 0x03 in the PCIR Data Structure, and a Signature of 0xEF1 in the
EFI PCI Expansion ROM Header. Then, it will examine the Subsystem Type of the EFI PCI
Expansion ROM Header. If the Subsystem Type is
IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER(11) or
IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER(12), then the PCI Bus Driver can load the PCI
Device Driver from the PCI Option ROM. The Offset to EFI Image Header field of the EFI PCI
Expansion ROM Header is used to get a pointer to the beginning of the PE/COFF image in the PCI
Option ROM. The PE/COFF image may have been compressed using the UEFI Compression
Algorithm. If it has been compressed, then the PCI Bus Driver must decompress the driver to a
memory buffer. The Boot Service EFI_BOOT_SERVICES.LoadImage() can then be used to

Code Type Description

0x00 IA-32, PC-AT compatible

0x01 Open Firmware standard for PCI

0x02 Hewlett-Packard PA RISC

0x03 EFI Image

0x04-0xFF Reserved

Offset

Byte
Length

Value

Description

0x00 1 0x55 ROM Signature, byte 1

0x01 1 0xAA ROM Signature, byte 2

0x02 2 XXXX Initialization Size – size of this image in units of 512 bytes. The size
includes this header.

0x04 4 0x0EF1 Signature from EFI image header

0x08 2 XX Subsystem value for EFI image header

0x0a 2 XX Machine type from EFI image header

0x0c 2 XX Compression type
0x0000 - The image is uncompressed
0x0001 - The image is compressed. See the

UEFI Compression Algorithm and
 Appendix H.
0x0002 - 0xFFFF - Reserved

0x0e 8 0x00 Reserved

0x16 2 XX Offset to EFI Image

0x18 2 XX Offset to PCIR Data Structure
Version 2.5 April, 2015 763

Unified Extensible Firmware Interface Specification
load the driver. All UEFI driver images discovered in the PCI Option ROM and meeting these
requirements must be processed and loaded via LoadImage(). If the platform does not support the
Machine Type of the driver, then LoadImage() may fail.

It is the PCI Bus Driver's responsibility to verify that the Expansion ROM Header and PCIR Data
Structure are valid. It is the responsibly of the Boot Service LoadImage() to verify that the PE/
COFF image is valid. The Boot Service LoadImage() may fail for several reasons including a
corrupt PE/COFF image or an unsupported Machine Type.

If a PCI Option ROM contains one or more UEFI images, then the PCI Bus Driver must install an
instance of the EFI_LOAD_FILE2_PROTOCOL on the PCI controller handle. Then, when the PCI
Bus Driver loads a PE/COFF image from a PCI Option ROM using the Boot Service
LoadImage(), the PCI Bus Driver must provide the device path of the image being loaded. The
device path of an image loaded from a PCI Option ROM must be the device path to the PCI
Controller to which the PCI Option ROM is attached followed by a Relative Offset Range node.
The Starting Offset field of the Relative Offset Range node must be the byte offset from the
beginning of the PCI Option ROM to the beginning of the EFI Option ROM image, and the Ending
Offset field of the Relative Offset Range node must be the byte offset from the beginning of the PCI
Option ROM to the end of the EFI Option ROM image. The table below shows an example device
path for an EFI driver loaded from a PCI Option ROM. The EFI Driver starts at offset 0x8000 into
the PCI Option ROM and is 0x2000 bytes long. The shorthand notation for this device path is:

PciRoot(0)/PCI(5,0)/PCI(7,0)/ Offset(0x8000,0x9FFF)

Table 125. Device Path for an EFI Driver loaded from PCI Option ROM

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x05 PCI Device

0x12 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x13 0x01 0x01 Sub type – PCI

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 PCI Function

0x17 0x01 0x07 PCI Device

0x18 0x01 0x04 Generic Device Path Header – Type Media Device Path

0x19 0x01 0x08 Sub type – Relative Offset Range
764 April, 2015 Version 2.5

Protocols - PCI Bus Support
The PCI Option ROM search may produce one or more Driver Image Handles for the PCI Controller
that is associated with the PCI Option ROM. The PCI Bus Driver is responsible for producing a Bus
Specific Driver Override Protocol instance for every PCI Controller has a PCI Option ROM that
contains one or more UEFI Drivers. The Bus Specific Driver Override Protocol produces an ordered
list of Driver Image Handles. The order that the UEFI Drivers are placed in the PCI Option ROM is
the order of Driver Image Handles that must be returned by the Bus Specific Driver Override
Protocol. This gives the party that builds the PCI Option ROM control over the order that the drivers
are used in the Boot Service EFI_BOOT_SERVICES.ConnectController().

13.4.2.2 PCI Device Driver Responsibilities
A PCI Device Driver should not be designed to care where it is stored. It can reside in a PCI Option
ROM, the system's motherboard ROM, a hard drive, a CD-ROM drive, etc. All PCI Device Drivers
are compiled and linked to generate a PE/COFF image. When a PE/COFF image is placed in a PCI
Option ROM, it must follow the rules outlined in Section 13.4.2. The recommended image layout is
to insert an EFI PCI Expansion ROM Header and a PCIR Data Structure in front of the PE/COFF
image, and pad the entire image up to the next 512-byte boundary. Figure 45 shows the format of a
single PCI Device Driver that can be added to a PCI Option ROM.

Following are recommended layouts and flow charts for various types of driver signage and
compression states for PCI device driver images. Figure 45 shows an unsigned layout.

0x1A 0x02 0x14 Length – 0x14 bytes

0x1C 0x08 0x8000 Start Address – Offset into PCI Option ROM

0x24 0x08 0x9FFF End Address – Offset into PCI Option ROM

0x2C 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x2D 0x01 0xFF Sub type – End of Entire Device Path

0x2E 0x02 0x04 Length – 0x04 bytes
Version 2.5 April, 2015 765

Unified Extensible Firmware Interface Specification
Figure 45. Unsigned PCI Driver Image Layout

Figure 46 and Figure 47 show a signed and compressed PCI device driver image flow chart and
layout, respectively.

Figure 46. Signed and Compressed PCI Driver Image Flow

OM13169

PCI Device Driver Image (Unsigned)

EFI PCI Expansion ROM Header

Two (2) Bytes of Padding

PCIR Data Structure

PE/COFF Image of PCI Device Driver

Padding to next 512-byte boundary
766 April, 2015 Version 2.5

Protocols - PCI Bus Support
Figure 47. Signed and Compressed PCI Driver Image Layout

Figure 48 and Figure 49 show a signed but not compressed flow chart and a signed and
uncompressed PCI device driver image layout, respectively.
Version 2.5 April, 2015 767

Unified Extensible Firmware Interface Specification
Figure 48. Signed but not Compressed PCI Driver Image Flow

UN S IGN ED
DR IV ER

S IGN DR IV ER
IM AG E

PR IVATE
KEY

CA LCU LATE
PADD ING AND

AD JU ST O FFSET TO
EF I IM AG E

S IG N ED BU T NO T COM PRESSED

COM B IN E W ITH
PC IR TO FO RM
ROM IM AG E
768 April, 2015 Version 2.5

Protocols - PCI Bus Support
Figure 49. Signed and Uncompressed PCI Driver Image Layout

The field values for the EFI PCI Expansion ROM Header and the PCIR Data Structure would be as
follows in this recommended PCI Driver image layout. An image must start at a 512-byte boundary,
and the end of the image must be padded to the next 512-byte boundary.

Table 126. Recommended PCI Device Driver Layout

Offset

Byte
Length

Value

Description

0x00 1 0x55 ROM Signature, byte 1

0x01 1 0xAA ROM Signature, byte 2

0x02 2 XXXX Initialization Size – size of this image in units of 512 bytes. The size
includes this header

0x04 4 0x0EF1 Signature from EFI image header

0x08 2 XX
0x0B
0x0C

Subsystem Value from the PCI Driver's PE/COFF Image Header
Subsystem Value for an EFI Boot Service Driver
Subsystem Value for an EFI Runtime Driver

0x0a 2 XX
0x014C
0x0200
0x0EBC
0x8664
0x01c2
0xAA64

Machine type from the PCI Driver's PE/COFF Image Header
IA-32 Machine Type
Itanium processor type
EFI Byte Code (EBC) Machine Type
X64 Machine Type
ARM Machine Type
ARM 64-bit Machine Type

PCI Device Driver Image
 (Signed and NOT Compressed)

EFI PCI Expansion ROM Header

Two (2) Bytes of Padding

PCIR Data Structure

 Adjust Driver to End on 512 Boundary

Uncompressed Image of Signed PCI Device Driver

Offset to EFI Image

Initialization Size x 512
Version 2.5 April, 2015 769

Unified Extensible Firmware Interface Specification
13.4.3 Nonvolatile Storage
A PCI adapter may contain some form of nonvolatile storage. Since there are no standard access
mechanisms for nonvolatile storage on PCI adapters, the PCI I/O Protocol does not provide any
services for nonvolatile storage. However, a PCI Device Driver may choose to implement its own
access mechanisms. If there is a private channel between a PCI Controller and a nonvolatile storage
device, a PCI Device Driver can use it for configuration options or vital product data.

Note: The fields RomImage and RomSize in the PCI I/O Protocol do not provide direct access to the
PCI Option ROM on a PCI adapter. Instead, they provide access to a copy of the PCI Option ROM
in memory. If the contents of the RomImage are modified, only the memory copy is updated. If a
vendor wishes to update the contents of a PCI Option ROM, they must provide their own utility or
driver to perform this task. There is no guarantee that the BAR for the PCI Option ROM is valid at
the time that the utility or driver may execute, so the utility or driver must provide the code required
to gain write access to the PCI Option ROM contents. The algorithm for gaining write access to a

0x0C 2 XXXX
0x0000
0x0001

Compression Type
Uncompressed
Compressed following the UEFI Compression Algorithm.

0x0E 8 0x00 Reserved

0x16 2 0x0034 Offset to EFI Image

0x18 2 0x001C Offset to PCIR Data Structure

0x1A 2 0x0000 Padding to align PCIR Data Structure on a 4 byte boundary

0x1C 4 'PCIR' PCIR Data Structure Signature

0x20 2 XXXX Vendor ID from the PCI Controller's Configuration Header

0x22 2 XXXX Device ID from the PCI Controller's Configuration Header

0x24 2 0x0000 Reserved

0x26 2 0x0018 The length if the PCIR Data Structure in bytes

0x28 1 0x00 PCIR Data Structure Revision. Value for PCI 2.2 Option ROM

0x29 3 XXXX Class Code from the PCI Controller's Configuration Header

0x2C 2 XXXX Code Image Length in units of 512 bytes. Same as Initialization Size

0x2E 2 XXXX Revision Level of the Code/Data. This field is ignored

0x30 1 0x03 Code Type

0x31 1 XX Indicator. Bit 7 clear means another image follows. Bit 7 set means that
this image is the last image in the PCI Option ROM. Bits 0–6 are
reserved.

0x00
0x80

Additional images follow this image in the PCI Option ROM
This image is the last image in the PCI Option ROM

0x32 2 0x0000 Reserved

0x34 X XXXX The beginning of the PCI Device Driver's PE/COFF Image

Offset

Byte
Length

Value

Description
770 April, 2015 Version 2.5

Protocols - PCI Bus Support
PCI Option ROM is both platform specific and adapter specific, so it is outside the scope of this
document.

13.4.4 PCI Hot-Plug Events
It is possible to design a PCI Bus Driver to work with PCI Bus that conforms to the PCI Hot-Plug
Specification. There are two levels of functionality that could be provided in the preboot
environment. The first is to initialize the PCI Hot-Plug capable bus so it can be used by an operating
system that also conforms to the PCI Hot-Plug Specification. This only affects the PCI Enumeration
that is performed in either the PCI Bus Driver’s initialization, or a firmware component that executes
prior to the PCI Bus Driver’s initialization. None of the PCI Device Drivers need to be aware of the
fact that a PCI Controller may exist in a slot that is capable of a hot-plug event. Also, the addition,
removal, and replacement of PCI adapters in the preboot environment would not be allowed.

The second level of functionality is to actually implement the full hot-plug capability in the PCI Bus
Driver. This is not recommended because it adds a great deal of complexity to the PCI Bus Driver
design with very little added value. However, there is nothing about the PCI Driver Model that
would preclude this implementation. It would require using an event based periodic timer to
monitor the hot-plug capable slots, and take advantage of the
EFI_BOOT_SERVICES.ConnectController()and
EFI_BOOT_SERVICES.DisconnectController() Boot Services to dynamically start and
stop the drivers that manage the PCI controller that is being added, removed, or replaced. If the
EFI_BOOT_SERVICES.DisconnectController() Boot Service fails it must be retried via
a periodic timer.
Version 2.5 April, 2015 771

Unified Extensible Firmware Interface Specification
772 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
14
Protocols — SCSI Driver Models and Bus

Support

The intent of this chapter is to specify a method of providing direct access to SCSI devices. These
protocols provide services that allow a generic driver to produce the Block I/O protocol for SCSI
disk devices, and allows an EFI utility to issue commands to any SCSI device. The main reason to
provide such an access is to enable S.M.A.R.T. functionality during POST (i.e., issuing Mode Sense,
Mode Select, and Log Sense to SCSI devices). This is accomplished by using a generic API such as
SCSI Pass Thru. The use of this method will enable additional functionality in the future without
modifying the EFI SCSI Pass Thru driver. SCSI Pass Thru is not limited to SCSI channels. It is
applicable to all channel technologies that utilize SCSI commands such as SCSI, ATAPI, and Fibre
Channel. This chapter describes the SCSI Driver Model. This includes the behavior of SCSI Bus
Drivers, the behavior of SCSI Device Drivers, and a detailed description of the SCSI I/O Protocol.
This chapter provides enough material to implement a SCSI Bus Driver, and the tools required to
design and implement SCSI Device Drivers. It does not provide any information on specific SCSI
devices.

14.1 SCSI Driver Model Overview
The EFI SCSI Driver Stack includes the SCSI Pass Thru Driver, SCSI Bus Driver and individual
SCSI Device Drivers.

SCSI Pass Thru Driver: A SCSI Pass Through Driver manages a SCSI Host Controller that
contains one or more SCSI Buses. It creates SCSI Bus Controller Handles for each SCSI Bus, and
attaches Extended SCSI Pass Thru Protocol and Device Path Protocol to each handle the driver
produced. Please refer to Section 14.7 and Appendix G for details about the Extended SCSI Pass
Thru Protocol.

SCSI Bus Driver: A SCSI Bus Driver manages a SCSI Bus Controller Handle that is created by
SCSI Pass Thru Driver. It creates SCSI Device Handles for each SCSI Device Controller detected
during SCSI Bus Enumeration, and attaches SCSI I/O Protocol and Device Path Protocol to each
handle the driver produced.

SCSI Device Driver: A SCSI Device Driver manages one kind of SCSI Device. Device handles for
SCSI Devices are created by SCSI Bus Drivers. A SCSI Device Driver could be a bus driver itself,
and may create child handles. But most SCSI Device Drivers will be device drivers that do not create
new handles. For the pure device driver, it attaches protocol instance to the device handle of the
SCSI Device. These protocol instances are I/O abstractions that allow the SCSI Device to be used in
the pre-boot environment. The most common I/O abstractions are used to boot an EFI compliant
OS.
Version 2.5 April, 2015 773

Unified Extensible Firmware Interface Specification
14.2 SCSI Bus Drivers
A SCSI Bus Driver manages a SCSI Bus Controller Handle. A SCSI Bus Controller Handle is
created by a SCSI Pass Thru Driver and is abstracted in software with the Extended SCSI Pass Thru
Protocol. A SCSI Bus Driver will manage handles that contain this protocol. Figure 50 shows an
example device handle for a SCSI Bus handle. It contains a Device Path Protocol instance and a
Extended SCSI Pass Thru Protocol Instance.

Figure 50. Device Handle for a SCSI Bus Controller

14.2.1 Driver Binding Protocol for SCSI Bus Drivers
The Driver Binding Protocol contains three services. These are Supported(), Start(), and
Stop(). Supported() tests to see if the SCSI Bus Driver can manage a device handle. A SCSI
Bus Driver can only manage device handle that contain the Device Path Protocol and the Extended
SCSI Pass Thru Protocol, so a SCSI Bus Driver must look for these two protocols on the device
handle that is being tested.

The Start() function tells the SCSI Bus Driver to start managing a device handle. The device
handle should support the protocols shown in Figure 50. The Extended SCSI Pass Thru Protocol
provides information about a SCSI Channel and the ability to communicate with any SCSI devices
attached to that SCSI Channel.

The SCSI Bus Driver has the option of creating all of its children in one call to Start(), or
spreading it across several calls to Start(). In general, if it is possible to design a bus driver to
create one child at a time, it should do so to support the rapid boot capability in the UEFI Driver
Model. Each of the child device handles created in Start() must contain a Device Path Protocol
instance, and a SCSI I/O protocol instance. The SCSI I/O Protocol is described in Section 14.4 and
Section 13.4. The format of device paths for SCSI Devices is described in Section 14.5. Figure 51
shows an example child device handle that is created by a SCSI Bus Driver for a SCSI Device.

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_SCSI_PASS_THRU_PROTOCOL

Device Handle

EFI_ DEVICE_ PATH_ PROTOCOL

EFI_EXT_SCSI_PASS_THRU_PROTOCOL
774 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
Figure 51. Child Handle Created by a SCSI Bus Driver

A SCSI Bus Driver must perform several steps to manage a SCSI Bus.

1. Scan for the SCSI Devices on the SCSI Channel that connected to the SCSI Bus Controller. If a
request is being made to scan only one SCSI Device, then only looks for the one specified.
Create a device handle for the SCSI Device found.

2. Install a Device Path Protocol instance and a SCSI I/O Protocol instance on the device handle
created for each SCSI Device.

The Stop() function tells the SCSI Bus Driver to stop managing a SCSI Bus. The Stop()
function can destroy one or more of the device handles that were created on a previous call to
Start(). If all of the child device handles have been destroyed, then Stop() will place the SCSI
Bus Controller in a quiescent state. The functionality of Stop() mirrors Start().

14.2.2 SCSI Enumeration
The purpose of the SCSI Enumeration is only to scan for the SCSI Devices attached to the specific
SCSI channel. The SCSI Bus driver need not allocate resources for SCSI Devices (like PCI Bus
Drivers do), nor need it connect a SCSI Device with its Device Driver (like USB Bus Drivers do).
The details of the SCSI Enumeration is implementation specific, thus is out of the scope of this
document.

14.3 SCSI Device Drivers
SCSI Device Drivers manage SCSI Devices. Device handles for SCSI Devices are created by SCSI
Bus Drivers. A SCSI Device Driver could be a bus driver itself, and may create child handles. But
most SCSI Device Drivers will be device drivers that do not create new handles. For the pure device
driver, it attaches protocol instance to the device handle of the SCSI Device. These protocol
instances are I/O abstractions that allow the SCSI Device to be used in the pre-boot environment.
The most common I/O abstractions are used to boot an EFI compliant OS.

14.3.1 Driver Binding Protocol for SCSI Device Drivers
The Driver Binding Protocol contains three services. These are Supported(), Start(), and
Stop(). Supported() tests to see if the SCSI Device Driver can manage a device handle. A
SCSI Device Driver can only manage device handle that contain the Device Path Protocol and the

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_SCSI_IO_PROTOCOL
Version 2.5 April, 2015 775

Unified Extensible Firmware Interface Specification
SCSI I//O Protocol, so a SCSI Device Driver must look for these two protocols on the device handle
that is being tested. In addition, it needs to check to see if the device handle represents a SCSI
Device that SCSI Device Driver knows how to manage. This is typically done by using the services
of the SCSI I/O Protocol to see whether the device information retrieved is supported by the device
driver.

The Start() function tells the SCSI Device Driver to start managing a SCSI Device. A SCSI
Device Driver could be a bus driver itself, and may create child handles. But most SCSI Device
Drivers will be device drivers that do not create new handles. For the pure device driver, it installs
one or more addition protocol instances on the device handle for the SCSI Device.

The Stop() function mirrors the Start() function, so the Stop() function completes any
outstanding transactions to the SCSI Device and removes the protocol interfaces that were installed
in Start().

14.4 EFI SCSI I/O Protocol
This section defines the EFI SCSI I/O protocol. This protocol is used by code, typically drivers,
running in the EFI boot services environment to access SCSI devices. In particular, functions for
managing devices on SCSI buses are defined here.

The interfaces provided in the EFI_SCSI_IO_PROTOCOL are for performing basic operations to
access SCSI devices.

EFI_SCSI_IO_PROTOCOL

This section provides a detailed description of the EFI_SCSI_IO_PROTOCOL.

Summary
Provides services to manage and communicate with SCSI devices.
776 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
GUID
#define EFI_SCSI_IO_PROTOCOL_GUID \
 {0x932f47e6,0x2362,0x4002,\
 {0x80,0x3e,0x3c,0xd5,0x4b,0x13,0x8f,0x85}}

Protocol Interface Structure
typedef struct _EFI_SCSI_IO_PROTOCOL {
 EFI_SCSI_IO_PROTOCOL_GET_DEVICE_TYPE GetDeviceType;
 EFI_SCSI_IO_PROTOCOL_GET_DEVICE_LOCATION GetDeviceLocation;
 EFI_SCSI_IO_PROTOCOL_RESET_BUS ResetBus;
 EFI_SCSI_IO_PROTOCOL_RESET_DEVICE ResetDevice;
 EFI_SCSI_IO_PROTOCOL_EXECUTE_SCSI_COMMAND ExecuteScsiCommand;
 UINT32 IoAlign;
} EFI_SCSI_IO_PROTOCOL;

Parameters
IoAlign Supplies the alignment requirement for any buffer used in a data

transfer. IoAlign values of 0 and 1 mean that the buffer can be
placed anywhere in memory. Otherwise, IoAlign must be a
power of 2, and the requirement is that the start address of a
buffer must be evenly divisible by IoAlign with no remainder.

GetDeviceType Retrieves the information of the device type which the SCSI
device belongs to. See GetDeviceType().

GetDeviceLocation Retrieves the device location information in the SCSI bus. See
GetDeviceLocation().

ResetBus Resets the entire SCSI bus the SCSI device attaches to. See
ResetBus().

ResetDevice Resets the SCSI Device that is specified by the device handle the
SCSI I/O protocol attaches. See ResetDevice().

ExecuteScsiCommand Sends a SCSI command to the SCSI device and waits for the
execution completion until an exit condition is met, or a timeout
occurs. See ExecuteScsiCommand().

Description
The EFI_SCSI_IO_PROTOCOL provides the basic functionalities to access and manage a SCSI
Device. There is one EFI_SCSI_IO_PROTOCOL instance for each SCSI Device on a SCSI Bus.
A device driver that wishes to manage a SCSI Device in a system will have to retrieve the
EFI_SCSI_IO_PROTOCOL instance that is associated with the SCSI Device. A device handle for
a SCSI Device will minimally contain an EFI_DEVICE_PATH_PROTOCOL instance and an
EFI_SCSI_IO_PROTOCOL instance.
Version 2.5 April, 2015 777

Unified Extensible Firmware Interface Specification
EFI_SCSI_IO_PROTOCOL.GetDeviceType()

Summary
Retrieves the device type information of the SCSI Device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCSI_IO_PROTOCOL_GET_DEVICE_TYPE) (
 IN EFI_SCSI_IO_PROTOCOL *This,
 OUT UINT8 *DeviceType
);

Parameters
This A pointer to the EFI_SCSI_IO_PROTOCOL instance. Type

EFI_SCSI_IO_PROTOCOL is defined in
EFI_SCSI_IO_PROTOCOL.

DeviceType A pointer to the device type information retrieved from the SCSI
Device. See “Related Definitions” for the possible returned
values of this parameter.

Description
This function is used to retrieve the SCSI device type information. This function is typically used for
SCSI Device Drivers to quickly recognize whether the SCSI Device could be managed by it.

If DeviceType is NULL, then EFI_INVALID_PARAMETER is returned. Otherwise, the device
type is returned in DeviceType and EFI_SUCCESS is returned.

Related Definitions
//Defined in the SCSI Primary Commands standard (e.g., SPC-4)

//
#define EFI_SCSI_IO_TYPE_DISK 0x00 // Disk device
#define EFI_SCSI_IO_TYPE_TAPE 0x01 // Tape device
#define EFI_SCSI_IO_TYPE_PRINTER 0x02 // Printer
#define EFI_SCSI_IO_TYPE_PROCESSOR 0x03 // Processor
#define EFI_SCSI_IO_TYPE_WORM 0x04 // Write-once read-multiple
#define EFI_SCSI_IO_TYPE_CDROM 0x05 // CD or DVD device
#define EFI_SCSI_IO_TYPE_SCANNER 0x06 // Scanner device
#define EFI_SCSI_IO_TYPE_OPTICAL 0x07 // Optical memory device
#define EFI_SCSI_IO_TYPE_MEDIUMCHANGER 0x08 // Medium Changer device
#define EFI_SCSI_IO_TYPE_COMMUNICATION 0x09 // Communications device
#define MFI_SCSI_IO_TYPE_A 0x0A // Obsolete

#define MFI_SCSI_IO_TYPE_B 0x0B // Obsolete
#define MFI_SCSI_IO_TYPE_RAID 0x0C // Storage array controller
 // device (e.g., RAID)
#define MFI_SCSI_IO_TYPE_SES 0x0D // Enclosure services device
778 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
#define MFI_SCSI_IO_TYPE_RBC 0x0E // Simplified direct-access
 // device (e.g., magnetic
 // disk)
#define MFI_SCSI_IO_TYPE_OCRW 0x0F // Optical card reader/
 // writer device
#define MFI_SCSI_IO_TYPE_BRIDGE 0x10 // Bridge Controller
 // Commands
#define MFI_SCSI_IO_TYPE_OSD 0x11 // Object-based Storage
 // Device
#define EFI_SCSI_IO_TYPE_RESERVED_LOW 0x12 // Reserved (low)
#define EFI_SCSI_IO_TYPE_RESERVED_HIGH 0x1E // Reserved (high)
#define EFI_SCSI_IO_TYPE_UNKNOWN 0x1F // Unknown no device type

Status Codes Returned

EFI_SUCCESS Retrieves the device type information successfully.

EFI_INVALID_PARAMETER The DeviceType is NULL.
Version 2.5 April, 2015 779

Unified Extensible Firmware Interface Specification
EFI_SCSI_IO_PROTOCOL.GetDeviceLocation()

Summary
Retrieves the SCSI device location in the SCSI channel.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCSI_IO_PROTOCOL_GET_DEVICE_LOCATION) (
 IN EFI_SCSI_IO_PROTOCOL *This,
 IN OUT UINT8 **Target,
 OUT UINT64 *Lun
);

Parameters
This A pointer to the EFI_SCSI_IO_PROTOCOL instance. Type

EFI_SCSI_IO_PROTOCOL is defined in
EFI_SCSI_IO_PROTOCOL.

Target A pointer to the Target Array which represents the ID of a SCSI
device on the SCSI channel.

Lun A pointer to the Logical Unit Number of the SCSI device on the
SCSI channel.

Description
This function is used to retrieve the SCSI device location in the SCSI bus. The device location is
determined by a (Target, Lun) pair. This function allows a SCSI Device Driver to retrieve its
location on the SCSI channel, and may use the Extended SCSI Pass Thru Protocol to access the
SCSI device directly.

If Target or Lun is NULL, then EFI_INVALID_PARAMETER is returned. Otherwise, the device
location is returned in Target and Lun, and EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS Retrieves the device location successfully.

EFI_INVALID_PARAMETER Target or Lun is NULL.
780 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
EFI_SCSI_IO_PROTOCOL.ResetBus()

Summary
Resets the SCSI Bus that the SCSI Device is attached to.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCSI_IO_PROTOCOL_RESET_BUS) (
 IN EFI_SCSI_IO_PROTOCOL *This
);

Parameters
This A pointer to the EFI_SCSI_IO_PROTOCOL instance. Type

EFI_SCSI_IO_PROTOCOL is defined in
EFI_SCSI_IO_PROTOCOL.

Description
This function provides the mechanism to reset the whole SCSI bus that the specified SCSI Device is
connected to. Some SCSI Host Controller may not support bus reset, if so, EFI_UNSUPPORTED is
returned. If a device error occurs while executing that bus reset operation, then
EFI_DEVICE_ERROR is returned. If a timeout occurs during the execution of the bus reset
operation, then EFI_TIMEOUT is returned. If the bus reset operation is completed, then
EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The SCSI bus is reset successfully.

EFI_DEVICE_ERROR Errors encountered when resetting the SCSI bus.

EFI_UNSUPPORTED The bus reset operation is not supported by the SCSI Host
Controller.

EFI_TIMEOUT A timeout occurred while attempting to reset the SCSI bus.
Version 2.5 April, 2015 781

Unified Extensible Firmware Interface Specification
EFI_SCSI_IO_PROTOCOL.ResetDevice()

Summary
Resets the SCSI Device that is specified by the device handle that the SCSI I/O Protocol is attached.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCSI_IO_PROTOCOL_RESET_DEVICE) (
 IN EFI_SCSI_IO_PROTOCOL *This
);

Parameters
This A pointer to the EFI_SCSI_IO_PROTOCOL instance. Type

EFI_SCSI_IO_PROTOCOL is defined in
EFI_SCSI_IO_PROTOCOL.

Description
This function provides the mechanism to reset the SCSI Device. If the SCSI bus does not support a
device reset operation, then EFI_UNSUPPORTED is returned. If a device error occurs while
executing that device reset operation, then EFI_DEVICE_ERROR is returned. If a timeout occurs
during the execution of the device reset operation, then EFI_TIMEOUT is returned. If the device
reset operation is completed, then EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS Reset the SCSI Device successfully.

EFI_DEVICE_ERROR Errors are encountered when resetting the SCSI Device.

EFI_UNSUPPORTED The SCSI bus does not support a device reset operation.

EFI_TIMEOUT A timeout occurred while attempting to reset the SCSI Device.
782 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
EFI_SCSI_IO_PROTOCOL.ExecuteScsiCommand()

Summary
Sends a SCSI Request Packet to the SCSI Device for execution.

Prototype
typedef

EFI_STATUS
(EFIAPI *EFI_SCSI_IO_PROTOCOL_EXECUTE_SCSI_COMMAND) (
 IN EFI_SCSI_IO_PROTOCOL *This,
 IN OUT EFI_SCSI_IO_SCSI_REQUEST_PACKET *Packet,
 IN EFI_EVENT Event OPTIONAL
);

Parameters
This A pointer to the EFI_SCSI_IO_PROTOCOL instance. Type

EFI_SCSI_IO_PROTOCOL is defined in
EFI_SCSI_IO_PROTOCOL.

Packet The SCSI request packet to send to the SCSI Device specified by
the device handle. See “Related Definitions” for a description of
EFI_SCSI_IO_SCSI_REQUEST_PACKET.

Event If the SCSI bus where the SCSI device is attached does not
support non-blocking I/O, then Event is ignored, and blocking I/
O is performed. If Event is NULL, then blocking I/O is
performed. If Event is not NULL and non-blocking I/O is
supported, then non-blocking I/O is performed, and Event will
be signaled when the SCSI Request Packet completes.

Related Definitions
typedef struct {
 UINT64 Timeout;
 VOID *InDataBuffer;
 VOID *OutDataBuffer;
 VOID *SenseData;
 VOID *Cdb;
 UINT32 InTransferLength;
 UINT32 OutTransferLength;
 UINT8 CdbLength;
 UINT8 DataDirection;
 UINT8 HostAdapterStatus;
 UINT8 TargetStatus;
 UINT8 SenseDataLength;
} EFI_SCSI_IO_SCSI_REQUEST_PACKET;

Timeout The timeout, in 100 ns units, to use for the execution of this SCSI
Request Packet. A Timeout value of 0 means that this function
Version 2.5 April, 2015 783

Unified Extensible Firmware Interface Specification
will wait indefinitely for the SCSI Request Packet to execute. If
Timeout is greater than zero, then this function will return
EFI_TIMEOUT if the time required to execute the SCSI Request
Packet is greater than Timeout.

DataBuffer A pointer to the data buffer to transfer from or to the SCSI device.

InDataBuffer A pointer to the data buffer to transfer between the SCSI
controller and the SCSI device for SCSI READ command. For
all SCSI WRITE Commands this must point to NULL.

OutDataBuffer A pointer to the data buffer to transfer between the SCSI
controller and the SCSI device for SCSI WRITE command. For
all SCSI READ commands this field must point to NULL.

SenseData A pointer to the sense data that was generated by the execution of
the SCSI Request Packet.

Cdb A pointer to buffer that contains the Command Data Block to
send to the SCSI device.

InTransferLength On Input, the size, in bytes, of InDataBuffer. On output, the
number of bytes transferred between the SCSI controller and the
SCSI device. If InTransferLength is larger than the SCSI
controller can handle, no data will be transferred,
InTransferLength will be updated to contain the number
of bytes that the SCSI controller is able to transfer, and
EFI_BAD_BUFFER_SIZE will be returned.

OutTransferLength On Input, the size, in bytes of OutDataBuffer. On Output, the
Number of bytes transferred between SCSI Controller and the
SCSI device. If OutTransferLength is larger than the SCSI
controller can handle, no data will be transferred,
OutTransferLength will be updated to contain the number
of bytes that the SCSI controller is able to transfer, and
EFI_BAD_BUFFER_SIZE will be returned.

CdbLength The length, in bytes, of the buffer Cdb. The standard values are
6, 10, 12, and 16, but other values are possible if a variable length
CDB is used.

DataDirection The direction of the data transfer. 0 for reads, 1 for writes. A
value of 2 is Reserved for Bi-Directional SCSI commands. For
example XDREADWRITE. All other values are reserved, and
must not be used.

HostAdapterStatus The status of the SCSI Host Controller that produces the SCSI
bus where the SCSI device attached when the SCSI Request
Packet was executed on the SCSI Controller. See the possible
values listed below.

TargetStatus The status returned by the SCSI device when the SCSI Request
Packet was executed. See the possible values listed below.

SenseDataLength On input, the length in bytes of the SenseData buffer. On
output, the number of bytes written to the SenseData buffer.

//
784 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
// DataDirection

//

#define EFI_SCSI_IO_DATA_DIRECTION_READ 0

#define EFI_SCSI_IO_DATA_DIRECTION_WRITE 1

#define EFI_SCSI_IO_DATA_DIRECTION_BIDIRECTIONAL 2

//

// HostAdapterStatus

//

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_OK 0x00

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_TIMEOUT_COMMAND 0x09

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_TIMEOUT 0x0b

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_MESSAGE_REJECT 0x0d

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_BUS_RESET 0x0e

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_PARITY_ERROR 0x0f

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_REQUEST_SENSE_FAILED 0x10

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_SELECTION_TIMEOUT 0x11

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_DATA_OVERRUN_UNDERRUN 0x12

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_BUS_FREE 0x13

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_PHASE_ERROR 0x14

#define EFI_SCSI_IO_STATUS_HOST_ADAPTER_OTHER 0x7f

//

// TargetStatus

//

#define EFI_SCSI_IO_STATUS_TARGET_GOOD 0x00

#define EFI_SCSI_IO_STATUS_TARGET_CHECK_CONDITION 0x02

#define EFI_SCSI_IO_STATUS_TARGET_CONDITION_MET 0x04

#define EFI_SCSI_IO_STATUS_TARGET_BUSY 0x08

#define EFI_SCSI_IO_STATUS_TARGET_INTERMEDIATE 0x10

#define EFI_SCSI_IO_STATUS_TARGET_INTERMEDIATE_CONDITION_MET 0x14

#define EFI_SCSI_IO_STATUS_TARGET_RESERVATION_CONFLICT 0x18

#define EFI_SCSI_IO_STATUS_TARGET_COMMAND_TERMINATED 0x22

#define EFI_SCSI_IO_STATUS_TARGET_QUEUE_FULL 0x28

Description
This function sends the SCSI Request Packet specified by Packet to the SCSI Device.

If the SCSI Bus supports non-blocking I/O and Event is not NULL, then this function will return
immediately after the command is sent to the SCSI Device, and will later signal Event when the
command has completed. If the SCSI Bus supports non-blocking I/O and Event is NULL, then this
function will send the command to the SCSI Device and block until it is complete. If the SCSI Bus
does not support non-blocking I/O, the Event parameter is ignored, and the function will send the
command to the SCSI Device and block until it is complete.
Version 2.5 April, 2015 785

Unified Extensible Firmware Interface Specification
If Packet is successfully sent to the SCSI Device, then EFI_SUCCESS is returned.

If Packet cannot be sent because there are too many packets already queued up, then
EFI_NOT_READY is returned. The caller may retry Packet at a later time.

If a device error occurs while sending the Packet, then EFI_DEVICE_ERROR is returned.

If a timeout occurs during the execution of Packet, then EFI_TIMEOUT is returned.

If any field of Packet is invalid, then EFI_INVALID_PARAMETER is returned.

If the data buffer described by DataBuffer and TransferLength is too big to be transferred in
a single command, then EFI_BAD_BUFFER_SIZE is returned. The number of bytes actually
transferred is returned in TransferLength.

If the command described in Packet is not supported by the SCSI Host Controller that produces
the SCSI bus, then EFI_UNSUPPORTED is returned.

If EFI_SUCCESS, EFI_BAD_BUFFER_SIZE, EFI_DEVICE_ERROR, or EFI_TIMEOUT is
returned, then the caller must examine the status fields in Packet in the following precedence
order: HostAdapterStatus followed by TargetStatus followed by SenseDataLength,
followed by SenseData. If non-blocking I/O is being used, then the status fields in Packet will
not be valid until the Event associated with Packet is signaled.

If EFI_NOT_READY, EFI_INVALID_PARAMETER or EFI_UNSUPPORTED is returned, then
Packet was never sent, so the status fields in Packet are not valid. If non-blocking I/O is being
used, the Event associated with Packet will not be signaled.

Status Codes Returned

EFI_SUCCESS The SCSI Request Packet was sent by the host. For read

and bi-directional commands, InTransferLength

bytes were transferred to InDataBuffer. For write

and bi-directional commands, OutTransferLength

bytes were transferred from OutDataBuffer. See

HostAdapterStatus, TargetStatus,
SenseDataLength, and SenseData in that order

for additional status information.

EFI_BAD_BUFFER_SIZE The SCSI Request Packet was not executed. For read and
bi-directional commands, the number of bytes that could be

transferred is returned in InTransferLength. For

write and bi-directional commands, the number of bytes that
could be transferred is returned in

OutTransferLength.See

HostAdapterStatus and TargetStatus in

that order for additional status information.

EFI_NOT_READY The SCSI Request Packet could not be sent because there
are too many SCSI Command Packets already queued.
The caller may retry again later.
786 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
14.5 SCSI Device Paths
An EFI_SCSI_IO_PROTOCOL must be installed on a handle for its services to be available to
SCSI device drivers. In addition to the EFI_SCSI_IO_PROTOCOL, an
EFI_DEVICE_PATH_PROTOCOL must also be installed on the same handle. See Section 9 for
detailed description of the EFI_DEVICE_PATH_PROTOCOL.

The SCSI Driver Model defined in this document can support the SCSI channel generated or
emulated by multiple architectures, such as Parallel SCSI, ATAPI, Fibre Channel, InfiniBand, and
other future channel types. In this section, there are four example device paths provided, including
SCSI device path, ATAPI device path, Fibre Channel device path and InfiniBand device path.

14.5.1 SCSI Device Path Example
Table 127 shows an example device path for a SCSI device controller on a desktop platform. This
SCSI device controller is connected to a SCSI channel that is generated by a PCI SCSI host
controller. The PCI SCSI host controller generates a single SCSI channel, it is located at PCI device
number 0x07 and PCI function 0x00, and is directly attached to a PCI root bridge. The SCSI device
controller is assigned SCSI Id 2, and its LUN is 0.

This sample device path consists of an ACPI Device Path Node, a PCI Device Path Node, a SCSI
Node, and a Device Path End Structure. The _HID and _UID must match the ACPI table description
of the PCI Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(7,0)/SCSI(2,0).

Table 127. SCSI Device Path Examples

EFI_DEVICE_ERROR A device error occurred while attempting to send the SCSI

Request Packet. See HostAdapterStatus,

TargetStatus, SenseDataLength, and

SenseData in that order for additional status information.

EFI_INVALID_PARAMETER The contents of CommandPacket are invalid. The SCSI

Request Packet was not sent, so no additional status
information is available.

EFI_UNSUPPORTED The command described by the SCSI Request Packet is not
supported by the SCSI initiator (i.e., SCSI Host Controller).
The SCSI Request Packet was not sent, so no additional
status information is available.

EFI_TIMEOUT A timeout occurred while waiting for the SCSI Request

Packet to execute. See HostAdapterStatus,

TargetStatus, SenseDataLength, and

SenseData in that order for additional status information.

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path
Version 2.5 April, 2015 787

Unified Extensible Firmware Interface Specification
14.5.2 ATAPI Device Path Example
Table 128 shows an example device path for an ATAPI device on a desktop platform. This ATAPI
device is connected to the IDE bus on Primary channel, and is configured as the Master device on
the channel. The IDE bus is generated by the IDE controller that is a PCI device. It is located at PCI
device number 0x1F and PCI function 0x01, and is directly attached to a PCI root bridge.

This sample device path consists of an ACPI Device Path Node, a PCI Device Path Node, an ATAPI
Node, and a Device Path End Structure. The _HID and _UID must match the ACPI table description
of the PCI Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(7,0)/ATA(Primary,Master,0).

Table 128. ATAPI Device Path Examples

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x07 PCI Function

0x11 0x01 0x00 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x02 Sub type – SCSI

0x14 0x02 0x08 Length – 0x08 bytes

0x16 0x02 0x0002 Target ID on the SCSI bus (PUN)

0x18 0x02 0x0000 Logical Unit Number (LUN)

0x1A 0x01 0xff Generic Device Path Header – Type End of Hardware Device Path

0x1B 0x01 0xFF Sub type – End of Entire Device Path

0x1C 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

Byte
Offset

Byte
Length

Data

Description
788 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
14.5.3 Fibre Channel Device Path Example
Table 129 shows an example device path for an SCSI device that is connected to a Fibre Channel
Port on a desktop platform. The Fibre Channel Port is a PCI device that is located at PCI device
number 0x08 and PCI function 0x00, and is directly attached to a PCI root bridge. The Fibre
Channel Port is addressed by the World Wide Number, and is assigned as X (X is a 64bit value); the
SCSI device’s Logical Unit Number is 0.

This sample device path consists of an ACPI Device Path Node, a PCI Device Path Node, a Fibre
Channel Device Path Node, and a Device Path End Structure. The _HID and _UID must match the
ACPI table description of the PCI Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(8,0)/Fibre(X,0).

Table 129. Fibre Channel Device Path Examples

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x07 PCI Function

0x11 0x01 0x00 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x01 Sub type – ATAPI

0x14 0x02 0x08 Length – 0x08 bytes

0x16 0x01 0x00 PrimarySecondary – Set to zero for primary or one for secondary.

0x17 0x01 0x00 SlaveMaster – set to zero for master or one for slave.

0x18 0x02 0x0000 Logical Unit Number,LUN.

0x1A 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x1B 0x01 0xFF Sub type – End of Entire Device Path

0x1C 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x08 PCI Function

0x11 0x01 0x00 PCI Device

Byte
Offset

Byte
Length

Data

Description
Version 2.5 April, 2015 789

Unified Extensible Firmware Interface Specification
14.5.4 InfiniBand Device Path Example
Table 130 shows an example device path for a SCSI device in an InfiniBand Network. This SCSI
device is connected to a single SCSI channel generated by a SCS Host Adapter, and the SCSI Host
Adapter is an end node in the InfiniBand Network. The SCSI Host Adapter is a PCI device that is
located at PCI device number 0x07 and PCI function 0x00, and is directly attached to a PCI root
bridge. The SCSI device is addressed by the (IOU X, IOC Y, DeviceId Z) in the InfiniBand
Network. (X, Y, Z are EUI-64 compliant identifiers).

This sample device path consists of an ACPI Device Path Node, a PCI Device Path Node, an
InfiniBand Node, and a Device Path End Structure. The _HID and _UID must match the ACPI table
description of the PCI Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(7,0)/Infiniband(X,Y,Z).

Table 130. InfiniBand Device Path Examples

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x02 Sub type – Fibre Channel

0x14 0x02 0x24 Length – 0x24 bytes

0x16 0x04 0x00 Reserved

0x1A 0x08 X Fibre Channel World Wide Number

0x22 0x08 0x00 Fibre Channel Logical Unit Number (LUN).

0x2A 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x2B 0x01 0xFF Sub type – End of Entire Device Path

0x2C 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x07 PCI Function

0x11 0x01 0x00 PCI Device

0x12 0x01 0x03 Generic Device Path Header – Type Message Device Path

0x13 0x01 0x09 Sub type – InfiniBand

0x14 0x02 0x20 Length – 0x20 bytes

Byte
Offset

Byte
Length

Data

Description
790 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
14.6 SCSI Pass Thru Device Paths
An EFI_EXT_SCSI_PASS_THRU_PROTOCOL must be installed on a handle for its services to be
available to UEFI drivers and applications. In addition to the
EFI_EXT_SCSI_PASS_THRU_PROTOCOL, an EFI_DEVICE_PATH_PROTOCOL must also be
installed on the same handle. See Section 9 for a detailed description of the
EFI_DEVICE_PATH_PROTOCOL.

A device path describes the location of a hardware component in a system from the processor’s point
of view. This includes the list of busses that lie between the processor and the SCSI controller. The
EFI Specification takes advantage of the ACPI Specification to name system components. For the
following set of examples, a PCI SCSI controller is assumed. The examples will show a SCSI
controller on the root PCI bus, and a SCSI controller behind a PCI-PCI bridge. In addition, an
example of a multichannel SCSI controller will be shown.

Table 131 shows an example device path for a single channel PCI SCSI controller that is located at
PCI device number 0x07 and PCI function 0x00, and is directly attached to a PCI root bridge. This
device path consists of an ACPI Device Path Node, a PCI Device Path Node, and a Device Path End
Structure. The _HID and _UID must match the ACPI table description of the PCI Root Bridge. The
shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(7,0).

Table 131. Single Channel PCI SCSI Controller

0x16 0x04 0x00 Reserved

0x1A 0x08 X 64bit node GUID of the IOU

0x22 0x08 Y 64bit GUID of the IOC

0x2A 0x08 Z 64bit persistent ID of the device.

0x32 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x33 0x01 0xFF Sub type – End of Entire Device Path

0x34 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

Byte
Offset

Byte
Length

Data

Description
Version 2.5 April, 2015 791

Unified Extensible Firmware Interface Specification
Table 132 shows an example device path for a single channel PCI SCSI controller that is located
behind a PCI to PCI bridge at PCI device number 0x07 and PCI function 0x00. The PCI to PCI
bridge is directly attached to a PCI root bridge, and it is at PCI device number 0x05 and PCI function
0x00. This device path consists of an ACPI Device Path Node, two PCI Device Path Nodes, and a
Device Path End Structure. The _HID and _UID must match the ACPI table description of the PCI
Root Bridge. The shorthand notation for this device path is:

ACPI(PNP0A03,0)/PCI(5,0)/PCI(7,0).

Table 132. Single Channel PCI SCSI Controller behind a PCI Bridge

Table 133 shows an example device path for channel #3 of a four channel PCI SCSI controller that is
located behind a PCI to PCI bridge at PCI device number 0x07 and PCI function 0x00. The PCI to

0x10 0x01 0x00 PCI Function

0x11 0x01 0x07 PCI Device

0x12 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x13 0x01 0xFF Sub type – End of Entire Device Path

0x14 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x05 PCI Device

0x12 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x13 0x01 0x01 Sub type – PCI

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 PCI Function

0x17 0x01 0x07 PCI Device

0x18 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x19 0x01 0xFF Sub type – End of Entire Device Path

0x1A 0x02 0x04 Length – 0x04 bytes

Byte
Offset

Byte
Length

Data

Description
792 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
PCI bridge is directly attached to a PCI root bridge, and it is at PCI device number 0x05 and PCI
function 0x00. This device path consists of an ACPI Device Path Node, two PCI Device Path
Nodes, a Controller Node, and a Device Path End Structure. The _HID and _UID must match the
ACPI table description of the PCI Root Bridge. The shorthand notation of the device paths for all
four of the SCSI channels are listed below. Table 133 shows the last device path listed.

ACPI(PNP0A03,0)/PCI(5,0)/PCI(7,0)/Ctrl(0)
ACPI(PNP0A03,0)/PCI(5,0)/PCI(7,0)/Ctrl(1)
ACPI(PNP0A03,0)/PCI(5,0)/PCI(7,0)/Ctrl(2)
ACPI(PNP0A03,0)/PCI(5,0)/PCI(7,0)/Ctrl(3)

Table 133. Channel #3 of a PCI SCSI Controller behind a PCI Bridge

14.7 Extended SCSI Pass Thru Protocol
This section defines the Extended SCSI Pass Thru Protocol. This protocol allows information about
a SCSI channel to be collected, and allows SCSI Request Packets to be sent to any SCSI devices on
a SCSI channel even if those devices are not boot devices. This protocol is attached to the device

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x02 Generic Device Path Header – Type ACPI Device Path

0x01 0x01 0x01 Sub type – ACPI Device Path

0x02 0x02 0x0C Length – 0x0C bytes

0x04 0x04 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

0x08 0x04 0x0000 _UID

0x0C 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x0D 0x01 0x01 Sub type – PCI

0x0E 0x02 0x06 Length – 0x06 bytes

0x10 0x01 0x00 PCI Function

0x11 0x01 0x05 PCI Device

0x12 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x13 0x01 0x01 Sub type – PCI

0x14 0x02 0x06 Length – 0x06 bytes

0x16 0x01 0x00 PCI Function

0x17 0x01 0x07 PCI Device

0x18 0x01 0x01 Generic Device Path Header – Type Hardware Device Path

0x19 0x01 0x05 Sub type – Controller

0x1A 0x02 0x08 Length – 0x08 bytes

0x1C 0x04 0x0003 Controller Number

0x20 0x01 0xFF Generic Device Path Header – Type End of Hardware Device Path

0x21 0x01 0xFF Sub type – End of Entire Device Path

0x22 0x02 0x04 Length – 0x04 bytes
Version 2.5 April, 2015 793

Unified Extensible Firmware Interface Specification
handle of each SCSI channel in a system that the protocol supports, and can be used for diagnostics.
It may also be used to build a Block I/O driver for SCSI hard drives and SCSI CD-ROM or DVD
drives to allow those devices to become boot devices. As ATAPI cmds are derived from SCSI cmds,
the above statements also are applicable for ATAPI devices attached to a ATA controller. Packet-
based commands(ATAPI cmds) would be sent to ATAPI devices only through the Extended SCSI
Pass Thru Protocol.

EFI_EXT_SCSI_PASS_THRU_PROTOCOL

This section provides a detailed description of the EFI_EXT_SCSI_PASS_THRU_PROTOCOL.

Summary
Provides services that allow SCSI Pass Thru commands to be sent to SCSI devices attached to a
SCSI channel. It also allows packet-based commands (ATAPI cmds) to be sent to ATAPI devices
attached to a ATA controller.

GUID
#define EFI_EXT_SCSI_PASS_THRU_PROTOCOL_GUID \
 {0x143b7632, 0xb81b, 0x4cb7,\
 {0xab, 0xd3, 0xb6, 0x25, 0xa5, 0xb9, 0xbf, 0xfe}}

Protocol Interface Structure
 typedef struct _EFI_EXT_SCSI_PASS_THRU_PROTOCOL {
 EFI_EXT_SCSI_PASS_THRU_MODE *Mode;
 EFI_EXT_SCSI_PASS_THRU_PASSTHRU PassThru;
 EFI_EXT_SCSI_PASS_THRU_GET_NEXT_TARGET_LUN GetNextTargetLun;
 EFI_EXT_SCSI_PASS_THRU_BUILD_DEVICE_PATH BuildDevicePath;
 EFI_EXT_SCSI_PASS_THRU_GET_TARGET_LUN GetTargetLun;
 EFI_EXT_SCSI_PASS_THRU_RESET_CHANNEL ResetChannel;
 EFI_EXT_SCSI_PASS_THRU_RESET_TARGET_LUN ResetTargetLun;
 EFI_EXT_SCSI_PASS_THRU_GET_NEXT_TARGE GetNextTarget;}
EFI_EXT_SCSI_PASS_THRU_PROTOCOL;

Parameters
Mode A pointer to the EFI_EXT_SCSI_PASS_THRU_MODE data for

this SCSI channel. EFI_EXT_SCSI_PASS_THRU_MODE is
defined in “Related Definitions” below.

PassThru Sends a SCSI Request Packet to a SCSI device that is Connected
to the SCSI channel. See the PassThru() function description.

GetNextTargetLun Retrieves the list of legal Target IDs and LUNs for the SCSI
devices on a SCSI channel. See the GetNextTargetLun()
function description.

BuildDevicePath Allocates and builds a device path node for a SCSI Device on a
SCSI channel. See the BuildDevicePath() function
description.
794 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
GetTargetLun Translates a device path node to a Target ID and LUN. See the
GetTargetLun() function description.

ResetChannel Resets the SCSI channel. This operation resets all the SCSI
devices connected to the SCSI channel. See the
ResetChannel() function description.

ResetTargetLun Resets a SCSI device that is connected to the SCSI channel. See
the ResetTargetLun() function description.

GetNextTartget Retrieves the list of legal Target IDs for the SCSI devices on a
SCSI channel. See the GetNextTarget() function
description.

The following data values in the EFI_EXT_SCSI_PASS_THRU_MODE interface are read-only.

AdapterId The Target ID of the host adapter on the SCSI channel.

Attributes Additional information on the attributes of the SCSI channel. See
“Related Definitions” below for the list of possible attributes.

IoAlign Supplies the alignment requirement for any buffer used in a data
transfer. IoAlign values of 0 and 1 mean that the buffer can be
placed anywhere in memory. Otherwise, IoAlign must be a
power of 2, and the requirement is that the start address of a
buffer must be evenly divisible by IoAlign with no remainder.

Related Definitions
typedef struct {

UINT32 AdapterId;
UINT32 Attributes;
UINT32 IoAlign;

} EFI_EXT_SCSI_PASS_THRU_MODE;

#define TARGET_MAX_BYTES0x10
#define EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL 0x0001
#define EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL 0x0002
#define EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO 0x0004

EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL

If this bit is set, then the EFI_EXT_SCSI_PASS_THRU_PROTOCOL interface is for
physical devices on the SCSI channel.

EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL

If this bit is set, then the EFI_EXT_SCSI_PASS_THRU_PROTOCOL interface is
for logical devices on the SCSI channel.

EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO

If this bit is set, then the EFI_EXT_SCSI_PASS_THRU_PROTOCOL interface
supports non blocking I/O. Every EFI_EXT_SCSI_PASS_THRU_PROTOCOL
must support blocking I/O. The support of nonblocking I/O is optional.
Version 2.5 April, 2015 795

Unified Extensible Firmware Interface Specification
Description
The EFI_EXT_SCSI_PASS_THRU_PROTOCOL provides information about a SCSI channel and
the ability to send SCI Request Packets to any SCSI device attached to that SCSI channel. The
information includes the Target ID of the host controller on the SCSI channel and the attributes of
the SCSI channel.

The printable name for the SCSI controller, and the printable name of the SCSI channel can be
provided through the EFI_COMPONENT_NAME2_PROTOCOL for multiple languages.

The Attributes field of the EFI_EXT_SCSI_PASS_THRU_PROTOCOL interface tells if the
interface is for physical SCSI devices or logical SCSI devices. Drivers for non-RAID SCSI
controllers will set both the EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL, and the
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL bits.

Drivers for RAID controllers that allow access to the physical devices and logical devices will
produce two EFI_EXT_SCSI_PASS_THRU_PROTOCOL interfaces: one with the just the
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL bit set and another with just the
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL bit set. One interface can be used to
access the physical devices attached to the RAID controller, and the other can be used to access the
logical devices attached to the RAID controller for its current configuration.

Drivers for RAID controllers that do not allow access to the physical devices will produce one
EFI_EXT_SCSI_PASS_THROUGH_PROTOCOL interface with just the
EFI_EXT_SCSI_PASS_THRU_LOGICAL bit set. The interface for logical devices can also be
used by a file system driver to mount the RAID volumes. An
EFI_EXT_SCSI_PASS_THRU_PROTOCOL with neither
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL nor
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL set is an illegal configuration.

The Attributes field also contains the
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO bit. All
EFI_EXT_SCSI_PASS_THRU_PROTOCOL interfaces must support blocking I/O. If this bit is
set, then the interface support both blocking I/O and nonblocking I/O.

Each EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance must have an associated device path.
Typically this will have an ACPI device path node and a PCI device path node, although variation
will exist. For a SCSI controller that supports only one channel per PCI bus/device/function, it is
recommended, but not required, that an additional Controller device path node (for controller 0) be
appended to the device path.

For a SCSI controller that supports multiple channels per PCI bus/device/function, it is required that
a Controller device path node be appended for each channel.

Additional information about the SCSI channel can be obtained from protocols attached to the same
handle as the EFI_EXT_SCSI_PASS_THRU_PROTOCOL, or one of its parent handles. This
would include the device I/O abstraction used to access the internal registers and functions of the
SCSI controller.
796 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.PassThru()

Summary
Sends a SCSI Request Packet to a SCSI device that is attached to the SCSI channel. This function
supports both blocking I/O and nonblocking I/O. The blocking I/O functionality is required, and the
nonblocking I/O functionality is optional.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_EXT_SCSI_PASS_THRU_PASSTHRU) (
 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
 IN UINT8 *Target,
 IN UINT64 Lun,
 IN OUT EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET*Packet,
 IN EFI_EVENT Event OPTIONAL
);

Parameters
This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL

instance. Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is
defined in Section 14.7.

Target The Target is an array of size TARGET_MAX_BYTES and it
represents the id of the SCSI device to send the SCSI Request
Packet. Each transport driver may chose to utilize a subset of this
size to suit the needs of transport target representation. For
example, a Fibre Channel driver may use only 8 bytes (WWN) to
represent an FC target.

Lun The LUN of the SCSI device to send the SCSI Request Packet.

Packet A pointer to the SCSI Request Packet to send to the SCSI device
specified by Target and Lun. See “Related Definitions” below
for a description of
EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET.

Event If nonblocking I/O is not supported then Event is ignored, and
blocking I/O is performed. If Event is NULL, then blocking I/O
is performed. If Event is not NULL and non blocking I/O is
supported, then nonblocking I/O is performed, and Event will
be signaled when the SCSI Request Packet completes.
Version 2.5 April, 2015 797

Unified Extensible Firmware Interface Specification
Related Definitions
typedef struct {
 UINT64 Timeout;
 VOID *InDataBuffer;
 VOID *OutDataBuffer;
 VOID *SenseData;
 VOID *Cdb;
 UINT32 InTransferLength;
 UINT32 OutTransferLength;
 UINT8 CdbLength;
 UINT8 DataDirection;
 UINT8 HostAdapterStatus;
 UINT8 TargetStatus;
 UINT8 SenseDataLength;
 } EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET;

Timeout The timeout, in 100 ns units, to use for the execution of this SCSI
Request Packet. A Timeout value of 0 means that this function
will wait indefinitely for the SCSI Request Packet to execute. If
Timeout is greater than zero, then this function will return
EFI_TIMEOUT if the time required to execute the SCSI
Request Packet is greater than Timeout.

InDataBuffer A pointer to the data buffer to transfer between the SCSI
controller and the SCSI device for read and bidirectional
commands. For all write and non data commands where
InTransferLength is 0 this field is optional and may be
NULL. If this field is not NULL, then it must be aligned on the
boundary specified by the IoAlign field in the
EFI_EXT_SCSI_PASS_THRU_MODE structure.

OutDataBuffer A pointer to the data buffer to transfer between the SCSI
controller and the SCSI device for write or bidirectional
commands. For all read and non data commands where
OutTransferLength is 0 this field is optional and may be
NULL. If this field is not NULL, then it must be aligned on the
boundary specified by the IoAlign field in the
EFI_EXT_SCSI_PASS_THRU_MODE structure.

SenseData A pointer to the sense data that was generated by the execution of
the SCSI Request Packet. If SenseDataLength is 0, then this
field is optional and may be NULL. It is strongly recommended
that a sense data buffer of at least 252 bytes be provided to
guarantee the entire sense data buffer generated from the
execution of the SCSI Request Packet can be returned. If this
field is not NULL, then it must be aligned to the boundary
specified in the IoAlign field in the
EFI_EXT_SCSI_PASS_THRU_MODE structure.

Cdb A pointer to buffer that contains the Command Data Block to
send to the SCSI device specified by Target and Lun.
798 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
InTransferLength On Input, the size, in bytes, of InDataBuffer. On output, the
number of bytes transferred between the SCSI controller and the
SCSI device. If InTransferLength is larger than the SCSI
controller can handle, no data will be transferred,
InTransferLength will be updated to contain the number
of bytes that the SCSI controller is able to transfer, and
EFI_BAD_BUFFER_SIZE will be returned.

OutTransferLength On Input, the size, in bytes of OutDataBuffer. On Output, the
Number of bytes transferred between SCSI Controller and the
SCSI device. If OutTransferLength is larger than the SCSI
controller can handle, no data will be transferred,
OutTransferLength will be updated to contain the number
of bytes that the SCSI controller is able to transfer, and
EFI_BAD_BUFFER_SIZE will be returned.

CdbLength The length, in bytes, of the buffer Cdb. The standard values are 6,
10, 12, and 16, but other values are possible if a variable length
CDB is used.

DataDirection The direction of the data transfer. 0 for reads, 1 for writes. A
value of 2 is Reserved for Bi-Directional SCSI commands. For
example XDREADWRITE. All other values are reserved, and
must not be used.

HostAdapterStatus The status of the host adapter specified by This when the SCSI
Request Packet was executed on the target device. See the
possible values listed below. If bit 7 of this field is set, then
HostAdapterStatus is a vendor defined error code.

TargetStatus The status returned by the device specified by Target and Lun
when the SCSI Request Packet was executed. See the possible
values listed below.

SenseDataLength On input, the length in bytes of the SenseData buffer. On
output, the number of bytes written to the SenseData buffer.

//
// DataDirection
//
#define EFI_EXT_SCSI_DATA_DIRECTION_READ 0
#define EFI_EXT_SCSI_DATA_DIRECTION_WRITE 1
#define EFI_EXT_SCSI_DATA_DIRECTION_BIDIRECTIONAL 2
//

// HostAdapterStatus

//

#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_OK 0x00
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_TIMEOUT_COMMAND 0x09
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_TIMEOUT 0x0b
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_MESSAGE_REJECT 0x0d
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_BUS_RESET 0x0e
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_PARITY_ERROR 0x0f
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_REQUEST_SENSE_FAILED 0x10
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_SELECTION_TIMEOUT 0x11
Version 2.5 April, 2015 799

Unified Extensible Firmware Interface Specification
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_DATA_OVERRUN_UNDERRUN 0x12
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_BUS_FREE 0x13
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_PHASE_ERROR 0x14
#define EFI_EXT_SCSI_STATUS_HOST_ADAPTER_OTHER 0x7f
//
// TargetStatus
//
#define EFI_EXT_SCSI_STATUS_TARGET_GOOD 0x00
#define EFI_EXT_SCSI_STATUS_TARGET_CHECK_CONDITION 0x02
#define EFI_EXT_SCSI_STATUS_TARGET_CONDITION_MET 0x04
#define EFI_EXT_SCSI_STATUS_TARGET_BUSY 0x08
#define EFI_EXT_SCSI_STATUS_TARGET_INTERMEDIATE 0x10
#define EFI_EXT_SCSI_STATUS_TARGET_INTERMEDIATE_CONDITION_MET 0x14
#define EFI_EXT_SCSI_STATUS_TARGET_RESERVATION_CONFLICT 0x18
#define EFI_EXT_SCSI_STATUS_TARGET_TASK_SET_FULL 0x28
#define EFI_EXT_SCSI_STATUS_TARGET_ACA_ACTIVE 0x30
#define EFI_EXT_SCSI_STATUS_TARGET_TASK_ABORTED 0x40

Description
The PassThru() function sends the SCSI Request Packet specified by Packet to the SCSI
device specified by Target and Lun. If the driver supports nonblocking I/O and Event is not
NULL, then the driver will return immediately after the command is sent to the selected device, and
will later signal Event when the command has completed.

If the driver supports nonblocking I/O and Event is NULL, then the driver will send the command
to the selected device and block until it is complete.

If the driver does not support nonblocking I/O, then the Event parameter is ignored, and the driver
will send the command to the selected device and block until it is complete.

If Packet is successfully sent to the SCSI device, then EFI_SUCCESS is returned.

If Packet cannot be sent because there are too many packets already queued up, then
EFI_NOT_READY is returned. The caller may retry Packet at a later time.

If a device error occurs while sending the Packet, then EFI_DEVICE_ERROR is returned.

If a timeout occurs during the execution of Packet, then EFI_TIMEOUT is returned.

If a device is not present but the target/LUN address in the packet are valid, then EFI_TIMEOUT is
returned, and HostStatus is set to
EFI_EXT_SCSI_STATUS_HOST_ADAPTER_TIMEOUT_COMMAND.

If Target or Lun are not in a valid range for the SCSI channel, then
EFI_INVALID_PARAMETER is returned. If InDataBuffer, OutDataBuffer or
SenseData do not meet the alignment requirement specified by the IoAlign field of the
EFI_EXT_SCSI_PASS_THRU_MODE structure, then EFI_INVALID_PARAMETER is returned.
If any of the other fields of Packet are invalid, then EFI_INVALID_PARAMETER is returned.

If the data buffer described by InDataBuffer and InTransferLength is too big to be
transferred in a single command, then no data is transferred and EFI_BAD_BUFFER_SIZE is
800 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
returned. The number of bytes that can be transferred in a single command are returned in
InTransferLength.

If the data buffer described by OutDataBuffer and OutTransferLength is too big to be
transferred in a single command, then no data is transferred and EFI_BAD_BUFFER_SIZE is
returned. The number of bytes that can be transferred in a single command are returned in
OutTransferLength.

If the command described in Packet is not supported by the host adapter, then
EFI_UNSUPPORTED is returned.

If EFI_SUCCESS, EFI_BAD_BUFFER_SIZE, EFI_DEVICE_ERROR, or EFI_TIMEOUT
is returned, then the caller must examine the status fields in Packet in the following precedence
order: HostAdapterStatus followed by TargetStatus followed by SenseDataLength,
followed by SenseData.

If nonblocking I/O is being used, then the status fields in Packet will not be valid until the Event
associated with Packet is signaled.

If EFI_NOT_READY, EFI_INVALID_PARAMETER or EFI_UNSUPPORTED is returned, then
Packet was never sent, so the status fields in Packet are not valid. If nonblocking I/O is being
used, the Event associated with Packet will not be signaled.

Note: Some examples of SCSI read commands are READ, INQUIRY, and MODE_SENSE.

Note: Some examples of SCSI write commands are WRITE and MODE_SELECT.

Note: An example of a SCSI non data command is TEST_UNIT_READY.

Status Codes Returned

EFI_SUCCESS The SCSI Request Packet was sent by the host. For bi-directional

commands, InTransferLength bytes were transferred from

InDataBuffer. For write and bi-directional commands,

OutTransferLength bytes were transferred by

OutDataBuffer. See HostAdapterStatus,
TargetStatus, SenseDataLength, and

SenseData in that order for additional status information.

EFI_BAD_BUFFER_SIZE The SCSI Request Packet was not executed. The number of bytes

that could be transferred is returned in InTransferLength.

For write and bi-directional commands, OutTransferLength

bytes were transferred by OutDataBuffer. See

HostAdapterStatus, TargetStatus, and in that

order for additional status information.

EFI_NOT_READY The SCSI Request Packet could not be sent because there are too
many SCSI Request Packets already queued. The caller may retry
again later.

EFI_DEVICE_ERROR A device error occurred while attempting to send the SCSI Request

Packet. See HostAdapterStatus, TargetStatus,
SenseDataLength, and SenseData in that order for

additional status information.
Version 2.5 April, 2015 801

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER Target, Lun, or the contents of ScsiRequestPacket
are invalid. The SCSI Request Packet was not sent, so no additional
status information is available.

EFI_UNSUPPORTED The command described by the SCSI Request Packet is not
supported by the host adapter. This includes the case of Bi-
directional SCSI commands not supported by the implementation.
The SCSI Request Packet was not sent, so no additional status
information is available.

EFI_TIMEOUT A timeout occurred while waiting for the SCSI Request Packet to

execute. See HostAdapterStatus, TargetStatus,
SenseDataLength, and SenseData in that order for

additional status information.
802 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTargetLun()

Summary
Used to retrieve the list of legal Target IDs and LUNs for SCSI devices on a SCSI channel. These
can either be the list SCSI devices that are actually present on the SCSI channel, or the list of legal
Target Ids and LUNs for the SCSI channel. Regardless, the caller of this function must probe the
Target ID and LUN returned to see if a SCSI device is actually present at that location on the SCSI
channel.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EXT_SCSI_PASS_THRU_GET_NEXT_TARGET_LUN) (
 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
 IN OUT UINT8 **Target,
 IN OUT UINT64 *Lun
);

Parameters
This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL

instance. Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is
defined in Section 14.7.

Target On input, a pointer to a legal Target ID (an array of size
TARGET_MAX_BYTES) for a SCSI device present on the SCSI
channel. On output, a pointer to the next legal Target ID (an
array of TARGET_MAX_BYTES) of a SCSI device on a SCSI
channel. An input value of 0xFF’s (all bytes in the array are
0xFF) in the Target array retrieves the first legal Target ID for a
SCSI device present on a SCSI channel.

Lun On input, a pointer to the LUN of a SCSI device present on the
SCSI channel. On output, a pointer to the LUN of the next SCSI
device ID on a SCSI channel.

Description
The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTargetLun() function retrieves a
list of legal Target ID and LUN of a SCSI channel. If on input a Target is specified by all 0xFF
in the Target array, then the first legal Target ID and LUN for a SCSI device on a SCSI channel is
returned in Target and Lun, and EFI_SUCCESS is returned.

If Target and Lun is a Target ID and LUN value that was returned on a previous call to
GetNextTargetLun(), then the next legal Target ID and LUN for a SCSI device on the SCSI
channel is returned in Target and Lun, and EFI_SUCCESS is returned.

If Target array is not all 0xFF’s and Target and Lun were not returned on a previous call
to GetNextTargetLun(), then EFI_INVALID_PARAMETER is returned.

If Target and Lun are the Target ID and LUN of the last SCSI device on the SCSI channel, then
EFI_NOT_FOUND is returned.
Version 2.5 April, 2015 803

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS The Target ID and LUN of the next SCSI device on the SCSI

channel was returned in Target and Lun.

EFI_NOT_FOUND There are no more SCSI devices on this SCSI channel.

EFI_INVALID_PARAMETER Target array is not all 0xFF’s, and Target and Lun were

not returned on a previous call to GetNextTargetLun().
804 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath()

Summary
Used to allocate and build a device path node for a SCSI device on a SCSI channel.

Prototype
typedef

EFI_STATUS
 (EFIAPI *EFI_EXT_SCSI_PASS_THRU_BUILD_DEVICE_PATH) (
 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
 IN UINT8 *Target,
 IN UINT64 Lun
 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath
);

Parameters
This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL

instance. Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is
defined in Section 14.7.

Target The Target is an array of size TARGET_MAX_BYTES and it
specifies the Target ID of the SCSI device for which a device
path node is to be allocated and built. Transport drivers may
chose to utilize a subset of this size to suit the representation of
targets. For example, a Fibre Channel driver may use only 8 bytes
(WWN) in the array to represent a FC target.

Lun The LUN of the SCSI device for which a device path node is to
be allocated and built.

DevicePath A pointer to a single device path node that describes the SCSI
device specified by Target and Lun. This function is
responsible for allocating the buffer DevicePath with the boot
service AllocatePool(). It is the caller’s responsibility to
free DevicePath when the caller is finished with
DevicePath.

Description
The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath() function allocates
and builds a single device path node for the SCSI device specified by Target and Lun. If the SCSI
device specified by Target and Lun are not present on the SCSI channel, then EFI_NOT_FOUND
is returned. If DevicePath is NULL, then EFI_INVALID_PARAMETER is returned. If there
are not enough resources to allocate the device path node, then EFI_OUT_OF_RESOURCES is
returned. Otherwise, DevicePath is allocated with the boot service AllocatePool(), the
contents of DevicePath are initialized to describe the SCSI device specified by Target and
Lun, and EFI_SUCCESS is returned.
Version 2.5 April, 2015 805

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS The device path node that describes the SCSI device specified by

Target and Lun was allocated and returned in DevicePath.

EFI_NOT_FOUND The SCSI devices specified by Target and Lun does not exist

on the SCSI channel.

EFI_INVALID_PARAMETER DevicePath is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to allocate DevicePath.
806 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetTargetLun()

Summary
Used to translate a device path node to a Target ID and LUN.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_EXT_SCSI_PASS_THRU_GET_TARGET_LUN) (
 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
 IN EFI_DEVICE_PATH_PROTOCOL *DevicePath
 OUT UINT8 **Target,
 OUT UINT64 *Lun
);

Parameters
This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL

instance. Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is
defined in Section 14.7.

DevicePath A pointer to the device path node that describes a SCSI device on
the SCSI channel.

Target A pointer to the Target Array which represents the ID of a SCSI
device on the SCSI channel.

Lun A pointer to the LUN of a SCSI device on the SCSI channel.

Description
The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetTargetLun() function determines the
Target ID and LUN associated with the SCSI device described by DevicePath. If DevicePath
is a device path node type that the SCSI Pass Thru driver supports, then the SCSI Pass Thru driver
will attempt to translate the contents DevicePath into a Target ID and LUN. If this translation is
successful, then that Target ID and LUN are returned in Target and Lun, and EFI_SUCCESS is
returned.

If DevicePath, Target, or Lun are NULL, then EFI_INVALID_PARAMETER is returned.

If DevicePath is not a device path node type that the SCSI Pass Thru driver supports, then
EFI_UNSUPPORTED is returned.

If DevicePath is a device path node type that the SCSI Pass Thru driver supports, but there is not
a valid translation from DevicePath to a Target ID and LUN, then EFI_NOT_FOUND is
returned.

Status Codes Returned

EFI_SUCCESS DevicePath was successfully translated to a Target ID and

LUN, and they were returned in Target and Lun.

EFI_INVALID_PARAMETER DevicePath is NULL.
Version 2.5 April, 2015 807

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER Target is NULL

EFI_INVALID_PARAMETER Lun is NULL

EFI_UNSUPPORTED This driver does not support the device path node type in

DevicePath.

EFI_NOT_FOUND A valid translation from DevicePath to a Target ID and LUN

does not exist.
808 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetChannel()

Summary
Resets a SCSI channel. This operation resets all the SCSI devices connected to the SCSI channel.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_EXT_SCSI_PASS_THRU_RESET_CHANNEL) (
 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This
);

Parameters
This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL

instance. Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is
defined in Section 14.7.

Description
The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetChannel() function resets a SCSI
channel. This operation resets all the SCSI devices connected to the SCSI channel. If this SCSI
channel does not support a reset operation, then EFI_UNSUPPORTED is returned.

If a device error occurs while executing that channel reset operation, then EFI_DEVICE_ERROR
is returned.

If a timeout occurs during the execution of the channel reset operation, then EFI_TIMEOUT is
returned. If the channel reset operation is completed, then EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The SCSI channel was reset.

EFI_UNSUPPORTED The SCSI channel does not support a channel reset operation.

EFI_DEVICE_ERROR A device error occurred while attempting to reset the SCSI channel.

EFI_TIMEOUT A timeout occurred while attempting to reset the SCSI channel.
Version 2.5 April, 2015 809

Unified Extensible Firmware Interface Specification
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetTargetLun()

Summary
Resets a SCSI logical unit that is connected to a SCSI channel.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_EXT_SCSI_PASS_THRU_RESET_TARGET_LUN) (
 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
 IN UINT8 *Target,
 IN UINT64 Lun
);

Parameters
This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL

instance. Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is
defined in Section 14.7.

Target The Target is an array of size TARGET_MAX_BYTE and it
represents the target port ID of the SCSI device containing the
SCSI logical unit to reset. Transport drivers may chose to utilize a
subset of this array to suit the representation of their targets. For
example a Fibre Channel driver may use only 8 bytes in the array
(WWN) to represent a FC target.

Lun The LUN of the SCSI device to reset.

Description
The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetTargetLun() function resets the
SCSI logical unit specified by Target and Lun. If this SCSI channel does not support a target reset
operation, then EFI_UNSUPPORTED is returned.

If Target or Lun are not in a valid range for this SCSI channel, then
EFI_INVALID_PARAMETER is returned.

If a device error occurs while executing that logical unit reset operation, then
EFI_DEVICE_ERROR is returned.

If a timeout occurs during the execution of the logical unit reset operation, then EFI_TIMEOUT is
returned.

If the logical unit reset operation is completed, then EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The SCSI device specified by Target and Lun was reset

EFI_UNSUPPORTED The SCSI channel does not support a target reset operation.

EFI_INVALID_PARAMETER Target or Lun are invalid.
810 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
EFI_DEVICE_ERROR A device error occurred while attempting to reset the SCSI device

specified by Target and Lun.

EFI_TIMEOUT A timeout occurred while attempting to reset the SCSI device

specified by Target and Lun.
Version 2.5 April, 2015 811

Unified Extensible Firmware Interface Specification
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget()

Summary
Used to retrieve the list of legal Target IDs for SCSI devices on a SCSI channel. These can either be
the list SCSI devices that are actually present on the SCSI channel, or the list of legal Target IDs for
the SCSI channel. Regardless, the caller of this function must probe the Target ID returned to see if a
SCSI device is actually present at that location on the SCSI channel.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EXT_SCSI_PASS_THRU_GET_NEXT_TARGET) (
 IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
 IN OUT UINT8 **Target,
);

Parameters
This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL

instance. Type EFI_EXT_SCSI_PASS_THRU_PROTOCOL is
defined in Section 14.7.

Target On input, a pointer to the Target ID (an array of size
TARGET_MAX_BYTES) of a SCSI device present on the SCSI
channel. On output, a pointer to the Target ID (an array of
TARGET_MAX_BYTES) of the next SCSI device present on a
SCSI channel. An input value of 0xFF’s (all bytes in the array
are 0xFF) in the Target array retrieves the Target ID of the first
SCSI device present on a SCSI channel.

Description
The EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget() function retrieves the
Target ID of a SCSI device present on a SCSI channel. If on input a Target is specified by all 0xF
in the Target array, then the Target ID of the first SCSI device is returned in Target and
EFI_SUCCESS is returned.

If Target is a Target ID value that was returned on a previous call to GetNextTarget(), then
the Target ID of the next SCSI device on the SCSI channel is returned in Target, and
EFI_SUCCESS is returned.

If Target array is not all 0xFF’s and Target were not returned on a previous call to
GetNextTarget(), then EFI_INVALID_PARAMETER is returned.

If Target is the Target ID of the last SCSI device on the SCSI channel, then EFI_NOT_FOUND is
returned.
812 April, 2015 Version 2.5

Protocols — SCSI Driver Models and Bus Support
Status Codes Returned

EFI_SUCCESS The Target ID of the next SCSI device on the SCSI

channel was returned in Target.

EFI_NOT_FOUND There are no more SCSI devices on this SCSI channel.

EFI_INVALID_PARAMETER Target array is not all 0xFF’s, and Target were not

returned on a previous call to GetNextTarget().
Version 2.5 April, 2015 813

Unified Extensible Firmware Interface Specification
814 April, 2015 Version 2.5

Protocols - iSCSI Boot
15
Protocols - iSCSI Boot

15.1 Overview
The iSCSI protocol defines a transport for SCSI data over TCP/IP. It also provides an interoperable
solution that takes advantage of existing internet infrastructure, management facilities, and addresses
distance limitations. The iSCSI protocol specification was developed by the Internet Engineering
Task Force (IETF) and is SCSI Architecture Model-2 (SAM-2) compliant. iSCSI encapsulates
block-oriented SCSI commands into iSCSI Protocol Data Units (PDU) that traverse the network
over TCP/IP. iSCSI defines a Session, the initiator and target nexus (I-T nexus), which could be a
bundle of one or more TCP connections.

Similar to other existing mass storage protocols like Fibre Channel and parallel SCSI, boot over
iSCSI is an important functionality. This document will attempt to capture the various cases for
iSCSI boot and common up with generic EFI protocol changes to address them.

15.1.1 iSCSI UEFI Driver Layering
iSCSI UEFI Drivers may exist in two different forms:

• iSCSI UEFI Driver on a NIC:

The driver will be layered on top of the networking layers. It will use the DHCP, IP,
and TCP and packet level interface protocols of the UEFI networking stack. The
driver will use an iSCSI software initiator.

• iSCSI UEFI Driver on a Host Bus Adapter (HBA) that may use an offloading engine such as
TOE (or any other TCP offload card):

The driver will be layered on top of the TOE TCP interfaces. It will use the DHCP, IP,
TCP protocols of the TOE. The driver will present itself as a SCSI device driver using
interfaces such as EFI_EXT_SCSI_PASS_THRU_PROTOCOL.

To help in detecting iSCSI UEFI Drivers and their capabilities, the iSCSI UEFI driver handle must
include an instance of the EFI_ADAPTER_INFORMATION_PROTOCOL with a
EFI_ADAPTER_INFO_NETWORK_BOOT structure.

15.2 EFI iSCSI Initiator Name Protocol
This protocol sets and obtains the iSCSI Initiator Name. The iSCSI Initiator Name protocol builds a
default iSCSI name. The iSCSI name configures using the programming interfaces defined below.
Successive configuration of the iSCSI initiator name overwrites the previously existing name. Once
overwritten, the previous name will not be retrievable. Setting an iSCSI name string that is zero
length is illegal. The maximum size of the iSCSI Initiator Name is 224 bytes (including the NULL
terminator).
Version 2.5 April, 2015 815

Unified Extensible Firmware Interface Specification
EFI_ISCSI_INITIATOR_NAME_PROTOCOL

Summary
iSCSI Initiator Name Protocol for setting and obtaining the iSCSI Initiator Name.

GUID
#define EFI_ISCSI_INITIATOR_NAME_PROTOCOL_GUID \
 {0x59324945, 0xec44, 0x4c0d, \
 {0xb1, 0xcd, 0x9d, 0xb1, 0x39, 0xdf, 0x07, 0x0c}}

Protocol Interface Structure
typedef struct _EFI_ISCSI_INITIATOR_NAME_PROTOCOL {
 EFI_ISCSI_INITIATOR_NAME_GET Get;
 EFI_ISCSI_INITIATOR_NAME_SET Set;
} EFI_ISCSI_INITIATOR_NAME_PROTOCOL;

Parameters
Get Used to retrieve the iSCSI Initiator Name.

Set Used to set the iSCSI Initiator Name.

Description
The EFI_ISCSI_INIT_NAME_PROTOCOL provides the ability to get and set the iSCSI Initiator
Name.
816 April, 2015 Version 2.5

Protocols - iSCSI Boot
EFI_ISCSI_INITIATOR_NAME_PROTOCOL. Get()

Summary
Retrieves the current set value of iSCSI Initiator Name.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_ISCSI_INITIATOR_NAME_GET) {
 IN EFI_ISCSI_INITIATOR_NAME_PROTOCOL *This
 IN OUT UINTN *BufferSize
 OUT VOID *Buffer
}

Parameters
This Pointer to the EFI_ISCSI_INITIATOR_NAME_PROTOCOL

instance.

BufferSize Size of the buffer in bytes pointed to by Buffer / Actual size of the
variable data buffer.

Buffer Pointer to the buffer for data to be read. The data is a null-
terminated UTF-8 encoded string. The maximum length is 223
characters, including the null-terminator.

Description
This function will retrieve the iSCSI Initiator Name from Non-volatile memory.

Status Codes Returned

EFI_SUCCESS Data was successfully retrieved into the provided buffer and the

BufferSize was sufficient to handle the iSCSI initiator name

EFI_BUFFER_TOO_SMALL BufferSize is too small for the result. BufferSize will be

updated with the size required to complete the request. Buffer will

not be affected.

EFI_INVALID_PARAMETER BufferSize is NULL. BufferSize and Buffer will not be

affected.

EFI_INVALID_PARAMETER Buffer is NULL. BufferSize and Buffer will not be

affected.

EFI_DEVICE_ERROR The iSCSI initiator name could not be retrieved due to a hardware
error.
Version 2.5 April, 2015 817

Unified Extensible Firmware Interface Specification
EFI_ISCSI_INITIATOR_NAME_PROTOCOL.Set()

Summary
Sets the iSCSI Initiator Name.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_ISCSI_INITIATOR_NAME_SET) {
 IN EFI_ISCSI_INITIATOR_NAME_PROTOCOL *This
 IN OUT UINTN *BufferSize
 IN VOID *Buffer
}

Parameters
This Pointer to the EFI_ISCSI_INITIATOR_NAME_PROTOCOL

instance

BufferSize Size of the buffer in bytes pointed to by Buffer.

Buffer Pointer to the buffer for data to be written. The data is a null-
terminated UTF-8 encoded string. The maximum length is 223
characters, including the null-terminator.

Description
This function will set the iSCSI Initiator Name into Non-volatile memory.

Status Codes Returned

EFI_SUCCESS Data was successfully stored by the protocol

EFI_UNSUPPORTED Platform policies do not allow for data to be written

EFI_INVALID_PARAMETER BufferSize exceeds the maximum allowed limit.

BufferSize will be updated with the maximum size required to

complete the request.

EFI_INVALID_PARAMETER Buffersize is NULL. BufferSize and Buffer will not

be affected

EFI_INVALID_PARAMETER Buffer is NULL. BufferSize and Buffer will not be

affected.

EFI_DEVICE_ERROR The data could not be stored due to a hardware error.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the data

EFI_PROTOCOL_ERROR Input iSCSI initiator name does not adhere to RFC 3720 (and other
related protocols)
818 April, 2015 Version 2.5

16
Protocols — USB Support

16.1 USB2 Host Controller Protocol
Section 16.1 and Section 16.1.1 describe the USB2 Host Controller Protocol. This protocol provides
an I/O abstraction for a USB2 Host Controller. The USB2 Host Controller is a hardware component
that interfaces to a Universal Serial Bus (USB). It moves data between system memory and devices
on the USB by processing data structures and generating transactions on the USB. This protocol is
used by a USB Bus Driver to perform all data transaction over the Universal Serial Bus. It also
provides services to manage the USB root hub that is integrated into the USB Host Controller. USB
device drivers do not use this protocol directly. Instead, they use the I/O abstraction produced by the
USB Bus Driver. This protocol should only be used by drivers that require direct access to the USB
bus.

16.1.1 USB Host Controller Protocol Overview
The USB Host Controller Protocol is used by code, typically USB bus drivers, running in the EFI
boot services environment, to perform data transactions over a USB bus. In addition, it provides an
abstraction for the root hub of the USB bus.

The interfaces provided in the EFI_USB2_HC_PROTOCOL are used to manage data transactions on
a USB bus. It also provides control methods for the USB root hub. The
EFI_USB2_HC_PROTOCOL is designed to support both USB 1.1 and USB 2.0 – compliant host
controllers.

The EFI_USB2_HC_PROTOCOL abstracts basic functionality that is designed to operate with the
EHCI, UHCI and OHCI standards. By using this protocol, a single USB bus driver can be
implemented without knowing if the underlying USB host controller conforms to the XHCI, EHCI,
OHCI or the UHCI standards.

Each instance of the EFI_USB2_HC_PROTOCOL corresponds to a USB host controller in a
platform. The protocol is attached to the device handle of a USB host controller that is created by a
device driver for the USB host controller’s parent bus type. For example, a USB host controller that
is implemented as a PCI device would require a PCI device driver to produce an instance of the
EFI_USB2_HC_PROTOCOL.

EFI_USB2_HC_PROTOCOL

Summary
Provides basic USB host controller management, basic data transactions over USB bus, and USB
root hub access.
Version 2.5 April, 2015 819

Unified Extensible Firmware Interface Specification
GUID
#define EFI_USB2_HC_PROTOCOL_GUID \
 {0x3e745226,0x9818,0x45b6,\
 {0xa2,0xac,0xd7,0xcd,0x0e,0x8b,0xa2,0xbc}}

Protocol Interface Structure
typedef struct _EFI_USB2_HC_PROTOCOL {

 EFI_USB2_HC_PROTOCOL_GET_CAPABILITY GetCapability;

 EFI_USB2_HC_PROTOCOL_RESET Reset;

 EFI_USB2_HC_PROTOCOL_GET_STATE GetState;

 EFI_USB2_HC_PROTOCOL_SET_STATE SetState;

 EFI_USB2_HC_PROTOCOL_CONTROL_TRANSFER ControlTransfer;

 EFI_USB2_HC_PROTOCOL_BULK_TRANSFER BulkTransfer;

 EFI_USB2_HC_PROTOCOL_ASYNC_INTERRUPT_TRANSFER
AsyncInterruptTransfer;

 EFI_USB2_HC_PROTOCOL_SYNC_INTERRUPT_TRANSFER
SyncInterruptTransfer;

 EFI_USB2_HC_PROTOCOL_ISOCHRONOUS_TRANSFER
IsochronousTransfer;

 EFI_USB2_HC_PROTOCOL_ASYNC_ISOCHRONOUS_TRANSFER
AsyncIsochronousTransfer;

 EFI_USB2_HC_PROTOCOL_GET_ROOTHUB_PORT_STATUS
GetRootHubPortStatus;

 EFI_USB2_HC_PROTOCOL_SET_ROOTHUB_PORT_FEATURE
SetRootHubPortFeature;

 EFI_USB2_HC_PROTOCOL_CLEAR_ROOTHUB_PORT_FEATURE
ClearRootHubPortFeature;

 UINT16 MajorRevision;

 UINT16 MinorRevision;

} EFI_USB2_HC_PROTOCOL;

Parameters
GetCapability Retrieves the capabilities of the USB host controller. See the

GetCapability() function description.

Reset Software reset of USB. See the Reset() function description.

GetState Retrieves the current state of the USB host controller. See the
GetState() function description.

SetState Sets the USB host controller to a specific state. See the
SetState() function description.

ControlTransfer Submits a control transfer to a target USB device. See the
ControlTransfer() function description.

BulkTransfer Submits a bulk transfer to a bulk endpoint of a USB device. See
the BulkTransfer() function description.
820 April, 2015 Version 2.5

Protocols — USB Support
AsyncInterruptTransfer
Submits an asynchronous interrupt transfer to an interrupt
endpoint of a USB device. See the
AsyncInterruptTransfer() function description.

SyncInterruptTransfer
Submits a synchronous interrupt transfer to an interrupt endpoint
of a USB device. See the SyncInterruptTransfer()
function description.

IsochronousTransferSubmits isochronous transfer to an isochronous endpoint of a
USB device. See the IsochronousTransfer() function
description.

AsyncIsochronousTransfer
Submits nonblocking USB isochronous transfer. See the
AsyncIsochronousTransfer() function description.

GetRootHubPortStatus
Retrieves the status of the specified root hub port. See the
GetRootHubPortStatus() function description.

SetRootHubPortFeature
Sets the feature for the specified root hub port. See the
SetRootHubPortFeature() function description.

ClearRootHubPortFeature
Clears the feature for the specified root hub port. See the
ClearRootHubPortFeature() function description.

MajorRevision The major revision number of the USB host controller. The
revision information indicates the release of the Universal Serial
Bus Specification with which the host controller is compliant.

MinorRevision The minor revision number of the USB host controller. The
revision information indicates the release of the Universal Serial
Bus Specification with which the host controller is compliant.

Description
The EFI_USB2_HC_PROTOCOL provides USB host controller management, basic data
transactions over a USB bus, and USB root hub access. A device driver that wishes to manage a
USB bus in a system retrieves the EFI_USB2_HC_PROTOCOL instance that is associated with the
USB bus to be managed. A device handle for a USB host controller will minimally contain an
EFI_DEVICE_PATH_PROTOCOL instance, and an EFI_USB2_HC_PROTOCOL instance.
Version 2.5 April, 2015 821

Unified Extensible Firmware Interface Specification
EFI_USB2_HC_PROTOCOL.GetCapability()

Summary
Retrieves the Host Controller capabilities.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_GET_CAPABILITY) (
 IN EFI_USB2_HC_PROTOCOL *This,
 OUT UINT8 *MaxSpeed,
 OUT UINT8 *PortNumber,
 OUT UINT8 *Is64BitCapable
);

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

MaxSpeed Host controller data transfer speed; see “Related Definitions”
below for a list of supported transfer speed values.

PortNumber Number of the root hub ports.

Is64BitCapable TRUE if controller supports 64-bit memory addressing, FALSE
otherwise.

Related Definitions
#define EFI_USB_SPEED_FULL 0x0000

#define EFI_USB_SPEED_LOW 0x0001

#define EFI_USB_SPEED_HIGH 0x0002

#define EFI_USB_SPEED_SUPER 0x0003

Description
This function is used to retrieve the host controller capabilities. MaxSpeed indicates the maximum
data transfer speed the controller is capable of; this information is needed for the subsequent
transfers. PortNumber is the number of root hub ports, it is required by the USB bus driver to
perform bus enumeration. Is64BitCapable indicates that controller is capable of 64-bit memory
access so that the host controller software can use memory blocks above 4 GiB for the data transfers.

EFI_USB_SPEED_LOW Low speed USB device; data bandwidth is up to 1.5 Mb/s.
Supported by USB 1.1 OHCI and UHCI host controllers.

EFI_USB_SPEED_FULL Full speed USB device; data bandwidth is up to 12 Mb/s. Supported
by USB 1.1 OHCI and UHCI host controllers.

EFI_USB_SPEED_HIGH High speed USB device; data bandwidth is up to 480 Mb/s.
Supported by USB 2.0 EHCI host controllers.

EFI_USB_SPEED_SUPER Super speed USB device; data bandwidth is up to 4.8Gbs.
Supported by USB 3.0 XHCI host controllers.
822 April, 2015 Version 2.5

Protocols — USB Support
Status Codes Returned

EFI_SUCCESS The host controller capabilities were retrieved successfully.

EFI_INVALID_PARAMETER MaxSpeed or PortNumber or Is64BitCapable is NULL.

EFI_DEVICE_ERROR An error was encountered while attempting to retrieve the
capabilities.
Version 2.5 April, 2015 823

Unified Extensible Firmware Interface Specification
EFI_USB2_HC_PROTOCOL.Reset()

Summary
Provides software reset for the USB host controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_RESET) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT16 Attributes
);

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

Attributes A bit mask of the reset operation to perform. See “Related
Definitions” below for a list of the supported bit mask values.

Related Definitions
#define EFI_USB_HC_RESET_GLOBAL 0x0001
#define EFI_USB_HC_RESET_HOST_CONTROLLER 0x0002
#define EFI_USB_HC_RESET_GLOBAL_WITH_DEBUG 0x0004
#define EFI_USB_HC_RESET_HOST_WITH_DEBUG 0x0008

EFI_USB_HC_RESET_GLOBAL

If this bit is set, a global reset signal will be sent to the USB bus. This resets all of the
USB bus logic, including the USB host controller hardware and all the devices
attached on the USB bus.

EFI_USB_HC_RESET_HOST_CONTROLLER

If this bit is set, the USB host controller hardware will be reset. No reset signal will be
sent to the USB bus.

EFI_USB_HC_RESET_GLOBAL_WITH_DEBUG

If this bit is set, then a global reset signal will be sent to the USB bus. This resets all of
the USB bus logic, including the USB host controller and all of the devices attached
on the USB bus. If this is an XHCI or EHCI controller and the debug port has been
configured, then this will still reset the host controller.

EFI_USB_HC_RESET_HOST_WITH_DEBUG

If this bit is set, the USB host controller hardware will be reset. If this is an XHCI or
EHCI controller and the debug port has been configured, then this will still reset the
host controller.
824 April, 2015 Version 2.5

Protocols — USB Support
Description
This function provides a software mechanism to reset a USB host controller. The type of reset is
specified by the Attributes parameter. If the type of reset specified by Attributes is not
valid, then EFI_INVALID_PARAMETER is returned. If the reset operation is completed, then
EFI_SUCCESS is returned. If the type of reset specified by Attributes is not currently
supported by the host controller hardware, EFI_UNSUPPORTD is returned. If a device error occurs
during the reset operation, then EFI_DEVICE_ERROR is returned.

Note: For XHCI or EHCI controllers, the EFI_USB_HC_RESET_GLOBAL and
EFI_USB_HC_RESET_HOST_CONTROLLER types of reset do not actually reset the bus if the
debug port has been configured. In these cases, the function will return EFI_ACCESS_DENIED.

Status Codes Returned

EFI_SUCCESS The reset operation succeeded.

EFI_INVALID_PARAMETER Attributes is not valid.

EFI_UNSUPPORTED The type of reset specified by Attributes is not currently

supported by the host controller hardware.

EFI_ACCESS_DENIED Reset operation is rejected due to the debug port being configured
and active; only

EFI_USB_HC_RESET_GLOBAL_WITH_DEBUG or

EFI_USB_HC_RESET_HOST_WITH_DEBUG reset

Attributes can be used to perform reset operation for this

host controller.

EFI_DEVICE_ERROR An error was encountered while attempting to perform the reset
operation.
Version 2.5 April, 2015 825

Unified Extensible Firmware Interface Specification
EFI_USB2_HC_PROTOCOL.GetState()

Summary
Retrieves current state of the USB host controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_GET_STATE) (
 IN EFI_USB2_HC_PROTOCOL *This,
 OUT EFI_USB_HC_STATE *State
);

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

State A pointer to the EFI_USB_HC_STATE data structure that
indicates current state of the USB host controller. Type
EFI_USB_HC_STATE is defined in “Related Definitions.”

Related Definitions
typedef enum {
 EfiUsbHcStateHalt,
 EfiUsbHcStateOperational,
 EfiUsbHcStateSuspend,
 EfiUsbHcStateMaximum
} EFI_USB_HC_STATE;

EfiUsbHcStateHalt

The host controller is in halt state. No USB transactions can occur while in this state.
The host controller can enter this state for three reasons:

• After host controller hardware reset.

• Explicitly set by software.

• Triggered by a fatal error such as consistency check failure.
EfiUsbHcStateOperational

The host controller is in an operational state. When in this state, the host controller
can execute bus traffic. This state must be explicitly set to enable the USB bus traffic.

EfiUsbHcStateSuspend

The host controller is in the suspend state. No USB transactions can occur while in
this state. The host controller enters this state for the following reasons:

• Explicitly set by software.

• Triggered when there is no bus traffic for 3 microseconds.
826 April, 2015 Version 2.5

Protocols — USB Support
Description
This function is used to retrieve the USB host controller’s current state. The USB Host Controller
Protocol publishes three states for USB host controller, as defined in “Related Definitions” below. If
State is NULL, then EFI_INVALID_PARAMETER is returned. If a device error occurs while
attempting to retrieve the USB host controllers current state, then EFI_DEVICE_ERROR is
returned. Otherwise, the USB host controller’s current state is returned in State, and
EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The state information of the host controller was returned in State.

EFI_INVALID_PARAMETER State is NULL.

EFI_DEVICE_ERROR An error was encountered while attempting to retrieve the host
controller’s current state.
Version 2.5 April, 2015 827

Unified Extensible Firmware Interface Specification
EFI_USB2_HC_PROTOCOL.SetState()

Summary
Sets the USB host controller to a specific state.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_SET_STATE) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN EFI_USB_HC_STATE State
);

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

State Indicates the state of the host controller that will be set. See the
definition and description of the type EFI_USB_HC_STATE in
the GetState() function description.

Description
This function is used to explicitly set a USB host controller’s state. There are three states defined for
the USB host controller. These are the halt state, the operational state and the suspend state.
Figure 52 illustrates the possible state transitions:

Figure 52. Software Triggered State Transitions of a USB Host Controller

If the state specified by State is not valid, then EFI_INVALID_PARAMETER is returned. If a
device error occurs while attempting to place the USB host controller into the state specified by
State, then EFI_DEVICE_ERROR is returned. If the USB host controller is successfully placed
in the state specified by State, then EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The USB host controller was successfully placed in the state

specified by State.

OM13170

Halt State Suspend State

Operational State
828 April, 2015 Version 2.5

Protocols — USB Support
EFI_INVALID_PARAMETER State is invalid.

EFI_DEVICE_ERROR Failed to set the state specified by State due to device error.
Version 2.5 April, 2015 829

Unified Extensible Firmware Interface Specification
EFI_USB2_HC_PROTOCOL.ControlTransfer()

Summary
Submits control transfer to a target USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_CONTROL_TRANSFER) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN UINT8 DeviceSpeed,
 IN UINTN MaximumPacketLength,
 IN EFI_USB_DEVICE_REQUEST *Request,
 IN EFI_USB_DATA_DIRECTION TransferDirection,
 IN OUT VOID *Data OPTIONAL,
 IN OUT UINTN *DataLength OPTIONAL,
 IN UINTN TimeOut,
 IN EFI_USB2_HC_TRANSACTION_TRANSLATOR *Translator,
 OUT UINT32 *TransferResult
);

Related Definitions
typedef struct {
 UINT8 TranslatorHubAddress,
 UINT8 TranslatorPortNumber
} EFI_USB2_HC_TRANSACTION_TRANSLATOR;

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

DeviceSpeed Indicates device speed. See “Related Definitions” in
GetCapability() for a list of the supported values.

MaximumPacketLength
Indicates the maximum packet size that the default control
transfer endpoint is capable of sending or receiving.

Request A pointer to the USB device request that will be sent to the USB
device. Refer to UsbControlTransfer() (Section 16.2.4)
for the definition of this function type.

TransferDirection Specifies the data direction for the transfer. There are three values
available, EfiUsbDataIn, EfiUsbDataOut and
EfiUsbNoData. Refer to UsbControlTransfer()
(Section 16.2.4) for the definition of this function type.
830 April, 2015 Version 2.5

Protocols — USB Support
Data A pointer to the buffer of data that will be transmitted to USB
device or received from USB device.

DataLength On input, indicates the size, in bytes, of the data buffer specified
by Data. On output, indicates the amount of data actually
transferred.

Translator A pointer to the transaction translator data. See “Description” for
the detailed information of this data structure.

TimeOut Indicates the maximum time, in milliseconds, which the transfer
is allowed to complete.

TransferResult A pointer to the detailed result information generated by this
control transfer. Refer to UsbControlTransfer()
(Section 16.2.4) for transfer result types (EFI_USB_ERR_x).

Description
This function is used to submit a control transfer to a target USB device specified by
DeviceAddress. Control transfers are intended to support configuration/command/status type
communication flows between host and USB device.

There are three control transfer types according to the data phase. If the TransferDirection
parameter is EfiUsbNoData, Data is NULL, and DataLength is 0, then no data phase is
present in the control transfer. If the TransferDirection parameter is EfiUsbDataOut,
then Data specifies the data to be transmitted to the device, and DataLength specifies the
number of bytes to transfer to the device. In this case, there is an OUT DATA stage followed by a
SETUP stage. If the TransferDirection parameter is EfiUsbDataIn, then Data specifies
the data to be received from the device, and DataLength specifies the number of bytes to receive
from the device. In this case there is an IN DATA stage followed by a SETUP stage.

Translator is necessary to perform split transactions on low-speed or full-speed devices
connected to a high-speed hub. Such transaction require the device connection information: device
address and the port number of the hub that device is connected to. This information is passed
through the fields of EFI_USB2_HC_TRANSACTION_TRANSLATOR structure. See “Related
Definitions” for the structure field names. Translator is passed as NULL for the USB1.1 host
controllers transfers or when the transfer is requested for high-speed device connected to USB2.0
controller.

If the control transfer has completed successfully, then EFI_SUCCESS is returned. If the transfer
cannot be completed within the timeout specified by TimeOut, then EFI_TIMEOUT is returned. If
an error other than timeout occurs during the USB transfer, then EFI_DEVICE_ERROR is returned
and the detailed error code will be returned in the TransferResult parameter.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

• TransferDirection is invalid.

• TransferDirection, Data, and DataLength do not match one of the three control
transfer types described above.

• Request pointer is NULL.

• MaximumPacketLength is not valid. If DeviceSpeed is EFI_USB_SPEED_LOW, then
MaximumPacketLength must be 8. If DeviceSpeed is EFI_USB_SPEED_FULL or
Version 2.5 April, 2015 831

Unified Extensible Firmware Interface Specification
EFI_USB_SPEED_HIGH, then MaximumPacketLength must be 8, 16, 32, or 64. If
DeviceSpeed is EFI_USB_SPEED_SUPER, then MaximumPacketLength must be 512.

• TransferResult pointer is NULL.

• Translator is NULL while the requested transfer requires split transaction. The conditions of
the split transactions are described above in “Description” section.

Status Codes Returned

EFI_SUCCESS The control transfer was completed successfully.

EFI_OUT_OF_RESOURCES The control transfer could not be completed due to a lack of
resources.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_TIMEOUT The control transfer failed due to timeout.

EFI_DEVICE_ERROR The control transfer failed due to host controller or device error.

Caller should check TransferResult for detailed error

information.
832 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB2_HC_PROTOCOL.BulkTransfer()

Summary
Submits bulk transfer to a bulk endpoint of a USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_BULK_TRANSFER) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN UINT8 EndPointAddress,
 IN UINT8 DeviceSpeed,
 IN UINTN MaximumPacketLength,
 IN UINT8 DataBuffersNumber,
 IN OUT VOID *Data[EFI_USB_MAX_BULK_BUFFER_NUM],
 IN OUT UINTN *DataLength,
 IN OUT UINT8 *DataToggle,
 IN UINTN TimeOut,
 IN EFI_USB2_HC_TRANSACTION_TRANSLATOR *Translator,
 OUT UINT32 *TransferResult
);

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint
direction of the target USB device. Each endpoint address
supports data transfer in one direction except the control endpoint
(whose default endpoint address is 0). It is the caller’s
responsibility to make sure that the EndPointAddress
represents a bulk endpoint.

DeviceSpeed Indicates device speed. The supported values are
EFI_USB_SPEED_FULL,EFI_USB_SPEED_HIGH or
EFI_USB_SPEED_SUPER..

MaximumPacketLength
Indicates the maximum packet size the target endpoint is capable
of sending or receiving.

DataBuffersNumber Number of data buffers prepared for the transfer.

Data Array of pointers to the buffers of data that will be transmitted to
USB device or received from USB device.
Version 2.5 April, 2015 833

Unified Extensible Firmware Interface Specification
DataLength When input, indicates the size, in bytes, of the data buffers
specified by Data. When output, indicates the actually
transferred data size.

DataToggle A pointer to the data toggle value. On input, it indicates the
initial data toggle value the bulk transfer should adopt; on output,
it is updated to indicate the data toggle value of the subsequent
bulk transfer.

Translator A pointer to the transaction translator data. See ControlTransfer()
“Description” for the detailed information of this data structure.

TimeOut Indicates the maximum time, in milliseconds, which the transfer
is allowed to complete.

TransferResult A pointer to the detailed result information of the bulk transfer.
Refer to UsbControlTransfer() (Section 16.2.4) for
transfer result types (EFI_USB_ERR_x).

Description
This function is used to submit bulk transfer to a target endpoint of a USB device. The target
endpoint is specified by DeviceAddress and EndpointAddress. Bulk transfers are designed
to support devices that need to communicate relatively large amounts of data at highly variable times
where the transfer can use any available bandwidth. Bulk transfers can be used only by full-speed
and high-speed devices.

High-speed bulk transfers can be performed using multiple data buffers. The number of buffers that
are actually prepared for the transfer is specified by DataBuffersNumber. For full-speed bulk
transfers this value is ignored.

Data represents a list of pointers to the data buffers. For full-speed bulk transfers only the data
pointed by Data[0] shall be used. For high-speed transfers depending on DataLength there
several data buffers can be used. The total number of buffers must not exceed
EFI_USB_MAX_BULK_BUFFER_NUM. See “Related Definitions” for the
EFI_USB_MAX_BULK_BUFFER_NUM value.

The data transfer direction is determined by the endpoint direction that is encoded in the
EndPointAddress parameter. Refer to USB Specification, Revision 2.0 on the Endpoint
Address encoding.

The DataToggle parameter is used to track target endpoint’s data sequence toggle bits. The USB
provides a mechanism to guarantee data packet synchronization between data transmitter and
receiver across multiple transactions. The data packet synchronization is achieved with the data
sequence toggle bits and the DATA0/DATA1 PIDs. A bulk endpoint’s toggle sequence is initialized
to DATA0 when the endpoint experiences a configuration event. It toggles between DATA0 and
DATA1 in each successive data transfer. It is host’s responsibility to track the bulk endpoint’s data
toggle sequence and set the correct value for each data packet. The input DataToggle value
points to the data toggle value for the first data packet of this bulk transfer; the output DataToggle
value points to the data toggle value for the last successfully transferred data packet of this bulk
transfer. The caller should record the data toggle value for use in subsequent bulk transfers to the
same endpoint.

If the bulk transfer is successful, then EFI_SUCCESS is returned. If USB transfer cannot be
completed within the timeout specified by Timeout, then EFI_TIMEOUT is returned. If an error
834 April, 2015 Version 2.5

Protocols — USB Support
other than timeout occurs during the USB transfer, then EFI_DEVICE_ERROR is returned and the
detailed status code is returned in TransferResult.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

• Data is NULL.

• DataLength is 0.

• DeviceSpeed is not valid; the legal values are EFI_USB_SPEED_FULL,
EFI_USB_SPEED_HIGH, or EFI_USB_SPEED_SUPER.

• MaximumPacketLength is not valid. The legal value of this parameter is 64 or less for full-
speed, 512 or less for high-speed, and 1024 or less for super-speed transactions.

• DataToggle points to a value other than 0 and 1.

• TransferResult is NULL.

Status Codes Returned

EFI_SUCCESS The bulk transfer was completed successfully.

EFI_OUT_OF_RESOURCES The bulk transfer could not be submitted due to lack of resource.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_TIMEOUT The bulk transfer failed due to timeout.

EFI_DEVICE_ERROR The bulk transfer failed due to host controller or device error. Caller

should check TransferResult for detailed error information.
Version 2.5 April, 2015 835

Unified Extensible Firmware Interface Specification
EFI_USB2_HC_PROTOCOL.AsyncInterruptTransfer()

Summary
Submits an asynchronous interrupt transfer to an interrupt endpoint of a USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_ASYNC_INTERRUPT_TRANSFER) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN UINT8 EndPointAddress,
 IN UINT8 DeviceSpeed,
 IN UINTN MaximumPacketLength,
 IN BOOLEAN IsNewTransfer,
 IN OUT UINT8 *DataToggle,
 IN UINTN PollingInterval OPTIONAL,
 IN UINTN DataLength OPTIONAL,
 IN EFI_USB2_HC_TRANSACTION_TRANSLATOR*Translator OPTIONAL,
 IN EFI_ASYNC_USB_TRANSFER_CALLBACK CallBackFunctionOPTIONAL,
 IN VOID *Context OPTIONAL
);

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint
direction of the target USB device. Each endpoint address
supports data transfer in one direction except the control endpoint
(whose default endpoint address is zero). It is the caller’s
responsibility to make sure that the EndPointAddress
represents an interrupt endpoint.

DeviceSpeed Indicates device speed. See “Related Definitions” in
EFI_USB2_HC_PROTOCOL.ControlTransfer() for a
list of the supported values.

MaximumPacketLengthIndicates the maximum packet size the target endpoint is capable
of sending or receiving.

IsNewTransfer If TRUE, an asynchronous interrupt pipe is built between the host
and the target interrupt endpoint. If FALSE, the specified
asynchronous interrupt pipe is canceled. If TRUE, and an
interrupt transfer exists for the target end point, then
EFI_INVALID_PARAMETER is returned.

DataToggle A pointer to the data toggle value. On input, it is valid when
IsNewTransfer is TRUE, and it indicates the initial data
836 April, 2015 Version 2.5

Protocols — USB Support
toggle value the asynchronous interrupt transfer should adopt.
On output, it is valid when IsNewTransfer is FALSE, and it
is updated to indicate the data toggle value of the subsequent
asynchronous interrupt transfer.

PollingInterval Indicates the interval, in milliseconds, that the asynchronous
interrupt transfer is polled. This parameter is required when
IsNewTransfer is TRUE.

DataLength Indicates the length of data to be received at the rate specified by
PollingInterval from the target asynchronous interrupt
endpoint. This parameter is only required when
IsNewTransfer is TRUE.

Translator A pointer to the transaction translator data.

CallBackFunction The Callback function. This function is called at the rate
specified by PollingInterval. This parameter is only
required when IsNewTransfer is TRUE. Refer to
UsbAsyncInterruptTransfer() (Section 16.2.4) for the
definition of this function type.

Context The context that is passed to the CallBackFunction. This is
an optional parameter and may be NULL.

Description
This function is used to submit asynchronous interrupt transfer to a target endpoint of a USB device.
The target endpoint is specified by DeviceAddress and EndpointAddress. In the USB
Specification, Revision 2.0, interrupt transfer is one of the four USB transfer types. In the
EFI_USB2_HC_PROTOCOL, interrupt transfer is divided further into synchronous interrupt
transfer and asynchronous interrupt transfer.

An asynchronous interrupt transfer is typically used to query a device’s status at a fixed rate. For
example, keyboard, mouse, and hub devices use this type of transfer to query their interrupt
endpoints at a fixed rate. The asynchronous interrupt transfer is intended to support the interrupt
transfer type of “submit once, execute periodically.” Unless an explicit request is made, the
asynchronous transfer will never retire.

If IsNewTransfer is TRUE, then an interrupt transfer is started at a fixed rate. The rate is
specified by PollingInterval, the size of the receive buffer is specified by DataLength, and
the callback function is specified by CallBackFunction. Context specifies an optional
context that is passed to the CallBackFunction each time it is called. The
CallBackFunction is intended to provide a means for the host to periodically process interrupt
transfer data.

If IsNewTransfer is TRUE, and an interrupt transfer exists for the target end point, then
EFI_INVALID_PARAMETER is returned.

If IsNewTransfer is FALSE, then the interrupt transfer is canceled.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

• Data transfer direction indicated by EndPointAddress is other than EfiUsbDataIn.

• IsNewTransfer is TRUE and DataLength is 0.

• IsNewTransfer is TRUE and DataToggle points to a value other than 0 and 1.
Version 2.5 April, 2015 837

Unified Extensible Firmware Interface Specification
• IsNewTransfer is TRUE and PollingInterval is not in the range 1..255.

• IsNewTransfer requested where an interrupt transfer exists for the target end point.

Status Codes Returned

EFI_SUCCESS The asynchronous interrupt transfer request has been successfully
submitted or canceled.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above. When an interrupt transfer exists
for the target end point and a new transfer is requested,
EFI_INVALID_PARAMETER is returned.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
838 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB2_HC_PROTOCOL.SyncInterruptTransfer()

Summary
Submits synchronous interrupt transfer to an interrupt endpoint of a USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_SYNC_INTERRUPT_TRANSFER) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN UINT8 EndPointAddress,
 IN UINT8 DeviceSpeed,
 IN UINTN MaximumPacketLength,
 IN OUT VOID *Data,
 IN OUT UINTN *DataLength,
 IN OUT UINT8 *DataToggle,
 IN UINTN TimeOut,
 IN EFI_USB2_HC_TRANSACTION_TRANSLATOR *Translator
 OUT UINT32 *TransferResult
);

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint
direction of the target USB device. Each endpoint address
supports data transfer in one direction except the control endpoint
(whose default endpoint address is zero). It is the caller’s
responsibility to make sure that the EndPointAddress
represents an interrupt endpoint.

DeviceSpeed Indicates device speed. See “Related Definitions” in
ControlTransfer() for a list of the supported values.

MaximumPacketLengthIndicates the maximum packet size the target endpoint is capable
of sending or receiving.

Data A pointer to the buffer of data that will be transmitted to USB
device or received from USB device.

DataLength On input, the size, in bytes, of the data buffer specified by Data.
On output, the number of bytes transferred.

DataToggle A pointer to the data toggle value. On input, it indicates the initial
data toggle value the synchronous interrupt transfer should adopt;
on output, it is updated to indicate the data toggle value of the
subsequent synchronous interrupt transfer.
Version 2.5 April, 2015 839

Unified Extensible Firmware Interface Specification
TimeOut Indicates the maximum time, in milliseconds, which the transfer
is allowed to complete.

Translator A pointer to the transaction translator data.

TransferResult A pointer to the detailed result information from the synchronous
interrupt transfer. Refer to UsbControlTransfer()
(Section 16.2.4) for transfer result types (EFI_USB_ERR_x).

Description
This function is used to submit a synchronous interrupt transfer to a target endpoint of a USB device.
The target endpoint is specified by DeviceAddress and EndpointAddress. In the USB
Specification, Revision2.0, interrupt transfer is one of the four USB transfer types. In the
EFI_USB2_HC_PROTOCOL, interrupt transfer is divided further into synchronous interrupt
transfer and asynchronous interrupt transfer.

The synchronous interrupt transfer is designed to retrieve small amounts of data from a USB device
through an interrupt endpoint. A synchronous interrupt transfer is only executed once for each
request. This is the most significant difference from the asynchronous interrupt transfer.

If the synchronous interrupt transfer is successful, then EFI_SUCCESS is returned. If the USB
transfer cannot be completed within the timeout specified by Timeout, then EFI_TIMEOUT is
returned. If an error other than timeout occurs during the USB transfer, then
EFI_DEVICE_ERROR is returned and the detailed status code is returned in TransferResult.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

• Data is NULL.

• DataLength is 0.

• MaximumPacketLength is not valid. The legal value of this parameter should be 3072 or
less for high-speed device, 64 or less for a full-speed device; for a slow device, it is limited to 8
or less. For the full-speed device, it should be 8, 16, 32, or 64; for the slow device, it is limited to
8.

• DataToggle points to a value other than 0 and 1.

• TransferResult is NULL.

Status Codes Returned

EFI_SUCCESS The synchronous interrupt transfer was completed successfully.

EFI_OUT_OF_RESOURCES The synchronous interrupt transfer could not be submitted due to
lack of resource.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_TIMEOUT The synchronous interrupt transfer failed due to timeout.

EFI_DEVICE_ERROR The synchronous interrupt transfer failed due to host controller or

device error. Caller should check TransferResult for

detailed error information.
840 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB2_HC_PROTOCOL.IsochronousTransfer()

Summary
Submits isochronous transfer to an isochronous endpoint of a USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_ISOCHRONOUS_TRANSFER) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN UINT8 EndPointAddress,
 IN UINT8 DeviceSpeed,
 IN UINTN MaximumPacketLength,
 IN UINT8 DataBuffersNumber,
 IN OUT VOID *Data[EFI_USB_MAX_ISO_BUFFER_NUM],
 IN UINTN DataLength,
 IN EFI_USB2_HC_TRANSACTION_TRANSLATOR *Translator,
 OUT UINT32 *TransferResult
);

Related Definitions
#define EFI_USB_MAX_ISO_BUFFER_NUM 7
#define EFI_USB_MAX_ISO_BUFFER_NUM1 2

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint
direction of the target USB device. Each endpoint address
supports data transfer in one direction except the control endpoint
(whose default endpoint address is 0). It is the caller’s
responsibility to make sure that the EndPointAddress
represents an isochronous endpoint.

DeviceSpeed Indicates device speed. The supported values are
EFI_USB_SPEED_FULL, EFI_USB_SPEED_HIGH, or
EFI_USB_SPEED_SUPER.

MaximumPacketLengthIndicates the maximum packet size the target endpoint is capable
of sending or receiving. For isochronous endpoints, this value is
used to reserve the bus time in the schedule, required for the per-
frame data payloads. The pipe may, on an ongoing basis, actually
use less bandwidth than that reserved.

DataBuffersNumber Number of data buffers prepared for the transfer.
Version 2.5 April, 2015 841

Unified Extensible Firmware Interface Specification
Data Array of pointers to the buffers of data that will be transmitted to
USB device or received from USB device.

DataLength Specifies the length, in bytes, of the data to be sent to or received
from the USB device.

Translator A pointer to the transaction translator data. See ControlTransfer()
“Description” for the detailed information of this data structure.

TransferResult A pointer to the detail result information of the isochronous
transfer. Refer to UsbControlTransfer() (Section 16.2.4)
for transfer result types (EFI_USB_ERR_x).

Description
This function is used to submit isochronous transfer to a target endpoint of a USB device. The target
endpoint is specified by DeviceAddress and EndpointAddress. Isochronous transfers are
used when working with isochronous date. It provides periodic, continuous communication between
the host and a device. Isochronous transfers can be used only by full-speed, high-speed, and super-
speed devices.

High-speed isochronous transfers can be performed using multiple data buffers. The number of
buffers that are actually prepared for the transfer is specified by DataBuffersNumber. For full-
speed isochronous transfers this value is ignored.

Data represents a list of pointers to the data buffers. For full-speed isochronous transfers only the
data pointed by Data[0] shall be used. For high-speed isochronous transfers and for the split
transactions depending on DataLength there several data buffers can be used. For the high-speed
isochronous transfers the total number of buffers must not exceed
EFI_USB_MAX_ISO_BUFFER_NUM. For split transactions performed on full-speed device by
high-speed host controller the total number of buffers is limited to
EFI_USB_MAX_ISO_BUFFER_NUM1 See “Related Definitions” for the
EFI_USB_MAX_ISO_BUFFER_NUM and EFI_USB_MAX_ISO_BUFFER_NUM1 values.

If the isochronous transfer is successful, then EFI_SUCCESS is returned. The isochronous transfer
is designed to be completed within one USB frame time, if it cannot be completed, EFI_TIMEOUT
is returned. If an error other than timeout occurs during the USB transfer, then
EFI_DEVICE_ERROR is returned and the detailed status code will be returned in
TransferResult.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

• Data is NULL.

• DataLength is 0.

• DeviceSpeed is not one of the supported values listed above.

• MaximumPacketLength is invalid. MaximumPacketLength must be 1023 or less for
full-speed devices, and 1024 or less for high-speed and super-speed devices.

• TransferResult is NULL.

Status Codes Returned

EFI_SUCCESS The isochronous transfer was completed successfully.
842 April, 2015 Version 2.5

Protocols — USB Support
EFI_OUT_OF_RESOURCES The isochronous transfer could not be submitted due to lack of
resource.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_TIMEOUT The isochronous transfer cannot be completed within the one USB
frame time.

EFI_DEVICE_ERROR The isochronous transfer failed due to host controller or device

error. Caller should check TransferResult for detailed error

information.

EFI_UNSUPPORTED The implementation doesn’t support an Isochronous transfer
function.
Version 2.5 April, 2015 843

Unified Extensible Firmware Interface Specification
EFI_USB2_HC_PROTOCOL.AsyncIsochronousTransfer()

Summary
Submits nonblocking isochronous transfer to an isochronous endpoint of a USB device.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USB2_HC_PROTOCOL_ASYNC_ISOCHRONOUS_TRANSFER) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT8 DeviceAddress,
 IN UINT8 EndPointAddress,
 IN UINT8 DeviceSpeed,
 IN UINTN MaximumPacketLength,
 IN UINT8 DataBuffersNumber,
 IN OUT VOID *Data[EFI_USB_MAX_ISO_BUFFER_NUM],
 IN UINTN DataLength,
 IN EFI_USB2_HC_TRANSACTION_TRANSLATOR *Translator,
 IN EFI_ASYNC_USB_TRANSFER_CALLBACK IsochronousCallBack,
 IN VOID *Context OPTIONAL
);

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

DeviceAddress Represents the address of the target device on the USB, which is
assigned during USB enumeration.

EndPointAddress The combination of an endpoint number and an endpoint
direction of the target USB device. Each endpoint address
supports data transfer in one direction except the control endpoint
(whose default endpoint address is zero). It is the caller’s
responsibility to make sure that the EndPointAddress
represents an isochronous endpoint.

DeviceSpeed Indicates device speed. The supported values are
EFI_USB_SPEED_FULL, EFI_USB_SPEED_HIGH, or
EFI_USB_SPEED_SUPER.

MaximumPacketLengthIndicates the maximum packet size the target endpoint is capable
of sending or receiving. For isochronous endpoints, this value is
used to reserve the bus time in the schedule, required for the per-
frame data payloads. The pipe may, on an ongoing basis, actually
use less bandwidth than that reserved.

DataBuffersNumber Number of data buffers prepared for the transfer.

Data Array of pointers to the buffers of data that will be transmitted to
USB device or received from USB device.
844 April, 2015 Version 2.5

Protocols — USB Support
DataLength Specifies the length, in bytes, of the data to be sent to or received
from the USB device.

Translator A pointer to the transaction translator data. See ControlTransfer()
“Description” for the detailed information of this data structure.

IsochronousCallbackThe Callback function. This function is called if the requested
isochronous transfer is completed. Refer to
UsbAsyncInterruptTransfer() (Section 16.2.4) for the
definition of this function type.

Context Data passed to the IsochronousCallback function. This is
an optional parameter and may be NULL.

Description
This is an asynchronous type of USB isochronous transfer. If the caller submits a USB isochronous
transfer request through this function, this function will return immediately. When the isochronous
transfer completes, the IsochronousCallback function will be triggered, the caller can know
the transfer results. If the transfer is successful, the caller can get the data received or sent in this
callback function.

The target endpoint is specified by DeviceAddress and EndpointAddress. Isochronous
transfers are used when working with isochronous date. It provides periodic, continuous
communication between the host and a device. Isochronous transfers can be used only by full-speed,
high-speed, and super-speed devices.

High-speed isochronous transfers can be performed using multiple data buffers. The number of
buffers that are actually prepared for the transfer is specified by DataBuffersNumber. For full-
speed isochronous transfers this value is ignored.

Data represents a list of pointers to the data buffers. For full-speed isochronous transfers only the
data pointed by Data[0] shall be used. For high-speed isochronous transfers and for the split
transactions depending on DataLength there several data buffers can be used. For the high-speed
isochronous transfers the total number of buffers must not exceed
EFI_USB_MAX_ISO_BUFFER_NUM. For split transactions performed on full-speed device by
high-speed host controller the total number of buffers is limited to
EFI_USB_MAX_ISO_BUFFER_NUM1 See “Related Definitions” in IsochronousTransfer() section
for the EFI_USB_MAX_ISO_BUFFER_NUM and EFI_USB_MAX_ISO_BUFFER_NUM1 values.

EFI_INVALID_PARAMETER is returned if one of the following conditions is satisfied:

• Data is NULL.

• DataLength is 0.

• DeviceSpeed is not one of the supported values listed above.

• MaximumPacketLength is invalid. MaximumPacketLength must be 1023 or less for
full-speed devices and 1024 or less for high-speed and super-speed devices.

Status Codes Returned

EFI_SUCCESS The asynchronous isochronous transfer was completed
successfully.
Version 2.5 April, 2015 845

Unified Extensible Firmware Interface Specification
EFI_OUT_OF_RESOURCES The asynchronous isochronous transfer could not be submitted due
to lack of resource.

EFI_INVALID_PARAMETER Some parameters are invalid. The possible invalid parameters are
described in “Description” above.

EFI_UNSUPPORTED The implementation doesn’t support Isochronous transfer function
846 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB2_HC_PROTOCOL.GetRootHubPortStatus()

Summary
Retrieves the current status of a USB root hub port.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_GET_ROOTHUB_PORT_STATUS) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT8 PortNumber,
 OUT EFI_USB_PORT_STATUS *PortStatus
);

Parameters
This A pointer to theEFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

PortNumber Specifies the root hub port from which the status is to be
retrieved. This value is zero based. For example, if a root hub
has two ports, then the first port is numbered 0, and the second
port is numbered 1.

PortStatus A pointer to the current port status bits and port status change
bits. The type EFI_USB_PORT_STATUS is defined in “Related
Definitions” below.

Related Definitions
typedef struct{
 UINT16 PortStatus;
 UINT16 PortChangeStatus;
} EFI_USB_PORT_STATUS;

//**
// EFI_USB_PORT_STATUS.PortStatus bit definition
//**
#define USB_PORT_STAT_CONNECTION 0x0001
#define USB_PORT_STAT_ENABLE 0x0002
#define USB_PORT_STAT_SUSPEND 0x0004
#define USB_PORT_STAT_OVERCURRENT 0x0008
#define USB_PORT_STAT_RESET 0x0010
#define USB_PORT_STAT_POWER 0x0100
#define USB_PORT_STAT_LOW_SPEED 0x0200
#define USB_PORT_STAT_HIGH_SPEED 0x0400
#define USB_PORT_STAT_SUPER_SPEED 0x0800
#define USB_PORT_STAT_OWNER 0x2000
Version 2.5 April, 2015 847

Unified Extensible Firmware Interface Specification
//**
// EFI_USB_PORT_STATUS.PortChangeStatus bit definition
//**
#define USB_PORT_STAT_C_CONNECTION 0x0001
#define USB_PORT_STAT_C_ENABLE 0x0002
#define USB_PORT_STAT_C_SUSPEND 0x0004
#define USB_PORT_STAT_C_OVERCURRENT 0x0008
#define USB_PORT_STAT_C_RESET 0x0010

PortStatus Contains current port status bitmap. The root hub port status
bitmap is unified with the USB hub port status bitmap. See
Table 134 for a reference, which is borrowed from Chapter 11,
Hub Specification, of USB Specification, Revision 1.1.

PortChangeStatus Contains current port status change bitmap. The root hub port
change status bitmap is unified with the USB hub port status
bitmap. See Table 135 for a reference, which is borrowed from
Chapter 11, Hub Specification, of USB Specification, Revision
1.1.

Table 134. USB Hub Port Status Bitmap

Bit Description

0 Current Connect Status: (USB_PORT_STAT_CONNECTION) This field reflects whether or not a
device is currently connected to this port.
 0 = No device is present
 1 = A device is present on this port

1 Port Enable / Disabled: (USB_PORT_STAT_ENABLE) Ports can be enabled by software only.
Ports can be disabled by either a fault condition (disconnect event or other fault condition) or by
software.
 0 = Port is disabled
 1 = Port is enabled

2 Suspend: (USB_PORT_STAT_SUSPEND) This field indicates whether or not the device on this
port is suspended.
 0 = Not suspended
 1 = Suspended

3 Over-current Indicator: (USB_PORT_STAT_OVERCURRENT) This field is used to indicate that the
current drain on the port exceeds the specified maximum.
 0 = All no over-current condition exists on this port
 1 = An over-current condition exists on this port

4 Reset: (USB_PORT_STAT_RESET) Indicates whether port is in reset state.
 0 = Port is not in reset state
 1 = Port is in reset state

5-7 Reserved
These bits return 0 when read.

8 Port Power: (USB_PORT_STAT_POWER) This field reflects a port’s logical, power control state.
 0 = This port is in the Powered-off state
 1 = This port is not in the Powered-off state
848 April, 2015 Version 2.5

Protocols — USB Support
Table 135. Hub Port Change Status Bitmap

9 Low Speed Device Attached: (USB_PORT_STAT_LOW_SPEED) This is relevant only if a device
is attached.
 0 = Full-speed device attached to this port
 1 = Low-speed device attached to this port

10 High Speed Device Attached: (USB_PORT_STAT_HIGH_SPEED) This field indicates whether
the connected device is high-speed device
 0 = High-speed device is not attached to this port
 1 = High-speed device attached to this port
NOTE: this bit has precedence over Bit 9; if set, bit 9 must be ignored.

11 Super Speed Device Attached: (USB_PORT_STAT_SUPER_SPEED) This field indicates whether
the connected device is a super-speed device.
 0 = Super-speed device is not attached to this port.
 1 = Super-speed device is attached to this port.
NOTE: This bit bas precedence over Bit 9 and Bit 10; if set bits 9,10 must be ignored.

12 Reserved.
Bit returns 0 when read.

13 The host controller owns the specified port.
 0 = Controller does not own the port.
 1 = Controller owns the port

14-15 Reserved
These bits return 0 when read.

Bit Description

0 Connect Status Change: (USB_PORT_STAT_C_CONNECTION) Indicates a change has
occurred in the port’s Current Connect Status.
 0 = No change has occurred to Current Connect status
 1 = Current Connect status has changed

1 Port Enable /Disable Change: (USB_PORT_STAT_C _ENABLE)
 0 = No change
 1 = Port enabled/disabled status has changed

2 Suspend Change: (USB_PORT_STAT_C _SUSPEND) This field indicates a change in the host-
visible suspend state of the attached device.
 0 = No change
 1 = Resume complete

3 Over-Current Indicator Change: (USB_PORT_STAT_C_OVERCURRENT)
 0 = No change has occurred to Over-Current Indicator
 1 = Over-Current Indicator has changed

4 Reset Change: (USB_PORT_STAT_C_RESET) This field is set when reset processing on this port
is complete.
 0 = No change
 1 = Reset complete

5-15 Reserved.
These bits return 0 when read.

Bit Description
Version 2.5 April, 2015 849

Unified Extensible Firmware Interface Specification
Description
This function is used to retrieve the status of the root hub port specified by PortNumber.

EFI_USB_PORT_STATUS describes the port status of a specified USB port. This data structure is
designed to be common to both a USB root hub port and a USB hub port.

The number of root hub ports attached to the USB host controller can be determined with the
function GetRootHubPortStatus(). If PortNumber is greater than or equal to the number
of ports returned by GetRootHubPortNumber(), then EFI_INVALID_PARAMETER is
returned. Otherwise, the status of the USB root hub port is returned in PortStatus, and
EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The status of the USB root hub port specified by PortNumber

was returned in PortStatus.

EFI_INVALID_PARAMETER PortNumber is invalid.
850 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB2_HC_PROTOCOL.SetRootHubPortFeature()

Summary
Sets a feature for the specified root hub port.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_SET_ROOTHUB_PORT_FEATURE) (
 IN EFI_USB2_HC_PROTOCOL *This,
 IN UINT8 PortNumber,
 IN EFI_USB_PORT_FEATURE PortFeature
);

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

PortNumber Specifies the root hub port whose feature is requested to be set.
This value is zero based. For example, if a root hub has two
ports, then the first port is number 0, and the second port is
numbered 1.

PortFeature Indicates the feature selector associated with the feature set
request. The port feature indicator is defined in “Related
Definitions” and Table 136 below.

Related Definitions
typedef enum {
 EfiUsbPortEnable = 1,
 EfiUsbPortSuspend = 2,
 EfiUsbPortReset = 4,
 EfiUsbPortPower = 8,
 EfiUsbPortOwner = 13,
 EfiUsbPortConnectChange = 16,
 EfiUsbPortEnableChange = 17,
 EfiUsbPortSuspendChange = 18,
 EfiUsbPortOverCurrentChange = 19,
 EfiUsbPortResetChange = 20
} EFI_USB_PORT_FEATURE;

The feature values specified in the enumeration variable have special meaning. Each value indicates
its bit index in the port status and status change bitmaps, if combines these two bitmaps into a 32-bit
bitmap. The meaning of each port feature is listed in Table 136.
Version 2.5 April, 2015 851

Unified Extensible Firmware Interface Specification
Table 136. USB Port Features

Description
This function sets the feature specified by PortFeature for the USB root hub port specified by
PortNumber. Setting a feature enables that feature or starts a process associated with that feature.
For the meanings about the defined features, please refer to Table 134 and Table 135.

The number of root hub ports attached to the USB host controller can be determined with the
function GetRootHubPortStatus(). If PortNumber is greater than or equal to the number
of ports returned by GetRootHubPortNumber(), then EFI_INVALID_PARAMETER is
returned. If PortFeature is not EfiUsbPortEnable, EfiUsbPortSuspend,
EfiUsbPortReset nor EfiUsbPortPower, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned

Port Feature For SetRootHubPortFeature

For ClearRootHubPortFeature

EfiUsbPortEnable Enable the given port of the
root hub.

Disable the given port of the root hub.

EfiUsbPortSuspend Put the given port into suspend
state.

Restore the given port from the
previous suspend state.

EfiUsbPortReset Reset the given port of the root
hub.

Clear the RESET signal for the given
port of the root hub.

EfiUsbPortPower Power the given port. Shutdown the power from the given
port.

EfiUsbPortOwner N/A. Releases the port ownership of this port
to companion host controller.

EfiUsbPortConnectChange N/A. Clear
USB_PORT_STAT_C_CONNECTION
bit of the given port of the root hub.

EfiUsbPortEnableChange N/A. Clear USB_PORT_STAT_C_ENABLE
bit of the given port of the root hub.

EfiUsbPortSuspendChange N/A. Clear
USB_PORT_STAT_C_SUSPEND bit of
the given port of the root hub.

EfiUsbPortOverCurrentChange N/A. Clear
USB_PORT_STAT_C_OVERCURREN
T bit of the given port of the root hub.

EfiUsbPortResetChange N/A. Clear USB_PORT_STAT_C_RESET
bit of the given port of the root hub.

EFI_SUCCESS The feature specified by PortFeature was set for the USB

root hub port specified by PortNumber.

EFI_INVALID_PARAMETER PortNumber is invalid or PortFeature is invalid for this

function.
852 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB2_HC_PROTOCOL.ClearRootHubPortFeature()

Summary
Clears a feature for the specified root hub port.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB2_HC_PROTOCOL_CLEAR_ROOTHUB_PORT_FEATURE) (
 IN EFI_USB2_HC_PROTOCOL *This
 IN UINT8 PortNumber,
 IN EFI_USB_PORT_FEATURE PortFeature
);

Parameters
This A pointer to the EFI_USB2_HC_PROTOCOL instance. Type

EFI_USB2_HC_PROTOCOL is defined in Section 16.1.

PortNumber Specifies the root hub port whose feature is requested to be
cleared. This value is zero-based. For example, if a root hub has
two ports, then the first port is number 0, and the second port is
numbered 1.

PortFeature Indicates the feature selector associated with the feature clear
request. The port feature indicator
(EFI_USB_PORT_FEATURE) is defined in the “Related
Definitions” section of the SetRootHubPortFeature()
function description and in Table 136.

Description
This function clears the feature specified by PortFeature for the USB root hub port specified by
PortNumber. Clearing a feature disables that feature or stops a process associated with that
feature. For the meanings about the defined features, refer to Table 134 and Table 135.

The number of root hub ports attached to the USB host controller can be determined with the
function GetRootHubPortStatus(). If PortNumber is greater than or equal to the number
of ports returned by GetRootHubPortNumber(), then EFI_INVALID_PARAMETER is
returned. If PortFeature is not EfiUsbPortEnable, EfiUsbPortSuspend,
EfiUsbPortPower, EfiUsbPortConnectChange, EfiUsbPortResetChange,
EfiUsbPortEnableChange, EfiUsbPortSuspendChange, or
EfiUsbPortOverCurrentChange, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned

EFI_SUCCESS The feature specified by PortFeature was cleared for the USB

root hub port specified by PortNumber.

EFI_INVALID_PARAMETER PortNumber is invalid or PortFeature is invalid.
Version 2.5 April, 2015 853

Unified Extensible Firmware Interface Specification
16.2 USB Driver Model

16.2.1 Scope
Section 16.2 describes the USB Driver Model. This includes the behavior of USB Bus Drivers, the
behavior of a USB Device Drivers, and a detailed description of the EFI USB I/O Protocol. This
document provides enough material to implement a USB Bus Driver, and the tools required to
design and implement USB Device Drivers. It does not provide any information on specific USB
devices.

The material contained in this section is designed to extend this specification and the UEFI Driver
Model in a way that supports USB device drivers and USB bus drivers. These extensions are
provided in the form of USB specific protocols. This document provides the information required to
implement a USB Bus Driver in system firmware. The document also contains the information
required by driver writers to design and implement USB Device Drivers that a platform may need to
boot a UEFI-compliant OS.

The USB Driver Model described here is intended to be a foundation on which a USB Bus Driver
and a wide variety of USB Device Drivers can be created. USB Driver Model Overview

The USB Driver Stack includes the USB Bus Driver, USB Host Controller Driver, and individual
USB device drivers.

Figure 53. USB Bus Controller Handle

In the USB Bus Driver Design, the USB Bus Controller is managed by two drivers. One is USB
Host Controller Driver, which consumes its parent bus EFI_XYZ_IO_PROTOCOL, and produces
EFI_USB2_HC_PROTOCOL and attaches it to the Bus Controller Handle. The other one is USB
Bus Driver, which consumes EFI_USB2_HC_PROTOCOL, and performs bus enumeration.
Figure 53 shows protocols that are attached to the USB Bus Controller Handle. Detailed
descriptions are presented in the following sections.

OM13171

USB Bus Controller Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

EFI_USB2_HC_PROTOCOL
854 April, 2015 Version 2.5

Protocols — USB Support
16.2.2 USB Bus Driver
USB Bus Driver performs periodic Enumeration on the USB Bus. In USB bus enumeration, when a
new USB controller is found, the bus driver does some standard configuration for that new
controller, and creates a device handle for it. The EFI_USB_IO_PROTOCOL and the
EFI_DEVICE_PATH_PROTOCOL are attached to the device handle so that the USB controller can
be accessed. The USB Bus Driver is also responsible for connecting USB device drivers to USB
controllers. When a USB device is detached from a USB bus, the USB bus driver will stop that USB
controller, and uninstall the EFI_USB_IO_PROTOCOL and the
EFI_DEVICE_PATH_PROTOCOL from that handle. A detailed description is given in
Section 16.2.2.3.

16.2.2.1 USB Bus Driver Entry Point
Like all other device drivers, the entry point for a USB Bus Driver attaches the
EFI_DRIVER_BINDING_PROTOCOL to image handle of the USB Bus Driver.

16.2.2.2 Driver Binding Protocol for USB Bus Drivers
The Driver Binding Protocol contains three services. These are Supported(), Start(), and
Stop(). Supported() tests to see if the USB Bus Driver can manage a device handle. A USB
Bus Driver can only manage a device handle that contains EFI_USB2_HC_PROTOCOL.

The general idea is that the USB Bus Driver is a generic driver. Since there are several types of USB
Host Controllers, an EFI_USB2_HC_PROTOCOL is used to abstract the host controller interface.
Actually, a USB Bus Driver only requires an EFI_USB2_HC_PROTOCOL.

The Start() function tells the USB Bus Driver to start managing the USB Bus. In this function,
the USB Bus Driver creates a device handle for the root hub, and creates a timer to monitor root hub
connection changes.

The Stop() function tells the USB Bus Driver to stop managing a USB Host Bus Controller. The
Stop() function simply deconfigures the devices attached to the root hub. The deconfiguration is
a recursive process. If the device to be deconfigured is a USB hub, then all USB devices attached to
its downstream ports will be deconfigured first, then itself. If all of the child devices handles have
been destroyed then the EFI_USB2_HC_PROTOCOL is closed. Finally, the Stop()unction will
then place the USB Host Bus Controller in a quiescent state.

16.2.2.3 USB Hot-Plug Event
Hot-Plug is one of the most important features provided by USB. A USB bus driver implements this
feature through two methods. There are two types of hubs defined in the USB specification. One is
the USB root hub, which is implemented in the USB Host controller. A timer event is created for the
root hub. The other one is a USB Hub. An event is created for each hub that is correctly configured.
All these events are associated with the same trigger which is USB bus numerator.

When USB bus enumeration is triggered, the USB Bus Driver checks the source of the event.
This is required because the root hub differs from standard USB hub in checking the hub status. The
status of a root hub is retrieved through the EFI_USB2_HC_PROTOCOL, and that status of
a standard USB hub is retrieved through a USB control transfer. A detailed description of the
enumeration process is presented in the next section.
Version 2.5 April, 2015 855

Unified Extensible Firmware Interface Specification
16.2.2.4 USB Bus Enumeration
When the periodic timer or the hubs notify event is signaled, the USB Bus Driver will perform
bus numeration.

1. Determine if the event is from the root hub or a standard USB hub.

2. Determine the port on which the connection change event occurred.

3. Determine if it is a connection change or a disconnection change.

4. If a connect change is detected, then a new device has been attached. Perform the following:

a Reset and enable that port.

b Configure the new device.

c Parse the device configuration descriptors; get all of its interface descriptors (i.e., all USB
controllers), and configure each interface.

d Create a new handle for each interface (USB Controller) within the USB device. Attach the
EFI_DEVICE_PATH_PROTOCOL, and the EFI_USB_IO_PROTOCOL to each handle.

e Connect the USB Controller to a USB device driver with the Boot Service
EFI_BOOT_SERVICES.ConnectController() if applicable.

f If the USB Controller is a USB hub, create a Hub notify event which is associated with the
USB Bus Enumerator, and submit an Asynchronous Interrupt Transfer Request (See
Section 16.2.4).

5. If a disconnect change, then a device has been detached from the USB Bus. Perform the
following:

a If the device is not a USB Hub, then find and deconfigure the USB Controllers within the
device. Then, stop each USB controller with
EFI_BOOT_SERVICES.DisconnectController(), and uninstall the
EFI_DEVICE_PATH_PROTOCOL and the EFI_USB_IO_PROTOCOL from the
controller’s handle. If the EFI_BOOT_SERVICES.DisconnectController() call
fails this process must be retried on a subsequent timer tick.

b If the USB controller is USB hub controller, first find and deconfigure all its downstream
USB devices (this is a recursive process, since there may be additional USB hub controllers
on the downstream ports), then deconfigure USB hub controller itself.

16.2.3 USB Device Driver
A USB Device Driver manages a USB Controller and produces a device abstraction for use by a
preboot application.

16.2.3.1 USB Device Driver Entry Point
Like all other device drivers, the entry point for a USB Device Driver attaches
EFI_DRIVER_BINDING_PROTOCOL to image handle of the USB Device Driver.

16.2.3.2 Driver Binding Protocol for USB Device Drivers
The Driver Binding Protocol contains three services. These are Supported(), Start(),
and Stop().
856 April, 2015 Version 2.5

Protocols — USB Support
The Supported() tests to see if the USB Device Driver can manage a device handle. This
function checks to see if a controller can be managed by the USB Device Driver. This is done by
opening the EFI_USB_IO_PROTOCOL bus abstraction on the USB Controller handle, and using
the EFI_USB_IO_PROTOCOL services to determine if this USB Controller matches the profile that
the USB Device Driver is capable of managing.

The Start() function tells the USB Device Driver to start managing a USB Controller. It opens
the EFI_USB_IO_PROTOCOL instance from the handle for the USB Controller. This protocol
instance is used to perform USB packet transmission over the USB bus. For example, if the USB
controller is USB keyboard, then the USB keyboard driver would produce and install the
EFI_SIMPLE_TEXT_INPUT_PROTOCOL to the USB controller handle.

The Stop() function tells the USB Device Driver to stop managing a USB Controller. It removes
the I/O abstraction protocol instance previously installed in Start() from the USB controller
handle. It then closes the EFI_USB_IO_PROTOCOL.

16.2.4 USB I/O Protocol
This section provides a detailed description of the EFI_USB_IO_PROTOCOL. This protocol is
used by code, typically drivers, running in the EFI boot services environment to access USB devices
like USB keyboards, mice and mass storage devices. In particular, functions for managing devices
on USB buses are defined here.

The interfaces provided in the EFI_USB_IO_PROTOCOL are for performing basic operations
to access USB devices. Typically, USB devices are accessed through the four different transfers
types:

Controller Transfer Typically used to configure the USB device into an operation
mode.

Interrupt Transfer Typically used to get periodic small amount of data, like USB
keyboard and mouse.

Bulk Transfer Typically used to transfer large amounts of data like reading
blocks from USB mass storage devices.

Isochronous Transfer Typically used to transfer data at a fixed rate like voice data.

This protocol also provides mechanisms to manage and configure USB devices and controllers.

EFI_USB_IO_PROTOCOL

Summary
Provides services to manage and communicate with USB devices.

GUID
#define EFI_USB_IO_PROTOCOL_GUID \
 {0x2B2F68D6,0x0CD2,0x44cf,\
 {0x8E,0x8B,0xBB,0xA2,0x0B,0x1B,0x5B,0x75}}

Protocol Interface Structure
typedef struct _EFI_USB_IO_PROTOCOL {
Version 2.5 April, 2015 857

Unified Extensible Firmware Interface Specification
 EFI_USB_IO_CONTROL_TRANSFER UsbControlTransfer;

 EFI_USB_IO_BULK_TRANSFER UsbBulkTransfer;

 EFI_USB_IO_ASYNC_INTERRUPT_TRANSFER
UsbAsyncInterruptTransfer;

 EFI_USB_IO_SYNC_INTERRPUT_TRANSFER UsbSyncInterruptTransfer

 EFI_USB_IO_ISOCHRONOUS_TRANSFER UsbIsochronousTransfer;

 EFI_USB_IO_ASYNC_ISOCHRONOUS_TRANSFER
UsbAsyncIsochronousTransfer;

 EFI_USB_IO_GET_DEVICE_DESCRIPTOR UsbGetDeviceDescriptor;

 EFI_USB_IO_GET_CONFIG_DESCRIPTOR UsbGetConfigDescriptor;

 EFI_USB_IO_GET_INTERFACE_DESCRIPTOR
UsbGetInterfaceDescriptor;

 EFI_USB_IO_GET_ENDPOINT_DESCRIPTOR UsbGetEndpointDescriptor;

 EFI_USB_IO_GET_STRING_DESCRIPTOR UsbGetStringDescriptor;

 EFI_USB_IO_GET_SUPPORTED_LANGUAGES UsbGetSupportedLanguages;

 EFI_USB_IO_PORT_RESET UsbPortReset;

} EFI_USB_IO_PROTOCOL;

Parameters
UsbControlTransfer Accesses the USB Device through USB Control Transfer Pipe.

See the UsbControlTransfer() function description.

UsbBulkTransfer Accesses the USB Device through USB Bulk Transfer Pipe. See
the UsbBulkTransfer() function description.

UsbAsyncInterruptTransfer
Non-block USB interrupt transfer. See the
UsbAsyncInterruptTransfer() function description.

UsbSyncInterruptTransfer
Accesses the USB Device through USB Synchronous
Interrupt Transfer Pipe. See the
UsbSyncInterruptTransfer() function description.

UsbIsochronousTransfer
Accesses the USB Device through USB Isochronous Transfer
Pipe. See the UsbIsochronousTransfer() function
description.

UsbAsyncIsochronousTransfer
Nonblock USB isochronous transfer. See the
UsbAsyncIsochronousTransfer() function description.

UsbGetDeviceDescriptor
Retrieves the device descriptor of a USB device. See the
UsbGetDeviceDescriptor() function description.

UsbGetConfigDescriptor
Retrieves the activated configuration descriptor of a USB device.
See the UsbGetConfigDescriptor()function description.
858 April, 2015 Version 2.5

Protocols — USB Support
UsbGetInterfaceDescriptor
Retrieves the interface descriptor of a USB Controller. See the
UsbGetInterfaceDescriptor() function description.

UsbGetEndpointDescriptor
Retrieves the endpoint descriptor of a USB Controller. See the
UsbGetEndpointDescriptor() function description.

UsbGetStringDescriptor
Retrieves the string descriptor inside a USB Device. See the
UsbGetStringDescriptor() function description.

UsbGetSupportedLanguages
Retrieves the array of languages that the USB device supports.
See the UsbGetSupportedLanguages() function
description.

UsbPortReset Resets and reconfigures the USB controller. See the
UsbPortReset() function description.

Description
The EFI_USB_IO_PROTOCOL provides four basic transfers types described in the USB 1.1
Specification. These include control transfer, interrupt transfer, bulk transfer and isochronous
transfer. The EFI_USB_IO_PROTOCOL also provides some basic USB device/controller
management and configuration interfaces. A USB device driver uses the services of this protocol to
manage USB devices.
Version 2.5 April, 2015 859

Unified Extensible Firmware Interface Specification
EFI_USB_IO_PROTOCOL.UsbControlTransfer()

Summary
This function is used to manage a USB device with a control transfer pipe. A control transfer is
typically used to perform device initialization and configuration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_CONTROL_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN EFI_USB_DEVICE_REQUEST *Request,
 IN EFI_USB_DATA_DIRECTION Direction,
 IN UINT32 Timeout,
 IN OUT VOID *Data OPTIONAL,
 IN UINTN DataLength OPTIONAL,
 OUT UINT32 *Status
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

Request A pointer to the USB device request that will be sent to the USB
device. See “Related Definitions” below.

Direction Indicates the data direction. See “Related Definitions” below for
this type.

Data A pointer to the buffer of data that will be transmitted to USB
device or received from USB device.

Timeout Indicating the transfer should be completed within this time
frame. The units are in milliseconds. If Timeout is 0, then the
caller must wait for the function to be completed until
EFI_SUCCESS or EFI_DEVICE_ERROR is returned.

DataLength The size, in bytes, of the data buffer specified by Data.

Status A pointer to the result of the USB transfer.

Related Definitions
typedef enum {
 EfiUsbDataIn,
 EfiUsbDataOut,
 EfiUsbNoData
} EFI_USB_DATA_DIRECTION;
860 April, 2015 Version 2.5

Protocols — USB Support
//
// Error code for USB Transfer Results
//
#define EFI_USB_NOERROR 0x0000
#define EFI_USB_ERR_NOTEXECUTE 0x0001
#define EFI_USB_ERR_STALL 0x0002
#define EFI_USB_ERR_BUFFER 0x0004
#define EFI_USB_ERR_BABBLE 0x0008
#define EFI_USB_ERR_NAK 0x0010
#define EFI_USB_ERR_CRC 0x0020
#define EFI_USB_ERR_TIMEOUT 0x0040
#define EFI_USB_ERR_BITSTUFF 0x0080
#define EFI_USB_ERR_SYSTEM 0x0100

typedef struct {
 UINT8 RequestType;
 UINT8 Request;
 UINT16 Value;
 UINT16 Index;
 UINT16 Length;
} EFI_USB_DEVICE_REQUEST;

RequestType The field identifies the characteristics of the specific request.

Request This field specifies the particular request.

Value This field is used to pass a parameter to USB device that is
specific to the request.

Index This field is also used to pass a parameter to USB device that is
specific to the request.

Length This field specifies the length of the data transferred during the
second phase of the control transfer. If it is 0, then there is no
data phase in this transfer.

Description
This function allows a USB device driver to communicate with the USB device through a Control
Transfer. There are three control transfer types according to the data phase. If the Direction
parameter is EfiUsbNoData, Data is NULL, and DataLength is 0, then no data phase exists
for the control transfer. If the Direction parameter is EfiUsbDataOut, then Data specifies
the data to be transmitted to the device, and DataLength specifies the number of bytes to transfer
to the device. In this case there is an OUT DATA stage followed by a SETUP stage. If the
Direction parameter is EfiUsbDataIn, then Data specifies the data that is received from the
device, and DataLength specifies the number of bytes to receive from the device. In this case
there is an IN DATA stage followed by a SETUP stage. After the USB transfer has completed
successfully, EFI_SUCCESS is returned. If the transfer cannot be completed due to timeout, then
EFI_TIMEOUT is returned. If an error other than timeout occurs during the USB transfer, then
EFI_DEVICE_ERROR is returned and the detailed status code is returned in Status.
Version 2.5 April, 2015 861

Unified Extensible Firmware Interface Specification
Status Code Returned

EFI_SUCCESS The control transfer has been successfully executed.

EFI_INVALID_PARAMETER The parameter Direction is not valid.

EFI_INVALID_PARAMETER Request is NULL.

EFI-INVALID_PARAMETER Status is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The control transfer fails due to timeout.

EFI_DEVICE_ERROR The transfer failed. The transfer status is returned in Status.
862 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB_IO_PROTOCOL.UsbBulkTransfer()

Summary
This function is used to manage a USB device with the bulk transfer pipe. Bulk Transfers are
typically used to transfer large amounts of data to/from USB devices.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_BULK_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 DeviceEndpoint,
 IN OUT VOID *Data,
 IN OUT UINTN *DataLength,
 IN UINTN Timeout,
 OUT UINT32 *Status
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

DeviceEndpoint The destination USB device endpoint to which the device request
is being sent. DeviceEndpoint must be between 0x01 and
0x0F or between 0x81 and 0x8F, otherwise
EFI_INVALID_PARAMETER is returned. If the endpoint is not
a BULK endpoint, EFI_INVALID_PARAMETER is returned.
The MSB of this parameter indicates the endpoint direction. The
number “1” stands for an IN endpoint, and “0” stands for an OUT
endpoint.

Data A pointer to the buffer of data that will be transmitted to USB
device or received from USB device.

DataLength On input, the size, in bytes, of the data buffer specified by Data.
On output, the number of bytes that were actually transferred.

Timeout Indicating the transfer should be completed within this time
frame. The units are in milliseconds. If Timeout is 0, then the
caller must wait for the function to be completed until
EFI_SUCCESS or EFI_DEVICE_ERROR is returned.

Status This parameter indicates the USB transfer status.

Description
This function allows a USB device driver to communicate with the USB device through Bulk
Transfer. The transfer direction is determined by the endpoint direction. If the USB transfer is
successful, then EFI_SUCCESS is returned. If USB transfer cannot be completed within the
Timeout frame, EFI_TIMEOUT is returned. If an error other than timeout occurs during the USB
transfer, then EFI_DEVICE_ERROR is returned and the detailed status code will be returned in the
Status parameter.
Version 2.5 April, 2015 863

Unified Extensible Firmware Interface Specification
Status Code Returned

EFI_SUCCESS The bulk transfer has been successfully executed.

EFI_INVALID_PARAMETER If DeviceEndpoint is not valid.

EFI_INVALID_PARAMETER Data is NULL.

EFI_INVALID_PARAMETER DataLength is NULL.

EFI_INVALID_PARAMETER Status is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The bulk transfer cannot be completed within Timeout

timeframe.

EFI_DEVICE_ERROR The transfer failed other than timeout, and the transfer status is

returned in Status.
864 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB_IO_PROTOCOL.UsbAsyncInterruptTransfer()

Summary
This function is used to manage a USB device with an interrupt transfer pipe. An Asynchronous
Interrupt Transfer is typically used to query a device’s status at a fixed rate. For example, keyboard,
mouse, and hub devices use this type of transfer to query their interrupt endpoints at a fixed rate.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_ASYNC_INTERRUPT_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 DeviceEndpoint,
 IN BOOLEAN IsNewTransfer,
 IN UINTN PollingInterval OPTIONAL,
 IN UINTN DataLength OPTIONAL,
 IN EFI_ASYNC_USB_TRANSFER_CALLBACK InterruptCallBack OPTIONAL,
 IN VOID *Context OPTIONAL
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

DeviceEndpoint The destination USB device endpoint to which the device request
is being sent. DeviceEndpoint must be between 0x01 and
0x0F or between 0x81 and 0x8F, otherwise
EFI_INVALID_PARAMETER is returned. If the endpoint is not
an INTERRUPT endpoint, EFI_INVALID_PARAMETER is
returned. The MSB of this parameter indicates the endpoint
direction. The number “1” stands for an IN endpoint, and “0”
stands for an OUT endpoint.

IsNewTransfer If TRUE, a new transfer will be submitted to USB controller. If
FALSE, the interrupt transfer is deleted from the device’s
interrupt transfer queue. If TRUE, and an interrupt transfer exists
for the target end point, then EFI_INVALID_PARAMETER is
returned.

PollingInterval Indicates the periodic rate, in milliseconds, that the transfer is to
be executed. This parameter is required when
IsNewTransfer is TRUE. The value must be between 1 to
255, otherwise EFI_INVALID_PARAMETER is returned. The
units are in milliseconds.

DataLength Specifies the length, in bytes, of the data to be received from the
USB device. This parameter is only required when
IsNewTransfer is TRUE.

Context Data passed to the InterruptCallback function. This is an
optional parameter and may be NULL.
Version 2.5 April, 2015 865

Unified Extensible Firmware Interface Specification
InterruptCallback The Callback function. This function is called if the
asynchronous interrupt transfer is completed. This parameter is
required when IsNewTransfer is TRUE. See “Related
Definitions” for the definition of this type.

Related Definitions
typedef
EFI_STATUS
(EFIAPI * EFI_ASYNC_USB_TRANSFER_CALLBACK) (
 IN VOID *Data,
 IN UINTN DataLength,
 IN VOID *Context,
 IN UINT32 Status
);

Data Data received or sent via the USB Asynchronous Transfer, if the
transfer completed successfully.

DataLength The length of Data received or sent via the Asynchronous
Transfer, if transfer successfully completes.

Context Data passed from UsbAsyncInterruptTransfer()
request.

Status Indicates the result of the asynchronous transfer.

Description
This function allows a USB device driver to communicate with a USB device with an Interrupt
Transfer. Asynchronous Interrupt transfer is different than the other four transfer types because it is
a nonblocking transfer. The interrupt endpoint is queried at a fixed rate, and the data transfer
direction is always in the direction from the USB device towards the system.

If IsNewTransfer is TRUE, then an interrupt transfer is started at a fixed rate. The rate is
specified by PollingInterval, the size of the receive buffer is specified by DataLength, and
the callback function is specified by InterruptCallback. If IsNewTransfer is TRUE, and
an interrupt transfer exists for the target end point, then EFI_INVALID_PARAMETER is returned.

If IsNewTransfer is FALSE, then the interrupt transfer is canceled.

Status Code Returned

Examples
Below is an example of how an asynchronous interrupt transfer is used. The example shows how a
USB Keyboard Device Driver can periodically receive data from interrupt endpoint.

EFI_SUCCESS The asynchronous USB transfer request has been successfully
executed.

EFI_DEVICE_ERROR The asynchronous USB transfer request failed. When an interrupt
transfer exists for the target end point and a new transfer is
requested, EFI_INVALID_PARAMETER is returned.
866 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB_IO_PROTOCOL *UsbIo;
EFI_STATUS Status;
USB_KEYBOARD_DEV *UsbKeyboardDevice;
EFI_USB_INTERRUPT_CALLBACK KeyboardHandle;

. . .
Status = UsbIo->UsbAsyncInterruptTransfer(
 UsbIo,

UsbKeyboardDevice->IntEndpointAddress,
TRUE,
UsbKeyboardDevice->IntPollingInterval,
8,
KeyboardHandler,
UsbKeyboardDevice
);

. . .

//
// The following is the InterruptCallback function. If there is
// any results got from Asynchronous Interrupt Transfer,
// this function will be called.
//
EFI_STATUS
KeyboardHandler(
 IN VOID *Data,
 IN UINTN DataLength,
 IN VOID *Context,
 IN UINT32 Result
)
{
 USB_KEYBOARD_DEV *UsbKeyboardDevice;
 UINTN I;

 if(EFI_ERROR(Result))
 {
 //
 // Something error during this transfer,
 // just to some recovery work
 //
 . . .
 . . .
 return EFI_DEVICE_ERROR;
 }

 UsbKeyboardDevice = (USB_KEYBOARD_DEV *)Context;

 for(I = 0; I < DataLength; I++)
Version 2.5 April, 2015 867

Unified Extensible Firmware Interface Specification
 {
 ParsedData(Data[I]);
 . . .
}

return EFI_SUCCESS;
}

868 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB_IO_PROTOCOL.UsbSyncInterruptTransfer()

Summary
This function is used to manage a USB device with an interrupt transfer pipe. The difference
between UsbAsyncInterruptTransfer() and UsbSyncInterruptTransfer() is that
the Synchronous interrupt transfer will only be executed one time. Once it returns, regardless of its
status, the interrupt request will be deleted in the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_SYNC_INTERRUPT_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 DeviceEndpoint,
 IN OUT VOID *Data,
 IN OUT UINTN *DataLength,
 IN UINTN Timeout,
 OUT UINT32 *Status
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

DeviceEndpoint The destination USB device endpoint to which the device request
is being sent. DeviceEndpoint must be between 0x01 and
0x0F or between 0x81 and 0x8F, otherwise
EFI_INVALID_PARAMETER is returned. If the endpoint is not
an INTERRUPT endpoint, EFI_INVALID_PARAMETER is
returned. The MSB of this parameter indicates the endpoint
direction. The number “1” stands for an IN endpoint, and “0”
stands for an OUT endpoint.

Data A pointer to the buffer of data that will be transmitted to USB
device or received from USB device.

DataLength On input, then size, in bytes, of the buffer Data. On output, the
amount of data actually transferred.

Timeout The time out, in milliseconds, for this transfer. If Timeout is 0,
then the caller must wait for the function to be completed until
EFI_SUCCESS or EFI_DEVICE_ERROR is returned. If the
transfer is not completed in this time frame, then EFI_TIMEOUT
is returned.

Status This parameter indicates the USB transfer status.

Description
This function allows a USB device driver to communicate with a USB device through a synchronous
interrupt transfer. The UsbSyncInterruptTransfer() differs from
Version 2.5 April, 2015 869

Unified Extensible Firmware Interface Specification
UsbAsyncInterruptTransfer() described in the previous section in that it is a blocking
transfer request. The caller must wait for the function return, either successfully or unsuccessfully.

Status Code Returned

EFI_SUCCESS The sync interrupt transfer has been successfully executed.

EFI_INVALID_PARAMETER The parameter DeviceEndpoint is not valid.

EFI_INVALID_PARAMETER Data is NULL.

EFI_INVALID_PARAMETER DataLength is NULL.

EFI_INVALID_PARAMETER Status is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The transfer cannot be completed within Timeout timeframe.

EFI_DEVICE_ERROR The transfer failed other than timeout, and the transfer status is

returned in Status.
870 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB_IO_PROTOCOL.UsbIsochronousTransfer()

Summary
This function is used to manage a USB device with an isochronous transfer pipe. An Isochronous
transfer is typically used to transfer streaming data.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USB_IO_ISOCHRONOUS_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 DeviceEndpoint,
 IN OUT VOID *Data,
 IN UINTN DataLength,
 OUT UINT32 *Status
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

DeviceEndpoint The destination USB device endpoint to which the device request
is being sent. DeviceEndpoint must be between 0x01 and
0x0F or between 0x81 and 0x8F, otherwise
EFI_INVALID_PARAMETER is returned. If the endpoint is not
an ISOCHRONOUS endpoint, EFI_INVALID_PARAMETER is
returned. The MSB of this parameter indicates the endpoint
direction. The number “1” stands for an IN endpoint, and “0”
stands for an OUT endpoint.

Data A pointer to the buffer of data that will be transmitted to USB
device or received from USB device.

DataLength The size, in bytes, of the data buffer specified by Data.

Status This parameter indicates the USB transfer status.

Description
This function allows a USB device driver to communicate with a USB device with an Isochronous
Transfer. The type of transfer is different than the other types because the USB Bus Driver will not
attempt to perform error recovery if transfer fails. If the USB transfer is completed successfully,
then EFI_SUCCESS is returned. The isochronous transfer is designed to be completed within 1
USB frame time, if it cannot be completed, EFI_TIMEOUT is returned. If the transfer fails due to
other reasons, then EFI_DEVICE_ERROR is returned and the detailed error status is returned in
Status. If the data length exceeds the maximum payload per USB frame time, then it is this
function’s responsibility to divide the data into a set of smaller packets that fit into a USB frame
time. If all the packets are transferred successfully, then EFI_SUCCESS is returned.
Version 2.5 April, 2015 871

Unified Extensible Firmware Interface Specification
Status Code Returned

EFI_SUCCESS The isochronous transfer has been successfully executed.

EFI_INVALID_PARAMETER The parameter DeviceEndpoint is not valid.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The transfer cannot be completed within the 1 USB frame time.

EFI_DEVICE_ERROR The transfer failed due to the reason other than timeout, The error

status is returned in Status.

EFI_UNSUPPORTED The implementation doesn’t support an Isochronous transfer
function.
872 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB_IO_PROTOCOL.UsbAsyncIsochronousTransfer()

Summary
This function is used to manage a USB device with an isochronous transfer pipe. An asynchronous
Isochronous transfer is a nonblocking USB isochronous transfer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_ASYNC_ISOCHRONOUS_TRANSFER) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 DeviceEndpoint,
 IN OUT VOID *Data,
 IN UINTN DataLength,
 IN EFI_ASYNC_USB_TRANSFER_CALLBACK IsochronousCallBack,
 IN VOID *Context OPTIONAL
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

DeviceEndpoint The destination USB device endpoint to which the device request
is being sent. DeviceEndpoint must be between 0x01 and
0x0F or between 0x81 and 0x8F, otherwise
EFI_INVALID_PARAMETER is returned. If the endpoint is not
an ISOCHRONOUS endpoint, EFI_INVALID_PARAMETER is
returned. The MSB of this parameter indicates the endpoint
direction. The number “1” stands for an IN endpoint, and “0”
stands for an OUT endpoint.

Data A pointer to the buffer of data that will be transmitted to USB
device or received from USB device.

DataLength Specifies the length, in bytes, of the data to be sent to or received
from the USB device.

Context Data passed to the IsochronoisCallback() function. This
is an optional parameter and may be NULL.

IsochronousCallback
The IsochronousCallback() function. This function is
called if the requested isochronous transfer is completed. See the
“Related Definitions” section of the
UsbAsyncInterruptTransfer() function description.

Description
This is an asynchronous type of USB isochronous transfer. If the caller submits a USB isochronous
transfer request through this function, this function will return immediately. When the isochronous
transfer completes, the IsochronoisCallback() function will be triggered, the caller can
Version 2.5 April, 2015 873

Unified Extensible Firmware Interface Specification
know the transfer results. If the transfer is successful, the caller can get the data received or sent in
this callback function.

Status Code Returned

EFI_SUCCESS The asynchronous isochronous transfer has been successfully
submitted to the system.

EFI_INVALID_PARAMETER The parameter DeviceEndpoint is not valid.

EFI_OUT_OF_RESOURCES The request could not be submitted due to a lack of resources.

EFI_UNSUPPORTED The implementation doesn’t support an asynchronous Isochronous
transfer function.
874 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB_IO_PROTOCOL.UsbGetDeviceDescriptor()

Summary
Retrieves the USB Device Descriptor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_DEVICE_DESCRIPTOR) (
 IN EFI_USB_IO_PROTOCOL *This,
 OUT EFI_USB_DEVICE_DESCRIPTOR *DeviceDescriptor
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

DeviceDescriptor A pointer to the caller allocated USB Device Descriptor. See
“Related Definitions” for a detailed description.

Related Definitions
//
// See USB1.1 for detail description.
//
typedef struct {
 UINT8 Length;
 UINT8 DescriptorType;
 UINT16 BcdUSB;
 UINT8 DeviceClass;
 UINT8 DeviceSubClass;
 UINT8 DeviceProtocol;
 UINT8 MaxPacketSize0;
 UINT16 IdVendor;
 UINT16 IdProduct;
 UINT16 BcdDevice;
 UINT8 StrManufacturer;
 UINT8 StrProduct;
 UINT8 StrSerialNumber;
 UINT8 NumConfigurations;
} EFI_USB_DEVICE_DESCRIPTOR;

Description
This function is used to retrieve information about USB devices. This information includes the
device class, subclass, and the number of configurations the USB device supports. If
DeviceDescriptor is NULL, then EFI_INVALID_PARAMETER is returned. If the USB
device descriptor is not found, then EFI_NOT_FOUND is returned. Otherwise, the device descriptor
is returned in DeviceDescriptor, and EFI_SUCCESS is returned.
Version 2.5 April, 2015 875

Unified Extensible Firmware Interface Specification
Status Code Returned

EFI_SUCCESS The device descriptor was retrieved successfully.

EFI_INVALID_PARAMETER DeviceDescriptor is NULL.

EFI_NOT_FOUND The device descriptor was not found. The device may not be
configured.
876 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB_IO_PROTOCOL.UsbGetConfigDescriptor()

Summary
Retrieves the USB Device Configuration Descriptor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_CONFIG_DESCRIPTOR) (
 IN EFI_USB_IO_PROTOCOL *This,
 OUT EFI_USB_CONFIG_DESCRIPTOR *ConfigurationDescriptor
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

ConfigurationDescriptor
A pointer to the caller allocated USB Active Configuration
Descriptor. See “Related Definitions” for a detailed description.

Related Definitions
//
// See USB1.1 for detail description.
//
typedef struct {
 UINT8 Length;
 UINT8 DescriptorType;
 UINT16 TotalLength;
 UINT8 NumInterfaces;
 UINT8 ConfigurationValue;
 UINT8 Configuration;
 UINT8 Attributes;
 UINT8 MaxPower;
} EFI_USB_CONFIG_DESCRIPTOR;

Description
This function is used to retrieve the active configuration that the USB device is currently using. If
ConfigurationDescriptor is NULL, then EFI_INVALID_PARAMETER is returned. If the
USB controller does not contain an active configuration, then EFI_NOT_FOUND is returned.
Otherwise, the active configuration is returned in ConfigurationDescriptor, and
EFI_SUCCESS is returned.

Status Code Returned

EFI_SUCCESS The active configuration descriptor was retrieved successfully.

EFI_INVALID_PARAMETER ConfigurationDescriptor is NULL.
Version 2.5 April, 2015 877

Unified Extensible Firmware Interface Specification
EFI_NOT_FOUND An active configuration descriptor cannot be found. The device
may not be configured.
878 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB_IO_PROTOCOL.UsbGetInterfaceDescriptor()

Summary
Retrieves the Interface Descriptor for a USB Device Controller. As stated earlier, an interface within
a USB device is equivalently to a USB Controller within the current configuration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_INTERFACE_DESCRIPTOR) (
 IN EFI_USB_IO_PROTOCOL *This,
 OUT EFI_USB_INTERFACE_DESCRIPTOR *InterfaceDescriptor
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

InterfaceDescriptorA pointer to the caller allocated USB Interface Descriptor within
the configuration setting. See “Related Definitions” for a
detailed description.

Related Definitions
//

// See USB1.1 for detail description.
//
typedef struct {
 UINT8 Length;
 UINT8 DescriptorType;
 UINT8 InterfaceNumber;
 UINT8 AlternateSetting;
 UINT8 NumEndpoints;
 UINT8 InterfaceClass;
 UINT8 InterfaceSubClass;
 UINT8 InterfaceProtocol;
 UINT8 Interface;
} EFI_USB_INTERFACE_DESCRIPTOR;

Description
This function is used to retrieve the interface descriptor for the USB controller. If
InterfaceDescriptor is NULL, then EFI_INVALID_PARAMETER is returned. If the USB
controller does not contain an interface descriptor, then EFI_NOT_FOUND is returned. Otherwise,
the interface descriptor is returned in InterfaceDescriptor, and EFI_SUCCESS is returned.

Status Code Returned

EFI_SUCCESS The interface descriptor retrieved successfully.
Version 2.5 April, 2015 879

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER InterfaceDescriptor is NULL.

EFI_NOT_FOUND The interface descriptor cannot be found. The device may not be
correctly configured.
880 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB_IO_PROTOCOL.UsbGetEndpointDescriptor()

Summary
Retrieves an Endpoint Descriptor within a USB Controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_ENDPOINT_DESCRIPTOR) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT8 EndpointIndex,
 OUT EFI_USB_ENDPOINT_DESCRIPTOR *EndpointDescriptor
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

EndpointIndex Indicates which endpoint descriptor to retrieve. The valid range is
0..15.

EndpointDescriptor A pointer to the caller allocated USB Endpoint Descriptor of a
USB controller. See “Related Definitions” for a detailed
description.

Related Definitions
//
// See USB1.1 for detail description.
//
typedef struct {
 UINT8 Length;
 UINT8 DescriptorType;
 UINT8 EndpointAddress;
 UINT8 Attributes;
 UINT16 MaxPacketSize;
 UINT8 Interval;
} EFI_USB_ENDPOINT_DESCRIPTOR;

Description
This function is used to retrieve an endpoint descriptor within a USB controller. If
EndpointIndex is not in the range 0..15, then EFI_INVALID_PARAMETER is returned. If
EndpointDescriptor is NULL, then EFI_INVALID_PARAMETER is returned. If the
endpoint specified by EndpointIndex does not exist within the USB controller, then
EFI_NOT_FOUND is returned. Otherwise, the endpoint descriptor is returned in
EndpointDescriptor, and EFI_SUCCESS is returned.
Version 2.5 April, 2015 881

Unified Extensible Firmware Interface Specification
Status Code Returned

Examples
The following code fragment shows how to retrieve all the endpoint descriptors from a
USB controller.

EFI_USB_IO_PROTOCOL *UsbIo;
EFI_USB_INTERFACE_DESCRIPTOR InterfaceDesc;
EFI_USB_ENDPOINT_DESCRIPTOR EndpointDesc;
UINTN Index;

Status = UsbIo->GetInterfaceDescriptor (
 UsbIo,
 &InterfaceDesc
);
. . .
for(Index = 0; Index < InterfaceDesc.NumEndpoints; Index++) {
 Status = UsbIo->GetEndpointDescriptor(
 UsbIo,
 Index,
 &EndpointDesc
);

. . .
}

EFI_SUCCESS The endpoint descriptor was retrieved successfully.

EFI_INVALID_PARAMETER EndpointIndex is not valid.

EFI_INVALID_PARAMETER EndpointDescriptor is NULL.

EFI_NOT_FOUND The endpoint descriptor cannot be found. The device may not be
correctly configured.
882 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB_IO_PROTOCOL.UsbGetStringDescriptor()

Summary
Retrieves a string stored in a USB Device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_STRING_DESCRIPTOR) (
 IN EFI_USB_IO_PROTOCOL *This,
 IN UINT16 LangID,
 IN UINT8 StringID,
 OUT CHAR16 **String
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

LangID The Language ID for the string being retrieved. See the
UsbGetSupportedLanguages() function description for a
more detailed description.

StringID The ID of the string being retrieved.

String A pointer to a buffer allocated by this function with
EFI_BOOT_SERVICES.AllocatePool() to store the
string. If this function returns EFI_SUCCESS, it stores the
string the caller wants to get. The caller should release the string
buffer with EFI_BOOT_SERVICES.FreePool() after the
string is not used any more.

Description
This function is used to retrieve strings stored in a USB device. The string to retrieve is identified by
a language and an identifier. The language is specified by LangID, and the identifier is specified by
StringID. If the string is found, it is returned in String, and EFI_SUCCESS is returned. If the
string cannot be found, then EFI_NOT_FOUND is returned. The string buffer is allocated by this
function with AllocatePool(). The caller is responsible for calling FreePool() for
String when it is no longer required.

Status Code Returned

EFI_SUCCESS The string was retrieved successfully.

EFI_NOT_FOUND The string specified by LangID and StringID was not found.

EFI_OUT_OF_RESOURCES There are not enough resources to allocate the return buffer

String.
Version 2.5 April, 2015 883

Unified Extensible Firmware Interface Specification
EFI_USB_IO_PROTOCOL.UsbGetSupportedLanguages()

Summary
Retrieves all the language ID codes that the USB device supports.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_GET_SUPPORTED_LANGUAGES) (
 IN EFI_USB_IO_PROTOCOL *This,
 OUT UINT16 **LangIDTable,
 OUT UINT16 *TableSize
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

LangIDTable Language ID for the string the caller wants to get. This is a 16-bit
ID defined by Microsoft. This buffer pointer is allocated and
maintained by the USB Bus Driver, the caller should not modify
its contents.

TableSize The size, in bytes, of the table LangIDTable.

Description
Retrieves all the language ID codes that the USB device supports.

Status Code Returned

EFI_SUCCESS The support languages were retrieved successfully.
884 April, 2015 Version 2.5

Protocols — USB Support
EFI_USB_IO_PROTOCOL.UsbPortReset()

Summary
Resets and reconfigures the USB controller. This function will work for all USB devices except
USB Hub Controllers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USB_IO_PORT_RESET) (
 IN EFI_USB_IO_PROTOCOL *This
);

Parameters
This A pointer to the EFI_USB_IO_PROTOCOL instance. Type

EFI_USB_IO_PROTOCOL is defined in Section 16.2.4.

Description
This function provides a reset mechanism by sending a RESET signal from the parent hub port. A
reconfiguration process will happen (that includes setting the address and setting the configuration).
This reset function does not change the bus topology. A USB hub controller cannot be reset using
this function, because it would impact the downstream USB devices. So if the controller is a USB
hub controller, then EFI_INVALID_PARAMETER is returned.

Status Code Returned

16.3 USB Function Protocol
This section describes the USB Function Protocol, enabling a USB Function device with a UEFI
driver that implements the protocol to communicate with a a USB Host device.

The USB Function Protocol provides an I/O abstraction for a USB Controller operating in Function
mode (also commonly referred to as Device, Peripheral, or Target mode) and the mechanisms by
which the USB Function can communicate with the USB Host. It is used by other UEFI drivers or
applications to perform data transactions and basic USB controller management over a USB
Function port.

This simple protocol only supports USB 2.0 bulk transfers on systems with a single configuration
and a single interface. It does not support isochronous or interrupt transfers, alternate interfaces, or
USB 3.0 functionality. Future revisions of this protocol may support these or additional features.

EFI_SUCCESS The USB controller was reset.

EFI_INVALID_PARAMETER If the controller specified by This is a USB hub.

EFI_DEVICE_ERROR An error occurred during the reconfiguration process.
Version 2.5 April, 2015 885

Unified Extensible Firmware Interface Specification
EFI_USBFN_IO_PROTOCOL

Summary
Provides basic data transactions and basic USB controller management for a USB Function port.

GUID
// {32D2963A-FE5D-4f30-B633-6E5DC55803CC}
#define EFI_USBFN_IO_PROTOCOL_GUID \
 {0x32d2963a, 0xfe5d, 0x4f30,\
 {0xb6, 0x33, 0x6e, 0x5d, 0xc5, 0x58, 0x3, 0xcc}};

Revision Number
#define EFI_USBFN_IO_PROTOCOL_REVISION 0x00010001

Protocol Interface Structure
typedef struct _EFI_USBFN_IO_PROTOCOL
{
 UINT32 Revision;
 EFI_USBFN_IO_DETECT_PORT DetectPort;
 EFI_USBFN_IO_CONFIGURE_ENABLE_ENDPOINTS \
 ConfigureEnableEndpoints;
 EFI_USBFN_IO_GET_ENDPOINT_MAXPACKET_SIZE \
 GetEndpointMaxPacketSize;
 EFI_USBFN_IO_GET_DEVICE_INFO GetDeviceInfo;
 EFI_USBFN_IO_GET_VENDOR_ID_PRODUCT_ID \
 GetVendorIdProductId;
 EFI_USBFN_IO_ABORT_TRANSFER AbortTransfer;
 EFI_USBFN_IO_GET_ENDPOINT_STALL_STATE \
 GetEndpointStallState;
 EFI_USBFN_IO_SET_ENDPOINT_STALL_STATE \
 SetEndpointStallState;
 EFI_USBFN_IO_EVENTHANDLER EventHandler;
 EFI_USBFN_IO_TRANSFER Transfer;
 EFI_USBFN_IO_GET_MAXTRANSFER_SIZE \
 GetMaxTransferSize;
 EFI_USBFN_IO_ALLOCATE_TRANSFER_BUFFER
886 April, 2015 Version 2.5

Protocols — USB Support
AllocateTransferBuffer;
 EFI_USBFN_IO_FREE_TRANSFER_BUFFER FreeTransferBuffer;

 EFI_USBFN_IO_START_CONTROLLER StartController;
 EFI_USBFN_IO_STOP_CONTROLLER StopController;

 EFI_USBFN_IO_SET_ENDPOINT_POLICY SetEndpointPolicy;
 EFI_USBFN_IO_GET_ENDPOINT_POLICY GetEndpointPolicy;
} EFI_USBFN_IO_PROTOCOL;

Parameters
Revision The revision to which the EFI_USBFN_IO_PROTOCOL

adheres. All future revisions must be backwards compatible. If a
future version is not backwards compatible, a different GUID
must be used.

DetectPort Returns information about the USB port type. See
EFI_USBFN_IO_PROTOCOL.DetectPort(), "Related
Definitions"for more details.

ConfigureEnableEndpoints

Initializes all endpoints based on supplied device and
configuration descriptors. Enables the device by setting the run/
stop bit.

GetEndpointMaxPacketSize

Returns the maximum packet size of the specified endpoint.

GetDeviceInfo Returns device specific information based on the supplied
identifier as a Unicode string.

GetVendorIdProductId

Returns the vendor-id and product-id of the device.

AbortTransfer Aborts the transfer on the specified endpoint.

GetEndpointStallState

Returns the stall state on the specified endpoint.

SetEndpointStallState

Sets or clears the stall state on the specified endpoint.

EventHandler This function is called repeatedly to get information on USB bus
states, receive-completion and transmit-completion events on the
endpoints, and notification on setup packet on endpoint 0.

Transfer This function handles transferring data to or from the host on the
specified endpoint, depending on the direction specified.

GetMaxTransferSize The maximum supported transfer size in bytes.

AllocateTransferBuffer

Allocates a transfer buffer of the specified size that satisfies the
controller requirements.
Version 2.5 April, 2015 887

Unified Extensible Firmware Interface Specification
FreeTransferBuffer Deallocates the memory allocated for the transfer buffer by
EFI_USBFN_IO_PROTOCOL.AllocateTransferBuffe
r()function.

StartController This function initializes the hardware and the internal data
structures. The port must not be activated by this function.

StopController This function disables the device by deactivating the port.

SetEndpointPolicy This function sets the configuration policy for the specified non-
control endpoint. There are a few calling restrictions for this
function. See the
EFI_USBFN_IO_PROTOCOL.SetEndpointPolicy()
function definition for more details.

GetEndpointPolicy This functions retrieves the configuration policy for the specified
non-control endpoint.

Description
This protocol provides basic data transactions and USB controller management for a USB Function
port. It provides a lightweight communication mechanism between a USB Host and a USB Function
in the UEFI environment.

Like other UEFI device drivers, the entry point for a USB function driver attaches
EFI_DRIVER_BINDING_PROTOCOL to image handle of EFI_USBFN_IO_PROTOCOL driver.

The driver binding protocol contains three services, Supported, Start and Stop.

The Supported function must test to see if this driver supports a given controller.

The Start function must supply power to the USB controller if needed, initialize hardware and
internal data structures, and then return. The port must not be activated by this function.

The Stop function must disable the USB controller and power it off if needed.
888 April, 2015 Version 2.5

Protocols — USB Support
EFI_USBFN_IO_PROTOCOL.DetectPort()

Summary
Returns information about what USB port type was attached.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_DETECT_PORT) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 OUT EFI_USBFN_PORT_TYPE *PortType
);

Parameters
This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

PortType Returns the USB port type. Refer to the Related Definitions.

 for this function below for details.

Description
Returns information about the USB port type attached. Refer to the "Related Definitions" below for
further details.

Status Codes

Related Definitions
typedef enum _EFI_USBFN_PORT_TYPE
{
 EfiUsbUnknownPort = 0,
 EfiUsbStandardDownstreamPort,
 EfiUsbChargingDownstreamPort,
 EfiUsbDedicatedChargingPort,
 EfiUsbInvalidDedicatedChargingPort
} EFI_USBFN_PORT_TYPE;

Unknown Port Driver internal default port type, this is never returned by the
driver with a success status code.

Standard Downstream Port

Standard USB host; refer to USB Battery Charging Specification,
Revision 1.2 in Section Q.1 for details and the link.

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request or there is
no USB port attached to the device.
Version 2.5 April, 2015 889

Unified Extensible Firmware Interface Specification
Charging Downstream Port

Standard USB host with special charging properties; refer to USB
Battery Charging Specification, Revision 1.2 in Section Q.1 for
the details and link.

Dedicated Charging Port

A wall-charger, not USB host; refer to USB Battery Charging
Specification, Revision 1.2 in Section Q.1 for details and the link.

Invalid Dedicated Charging Port –

Neither a USB host nor a dedicated charging port as defined by
the USB Battery Charging Specification, Revision 1.2. (See
Section Q.1 for details and the link.) An example is a USB
charger that raises the voltages on D+/D-, causing the charger to
look like an SDP even though it will never issue a setup packet to
the upstream facing port.
890 April, 2015 Version 2.5

Protocols — USB Support
EFI_USBFN_IO_PROTOCOL.ConfigureEnableEndpoints()

Summary
Configures endpoints based on supplied device and configuration descriptors.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_CONFIGURE_ENABLE_ENDPOINTS) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN EFI_USB_DEVICE_INFO *DeviceInfo
);

Parameters
This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

DeviceInfo A pointer to EFI_USBFN_DEVICE_INFO instance. Refer to
the "Related Definitions" for this function below for details.

Description
Assuming that the hardware has already been initialized, this function configures the endpoints
using the device information supplied by DeviceInfo, activates the port, and starts receiving USB
events.

This function must ignore the bMaxPacketSize0 field of the Standard Device Descriptor and the
wMaxPacketSize field of the Standard Endpoint Descriptor that are made available through
DeviceInfo.

Status Codes

Related Definitions
typedef struct
{
 EFI_USB_INTERFACE_DESCRIPTOR *InterfaceDescriptor;
 EFI_USB_ENDPOINT_DESCRIPTOR **EndpointDescriptorTable;
} EFI_USB_INTERFACE_INFO;

typedef struct
{
 EFI_USB_CONFIG_DESCRIPTOR *ConfigDescriptor;

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.

EFI_OUT_OF_RESOURCES The request could not be completed due to lack of resources.
Version 2.5 April, 2015 891

Unified Extensible Firmware Interface Specification
 EFI_USB_INTERFACE_INFO **InterfaceInfoTable;
} EFI_USB_CONFIG_INFO;

typedef struct
{
 EFI_USB_DEVICE_DESCRIPTOR *DeviceDescriptor;
 EFI_USB_CONFIG_INFO **ConfigInfoTable;
} EFI_USB_DEVICE_INFO;

USB_DEVICE_DESCRIPTOR, USB_CONFIG_DESCRIPTOR, USB_INTERFACE_DESCRIPTOR, and
USB_ENDPOINT_DESCRIPTOR are defined in Section 16.2.4.
892 April, 2015 Version 2.5

Protocols — USB Support
EFI_USBFN_IO_PROTOCOL.GetEndpointMaxPacketSize()

Summary
Returns the maximum packet size of the specified endpoint type for the supplied bus speed.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_GET_ENDPOINT_MAXPACKET_SIZE) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN EFI_USB_ENDPOINT_TYPE EndpointType,
 IN EFI_USB_BUS_SPEED BusSpeed,
 OUT UINT16 *MaxPacketSize
);

Parameters
This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

EndpointType Endpoint type as defined as EFI_USB_ENDPOINT_TYPE in
the "Related Definitions" for this function below for details.

BusSpeed Bus speed as defined as EFI_USB_BUS_SPEED in the "Related
Definitions" for the EventHandle function for details.

MaxPacketSize The maximum packet size, in bytes, of the specified endpoint
type.

Description
Returns the maximum packet size of the specified endpoint type for the supplied bus speed. If the
BusSpeed is UsbBusSpeedUnknown, the maximum speed the underlying controller supports is
assumed.

This protocol currently does not support isochronous or interrupt transfers. Future revisions of this
protocol may eventually support it.

Status Codes

Related Definitions
typedef enum _EFI_USB_ENDPOINT_TYPE
{
 UsbEndpointControl = 0x00,
 // UsbEndpointIsochronous = 0x01,
 UsbEndpointBulk = 0x02,

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.
Version 2.5 April, 2015 893

Unified Extensible Firmware Interface Specification
 // UsbEndpointInterrupt = 0x03
} EFI_USB_ENDPOINT_TYPE;
894 April, 2015 Version 2.5

Protocols — USB Support
EFI_USBFN_IO_PROTOCOL.GetDeviceInfo()

Summary
Returns device specific information based on the supplied identifier as a Unicode string.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_GET_DEVICE_INFO) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN EFI_USBFN_DEVICE_INFO_ID Id,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer OPTIONAL
);

Parameters
This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

Id The requested information id. Refer to the "Related Definitions"
for this function below for details.

BufferSize On input, the size of the Buffer in bytes. On output, the amount
of data returned in Buffer in bytes.

Buffer A pointer to a buffer to return the requested information as a
Unicode string.

Description
Returns device specific information based on the supplied identifier as a Unicode string. If the
supplied Buffer isn’t large enough, or is NULL, the method fails with
EFI_BUFFER_TOO_SMALL and the required size is returned through BufferSize. All returned
strings are in Unicode format.

An Id of EfiUsbDeviceInfoUnknown is treated as an invalid parameter.

Status Codes

Related Definitions
typedef enum _EFI_USBFN_DEVICE_INFO_ID
{
 EfiUsbDeviceInfoUnknown = 0,
 EfiUsbDeviceInfoSerialNumber,

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.

EFI_BUFFER_TOO_SMALL Supplied buffer isn’t large enough to hold the request string.
Version 2.5 April, 2015 895

Unified Extensible Firmware Interface Specification
 EfiUsbDeviceInfoManufacturerName,
 EfiUsbDeviceInfoProductName
} EFI_USBFN_DEVICE_INFO_ID;
896 April, 2015 Version 2.5

Protocols — USB Support
EFI_USBFN_IO_PROTOCOL.GetVendorIdProductId()

Summary
Returns the vendor-id and product-id of the device.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_GET_VENDOR_ID_PRODUCT_ID) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 OUT UINT16 *Vid,
 OUT UINT16 *Pid
);

Parameters
This A pointer to the EFI_USBFN_IO_PROTOCOL.instance.

Vid Returned vendor-id of the device.

Pid Returned product-id of the device.

Description
Returns vendor-id and product-id of the device.

Status Codes

Related Definitions
Vendor IDs (VIDs) are 16-bit numbers that represent the device’s vendor company and are assigned
and maintained by the USB-IF. Product IDs (PIDs) are 16-bit numbers assigned by each vendor to
the device.

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_NOT_FOUND Unable to return the vendor-id or the product-id
Version 2.5 April, 2015 897

Unified Extensible Firmware Interface Specification
EFI_USBFN_IO_PROTOCOL.AbortTransfer()

Summary
Aborts the transfer on the specified endpoint.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_ABORT_TRANSFER) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN UINT8 EndpointIndex,
 IN EFI_USBFN_ENDPOINT_DIRECTION Direction
);

Parameters
This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

EndpointIndex Indicates the endpoint on which the ongoing transfer needs to be
canceled.

Direction Direction of the endpoint. Refer to the "Related Definitions" for
this function (below) for details.

Description
Aborts the transfer on the specified endpoint. This function should fail with
EFI_INVALID_PARAMETER if the specified direction is incorrect for the endpoint.

Status Codes

Related Definitions
typedef enum _EFI_USBFN_ENDPOINT_DIRECTION
{
 EfiUsbEndpointDirectionHostOut = 0,
 EfiUsbEndpointDirectionHostIn,
 EfiUsbEndpointDirectionDeviceTx =
EfiUsbEndpointDirectionHostIn,
 EfiUsbEndpointDirectionDeviceRx =
EfiUsbEndpointDirectionHostOut
} EFI_USBFN_ENDPOINT_DIRECTION;

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.
898 April, 2015 Version 2.5

Protocols — USB Support
EFI_USBFN_IO_PROTOCOL.GetEndpointStallState()

Summary
Returns the stall state on the specified endpoint.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_GET_ENDPOINT_STALL_STATE) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN UINT8 EndpointIndex,
 IN EFI_USBFN_ENDPOINT_DIRECTION Direction,
 IN OUT BOOLEAN *State
);

Parameters
This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

EndpointIndex Indicates the endpoint.

Direction Direction of the endpoint. Refer to the "Related Definitions" for
EFI_USBFN_IO_PROTOCOL.AbortTransfer() for
details.

State Boolean, true value indicates that the endpoint is in a stalled state,
false otherwise.

Description
Returns the stall state on the specified endpoint. This function would fail with
EFI_INVALID_PARAMETER if the specified direction is incorrect for the endpoint.

Status Codes

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.
Version 2.5 April, 2015 899

Unified Extensible Firmware Interface Specification
EFI_USBFN_IO_PROTOCOL.SetEndpointStallState()

Summary
Sets or clears the stall state on the specified endpoint.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_SET_ENDPOINT_STALL_STATE) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN UINT8 EndpointIndex,
 IN EFI_USBFN_ENDPOINT_DIRECTION Direction,
 IN BOOLEAN State
);

Parameters
This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

EndpointIndex Indicates the endpoint.

Direction Direction of the endpoint. Refer to the "Related Definitions" for
the EFI_USBFN_IO_PROTOCOL.AbortTransfer()
function for details.

State Requested stall state on the specified endpoint. True value causes
the endpoint to stall; false value clears an existing stall.

Description
Sets or clears the stall state on the specified endpoint. This function would fail with
EFI_INVALID_PARAMETER if the specified direction is incorrect for the endpoint.

Status Codes

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.
900 April, 2015 Version 2.5

Protocols — USB Support
EFI_USBFN_IO_PROTOCOL.EventHandler()

Summary
This function is called repeatedly to get information on USB bus states, receive-completion and
transmit-completion events on the endpoints, and notification on setup packet on endpoint 0.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_EVENTHANDLER) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 OUT EFI_USBFN_MESSAGE *Message,
 IN OUT UINTN *PayloadSize,
 OUT EFI_USBFN_MESSAGE_PAYLOAD *Payload
);

Parameters
This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

Message Indicates the event that initiated this notification. Refer to the
"Related Definitions" for this function (below) for all possible
types.

PayloadSize On input, the size of the memory pointed by Payload. On
output, the amount of data returned in Payload.

Payload A pointer to EFI_USBFN_MESSAGE_PAYLOAD instance to
return additional payload for current message. Refer to the
"Related Definitions" for this function (below) for details on the
type.

Description
This function is called repeatedly to get information on USB bus states, receive-completion and
transmit-completion events on the endpoints, and notification on setup packet on endpoint 0. A class
driver must call EFI_USBFN_IO_PROTOCOL.EventHandler() repeatedly to receive updates
on the transfer status and number of bytes transferred on various endpoints. Refer to Figure 54 for
details.

A few messages have an associated payload that is returned in the supplied buffer. The following
table describes various messages and their payload:

Message Payload Description

EfiUsbMsgSetupPacket EFI_USB_DEVICE_REQUE
ST

SETUP packet was received.
Version 2.5 April, 2015 901

Unified Extensible Firmware Interface Specification
Table 137. Payload-associated Messages and Descriptions

Status Codes

Related Definitions
typedef enum _EFI_USBFN_MESSAGE
{
 //

EfiUsbMsgEndpointStatusChangedRx EFI_USBFN_TRANSFER_
RESULT

Some of the requested data has
been transmitted to the host. It is
the responsibility of the class driver
to determine if any remaining data

needs to be re-sent. The Buffer

supplied t o

EFI_USBFN_IO_PROTOCOL
.Transfer() must be same

as the Buffer field of the

payload.

EfiUsbMsgEndpointStatusChangedTx EFI_USBFN_TRANSFER_
RESULT

Some of the requested data has
been received from the host. It is
the responsibility of the class driver
to determine if it needs to wait for

any remaining data. The Buffer

supplied to

EFI_USBFN_IO_PROTOCOL
.Transfer() must be same

as the Buffer field of the

payload.

EfiUsbMsgBusEventReset None A RESET bus event was signaled.

EfiUsbMsgBusEventDetach None A DETACH bus event was
signaled.

EfiUsbMsgBusEventAttach None An ATTACH bus event was
signaled.

EfiUsbMsgBusEventSuspend None A SUSPEND bus event was
signaled.

EfiUsbMsgBusEventResume None A RESUME bus event was
signaled.

EfiUsbMsgBusEventSpeed EFI_USB_BUS_SPEED A Bus speed update was signaled.

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.

EFI_BUFFER_TOO_SMALL The Supplied buffer is not large enough to hold the message payload.
902 April, 2015 Version 2.5

Protocols — USB Support
 // Nothing
 //
 EfiUsbMsgNone = 0,
 //
 // SETUP packet is received, returned Buffer contains
 // EFI_USB_DEVICE_REQUEST struct
 //
 EfiUsbMsgSetupPacket,
 //
 // Indicates that some of the requested data has been
received from the
 // host. It is the responsibility of the class driver to
determine if it
 // needs to wait for any remaining data. Returned Buffer
contains
 // EFI_USBFN_TRANSFER_RESULT struct containing endpoint
number, transfer
 // status and count of bytes received.
 //
 EfiUsbMsgEndpointStatusChangedRx,

 //
 // Indicates that some of the requested data has been
transmitted to the
 // host. It is the responsibility of the class driver to
determine if any
 // remaining data needs to be resent. Returned Buffer
contains
 // EFI_USBFN_TRANSFER_RESULT struct containing endpoint
number, transfer
 // status and count of bytes sent.
 //
 EfiUsbMsgEndpointStatusChangedTx,

 //
 // DETACH bus event signaled
 //
 EfiUsbMsgBusEventDetach,
 //
 // ATTACH bus event signaled
 //
 EfiUsbMsgBusEventAttach,
 //
 // RESET bus event signaled
 //
 EfiUsbMsgBusEventReset,
 //
Version 2.5 April, 2015 903

Unified Extensible Firmware Interface Specification
 // SUSPEND bus event signaled
 //
 EfiUsbMsgBusEventSuspend,
 //
 // RESUME bus event signaled
 //
 EfiUsbMsgBusEventResume,
 //
 // Bus speed updated, returned buffer indicated bus speed
using
 // following enumeration named EFI_USB_BUS_SPEED
 //
 EfiUsbMsgBusEventSpeed
} EFI_USBFN_MESSAGE;

typedef enum _EFI_USBFN_TRANSFER_STATUS
{
 UsbTransferStatusUnknown = 0,
 UsbTransferStatusComplete,
 UsbTransferStatusAborted,
 UsbTransferStatusActive,
 UsbTransferStatusNone
} EFI_USBFN_TRANSFER_STATUS;

typedef struct _EFI_USBFN_TRANSFER_RESULT
{
 UINTN BytesTransferred;
 EFI_USBFN_TRANSFER_STATUS TransferStatus;
 UINT8 EndpointIndex;
 EFI_USBFN_ENDPOINT_DIRECTION Direction;
 VOID *Buffer;
} EFI_USBFN_TRANSFER_RESULT;

typedef enum _EFI_USB_BUS_SPEED
{
 UsbBusSpeedUnknown = 0,
 UsbBusSpeedLow,
 UsbBusSpeedFull,
 UsbBusSpeedHigh,
 UsbBusSpeedSuper,
 UsbBusSpeedMaximum = UsbBusSpeedSuper
} EFI_USB_BUS_SPEED;

typedef union _EFI_USBFN_MESSAGE_PAYLOAD
{
 EFI_USB_DEVICE_REQUEST udr;
904 April, 2015 Version 2.5

Protocols — USB Support
 EFI_USBFN_TRANSFER_RESULT utr;
 EFI_USB_BUS_SPEED ubs;
} EFI_USBFN_MESSAGE_PAYLOAD;
Version 2.5 April, 2015 905

Unified Extensible Firmware Interface Specification
EFI_USBFN_IO_PROTOCOL.Transfer()

Summary
This function handles transferring data to or from the host on the specified endpoint, depending on
the direction specified.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USBFN_IO_TRANSFER) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN UINT8 EndpointIndex,
 IN EFI_USBFN_ENDPOINT_DIRECTION Direction,
 IN OUT UINTN *BufferSize,
 IN OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

EndpointIndex Indicates the endpoint on which TX or RX transfer needs to take
place.

Direction Direction of the endpoint. Refer to the "Related Definitions" of
the EFI_USBFN_IO_PROTOCOL.AbortTransfer()

 function for details.

BufferSize If Direction is EfiUsbEndpointDirectionDeviceRx: On input,
the size of the Buffer in bytes. On output, the amount of data
returned in Buffer in bytes.

If Direction is EfiUsbEndpointDirectionDeviceTx: On input,
the size of the Buffer in bytes. On output, the amount of data
transmitted in bytes.

Buffer If Direction is EfiUsbEndpointDirectionDeviceRx: The
Buffer to return the received data.

If Direction is EfiUsbEndpointDirectionDeviceTx: The
Buffer that contains the data to be transmitted.

Note: This buffer is allocated and freed using the
EFI_USBFN_IO_PROTOCOL.AbortTransfer() and
EFI_USBFN_IO_PROTOCOL.FreeTransferBuffer() functions. The caller of this
function must not free or reuse the buffer until EfiUsbMsgEndpointStatusChangedRx or
EfiUsbMsgEndpointStatusChangedTx message was received along with the address of the
transfer buffer as part of the message payload. Refer to the function definition for
EFI_USBFN_IO_PROTOCOL.EventHandler() for more information on various messages
and their payloads.

Description
This function handles transferring data to or from the host on the specified endpoint, depending on the
direction specified.
906 April, 2015 Version 2.5

Protocols — USB Support

A class driver must call EFI_USBFN_IO_PROTOCOL.EventHandler() repeatedly to receive
updates on the transfer status and the number of bytes transferred on various endpoints. Upon an
update of the transfer status, the Buffer field of the EFI_USBFN_TRANSFER_RESULT structure
(as described in the function description for EFI_USBFN_IO_PROTOCOL.EventHandler())
must be initialized with the Buffer pointer that was supplied to this method.

The overview of the call sequence is illustrated in the Figure 54.

This function should fail with EFI_INVALID_PARAMETER if the specified direction is incorrect
for the endpoint.

Status codes

Direction Description

EfiUsbEndpointDirectionDeviceTx Start a transmit transfer on the specified endpoint and return
immediately.

EfiUsbEndpointDirectionDeviceRx Start a receive transfer on the specified endpoint and return
immediately with available data.

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.
Version 2.5 April, 2015 907

Unified Extensible Firmware Interface Specification
EFI_USBFN_IO_PROTOCOL.GetMaxTransferSize()

Summary
Returns the maximum supported transfer size.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_GET_MAXTRANSFER_SIZE) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 OUT UINTN *MaxTransferSize
);

Parameters
This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

MaxTransferSize The maximum supported transfer size, in bytes.

Description
Returns the maximum number of bytes that the underlying controller can accommodate in a single
transfer.

Status Codes

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_NOT_READY The physical device is busy or not ready to process this request.
908 April, 2015 Version 2.5

Protocols — USB Support
EFI_USBFN_IO_PROTOCOL.AllocateTransferBuffer()

Summary
Allocates a transfer buffer of the specified size that satisfies the controller requirements.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_ALLOCATE_TRANSFER_BUFFER) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN UINTN Size,
 OUT VOID **Buffer
);

Parameters
This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

Size The number of bytes to allocate for the transfer buffer.

Buffer A pointer to a pointer to the allocated buffer if the call succeeds;
undefined otherwise.

Description
The AllocateTransferBuffer()function allocates a memory region of Size bytes and
returns the address of the allocated memory that satisfies the underlying controller requirements in
the location referenced by Buffer.

The allocated transfer buffer must be freed using a matching call to
EFI_USBFN_IO_PROTOCOL.FreeTransferBuffer() function.

Status Codes

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_OUT_OF_RESOURCES The requested transfer buffer could not be allocated.
Version 2.5 April, 2015 909

Unified Extensible Firmware Interface Specification
EFI_USBFN_IO_PROTOCOL.FreeTransferBuffer()

Summary
Deallocates the memory allocated for the transfer buffer by the
EFI_USBFN_IO_PROTOCOL.AllocateTransferBuffer() function.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_FREE_TRANSFER_BUFFER) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN VOID *Buffer
);

Parameters
This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

Buffer A pointer to the transfer buffer to deallocate.

Description
The EFI_USBFN_IO_PROTOCOL.FreeTransferBuffer() function deallocates the
memory specified by Buffer. The Buffer that is freed must have been allocated by
EFI_USBFN_IO_PROTOCOL.AllocateTransferBuffer().

Status Codes

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.
910 April, 2015 Version 2.5

Protocols — USB Support
EFI_USBFN_IO_PROTOCOL.StartController()

Summary
This function supplies power to the USB controller if needed and initializes the hardware and the
internal data structures. The port must not be activated by this function

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_START_CONTROLLER) (
 IN EFI_USBFN_IO_PROTOCOL *This
);

Parameters
This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

Description
This function starts the hardware by supplying power to the USB controller if needed, and
initializing the hardware and internal data structures. The port must not be activated by this function.

Status codes

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.
Version 2.5 April, 2015 911

Unified Extensible Firmware Interface Specification
EFI_USBFN_IO_PROTOCOL.StopController()

Summary
This function stops the USB hardware device.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_IO_STOP_CONTROLLER) (
 IN EFI_USBFN_IO_PROTOCOL *This
);

Parameters
This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

Description
This function stops the USB hardware device

Status codes

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.
912 April, 2015 Version 2.5

Protocols — USB Support
EFI_USBFN_IO_PROTOCOL.SetEndpointPolicy()

Summary
This function sets the configuration policy for the specified non-control endpoint. Refer to the
description for calling restrictions.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_SET_ENDPOINT_POLICY) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN UINT8 EndpointIndex
 IN EFI_USBFN_ENDPOINT_DIRECTION Direction,
 IN EFI_USBFN_POLICY_TYPE PolicyType,
 IN UINTN BufferSize,
 IN VOID *Buffer
);

Parameters
This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

EndpointIndex Indicates the non-control endpoint for which the policy needs to
be set.

Direction Direction of the endpoint. Refer to the "Related Definitions" for
the EFI_USBFN_IO_PROTOCOL.AbortTransfer()
function for details.

PolicyType Policy type the user is trying to set for the specified non-control
endpoint. Refer to "Related Definitions" for this function below
for details.

BufferSize The size of the Buffer in bytes.

Buffer The new value for the policy parameter that PolicyType
specifies. Refer to "Related Definitions" for this function below
for details.

Description
This function sets the configuration policy for the specified non-control endpoint. This function can
only be called before EFI_USBFN_IO_PROTOCOL.StartController() or after
EFI_USBFN_IO_PROTOCOL.StopController() has been called.
Version 2.5 April, 2015 913

Unified Extensible Firmware Interface Specification
Status codes

Related Definitions
typedef enum _EFI_USBFN_POLICY_TYPE
{
 EfiUsbPolicyUndefined = 0,
 EfiUsbPolicyMaxTransactionSize,
 EfiUsbPolicyZeroLengthTerminationSupport,
 EfiUsbPolicyZeroLengthTermination
} EFI_USBFN_POLICY_TYPE;

EfiUsbPolicyUndefined

Invalid policy value that must never be used across driver
boundary. If used, the function must not return a success status
code.

EfiUsbPolicyMaxTransactionSize

EfiUsbPolicyMaxTransactionSize is only used with
EFI_USBFN_IO_PROTOCOL.GetEndpointPolicy(). It
provides the size of the largest single transaction (delivery of
service to an endpoint) supported by a controller. It must be
greater than or equal to the maximum transfer size that can be
retrieved by calling
EFI_USBFN_IO_PROTOCOL.GetMaxTransferSize().

EfiUsbPolicyZeroLengthTerminationSupport

EfiUsbPolicyZeroLengthTerminationSupport is only used with
EFI_USBFN_IO_PROTOCOL.GetEndpointPolicy(). It
is TRUE if the USB controller is capable of automatically
handling zero length packets when the transfer size is a multiple
of USB maximum packet size and FALSE if it is not supported
by the controller.

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.

EFI_UNSUPPORTED Changing this policy value is not supported.

GetEndpointPolicy SetEndpointPolicy

BufferSize 4 bytes, sizeof(UINT32) Not applicable

Return Status EFI_STATUS EFI_UNSUPPORTED

GetEndpointPolicy SetEndpointPolicy

BufferSize 1 byte, sizeof (BOOLEAN) Not applicable

Return Status EFI_STATUS EFI_UNSUPPORTED
914 April, 2015 Version 2.5

Protocols — USB Support
EfiUsbPolicyZeroLengthTermination

When used with
EFI_USBFN_IO_PROTOCOL.GetEndpointPolicy(), a
TRUE value is returned if the USB controller hardware is
configured to automatically handle zero length packets when the
transfer size is a multiple of USB maximum packet size; a
FALSE value is returned if the controller hardware is not
configured to do this.

Using
EFI_USBFN_IO_PROTOCOL.SetEndpointPolicy() to
set the EfiUsbPolicyZeroLengthTermination policy is only
applicable to USB controller hardware capable of supporting
automatic zero length packet termination. When this value is set
to TRUE, the controller must be configured to handle zero length
termination for the specified endpoint. When this value is set to
FALSE, the controller must be configured to not handle zero
length termination for the specified endpoint.

The USB controller’s default policy must not enable automatic
zero length packet termination, even if the hardware is capable of
supporting it.

GetEndpointPolicy SetEndpointPolicy

BufferSize 1 byte, sizeof (BOOLEAN) 1 byte, sizeof (BOOLEAN)

Return Status EFI_STATUS EFI_STATUS
Version 2.5 April, 2015 915

Unified Extensible Firmware Interface Specification
EFI_USBFN_IO_PROTOCOL.GetEndpointPolicy()

Summary
This function retrieves the configuration policy for the specified non-control endpoint. There are no
associated calling restrictions for this function.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_USBFN_GET_ENDPOINT_POLICY) (
 IN EFI_USBFN_IO_PROTOCOL *This,
 IN UINT8 EndpointIndex
 IN EFI_USBFN_ENDPOINT_DIRECTION Direction,
 IN EFI_USBFN_POLICY_TYPE PolicyType,
 IN OUT UINTN *BufferSize,
 IN OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_USBFN_IO_PROTOCOL instance.

EndpointIndex Indicates the non-control endpoint for which the policy needs to
be set.

Direction Direction of the endpoint. Refer to the "Related Definitions" for
the EFI_USBFN_IO_PROTOCOL.AbortTransfer()
function for details.

PolicyType Policy type the user is trying to retrieve for the specified non-
control endpoint. Refer to the "Related Definitions" for the
EFI_USBFN_IO_PROTOCOL.SetEndpointPolicy()
function for details.

BufferSize On input, the size of Buffer in bytes. On output, the amount of
data returned in Buffer in bytes.

Buffer A pointer to a buffer to return requested endpoint policy value.
Refer to the "Related Definitions" for the
EFI_USBFN_IO_PROTOCOL.SetEndpointPolicy()
function for size requirements of various policy types.

Description
This function retrieves the configuration policy for the specified non-control endpoint. This function
has no calling restrictions.

Status codes

EFI_SUCCESS The function returned successfully.

EFI_INVALID_PARAMETER A parameter is invalid.

EFI_DEVICE_ERROR The physical device reported an error.
916 April, 2015 Version 2.5

Protocols — USB Support
EFI_UNSUPPORTED The specified policy value is not supported.

EFI_BUFFER_TOO_SMALL Supplied buffer is not large enough to hold requested policy value.
Version 2.5 April, 2015 917

Unified Extensible Firmware Interface Specification
USB Function Sequence Diagram

Figure 54. Sequence of Operations with Endpoint Policy Changes

Class Driver USBFn DriverUEFI Boot Service

ConfigureEnableEndpoints()

App

Initialize()

Write()

Setup Packet
Handling

Transfer(EfiUsbEndpointDirectionDeviceTx)

Read()

EventHandler()

Transfer(EfiUsbEndpointDirectionDeviceRx)

EventHandler()

GetMaxTransferSize()

AllocateTransferBuffer()

EventHandler()

StopController()

GetEndpointPolicy()

StartController()

SetEndpointPolicy()
918 April, 2015 Version 2.5

Protocols - Debugger Support
17
Protocols - Debugger Support

This chapter describes a minimal set of protocols and associated data structures necessary to enable
the creation of source level debuggers for EFI. It does not fully define a debugger design. Using the
services described in this document, it should also be possible to implement a variety of debugger
solutions.

17.1 Overview
Efficient UEFI driver and application development requires the availability of source level
debugging facilities. Although completely on-target debuggers are clearly possible, UEFI
debuggers are generally expected to be remotely hosted. That is to say, the debugger itself will be
split between two machines, which are the host and target. A majority of debugger code runs on the
host that is typically responsible for disassembly, symbol management, source display, and user
interface. Similarly, a smaller piece of code runs on the target that establishes the communication to
the host and proxies requests from the host. The on-target code is known as the “debug agent.”

The debug agent design is subdivided further into two parts, which are the processor/platform
abstraction and the debugger host specific communication grammar. This specification describes
architectural interfaces for the former only. Specific implementations for various debugger host
communication grammars can be created that make use of the facilities described in this
specification.

The processor/platform abstraction is presented as a pair of protocol interfaces, which are the Debug
Support protocol and the Debug Port protocol.

The Debug Support protocol abstracts the processor’s debugging facilities, namely a mechanism to
manage the processor’s context via caller-installable exception handlers.

The Debug Port protocol abstracts the device that is used for communication between the host and
target. Typically this will be a 16550 serial port, 1394 device, or other device that is nominally a
serial stream.

Furthermore, a table driven, quiescent, memory-only mechanism for determining the base address of
PE32+ images is provided to enable the debugger host to determine where images are located
in memory.

Aside from timing differences that occur because of running code associated with the debug agent
and user initiated changes to the machine context, the operation of the on-target debugger
component must be transparent to the rest of the system. In addition, no portion of the debug agent
that runs in interrupt context may make any calls to EFI services or other protocol interfaces.

The services described in this document do not comprise a complete debugger, rather they provide a
minimal abstraction required to implement a wide variety of debugger solutions.
Version 2.5 April, 2015 919

Unified Extensible Firmware Interface Specification
17.2 EFI Debug Support Protocol
This section defines the EFI Debug Support protocol which is used by the debug agent.

17.2.1 EFI Debug Support Protocol Overview
The debug-agent needs to be able to gain control of the machine when certain types of events occur;
i.e., breakpoints, processor exceptions, etc. Additionally, the debug agent must also be able to
periodically gain control during operation of the machine to check for asynchronous commands
from the host. The EFI Debug Support protocol services enable these capabilities.

The EFI Debug Support protocol interfaces produce callback registration mechanisms which are
used by the debug agent to register functions that are invoked either periodically or when specific
processor exceptions. When they are invoked by the Debug Support driver, these callback functions
are passed the current machine context record. The debug agent may modify this context record to
change the machine context which is restored to the machine after the callback function returns. The
debug agent does not run in the same context as the rest of UEFI and all modifications to the
machine context are deferred until after the callback function returns.

It is expected that there will typically be two instances of the EFI Debug Support protocol in the
system. One associated with the native processor instruction set (IA-32, x64, ARM, or Itanium
processor family), and one for the EFI virtual machine that implements EFI byte code (EBC).

While multiple instances of the EFI Debug Support protocol are expected, there must never be more
than one for any given instruction set.

EFI_DEBUG_SUPPORT_PROTOCOL

Summary
This protocol provides the services to allow the debug agent to register callback functions that are
called either periodically or when specific processor exceptions occur.
920 April, 2015 Version 2.5

Protocols - Debugger Support
GUID
#define EFI_DEBUG_SUPPORT_PROTOCOL_GUID \
 {0x2755590C,0x6F3C,0x42FA,\
 {0x9E,0xA4,0xA3,0xBA,0x54,0x3C,0xDA,0x25}}

Protocol Interface Structure
typedef struct {
 EFI_INSTRUCTION_SET_ARCHITECTURE Isa;
 EFI_GET_MAXIMUM_PROCESSOR_INDEX GetMaximumProcessorIndex;
 EFI_REGISTER_PERIODIC_CALLBACK RegisterPeriodicCallback;
 EFI_REGISTER_EXCEPTION_CALLBACK RegisterExceptionCallback;
 EFI_INVALIDATE_INSTRUCTION_CACHE InvalidateInstructionCache;
} EFI_DEBUG_SUPPORT_PROTOCOL;

Parameters
Isa Declares the processor architecture for this instance of the EFI

Debug Support protocol.

GetMaximumProcessorIndex

Returns the maximum processor index value that may be used
with
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodic
Callback() and
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptio
nCallback(). See the
EFI_DEBUG_SUPPORT_PROTOCOL.GetMaximumProces
sorIndex() function description.

RegisterPeriodicCallback

Registers a callback function that will be invoked periodically
and asynchronously to the execution of EFI. See the
RegisterPeriodicCallback() function description.

RegisterExceptionCallback

Registers a callback function that will be called each time the
specified processor exception occurs. See the
RegisterExceptionCallback() function description.

InvalidateInstructionCache

Invalidate the instruction cache of the processor. This is required
by processor architectures where instruction and data caches are
not coherent when instructions in the code under debug has been
modified by the debug agent. See
theEFI_DEBUG_SUPPORT_PROTOCOL.InvalidateInst
ructionCache() function description.

Related Definitions
Refer to the Microsoft PE/COFF Specification revision 6.2 or later for IMAGE_FILE_MACHINE
definitions.
Version 2.5 April, 2015 921

Unified Extensible Firmware Interface Specification
Note: At the time of publication of this specification, the latest revision of the PE/COFF specification
was 6.2. The definition of IMAGE_FILE_MACHINE_EBC is not included in revision 6.2 of the
PE/COFF specification. It will be added in a future revision of the PE/COFF specification.

//
// Machine type definition
//
typedef enum {
 IsaIa32 = IMAGE_FILE_MACHINE_I386, // 0x014C
 IsaX64 = IMAGE_FILE_MACHINE_X64, // 0x8664
 IsaIpf = IMAGE_FILE_MACHINE_IA64, // 0x0200
 IsaEbc = IMAGE_FILE_MACHINE_EBC, // 0x0EBC
 IsaArm = IMAGE_FILE_MACHINE_ARMTHUMB_MIXED // 0x1C2
 IsaAArch64 = IMAGE_FILE_MACHINE_AARCH64 // 0xAA64
} EFI_INSTRUCTION_SET_ARCHITECTURE;

Description
The EFI Debug Support protocol provides the interfaces required to register debug agent callback
functions and to manage the processor’s instruction stream as required. Registered callback
functions are invoked in interrupt context when the specified event occurs.

The driver that produces the EFI Debug Support protocol is also responsible for saving the machine
context prior to invoking a registered callback function and restoring it after the callback function
returns prior to returning to the code under debug. If the debug agent has modified the context
record, the modified context must be used in the restore operation.

Furthermore, if the debug agent modifies any of the code under debug (to set a software breakpoint
for example), it must call the InvalidateInstructionCache() function for the region of
memory that has been modified.
922 April, 2015 Version 2.5

Protocols - Debugger Support
EFI_DEBUG_SUPPORT_PROTOCOL.GetMaximumProcessorIndex()

Summary
Returns the maximum value that may be used for the ProcessorIndex parameter in
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodicCallback() and
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_MAXIMUM_PROCESSOR_INDEX) (
 IN EFI_DEBUG_SUPPORT_PROTOCOL *This,
 OUT UINTN *MaxProcessorIndex
);

Parameters
This A pointer to the EFI_DEBUG_SUPPORT_PROTOCOL instance.

Type EFI_DEBUG_SUPPORT_PROTOCOL is defined in this
section.

MaxProcessorIndex Pointer to a caller-allocated UINTN in which the maximum
supported processor index is returned.

Description
The GetMaximumProcessorIndex() function returns the maximum processor index in the
output parameter MaxProcessorIndex. This value is the largest value that may be used in the
ProcessorIndex parameter for both RegisterPeriodicCallback() and
RegisterExceptionCallback(). All values between 0 and MaxProcessorIndex must
be supported by RegisterPeriodicCallback() and
RegisterExceptionCallback().

It is the responsibility of the caller to insure all parameters are correct. There is no provision for
parameter checking by GetMaximumProcessorIndex(). The implementation behavior when
an invalid parameter is passed is not defined by this specification.

Status Codes Returned

EFI_SUCCESS The function completed successfully.
Version 2.5 April, 2015 923

Unified Extensible Firmware Interface Specification
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodicCallback()

Summary
Registers a function to be called back periodically in interrupt context.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_REGISTER_PERIODIC_CALLBACK) (
 IN EFI_DEBUG_SUPPORT_PROTOCOL *This,
 IN UINTN ProcessorIndex,
 IN EFI_PERIODIC_CALLBACK PeriodicCallback
);

Parameters
This A pointer to the EFI_DEBUG_SUPPORT_PROTOCOL instance.

Type EFI_DEBUG_SUPPORT_PROTOCOL is defined in
Section 17.2.

ProcessorIndex Specifies which processor the callback function applies to.

PeriodicCallback A pointer to a function of type PERIODIC_CALLBACK that is
the main periodic entry point of the debug agent. It receives as a
parameter a pointer to the full context of the interrupted execution
thread.
924 April, 2015 Version 2.5

Protocols - Debugger Support
Related Definitions
typedef
VOID (*EFI_PERIODIC_CALLBACK) (
 IN OUT EFI_SYSTEM_CONTEXT SystemContext
);

// Universal EFI_SYSTEM_CONTEXT definition

typedef union {
 EFI_SYSTEM_CONTEXT_EBC *SystemContextEbc;
 EFI_SYSTEM_CONTEXT_IA32 *SystemContextIa32;
 EFI_SYSTEM_CONTEXT_X64 *SystemContextX64;
 EFI_SYSTEM_CONTEXT_IPF *SystemContextIpf;
 EFI_SYSTEM_CONTEXT_ARM *SystemContextArm;
 EFI_SYSTEM_CONTEXT_AARCH64 *SystemContextAArch64;
} EFI_SYSTEM_CONTEXT;

// System context for virtual EBC processors
typedef struct {
 UINT64 R0, R1, R2, R3, R4, R5, R6, R7;
 UINT64 Flags;
 UINT64 ControlFlags;
 UINT64 Ip;
} EFI_SYSTEM_CONTEXT_EBC;

Note: When the context record field is larger than the register being stored in it, the upper bits of the
context record field are unused and ignored

// System context for IA-32 processors

typedef struct {

 UINT32 ExceptionData; // ExceptionData is

 // additional data pushed

 // on the stack by some

 // types of IA-32

 // exceptions
 EFI_FX_SAVE_STATE_IA32 FxSaveState;
 UINT32 Dr0, Dr1, Dr2, Dr3, Dr6, Dr7;
 UINT32 Cr0, Cr1 /* Reserved */, Cr2, Cr3, Cr4;
 UINT32 Eflags;
 UINT32 Ldtr, Tr;
 UINT32 Gdtr[2], Idtr[2];
 UINT32 Eip;
 UINT32 Gs, Fs, Es, Ds, Cs, Ss;
 UINT32 Edi, Esi, Ebp, Esp, Ebx, Edx, Ecx, Eax;
} EFI_SYSTEM_CONTEXT_IA32;
Version 2.5 April, 2015 925

Unified Extensible Firmware Interface Specification
// FXSAVE_STATE - FP / MMX / XMM registers

typedef struct {

 UINT16 Fcw;

 UINT16 Fsw;

 UINT16 Ftw;

 UINT16 Opcode;

 UINT32 Eip;

 UINT16 Cs;

 UINT16 Reserved1;

 UINT32 DataOffset;

 UINT16 Ds;

 UINT8 Reserved2[10];

 UINT8 St0Mm0[10], Reserved3[6];

 UINT8 St1Mm1[10], Reserved4[6];

 UINT8 St2Mm2[10], Reserved5[6];

 UINT8 St3Mm3[10], Reserved6[6];

 UINT8 St4Mm4[10], Reserved7[6];

 UINT8 St5Mm5[10], Reserved8[6];

 UINT8 St6Mm6[10], Reserved9[6];

 UINT8 St7Mm7[10], Reserved10[6];

 UINT8 Xmm0[16];

 UINT8 Xmm1[16];

 UINT8 Xmm2[16];

 UINT8 Xmm3[16];

 UINT8 Xmm4[16];

 UINT8 Xmm5[16];

 UINT8 Xmm6[16];

 UINT8 Xmm7[16];

 UINT8 Reserved11[14 * 16];

} EFI_FX_SAVE_STATE_IA32

// System context for x64 processors

typedef struct {

 UINT64 ExceptionData; // ExceptionData is

 // additional data pushed

 // on the stack by some

 // types of x64 64-bit

 // mode exceptions

 EFI_FX_SAVE_STATE_X64 FxSaveState;

 UINT64 Dr0, Dr1, Dr2, Dr3, Dr6, Dr7;

 UINT64 Cr0, Cr1 /* Reserved */, Cr2, Cr3, Cr4, Cr8;

 UINT64 Rflags;
926 April, 2015 Version 2.5

Protocols - Debugger Support
 UINT64 Ldtr, Tr;

 UINT64 Gdtr[2], Idtr[2];

 UINT64 Rip;

 UINT64 Gs, Fs, Es, Ds, Cs, Ss;

 UINT64 Rdi, Rsi, Rbp, Rsp, Rbx, Rdx, Rcx, Rax;

 UINT64 R8, R9, R10, R11, R12, R13, R14, R15;

} EFI_SYSTEM_CONTEXT_X64;

 // FXSAVE_STATE – FP / MMX / XMM registers

typedef struct {

 UINT16 Fcw;

 UINT16 Fsw;

 UINT16 Ftw;

 UINT16 Opcode;

 UINT64 Rip;

 UINT64 DataOffset;

 UINT8 Reserved1[8];

 UINT8 St0Mm0[10], Reserved2[6];

 UINT8 St1Mm1[10], Reserved3[6];

 UINT8 St2Mm2[10], Reserved4[6];

 UINT8 St3Mm3[10], Reserved5[6];

 UINT8 St4Mm4[10], Reserved6[6];

 UINT8 St5Mm5[10], Reserved7[6];

 UINT8 St6Mm6[10], Reserved8[6];

 UINT8 St7Mm7[10], Reserved9[6];

 UINT8 Xmm0[16];

 UINT8 Xmm1[16];

 UINT8 Xmm2[16];

 UINT8 Xmm3[16];

 UINT8 Xmm4[16];

 UINT8 Xmm5[16];

 UINT8 Xmm6[16];

 UINT8 Xmm7[16];

 UINT8 Reserved11[14 * 16];

} EFI_FX_SAVE_STATE_X64;

// System context for Itanium processor family

typedef struct {

 UINT64 Reserved;

 UINT64 R1, R2, R3, R4, R5, R6, R7, R8, R9, R10,
Version 2.5 April, 2015 927

Unified Extensible Firmware Interface Specification
 R11, R12, R13, R14, R15, R16, R17, R18, R19, R20,

 R21, R22, R23, R24, R25, R26, R27, R28, R29, R30,

 R31;

 UINT64 F2[2], F3[2], F4[2], F5[2], F6[2],

 F7[2], F8[2], F9[2], F10[2], F11[2],

 F12[2], F13[2], F14[2], F15[2], F16[2],

 F17[2], F18[2], F19[2], F20[2], F21[2],

 F22[2], F23[2], F24[2], F25[2], F26[2],

 F27[2], F28[2], F29[2], F30[2], F31[2];

 UINT64 Pr;

 UINT64 B0, B1, B2, B3, B4, B5, B6, B7;

 // application registers

 UINT64 ArRsc, ArBsp, ArBspstore, ArRnat;

 UINT64 ArFcr;

 UINT64 ArEflag, ArCsd, ArSsd, ArCflg;

 UINT64 ArFsr, ArFir, ArFdr;

 UINT64 ArCcv;

 UINT64 ArUnat;

 UINT64 ArFpsr;

 UINT64 ArPfs, ArLc, ArEc;

 // control registers

 UINT64 CrDcr, CrItm, CrIva, CrPta, CrIpsr, CrIsr;

 UINT64 CrIip, CrIfa, CrItir, CrIipa, CrIfs, CrIim;

 UINT64 CrIha;

 // debug registers

 UINT64 Dbr0, Dbr1, Dbr2, Dbr3, Dbr4, Dbr5, Dbr6, Dbr7;

 UINT64 Ibr0, Ibr1, Ibr2, Ibr3, Ibr4, Ibr5, Ibr6, Ibr7;

 // virtual registers

 UINT64 IntNat;// nat bits for R1-R31

} EFI_SYSTEM_CONTEXT_IPF;

//
// ARM processor context definition
//
928 April, 2015 Version 2.5

Protocols - Debugger Support
typedef struct {
 UINT32 R0;
 UINT32 R1;
 UINT32 R2;
 UINT32 R3;
 UINT32 R4;
 UINT32 R5;
 UINT32 R6;
 UINT32 R7;
 UINT32 R8;
 UINT32 R9;
 UINT32 R10;
 UINT32 R11;
 UINT32 R12;
 UINT32 SP;
 UINT32 LR;
 UINT32 PC;
 UINT32 CPSR;
 UINT32 DFSR;
 UINT32 DFAR;
 UINT32 IFSR;
} EFI_SYSTEM_CONTEXT_ARM;
//
///
/// AARCH64 processor context definition.
///
typedef struct {
// General Purpose Registers
 UINT64 X0;
 UINT64 X1;
 UINT64 X2;
 UINT64 X3;
 UINT64 X4;
 UINT64 X5;
 UINT64 X6;
 UINT64 X7;
 UINT64 X8;
 UINT64 X9;
 UINT64 X10;
 UINT64 X11;
 UINT64 X12;
 UINT64 X13;
 UINT64 X14;
 UINT64 X15;
 UINT64 X16;
 UINT64 X17;
 UINT64 X18;
Version 2.5 April, 2015 929

Unified Extensible Firmware Interface Specification
 UINT64 X19;
 UINT64 X20;
 UINT64 X21;
 UINT64 X22;
 UINT64 X23;
 UINT64 X24;
 UINT64 X25;
 UINT64 X26;
 UINT64 X27;
 UINT64 X28;
 UINT64 FP; // x29 - Frame Pointer
 UINT64 LR; // x30 - Link Register
 UINT64 SP; // x31 - Stack Pointer
// FP/SIMD Registers
 UINT64 V0[2];
 UINT64 V1[2];
 UINT64 V2[2];
 UINT64 V3[2];
 UINT64 V4[2];
 UINT64 V5[2];
 UINT64 V6[2];
 UINT64 V7[2];
 UINT64 V8[2];
 UINT64 V9[2];
 UINT64 V10[2];
 UINT64 V11[2];
 UINT64 V12[2];
 UINT64 V13[2];
 UINT64 V14[2];
 UINT64 V15[2];
 UINT64 V16[2];
 UINT64 V17[2];
 UINT64 V18[2];
 UINT64 V19[2];
 UINT64 V20[2];
 UINT64 V21[2];
 UINT64 V22[2];
 UINT64 V23[2];
 UINT64 V24[2];
 UINT64 V25[2];
 UINT64 V26[2];
 UINT64 V27[2];
 UINT64 V28[2];
 UINT64 V29[2];
 UINT64 V30[2];
 UINT64 V31[2];
 UINT64 ELR; // Exception Link Register
930 April, 2015 Version 2.5

Protocols - Debugger Support
 UINT64 SPSR; // Saved Processor Status Register
 UINT64 FPSR; // Floating Point Status Register
 UINT64 ESR; // Exception syndrome register
 UINT64 FAR; // Fault Address Register
} EFI_SYSTEM_CONTEXT_AARCH64;

Description
The RegisterPeriodicCallback() function registers and enables the on-target debug
agent’s periodic entry point. To unregister and disable calling the debug agent’s periodic entry
point, call RegisterPeriodicCallback() passing a NULL PeriodicCallback
parameter.

The implementation must handle saving and restoring the processor context to/from the system
context record around calls to the registered callback function.

If the interrupt is also used by the firmware for the EFI time base or some other use, two rules must
be observed. First, the registered callback function must be called before any EFI processing takes
place. Second, the Debug Support implementation must perform the necessary steps to pass control
to the firmware’s corresponding interrupt handler in a transparent manner.

There is no quality of service requirement or specification regarding the frequency of calls to the
registered PeriodicCallback function. This allows the implementation to mitigate a potential
adverse impact to EFI timer based services due to the latency induced by the context save/restore
and the associated callback function.

It is the responsibility of the caller to insure all parameters are correct. There is no provision for
parameter checking by RegisterPeriodicCallback(). The implementation behavior when
an invalid parameter is passed is not defined by this specification.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_ALREADY_STARTED Non-NULL PeriodicCallback parameter when a callback

function was previously registered.

EFI_OUT_OF_RESOURCES System has insufficient memory resources to register new callback
function.
Version 2.5 April, 2015 931

Unified Extensible Firmware Interface Specification
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback()

Summary
Registers a function to be called when a given processor exception occurs.

Prototype
typedef
EFI_STATUS
(EFIAPI *REGISTER_EXCEPTION_CALLBACK) (
 IN EFI_DEBUG_SUPPORT_PROTOCOL *This,
 IN UINTN ProcessorIndex,
 IN EFI_EXCEPTION_CALLBACK ExceptionCallback,
 IN EFI_EXCEPTION_TYPE ExceptionType
);

Parameters
This A pointer to the EFI_DEBUG_SUPPORT_PROTOCOL instance.

Type EFI_DEBUG_SUPPORT_PROTOCOL is defined in
Section 17.2.

ProcessorIndex Specifies which processor the callback function applies to.

ExceptionCallback A pointer to a function of type EXCEPTION_CALLBACK that is
called when the processor exception specified by
ExceptionType occurs. Passing NULL unregisters any
previously registered function associated with
ExceptionType.

ExceptionType Specifies which processor exception to hook.
932 April, 2015 Version 2.5

Protocols - Debugger Support
Related Definitions
typedef
VOID (*EFI_EXCEPTION_CALLBACK) (
 IN EFI_EXCEPTION_TYPE ExceptionType,
 IN OUT EFI_SYSTEM_CONTEXT SystemContext
);

typedef INTN EFI_EXCEPTION_TYPE;

// EBC Exception types
#define EXCEPT_EBC_UNDEFINED 0
#define EXCEPT_EBC_DIVIDE_ERROR 1
#define EXCEPT_EBC_DEBUG 2
#define EXCEPT_EBC_BREAKPOINT 3
#define EXCEPT_EBC_OVERFLOW 4
#define EXCEPT_EBC_INVALID_OPCODE 5
#define EXCEPT_EBC_STACK_FAULT 6
#define EXCEPT_EBC_ALIGNMENT_CHECK 7
#define EXCEPT_EBC_INSTRUCTION_ENCODING 8
#define EXCEPT_EBC_BAD_BREAK 9
#define EXCEPT_EBC_SINGLE_STEP 10

// IA-32 Exception types
#define EXCEPT_IA32_DIVIDE_ERROR 0
#define EXCEPT_IA32_DEBUG 1
#define EXCEPT_IA32_NMI 2
#define EXCEPT_IA32_BREAKPOINT 3
#define EXCEPT_IA32_OVERFLOW 4
#define EXCEPT_IA32_BOUND 5
#define EXCEPT_IA32_INVALID_OPCODE 6
#define EXCEPT_IA32_DOUBLE_FAULT 8
#define EXCEPT_IA32_INVALID_TSS 10
#define EXCEPT_IA32_SEG_NOT_PRESENT 11
#define EXCEPT_IA32_STACK_FAULT 12
#define EXCEPT_IA32_GP_FAULT 13
#define EXCEPT_IA32_PAGE_FAULT 14
#define EXCEPT_IA32_FP_ERROR 16
#define EXCEPT_IA32_ALIGNMENT_CHECK 17
#define EXCEPT_IA32_MACHINE_CHECK 18
#define EXCEPT_IA32_SIMD 19

//
// X64 Exception types
//
#define EXCEPT_X64_DIVIDE_ERROR 0
#define EXCEPT_X64_DEBUG 1
#define EXCEPT_X64_NMI 2
Version 2.5 April, 2015 933

Unified Extensible Firmware Interface Specification
#define EXCEPT_X64_BREAKPOINT 3
#define EXCEPT_X64_OVERFLOW 4
#define EXCEPT_X64_BOUND 5
#define EXCEPT_X64_INVALID_OPCODE 6
#define EXCEPT_X64_DOUBLE_FAULT 8
#define EXCEPT_X64_INVALID_TSS 10
#define EXCEPT_X64_SEG_NOT_PRESENT 11
#define EXCEPT_X64_STACK_FAULT 12
#define EXCEPT_X64_GP_FAULT 13
#define EXCEPT_X64_PAGE_FAULT 14
#define EXCEPT_X64_FP_ERROR 16
#define EXCEPT_X64_ALIGNMENT_CHECK 17
#define EXCEPT_X64_MACHINE_CHECK 18
#define EXCEPT_X64_SIMD 19

// Itanium Processor Family Exception types
#define EXCEPT_IPF_VHTP_TRANSLATION 0
#define EXCEPT_IPF_INSTRUCTION_TLB 1
#define EXCEPT_IPF_DATA_TLB 2
#define EXCEPT_IPF_ALT_INSTRUCTION_TLB 3
#define EXCEPT_IPF_ALT_DATA_TLB 4
#define EXCEPT_IPF_DATA_NESTED_TLB 5
#define EXCEPT_IPF_INSTRUCTION_KEY_MISSED 6
#define EXCEPT_IPF_DATA_KEY_MISSED 7
#define EXCEPT_IPF_DIRTY_BIT 8
#define EXCEPT_IPF_INSTRUCTION_ACCESS_BIT 9
#define EXCEPT_IPF_DATA_ACCESS_BIT 10
#define EXCEPT_IPF_BREAKPOINT 11
#define EXCEPT_IPF_EXTERNAL_INTERRUPT 12
// 13 - 19 reserved
#define EXCEPT_IPF_PAGE_NOT_PRESENT 20
#define EXCEPT_IPF_KEY_PERMISSION 21
#define EXCEPT_IPF_INSTRUCTION_ACCESS_RIGHTS 22
#define EXCEPT_IPF_DATA_ACCESS_RIGHTS 23
#define EXCEPT_IPF_GENERAL_EXCEPTION 24
#define EXCEPT_IPF_DISABLED_FP_REGISTER 25
#define EXCEPT_IPF_NAT_CONSUMPTION 26
#define EXCEPT_IPF_SPECULATION 27
// 28 reserved
#define EXCEPT_IPF_DEBUG 29
#define EXCEPT_IPF_UNALIGNED_REFERENCE 30
#define EXCEPT_IPF_UNSUPPORTED_DATA_REFERENCE 31
#define EXCEPT_IPF_FP_FAULT 32
#define EXCEPT_IPF_FP_TRAP 33
#define EXCEPT_IPF_LOWER_PRIVILEGE_TRANSFER_TRAP 34
#define EXCEPT_IPF_TAKEN_BRANCH 35
934 April, 2015 Version 2.5

Protocols - Debugger Support
#define EXCEPT_IPF_SINGLE_STEP 36
// 37 - 44 reserved
#define EXCEPT_IPF_IA32_EXCEPTION 45
#define EXCEPT_IPF_IA32_INTERCEPT 46
#define EXCEPT_IPF_IA32_INTERRUPT 47
//
// ARM processor exception types
//
#define EXCEPT_ARM_RESET 0
#define EXCEPT_ARM_UNDEFINED_INSTRUCTION 1
#define EXCEPT_ARM_SOFTWARE_INTERRUPT 2
#define EXCEPT_ARM_PREFETCH_ABORT 3
#define EXCEPT_ARM_DATA_ABORT 4
#define EXCEPT_ARM_RESERVED 5
#define EXCEPT_ARM_IRQ 6
#define EXCEPT_ARM_FIQ 7

//
// For coding convenience, define the maximum valid ARM
// exception.
//
#define MAX_ARM_EXCEPTION EXCEPT_ARM_FIQ
///
/// AARCH64 processor exception types.
///
#define EXCEPT_AARCH64_SYNCHRONOUS_EXCEPTIONS 0
#define EXCEPT_AARCH64_IRQ 1
#define EXCEPT_AARCH64_FIQ 2
#define EXCEPT_AARCH64_SERROR 3
///
/// For coding convenience, define the maximum valid
/// AARCH64 exception.
///
#define MAX_AARCH64_EXCEPTION EXCEPT_AARCH64_SERROR

Description
The RegisterExceptionCallback() function registers and enables an exception callback
function for the specified exception. The specified exception must be valid for the instruction set
architecture. To unregister the callback function and stop servicing the exception, call
RegisterExceptionCallback() passing a NULL ExceptionCallback parameter.

The implementation must handle saving and restoring the processor context to/from the system
context record around calls to the registered callback function. No chaining of exception handlers is
allowed.
Version 2.5 April, 2015 935

Unified Extensible Firmware Interface Specification
It is the responsibility of the caller to insure all parameters are correct. There is no provision for
parameter checking by RegisterExceptionCallback(). The implementation behavior
when an invalid parameter is passed is not defined by this specification.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_ALREADY_STARTED Non-NULL ExceptionCallback parameter when a callback

function was previously registered.

EFI_OUT_OF_RESOURCES System has insufficient memory resources to register new callback
function.
936 April, 2015 Version 2.5

Protocols - Debugger Support
EFI_DEBUG_SUPPORT_PROTOCOL.InvalidateInstructionCache()

Summary
Invalidates processor instruction cache for a memory range. Subsequent execution in this range
causes a fresh memory fetch to retrieve code to be executed.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_INVALIDATE_INSTRUCTION_CACHE) (
 IN EFI_DEBUG_SUPPORT_PROTOCOL *This,
 IN UINTN ProcessorIndex,
 IN VOID *Start,
 IN UINT64 Length
);

Parameters
This A pointer to the EFI_DEBUG_SUPPORT_PROTOCOL instance.

Type EFI_DEBUG_SUPPORT_PROTOCOL is defined in
Section 17.2.

ProcessorIndex Specifies which processor’s instruction cache is to be invalidated.

Start Specifies the physical base of the memory range to be
invalidated.

Length Specifies the minimum number of bytes in the processor’s
instruction cache to invalidate.

Description
Typical operation of a debugger may require modifying the code image that is under debug. This
can occur for many reasons, but is typically done to insert/remove software break instructions.
Some processor architectures do not have coherent instruction and data caches so modifications to
the code image require that the instruction cache be explicitly invalidated in that memory region.

The InvalidateInstructionCache() function abstracts this operation from the debug
agent and provides a general purpose capability to invalidate the processor’s instruction cache.

It is the responsibility of the caller to insure all parameters are correct. There is no provision for
parameter checking by
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback(). The
implementation behavior when an invalid parameter is passed is not defined by this specification.
Version 2.5 April, 2015 937

Unified Extensible Firmware Interface Specification
Status Codes Returned

17.3 EFI Debugport Protocol
This section defines the EFI Debugport protocol. This protocol is used by debug agent to
communicate with the remote debug host.

17.3.1 EFI Debugport Overview
Historically, remote debugging has typically been done using a standard UART serial port to
connect the host and target. This is obviously not possible in a legacy reduced system that does not
have a UART. The Debugport protocol solves this problem by providing an abstraction that can
support many different types of debugport hardware. The debug agent should use this abstraction to
communicate with the host.

The interface is minimal with only reset, read, write, and poll abstractions. Since these functions are
called in interrupt context, none of them may call any EFI services or other protocol interfaces.

Debugport selection and configuration is handled by setting defaults via an environment variable
which contains a full device path to the debug port. This environment variable is used during the
debugport driver’s initialization to configure the debugport correctly. The variable contains a full
device path to the debugport, with the last node (prior to the terminal node) being a debugport
messaging node. See Section 17.3.2 for details.

The driver must also produce an instance of the EFI Device Path protocol to indicate what hardware
is being used for the debugport. This may be used by the OS to maintain the debugport across a call
to EFI_BOOT_SERVICES.ExitBootServices().

EFI_DEBUGPORT_PROTOCOL

Summary
This protocol provides the communication link between the debug agent and the remote host.

GUID
#define EFI_DEBUGPORT_PROTOCOL_GUID \
 {0xEBA4E8D2,0x3858,0x41EC,\
 {0xA2,0x81,0x26,0x47,0xBA,0x96,0x60,0xD0}}

EFI_SUCCESS The function completed successfully.
938 April, 2015 Version 2.5

Protocols - Debugger Support
Protocol Interface Structure
typedef struct {
 EFI_DEBUGPORT_RESET Reset;
 EFI_DEBUGPORT_WRITE Write;
 EFI_DEBUGPORT_READ Read;
 EFI_DEBUGPORT_POLL Poll;
} EFI_DEBUGPORT_PROTOCOL;

Parameters
Reset Resets the debugport hardware.

Write Send a buffer of characters to the debugport device.

Read Receive a buffer of characters from the debugport device.

Poll Determine if there is any data available to be read from the
debugport device.

Description
The Debugport protocol is used for byte stream communication with a debugport device. The
debugport can be a standard UART Serial port, a USB-based character device, or potentially any
character-based I/O device.

The attributes for all UART-style debugport device interfaces are defined in the DEBUGPORT
variable (see Section 17.3.2).
Version 2.5 April, 2015 939

Unified Extensible Firmware Interface Specification
EFI_DEBUGPORT_PROTOCOL.Reset()

Summary
Resets the debugport.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DEBUGPORT_RESET) (
 IN EFI_DEBUGPORT_PROTOCOL *This
);

Parameters
This A pointer to the EFI_DEBUGPORT_PROTOCOL instance. Type

EFI_DEBUGPORT_PROTOCOL is defined in Section 17.3.

Description
The Reset() function resets the debugport device.

It is the responsibility of the caller to insure all parameters are valid. There is no provision for
parameter checking by Reset(). The implementation behavior when an invalid parameter is
passed is not defined by this specification.

Status Codes Returned

EFI_SUCCESS The debugport device was reset and is in usable state.

EFI_DEVICE_ERROR The debugport device could not be reset and is unusable.
940 April, 2015 Version 2.5

Protocols - Debugger Support
EFI_DEBUGPORT_PROTOCOL.Write()

Summary
Writes data to the debugport.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DEBUGPORT_WRITE) (
 IN EFI_DEBUGPORT_PROTOCOL *This,
 IN UINT32 Timeout,
 IN OUT UINTN *BufferSize,
 IN VOID *Buffer
);

Parameters
This A pointer to the EFI_DEBUGPORT_PROTOCOL instance. Type

EFI_DEBUGPORT_PROTOCOL is defined in Section 17.3.

Timeout The number of microseconds to wait before timing out a write
operation.

BufferSize On input, the requested number of bytes of data to write. On
output, the number of bytes of data actually written.

Buffer A pointer to a buffer containing the data to write.

Description
The Write() function writes the specified number of bytes to a debugport device. If a timeout
error occurs while data is being sent to the debugport, transmission of this buffer will terminate, and
EFI_TIMEOUT will be returned. In all cases the number of bytes actually written to the debugport
device is returned in BufferSize.

It is the responsibility of the caller to insure all parameters are valid. There is no provision for
parameter checking by Write(). The implementation behavior when an invalid parameter is
passed is not defined by this specification.

Status Codes Returned

EFI_SUCCESS The data was written.

EFI_DEVICE_ERROR The device reported an error.

EFI_TIMEOUT The data write was stopped due to a timeout.
Version 2.5 April, 2015 941

Unified Extensible Firmware Interface Specification
EFI_DEBUGPORT_PROTOCOL.Read()

Summary
Reads data from the debugport.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DEBUGPORT_READ) (
 IN EFI_DEBUGPORT_PROTOCOL *This,
 IN UINT32 Timeout,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_DEBUGPORT_PROTOCOL instance. Type

EFI_DEBUGPORT_PROTOCOL is defined in Section 17.3.

Timeout The number of microseconds to wait before timing out a read
operation.

BufferSize A pointer to an integer which, on input contains the requested
number of bytes of data to read, and on output contains the actual
number of bytes of data read and returned in Buffer.

Buffer A pointer to a buffer into which the data read will be saved.

Description
The Read() function reads a specified number of bytes from a debugport. If a timeout error or an
overrun error is detected while data is being read from the debugport, then no more characters will
be read, and EFI_TIMEOUT will be returned. In all cases the number of bytes actually read is
returned in *BufferSize.

It is the responsibility of the caller to insure all parameters are valid. There is no provision for
parameter checking by Read(). The implementation behavior when an invalid parameter is passed
is not defined by this specification.

Status Codes Returned

EFI_SUCCESS The data was read.

EFI_DEVICE_ERROR The debugport device reported an error.

EFI_TIMEOUT The operation was stopped due to a timeout or overrun.
942 April, 2015 Version 2.5

Protocols - Debugger Support
EFI_DEBUGPORT_PROTOCOL.Poll()

Summary
Checks to see if any data is available to be read from the debugport device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DEBUGPORT_POLL) (
 IN EFI_DEBUGPORT_PROTOCOL *This
);

Parameters
This A pointer to the EFI_DEBUGPORT_PROTOCOL instance. Type

EFI_DEBUGPORT_PROTOCOL is defined in Section 17.3.

Description
The Poll() function checks if there is any data available to be read from the debugport device and
returns the result. No data is actually removed from the input stream. This function enables simpler
debugger design since buffering of reads is not necessary by the caller.

Status Codes Returned

17.3.2 Debugport Device Path
The debugport driver must establish and maintain an instance of the EFI Device Path protocol for the
debugport. A graceful handoff of debugport ownership between the EFI Debugport driver and an
OS debugport driver requires that the OS debugport driver can determine the type, location, and
configuration of the debugport device.

The Debugport Device Path is a vendor-defined messaging device path with no data, only a GUID.
It is used at the end of a conventional device path to tag the device for use as the debugport. For
example, a typical UART debugport would have the following fully qualified device path:

PciRoot(0)/Pci(0x1f,0)/ACPI(PNP0501,0)/UART(115200,N,8,1)/
DebugPort()

The Vendor_GUID that defines the debugport device path is the same as the debugport protocol
GUID, as defined below.

#define DEVICE_PATH_MESSAGING_DEBUGPORT \
 EFI_DEBUGPORT_PROTOCOL_GUID

Table 138 shows all fields of the debugport device path.

EFI_SUCCESS At least one byte of data is available to be read.

EFI_NOT_READY No data is available to be read.

EFI_DEVICE_ERROR The debugport device is not functioning correctly.
Version 2.5 April, 2015 943

Unified Extensible Firmware Interface Specification
Table 138. Debugport Messaging Device Path

17.3.3 EFI Debugport Variable
Even though there may be more than one hardware device that could function as a debugport in a
system, only one debugport may be active at a time. The DEBUGPORT variable is used to declare
which hardware device will act as the debugport, and what communication parameters it should
assume.

Like all EFI variables, the DEBUGPORT variable has both a name and a GUID. The name is
“DEBUGPORT.” The GUID is the same as the EFI_DEBUGPORT_PROTOCOL_GUID:
#define EFI_DEBUGPORT_VARIABLE_NAME L"DEBUGPORT"
#define EFI_DEBUGPORT_VARIABLE_GUID EFI_DEBUGPORT_PROTOCOL_GUID

The data contained by the DEBUGPORT variable is a fully qualified debugport device path (see
Section 17.3.2).

The desired communication parameters for the debugport are declared in the DEBUGPORT
variable. The debugport driver must read this variable during initialization to determine how to
configure the debug port.

To reduce the required complexity of the debugport driver, the debugport driver is not required to
support all possible combinations of communication parameters. What combinations of parameters
are possible is implementation specific.

Additionally debugport drivers implemented for PNP0501 devices, that is debugport devices with a
PNP0501 ACPI node in the device path, must support the following defaults. These defaults must
be used in the absence of a DEBUGPORT variable, or when the communication parameters
specified in the DEBUGPORT variable are not supported by the driver.

• Baud : 115200

• 8 data bits

• No parity

• 1 stop bit

• No flow control (See Appendix A for flow control details)

In the absence of the DEBUGPORT variable, the selection of which port to use as the debug port is
implementation specific.

Future revisions of this specification may define new defaults for other debugport types.

The debugport device path must be constructed to reflect the actual settings for the debugport. Any
code needing to know the state of the debug port must reference the device path rather than the

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 1 Type 3 – Messaging Device Path.

Sub Type 1 1 Sub Type 10 – Vendor.

Length 2 2 Length of this structure in bytes. Length is 20 bytes.

Vendor_GUID 4 16 DEVICE_PATH_MESSAGING_DEBUGPO
RT.
944 April, 2015 Version 2.5

Protocols - Debugger Support
DEBUGPORT variable, since the debugport may have assumed a default setting in spite of the
existence of the DEBUGPORT variable.

If it is not possible to configure the debug port using either the settings declared in the
DEBUGPORT variable or the default settings for the particular debugport type, the driver
initialization must not install any protocol interfaces and must exit with an error.

17.4 EFI Debug Support Table
This chapter defines the EFI Debug Support Table which is used by the debug agent or an external
debugger to determine loaded image information in a quiescent manner.

17.4.1 Overview
Every executable image loaded in EFI is represented by an EFI handle populated with an instance of
the EFI_LOADED_IMAGE_PROTOCOL protocol. This handle is known as an “image handle.”
The associated Loaded Image protocol provides image information that is of interest to a source
level debugger. Normal EFI executables can access this information by using EFI services to locate
all instances of the Loaded Image protocol.

A debugger has two problems with this scenario. First, if it is an external hardware debugger, the
location of the EFI system table is not known. Second, even if the location of the EFI system table is
known, the services contained therein are generally unavailable to a debugger either because it is an
on-target debugger that is running in interrupt context, or in the case of an external hardware
debugger there is no debugger code running on the target at all.

Since a source level debugger must be capable of determining image information for all loaded
images, an alternate mechanism that does not use EFI services must be provided. Two features are
added to the EFI system software to enable this capability.

First, an alternate mechanism of locating the EFI system table is required. A check-summed
structure containing the physical address of the EFI system table is created and located on a 4M
aligned memory address. A hardware debugger can search memory for this structure to determine
the location of the EFI system table.

Second, an EFI_CONFIGURATION_TABLE is published that leads to a database of pointers to all
instances of the Loaded Image protocol. Several layers of indirection are used to allow dynamically
managing the data as images are loaded and unloaded. Once the address of the EFI system table is
known, it is possible to discover a complete and accurate list of EFI images. (Note that the EFI core
itself must be represented by an instance of the Loaded Image protocol.)

Figure 55 illustrates the table indirection and pointer usage.
Version 2.5 April, 2015 945

Unified Extensible Firmware Interface Specification
Figure 55. Debug Support Table Indirection and Pointer Usage

17.4.2 EFI System Table Location
The EFI system table can be located by an off-target hardware debugger by searching for the
EFI_SYSTEM_TABLE_POINTER structure. The EFI_SYSTEM_TABLE_POINTER structure is
located on a 4M boundary as close to the top of physical memory as feasible. It may be found
searching for the EFI_SYSTEM_TABLE_SIGNATURE on each 4M boundary starting at the top
of memory and scanning down. When the signature is found, the entire structure must verified using
the Crc32 field. The 32-bit CRC of the entire structure is calculated assuming the Crc32 field is
zero. This value is then written to the Crc32 field.

typedef struct _EFI_SYSTEM_TABLE_POINTER {
 UINT64 Signature;
 EFI_PHYSICAL_ADDRESS EfiSystemTableBase;
 UINT32 Crc32;
} EFI_SYSTEM_TABLE_POINTER;

Signature A constant UINT64 that has the value
EFI_SYSTEM_TABLE_SIGNATURE (see the EFI 1.0
specification).

EfiSystemTableBase The physical address of the EFI system table.

Crc32 A 32-bit CRC value that is used to verify the
EFI_SYSTEM_TABLE_POINTER structure is valid.

17.4.3 EFI Image Info
The EFI_DEBUG_IMAGE_INFO_TABLE is an array of pointers to EFI_DEBUG_IMAGE_INFO
unions. Each member of an EFI_DEBUG_IMAGE_INFO union is a pointer to a data structure
representing a particular image type. For each image that has been loaded, there is an appropriate

EFI_SYSTEM_TABLE_POINTER

(EfiStystem Table)

EFI_SYSTEM_TABLE

(Configuration Table)

EFI_CONFIGURATION_TABLE

(EfiDebug ImageInfo Table Pointer)

EFI_DEBUG_IMAGE_INFO_TABLE_HEADER

(EfiDebug ImageInfo Table)

EFI_DEBUG_IMAGE_INFO_TABLE

(EfiDebug ImageInfo [n])

EFI_DEBUG_IMAGE_INFO_NORMAL

(LoadedImageProtocolInstance)
EFI_LOADED_IMAGE_PROTOCOL
946 April, 2015 Version 2.5

Protocols - Debugger Support
image data structure with a pointer to it stored in the EFI_DEBUG_IMAGE_INFO_TABLE. Data
structures for normal images and SMM images are defined. All other image types are reserved for
future use.

The process of locating the EFI_DEBUG_IMAGE_INFO_TABLE begins with an EFI configuration
table.

//
// EFI_DEBUG_IMAGE_INFO_TABLE configuration table
// GUID declaration - {49152E77-1ADA-4764-B7A2-7AFEFED95E8B}
//
#define EFI_DEBUG_IMAGE_INFO_TABLE_GUID \
 {0x49152E77,0x1ADA,0x4764,\
 {0xB7,0xA2,0x7A,0xFE,0xFE,0xD9,0x5E,0x8B }}

The configuration table leads to an EFI_DEBUG_IMAGE_INFO_TABLE_HEADER structure that
contains a pointer to the EFI_DEBUG_IMAGE_INFO_TABLE and some status bits that are used to
control access to the EFI_DEBUG_IMAGE_INFO_TABLE when it is being updated.

//
// UpdateStatus bits
//
#define EFI_DEBUG_IMAGE_INFO_UPDATE_IN_PROGRESS 0x01
#define EFI_DEBUG_IMAGE_INFO_TABLE_MODIFIED 0x02

typedef struct {
 volatile UINT32 UpdateStatus;
 UINT32 TableSize;
 EFI_DEBUG_IMAGE_INFO *EfiDebugImageInfoTable;
} EFI_DEBUG_IMAGE_INFO_TABLE_HEADER;

UpdateStatus UpdateStatus is used by the system to indicate the state of
the debug image info table.

The EFI_DEBUG_IMAGE_INFO_UPDATE_IN_PROGRESS
bit must be set when the table is being modified. Software
consuming the table must qualify the access to the table with
this bit.

The EFI_DEBUG_IMAGE_INFO_TABLE_MODIFIED bit is
always set by software that modifies the table. It may be cleared
by software that consumes the table once the entire table has been
read. It is essentially a sticky version of the
EFI_DEBUG_IMAGE_INFO_UPDATE_IN_PROGRESS bit
and is intended to provide an efficient mechanism to minimize
the number of times the table must be scanned by the consumer.

TableSize The number of EFI_DEBUG_IMAGE_INFO elements in the
array pointed to by EfiDebugImageInfoTable.

EfiDebugImageInfoTable
A pointer to the first element of an array of
EFI_DEBUG_IMAGE_INFO structures.
Version 2.5 April, 2015 947

Unified Extensible Firmware Interface Specification
#define EFI_DEBUG_IMAGE_INFO_TYPE_NORMAL 0x01

typedef union {
 UINT32 *ImageInfoType;
 EFI_DEBUG_IMAGE_INFO_NORMAL *NormalImage;
} EFI_DEBUG_IMAGE_INFO;

typedef struct {
 UINT32 ImageInfoType;
 EFI_LOADED_IMAGE_PROTOCOL *LoadedImageProtocolInstance;
 EFI_HANDLE ImageHandle;
} EFI_DEBUG_IMAGE_INFO_NORMAL;

ImageInfoType Indicates the type of image info structure. For PE32 EFI images,
this is set to EFI_DEBUG_IMAGE_INFO_TYPE_NORMAL.

LoadedImageProtocolInstance
A pointer to an instance of the loaded image protocol for the
associated image.

ImageHandle Indicates the image handle of the associated image.
948 April, 2015 Version 2.5

Protocols - Compression Algorithm Specification
18
Protocols - Compression Algorithm Specification

In EFI firmware storage, binary codes/data are often compressed to save storage space. These
compressed codes/data are extracted into memory for execution at boot time. This demands an
efficient lossless compression/decompression algorithm. The compressor must produce small
compressed images, and the decompressor must operate fast enough to avoid delays at boot time.

This chapter describes in detail the UEFI compression/decompression algorithm, as well as the EFI
Decompress Protocol. The EFI Decompress Protocol provides a standard decompression interface
for use at boot time.

18.1 Algorithm Overview
In this chapter the term “character” denotes a single byte and the term “string” denotes a series of
concatenated characters.

The compression/decompression algorithm used in EFI firmware storage is a combination of the
LZ77 algorithm and Huffman Coding. The LZ77 algorithm replaces a repeated string with a pointer
to the previous occurrence of the string. Huffman Coding encodes symbols in a way that the more
frequently a symbol appears in a text, the shorter the code that is assigned to it.

The compression process contains two steps:

• The first step is to find repeated strings (using LZ77 algorithm) and produce intermediate data.
Beginning with the first character, the compressor scans the source data and determines if the
characters starting at the current position can form a string previously appearing in the text. If
a long enough matching string is found, the compressor will output a pointer to the string. If the
pointer occupies more space than the string itself, the compressor will output the original
character at the current position in the source data. Then the compressor advances to the next
position and repeats the process. To speed up the compression process, the compressor
dynamically maintains a String Info Log to record the positions and lengths of strings
encountered, so that string comparisons are performed quickly by looking up the String
Info Log.
Because a compressor cannot have unlimited resources, as the compression continues the
compressor removes “old” string information. This prevents the String Info Log from becoming
too large. As a result, the algorithm can only look up repeated strings within the range of a
fixed-sized “sliding window” behind the current position.
In this way, a stream of intermediate data is produced which contains two types of symbols:
the Original Characters (to be preserved in the decompressed data), and the Pointers
(representing a previous string). A Pointer consists of two elements: the String Position and the
String Length, representing the location and the length of the target string, respectively.

• To improve the compression ratio further, Huffman Coding is utilized as the second step.
The intermediate data (consisting of original characters and pointers) is divided into Blocks so
that the compressor can perform Huffman Coding on a Block immediately after it is generated;
Version 2.5 April, 2015 949

Unified Extensible Firmware Interface Specification
eliminating the need for a second pass from the beginning after the intermediate data has been
generated. Also, since symbol frequency distribution may differ in different parts of the
intermediate data, Huffman Coding can be optimized for each specific Block. The compressor
determines Block Size for each Block according to the specifications defined in Section 18.2.
In each Block, two symbol sets are defined for Huffman Coding. The Char&Len Set consists
of the Original Characters plus the String Lengths and the Position Set consists of String
Positions (Note that the two elements of a Pointer belong to separate symbol sets). The Huffman
Coding schemes applied on these two symbol sets are independent.
The algorithm uses “canonical” Huffman Coding so a Huffman tree can be represented as an
array of code lengths in the order of the symbols in the symbol set. This code length array
represents the Huffman Coding scheme for the symbol set. Both the Char&Len Set code length
array and the Position Set code length array appear in the Block Header.
Huffman coding is used on the code length array of the Char&Len Set to define a third symbol
set. The Extra Set is defined based on the code length values in the Char&Len Set code length
array. The code length array for the Huffman Coding of Extra Set also appears in the Block
Header together with the other two code length arrays. For exact format of the Block Header,
see Section 18.2.3.1.

The decompression process is straightforward given that the compression process is known. The
decompressor scans the compressed data and decodes the symbols one by one, according to the
Huffman code mapping tables generated from code length arrays. Along the process, if it encounters
an original character, it outputs it; if it encounters a pointer, it looks it up in the already
decompressed data and outputs the associated string.

18.2 Data Format
This section describes in detail the format of the compressed data produced by the compressor. The
compressed data serves as input to the decompressor and can be fully extracted to the original source
data.

18.2.1 Bit Order
In computer data representation, a byte is the minimum unit and there is no differentiation in the
order of bits within a byte. However, the compressed data is a sequence of bits rather than a
sequence of bytes and as a result the order of bits in a byte needs to be defined. In a compressed data
stream, the higher bits are defined to precede the lower bits in a byte. Figure 56 illustrates a
compressed data sequence written as bytes from left to right. For each byte, the bits are written in an
order with bit 7 (the highest bit) at the left and bit 0 (the lowest bit) at the right. Concatenating the
bytes from left to right forms a bit sequence.
950 April, 2015 Version 2.5

Protocols - Compression Algorithm Specification
Figure 56. Bit Sequence of Compressed Data

The bits of the compressed data are actually formed by a sequence of data units. These data units
have variable bit lengths. The bits of each data unit are arranged so that the higher bit of the data
unit precedes the lower bit of the data unit.

18.2.2 Overall Structure
The compressed data begins with two 32-bit numerical fields: the compressed size and the original
size. The compressed data following these two fields is composed of one or more Blocks. Each
Block is a unit for Huffman Coding with a coding scheme independent of the other Blocks. Each
Block is composed of a Block Header containing the Huffman code trees for this Block and a Block
Body with the data encoded using the coding scheme defined by the Huffman trees. The
compressed data is terminated by an additional byte of zero.

The overall structure of the compressed data is shown in Figure 57.

Figure 57. Compressed Data Structure

Note the following:

• Blocks are of variable lengths.

• Block lengths are counted by bits and not necessarily divisible by 8. Blocks are tightly packed
(there are no padding bits between blocks). Neither the starting position nor ending position of a
Block is necessarily at a byte boundary. However, if the last Block is not terminated at a byte
boundary, there should be some bits of 0 to fill up the remaining bits of the last byte of the block,
before the terminator byte of 0.

• Compressed Size =
Size in bytes of (Block 0 + Block 1 + … + Block N + Filling Bits (if any) + Terminator).

• Original Size is the size in bytes of original data.

OM13173

Bit 7 Bit 6 Bit 0 Bit 7 Bit 6 Bit 0 Bit 7 Bit 6 Bit 0

Byte 0 Byte 1 Byte N

Overall Bit Sequence of Compressed Data

OM13174

Compressed Size

4 Bytes 4 Bytes Terminator
1 Byte

0Block nBlock 1Block 0Original Size
Version 2.5 April, 2015 951

Unified Extensible Firmware Interface Specification
• Both Compressed Size and Original Size are “little endian” (starting from the least
significant byte).

18.2.3 Block Structure
A Block is composed of a Block Header and a Block Body, as shown in Figure 58. These two parts
are packed tightly (there are no padding bits between them). The lengths in bits of Block Header and
Block Body are not necessarily divisible by eight.

Figure 58. Block Structure

18.2.3.1 Block Header
The Block Header contains the Huffman encoding information for this block. Since “canonical”
Huffman Coding is being used, a Huffman tree is represented as an array of code lengths in
increasing order of the symbols in the symbol set. Code lengths are limited to be less than or equal
to 16 bits. This requires some extra handling of Huffman codes in the compressor, which is
described in Section 18.3.

There are three code length arrays for three different symbol sets in the Block Header: one for the
Extra Set, one for the Char&Len Set, and one for the Position Set.

The Block Header is composed of the tightly packed (no padding bits) fields described in
Table 139.

Table 139. Block Header Fields

Field Name Length (bits) Description

Block Size 16 The size of this Block. Block Size is defined as the number of original
characters plus the number of pointers that appear in the Block Body:
Block Size = Number of Original Characters in the Block Body +
Number of Pointers in the Block Body.

Extra Set Code
Length Array Size

5 The number of code lengths in the Extra Set Code Length Array. The
Extra Set Code Length Array contains code lengths of the Extra Set in
increasing order of the symbols, and if all symbols greater than a
certain symbol have zero code length, the Extra Set Code Length Array
terminates at the last nonzero code length symbol. Since there are 19
symbols in the Extra Set (see the description of the Char&Len Set
Code Length Array), the maximum Extra Set Code Length Array Size is
19.

OM13175

Block Header Block BodyBlock:
952 April, 2015 Version 2.5

Protocols - Compression Algorithm Specification
Extra Set Code
Length Array

Variable If Extra Set Code Length Array Size is 0, then this field is a 5-bit value
that represents the only Huffman code used.
If Extra Set Code Length Array Size is not 0, then this field is an
encoded form of a concatenation of code lengths in increasing order of
the symbols.
The concatenation of Code lengths are encoded as follows:
If a code length is less than 7, then it is encoded as a 3-bit value;
If a code length is equal to or greater than 7, then it is encoded as a
series of “1”s followed by a terminating “0.” The number of “1”s = Code
length – 4. For example, code length “ten” is encoded as “1111110”;
code length “seven” is encoded as “1110.”
After the third length of the code length concatenation, a 2-bit value is
used to indicate the number of consecutive zero lengths immediately
after the third length. (Note this 2-bit value only appears once after the

third length, and does NOT appear multiple times after every 3rd
length.) This 2-bit value ranges from 0 to 3. For example, if the 2-bit
value is “00,” then it means there are no zero lengths at the point, and
following encoding starts from the fourth code length; if the 2-bit value
is “10” then it means the fourth and fifth length are zero and following
encoding starts from the sixth code length.

Position Set Code
Length Array Size

4 The number of code lengths in the Position Set Code Length Array. The
Position Set Code Length Array contains code lengths of Position Set
in increasing order of the symbols in the Position Set, and if all symbols
greater than a certain symbol have zero code length, the Position Set
Code Length Array terminates at the last nonzero code length symbol.
Since there are 14 symbols in the Position Set (see 3.3.2), the
maximum Position Set Code Length Array Size is 14.

Field Name Length (bits) Description
Version 2.5 April, 2015 953

Unified Extensible Firmware Interface Specification
18.2.3.2 Block Body
The Block Body is simply a mixture of Original Characters and Pointers, while each Pointer has two
elements: String Length preceding String Position. All these data units are tightly packed together.

Char&Len Set
Code Length
Array

Variable If Char&Len Set Code Length Array Size is 0, then this field is a 9-bit
value that represents the only Huffman code used.
If Char&Len Set Code Length Array Size is not 0, then this field is an
encoded form of a concatenation of code lengths in increasing order of
the symbols.
The concatenation of Code lengths are two-step encoded:
Step 1:
If a code length is not zero, then it is encoded as “code length + 2”;
If a code length is zero, then the number of consecutive zero lengths
starting from this code length is counted -- If the count is equal to or
less than 2, then the code “0” is used for each zero length; if the count
is greater than 2 and less than 19, then the code “1” followed by a 4-bit
value of “count – 3” is used for these consecutive zero lengths; if the
count is equal to 19, then it is treated as “1 + 18,” and a code “0” and a
code “1” followed by a 4-bit value of “15” are used for these consecutive
zero lengths; if the count is greater than 19, then the code “2” followed
by a 9-bit value of “count – 20” is used for these consecutive zero
lengths.
Step 2:
The second step encoding is a Huffman encoding of the codes
produced by first step. (While encoding codes “1” and “2,” their
appended values are not encoded and preserved in the resulting text).
The code lengths of generated Huffman tree are just the contents of the
Extra Set Code Length Array.

Position Set Code
Length Array Size

4 The number of code lengths in the Position Set Code Length Array. The
Position Set Code Length Array contains code lengths of Position Set
in increasing order of the symbols in the Position Set, and if all symbols
greater than a certain symbol have zero code length, the Position Set
Code Length Array terminates at the last nonzero code length symbol.
Since there are 14 symbols in the Position Set (see 3.3.2), the
maximum Position Set Code Length Array Size is 14.

Position Set Code
Length Array

Variable If Position Set Code Length Array Size is 0, then this field is a 5-bit
value that represents the only Huffman code used.
If Position Set Code Length Array Size is not 0, then this field is an
encoded form of a concatenation of code lengths in increasing order of
the symbols.
The concatenation of Code lengths are encoded as follows:
If a code length is less than 7, then it is encoded as a normal 3-bit
value;
If a code length is equal to or greater than 7, then it is encoded as a
series of “1”s followed by a terminating “0.” The number of “1”s = Code
length – 4. For example, code length “10” is encoded as “1111110”;
code length “7” is encoded as “1110.”

Field Name Length (bits) Description
954 April, 2015 Version 2.5

Protocols - Compression Algorithm Specification
Figure 59. Block Body

The Original Characters, String Lengths and String Positions are all Huffman coded using the
Huffman trees presented in the Block Header, with some additional variations. The exact format is
described below:

An Original Character is a byte in the source data. A String Length is a value that is greater than 3
and less than 257 (this range should be ensured by the compressor). By calculating “(String
Length – 3) | 0x100,” a value set is obtained that ranges from 256 to 509. By combining this value
set with the value set of Original Characters (0 ~ 255), the Char&Len Set (ranging from 0 to 509) is
generated for Huffman Coding.

A String Position is a value that indicates the distance between the current position and the target
string. The String Position value is defined as “Current Position – Starting Position of the target
string - 1.” The String Position value ranges from 0 to 8190 (so 8192 is the “sliding window”
size, and this range should be ensured by the compressor). The lengths of the String Position values
(in binary form) form a value set ranging from 0 to 13 (it is assumed that value 0 has length of 0).
This value set is the Position Set for Huffman Coding. The full representation of a String Position
value is composed of two consecutive parts: one is the Huffman code for the value length; the other
is the actual String Position value of “length - 1” bits (excluding the highest bit since the highest bit
is always “1”). For example, String Position value 18 is represented as: Huffman code for “5”
followed by “0010.” If the value length is 0 or 1, then no value is appended to the Huffman code.
This kind of representation favors small String Position values, which is a hint for
compressor design.

18.3 Compressor Design
The compressor takes the source data as input and produces a compressed image. This section
describes the design used in one possible implementation of a compressor that follows the UEFI
Compression Algorithm. The source code that illustrates an implementation of this specific design
is listed in Appendix H.

18.3.1 Overall Process
The compressor scans the source data from the beginning, character by character. As the scanning
proceeds, the compressor generates Original Characters or Pointers and outputs the compressed data
packed in a series of Blocks representing individual Huffman coding units.

The compressor maintains a String Info Log containing data that facilitates string comparison. Old
data items are deleted and new data items are inserted regularly.

OM13176

Orig Char

Pointer

Orig Char StrLen StrPos Orig Char StrLen StrPos

Pointer

StrLen StrPos

Pointer
Version 2.5 April, 2015 955

Unified Extensible Firmware Interface Specification
The compressor does not output a Pointer immediately after it sees a matching string for the current
position. Instead, it delays its decision until it gets the matching string for the next position. The
compressor has two criteria at hand: one is that the former match length should be no shorter than
three characters; the other is that the former match length should be no shorter than the latter match
length. Only when these two criteria are met does the compressor output a Pointer to the former
matching string.

The overall process of compression can be described by following pseudo code:
Set the Current Position at the beginning of the source data;
Delete the outdated string info from the String Info Log;
Search the String Info Log for matching string;
Add the string info of the current position into the String Info Log;
WHILE not end of source data DO
 Remember the last match;
 Advance the Current Position by 1;
 Delete the outdated String Info from the String Info Log;
 Search the String Info Log for matching string;
 Add the string info of the Current Position into the String Info Log;
 IF the last match is shorter than 3 characters or this match is longer than
 the last match THEN
 Call Output()* to output the character at the previous position as an
 Original Character;
 ELSE
 Call Output()* to output a Pointer to the last matching string;
 WHILE (--last match length) > 0 DO
 Advance the Current Position by 1;
 Delete the outdated piece of string info from the String Info Log;
 Add the string info of the current position into the String Info Log;
 ENDWHILE
 ENDIF
ENDWHILE

The Output() is the function that is responsible for generating Huffman codes and Blocks. It accepts
an Original Character or a Pointer as input and maintains a Block Buffer to temporarily store data
units that are to be Huffman coded. The following pseudo code describes the function:
FUNCTION NAME: Output
INPUT: an Original Character or a Pointer

Put the Original Character or the Pointer into the Block Buffer;
Advance the Block Buffer position pointer by 1;
IF the Block Buffer is full THEN
 Encode the Char&Len Set in the Block buffer;
 Encode the Position Set in the Block buffer;
 Encode the Extra Set;
 Output the Block Header containing the code length arrays;
 Output the Block Body containing the Huffman encoded Original Characters and
 Pointers;
 Reset the Block Buffer position pointer to point to the beginning of the
 Block buffer;
ENDIF

18.3.2 String Info Log
The provision of the String Info Log is to speed up the process of finding matching strings. The
design of this has significant impact on the overall performance of the compressor. This section
describes in detail how String Info Log is implemented and the typical operations on it.
956 April, 2015 Version 2.5

Protocols - Compression Algorithm Specification
18.3.2.1 Data Structures
The String Info Log is implemented as a set of search trees. These search trees are dynamically
updated as the compression proceeds through the source data. The structure of a typical search tree
is depicted in Figure 60.

Figure 60. String Info Log Search Tree

There are three types of nodes in a search tree: the root node, internal nodes, and leaves. The root
node has a “character” attribute, which represents the starting character of a string. Each edge also
has a “character” attribute, which represents the next character in the string. Each internal node has
a “level” attribute, which indicates the character on any edge that leads to its child nodes is the “level
+ 1”th character in the string. Each internal node or leaf has a “position” attribute that indicates the
string’s starting position in the source data.

To speed up the tree searching, a hash function is used. Given the parent node and the edge-
character, the hash function will quickly find the expected child node.

18.3.2.2 Searching the Tree
Traversing the search tree is performed as follows:

The following example uses the search tree shown in Figure 60 above. Assume that the current
position in the source data contains the string “camxrsxpj….”

1. The starting character “c” is used to find the root of the tree. The next character “a” is used to
follow the edge from node 1 to node 2. The “position” of node 2 is 500, so a string starting with

1 Char: "c"

"a" "m" "q"

2 3 4Level: 3
Pos: 500 Pos: 500 Pos: 600

Pos: 500
Level: 8
Pos: 400

Pos: 400 Pos: 350

5 6

7 8

"x" "k"

"p" "t"

OM13177
Version 2.5 April, 2015 957

Unified Extensible Firmware Interface Specification
“ca” can be found at position 500. The string at the current position is compared with the string
starting at position 500.

2. Node 2 is at Level 3; so at most three characters are compared. Assume that the three-character
comparison passes.

3. The fourth character “x” is used to follow the edge from Node 2 to Node 5. The position value
of node 5 is 400, which means there is a string located in position 400 that starts with “cam” and
the character at position 403 is an “x.”

4. Node 5 is at Level 8, so the fifth to eighth characters of the source data are compared with the
string starting at position 404. Assume the strings match.

5. At this point, the ninth character “p” has been reached. It is used to follow the edge from Node 5
to Node 7.

6. This process continues until a mismatch occurs, or the length of the matching strings exceeds the
predefined MAX_MATCH_LENGTH. The most recent matching string (which is also the
longest) is the desired matching string.

18.3.2.3 Adding String Info
String info needs to be added to the String Info Log for each position in the source data. Each time a
search for a matching string is performed, the new string info is inserted for the current position.
There are several cases that can be discussed:

1. No root is found for the first character. A new tree is created with the root node labeled with the
starting character and a child leaf node with its edge to the root node labeled with the second
character in the string. The “position” value of the child node is set to the current position.

2. One root node matches the first character, but the second character does not match any edge
extending from the root node. A new child leaf node is created with its edge labeled with the
second character. The “position” value of the new leaf child node is set to the current position.

3. A string comparison succeeds with an internal node, but a matching edge for the next character
does not exist. This is similar to (2) above. A new child leaf node is created with its edge
labeled with the character that does not exist. The “position” value of the new leaf child node is
set to the current position.

4. A string comparison exceeds MAX_MATCH_LENGTH. Note: This only happens with leaf
nodes. For this case, the “position” value in the leaf node is updated with the current position.

5. If a string comparison with an internal node or leaf node fails (mismatch occurs before the
“Level + 1”th character is reached or MAX_MATCH_LENGTH is exceeded), then a “split”
operation is performed as follows:

Suppose a comparison is being performed with a level 9 Node, at position 350, and the current
position is 1005. If the sixth character at position 350 is an “x” and the sixth character at
position 1005 is a “y,” then a mismatch will occur. In this case, a new internal node and a new
child node are inserted into the tree, as depicted in Figure 61.
958 April, 2015 Version 2.5

Protocols - Compression Algorithm Specification
Figure 61. Node Split

The b) portion of Figure 61 has two new inserted nodes, which reflects the new string information
that was found at the current position. The process splits the old node into two child nodes, and that
is why this operation is called a “split.”

18.3.2.4 Deleting String Info
The String Info Log will grow as more and more string information is logged. The size of the String
Info Log must be limited, so outdated information must be removed on a regular basis. A sliding
window is maintained behind the current position, and the searches are always limited within the
range of the sliding window. Each time the current position is advanced, outdated string information
that falls outside the sliding window should be removed from the tree. The search for outdated
string information is simplified by always updating the nodes’ “position” attribute when searching
for matching strings.

18.3.3 Huffman Code Generation
Another major component of the compressor design is generation of the Huffman Code.

Huffman Coding is applied to the Char&Len Set, the Position Set, and the Extra Set. The Huffman
Coding used here has the following features:

• The Huffman tree is represented as an array of code lengths (“canonical” Huffman Coding);

Level: 9
Pos: 350

a) Original State

OM13178

Level: 5
Pos: 1005

Pos: 1005

"x"

Level: 9
Pos: 350

b) Node "Split"
Version 2.5 April, 2015 959

Unified Extensible Firmware Interface Specification
• The maximum code length is limited to 16 bits.

The Huffman code generation process can be divided into three steps. These are the generation of
Huffman tree, the adjustment of code lengths, and the code generation.

18.3.3.1 Huffman Tree Generation
This process generates a typical Huffman tree. First, the frequency of each symbol is counted, and a
list of nodes is generated with each node containing a symbol and the symbol’s frequency. The two
nodes with the lowest frequency values are merged into a single node. This new node becomes the
parent node of the two nodes that are merged. The frequency value of this new parent node is the
sum of the two child nodes’ frequency values. The node list is updated to include the new parent
node but exclude the two child nodes that are merged. This process is repeated until there is a single
node remaining that is the root of the generated tree.

18.3.3.2 Code Length Adjustment
The leaf nodes of the tree generated by the previous step represent all the symbols that were
generated. Traditionally the code for each symbol is found by traversing the tree from the root node
to the leaf node. Going down a left edge generates a “0,” and going down a right edge generates a
“1.” However, a different approach is used here. The number of codes of each code length is
counted. This generates a 16-element LengthCount array, with LengthCount[i] = Number Of Codes
whose Code Length is i. Since a code length may be longer than 16 bits, the sixteenth entry of the
LengthCount array is set to the Number Of Codes whose Code Length is greater than or equal to 16.

The LengthCount array goes through further adjustment described by following code:
INT32 i, k;
UINT32 cum;

cum = 0;
for (i = 16; i > 0; i--) {
 cum += LengthCount[i] << (16 - i);
}
while (cum != (1U << 16)) {
 LengthCount[16]--;
 for (i = 15; i > 0; i--) {
 if (LengthCount[i] != 0) {
 LengthCount[i]--;
 LengthCount[i+1] += 2;
 break;
 }
 }
 cum--;
}

18.3.3.3 Code Generation
In the previous step, the count of each length was obtained. Now, each symbol is going to be
assigned a code. First, the length of the code for each symbol is determined. Naturally, the code
lengths are assigned in such a way that shorter codes are assigned to more frequently appearing
960 April, 2015 Version 2.5

Protocols - Compression Algorithm Specification
symbols. A CodeLength array is generated with CodeLength[i] = the code length of symbol i.
Given this array, a code is assigned to each symbol using the algorithm described by the pseudo code
below (the resulting codes are stored in array Code such that Code[i] = the code assigned to symbol
i):

 INT32 i;
 UINT16 Start[18];

 Start[1] = 0;

 for (i = 1; i <= 16; i++) {
 Start[i + 1] = (UINT16)((Start[i] + LengthCount[i]) << 1);
 }

 for (i = 0; i < NumberOfSymbols; i++) {
 Code[i] = Start[CodeLength[i]]++;
 }

The code length adjustment process ensures that no code longer than the designated length will
be generated. As long as the decompressor has the CodeLength array at hand, it can regenerate
the codes.

18.4 Decompressor Design
The decompressor takes the compressed data as input and produces the original source data. The
main tasks for the decompressor are decoding Huffman codes and restoring Pointers to the strings to
which they point.

The following pseudo code describes the algorithm used in the design of a decompressor. The
source code that illustrates an implementation of this design is listed in Appendix I.

WHILE not end of data DO
 IF at block boundary THEN
 Read in the Extra Set Code Length Array;
 Generate the Huffman code mapping table for the Extra Set;
 Read in and decode the Char&Len Set Code Length Array;
 Generate the Huffman code mapping table for the Char&Len Set;
 Read in the Position Set Code Length Array;
 Generate the Huffman code mapping table for the Position Set;
 ENDIF
 Get next code;
 Look the code up in the Char&Len Set code mapping table.
 Store the result as C;
 IF C < 256 (it represents an Original Character) THEN
 Output this character;
 ELSE (it represents a String Length)
 Transform C to be the actual String Length value;
 Get next code and look it up in the Position Set code mapping table, and
 with some additional transformation, store the result as P;
 Output C characters starting from the position “Current Position – P”;
 ENDIF
ENDWHILE
Version 2.5 April, 2015 961

Unified Extensible Firmware Interface Specification
18.5 Decompress Protocol
This section provides a detailed description of the EFI_DECOMPRESS_PROTOCOL.

EFI_DECOMPRESS_PROTOCOL

Summary
Provides a decompression service.

GUID
#define EFI_DECOMPRESS_PROTOCOL_GUID \
 {0xd8117cfe,0x94a6,0x11d4,\
 {0x9a,0x3a,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

Protocol Interface Structure
typedef struct _EFI_DECOMPRESS_PROTOCOL {
 EFI_DECOMPRESS_GET_INFO GetInfo;
 EFI_DECOMPRESS_DECOMPRESS Decompress;
} EFI_DECOMPRESS_PROTOCOL;

Parameters
GetInfo Given the compressed source buffer, this function retrieves the

size of the uncompressed destination buffer and the size of the
scratch buffer required to perform the decompression. It is the
caller’s responsibility to allocate the destination buffer and the
scratch buffer prior to calling
EFI_DECOMPRESS_PROTOCOL.Decompress(). See the
EFI_DECOMPRESS_PROTOCOL.GetInfo() function
description.

Decompress Decompresses a compressed source buffer into an uncompressed
destination buffer. It is the caller’s responsibility to allocate the
destination buffer and a scratch buffer prior to making this call.
See the Decompress() function description.

Description
The EFI_DECOMPRESS_PROTOCOL provides a decompression service that allows a compressed
source buffer in memory to be decompressed into a destination buffer in memory. It also requires a
temporary scratch buffer to perform the decompression. The GetInfo() function retrieves the
size of the destination buffer and the size of the scratch buffer that the caller is required to allocate.
The Decompress() function performs the decompression. The scratch buffer can be freed after
the decompression is complete.
962 April, 2015 Version 2.5

Protocols - Compression Algorithm Specification
EFI_DECOMPRESS_PROTOCOL.GetInfo()

Summary
Given a compressed source buffer, this function retrieves the size of the uncompressed buffer and
the size of the scratch buffer required to decompress the compressed source buffer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DECOMPRESS_GET_INFO) (
 IN EFI_DECOMPRESS_PROTOCOL *This,
 IN VOID *Source,
 IN UINT32 SourceSize,
 OUT UINT32 *DestinationSize,
 OUT UINT32 *ScratchSize
);

Parameters
This A pointer to the EFI_DECOMPRESS_PROTOCOL instance.

Type EFI_DECOMPRESS_PROTOCOL is defined in
Section 18.5.

Source The source buffer containing the compressed data.

SourceSize The size, in bytes, of the source buffer.

DestinationSize A pointer to the size, in bytes, of the uncompressed buffer that
will be generated when the compressed buffer specified by
Source and SourceSize is decompressed.

ScratchSize A pointer to the size, in bytes, of the scratch buffer that is
required to decompress the compressed buffer specified by
Source and SourceSize.

Description
The GetInfo() function retrieves the size of the uncompressed buffer and the temporary scratch
buffer required to decompress the buffer specified by Source and SourceSize. If the size of the
uncompressed buffer or the size of the scratch buffer cannot be determined from the compressed
data specified by Source and SourceData, then EFI_INVALID_PARAMETER is returned.
Otherwise, the size of the uncompressed buffer is returned in DestinationSize, the size of the
scratch buffer is returned in ScratchSize, and EFI_SUCCESS is returned.

The GetInfo() function does not have scratch buffer available to perform a thorough checking of
the validity of the source data. It just retrieves the “Original Size” field from the beginning bytes of
the source data and output it as DestinationSize. And ScratchSize is specific to the
decompression implementation.
Version 2.5 April, 2015 963

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS The size of the uncompressed data was returned in

DestinationSize and the size of the scratch buffer was

returned in ScratchSize.

EFI_INVALID_PARAMETER The size of the uncompressed data or the size of the scratch buffer
cannot be determined from the compressed data specified by

Source and SourceSize.
964 April, 2015 Version 2.5

Protocols - Compression Algorithm Specification
EFI_DECOMPRESS_PROTOCOL.Decompress()

Summary
Decompresses a compressed source buffer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DECOMPRESS_DECOMPRESS) (
 IN EFI_DECOMPRESS_PROTOCOL *This,
 IN VOID *Source,
 IN UINT32 SourceSize,
 IN OUT VOID *Destination,
 IN UINT32 DestinationSize,
 IN OUT VOID *Scratch,
 IN UINT32 ScratchSize
);

Parameters
This A pointer to the EFI_DECOMPRESS_PROTOCOL instance.

Type EFI_DECOMPRESS_PROTOCOL is defined in
Section 18.5.

Source The source buffer containing the compressed data.

SourceSize The size of source data.

Destination On output, the destination buffer that contains the uncompressed
data.

DestinationSize The size of the destination buffer. The size of the destination
buffer needed is obtained from
EFI_DECOMPRESS_PROTOCOL.GetInfo().

Scratch A temporary scratch buffer that is used to perform the
decompression.

ScratchSize The size of scratch buffer. The size of the scratch buffer needed
is obtained from GetInfo().

Description
The Decompress() function extracts decompressed data to its original form.

This protocol is designed so that the decompression algorithm can be implemented without using
any memory services. As a result, the Decompress() function is not allowed to call
EFI_BOOT_SERVICES.AllocatePool() or
EFI_BOOT_SERVICES.AllocatePages() in its implementation. It is the caller’s
responsibility to allocate and free the Destination and Scratch buffers.

If the compressed source data specified by Source and SourceSize is successfully
decompressed into Destination, then EFI_SUCCESS is returned. If the compressed source
Version 2.5 April, 2015 965

Unified Extensible Firmware Interface Specification
data specified by Source and SourceSize is not in a valid compressed data format, then
EFI_INVALID_PARAMETER is returned.

Status Codes Returned

EFI_SUCCESS Decompression completed successfully, and the uncompressed

buffer is returned in Destination.

EFI_INVALID_PARAMETER The source buffer specified by Source and SourceSize is

corrupted (not in a valid compressed format).
966 April, 2015 Version 2.5

Protocols - ACPI Protocols
19
Protocols - ACPI Protocols

EFI_ACPI_TABLE_PROTOCOL

Summary
This protocol may be used to install or remove an ACPI table from a platform.

GUID
#define EFI_ACPI_TABLE_PROTOCOL_GUID \
 {0xffe06bdd, 0x6107, 0x46a6,\
 {0x7b, 0xb2, 0x5a, 0x9c, 0x7e, 0xc5, 0x27, 0x5c}}

Protocol Interface Structure
typedef struct _EFI_ACPI_TABLE_PROTOCOL {
 EFI_ACPI_TABLE_INSTALL_ACPI_TABLE InstallAcpiTable;
 EFI_ACPI_TABLE_UNINSTALL_ACPI_TABLE UninstallAcpiTable;
} EFI_ACPI_TABLE_PROTOCOL;

Parameters
InstallAcpiTable Installs an ACPI table into the system.

UninstallAcpiTable Removes a previously installed ACPI table from the system.

Description
The EFI_ACPI_TABLE_PROTOCOL provides the ability for a component to install and uninstall
ACPI tables from a platform.
Version 2.5 April, 2015 967

Unified Extensible Firmware Interface Specification
EFI_ACPI_TABLE_PROTOCOL.InstallAcpiTable()

Summary
Installs an ACPI table into the RSDT/XSDT.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_TABLE_INSTALL_ACPI_TABLE) (
 IN EFI_ACPI_TABLE_PROTOCOL *This,
 IN VOID *AcpiTableBuffer,
 IN UINTN AcpiTableBufferSize,
 OUT UINTN *TableKey,
);

Parameters
This A pointer to a EFI_ACPI_TABLE_PROTOCOL.

AcpiTableBuffer A pointer to a buffer containing the ACPI table to be installed.

AcpiTableBufferSizeSpecifies the size, in bytes, of the AcpiTableBuffer buffer.

TableKey Returns a key to refer to the ACPI table.

Description
The InstallAcpiTable() function allows a caller to install an ACPI table. The ACPI
table may either by a System Description Table or the FACS. For all tables except for the
DSDT and FACS, a copy of the table will be linked by the RSDT/XSDT. For the FACS and
DSDT, the pointer to a copy of the table will be updated in the FADT, if present.

To prevent namespace collision, ACPI tables may be created using UEFI ACPI table format. See
Appendix O. If this protocol is used to install a table with a signature already present in the system,
the new table will not replace the existing table. It is a platform implementation decision to add a
new table with a signature matching an existing table or disallow duplicate table signatures and
return EFI_ACCESS_DENIED.

On successful output, TableKey is initialized with a unique key. Its value may be used in a
subsequent call to UninstallAcpiTable to remove an ACPI table.

On successful output, the EFI_ACPI_TABLE_PROTOCOL will ensure that the checksum field is
correct for both the RSDT/XSDT table and the copy of the table being installed that is linked by the
RSDT/XSDT.

If an EFI application is running at the time of this call, the relevant
EFI_CONFIGURATION_TABLE pointer to the RSDT is no longer considered valid.

Status Codes Returned

EFI_SUCCESS The table was successfully inserted
968 April, 2015 Version 2.5

Protocols - ACPI Protocols
EFI_INVALID_PARAMETER The AcpiTableBuffer is NULL, the TableKey is NULL;the

AcpiTableBufferSize, and the size field embedded in the ACPI

table pointed to by AcpiTableBuffer are not in sync.

EFI_OUT_OF_RESOURCES Insufficient resources exist to complete the request.

EFI_ACCESS_DENIED The table signature matches a table already present in the system and
platform policy does not allow duplicate tables of this type.
Version 2.5 April, 2015 969

Unified Extensible Firmware Interface Specification
EFI_ACPI_TABLE_PROTOCOL.UninstallAcpiTable()

Summary
Removes an ACPI table from the RSDT/XSDT.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_TABLE_UNINSTALL_ACPI_TABLE) (
 IN EFI_ACPI_TABLE_PROTOCOL *This,
 IN UINTN TableKey,
);

Parameters
This A pointer to a EFI_ACPI_TABLE_PROTOCOL.

TableKey Specifies the table to uninstall. The key was returned from
InstallAcpiTable().

Description
The UninstallAcpiTable() function allows a caller to remove an ACPI table. The routine
will remove its reference from the RSDT/XSDT. A table is referenced by the TableKey parameter
returned from a prior call to InstallAcpiTable(). If an EFI application is running at the time
of this call, the relevant EFI_CONFIGURATION_TABLE pointer to the RSDT is no longer
considered valid.

Status Codes Returned

EFI_SUCCESS The table was successfully inserted

EFI_NOT_FOUND TableKey does not refer to a valid key for a table entry.

EFI_OUT_OF_RESOURCES Insufficient resources exist to complete the request.
970 April, 2015 Version 2.5

Protocols - String Services
20
Protocols - String Services

20.1 Unicode Collation Protocol
This section defines the Unicode Collation protocol. This protocol is used to allow code running
in the boot services environment to perform lexical comparison functions on Unicode strings for
given languages.

EFI_UNICODE_COLLATION_PROTOCOL

Summary
Is used to perform case-insensitive comparisons of strings.

GUID
#define EFI_UNICODE_COLLATION_PROTOCOL2_GUID \
 {0xa4c751fc, 0x23ae, 0x4c3e, \
 {0x92, 0xe9, 0x49, 0x64, 0xcf, 0x63, 0xf3, 0x49}}

Protocol Interface Structure
typedef struct {
 EFI_UNICODE_COLLATION_STRICOLL StriColl;
 EFI_UNICODE_COLLATION_METAIMATCH MetaiMatch;
 EFI_UNICODE_COLLATION_STRLWR StrLwr;
 EFI_UNICODE_COLLATION_STRUPR StrUpr;
 EFI_UNICODE_COLLATION_FATTOSTR FatToStr;
 EFI_UNICODE_COLLATION_STRTOFAT StrToFat;
 CHAR8 *SupportedLanguages;
} EFI_UNICODE_COLLATION_PROTOCOL;

Parameters
StriColl Performs a case-insensitive comparison of two Null-terminated

strings. See the StriColl() function description.

MetaiMatch Performs a case-insensitive comparison between a Null-
terminated pattern string and a Null-terminated string. The
pattern string can use the ‘?’ wildcard to match any character, and
the ‘*’ wildcard to match any substring. See the
MetaiMatch() function description.

StrLwr Converts all the characters in a Null-terminated string to
lowercase characters. See the StrLwr() function description.

StrUpr Converts all the characters in a Null-terminated string to
uppercase characters. See the StrUpr() function description.
Version 2.5 April, 2015 971

Unified Extensible Firmware Interface Specification
FatToStr Converts an 8.3 FAT file name using an OEM character set to a
Null-terminated string. See the FatToStr() function
description.

StrToFat Converts a Null-terminated string to legal characters in a FAT
filename using an OEM character set. See the StrToFat()
function description.

SupportedLanguages A Null-terminated ASCII string array that contains one or more
language codes. This array is specified in RFC 4646 format. See
Appendix M for the format of language codes and language code
arrays.

Description
The EFI_UNICODE_COLLATION_PROTOCOL is used to perform case-insensitive comparisons
of strings.

One or more of the EFI_UNICODE_COLLATION_PROTOCOL instances may be present at one
time. Each protocol instance can support one or more language codes. The language codes
supported in the EFI_UNICODE_COLLATION_PROTOCOL are declared in
SupportedLanguages.

The SupportedLanguages is a Null-terminated ASCII string array that contains one or more
supported language codes. This is the list of language codes that this protocol supports. See
Appendix M for the format of language codes and language code arrays.

The main motivation for this protocol is to help support file names in a file system driver. When a
file is opened, a file name needs to be compared to the file names on the disk. In some cases, this
comparison needs to be performed in a case-insensitive manner. In addition, this protocol can be
used to sort files from a directory or to perform a case-insensitive file search.
972 April, 2015 Version 2.5

Protocols - String Services
EFI_UNICODE_COLLATION_PROTOCOL.StriColl()

Summary
Performs a case-insensitive comparison of two Null-terminated strings.

Prototype
typedef
INTN
(EFIAPI *EFI_UNICODE_COLLATION_STRICOLL) (
 IN EFI_UNICODE_COLLATION_PROTOCOL *This,
 IN CHAR16 *s1,
 IN CHAR16 *s2
);

Parameters
This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL

instance. Type EFI_UNICODE_COLLATION_PROTOCOL is
defined above.

s1 A pointer to a Null-terminated string.

s2 A pointer to a Null-terminated string.

Description
The StriColl() function performs a case-insensitive comparison of two Null-terminated strings.

This function performs a case-insensitive comparison between the string s1 and the string s2 using
the rules for the language codes that this protocol instance supports. If s1 is equivalent to s2, then
0 is returned. If s1 is lexically less than s2, then a negative number will be returned. If s1 is
lexically greater than s2, then a positive number will be returned. This function allows strings to be
compared and sorted.

Status Codes Returned

0 s1 is equivalent to s2.

> 0 s1 is lexically greater than s2.

< 0 s1 is lexically less than s2.
Version 2.5 April, 2015 973

Unified Extensible Firmware Interface Specification
EFI_UNICODE_COLLATION_PROTOCOL.MetaiMatch()

Summary
Performs a case-insensitive comparison of a Null-terminated pattern string and a Null-terminated
string.

Prototype
typedef
BOOLEAN
(EFIAPI *EFI_UNICODE_COLLATION_METAIMATCH) (
 IN EFI_UNICODE_COLLATION_PROTOCOL *This,
 IN CHAR16 *String,
 IN CHAR16 *Pattern
);

Parameters
This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL

instance. Type EFI_UNICODE_COLLATION_PROTOCOL is
defined above.

String A pointer to a Null-terminated string.

Pattern A pointer to a Null-terminated string.

Description
The MetaiMatch() function performs a case-insensitive comparison of a Null-terminated pattern
string and a Null-terminated string.

This function checks to see if the pattern of characters described by Pattern are found in
String. The pattern check is a case-insensitive comparison using the rules for the language codes
that this protocol instance supports. If the pattern match succeeds, then TRUE is returned.
Otherwise FALSE is returned. The following syntax can be used to build the string Pattern:

* Match 0 or more characters.

? Match any one character.

[<char1><char2>…<charN>]
Match any character in the set.

[<char1>-<char2>] Match any character between <char1> and <char2>.

<char> Match the character <char>.

Following is an example pattern for English:

*.FW Matches all strings that end in “.FW” or “.fw” or “.Fw” or “.fW.”

[a-z] Match any letter in the alphabet.

 [!@#$%^&*()] Match any one of these symbols.

z Match the character “z” or “Z.”

D?.* Match the character “D” or “d” followed by any character
followed by a “.” followed by any string.
974 April, 2015 Version 2.5

Protocols - String Services
Status Codes Returned

TRUE Pattern was found in String.

FALSE Pattern was not found in String.
Version 2.5 April, 2015 975

Unified Extensible Firmware Interface Specification
EFI_UNICODE_COLLATION_PROTOCOL.StrLwr()

Summary
Converts all the characters in a Null-terminated string to lowercase characters.

Prototype
typedef
VOID
(EFIAPI *EFI_UNICODE_COLLATION_STRLWR) (
 IN EFI_UNICODE_COLLATION_PROTOCOL *This,
 IN OUT CHAR16 *String
);

Parameters
This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL

instance. Type EFI_UNICODE_COLLATION_PROTOCOL is
defined above.

String A pointer to a Null-terminated string.

Description
This function walks through all the characters in String, and converts each one to its lowercase
equivalent if it has one. The converted string is returned in String.
976 April, 2015 Version 2.5

Protocols - String Services
EFI_UNICODE_COLLATION_PROTOCOL.StrUpr()

Summary
Converts all the characters in a Null-terminated string to uppercase characters.

Prototype
typedef
VOID
(EFIAPI *EFI_UNICODE_COLLATION_STRUPR) (
 IN EFI_UNICODE_COLLATION_PROTOCOL *This,
 IN OUT CHAR16 *String
);

Parameters
This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL

instance. Type EFI_UNICODE_COLLATION_PROTOCOL is
defined above.

String A pointer to a Null-terminated string.

Description
This functions walks through all the characters in String, and converts each one to its uppercase
equivalent if it has one. The converted string is returned in String.
Version 2.5 April, 2015 977

Unified Extensible Firmware Interface Specification
EFI_UNICODE_COLLATION_PROTOCOL.FatToStr()

Summary
Converts an 8.3 FAT file name in an OEM character set to a Null-terminated string.

Prototype
typedef
VOID
(EFIAPI *EFI_UNICODE_COLLATION_FATTOSTR) (
 IN EFI_UNICODE_COLLATION_PROTOCOL *This,
 IN UINTN FatSize,
 IN CHAR8 *Fat,
 OUT CHAR16 *String
);

Parameters
This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL

instance. Type EFI_UNICODE_COLLATION_PROTOCOL is
defined above.

FatSize The size of the string Fat in bytes.

Fat A pointer to a Null-terminated string that contains an 8.3 file
name encoded using an 8-bit OEM character set.

String A pointer to a Null-terminated string. The string must be
allocated in advance to hold FatSize characters.

Description
This function converts the string specified by Fat with length FatSize to the Null-terminated
string specified by String. The characters in Fat are from an OEM character set.
978 April, 2015 Version 2.5

Protocols - String Services
EFI_UNICODE_COLLATION_PROTOCOL.StrToFat()

Summary
Converts a Null-terminated string to legal characters in a FAT filename using an OEM character set.

Prototype
typedef
BOOLEAN
(EFIAPI *EFI_UNICODE_COLLATION_STRTOFAT) (
 IN EFI_UNICODE_COLLATION_PROTOCOL *This,
 IN CHAR16 *String,
 IN UINTN FatSize,
 OUT CHAR8 *Fat
);

Parameters
This A pointer to the EFI_UNICODE_COLLATION_PROTOCOL

instance. Type EFI_UNICODE_COLLATION_PROTOCOL is
defined above.

String A pointer to a Null-terminated string.

FatSize The size of the string Fat in bytes.

Fat A pointer to a string that contains the converted version of
String using legal FAT characters from an OEM character set.

Description
This function converts the characters from String into legal FAT characters in an OEM character
set and stores then in the string Fat. This conversion continues until either FatSize bytes are
stored in Fat, or the end of String is reached. The characters ‘.’ (period) and ‘ ’ (space) are
ignored for this conversion. Characters that map to an illegal FAT character are substituted with an
‘_’. If no valid mapping from a character to an OEM character is available, then it is also substituted
with an ‘_’. If any of the character conversions are substituted with a ‘_’, then TRUE is returned.
Otherwise FALSE is returned.

Status Codes Returned

20.2 Regular Expression Protocol
This section defines the Regular Expression Protocol. This protocol is used to match Unicode strings
against Regular Expression patterns.

TRUE One or more conversions failed and were substituted with ‘_’.

FALSE None of the conversions failed.
Version 2.5 April, 2015 979

Unified Extensible Firmware Interface Specification
EFI_REGULAR_EXPRESSION_PROTOCOL

Summary

GUID
 #define EFI_REGULAR_EXPRESSION_PROTOCOL_GUID \
 { 0xB3F79D9A, 0x436C, 0xDC11,\
 { 0xB0, 0x52, 0xCD, 0x85, 0xDF, 0x52, 0x4C, 0xE6 } }

Protocol Interface Structure
typedef struct {
 EFI_REGULAR_EXPRESSION_MATCH MatchString;
 EFI_REGULAR_EXPRESSION_GET_INFO GetInfo;
} EFI_REGULAR_EXPRESSION_PROTOCOL;

Parameters
MatchString Search the input string for anything that matches the regular

expression.

GetInfo Returns information about the regular expression syntax types
supported by the implementation.
980 April, 2015 Version 2.5

Protocols - String Services
EFI_REGULAR_EXPRESSION_PROTOCOL.MatchString()

Summary
Checks if the input string matches to the regular expression pattern.

Prototype
typedef
EFI_STATUS
EFIAPI *EFI_REGULAR_EXPRESSION_MATCH) (
 IN EFI_REGULAR_EXPRESSION_PROTOCOL *This,
 IN CHAR16 *String,
 IN CHAR16 *Pattern,
 IN EFI_REGEX_SYNTAX_TYPE *SyntaxType, OPTIONAL
 OUT BOOLEAN *Result,
 OUT EFI_REGEX_CAPTURE **Captures, OPTIONAL
 OUT UINTN *CapturesCount
);

Parameters
This A pointer to the EFI_REGULAR_EXPRESSION_PROTOCOL

instance. Type EFI_REGULAR_EXPRESSION_PROTOCOL is
defined in above.

String A pointer to a NULL terminated string to match against the
regular expression string specified by Pattern.

Pattern A pointer to a NULL terminated string that represents the regular
expression.

SyntaxType A pointer to the EFI_REGEX_SYNTAX_TYPE that identifies the
regular expression syntax type to use. May be NULL in which
case the function will use its default regular expression syntax
type.

Result On return, points to TRUE if String fully matches against the
regular expression Pattern using the regular expression
SyntaxType. Otherwise, points to FALSE.

Captures A Pointer to an array of EFI_REGEX_CAPTURE objects to
receive the captured groups in the event of a match. The full sub-
string match is put in Captures[0], and the results of N
capturing groups are put in Captures[1:N]. If Captures is
NULL, then this function doesn’t allocate the memory for the
array and does not build up the elements. It only returns the
number of matching patterns in CapturesCount. If
Captures is not NULL, this function returns a pointer to an
array and builds up the elements in the array. CapturesCount
is also updated to the number of matching patterns found. It is the
caller’s responsibility to free the memory pool in Captures and
in each CapturePtr in the array elements.
Version 2.5 April, 2015 981

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

Unified Extensible Firmware Interface Specification
 CapturesCount On output, CapturesCount is the number of matching
patterns found in String. Zero means no matching patterns were
found in the string.

Description
The MatchString() function performs a matching of a Null-terminated input string with the
NULL terminated pattern string. The pattern string syntax type is optionally identified in
SyntaxType.

This function checks to see if String fully matches against the regular expression described by
Pattern. The pattern check is performed using regular expression rules that are supported by this
implementation, as indicated in the return value of GetInfo function. If the pattern match
succeeds, then TRUE is returned in Result. Otherwise FALSE is returned.

Related Definitions
typedef struct {
 CONST CHAR16 *CapturePtr;
 UINTN Length;
} EFI_REGEX_CAPTURE;

*CapturePtr Pointer to the start of the captured sub-expression within matched
String.

Length Length of captured sub-expression.

Status Codes Returned

EFI_SUCCESS The regular expression string matching completed successfully.

EFI_UNSUPPORTED The regular expression syntax specified by SyntaxType is not

supported by this driver.

EFI_DEVICE_ERROR The regular expression string matching failed due to a hardware or
firmware error.

EFI_INVALID_PARAMETER String, Pattern, Result, or CapturesCount is NULL.
982 April, 2015 Version 2.5

Protocols - String Services
EFI_REGULAR_EXPRESSION_PROTOCOL.GetInfo()

Summary
Returns information about the regular expression syntax types supported by the implementation.

Prototype
typedef
EFI_STATUS
EFIAPI *EFI_REGULAR_EXPRESSION_GET_INFO) (
 IN EFI_REGULAR_EXPRESSION_PROTOCOL *This,
 IN OUT UINTN *RegExSyntaxTypeListSize,
 OUT EFI_REGEX_SYNTAX_TYPE *RegExSyntaxTypeList
);

Parameters
This A pointer to the EFI_REGULAR_EXPRESSION_PROTOCOL

instance.

RegExSyntaxTypeListSize

On input, the size in bytes of RegExSyntaxTypeList. On
output with a return code of EFI_SUCCESS, the size in bytes of
the data returned in RegExSyntaxTypeList. On output with
a return code of EFI_BUFFER_TOO_SMALL, the size of
RegExSyntaxTypeList required to obtain the list.

RegExSyntaxTypeListA caller-allocated memory buffer filled by the driver with one
EFI_REGEX_SYNTAX_TYPE element for each supported
regular expression syntax type. The list must not change across
multiple calls to the same driver. The first syntax type in the list is
the default type for the driver.

Description
This function returns information about supported regular expression syntax types. A driver
implementing the EFI_REGULAR_EXPRESSION_PROTOCOL protocol need not support more
than one regular expression syntax type, but shall support a minimum of one regular expression
syntax type.
Version 2.5 April, 2015 983

Unified Extensible Firmware Interface Specification
Related Definitions
typedef EFI_GUID EFI_REGEX_SYNTAX_TYPE;

Status Codes Returned

20.2.1 EFI Regular Expression Syntax Type Definitions

Summary

This sub-section provides EFI_GUID values for a selection of
EFI_REGULAR_EXPRESSION_PROTOCOL syntax types. The types listed are optional, not
meant to be exhaustive and may be augmented by vendors or other industry standards.

Prototype

 For regular expression rules specified in the POSIX Extended Regular Expression (ERE) Syntax:
#define EFI_REGEX_SYNTAX_TYPE_POSIX_EXTENDED_GUID \
 {0x5F05B20F, 0x4A56, 0xC231,\
 { 0xFA, 0x0B, 0xA7, 0xB1, 0xF1, 0x10, 0x04, 0x1D }}

For regular expression rules specified in the Perl standard:

 #define EFI_REGEX_SYNTAX_TYPE_PERL_GUID \
 {0x63E60A51, 0x497D, 0xD427,\
 { 0xC4, 0xA5, 0xB8, 0xAB, 0xDC, 0x3A, 0xAE, 0xB6 }}

For regular expression rules specified in the ECMA 262 Specification:
#define EFI_REGEX_SYNTAX_TYPE_ECMA_262_GUID \
 { 0x9A473A4A, 0x4CEB, 0xB95A, 0x41,\
 { 0x5E, 0x5B, 0xA0, 0xBC, 0x63, 0x9B, 0x2E }}

(See Appendix Q for more information.)

EFI_SUCCESS The regular expression syntax types list was returned successfully.

EFI_UNSUPPORTED The service is not supported by this driver.

EFI_DEVICE_ERROR The list of syntax types could not be retrieved due to a hardware or
firmware error.

EFI_BUFFER_TOO_SMALL The buffer RegExSyntaxTypeList is too small to hold the result.

EFI_INVALID_PARAMETER RegExSyntaxTypeListSize is NULL.
984 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
21
EFI Byte Code Virtual Machine

This section defines an EFI Byte Code (EBC) Virtual Machine that can provide platform- and
processor-independent mechanisms for loading and executing EFI device drivers.

21.1 Overview
The current design for option ROMs that are used in personal computer systems has been in place
since 1981. Attempts to change the basic design requirements have failed for a variety of reasons.
The EBC Virtual Machine described in this chapter is attempting to help achieve the following
goals:

• Abstract and extensible design

• Processor independence

• OS independence

• Build upon existing specifications when possible

• Facilitate the removal of legacy infrastructure

• Exclusive use of EFI Services

One way to satisfy many of these goals is to define a pseudo or virtual machine that can interpret
a predefined instruction set. This will allow the virtual machine to be ported across processor and
system architectures without changing or recompiling the option ROM. This specification defines
a set of machine level instructions that can be generated by a C compiler.

The following sections are a detailed description of the requirements placed on future option ROMs.

21.1.1 Processor Architecture Independence
Option ROM images shall be independent of supported 32-bit and supported 64-bit architectures. In
order to abstract the architectural differences between processors option ROM images shall be EBC.
This model is presented below:

• 64-bit C source code

• The EFI EBC image is the flashed image

• The system BIOS implements the EBC interpreter

• The interpreter handles 32 vs. 64 bit issues

Current Option ROM technology is processor dependent and heavily reliant upon the existence of
the PC-AT infrastructure. These dependencies inhibit the evolution of both hardware and software
under the veil of “backward compatibility.” A solution that isolates the hardware and support
infrastructure through abstraction will facilitate the uninhibited progression of technology.
Version 2.5 April, 2015 985

Unified Extensible Firmware Interface Specification
21.1.2 OS Independent
Option ROMs shall not require or assume the existence of a particular OS.

21.1.3 EFI Compliant
Option ROM compliance with EFI requires (but is not limited to) the following:

• Little endian layout

• Single-threaded model with interrupt polling if needed

• Where EFI provides required services, EFI is used exclusively. These include:
— Console I/O
— Memory Management
— Timer services
— Global variable access

• When an Option ROM provides EFI services, the EFI specification is strictly followed:
— Service/protocol installation
— Calling conventions
— Data structure layouts
— Guaranteed return on services

21.1.4 Coexistence of Legacy Option ROMs
The infrastructure shall support coexistent Legacy Option ROM and EBC Option ROM images.
This case would occur, for example, when a Plug and Play Card has both Legacy and EBC Option
ROM images flashed. The details of the mechanism used to select which image to load is beyond
the scope of this document. Basically, a legacy System BIOS would not recognize an EBC Option
ROM and therefore would never load it. Conversely, an EFI Firmware Boot Manager would only
load images that it supports.

The EBC Option ROM format must utilize a legacy format to the extent that a Legacy System BIOS
can:

• Determine the type of the image, in order to ignore the image. The type must be incompatible
with currently defined types.

• Determine the size of the image, in order to skip to the next image.

21.1.5 Relocatable Image
An EBC option ROM image shall be eligible for placement in any system memory area large enough
to accommodate it.

Current option ROM technology requires images to be shadowed in system memory address range
0xC0000 to 0xEFFFF on a 2048 byte boundary. This dependency not only limits the number of
Option ROMs, it results in unused memory fragments up to 2 KiB.

21.1.6 Size Restrictions Based on Memory Available
EBC option ROM images shall not be limited to a predetermined fixed maximum size.
986 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
Current option ROM technology limits the size of a preinitialization option ROM image to 128 KiB
(126 KiB actual). Additionally, in the DDIM an image is not allowed to grow during initialization.
It is inevitable that 64-bit solutions will increase in complexity and size. To avoid revisiting this
issue, EBC option ROM size is only limited by available system memory. EFI memory allocation
services allow device drivers to claim as much memory as they need, within limits of available
system memory.

The PCI specification limits the size of an image stored in an option ROM to 16 MB. If the driver is
stored on the hard drive then the 16MB option ROM limit does not apply. In addition, the PE/COFF
object format limits the size of images to 2 GB.

21.2 Memory Ordering
The term memory ordering refers to the order in which a processor issues reads (loads) and writes
(stores) out onto the bus to system memory. The EBC Virtual Machine enforces strong memory
ordering, where reads and writes are issued on the system bus in the order they occur in the
instruction stream under all circumstances.

21.3 Virtual Machine Registers
The EBC virtual machine utilizes a simple register set. There are two categories of VM registers:
general purpose registers and dedicated registers. All registers are 64-bits wide. There are eight (8)
general-purpose registers (R0-R7), which are used by most EBC instructions to manipulate or fetch
data. Table 140 lists the general-purpose registers in the VM and the conventions for their usage
during execution.

Table 140. General Purpose VM Registers

Register R0 is used as a stack pointer and is used by the CALL, RET, PUSH, and POP instructions.
The VM initializes this register to point to the incoming arguments when an EBC image is started or
entered. This register may be modified like any other general purpose VM register using EBC
instructions. Register R7 is used for function return values.

Unlike the general-purpose registers, the VM dedicated registers have specific purposes. There are
two dedicated registers: the instruction pointer (IP), and the flags (Flags) register. Specialized
instructions provide access to the dedicated registers. These instructions reference the particular
dedicated register by its assigned index value. Table 141 lists the dedicated registers and their
corresponding index values.

Index Register Description

0 R0 Points to the top of the stack

1-3 R1-R3 Preserved across calls

4-7 R4-R7 Scratch, not preserved across calls
Version 2.5 April, 2015 987

Unified Extensible Firmware Interface Specification
Table 141. Dedicated VM Registers

The VM Flags register contains VM status and context flags. Table 142 lists the descriptions of the
bits in the Flags register.

Table 142. VM Flags Register

The VM IP register is used as an instruction pointer and holds the address of the currently executing
EBC instruction. The virtual machine will update the IP to the address of the next instruction on
completion of the current instruction, and will continue execution from the address indicated in IP.
The IP register can be moved into any general-purpose register (R0-R7). Data manipulation and
data movement instructions can then be used to manipulate the value. The only instructions that may
modify the IP are the JMP, CALL, and RET instructions. Since the instruction set is designed to use
words as the minimum instruction entity, the low order bit (bit 0) of IP is always cleared to 0. If a
JMP, CALL, or RET instruction causes bit 0 of IP to be set to 1, then an alignment exception occurs.

21.4 Natural Indexing
The natural indexing mechanism is the critical functionality that enables EBC to be executed
unchanged on 32- or 64-bit systems. Natural indexing is used to specify the offset of data relative
to a base address. However, rather than specifying the offset as a fixed number of bytes, the offset is
encoded in a form that specifies the actual offset in two parts: a constant offset, and an offset
specified as a number of natural units (where one natural unit = sizeof (VOID *)). These two
values are used to compute the actual offset to data at runtime. When the VM decodes an index
during execution, the resultant offset is computed based on the natural processor size. The encoded

Index Register Description

0 FLAGS

Bit Description

0 C = Condition code

1 SS = Single step

2..63 Reserved

1 IP Points to current instruction

2..7 Reserved Not defined

Bit Flag Description

0 C Condition code. Set to 1 if the result of the last compare was true,
or set to 0 if the last compare was false. Used by conditional JMP
instructions.

1 S Single-step. If set, causes the VM to generate a single-step
exception after executing each instruction. The bit is not cleared
by the VM following the exception.

2..63 - Reserved
988 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
indexes themselves may be 16, 32, or 64 bits in size. Table 143 describes the fields in a natural
index encoding.

Table 143. Index Encoding

As shown in Table 143, for a given encoded index, the most significant bit (bit N) specifies the sign
of the resultant offset after it has been calculated. The sign bit is followed by three bits (N-3..N-1)
that are used to compute the width of the natural units field (n). The value (w) from this field is
multiplied by the index size in bytes to determine the actual width (A) of the natural units field (n).
Once the width of the natural units field has been determined, then the natural units (n) and constant
units (c) can be extracted. The offset is then calculated at runtime according to the following
equation:

Offset = (c + n * (sizeof (VOID *))) * sign

The following sections describe each of these fields in more detail.

21.4.1 Sign Bit
The sign bit determines the sign of the index once the offset calculation has been performed. All
index computations using “n” and “c” are done with positive numbers, and the sign bit is only used
to set the sign of the final offset computed.

21.4.2 Bits Assigned to Natural Units
This 3-bit field that is used to determine the width of the natural units field. The units vary based on
the size of the index according to Table 144. For example, for a 16-bit index, the value contained in
this field would be multiplied by 2 to get the actual width of the natural-units field.

Table 144. Index Size in Index Encoding

21.4.3 Constant
The constant is the number of bytes in the index that do not scale with processor size. When the
index is a 16-bit value, the maximum constant is 4095. This index is achieved when the bits
assigned to natural units is 0.

Bit # Description

N Sign bit (sign), most significant bit

N-3..N-1 Bits assigned to natural units (w)

A..N-4 Constant units (c)

0..A-1 Natural units (n)

Index Size Units

16 bits 2 bits

32 bits 4 bits

64 bits 8 bits
Version 2.5 April, 2015 989

Unified Extensible Firmware Interface Specification
21.4.4 Natural Units
Natural units are used when a structure has fields that can vary with the architecture of the processor.
Fields that precipitate the use of natural units include pointers and EFI INTN and UINTN data types.
The size of one pointer or INTN/UINTN equals one natural unit. The natural units field in an index
encoding is a count of the number of natural fields whose sizes (in bytes) must be added to determine
a field offset.

As an example, assume that a given EBC instruction specifies a 16-bit index of 0xA048. This breaks
down into:

• Sign bit (bit 15) = 1 (negative offset)

• Bits assigned to natural units (w, bits 14-12) = 2. Multiply by index size in bytes = 2 x 2 = 4 (A)

• c = bits 11-4 = 4

• n = bits 3-0 = 8

On a 32-bit machine, the offset is then calculated to be:

• Offset = (4 + 8 * 4) * -1 = -36

• On a 64-bit machine, the offset is calculated to be:

• Offset = (4 + 8 * 8) * -1 = -68

21.5 EBC Instruction Operands
The VM supports an EBC instruction set that performs data movement, data manipulation,
branching, and other miscellaneous operations typical of a simple processor. Most instructions
operate on two operands, and have the general form:

INSTRUCTION Operand1, Operand2

Typically, instruction operands will be one of the following:

• Direct

• Indirect

• Indirect with index

• Immediate

The following subsections explain these operands.

21.5.1 Direct Operands
When a direct operand is specified for an instruction, the data to operate upon is contained in one of
the VM general-purpose registers R0-R7. Syntactically, an example of direct operand mode could
be the ADD instruction:

ADD64 R1, R2

This form of the instruction utilizes two direct operands. For this particular instruction, the VM
would take the contents of register R2, add it to the contents of register R1, and store the result in
register R1.
990 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
21.5.2 Indirect Operands
When an indirect operand is specified, a VM register contains the address of the operand data. This
is sometimes referred to as register indirect, and is indicated by prefixing the register operand with
“@.” Syntactically, an example of an indirect operand mode could be this form of the ADD
instruction:

ADD32 R1, @R2

For this instruction, the VM would take the 32-bit value at the address specified in R2, add it to the
contents of register R1, and store the result in register R1.

21.5.3 Indirect with Index Operands
When an indirect with index operand is specified, the address of the operand is computed by adding
the contents of a register to a decoded natural index that is included in the instruction. Typically with
indexed addressing, the base address will be loaded in the register and an index value will be used to
indicate the offset relative to this base address. Indexed addressing takes the form

@R1 (+n,+c)

where:

• R1 is one of the general-purpose registers (R0-R7) which contains the base address

• +n is a count of the number of “natural” units offset. This portion of the total offset is computed
at runtime as (n * sizeof (VOID *))

• +c is a byte offset to add to the natural offset to resolve the total offset

The values of n and c can be either positive or negative, though they must both have the same sign.
These values get encoded in the indexes associated with EBC instructions as shown in Table 143.
Indexes can be 16-, 32-, or 64-bits wide depending on the instruction. An example of indirect with
index syntax would be:

ADD32 R1, @R2 (+1, +8)

This instruction would take the address in register R2, add (8 + 1 * sizeof (VOID *)), read the 32-bit
value at the address, add the contents of R1 to the value, and store the result back to R1.

21.5.4 Immediate Operands
Some instructions support an immediate operand, which is simply a value included in the instruction
encoding. The immediate value may or may not be sign extended, depending on the particular
instruction. One instruction that supports an immediate operand is MOVI. An example usage of this
instruction is:

MOVIww R1, 0x1234

This instruction moves the immediate value 0x1234 directly into VM register R1. The immediate
value is contained directly in the encoding for the MOVI instruction.
Version 2.5 April, 2015 991

Unified Extensible Firmware Interface Specification
21.6 EBC Instruction Syntax
Most EBC instructions have one or more variations that modify the size of the instruction and/or the
behavior of the instruction itself. These variations will typically modify an instruction in one or more
of the following ways:

• The size of the data being operated upon

• The addressing mode for the operands

• The size of index or immediate data

• To represent these variations syntactically in this specification the following conventions are
used:

• Natural indexes are indicated with the “Index” keyword, and may take the form of “Index16,”
“Index32,” or “Index64” to indicate the size of the index value supported. Sometimes the form
Index16|32|64 is used here, which is simply a shorthand notation for Index16|Index32|Index64.
A natural index is encoded per Table 143 and is resolved at runtime.

• Immediate values are indicated with the “Immed” keyword, and may take the form of
“Immed16,” “Immed32,” or “Immed64” to indicate the size of the immediate value supported.
The shorthand notation Immed16|32|64 is sometimes used when different size immediate values
are supported.

• Terms in brackets [] are required.

• Terms in braces { } are optional.

• Alternate terms are separated by a vertical bar |.

• The form R1 and R2 represent Operand 1 register and Operand 2 register respectfully, and can
typically be any VM general-purpose register R0-R7.

• Within descriptions of the instructions, brackets [] enclosing a register and/or index indicate that
the contents of the memory pointed to by the enclosed contents are used.

21.7 Instruction Encoding
Most EBC instructions take the form:

INSTRUCTION R1, R2 Index|Immed

For those instructions that adhere to this form, the binary encoding for the instruction will typically
consist of an opcode byte, followed by an operands byte, followed by two or more bytes of
immediate or index data. Thus the instruction stream will be:

(1 Byte Opcode) + (1 Byte Operands) + (Immediate data|Index data)

21.7.1 Instruction Opcode Byte Encoding
The first byte of an instruction is the opcode byte, and an instruction’s actual opcode value consumes
6 bits of this byte. The remaining two bits will typically be used to indicate operand sizes and/or
presence or absence of index or immediate data. Table 145 defines the bits in the opcode byte for
most instructions, and their usage.
992 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
Table 145. Opcode Byte Encoding

For those instructions that use bit 7 to indicate the presence of an index or immediate data and bit 6
to indicate the size of the index or immediate data, if bit 7 is 0 (no immediate data), then bit 6 is
ignored by the VM. Otherwise, unless otherwise specified for a given instruction, setting unused bits
in the opcode byte results in an instruction encoding exception when the instruction is executed.
Setting the modifiers field in the opcode byte to reserved values will also result in an instruction
encoding exception.

21.7.2 Instruction Operands Byte Encoding
The second byte of most encoded instructions is an operand byte, which encodes the registers for the
instruction operands and whether the operands are direct or indirect. Table 146 defines the encoding
for the operand byte for these instructions. Unless otherwise specified for a given instruction, setting
unused bits in the operand byte results in an instruction encoding exception when the instruction is
executed. Setting fields in the operand byte to reserved values will also result in an instruction
encoding exception.

Table 146. Operand Byte Encoding

21.7.3 Index/Immediate Data Encoding
Following the operand bytes for most instructions is the instruction’s immediate data. The
immediate data is, depending on the instruction and instruction encoding, either an unsigned or
signed literal value, or an index encoded using natural encoding. In either case, the size of the
immediate data is specified in the instruction encoding.

For most instructions, the index/immediate value in the instruction stream is interpreted as a signed
immediate value if the register operand is direct. This immediate value is then added to the contents
of the register to compute the instruction operand. If the register is indirect, then the data is usually
interpreted as a natural index (see Section 21.4) and the computed index value is added to the
contents of the register to get the address of the operand.

Bit Sym Description

6..7 Modifiers One or more of:
Index or immediate data present/absent
Operand size
Index or immediate data size

0..5 Op Instruction opcode

Bit Description

7 0 = Operand 2 is direct
1 = Operand 2 is indirect

4..6 Operand 2 register

3 0 = Operand 1 is direct
1 = Operand 1 is indirect

0..2 Operand 1 register
Version 2.5 April, 2015 993

Unified Extensible Firmware Interface Specification
21.8 EBC Instruction Set
The following sections describe each of the EBC instructions in detail. Information includes an
assembly-language syntax, a description of the instruction functionality, binary encoding, and any
limitations or unique behaviors of the instruction.
994 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
ADD

Syntax
ADD[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Adds two signed operands and stores the result to Operand 1. The operation can be performed on
either 32-bit (ADD32) or 64-bit (ADD64) operands.

Operation
Operand 1 <= Operand 1 + Operand 2

Table 147. ADD Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index and the Operand 2

value is fetched from memory as a signed value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the R2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is ADD32 and Operand 1 is direct, then the result is stored back to the Operand
1 register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x0C

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
Version 2.5 April, 2015 995

Unified Extensible Firmware Interface Specification
AND

Syntax
AND[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Performs a logical AND operation on two operands and stores the result to Operand 1. The operation
can be performed on either 32-bit (AND32) or 64-bit (AND64) operands.

Operation
Operand 1 <= Operand 1 AND Operand 2

Table 148. AND Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the register contents such that Operand 2 = R2 + Immed16.

• If the instruction is AND32 and Operand 1 is direct, then the result is stored to the Operand 1
register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x14

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
996 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
ASHR

Syntax
ASHR[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Performs an arithmetic right-shift of a signed 32-bit (ASHR32) or 64-bit (ASHR64) operand and
stores the result back to Operand 1

Operation
Operand 1 <= Operand 1 SHIFT-RIGHT Operand 2

Table 149. ASHR Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2+ Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the register contents such that Operand 2 = R2 + Immed16.

• If the instruction is ASHR32, and Operand 1 is direct, then the result is stored back to the
Operand 1 register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x19

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
Version 2.5 April, 2015 997

Unified Extensible Firmware Interface Specification
BREAK

Syntax
BREAK [break code]

Description
The BREAK instruction is used to perform special processing by the VM. The break code specifies
the functionality to perform.

BREAK 0 – Runaway program break. This indicates that the VM is likely executing code from
cleared memory. This results in a bad break exception.

BREAK 1 – Get virtual machine version. This instruction returns the 64-bit virtual machine
revision number in VM register R7. The encoding is shown in Table 150 and Table 151. A VM that
conforms to this version of the specification should return a version number of 0x00010000.

Table 150. VM Version Format

BREAK 3 – Debug breakpoint. Executing this instruction results in a debug break exception. If a
debugger is attached or available, then it may halt execution of the image.

BREAK 4 – System call. There are no system calls supported for use with this break code, so the
VM will ignore the instruction and continue execution at the following instruction.

BREAK 5 – Create thunk. This causes the interpreter to create a thunk for the EBC entry point
whose 32-bit IP-relative offset is stored at the 64-bit address in VM register R7. The interpreter then
replaces the contents of the memory location pointed to by R7 to point to the newly created thunk.
Since all EBC IP-relative offsets are relative to the next instruction or data object, the original offset
is off by 4, so must be incremented by 4 to get the actual address of the entry point.

BREAK 6 – Set compiler version. An EBC C compiler can insert this break instruction into an
executable to set the compiler version used to build an EBC image. When the VM executes this
instruction it takes the compiler version from register R7 and may perform version compatibility
checking. The compiler version number follows the same format as the VM version number returned
by the BREAK 1 instruction.

Table 151. BREAK Instruction Encoding

Bits Description

63-32 Reserved = 0

31..16 VM major version

15..0 VM minor version

Byte Description

0 Opcode = 0x00
998 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
Behaviors and Restrictions
• Executing an undefined BREAK code results in a bad break exception.

• Executing BREAK 0 results in a bad break exception.

1 0 = Runaway program break
1 = Get virtual machine version
3 = Debug breakpoint
4 = System call
5 = Create thunk
6 = Set compiler version

Byte Description
Version 2.5 April, 2015 999

Unified Extensible Firmware Interface Specification
CALL

Syntax
CALL32{EX}{a} {@}R1 {Immed32|Index32}
CALL64{EX}{a} Immed64

Description
The CALL instruction pushes the address of the following instruction on the stack and jumps to a
subroutine. The subroutine may be either EBC or native code, and may be to an absolute or
IP-relative address. CALL32 is used to jump directly to EBC code within a given application,
whereas CALLEX is used to jump to external code (either native or EBC), which requires thunking.
Functionally, the CALL does the following:

 R0 = R0 - 8;
 PUSH64 ReturnAddress
 if (Opcode.ImmedData64Bit) {
 if (Operands.EbcCall) {
 IP = Immed64;
 } else {
 NativeCall (Immed64);
 }
 } else {
 if (Operand1 != R0) {
 Addr = Operand1;
 } else {
 Addr = Immed32;
 }
 if (Operands.EbcCall) {
 if (Operands.RelativeAddress) {
 IP += Addr + SizeOfThisInstruction;
 } else {
 IP = Addr
 }
 } else {
 if (Operands.RelativeAddress) {
 NativeCall (IP + Addr)
 } else {
 NativeCall (Addr)
 }
 }

Operation
R0 <= R0 – 16
[R0] <= IP + SizeOfThisInstruction
IP <= IP + SizeOfThisInstruction + Operand 1 (relative CALL)
IP <= Operand 1 (absolute CALL)
1000 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
Table 152. CALL Instruction Encoding

BEHAVIOR AND RESTRICTIONS
• For the CALL32 forms, if Operand 1 is indirect, then the immediate data is interpreted as an

index, and the Operand 1 value is fetched from memory address [R1 + Index32].

• For the CALL32 forms, if Operand 1 is direct, then the immediate data is considered a signed
immediate value and is added to the Operand 1 register contents such that Operand 1 = R1 +
Immed32.

• For the CALLEX forms, the VM must fix up the stack pointer and execute a call to native code
in a manner compatible with the native code such that the callee is able to access arguments
passed on the VM stack..

• For the CALLEX forms, the value returned by the callee should be returned in R7.

• For the CALL64 forms, the Operand 1 fields are ignored.

• If Byte7:Bit6 = 1 (CALL64), then Byte1:Bit4 is assumed to be 0 (absolute address)

• For CALL32 forms, if Operand 1 register = R0, then the register operand is ignored and only the
immediate data is used in the calculation of the call address.

• Prior to the call, the VM will decrement the stack pointer R0 by 16 bytes, and store the 64-bit
return address on the stack.

• Offsets for relative calls are relative to the address of the instruction following the CALL
instruction.

BYTE Description

0 Bit Description

7 0 = Immediate/index data absent
1 = Immediate/index data present

6 0 = CALL32 with 32-bit immediate data/index if present
1 = CALL64 with 64-bit immediate data

0..5 Opcode = 0x03

1 Bit Description

6..7 Reserved = 0

5 0 = Call to EBC
1 = Call to native code

4 0 = Absolute address
1 = Relative address

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..5 Optional 32-bit index/immediate for CALL32

2..9 Required 64-bit immediate data for CALL64
Version 2.5 April, 2015 1001

Unified Extensible Firmware Interface Specification
CMP

Syntax
CMP[32|64][eq|lte|gte|ulte|ugte] R1, {@}R2 {Index16|Immed16}

Description
The CMP instruction is used to compare Operand 1 to Operand 2. Supported comparison modes are
=, <=, >=, unsigned <=, and unsigned >=. The comparison size can be 32 bits (CMP32) or 64 bits
(CMP64). The effect of this instruction is to set or clear the condition code bit in the Flags register
per the comparison results. The operands are compared as signed values except for the CMPulte and
CMPugte forms.

Operation
CMPeq: Flags.C <= (Operand 1 == Operand 2)
CMPlte: Flags.C <= (Operand 1 <= Operand 2)
CMPgte: Flags.C <= (Operand 1 >= Operand 2)
CMPulte: Flags.C <= (Operand 1 <= Operand 2) (unsigned)
CMPugte: Flags.C <= (Operand 1>= Operand 2) (unsigned)

Table 153. CMP Instruction Encoding

BYTE Description

0 Bit Description

7 0 = Immediate/index data absent
1 = Immediate/index data present

6 0 = 32-bit comparison
1 = 64-bit comparison

0..5 Opcode

0x05 = CMPeq compare equal
0x06 = CMPlte compare signed less then/equal
0x07 = CMPgte compare signed greater than/equal
0x08 = CMPulte compare unsigned less than/equal
0x09 = CMPugte compare unsigned greater than/equal

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 Reserved = 0

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
1002 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the register contents such that Operand 2 = R2 + Immed16.

• Only register direct is supported for Operand 1.
Version 2.5 April, 2015 1003

Unified Extensible Firmware Interface Specification
CMPI

Syntax
CMPI[32|64]{w|d}[eq|lte|gte|ulte|ugte] {@}R1 {Index16},
Immed16|Immed32

Description
Compares two operands, one of which is an immediate value, for =, <=, >=, unsigned <=, or
unsigned >=, and sets or clears the condition flag bit in the Flags register accordingly. Comparisons
can be performed on a 32-bit (CMPI32) or 64-bit (CMPI64) basis. The size of the immediate data
can be either 16 bits (CMPIw) or 32 bits (CMPId).

Operation
CMPIeq: Flags.C <= (Operand 1 == Operand 2)
CMPIlte: Flags.C <= (Operand 1 <= Operand 2)
CMPIgte: Flags.C <= (Operand 1 >= Operand 2)
CMPIulte: Flags.C <= (Operand 1 <= Operand 2)
CMPIugte: Flags.C <= (Operand 1>= Operand 2)

Table 154. CMPI Instruction Encoding

BYTE Description

0 Bit Description

7 0 = 16-bit immediate data
1 = 32-bit immediate data

6 0 = 32-bit comparison
1 = 64-bit comparison

0..5 Opcode

0x2D = CMPIeq compare equal
0x2E = CMPIlte compare signed less then/equal
0x2F = CMPIgte compare signed greater than/equal
0x30 = CMPIulte compare unsigned less than/equal
0x31 = CMPIugte compare unsigned greater than/equal

1 Bit Description

5..7 Reserved = 0

4 0 = Operand 1 index absent
1 = Operand 1 index present

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit Operand 1 index

2..3/4..5 16-bit immediate data

2..5/4..7 32-bit immediate data
1004 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
Behaviors and Restrictions
• The immediate data is fetched as a signed value.

• If the immediate data is smaller than the comparison size, then the immediate data is sign-
extended appropriately.

• If Operand 1 is direct, and an Operand 1 index is specified, then an instruction encoding
exception is generated.
Version 2.5 April, 2015 1005

Unified Extensible Firmware Interface Specification
DIV

Syntax
DIV[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Performs a divide operation on two signed operands and stores the result to Operand 1. The
operation can be performed on either 32-bit (DIV32) or 64-bit (DIV64) operands.

Operation
Operand 1 <= Operand 1 / Operand 2

Table 155. DIV Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2+ Index16].

• If Operand 2 is direct, then the immediate data is considered a signed value and is added to the
register contents such that Operand 2 = R2 + Immed16

• If the instruction is DIV32 form, and Operand 1 is direct, then the upper 32 bits of the result are
set to 0 before storing to the Operand 1 register.

• A divide-by-0 exception occurs if Operand 2 = 0.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x10

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
1006 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
DIVU

Syntax
DIVU[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Performs a divide operation on two unsigned operands and stores the result to Operand 1. The
operation can be performed on either 32-bit (DIVU32) or 64-bit (DIVU64) operands.

Operation
Operand 1 <= Operand 1 / Operand 2

Table 156. DIVU Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the value is

fetched from memory as an unsigned value at address [R2+ Index16].

• If Operand 2 is direct, then the immediate data is considered an unsigned value and is added to
the Operand 2 register contents such that Operand 2 = R2 + Immed16

• For the DIVU32 form, if Operand 1 is direct then the upper 32 bits of the result are set to 0
before storing back to the Operand 1 register.

• A divide-by-0 exception occurs if Operand 2 = 0.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x11

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
Version 2.5 April, 2015 1007

Unified Extensible Firmware Interface Specification
EXTNDB

Syntax
EXTNDB[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Sign-extend a byte value and store the result to Operand 1. The byte can be signed extended to
32 bits (EXTNDB32) or 64 bits (EXTNDB64).

Operation
Operand 1 <= (sign extended) Operand 2

Table 157. EXTNDB Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the byte Operand

2 value is fetched from memory as a signed value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value, is added
to the signed-extended byte from the Operand 2 register, and the byte result is sign extended to
32 or 64 bits.

• If the instruction is EXTNDB32 and Operand 1 is direct, then the 32-bit result is stored in the
Operand 1 register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x1A

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
1008 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
EXTNDD

Syntax
EXTNDD[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Sign-extend a 32-bit Operand 2 value and store the result to Operand 1. The Operand 2 value can be
extended to 32 bits (EXTNDD32) or 64 bits (EXTNDD64).

Operation
Operand 1 <= (sign extended) Operand 2

Table 158. EXTNDD Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the 32-bit value

is fetched from memory as a signed value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value such that
Operand 2 = R2 + Immed16, and the value is sign extended to 32 or 64 bits accordingly.

• If the instruction is EXTNDD32 and Operand 1 is direct, then the result is stored in the Operand
1 register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x1C

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
Version 2.5 April, 2015 1009

Unified Extensible Firmware Interface Specification
EXTNDW

Syntax
EXTNDW[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Sign-extend a 16-bit Operand 2 value and store the result back to Operand 1. The value can be
signed extended to 32 bits (EXTNDW32) or 64 bits (EXTNDW64).

Operation
Operand 1 <= (sign extended) Operand 2

Table 159. EXTNDW Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the word value is

fetched from memory as a signed value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value such that
Operand 2 = R2 + Immed16, and the value is sign extended to 32 or 64 bits accordingly.

• If the instruction is EXTNDW32 and Operand 1 is direct, then the 32-bit result is stored in the
Operand 1 register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x1B

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
1010 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
JMP

Syntax
JMP32{cs|cc} {@}R1 {Immed32|Index32}
JMP64{cs|cc} Immed64

Description
The JMP instruction is used to conditionally or unconditionally jump to a relative or absolute
address and continue executing EBC instructions. The condition test is done using the condition bit
in the VM Flags register. The JMP64 form only supports an immediate value that can be used for
either a relative or absolute jump. The JMP32 form adds support for indirect addressing of the JMP
offset or address. The JMP is implemented as:

if (ConditionMet) {
 if (Operand.RelativeJump) {
 IP += Operand1 + SizeOfThisInstruction;
 } else {
 IP = Operand1;
 }
}

Operation
IP <= Operand 1 (absolute address)
IP <= IP + SizeOfThisInstruction + Operand 1 (relative address)

Table 160. JMP Instruction Encoding

Byte Description

0 Bit Description

7 0 = Immediate/index data absent
1 = Immediate/index data present

6 0 = JMP32
1 = JMP64

0..5 Opcode = 0x01

1 Bit Description

7 0 = Unconditional jump
1 = Conditional jump

6 0 = Jump if Flags.C is clear (cc)
1 = Jump if Flags.C is set (cs)

5 Reserved = 0

4 0 = Absolute address
1 = Relative address

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1
Version 2.5 April, 2015 1011

Unified Extensible Firmware Interface Specification
Behaviors and Restrictions
• Operand 1 fields are ignored for the JMP64 forms

• If the instruction is JMP32, and Operand 1 register = R0, then the register contents are assumed
to be 0.

• If the instruction is JMP32, and Operand 1 is indirect, then the immediate data is interpreted as
an index, and the jump offset or address is fetched as a 32-bit signed value from address [R1 +
Index32]

• If the instruction is JMP32, and Operand 1 is direct, then the immediate data is considered a
signed immediate value such that Operand 1 = R1 + Immed32

• If the jump is unconditional, then Byte1:Bit6 (condition) is ignored

• If the instruction is JMP64, and Byte0:Bit7 is clear (no immediate data), then an instruction
encoding exception is generated.

• If the instruction is JMP32, and Operand 2 is indirect, then the Operand 2 value is read as a
natural value from memory address [R1 + Index32]

• An alignment check exception is generated if the jump is taken and the target address is odd.

2..5 Optional 32-bit immediate data/index for JMP32

2..9 64-bit immediate data for JMP64

Byte Description
1012 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
JMP8

Syntax
JMP8{cs|cc} Immed8

Description
Conditionally or unconditionally jump to a relative offset and continue execution. The offset is a
signed one-byte offset specified in the number of words. The offset is relative to the start of the
following instruction.

Operation
IP = IP + SizeOfThisInstruction + (Immed8 * 2)

Table 161. JMP8 Instruction Encoding

Behaviors and Restrictions
• If the jump is unconditional, then Byte0:Bit6 (condition) is ignored

BYTE Description

0 Bit Description

7 0 = Unconditional jump
1 = Conditional jump

6 0 = Jump if Flags.C is clear (cc)
1 = Jump if Flags.C is set (cs)

0..5 Opcode = 0x02

1 Immediate data (signed word offset)
Version 2.5 April, 2015 1013

Unified Extensible Firmware Interface Specification
LOADSP

Syntax
LOADSP [Flags], R2

Description
This instruction loads a VM dedicated register with the contents of a VM general-purpose register
R0-R7. The dedicated register is specified by its index as shown in Table 141.

Operation
Operand 1 <= R2

Table 162. LOADSP Instruction Encoding

Behaviors and Restrictions
• Attempting to load any register (Operand 1) other than the Flags register results in an instruction

encoding exception.

• Specifying a reserved dedicated register index results in an instruction encoding exception.

• If Operand 1 is the Flags register, then reserved bits in the Flags register are not modified by this
instruction.

BYTE Description

0 Bit Description

6..7 Reserved = 0

0..5 Opcode = 0x29

1 7 Reserved

4..6 Operand 2 general purpose register

3 Reserved

0..2 Operand 1 dedicated register index
1014 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
MOD

Syntax
MOD[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Perform a modulus on two signed 32-bit (MOD32) or 64-bit (MOD64) operands and store the result
to Operand 1.

Operation
Operand 1 <= Operand 1 MOD Operand 2

Table 163. MOD Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value such that
Operand 2 = R2 + Immed16, and the value is sign extended to 32 or 64 bits accordingly.

• If Operand 2 = 0, then a divide-by-zero exception is generated.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x12

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
Version 2.5 April, 2015 1015

Unified Extensible Firmware Interface Specification
MODU

Syntax
MODU[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Perform a modulus on two unsigned 32-bit (MODU32) or 64-bit (MODU64) operands and store the
result to Operand 1.

Operation
Operand 1 <= Operand 1 MOD Operand 2

Table 164. MODU Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered an unsigned immediate value such
that Operand 2 = R2 + Immed16.

• If Operand 2 = 0, then a divide-by-zero exception is generated.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x13

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
1016 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
MOV

Syntax
MOV[b|w|d|q]{w|d} {@}R1 {Index16|32}, {@}R2 {Index16|32}
MOVqq {@}R1 {Index64}, {@}R2 {Index64}

Description
This instruction moves data from Operand 2 to Operand 1. Both operands can be indexed, though
both indexes are the same size. In the instruction syntax for the first form, the first variable character
indicates the size of the data move, which can be 8 bits (b), 16 bits (w), 32 bits (d), or 64 bits (q). The
optional character indicates the presence and size of the index value(s), which may be 16 bits (w) or
32 bits (d). The MOVqq instruction adds support for 64-bit indexes.

Operation
Operand 1 <= Operand 2

Table 165. MOV Instruction Encoding

Byte Description

0 Bit Description

7 0 = Operand 1 index absent
1 = Operand 1 index present

6 0 = Operand 2 index absent
1 = Operand 2 index present

0..5 0x1D = MOVbw opcode
0x1E = MOVww opcode
0x1F = MOVdw opcode
0x20 = MOVqw opcode
0x21 = MOVbd opcode
0x22 = MOVwd opcode
0x23 = MOVdd opcode
0x24 = MOVqd opcode
0x28 = MOVqq opcode

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional Operand 1 16-bit index

2..3/4..5 Optional Operand 2 16-bit index

2..5 Optional Operand 1 32-bit index

2..5/6..9 Optional Operand 2 32-bit index
Version 2.5 April, 2015 1017

Unified Extensible Firmware Interface Specification
Behaviors and Restrictions
• If an index is specified for Operand 1, and Operand 1 is direct, then an instruction encoding

exception is generated.

2..9 Optional Operand 1 64-bit index (MOVqq)

2..9/10..17 Optional Operand 2 64-bit index (MOVqq)

Byte Description
1018 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
MOVI

Syntax
MOVI[b|w|d|q][w|d|q] {@}R1 {Index16}, Immed16|32|64

Description
This instruction moves a signed immediate value to Operand 1. In the instruction syntax, the first
variable character specifies the width of the move, which may be 8 bits (b), 16 bits (w), 32-bits (d),
or 64 bits (q). The second variable character specifies the width of the immediate data, which may be
16 bits (w), 32 bits (d), or 64 bits (q).

Operation
Operand 1 <= Operand 2

Table 166. MOVI Instruction Encoding

Behaviors and Restrictions
• Specifying an index value with Operand 1 direct results in an instruction encoding exception.

• If the immediate data is smaller than the move size, then the value is sign-extended to the
width of the move.

BYTE Description

0 Bit Description

6..7 0 = Reserved
1 = Immediate data is 16 bits (w)
2 = Immediate data is 32 bits (d)
3 = Immediate data is 64 bits (q)

0..5 Opcode = 0x37

1 Bit Description

7 Reserved = 0

6 0 = Operand 1 index absent
1 = Operand 1 index present

4..5 0 = 8 bit (b) move
1 = 16 bit (w) move
2 = 32 bit (d) move
3 = 64 bit (q) move

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit index

2..3/4..5 16-bit immediate data

2..5/4..7 32-bit immediate data

2..9/4..11 64-bit immediate data
Version 2.5 April, 2015 1019

Unified Extensible Firmware Interface Specification
• If Operand 1 is a register, then the value is stored to the register with bits beyond the move
size cleared.
1020 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
MOVIn

Syntax
MOVIn[w|d|q] {@}R1 {Index16}, Index16|32|64

Description
This instruction moves an indexed value of form (+n,+c) to Operand 1. The index value is converted
from (+n, +c) format to a signed offset per the encoding described in Table 143. The size of the
Operand 2 index data can be 16 (w), 32 (d), or 64 (q) bits.

Operation
Operand 1 <= Operand 2 (index value)

Table 167. MOVIn Instruction Encoding

Behaviors and Restrictions
• Specifying an Operand 1 index when Operand 1 is direct results in an instruction encoding

exception.

• The Operand 2 index is sign extended to the size of the move if necessary.

• If the Operand 2 index size is smaller than the move size, then the value is truncated.

• If Operand 1 is direct, then the Operand 2 value is sign extended to 64 bits and stored to the
Operand 1 register.

BYTE Description

0 Bit Description

6..7 0 = Reserved
1 = Operand 2 index value is 16 bits (w)
2 = Operand 2 index value is 32 bits (d)
3 = Operand 2 index value is 64 bits (q)

0..5 Opcode = 0x38

1 Bit Description

7 Reserved

6 0 = Operand 1 index absent
1 = Operand 1 index present

4..5 Reserved = 0

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit Operand 1 index

2..3/4..5 16-bit Operand 2 index

2..5/4..7 32-bit Operand 2 index

2..9/4..11 64-bit Operand 2 index
Version 2.5 April, 2015 1021

Unified Extensible Firmware Interface Specification
MOVn

Syntax
MOVn{w|d} {@}R1 {Index16|32}, {@}R2 {Index16|32}

Description
This instruction loads an unsigned natural value from Operand 2 and stores the value to Operand 1.
Both operands can be indexed, though both operand indexes are the same size. The operand index(s)
can be 16 bits (w) or 32 bits (d).

Operation
Operand1 <= (UINTN)Operand2

Table 168. MOVn Instruction Encoding

Behaviors and Restrictions
• If an index is specified for Operand 2, and Operand 2 register is direct, then the Operand 2 index

value is added to the register contents such that Operand 2 = (UINTN)(R2 + Index).

• If an index is specified for Operand 1, and Operand 1 is direct, then an instruction encoding
exception is generated.

• If Operand 1 is direct, then the Operand 2 value will be 0-extended to 64 bits on a 32-bit
machine before storing to the Operand 1 register.

BYTE Description

0 Bit Description

7 0 = Operand 1 index absent
1 = Operand 1 index present

6 0 = Operand 2 index absent
1 = Operand 2 index present

0..5 0x32 = MOVnw opcode
0x33 = MOVnd opcode

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional Operand 1 16-bit index

2..3/4..5 Optional Operand 2 16-bit index

2..5 Optional Operand 1 32-bit index

2..5/6..9 Optional Operand 2 32-bit index
1022 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
MOVREL

Syntax
MOVREL[w|d|q] {@}R1 {Index16}, Immed16|32|64

Description
This instruction fetches data at an IP-relative immediate offset (Operand 2) and stores the result to
Operand 1. The offset is a signed offset relative to the following instruction. The fetched data is
unsigned and may be 16 (w), 32 (d), or 64 (q) bits in size.

Operation
Operand 1 <= [IP + SizeOfThisInstruction + Immed]

Table 169. MOVREL Instruction Encoding

Behaviors and Restrictions
• If an Operand 1 index is specified and Operand 1 is direct, then an instruction encoding

exception is generated.

BYTE Description

0 Bit Description

6..7 0 = Reserved
1 = Immediate data is 16 bits (w)
2 = Immediate data is 32 bits (d)
3 = Immediate data is 64 bits (q)

0..5 Opcode = 0x39

1 Bit Description

7 Reserved = 0

6 0 = Operand 1 index absent
1 = Operand 1 index present

4..5 Reserved = 0

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit Operand 1 index

2..3/4..5 16-bit immediate offset

2..5/4..7 32-bit immediate offset

2..9/4..11 64-bit immediate offset
Version 2.5 April, 2015 1023

Unified Extensible Firmware Interface Specification
MOVsn

Syntax
MOVsn{w} {@}R1, {Index16}, {@}R2 {Index16|Immed16}
MOVsn{d} {@}R1 {Index32}, {@}R2 {Index32|Immed32}

Description
Moves a signed natural value from Operand 2 to Operand 1. Both operands can be indexed,
though the indexes are the same size. Indexes can be either 16 bits (MOVsnw) or 32 bits
(MOVsnd) in size.

Operation
Operand 1 <= Operand 2

Table 170. MOVsn Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is direct, and Operand 2 index/immediate data is specified, then the immediate

value is read as a signed immediate value and is added to the contents of Operand 2 register such
that Operand 2 = R2 + Immed.

• If Operand 2 is indirect, and Operand 2 index/immediate data is specified, then the immediate
data is interpreted as an index and the Operand 2 value is fetched from memory as a signed value
at address [R2 + Index16].

BYTE Description

0 Bit Description

7 0 = Operand 1 index absent
1 = Operand 1 index present

6 0 = Operand 2 index/immediate data absent
1 = Operand 2 index/immediate data present

0..5 0x25 = MOVsnw opcode
0x26 = MOVsnd opcode

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit Operand 1 index (MOVsnw)

2..3/4..5 Optional 16-bit Operand 2 index (MOVsnw)

2..5 Optional 32-bit Operand 1 index/immediate data (MOVsnd)

2..5/6..9 Optional 32-bit Operand 2 index/immediate data (MOVsnd)
1024 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
• If an index is specified for Operand 1, and Operand 1 is direct, then an instruction encoding
exception is generated.

• If Operand 1 is direct, then the Operand 2 value is sign-extended to 64-bits on 32-bit native
machines.
Version 2.5 April, 2015 1025

Unified Extensible Firmware Interface Specification
MUL

Syntax
MUL[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Perform a signed multiply of two operands and store the result back to Operand 1. The operands can
be either 32 bits (MUL32) or 64 bits (MUL64).

Operation
Operand 1 <= Operand * Operand 2

Table 171. MUL Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is MUL32, and Operand 1 is direct, then the result is stored to Operand 1
register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x0E

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit Operand 2 immediate data/index
1026 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
MULU

Syntax
MULU[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Performs an unsigned multiply of two 32-bit (MULU32) or 64-bit (MULU64) operands, and stores
the result back to Operand 1.

Operation
Operand 1 <= Operand * Operand 2

Table 172. MULU Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is MULU32 and Operand 1 is direct, then the result is written to the Operand 1
register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x0F

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
Version 2.5 April, 2015 1027

Unified Extensible Firmware Interface Specification
NEG

Syntax
NEG[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Multiply Operand 2 by negative 1, and store the result back to Operand 1. Operand 2 is a signed
value and fetched as either a 32-bit (NEG32) or 64-bit (NEG64) value.

Operation
Operand 1 <= -1 * Operand 2

Table 173. NEG Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is NEG32 and Operand 1 is direct, then the result is stored in Operand 1
register with the upper 32-bits cleared.

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x0B

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
1028 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
NOT

Syntax
NOT[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Performs a logical NOT operation on Operand 2, an unsigned 32-bit (NOT32) or 64-bit (NOT64)
value, and stores the result back to Operand 1.

Operation
Operand 1 <= NOT Operand 2

Table 174. NOT Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is NOT32 and Operand 1 is a register, then the result is stored in the Operand 1
register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x0A

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
Version 2.5 April, 2015 1029

Unified Extensible Firmware Interface Specification
OR

Syntax
OR[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Performs a bit-wise OR of two 32-bit (OR32) or 64-bit (OR64) operands, and stores the result back
to Operand 1.

Operation
Operand 1 <= Operand 1 OR Operand 2

Table 175. OR Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is OR32 and Operand 1 is direct, then the result is stored to Operand 1 register
with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x15

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
1030 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
POP

Syntax
POP[32|64] {@}R1 {Index16|Immed16}

Description
This instruction pops a 32-bit (POP32) or 64-bit (POP64) value from the stack, stores the result to
Operand 1, and adjusts the stack pointer R0 accordingly.

Operation
Operand 1 <= [R0]
R0 <= R0 + 4 (POP32)
R0 <= R0 + 8 (POP64)

Table 176. POP Instruction Encoding

Behaviors and Restrictions
• If Operand 1 is direct, and an index/immediate data is specified, then the immediate data is read

as a signed value and is added to the value popped from the stack, and the result stored to the
Operand 1 register.

• If Operand 1 is indirect, then the immediate data is interpreted as an index, and the value popped
from the stack is stored to address [R1 + Index16].

• If the instruction is POP32, and Operand 1 is direct, then the popped value is sign-extended to 64
bits before storing to the Operand 1 register.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x2C

1 Bit Description

7..4 Reserved = 0

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
Version 2.5 April, 2015 1031

Unified Extensible Firmware Interface Specification
POPn

Syntax
POPn {@}R1 {Index16|Immed16}

Description
Read an unsigned natural value from memory pointed to by stack pointer R0, adjust the stack pointer
accordingly, and store the value back to Operand 1.

Operation
Operand 1 <= (UINTN)[R0]
R0 <= R0 + sizeof (VOID *)

Table 177. POPn Instruction Encoding

Behaviors and Restrictions
• If Operand 1 is direct, and an index/immediate data is specified, then the immediate data is

fetched as a signed value and is added to the value popped from the stack and the result is stored
back to the Operand 1 register.

• If Operand 1 is indirect, and an index/immediate data is specified, then the immediate data is
interpreted as a natural index and the value popped from the stack is stored at [R1 + Index16].

• If Operand 1 is direct, and the instruction is executed on a 32-bit machine, then the result is
stored to the Operand 1 register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 Reserved = 0

0..5 Opcode = 0x36

1 Bit Description

7..4 Reserved = 0

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
1032 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
PUSH

Syntax
PUSH[32|64] {@}R1 {Index16|Immed16}

Description
Adjust the stack pointer R0 and store a 32-bit (PUSH32) or 64-bit (PUSH64) Operand 1 value on the
stack.

Operation
R0 <= R0 - 4 (PUSH32)
R0 <= R0 - 8 (PUSH64)
[R0] <= Operand 1

Table 178. PUSH Instruction Encoding

Behaviors and Restrictions
• If Operand 1 is direct, and an index/immediate data is specified, then the immediate data is read

as a signed value and is added to the Operand 1 register contents such that Operand 1 = R1 +
Immed16.

• If Operand 1 is indirect, and an index/immediate data is specified, then the immediate data is
interpreted as a natural index and the pushed value is read from [R1 + Index16].

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x2B

1 Bit Description

7..4 Reserved = 0

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
Version 2.5 April, 2015 1033

Unified Extensible Firmware Interface Specification
PUSHn

Syntax
PUSHn {@}R1 {Index16|Immed16}

Description
Adjust the stack pointer R0, and store a natural value on the stack.

Operation
R0 <= R0 - sizeof (VOID *)
[R0] <= Operand 1

Table 179. PUSHn Instruction Encoding

Behaviors and Restrictions
• If Operand 1 is direct, and an index/immediate data is specified, then the immediate data is

fetched as a signed value and is added to the Operand 1 register contents such that Operand 1 =
R1 + Immed16.

• If Operand 1 is indirect, and an index/immediate data is specified, then the immediate data is
interpreted as a natural index and the Operand 1 value pushed is fetched from [R1 + Index16].

BYTE Description

0 Bit Description

7 0 = Immediate/index absent
1 = Immediate/index present

6 Reserved = 0

0..5 Opcode = 0x35

1 Bit Description

7..4 Reserved = 0

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
1034 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
RET

Syntax
RET

Description
This instruction fetches the return address from the stack, sets the IP to the value, adjusts the stack
pointer register R0, and continues execution at the return address. If the RET is a final return from
the EBC driver, then execution control returns to the caller, which may be EBC or native code.

Operation
IP <= [R0]
R0 <= R0 + 16

Table 180. RET Instruction Encoding

Behaviors and Restrictions
• An alignment exception will be generated if the return address is not aligned on a 16-bit

boundary.

BYTE Description

0 Bit Description

6..7 Reserved = 0

0..5 Opcode = 0x04

1 Reserved = 0
Version 2.5 April, 2015 1035

Unified Extensible Firmware Interface Specification
SHL

Syntax
SHL[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Left-shifts Operand 1 by Operand 2 bit positions and stores the result back to Operand 1. The
operand sizes may be either 32-bits (SHL32) or 64 bits (SHL64).

Operation
Operand 1 <= Operand 1 << Operand 2

Table 181. SHL Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is SHL32, and Operand 1 is direct, then the result is stored to the Operand 1
register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x17

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
1036 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
SHR

Syntax
SHR[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Right-shifts unsigned Operand 1 by Operand 2 bit positions and stores the result back to Operand 1.
The operand sizes may be either 32-bits (SHR32) or 64 bits (SHR64).

Operation
Operand 1 <= Operand 1 >> Operand 2

Table 182. SHR Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is SHR32, and Operand 1 is direct, then the result is stored to the Operand 1
register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x18

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
Version 2.5 April, 2015 1037

Unified Extensible Firmware Interface Specification
STORESP

Syntax
STORESP R1, [IP|Flags]

Description
This instruction transfers the contents of a dedicated register to a general-purpose register. See
Table 141 for the VM dedicated registers and their corresponding index values.

Operation
Operand 1 <= Operand 2

Table 183. STORESP Instruction Encoding

Behaviors and Restrictions
• Specifying an invalid dedicated register index results in an instruction encoding exception.

BYTE Description

0 Bit Description

6..7 Reserved = 0

0..5 Opcode = 0x2A

1 7 Reserved = 0

4..6 Operand 2 dedicated register index

3 Reserved = 0

0..2 Operand 1 general purpose register
1038 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
SUB

Syntax
SUB[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Subtracts a 32-bit (SUB32) or 64-bit (SUB64) signed Operand 2 value from a signed Operand 1
value of the same size, and stores the result to Operand 1.

Operation
Operand 1 <= Operand 1 - Operand 2

Table 184. SUB Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as a signed value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is SUB32 and Operand 1 is direct, then the result is stored to the Operand 1
register with the upper 32 bits cleared.

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x0D

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
Version 2.5 April, 2015 1039

Unified Extensible Firmware Interface Specification
XOR

Syntax
XOR[32|64] {@}R1, {@}R2 {Index16|Immed16}

Description
Performs a bit-wise exclusive OR of two 32-bit (XOR32) or 64-bit (XOR64) operands, and stores
the result back to Operand 1.

Operation
Operand 1 <= Operand 1 XOR Operand 2

Table 185. XOR Instruction Encoding

Behaviors and Restrictions
• If Operand 2 is indirect, then the immediate data is interpreted as an index, and the Operand 2

value is fetched from memory as an unsigned value at address [R2 + Index16].

• If Operand 2 is direct, then the immediate data is considered a signed immediate value and is
added to the Operand 2 register contents such that Operand 2 = R2 + Immed16.

• If the instruction is XOR32 and Operand1 is direct, then the result is stored to the Operand 1
register with the upper 32-bits cleared.

BYTE Description

0 Bit Description

7 0 = Operand 2 immediate/index absent
1 = Operand 2 immediate/index present

6 0 = 32-bit operation
1 = 64-bit operation

0..5 Opcode = 0x16

1 Bit Description

7 0 = Operand 2 direct
1 = Operand 2 indirect

4..6 Operand 2

3 0 = Operand 1 direct
1 = Operand 1 indirect

0..2 Operand 1

2..3 Optional 16-bit immediate data/index
1040 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
21.9 Runtime and Software Conventions

21.9.1 Calling Outside VM
Calls can be made to routines in other modules that are native or in another VM. It is the
responsibility of the calling VM to prepare the outgoing arguments correctly to make the call outside
the VM. It is also the responsibility of the VM to prepare the incoming arguments correctly for the
call from outside the VM. Calls outside the VM must use the CALLEX instruction.

21.9.2 Calling Inside VM
Calls inside VM can be made either directly using the CALL or CALLEX instructions. Using direct
CALL instructions is an optimization.

21.9.3 Parameter Passing
Parameters are pushed on the VM stack per the CDECL calling convention. Per this convention, the
last argument in the parameter list is pushed on the stack first, and the first argument in the
parameter list is pushed on the stack last.

All parameters are stored or accessed as natural size (using naturally sized instruction) except 64-bit
integers, which are pushed as 64-bit values. 32-bit integers are pushed as natural size (since they
should be passed as 64-bit parameter values on 64-bit machines).

21.9.4 Return Values
Return values of 8 bytes or less in size are returned in general-purpose register R7. Return values
larger than 8 bytes are not supported.

21.9.5 Binary Format
PE32+ format will be used for generating binaries for the VM. A VarBss section will be included in
the binary image. All global and static variables will be placed in this section. The size of the
section will be based on worst-case 64-bit pointers. Initialized data and pointers will also be placed
in the VarBss section, with the compiler generating code to initialize the values at runtime.

21.10 Architectural Requirements
This section provides a high level overview of the architectural requirements that are necessary to
support execution of EBC on a platform.

21.10.1 EBC Image Requirements
All EBC images will be PE32+ format. Some minor additions to the format will be required to
support EBC images. See the Microsoft Portable Executable and Common Object File Format
Specification pointed to in Appendix Q for details of this image file format.

A given EBC image must be executable on different platforms, independent of whether it is a 32- or
64-bit processor. All EBC images should be driver implementations.
Version 2.5 April, 2015 1041

Unified Extensible Firmware Interface Specification
21.10.2 EBC Execution Interfacing Requirements
EBC drivers will typically be designed to execute in an (usually preboot) EFI environment. As such,
EBC drivers must be able to invoke protocols and expose protocols for use by other drivers or
applications. The following execution transitions must be supported:

• EBC calling EBC

• EBC calling native code

• Native code calling EBC

• Native code calling native code

• Returning from all the above transitions

Obviously native code calling native code is available by default, so is not discussed in this
document.

To maintain backward compatibility with existing native code, and minimize the overhead for
non-EBC drivers calling EBC protocols, all four transitions must be seamless from the application
perspective. Therefore, drivers, whether EBC or native, shall not be required to have any knowledge
of whether or not the calling code, or the code being called, is native or EBC compiled code. The
onus is put on the tools and interpreter to support this requirement.

21.10.3 Interfacing Function Parameters Requirements
To allow code execution across protocol boundaries, the interpreter must ensure that parameters
passed across execution transitions are handled in the same manner as the standard parameter
passing convention for the native processor.

21.10.4 Function Return Requirements
The interpreter must support standard function returns to resume execution to the caller of external
protocols. The details of this requirement are specific to the native processor. The called function
must not be required to have any knowledge of whether or not the caller is EBC or native code.

21.10.5 Function Return Values Requirements
The interpreter must support standard function return values from called protocols. The exact
implementation of this functionality is dependent on the native processor. This requirement applies
to return values of 64 bits or less. The called function must not be required to have any knowledge
of whether or not the caller is EBC or native code. Note that returning of structures is not supported.

21.11 EBC Interpreter Protocol
The EFI EBC protocol provides services to execute EBC images, which will typically be loaded into
option ROMs.
1042 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
EFI_EBC_PROTOCOL

Summary
This protocol provides the services that allow execution of EBC images.

GUID
#define EFI_EBC_PROTOCOL_GUID \
 {0x13ac6dd1,0x73d0,0x11d4,\
 {0xb0,0x6b,0x00,0xaa,0x00,0xbd,0x6d,0xe7}}

Protocol Interface Structure
typedef struct _EFI_EBC_PROTOCOL {
 EFI_EBC_CREATE_THUNK CreateThunk;
 EFI_EBC_UNLOAD_IMAGE UnloadImage;
 EFI_EBC_REGISTER_ICACHE_FLUSH RegisterICacheFlush;
 EFI_EBC_GET_VERSION GetVersion;
} EFI_EBC_PROTOCOL;

Parameters
CreateThunk Creates a thunk for an EBC image entry point or protocol service,

and returns a pointer to the thunk. See the CreateThunk()
function description.

UnloadImage Called when an EBC image is unloaded to allow the interpreter to
perform any cleanup associated with the image’s execution. See
the UnloadImage() function description.

RegisterICacheFlush
Called to register a callback function that the EBC interpreter can
call to flush the processor instruction cache after creating thunks.
See the RegisterICacheFlush()) function description.

GetVersion Called to get the version of the associated EBC interpreter. See
the GetVersion() function description.

Description
The EFI EBC protocol provides services to load and execute EBC images, which will typically be
loaded into option ROMs. The image loader will load the EBC image, perform standard relocations,
and invoke the CreateThunk() service to create a thunk for the EBC image’s entry point. The
image can then be run using the standard EFI start image services.
Version 2.5 April, 2015 1043

Unified Extensible Firmware Interface Specification
EFI_EBC_PROTOCOL.CreateThunk()

Summary
Creates a thunk for an EBC entry point, returning the address of the thunk.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EBC_CREATE_THUNK) (
 IN EFI_EBC_PROTOCOL *This,
 IN EFI_HANDLE ImageHandle,
 IN VOID *EbcEntryPoint,
 OUT VOID **Thunk
);

Parameters
This A pointer to the EFI_EBC_PROTOCOL instance. This protocol

is defined in Section 21.11.

ImageHandle Handle of image for which the thunk is being created.

EbcEntryPoint Address of the actual EBC entry point or protocol service the
thunk should call.

Thunk Returned pointer to a thunk created.

Description
A PE32+ EBC image, like any other PE32+ image, contains an optional header that specifies the
entry point for image execution. However for EBC images this is the entry point of EBC
instructions, so is not directly executable by the native processor. Therefore when an EBC image is
loaded, the loader must call this service to get a pointer to native code (thunk) that can be executed
which will invoke the interpreter to begin execution at the original EBC entry point.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_INVALID_PARAMETER Image entry point is not 2-byte aligned.

EFI_OUT_OF_RESOURCES Memory could not be allocated for the thunk.
1044 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
EFI_EBC_PROTOCOL.UnloadImage()

Summary
Called prior to unloading an EBC image from memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EBC_UNLOAD_IMAGE) (
 IN EFI_EBC_PROTOCOL *This,
 IN EFI_HANDLE ImageHandle
);

Parameters
This A pointer to the EFI_EBC_PROTOCOL instance. This protocol

is defined in Section 21.11.

ImageHandle Image handle of the EBC image that is being unloaded from
memory.

Description
This function is called after an EBC image has exited, but before the image is actually unloaded. It
is intended to provide the interpreter with the opportunity to perform any cleanup that may be
necessary as a result of loading and executing the image.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_INVALID_PARAMETER Image handle is not recognized as belonging to an EBC image that
has been executed.
Version 2.5 April, 2015 1045

Unified Extensible Firmware Interface Specification
EFI_EBC_PROTOCOL.RegisterICacheFlush()

Summary
Registers a callback function that the EBC interpreter calls to flush the processor instruction cache
following creation of thunks.

Prototype
typedef
EFI_STATUS
(* EFI_EBC_REGISTER_ICACHE_FLUSH) (
 IN EFI_EBC_PROTOCOL *This,
 IN EBC_ICACHE_FLUSH Flush
);

Parameters
This A pointer to the EFI_EBC_PROTOCOL instance. This protocol

is defined in Section 21.11.

Flush Pointer to a function of type EBC_ICACH_FLUSH. See
“Related Definitions” below for a detailed description of this
type.

Related Definitions
typedef

EFI_STATUS

(* EBC_ICACHE_FLUSH) (

 IN EFI_PHYSICAL_ADDRESS Start,

 IN UINT64 Length

);

Start The beginning physical address to flush from the processor’s
instruction cache.

Length The number of bytes to flush from the processor’s instruction
cache.

This is the prototype for the Flush callback routine. A pointer to a routine of this type is passed to
the EBC EFI_EBC_REGISTER_ICACHE_FLUSH protocol service.

Description
An EBC image’s original PE32+ entry point is not directly executable by the native processor.
Therefore to execute an EBC image, a thunk (which invokes the EBC interpreter for the image’s
original entry point) must be created for the entry point, and the thunk is executed when the EBC
image is started. Since the thunks may be created on-the-fly in memory, the processor’s instruction
cache may require to be flushed after thunks are created. The caller to this EBC service can provide
a pointer to a function to flush the instruction cache for any thunks created after the
CreateThunk() service has been called. If an instruction-cache flush callback is not provided to
the interpreter, then the interpreter assumes the system has no instruction cache, or that flushing the
cache is not required following creation of thunks.
1046 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
Status Codes Returned

EFI_SUCCESS The function completed successfully.
Version 2.5 April, 2015 1047

Unified Extensible Firmware Interface Specification
EFI_EBC_PROTOCOL.GetVersion()

Summary
Called to get the version of the interpreter.

Prototype
typedef
EFI_STATUS
(* EFI_EBC_GET_VERSION) (
 IN EFI_EBC_PROTOCOL *This,
 OUT UINT64 *Version
);

Parameters
This A pointer to the EFI_EBC_PROTOCOL instance. This protocol

is defined in Section 21.11.

Version Pointer to where to store the returned version of the interpreter.

Description
This function is called to get the version of the loaded EBC interpreter. The value and format of the
returned version is identical to that returned by the EBC BREAK 1 instruction.

Status Codes Returned

21.12 EBC Tools

21.12.1 EBC C Compiler
This section describes the responsibilities of the EBC C compiler. To fully specify these
responsibilities requires that the thunking mechanisms between EBC and native code be described.

21.12.2 C Coding Convention
The EBC C compiler supports only the C programming language. There is no support for C++,
inline assembly, floating point types/operations, or C calling conventions other than CDECL.

Pointer type in C is supported only as 64-bit pointer. The code should be 64-bit pointer ready (not
assign pointers to integers and vice versa).

The compiler does not support user-defined sections through pragmas.

Global variables containing pointers that are initialized will be put in the uninitialized VarBss
section and the compiler will generate code to initialize these variables during load time. The code

EFI_SUCCESS The function completed successfully.

EFI_INVALID_PARAMETER Version pointer is NULL.
1048 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
will be placed in an init text section. This compiler-generated code will be executed before the
actual image entry point is executed.

21.12.3 EBC Interface Assembly Instructions
The EBC instruction set includes two forms of a CALL instruction that can be used to invoke
external protocols. Their assembly language formats are:

CALLEX Immed64
CALLEX32 {@}R1 {Immed32}

Both forms can be used to invoke external protocols at an absolute address specified by the
immediate data and/or register operand. The second form also supports jumping to code at a relative
address. When one of these instructions is executed, the interpreter is responsible for thunking
arguments and then jumping to the destination address. When the called function returns, code
begins execution at the EBC instruction following the CALL instruction. The process by which this
happens is called thunking. Later sections describe this operation in detail.

21.12.4 Stack Maintenance and Argument Passing
There are several EBC assembly instructions that directly manipulate the stack contents and stack
pointer. These instructions operate on the EBC stack, not the interpreter stack. The instructions
include the EBC PUSH, POP, PUSHn, and POPn, and all forms of the MOV instructions.

These instructions must adjust the EBC stack pointer in the same manner as equivalent
instructions of the native instruction set. With this implementation, parameters pushed on the
stack by an EBC driver can be accessed normally for stack-based native code. If native code expects
parameters in registers, then the interpreter thunking process must transfer the arguments from EBC
stack to the appropriate processor registers. The process would need to be reversed when native
code calls EBC.

21.12.5 Native to EBC Arguments Calling Convention
The calling convention for arguments passed to EBC functions follows the standard CDECL calling
convention. The arguments must be pushed as their native size. After the function arguments have
been pushed on the stack, execution is passed to the called EBC function. The overhead of thunking
the function parameters depends on the standard parameter passing convention for the host
processor. The implementation of this functionality is left to the interpreter.

21.12.6 EBC to Native Arguments Calling Convention
When EBC makes function calls via function pointers, the EBC C compiler cannot determine
whether the calls are to native code or EBC. It therefore assumes that the calls are to native code,
and emits the appropriate EBC CALLEX instructions. To be compatible with calls to native code,
the calling convention of EBC calling native code must follow the parameter passing convention of
the native processor. The EBC C compiler generates EBC instructions that push all arguments on
the stack. The interpreter is then responsible for performing the necessary thunking. The exact
implementation of this functionality is left to the interpreter.
Version 2.5 April, 2015 1049

Unified Extensible Firmware Interface Specification
21.12.7 EBC to EBC Arguments Calling Convention
If the EBC C compiler is able to determine that a function call is to a local function, it can emit a
standard EBC CALL instruction. In this case, the function arguments are passed as described in the
other sections of this specification.

21.12.8 Function Returns
When EBC calls an external function, the thunking process includes setting up the host processor
stack or registers such that when the called function returns, execution is passed back to the EBC at
the instruction following the call. The implementation is left to the interpreter, but it must follow the
standard function return process of the host processor. Typically this will require the interpreter to
push the return address on the stack or move it to a processor register prior to calling the
external function.

21.12.9 Function Return Values
EBC function return values of 8 bytes or less are returned in VM general-purpose register R7.
Returning values larger than 8 bytes on the stack is not supported. Instead, the caller or callee must
allocate memory for the return value, and the caller can pass a pointer to the callee, or the callee can
return a pointer to the value in the standard return register R7.

If an EBC function returns to native code, then the interpreter thunking process is responsible for
transferring the contents of R7 to an appropriate location such that the caller has access to the value
using standard native code. Typically the value will be transferred to a processor register.
Conversely, if a native function returns to an EBC function, the interpreter is responsible for
transferring the return value from the native return memory or register location into VM register R7.

21.12.10 Thunking
Thunking is the process by which transitions between execution of native and EBC are handled. The
major issues that must be addressed for thunking are the handling of function arguments, how the
external function is invoked, and how return values and function returns are handled. The following
sections describe the thunking process for the possible transitions.

21.12.10.1 Thunking EBC to Native Code
By definition, all external calls from within EBC are calls to native code. The EBC CALLEX
instructions are used to make these calls. A typical application for EBC calling native code would
be a simple “Hello World” driver. For a UEFI driver, the code could be written as shown below.

EFI_STATUS EfiMain (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *ST
)
{

ST->ConOut->OutputString(ST->ConOut, L”Hello World!”);
return EFI_SUCCESS;

}

1050 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
This C code, when compiled to EBC assembly, could result in two PUSHn instructions to push the
parameters on the stack, some code to get the absolute address of the OutputString() function,
then a CALLEX instruction to jump to native code. Typical pseudo assembly code for the function
call could be something like the following:

PUSHn _HelloString
PUSHn _ConOut
MOVnw R1, _OutputString
CALLEX64R1

The interpreter is responsible for executing the PUSHn instructions to push the arguments on the
EBC stack when interpreting the PUSHn instructions. When the CALLEX instruction is
encountered, it must thunk to external native code. The exact thunking mechanism is native
processor dependent. For example, a supported 32-bit thunking implementation could simply move
the system stack pointer to point to the EBC stack, then perform a CALL to the absolute address
specified in VM register R1. However, the function calling convention for the Itanium processor
family calls for the first 8 function arguments being passed in registers. Therefore, the Itanium
processor family thunking mechanism requires the arguments to be copied from the EBC stack into
processor registers. Then a CALL can be performed to jump to the absolute address in VM register
R1. Note that since the interpreter is not aware of the number of arguments to the function being
called, the maximum amount of data may be copied from the EBC stack into processor registers.

21.12.10.2 Thunking Native Code to EBC
An EBC driver may install protocols for use by other EBC drivers, or UEFI drivers or applications.
These protocols provide the mechanism by which external native code can call EBC. Typical C
code to install a generic protocol is shown below.

EFI_STATUS Foo(UINT32 Arg1, UINT32 Arg2);

MyProtInterface->Service1= Foo;

Status = LibInstallProtocolInterfaces (&Handle, &MyProtGUID,
MyProtInterface, NULL);

To support thunking native code to EBC, the EBC compiler resolves all EBC function pointers using
one level of indirection. In this way, the address of an EBC function actually becomes the address of
a piece of native (thunk) code that invokes the interpreter to execute the actual EBC function. As a
result of this implementation, any time the address of an EBC function is taken, the EBC C compiler
must generate the following:

• A 64-bit function pointer data object that contains the actual address of the EBC function

• EBC initialization code that is executed before the image entry point that will execute EBC
BREAK 5 instructions to create thunks for each function pointer data object

• Associated relocations for the above

So for the above code sample, the compiler must generate EBC initialization code similar to the
following. This code is executed prior to execution of the actual EBC driver’s entry point.

MOVqq R7, Foo_pointer; get address of Foo pointer
Version 2.5 April, 2015 1051

Unified Extensible Firmware Interface Specification
BREAK 5 ; create a thunk for the function

The BREAK instruction causes the interpreter to create native thunk code elsewhere in memory, and
then modify the memory location pointed to by R7 to point to the newly created thunk code for EBC
function Foo. From within EBC, when the address of Foo is taken, the address of the thunk is
actually returned. So for the assignment of the protocol Service1 above, the EBC C compiler will
generate something like the following:

MOVqq R7, Foo_pointer; get address of Foo function pointer
MOVqq R7, @R7 ; one level of indirection
MOVn R6, _MyProtInterface->Service1 ; get address of variable
MOVqq @R6, R7 ; address of thunk to ->Service1

21.12.10.3 Thunking EBC to EBC
EBC can call EBC via function pointers or protocols. These two mechanisms are treated identically
by the EBC C compiler, and are performed using EBC CALLEX instructions. For EBC to call EBC,
the EBC being called must have provided the address of the function. As described above, the
address is actually the address of native thunk code for the actual EBC function. Therefore, when
EBC calls EBC, the interpreter assumes native code is being called so prepares function arguments
accordingly, and then makes the call. The native thunk code assumes native code is calling EBC, so
will basically “undo” the preparation of function arguments, and then invoke the interpreter to
execute the actual EBC function of interest.

21.12.11 EBC Linker
New constants must be defined for use by the linker in processing EBC images. For EBC images,
the linker must set the machine type in the PE file header accordingly to indicate that the image
contains EBC.

#define IMAGE_FILE_MACHINE_EBC 0x0EBC

In addition, the linker must support EBC images with of the following subsystem types as set in a
PE32+ optional header:

#define IMAGE_SUBSYSTEM_EFI_APPLICATION 10
#define IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER 11
#define IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12

For EFI EBC images and object files, the following relocation types must be supported:

// No relocations required
#define IMAGE_REL_EBC_ABSOLUTE 0x0000
// 32-bit address w/o image base
#define IMAGE_REL_EBC_ADDR32NB 0x0001
// 32-bit relative address from byte following relocs
#define IMAGE_REL_EBC_REL32 0x0002
// Section table index
#define IMAGE_REL_EBC_SECTION 0x0003
// Offset within section
#define IMAGE_REL_EBC_SECREL 0x0004
1052 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
The ADDR32NB relocation is used internally to the linker when RVAs are emitted. It also is used
for version resources which probably will not be used. The REL32 relocation is for PC relative
addressing on code. The SECTION and SECREL relocations are used for debug information.

21.12.12 Image Loader
The EFI image loader is responsible for loading an executable image into memory and applying
relocation information so that an image can execute at the address in memory where it has been
loaded prior to execution of the image. For EBC images, the image loader must also invoke the
interpreter protocol to create a thunk for the image entry point and return the address of this thunk.
After loading the image in this manner, the image can be executed in the standard manner. To
implement this functionality, only minor changes will be made to EFI service
EFI_BOOT_SERVICES.LoadImage(), and no changes should be made to
EFI_BOOT_SERVICES.StartImage().

After the image is unloaded, the EFI image load service must call the EBC
EFI_BOOT_SERVICES.UnloadImage() service to perform any cleanup to complete
unloading of the image. Typically this will include freeing up any memory allocated for thunks for
the image during load and execution.

21.12.13 Debug Support
The interpreter must support debugging in an EFI environment per the EFI debug support protocol.

21.13 VM Exception Handling
This section lists the different types of exceptions that the VM may assert during execution of an
EBC image. If a debugger is attached to the EBC driver via the EFI debug support protocol, then the
debugger should be able to capture and identify the exception type. If a debugger is not attached,
then depending on the severity of the exception, the interpreter may do one of the following:

• Invoke the EFI ASSERT() macro, which will typically display an error message and halt the
system

• Sit in a while(1) loop to hang the system

• Ignore the exception and continue execution of the image (minor exceptions only)

It is a platform policy decision as to the action taken in response to EBC exceptions. The following
sections describe the exceptions that may be generated by the VM.

21.13.1 Divide By 0 Exception
A divide-by-0 exception can occur for the EBC instructions DIV, DIVU, MOD, and MODU.

21.13.2 Debug Break Exception
A debug break exception occurs if the VM encounters a BREAK instruction with a break code of 3.
Version 2.5 April, 2015 1053

Unified Extensible Firmware Interface Specification
21.13.3 Invalid Opcode Exception
An invalid opcode exception will occur if the interpreter encounters a reserved opcode during
execution.

21.13.4 Stack Fault Exception
A stack fault exception can occur if the interpreter detects that function nesting within the interpreter
or system interrupts was sufficient to potentially corrupt the EBC image’s stack contents. This
exception could also occur if the EBC driver attempts to adjust the stack pointer outside the range
allocated to the driver.

21.13.5 Alignment Exception
An alignment exception can occur if the particular implementation of the interpreter does not
support unaligned accesses to data or code. It may also occur if the stack pointer or instruction
pointer becomes misaligned.

21.13.6 Instruction Encoding Exception
An instruction encoding exception can occur for the following:

• For some instructions, if an Operand 1 index is specified and Operand 1 is direct

• If an instruction encoding has reserved bits set to values other than 0

• If an instruction encoding has a field set to a reserved value.

21.13.7 Bad Break Exception
A bad break exception occurs if the VM encounters a BREAK instruction with a break code of 0, or
any other unrecognized or unsupported break code.

21.13.8 Undefined Exception
An undefined exception can occur for other conditions detected by the VM. The cause of such an
exception is dependent on the VM implementation, but will most likely include internal VM faults.

21.14 Option ROM Formats
The new option ROM capability is designed to be a departure from the legacy method of formatting
an option ROM. PCI local bus add-in cards are the primary targets for this design although support
for future bus types will be added as necessary. EFI EBC drivers can be stored in option ROMs or
on hard drives in an EFI system partition.

The new format defined for the UEFI specification is intended to coexist with legacy format PCI
Expansion ROM images. This provides the ability for IHVs to make a single option ROM binary
that contains both legacy and new format images at the same time. This is important for the ability
to have single add-in card SKUs that can work in a variety of systems both with and without native
support for UEFI. Support for multiple image types in this way provides a smooth migration path
1054 April, 2015 Version 2.5

EFI Byte Code Virtual Machine
during the period before widespread adoption of UEFI drivers as the primary means of support for
software needed to accomplish add-in card operation in the pre-OS boot timeframe.

21.14.1 EFI Drivers for PCI Add-in Cards
The location mechanism for UEFI drivers in PCI option ROM containers is described fully in
Section 10.3. Readers should refer to this section for complete details of the scheme and associated
data structures.

21.14.2 Non-PCI Bus Support
EFI expansion ROMs are not supported on any other bus besides PCI local bus in the current
revision of the UEFI specification.

This means that support for UEFI drivers in legacy ISA add-in card ROMs is explicitly excluded.

Support for UEFI drivers to be located on add-in card type devices for future bus designs other than
PCI local bus will be added to future revisions of the UEFI specification. This support will depend
upon the specifications that govern such new bus designs with respect to the mechanisms defined for
support of driver code on devices.
Version 2.5 April, 2015 1055

Unified Extensible Firmware Interface Specification
1056 April, 2015 Version 2.5

Firmware Update and Reporting
22
Firmware Update and Reporting

The UEFI Firmware Management Protocol provides an abstraction for device to provide firmware
management support. The base requirements for managing device firmware images include
identifying firmware image revision level and programming the image into the device.

The protocol for managing firmware provides the following services.

• Get the attributes of the current firmware image. Attributes include revision level.

• Get a copy of the current firmware image. As an example, this service could be used by a
management application to facilitate a firmware roll-back.

• Program the device with a firmware image supplied by the user.

• Label all the firmware images within a device with a single version.

When UEFI Firmware Management Protocol (FMP) instance is intended to perform the update of an
option ROM loaded from a PCI or PCI Express device, it is recommended that the FMP instance be
attached to the handle with EFI_LOADED_IMAGE_PROTOCOL for said Option ROM.

When the FMP instance is intended to update internal device firmware, or a combination of device
firmware and Option ROM, the FMP instance may instead be attached to the Controller handle of
the device. However in the case where multiple devices represented by multiple controller handles
are served by the same firmware store, only a single Controller handle should expose FMP. In all
cases a specific updatable hardware firmware store must be represented by exactly one FMP
instance.

Care should be taken to ensure that the FMP instance reports current version data that accurately
represents the actual contents of the firmware store of the device exposing FMP, because in some
cases the device driver currently operating the device may have been loaded from another device or
media.

22.1 Firmware Management Protocol

EFI_FIRMWARE_MANAGEMENT_PROTOCOL

Summary
Firmware Management application invokes this protocol to manage device firmware.
Version 2.5 April, 2015 1057

Unified Extensible Firmware Interface Specification
GUID
// {86C77A67-0B97-4633-A187-49104D0685C7}
#define EFI_FIRMWARE_MANAGEMENT_PROTOCOL_GUID \
 { 0x86c77a67, 0xb97, 0x4633, \
 {0xa1, 0x87, 0x49, 0x10, 0x4d, 0x06, 0x85, 0xc7 }}

Protocol
typedef struct _EFI_FIRMWARE_MANAGEMENT_PROTOCOL {
 EFI_FIRMWARE_MANAGEMENT_PROTOCOL_GET_IMAGE_INFO GetImageInfo;
 EFI_FIRMWARE_MANAGEMENT_PROTOCOL_GET_IMAGE GetImage;
 EFI_FIRMWARE_MANAGEMENT_PROTOCOL_SET_IMAGE SetImage;
 EFI_FIRMWARE_MANAGEMENT_PROTOCOL_CHECK_IMAGE CheckImage;
 EFI_FIRMWARE_MANAGEMENT_PROTOCOL_GET_PACKAGE_INFO
GetPackageInfo;
 EFI_FIRMWARE_MANAGEMENT_PROTOCOL_SET_PACKAGE_INFO
SetPackageInfo;
} EFI_FIRMWARE_MANAGEMENT_PROTOCOL;

Members
GetImageInfo

Returns information about the current firmware image(s) of the device.

GetImage

Retrieves a copy of the current firmware image of the device.

SetImage

Updates the device firmware image of the device.

CheckImage

Checks if the firmware image is valid for the device.

GetPackageInfo

Returns information about the current firmware package.

SetPackageInfo

Updates information about the firmware package.
1058 April, 2015 Version 2.5

Firmware Update and Reporting
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetImageInfo()

Summary
Returns information about the current firmware image(s) of the device.

Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_FIRMWARE_MANAGEMENT_PROTOCOL_GET_IMAGE_INFO) (
 IN EFI_FIRMWARE_MANAGEMENT_PROTOCOL *This,
 IN OUT UINTN *ImageInfoSize,
 IN OUT EFI_FIRMWARE_IMAGE_DESCRIPTOR *ImageInfo,
 OUT UINT32 *DescriptorVersion
 OUT UINT8 *DescriptorCount,
 OUT UINTN *DescriptorSize,
 OUT UINT32 *PackageVersion,
 OUT CHAR16 **PackageVersionName
) ;

Parameters
This

A pointer to the EFI_FIRMWARE_MANAGEMENT_PROTOCOL instance.

ImageInfoSize

A pointer to the size, in bytes, of the ImageInfo buffer. On input, this is the size of
the buffer allocated by the caller. On output, it is the size of the buffer returned by the
firmware if the buffer was large enough, or the size of the buffer needed to contain the
image(s) information if the buffer was too small.

ImageInfo

A pointer to the buffer in which firmware places the current image(s) information.
The information is an array of EFI_FIRMWARE_IMAGE_DESCRIPTORs. See
“Related Definitions”.

DescriptorVersion

A pointer to the location in which firmware returns the version number associated
with the EFI_FIRMWARE_IMAGE_DESCRIPTOR. See “Related Definitions”.

DescriptorCount

A pointer to the location in which firmware returns the number of descriptors or
firmware images within this device.

DescriptorSize

A pointer to the location in which firmware returns the size, in bytes, of an individual
EFI_FIRMWARE_IMAGE_DESCRIPTOR.
Version 2.5 April, 2015 1059

Unified Extensible Firmware Interface Specification
PackageVersion

A version number that represents all the firmware images in the device. The format is
vendor specific and new version must have a greater value than the old version. If
PackageVersion is not supported, the value is 0xFFFFFFFF. A value of
0xFFFFFFFE indicates that package version comparison is to be performed using
PackageVersionName. A value of 0xFFFFFFFD indicates that package version
update is in progress.

PackageVersionName

A pointer to a pointer to a null-terminated string representing the package version
name. The buffer is allocated by this function with AllocatePool(), and it is the
caller’s responsibility to free it with a call to FreePool().

Related Definitions
//**
// EFI_FIRMWARE_IMAGE_DESCRIPTOR
//**
typedef struct {
 UINT8 ImageIndex;
 EFI_GUID ImageTypeId;
 UINT64 ImageId;
 CHAR16 *ImageIdName;
 UINT32 Version;
 CHAR16 *VersionName;
 UINTN Size;
 UINT64 AttributesSupported;
 UINT64 AttributesSetting;
 UINT64 Compatibilities;
 UINT32 LowestSupportedImageVersion; \
//Introduced with DescriptorVersion 2+
 UINT32 LastAttemptVersion; //Introduced with V3+
 UINT32 LastAttemptStatus; //Introduced with V3+
 UINT64 HardwareInstance; //Introduced with V3+
} EFI_FIRMWARE_IMAGE_DESCRIPTOR;

ImageIndex

A unique number identifying the firmware image within the device. The number is
between 1 and DescriptorCount.

ImageTypeId

A unique GUID identifying the firmware image type.

ImageId

A unique number identifying the firmware image.

ImageIdName

A pointer to a null-terminated string representing the firmware image name.
1060 April, 2015 Version 2.5

Firmware Update and Reporting
Version

Identifies the version of the device firmware. The format is vendor specific and new
version must have a greater value than an old version.

VersionName

A pointer to a null-terminated string representing the firmware image version name.

Size

Size of the image in bytes. If size=0, then only ImageIndex and ImageTypeId
are valid.

AttributesSupported

Image attributes that are supported by this device. See “Image Attribute Definitions”
for possible returned values of this parameter. A value of 1 indicates the attribute is
supported and the current setting value is indicated in AttributesSetting. A
value of 0 indicates the attribute is not supported and the current setting value in
AttributesSetting is meaningless.

AttributesSetting

Image attributes. See “Image Attribute Definitions” for possible returned values of
this parameter.

Compatibilities

Image compatibilities. See “Image Compatibility Definitions” for possible returned
values of this parameter.

LowestSupportedImageVersion

Describes the lowest ImageDescriptor version that the device will accept. Only
present in version 2 or higher.

LastAttemptVersion

Describes the version that was last attempted to update. If no update attempted the
value will be 0. If the update attempted was improperly formatted and no version
number was available then the value will be zero. Only present in version 3 or higher.

LastAttemptStatus

Describes the status that was last attempted to update. If no update has been attempted
the value will be LAST_ATTEMPT_STATUS_SUCCESS. See "Related Definitions"
in Section 35.1 for Last Attempt Status values. Only present in version 3 or higher.

HardwareInstance

An optional number to identify the unique hardware instance within the system for
devices that may have multiple instances (Example: a plug in pci network card). This
number must be unique within the namespace of the ImageTypeId GUID and
ImageIndex. For FMP instances that have multiple descriptors for a single
hardware instance, all descriptors must have the same HardwareInstance value.
This number must be consistent between boots and should be based on some sort of
hardware identified unique id (serial number, etc) whenever possible. If a hardware
based number is not available the FMP provider may use some other characteristic
such as device path, bus/dev/function, slot num, etc for generating the
Version 2.5 April, 2015 1061

Unified Extensible Firmware Interface Specification
HardwareInstance. For implementations that will never have more than one
instance a zero can be used. A zero means the FMP provider is not able to determine a
unique hardware instance number or a hardware instance number is not needed. Only
present in version 3 or higher.

//**
// Image Attribute Definitions
//**
#define IMAGE_ATTRIBUTE_IMAGE_UPDATABLE 0x0000000000000001
#define IMAGE_ATTRIBUTE_RESET_REQUIRED 0x0000000000000002
#define IMAGE_ATTRIBUTE_AUTHENTICATION_REQUIRED
0x0000000000000004
#define IMAGE_ATTRIBUTE_IN_USE 0x0000000000000008
#define IMAGE_ATTRIBUTE_UEFI_IMAGE 0x0000000000000010

The attribute IMAGE_ATTRIBUTE_IMAGE_UPDATABLE indicates this device supports firmware
image update.

The attribute IMAGE_ATTRIBUTE_RESET_REQUIRED indicates a reset of the device is required
for the new firmware image to take effect after a firmware update. The device is the device hosting
the firmware image.

The attribute IMAGE_ATTRIBUTE_AUTHENTICATION_REQUIRED indicates authentication is
required to perform the following image operations: GetImage(), SetImage(), and
CheckImage(). See “Image Attribute – Authentication”.

The attribute IMAGE_ATTRIBUTE_IN_USE indicates the current state of the firmware image. This
distinguishes firmware images in a device that supports redundant images.

The attribute IMAGE_ATTRIBUTE_UEFI_IMAGE indicates that this image is an EFI compatible
image.

//**
// Image Compatibility Definitions
//**
#define IMAGE_COMPATIBILITY_CHECK_SUPPORTED 0x0000000000000001

Values from 0x0000000000000002 thru 0x000000000000FFFF are reserved for future assignments.

Values from 0x0000000000010000 thru 0xFFFFFFFFFFFFFFFF are used by firmware vendor for
compatibility check.
1062 April, 2015 Version 2.5

Firmware Update and Reporting
//**
// Descriptor Version exposed by GetImageInfo() function
//**
#define EFI_FIRMWARE_IMAGE_DESCRIPTOR_VERSION 3

//**
// Image Attribute – Authentication Required
//**
typedef struct {
 UINT64 MonotonicCount;
 WIN_CERTIFICATE_UEFI_GUID AuthInfo;
} EFI_FIRMWARE_IMAGE_AUTHENTICATION;

MonotonicCount

It is included in the signature of AuthInfo. It is used to ensure freshness/no replay.
It is incremented during each firmware image operation.

AuthInfo

Provides the authorization for the firmware image operations. It is a signature across
the image data and the Monotonic Count value. Caller uses the private key that is
associated with a public key that has been provisioned via the key exchange. Because
this is defined as a signature, WIN_CERTIFICATE_UEFI_GUID.CertType must
be EFI_CERT_TYPE_PKCS7_GUID.

Description
GetImageInfo() is the only required function. GetImage(), SetImage(),
CheckImage(), GetPackageInfo(), and SetPackageInfo() shall return
EFI_UNSUPPORTED if not supported by the driver.

A package can have one to many firmware images. The firmware images can have the same version
naming or different version naming. PackageVersion may be used as the representative
version for all the firmware images. PackageVersion can be obtained from
GetPackageInfo(). PackageVersion is also available in GetImageInfo() as
GetPackageInfo() is optional. It also ensures the package version is in sync with the versions
of the images within the package by returning the package version and image version(s) in a single
function call.

The value of ImageTypeID is implementation specific. This feature facilitates vendor to target a
single firmware release to cover multiple products within a product family. As an example, a vendor
has an initial product A and then later developed a product B that is of the same product family.
Product A and product B will have the same ImageTypeID to indicate firmware compatibility
between the two products.

To determine image attributes, software must use both AttributesSupported and
AttributesSetting. An attribute setting in AttributesSetting is meaningless if the
corresponding attribute is not supported in AttributesSupported.

Compatibilities are used to ensure the targeted firmware image supports the current hardware
configuration. Compatibilities are set based on the current hardware configuration and firmware
Version 2.5 April, 2015 1063

Unified Extensible Firmware Interface Specification
update policy should match the current settings to those supported by the new firmware image, and only
permits update to proceed if the new firmware image settings are equal or greater than the current hardware
configuration settings. For example, if this function returns Compatibilities= 0x0000000000070001
and the new firmware image supports settings=0x0000000000030001, then the update policy should block the
firmware update and notify the user that updating the hardware with the new firmware image may render the
hardware inoperable. This situation usually occurs when updating the hardware with an older version of
firmware.

The authentication support leverages the authentication scheme employed in variable authentication.
Please reference EFI_VARIABLE_AUTHENTICATION in the “Variable Services” section of
“Services – Runtime Services” chapter.

If IMAGE_ATTRIBUTE_AUTHENTICATION_REQUIRED is supported and clear, then
authentication is not required to perform the firmware image operations. In firmware image
operations, the image pointer points to the start of the firmware image and the image size is the
firmware image.

Figure 62. Firmware Image with no Authentication Support

If IMAGE_ATTRIBUTE_AUTHENTICATION_REQUIRED is supported and set, then
authentication is required to perform the firmware image operations. In firmware image operations,
the image pointer points to the start of the authentication data and the image size is the size of the
authentication data and the size of the firmware image.

Figure 63. Firmware Image with Authentication Support

Status Codes Returned

EFI_SUCCESS The image information was successfully returned.

Firmware
Image

Image Pointer

Image Size

Image Pointer

Image Size

Firmware
Image

Authentication

Firmware
Image

1064 April, 2015 Version 2.5

Firmware Update and Reporting
EFI_BUFFER_TOO_SMALL The ImageInfo buffer was too small. The current buffer size

needed to hold the image(s) information is returned in

ImageInfoSize.

EFI_INVALID_PARAMETER ImageInfoSize is NULL.

EFI_DEVICE_ERROR Valid information could not be returned. Possible corrupted image.
Version 2.5 April, 2015 1065

Unified Extensible Firmware Interface Specification
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetImage()

Summary
Retrieves a copy of the current firmware image of the device.

Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_FIRMWARE_MANAGEMENT_PROTOCOL_GET_IMAGE) (
 IN EFI_FIRMWARE_MANAGEMENT_PROTOCOL *This,
 IN UINT8 ImageIndex,
 IN OUT VOID *Image,
 IN OUT UINTN *ImageSize
) ;

Parameters
This

A pointer to the EFI_FIRMWARE_MANAGEMENT_PROTOCOL instance.

ImageIndex

A unique number identifying the firmware image(s) within the device. The number is
between 1 and DescriptorCount.

Image

Points to the buffer where the current image is copied to.

ImageSize

On entry, points to the size of the buffer pointed to by Image, in bytes. On return,
points to the length of the image, in bytes.

Related Definitions
None

Description
This function allows a copy of the current firmware image to be created and saved. The saved copy
could later been used, for example, in firmware image recovery or rollback.
1066 April, 2015 Version 2.5

Firmware Update and Reporting
Status Codes Returned

EFI_SUCCESS The current image was successfully copied to the buffer.

EFI_BUFFER_TOO_SMALL The buffer specified by ImageSize is too small to hold the

image. The current buffer size needed to hold the image is returned

in ImageSize.

EFI_INVALID_PARAMETER The Image was NULL.

EFI_NOT_FOUND The current image is not copied to the buffer.

EFI_UNSUPPORTED The operation is not supported.

EFI_SECURITY_VIOLATION The operation could not be performed due to an authentication
failure.
Version 2.5 April, 2015 1067

Unified Extensible Firmware Interface Specification
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetImage()

Summary
Updates the firmware image of the device.

Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_FIRMWARE_MANAGEMENT_PROTOCOL_SET_IMAGE) (
 IN EFI_FIRMWARE_MANAGEMENT_PROTOCOL *This,
 IN UINT8 ImageIndex,
 IN CONST VOID *Image,
 IN UINTN ImageSize,
 IN CONST VOID *VendorCode,
 IN EFI_FIRMWARE_MANAGEMENT_UPDATE_IMAGE_PROGRESS Progress,
 OUT CHAR16 **AbortReason
) ;

Parameters
This

A pointer to the EFI_FIRMWARE_MANAGEMENT_PROTOCOL instance.

ImageIndex

A unique number identifying the firmware image(s) within the device. The number is
between 1 and DescriptorCount.

Image

Points to the new image.

ImageSize

Size of the new image in bytes.

VendorCode

This enables vendor to implement vendor-specific firmware image update policy.
Null indicates the caller did not specify the policy or use the default policy.

Progress

A function used by the driver to report the progress of the firmware update.

AbortReason

A pointer to a pointer to a null-terminated string providing more details for the aborted
operation. The buffer is allocated by this function with AllocatePool(), and it is
the caller’s responsibility to free it with a call to FreePool().
1068 April, 2015 Version 2.5

Firmware Update and Reporting
Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_FIRMWARE_MANAGEMENT_UPDATE_IMAGE_PROGRESS) (
 IN UINTN Completion
) ;

Completion

A value between 1 and 100 indicating the current completion progress of the firmware
update. Completion progress is reported as from 1 to 100 percent. A value of 0 is
used by the driver to indicate that progress reporting is not supported.

On EFI_SUCCESS, SetImage() continues to do the callback if supported. On NOT
EFI_SUCCESS, SetImage() discontinues the callback and completes the update and returns.

Description

This function updates the hardware with the new firmware image.

This function returns EFI_UNSUPPORTED if the firmware image is not updatable.

If the firmware image is updatable, the function should perform the following minimal validations before pro-

ceeding to do the firmware image update.

• Validate the image authentication if image has attribute
IMAGE_ATTRIBUTE_AUTHENTICATION_REQUIRED. The function returns
EFI_SECURITY_VIOLATION if the validation fails.

• Validate the image is a supported image for this device. The function returns EFI_ABORTED if
the image is unsupported. The function can optionally provide more detailed information on
why the image is not a supported image.

• Validate the data from VendorCode if not null. Image validation must be performed before
VendorCode data validation. VendorCode data is ignored or considered invalid if image
validation failed. The function returns EFI_ABORTED if the data is invalid.

VendorCode enables vendor to implement vendor-specific firmware image update policy. Null if
the caller did not specify the policy or use the default policy. As an example, vendor can implement
a policy to allow an option to force a firmware image update when the abort reason is due to the new
firmware image version is older than the current firmware image version or bad image checksum.
Sensitive operations such as those wiping the entire firmware image and render the device to be non-
functional should be encoded in the image itself rather than passed with the VendorCode.

AbortReason enables vendor to have the option to provide a more detailed description of the abort reason
to the caller.

Status Codes Returned

EFI_SUCCESS The device was successfully updated with the new image.

EFI_ABORTED The operation is aborted.

EFI_INVALID_PARAMETER The Image was NULL.

EFI_UNSUPPORTED The operation is not supported.
Version 2.5 April, 2015 1069

Unified Extensible Firmware Interface Specification
EFI_SECURITY_VIOLATION The operation could not be performed due to an authentication
failure.
1070 April, 2015 Version 2.5

Firmware Update and Reporting
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.CheckImage()

Summary
Checks if the firmware image is valid for the device.

Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_FIRMWARE_MANAGEMENT_PROTOCOL_CHECK_IMAGE) (
 IN EFI_FIRMWARE_MANAGEMENT_PROTOCOL *This,
 IN UINT8 ImageIndex,
 IN CONST VOID *Image,
 IN UINTN ImageSize,
 OUT UINT32 *ImageUpdatable
) ;

Parameters
This

A pointer to the EFI_FIRMWARE_MANAGEMENT_PROTOCOL instance.

ImageIndex

A unique number identifying the firmware image(s) within the device. The number is
between 1 and DescriptorCount.

Image

Points to the new image.

ImageSize

Size of the new image in bytes.

ImageUpdatable

Indicates if the new image is valid for update. It also provides, if available, additional
information if the image is invalid. See “Related Definitions”.

Related Definitions
//**
// ImageUpdatable Definitions
//**
#define IMAGE_UPDATABLE_VALID 0x0000000000000001
#define IMAGE_UPDATABLE_INVALID 0x0000000000000002
#define IMAGE_UPDATABLE_INVALID_TYPE 0x0000000000000004
#define IMAGE_UPDATABLE_INVALID_OLD 0x0000000000000008
#define IMAGE_UPDATABLE_VALID_WITH_VENDOR_CODE \
0x0000000000000010
Version 2.5 April, 2015 1071

Unified Extensible Firmware Interface Specification
IMAGE_UPDATABLE_VALID indicates SetImage() will accept the new image and update the
device with the new image.The version of the new image could be higher or lower than the current image.
SetImage VendorCode is optional but can be used for vendor specific action.

IMAGE_UPDATABLE_INVALID indicates SetImage() will reject the new image. No additional
information is provided for the rejection.

IMAGE_UPDATABLE_INVALID_TYPE indicates SetImage() will reject the new image. The
rejection is due to the new image is not a firmware image recognized for this device.

IMAGE_UPDATABLE_INVALID_OLD indicates SetImage() will reject the new image. The
rejection is due to the new image version is older than the current firmware image version in the device. The
device firmware update policy does not support firmware version downgrade.

IMAGE_UPDATABLE_VALID_WITH_VENDOR_CODE indicates SetImage() will accept and
update the new image only if a correct VendorCode is provided or else image would be rejected
and SetImage will return appropriate error.

Description
This function allows firmware update application to validate the firmware image without invoking the SetIm-

age()first. Please see SetImage() for the type of image validations performed.

Status Codes Returned

EFI_SUCCESS The image was successfully checked.

EFI_INVALID_PARAMETER The Image was NULL.

EFI_UNSUPPORTED The operation is not supported.

EFI_SECURITY_VIOLATION The operation could not be performed due to an authentication failure.
1072 April, 2015 Version 2.5

Firmware Update and Reporting
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetPackageInfo()

Summary
Returns information about the firmware package.

Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_FIRMWARE_MANAGEMENT_PROTOCOL_GET_PACKAGE_INFO) (
 IN EFI_FIRMWARE_MANAGEMENT_PROTOCOL *This,
 OUT UINT32 *PackageVersion,
 OUT CHAR16 **PackageVersionName,
 OUT UINT32 *PackageVersionNameMaxLen
 OUT UINT64 *AttributesSupported,
 OUT UINT64 *AttributesSetting
) ;

Parameters
This

A pointer to the EFI_FIRMWARE_MANAGEMENT_PROTOCOL instance.

PackageVersion

A version number that represents all the firmware images in the device. The format is
vendor specific and new version must have a greater value than the old version. If
PackageVersion is not supported, the value is 0xFFFFFFFF. A value of
0xFFFFFFFE indicates that package version comparison is to be performed using
PackageVersionName. A value of 0xFFFFFFFD indicates that package version
update is in progress.

PackageVersionName

A pointer to a pointer to a null-terminated string representing the package version
name. The buffer is allocated by this function with AllocatePool(), and it is the
caller’s responsibility to free it with a call to FreePool().

PackageVersionNameMaxLen

The maximum length of package version name if device supports update of package
version name. A value of 0 indicates the device does not support update of package
version name. Length is the number of Unicode characters, including the terminating
null character.

AttributesSupported

Package attributes that are supported by this device. See “Package Attribute
Definitions” for possible returned values of this parameter. A value of 1 indicates the
attribute is supported and the current setting value is indicated in
AttributesSetting. A value of 0 indicates the attribute is not supported and
the current setting value in AttributesSetting is meaningless.
Version 2.5 April, 2015 1073

Unified Extensible Firmware Interface Specification
AttributesSetting

Package attributes. See “Package Attribute Definitions” for possible returned values
of this parameter.

Related Definitions
//**
// Package Attribute Definitions
//**
#define PACKAGE_ATTRIBUTE_VERSION_UPDATABLE 0x0000000000000001
#define PACKAGE_ATTRIBUTE_RESET_REQUIRED 0x0000000000000002
#define PACKAGE_ATTRIBUTE_AUTHENTICATION_REQUIRED
0x0000000000000004

The attribute PACKAGE_ATTRIBUTE_VERSION_UPDATABLE indicates this device supports the
update of the firmware package version.

The attribute PACKAGE_ATTRIBUTE_RESET_REQUIRED indicates a reset of the device is
required for the new package info to take effect after an update.

The attribute PACKAGE_ATTRIBUTE_AUTHENTICATION_REQUIRED indicates authentication
is required to update the package info.

Description
This function returns package information.

Status Codes Returned

EFI_SUCCESS The package information was successfully returned.

EFI_UNSUPPORTED The operation is not supported.
1074 April, 2015 Version 2.5

Firmware Update and Reporting
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetPackageInfo()

Summary
Updates information about the firmware package.

Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_FIRMWARE_MANAGEMENT_PROTOCOL_SET_PACKAGE_INFO) (
 IN EFI_FIRMWARE_MANAGEMENT_PROTOCOL *This,
 IN CONST VOID *Image,
 IN UINTN ImageSize,
 IN CONST VOID *VendorCode,
 IN UINT32 PackageVersion,
 IN CONST CHAR16 *PackageVersionName
) ;

Parameters
This

A pointer to the EFI_FIRMWARE_MANAGEMENT_PROTOCOL instance.

Image

Points to the authentication image. Null if authentication is not required.

ImageSize

Size of the authentication image in bytes. 0 if authentication is not required.

VendorCode

This enables vendor to implement vendor-specific firmware image update policy.
Null indicates the caller did not specify this policy or use the default policy.

PackageVersion

The new package version.

PackageVersionName

A pointer to the new null-terminated Unicode string representing the package version
name. The string length is equal to or less than the value returned in
PackageVersionNameMaxLen.

Description
This function updates package information.

This function returns EFI_UNSUPPORTED if the package information is not updatable.

VendorCode enables vendor to implement vendor-specific package information update policy. Null if the
caller did not specify this policy or use the default policy.
Version 2.5 April, 2015 1075

Unified Extensible Firmware Interface Specification
Status Codes Returned

22.2 Delivering Capsules Containing Updates to Firmware
Management Protocol

Summary
This section defines a method for delivery of a Firmware Management Protocol defined update
using the UpdateCapsule runtime API.

22.2.1 EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID

GUID
// {6DCBD5ED-E82D-4C44-BDA1-7194199AD92A}
#define EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID \
 {0x6dcbd5ed, 0xe82d, 0x4c44, \
 {0xbd, 0xa1, 0x71, 0x94, 0x19, 0x9a, 0xd9, 0x2a }}

Description
This GUID is used in the CapsuleGuid field of EFI_CAPSULE_HEADER struct within a capsule
constructed according to the definitions of section Section 7.5.3.1. Use of this GUID indicates a
capsule with body conforming to the additional structure defined in Section 22.2.2.

When delivered to platform firmware QueryCapsuleCapabilities() the capsule will be
examined according to the structure defined in Section 22.2.2 and if it is possible for the platform to
process EFI_SUCCESS will be returned.

When delivered to platform firmware UpdateCapsule() the capsule will be examined according
to the structure defined in Section 22.2.2 and if it is possible for the platform to process the update
will be processed.

By definition Firmware Management protocol services are not available in EFI runtime and
depending upon platform capabilities, EFI runtime delivery of this capsule may not be supported and
may return an error when delivered in EFI runtime with
CAPSULE_FLAGS_PERSIST_ACROSS_RESET bit defined. However any platform supporting
this capability is required to accept this form of capsule in Boot Services, including optional use of
CAPSULE_FLAGS_PERSIST_ACROSS_RESET bit.

EFI_SUCCESS The device was successfully updated with the new package
information

EFI_INVALID_PARAMETER The PackageVersionName length is longer than the value

returned in PackageVersionNameMaxLen.

EFI_UNSUPPORTED The operation is not supported.

EFI_SECURITY_VIOLATION The operation could not be performed due to an authentication failure.
1076 April, 2015 Version 2.5

Firmware Update and Reporting
22.2.2 DEFINED FIRMWARE MANAGEMENT PROTOCOL DATA
CAPSULE STRUCTURE

Structure of the Capsule Body
Generic EFI Capsule Body is defined in Section 7.5.3.1. When an EFI Capsule is identified by
EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID, the internal structure of the capsule
__FIRMWARE_MANAGEMENT_CAPSULE_HEADER followed by optional EFI drivers to be loaded
by the platform and optional binary payload items to be processed and passed to Firmware
Management Protocol image update function. Each binary payload item is preceded by
EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER . Internal capsule structure
diagram follows.

Figure 64. Optional Scatter-Gather Construction of Capsule Submitted to UpdateCapsule()

System Memory

Capsule Body

EFI Capsule

Header
Version 2.5 April, 2015 1077

Unified Extensible Firmware Interface Specification
Figure 65. Capsule Header and Firmware Management Capsule Header

Capsule Body

EFI Capsule Header

EFI_FIRMWARE_MANAGEMENT_CAPSULE
_HEADER

Optional Driver 1
Offset Within Body == ItemOffset[0]

Payload 1
Offset Within Body == ItemOffset[2]

Payload n
Offset Within Body == ItemOffset

[EmbeddedDriverCount + PayloadItemCount
-1]

Payload 2
Offset Within Body == ItemOffset[3]

...

Optional Driver 2
Offset Within Body == ItemOffset[1]
1078 April, 2015 Version 2.5

Firmware Update and Reporting
Figure 66. Firmware Management and Firmware Image Management headers

Related Definitions
#pragma pack(1)
typedef struct {
 UINT32 Version;
 UINT16 EmbeddedDriverCount;
 UINT16 PayloadItemCount;
 // UINT64 ItemOffsetList[];
} EFI_FIRMWARE_MANAGEMENT_CAPSULE_HEADER;

Version

Version of the structure, initially 0x00000001.

EmbeddedDriverCount

The number of drivers included in the capsule and the number of corresponding
offsets stored in ItemOffsetList array. This field may be zero in the case where
no driver is required.

PayloadItemCount

The number of payload items included in the capsule and the number of
corresponding offsets stored in the ItemOffsetList array. This field may be zero
in the case where no binary payload object is required to accomplish the update.

EFI_FIRMWARE_MANAGEMENT_CAPSULE
_HEADER

Driver 1

Payload 1

EFI_FIRMWARE_MANAGEMENT_CAPSULE
_IMAGE_HEADER

Binary Update Image
Image Length = UpdateImageSize

Vendor Code Byes
Data Length = UpdateVendorCodeSize
Version 2.5 April, 2015 1079

Unified Extensible Firmware Interface Specification
ItemOffsetList

Variable length array of dimension [EmbeddedDriverCount +
PayloadItemCount] containing offsets of each of the drivers and payload items
contained within the capsule. The offsets of the items are calculated relative to the
base address of the EFI_FIRMWARE_MANAGEMENT_CAPSULE_HEADER struct.
Offset may indicate structure begins on any byte boundary. Offsets in the array must
be sorted in ascending order with all drivers preceding all binary payload elements.

#pragma pack(1)
typedef struct {
 UINT32 Version;
 EFI_GUID UpdateImageTypeId;
 UINT8 UpdateImageIndex;
 UINT8 reserved_bytes[3];
 UINT32 UpdateImageSize;
 UINT32 UpdateVendorCodeSize;
 UINT64 UpdateHardwareInstance; //Introduced in v2
} EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER;

Version

Version of the structure, initially 0x00000002.

UpdateImageTypeId

Used to identify device firmware targeted by this update. This guid is matched by
system firmware against ImageTypeId field within a
EFI_FIRMWARE_IMAGE_DESCRIPTOR returned by an instance of
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetImageInfo() in the system.

UpdateImageIndex

Passed as ImageIndex in call to
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetImage()

UpdateImageSize

Size of the binary update image which immediately follows this structure. Passed as
ImageSize to EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetImage().
This size may or may not include Firmware Image Authentication information.

UpdateVendorCodeSize

Size of the VendorCode bytes which optionally immediately follow binary update
image in the capsule. Pointer to these bytes passed in VendorCode to
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetImage(). If
UpdateVendorCodeSize is zero, then VendorCode is null in SetImage()
call.

UpdateHardwareInstance

The HardwareInstance to target with this update. If value is zero it means match
all HardwareInstances. This field allows update software to target only a single
device in cases where there are more than one device with the same ImageTypeId
1080 April, 2015 Version 2.5

Firmware Update and Reporting
GUID. This header is outside the signed data of the Authentication Info structure and
therefore can be modified without changing the Auth data.

Description
The EFI_FIRMWARE_MANAGEMENT_CAPSULE_HEADER structure is located at the lowest offset
within the body of the capsule identified by
EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID. The structure is variable length with the
number of element offsets within of the ItemOffsetList array determined by the count of
drivers within the capsule plus the count of binary payload elements. It is expected that drivers
whose presence is indicated by non-zero EmbeddedDriverCount will be used to supply an
implementation of EFI_FIRMWARE_MANAGEMENT_PROTOCOL for devices that lack said
protocol within the image to be updated.

Each payload item contained within the capsule body is preceded by a
EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER struct used to provide
information required to prepare the payload item as an image for delivery to a instance of
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetImage()function.

Note: [Caution] The capsule identified by EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID
uses packed structures and structure fields may not be naturally aligned within the capsule buffer
as delivered. Drivers and binary payload elements may start on byte boundary with no padding.
Processing firmware may need to copy content elements during capsule unpacking in order to
achieve any required natural alignment.

22.2.3 Firmware Processing of the Capsule Identified by
EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID

1. Capsule is presented to system firmware via call to UpdateCapsule()or using mass storage
delivery procedure of Section 7.5.5. The capsule must be constructed to consist of a single
EFI_FIRMWARE_MANAGEMENT_CAPSULE_HEADER structure with the 0 or more drivers
and 0 or more binary payload items. However a capsule in which driver count and payload
count are both zero is not processed.

2. Capsule is recognized by EFI_CAPSULE_HEADER member CapsuleGuid equal to
EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID.
CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE flag must be 0.

3. If system is not in boot services and platform does not support persistence of capsule across reset
when initiated within EFI Runtime, EFI_OUT_OF_RESOURCES error is returned.

4. If device requires hardware reset to unlock flash write protection,
CAPSULE_FLAGS_PERSIST_ACROSS_RESET and optionally
CAPSULE_FLAGS_INITIATE_RESET should be set to 1 in the EFI_CAPSULE_HEADER.

5. When reset is requested using CAPSULE_FLAGS_PERSIST_ACROSS_RESET, the capsule is
processed in Boot Services, before the EFI_EVENT_GROUP_READY_TO_BOOT event.

6. All scatter-gather fragmentation is removed by the platform firmware and the capsule is
processed as a contiguous buffer.

7. Examining EFI_FIRMWARE_MANAGEMENT_CAPSULE_HEADER , if
EmbeddedDriverCount is non-zero, for each of the included drivers up to indicated count,
the portion of the capsule body starting at the offset indicated by ItemOffsetList[n] and
continuing for a size encompassing all bytes up to the next element’s offset stored in
Version 2.5 April, 2015 1081

Unified Extensible Firmware Interface Specification
ItemOffsetList[n+1]or the end of the capsule, will be copied to a buffer. The driver
contained within the capsule body may not be naturally aligned and the exact driver size in bytes
should be respected to ensure successful security validation. In the case where a driver is last
element in the ItemOffsetList array, the driver size may be calculated by reference to body
size as calculated from CapsuleImageSize in EFI_CAPSULE_HEADER

8. Each extracted driver is placed into a buffer and passed to LoadImage(). The driver image
passed to LoadImage() must successfully pass all image format, platform type, and security
checks including those related to UEFI secure boot, if enabled on the platform. After
LoadImage()returns the processing of the capsule is continued with next driver if present
until all drivers have been passed to LoadImage(). The driver being installed must check for
matching hardware and instantiate any required protocols during call to
EFI_IMAGE_ENTRY_POINT. In case where matching hardware is not found the driver should
exit with error. In case where capsule creator has preference as to which of several included
drivers to be made resident, later drivers in the capsule should confirm earlier driver successfully
loaded and then exit with load error.

9. After driver processing is complete the platform firmware examines PayloadItemCount,
and if zero the capsule processing is complete. Otherwise platform firmware sequentially locates
each EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER found within the capsule
and processes according to steps 10-14.

10. For all instances of EFI_FIRMWARE_MANAGEMENT_PROTOCOL in the system,
GetImageInfo() is called to return arrays of EFI_FIRMWARE_IMAGE_DESCRIPTOR
structures.

11. Find the matching FMP instance(s):

a If the EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER is version 1 or it is
version 2 with UpdateHardwareInstance set to 0, then system firmware will use only
the ImageTypeId to determine a match. For each instance of
EFI_FIRMWARE_MANAGEMENT_PROTOCOL that returns a
EFI_FIRMWARE_IMAGE_DESCRIPTOR containing an ImageTypeId GUID that
matches the UpdateImageTypeId GUID within
EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER, the system firmware will
call SetImage() function within that instance. In some cases there may be more than one
instance of matching EFI_FIRMWARE_MANAGEMENT_PROTOCOL when multiple
matching devices are installed in the system and all instances will be checked for GUID
match and SetImage() call if match is successful.

b If the EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER is version 2 and
contains a non-zero value in the UpdateHardwareInstance field, then system
firmware will use both ImageTypeId and HardwareInstance to determine a match.
For the instance of EFI_FIRMWARE_MANAGEMENT_PROTOCOL that returns a
EFI_FIRMWARE_IMAGE_DESCRIPTOR containing an ImageTypeId GUID that
matches the UpdateImageTypeId GUID and a HardwareInstance matching the
UpdateHardwareInstance within
EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER, the system firmware will
call the SetImage() function within that instance. There will never be more than one
instance since the ImageId must be unique.

12. In the situation where platform configuration or policy prohibits the processing of a capsule or
individual FMP payload, the error EFI_NOT_READY will be returned in capsule result variable
CapsuleStatus field. Otherwise SetImage()parameters are constructed using the
1082 April, 2015 Version 2.5

Firmware Update and Reporting
UpdateImageIndex, UpdateImageSize and UpdateVendorCodeSize fields within
EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER. In the case of capsule
containing multiple payloads, or a payload matching multiple FMP instances, a separate Capsule
Result Variable will be created with the results of each call to SetImage(). If any call to
SetImage() selected per above matching algorithm returns an error, the processing of
additional FMP instances or payload items in that capsule will be skipped and EFI_ABORTED
returned in Capsule Result Variable for each potential call to SetImage() that was skipped.

13. SetImage() performs any required image authentication as described in that functions
definition within this chapter.

14. Note: if multiple separate component updates including multiple ImageIndex values are
required then additional EFI_FIRMWARE_MANAGEMENT_CAPSULE_IMAGE_HEADER
structures and image binaries are included within the capsule.

15. After all items in the capsule are processed the system is restarted by the platform firmware.

22.3 EFI System Resource Table

EFI_SYSTEM_RESOURCE_TABLE

Summary
The EFI System Resource Table (ESRT) provides an optional mechanism for identifying device and
system firmware resources for the purposes of targeting firmware updates to those resources. Each
entry in the ESRT describes a device or system firmware resource that can be targeted by a firmware
capsule update. Each entry in the ESRT will also be used to report status of the last attempted
update. See Section 4.6 for description of how to publish ESRT using
EFI_CONFIGURATION_TABLE. The ESRT shall be stored in memory of type
EfiBootServicesData. See Section 7.5.3 and Section 7.5.5 for details on delivery of updates
to devices listed in ESRT.

GUID
#define EFI_SYSTEM_RESOURCE_TABLE_GUID\

{ 0xb122a263, 0x3661, 0x4f68,\
 { 0x99, 0x29, 0x78, 0xf8, 0xb0, 0xd6, 0x21, 0x80 }}

Table Structure
typedef struct {
 UINT32 FwResourceCount;
 UINT32 FwResourceCountMax;
 UINT64 FwResourceVersion;
 //EFI_SYSTEM_RESOURCE_ENTRY Entries[];
} EFI_SYSTEM_RESOURCE_TABLE;

Members
FwResourceCount The number of firmware resources in the table, must not be zero.

FwResourceCountMax The maximum number of resource array entries that can be
within the table without reallocating the table, must not be zero.
Version 2.5 April, 2015 1083

Unified Extensible Firmware Interface Specification
FwResourceVersion The version of the EFI_SYSTEM_RESOURCE_ENTRY entities
used in this table. This field should be set to 1. See
EFI_SYSTEM_RESOURCE_TABLE_FIRMWARE_RESOURCE
_VERSION.

Entries Array of EFI_SYSTEM_RESOURCE_ENTRY

Related Definitions
// Current Entry Version

#define EFI_SYSTEM_RESOURCE_TABLE_FIRMWARE_RESOURCE_VERSION 1

typedef struct {
 EFI_GUID FwClass;
 UINT32 FwType;
 UINT32 FwVersion;
 UINT32 LowestSupportedFwVersion;
 UINT32 CapsuleFlags;
 UINT32 LastAttemptVersion;
 UINT32 LastAttemptStatus;
} EFI_SYSTEM_RESOURCE_ENTRY;

FwClass The firmware class field contains a GUID that identifies a
firmware component that can be updated via
UpdateCapsule(). This GUID must be unique within all
entries of the ESRT.

FwType Identifies the type of firmware resource. See “Firmware Type
Definitions” below for possible values.

FwVersion The firmware version field represents the current version of the
firmware resource, value must always increase as a larger number
represents a newer version.

LowestSupportedFwVersion

The lowest firmware resource version to which a firmware
resource can be rolled back for the given system/device.
Generally this is used to protect against known and fixed security
issues.

CapsuleFlags The capsule flags field contains the CapsuleGuid flags (bits 0-
15) as defined in the EFI_CAPSULE_HEADER that will be set in
the capsule header.

LastAttemptVersion The last attempt version field describes the last firmware version
for which an update was attempted (uses the same format as
Firmware Version).

Last Attempt Version is updated each time an
UpdateCapsule() is attempted for an ESRT entry and is
preserved across reboots (non-volatile). However, in cases where
the attempt version is not recorded due to limitations in the
update process, the field shall set to zero after a failed update.
Similarly, in the case of a removable device, this value is set to 0
1084 April, 2015 Version 2.5

Firmware Update and Reporting
in cases where the device has not been updated since being added
to the system.

LastAttemptStatus The last attempt status field describes the result of the last
firmware update attempt for the firmware resource entry.

LastAttemptStatus is updated each time an
UpdateCapsule() is attempted for an ESRT entry and is
preserved across reboots (non-volatile).

If a firmware update has never been attempted or is unknown, for
example after fresh insertion of a removable device,
LastAttemptStatus must be set to Success.

//
// Firmware Type Definitions
//
#define ESRT_FW_TYPE_UNKNOWN 0x00000000
#define ESRT_FW_TYPE_SYSTEMFIRMWARE 0x00000001
#define ESRT_FW_TYPE_DEVICEFIRMWARE 0x00000002
#define ESRT_FW_TYPE_UEFIDRIVER 0x00000003

//
// Last Attempt Status Values
//
#define LAST_ATTEMPT_STATUS_SUCCESS
0x00000000
#define LAST_ATTEMPT_STATUS_ERROR_UNSUCCESSFUL
0x00000001
#define LAST_ATTEMPT_STATUS_ERROR_INSUFFICIENT_RESOURCES
0x00000002
#define LAST_ATTEMPT_STATUS_ERROR_INCORRECT_VERSION
0x00000003
#define LAST_ATTEMPT_STATUS_ERROR_INVALID_FORMAT
0x00000004
#define LAST_ATTEMPT_STATUS_ERROR_AUTH_ERROR
0x00000005
#define LAST_ATTEMPT_STATUS_ERROR_PWR_EVT_AC
0x00000006
#define LAST_ATTEMPT_STATUS_ERROR_PWR_EVT_BATT
0x00000007

22.3.1 Adding and Removing Devices from the ESRT
ESRT entries must be updated by System Firmware before handoff to the Operating System under
the following conditions. Devices and systems that support hot swapping (once the OS has been
loaded) will not get their ESRT entries updated until the next reboot and execution of ESRT
updating logic in the UEFI space.

Required: System firmware is responsible for updating the
FirmwareVersion, LowestSupportedFirmwareVersion,
Version 2.5 April, 2015 1085

Unified Extensible Firmware Interface Specification
LastAttemptVersion and LastAttemptStatus values in the ESRT any
time UpdateCapsule is called and a firmware update attempt is made for the
corresponding ESRT entry.

Required: the ESRT must be updated each time a configuration change is
detected by system firmware, such as when a device is added or removed from the
system.

Optional: all devices in the ESRT should be polled for any configuration
changes any time UpdateCapsule is called.

22.3.2 ESRT and Firmware Management Protocol
Although the ESRT does not require firmware to use Firmware Management Protocol for updates it
is designed to work with and extend the capabilities of FMP. The ESRT can be used to represent
system and device firmware serviced by capsules that have an implementation specific format as
well as devices that support Firmware Management Protocol and that are serviced by capsules
formatted as described in Section 22.2, Delivering Capsules Containing Updates to Firmware
Management Protocol. For system expansion devices, the task of building ESRT table entries is to
be performed by the system firmware based upon FMP data published by the device.

22.3.3 Mapping Firmware Management Protocol Descriptors to ESRT
Entries

Firmware management Protocol descriptors define most of the information needed for an ESRT
entry. The table below helps identify which members map to which fields. Some members are
dependent on certain versions of FMP and it is left to system firmware to resolve any mappings
when information is not present in the FMP instance. FMP descriptors should only be mapped to
ESRT entries if the following are true:

• An entry with the same ImageTypeId is not already in the ESRT.

• AttributesSupported and AttributesSetting have the
IMAGE_ATTRIBUTE_IN_USE bit set.

• In the case where DescriptorCount returned by GetImageInfo() is greater than one,
firmware shall populate the ESRT according to system policy, noting however that multiple
ESRT entries with identical FwClass values are not permitted.

ESRT Field FMP Field Comment

FwClass ImageTypeId The ImageTypeId GUID from the Firmware
Management Protocol instance for a device
is used as the Firmware Class GUID in the
ESRT.
Where there are multiple identical devices
in the system, system firmware must create
a mapping to ensure that the ESRT
FwClass GUIDs are unique and consistent.

FwVersion Version Represents the current version of device
firmware for an FMP instance.
1086 April, 2015 Version 2.5

Firmware Update and Reporting
Table 186. ESRT and FMP Fields

LowestSupported
FwVersion

LowestSupported
ImageVersion

LastAttemptVersio
n

LastAttemptVersion To be set after the completion of a firmware
update attempt. In descriptor v3+ only.
Default value is 0.

LastAttemptStatus LastAttemptStatus To be set after the completion of a firmware
update attempt. In descriptor v3+ only.
Default value is SUCCESS.

ESRT Field FMP Field Comment
Version 2.5 April, 2015 1087

Unified Extensible Firmware Interface Specification
1088 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
23
Network Protocols - SNP, PXE, BIS and HTTP

Boot

23.1 Simple Network Protocol
This section defines the Simple Network Protocol. This protocol provides a packet level
interface to a network adapter.

EFI_SIMPLE_NETWORK_PROTOCOL

Summary
The EFI_SIMPLE_NETWORK_PROTOCOL provides services to initialize a network interface,
transmit packets, receive packets, and close a network interface.
Version 2.5 April, 2015 1089

Unified Extensible Firmware Interface Specification
GUID
#define EFI_SIMPLE_NETWORK_PROTOCOL_GUID \
 {0xA19832B9,0xAC25,0x11D3,\
 {0x9A,0x2D,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

Revision Number
#define EFI_SIMPLE_NETWORK_PROTOCOL_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_SIMPLE_NETWORK_PROTOCOL_ {
 UINT64 Revision;
 EFI_SIMPLE_NETWORK_START Start;
 EFI_SIMPLE_NETWORK_STOP Stop;
 EFI_SIMPLE_NETWORK_INITIALIZE Initialize;
 EFI_SIMPLE_NETWORK_RESET Reset;
 EFI_SIMPLE_NETWORK_SHUTDOWN Shutdown;
 EFI_SIMPLE_NETWORK_RECEIVE_FILTERS ReceiveFilters;
 EFI_SIMPLE_NETWORK_STATION_ADDRESS StationAddress;
 EFI_SIMPLE_NETWORK_STATISTICS Statistics;
 EFI_SIMPLE_NETWORK_MCAST_IP_TO_MAC MCastIpToMac;
 EFI_SIMPLE_NETWORK_NVDATA NvData;
 EFI_SIMPLE_NETWORK_GET_STATUS GetStatus;
 EFI_SIMPLE_NETWORK_TRANSMIT Transmit;
 EFI_SIMPLE_NETWORK_RECEIVE Receive;
 EFI_EVENT WaitForPacket;
 EFI_SIMPLE_NETWORK_MODE *Mode;
} EFI_SIMPLE_NETWORK_PROTOCOL;

Parameters
Revision Revision of the EFI_SIMPLE_NETWORK_PROTOCOL. All

future revisions must be backwards compatible. If a future
version is not backwards compatible it is not the same GUID.

Start Prepares the network interface for further command operations.
No other EFI_SIMPLE_NETWORK_PROTOCOL interface
functions will operate until this call is made. See the Start()
function description.

Stop Stops further network interface command processing. No other
EFI_SIMPLE_NETWORK_PROTOCOL interface functions will
operate after this call is made until another Start() call is
made. See the Stop() function description.

Initialize Resets the network adapter and allocates the transmit and receive
buffers. See the Initialize() function description.

Reset Resets the network adapter and reinitializes it with the parameters
provided in the previous call to Initialize(). See the
Reset() function description.
1090 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
Shutdown Resets the network adapter and leaves it in a state safe for another
driver to initialize. The memory buffers assigned in the
Initialize() call are released. After this call, only the
Initialize() or Stop() calls may be used. See the
Shutdown() function description.

ReceiveFilters Enables and disables the receive filters for the network interface
and, if supported, manages the filtered multicast HW MAC
(Hardware Media Access Control) address list. See the
ReceiveFilters() function description.

StationAddress Modifies or resets the current station address, if supported. See
the StationAddress() function description.

Statistics Collects statistics from the network interface and allows the
statistics to be reset. See the Statistics() function
description.

MCastIpToMac Maps a multicast IP address to a multicast HW MAC address.
See the MCastIPtoMAC() function description.

NvData Reads and writes the contents of the NVRAM devices attached to
the network interface. See the NvData() function description.

GetStatus Reads the current interrupt status and the list of recycled transmit
buffers from the network interface. See the GetStatus()
function description.

Transmit Places a packet in the transmit queue. See the Transmit()
function description.

Receive Retrieves a packet from the receive queue, along with the status
flags that describe the packet type. See the Receive() function
description.

WaitForPacket Event used with EFI_BOOT_SERVICES.WaitForEvent()
to wait for a packet to be received.

Mode Pointer to the EFI_SIMPLE_NETWORK_MODE data for the
device. See “Related Definitions” below.

Related Definitions
Version 2.5 April, 2015 1091

Unified Extensible Firmware Interface Specification
//***
// EFI_SIMPLE_NETWORK_MODE
//
// Note that the fields in this data structure are read-only
// and are updated by the code that produces the
// EFI_SIMPLE_NETWORK_PROTOCOL
// functions. All these fields must be discovered
// in a protocol instance of
// EFI_DRIVER_BINDING_PROTOCOL.Start().
//***
typedef struct {
 UINT32 State;
 UINT32 HwAddressSize;
 UINT32 MediaHeaderSize;
 UINT32 MaxPacketSize;
 UINT32 NvRamSize;
 UINT32 NvRamAccessSize;
 UINT32 ReceiveFilterMask;
 UINT32 ReceiveFilterSetting;
 UINT32 MaxMCastFilterCount;
 UINT32 MCastFilterCount;
 EFI_MAC_ADDRESS MCastFilter[MAX_MCAST_FILTER_CNT];
 EFI_MAC_ADDRESS CurrentAddress;
 EFI_MAC_ADDRESS BroadcastAddress;
 EFI_MAC_ADDRESS PermanentAddress;
 UINT8 IfType;
 BOOLEAN MacAddressChangeable;
 BOOLEAN MultipleTxSupported;
 BOOLEAN MediaPresentSupported;
 BOOLEAN MediaPresent;
} EFI_SIMPLE_NETWORK_MODE;

State Reports the current state of the network interface (see
EFI_SIMPLE_NETWORK_STATE below). When an
EFI_SIMPLE_NETWORK_PROTOCOL driver initializes a
network interface, the network interface is left in the
EfiSimpleNetworkStopped state.

HwAddressSize The size, in bytes, of the network interface’s HW address.

MediaHeaderSize The size, in bytes, of the network interface’s media header.

MaxPacketSize The maximum size, in bytes, of the packets supported by the
network interface.

NvRamSize The size, in bytes, of the NVRAM device attached to the network
interface. If an NVRAM device is not attached to the network
interface, then this field will be zero. This value must be a
multiple of NvramAccessSize.
1092 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
NvRamAccessSize The size that must be used for all NVRAM reads and writes. The
start address for NVRAM read and write operations and the total
length of those operations, must be a multiple of this value. The
legal values for this field are 0, 1, 2, 4, and 8. If the value is zero,
then no NVRAM devices are attached to the network interface.

ReceiveFilterMask The multicast receive filter settings supported by the network
interface.

ReceiveFilterSetting
The current multicast receive filter settings. See “Bit Mask
Values for ReceiveFilterSetting” below.

MaxMCastFilterCountThe maximum number of multicast address receive filters
supported by the driver. If this value is zero, then ReceiveFilters()
cannot modify the multicast address receive filters. This field
may be less than MAX_MCAST_FILTER_CNT (see below).

MCastFilterCount The current number of multicast address receive filters.

MCastFilter Array containing the addresses of the current multicast address
receive filters.

CurrentAddress The current HW MAC address for the network interface.

BroadcastAddress The current HW MAC address for broadcast packets.

PermanentAddress The permanent HW MAC address for the network interface.

IfType The interface type of the network interface. See RFC 3232,
section “Number Hardware Type.”

MacAddressChangeable
TRUE if the HW MAC address can be changed.

MultipleTxSupported
TRUE if the network interface can transmit more than one packet
at a time.

MediaPresentSupported
TRUE if the presence of media can be determined; otherwise
FALSE. If FALSE, MediaPresent cannot be used.

MediaPresent TRUE if media are connected to the network interface; otherwise
FALSE. This field shows the media present status as of the most
recent GetStatus() call.
Version 2.5 April, 2015 1093

Unified Extensible Firmware Interface Specification
//***
// EFI_SIMPLE_NETWORK_STATE
//***
typedef enum {
EfiSimpleNetworkStopped,
EfiSimpleNetworkStarted,
EfiSimpleNetworkInitialized,
EfiSimpleNetworkMaxState
} EFI_SIMPLE_NETWORK_STATE;

//***
// MAX_MCAST_FILTER_CNT
//***
#define MAX_MCAST_FILTER_CNT 16

//***
// Bit Mask Values for ReceiveFilterSetting.
//
// Note that all other bit values are reserved.
//***
#define EFI_SIMPLE_NETWORK_RECEIVE_UNICAST 0x01
#define EFI_SIMPLE_NETWORK_RECEIVE_MULTICAST 0x02
#define EFI_SIMPLE_NETWORK_RECEIVE_BROADCAST 0x04
#define EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS 0x08
#define EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS_MULTICAST 0x10

Description
The EFI_SIMPLE_NETWORK_PROTOCOL protocol is used to initialize access to a network
adapter. Once the network adapter initializes, the EFI_SIMPLE_NETWORK_PROTOCOL protocol
provides services that allow packets to be transmitted and received. This provides a packet level
interface that can then be used by higher level drivers to produce boot services like DHCP, TFTP,
and MTFTP. In addition, this protocol can be used as a building block in a full UDP and TCP/IP
implementation that can produce a wide variety of application level network interfaces. See the
Preboot Execution Environment (PXE) Specification for more information.

Note: The underlying network hardware may only be able to access 4 GiB (32-bits) of system memory.
Any requests to transfer data to/from memory above 4 GiB with 32-bit network hardware will be
double-buffered (using intermediate buffers below 4 GiB) and will reduce performance.

Note: The same handle can have an instance of the EFI_ADAPTER_INFORMATION_PROTOCOL
with a EFI_ADAPTER_INFO_MEDIA_STATE type structure.
1094 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_SIMPLE_NETWORK.Start()

Summary
Changes the state of a network interface from “stopped” to “started.”

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_START) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This

);

Parameters
This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL

instance.

Description
This function starts a network interface. If the network interface successfully starts, then
EFI_SUCCESS will be returned.

Status Codes Returned

EFI_SUCCESS The network interface was started.

EFI_ALREADY_STARTED The network interface is already in the started state.

EFI_INVALID_PARAMETER This parameter was NULL or did not point to a valid

EFI_SIMPLE_NETWORK_PROTOCOL structure.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.
Version 2.5 April, 2015 1095

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_NETWORK.Stop()

Summary
Changes the state of a network interface from “started” to “stopped.”

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_STOP) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This
);

Parameters
This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL

instance.

Description
This function stops a network interface. This call is only valid if the network interface is in
the started state. If the network interface was successfully stopped, then EFI_SUCCESS will
be returned.

Status Codes Returned

EFI_SUCCESS The network interface was stopped.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER This parameter was NULL or did not point to a valid

EFI_SIMPLE_NETWORK_PROTOCOL structure.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.
1096 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_SIMPLE_NETWORK.Initialize()

Summary
Resets a network adapter and allocates the transmit and receive buffers required by the network
interface; optionally, also requests allocation of additional transmit and receive buffers.

Prototype
typedef

EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_INITIALIZE) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,
 IN UINTN ExtraRxBufferSize OPTIONAL,
 IN UINTN ExtraTxBufferSize OPTIONAL
);

Parameters
This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL

instance.

ExtraRxBufferSize The size, in bytes, of the extra receive buffer space that the driver
should allocate for the network interface. Some network
interfaces will not be able to use the extra buffer, and the caller
will not know if it is actually being used.

ExtraTxBufferSize The size, in bytes, of the extra transmit buffer space that the
driver should allocate for the network interface. Some network
interfaces will not be able to use the extra buffer, and the caller
will not know if it is actually being used.

Description
This function allocates the transmit and receive buffers required by the network interface. If this
allocation fails, then EFI_OUT_OF_RESOURCES is returned. If the allocation succeeds and the
network interface is successfully initialized, then EFI_SUCCESS will be returned.

Status Codes Returned

EFI_SUCCESS The network interface was initialized.

EFI_NOT_STARTED The network interface has not been started.

EFI_OUT_OF_RESOURCES There was not enough memory for the transmit and receive buffers.

EFI_INVALID_PARAMETER This parameter was NULL or did not point to a valid

EFI_SIMPLE_NETWORK_PROTOCOL structure.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED The increased buffer size feature is not supported.
Version 2.5 April, 2015 1097

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_NETWORK.Reset()

Summary
Resets a network adapter and reinitializes it with the parameters that were provided in the previous
call to Initialize().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_RESET) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,
 IN BOOLEAN ExtendedVerification
);

Parameters
This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL

instance.

ExtendedVerification
Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description
This function resets a network adapter and reinitializes it with the parameters that were provided in
the previous call to Initialize(). The transmit and receive queues are emptied and all pending
interrupts are cleared. Receive filters, the station address, the statistics, and the multicast-IP-to-HW
MAC addresses are not reset by this call. If the network interface was successfully reset, then
EFI_SUCCESS will be returned. If the driver has not been initialized, EFI_DEVICE_ERROR will
be returned.

Status Codes Returned

EFI_SUCCESS The network interface was reset.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.
1098 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_SIMPLE_NETWORK.Shutdown()

Summary
Resets a network adapter and leaves it in a state that is safe for another driver to initialize.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_SHUTDOWN) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This
);

Parameters
This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL

instance.

Description
This function releases the memory buffers assigned in the Initialize() call. Pending transmits
and receives are lost, and interrupts are cleared and disabled. After this call, only the
Initialize() and Stop() calls may be used. If the network interface was successfully
shutdown, then EFI_SUCCESS will be returned. If the driver has not been initialized,
EFI_DEVICE_ERROR will be returned.

Status Codes Returned

EFI_SUCCESS The network interface was shutdown.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER This parameter was NULL or did not point to a valid

EFI_SIMPLE_NETWORK_PROTOCOL structure.

EFI_DEVICE_ERROR The command could not be sent to the network interface.
Version 2.5 April, 2015 1099

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_NETWORK.ReceiveFilters()

Summary
Manages the multicast receive filters of a network interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_RECEIVE_FILTERS) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,
 IN UINT32 Enable,
 IN UINT32 Disable,
 IN BOOLEAN ResetMCastFilter,
 IN UINTN MCastFilterCnt OPTIONAL,
 IN EFI_MAC_ADDRESS *MCastFilter OPTIONAL,
);

Parameters
This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL

instance.

Enable A bit mask of receive filters to enable on the network interface.

Disable A bit mask of receive filters to disable on the network interface.
For backward compatibility with EFI 1.1 platforms, the
EFI_SIMPLE_NETWORK_RECEIVE_MULTICAST bit must
be set when the ResetMCastFilter parameter is TRUE.

ResetMCastFilter Set to TRUE to reset the contents of the multicast receive filters
on the network interface to their default values.

MCastFilterCnt Number of multicast HW MAC addresses in the new
MCastFilter list. This value must be less than or equal to the
MCastFilterCnt field of EFI_SIMPLE_NETWORK_MODE.
This field is optional if ResetMCastFilter is TRUE.

MCastFilter A pointer to a list of new multicast receive filter HW MAC
addresses. This list will replace any existing multicast HW MAC
address list. This field is optional if ResetMCastFilter is
TRUE.

Description
This function is used enable and disable the hardware and software receive filters for the underlying
network device.

The receive filter change is broken down into three steps:

• The filter mask bits that are set (ON) in the Enable parameter are added to the current receive
filter settings.

• The filter mask bits that are set (ON) in the Disable parameter are subtracted from the updated
receive filter settings.
1100 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
• If the resulting receive filter setting is not supported by the hardware a more liberal setting is
selected.

If the same bits are set in the Enable and Disable parameters, then the bits in the Disable parameter
takes precedence.

If the ResetMCastFilter parameter is TRUE, then the multicast address list filter is disabled
(irregardless of what other multicast bits are set in the Enable and Disable parameters). The SNP-
>Mode->MCastFilterCount field is set to zero. The Snp->Mode->MCastFilter contents are
undefined.

After enabling or disabling receive filter settings, software should verify the new settings by
checking the Snp->Mode->ReceiveFilterSettings, Snp->Mode->MCastFilterCount and Snp->Mode-
>MCastFilter fields.

Note: Some network drivers and/or devices will automatically promote receive filter settings if the
requested setting can not be honored. For example, if a request for four multicast addresses is made
and the underlying hardware only supports two multicast addresses the driver might set the
promiscuous or promiscuous multicast receive filters instead. The receiving software is responsible
for discarding any extra packets that get through the hardware receive filters.

Note: Note: To disable all receive filter hardware, the network driver must be Shutdown() and Stopped().
Calling ReceiveFilters() with Disable set to Snp->Mode->ReceiveFilterSettings will make it so no
more packets are returned by the Receive() function, but the receive hardware may still be moving
packets into system memory before inspecting and discarding them. Unexpected system errors,
reboots and hangs can occur if an OS is loaded and the network devices are not Shutdown() and
Stopped().

If ResetMCastFilter is TRUE, then the multicast receive filter list on the network interface will
be reset to the default multicast receive filter list. If ResetMCastFilter is FALSE, and this
network interface allows the multicast receive filter list to be modified, then the
MCastFilterCnt and MCastFilter are used to update the current multicast receive filter list.
The modified receive filter list settings can be found in the MCastFilter field of
EFI_SIMPLE_NETWORK_MODE. If the network interface does not allow the multicast receive
filter list to be modified, then EFI_INVALID_PARAMETER will be returned. If the driver has not
been initialized, EFI_DEVICE_ERROR will be returned.

If the receive filter mask and multicast receive filter list have been successfully updated on the
network interface, EFI_SUCCESS will be returned.

Status Codes Returned

EFI_SUCCESS The multicast receive filter list was updated.

EFI_NOT_STARTED The network interface has not been started.
Version 2.5 April, 2015 1101

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER • One or more of the following conditions is TRUE:

• This is NULL
• There are bits set in Enable that are not set in Snp->Mode-

>ReceiveFilterMask

• There are bits set in Disable that are not set in Snp->Mode-
>ReceiveFilterMask

• Multicast is being enabled (the
EFI_SIMPLE_NETWORK_RECEIVE_MULTICAST bit is set in
Enable, it is not set in Disable, and ResetMCastFilter is FALSE)
and MCastFilterCount is zero

• Multicast is being enabled and MCastFilterCount is greater than
Snp->Mode->MaxMCastFilterCount

• Multicast is being enabled and MCastFilter is NULL
• Multicast is being enabled and one or more of the addresses in the

MCastFilter list are not valid multicast MAC addresses

EFI_DEVICE_ERROR • One or more of the following conditions is TRUE:

• The network interface has been started but has not been initialized

• An unexpected error was returned by the underlying network driver
or device

EFI_UNSUPPORTED This function is not supported by the network interface.
1102 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_SIMPLE_NETWORK.StationAddress()

Summary
Modifies or resets the current station address, if supported.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_STATION_ADDRESS) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,
 IN BOOLEAN Reset,
 IN EFI_MAC_ADDRESS *New OPTIONAL
);

Parameters
This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL

instance.

Reset Flag used to reset the station address to the network interface’s
permanent address.

New New station address to be used for the network interface.

Description
This function modifies or resets the current station address of a network interface, if supported. If
Reset is TRUE, then the current station address is set to the network interface’s permanent address.
If Reset is FALSE, and the network interface allows its station address to be modified, then the
current station address is changed to the address specified by New. If the network interface does not
allow its station address to be modified, then EFI_INVALID_PARAMETER will be returned. If the
station address is successfully updated on the network interface, EFI_SUCCESS will be returned. If
the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned

EFI_SUCCESS The network interface’s station address was updated.

EFI_NOT_STARTED The Simple Network

 Protocol interface has not been started by calling Start().

EFI_INVALID_PARAMETER The New station address was not accepted by the NIC.

EFI_INVALID_PARAMETER Reset is FALSE and New is NULL.

EFI_DEVICE_ERROR The Simple Network
 Protocol interface has not been initialized by calling

Initialize().

EFI_DEVICE_ERROR An error occurred attempting to set the new station address.

EFI_UNSUPPORTED The NIC does not support changing the network interface’s station
address.
Version 2.5 April, 2015 1103

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_NETWORK.Statistics()

Summary
Resets or collects the statistics on a network interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_STATISTICS) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,
 IN BOOLEAN Reset,
 IN OUT UINTN *StatisticsSize OPTIONAL,
 OUT EFI_NETWORK_STATISTICS *StatisticsTable OPTIONAL
);

Parameters
This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL

instance.

Reset Set to TRUE to reset the statistics for the network interface.

StatisticsSize On input the size, in bytes, of StatisticsTable. On output
the size, in bytes, of the resulting table of statistics.

StatisticsTable A pointer to the EFI_NETWORK_STATISTICS structure that
contains the statistics. Type EFI_NETWORK_STATISTICS is
defined in “Related Definitions” below.
1104 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
Related Definitions

//***
// EFI_NETWORK_STATISTICS
//
// Any statistic value that is –1 is not available
// on the device and is to be ignored.
//***
typedef struct {
 UINT64 RxTotalFrames;
 UINT64 RxGoodFrames;
 UINT64 RxUndersizeFrames;
 UINT64 RxOversizeFrames;
 UINT64 RxDroppedFrames;
 UINT64 RxUnicastFrames;
 UINT64 RxBroadcastFrames;
 UINT64 RxMulticastFrames;
 UINT64 RxCrcErrorFrames;
 UINT64 RxTotalBytes;
 UINT64 TxTotalFrames;
 UINT64 TxGoodFrames;
 UINT64 TxUndersizeFrames;
 UINT64 TxOversizeFrames;
 UINT64 TxDroppedFrames;
 UINT64 TxUnicastFrames;
 UINT64 TxBroadcastFrames;
 UINT64 TxMulticastFrames;
 UINT64 TxCrcErrorFrames;
 UINT64 TxTotalBytes;
 UINT64 Collisions;
 UINT64 UnsupportedProtocol;
} EFI_NETWORK_STATISTICS;

RxTotalFrames Total number of frames received. Includes frames with errors and
dropped frames.

RxGoodFrames Number of valid frames received and copied into receive buffers.

RxUndersizeFrames Number of frames below the minimum length for the
communications device.

RxOversizeFrames Number of frames longer than the maximum length for the
communications device.

RxDroppedFrames Valid frames that were dropped because receive buffers were full.

RxUnicastFrames Number of valid unicast frames received and not dropped.

RxBroadcastFrames Number of valid broadcast frames received and not dropped.

RxMulticastFrames Number of valid multicast frames received and not dropped.
Version 2.5 April, 2015 1105

Unified Extensible Firmware Interface Specification
RxCrcErrorFrames Number of frames with CRC or alignment errors.

RxTotalBytes Total number of bytes received. Includes frames with errors and
dropped frames.

TxTotalFrames Total number of frames transmitted. Includes frames with errors
and dropped frames.

TxGoodFrames Number of valid frames transmitted and copied into receive
buffers.

TxUndersizeFrames Number of frames below the minimum length for the media. This
would be less than 64 for Ethernet.

TxOversizeFrames Number of frames longer than the maximum length for the
media. This would be greater than 1500 for Ethernet.

TxDroppedFrames Valid frames that were dropped because receive buffers were full.

TxUnicastFrames Number of valid unicast frames transmitted and not dropped.

TxBroadcastFrames Number of valid broadcast frames transmitted and not dropped.

TxMulticastFrames Number of valid multicast frames transmitted and not dropped.

TxCrcErrorFrames Number of frames with CRC or alignment errors.

TxTotalBytes Total number of bytes transmitted. Includes frames with errors
and dropped frames.

Collisions Number of collisions detected on this subnet.

UnsupportedProtocolNumber of frames destined for unsupported protocol.

Description
This function resets or collects the statistics on a network interface. If the size of the statistics table
specified by StatisticsSize is not big enough for all the statistics that are collected by the
network interface, then a partial buffer of statistics is returned in StatisticsTable,
StatisticsSize is set to the size required to collect all the available statistics, and
EFI_BUFFER_TOO_SMALL is returned.

If StatisticsSize is big enough for all the statistics, then StatisticsTable will be filled,
StatisticsSize will be set to the size of the returned StatisticsTable structure, and
EFI_SUCCESS is returned. If the driver has not been initialized, EFI_DEVICE_ERROR will be
returned.

If Reset is FALSE, and both StatisticsSize and StatisticsTable are NULL, then no
operations will be performed, and EFI_SUCCESS will be returned.

If Reset is TRUE, then all of the supported statistics counters on this network interface will be reset
to zero.

Status Codes Returned

EFI_SUCCESS The requested operation succeeded.

EFI_NOT_STARTED The Simple Network

 Protocol interface has not been started by calling Start().
1106 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_BUFFER_TOO_SMALL StatisticsSize is not NULL and StatisticsTable is

NULL. The current buffer size that is needed to hold all the statistics

is returned in StatisticsSize.

EFI_BUFFER_TOO_SMALL StatisticsSize is not NULL and StatisticsTable is

not NULL. The current buffer size that is needed to hold all the

statistics is returned in StatisticsSize. A partial set of

statistics is returned in StatisticsTable.

EFI_INVALID_PARAMETER StatisticsSize is NULL and StatisticsTable is not

NULL.

EFI_DEVICE_ERROR The Simple Network
 Protocol interface has not been initialized by calling

Initialize().

EFI_DEVICE_ERROR An error was encountered collecting statistics from the NIC.

EFI_UNSUPPORTED The NIC does not support collecting statistics from the network
interface.
Version 2.5 April, 2015 1107

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_NETWORK.MCastIPtoMAC()

Summary
Converts a multicast IP address to a multicast HW MAC address.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_MCAST_IP_TO_MAC) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,
 IN BOOLEAN IPv6,
 IN EFI_IP_ADDRESS *IP,
 OUT EFI_MAC_ADDRESS *MAC
);

Parameters
This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL

instance.

IPv6 Set to TRUE if the multicast IP address is IPv6 [RFC 2460]. Set to
FALSE if the multicast IP address is IPv4 [RFC 791].

IP The multicast IP address that is to be converted to a multicast HW
MAC address.

MAC The multicast HW MAC address that is to be generated from IP.

Description
This function converts a multicast IP address to a multicast HW MAC address for all packet
transactions. If the mapping is accepted, then EFI_SUCCESS will be returned.

Status Codes Returned

EFI_SUCCESS The multicast IP address was mapped to the multicast HW MAC
address.

EFI_NOT_STARTED The Simple Network

 Protocol interface has not been started by calling Start().

EFI_INVALID_PARAMETER IP is NULL.

EFI_INVALID_PARAMETER MAC is NULL.

EFI_INVALID_PARAMETER IP does not point to a valid IPv4 or IPv6 multicast address.

EFI_DEVICE_ERROR The Simple Network
 Protocol interface has not been initialized by calling

Initialize().

EFI_UNSUPPORTED IPv6 is TRUE and the implementation does not support IPv6

multicast to MAC address conversion.
1108 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_SIMPLE_NETWORK.NvData()

Summary
Performs read and write operations on the NVRAM device attached to a network interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_NVDATA) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This
 IN BOOLEAN ReadWrite,
 IN UINTN Offset,
 IN UINTN BufferSize,
 IN OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL

instance.

ReadWrite TRUE for read operations, FALSE for write operations.

Offset Byte offset in the NVRAM device at which to start the read or
write operation. This must be a multiple of NvRamAccessSize
and less than NvRamSize. (See
EFI_SIMPLE_NETWORK_MODE)

BufferSize The number of bytes to read or write from the NVRAM device.
This must also be a multiple of NvramAccessSize.

Buffer A pointer to the data buffer.

Description
This function performs read and write operations on the NVRAM device attached to a network
interface. If ReadWrite is TRUE, a read operation is performed. If ReadWrite is FALSE, a write
operation is performed.

Offset specifies the byte offset at which to start either operation. Offset must be a multiple of
NvRamAccessSize , and it must have a value between zero and NvRamSize.

BufferSize specifies the length of the read or write operation. BufferSize must also be a
multiple of NvRamAccessSize, and Offset + BufferSize must not exceed NvRamSize.

If any of the above conditions is not met, then EFI_INVALID_PARAMETER will be returned.

If all the conditions are met and the operation is “read,” the NVRAM device attached to the network
interface will be read into Buffer and EFI_SUCCESS will be returned. If this is a write operation,
the contents of Buffer will be used to update the contents of the NVRAM device attached to the
network interface and EFI_SUCCESS will be returned.
Version 2.5 April, 2015 1109

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS The NVRAM access was performed.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• The This parameter is NULL

• The This parameter does not point to a valid
EFI_SIMPLE_NETWORK_PROTOCOL structure

• The Offset parameter is not a multiple of
EFI_SIMPLE_NETWORK_MODE.NvRamAccessSize

• The Offset parameter is not less than
EFI_SIMPLE_NETWORK_MODE.NvRamSize

• The BufferSize parameter is not a multiple of
EFI_SIMPLE_NETWORK_MODE.NvRamAccessSize

The Buffer parameter is NULL

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.
1110 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_SIMPLE_NETWORK.GetStatus()

Summary
Reads the current interrupt status and recycled transmit buffer status from a network interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_GET_STATUS) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This,
 OUT UINT32 *InterruptStatus OPTIONAL,
 OUT VOID **TxBuf OPTIONAL
);

Parameters
This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL

instance.

InterruptStatus A pointer to the bit mask of the currently active interrupts (see
“Related Definitions”). If this is NULL, the interrupt status will
not be read from the device. If this is not NULL, the interrupt
status will be read from the device. When the interrupt status is
read, it will also be cleared. Clearing the transmit interrupt does
not empty the recycled transmit buffer array.

TxBuf Recycled transmit buffer address. The network interface will not
transmit if its internal recycled transmit buffer array is full.
Reading the transmit buffer does not clear the transmit interrupt.
If this is NULL, then the transmit buffer status will not be read. If
there are no transmit buffers to recycle and TxBuf is not NULL,
* TxBuf will be set to NULL.

Related Definitions
//***
// Interrupt Bit Mask Settings for InterruptStatus.
// Note that all other bit values are reserved.
//***
#define EFI_SIMPLE_NETWORK_RECEIVE_INTERRUPT 0x01
#define EFI_SIMPLE_NETWORK_TRANSMIT_INTERRUPT 0x02
#define EFI_SIMPLE_NETWORK_COMMAND_INTERRUPT 0x04
#define EFI_SIMPLE_NETWORK_SOFTWARE_INTERRUPT 0x08

Description
This function gets the current interrupt and recycled transmit buffer status from the network
interface. The interrupt status is returned as a bit mask in InterruptStatus. If
InterruptStatus is NULL, the interrupt status will not be read. Upon successful return of the
media status, the MediaPresent field of EFI_SIMPLE_NETWORK_MODE will be updated to
reflect any change of media status.Upon successful return of the media status, the MediaPresent
Version 2.5 April, 2015 1111

Unified Extensible Firmware Interface Specification
field of EFI_SIMPLE_NETWORK_MODE will be updated to reflect any change of media status. If
TxBuf is not NULL, a recycled transmit buffer address will be retrieved. If a recycled transmit
buffer address is returned in TxBuf, then the buffer has been successfully transmitted, and the status
for that buffer is cleared. If the status of the network interface is successfully collected,
EFI_SUCCESS will be returned. If the driver has not been initialized, EFI_DEVICE_ERROR will
be returned.

Status Codes Returned

EFI_SUCCESS The status of the network interface was retrieved.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER This parameter was NULL or did not point to a valid

EFI_SIMPLE_NETWORK_PROTOCOL structure.

EFI_DEVICE_ERROR The command could not be sent to the network interface.
1112 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_SIMPLE_NETWORK.Transmit()

Summary
Places a packet in the transmit queue of a network interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_TRANSMIT) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This
 IN UINTN HeaderSize,
 IN UINTN BufferSize,
 IN VOID *Buffer,
 IN EFI_MAC_ADDRESS *SrcAddr OPTIONAL,
 IN EFI_MAC_ADDRESS *DestAddr OPTIONAL,
 IN UINT16 *Protocol OPTIONAL,
);

Parameters
This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL

instance.

HeaderSize The size, in bytes, of the media header to be filled in by the
Transmit() function. If HeaderSize is nonzero, then it
must be equal to This->Mode->MediaHeaderSize and the
DestAddr and Protocol parameters must not be NULL.

BufferSize The size, in bytes, of the entire packet (media header and data) to
be transmitted through the network interface.

Buffer A pointer to the packet (media header followed by data) to be
transmitted. This parameter cannot be NULL. If HeaderSize is
zero, then the media header in Buffer must already be filled in
by the caller. If HeaderSize is nonzero, then the media header
will be filled in by the Transmit() function.

SrcAddr The source HW MAC address. If HeaderSize is zero, then this
parameter is ignored. If HeaderSize is nonzero and SrcAddr
is NULL, then This->Mode->CurrentAddress is used for
the source HW MAC address.

DestAddr The destination HW MAC address. If HeaderSize is zero, then
this parameter is ignored.

Protocol The type of header to build. If HeaderSize is zero, then this
parameter is ignored. See RFC 3232, section “Ether Types,”
for examples.

Description
This function places the packet specified by Header and Buffer on the transmit queue. If
HeaderSize is nonzero and HeaderSize is not equal to
This->Mode->MediaHeaderSize, then EFI_INVALID_PARAMETER will be returned. If
Version 2.5 April, 2015 1113

Unified Extensible Firmware Interface Specification
BufferSize is less than This->Mode->MediaHeaderSize, then
EFI_BUFFER_TOO_SMALL will be returned. If Buffer is NULL, then
EFI_INVALID_PARAMETER will be returned. If HeaderSize is nonzero and DestAddr or
Protocol is NULL, then EFI_INVALID_PARAMETER will be returned. If the transmit engine of
the network interface is busy, then EFI_NOT_READY will be returned. If this packet can be
accepted by the transmit engine of the network interface, the packet contents specified by Buffer
will be placed on the transmit queue of the network interface, and EFI_SUCCESS will be returned.
GetStatus() can be used to determine when the packet has actually been transmitted. The
contents of the Buffer must not be modified until the packet has actually been transmitted.

The Transmit() function performs nonblocking I/O. A caller who wants to perform blocking I/O,
should call Transmit(), and then GetStatus() until the transmitted buffer shows up in the
recycled transmit buffer.

If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned

EFI_SUCCESS The packet was placed on the transmit queue.

EFI_NOT_STARTED The network interface has not been started.

EFI_NOT_READY The network interface is too busy to accept this transmit request.

EFI_BUFFER_TOO_SMALL The BufferSize parameter is too small.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.
1114 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_SIMPLE_NETWORK.Receive()

Summary

Receives a packet from a network interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_RECEIVE) (
 IN EFI_SIMPLE_NETWORK_PROTOCOL *This
 OUT UINTN *HeaderSize OPTIONAL,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer,
 OUT EFI_MAC_ADDRESS *SrcAddr OPTIONAL,
 OUT EFI_MAC_ADDRESS *DestAddr OPTIONAL,
 OUT UINT16 *Protocol OPTIONAL
);

Parameters
This A pointer to the EFI_SIMPLE_NETWORK_PROTOCOL

instance.

HeaderSize The size, in bytes, of the media header received on the network
interface. If this parameter is NULL, then the media header size
will not be returned.

BufferSize On entry, the size, in bytes, of Buffer. On exit, the size, in
bytes, of the packet that was received on the network interface.

Buffer A pointer to the data buffer to receive both the media header and
the data.

SrcAddr The source HW MAC address. If this parameter is NULL, the HW
MAC source address will not be extracted from the media header.

DestAddr The destination HW MAC address. If this parameter is NULL, the
HW MAC destination address will not be extracted from the
media header.

Protocol The media header type. If this parameter is NULL, then the
protocol will not be extracted from the media header. See
RFC 1700 section “Ether Types” for examples.

Description
This function retrieves one packet from the receive queue of a network interface. If there are no
packets on the receive queue, then EFI_NOT_READY will be returned. If there is a packet on the
receive queue, and the size of the packet is smaller than BufferSize, then the contents of the
packet will be placed in Buffer, and BufferSize will be updated with the actual size of the
packet. In addition, if SrcAddr, DestAddr, and Protocol are not NULL, then these values will
be extracted from the media header and returned. EFI_SUCCESS will be returned if a packet was
successfully received. If BufferSize is smaller than the received packet, then the size of the
Version 2.5 April, 2015 1115

Unified Extensible Firmware Interface Specification
receive packet will be placed in BufferSize and EFI_BUFFER_TOO_SMALL will be returned.
If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned

23.2 Network Interface Identifier Protocol
This is an optional protocol that is used to describe details about the software layer that is used to
produce the Simple Network Protocol. This protocol is only required if the underlying network
interface is 16-bit UNDI, 32/64-bit S/W UNDI, or H/W UNDI. It is used to obtain type and revision
information about the underlying network interface.

An instance of the Network Interface Identifier protocol must be created for each physical external
network interface that is controlled by the !PXE structure. The !PXE structure is defined in the 32/
64-bit UNDI Specification in Appendix E.

EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL

Summary
An optional protocol that is used to describe details about the software layer that is used to produce
the Simple Network Protocol.

EFI_SUCCESS The received data was stored in Buffer, and BufferSize has

been updated to the number of bytes received.

EFI_NOT_STARTED The network interface has not been started.

EFI_NOT_READY No packets have been received on the network interface.

EFI_BUFFER_TOO_SMALL BufferSize is too small for the received packets.

BufferSize has been updated to the required size.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• The This parameter is NULL
• The This parameter does not point to a valid
EFI_SIMPLE_NETWORK_PROTOCOL structure.

• The BufferSize parameter is NULL
• The Buffer parameter is NULL

EFI_DEVICE_ERROR The command could not be sent to the network interface.
1116 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
GUID
#define EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_GUID_31 \
 {0x1ACED566, 0x76ED, 0x4218,\
 {0xBC, 0x81, 0x76, 0x7F, 0x1F, 0x97, 0x7A, 0x89}}

Revision Number
#define EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_REVISION \
0x00020000

Protocol Interface Structure
typedef struct {
 UINT64 Revision;
 UINT64 Id;
 UINT64 ImageAddr;
 UINT32 ImageSize;
 CHAR8 StringId[4];
 UINT8 Type;
 UINT8 MajorVer;
 UINT8 MinorVer;
 BOOLEAN Ipv6Supported;
 UINT16 IfNum;
} EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL;

Parameters
Revision The revision of the

EFI_NETWORK_INTERFACE_IDENTIFIER protocol.

Id Address of the first byte of the identifying structure for this
network interface. This is only valid when the network interface
is started (see Start()). When the network interface is not
started, this field is set to zero.

16-bit UNDI and 32/64-bit S/W UNDI:

Id contains the address of the first byte of the copy of the !PXE
structure in the relocated UNDI code segment. See the Preboot
Execution Environment (PXE) Specification and Appendix E.

H/W UNDI:

Id contains the address of the !PXE structure.

ImageAddr Address of the unrelocated network interface image.

16-bit UNDI:

ImageAddr is the address of the PXE option ROM image in
upper memory.

32/64-bit S/W UNDI:

ImageAddr is the address of the unrelocated S/W UNDI image.

H/W UNDI:

ImageAddr contains zero.
Version 2.5 April, 2015 1117

Unified Extensible Firmware Interface Specification
ImageSize Size of unrelocated network interface image.

16-bit UNDI:

ImageSize is the size of the PXE option ROM image in upper
memory.

32/64-bit S/W UNDI:

ImageSize is the size of the unrelocated S/W UNDI image.

H/W UNDI:

ImageSize contains zero.

StringId A four-character ASCII string that is sent in the class identifier
field of option 60 in DHCP. For a Type of
EfiNetworkInterfaceUndi, this field is “UNDI.”

Type Network interface type. This will be set to one of the values in
EFI_NETWORK_INTERFACE_TYPE (see “Related
Definitions” below).

MajorVer Major version number.

16-bit UNDI:

MajorVer comes from the third byte of the UNDIRev field in
the UNDI ROM ID structure. Refer to the Preboot Execution
Environment (PXE) Specification.

32/64-bit S/W UNDI and H/W UNDI:

MajorVer comes from the Major field in the !PXE structure.
See Appendix E.

MinorVer Minor version number.

16-bit UNDI:

MinorVer comes from the second byte of the UNDIRev field in
the UNDI ROM ID structure. Refer to the Preboot Execution
Environment (PXE) Specification.

32/64-bit S/W UNDI and H/W UNDI:

MinorVer comes from the Minor field in the !PXE structure.
See Appendix E.

Ipv6Supported TRUE if the network interface supports IPv6; otherwise FALSE.

IfNum The network interface number that is being identified by this
Network Interface Identifier Protocol. This field must be less than
or equal to the (IFcnt | IFcntExt <<8) field in the !PXE structure.

Related Definitions
//***
// EFI_NETWORK_INTERFACE_TYPE
//***
typedef enum {
EfiNetworkInterfaceUndi = 1
} EFI_NETWORK_INTERFACE_TYPE;
1118 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
Description
The EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL is used by
EFI_PXE_BASE_CODE_PROTOCOL and OS loaders to identify the type of the underlying
network interface and to locate its initial entry point.

23.3 PXE Base Code Protocol
This section defines the Preboot Execution Environment (PXE) Base Code protocol, which is used
to access PXE-compatible devices for network access and network booting. For more information
about PXE, see “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading
“Preboot Execution Environment (PXE) Specification”.

EFI_PXE_BASE_CODE_PROTOCOL

Summary
The EFI_PXE_BASE_CODE_PROTOCOL is used to control PXE-compatible devices. The
features of these devices are defined in the Preboot Execution Environment (PXE)
Specification. An EFI_PXE_BASE_CODE_PROTOCOL will be layered on top of an
EFI_MANAGED_NETWORK_PROTOCOL protocol in order to perform packet level
transactions. The EFI_PXE_BASE_CODE_PROTOCOL handle also supports the
EFI_LOAD_FILE_PROTOCOL protocol. This provides a clean way to obtain control from
the boot manager if the boot path is from the remote device.
Version 2.5 April, 2015 1119

Unified Extensible Firmware Interface Specification
GUID
#define EFI_PXE_BASE_CODE_PROTOCOL_GUID \
 {0x03C4E603,0xAC28,0x11d3,\
 {0x9A,0x2D,0x00,0x90,0x27,0x3F,0xC1,0x4D}}

Revision Number
#define EFI_PXE_BASE_CODE_PROTOCOL_REVISION 0x00010000

Protocol Interface Structure
typedef struct {
 UINT64 Revision;
 EFI_PXE_BASE_CODE_START Start;
 EFI_PXE_BASE_CODE_STOP Stop;
 EFI_PXE_BASE_CODE_DHCP Dhcp;
 EFI_PXE_BASE_CODE_DISCOVER Discover;
 EFI_PXE_BASE_CODE_MTFTP Mtftp;
 EFI_PXE_BASE_CODE_UDP_WRITE UdpWrite;
 EFI_PXE_BASE_CODE_UDP_READ UdpRead;
 EFI_PXE_BASE_CODE_SET_IP_FILTER SetIpFilter;
 EFI_PXE_BASE_CODE_ARP Arp;
 EFI_PXE_BASE_CODE_SET_PARAMETERS SetParameters;
 EFI_PXE_BASE_CODE_SET_STATION_IP SetStationIp;
 EFI_PXE_BASE_CODE_SET_PACKETS SetPackets;
 EFI_PXE_BASE_CODE_MODE *Mode;
} EFI_PXE_BASE_CODE_PROTOCOL;

Parameters
Revision The revision of the EFI_PXE_BASE_CODE_PROTOCOL. All

future revisions must be backwards compatible. If a future
version is not backwards compatible it is not the same GUID.

Start Starts the PXE Base Code Protocol. Mode structure information
is not valid and no other Base Code Protocol functions will
operate until the Base Code is started. See the Start() function
description.

Stop Stops the PXE Base Code Protocol. Mode structure information
is unchanged by this function. No Base Code Protocol functions
will operate until the Base Code is restarted. See the Stop()
function description.

Dhcp Attempts to complete a DHCPv4 D.O.R.A. (discover / offer /
request / acknowledge) or DHCPv6 S.A.R.R (solicit / advertise /
request / reply) sequence. See the Dhcp() function description.

Discover Attempts to complete the PXE Boot Server and/or boot image
discovery sequence. See the Discover() function description.

Mtftp Performs TFTP and MTFTP services. See the Mtftp() function
description.
1120 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
UdpWrite Writes a UDP packet to the network interface. See the
UdpWrite() function description.

UdpRead Reads a UDP packet from the network interface. See the
UdpRead() function description.

SetIpFilter Updates the IP receive filters of the network device. See the
SetIpFilter() function description.

Arp Uses the ARP protocol to resolve a MAC address. See the
Arp() function description.

SetParameters Updates the parameters that affect the operation of the PXE Base
Code Protocol. See the SetParameters() function
description.

SetStationIp Updates the station IP address and subnet mask values. See the
SetStationIp() function description.

SetPackets Updates the contents of the cached DHCP and Discover packets.
See the SetPackets() function description.

Mode Pointer to the EFI_PXE_BASE_CODE_MODE data for this
device. The EFI_PXE_BASE_CODE_MODE structure is defined
in “Related Definitions” below.

Related Definitions

//***
// Maximum ARP and Route Entries
//***
#define EFI_PXE_BASE_CODE_MAX_ARP_ENTRIES 8

#define EFI_PXE_BASE_CODE_MAX_ROUTE_ENTRIES 8

//***
// EFI_PXE_BASE_CODE_MODE
//
// The data values in this structure are read-only and
// are updated by the code that produces the
// EFI_PXE_BASE_CODE_PROTOCOLfunctions. //

typedef struct {

 BOOLEAN Started;
 BOOLEAN Ipv6Available;
 BOOLEAN Ipv6Supported;
 BOOLEAN UsingIpv6;
 BOOLEAN BisSupported;
 BOOLEAN BisDetected;
 BOOLEAN AutoArp;
 BOOLEAN SendGUID;
 BOOLEAN DhcpDiscoverValid;
 BOOLEAN DhcpAckReceivd;
 BOOLEAN ProxyOfferReceived;
Version 2.5 April, 2015 1121

Unified Extensible Firmware Interface Specification
 BOOLEAN PxeDiscoverValid;
 BOOLEAN PxeReplyReceived;
 BOOLEAN PxeBisReplyReceived;
 BOOLEAN IcmpErrorReceived;
 BOOLEAN TftpErrorReceived;
 BOOLEAN MakeCallbacks;
 UINT8 TTL;
 UINT8 ToS;
 EFI_IP_ADDRESS StationIp;
 EFI_IP_ADDRESS SubnetMask;
 EFI_PXE_BASE_CODE_PACKET DhcpDiscover;
 EFI_PXE_BASE_CODE_PACKET DhcpAck;
 EFI_PXE_BASE_CODE_PACKET ProxyOffer;
 EFI_PXE_BASE_CODE_PACKET PxeDiscover;
 EFI_PXE_BASE_CODE_PACKET PxeReply;
 EFI_PXE_BASE_CODE_PACKET PxeBisReply;
 EFI_PXE_BASE_CODE_IP_FILTER IpFilter;
 UINT32 ArpCacheEntries;
 EFI_PXE_BASE_CODE_ARP_ENTRY
 ArpCache[EFI_PXE_BASE_CODE_MAX_ARP_ENTRIES];
 UINT32 RouteTableEntries;
 EFI_PXE_BASE_CODE_ROUTE_ENTRY
 RouteTable[EFI_PXE_BASE_CODE_MAX_ROUTE_ENTRIES];
 EFI_PXE_BASE_CODE_ICMP_ERROR IcmpError;
 EFI_PXE_BASE_CODE_TFTP_ERROR TftpError;
} EFI_PXE_BASE_CODE_MODE;

Started TRUE if this device has been started by calling Start(). This
field is set to TRUE by the Start() function and to FALSE by
the Stop() function.

Ipv6Available TRUE if the UNDI protocol supports IPv6.

Ipv6Supported TRUE if this PXE Base Code Protocol implementation supports
IPv6.

UsingIpv6 TRUE if this device is currently using IPv6. This field is set by the
Start() function.

BisSupported TRUE if this PXE Base Code implementation supports Boot
Integrity Services (BIS). This field is set by the Start()
function.

BisDetected TRUE if this device and the platform support Boot Integrity
Services (BIS). This field is set by the Start() function.

AutoArp TRUE for automatic ARP packet generation; FALSE otherwise.
This field is initialized to TRUE by Start() and can be
modified with the SetParameters() function.

SendGUID This field is used to change the Client Hardware Address
(chaddr) field in the DHCP and Discovery packets. Set to TRUE
to send the SystemGuid (if one is available). Set to FALSE to
1122 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
send the client NIC MAC address. This field is initialized to
FALSE by Start() and can be modified with the
SetParameters() function.

DhcpDiscoverValid This field is initialized to FALSE by the Start() function and
set to TRUE when the Dhcp() function completes successfully.
When TRUE, the DhcpDiscover field is valid. This field can
also be changed by the SetPackets() function.

DhcpAckReceived This field is initialized to FALSE by the Start() function and
set to TRUE when the Dhcp() function completes successfully.
When TRUE, the DhcpAck field is valid. This field can also be
changed by the SetPackets() function.

ProxyOfferReceived This field is initialized to FALSE by the Start() function and
set to TRUE when the Dhcp() function completes successfully
and a proxy DHCP offer packet was received. When TRUE, the
ProxyOffer packet field is valid. This field can also be
changed by the SetPackets() function.

PxeDiscoverValid When TRUE, the PxeDiscover packet field is valid. This field
is set to FALSE by the Start() and Dhcp() functions, and
can be set to TRUE or FALSE by the Discover() and
SetPackets() functions.

PxeReplyReceived When TRUE, the PxeReply packet field is valid. This field is
set to FALSE by the Start() and Dhcp() functions, and can
be set to TRUE or FALSE by the Discover() and
SetPackets() functions.

PxeBisReplyReceivedWhen TRUE, the PxeBisReply packet field is valid. This field
is set to FALSE by the Start() and Dhcp() functions, and
can be set to TRUE or FALSE by the Discover() and
SetPackets() functions.

IcmpErrorReceived Indicates whether the IcmpError field has been updated. This
field is reset to FALSE by the Start(), Dhcp(),
Discover(), Mtftp(), UdpRead(), UdpWrite() and
Arp() functions. If an ICMP error is received, this field will be
set to TRUE after the IcmpError field is updated.

TftpErrorReceived Indicates whether the TftpError field has been updated. This
field is reset to FALSE by the Start() and Mtftp()
functions. If a TFTP error is received, this field will be set to
TRUE after the TftpError field is updated.

MakeCallbacks When FALSE, callbacks will not be made. When TRUE, make
callbacks to the PXE Base Code Callback Protocol. This field is
reset to FALSE by the Start() function if the PXE Base Code
Callback Protocol is not available. It is reset to TRUE by the
Start() function if the PXE Base Code Callback Protocol is
available.

TTL The “time to live” field of the IP header. This field is initialized to
DEFAULT_TTL (See “Related Definitions”) by the Start()
function and can be modified by the SetParameters()
function.
Version 2.5 April, 2015 1123

Unified Extensible Firmware Interface Specification
ToS The type of service field of the IP header. This field is initialized
to DEFAULT_ToS (See “Related Definitions”) by Start(),
and can be modified with the SetParameters() function.

StationIp The device’s current IP address. This field is initialized to a zero
address by Start(). This field is set when the Dhcp()
function completes successfully. This field can also be set by the
SetStationIp() function. This field must be set to a valid IP
address by either Dhcp() or SetStationIp() before the
Discover(), Mtftp(), UdpRead(), UdpWrite() and
Arp() functions are called.

SubnetMask The device’s current subnet mask. This field is initialized to a
zero address by the Start() function. This field is set when the
Dhcp() function completes successfully. This field can also be
set by the SetStationIp() function. This field must be set to
a valid subnet mask by either Dhcp() or SetStationIp()
before the Discover(), Mtftp(), UdpRead(),
UdpWrite(), or Arp() functions are called.

DhcpDiscover Cached DHCP Discover packet. This field is zero-filled by the
Start() function, and is set when the Dhcp() function
completes successfully. The contents of this field can replaced by
the SetPackets() function.

DhcpAck Cached DHCP Ack packet. This field is zero-filled by the
Start() function, and is set when the Dhcp() function
completes successfully. The contents of this field can be replaced
by the SetPackets() function.

ProxyOffer Cached Proxy Offer packet. This field is zero-filled by the
Start() function, and is set when the Dhcp() function
completes successfully. The contents of this field can be replaced
by the SetPackets() function.

PxeDiscover Cached PXE Discover packet. This field is zero-filled by the
Start() function, and is set when the Discover() function
completes successfully. The contents of this field can be replaced
by the SetPackets() function.

PxeReply Cached PXE Reply packet. This field is zero-filled by the
Start() function, and is set when the Discover() function
completes successfully. The contents of this field can be replaced
by the SetPackets() function.

PxeBisReply Cached PXE BIS Reply packet. This field is zero-filled by the
Start() function, and is set when the Discover() function
completes successfully. This field can be replaced by the
SetPackets() function.

IpFilter The current IP receive filter settings. The receive filter is disabled
and the number of IP receive filters is set to zero by the
Start() function, and is set by the SetIpFilter()
function.

ArpCacheEntries The number of valid entries in the ARP cache. This field is reset
to zero by the Start() function.
1124 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
ArpCache Array of cached ARP entries.

RouteTableEntries The number of valid entries in the current route table. This field is
reset to zero by the Start() function.

RouteTable Array of route table entries.

IcmpError ICMP error packet. This field is updated when an ICMP error is
received and is undefined until the first ICMP error is received.
This field is zero-filled by the Start() function.

TftpError TFTP error packet. This field is updated when a TFTP error is
received and is undefined until the first TFTP error is received.
This field is zero-filled by the Start() function.
Version 2.5 April, 2015 1125

Unified Extensible Firmware Interface Specification
//***
// EFI_PXE_BASE_CODE_UDP_PORT
//***
typedef UINT16 EFI_PXE_BASE_CODE_UDP_PORT;

//***
// EFI_IPv4_ADDRESS and EFI_IPv6_ADDRESS
//***
typedef struct {
 UINT8 Addr[4];
} EFI_IPv4_ADDRESS;

typedef struct {
 UINT8 Addr[16];
} EFI_IPv6_ADDRESS;

//***
// EFI_IP_ADDRESS
//***
typedef union {
 UINT32 Addr[4];
 EFI_IPv4_ADDRESS v4;
 EFI_IPv6_ADDRESS v6;
} EFI_IP_ADDRESS;

//***
// EFI_MAC_ADDRESS
//***
typedef struct {
 UINT8 Addr[32];
} EFI_MAC_ADDRESS;

DHCP Packet Data Types
This section defines the data types for DHCP packets, ICMP error packets, and TFTP error packets.
All of these are byte-packed data structures.

Note: All the multibyte fields in these structures are stored in network order.
1126 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
//***
// EFI_PXE_BASE_CODE_DHCPV4_PACKET
//***
typedef struct {
UINT8 BootpOpcode;
UINT8 BootpHwType;
UINT8 BootpHwAddrLen;
UINT8 BootpGateHops;
UINT32 BootpIdent;
UINT16 BootpSeconds;
UINT16 BootpFlags;
UINT8 BootpCiAddr[4];
UINT8 BootpYiAddr[4];
UINT8 BootpSiAddr[4];
UINT8 BootpGiAddr[4];
UINT8 BootpHwAddr[16];
UINT8 BootpSrvName[64];
UINT8 BootpBootFile[128];
UINT32 DhcpMagik;
UINT8 DhcpOptions[56];
} EFI_PXE_BASE_CODE_DHCPV4_PACKET;

//***
// DHCPV6 Packet structure
//***
typedef struct {
 UINT32 MessageType:8;
 UINT32 TransactionId:24;
 UINT8 DhcpOptions[1024];
} EFI_PXE_BASE_CODE_DHCPV6_PACKET;

//***
// EFI_PXE_BASE_CODE_PACKET
//***
typedef union {
 UINT8 Raw[1472];
 EFI_PXE_BASE_CODE_DHCPV4_PACKET Dhcpv4;
 EFI_PXE_BASE_CODE_DHCPV6_PACKET Dhcpv6;
} EFI_PXE_BASE_CODE_PACKET;

//***
// EFI_PXE_BASE_CODE_ICMP_ERROR
//***
typedef struct {
 UINT8 Type;
 UINT8 Code;
Version 2.5 April, 2015 1127

Unified Extensible Firmware Interface Specification
 UINT16 Checksum;
 union {
 UINT32 reserved;
 UINT32 Mtu;
 UINT32 Pointer;
 struct {
 UINT16 Identifier;
 UINT16 Sequence;
 } Echo;
 } u;
 UINT8 Data[494];
} EFI_PXE_BASE_CODE_ICMP_ERROR;

//***
// EFI_PXE_BASE_CODE_TFTP_ERROR
//***
typedef struct {
 UINT8 ErrorCode;
 CHAR8 ErrorString[127];
} EFI_PXE_BASE_CODE_TFTP_ERROR;

IP Receive Filter Settings
This section defines the data types for IP receive filter settings.

#define EFI_PXE_BASE_CODE_MAX_IPCNT8

//***

// EFI_PXE_BASE_CODE_IP_FILTER

//***

typedef struct {

 UINT8 Filters;
 UINT8 IpCnt;
 UINT16 reserved;
 EFI_IP_ADDRESS IpList[EFI_PXE_BASE_CODE_MAX_IPCNT];
} EFI_PXE_BASE_CODE_IP_FILTER;

#define EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP 0x0001

#define EFI_PXE_BASE_CODE_IP_FILTER_BROADCAST 0x0002

#define EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS 0x0004

#define EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS_MULTICAST 0x0008

ARP Cache Entries
This section defines the data types for ARP cache entries, and route table entries.
1128 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
//***
// EFI_PXE_BASE_CODE_ARP_ENTRY
//***
typedef struct {
 EFI_IP_ADDRESS IpAddr;
 EFI_MAC_ADDRESS MacAddr;
} EFI_PXE_BASE_CODE_ARP_ENTRY;

//***
// EFI_PXE_BASE_CODE_ROUTE_ENTRY
//***
typedef struct {
 EFI_IP_ADDRESS IpAddr;
 EFI_IP_ADDRESS SubnetMask;
 EFI_IP_ADDRESS GwAddr;
} EFI_PXE_BASE_CODE_ROUTE_ENTRY;

Filter Operations for UDP Read/Write Functions
This section defines the types of filter operations that can be used with the UdpRead() and
UdpWrite() functions.

#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_IP 0x0001
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_PORT 0x0002
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_IP 0x0004
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_PORT 0x0008
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_USE_FILTER 0x0010
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_MAY_FRAGMENT 0x0020
#define DEFAULT_TTL 16
#define DEFAULT_ToS 0

The following table defines values for the PXE DHCP and Bootserver Discover packet tags that are
specific to the UEFI environment. Complete definitions of all PXE tags are defined in Table 187
“PXE DHCP Options (Full List),” in the PXE Specification.

Table 187. PXE Tag Definitions for EFI

Tag Name Tag # Length Data Field

Client Network
Interface
Identifier

94 [0x5E] 3 [0x03] Type (1), MajorVer (1), MinorVer (1)
Type is a one byte field that identifies the network interface that
will be used by the downloaded program. Type is followed by two
one byte version number fields, MajorVer and MinorVer.
Type
UNDI (1) = 0x01
Versions
WfM-1.1a 16-bit UNDI: MajorVer = 0x02. MinorVer = 0x00
PXE-2.0 16-bit UNDI: MajorVer = 0x02, MinorVer = 0x01
32/64-bit UNDI & H/W UNDI: MajorVer = 0x03, MinorVer = 0x00
Version 2.5 April, 2015 1129

Unified Extensible Firmware Interface Specification
Description
The basic mechanisms and flow for remote booting in UEFI are identical to the remote boot
functionality described in detail in the PXE Specification. However, the actual execution
environment, linkage, and calling conventions are replaced and enhanced for the UEFI environment.

The DHCP Option for the Client System Architecture is used to inform the DHCP server if the client
is a UEFI environment in supported systems. The server may use this information to provide default
images if it does not have a specific boot profile for the client.

The DHCP Option for Client Network Interface Identifier is used to inform the DHCP server of the
client underlying network interface information. If the NII protocol is present, such information will
be acquired by this protocol. Otherwise, Type = 0x01, MajorVer=0x03, MinorVer=0x00 will
be the default value.

A handle that supports EFI_PXE_BASE_CODE_PROTOCOL is required to support
EFI_LOAD_FILE_PROTOCOL. The EFI_LOAD_FILE_PROTOCOL function LoadFile() is
used by the firmware to load files from devices that do not support file system type accesses.
Specifically, the firmware’s boot manager invokes LoadFile() with BootPolicy being TRUE
when attempting to boot from the device. The firmware then loads and transfers control to the
downloaded PXE boot image. Once the remote image is successfully loaded, it may utilize the
EFI_PXE_BASE_CODE_PROTOCOL interfaces, or even the
EFI_SIMPLE_NETWORK_PROTOCOL interfaces, to continue the remote process.

Client System
Architecture

93 [0x5D] 2 [0x02] Type (2)
Type is a two byte, network order, field that identifies the
processor and programming environment of the client system.
For the various architecture type encodings, see the table
"Processor Architecture Types" at “Links to UEFI-Related

Documents” (http://uefi.org/uefi) under the heading “Processor

Architecture Types”

Class Identifier 60 [0x3C] 32 [0x20] "PXEClient:Arch:xxxxx:UNDI:yyyzzz"
"PXEClient:…" is used to identify communication between PXE
clients and servers. Information from tags 93 & 94 is embedded in
the Class Identifier string. (The strings defined in this tag are case
sensitive and must not be NULL-terminated.)
xxxxx = ASCII representation of Client System Architecture.
yyyzzz = ASCII representation of Client Network Interface
Identifier
 version numbers MajorVer(yyy) and MinorVer(zzz).
Example
"PXEClient:Arch:00002:UNDI:00300" identifies an IA64 PC w/
32/64-bit UNDI

Tag Name Tag # Length Data Field
1130 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_PXE_BASE_CODE_PROTOCOL.Start()

Summary
Enables the use of the PXE Base Code Protocol functions.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_START) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
 IN BOOLEAN UseIpv6
);

Parameters
This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

UseIpv6 Specifies the type of IP addresses that are to be used during the
session that is being started. Set to TRUE for IPv6 addresses, and
FALSE for IPv4 addresses.

Description
This function enables the use of the PXE Base Code Protocol functions. If the Started field of the
EFI_PXE_BASE_CODE_MODE structure is already TRUE, then EFI_ALREADY_STARTED will
be returned. If UseIpv6 is TRUE, then IPv6 formatted addresses will be used in this session. If
UseIpv6 is FALSE, then IPv4 formatted addresses will be used in this session. If UseIpv6 is
TRUE, and the Ipv6Supported field of the EFI_PXE_BASE_CODE_MODE structure is FALSE,
then EFI_UNSUPPORTED will be returned. If there is not enough memory or other resources to
start the PXE Base Code Protocol, then EFI_OUT_OF_RESOURCES will be returned. Otherwise,
the PXE Base Code Protocol will be started, and all of the fields of the
EFI_PXE_BASE_CODE_MODE structure will be initialized as follows:

Started Set to TRUE.

Ipv6Supported Unchanged.

Ipv6Available Unchanged.

UsingIpv6 Set to UseIpv6.

BisSupported Unchanged.

BisDetected Unchanged.

AutoArp Set to TRUE.

SendGUID Set to FALSE.

TTL Set to DEFAULT_TTL.

ToS Set to DEFAULT_ToS.

DhcpCompleted Set to FALSE.

ProxyOfferReceived Set to FALSE.

StationIp Set to an address of all zeros.
Version 2.5 April, 2015 1131

Unified Extensible Firmware Interface Specification
SubnetMask Set to a subnet mask of all zeros.

DhcpDiscover Zero-filled.

DhcpAck Zero-filled.

ProxyOffer Zero-filled.

PxeDiscoverValid Set to FALSE.

PxeDiscover Zero-filled.

PxeReplyValid Set to FALSE.

PxeReply Zero-filled.

PxeBisReplyValid Set to FALSE.

PxeBisReply Zero-filled.

IpFilter Set the Filters field to 0 and the IpCnt field to 0.

ArpCacheEntries Set to 0.

ArpCache Zero-filled.

RouteTableEntries Set to 0.

RouteTable Zero-filled.

IcmpErrorReceived Set to FALSE.

IcmpError Zero-filled.

TftpErroReceived Set to FALSE.

TftpError Zero-filled.

MakeCallbacks Set to TRUE if the PXE Base Code Callback Protocol is available.
Set to FALSE if the PXE Base Code Callback Protocol is not
available.

Status Codes Returned

EFI_SUCCESS The PXE Base Code Protocol was started.

EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid

EFI_PXE_BASE_CODE_PROTOCOL structure.

EFI_UNSUPPORTED UseIpv6 is TRUE, but the Ipv6Supported field of the

EFI_PXE_BASE_CODE_MODE structure is FALSE.

EFI_ALREADY_STARTED The PXE Base Code Protocol is already in the started state.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_OUT_OF_RESOURCES Could not allocate enough memory or other resources to start the
PXE Base Code Protocol.
1132 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_PXE_BASE_CODE_PROTOCOL.Stop()

Summary
Disables the use of the PXE Base Code Protocol functions.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_STOP) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This
);

Parameters
This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

Description
This function stops all activity on the network device. All the resources allocated in Start() are
released, the Started field of the EFI_PXE_BASE_CODE_MODE structure is set to FALSE and
EFI_SUCCESS is returned. If the Started field of the EFI_PXE_BASE_CODE_MODE structure
is already FALSE, then EFI_NOT_STARTED will be returned.

Status Codes Returned

EFI_SUCCESS The PXE Base Code Protocol was stopped.

EFI_NOT_STARTED The PXE Base Code Protocol is already in the stopped state.

EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid

EFI_PXE_BASE_CODE_PROTOCOL structure.

EFI_DEVICE_ERROR The network device encountered an error during this operation.
Version 2.5 April, 2015 1133

Unified Extensible Firmware Interface Specification
EFI_PXE_BASE_CODE_PROTOCOL.Dhcp()

Summary
Attempts to complete a DHCPv4 D.O.R.A. (discover / offer / request / acknowledge) or DHCPv6
S.A.R.R (solicit / advertise / request / reply) sequence.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_DHCP) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
 IN BOOLEAN SortOffers
);

Parameters
This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

SortOffers TRUE if the offers received should be sorted. Set to FALSE to try
the offers in the order that they are received.

Description
This function attempts to complete the DHCP sequence. If this sequence is completed, then
EFI_SUCCESS is returned, and the DhcpCompleted, ProxyOfferReceived, StationIp,
SubnetMask, DhcpDiscover, DhcpAck, and ProxyOffer fields of the
EFI_PXE_BASE_CODE_MODE structure are filled in.

If SortOffers is TRUE, then the cached DHCP offer packets will be sorted before they are tried.
If SortOffers is FALSE, then the cached DHCP offer packets will be tried in the order in which
they are received. Please see the Preboot Execution Environment (PXE) Specification for additional
details on the implementation of DHCP.

This function can take at least 31 seconds to timeout and return control to the caller. If the DHCP
sequence does not complete, then EFI_TIMEOUT will be returned.

If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then the DHCP sequence will be
stopped and EFI_ABORTED will be returned.

Status Codes Returned

EFI_SUCCESS Valid DHCP has completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid

EFI_PXE_BASE_CODE_PROTOCOL structure.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete the DHCP Protocol.

EFI_ABORTED The callback function aborted the DHCP Protocol.

EFI_TIMEOUT The DHCP Protocol timed out.
1134 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_ICMP_ERROR An ICMP error packet was received during the DHCP session. The
ICMP error packet has been cached in the

EFI_PXE_BASE_CODE_MODE.IcmpError packet

structure. Information about ICMP packet contents can be found in
RFC 792.

EFI_NO_RESPONSE Valid PXE offer was not received.
Version 2.5 April, 2015 1135

Unified Extensible Firmware Interface Specification
EFI_PXE_BASE_CODE_PROTOCOL.Discover()

Summary
Attempts to complete the PXE Boot Server and/or boot image discovery sequence.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_DISCOVER) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
 IN UINT16 Type,
 IN UINT16 *Layer,
 IN BOOLEAN UseBis,
 IN EFI_PXE_BASE_CODE_DISCOVER_INFO *Info OPTIONAL
);

Parameters
This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

Type The type of bootstrap to perform. See “Related Definitions”
below.

Layer Pointer to the boot server layer number to discover, which must
be PXE_BOOT_LAYER_INITIAL when a new server type is
being discovered. This is the only layer type that will perform
multicast and broadcast discovery. All other layer types will only
perform unicast discovery. If the boot server changes Layer,
then the new Layer will be returned.

UseBis TRUE if Boot Integrity Services are to be used. FALSE otherwise.

Info Pointer to a data structure that contains additional information on
the type of discovery operation that is to be performed. If this
field is NULL, then the contents of the cached DhcpAck and
ProxyOffer packets will be used.
1136 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
Related Definitions
//***
// Bootstrap Types
//***

#define EFI_PXE_BASE_CODE_BOOT_TYPE_BOOTSTRAP 0
#define EFI_PXE_BASE_CODE_BOOT_TYPE_MS_WINNT_RIS 1
#define EFI_PXE_BASE_CODE_BOOT_TYPE_INTEL_LCM 2
#define EFI_PXE_BASE_CODE_BOOT_TYPE_DOSUNDI 3
#define EFI_PXE_BASE_CODE_BOOT_TYPE_NEC_ESMPRO 4
#define EFI_PXE_BASE_CODE_BOOT_TYPE_IBM_WSoD 5
#define EFI_PXE_BASE_CODE_BOOT_TYPE_IBM_LCCM 6
#define EFI_PXE_BASE_CODE_BOOT_TYPE_CA_UNICENTER_TNG 7
#define EFI_PXE_BASE_CODE_BOOT_TYPE_HP_OPENVIEW 8
#define EFI_PXE_BASE_CODE_BOOT_TYPE_ALTIRIS_9 9
#define EFI_PXE_BASE_CODE_BOOT_TYPE_ALTIRIS_10 10
#define EFI_PXE_BASE_CODE_BOOT_TYPE_ALTIRIS_11 11
#define EFI_PXE_BASE_CODE_BOOT_TYPE_NOT_USED_12 12
#define EFI_PXE_BASE_CODE_BOOT_TYPE_REDHAT_INSTALL 13
#define EFI_PXE_BASE_CODE_BOOT_TYPE_REDHAT_BOOT 14
#define EFI_PXE_BASE_CODE_BOOT_TYPE_REMBO 15
#define EFI_PXE_BASE_CODE_BOOT_TYPE_BEOBOOT 16
//
// Values 17 through 32767 are reserved.
// Values 32768 through 65279 are for vendor use.
// Values 65280 through 65534 are reserved.
//
#define EFI_PXE_BASE_CODE_BOOT_TYPE_PXETEST 65535

#define EFI_PXE_BASE_CODE_BOOT_LAYER_MASK 0x7FFF
#define EFI_PXE_BASE_CODE_BOOT_LAYER_INITIAL 0x0000

//***
// EFI_PXE_BASE_CODE_DISCOVER_INFO
//***
typedef struct {
 BOOLEAN UseMCast;
 BOOLEAN UseBCast;
 BOOLEAN UseUCast;
 BOOLEAN MustUseList;
 EFI_IP_ADDRESS ServerMCastIp;
 UINT16 IpCnt;
 EFI_PXE_BASE_CODE_SRVLIST SrvList[IpCnt];
} EFI_PXE_BASE_CODE_DISCOVER_INFO;

//***
// EFI_PXE_BASE_CODE_SRVLIST
Version 2.5 April, 2015 1137

Unified Extensible Firmware Interface Specification
//***
typedef struct {
 UINT16 Type;
 BOOLEAN AcceptAnyResponse;
 UINT8 reserved;
 EFI_IP_ADDRESS IpAddr;
} EFI_PXE_BASE_CODE_SRVLIST;

Description
This function attempts to complete the PXE Boot Server and/or boot image discovery sequence. If
this sequence is completed, then EFI_SUCCESS is returned, and the PxeDiscoverValid,
PxeDiscover, PxeReplyReceived, and PxeReply fields of the
EFI_PXE_BASE_CODE_MODE structure are filled in. If UseBis is TRUE, then the
PxeBisReplyReceived and PxeBisReply fields of the EFI_PXE_BASE_CODE_MODE
structure will also be filled in. If UseBis is FALSE, then PxeBisReplyValid will be set to
FALSE.

In the structure referenced by parameter Info, the PXE Boot Server list, SrvList[], has two
uses: It is the Boot Server IP address list used for unicast discovery (if the UseUCast field is
TRUE), and it is the list used for Boot Server verification (if the MustUseList field is TRUE).
Also, if the MustUseList field in that structure is TRUE and the AcceptAnyResponse field in
the SrvList[] array is TRUE, any Boot Server reply of that type will be accepted. If the
AcceptAnyResponse field is FALSE, only responses from Boot Servers with matching IP
addresses will be accepted.

This function can take at least 10 seconds to timeout and return control to the caller. If the Discovery
sequence does not complete, then EFI_TIMEOUT will be returned. Please see the Preboot
Execution Environment (PXE) Specification for additional details on the implementation of the
Discovery sequence.

If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then the Discovery sequence is
stopped and EFI_ABORTED will be returned.

Status Codes Returned

EFI_SUCCESS The Discovery sequence has been completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1138 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_INVALID_PARAMETER One or more of the following conditions was TRUE:

• The This parameter was NULL
• The This parameter did not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure

• The Layer parameter was NULL
• The Info->ServerMCastIp parameter does not contain

a valid multicast IP address

• The Info->UseUCast parameter is not FALSE and the
Info->IpCnt parameter is zero

One or more of the IP addresses in the Info->SrvList[]

array is not a valid unicast IP address.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete Discovery.

EFI_ABORTED The callback function aborted the Discovery sequence.

EFI_TIMEOUT The Discovery sequence timed out.

EFI_ICMP_ERROR An ICMP error packet was received during the PXE discovery
session. The ICMP error packet has been cached in the

EFI_PXE_BASE_CODE_MODE.IcmpError packet

structure. Information about ICMP packet contents can be found in
RFC 792.
Version 2.5 April, 2015 1139

Unified Extensible Firmware Interface Specification
EFI_PXE_BASE_CODE_PROTOCOL.Mtftp()

Summary
Used to perform TFTP and MTFTP services.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_MTFTP) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
 IN EFI_PXE_BASE_CODE_TFTP_OPCODE Operation,
 IN OUT VOID *BufferPtr, OPTIONAL
 IN BOOLEAN Overwrite,
 IN OUT UINT64 *BufferSize,
 IN UINTN *BlockSize, OPTIONAL
 IN EFI_IP_ADDRESS *ServerIp,
 IN CHAR8 *Filename, OPTIONAL
 IN EFI_PXE_BASE_CODE_MTFTP_INFO *Info, OPTIONAL
 IN BOOLEAN DontUseBuffer
);

Parameters
This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

Operation The type of operation to perform. See “Related Definitions”
below for the list of operation types.

BufferPtr A pointer to the data buffer. Ignored for read file if
DontUseBuffer is TRUE.

Overwrite Only used on write file operations. TRUE if a file on a remote
server can be overwritten.

BufferSize For get-file-size operations, *BufferSize returns the size of
the requested file. For read-file and write-file operations, this
parameter is set to the size of the buffer specified by the
BufferPtr parameter. For read-file operations, if
EFI_BUFFER_TOO_SMALL is returned, *BufferSize
returns the size of the requested file.

BlockSize The requested block size to be used during a TFTP transfer. This
must be at least 512. If this field is NULL, then the largest block
size supported by the implementation will be used.

ServerIp The TFTP / MTFTP server IP address.

Filename A Null-terminated ASCII string that specifies a directory name or
a file name. This is ignored by MTFTP read directory.

Info Pointer to the MTFTP information. This information is required
to start or join a multicast TFTP session. It is also required to
perform the “get file size” and “read directory” operations of
1140 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
MTFTP. See “Related Definitions” below for the description of
this data structure.

DontUseBuffer Set to FALSE for normal TFTP and MTFTP read file operation.
Setting this to TRUE will cause TFTP and MTFTP read file
operations to function without a receive buffer, and all of the
received packets are passed to the Callback Protocol which is
responsible for storing them. This field is only used by TFTP and
MTFTP read file.

Related Definitions
//***
// EFI_PXE_BASE_CODE_TFTP_OPCODE
//***
typedef enum {
 EFI_PXE_BASE_CODE_TFTP_FIRST,
 EFI_PXE_BASE_CODE_TFTP_GET_FILE_SIZE,
 EFI_PXE_BASE_CODE_TFTP_READ_FILE,
 EFI_PXE_BASE_CODE_TFTP_WRITE_FILE,
 EFI_PXE_BASE_CODE_TFTP_READ_DIRECTORY,
 EFI_PXE_BASE_CODE_MTFTP_GET_FILE_SIZE,
 EFI_PXE_BASE_CODE_MTFTP_READ_FILE,
 EFI_PXE_BASE_CODE_MTFTP_READ_DIRECTORY,
 EFI_PXE_BASE_CODE_MTFTP_LAST
} EFI_PXE_BASE_CODE_TFTP_OPCODE;

//***
// EFI_PXE_BASE_CODE_MTFTP_INFO
//***
typedef struct {
 EFI_IP_ADDRESS MCastIp;
 EFI_PXE_BASE_CODE_UDP_PORT CPort;
 EFI_PXE_BASE_CODE_UDP_PORT SPort;
 UINT16 ListenTimeout;
 UINT16 TransmitTimeout;
} EFI_PXE_BASE_CODE_MTFTP_INFO;

MCastIp File multicast IP address. This is the IP address to which the
server will send the requested file.

CPort Client multicast listening port. This is the UDP port to which the
server will send the requested file.

SPort Server multicast listening port. This is the UDP port on which the
server listens for multicast open requests and data acks.

ListenTimeout The number of seconds a client should listen for an active
multicast session before requesting a new multicast session.

TransmitTimeout The number of seconds a client should wait for a packet from the
server before retransmitting the previous open request or data ack
packet.
Version 2.5 April, 2015 1141

Unified Extensible Firmware Interface Specification
Description
This function is used to perform TFTP and MTFTP services. This includes the TFTP operations to
get the size of a file, read a directory, read a file, and write a file. It also includes the MTFTP
operations to get the size of a file, read a directory, and read a file. The type of operation is specified
by Operation. If the callback function that is invoked during the TFTP/MTFTP operation does
not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED
will be returned.

For read operations, the return data will be placed in the buffer specified by BufferPtr. If
BufferSize is too small to contain the entire downloaded file, then EFI_BUFFER_TOO_SMALL
will be returned and BufferSize will be set to zero or the size of the requested file (the size of
the requested file is only returned if the TFTP server supports TFTP options). If BufferSize is
large enough for the read operation, then BufferSize will be set to the size of the downloaded
file, and EFI_SUCCESS will be returned. Applications using the PxeBc.Mtftp() services
should use the get-file-size operations to determine the size of the downloaded file prior to using the
read-file operations—especially when downloading large (greater than 64 MiB) files—instead of
making two calls to the read-file operation. Following this recommendation will save time if the file
is larger than expected and the TFTP server does not support TFTP option extensions. Without
TFTP option extension support, the client has to download the entire file, counting and discarding
the received packets, to determine the file size.

For write operations, the data to be sent is in the buffer specified by BufferPtr. BufferSize
specifies the number of bytes to send. If the write operation completes successfully, then
EFI_SUCCESS will be returned.

For TFTP “get file size” operations, the size of the requested file or directory is returned in
BufferSize, and EFI_SUCCESS will be returned. If the TFTP server does not support options,
the file will be downloaded into a bit bucket and the length of the downloaded file will be returned.
For MTFTP “get file size” operations, if the MTFTP server does not support the “get file size”
option, EFI_UNSUPPORTED will be returned.

This function can take up to 10 seconds to timeout and return control to the caller. If the TFTP
sequence does not complete, EFI_TIMEOUT will be returned.

If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then the TFTP sequence is stopped
and EFI_ABORTED will be returned.

The format of the data returned from a TFTP read directory operation is a null-terminated filename
followed by a null-terminated information string, of the form “size year-month-day
hour:minute:second” (i.e., %d %d-%d-%d %d:%d:%f - note that the seconds field can be a decimal
number), where the date and time are UTC. For an MTFTP read directory command, there is
additionally a null-terminated multicast IP address preceding the filename of the form
%d.%d.%d.%d for IP v4. The final entry is itself null-terminated, so that the final information string
is terminated with two null octets.

Status Codes Returned

EFI_SUCCESS The TFTP/MTFTP operation was completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1142 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_INVALID_PARAMETER One or more of the following conditions was TRUE:

• The This parameter was NULL
• The This parameter did not point to a valid

EFI_PXE_BASE_CODE_PROTOCOL structure

• The Operation parameter was not one of the listed
EFI_PXE_BASE_CODE_TFTP_OPCODE constants

• The BufferPtr parameter was NULL and the
DontUseBuffer parameter was FALSE

• The BufferSize parameter was NULL
• The BlockSize parameter was not NULL and *BlockSize was

less than 512

• The ServerIp parameter was NULL or did not contain a valid
unicast IP address

• The Filename parameter was NULL for a file transfer or
information request

• The Info parameter was NULL for a multicast request

The Info->MCastIp parameter is not a valid multicast IP address

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_BUFFER_TOO_SMALL The buffer is not large enough to complete the read operation.

EFI_ABORTED The callback function aborted the TFTP/MTFTP operation.

EFI_TIMEOUT The TFTP/MTFTP operation timed out.

EFI_TFTP_ERROR A TFTP error packet was received during the MTFTP session. The
TFTP error packet has been cached in the

EFI_PXE_BASE_CODE_MODE.TftpError packet

structure. Information about TFTP error packet contents can be
found in RFC 1350.

EFI_ICMP_ERROR An ICMP error packet was received during the MTFTP session. The
ICMP error packet has been cached in the

EFI_PXE_BASE_CODE_MODE.IcmpError packet

structure. Information about ICMP packet contents can be found in
RFC 792.
Version 2.5 April, 2015 1143

Unified Extensible Firmware Interface Specification
EFI_PXE_BASE_CODE_PROTOCOL.UdpWrite()

Summary
Writes a UDP packet to the network interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_UDP_WRITE) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
 IN UINT16 OpFlags,
 IN EFI_IP_ADDRESS *DestIp,
 IN EFI_PXE_BASE_CODE_UDP_PORT *DestPort,
 IN EFI_IP_ADDRESS *GatewayIp, OPTIONAL
 IN EFI_IP_ADDRESS *SrcIp, OPTIONAL
 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort, OPTIONAL
 IN UINTN *HeaderSize, OPTIONAL
 IN VOID *HeaderPtr, OPTIONAL
 IN UINTN *BufferSize,
 IN VOID *BufferPtr
);

Parameters
This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

OpFlags The UDP operation flags. If MAY_FRAGMENT is set, then if
required, this UDP write operation may be broken up across
multiple packets.

DestIp The destination IP address.

DestPort The destination UDP port number.

GatewayIp The gateway IP address. If DestIp is not in the same subnet as
StationIp, then this gateway IP address will be used. If this
field is NULL, and the DestIp is not in the same subnet as
StationIp, then the RouteTable will be used.

SrcIp The source IP address. If this field is NULL, then StationIp
will be used as the source IP address.

SrcPort The source UDP port number. If OpFlags has
ANY_SRC_PORT set or SrcPort is NULL, then a source UDP
port will be automatically selected. If a source UDP port was
automatically selected, and SrcPort is not NULL, then it will be
returned in SrcPort.

HeaderSize An optional field which may be set to the length of a header at
HeaderPtr to be prefixed to the data at BufferPtr.

HeaderPtr If HeaderSize is not NULL, a pointer to a header to be prefixed
to the data at BufferPtr.

BufferSize A pointer to the size of the data at BufferPtr.
1144 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
BufferPtr A pointer to the data to be written.

Description
This function writes a UDP packet specified by the (optional HeaderPtr and) BufferPtr
parameters to the network interface. The UDP header is automatically built by this routine. It uses
the parameters OpFlags, DestIp, DestPort, GatewayIp, SrcIp, and SrcPort to build
this header. If the packet is successfully built and transmitted through the network interface, then
EFI_SUCCESS will be returned. If a timeout occurs during the transmission of the packet, then
EFI_TIMEOUT will be returned. If an ICMP error occurs during the transmission of the packet,
then the IcmpErrorReceived field is set to TRUE, the IcmpError field is filled in and
EFI_ICMP_ERROR will be returned. If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED will be
returned.

Status Codes Returned

EFI_SUCCESS The UDP Write operation was completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One or more of the following conditions was TRUE:

• The This parameter was NULL
• The This parameter did not point to a valid

EFI_PXE_BASE_CODE_PROTOCOL structure

• Reserved bits in the OpFlags parameter were not set to zero

• The DestIp parameter was NULL
• The DestPort parameter was NULL
• The GatewayIp parameter was not NULL and did not contain a

valid unicast IP address.

• The HeaderSize parameter was not NULL and *HeaderSize is
zero

• The *HeaderSize parameter was not zero and the HeaderPtr
parameter was NULL

• The BufferSize parameter was NULL
• The *BufferSize parameter was not zero and the BufferPtr

parameter was NULL

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_BAD_BUFFER_SIZE The buffer is too long to be transmitted.

EFI_ABORTED The callback function aborted the UDP Write operation.

EFI_TIMEOUT The UDP Write operation timed out.

EFI_ICMP_ERROR An ICMP error packet was received during the UDP write session.
The ICMP error packet has been cached in the

EFI_PXE_BASE_CODE_MODE.IcmpError packet

structure. Information about ICMP packet contents can be found in
RFC 792.
Version 2.5 April, 2015 1145

Unified Extensible Firmware Interface Specification
EFI_PXE_BASE_CODE_PROTOCOL.UdpRead()

Summary
Reads a UDP packet from the network interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_UDP_READ) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This
 IN UINT16 OpFlags,
 IN OUT EFI_IP_ADDRESS *DestIp, OPTIONAL
 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *DestPort, OPTIONAL
 IN OUT EFI_IP_ADDRESS *SrcIp, OPTIONAL
 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort, OPTIONAL
 IN UINTN *HeaderSize, OPTIONAL
 IN VOID *HeaderPtr, OPTIONAL
 IN OUT UINTN *BufferSize,
 IN VOID *BufferPtr
);

Parameters
This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

OpFlags The UDP operation flags.

DestIp The destination IP address.

DestPort The destination UDP port number.

SrcIp The source IP address.

SrcPort The source UDP port number.

HeaderSize An optional field which may be set to the length of a header to be
put in HeaderPtr.

HeaderPtr If HeaderSize is not NULL, a pointer to a buffer to hold the
HeaderSize bytes which follow the UDP header.

BufferSize On input, a pointer to the size of the buffer at BufferPtr. On
output, the size of the data written to BufferPtr.

BufferPtr A pointer to the data to be read.

Description
This function reads a UDP packet from a network interface. The data contents are returned in (the
optional HeaderPtr and) BufferPtr, and the size of the buffer received is returned in
BufferSize . If the input BufferSize is smaller than the UDP packet received (less optional
HeaderSize), it will be set to the required size, and EFI_BUFFER_TOO_SMALL will be
returned. In this case, the contents of BufferPtr are undefined, and the packet is lost. If a UDP
packet is successfully received, then EFI_SUCCESS will be returned, and the information from the
UDP header will be returned in DestIp, DestPort, SrcIp, and SrcPort if they are not NULL.
1146 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
Depending on the values of OpFlags and the DestIp, DestPort, SrcIp, and SrcPort input
values, different types of UDP packet receive filtering will be performed. The following tables
summarize these receive filter operations.

Table 188. Destination IP Filter Operation

Table 189. Destination UDP Port Filter Operation

Table 190. Source IP Filter Operation

Table 191. Source UDP Port Filter Operation

OpFlags
USE_FILTER

OpFlags
ANY_DEST_IP

DestIp

Action

0 0 NULL Receive a packet sent to StationIp.

0 1 NULL Receive a packet sent to any IP address.

1 x NULL Receive a packet whose destination IP address passes the
IP filter.

0 0 not NULL Receive a packet whose destination IP address matches

DestIp.

0 1 not NULL Receive a packet sent to any IP address and, return the

destination IP address in DestIp.

1 x not NULL Receive a packet whose destination IP address passes the

IP filter, and return the destination IP address in DestIp.

OpFlags
ANY_DEST_PORT

DestPort

Action

0 NULL Return EFI_INVALID_PARAMETER.

1 NULL Receive a packet sent to any UDP port.

0 not NULL Receive a packet whose destination Port matches DestPort.

1 not NULL Receive a packet sent to any UDP port, and return the destination port in

DestPort.

OpFlags
ANY_SRC_IP

SrcIp

Action

0 NULL Return EFI_INVALID_PARAMETER.

1 NULL Receive a packet sent from any IP address.

0 not NULL Receive a packet whose source IP address matches SrcIp.

1 not NULL Receive a packet sent from any IP address, and return the source IP

address in SrcIp.

OpFlags
ANY_SRC_PORT

SrcPort

Action

0 NULL Return EFI_INVALID_PARAMETER.
Version 2.5 April, 2015 1147

Unified Extensible Firmware Interface Specification
Status Codes Returned

1 NULL Receive a packet sent from any UDP port.

0 not NULL Receive a packet whose source UDP port matches SrcPort.

1 not NULL Receive a packet sent from any UDP port, and return the source UPD

port in SrcPort.

EFI_SUCCESS The UDP Read operation was completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One or more of the following conditions was TRUE:

• The This parameter was NULL
• The This parameter did not point to a valid

EFI_PXE_BASE_CODE_PROTOCOL structure

• Reserved bits in the OpFlags parameter were not set to zero

• The HeaderSize parameter is not NULL and *HeaderSize is zero

• The HeaderSize parameter is not NULL L and the HeaderPtr
parameter is NULL

• The BufferSize parameter is NULL
• The BufferPtr parameter is NULL

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_BUFFER_TOO_SMALL The packet is larger than Buffer can hold.

EFI_ABORTED The callback function aborted the UDP Read operation.

EFI_TIMEOUT The UDP Read operation timed out.

OpFlags
ANY_SRC_PORT

SrcPort

Action
1148 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_PXE_BASE_CODE_PROTOCOL.SetIpFilter()

Summary
Updates the IP receive filters of a network device and enables software filtering.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_SET_IP_FILTER) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
 IN EFI_PXE_BASE_CODE_IP_FILTER *NewFilter
);

Parameters
This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

NewFilter Pointer to the new set of IP receive filters.

Description
The NewFilter field is used to modify the network device’s current IP receive filter settings and
to enable a software filter. This function updates the IpFilter field of the
EFI_PXE_BASE_CODE_MODE structure with the contents of NewIpFilter. The software filter
is used when the USE_FILTER in OpFlags is set to UdpRead(). The current hardware filter
remains in effect no matter what the settings of OpFlags are, so that the meaning of
ANY_DEST_IP set in OpFlags to UdpRead() is from those packets whose reception is enabled
in hardware – physical NIC address (unicast), broadcast address, logical address or addresses
(multicast), or all (promiscuous). UdpRead() does not modify the IP filter settings.

Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP receive filter list
emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP. If an application
or driver wishes to preserve the IP receive filter settings, it will have to preserve the IP receive filter
settings before these calls, and use SetIpFilter() to restore them after the calls. If incompatible
filtering is requested (for example, PROMISCUOUS with anything else) or if the device does not
support a requested filter setting and it cannot be accommodated in software (for example,
PROMISCUOUS not supported), EFI_INVALID_PARAMETER will be returned. The IPlist field
is used to enable IPs other than the StationIP. They may be multicast or unicast. If IPcnt is set as
well as EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP, then both the StationIP and the IPs
from the IPlist will be used.

Status Codes Returned

EFI_SUCCESS The IP receive filter settings were updated.
Version 2.5 April, 2015 1149

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER • One or more of the following conditions was TRUE:

• The This parameter was NULL
• The This parameter did not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure

• The NewFilter parameter was NULL
• The NewFilter -> IPlist [] array contains one or more

broadcast IP addresses

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.
1150 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_PXE_BASE_CODE_PROTOCOL.Arp()

Summary
Uses the ARP protocol to resolve a MAC address.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_ARP) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
 IN EFI_IP_ADDRESS *IpAddr,
 IN EFI_MAC_ADDRESS *MacAddr OPTIONAL
);

Parameters
This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

IpAddr Pointer to the IP address that is used to resolve a MAC address.
When the MAC address is resolved, the ArpCacheEntries
and ArpCache fields of the EFI_PXE_BASE_CODE_MODE
structure are updated.

MacAddr If not NULL, a pointer to the MAC address that was resolved with
the ARP protocol.

Description
This function uses the ARP protocol to resolve a MAC address. The UsingIpv6 field of the
EFI_PXE_BASE_CODE_MODE structure is used to determine if IPv4 or IPv6 addresses are being
used. The IP address specified by IpAddr is used to resolve a MAC address in the case of IPv4; the
concept of Arp is not supported in IPv6, though.

 If the ARP protocol succeeds in resolving the specified address, then the ArpCacheEntries and
ArpCache fields of the EFI_PXE_BASE_CODE_MODE structure are updated, and
EFI_SUCCESS is returned. If MacAddr is not NULL, the resolved MAC address is placed there as
well.

If the PXE Base Code protocol is in the stopped state, then EFI_NOT_STARTED is returned. If the
ARP protocol encounters a timeout condition while attempting to resolve an address, then
EFI_TIMEOUT is returned. If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED is returned.

Status Codes Returned

EFI_SUCCESS The IP or MAC address was resolved.

EFI_INVALID_PARAMETER One or more of the following conditions was :

• The This parameter was NULL
• The This parameter did not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure

• The IpAddr parameter was NULL
Version 2.5 April, 2015 1151

Unified Extensible Firmware Interface Specification
EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_TIMEOUT The ARP Protocol encountered a timeout condition.

EFI_ABORTED The callback function aborted the ARP Protocol.

EFI_UNSUPPORTED When Mode->UsingIpv6 is TRUE because the Arp is a concept

special for IPv4.
1152 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_PXE_BASE_CODE_PROTOCOL.SetParameters()

Summary
Updates the parameters that affect the operation of the PXE Base Code Protocol.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_SET_PARAMETERS) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
 IN BOOLEAN *NewAutoArp, OPTIONAL
 IN BOOLEAN *NewSendGUID, OPTIONAL
 IN UINT8 *NewTTL, OPTIONAL
 IN UINT8 *NewToS, OPTIONAL
 IN BOOLEAN *NewMakeCallback OPTIONAL
);

Parameters
This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

NewAutoArp If not NULL, a pointer to a value that specifies whether to replace
the current value of AutoARP. TRUE for automatic ARP packet
generation, FALSE otherwise. If NULL, this parameter is ignored.

NewSendGUID If not NULL, a pointer to a value that specifies whether to replace
the current value of SendGUID. TRUE to send the SystemGUID
(if there is one) as the client hardware address in DHCP; FALSE
to send client NIC MAC address. If NULL, this parameter is
ignored. If NewSendGUID is TRUE and there is no
SystemGUID, then EFI_INVALID_PARAMETER is returned.

NewTTL If not NULL, a pointer to be used in place of the current value of
TTL, the “time to live” field of the IP header. If NULL, this
parameter is ignored.

NewToS If not NULL, a pointer to be used in place of the current value of
ToS, the “type of service” field of the IP header. If NULL, this
parameter is ignored.

NewMakeCallback If not NULL, a pointer to a value that specifies whether to replace
the current value of the MakeCallback field of the Mode
structure. If NULL, this parameter is ignored. If the Callback
Protocol is not available EFI_INVALID_PARAMETER is
returned.

Description
This function sets parameters that affect the operation of the PXE Base Code Protocol. The
parameter specified by NewAutoArp is used to control the generation of ARP protocol packets. If
NewAutoArp is TRUE, then ARP Protocol packets will be generated as required by the PXE Base
Code Protocol. If NewAutoArp is FALSE, then no ARP Protocol packets will be generated. In this
case, the only mappings that are available are those stored in the ArpCache of the
Version 2.5 April, 2015 1153

Unified Extensible Firmware Interface Specification
EFI_PXE_BASE_CODE_MODE structure. If there are not enough mappings in the ArpCache to
perform a PXE Base Code Protocol service, then the service will fail. This function updates the
AutoArp field of the EFI_PXE_BASE_CODE_MODE structure to NewAutoArp.

The SetParameters() call must be invoked after a Callback Protocol is installed to enable the
use of callbacks.

Status Codes Returned

EFI_SUCCESS The new parameters values were updated.

EFI_INVALID_PARAMETER • One or more of the following conditions was TRUE :

• The This parameter was NULL
• The This parameter did not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure

• The NewSendGUID parameter is not NULL and *
NewSendGUID is TRUE and a system GUID could not be
located

• The NewMakeCallback parameter is not NULL and *
NewMakeCallback is TRUE and an
EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL could
not be located on the network device handle.

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.
1154 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_PXE_BASE_CODE_PROTOCOL.SetStationIp()

Summary
Updates the station IP address and/or subnet mask values of a network device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_SET_STATION_IP) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
 IN EFI_IP_ADDRESS *NewStationIp, OPTIONAL
 IN EFI_IP_ADDRESS *NewSubnetMask OPTIONAL
);

Parameters
This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

NewStationIp Pointer to the new IP address to be used by the network device. If
this field is NULL, then the StationIp address will not be
modified.

NewSubnetMask Pointer to the new subnet mask to be used by the network device.
If this field is NULL, then the SubnetMask will not be
modified.

Description
This function updates the station IP address and/or subnet mask values of a network device.

The NewStationIp field is used to modify the network device’s current IP address. If
NewStationIP is NULL, then the current IP address will not be modified. Otherwise, this function
updates the StationIp field of the EFI_PXE_BASE_CODE_MODE structure with
NewStationIp.

The NewSubnetMask field is used to modify the network device’s current subnet mask. If
NewSubnetMask is NULL, then the current subnet mask will not be modified. Otherwise, this
function updates the SubnetMask field of the EFI_PXE_BASE_CODE_MODE structure with
NewSubnetMask.

Status Codes Returned

EFI_SUCCESS The new station IP address and/or subnet mask were updated.

EFI_INVALID_PARAMETER One or more of the following conditions was TRUE:

• The This s parameter was NULL
• The This parameter did not point to a valid
EFI_PXE_BASE_CODE_PROTOCOL structure

• The NewStationIp parameter is not NULL and *
NewStationIp is not a valid unicast IP address

• The NewSubnetMask parameter is not NULL and *
NewSubnetMask does not contain a valid IP subnet mask
Version 2.5 April, 2015 1155

Unified Extensible Firmware Interface Specification
EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.
1156 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_PXE_BASE_CODE_PROTOCOL.SetPackets()

Summary
Updates the contents of the cached DHCP and Discover packets.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_SET_PACKETS) (
 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
 IN BOOLEAN *NewDhcpDiscoverValid, OPTIONAL
 IN BOOLEAN *NewDhcpAckReceived, OPTIONAL
 IN BOOLEAN *NewProxyOfferReceived, OPTIONAL
 IN BOOLEAN *NewPxeDiscoverValid, OPTIONAL
 IN BOOLEAN *NewPxeReplyReceived, OPTIONAL
 IN BOOLEAN *NewPxeBisReplyReceived, OPTIONAL
 IN EFI_PXE_BASE_CODE_PACKET *NewDhcpDiscover, OPTIONAL
 IN EFI_PXE_BASE_CODE_PACKET *NewDhcpAck, OPTIONAL
 IN EFI_PXE_BASE_CODE_PACKET *NewProxyOffer, OPTIONAL
 IN EFI_PXE_BASE_CODE_PACKET *NewPxeDiscover, OPTIONAL
 IN EFI_PXE_BASE_CODE_PACKET *NewPxeReply, OPTIONAL
 IN EFI_PXE_BASE_CODE_PACKET *NewPxeBisReply OPTIONAL
);

Parameters
This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

NewDhcpDiscoverValidPointer to a value that will replace the current
DhcpDiscoverValid field. If NULL, this parameter is
ignored.

NewDhcpAckReceived Pointer to a value that will replace the current
DhcpAckReceived field. If NULL, this parameter is ignored.

NewProxyOfferReceivedPointer to a value that will replace the current
ProxyOfferReceived field. If NULL, this parameter is
ignored.

NewPxeDiscoverValidPointer to a value that will replace the current
ProxyOfferReceived field. If NULL, this parameter is
ignored.

NewPxeReplyReceivedPointer to a value that will replace the current
PxeReplyReceived field. If NULL, this parameter is ignored.

NewPxeBisReplyReceived
Pointer to a value that will replace the current
PxeBisReplyReceived field. If NULL, this parameter is
ignored.

NewDhcpDiscover Pointer to the new cached DHCP Discover packet contents. If
NULL, this parameter is ignored.
Version 2.5 April, 2015 1157

Unified Extensible Firmware Interface Specification
NewDhcpAck Pointer to the new cached DHCP Ack packet contents. If NULL,
this parameter is ignored.

NewProxyOffer Pointer to the new cached Proxy Offer packet contents. If NULL,
this parameter is ignored.

NewPxeDiscover Pointer to the new cached PXE Discover packet contents. If
NULL, this parameter is ignored.

NewPxeReply Pointer to the new cached PXE Reply packet contents. If NULL,
this parameter is ignored.

NewPxeBisReply Pointer to the new cached PXE BIS Reply packet contents. If
NULL, this parameter is ignored.

Description
The pointers to the new packets are used to update the contents of the cached packets in the
EFI_PXE_BASE_CODE_MODE structure.

Status Codes Returned

23.3.1 Netboot6
For IPv4, PXE drivers typically install a LoadFile protocol on the NIC handle. In the case of
supporting both IPv4 and IPv6 where two PXE Base Code and LoadFile protocol instances need be
produced, the PXE driver will have to create two child handles and install
EFI_LOAD_FILE_PROTOCOL, EFI_SIMPLE_NETWORK_PROTOCOL and
PXE_BASE_CODE_PROTOCOL on each child handle. To distinguish these two child handles, an IP
device path node can be appended to the parent device path, for example:

PciRoot(0x0)/Pci(0x19,0x0)/MAC(001320F4B4FF,0x0)/IPv4(...)
PciRoot(0x0)/Pci(0x19,0x0)/MAC(001320F4B4FF,0x0)/IPv6(...)

These two instances allow for the boot manager to decide a preference of IPv6 versus IPv4 since the
IETF and other bodies do not speak to this policy choice.

23.3.1.1 DHCP6 options for PXE
In IPv4-based PXE, as defined by the rfc2131, rfc2132 and rfc4578, and described by the PXE2.1
specification and the UEFI specification, there are the following PXE related options/fields in
DHCPv4 packet:

• siaddr field/ServerAddress option (54) – next server address.

• BootFileName option (67

•) – NBP file name.

EFI_SUCCESS The cached packet contents were updated.

EFI_INVALID_PARAMETER • One or more of the following conditions was TRUE:

• The This parameter was NULL
The This parameter did not point to a valid

EFI_PXE_BASE_CODE_PROTOCOL structure.

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.
1158 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
• BootFileSize option (13)

• – NBP file size.

• ClassIdentifier (60)

• – PXE client tag.

• ClientSystemArchitectureType option (93)

• – client architecture type.

• ClientNetworkInterface Identifier option (94)

• – client network interface identifier.

In IPv6-based PXE, or ‘netboot6’, there are the following PXE related options in the DHCPv6
packet:

• BootFileURL option - OPT_BOOTFILE_URL (59) – next server address and NBP (Network
Bootable Program) file name.

• BootFileParameters option

• - OPT_BOOTFILE_PARAM (60) – NBP file size.

• VendorClass option (16)

• – PXE client tag.

• ClientSystemArchitectureType option - OPTION_CLIENT_ARCH_TYPE (61) – client
architecture type.

• ClientNetworkInterfaceIdentifier option (

• 62) – client network interface identifier.

The BootFileURL option is used to deliver the next server address or the next server address with
NBP file name.

As an example where the next server address delivered only:
”tftp:// [FEDC:BA98:7654:3210:FEDC:BA98:7654:3210];mode=octet”.

As an example where the next server address and BOOTFILE_NAME delivered both:

“tftp:// [FEDC:BA98:7654:3210:FEDC:BA98:7654:3210]/ BOOTFILE_NAME ;mode=octet”.

The BootFileParameters option is used to deliver the NBP file size with the unit of 512-octet blocks.
The maximum of the NBP file size is 65535 * 512 bytes.

As an example where the NBP file size is 1600 * 512 bytes:
para-len 1 = 4
parameter 1 = “1600”

 The VendorClass option is used to deliver the PXE client tag.

As an example where the client architecture is EFI-X64 and the client network interface identifier is
UNDI:
Version 2.5 April, 2015 1159

Unified Extensible Firmware Interface Specification
Enterprise-number = (343)
Vendor-class-data = “PXEClient:Arch:00006:UNDI:003016”

#define DUID-UUID 4

The Netboot6 client will use the DUID-UUID to report the platform identifier as part of the netboot6
DHCP options.

23.3.1.2 IPv6-based PXE boot
As PXE 2.1 specification describes step-by-step synopsis of the IPv4-based PXE process, Figure 1
describes the corresponding synopsis for netboot6.

Figure 67. IPv6-based PXE boot

Boot Service Request to port 4011
Contains: “PXEClient” ext tags
+ [Other DHCP6 option tags]

PXE
Client

PXE
Client

PXE
Client

DHCP6/
Proxy

Service

DHCP6/
Proxy

Service

TFTP
Service

DHCP6 Soilict to 547
Contains “PXEClient” ext tags

DHCP6 Advertise to 546
Contains PXE server ext tags +

[Other DHCP6 option tags] + client address
+ BootFileURL(Boot Server address)

DHCP6 Request to 547
Contains “PXEClient” ext tags
+ [Other DHCP6 option tags]

PXE
Client

DHCP6 Reply to 546

TFTP ReadFile to 69 to request NBP file

NBP file download to client port

1

5

4

3

2

Boot
ServiceBoot Service Reply to client port

Contains: PXE server ext tags
+ BootFileURL(Boot Server address and NBP file name)

+ BootFilePara (NBP file size)

PXE
Client

6

7

8

1160 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
23.3.1.2.1 Step 1.

The client multicasts a SOLICIT message to the standard DHCP6 port (547). It contains the
following:

• A tag for client UNDI version.

• A tag for the client system architecture.

• A tag for PXE client, Vendor Class data set to

• “PXEClient:Arch:xxxxx:UNDI:yyyzzz”.

23.3.1.2.2 Step 2.

The DHCP6 or Proxy DHCP6 service responds by sending a ADVERTISE message to the client on
the standard DHCP6 reply port (546). If this is a Proxy DHCP6 service, the next server (Boot
Server) address is delivered by Boot File URL option. If this is a DHCP6 service, the new assigned
client address is delivered by IA option. The extension tags information will be conveyed via the
VENDOR OPTS field.

23.3.1.2.3 Steps 3 and 4.

If the client selects an address from a DHCP6 service, then it must complete the standard DHCP6
process by sending a REQUEST for the address back to the service and then waiting for an REPLY
from the service.

23.3.1.2.4 Step 5.

The client multicasts a REQUEST message to the Boot Server port 4011, it contains the following:

• A tag for client UNDI version.

• A tag for the client system architecture.

• A tag for PXE client, Vendor Class option, set to

• “PXEClient:Arch:xxxxx:UNDI:yyyzzz”.

23.3.1.2.5 Step 6.

The Boot Server unicasts a REPLY message back to the client on the client port. It contains the
following:

• A tag for NBP file name.

• A tag for NBP file size if needed.

23.3.1.2.6 Step 7.

The client requests the NBP file using TFTP (port 69).

23.3.1.2.7 Step 8.

The NBP file, dependent on the client’s CPU architecture, is downloaded into client’s memory.

23.3.1.3 Proxy DHCP6
The netboot6 DHCP6 options may be supplied by the DHCP6 service or a Proxy DHCP6 service. This Proxy
DHCP6 service may reside on the same server as the DHCP6 service, or it ma be located on a separate server.
Version 2.5 April, 2015 1161

Unified Extensible Firmware Interface Specification
A Proxy DHCP6 service on the same server as the DHCP6 service is illustrated in Figure 2. In this case, the
Proxy DHCP6 service is listening to UDP port (4011), and communication with the Proxy DHCP6 service
occurs after completing the standard DHCP6 process. Proxy DHCP6 uses port (4011) because is cannot share
port (547) with the DHCP6 service. The netboot6 client knows how to interrogate the Proxy DHCP6 service
because the ADVERTISE from the DHCP6 service contains a VendorClass option “PXEClient” tag without a
BootFileURL option (including NBP file name). The client will not request option 16
(OPTION_VENDOR_CLASS) in ORO, but server must still reply with "PXEClient" in order to
inform the client to start the Proxy DHCPv6 mode. The client will accept just the string "PXEClient"
as sufficient, the server need not echo back the entire
OPTION_VENDOR_CLASS.

Figure 68. netboot6 (DHCP6 and ProxyDHCP6 reside on the same server)

PXE
Client

PXE
Client

PXE
Client

DHCP6
Service

DHCP6
Service

Proxy
DHCP6
Service

DHCP6 Solicit to 547
Contains “PXEClient” ext tags

DHCP6 Advertise to 546
Contains [Other DHCP6 options tags]

 + “PXEClient” + client address

DHCP6 Request to 547
Contains [Other DHCP6 option tags]

PXE
Client

DHCP6 Reply to 546

DHCP6 Request to 4011
Contains “PXEClient” ext tags

DHCP6 Reply to client port
Contains “PXEClient” ext tags

+ BootFileURL(Boot Server address)

Boot
Service

TFTP
Service

Boot Service Request to 4011
Contains “PXEClient” ext tags
+ [Other DHCP6 option tags]

PXE
Client

Boot Service Reply to client port
Contains “PXEClient” ext tags

+ BootFileURL(Boot Server address
and NBP file name)

+ BootFilePara (NBP file size)

TFTP ReadFile to 69 to request NBP file

PXE
Client

NBP file download to client port

3

2

1

10

9

8

7

6

5

4

1162 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
Figure 69 illustrates the case of a Proxy DHCP6 service and the DHCP6 service on different
servers. In this case, the Proxy DHCP6 service listens to UDP port (547) and responds in parallel
with DHCP6 service.

Figure 69. IPv6-based PXE boot (DHCP6 and ProxyDHCP6 reside on the different server)

PXE
Client

PXE
Client

PXE
Client

DHCP6
Service

DHCP6
Service

Proxy
DHCP6
Service

DHCP6 Solicit to 547
Contains “PXEClient” ext tags

DHCP6 Advertise to 546
Contains [Other DHCP6 option tags]

+ client address

DHCP6 Request to 547

PXE
Client

DHCP6 Reply to 546

DHCP6 Solicit to 547
Contains “PXEClient” ext tags

DHCP6 Advertise to 546
Contains “PXEClient” ext tags

Boot
Service

TFTP
Service

DHCP6 Request to 4011
Contains “PXEClient” ext tags

PXE
Client

DHCP6 Reply to client port
Contains “PXEClient” ext tags

+ BootFileURL(Boot Server address)

Boot Service Request to 4011
Contains “PXEClient” ext tags
+ [Other DHCP6 option tags]

PXE
Client

DHCP6 Reply to client port
Contains “PXEClient” ext tags

+ BootFileURL(Boot Server address
and NBP file name)

+ BootFilePara (NBP file size)

Proxy
DHCP6
Service

TFTP ReadFile to 69 to request NBP file

NBP file download to client port

2

1

8

5 2

10

4

9

3

7

1

6

Version 2.5 April, 2015 1163

Unified Extensible Firmware Interface Specification
23.4 PXE Base Code Callback Protocol
This protocol is a specific instance of the PXE Base Code Callback Protocol that is invoked
when the PXE Base Code Protocol is about to transmit, has received, or is waiting to receive a
packet. The PXE Base Code Callback Protocol must be on the same handle as the PXE Base
Code Protocol.

EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL

Summary
Protocol that is invoked when the PXE Base Code Protocol is about to transmit, has received, or is
waiting to receive a packet.

GUID
#define EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL_GUID \
 {0x245DCA21,0xFB7B,0x11d3,\
 {0x8F,0x01,0x00,0xA0, 0xC9,0x69,0x72,0x3B}}

Revision Number
#define EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL_REVISION \
0x00010000

Protocol Interface Structure
typedef struct {
 UINT64 Revision;
 EFI_PXE_CALLBACK Callback;
} EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL;

Parameters
Revision The revision of the

EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL. All future
revisions must be backwards compatible. If a future revision is
not backwards compatible, it is not the same GUID.

Callback Callback routine used by the PXE Base Code Dhcp(),
Discover(), Mtftp(), UdpWrite(), and Arp()
functions.
1164 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_PXE_BASE_CODE_CALLBACK.Callback()

Summary
Callback function that is invoked when the PXE Base Code Protocol is about to transmit, has
received, or is waiting to receive a packet.

Prototype
typedef
EFI_PXE_BASE_CODE_CALLBACK_STATUS
(*EFI_PXE_CALLBACK) (
 IN EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL *This,
 IN EFI_PXE_BASE_CODE_FUNCTION Function,
 IN BOOLEAN Received,
 IN UINT32 PacketLen,
 IN EFI_PXE_BASE_CODE_PACKET *Packet OPTIONAL
);

Parameters
This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.

Function The PXE Base Code Protocol function that is waiting for an
event.

Received TRUE if the callback is being invoked due to a receive event.
FALSE if the callback is being invoked due to a transmit event.

PacketLen The length, in bytes, of Packet. This field will have a value of
zero if this is a wait for receive event.

Packet If Received is TRUE, a pointer to the packet that was just
received; otherwise a pointer to the packet that is about to be
transmitted. This field will be NULL if this is not a packet event.

Related Definitions

//***

// EFI_PXE_BASE_CODE_CALLBACK_STATUS

//***

typedef enum {

EFI_PXE_BASE_CODE_CALLBACK_STATUS_FIRST,

EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,

EFI_PXE_BASE_CODE_CALLBACK_STATUS_ABORT,

EFI_PXE_BASE_CODE_CALLBACK_STATUS_LAST

} EFI_PXE_BASE_CODE_CALLBACK_STATUS;

//***

// EFI_PXE_BASE_CODE_FUNCTION

//***
Version 2.5 April, 2015 1165

Unified Extensible Firmware Interface Specification
typedef enum {

EFI_PXE_BASE_CODE_FUNCTION_FIRST,

EFI_PXE_BASE_CODE_FUNCTION_DHCP,

EFI_PXE_BASE_CODE_FUNCTION_DISCOVER,

EFI_PXE_BASE_CODE_FUNCTION_MTFTP,

EFI_PXE_BASE_CODE_FUNCTION_UDP_WRITE,

EFI_PXE_BASE_CODE_FUNCTION_UDP_READ,

EFI_PXE_BASE_CODE_FUNCTION_ARP,

EFI_PXE_BASE_CODE_FUNCTION_IGMP,

EFI_PXE_BASE_CODE_PXE_FUNCTION_LAST

} EFI_PXE_BASE_CODE_FUNCTION;

Description
This function is invoked when the PXE Base Code Protocol is about to transmit, has received, or is
waiting to receive a packet. Parameters Function and Received specify the type of event.
Parameters PacketLen and Packet specify the packet that generated the event. If these fields are
zero and NULL respectively, then this is a status update callback. If the operation specified by
Function is to continue, then CALLBACK_STATUS_CONTINUE should be returned. If the
operation specified by Function should be aborted, then CALLBACK_STATUS_ABORT should
be returned. Due to the polling nature of UEFI device drivers, a callback function should not execute
for more than 5 ms.

The SetParameters() function must be called after a Callback Protocol is installed to enable
the use of callbacks.

23.5 Boot Integrity Services Protocol
This section defines the Boot Integrity Services (BIS) protocol, which is used to check a digital
signature of a data block against a digital certificate for the purpose of an integrity and authorization
check. BIS is primarily used by the Preboot Execution Environment (PXE) Base Code protocol
EFI_PXE_BASE_CODE_PROTOCOL to check downloaded network boot images before executing
them. BIS is an UEFI Boot Services Driver, so its services are also available to applications written
to this specification until the time of EFI_BOOT_SERVICES.ExitBootServices(). More
information about BIS can be found in the Boot Integrity Services Application Programming
Interface Version 1.0.

This section defines the Boot Integrity Services Protocol. This protocol is used to check a digital
signature of a data block against a digital certificate for the purpose of an integrity and authorization
check.

EFI_BIS_PROTOCOL

Summary
The EFI_BIS_PROTOCOL is used to check a digital signature of a data block against a digital
certificate for the purpose of an integrity and authorization check.
1166 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
GUID
#define EFI_BIS_PROTOCOL_GUID \

{0x0b64aab0,0x5429,0x11d4,\

 {0x98,0x16,0x00,0xa0,0xc9,0x1f,0xad,0xcf}}

Protocol Interface Structure
typedef struct _EFI_BIS_PROTOCOL {

 EFI_BIS_INITIALIZE Initialize;
 EFI_BIS_SHUTDOWN Shutdown;
 EFI_BIS_FREE Free;
 EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_CERTIFICATE

 GetBootObjectAuthorizationCertificate;
 EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_CHECKFLAG

 GetBootObjectAuthorizationCheckFlag;
 EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_UPDATE_TOKEN

 GetBootObjectAuthorizationUpdateToken;
 EFI_BIS_GET_SIGNATURE_INFO

 GetSignatureInfo;
 EFI_BIS_UPDATE_BOOT_OBJECT_AUTHORIZATION

 UpdateBootObjectAuthorization;
 EFI_BIS_VERIFY_BOOT_OBJECT

 VerifyBootObject;
 EFI_BIS_VERIFY_OBJECT_WITH_CREDENTIAL

 VerifyObjectWithCredential;
} EFI_BIS_PROTOCOL;

Parameters
Initialize Initializes an application instance of the EFI_BIS protocol,

returning a handle for the application instance. Other functions in
the EFI_BIS protocol require a valid application instance
handle obtained from this function. See the Initialize()
function description.

Shutdown Ends the lifetime of an application instance of the EFI_BIS
protocol, invalidating its application instance handle. The
application instance handle may no longer be used in other
functions in the EFI_BIS protocol. See the Shutdown()
function description.

Free Frees memory structures allocated and returned by other
functions in the EFI_BIS protocol. See the Free() function
description.

GetBootObjectAuthorizationCertificate
Retrieves the current digital certificate (if any) used by the
EFI_BIS protocol as the source of authorization for verifying
Version 2.5 April, 2015 1167

Unified Extensible Firmware Interface Specification
boot objects and altering configuration parameters. See the
GetBootObjectAuthorizationCertificate()
function description.

GetBootObjectAuthorizationCheckFlag
Retrieves the current setting of the authorization check flag that
indicates whether or not authorization checks are required for
boot objects. See the
GetBootObjectAuthorizationCheckFlag() function
description.

GetBootObjectAuthorizationUpdateToken
Retrieves an uninterpreted token whose value gets included and
signed in a subsequent request to alter the configuration
parameters, to protect against attempts to “replay” such a request.
See the
GetBootObjectAuthorizationUpdateToken()
function description.

GetSignatureInfo Retrieves information about the digital signature algorithms
supported and the identity of the installed authorization
certificate, if any. See the GetSignatureInfo() function
description.

UpdateBootObjectAuthorization
Requests that the configuration parameters be altered by
installing or removing an authorization certificate or changing the
setting of the check flag. See the
UpdateBootObjectAuthorization() function
description.

VerifyBootObject Verifies a boot object according to the supplied digital signature
and the current authorization certificate and check flag setting.
See the VerifyBootObject() function description.

VerifyObjectWithCredential
Verifies a data object according to a supplied digital signature
and a supplied digital certificate. See the
VerifyObjectWithCredential() function description.

Description
The EFI_BIS_PROTOCOL provides a set of functions as defined in this section. There is no
physical device associated with these functions, however, in the context of UEFI every protocol
operates on a device. Accordingly, BIS installs and operates on a single abstract device that has only
a software representation.
1168 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_BIS_PROTOCOL.Initialize()

Summary
Initializes the BIS service, checking that it is compatible with the version requested by the caller.
After this call, other BIS functions may be invoked.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_INITIALIZE)(
 IN EFI_BIS_PROTOCOL *This,
 OUT BIS_APPLICATION_HANDLE *AppHandle,
 IN OUT EFI_BIS_VERSION *InterfaceVersion,
 IN EFI_BIS_DATA *TargetAddress
);

Parameters
This A pointer to the EFI_BIS_PROTOCOL object. The protocol

implementation may rely on the actual pointer value and object
location, so the caller must not copy the object to a new location.

AppHandle The function writes the new BIS_APPLICATION_HANDLE if
successful, otherwise it writes NULL. The caller must eventually
destroy this handle by calling Shutdown(). Type
BIS_APPLICATION_HANDLE is defined in “Related
Definitions” below.

InterfaceVersion
On input, the caller supplies the major version number of the
interface version desired. The minor version number supplied on
input is ignored since interface compatibility is determined solely
by the major version number. On output, both the major and
minor version numbers are updated with the major and minor
version numbers of the interface (and underlying
implementation). This update is done whether or not the
initialization was successful. Type EFI_BIS_VERSION is
defined in “Related Definitions” below.

TargetAddress Indicates a network or device address of the BIS platform to
connect to. Local-platform BIS implementations require that the
caller sets TargetAddress.Data to NULL, but otherwise
ignores this parameter. BIS implementations that redirect calls to
an agent at a remote address must define their own format and
interpretation of this parameter outside the scope of this
document. For all implementations, if the TargetAddress is
an unsupported value, the function fails with the error
EFI_UNSUPPORTED. Type EFI_BIS_DATA is defined in
“Related Definitions” below.
Version 2.5 April, 2015 1169

Unified Extensible Firmware Interface Specification
Related Definitions
//***
// BIS_APPLICATION_HANDLE
//***
typedef VOID *BIS_APPLICATION_HANDLE;

This type is an opaque handle representing an initialized instance of the BIS interface. A
BIS_APPLICATION_HANDLE value is returned by the Initialize() function as an “out”
parameter. Other BIS functions take a BIS_APPLICATION_HANDLE as an “in” parameter to
identify the BIS instance.

//***
// EFI_BIS_VERSION
//***
typedef struct _EFI_BIS_VERSION {
 UINT32 Major;
 UINT32 Minor;
} EFI_BIS_VERSION;

Major This describes the major BIS version number. The major version
number defines version compatibility. That is, when a new
version of the BIS interface is created with new capabilities that
are not available in the previous interface version, the major
version number is increased.

Minor This describes a minor BIS version number. This version number
is increased whenever a new BIS implementation is built that is
fully interface compatible with the previous BIS implementation.
This number may be reset when the major version number is
increased.

This type represents a version number of the BIS interface. This is used as an “in out” parameter of
the Initialize() function for a simple form of negotiation of the BIS interface version between
the caller and the BIS implementation.

//***
// EFI_BIS_VERSION predefined values
// Use these values to initialize EFI_BIS_VERSION.Major
// and to interpret results of Initialize.
//***
#define BIS_CURRENT_VERSION_MAJOR BIS_VERSION_1
#define BIS_VERSION_1 1

These C preprocessor macros supply values for the major version number of an
EFI_BIS_VERSION. At the time of initialization, a caller supplies a value to request a BIS
interface version. On return, the (IN OUT) parameter is over-written with the actual version of the
interface.
1170 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
//***
// EFI_BIS_DATA
//
// EFI_BIS_DATA instances obtained from BIS must be freed by
// calling Free().
//***
typedef struct _EFI_BIS_DATA {
 UINT32 Length;
 UINT8 *Data;
} EFI_BIS_DATA;

Length The length of the data buffer in bytes.

Data A pointer to the raw data buffer.

This type defines a structure that describes a buffer. BIS uses this type to pass back and forth most
large objects such as digital certificates, strings, etc. Several of the BIS functions allocate a
EFI_BIS_DATA* and return it as an “out” parameter. The caller must eventually free any allocated
EFI_BIS_DATA* using the Free() function.

Description
This function must be the first BIS function invoked by an application. It passes back a
BIS_APPLICATION_HANDLE value that must be used in subsequent BIS functions. The handle
must be eventually destroyed by a call to the Shutdown() function, thus ending that handle’s
lifetime. After the handle is destroyed, BIS functions may no longer be called with that handle value.
Thus all other BIS functions may only be called between a pair of Initialize() and
Shutdown() functions.

There is no penalty for calling Initialize() multiple times. Each call passes back a distinct
handle value. Each distinct handle must be destroyed by a distinct call to Shutdown(). The
lifetimes of handles created and destroyed with these functions may be overlapped in any way.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_INCOMPATIBLE_VERSION The InterfaceVersion.Major requested by the caller

was not compatible with the interface version of the

implementation. The InterfaceVersion.Major has

been updated with the current interface version.

EFI_UNSUPPORTED This is a local-platform implementation and

TargetAddress.Data was not NULL, or

TargetAddress.Data was any other value that was not

supported by the implementation.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.
Version 2.5 April, 2015 1171

Unified Extensible Firmware Interface Specification
EFI_DEVICE_ERROR The function encountered an unexpected internal failure while
initializing a cryptographic software module, or
No cryptographic software module with compatible version was
found, or
A resource limitation was encountered while using a
cryptographic software module.

EFI_INVALID_PARAMETER The This parameter supplied by the caller is NULL or does not

reference a valid EFI_BIS_PROTOCOL object, or

The AppHandle parameter supplied by the caller is NULL or

an invalid memory reference, or
The InterfaceVersion parameter supplied by the caller

is NULL or an invalid memory reference, or

The TargetAddress parameter supplied by the caller is

NULL or an invalid memory reference.
1172 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_BIS_PROTOCOL.Shutdown()

Summary
Shuts down an application’s instance of the BIS service, invalidating the application handle. After
this call, other BIS functions may no longer be invoked using the application handle value.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_SHUTDOWN)(
 IN BIS_APPLICATION_HANDLE AppHandle
);

Parameters
AppHandle An opaque handle that identifies the caller’s instance of

initialization of the BIS service. Type
BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

Description
This function shuts down an application’s instance of the BIS service, invalidating the application
handle. After this call, other BIS functions may no longer be invoked using the application handle
value.

This function must be paired with a preceding successful call to the Initialize() function. The
lifetime of an application handle extends from the time the handle was returned from
Initialize() until the time the handle is passed to Shutdown(). If there are other remaining
handles whose lifetime is still active, they may still be used in calling BIS functions.

The caller must free all memory resources associated with this AppHandle that were allocated and
returned from other BIS functions before calling Shutdown(). Memory resources are freed using
the Free() function. Failure to free such memory resources is a caller error, however, this function
does not return an error code under this circumstance. Further attempts to access the outstanding
memory resources cause unspecified results.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_DEVICE_ERROR The function encountered an unexpected internal error while
returning resources associated with a cryptographic software
module, or
The function encountered an internal error while trying to shut down
a cryptographic software module.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.
Version 2.5 April, 2015 1173

Unified Extensible Firmware Interface Specification
EFI_BIS_PROTOCOL.Free()

Summary
Frees memory structures allocated and returned by other functions in the EFI_BIS protocol.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_FREE)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 IN EFI_BIS_DATA *ToFree
);

Parameters
AppHandle An opaque handle that identifies the caller’s instance of

initialization of the BIS service. Type
BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

ToFree An EFI_BIS_DATA* and associated memory block to be freed.
This EFI_BIS_DATA* must have been allocated by one of the
other BIS functions. Type EFI_BIS_DATA is defined in the
Initialize() function description.

Description
This function deallocates an EFI_BIS_DATA* and associated memory allocated by one of the
other BIS functions.

Callers of other BIS functions that allocate memory in the form of an EFI_BIS_DATA* must
eventually call this function to deallocate the memory before calling the Shutdown() function for
the application handle under which the memory was allocated. Failure to do so causes unspecified
results, and the continued correct operation of the BIS service cannot be guaranteed.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid application

instance handle associated with the EFI_BIS protocol.

EFI_INVALID_PARAMETER The ToFree parameter is not or is no longer a memory resource

associated with this AppHandle.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.
1174 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCertificate()

Summary
Retrieves the certificate that has been configured as the identity of the organization designated as the
source of authorization for signatures of boot objects.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_CERTIFICATE)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 OUT EFI_BIS_DATA **Certificate
);

Parameters
AppHandle An opaque handle that identifies the caller’s instance of

initialization of the BIS service. Type
BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

Certificate The function writes an allocated EFI_BIS_DATA* containing
the Boot Object Authorization Certificate object. The caller must
eventually free the memory allocated by this function using the
function Free(). Type EFI_BIS_DATA is defined in the
Initialize() function description.

Description
This function retrieves the certificate that has been configured as the identity of the organization
designated as the source of authorization for signatures of boot objects.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_NOT_FOUND There is no Boot Object Authorization Certificate currently installed.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_INVALID_PARAMETER The Certificate parameter supplied by the caller is NULL or

an invalid memory reference.
Version 2.5 April, 2015 1175

Unified Extensible Firmware Interface Specification
EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCheckFlag()

Summary
Retrieves the current status of the Boot Authorization Check Flag.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_CHECKFLAG)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 OUT BOOLEAN *CheckIsRequired
);

Parameters
AppHandle An opaque handle that identifies the caller’s instance of

initialization of the BIS service. Type
BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

CheckIsRequired The function writes the value TRUE if a Boot Authorization
Check is currently required on this platform, otherwise the
function writes FALSE.

Description
This function retrieves the current status of the Boot Authorization Check Flag (in other words,
whether or not a Boot Authorization Check is currently required on this platform).

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_INVALID_PARAMETER The CheckIsRequired parameter supplied by the caller is

NULL or an invalid memory reference.
1176 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_BIS_PROTOCOL.GetBootObjectAuthorizationUpdateToken()

Summary
Retrieves a unique token value to be included in the request credential for the next update of any
parameter in the Boot Object Authorization set (Boot Object Authorization Certificate and Boot
Authorization Check Flag).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_GET_BOOT_OBJECT_AUTHORIZATION_UPDATE_TOKEN)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 OUT EFI_BIS_DATA **UpdateToken
);

Parameters
AppHandle An opaque handle that identifies the caller’s instance of

initialization of the BIS service. Type
BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

UpdateToken The function writes an allocated EFI_BIS_DATA* containing
the new unique update token value. The caller must eventually
free the memory allocated by this function using the function
Free(). Type EFI_BIS_DATA is defined in the
Initialize() function description.

Description
This function retrieves a unique token value to be included in the request credential for the next
update of any parameter in the Boot Object Authorization set (Boot Object Authorization Certificate
and Boot Authorization Check Flag). The token value is unique to this platform, parameter set, and
instance of parameter values. In particular, the token changes to a new unique value whenever any
parameter in this set is changed.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_DEVICE_ERROR The function encountered an unexpected internal error in a
cryptographic software module.

EFI_INVALID_PARAMETER The UpdateToken parameter supplied by the caller is NULL or

an invalid memory reference.
Version 2.5 April, 2015 1177

Unified Extensible Firmware Interface Specification
EFI_BIS_PROTOCOL.GetSignatureInfo()

Summary
Retrieves a list of digital certificate identifier, digital signature algorithm, hash algorithm, and key-
length combinations that the platform supports.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_GET_SIGNATURE_INFO)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 OUT EFI_BIS_DATA **SignatureInfo
);

Parameters
AppHandle An opaque handle that identifies the caller’s instance of

initialization of the BIS service. Type
BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

SignatureInfo
The function writes an allocated EFI_BIS_DATA* containing
the array of EFI_BIS_SIGNATURE_INFO structures
representing the supported digital certificate identifier, algorithm,
and key length combinations. The caller must eventually free the
memory allocated by this function using the function Free().
Type EFI_BIS_DATA is defined in the Initialize()
function description. Type EFI_BIS_SIGNATURE_INFO is
defined in “Related Definitions” below.

Related Definitions
//***
// EFI_BIS_SIGNATURE_INFO
//***
typedef struct _EFI_BIS_SIGNATURE_INFO {
 BIS_CERT_ID CertificateID;
 BIS_ALG_ID AlgorithmID;
 UINT16 KeyLength;
} EFI_BIS_SIGNATURE_INFO;

CertificateID A shortened value identifying the platform’s currently configured
Boot Object Authorization Certificate, if one is currently
configured. The shortened value is derived from the certificate as
defined in the Related Definition for BIS_CERT_ID below. If
there is no certificate currently configured, the value is one of the
reserved BIS_CERT_ID_XXX values defined below. Type
BIS_CERT_ID and its predefined reserved values are defined in
“Related Definitions” below.
1178 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
AlgorithmID A predefined constant representing a particular digital signature
algorithm. Often this represents a combination of hash algorithm
and encryption algorithm, however, it may also represent a
standalone digital signature algorithm. Type BIS_ALG_ID and
its permitted values are defined in “Related Definitions” below.

KeyLength The length of the public key, in bits, supported by this digital
signature algorithm.

This type defines a digital certificate, digital signature algorithm, and key-length combination that
may be supported by the BIS implementation. This type is returned by GetSignatureInfo() to
describe the combination(s) supported by the implementation.

//***
// BIS_GET_SIGINFO_COUNT macro
// Tells how many EFI_BIS_SIGNATURE_INFO elements are contained
// in a EFI_BIS_DATA struct pointed to by the provided
// EFI_BIS_DATA*.
//***
#define BIS_GET_SIGINFO_COUNT(BisDataPtr) \
 ((BisDataPtr)->Length/sizeof(EFI_BIS_SIGNATURE_INFO))

BisDataPtr Supplies the pointer to the target EFI_BIS_DATA structure.

(return value) The number of EFI_BIS_SIGNATURE_INFO elements
contained in the array.

This macro computes how many EFI_BIS_SIGNATURE_INFO elements are contained in an
EFI_BIS_DATA structure returned from GetSignatureInfo(). The number returned is the
count of items in the list of supported digital certificate, digital signature algorithm, and key-length
combinations.

//***
// BIS_GET_SIGINFO_ARRAY macro
// Produces a EFI_BIS_SIGNATURE_INFO* from a given
// EFI_BIS_DATA*.
//***
#define BIS_GET_SIGINFO_ARRAY(BisDataPtr) \
 ((EFI_BIS_SIGNATURE_INFO*)(BisDataPtr)->Data)

BisDataPtr Supplies the pointer to the target EFI_BIS_DATA structure.

(return value) The pointer to the EFI_BIS_SIGNATURE_INFO array, cast as
an EFI_BIS_SIGNATURE_INFO*.

This macro returns a pointer to the EFI_BIS_SIGNATURE_INFO array contained in an
EFI_BIS_DATA structure returned from GetSignatureInfo() representing the list of
supported digital certificate, digital signature algorithm, and key-length combinations.
Version 2.5 April, 2015 1179

Unified Extensible Firmware Interface Specification
//***
// BIS_CERT_ID
//***
typedef UINT32 BIS_CERT_ID;

This type represents a shortened value that identifies the platform’s currently configured Boot
Object Authorization Certificate. The value is the first four bytes, in “little-endian” order, of the
SHA-1 hash of the certificate, except that the most-significant bits of the second and third bytes are
reserved, and must be set to zero regardless of the outcome of the hash function. This type is
included in the array of values returned from the GetSignatureInfo() function to indicate the
required source of a signature for a boot object or a configuration update request. There are a few
predefined reserved values with special meanings as described below.

//***
// BIS_CERT_ID predefined values
// Currently defined values for EFI_BIS_SIGNATURE_INFO.
// CertificateId.
//***
#define BIS_CERT_ID_DSA BIS_ALG_DSA //CSSM_ALGID_DSA
#define BIS_CERT_ID_RSA_MD5 BIS_ALG_RSA_MD5 //
CSSM_ALGID_MD5_WITH_RSA

These C preprocessor symbols provide values for the BIS_CERT_ID type. These values are used
when the platform has no configured Boot Object Authorization Certificate. They indicate the
signature algorithm that is supported by the platform. Users must be careful to avoid constructing
Boot Object Authorization Certificates that transform to BIS_CERT_ID values that collide with
these predefined values or with the BIS_CERT_ID values of other Boot Object Authorization
Certificates they use.

//***
// BIS_CERT_ID_MASK
// The following is a mask value that gets applied to the
// truncated hash of a platform Boot Object Authorization
// Certificate to create the CertificateId. A CertificateId
// must not have any bits set to the value 1 other than bits in
// this mask.
//***
#define BIS_CERT_ID_MASK (0xFF7F7FFF)

This C preprocessor symbol may be used as a bit-wise “AND” value to transform the first four bytes
(in little-endian order) of a SHA-1 hash of a certificate into a certificate ID with the “reserved” bits
properly set to zero.
1180 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
//***
// BIS_ALG_ID
//***
typedef UINT16 BIS_ALG_ID;

This type represents a digital signature algorithm. A digital signature algorithm is often composed of
a particular combination of secure hash algorithm and encryption algorithm. This type also allows
for digital signature algorithms that cannot be decomposed. Predefined values for this type are as
defined below.

//***
// BIS_ALG_ID predefined values
// Currently defined values for EFI_BIS_SIGNATURE_INFO.
// AlgorithmID. The exact numeric values come from “Common
// Data Security Architecture (CDSA) Specification.”
//***
#define BIS_ALG_DSA (41) //CSSM_ALGID_DSA
#define BIS_ALG_RSA_MD5 (42) //CSSM_ALGID_MD5_WITH_RSA

These values represent the two digital signature algorithms predefined for BIS. Each implementation
of BIS must support at least one of these digital signature algorithms. Values for the digital signature
algorithms are chosen by an industry group known as The Open Group. Developers planning to
support additional digital signature algorithms or define new digital signature algorithms should
refer to The Open Group for interoperable values to use.

Description
This function retrieves a list of digital certificate identifier, digital signature algorithm, hash
algorithm, and key-length combinations that the platform supports. The list is an array of (certificate
id, algorithm id, key length) triples, where the certificate id is derived from the platform’s Boot
Object Authorization Certificate as described in the Related Definition for BIS_CERT_ID above,
the algorithm id represents the combination of signature algorithm and hash algorithm, and the key
length is expressed in bits. The number of array elements can be computed using the Length field
of the retrieved EFI_BIS_DATA*.

The retrieved list is in order of preference. A digital signature algorithm for which the platform has a
currently configured Boot Object Authorization Certificate is preferred over any digital signature
algorithm for which there is not a currently configured Boot Object Authorization Certificate. Thus
the first element in the list has a CertificateID representing a Boot Object Authorization
Certificate if the platform has one configured. Otherwise the CertificateID of the first element
in the list is one of the reserved values representing a digital signature algorithm.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.
Version 2.5 April, 2015 1181

Unified Extensible Firmware Interface Specification
EFI_DEVICE_ERROR The function encountered an unexpected internal error in a
cryptographic software module, or
The function encountered an unexpected internal consistency check
failure (possible corruption of stored Boot Object Authorization
Certificate).

EFI_INVALID_PARAMETER The SignatureInfo parameter supplied by the caller is NULL

or an invalid memory reference.
1182 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_BIS_PROTOCOL.UpdateBootObjectAuthorization()

Summary
Updates one of the configurable parameters of the Boot Object Authorization set (Boot Object
Authorization Certificate or Boot Authorization Check Flag).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_UPDATE_BOOT_OBJECT_AUTHORIZATION)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 IN EFI_BIS_DATA *RequestCredential,
 OUT EFI_BIS_DATA **NewUpdateToken
);

Parameters
AppHandle An opaque handle that identifies the caller’s instance of

initialization of the BIS service. Type
BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

RequestCredential This is a Signed Manifest with embedded attributes that carry the
details of the requested update. The required syntax of the Signed
Manifest is described in the Related Definition for Manifest
Syntax below. The key used to sign the request credential must be
the private key corresponding to the public key in the platform’s
configured Boot Object Authorization Certificate. Authority to
update parameters in the Boot Object Authorization set cannot be
delegated.

If there is no Boot Object Authorization Certificate, the request
credential may be signed with any private key. In this case, this
function interacts with the user in a platform-specific way to
determine whether the operation should succeed. Type
EFI_BIS_DATA is defined in the Initialize() function
description.

NewUpdateToken The function writes an allocated EFI_BIS_DATA* containing
the new unique update token value. The caller must eventually
free the memory allocated by this function using the function
Free(). Type EFI_BIS_DATA is defined in the
Initialize() function description.
Version 2.5 April, 2015 1183

Unified Extensible Firmware Interface Specification
Related Definitions
//**
// Manifest Syntax

//**

The Signed Manifest consists of three parts grouped together into an Electronic Shrink Wrap archive
as described in [SM spec]: a manifest file, a signer’s information file, and a signature block file.
These three parts, along with examples are described in the following sections. In these examples,
text in parentheses is a description of the text that would appear in the signed manifest. Text outside
of parentheses must appear exactly as shown. Also note that manifest files and signer’s information
files must conform to a 72-byte line-length limit. Continuation lines (lines beginning with a single
“space” character) are used for lines longer than 72 bytes. The examples given here follow this rule
for continuation lines.

Note that the manifest file and signer’s information file parts of a Signed Manifest are ASCII text
files. In cases where these files contain a base-64 encoded string, the string is an ASCII string before
base-64 encoding.

//**
// Manifest File Example
//**

The manifest file must include a section referring to a memory-type data object with the reserved
name as shown in the example below. This data object is a zero-length object whose sole purpose in
the manifest is to serve as a named collection point for the attributes that carry the details of the
requested update. The attributes are also contained in the manifest file. An example manifest file is
shown below.

Manifest-Version: 2.0
ManifestPersistentId: (base-64 representation of a unique GUID)

Name: memory:UpdateRequestParameters
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of zero-length
 buffer)
X-Intel-BIS-ParameterSet: (base-64 representation of
 BootObjectAuthorizationSetGUID)
X-Intel-BIS-ParameterSetToken: (base-64 representation of the current
 update token)
X-Intel-BIS-ParameterId: (base-64 representation of
 “BootObjectAuthorizationCertificate” or
 “BootAuthorizationCheckFlag”)
X-Intel-BIS-ParameterValue: (base-64 representation of
 certificate or
 single-byte boolean flag)

A line-by-line description of this manifest file is as follows.
Manifest-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
ManifestPersistentId: (base-64 representation of a unique GUID)
1184 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID for
every manifest file created. The Win32 function UuidCreate() can be used for this on Win32
systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple encoding
scheme for representing binary values that uses only printing characters. Base-64 encoding is
described in [BASE-64].
Name: memory:UpdateRequestParameters

This identifies the manifest section that carries a dummy zero-length data object serving as the
collection point for the attribute values appearing later in this manifest section (lines prefixed with
“X-Intel-BIS-”). The string “memory:UpdateRequestParameters” must appear
exactly as shown.
Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the data object. These
are required even though the data object is zero-length. For systems with DSA signing, SHA-1 hash,
and 1024-bit key length, the digest algorithm must be “SHA-1.” For systems with RSA signing,
MD5 hash, and 512-bit key length, the digest algorithm must be “MD5.” Multiple algorithms can be
specified as a whitespace-separated list. For every digest algorithm XXX listed, there must also be a
corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of zero-length
 buffer)

Gives the corresponding digest value for the dummy zero-length data object. The value is base-64
encoded. Note that for both MD5 and SHA-1, the digest value for a zero-length data object is not
zero.
X-Intel-BIS-ParameterSet: (base-64 representation of
 BootObjectAuthorizationSetGUID)

A named attribute value that distinguishes updates of BIS parameters from updates of other
parameters. The left-hand attribute-name keyword must appear exactly as shown. The GUID value
for the right-hand side is always the same, and can be found under the preprocessor symbol
BOOT_OBJECT_AUTHORIZATION_PARMSET_GUIDVALUE. The representation inserted into
the manifest is base-64 encoded.

Note the “X-Intel-BIS-” prefix on this and the following attributes. The “X-” part of the prefix
was chosen to avoid collisions with future reserved keywords defined by future versions of the
signed manifest specification. The “Intel-BIS-” part of the prefix was chosen to avoid collisions
with other user-defined attribute names within the user-defined attribute name space.
X-Intel-BIS-ParameterSetToken: (base-64 representation of the current
 update token)

A named attribute value that makes this update of BIS parameters different from any other on the
same target platform. The left-hand attribute-name keyword must appear exactly as shown. The
value for the right-hand side is generally different for each update-request manifest generated. The
value to be base-64 encoded is retrieved through the functions
GetBootObjectAuthorizationUpdateToken() or
UpdateBootObjectAuthorization().
X-Intel-BIS-ParameterId: (base-64 representation of
 “BootObjectAuthorizationCertificate” or
 “BootAuthorizationCheckFlag”)

A named attribute value that indicates which BIS parameter is to be updated. The left-hand attribute-
name keyword must appear exactly as shown. The value for the right-hand side is the base-64
encoded representation of one of the two strings shown.
Version 2.5 April, 2015 1185

Unified Extensible Firmware Interface Specification
X-Intel-BIS-ParameterValue: (base-64 representation of
 certificate or
 single-byte boolean flag)

A named attribute value that indicates the new value to be set for the indicated parameter. The left-
hand attribute-name keyword must appear exactly as shown. The value for the right-hand side is the
appropriate base-64 encoded new value to be set. In the case of the Boot Object Authorization
Certificate, the value is the new digital certificate raw data. A zero-length value removes the
certificate altogether. In the case of the Boot Authorization Check Flag, the value is a single-byte
Boolean value, where a nonzero value “turns on” the check and a zero value “turns off” the check.

//**
// Signer’s Information File Example
//**

The signer’s information file must include a section whose name matches the reserved data object
section name of the section in the Manifest file. This section in the signer’s information file carries
the integrity data for the attributes in the corresponding section in the manifest file. An example
signer’s information file is shown below.
Signature-Version: 2.0
SignerInformationPersistentId: (base-64 representation of a unique
 GUID)
SignerInformationName: BIS_UpdateManifestSignerInfoName

Name: memory:UpdateRequestParameters
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 corresponding manifest section)

A line-by-line description of this signer’s information file is as follows.
Signature-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
SignerInformationPersistentId: (base-64 representation of a unique
 GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID for
every signer’s information file created. The Win32 function UuidCreate() can be used for this on
Win32 systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple
encoding scheme for representing binary values that uses only printing characters. Base-64 encoding
is described in [BASE-64].
SignerInformationName: BIS_UpdateManifestSignerInfoName

The left-hand string must appear exactly as shown. The right-hand string must appear exactly as
shown.
Name: memory:UpdateRequestParameters

This identifies the section in the signer’s information file corresponding to the section with the same
name in the manifest file described earlier. The string
“memory:UpdateRequestParameters” must appear exactly as shown.
Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the corresponding
manifest section. Strings identifying digest algorithms are the same as in the manifest file. The digest
1186 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
algorithms specified here must match those specified in the manifest file. For every digest algorithm
XXX listed, there must also be a corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 corresponding manifest section)

Gives the corresponding digest value for the corresponding manifest section. The value is base-64
encoded. Note that for the purpose of computing the hash of the manifest section, the manifest
section starts at the beginning of the opening “Name:” keyword and continues up to, but not
including, the next section’s “Name:” keyword or the end-of-file. Thus the hash includes the blank
line(s) at the end of a section and any newline(s) preceding the next “Name:” keyword or end-of-
file.

//**
// Signature Block File Example
//**

A signature block file is a raw binary file (not base-64 encoded) that is a PKCS#7 defined format
signature block. The signature block covers exactly the contents of the signer’s information file.
There must be a correspondence between the name of the signer’s information file and the signature
block file. The base name matches, and the three-character extension is modified to reflect the
signature algorithm used according to the following rules:

• DSA signature algorithm (which uses SHA-1 hash): extension is DSA.

• RSA signature algorithm with MD5 hash: extension is RSA.

So for example with a signer’s information file name of “myinfo.SF,” the corresponding DSA
signature block file name would be “myinfo.DSA.”

The format of a signature block file is defined in [PKCS].

//**
// “X-Intel-BIS-ParameterSet” Attribute value
// Binary Value of “X-Intel-BIS-ParameterSet” Attribute.
// (Value is Base-64 encoded in actual signed manifest).
//**

#define BOOT_OBJECT_AUTHORIZATION_PARMSET_GUID \
 {0xedd35e31,0x7b9,0x11d2,{0x83,0xa3,0x0,0xa0,0xc9,0x1f,0xad,0xcf}}

This preprocessor symbol gives the value for an attribute inserted in signed manifests to distinguish
updates of BIS parameters from updates of other parameters. The representation inserted into the
manifest is base-64 encoded.

Description
This function updates one of the configurable parameters of the Boot Object Authorization set (Boot
Object Authorization Certificate or Boot Authorization Check Flag). It passes back a new unique
update token that must be included in the request credential for the next update of any parameter in
the Boot Object Authorization set. The token value is unique to this platform, parameter set, and
instance of parameter values. In particular, the token changes to a new unique value whenever any
parameter in this set is changed.
Version 2.5 April, 2015 1187

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_DEVICE_ERROR The function encountered an unexpected internal error in a
cryptographic software module.

EFI_SECURITY_VIOLATION The signed manifest supplied as the RequestCredential

parameter was invalid (could not be parsed),
or

The signed manifest supplied as the RequestCredential

parameter failed to verify using the installed Boot Object
Authorization Certificate or the signer’s Certificate in

RequestCredential,
or

Platform-specific authorization failed,
or

The signed manifest supplied as the RequestCredential

parameter did not include the X-Intel-BIS-
ParameterSet attribute value,

or
The X-Intel-BIS-ParameterSet attribute value supplied

did not match the required GUID value,
or

The signed manifest supplied as the RequestCredential

parameter did not include the X-Intel-BIS-
ParameterSetToken attribute value,

or
The X-Intel-BIS-ParameterSetToken attribute value

supplied did not match the platform’s current update-token value,
or
1188 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_SECURITY_VIOLATION The signed manifest supplied as the RequestCredential

parameter did not include the X-Intel-BIS-ParameterId

attribute value,
or

The X-Intel-BIS-ParameterId attribute value supplied

did not match one of the permitted values,
or

The signed manifest supplied as the RequestCredential

parameter did not include the X-Intel-BIS-
ParameterValue attribute value,

or
Any other required attribute value was missing,

or
The new certificate supplied was too big to store,

or
The new certificate supplied was invalid (could not be parsed),

or
The new certificate supplied had an unsupported combination of key
algorithm and key length,

or
The new check flag value supplied is the wrong length (1 byte),

or
The signed manifest supplied as the RequestCredential

parameter did not include a signer certificate,
or

The signed manifest supplied as the RequestCredential

parameter did not include the manifest section named

“memory:UpdateRequestParameters,”
or
Version 2.5 April, 2015 1189

Unified Extensible Firmware Interface Specification
EFI_SECURITY_VIOLATION The signed manifest supplied as the RequestCredential

parameter had a signing certificate with an unsupported public-key
algorithm,

or
The manifest section named

“memory:UpdateRequestParameters” did not include a

digest with a digest algorithm corresponding to the signing
certificate’s public key algorithm,

or
The zero-length data object referenced by the manifest section

named “memory:UpdateRequestParameters” did not

verify with the digest supplied in that manifest section,
or

The signed manifest supplied as the RequestCredential

parameter did not include a signer’s information file with the

SignerInformationName identifying attribute value

“BIS_UpdateManifestSignerInfoName,”
or

There were no signers associated with the identified signer’s
information file,

or
There was more than one signer associated with the identified
signer’s information file,

or
Any other unspecified security violation occurred.

EFI_DEVICE_ERROR An unexpected internal error occurred while analyzing the new
certificate’s key algorithm,

or
An unexpected internal error occurred while attempting to retrieve
the public key algorithm of the manifest’s signer’s certificate,

or
An unexpected internal error occurred in a cryptographic software
module.

EFI_INVALID_PARAMETER The RequestCredential parameter supplied by the caller is

NULL or an invalid memory reference,
or

The RequestCredential.Data parameter supplied by the

caller is NULL or an invalid memory reference,
or

The NewUpdateToken parameter supplied by the caller is

NULL or an invalid memory reference.
1190 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_BIS_PROTOCOL.VerifyBootObject()

Summary
Verifies the integrity and authorization of the indicated data object according to the
indicated credentials.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_VERIFY_BOOT_OBJECT)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 IN EFI_BIS_DATA *Credentials,
 IN EFI_BIS_DATA *DataObject,
 OUT BOOLEAN *IsVerified
);

Parameters
AppHandle An opaque handle that identifies the caller’s instance of

initialization of the BIS service. Type
BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

Credentials A Signed Manifest containing verification information for the
indicated data object. The Manifest signature itself must meet the
requirements described below. This parameter is optional if a
Boot Authorization Check is currently not required on this
platform (Credentials.Data may be NULL), otherwise this
parameter is required. The required syntax of the Signed Manifest
is described in the Related Definition for Manifest Syntax below.
Type EFI_BIS_DATA is defined in the Initialize()
function description.

DataObject An in-memory copy of the raw data object to be verified. Type
EFI_BIS_DATA is defined in the Initialize() function
description.

IsVerified The function writes TRUE if the verification succeeded,
otherwise FALSE.

Related Definitions
//**
// Manifest Syntax
//**

The Signed Manifest consists of three parts grouped together into an Electronic Shrink Wrap archive
as described in [SM spec]: a manifest file, a signer’s information file, and a signature block file.
These three parts along with examples are described in the following sections. In these examples,
text in parentheses is a description of the text that would appear in the signed manifest. Text outside
of parentheses must appear exactly as shown. Also note that manifest files and signer’s information
files must conform to a 72-byte line-length limit. Continuation lines (lines beginning with a single
Version 2.5 April, 2015 1191

Unified Extensible Firmware Interface Specification
“space” character) are used for lines longer than 72 bytes. The examples given here follow this rule
for continuation lines.

Note that the manifest file and signer’s information file parts of a Signed Manifest are ASCII text
files. In cases where these files contain a base-64 encoded string, the string is an ASCII string before
base-64 encoding.

//**
// Manifest File Example
//**

The manifest file must include a section referring to a memory-type data object with the reserved
name as shown in the example below. This data object is the Boot Object to be verified. An example
manifest file is shown below.
Manifest-Version: 2.0
ManifestPersistentId: (base-64 representation of a unique GUID)

Name: memory:BootObject
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 boot object)

A line-by-line description of this manifest file is as follows.
Manifest-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
ManifestPersistentId: (base-64 representation of a unique GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID for
every manifest file created. The Win32 function UuidCreate() can be used for this on Win32
systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple encoding
scheme for representing binary values that uses only printing characters. Base-64 encoding is
described in [BASE-64].
 Name: memory:BootObject

This identifies the section that carries the integrity data for the Boot Object. The string
“memory:BootObject” must appear exactly as shown. Note that the Boot Object cannot be
found directly from this manifest. A caller verifying the Boot Object integrity must load the Boot
Object into memory and specify its memory location explicitly to this verification function through
the DataObject parameter.
Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the data object. For
systems with DSA signing, SHA-1 hash, and 1024-bit key length, the digest algorithm must be
“SHA-1.” For systems with RSA signing, MD5 hash, and 512-bit key length, the digest algorithm
must be “MD5.” Multiple algorithms can be specified as a whitespace-separated list. For every
digest algorithm XXX listed, there must also be a corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the boot object)

Gives the corresponding digest value for the data object. The value is base-64 encoded.
1192 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
//**
// Signer’s Information File Example
//**

The signer’s information file must include a section whose name matches the reserved data object
section name of the section in the Manifest file. This section in the signer’s information file carries
the integrity data for the corresponding section in the manifest file. An example signer’s information
file is shown below.
Signature-Version: 2.0
SignerInformationPersistentId: (base-64 representation of a
 unique GUID)
SignerInformationName: BIS_VerifiableObjectSignerInfoName

Name: memory:BootObject
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 corresponding manifest section)

A line-by-line description of this signer’s information file is as follows.
Signature-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
SignerInformationPersistentId: (base-64 representation of a unique GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID for
every signer’s information file created. The Win32 function UuidCreate() can be used for this on
Win32 systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple
encoding scheme for representing binary values that uses only printing characters. Base-64 encoding
is described in [BASE-64].
SignerInformationName: BIS_VerifiableObjectSignerInfoName

The left-hand string must appear exactly as shown. The right-hand string must appear exactly as
shown.
Name: memory:BootObject

This identifies the section in the signer’s information file corresponding to the section with the same
name in the manifest file described earlier. The string “memory:BootObject” must appear
exactly as shown.
Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the corresponding
manifest section. Strings identifying digest algorithms are the same as in the manifest file. The digest
algorithms specified here must match those specified in the manifest file. For every digest algorithm
XXX listed, there must also be a corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
corresponding manifest section)

Gives the corresponding digest value for the corresponding manifest section. The value is base-64
encoded. Note that for the purpose of computing the hash of the manifest section, the manifest
section starts at the beginning of the opening “Name:” keyword and continues up to, but not
including, the next section’s “Name:” keyword or the end-of-file. Thus the hash includes the blank
line(s) at the end of a section and any newline(s) preceding the next “Name:” keyword or end-of-
file.
Version 2.5 April, 2015 1193

Unified Extensible Firmware Interface Specification
//**
// Signature Block File Example
//**

A signature block file is a raw binary file (not base-64 encoded) that is a PKCS#7 defined format
signature block. The signature block covers exactly the contents of the signer’s information file.
There must be a correspondence between the name of the signer’s information file and the signature
block file. The base name matches, and the three-character extension is modified to reflect the
signature algorithm used according to the following rules:

• DSA signature algorithm (which uses SHA-1 hash): extension is DSA.

• RSA signature algorithm with MD5 hash: extension is RSA.

So for example with a signer’s information file name of “myinfo.SF,” the corresponding DSA
signature block file name would be “myinfo.DSA.”

The format of a signature block file is defined in [PKCS].

Description
This function verifies the integrity and authorization of the indicated data object according to the
indicated credentials. The rules for successful verification depend on whether or not a Boot
Authorization Check is currently required on this platform.

If a Boot Authorization Check is not currently required on this platform, no authorization check is
performed. However, the following rules are applied for an integrity check:

• In this case, the credentials are optional. If they are not supplied (Credentials.Data is
NULL), no integrity check is performed, and the function returns immediately with a “success”
indication and IsVerified is TRUE.

• If the credentials are supplied (Credentials.Data is other than NULL), integrity checks are
performed as follows:
— Verify the credentials – The credentials parameter is a valid signed Manifest, with a single

signer. The signer’s identity is included in the credential as a certificate.
— Verify the data object – The Manifest must contain a section named

“memory:BootObject,” with associated verification information (in other words, hash
value). The hash value from this Manifest section must match the hash value computed over
the specified DataObject data.

— If these checks succeed, the function returns with a “success” indication and IsVerified
is TRUE. Otherwise, IsVerified is FALSE and the function returns with a “security
violation” indication.

If a Boot Authorization Check is currently required on this platform, authorization and integrity
checks are performed. The integrity check is the same as in the case above, except that it is required.
The following rules are applied:

• Verify the credentials – The credentials parameter is required in this case
(Credentials.Data must be other than NULL). The credentials parameter is a valid Signed
Manifest, with a single signer. The signer’s identity is included in the credential as a certificate.

• Verify the data object – The Manifest must contain a section named “memory:BootObject,”
with associated verification information (in other words, hash value). The hash value from this
Manifest section must match the hash value computed over the specified DataObject data.
1194 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
• Do Authorization check – This happens one of two ways depending on whether or not the
platform currently has a Boot Object Authorization Certificate configured.
— If a Boot Object Authorization Certificate is not currently configured, this function interacts

with the user in a platform-specific way to determine whether the operation should succeed.
— If a Boot Object Authorization Certificate is currently configured, this function uses the

Boot Object Authorization Certificate to determine whether the operation should succeed.
The public key certified by the signer’s certificate must match the public key in the Boot
Object Authorization Certificate configured for this platform. The match must be direct, that
is, the signature authority cannot be delegated along a certificate chain.

— If these checks succeed, the function returns with a “success” indication and IsVerified
is TRUE. Otherwise, IsVerified is FALSE and the function returns with a “security
violation” indication.

Note that if a Boot Authorization Check is currently required on this platform this function always
performs an authorization check, either through platform-specific user interaction or through a
signature generated with the private key corresponding to the public key in the platform’s Boot
Object Authorization Certificate.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_INVALID_PARAMETER The Credentials parameter supplied by the caller is NULL or

an invalid memory reference,
or

The Boot Authorization Check is currently required on this platform

and the Credentials.Data parameter supplied by the caller

is NULL or an invalid memory reference,
or

The DataObject parameter supplied by the caller is NULL or

an invalid memory reference,
or

The DataObject.Data parameter supplied by the caller is

NULL or an invalid memory reference,
or

The IsVerified parameter supplied by the caller is NULL or

an invalid memory reference.

EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.
Version 2.5 April, 2015 1195

Unified Extensible Firmware Interface Specification
EFI_SECURITY_VIOLATION The signed manifest supplied as the Credentials parameter

was invalid (could not be parsed),
or

The signed manifest supplied as the Credentials parameter

failed to verify using the installed Boot Object Authorization

Certificate or the signer’s Certificate in Credentials,
or

Platform-specific authorization failed,
or

Any other required attribute value was missing,
or

The signed manifest supplied as the Credentials parameter

did not include a signer certificate,
or
1196 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_SECURITY_VIOLATION The signed manifest supplied as the Credentials parameter

did not include the manifest section named

“memory:BootObject,”

or

The signed manifest supplied as the Credentials parameter

had a signing certificate with an unsupported public-key algorithm,

or

The manifest section named “memory:BootObject” did not

include a digest with a digest algorithm corresponding to the signing
certificate’s public key algorithm,

or

The data object supplied as the DataObject parameter and

referenced by the manifest section named

“memory:BootObject” did not verify with the digest supplied

in that manifest section,

or

The signed manifest supplied as the Credentials parameter

did not include a signer’s information file with the

SignerInformationName identifying attribute value

“BIS_VerifiableObjectSignerInfoName,”

or

There were no signers associated with the identified signer’s
information file,

or

There was more than one signer associated with the identified
signer’s information file,

or

The platform’s check flag is “on” (requiring authorization checks) but

the Credentials.Data supplied by the caller is NULL,

or

Any other unspecified security violation occurred.
Version 2.5 April, 2015 1197

Unified Extensible Firmware Interface Specification
EFI_DEVICE_ERROR An unexpected internal error occurred while attempting to retrieve
the public key algorithm of the manifest’s signer’s certificate,

or
An unexpected internal error occurred in a cryptographic software
module.
1198 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
EFI_BIS_PROTOCOL.VerifyObjectWithCredential()

Summary
Verifies the integrity and authorization of the indicated data object according to the indicated
credentials and authority certificate.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BIS_VERIFY_OBJECT_WITH_CREDENTIAL)(
 IN BIS_APPLICATION_HANDLE AppHandle,
 IN EFI_BIS_DATA *Credentials,
 IN EFI_BIS_DATA *DataObject,
 IN EFI_BIS_DATA *SectionName,
 IN EFI_BIS_DATA *AuthorityCertificate,
 OUT BOOLEAN *IsVerified
);

Parameters
AppHandle An opaque handle that identifies the caller’s instance of

initialization of the BIS service. Type
BIS_APPLICATION_HANDLE is defined in the
Initialize() function description.

Credentials A Signed Manifest containing verification information for the
indicated data object. The Manifest signature itself must meet the
requirements described below. The required syntax of the Signed
Manifest is described in the Related Definition of Manifest
Syntax below. Type EFI_BIS_DATA is defined in the
Initialize() function description.

DataObject An in-memory copy of the raw data object to be verified. Type
EFI_BIS_DATA is defined in the Initialize() function
description.

SectionName An ASCII string giving the section name in the manifest holding
the verification information (in other words, hash value) that
corresponds to DataObject. Type EFI_BIS_DATA is defined
in the Initialize() function description.

AuthorityCertificate
A digital certificate whose public key must match the signer’s
public key which is found in the credentials. This parameter is
optional (AuthorityCertificate.Data may be NULL).
Type EFI_BIS_DATA is defined in the Initialize()
function description.

IsVerified The function writes TRUE if the verification was successful.
Otherwise, the function writes FALSE.
Version 2.5 April, 2015 1199

Unified Extensible Firmware Interface Specification
Related Definitions
//**
// Manifest Syntax

//**

The Signed Manifest consists of three parts grouped together into an Electronic Shrink Wrap archive
as described in [SM spec]: a manifest file, a signer’s information file, and a signature block file.
These three parts along with examples are described in the following sections. In these examples,
text in parentheses is a description of the text that would appear in the signed manifest. Text outside
of parentheses must appear exactly as shown. Also note that manifest files and signer’s information
files must conform to a 72-byte line-length limit. Continuation lines (lines beginning with a single
“space” character) are used for lines longer than 72 bytes. The examples given here follow this rule
for continuation lines.

Note that the manifest file and signer’s information file parts of a Signed Manifest are ASCII text
files. In cases where these files contain a base-64 encoded string, the string is an ASCII string before
base-64 encoding.

//**
// Manifest File Example
//**

The manifest file must include a section referring to a memory-type data object with the caller-
chosen name as shown in the example below. This data object is the Data Object to be verified. An
example manifest file is shown below.
Manifest-Version: 2.0
ManifestPersistentId: (base-64 representation of a unique GUID)

Name: (a memory-type data object name)
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
 data object)

A line-by-line description of this manifest file is as follows.
Manifest-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
ManifestPersistentId: (base-64 representation of a unique GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID for
every manifest file created. The Win32 function UuidCreate() can be used for this on Win32
systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple encoding
scheme for representing binary values that uses only printing characters. Base-64 encoding is
described in [BASE-64].
Name: (a memory-type data object name)

This identifies the section that carries the integrity data for the target Data Object. The right-hand
string must obey the syntax for memory-type references, that is, it is of the form
“memory:SomeUniqueName.” The “memory:” part of this string must appear exactly. The
“SomeUniqueName” part is chosen by the caller. It must be unique within the section names in
this manifest file. The entire “memory:SomeUniqueName” string must match exactly the
corresponding string in the signer’s information file described below. Furthermore, this entire string
1200 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
must match the value given for the SectionName parameter to this function. Note that the target
Data Object cannot be found directly from this manifest. A caller verifying the Data Object integrity
must load the Data Object into memory and specify its memory location explicitly to this
verification function through the DataObject parameter.
Digest-Algorithms: SHA-1

This enumerates the digest algorithms for which integrity data is included for the data object. For
systems with DSA signing, SHA-1 hash, and 1024-bit key length, the digest algorithm must be
“SHA-1.” For systems with RSA signing, MD5 hash, and 512-bit key length, the digest algorithm
must be “MD5.” Multiple algorithms can be specified as a whitespace-separated list. For every
digest algorithm XXX listed, there must also be a corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the data object)

Gives the corresponding digest value for the data object. The value is base-64 encoded.

//**
// Signer’s Information File Example
//**

The signer’s information file must include a section whose name matches the reserved data object
section name of the section in the Manifest file. This section in the signer’s information file carries
the integrity data for the corresponding section in the manifest file. An example signer’s information
file is shown below.
Signature-Version: 2.0
SignerInformationPersistentId: (base-64 representation of a
unique GUID)
SignerInformationName: BIS_VerifiableObjectSignerInfoName

Name: (a memory-type data object name)
Digest-Algorithms: SHA-1
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
corresponding manifest section)

A line-by-line description of this signer’s information file is as follows.
Signature-Version: 2.0

This is a standard header line that all signed manifests have. It must appear exactly as shown.
SignerInformationPersistentId: (base-64 representation of a unique GUID)

The left-hand string must appear exactly as shown. The right-hand string must be a unique GUID for
every signer’s information file created. The Win32 function UuidCreate() can be used for this on
Win32 systems. The GUID is a binary value that must be base-64 encoded. Base-64 is a simple
encoding scheme for representing binary values that uses only printing characters. Base-64 encoding
is described in [BASE-64].
SignerInformationName: BIS_VerifiableObjectSignerInfoName

The left-hand string must appear exactly as shown. The right-hand string must appear exactly as
shown.
Name: (a memory-type data object name)

This identifies the section in the signer’s information file corresponding to the section with the same
name in the manifest file described earlier. The right-hand string must match exactly the
corresponding string in the manifest file described above.
Digest-Algorithms: SHA-1
Version 2.5 April, 2015 1201

Unified Extensible Firmware Interface Specification
This enumerates the digest algorithms for which integrity data is included for the corresponding
manifest section. Strings identifying digest algorithms are the same as in the manifest file. The digest
algorithms specified here must match those specified in the manifest file. For every digest algorithm
XXX listed, there must also be a corresponding XXX-Digest line.
SHA-1-Digest: (base-64 representation of a SHA-1 digest of the
corresponding manifest section)

Gives the corresponding digest value for the corresponding manifest section. The value is base-64
encoded. Note that for the purpose of computing the hash of the manifest section, the manifest
section starts at the beginning of the opening “Name:” keyword and continues up to, but not
including, the next section’s “Name:” keyword or the end-of-file. Thus the hash includes the blank
line(s) at the end of a section and any newline(s) preceding the next “Name:” keyword or end-of-
file.

//**
// Signature Block File Example
//**

A signature block file is a raw binary file (not base-64 encoded) that is a PKCS#7 defined format
signature block. The signature block covers exactly the contents of the signer’s information file.
There must be a correspondence between the name of the signer’s information file and the signature
block file. The base name matches, and the three-character extension is modified to reflect the
signature algorithm used according to the following rules:

• DSA signature algorithm (which uses SHA-1 hash): extension is DSA.

• RSA signature algorithm with MD5 hash: extension is RSA.

So for example with a signer’s information file name of “myinfo.SF,” the corresponding DSA
signature block file name would be “myinfo.DSA.”

The format of a signature block file is defined in [PKCS].

Description
This function verifies the integrity and authorization of the indicated data object according to the
indicated credentials and authority certificate.

Both an integrity check and an authorization check are performed. The rules for a successful
integrity check are:

• Verify the credentials – The credentials parameter is a valid Signed Manifest, with a single
signer. The signer’s identity is included in the credential as a certificate.

• Verify the data object – The Manifest must contain a section with the name as specified by the
SectionName parameter, with associated verification information (in other words, hash
value). The hash value from this Manifest section must match the hash value computed over the
data specified by the DataObject parameter of this function.

The authorization check is optional. It is performed only if the AuthorityCertificate.Data
parameter is other than NULL. If it is other than NULL, the rules for a successful authorization check
are:

• The AuthorityCertificate parameter is a valid digital certificate. There is no
requirement regarding the signer (issuer) of this certificate.
1202 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
• The public key certified by the signer’s certificate must match the public key in the
AuthorityCertificate. The match must be direct, that is, the signature authority cannot
be delegated along a certificate chain.

If all of the integrity and authorization check rules are met, the function returns with a “success”
indication and IsVerified is TRUE. Otherwise, it returns with a nonzero specific error code and
IsVerified is FALSE.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NO_MAPPING The AppHandle parameter is not or is no longer a valid

application instance handle associated with the EFI_BIS protocol.

EFI_INVALID_PARAMETER The Credentials parameter supplied by the caller is NULL or

an invalid memory reference,
or

The Credentials.Data parameter supplied by the caller is

NULL or an invalid memory reference,
or

The Credentials.Length supplied by the caller is zero,
or

The DataObject parameter supplied by the caller is NULL or

an invalid memory reference,
or

The DataObject.Data parameter supplied by the caller is

NULL or an invalid memory reference,
or

EFI_INVALID_PARAMETER The SectionName parameter supplied by the caller is NULL or

an invalid memory reference,

or

The SectionName.Data parameter supplied by the caller is

NULL or an invalid memory reference,

or

The SectionName.Length supplied by the caller is zero,

or

The AuthorityCertificate parameter supplied by the

caller is NULL or an invalid memory reference,

or

The IsVerified parameter supplied by the caller is NULL or

an invalid memory reference.
Version 2.5 April, 2015 1203

Unified Extensible Firmware Interface Specification
EFI_OUT_OF_RESOURCES The function failed due to lack of memory or other resources.

EFI_SECURITY_VIOLATION The Credentials.Data supplied by the caller is NULL,
or

The AuthorityCertificate supplied by the caller was

invalid (could not be parsed),
or

The signed manifest supplied as Credentials failed to verify

using the AuthorityCertificate supplied by the caller or

the manifest’s signer’s certificate,
or

Any other required attribute value was missing,
or

The signed manifest supplied as the Credentials parameter

did not include a signer certificate,
or

The signed manifest supplied as the Credentials parameter

did not include the manifest section named according to

SectionName,
or

The signed manifest supplied as the Credentials parameter

had a signing certificate with an unsupported public-key algorithm,
or

The manifest section named according to SectionName did not

include a digest with a digest algorithm corresponding to the signing
certificate’s public key algorithm,

or
The data object supplied as the DataObject parameter and

referenced by the manifest section named according to

SectionName did not verify with the digest supplied in that

manifest section,
or
1204 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
23.6 DHCP options for ISCSI on IPV6
Option 59 is the iSCSI Root path

The format of the root path is

 "iscsi:"<servername>":"<protocol>":"<port>":"<LUN>":"<targetname>

This is per the description in “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the
heading “Format of the iSCSI root path; RFC 4173”.

Option 60 is the DHCP Server address.

This is formatted the same as parameter 1 in OPT_BOOTFILE_PARAM (60) is the IPv6 address of
the DHCP server as described in “Links to UEFI-Related Documents” (http://uefi.org/uefi) under
the heading “DHCPv6 Options for Network Boot”.

23.7 HTTP Boot

23.7.1 Boot from URL

Elsewhere in this specification there is defined a discoverable network boot using DHCP as a control
channel allowing a firmware client machine export its architecture type, and then have the boot
server response with a binary image. For the UEFI architecture types defined in “Links to UEFI-

EFI_SECURITY_VIOLATION The signed manifest supplied as the Credentials parameter

did not include a signer’s information file with the

SignerInformationName identifying attribute value

“BIS_VerifiableObjectSignerInfoName,”

or

There were no signers associated with the identified signer’s
information file,

or

There was more than one signer associated with the identified
signer’s information file,

or

Any other unspecified security violation occurred.

EFI_DEVICE_ERROR An unexpected internal error occurred while attempting to retrieve
the public key algorithm of the manifest’s signer’s certificate,

or
An unexpected internal error occurred in a cryptographic software
module.
Version 2.5 April, 2015 1205

Unified Extensible Firmware Interface Specification
Related Documents” (http://uefi.org/uefi) under the heading “IANA DHCPv6 parameters”, the
binary image on the boot service is a UEFI-formatted executable with a machine subsystem type that
corresponds to the UEFI firmware on the client machine. This executable is often referred to as a
“Network Boot Program” (NBP). The UEFI client machine that downloads the NBP uses the IPV4
or IPV6 TFTP protocol to address the indicated server, depending upon if DHCP4 or DHCP6 was
used initially, in order to download images such as 64-bit UEFI (type 0x07).

This section defines a related method indicated by other codes in the DHCP options, in which the
name and path of the NBP are specified as a URI string in one of several formats specifying protocol
and unique name identifying the NBP for the specified protocol. In this method the NBP will be
downloaded via IPV4 or IPV6 HTTP protocol if the tag indicates x64 UEFI HTTP Boot (type code
0x0f for x86 and 0x10 for x64).

In the future other protocols such as FTP or NFS could be encoded with both new tag types and
corresponding URIs (e.g., ‘ftp://nbp.efi or nfs://nbp.efi, resp). However, assignment of these type
codes has not yet occurred.

The rest of this section will describe ‘HTTP Boot’ as one example of ‘boot from URI’. It is expected
that the procedure can be extended as additional protocol type codes are defined.

Please reference the definitions of EFI_DNS4_PROTOCOL and EFI_DNS6_PROTOCOL
elsewhere in this document. In systems that also support one of both of these protocols, the target
URI can be specified using Internet domain name format understood by DNS servers supporting the
appropriate RFC specifications.

Also, elsewhere in this document, the PXE2.1 and UEFI2.4 netboot6 sections talk about the ‘boot
from TFTP’ method of ‘boot from URI.’

The following RFC documents should be consulted for network message details related to the
processes described in this chapter:

1. RFC1034 - "Domain Names - Concepts and Facilities",

2. RFC 1035 - "Domain Names - Implementation and Specification",

3. RFC 3513 - "Internet Protocol Version 6 (IPv6) Addressing Architecture", , April 2003.

4. RFC 3596 - DNS Extensions to Support IP Version 6

5. RFC 2131 – Dynamic Host Configuration Protocol

6. RFC 2132 – DHCP options and BOOTP Vendor Extensions

7. RFC 5970 – DHCPv6 Options for Network Boot

8. RFC 4578 – Dynamic Host Configuration Protocol (DHCP) Options for the Intel Preboot
eXecution Environment (PXE)

9. RFC 3986 – Uniform Resource Identifiers (URI): Generic Syntax, IETF, 2005

10. RFC 3004 – The User Class option

11. RFC3315 – Dynamic Host Configuration Protocol for IPv6 (DHCPv6)

12. RFC3646 – DNS Configuration options for Dynamic Host Configuration Protocol for IPv6
(DHCPv6)

13. RFC2246 – TLS protocol Version 1.0
1206 April, 2015 Version 2.5

http://reg-name:port/boot/image
http://ipv4address:port/boot/image
http://ipv6address:port/boot/image

 Network Protocols - SNP, PXE, BIS and HTTP Boot
23.7.2 Concept configuration for a typical HTTP Boot scenario

HTTP Boot is client-server communication based application. It combines the DHCP, DNS, and
HTTP protocols to provide the capability for system deployment and configuration over the
network. This new capability can be utilized as a higher-performance replacement for tftp-based
PXE boot methods of network deployment.

23.7.2.1 Use in Corporate environment

Figure 70. HTTP Boot Network Topology Concept – Corporate Environment

A typical network configuration which supports UEFI HTTP Boot may involve one or more UEFI
client systems, and several server systems. Figure 1 show a typical HTTP Boot network topology for
a corporate environment.

• UEFI HTTP Boot Client initiates the communication between the client and different server
system.

• DHCP server with HTTPBoot extension for boot service discovery. Besides the standard host
configuration information (such as address/subnet/gateway/name-server, etc…), the DHCP
server with the extensions can also provide the discovery of URI locations for boot images on
the HTTP server.

• HTTP server could be located either inside the corporate environment or across networks, such
as on the Internet. The boot resource itself is deployed on the HTTP server. In this example,
“http://webserver/boot/boot.efi” is used as the boot resource. Such an application is also called a
Network Boot Program (NBP). NBPs are used to setup the client system, which may include
installation of an operating system, or running a service OS for maintenance and recovery tasks.

• DNS server is optional; and provides standard domain name resolution service.

23.7.2.2 Use case in Home environment
Unlike the corporate environment, in which a standard DHCP server can be enhanced to support the
HTTPBoot extension, generally, in home network, only a standard DHCP server is available for host
configuration information assignment. Figure 2 shows the concept network topology for a typical
home PC environment.
Version 2.5 April, 2015 1207

Unified Extensible Firmware Interface Specification
Figure 71. HTTP Boot Network Topology Concept2 – Home environments

UEFI HTTP Boot Client initiates the communication between the client and
different servers. In this configuration however, the Client will expect the boot
resource information to be available from a source other than the standard DHCP
server, which does not typically have HTTPBoot extensions. Instead of DHCP, the
boot URI could be created by a UEFI application or extracted from text entered by a
user.

DHCP server provides the standard service to assign host configuration information
(such as address/subnet/gateway/name-server etc…) to the UEFI Client

DNS Server, is optional; and provides standard domain name resolution service.

23.7.3 Protocol Layout for UEFI HTTP Boot Client concept
configuration for a typical HTTP Boot scenario
1208 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
Figure 72. UEFI HTTP Boot Protocol Layout

This figure illustrates the UEFI network layers related to how the HTTP Boot works.

The HTTP Boot driver is layered on top of a UEFI Network stack implementation. It consumes
DHCP service to do the Boot service discovery, and DNS service to do domain name resolution if
needed. It also consumes HTTP serviced to retrieve images from the HTTP server. The functionality
needed in the HTTP Boot scenario is limited to client initiated requests to download the boot image.

TLS is consumed if HTTPS functionality is needed. The TLS design is covered in Section 27.10.2.

The HTTP Boot driver produces LoadFile protocol and device path protocol.

BDS will provide the boot options for the HTTP Boot.

23.7.3.1 Device Path
If both IPv4 and IPv6 are supported, the HTTP Boot driver should create two child handles, with
LoadFile and DevicePath installed on each child handle. For the device path, an IP device path node
is appended to the parent device path. Also, after retrieving the boot resource information, the
BootURI device path node will be updated to include the BootURI information, for example
Version 2.5 April, 2015 1209

Unified Extensible Firmware Interface Specification
PciRoot(0x0)/Pci(0x19, 0x0)/MAC(001230F4B4FF, 0x0)/IPv4(……)/URI(……)

PciRoot(0x0)/Pci(0x19, 0x0)/MAC(001230F4B4FF, 0x0)/IPv6(……)/URI(……)

These two instances allow for the boot manager to decide a preference of IPv6 versus IPv4.

The HTTP Boot block diagram (Figure 72) describes a suggested implementation for HTTP Boot.
Other implementation can create their own HTTP Netboot Driver which meets the requirements for
their netboot methodology

23.7.4 Concept of Message Exchange in a typical HTTP Boot scenario
(IPv4 in Corporate Environment)

In summary, the newly installed networked client machine (UEFI HTTP Boot Client) should be able
to enter a heterogeneous network, acquire a network address from a DHCP server, and then
download an NBP to set itself up.

The concept of HTTP Boot message exchange sequence is as follows. The client initiates the
DHCPv4 D.O.R.A process by broadcasting a DHCPDISCOVER containing the extension that
identifies the request as coming from a client that implements the HTTP Boot functionality.
Assuming that a DHCP server or a Proxy DHCP server implementing this extension is available,
after several intermediate steps, besides the standard configuration such as address/subnet/router/
dns-server, boot resource location will be provided to the client system in the format of a URI. The
URI points to the NBP which is appropriate for this client hardware configuration. A boot option is
created, and if selected by the system logic the client then uses HTTP to download the NBP from the
HTTP server into memory. Finally, the client executes the downloaded NBP image from memory.
This image can then consume other UEFI interfaces for further system setup.
1210 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
Figure 73. HTTP Boot overall flow

23.7.4.1 Message exchange between EFI Client and DHCP server using DHCP
Client Extensions

23.7.4.1.1 Client broadcast

The client broadcasts a DHCP Discover message to the standard DHCP port (67).

 An option field in this packet contains the following:

• Fill DHCP option 55 – Parameter Requested List option
— Address configuration, Server information, Name server

• A DHCP option 97: UUID/GUID-based Client Identifier

• A DHCP option 94: Client Network Identifier Option
— If support UNDI, fill this option (Refer RFC5970)

• A DHCP option 93: the client system architecture (Refer [Arch-Type])
— 0x0F - x86 UEFI HTTP Boot
— 0x10 - x64 UEFI HTTP Boot

• A DHCP option 60, Vendor Class ID, set to “HTTPClient:Arch:XXXX:UNDI:YYYZZZ”

23.7.4.1.2 DHCP server response

 The DHCP server responds by sending DHCPOFFER message on standard DHCP reply port (68).

The HTTP Boot Client may possibly receive multiple DHCPOFFER packets from different sources
of DHCP Services, possibly from DHCP Services which recognize the HTTP extensions or from
Standard DHCP Services.

Each message contains standard DHCP parameters: an IP address for the client and any other
parameters that the administrator might have configured on the DHCP or Proxy DHCP Service. The
DHCP service or Proxy DHCP which recognizes the HTTPBoot extension will provide
DHCPOFFER with HTTPClient extensions. If this is a Proxy DHCP service, then the client IP
address field is (0.0.0.0). If this is from a DHCP service, then the returned client IP address field is
valid.

From the received DHCPOFFER(s), the client records the information as follows:

• Client IP address (and other parameters) offered by a standard DHCP/BOOTP services.

• If Boot URI information is provided thru ‘file’ field in DHCP Header or option 67, then the
client will record the information as well.

• Optional Name-server information if URI is displayed using domain-name

Timeout: After Client sent out the DHCP Discover packet, the Client will wait for a
timeout to collect enough DHCP Offers. If failed to retrieve all the required
information, the DHCP Discover will be retried, at most four times. The four timeout
mechanisms is 4, 8, 16 and 32 seconds respectively,

Priority: Among all the received DHCPOFFERs, the Priority is considered as
follows:
Version 2.5 April, 2015 1211

Unified Extensible Firmware Interface Specification
Priority1
Choose the DHCPOFFER that provides all required information:

 <IP address configuration, Boot URI configuration, Name-server configuration (if domain-
name used in Boot URI)>

If Boot URI and IP address configuration provided in different DHCPOFFER, Using 5
DHCPOFFER as example for priority description

• Packet1 – DHCPOFFER, provide <IP address configuration, Name server>

• Packet2 – DHCPOFFER, provide <IP address configuration>

• Packet3 – DHCPOFFER, provide <domain-name expressed URI>

• Packet4 – DHCPOFFER, provide <IP address expressed URI>

• Packet5 – DHCPOFFER, provide <IP address, domain-name expressed URI>

Then,

Priority2
Choose the DHCPOFFER from different packet, firstly find out URI info represented in IP address
mode, then choose DHCPOFFER which provide IP address configuration

In this example, the chosen DHCPOFFER packet is packet4 + packet1 / packet 2 (packet 1/2 take
same priority, implementation can make its own implementation choice)

Priority3
Choose the DHCPOFFER from different packet, firstly find out URI info represented in domain-
name mode, then choose DHCPOFFER which provide <IP address configuration, domain-name
expressed URI>

In this example, the chosen DHCPOFFER packet is packet3 / packet5 + packet1

Note: If packet5, then client IP address assigned by Packet5 will be override by IP address in packet1.

Priority4
If failed to retrieve <Boot URI / IP address / (on-demand) Name-server> information through all
received DHCPOFFERs, this is deemed as FAILED-CONFIGURATION

Assuming the boot image is in the boot subdirectory of the web server root, the supported URI could
be one of below formats. [RFC3986] where ‘/boot/’ is replaced by administrator-created directory,
and ‘image’ is the file name of the NBP.

http://reg‐name:port/boot/image

http://ipv4address:port/boot/image

http://ipv6address:port/boot/image

In the URL example, Port is optional if web service is provided through port 80 for the HTTP data
transfer. Commonly, the reg-name use DNS as name registry mechanism.

After retrieving the boot URI through Section 23.7.3.1, if IP address (either IPv4 or IPv6 address) is
provided, the HTTP Boot Client can directly use that address for next step HTTP transfer. If a reg-
name is provided in the URI, the HTTP Boot Client driver need initiate DNS process
(Section 23.7.4.3) to resolve its IP address.
1212 April, 2015 Version 2.5

 Network Protocols - SNP, PXE, BIS and HTTP Boot
23.7.4.1.3 DHCP Request

The HTTP Boot Client selects an IP address offered by a DHCP Service, and then it completes the
standard DHCP protocol by sending a DHCP Request packet for the address to the DHCP Server
and waiting for acknowledgement from the DHCP server.

23.7.4.1.4 DHCP ACK

The server acknowledges the IP address by sending DHCP ACK packet to the client.

23.7.4.2 Message exchange between UEFI Client and DHCP server not using DHCP
Client Extensions

In a home environment, because the Boot URI Information will not be provided by the DHCP
Offers, we need other channels to provide this information. The implementation suggestion is
provisioning this information by OEM or input by end user through Setup Options, henceforth, the
UEFI Boot Client already know the Boot URI before contacting the DHCP server.

The message exchange between the EFI Client and DHCP server will be standard DHCP D.O.R.A to
obtain <IP address, Name-server>.

23.7.4.3 Message in DNS Query/Reply
The DNS Query/Reply is a standard process defined in DNS Protocol [RFC 1034, RFC 1035].
Multiple IP address might be retrieved from the DNS process. It’s the HTTP Boot Client driver’s
responsibility to select proper IP address automatically or expose user interface for customer to
decide proper IP address.

23.7.4.4 Message in HTTP Download
In the HTTP Boot scenario, HTTP GET message is used to get image from the Web server.

23.7.5 Concept of Message Exchange in HTTP Boot scenario (IPv6)

23.7.5.1 Message exchange between EFI Client and DHCPv6 server with DHCP
Client extensions

23.7.5.1.1 Client multicast a DHCPv6 Solicit message to the standard DHCPv6 port (547).

 Besides the options required for address auto-configuration, option field in this packet also contains
the following:

• Fill DHCPv6 Option 6 – Option Request Option
— Request server to supply option 59 (OPT_BOOTFILE_URL), option 60

(OPT_BOOTFILE_PARAM), option 23 (OPT_DNS_SERVERS)

• A DHCPv6 option 1, Client identifier

• A DHCPv6 option 16, Vendor Class ID, set to “HTTPClient:Arch:XXXX:UNDI:YYYZZZ”

• A DHCPv6 option 61: the client system architecture (Refer [Arch-Type])
— 0x0F - x86 UEFI HTTP Boot
— 0x10 - x64 UEFI HTTP Boot

• A DHCPv6 option 62: Client Network Identifier Option
Version 2.5 April, 2015 1213

Unified Extensible Firmware Interface Specification
— If support UNDI, fill this option (Refer RFC5970)

23.7.5.1.2 Server unicast DHCPv6 Advertisement to the Client to the DHCPv6 port (546).

The HTTP Boot Client will receive multiple advertisements from different sources of DHCPv6
Services, possibly from DHCPv6 Services which recognize the HTTP extensions or from Standard
DHCPv6 Services.

Each message contains standard DHCP parameters: Identify Association (IA) option which conveys
information including <IP address, lifetime, etc…>. Name server option conveys the DNS server
address. The DHCP service or Proxy DHCP which recognizes the HTTPBoot extension will provide
DHCPv6 Advertisement with HTTPClient extensions, and Boot URI and Boot Parameter option
was provided.

From the received DHCPOFFER(s), the client records the information as follows:

• Client IP address (and other parameters) provide through IA option

• Boot URI provided thru option 61

• Optional BootFile Parameter provided through option 62 (if no other parameter needed for this
boot URI, this option can be eliminated)

• Optional Name-server information provided through option 23, if URI is displayed using
domain-name.

23.7.5.1.3 Client multicast DHCPv6 Request to the selected DHCP Advertisement to
confirm the IP address assigned by that server

This packet is the same with the DHCPv6 Solicit packet except for the message type is Request.

23.7.5.1.4 Server unicast the DHCPv6 Reply to acknowledge the Client IP address for the
UEFI HTTP Client.

23.7.5.2 Message exchange between UEFI Client and DHCPv6 server not using
DHCP Client Extensions

In a home environment, the Boot URI Information will not be provided by the DHCPv6 Offers, we
need other channels to provide this information. Like what is described in Section 23.7.4.2, the
implementation suggestion is provisioning this information by OEM or input by end user through
Setup Options, henceforth, the UEFI Boot Client already know the Boot URI before contacting the
DHCP server.

The message exchange between the EFI Client and DHCP server will be standard DHCP D.O.R.A to
obtain <IP address, Name-server>.

23.7.5.3 Message exchange between UEFI Client and DNS6 server
The DNS Query/Reply for domain name resolution is the same process as described in
Section 23.7.4.3.

23.7.5.4 Message in HTTP Download
HTTP Download process is the same process as described in Section 23.7.4.4.
1214 April, 2015 Version 2.5

Network Protocols — Managed Network
24
Network Protocols — Managed Network

24.1 EFI Managed Network Protocol
This chapter defines the EFI Managed Network Protocol. It is split into the following two main
sections:

• Managed Network Service Binding Protocol (MNSBP)

• Managed Network Protocol (MNP)

The MNP provides raw (unformatted) asynchronous network packet I/O services. These services
make it possible for multiple-event-driven drivers and applications to access and use the system
network interfaces at the same time.

EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL

Summary
The MNSBP is used to locate communication devices that are supported by an MNP driver and to
create and destroy instances of the MNP child protocol driver that can use the underlying
communications device.

The EFI Service Binding Protocol in Section 2.5.8 defines the generic Service Binding Protocol
functions. This section discusses the details that are specific to the MNP.

GUID
#define EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL_GUID \
 {0xf36ff770,0xa7e1,0x42cf,\
 {0x9ed2,0x56,0xf0,0xf2,0x71,0xf4,0x4c}}

Description
A network application (or driver) that requires shared network access can use one of the protocol
handler services, such as BS->LocateHandleBuffer(), to search for devices that publish an
MNSBP GUID. Each device with a published MNSBP GUID supports MNP and may be available
for use.

After a successful call to the
EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL.CreateChild() function, the
child MNP driver instance is in an unconfigured state; it is not ready to send and receive data
packets.

Before a network application terminates execution, every successful call to the
EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL.CreateChild() function
must be matched with a call to the
EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL.DestroyChild() function.
Version 2.5 April, 2015 1215

Unified Extensible Firmware Interface Specification
EFI_MANAGED_NETWORK_PROTOCOL

Summary
The MNP is used by network applications (and drivers) to perform raw (unformatted) asynchronous
network packet I/O.

GUID
#define EFI_MANAGED_NETWORK_PROTOCOL_GUID\
 {0x7ab33a91, 0xace5, 0x4326,\
 {0xb5, 0x72, 0xe7, 0xee, 0x33, 0xd3, 0x9f, 0x16}}

Protocol Interface Structure
typedef struct _EFI_MANAGED_NETWORK_PROTOCOL {
 EFI_MANAGED_NETWORK_GET_MODE_DATA GetModeData;
 EFI_MANAGED_NETWORK_CONFIGURE Configure;
 EFI_MANAGED_NETWORK_MCAST_IP_TO_MAC McastIpToMac;
 EFI_MANAGED_NETWORK_GROUPS Groups;
 EFI_MANAGED_NETWORK_TRANSMIT Transmit;
 EFI_MANAGED_NETWORK_RECEIVE Receive;
 EFI_MANAGED_NETWORK_CANCEL Cancel;
 EFI_MANAGED_NETWORK_POLL Poll;
} EFI_MANAGED_NETWORK_PROTOCOL;

Parameters
GetModeData Returns the current MNP child driver operational parameters.

May also support returning underlying Simple Network Protocol
(SNP) driver mode data. See the GetModeData() function
description.

Configure Sets and clears operational parameters for an MNP child driver.
See the Configure() function description.

McastIpToMac Translates a software (IP) multicast address to a hardware (MAC)
multicast address. This function may be unsupported in some
MNP implementations. See the McastIpToMac() function
description.

Groups Enables and disables receive filters for multicast addresses. This
function may be unsupported in some MNP implementations. See
the Groups() function description.

Transmit Places asynchronous outgoing data packets into the transmit
queue. See the Transmit() function description.

Receive Places an asynchronous receiving request into the receiving
queue. See the Receive() function description.

Cancel Aborts a pending transmit or receive request. See the Cancel()
function description.
1216 April, 2015 Version 2.5

Network Protocols — Managed Network
Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.

Description
The services that are provided by MNP child drivers make it possible for multiple drivers and
applications to send and receive network traffic using the same network device.

Before any network traffic can be sent or received, the
EFI_MANAGED_NETWORK_PROTOCOL.Configure() function must initialize the operational
parameters for the MNP child driver instance. Once configured, data packets can be received and
sent using the following functions:

• EFI_MANAGED_NETWORK_PROTOCOL.Transmit()

• EFI_MANAGED_NETWORK_PROTOCOL.Receive()

• EFI_MANAGED_NETWORK_PROTOCOL.Poll()
Version 2.5 April, 2015 1217

Unified Extensible Firmware Interface Specification
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData()

Summary
Returns the operational parameters for the current MNP child driver. May also support returning the
underlying SNP driver mode data.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MANAGED_NETWORK_GET_MODE_DATA) (
 IN EFI_MANAGED_NETWORK_PROTOCOL *This,
 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
);

Parameters
This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.

MnpConfigData Pointer to storage for MNP operational parameters. Type
EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
“Related Definitions” below.

SnpModeData Pointer to storage for SNP operational parameters. This feature
may be unsupported. Type EFI_SIMPLE_NETWORK_MODE is
defined in the EFI_SIMPLE_NETWORK_PROTOCOL.

Description
The GetModeData() function is used to read the current mode data (operational parameters) from
the MNP or the underlying SNP.

Related Definitions
//**
// EFI_MANAGED_NETWORK_CONFIG_DATA
//**
typedef struct {
 UINT32 ReceivedQueueTimeoutValue;
 UINT32 TransmitQueueTimeoutValue;
 UINT16 ProtocolTypeFilter;
 BOOLEAN EnableUnicastReceive;
 BOOLEAN EnableMulticastReceive;
 BOOLEAN EnableBroadcastReceive;
 BOOLEAN EnablePromiscuousReceive;
 BOOLEAN FlushQueuesOnReset;
 BOOLEAN EnableReceiveTimestamps;
 BOOLEAN DisableBackgroundPolling;
} EFI_MANAGED_NETWORK_CONFIG_DATA;
1218 April, 2015 Version 2.5

Network Protocols — Managed Network
ReceivedQueueTimeoutValue
Timeout value for a UEFI one-shot timer
event. A packet that has not been removed
from the MNP receive queue by a call to
EFI_MANAGED_NETWORK_PROTOCOL.Poll() will be
dropped if its receive timeout expires. If this value is zero, then
there is no receive queue timeout. If the receive queue fills up,
then the device receive filters are disabled until there is room in
the receive queue for more packets. The startup default value is
10,000,000 (10 seconds).

TransmitQueueTimeoutValue
Timeout value for a UEFI one-shot timer
event. A packet that has not been removed
from the MNP transmit queue by a call to
EFI_MANAGED_NETWORK_PROTOCOL.Poll() will be
dropped if its transmit timeout expires. If this value is zero, then
there is no transmit queue timeout. If the transmit queue fills up,
then the
EFI_MANAGED_NETWORK_PROTOCOL.Transmit()
function will return EFI_NOT_READY until there is room in the
transmit queue for more packets. The startup default value is
10,000,000 (10 seconds).

ProtocolTypeFilter Ethernet type II 16-bit protocol type in host byte order. Valid
values are zero and 1,500 to 65,535. Set to zero to receive packets
with any protocol type. The startup default value is zero.

EnableUnicastReceive
Set to TRUE to receive packets that are sent to the network
device MAC address. The startup default value is FALSE.

EnableMulticastReceive
Set to TRUE to receive packets that are sent to any of the
active multicast groups. The startup default value is FALSE.

EnableBroadcastReceive
Set to TRUE to receive packets that are sent to the network
device broadcast address. The startup default value is FALSE.

EnablePromiscuousReceive
Set to TRUE to receive packets that are sent to any MAC
address. Note that setting this field to TRUE may cause packet
loss and degrade system performance on busy networks. The
startup default value is FALSE.

FlushQueuesOnReset
Set to TRUE to drop queued packets when the configuration
is changed. The startup default value is FALSE.

EnableReceiveTimestamps
Set to TRUE to timestamp all packets when they are received
Version 2.5 April, 2015 1219

Unified Extensible Firmware Interface Specification
by the MNP. Note that timestamps may be unsupported in some
MNP implementations. The startup default value is FALSE.

DisableBackgroundPolling
Set to TRUE to disable background polling in this MNP
instance. Note that background polling may not be supported in
all MNP implementations. The startup default value is FALSE,
unless background polling is not supported.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_UNSUPPORTED The requested feature is unsupported in this MNP implementation.

EFI_NOT_STARTED This MNP child driver instance has not been configured. The default

values are returned in MnpConfigData if it is not NULL.

Other The mode data could not be read.
1220 April, 2015 Version 2.5

Network Protocols — Managed Network
EFI_MANAGED_NETWORK_PROTOCOL.Configure()

Summary
Sets or clears the operational parameters for the MNP child driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MANAGED_NETWORK_CONFIGURE) (
 IN EFI_MANAGED_NETWORK_PROTOCOL *This,
 IN EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL
);

Parameters
This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.

MnpConfigData Pointer to configuration data that will be assigned to the MNP
child driver instance. If NULL, the MNP child driver instance is
reset to startup defaults and all pending transmit and receive
requests are flushed. Type
EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

Description
The Configure() function is used to set, change, or reset the operational parameters for the MNP
child driver instance. Until the operational parameters have been set, no network traffic can be sent
or received by this MNP child driver instance. Once the operational parameters have been reset, no
more traffic can be sent or received until the operational parameters have been set again.

Each MNP child driver instance can be started and stopped independently of each other by setting or
resetting their receive filter settings with the Configure() function.

After any successful call to Configure(), the MNP child driver instance is started. The internal
periodic timer (if supported) is enabled. Data can be transmitted and may be received if the receive
filters have also been enabled.

Note: If multiple MNP child driver instances will receive the same packet because of overlapping receive
filter settings, then the first MNP child driver instance will receive the original packet and additional
instances will receive copies of the original packet.

Note: Warning: Receive filter settings that overlap will consume extra processor and/or DMA resources
and degrade system and network performance.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.
Version 2.5 April, 2015 1221

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• MnpConfigData.ProtocolTypeFilter is not
valid.

The operational data for the MNP child driver instance is
unchanged.

EFI_OUT_OF_RESOURCES Required system resources (usually memory) could not be
allocated.
The MNP child driver instance has been reset to startup defaults.

EFI_UNSUPPORTED The requested feature is unsupported in this [MNP]
implementation.
The operational data for the MNP child driver instance is
unchanged.

EFI_DEVICE_ERROR An unexpected network or system error occurred.
The MNP child driver instance has been reset to startup defaults.

Other The MNP child driver instance has been reset to startup defaults.
1222 April, 2015 Version 2.5

Network Protocols — Managed Network
EFI_MANAGED_NETWORK_PROTOCOL.McastIpToMac()

Summary
Translates an IP multicast address to a hardware (MAC) multicast address. This function may be
unsupported in some MNP implementations.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MANAGED_NETWORK_MCAST_IP_TO_MAC) (
 IN EFI_MANAGED_NETWORK_PROTOCOL *This,
 IN BOOLEAN Ipv6Flag,
 IN EFI_IP_ADDRESS *IpAddress,
 OUT EFI_MAC_ADDRESS *MacAddress
);

Parameters
This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.

Ipv6Flag Set to TRUE to if IpAddress is an IPv6 multicast address.
Set to FALSE if IpAddress is an IPv4 multicast address.

IpAddress Pointer to the multicast IP address (in network byte order) to
convert.

MacAddress Pointer to the resulting multicast MAC address.

Description
The McastIpToMac() function translates an IP multicast address to a hardware (MAC) multicast
address.

This function may be implemented by calling the underlying
EFI_SIMPLE_NETWORK.MCastIpToMac() function, which may also be unsupported in some
MNP implementations.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One of the following conditions is TRUE:

• This is NULL.

• IpAddress is NULL.

• *IpAddress is not a valid multicast IP address.

• MacAddress is NULL.

EFI_NOT_STARTED This MNP child driver instance has not been configured.

EFI_UNSUPPORTED The requested feature is unsupported in this MNP implementation.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

Other The address could not be converted.
Version 2.5 April, 2015 1223

Unified Extensible Firmware Interface Specification
EFI_MANAGED_NETWORK_PROTOCOL.Groups()

Summary
Enables and disables receive filters for multicast address. This function may be unsupported in some
MNP implementations.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MANAGED_NETWORK_GROUPS) (
 IN EFI_MANAGED_NETWORK_PROTOCOL *This,
 IN BOOLEAN JoinFlag,
 IN EFI_MAC_ADDRESS *MacAddress OPTIONAL
);

Parameters
This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.

JoinFlag Set to TRUE to join this multicast group.
Set to FALSE to leave this multicast group.

MacAddress Pointer to the multicast MAC group (address) to join or leave.

Description
The Groups() function only adds and removes multicast MAC addresses from the filter list. The
MNP driver does not transmit or process Internet Group Management Protocol (IGMP) packets.

If JoinFlag is FALSE and MacAddress is NULL, then all joined groups are left.

Status Codes Returned

EFI_SUCCESS The requested operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• JoinFlag is TRUE and MacAddress is NULL.

• *MacAddress is not a valid multicast MAC address.

The MNP multicast group settings are unchanged.

EFI_NOT_STARTED This MNP child driver instance has not been configured.

EFI_ALREADY_STARTED The supplied multicast group is already joined.

EFI_NOT_FOUND The supplied multicast group is not joined.

EFI_DEVICE_ERROR An unexpected network or system error occurred.
The MNP child driver instance has been reset to startup defaults.

EFI_UNSUPPORTED The requested feature is unsupported in this MNP implementation.

Other The requested operation could not be completed.
The MNP multicast group settings are unchanged.
1224 April, 2015 Version 2.5

Network Protocols — Managed Network
EFI_MANAGED_NETWORK_PROTOCOL.Transmit()

Summary
Places asynchronous outgoing data packets into the transmit queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MANAGED_NETWORK_TRANSMIT) (
 IN EFI_MANAGED_NETWORK_PROTOCOL *This,
 IN EFI_MANAGED_NETWORK_COMPLETION_TOKEN *Token
);

Parameters
This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.

Token Pointer to a token associated with the transmit data descriptor.
Type EFI_MANAGED_NETWORK_COMPLETION_TOKEN is
defined in “Related Definitions” below.

Description
The Transmit() function places a completion token into the transmit packet queue. This function
is always asynchronous.

The caller must fill in the Token.Event and Token.TxData fields in the completion token, and
these fields cannot be NULL. When the transmit operation completes, the MNP updates the
Token.Status field and the Token.Event is signaled.

Note: There may be a performance penalty if the packet needs to be defragmented before it can be
transmitted by the network device. Systems in which performance is critical should review the
requirements and features of the underlying communications device and drivers.

Related Definitions
//**
// EFI_MANAGED_NETWORK_COMPLETION_TOKEN
//**
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 union {
 EFI_MANAGED_NETWORK_RECEIVE_DATA *RxData;
 EFI_MANAGED_NETWORK_TRANSMIT_DATA *TxData;
 } Packet;
} EFI_MANAGED_NETWORK_COMPLETION_TOKEN;

Event This Event will be signaled after the Status field is updated
by the MNP. The type of Event must be
Version 2.5 April, 2015 1225

Unified Extensible Firmware Interface Specification
EVT_NOTIFY_SIGNAL. The Task Priority Level (TPL) of
Event must be lower than or equal to TPL_CALLBACK.

Status This field will be set to one of the following values:

EFI_SUCCESS: The receive or transmit completed
successfully.

EFI_ABORTED: The receive or transmit was aborted.

EFI_TIMEOUT: The transmit timeout expired.

EFI_DEVICE_ERROR: There was an unexpected system or
network error.

EFI_NO_MEDIA: There was a media error

RxData When this token is used for receiving, RxData is a pointer to the
EFI_MANAGED_NETWORK_RECEIVE_DATA.

TxData When this token is used for transmitting, TxData is a pointer to
the EFI_MANAGED_NETWORK_TRANSMIT_DATA.

The EFI_MANAGED_NETWORK_COMPLETION_TOKEN structure is used for both transmit and
receive operations.

When it is used for transmitting, the Event and TxData fields must be filled in by the MNP client.
After the transmit operation completes, the MNP updates the Status field and the Event is
signaled.

When it is used for receiving, only the Event field must be filled in by the MNP client. After a
packet is received, the MNP fills in the RxData and Status fields and the Event is signaled.

//**
// EFI_MANAGED_NETWORK_RECEIVE_DATA
//**
typedef struct {
 EFI_TIME Timestamp;
 EFI_EVENT RecycleEvent;
 UINT32 PacketLength;
 UINT32 HeaderLength;
 UINT32 AddressLength;
 UINT32 DataLength;
 BOOLEAN BroadcastFlag;
 BOOLEAN MulticastFlag;
 BOOLEAN PromiscuousFlag;
 UINT16 ProtocolType;
 VOID *DestinationAddress;
 VOID *SourceAddress;
 VOID *MediaHeader;
 VOID *PacketData;
} EFI_MANAGED_NETWORK_RECEIVE_DATA;
1226 April, 2015 Version 2.5

Network Protocols — Managed Network
Timestamp System time when the MNP received the packet. Timestamp is
zero filled if receive timestamps are disabled or unsupported.

RecycleEvent MNP clients must signal this event after the received data has
been processed so that the receive queue storage can be
reclaimed. Once RecycleEvent is signaled, this structure and
the received data that is pointed to by this structure must not be
accessed by the client.

PacketLength Length of the entire received packet (media header plus the data).

HeaderLength Length of the media header in this packet.

AddressLength Length of a MAC address in this packet.

DataLength Length of the data in this packet.

BroadcastFlag Set to TRUE if this packet was received through the broadcast
filter. (The destination MAC address is the broadcast MAC
address.)

MulticastFlag Set to TRUE if this packet was received through the multicast
filter. (The destination MAC address is in the multicast filter list.)

PromiscuousFlag Set to TRUE if this packet was received through the promiscuous
filter. (The destination address does not match any of the other
hardware or software filter lists.)

ProtocolType 16-bit protocol type in host byte order. Zero if there is no protocol
type field in the packet header.

DestinationAddress Pointer to the destination address in the media header.

SourceAddress Pointer to the source address in the media header.

MediaHeader Pointer to the first byte of the media header.

PacketData Pointer to the first byte of the packet data (immediately following
media header).

An EFI_MANAGED_NETWORK_RECEIVE_DATA structure is filled in for each packet that is
received by the MNP.

If multiple instances of this MNP driver can receive a packet, then the receive data structure and the
received packet are duplicated for each instance of the MNP driver that can receive the packet.
Version 2.5 April, 2015 1227

Unified Extensible Firmware Interface Specification
//**
// EFI_MANAGED_NETWORK_TRANSMIT_DATA
//**
typedef struct {
 EFI_MAC_ADDRESS *DestinationAddress OPTIONAL;
 EFI_MAC_ADDRESS *SourceAddress OPTIONAL;
 UINT16 ProtocolType OPTIONAL;
 UINT32 DataLength;
 UINT16 HeaderLength OPTIONAL;
 UINT16 FragmentCount;
 EFI_MANAGED_NETWORK_FRAGMENT_DATA FragmentTable[1];
} EFI_MANAGED_NETWORK_TRANSMIT_DATA;

DestinationAddress
Pointer to the destination MAC address if the media header is not
included in FragmentTable[]. If NULL, then the media
header is already filled in FragmentTable[].

SourceAddress Pointer to the source MAC address if the media header is not
included in FragmentTable[]. Ignored if
DestinationAddress is NULL.

ProtocolType The protocol type of the media header in host byte order. Ignored
if DestinationAddress is NULL.

DataLength Sum of all FragmentLength fields in FragmentTable[]
minus the media header length.

HeaderLength Length of the media header if it is included in the
FragmentTable. Must be zero if DestinationAddress is
not NULL.

FragmentCount Number of data fragments in FragmentTable[]. This field
cannot be zero.

FragmentTable Table of data fragments to be transmitted. The first byte of the
first entry in FragmentTable[] is also the first byte of the
media header or, if there is no media header, the first byte of
payload. Type EFI_MANAGED_NETWORK_FRAGMENT_DATA
is defined below.

The EFI_MANAGED_NETWORK_TRANSMIT_DATA structure describes a (possibly fragmented)
packet to be transmitted.

The DataLength field plus the HeaderLength field must be equal to the sum of all of the
FragmentLength fields in the FragmentTable.

If the media header is included in FragmentTable[], then it cannot be split between fragments.
1228 April, 2015 Version 2.5

Network Protocols — Managed Network
//**
// EFI_MANAGED_NETWORK_FRAGMENT_DATA
//**
typedef struct {
 UINT32 FragmentLength;
 VOID *FragmentBuffer;
} EFI_MANAGED_NETWORK_FRAGMENT_DATA;

FragmentLength Number of bytes in the FragmentBuffer. This field may not
be set to zero.

FragmentBuffer Pointer to the fragment data. This field may not be set to NULL.

The EFI_MANAGED_NETWORK_FRAGMENT_DATA structure describes the location and length of
a packet fragment to be transmitted.

Status Codes Returned

EFI_SUCCESS The transmit completion token was cached.

EFI_NOT_STARTED This MNP child driver instance has not been configured.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL.

• Token.TxData is NULL.

• Token.TxData.DestinationAddress is not
NULL and Token.TxData.HeaderLength is
zero.

• Token.TxData.FragmentCount is zero.

• (Token.TxData.HeaderLength +
Token.TxData.DataLength) is not equal to the sum
of the
Token.TxData.FragmentTable[].FragmentLe
ngth fields.

• One or more of the
Token.TxData.FragmentTable[].FragmentLe
ngth fields is zero.

• One or more of the
Token.TxData.FragmentTable[].FragmentBu
fferfields is NULL.

• Token.TxData.DataLength is greater than
MTU

EFI_ACCESS_DENIED The transmit completion token is already in the transmit queue.

EFI_OUT_OF_RESOURCES The transmit data could not be queued due to a lack of system
resources (usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The MNP child driver instance has been reset to startup defaults.
Version 2.5 April, 2015 1229

Unified Extensible Firmware Interface Specification
EFI_NOT_READY The transmit request could not be queued because the transmit
queue is full.

EFI_NO_MEDIA There was a media error.
1230 April, 2015 Version 2.5

Network Protocols — Managed Network
EFI_MANAGED_NETWORK_PROTOCOL.Receive()

Summary
Places an asynchronous receiving request into the receiving queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MANAGED_NETWORK_RECEIVE) (
 IN EFI_MANAGED_NETWORK_PROTOCOL *This,
 IN EFI_MANAGED_NETWORK_COMPLETION_TOKEN *Token
);

Parameters
This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.

Token Pointer to a token associated with the receive data descriptor.
Type EFI_MANAGED_NETWORK_COMPLETION_TOKEN is
defined in
EFI_MANAGED_NETWORK_PROTOCOL.Transmit().

Description
The Receive() function places a completion token into the receive packet queue. This function is
always asynchronous.

The caller must fill in the Token.Event field in the completion token, and this field cannot be
NULL. When the receive operation completes, the MNP updates the Token.Status and
Token.RxData fields and the Token.Event is signaled.

Status Codes Returned

EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This MNP child driver instance has not been configured.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL

EFI_OUT_OF_RESOURCES The transmit data could not be queued due to a lack of system
resources (usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The MNP child driver instance has been reset to startup defaults.

EFI_ACCESS_DENIED The receive completion token was already in the receive queue.

EFI_NOT_READY The receive request could not be queued because the receive
queue is full.

EFI_NO_MEDIA There was a media error.
Version 2.5 April, 2015 1231

Unified Extensible Firmware Interface Specification
EFI_MANAGED_NETWORK_PROTOCOL.Cancel()

Summary
Aborts an asynchronous transmit or receive request.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MANAGED_NETWORK_CANCEL)(
 IN EFI_MANAGED_NETWORK_PROTOCOL *This,
 IN EFI_MANAGED_NETWORK_COMPLETION_TOKEN *Token OPTIONAL
);

Parameters
This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.

Token Pointer to a token that has been issued by
EFI_MANAGED_NETWORK_PROTOCOL.Transmit() or
EFI_MANAGED_NETWORK_PROTOCOL.Receive(). If
NULL, all pending tokens are aborted. Type
EFI_MANAGED_NETWORK_COMPLETION_TOKEN is defined
in EFI_MANAGED_NETWORK_PROTOCOL.Transmit().

Description
The Cancel() function is used to abort a pending transmit or receive request. If the token is in the
transmit or receive request queues, after calling this function, Token.Status will be set to
EFI_ABORTED and then Token.Event will be signaled. If the token is not in one of the queues,
which usually means that the asynchronous operation has completed, this function will not signal the
token and EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS The asynchronous I/O request was aborted and Token.Event

was signaled. When Token is NULL, all pending requests were

aborted and their events were signaled.

EFI_NOT_STARTED This MNP child driver instance has not been configured.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was not

found in the transmit or receive queue. It has either completed or

was not issued by Transmit() and Receive().
1232 April, 2015 Version 2.5

Network Protocols — Managed Network
EFI_MANAGED_NETWORK_PROTOCOL.Poll()

Summary
Polls for incoming data packets and processes outgoing data packets.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MANAGED_NETWORK_POLL) (
 IN EFI_MANAGED_NETWORK_PROTOCOL *This
);

Parameters
This Pointer to the EFI_MANAGED_NETWORK_PROTOCOL instance.

Description
The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

Normally, a periodic timer event internally calls the Poll() function. But, in some systems, the
periodic timer event may not call Poll() fast enough to transmit and/or receive all data packets
without missing packets. Drivers and applications that are experiencing packet loss should try
calling the Poll() function more often.

Status Codes Returned

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This MNP child driver instance has not been configured.

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The MNP child driver instance has been reset to startup defaults.

EFI_NOT_READY No incoming or outgoing data was processed. Consider increasing
the polling rate.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
Version 2.5 April, 2015 1233

Unified Extensible Firmware Interface Specification
1234 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
25
Network Protocols — VLAN, EAP, Wi-Fi and

Supplicant

25.1 VLAN Configuration Protocol

EFI_VLAN_CONFIG_PROTOCOL

Summary
This protocol is to provide manageability interface for VLAN configuration.

GUID
#define EFI_VLAN_CONFIG_PROTOCOL_GUID \
 {0x9e23d768, 0xd2f3, 0x4366, \
 {0x9f, 0xc3, 0x3a, 0x7a, 0xba, 0x86, 0x43, 0x74}}

Protocol Interface Structure
typedef struct _EFI_VLAN_CONFIG_PROTOCOL {
 EFI_VLAN_CONFIG_SET Set;
 EFI_VLAN_CONFIG_FIND Find;
 EFI_VLAN_CONFIG_REMOVE Remove;
} EFI_VLAN_CONFIG_PROTOCOL;

Parameters
Set Create new VLAN device or modify configuration parameter of

an already-configured VLAN

Find Find configuration information for specified VLAN or all
configured VLANs.

Remove Remove a VLAN device.

Description
This protocol is to provide manageability interface for VLAN setting. The intended VLAN tagging
implementation is IEEE802.1Q.
Version 2.5 April, 2015 1235

Unified Extensible Firmware Interface Specification
EFI_VLAN_CONFIG_PROTOCOL.Set ()

Summary

Create a VLAN device or modify the configuration parameter of an already-configured VLAN

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_VLAN_CONFIG_SET) (
 IN EFI_VLAN_CONFIG_PROTOCOL This,
 IN UINT16 VlanId,
 IN UINT8 Priority

);

Parameters
This Pointer to EFI_VLAN_CONFIG_PROTOCOL instance.

VlanId A unique identifier (1-4094) of the VLAN which is being created
or modified, or zero (0).

Priority 3 bit priority in VLAN header. Priority 0 is default value. If
VlanId is zero (0), Priority is ignored.

Description
The Set() function is used to create a new VLAN device or change the VLAN configuration
parameters. If the VlanId hasn’t been configured in the physical Ethernet device, a new VLAN
device will be created. If a VLAN with this VlanId is already configured, then related
configuration will be updated as the input parameters.

If VlanId is zero, the VLAN device will send and receive untagged frames. Otherwise, the VLAN
device will send and receive VLAN-tagged frames containing the VlanId.

If VlanId is out of scope of (0-4094), EFI_INVALID_PARAMETER is returned

If Priority is out of the scope of (0-7), then EFI_INVALID_PARAMETER is returned.

If there is not enough system memory to perform the registration, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The VLAN is successfully configured

EFI_INVALID_PARAMETER One or more of following conditions is TRUE

• This is NULL

• VlanId is an invalid VLAN Identifier

• Priority is invalid

EFI_OUT_OF_RESOURCES There is not enough system memory to perform the registration.
1236 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_VLAN_CONFIG_PROTOCOL.Find()

Summary
Find configuration information for specified VLAN or all configured VLANs.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_VLAN_CONFIG_FIND) (
 IN EFI_VLAN_CONFIG_PROTOCOL *This,
 IN UINT16 *VlanId, OPTIONAL
 OUT UINT16 *NumberOfVlan,
 OUT EFI_VLAN_FIND_DATA **Entries
);

Parameters
This Pointer to EFI_VLAN_CONFIG_PROTOCOL instance.

VlanId Pointer to VLAN identifier. Set to NULL to find all configured
VLANs

NumberOfVlan The number of VLANs which is found by the specified criteria

Entries The buffer which receive the VLAN configuration. Type
EFI_VLAN_FIND_DATA is defined below.

Description
The Find() function is used to find the configuration information for matching VLAN and
allocate a buffer into which those entries are copied.

Related Definitions
//**
// EFI_VLAN_FIND_DATA
//**
typedef struct {
 UINT16 VlanId;
 UINT8 Priority;
} EFI_VLAN_FIND_DATA;

VlanId Vlan Identifier

Priority Priority of this VLAN
Version 2.5 April, 2015 1237

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS The VLAN is successfully found

EFI_INVALID_PARAMETER One or more of following conditions is TRUE
• This is NULL
• Specified VlanId is invalid

EFI_NOT_FOUND No matching VLAN is found
1238 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_VLAN_CONFIG_PROTOCOL.Remove ()

Summary
Remove the configured VLAN device

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_VLAN_CONFIG_REMOVE) (
 IN EFI_VLAN_CONFIG_PROTOCOL *This,
 IN UINT16 VlanId
);

Parameters
This Pointer to EFI_VLAN_CONFIG_PROTOCOL instance.

VlanId Identifier (0-4094) of the VLAN to be removed.

Description
The Remove() function is used to remove the specified VLAN device. If the VlanId is out of the
scope of (0-4094), EFI_INVALID_PARAMETER is returned. If specified VLAN hasn’t been
previously configured, EFI_NOT_FOUND is returned.

Status Codes Returned

25.2 EAP Protocol
This section defines the EAP protocol. This protocol is designed to make the EAP framework
configurable and extensible. It is intended for the supplicant side.

EFI_EAP_PROTOCOL

Summary
This protocol is used to abstract the ability to configure and extend the EAP framework.

EFI_SUCCESS The VLAN is successfully removed

EFI_INVALID_PARAMETER One or more of following conditions is TRUE
• This is NULL
• VlanId is an invalid parameter.

EFI_NOT_FOUND The to-be-removed VLAN does not exist
Version 2.5 April, 2015 1239

Unified Extensible Firmware Interface Specification
GUID
#define EFI_EAP_PROTOCOL_GUID \
 { 0x5d9f96db, 0xe731, 0x4caa,\
 {0xa0, 0x0d, 0x72, 0xe1, 0x87, 0xcd, 0x77, 0x62 }}

Protocol Interface Structure
typedef struct _EFI_EAP_PROTOCOL {
 EFI_EAP_SET_DESIRED_AUTHENTICATION_METHOD
SetDesiredAuthMethod;
 EFI_EAP_REGISTER_AUTHENTICATION_METHOD RegisterAuthMethod;
} EFI_EAP_PROTOCOL;

Parameters
SetDesiredAuthMethodSet the desired EAP authentication method for the Port. See the

SetDesiredAuthMethod() function description.

RegisterAuthMethod Register an EAP authentication method. See the
RegisterAuthMethod() function description.

Description
EFI_EAP_PROTOCOL is used to configure the desired EAP authentication method for the EAP
framework and extend the EAP framework by registering new EAP authentication method on a Port.
The EAP framework is built on a per-Port basis. Herein, a Port means a NIC. For the details of EAP
protocol, please refer to RFC 2284.

Related Definitions
//
// Type for the identification number assigned to the Port by the
// System in which the Port resides.
//
typedef VOID * EFI_PORT_HANDLE;
1240 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_EAP.SetDesiredAuthMethod()

Summary
Set the desired EAP authentication method for the Port.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EAP_SET_DESIRED_AUTHENTICATION_METHOD) (
 IN struct _EFI_EAP_PROTOCOL *This,
 IN UINT8 EapAuthType
);

Parameters
This A pointer to the EFI_EAP_PROTOCOL instance that indicates

the calling context. Type EFI_EAP_PROTOCOL is defined in
Section 1.1.

EapAuthType The type of the desired EAP authentication method for the Port. It
should be the type value defined by RFC. See RFC 2284 for
details. Current valid values are defined in “Related Definitions”.

Related Definitions
//
// EAP Authentication Method Type (RFC 3748)
//
#define EFI_EAP_TYPE_TLS 13 /* REQUIRED - RFC 5216 */

Description
The SetDesiredAuthMethod() function sets the desired EAP authentication method indicated
by EapAuthType for the Port.

If EapAuthType is an invalid EAP authentication type, then EFI_INVALID_PARAMETER is
returned.

If the EAP authentication method of EapAuthType is unsupported, then it will return
EFI_UNSUPPORTED.

The cryptographic strength of EFI_EAP_TYPE_TLS shall be at least of hash strength SHA-256
and RSA key length of at least 2048 bits.

Status Codes Returned

EFI_SUCCESS The desired EAP authentication method is set successfully.

EFI_INVALID_PARAMETER EapAuthType is an invalid EAP authentication type.

EFI_UNSUPPORTED The EAP authentication method of EapAuthType is unsupported
by the Port.
Version 2.5 April, 2015 1241

Unified Extensible Firmware Interface Specification
EFI_EAP.RegisterAuthMethod()

Summary
Register an EAP authentication method.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EAP_REGISTER_AUTHENTICATION_METHOD) (
 IN struct _EFI_EAP_PROTOCOL *This,
 IN UINT8 EapAuthType,
 IN EFI_EAP_BUILD_RESPONSE_PACKET Handler
);

Parameters
This A pointer to the EFI_EAP_PROTOCOL instance that indicates

the calling context. Type EFI_EAP_PROTOCOL is defined in
Section 1.1.

EapAuthType The type of the EAP authentication method to register. It should
be the type value defined by RFC. See RFC 2284 for details.
Current valid values are defined in the
SetDesiredAuthMethod() function description.

Handler The handler of the EAP authentication method to register. Type
EFI_EAP_BUILD_RESPONSE_PACKET is defined in
“Related Definitions”.
1242 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_EAP_BUILD_RESPONSE_PACKET) (
IN EFI_PORT_HANDLE PortNumber
IN UINT8 *RequestBuffer,
IN UINTN RequestSize,
IN UINT8 *Buffer,
IN OUT UINTN *BufferSize
)

/*++

 Routine Description:
 Build EAP response packet in response to the EAP request
packet specified by (RequestBuffer, RequestSize).

 Arguments:
 PortNumber - Specified the Port where the EAP request
packet comes.
 RequestBuffer - Pointer to the most recently received EAP-
Request packet.
 RequestSize - Packet size in bytes for the most recently
received EAP-Request packet.
 Buffer - Pointer to the buffer to hold the built
packet.
 BufferSize - Pointer to the buffer size in bytes. On
input, it is the buffer size provided by the caller. On output,
it is the buffer size in fact needed to contain the packet.

 Returns:
 EFI_SUCCESS - The required EAP response packet is built
successfully.
 others - Failures are encountered during the packet
building process.

--*/
;

Description
The RegisterAuthMethod() function registers the user provided EAP authentication method,
the type of which is EapAuthType and the handler of which is Handler.

If EapAuthType is an invalid EAP authentication type, then EFI_INVALID_PARAMETER is
returned.

If there is not enough system memory to perform the registration, then
EFI_OUT_OF_RESOURCES is returned.
Version 2.5 April, 2015 1243

Unified Extensible Firmware Interface Specification
Status Codes Returned

25.2.1 EAPManagement Protocol

This section defines the EAP management protocol. This protocol is designed to provide ease of
management and ease of test for EAPOL state machine. It is intended for the supplicant side. It con-
forms to IEEE 802.1x specification.

EFI_EAP_MANAGEMENT_PROTOCOL

Summary
This protocol provides the ability to configure and control EAPOL state machine, and retrieve the
status and the statistics information of EAPOL state machine.

GUID
#define EFI_EAP_MANAGEMENT_PROTOCOL_GUID \
 { 0xbb62e663, 0x625d, 0x40b2, \
 { 0xa0, 0x88, 0xbb, 0xe8, 0x36, 0x23, 0xa2, 0x45 }

Protocol Interface Structure
typedef struct _EFI_EAP_MANAGEMENT_PROTOCOL {
 EFI_EAP_GET_SYSTEM_CONFIGURATION GetSystemConfiguration;
 EFI_EAP_SET_SYSTEM_CONFIGURATION SetSystemConfiguration;
 EFI_EAP_INITIALIZE_PORT InitializePort;
 EFI_EAP_USER_LOGON UserLogon;
 EFI_EAP_USER_LOGOFF UserLogoff;
 EFI_EAP_GET_SUPPLICANT_STATUS GetSupplicantStatus;
 EFI_EAP_SET_SUPPLICANT_CONFIGURATION
SetSupplicantConfiguration;
 EFI_EAP_GET_SUPPLICANT_STATISTICS
GetSupplicantStatistics;
} EFI_EAP_MANAGEMENT_PROTOCOL;

Parameters
GetSystemConfigurationRead the system configuration information associated with

the Port. See the GetSystemConfiguration() function
description.

SetSystemConfigurationSet the system configuration information associated with the
Port. See the SetSystemConfiguration() function
description.

EFI_SUCCESS The EAP authentication method of EapAuthType is

registered successfully.

EFI_INVALID_PARAMETER EapAuthType is an invalid EAP authentication type.

EFI_OUT_OF_RESOURCES There is not enough system memory to perform the registration.
1244 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
InitializePort Cause the EAPOL state machines for the Port to be initialized.
See the InitializePort() function description.

UserLogon Notify the EAPOL state machines for the Port that the user of the
System has logged on. See the UserLogon() function
description.

UserLogoff Notify the EAPOL state machines for the Port that the user of the
System has logged off. See the UserLogoff() function
description.

GetSupplicantStatusRead the status of the Supplicant PAE state machine for the Port,
including the current state and the configuration of the
operational parameters. See the GetSupplicantStatus()
function description.

SetSupplicantConfigurationSet the configuration of the operational parameter of
the Supplicant PAE state machine for the Port. See the
SetSupplicantConfiguration() function description.

GetSupplicantStatisticsRead the statistical information regarding the operation of
the Supplicant associated with the Port. See the
GetSupplicantStatistics() function description.

Description
The EFI_EAP_MANAGEMENT protocol is used to control, configure and monitor EAPOL state
machine on a Port. EAPOL state machine is built on a per-Port basis. Herein, a Port means a NIC.
For the details of EAPOL, please refer to IEEE 802.1x specification.
Version 2.5 April, 2015 1245

Unified Extensible Firmware Interface Specification
EFI_EAP_MANAGEMENT.GetSystemConfiguration()

Summary
Read the system configuration information associated with the Port.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EAP_GET_SYSTEM_CONFIGURATION) (
 IN struct _EFI_EAP_MANAGEMENT_PROTOCOL *This,
 OUT BOOLEAN *SystemAuthControl,
 OUT EFI_EAPOL_PORT_INFO *PortInfo OPTIONAL
);

Parameters
This A pointer to the EFI_EAP_MANAGEMENT_PROTOCOL instance

that indicates the calling context. Type
EFI_EAP_MANAGEMENT_PROTOCOL is defined in
Section 25.2.1.

SystemAuthControl Returns the value of the SystemAuthControl parameter of the
System. TRUE means Enabled. FALSE means Disabled.

PortInfo Returns EFI_EAPOL_PORT_INFO structure to describe the
Port's information. This parameter can be NULL to ignore
reading the Port’s information. Type EFI_EAPOL_PORT_INFO
is defined in “Related Definitions”.

Related Definitions
//
// PAE Capabilities
//
#define PAE_SUPPORT_AUTHENTICATOR 0x01
#define PAE_SUPPORT_SUPPLICANT 0x02

typedef struct _EFI_EAPOL_PORT_INFO {
 EFI_PORT_HANDLE PortNumber;
 UINT8 ProtocolVersion;
 UINT8 PaeCapabilities;
} EFI_EAPOL_PORT_INFO;

PortNumber The identification number assigned to the Port by the System in
which the Port resides.

ProtocolVersion The protocol version number of the EAPOL implementation
supported by the Port.
1246 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
PaeCapabilities The capabilities of the PAE associated with the Port. This field
indicates whether Authenticator functionality, Supplicant
functionality, both, or neither, is supported by the Port's PAE.

Description
The GetSystemConfiguration() function reads the system configuration information
associated with the Port, including the value of the SystemAuthControl parameter of the System is
returned in SystemAuthControl and the Port’s information is returned in the buffer pointed to
by PortInfo. The Port’s information is optional. If PortInfo is NULL, then reading the Port’s
information is ignored.

If SystemAuthControl is NULL, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned

EFI_SUCCESS The system configuration information of the Port is read
successfully.

EFI_INVALID_PARAMETER SystemAuthControl is NULL.
Version 2.5 April, 2015 1247

Unified Extensible Firmware Interface Specification
EFI_EAP_MANAGEMENT.SetSystemConfiguration()

Summary
Set the system configuration information associated with the Port.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EAP_SET_SYSTEM_CONFIGURATION) (
 IN struct _EFI_EAP_MANAGEMENT_PROTOCOL *This,
 IN BOOLEAN SystemAuthControl
);

Parameters
This A pointer to the EFI_EAP_MANAGEMENT_PROTOCOL instance

that indicates the calling context. Type
EFI_EAP_MANAGEMENT_PROTOCOL is defined in
Section 25.2.1.

SystemAuthControl The desired value of the SystemAuthControl parameter of the
System. TRUE means Enabled. FALSE means Disabled.

Description
The SetSystemConfiguration() function sets the value of the SystemAuthControl
parameter of the System to SystemAuthControl.

Status Codes Returned

EFI_SUCCESS The system configuration information of the Port is set
successfully.
1248 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_EAP_MANAGEMENT.InitializePort()

Summary
Cause the EAPOL state machines for the Port to be initialized.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EAP_INITIALIZE_PORT) (
 IN struct _EFI_EAP_MANAGEMENT_PROTOCOL *This
);

Parameters
This A pointer to the EFI_EAP_MANAGEMENT_PROTOCOL

instance that indicates the calling context. Type
EFI_EAP_MANAGEMENT_PROTOCOL is defined in
Section 25.2.1.

Description
The InitializePort() function causes the EAPOL state machines for the Port.

Status Codes Returned

EFI_SUCCESS The Port is initialized successfully.
Version 2.5 April, 2015 1249

Unified Extensible Firmware Interface Specification
 EFI_EAP_MANAGEMENT.UserLogon()

Summary
Notify the EAPOL state machines for the Port that the user of the System has logged on.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EAP_USER_LOGON) (
 IN struct _EFI_EAP_MANAGEMENT_PROTOCOL *This,
);

Parameters
This A pointer to the EFI_EAP_MANAGEMENT_PROTOCOL

instance that indicates the calling context. Type
EFI_EAP_MANAGEMENT_PROTOCOL is defined in
Section 25.2.1.

Description
The UserLogon() function notifies the EAPOL state machines for the Port.

Status Codes Returned

EFI_SUCCESS The Port is notified successfully.
1250 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_EAP_MANAGEMENT.UserLogoff()

Summary
Notify the EAPOL state machines for the Port that the user of the System has logged off.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EAP_USER_LOGOFF) (
 IN struct _EFI_EAP_MANAGEMENT_PROTOCOL *This,
);

Parameters
This A pointer to the EFI_EAP_MANAGEMENT_PROTOCOL instance

that indicates the calling context. Type
EFI_EAP_MANAGEMENT_PROTOCOL is defined in
Section 25.2.1.

Description
The UserLogoff() function notifies the EAPOL state machines for the Port.

Status Codes Returned

EFI_SUCCESS The Port is notified successfully.
Version 2.5 April, 2015 1251

Unified Extensible Firmware Interface Specification
EFI_EAP_MANAGEMENT.GetSupplicantStatus()

Summary
Read the status of the Supplicant PAE state machine for the Port, including the current state and the con-
figuration of the operational parameters.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EAP_GET_SUPPLICANT_STATUS) (
 IN struct _EFI_EAP_MANAGEMENT_PROTOCOL *This,
 OUT EFI_EAPOL_SUPPLICANT_PAE_STATE *CurrentState,
 IN OUT EFI_EAPOL_SUPPLICANT_PAE_CONFIGURATION *Configuration
OPTIONAL
);

Parameters
This A pointer to the EFI_EAP_MANAGEMENT_PROTOCOL

instance that indicates the calling context. Type
EFI_EAP_MANAGEMENT_PROTOCOL is defined in
Section 25.2.1.

CurrentState Returns the current state of the Supplicant PAE state machine for
the Port. Type EFI_EAPOL_SUPPLICANT_PAE_STATE is
defined in “Related Definitions”.

Configuration Returns the configuration of the operational parameters of the
Supplicant PAE state machine for the Port as required. This
parameter can be NULL to ignore reading the configuration. On
input, Configuration.ValidFieldMask specifies the
operational parameters to be read. On output, Configuration
returns the configuration of the required operational parameters.
Type EFI_EAPOL_SUPPLICANT_PAE_CONFIGURATION is
defined in “Related Definitions”.
1252 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Related Definitions
//
// Supplicant PAE state machine (IEEE Std 802.1X Section 8.5.10)
//
typedef enum _EFI_EAPOL_SUPPLICANT_PAE_STATE {
 Logoff,
 Disconnected,
 Connecting,
 Acquired,
 Authenticating,
 Held,
 Authenticated,
 MaxSupplicantPaeState
} EFI_EAPOL_SUPPLICANT_PAE_STATE;

//
// Definitions for ValidFieldMask
//
#define AUTH_PERIOD_FIELD_VALID 0x01
#define HELD_PERIOD_FIELD_VALID 0x02
#define START_PERIOD_FIELD_VALID 0x04
#define MAX_START_FIELD_VALID 0x08

typedef struct _EFI_EAPOL_SUPPLICANT_PAE_CONFIGURATION {
 UINT8 ValidFieldMask;
 UINTN AuthPeriod;
 UINTN HeldPeriod;
 UINTN StartPeriod;
 UINTN MaxStart;
} EFI_EAPOL_SUPPLICANT_PAE_CONFIGURATION;

ValidFieldMask Indicates which of the following fields are valid.

AuthPeriod The initial value for the authWhile timer. Its default value is 30 s.

HeldPeriod The initial value for the heldWhile timer. Its default value is 60 s.

StartPeriod The initial value for the startWhen timer. Its default value is 30 s.

MaxStart The maximum number of successive EAPOL-Start messages will
be sent before the Supplicant assumes that there is no
Authenticator present. Its default value is 3.

Description
The GetSupplicantStatus() function reads the status of the Supplicant PAE state machine
for the Port, including the current state CurrentState and the configuration of the operational
parameters Configuration. The configuration of the operational parameters is optional. If
Configuration is NULL, then reading the configuration is ignored. The operational parameters
in Configuration to be read can also be specified by Configuration.ValidFieldMask.
Version 2.5 April, 2015 1253

Unified Extensible Firmware Interface Specification
If CurrentState is NULL, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned

EFI_SUCCESS The status of the Supplicant PAE state machine for the Port is
read successfully.

EFI_INVALID_PARAMETER CurrentState is NULL.
1254 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_EAP_MANAGEMENT.SetSupplicantConfiguration()

Summary
Set the configuration of the operational parameter of the Supplicant PAE state machine for the Port.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EAP_SET_SUPPLICANT_CONFIGURATION) (
 IN struct _EFI_EAP_MANAGEMENT_PROTOCOL *This,
 IN EFI_EAPOL_SUPPLICANT_PAE_CONFIGURATION *Configuration
);

Parameters
This A pointer to the EFI_EAP_MANAGEMENT_PROTOCOL instance

that indicates the calling context. Type
EFI_EAP_MANAGEMENT_PROTOCOL is defined in
Section 25.2.1.

Configuration The desired configuration of the operational parameters of the
Supplicant PAE state machine for the Port as required. Type
EFI_EAPOL_SUPPLICANT_PAE_CONFIGURATION is
defined in the GetSupplicantStatus() function
description.

Description
The SetSupplicantConfiguration() function sets the configuration of the operational
parameter of the Supplicant PAE state machine for the Port to Configuration. The operational
parameters in Configuration to be set can be specified by
Configuration.ValidFieldMask.

If Configuration is NULL, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned

EFI_SUCCESS The configuration of the operational parameter of the Supplicant
PAE state machine for the Port is set successfully.

EFI_INVALID_PARAMETER Configuration is NULL.
Version 2.5 April, 2015 1255

Unified Extensible Firmware Interface Specification
EFI_EAP_MANAGEMENT.GetSupplicantStatistics()

Summary
Read the statistical information regarding the operation of the Supplicant associated with the Port.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EAP_GET_SUPPLICANT_STATISTICS) (
 IN struct _EFI_EAP_MANAGEMENT_PROTOCOL *This,
 OUT EFI_EAPOL_SUPPLICANT_PAE_STATISTICS *Statistics
);

Parameters
This A pointer to the EFI_EAP_MANAGEMENT_PROTOCOL instance

that indicates the calling context. Type
EFI_EAP_MANAGEMENT_PROTOCOL is defined in
Section 25.2.1.

Statistics Returns the statistical information regarding the operation of the
Supplicant for the Port. Type
EFI_EAPOL_SUPPLICANT_PAE_STATISTICS is defined in
“Related Definitions”.

Related Definitions
//
// Supplicant Statistics (IEEE Std 802.1X Section 9.5.2)
//
typedef struct _EFI_EAPOL_SUPPLICANT_PAE_STATISTICS {
 UINTN EapolFramesReceived;
 UINTN EapolFramesTransmitted;
 UINTN EapolStartFramesTransmitted;
 UINTN EapolLogoffFramesTransmitted;
 UINTN EapRespIdFramesTransmitted;
 UINTN EapResponseFramesTransmitted;
 UINTN EapReqIdFramesReceived;
 UINTN EapRequestFramesReceived;
 UINTN InvalidEapolFramesReceived;
 UINTN EapLengthErrorFramesReceived;
 UINTN LastEapolFrameVersion;
 UINTN LastEapolFrameSource;
} EFI_EAPOL_SUPPLICANT_PAE_STATISTICS;

EapolFramesReceived

The number of EAPOL frames of any type that have been received by this Supplicant.
1256 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EapolFramesTransmitted

The number of EAPOL frames of any type that have been transmitted by this
Supplicant.

EapolStartFramesTransmitted

The number of EAPOL Start frames that have been transmitted by this Supplicant.

EapolLogoffFramesTransmitted

The number of EAPOL Logoff frames that have been transmitted by this Supplicant.

EapRespIdFramesTransmitted

The number of EAP Resp/Id frames that have been transmitted by this Supplicant.

EapResponseFramesTransmitted

The number of valid EAP Response frames (other than Resp/Id frames) that have been
transmitted by this Supplicant.

EapReqIdFramesReceived

The number of EAP Req/Id frames that have been received by this Supplicant.

EapRequestFramesReceived

The number of EAP Request frames (other than Rq/Id frames) that have been received
by this Supplicant.

InvalidEapolFramesReceived

The number of EAPOL frames that have been received by this Supplicant in which the
frame type is not recognized.

EapLengthErrorFramesReceived

The number of EAPOL frames that have been received by this Supplicant in which the
Packet Body Length field (7.5.5) is invalid.

LastEapolFrameVersion

The protocol version number carried in the most recently received EAPOL frame.

LastEapolFrameSource

The source MAC address carried in the most recently received EAPOL frame.

Description
The GetSupplicantStatistics() function reads the statistical information Statistics
regarding the operation of the Supplicant associated with the Port.

If Statistics is NULL, then EFI_INVALID_PARAMETER is returned.
Version 2.5 April, 2015 1257

Unified Extensible Firmware Interface Specification
Status Codes Returned

25.2.2 EFI EAP Management2 Protocol

EFI_EAP_MANAGEMENT2_PROTOCOL

Summary
This protocol provides the ability to configure and control EAPOL state machine, and retrieve the
information, status and the statistics information of EAPOL state machine.

GUID
#define EFI_EAP_MANAGEMENT2_PROTOCOL_GUID \
 { 0x5e93c847, 0x456d, 0x40b3, \
 { 0xa6, 0xb4, 0x78, 0xb0, 0xc9, 0xcf, 0x7f, 0x20 }}

Protocol Interface Structure
typedef struct _EFI_EAP_MANAGEMENT2_PROTOCOL {
 // Same as EFI_EAP_MANAGEMENT_PROTOCOL
 EFI_EAP_GET_KEY GetKey;
} EFI_EAP_MANAGMENT2_PROTOCOL;

Parameters
GetKey Provide Key information parsed from EAP packet. See the

GetKey() function description.

Description
The EFI_EAP_MANAGEMENT2_PROTOCOL is used to control, configure and monitor EAPOL
state machine on a Port, and return information of the Port. EAPOL state machine is built on a per-
Port basis. Herein, a Port means a NIC. For the details of EAPOL, please refer to IEEE 802.1x
specification.

EFI_SUCCESS The statistical information regarding the operation of the
Supplicant for the Port is read successfully.

EFI_INVALID_PARAMETER Statistics is NULL.
1258 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_EAP_MANAGEMENT2_PROTOCOL.GetKey()

Summary
Return key generated through EAP process.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EAP_GET_KEY)(
 IN EFI_EAP_MANAGEMENT2_PROTOCOL *This,
 IN OUT UINT8 *Msk,
 IN OUT UINTN *MskSize,
 IN OUT UINT8 *Emsk,
 IN OUT UINT8 *EmskSize
);

Parameters
This Pointer to the EFI_EAP_MANAGEMENT2_PROTOCOL

instance.

Msk Pointer to MSK (Master Session Key) buffer.

MskSize MSK buffer size.

Emsk Pointer to EMSK (Extended Master Session Key) buffer.

EmskSize EMSK buffer size.

Description
The GetKey() function return the key generated through EAP process, so that the 802.11 MAC
layer driver can use MSK to derive more keys, e.g. PMK (Pairwise Master Key).
Version 2.5 April, 2015 1259

Unified Extensible Firmware Interface Specification
Status Codes Returned

25.2.3 EFI EAP Configuration Protocol

EFI_EAP_CONFIGURATION_PROTOCOL

Summary
This protocol provides a way to set and get EAP configuration.

GUID
#define EFI_EAP_CONFIGURATION_PROTOCOL_GUID \
 { 0xe5b58dbb, 0x7688, 0x44b4, \
 { 0x97, 0xbf, 0x5f, 0x1d, 0x4b, 0x7c, 0xc8, 0xdb }}

Protocol Interface Structure
typedef struct _EFI_EAP_CONFIGURATION_PROTOCOL {
 EFI_EAP_CONFIGURATION_SET_DATA SetData;
 EFI_EAP_CONFIGURATION_GET_DATA GetData;
} EFI_EAP_CONFIGURATION_PROTOCOL;

Parameters
SetData Set EAP configuration data. See the SetData() function

description.

GetData Get EAP configuration data. See the GetData() function
description.

Description
The EFI_EAP_CONFIGURATION_PROTOCOL is designed to provide a way to set and get EAP
configuration, such as Certificate, private key file.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• Msk is NULL.

• MskSize is NULL.

• Emsk is NULL.

• EmskSize is NULL.

EFI_NOT_READY MSK and EMSK are not generated in current session yet.
1260 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_EAP_CONFIGURATION_PROTOCOL.SetData()

Summary
Set EAP configuration data.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EAP_CONFIGURATION_SET_DATA)(
 IN EFI_EAP_CONFIGURATION_PROTOCOL *This,
 IN EFI_EAP_TYPE EapType,
 IN EFI_EAP_CONFIG_DATA_TYPE DataType,
 IN VOID *Data,
 IN UINTN DataSize
);

Parameters
This Pointer to the EFI_EAP_CONFIGURATION_PROTOCOL

instance.

EapType EAP type. See EFI_EAP_TYPE.

DataType Configuration data type. See EFI_EAP_CONFIG_DATA_TYPE

Data Pointer to configuration data.

DataSize Total size of configuration data.

Description
The SetData() function sets EAP configuration to non-volatile storage or volatile storage.
Version 2.5 April, 2015 1261

Unified Extensible Firmware Interface Specification
Related Definitions
//
// Make sure it not conflict with any real EapTypeXXX
//
#define EFI_EAP_TYPE_ATTRIBUTE 0

typedef enum {
 // EFI_EAP_TYPE_ATTRIBUTE
 EfiEapConfigEapAuthMethod,
 EfiEapConfigEapSupportedAuthMethod,
 // EapTypeIdentity
 EfiEapConfigIdentityString,
 // EapTypeEAPTLS/EapTypePEAP
 EfiEapConfigEapTlsCACert,
 EfiEapConfigEapTlsClientCert,
 EfiEapConfigEapTlsClientPrivateKeyFile,
 EfiEapConfigEapTlsClientPrivateKeyFilePassword,\
 // ASCII format, Volatile
 EfiEapConfigEapTlsCipherSuite,
 EfiEapConfigEapTlsSupportedCipherSuite,
 // EapTypeMSChapV2
 EfiEapConfigEapMSChapV2Password, // UNICODE format, Volatile
 // EapTypePEAP
 EfiEapConfigEap2ndAuthMethod,
 // More...
} EFI_EAP_CONFIG_DATA_TYPE;

//
// EFI_EAP_TYPE
//
typedef UINT8 EFI_EAP_TYPE;
#define EFI_EAP_TYPE_ATTRIBUTE 0
#define EFI_EAP_TYPE_IDENTITY 1
#define EFI_EAP_TYPE_NOTIFICATION 2
#define EFI_EAP_TYPE_NAK 3
#define EFI_EAP_TYPE_MD5CHALLENGE 4
#define EFI_EAP_TYPE_OTP 5
#define EFI_EAP_TYPE_GTC 6
#define EFI_EAP_TYPE_EAPTLS 13
#define EFI_EAP_TYPE_EAPSIM 18
#define EFI_EAP_TYPE_TTLS 21
#define EFI_EAP_TYPE_PEAP 25
#define EFI_EAP_TYPE_MSCHAPV2 26
#define EFI_EAP_TYPE_EAP_EXTENSION 33
......
1262 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Status Codes Returned

EFI_SUCCESS The EAP configuration data is set successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• Data is NULL.

• DataSize is 0.

EFI_UNSUPPORTED The EapType or DataType is unsupported.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
Version 2.5 April, 2015 1263

Unified Extensible Firmware Interface Specification
EFI_EAP_CONFIGURATION_PROTOCOL.GetData()

Summary
Get EAP configuration data.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EAP_CONFIGURATION_GET_DATA)(
 IN EFI_EAP_CONFIGURATION_PROTOCOL *This,
 IN EFI_EAP_TYPE EapType,
 IN EFI_EAP_CONFIG_DATA_TYPE DataType,
 IN OUT VOID *Data,
 IN OUT UINTN *DataSize
);

Parameters
This Pointer to the EFI_EAP_CONFIGURATION_PROTOCOL

instance.

EapType EAP type. See EFI_EAP_TYPE.

DataType Configuration data type. See EFI_EAP_CONFIG_DATA_TYPE

Data Pointer to configuration data.

DataSize Total size of configuration data. On input, it means the size of
Data buffer. On output, it means the size of copied Data buffer
if EFI_SUCCESS, and means the size of desired Data buffer if
EFI_BUFFER_TOO_SMALL.

Description
The GetData() function gets EAP configuration.

• Status Codes Returned

EFI_SUCCESS The EAP configuration data is got successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• Data is NULL.

• DataSize is NULL.

EFI_UNSUPPORTED The EapType or DataType is unsupported.

EFI_NOT_FOUND The EAP configuration data is not found.

EFI_BUFFER_TOO_SMALL The buffer is too small to hold the buffer.
1264 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
25.3 EFI Wireless MAC Connection Protocol

EFI_WIRELESS_MAC_CONNECTION_PROTOCOL

Summary
This protocol provides management service interfaces of 802.11 MAC layer. It is used by network
applications (and drivers) to establish wireless connection with an access point (AP).

GUID
#define EFI_WIRELESS_MAC_CONNECTION_PROTOCOL_GUID \
 { 0xda55bc9, 0x45f8, 0x4bb4, \
 { 0x87, 0x19, 0x52, 0x24, 0xf1, 0x8a, 0x4d, 0x45 }}

Protocol Interface Structure
typedef struct _EFI_WIRELESS_MAC_CONNECTION_PROTOCOL {
 EFI_WIRELESS_MAC_CONNECTION_SCAN Scan;
 EFI_WIRELESS_MAC_CONNECTION_ASSOCIATE Associate;
 EFI_WIRELESS_MAC_CONNECTION_DISASSOCIATE Disassociate;
 EFI_WIRELESS_MAC_CONNECTION_AUTHENTICATE Authenticate;
 EFI_WIRELESS_MAC_CONNECTION_DEAUTHENTICATE Deauthenticate;
} EFI_WIRELESS_MAC_CONNECTION_PROTOCOL;

Parameters
Scan Determine the characteristics of the available BSSs. See the

Scan() function description.

Associate Places an association request with a specific peer MAC entity.
See the Associate() function description.

Disassociate Reports a disassociation with a specific peer MAC entity. See the
Disassociate() function description.

Authenticate Requests authentication with a specific peer MAC entity. See the
Authenticate() function description.

Deauthenticate Invalidates an authentication relationship with a peer MAC
entity. See the Deauthenticate() function description.

Description
The EFI_WIRELESS_MAC_CONNECTION_PROTOCOL is designed to provide management
service interfaces for the EFI wireless network stack to establish wireless connection with AP. An
EFI Wireless MAC Connection Protocol instance will be installed on each communication device
that the EFI wireless network stack runs on.
Version 2.5 April, 2015 1265

Unified Extensible Firmware Interface Specification
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Scan()

Summary
Request a survey of potential BSSs that administrator can later elect to try to join.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_WIRELESS_MAC_CONNECTION_SCAN)(
 IN EFI_WIRELESS_MAC_CONNECTION_PROTOCOL *This,
 IN EFI_80211_SCAN_DATA_TOKEN *Data
);

Parameters
This Pointer to the

EFI_WIRELESS_MAC_CONNECTION_PROTOCOL instance.

Data Pointer to the scan token. Type
EFI_80211_SCAN_DATA_TOKEN is defined in “Related
Definitions” below.

Description
The Scan() function returns the description of the set of BSSs detected by the scan process.
Passive scan operation is performed by default.

Related Definitions
//**
// EFI_80211_SCAN_DATA_TOKEN
//**
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 EFI_80211_SCAN_DATA *Data;
 EFI_80211_SCAN_RESULT_CODE ResultCode;
 EFI_80211_SCAN_RESULT *Result;
} EFI_80211_SCAN_DATA_TOKEN;

Event This Event will be signaled after the Status field is updated
by the EFI Wireless MAC Connection Protocol driver. The type
of Event must be EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values:

EFI_SUCCESS: Scan operation completed successfully.

EFI_NOT_FOUND: Failed to find available BSS.

EFI_DEVICE_ERROR: An unexpected network or system
error occurred.
1266 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_ACCESS_DENIED: The scan operation is not completed
due to some underlying hardware or software state.

EFI_NOT_READY: The scan operation is started but not yet
completed.

Data Pointer to the scan data. Type EFI_80211_SCAN_DATA is
defined below.

ResultCode Indicates the scan state. Type
EFI_80211_SCAN_RESULT_CODE is defined below.

Result Indicates the scan result. It is caller’s responsibility to free this
buffer. Type EFI_80211_SCAN_RESULT is defined below.

The EFI_80211_SCAN_DATA_TOKEN structure is defined to support the process of determining
the characteristics of the available BSSs. As input, the Data field must be filled in by the caller of
EFI Wireless MAC Connection Protocol. After the scan operation completes, the EFI Wireless
MAC Connection Protocol driver updates the Status, ResultCode and Result field and the
Event is signaled.

//**
// EFI_80211_SCAN_DATA
//**
typedef struct {
 EFI_80211_BSS_TYPE BSSType;
 EFI_80211_MAC_ADDRESS BSSId;
 UINT8 SSIdLen;
 UINT8 *SSId;
 BOOLEAN PassiveMode;
 UINT32 ProbeDelay;
 UINT32 *ChannelList;
 UINT32 MinChannelTime;
 UINT32 MaxChannelTime;
 EFI_80211_ELEMENT_REQ *RequestInformation;
 EFI_80211_ELEMENT_SSID *SSIDList;
 EFI_80211_ACC_NET_TYPE AccessNetworkType;
 UINT8 *VendorSpecificInfo;
} EFI_80211_SCAN_DATA;

BSSType Determines whether infrastructure BSS, IBSS, MBSS, or all, are
included in the scan. Type EFI_80211_BSS_TYPE is defined
below.

BSSId Indicates a specific or wildcard BSSID. Use all binary 1s to
represent all SSIDs. Type EFI_80211_MAC_ADDRESS is
defined below.

SSIdLen Length in bytes of the SSId. If zero, ignore SSId field.

SSId Specifies the desired SSID or the wildcard SSID. Use NULL to
represent all SSIDs.

PassiveMode Indicates passive scanning if TRUE.
Version 2.5 April, 2015 1267

Unified Extensible Firmware Interface Specification
ProbeDelay The delay in microseconds to be used prior to transmitting a
Probe frame during active scanning. If zero, the value can be
overridden by an implementation-dependent default value.

ChannelList Specifies a list of channels that are examined when scanning for a
BSS. If set to NULL, all valid channels will be scanned.

MinChannelTime Indicates the minimum time in TU to spend on each channel
when scanning. If zero, the value can be overridden by an
implementation-dependent default value.

MaxChannelTime Indicates the maximum time in TU to spend on each channel
when scanning. If zero, the value can be overridden by an
implementation-dependent default value.

RequestInformation Points to an optionally present element. This is an optional
parameter and may be NULL. Type
EFI_80211_ELEMENT_REQ is defined below.

SSIDList Indicates one or more SSID elements that are optionally present.
This is an optional parameter and may be NULL. Type
EFI_80211_ELEMENT_SSID is defined below.

AccessNetworkType Specifies a desired specific access network type or the wildcard
access network type. Use 15 as wildcard access network type.
Type EFI_80211_ACC_NET_TYPE is defined below.

VendorSpecificInfo Specifies zero or more elements. This is an optional parameter
and may be NULL.

//**
// EFI_80211_BSS_TYPE
//**
typedef enum {
 IeeeInfrastructureBSS,
 IeeeIndependentBSS,
 IeeeMeshBSS,
 IeeeAnyBss
} EFI_80211_BSS_TYPE;

The EFI_80211_BSS_TYPE is defined to enumerate BSS type.

//**
// EFI_80211_MAC_ADDRESS
//**
typedef struct {
 UINT8 Addr[6];
} EFI_80211_MAC_ADDRESS;

The EFI_80211_MAC_ADDRESS is defined to record a 48-bit MAC address.
1268 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**
// EFI_80211_ELEMENT_REQ
//**
typedef struct {
 EFI_80211_ELEMENT_HEADER Hdr;
 UINT8 RequestIDs[1];
} EFI_80211_ELEMENT_REQ;

Hdr Common header of an element. Type
EFI_80211_ELEMENT_HEADER is defined below.

RequestIDs Start of elements that are requested to be included in the Probe
Response frame. The elements are listed in order of increasing
element ID.

//**
// EFI_80211_ELEMENT_HEADER
//**
typedef struct {
 UINT8 ElementID;
 UINT8 Length;
} EFI_80211_ELEMENT_HEADER;

ElementID A unique element ID defined in IEEE 802.11 specification.

Length Specifies the number of octets in the element body.
//**
// EFI_80211_ELEMENT_SSID
//**
typedef struct {
 EFI_80211_ELEMENT_HEADER Hdr;
 UINT8 SSId[32];
} EFI_80211_ELEMENT_SSID;

Hdr Common header of an element.

SSId Service set identifier. If Hdr.Length is zero, this field is
ignored.
Version 2.5 April, 2015 1269

Unified Extensible Firmware Interface Specification
//**
// EFI_80211_ACC_NET_TYPE
//**
typedef enum {
 IeeePrivate = 0,
 IeeePrivatewithGuest = 1,
 IeeeChargeablePublic = 2,
 IeeeFreePublic = 3,
 IeeePersonal = 4,
 IeeeEmergencyServOnly = 5,
 IeeeTestOrExp = 14,
 IeeeWildcard = 15
} EFI_80211_ACC_NET_TYPE;

The EFI_80211_ACC_NET_TYPE records access network types defined in IEEE 802.11
specification.

//**
// EFI_80211_SCAN_RESULT_CODE
//**
typedef enum {
 ScanSuccess,
 ScanNotSupported
} EFI_80211_SCAN_RESULT_CODE;

ScanSuccess The scan operation finished successfully.

ScanNotSupported The scan operation is not supported in current implementation.

//**
// EFI_80211_SCAN_RESULT
//**
typedef struct {
 UINTN NumOfBSSDesp;
 EFI_80211_BSS_DESCRIPTION **BSSDespSet;
 UINTN NumofBSSDespFromPilot;
 EFI_80211_BSS_DESP_PILOT **BSSDespFromPilotSet;
 UINT8 *VendorSpecificInfo;
} EFI_80211_SCAN_RESULT;

NumOfBSSDesp The number of EFI_80211_BSS_DESCRIPTION in
BSSDespSet. If zero, BSSDespSet should be ignored.

BSSDespSet Points to zero or more instances of
EFI_80211_BSS_DESCRIPTION. Type
EFI_80211_BSS_DESCRIPTION is defined below.

NumOfBSSDespFromPilot

The number of EFI_80211_BSS_DESP_PILOT in
BSSDespFromPilotSet. If zero,
BSSDespFromPilotSet should be ignored.
1270 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
BSSDespFromPilotSetPoints to zero or more instances of
EFI_80211_BSS_DESP_PILOT. Type
EFI_80211_BSS_DESP_PILOT is defined below.

VendorSpecificInfo Specifies zero or more elements. This is an optional parameter
and may be NULL.

//**
// EFI_80211_BSS_DESCRIPTION
//**
typedef struct {
 EFI_80211_MAC_ADDRESS BSSId;
 UINT8 *SSId;
 UINT8 SSIdLen;
 EFI_80211_BSS_TYPE BSSType;
 UINT16 BeaconPeriod;
 UINT64 Timestamp;
 UINT16 CapabilityInfo;
 UINT8 *BSSBasicRateSet;
 UINT8 *OperationalRateSet;
 EFI_80211_ELEMENT_COUNTRY *Country;
 EFI_80211_ELEMENT_RSN RSN;
 UINT8 RSSI;
 UINT8 RCPIMeasurement;
 UINT8 RSNIMeasurement;
 UINT8 *RequestedElements;
 UINT8 *BSSMembershipSelectorSet;
 EFI_80211_ELEMENT_EXT_CAP *ExtCapElement;
} EFI_80211_BSS_DESCRIPTION;

BSSId Indicates a specific BSSID of the found BSS.

SSId Specifies the SSID of the found BSS. If NULL, ignore SSIdLen
field.

SSIdLen Length in bytes of the SSId. If zero, ignore SSId field.

BSSType Specifies the type of the found BSS.

BeaconPeriod The beacon period in TU of the found BSS.

Timestamp The timestamp of the received frame from the found BSS.

CapabilityInfo The advertised capabilities of the BSS.

BSSBasicRateSet The set of data rates that shall be supported by all STAs that
desire to join this BSS.

OperationalRateSet The set of data rates that the peer STA desires to use for
communication within the BSS.

Country The information required to identify the regulatory domain in
which the peer STA is located. Type
EFI_80211_ELEMENT_COUNTRY is defined below.
Version 2.5 April, 2015 1271

Unified Extensible Firmware Interface Specification
RSN The cipher suites and AKM suites supported in the BSS. Type
EFI_80211_ELEMENT_RSN is defined below.

RSSI Specifies the RSSI of the received frame.

RCPIMeasurement Specifies the RCPI of the received frame.

RSNIMeasurement Specifies the RSNI of the received frame.

RequestedElements Specifies the elements requested by the request element of the
Probe Request frame. This is an optional parameter and may be
NULL.

BSSMembershipSelectorSetSpecifies the BSS membership selectors that represent the
set of features that shall be supported by all STAs to join this
BSS.

ExtCapElement Specifies the parameters within the Extended Capabilities
element that are supported by the MAC entity. This is an optional
parameter and may be NULL. Type
EFI_80211_ELEMENT_EXT_CAP is defined below.

//**
// EFI_80211_ELEMENT_COUNTRY
//**
typedef struct {
 EFI_80211_ELEMENT_HEADER Hdr;
 UINT8 CountryStr[3];
 EFI_80211_COUNTRY_TRIPLET CountryTriplet[1];
} EFI_80211_ELEMENT_COUNTRY;

Hdr Common header of an element.

CountryStr Specifies country strings in 3 octets.

CountryTriplet Indicates a triplet that repeated in country element. The number
of triplets is determined by the Hdr.Length field.

//**
// EFI_80211_COUNTRY_TRIPLET
//**
typedef union {
 EFI_80211_COUNTRY_TRIPLET_SUBBAND Subband;
 EFI_80211_COUNTRY_TRIPLET_OPERATE Operating;
} EFI_80211_COUNTRY_TRIPLET;

Subband The subband triplet.

Operating The operating triplet.
1272 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**
// EFI_80211_COUNTRY_TRIPLET_SUBBAND
//**
typedef struct {
 UINT8 FirstChannelNum;
 UINT8 NumOfChannels;
 UINT8 MaxTxPowerLevel;
} EFI_80211_COUNTRY_TRIPLET_SUBBAND;

FirstChannelNum Indicates the lowest channel number in the subband. It has a
positive integer value less than 201.

NumOfChannels Indicates the number of channels in the subband.

MaxTxPowerLevel Indicates the maximum power in dBm allowed to be transmitted.

//**
// EFI_80211_COUNTRY_TRIPLET_OPERATE
//**
typedef struct {
 UINT8 OperatingExtId;
 UINT8 OperatingClass;
 UINT8 CoverageClass;
} EFI_80211_COUNTRY_TRIPLET_OPERATE;

OperatingExtId Indicates the operating extension identifier. It has a positive
integer value of 201 or greater.

OperatingClass Index into a set of values for radio equipment set of rules.

CoverageClass Specifies aAirPropagationTime characteristics used in BSS
operation. Refer the definition of aAirPropagationTime in IEEE
802.11 specification.

//**
// EFI_80211_ELEMENT_RSN
//**
typedef struct {
 EFI_80211_ELEMENT_HEADER Hdr;
 EFI_80211_ELEMENT_DATA_RSN *Data;
} EFI_80211_ELEMENT_RSN;

Hdr Common header of an element.

Data Points to RSN element. Type
EFI_80211_ELEMENT_DATA_RSN is defined below. The size
of a RSN element is limited to 255 octets.
Version 2.5 April, 2015 1273

Unified Extensible Firmware Interface Specification
//**
// EFI_80211_ELEMENT_DATA_RSN
//**
typedef struct {
 UINT16 Version;
 UINT32 GroupDataCipherSuite;
//UINT16 PairwiseCipherSuiteCount;
//UINT32
PairwiseCipherSuiteList[PairwiseCipherSuiteCount];
//UINT16 AKMSuiteCount;
//UINT32 AKMSuiteList[AKMSuiteCount];
//UINT16 RSNCapabilities;
//UINT16 PMKIDCount;
//UINT8 PMKIDList[PMKIDCount][16];
//UINT32 GroupManagementCipherSuite;
} EFI_80211_ELEMENT_DATA_RSN;

Version Indicates the version number of the RSNA protocol. Value 1 is
defined in current IEEE 802.11 specification.

GroupDataCipherSuiteSpecifies the cipher suite selector used by the BSS to protect
group address frames.

PairwiseCipherSuiteCountIndicates the number of pairwise cipher suite selectors
that are contained in PairwiseCipherSuiteList.

PairwiseCipherSuiteListContains a series of cipher suite selectors that indicate the
pairwise cipher suites contained in this element.

AKMSuiteCount Indicates the number of AKM suite selectors that are contained in
AKMSuiteList.

AKMSuiteList Contains a series of AKM suite selectors that indicate the AKM
suites contained in this element.

RSNCapabilities Indicates requested or advertised capabilities.

PMKIDCount Indicates the number of PKMIDs in the PMKIDList.

PMKIDList Contains zero or more PKMIDs that the STA believes to be valid
for the destination AP.

GroupManagementCipherSuite

Specifies the cipher suite selector used by the BSS to protect
group addressed robust management frames.

//**
// EFI_80211_ELEMENT_EXT_CAP
//**
typedef struct {
 EFI_80211_ELEMENT_HEADER Hdr;
 UINT8 Capabilities[1];
} EFI_80211_ELEMENT_EXT_CAP;

Hdr Common header of an element.
1274 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Capabilities Indicates the capabilities being advertised by the STA
transmitting the element. This is a bit field with variable length.
Refer to IEEE 802.11 specification for bit value.

//**
// EFI_80211_BSS_DESP_PILOT
//**
typedef struct {
 EFI_80211_MAC_ADDRESS BSSId;
 EFI_80211_BSS_TYPE BSSType;
 UINT8 ConCapInfo;
 UINT8 ConCountryStr[2];
 UINT8 OperatingClass;
 UINT8 Channel;
 UINT8 Interval;
 EFI_80211_MULTIPLE_BSSID *MultipleBSSID;
 UINT8 RCPIMeasurement;
 UINT8 RSNIMeasurement;
} EFI_80211_BSS_DESP_PILOT;

BSSId Indicates a specific BSSID of the found BSS.

BSSType Specifies the type of the found BSS.

ConCapInfo One octet field to report condensed capability information.

ConCountryStr Two octet’s field to report condensed country string.

OperatingClass Indicates the operating class value for the operating channel.

Channel Indicates the operating channel.

Interval Indicates the measurement pilot interval in TU.

MultipleBSSID Indicates that the BSS is within a multiple BSSID set.

RCPIMeasurement Specifies the RCPI of the received frame.

RSNIMeasurement Specifies the RSNI of the received frame.

//**
// EFI_80211_MULTIPLE_BSSID
//**
typedef struct {
 EFI_80211_ELEMENT_HEADER Hdr;
 UINT8 Indicator;
 EFI_80211_SUBELEMENT_INFO SubElement[1];
} EFI_80211_MULTIPLE_BSSID;

Hdr Common header of an element.

Indicator Indicates the maximum number of BSSIDs in the multiple BSSID
set. When Indicator is set to n, 2n is the maximum number.

SubElement Contains zero or more sub-elements. Type
EFI_80211_SUBELEMENT_INFO is defined below.
Version 2.5 April, 2015 1275

Unified Extensible Firmware Interface Specification
//**
// EFI_80211_SUBELEMENT_INFO
//**
typedef struct {
 UINT8 SubElementID;
 UINT8 Length;
 UINT8 Data[1];
} EFI_80211_SUBELEMENT_INFO;

SubElementID Indicates the unique identifier within the containing element or
sub-element.

Length Specifies the number of octets in the Data field.

Data A variable length data buffer.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Data is NULL.

• Data->Data is NULL.

EFI_UNSUPPORTED One or more of the input parameters are not supported by this
implementation.

EFI_ALREADY_STARTED The scan operation is already started.
1276 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Associate()

Summary
Request an association with a specified peer MAC entity that is within an AP.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_WIRELESS_MAC_CONNECTION_ASSOCIATE)(
 IN EFI_WIRELESS_MAC_CONNECTION_PROTOCOL *This,
 IN EFI_80211_ASSOCIATE_DATA_TOKEN *Data
);

Parameters
This Pointer to the

EFI_WIRELESS_MAC_CONNECTION_PROTOCOL instance.

Data Pointer to the association token. Type
EFI_80211_ASSOCIATE_DATA_TOKEN is defined in
Related Definitions below.

Description
The Associate() function provides the capability for MAC layer to become associated with an
AP.

Related Definitions
//**
// EFI_80211_ASSOCIATE_DATA_TOKEN
//**
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 EFI_80211_ASSOCIATE_DATA *Data;
 EFI_80211_ASSOCIATE_RESULT_CODE ResultCode;
 EFI_80211_ASSOCIATE_RESULT *Result;
} EFI_80211_ASSOCIATE_DATA_TOKEN;

Event This Event will be signaled after the Status field is updated
by the EFI Wireless MAC Connection Protocol driver. The type
of Event must be EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values:

EFI_SUCCESS: Association operation completed successfully.

EFI_DEVICE_ERROR: An unexpected network or system error
occurred.

Data Pointer to the association data. Type
EFI_80211_ASSOCIATE_DATA is defined below.
Version 2.5 April, 2015 1277

Unified Extensible Firmware Interface Specification
ResultCode Indicates the association state. Type
EFI_80211_ASSOCIATE_RESULT_CODE is defined below.

Result Indicates the association result. It is caller’s responsibility to free
this buffer. Type EFI_80211_ ASSOCIATE_RESULT is
defined below.

The EFI_80211_ASSOCIATE_DATA_TOKEN structure is defined to support the process of
association with a specified AP. As input, the Data field must be filled in by the caller of EFI
Wireless MAC Connection Protocol. After the association operation completes, the EFI Wireless
MAC Connection Protocol driver updates the Status, ResultCode and Result field and the
Event is signaled.

//**
// EFI_80211_ASSOCIATE_DATA
//**
typedef struct {
 EFI_80211_MAC_ADDRESS BSSId;
 UINT16 CapabilityInfo;
 UINT32 FailureTimeout;
 UINT32 ListenInterval;
 EFI_80211_ELEMENT_SUPP_CHANNEL *Channels;
 EFI_80211_ELEMENT_RSN RSN;
 EFI_80211_ELEMENT_EXT_CAP *ExtCapElement;
 UINT8 *VendorSpecificInfo;
} EFI_80211_ASSOCIATE_DATA;

BSSId Specifies the address of the peer MAC entity to associate with.

CapabilityInfo Specifies the requested operational capabilities to the AP in 2
octets.

FailureTimeout Specifies a time limit in TU, after which the associate procedure
is terminated.

ListenInterval Specifies if in power save mode, how often the STA awakes and
listens for the next beacon frame in TU.

Channels Indicates a list of channels in which the STA is capable of
operating. . Type EFI_80211_ELEMENT_SUPP_CHANNEL is
defined below.

RSN The cipher suites and AKM suites selected by the STA.

ExtCapElement Specifies the parameters within the Extended Capabilities
element that are supported by the MAC entity. This is an
optional parameter and may be NULL.

VendorSpecificInfo Specifies zero or more elements. This is an optional parameter
and may be NULL.
1278 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**
// EFI_80211_ELEMENT_SUPP_CHANNEL
//**
typedef struct {
 EFI_80211_ELEMENT_HEADER Hdr;
 EFI_80211_ELEMENT_SUPP_CHANNEL_TUPLE Subband[1];
} EFI_80211_ELEMENT_SUPP_CHANNEL;

Hdr Common header of an element.

Subband Indicates one or more tuples of (first channel, number of
channels). Type
EFI_80211_ELEMENT_SUPP_CHANNEL_TUPLE is defined
below.

//**
// EFI_80211_ELEMENT_SUPP_CHANNEL_TUPLE
//**
typedef struct {
 UINT8 FirstChannelNumber;
 UINT8 NumberOfChannels;
} EFI_80211_ELEMENT_SUPP_CHANNEL_TUPLE;

FirstChannelNumber The first channel number in a subband of supported channels.

NumberOfChannels The number of channels in a subband of supported channels.

//**
// EFI_80211_ASSOCIATE_RESULT_CODE
//**
typedef enum {
 AssociateSuccess,
 AssociateRefusedReasonUnspecified,
 AssociateRefusedCapsMismatch,
 AssociateRefusedExtReason,
 AssociateRefusedAPOutOfMemory,
 AssociateRefusedBasicRatesMismatch,
 AssociateRejectedEmergencyServicesNotSupported,
 AssociateRefusedTemporarily
} EFI_80211_ASSOCIATE_RESULT_CODE;

The EFI_80211_ASSOCIATE_RESULT_CODE records the result responses to the association
request, which are defined in IEEE 802.11 specification.
Version 2.5 April, 2015 1279

Unified Extensible Firmware Interface Specification
//**
// EFI_80211_ASSOCIATE_RESULT
//**
typedef struct {
 EFI_80211_MAC_ADDRESS BSSId;
 UINT16 CapabilityInfo;
 UINT16 AssociationID;
 UINT8 RCPIValue;
 UINT8 RSNIValue;
 EFI_80211_ELEMENT_EXT_CAP *ExtCapElement;
 EFI_80211_ELEMENT_TIMEOUT_VAL TimeoutInterval;
 UINT8 *VendorSpecificInfo;
} EFI_80211_ASSOCIATE_RESULT;

BSSId Specifies the address of the peer MAC entity from which the
association request was received.

CapabilityInfo Specifies the operational capabilities advertised by the AP.

AssociationID Specifies the association ID value assigned by the AP.

RCPIValue Indicates the measured RCPI of the corresponding association
request frame. It is an optional parameter and is set to zero if
unavailable.

RSNIValue Indicates the measured RSNI at the time the corresponding
association request frame was received. It is an optional
parameter and is set to zero if unavailable.

ExtCapElement Specifies the parameters within the Extended Capabilities
element that are supported by the MAC entity. This is an
optional parameter and may be NULL.

TimeoutInterval Specifies the timeout interval when the result code is
AssociateRefusedTemporarily.

VendorSpecificInfo

Specifies zero or more elements. This is an optional parameter
and may be NULL.

//**
// EFI_80211_ELEMENT_TIMEOUT_VAL
//**
typedef struct {
 EFI_80211_ELEMENT_HEADER Hdr;
 UINT8 Type;
 UINT32 Value;
} EFI_80211_ELEMENT_TIMEOUT_VAL;

Hdr Common header of an element.

Type Specifies the timeout interval type.

Value Specifies the timeout interval value.
1280 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Data is NULL.

• Data->Data is NULL.

EFI_UNSUPPORTED One or more of the input parameters are not supported by this
implementation.

EFI_ALREADY_STARTED The association process is already started.

EFI_NOT_READY Authentication is not performed before this association process.

EFI_NOT_FOUND The specified peer MAC entity is not found.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
Version 2.5 April, 2015 1281

Unified Extensible Firmware Interface Specification
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Disassociate()

Summary
Request a disassociation with a specified peer MAC entity.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_WIRELESS_MAC_CONNECTION_DISASSOCIATE)(
 IN EFI_WIRELESS_MAC_CONNECTION_PROTOCOL *This,
 IN EFI_80211_DISASSOCIATE_DATA_TOKEN *Data
);

Parameters
This Pointer to the

EFI_WIRELESS_MAC_CONNECTION_PROTOCOL instance.

Data Pointer to the disassociation token. Type EFI_80211_
DISASSOCIATE_DATA_TOKEN is defined in Related
Definitions below.

Description
The Disassociate() function is invoked to terminate an existing association. Disassociation is
a notification and cannot be refused by the receiving peer except when management frame
protection is negotiated and the message integrity check fails.

Related Definitions
//**
// EFI_80211_DISASSOCIATE_DATA_TOKEN
//**
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 EFI_80211_DISASSOCIATE_DATA *Data;
 EFI_80211_DISASSOCIATE_RESULT_CODE ResultCode;
} EFI_80211_DISASSOCIATE_DATA_TOKEN;

Event This Event will be signaled after the Status field is updated by
the EFI Wireless MAC Connection Protocol driver. The type of
Event must be EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values:

EFI_SUCCESS: Disassociation operation completed
successfully.

EFI_DEVICE_ERROR: An unexpected network or system error
occurred.
1282 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_ACCESS_DENIED: The disassociation operation is not
completed due to some underlying hardware or software state.

EFI_NOT_READY: The disassociation operation is started but
not yet completed.

Data Pointer to the disassociation data. Type
EFI_80211_DISASSOCIATE_DATA is defined below.

ResultCode Indicates the disassociation state. Type
EFI_80211_DISASSOCIATE_RESULT_CODE is defined
below.

//**
// EFI_80211_DISASSOCIATE_DATA
//**
typedef struct {
 EFI_80211_MAC_ADDRESS BSSId;
 EFI_80211_REASON_CODE ReasonCode;
 UINT8 *VendorSpecificInfo;
} EFI_80211_DISASSOCIATE_DATA;

BSSId Specifies the address of the peer MAC entity with which to
perform the disassociation process.

ReasonCode Specifies the reason for initiating the disassociation process.

VendorSpecificInfo Zero or more elements, may be NULL.
Version 2.5 April, 2015 1283

Unified Extensible Firmware Interface Specification
//**
// EFI_80211_REASON_CODE
//**
typedef enum {
 Ieee80211UnspecifiedReason = 1,
 Ieee80211PreviousAuthenticateInvalid = 2,
 Ieee80211DeauthenticatedSinceLeaving = 3,
 Ieee80211DisassociatedDueToInactive = 4,
 Ieee80211DisassociatedSinceApUnable = 5,
 Ieee80211Class2FrameNonauthenticated = 6,
 Ieee80211Class3FrameNonassociated = 7,
 Ieee80211DisassociatedSinceLeaving = 8,
 // ...
} EFI_80211_REASON_CODE;

Note: The reason codes are defined in chapter 8.4.1.7 Reason Code field, IEEE 802.11-2012.

//**
// EFI_80211_DISASSOCIATE_RESULT_CODE
//**

typedef enum {
 DisassociateSuccess,
 DisassociateInvalidParameters
} EFI_80211_DISASSOCIATE_RESULT_CODE;

DisassociateSuccess Disassociation process completed successfully.

DisassociateInvalidParameters

Disassociation failed due to any input parameter is invalid.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Data is NULL.

EFI_ALREADY_STARTED The disassociation process is already started.

EFI_NOT_READY The disassociation service is invoked to a nonexistent association
relationship.

EFI_NOT_FOUND The specified peer MAC entity is not found.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
1284 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Authenticate()

Summary
Request the process of establishing an authentication relationship with a peer MAC entity.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_WIRELESS_MAC_CONNECTION_AUTHENTICATE)(
 IN EFI_WIRELESS_MAC_CONNECTION_PROTOCOL *This,
 IN EFI_80211_AUTHENTICATE_DATA_TOKEN *Data
);

Parameters
This Pointer to the

EFI_WIRELESS_MAC_CONNECTION_PROTOCOL instance.

Data Pointer to the authentication token. Type
EFI_80211_AUTHENTICATE_DATA_TOKEN is defined in
Related Definitions below.

Description

The Authenticate() function requests authentication with a specified peer MAC entity.
This service might be time-consuming thus is designed to be invoked independently of the
association service.

Related Definitions
//**
// EFI_80211_AUTHENTICATE_DATA_TOKEN
//**
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 EFI_80211_AUTHENTICATE_DATA *Data;
 EFI_80211_AUTHENTICATE_RESULT_CODE ResultCode;
 EFI_80211_AUTHENTICATE_RESULT *Result;
} EFI_80211_AUTHENTICATE_DATA_TOKEN;

Event This Event will be signaled after the Status field is updated
by the EFI Wireless MAC Connection Protocol driver. The type
of Event must be EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values:

EFI_SUCCESS: Authentication operation completed
successfully.

EFI_PROTOCOL_ERROR: Peer MAC entity rejects the
authentication.
Version 2.5 April, 2015 1285

Unified Extensible Firmware Interface Specification
EFI_NO_RESPONSE: Peer MAC entity does not response the
authentication request.

EFI_DEVICE_ERROR: An unexpected network or system
error occurred.

EFI_ACCESS_DENIED: The authentication operation is not
completed due to some underlying hardware or software state.

EFI_NOT_READY: The authentication operation is started but
not yet completed.

Data Pointer to the authentication data. Type
EFI_80211_AUTHENTICATE_DATA is defined below.

ResultCode Indicates the association state. Type
EFI_80211_AUTHENTICATE_RESULT_CODE is defined
below.

Result Indicates the association result. It is caller’s responsibility to free
this buffer. Type EFI_80211_AUTHENTICATE_RESULT is
defined below.

//**
// EFI_80211_AUTHENTICATION_DATA
//**
typedef struct {
 EFI_80211_MAC_ADDRESS BSSId;
 EFI_80211_AUTHENTICATION_TYPE AuthType;
 UINT32 FailureTimeout;
 UINT8 *FTContent;
 UINT8 *SAEContent;
 UINT8 *VendorSpecificInfo;
} EFI_80211_AUTHENTICATE_DATA;

BSSId Specifies the address of the peer MAC entity with which to
perform the authentication process.

AuthType Specifies the type of authentication algorithm to use during the
authentication process.

FailureTimeout Specifies a time limit in TU after which the authentication
procedure is terminated.

FTContent Specifies the set of elements to be included in the first message of
the FT authentication sequence, may be NULL.

SAEContent Specifies the set of elements to be included in the SAE Commit
Message or SAE Confirm Message, may be NULL.

VendorSpecificInfo Zero or more elements, may be NULL.
1286 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**
// EFI_80211_AUTHENTICATION_TYPE
//**
typedef enum {
 OpenSystem,
 SharedKey,
 FastBSSTransition,
 SAE
} EFI_80211_AUTHENTICATION_TYPE;

OpenSystem Open system authentication, admits any STA to the DS.

SharedKey Shared Key authentication relies on WEP to demonstrate
knowledge of a WEP encryption key.

FastBSSTransition FT authentication relies on keys derived during the initial
mobility domain association to authenticate the stations.

SAE SAE authentication uses finite field cryptography to prove
knowledge of a shared password.

//**
// EFI_80211_AUTHENTICATION_RESULT_CODE
//**
typedef enum {
 AuthenticateSuccess,
 AuthenticateRefused,
 AuthenticateAnticLoggingTokenRequired,
 AuthenticateFiniteCyclicGroupNotSupported,
 AuthenticationRejected,
 AuthenticateInvalidParameter
} EFI_80211_AUTHENTICATE_RESULT_CODE;

The result code indicates the result response to the authentication request from the peer MAC entity.

//**
// EFI_80211_AUTHENTICATION_RESULT
//**
typedef struct {
 EFI_80211_MAC_ADDRESS BSSId;
 UINT8 *FTContent;
 UINT8 *SAEContent;
 UINT8 *VendorSpecificInfo;
} EFI_80211_AUTHENTICATE_RESULT;

BSSId Specifies the address of the peer MAC entity from which the
authentication request was received.

FTContent Specifies the set of elements to be included in the second message
of the FT authentication sequence, may be NULL.
Version 2.5 April, 2015 1287

Unified Extensible Firmware Interface Specification
SAEContent Specifies the set of elements to be included in the SAE Commit
Message or SAE Confirm Message, may be NULL.

VendorSpecificInfo Zero or more elements, may be NULL.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Data is NULL.

• Data.Data is NULL.

EFI_UNSUPPORTED One or more of the input parameters are not supported by this
implementation.

EFI_ALREADY_STARTED The authentication process is already started.

EFI_NOT_FOUND The specified peer MAC entity is not found.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
1288 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Deauthenticate()

Summary
Invalidate the authentication relationship with a peer MAC entity.

Prototype
typedef

EFI_STATUS
(EFIAPI *EFI_WIRELESS_MAC_CONNECTION_DEAUTHENTICATE)(
 IN EFI_WIRELESS_MAC_CONNECTION_PROTOCOL *This,
 IN EFI_80211_DEAUTHENTICATE_DATA_TOKEN *Data
);

Parameters
This Pointer to the EFI_WIRELESS_MAC_CONNECTION

_PROTOCOL instance.

Data Pointer to the deauthentication token. Type
EFI_80211_DEAUTHENTICATE_DATA_TOKEN is defined in
Related Definitions below.

Description
The Deauthenticate() function requests that the authentication relationship with a specified
peer MAC entity be invalidated. Deauthentication is a notification and when it is sent out the
association at the transmitting station is terminated.

Related Definitions
//**
// EFI_80211_DEAUTHENTICATE_DATA_TOKEN
//**
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 EFI_80211_DEAUTHENTICATE_DATA *Data;
} EFI_80211_DEAUTHENTICATE_DATA_TOKEN;

Event This Event will be signaled after the Status field is updated
by the EFI Wireless MAC Connection Protocol driver. The type
of Event must be EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values:

EFI_SUCCESS: Deauthentication operation
completed successfully.

EFI_DEVICE_ERROR: An unexpected network or system
error occurred.

EFI_ACCESS_DENIED:The deauthentication operation is not
completed due to some underlying hardware or software state.
Version 2.5 April, 2015 1289

Unified Extensible Firmware Interface Specification
EFI_NOT_READY: The deauthentication operation is started but
not yet completed.

Data Pointer to the deauthentication data. Type
EFI_80211_DEAUTHENTICATE_DATA is defined below.

//**
// EFI_80211_DEAUTHENTICATE_DATA
//**
typedef struct {
 EFI_80211_MAC_ADDRESS BSSId;
 EFI_80211_REASON_CODE ReasonCode;
 UINT8 *VendorSpecificInfo;
} EFI_80211_DEAUTHENTICATE_DATA;

BSSId Specifies the address of the peer MAC entity with which to
perform the deauthentication process.

ReasonCode Specifies the reason for initiating the deauthentication process.

VendorSpecificInfo Zero or more elements, may be NULL.

Status Codes Returned

25.4 EFI Supplicant Protocol

EFI_SUPPLICANT_PROTOCOL

Summary
This protocol provides the ability to manage calls between MAC Driver and Supplicant Driver.

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Data is NULL.

• Data.Data is NULL.

EFI_ALREADY_STARTED The deauthentication process is already started.

EFI_NOT_READY The deauthentication service is invoked to a nonexistent
association or authentication relationship.

EFI_NOT_FOUND The specified peer MAC entity is not found.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
1290 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
GUID
#define EFI_SUPPLICANT_PROTOCOL_GUID \
 { 0xca959f, 0x6cfa, 0x4db1, \
 { 0x95, 0xbc, 0xe4, 0x6c, 0x47, 0x51, 0x43, 0x90 }}

Protocol Interface Structure
typedef struct _EFI_SUPPLICANT_PROTOCOL {

 EFI_SUPPLICANT_BUILD_RESPONSE_PACKET BuildResponsePacket;
 EFI_SUPPLICANT_PROCESS_PACKET ProcessPacket;
 EFI_SUPPLICANT_SET_DATA SetData;
 EFI_SUPPLICANT_GET_DATA GetData;
} EFI_SUPPLICANT_PROTOCOL;

Parameters
BuildResponsePacketThis API consumed by MAC driver and it processes security data

for handling key management. See the
BuildResponsePacket() function description.

ProcessPacket This API consumed by MAC driver and it process frame for
encryption or decryption. See the ProcessPacket()
function description.

SetData This API consumed by MAC driver and it sets the information
needed during key generated in handshake. See the SetData()
function description.

GetData This API consumed by MAC driver and it gets the information
generated in handshake. See the GetData() function
description.

Description
The EFI_SUPPLICANT_PROTOCOL is designed to provide unified place for WIFI security
management. Both PSK authentication and 802.1X EAP authentication can be managed via this
protocol and MAC driver can only focus on about packet transmitting or receiving.
Version 2.5 April, 2015 1291

Unified Extensible Firmware Interface Specification
EFI_SUPPLICANT_PROTOCOL.BuildResponsePacket()

Summary
BuildResponsePacket() is called during STA and AP authentication is in progress.
Supplicant derives the PTK or session keys depend on type of authentication is being employed.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SUPPLICANT_BUILD_RESPONSE_PACKET)(
 IN EFI_SUPPLICANT_PROTOCOL *This,
 IN UINT8 *RequestBuffer,
 IN UINTN RequestBufferSize,
 OUT UINT8 *Buffer,
 IN OUT UINTN *BufferSize
);

Parameters
This Pointer to the EFI_SUPPLICANT_PROTOCOL instance.

RequestBuffer Pointer to the most recently received EAPOL packet.

RequestSize Packet size in bytes for the most recently received EAPOL
packet.

Buffer Pointer to the buffer to hold the built packet.

BufferSize Pointer to the buffer size in bytes. On input, it is the buffer size
provided by the caller. On output, it is the buffer size in fact
needed to contain the packet.

Description
MAC driver calls BuildResponsePacket() when it receives the security frame. It simply
passes the data to supplicant to process the data. It could be WPA-PSK which starts the 4-way
handshake, or WPA-EAP first starts with Authentication process and then 4-way handshake, or 2-
way group key handshake. In process of authentication, 4-way handshake or group key handshake,
Supplicant needs to communicate with its peer (AP/AS) to fill the output buffer parameter. Once the
4 way handshake or group key handshake is over, and PTK (Pairwise Transient keys) and GTK
(Group Temporal Key) are generated.

Status Codes Returned

EFI_SUCCESS The required EAPOL packet is built successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• RequestBuffer is NULL.

• RequestSize is 0.

• Buffer is NULL.

• BufferSize is NULL.
1292 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
EFI_BUFFER_TOO_SMALL BufferSize is too small to hold the response packet.

EFI_NOT_READY Current EAPOL session state is NOT ready to build

ResponsePacket.
Version 2.5 April, 2015 1293

Unified Extensible Firmware Interface Specification
EFI_SUPPLICANT_PROTOCOL.ProcessPacket()

Summary
ProcessPacket() is called from MAC driver to Supplicant driver to encrypt or decrypt the data
depending type of authentication type.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SUPPLICANT_PROCESS_PACKET)(
 IN EFI_SUPPLICANT_PROTOCOL *This,
 IN OUT EFI_SUPPLICANT_FRAGMENT_DATA **FragmentTable,
 IN UINT32 *FragmentCount,
 IN EFI_SUPPLICANT_CRYPT_MODE CryptMode
);

Parameters
This Pointer to the EFI_SUPPLICANT_PROTOCOL instance.

FragmentTable Pointer to a list of fragment. The caller will take responsible to
handle the original FragmentTable while it may be
reallocated in Supplicant driver.

FragmentCount Number of fragment.

CryptMode Crypt mode.

Description
ProcessPacket() is responsible for encrypting or decrypting the data traffic as per
authentication type. MAC driver routes the data frame as it is to Supplicant module and encrypts or
decrypts packet with updated length comes as output parameter. Supplicant holds the derived PTK
and GTKs and uses this key to encrypt or decrypt the network traffic.

Related Definitions
//**
// EFI_SUPPLICANT_FRAGMENT_DATA
//**
typedef struct {
 UINT32 FragmentLength;
 VOID *FragmentBuffer;
} EFI_SUPPLICANT_FRAGMENT_DATA;

FragmentLength Length of data buffer in the fragment.

FragmentBuffer Pointer to the data buffer in the fragment.
1294 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**
// EFI_SUPPLICANT_CRYPT_MODE
//**
typedef enum {
 EfiSupplicantEncrypt,
 EfiSupplicantDecrypt,
} EFI_SUPPLICANT_CRYPT_MODE;

EfiSupplicantEncryptEncrypt data provided in the fragment buffers.

EfiSupplicantDecryptDecrypt data provided in the fragment buffers.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• FragmentTable is NULL.

• FragmentCount is NULL.

• CryptMode is invalid.

EFI_NOT_READY Current supplicant state is NOT Authenticated.

EFI_ABORTED Something wrong decryption the message.

EFI_UNSUPPORTED This API is not supported.
Version 2.5 April, 2015 1295

Unified Extensible Firmware Interface Specification
EFI_SUPPLICANT_PROTOCOL.SetData()

Summary
Set Supplicant configuration data.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SUPPLICANT_SET_DATA)(
 IN EFI_SUPPLICANT_PROTOCOL *This,
 IN EFI_SUPPLICANT_DATA_TYPE DataType,
 IN VOID *Data,
 IN UINTN DataSize
);

Parameters
This Pointer to the EFI_SUPPLICANT_PROTOCOL instance.

DataType The type of data.

Data Pointer to the buffer to hold the data.

DataSize Pointer to the buffer size in bytes.

Description
The SetData() function sets Supplicant configuration. For example, Supplicant driver need to
know Password and TargetSSIDName to calculate PSK. Supplicant driver need to know StationMac
and TargetSSIDMac to calculate PTK. Then it can derive KCK(key confirmation key) which is
needed to calculate MIC, and KEK(key encryption key) which is needed to unwrap GTK.
1296 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
Related Definitions
//**
// EFI_SUPPLICANT_DATA_TYPE
//**
typedef enum {
 //
 // Session Configuration
 //
 EfiSupplicant80211AKMSuite,
 EfiSupplicant80211GroupDataCipherSuite,
 EfiSupplicant80211PairwiseCipherSuite,
 EfiSupplicant80211PskPassword,
 EfiSupplicant80211TargetSSIDName,
 EfiSupplicant80211StationMac,
 EfiSupplicant80211TargetSSIDMac,
 //
 // Session Information
 //
 EfiSupplicant80211PTK,
 EfiSupplicant80211GTK,
 EfiSupplicantState,
 EfiSupplicant80211LinkState,
 EfiSupplicantKeyRefresh
} EFI_SUPPLICANT_DATA_TYPE;

EfiSupplicant80211AKMSuite

Authentication type. The corresponding Data is of type
EFI_SUPPLICANT_SUITE_SELECTOR.

EfiSupplicant80211GroupDataCipherSuite

Group data encryption type. The corresponding Data is of type
EFI_SUPPLICANT_SUITE_SELECTOR.

EfiSupplicant80211PairwiseCipherSuite

Pairwise encryption type. The corresponding Data is of type
EFI_SUPPLICANT_SUITE_SELECTOR.

EfiSupplicant80211PskPassword

PSK password. The corresponding Data is ASCII string with
NULL terminator.

EfiSupplicant80211TargetSSIDName

Target SDID name. The corresponding Data is ASCII string
with NULL terminator.

EfiSupplicant80211StationMac

Station MAC address. The corresponding Data is 6 bytes MAC
address.

EfiSupplicant80211TargetSSIDMac
Version 2.5 April, 2015 1297

Unified Extensible Firmware Interface Specification
Target SSID MAC address. The corresponding Data is 6 bytes
MAC address.

EfiSupplicant80211PTK

802.11 PTK. The corresponding Data is buffer.

EfiSupplicant80211GTK

802.11 GTK. The corresponding Data is buffer.

EfiSupplicantState

Supplicant state. The corresponding Data is
EFI_EAPOL_SUPPLICANT_PAE_STATE.

EfiSupplicant80211LinkState

802.11 link state. The corresponding Data is EFI_
80211_LINK_STATE.

EfiSupplicantKeyRefresh

Flag indicates key is refreshed. The corresponding Data is
EFI_SUPPLICANT_KEY_REFRESH.

//**
// EFI_80211_LINK_STATE
//**
typedef enum {
 Ieee80211UnauthenticatedUnassociated,
 Ieee80211AuthenticatedUnassociated,
 Ieee80211PendingRSNAuthentication,
 Ieee80211AuthenticatedAssociated
} EFI_80211_LINK_STATE;

Ieee80211UnauthenticatedUnassociated

Indicates initial start state, unauthenticated, unassociated.

Ieee80211AuthenticatedUnassociated

Indicates authenticated, unassociated.

Ieee80211PendingRSNAuthentication

Indicates authenticated and associated, but pending RSN
authentication.

Ieee80211AuthenticatedAssociated

Indicates authenticated and associated.
1298 April, 2015 Version 2.5

Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
//**
// EFI_SUPPLICANT_KEY_REFRESH
//**
typedef struct {
 BOOLEAN GTKRefresh;
} EFI_SUPPLICANT_KEY_REFRESH;

GTKRefresh If TRUE, indicates GTK is just refreshed after a successful call to
EFI_SUPPLICANT_PROTOCOL.BuildResponsePacket
().

//**
// EFI_SUPPLICANT_SUITE_SELECTOR
//**
typedef struct {
 UINT8 Oui[3];
 UINT8 SuiteType;
} EFI_SUPPLICANT_SUITE_SELECTOR;

For AKM (Authentication and Key Management) suite, the value of
EFI_SUPPLICANT_SUIT_TYPE definition is from IEEE 802.11 standard, Table 8-101—AKM
suite selectors. For example, 802.1X/EAP is {00-0F-AC, 1}, PSK is {00-0F-AC, 2}.

For encryption cipher suite, the value of EFI_SUPPLICANT_SUIT_TYPE definition is from IEEE
802.11 standard, Table 8-99—Cipher suite selectors. For example, default CCMP (CTR with CBC-
MAC Protocol) is {00-0F-AC, 4}, TKIP (Temporal Key Integrity Protocol) is {00-0F-AC, 2}.

Status Codes Returned

EFI_SUCCESS The Supplicant configuration data is set successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• Data is NULL.

• DataSize is 0.

EFI_UNSUPPORTED The DataType is unsupported.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
Version 2.5 April, 2015 1299

Unified Extensible Firmware Interface Specification
EFI_SUPPLICANT_PROTOCOL.GetData()

Summary
Get Supplicant configuration data.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SUPPLICANT_GET_DATA)(
 IN EFI_SUPPLICANT_PROTOCOL *This,
 IN EFI_SUPPLICANT_DATA_TYPE DataType,
 OUT UINT8 *Data,
 IN OUT UINTN *DataSize
);

Parameters
This Pointer to the EFI_SUPPLICANT_PROTOCOL instance.

DataType The type of data.

Data Pointer to the buffer to hold the data.

DataSize Pointer to the buffer size in bytes. On input, it is the buffer size
provided by the caller. On output, it is the buffer size in fact
needed to contain the packet.

Description
The GetData() function gets Supplicant configuration. The typical example is PTK and GTK
derived from handshake. The wireless NIC can support software encryption or hardware encryption.
If MAC driver uses software encryption, it can call ProcessPacket() to get result. If MAC
driver supports hardware encryption, it can get PTK and GTK via GetData()and program to
hardware register.

Status Codes Returned

EFI_SUCCESS The Supplicant configuration data is got successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• Data is NULL.

• DataSize is NULL.

EFI_UNSUPPORTED The DataType is unsupported.

EFI_NOT_FOUND The Supplicant configuration data is not found.
1300 April, 2015 Version 2.5

Network Protocols - Bluetooth
26
Network Protocols - Bluetooth

26.1 EFI Bluetooth Host Controller Protocol

EFI_BLUETOOTH_HC_PROTOCOL

Summary
This protocol abstracts the Bluetooth host controller layer message transmit and receive.

GUID
#define EFI_BLUETOOTH_HC_PROTOCOL_GUID \
 { 0xb3930571, 0xbeba, 0x4fc5,
 { 0x92, 0x3, 0x94, 0x27, 0x24, 0x2e, 0x6a, 0x43 }}

Protocol Interface Structure
typedef struct _EFI_BLUETOOTH_HC_PROTOCOL {
 EFI_BLUETOOTH_HC_SEND_COMMAND SendCommand;
 EFI_BLUETOOTH_HC_RECEIVE_EVENT ReceiveEvent;
 EFI_BLUETOOTH_HC_ASYNC_RECEIVE_EVENT AsyncReceiveEvent;
 EFI_BLUETOOTH_HC_SEND_ACL_DATA SendACLData;
 EFI_BLUETOOTH_HC_RECEIVE_ACL_DATA ReceiveACLData;
 EFI_BLUETOOTH_HC_ASYNC_RECEIVE_ACL_DATA
AsyncReceiveACLData;
 EFI_BLUETOOTH_HC_SEND_SCO_DATA SendSCOData;
 EFI_BLUETOOTH_HC_RECEIVE_SCO_DATA ReceiveSCOData;
 EFI_BLUETOOTH_HC_ASYNC_RECEIVE_SCO_DATA
AsyncReceiveSCOData;
} EFI_BLUETOOTH_HC_PROTOCOL;

Parameters
SendCommand Send HCI command packet. See the SendCommand() function

description.

ReceiveEvent Receive HCI event packets. See the ReceiveEvent()
function description.

AsyncReceiveEvent Non-blocking receive HCI event packets. See the
AsyncReceiveEvent() function description.

SendACLData Send HCI ACL (asynchronous connection-oriented) data packets.
See the SendACLData() function description.

ReceiveACLData Receive HCI ACL data packets. See the ReceiveACLData()
function description.
Version 2.5 April, 2015 1301

Unified Extensible Firmware Interface Specification
AsyncReceiveACLDataNon-blocking receive HCI ACL data packets. See the
AsyncReceiveACLData() function description.

SendSCOData Send HCI synchronous (SCO and eSCO) data packets. See the
SendSCOData() function description.

ReceiveSCOData Receive HCI synchronous data packets. See the
ReceiveSCOData() function description.

AsyncReceiveSCODataNon-blocking receive HCI synchronous data packets. See the
AsyncReceiveSCOData() function description.

Description
The EFI_BLUETOOTH_HC_PROTOCOL is used to transmit or receive HCI layer data packets. For
detail of different HCI packet (command, event, ACL, SCO), please refer to Bluetooth specification.
1302 April, 2015 Version 2.5

Network Protocols - Bluetooth
BLUETOOTH_HC_PROTOCOL.SendCommand()

Summary
Send HCI command packet.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_HC_SEND_COMMAND)(
 IN EFI_BLUETOOTH_HC_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 IN VOID *Buffer,
 IN UINTN Timeout
);

Parameters
This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

BufferSize On input, indicates the size, in bytes, of the data buffer specified
by Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be transmitted to
Bluetooth host controller.

Timeout Indicating the transfer should be completed within this time
frame. The units are in milliseconds. If Timeout is 0, then the
caller must wait for the function to be completed until
EFI_SUCCESS or EFI_DEVICE_ERROR is returned.

Description
The SendCommand() function sends HCI command packet. Buffer holds the whole HCI
command packet, including OpCode, OCF, OGF, parameter length, and parameters. When this
function is returned, it just means the HCI command packet is sent, it does not mean the command is
success or complete. Caller might need to wait a command status event to know the command status,
or wait a command complete event to know if the command is completed. (see in Bluetooth
specification, HCI Command Packet for more detail)

Status Codes Returned

EFI_SUCCESS The HCI command packet is sent successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

BufferSize is NULL.

*BufferSize is 0.

Buffer is NULL.

EFI_TIMEOUT Sending HCI command packet fail due to timeout.

EFI_DEVICE_ERROR Sending HCI command packet fail due to host controller or device
error.
Version 2.5 April, 2015 1303

Unified Extensible Firmware Interface Specification
BLUETOOTH_HC_PROTOCOL.ReceiveEvent()

Summary
Receive HCI event packet.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_HC_RECEIVE_EVENT)(
 IN EFI_BLUETOOTH_HC_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer,
 IN UINTN Timeout
);

Parameters
This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

BufferSize On input, indicates the size, in bytes, of the data buffer specified
by Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be received from
Bluetooth host controller.

Timeout Indicating the transfer should be completed within this time
frame. The units are in milliseconds. If Timeout is 0, then the
caller must wait for the function to be completed until
EFI_SUCCESS or EFI_DEVICE_ERROR is returned.

Description
The ReceiveEvent() function receives HCI event packet. Buffer holds the whole HCI event
packet, including EventCode, parameter length, and parameters. (See in Bluetooth specification,
HCI Event Packet for more detail.)

Status Codes Returned

EFI_SUCCESS The HCI event packet is received successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Receiving HCI event packet fail due to timeout.

EFI_DEVICE_ERROR Receiving HCI event packet fail due to host controller or device
error.
1304 April, 2015 Version 2.5

Network Protocols - Bluetooth
BLUETOOTH_HC_PROTOCOL.AsyncReceiveEvent()

Summary

Receive HCI event packet in non-blocking way.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_HC_ASYNC_RECEIVE_EVENT) (
 IN EFI_BLUETOOTH_HC_PROTOCOL *This,
 IN BOOLEAN IsNewTransfer,
 IN UINTN PollingInterval,
 IN UINTN DataLength,
 IN EFI_BLUETOOTH_HC_ASYNC_FUNC_CALLBACK Callback,
 IN VOID *Context
);

Parameters
This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

IsNewTransfer If TRUE, a new transfer will be submitted. If FALSE, the request
is deleted.

PollingInterval Indicates the periodic rate, in milliseconds, that the transfer is to
be executed.

DataLength Specifies the length, in bytes, of the data to be received.

Callback The callback function. This function is called if the asynchronous
transfer is completed.

Context Data passed into Callback function. This is optional parameter
and may be NULL.

Description
The AsyncReceiveEvent() function receives HCI event packet in non-blocking way. Data in
Callback function holds the whole HCI event packet, including EventCode, parameter length,
and parameters. (See in Bluetooth specification, HCI Event Packet for more detail.)

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_HC_ASYNC_FUNC_CALLBACK) (
 IN VOID *Data,
 IN UINTN DataLength,
 IN VOID *Context
);

Data Data received via asynchronous transfer.

DataLength The length of Data in bytes, received via asynchronous transfer.
Version 2.5 April, 2015 1305

Unified Extensible Firmware Interface Specification
Context Context passed from asynchronous transfer request.

Status Codes Returned

EFI_SUCCESS The HCI asynchronous receive request is submitted successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• DataLength is 0.

• If IsNewTransfer is TRUE, and an asynchronous receive
request already exists.
1306 April, 2015 Version 2.5

Network Protocols - Bluetooth
BLUETOOTH_HC_PROTOCOL.SendACLData()

Summary
Send HCI ACL data packet.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_HC_SEND_ACL_DATA)(
 IN EFI_BLUETOOTH_HC_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 IN VOID *Buffer,
 IN UINTN Timeout
);

Parameters
This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

BufferSize On input, indicates the size, in bytes, of the data buffer specified
by Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be transmitted to
Bluetooth host controller.

Timeout Indicating the transfer should be completed within this time
frame. The units are in milliseconds. If Timeout is 0, then the
caller must wait for the function to be completed until
EFI_SUCCESS or EFI_DEVICE_ERROR is returned.

Description
The SendACLData() function sends HCI ACL data packet. Buffer holds the whole HCI ACL
data packet, including Handle, PB flag, BC flag, data length, and data. (see in Bluetooth
specification, HCI ACL Data Packet for more detail)

The SendACLData() function and ReceiveACLData() function just send and receive data
payload from application layer. In order to protect the payload data, the Bluetooth bus is required to
call HCI_Set_Connection_Encryption command to enable hardware based encryption after
authentication completed, according to pairing mode and host capability.

Status Codes Returned

EFI_SUCCESS The HCI ACL data packet is sent successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Sending HCI ACL data packet fail due to timeout.
Version 2.5 April, 2015 1307

Unified Extensible Firmware Interface Specification
EFI_DEVICE_ERROR Sending HCI ACL data packet fail due to host controller or device
error.
1308 April, 2015 Version 2.5

Network Protocols - Bluetooth
BLUETOOTH_HC_PROTOCOL.ReceiveACLData()

Summary
Receive HCI ACL data packet.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_HC_RECEIVE_ACL_DATA)(
 IN EFI_BLUETOOTH_HC_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer,
 IN UINTN Timeout
);

Parameters
This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

BufferSize On input, indicates the size, in bytes, of the data buffer specified
by Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be received from
Bluetooth host controller.

Timeout Indicating the transfer should be completed within this time
frame. The units are in milliseconds. If Timeout is 0, then the
caller must wait for the function to be completed until
EFI_SUCCESS or EFI_DEVICE_ERROR is returned.

Description
The ReceiveACLData() function receives HCI ACL data packet. Buffer holds the whole HCI
ACL data packet, including Handle, PB flag, BC flag, data length, and data. (See in Bluetooth
specification, HCI ACL Data Packet for more detail.)

Status Codes Returned

EFI_SUCCESS The HCI ACL data packet is received successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Receiving HCI ACL data packet fail due to timeout.

EFI_DEVICE_ERROR Receiving HCI ACL data packet fail due to host controller or device
error.
Version 2.5 April, 2015 1309

Unified Extensible Firmware Interface Specification
BLUETOOTH_HC_PROTOCOL.AsyncReceiveACLData()

Summary
Receive HCI ACL data packet in non-blocking way.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_HC_ASYNC_RECEIVE_ACL_DATA) (
 IN EFI_BLUETOOTH_HC_PROTOCOL *This,
 IN BOOLEAN IsNewTransfer,
 IN UINTN PollingInterval,
 IN UINTN DataLength,
 IN EFI_BLUETOOTH_HC_ASYNC_FUNC_CALLBACK Callback,
 IN VOID *Context
);

Parameters
This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

IsNewTransfer If TRUE, a new transfer will be submitted. If FALSE, the request
is deleted.

PollingInterval Indicates the periodic rate, in milliseconds, that the transfer is to
be executed.

DataLength Specifies the length, in bytes, of the data to be received.

Callback The callback function. This function is called if the asynchronous
transfer is completed.

Context Data passed into Callback function. This is optional parameter
and may be NULL.

Description
The AsyncReceiveACLData() function receives HCI ACL data packet in non-blocking way.
Data in Callback holds the whole HCI ACL data packet, including Handle, PB flag, BC flag,
data length, and data. (See in Bluetooth specification, HCI ACL Data Packet for more detail.)

Status Codes Returned

EFI_SUCCESS The HCI asynchronous receive request is submitted successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• DataLength is 0.

• If IsNewTransfer is TRUE, and an asynchronous receive
request already exists.
1310 April, 2015 Version 2.5

Network Protocols - Bluetooth
BLUETOOTH_HC_PROTOCOL.SendSCOData()

Summary
Send HCI SCO data packet.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_HC_SEND_SCO_DATA)(
 IN EFI_BLUETOOTH_HC_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 IN VOID *Buffer,
 IN UINTN Timeout
);

Parameters
This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

BufferSize On input, indicates the size, in bytes, of the data buffer specified
by Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be transmitted to
Bluetooth host controller.

Timeout Indicating the transfer should be completed within this time
frame. The units are in milliseconds. If Timeout is 0, then the
caller must wait for the function to be completed until
EFI_SUCCESS or EFI_DEVICE_ERROR is returned.

Description
The SendSCOData() function sends HCI SCO data packet. Buffer holds the whole HCI SCO
data packet, including ConnectionHandle, PacketStatus flag, data length, and data. (See in
Bluetooth specification, HCI Synchronous Data Packet for more detail.)

Status Codes Returned

EFI_SUCCESS The HCI SCO data packet is sent successfully.

EFI_UNSUPPORTED The implementation does not support HCI SCO transfer.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Sending HCI SCO data packet fail due to timeout.

EFI_DEVICE_ERROR Sending HCI SCO data packet fail due to host controller or device
error.
Version 2.5 April, 2015 1311

Unified Extensible Firmware Interface Specification
BLUETOOTH_HC_PROTOCOL.ReceiveSCOData()

Summary

Receive HCI SCO data packet.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_HC_RECEIVE_SCO_DATA)(
 IN EFI_BLUETOOTH_HC_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer,
 IN UINTN Timeout
);

Parameters
This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

BufferSize On input, indicates the size, in bytes, of the data buffer specified
by Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be received from
Bluetooth host controller.

Timeout Indicating the transfer should be completed within this time
frame. The units are in milliseconds. If Timeout is 0, then the
caller must wait for the function to be completed until
EFI_SUCCESS or EFI_DEVICE_ERROR is returned.

Description
The ReceiveSCOData() function receives HCI SCO data packet. Buffer holds the whole HCI
SCO data packet, including ConnectionHandle, PacketStatus flag, data length, and data. (see in
Bluetooth specification, HCI Synchronous Data Packet for more detail)

Status Codes Returned

EFI_SUCCESS The HCI SCO data packet is received successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Receiving HCI SCO data packet fail due to timeout.

EFI_DEVICE_ERROR Receiving HCI SCO data packet fail due to host controller or device
error.
1312 April, 2015 Version 2.5

Network Protocols - Bluetooth
BLUETOOTH_HC_PROTOCOL.AsyncReceiveSCOData()

Summary
Receive HCI SCO data packet in non-blocking way.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_HC_ASYNC_RECEIVE_SCO_DATA) (
 IN EFI_BLUETOOTH_HC_PROTOCOL *This,
 IN BOOLEAN IsNewTransfer,
 IN UINTN PollingInterval,
 IN UINTN DataLength,
 IN EFI_BLUETOOTH_HC_ASYNC_FUNC_CALLBACK Callback,
 IN VOID *Context
);

Parameters
This Pointer to the EFI_BLUETOOTH_HC_PROTOCOL instance.

IsNewTransfer If TRUE, a new transfer will be submitted. If FALSE, the request
is deleted.

PollingInterval Indicates the periodic rate, in milliseconds, that the transfer is to
be executed.

DataLength Specifies the length, in bytes, of the data to be received.

Callback The callback function. This function is called if the asynchronous
transfer is completed.

Context Data passed into Callback function. This is optional parameter
and may be NULL.

Description
The AsyncReceiveSCOData() function receives HCI SCO data packet in non-blocking way.
Data in Callback holds the whole HCI SCO data packet, including ConnectionHandle,
PacketStatus flag, data length, and data. (See in Bluetooth specification, HCI SCO Data Packet
for more detail.)
Version 2.5 April, 2015 1313

Unified Extensible Firmware Interface Specification
Status Codes Returned

26.2 EFI Bluetooth Bus Protocol

EFI_BLUETOOTH_IO_SERVICE_BINDING_PROTOCOL

Summary
The EFI Bluetooth IO Service Binding Protocol is used to locate EFI Bluetooth IO Protocol drivers
to create and destroy child of the driver to communicate with other Bluetooth device by using
Bluetooth IO protocol.

GUID
#define EFI_BLUETOOTH_IO_SERVICE_BINDING_PROTOCOL_GUID \
 { 0x388278d3, 0x7b85, 0x42f0,\
 { 0xab, 0xa9, 0xfb, 0x4b, 0xfd, 0x69, 0xf5, 0xab }

Description
The Bluetooth IO consumer need locate
EFI_BLUETOOTH_IO_SERVICE_BINDING_PROTOCOL and call CreateChild() to create
a new child of EFI_BLUETOOTH_IO_PROTOCOL instance. Then use
EFI_BLUETOOTH_IO_PROTOCOL for Bluetooth communication. After use, the Bluetooth IO
consumer need call DestroyChild() to destroy it.

EFI_BLUETOOTH_IO_PROTOCOL

Summary
This protocol provides service for Bluetooth L2CAP (Logical Link Control and Adaptation
Protocol) and SDP (Service Discovery Protocol).

EFI_SUCCESS The HCI asynchronous receive request is submitted successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• DataLength is 0.

• If IsNewTransfer is TRUE, and an asynchronous receive
request already exists.
1314 April, 2015 Version 2.5

Network Protocols - Bluetooth
GUID
#define EFI_BLUETOOTH_IO_PROTOCOL_GUID \
 { 0x467313de, 0x4e30, 0x43f1,\
 { 0x94, 0x3e, 0x32, 0x3f, 0x89, 0x84, 0x5d, 0xb5 }}

Protocol Interface Structure
typedef struct _EFI_BLUETOOTH_IO_PROTOCOL {
 EFI_BLUETOOTH_IO_GET_DEVICE_INFO GetDeviceInfo;
 EFI_BLUETOOTH_IO_GET_SDP_INFO GetSdpInfo;
 EFI_BLUETOOTH_IO_L2CAP_RAW_SEND L2CapRawSend;
 EFI_BLUETOOTH_IO_L2CAP_RAW_RECEIVE L2CapRawReceive;
 EFI_BLUETOOTH_IO_L2CAP_RAW_ASYNC_RECEIVE\
 L2CapRawAsyncReceive;
 EFI_BLUETOOTH_IO_L2CAP_SEND L2CapSend;
 EFI_BLUETOOTH_IO_L2CAP_RECEIVE L2CapReceive;
 EFI_BLUETOOTH_IO_L2CAP_ASYNC_RECEIVE L2CapAsyncReceive;
 EFI_BLUETOOTH_IO_L2CAP_CONNECT L2CapConnect;
 EFI_BLUETOOTH_IO_L2CAP_DISCONNECT L2CapDisconnect;
 EFI_BLUETOOTH_IO_L2CAP_REGISTER_SERVICE\
 L2CapRegisterService;
} EFI_BLUETOOTH_IO_PROTOCOL;

Parameters
GetDeviceInfo Get Bluetooth device Information. See the GetDeviceInfo()

function description.

GetSdpInfo Get Bluetooth device SDP information. See the
GetSdpInfo() function description.

L2CapRawSend Send L2CAP message (including L2CAP header). See the
L2CapRawSend() function description.

L2CapRawReceive Receive L2CAP message (including L2CAP header). See the
L2CapRawReceive() function description.

L2CapRawAsyncReceive

Non-blocking receive L2CAP message (including L2CAP
header). See the L2CapRawAsyncReceive() function
description.

L2CapSend Send L2CAP message (excluding L2CAP header) to a specific
channel. See the L2CapSend() function description.

L2CapReceive Receive L2CAP message (excluding L2CAP header) from a
specific channel. See the L2CapRawReceive() function
description.

L2CapAsyncReceive Non-blocking receive L2CAP message (excluding L2CAP
header) from a specific channel. See the
L2CapRawAsyncReceive() function description.

L2CapConnect Do L2CAP connection. See the L2CapConnect() function
description.
Version 2.5 April, 2015 1315

Unified Extensible Firmware Interface Specification
L2CapDisconnect Do L2CAP disconnection. See the L2CapDisconnect()
function description.

L2CapRegisterService

Register L2CAP callback function for special channel. See the
L2CapRegisterService() function description.

Description
The EFI_BLUETOOTH_IO_PROTOCOL provides services in L2CAP protocol and SDP protocol.
For detail of L2CAP packet format, and SDP service, please refer to Bluetooth specification.
1316 April, 2015 Version 2.5

Network Protocols - Bluetooth
BLUETOOTH_IO_PROTOCOL.GetDeviceInfo

Summary
Get Bluetooth device information.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_IO_GET_DEVICE_INFO)(
 IN EFI_BLUETOOTH_IO_PROTOCOL *This,
 OUT UINTN *DeviceInfoSize,
 OUT VOID **DeviceInfo
);

Parameters
This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

DeviceInfoSize A pointer to the size, in bytes, of the DeviceInfo buffer.

DeviceInfo A pointer to a callee allocated buffer that returns Bluetooth
device information. Callee allocates this buffer by using EFI Boot
Service AllocatePool().

Description
The GetDeviceInfo() function returns Bluetooth device information. The size of
DeviceInfo structure should never be assumed and the value of DeviceInfoSize is the only
valid way to know the size of DeviceInfo.

Related Definitions
typedef struct {
 UINT32 Version;
 BLUETOOTH_ADDRESS BD_ADDR;
 UINT8 PageScanRepetitionMode;
 BLUETOOTH_CLASS_OF_DEVICE ClassOfDevice;
 UINT16 ClockOffset;
 UINT8 RSSI;
 UINT8 ExtendedInquiryResponse[240];
} EFI_BLUETOOTH_DEVICE_INFO;

Version The version of the structure. A value of zero represents the
EFI_BLUETOOTH_DEVICE_INFO structure as defined here.
Future version of this specification may extend this data structure
in a backward compatible way and increase the value of
Version.

BD_ADDR 48bit Bluetooth device address.

PageScanRepetitionMode

Bluetooth PageScanRepetitionMode. See Bluetooth specification
for detail.
Version 2.5 April, 2015 1317

Unified Extensible Firmware Interface Specification
ClassOfDevice Bluetooth ClassOfDevice. See Bluetooth specification for detail.

ClockOffset Bluetooth CloseOffset. See Bluetooth specification for detail.

RSSI Bluetooth RSSI. See Bluetooth specification for detail.

ExtendedInquiryResponse

Bluetooth ExtendedInquiryResponse. See Bluetooth specification
for detail.

typedef struct {
 UINT8 Address[6];
} BLUETOOTH_ADDRESS;

typedef struct {
 UINT8 FormatType:2;
 UINT8 MinorDeviceClass: 6;
 UINT16 MajorDeviceClass: 5;
 UINT16 MajorServiceClass:11;
} BLUETOOTH_CLASS_OF_DEVICE;

Status Codes Returned

EFI_SUCCESS The Bluetooth device information is returned successfully.

EFI_DEVICE_ERROR A hardware error occurred trying to retrieve the Bluetooth device
information.
1318 April, 2015 Version 2.5

Network Protocols - Bluetooth
BLUETOOTH_IO_PROTOCOL.GetSdpInfo

Summary
Get Bluetooth SDP information.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_IO_GET_SDP_INFO)(
 IN EFI_BLUETOOTH_IO_PROTOCOL *This,
 OUT UINTN *SdpInfoSize,
 OUT VOID **SdpInfo
);

Parameters
This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

SdpInfoSize A pointer to the size, in bytes, of the SdpInfo buffer.

SdpInfo A pointer to a callee allocated buffer that returns Bluetooth SDP
information. Callee allocates this buffer by using EFI Boot
Service AllocatePool().

Description
The GetSdpInfo() function returns Bluetooth SDP information. The size of SdpInfo structure
should never be assumed and the value of SdpInfoSize is the only valid way to know the size of
SdpInfo.

Status Codes Returned

EFI_SUCCESS The Bluetooth SDP information is returned successfully.

EFI_DEVICE_ERROR A hardware error occurred trying to retrieve the Bluetooth SDP
information.
Version 2.5 April, 2015 1319

Unified Extensible Firmware Interface Specification
BLUETOOTH_IO_PROTOCOL.L2CapRawSend

Summary
Send L2CAP message (including L2CAP header).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_RAW_SEND)(
 IN EFI_BLUETOOTH_IO_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 IN VOID *Buffer,
 IN UINTN Timeout
);

Parameters
This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

BufferSize On input, indicates the size, in bytes, of the data buffer specified
by Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be transmitted to
Bluetooth L2CAP layer.

Timeout Indicating the transfer should be completed within this time
frame. The units are in milliseconds. If Timeout is 0, then the
caller must wait for the function to be completed until
EFI_SUCCESS or EFI_DEVICE_ERROR is returned.

Description
The L2CapRawSend() function sends L2CAP layer message (including L2CAP header).
Buffer holds the whole L2CAP message, including Length, ChannelID, and information payload.
(see in Bluetooth specification, L2CAP Data Packet Format for more detail)

Status Codes Returned

EFI_SUCCESS The L2CAP message is sent successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Sending L2CAP message fail due to timeout.

EFI_DEVICE_ERROR Sending L2CAP message fail due to host controller or device error.
1320 April, 2015 Version 2.5

Network Protocols - Bluetooth
BLUETOOTH_IO_PROTOCOL.L2CapRawReceive

Summary
Receive L2CAP message (including L2CAP header).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_RAW_RECEIVE)(
 IN EFI_BLUETOOTH_IO_PROTOCOL *This,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer,
 IN UINTN Timeout
);

Parameters
This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

BufferSize On input, indicates the size, in bytes, of the data buffer specified
by Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be received from
Bluetooth L2CAP layer.

Timeout Indicating the transfer should be completed within this time
frame. The units are in milliseconds. If Timeout is 0, then the
caller must wait for the function to be completed until
EFI_SUCCESS or EFI_DEVICE_ERROR is returned.

Description
The L2CapRawReceive() function receives L2CAP layer message (including L2CAP header).
Buffer holds the whole L2CAP message, including Length, ChannelID, and information payload.
(see in Bluetooth specification, L2CAP Data Packet Format for more detail)

Status Codes Returned

EFI_SUCCESS The L2CAP message is received successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Receiving L2CAP message fail due to timeout.

EFI_DEVICE_ERROR Receiving L2CAP message fail due to host controller or device
error.
Version 2.5 April, 2015 1321

Unified Extensible Firmware Interface Specification
BLUETOOTH_IO_PROTOCOL.L2CapRawAsyncReceive

Summary
Receive L2CAP message (including L2CAP header) in non-blocking way.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_RAW_ASYNC_RECEIVE)(
 IN EFI_BLUETOOTH_IO_PROTOCOL *This,
 IN BOOLEAN IsNewTransfer,
 IN UINTN PollingInterval,
 IN UINTN DataLength,
 IN EFI_BLUETOOTH_IO_ASYNC_FUNC_CALLBACK Callback,
 IN VOID *Context
);

Parameters
This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

IsNewTransfer If TRUE, a new transfer will be submitted. If FALSE, the request
is deleted.

PollingInterval Indicates the periodic rate, in milliseconds, that the transfer is to
be executed.

DataLength Specifies the length, in bytes, of the data to be received.

Callback The callback function. This function is called if the asynchronous
transfer is completed.

Context Data passed into Callback function. This is optional parameter
and may be NULL.

Description
The L2CapRawAsyncReceive() function receives L2CAP layer message (including L2CAP
header) in non-blocking way. Data in Callback function holds the whole L2CAP message,
including Length, ChannelID, and information payload. (see in Bluetooth specification, L2CAP
Data Packet Format for more detail)
1322 April, 2015 Version 2.5

Network Protocols - Bluetooth
Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_IO_ASYNC_FUNC_CALLBACK) (
 IN UINT16 ChannelID,
 IN VOID *Data,
 IN UINTN DataLength,
 IN VOID *Context
);

ChannelID Bluetooth L2CAP message channel ID.

Data Data received via asynchronous transfer.

DataLength The length of Data in bytes, received via asynchronous transfer.

Context Context passed from asynchronous transfer request.

Status Codes Returned

EFI_SUCCESS The L2CAP asynchronous receive request is submitted
successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• DataLength is 0.

• If IsNewTransfer is TRUE, and an asynchronous receive
request already exists.
Version 2.5 April, 2015 1323

Unified Extensible Firmware Interface Specification
BLUETOOTH_IO_PROTOCOL.L2CapSend

Summary
Send L2CAP message (excluding L2CAP header) to a specific channel.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_SEND)(
 IN EFI_BLUETOOTH_IO_PROTOCOL *This,
 IN EFI_HANDLE Handle,
 IN OUT UINTN *BufferSize,
 IN VOID *Buffer,
 IN UINTN Timeout
);

Parameters
This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

Handle A handle created by
EFI_BLUETOOTH_IO_PROTOCOL.L2CapConnect
indicates which channel to send.

BufferSize On input, indicates the size, in bytes, of the data buffer specified
by Buffer. On output, indicates the amount of data actually
transferred.

Buffer A pointer to the buffer of data that will be transmitted to
Bluetooth L2CAP layer.

Timeout Indicating the transfer should be completed within this time
frame. The units are in milliseconds. If Timeout is 0, then the
caller must wait for the function to be completed until
EFI_SUCCESS or EFI_DEVICE_ERROR is returned.

Description
The L2CapSend() function sends L2CAP layer message (excluding L2CAP header) to Bluetooth
channel indicated by Handle. Buffer only holds information payload. (see in Bluetooth
specification, L2CAP Data Packet Format for more detail). Handle

Status Codes Returned

EFI_SUCCESS The L2CAP message is sent successfully.

EFI_NOT_FOUND Handle is invalid or not found.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Sending L2CAP message fail due to timeout.
1324 April, 2015 Version 2.5

Network Protocols - Bluetooth
EFI_DEVICE_ERROR Sending L2CAP message fail due to host controller or device error.
Version 2.5 April, 2015 1325

Unified Extensible Firmware Interface Specification
BLUETOOTH_IO_PROTOCOL.L2CapReceive

Summary
Receive L2CAP message (excluding L2CAP header) from a specific channel.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_RECEIVE)(
 IN EFI_BLUETOOTH_IO_PROTOCOL *This,
 IN EFI_HANDLE Handle,
 OUT UINTN *BufferSize,
 OUT VOID **Buffer,
 IN UINTN Timeout
);

Parameters
This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

Handle A handle created by
EFI_BLUETOOTH_IO_PROTOCOL.L2CapConnect
indicates which channel to receive.

BufferSize Indicates the size, in bytes, of the data buffer specified by
Buffer.

Buffer A pointer to the buffer of data that will be received from
Bluetooth L2CAP layer. Callee allocates this buffer by using EFI
Boot Service AllocatePool().

Timeout Indicating the transfer should be completed within this time
frame. The units are in milliseconds. If Timeout is 0, then the
caller must wait for the function to be completed until
EFI_SUCCESS or EFI_DEVICE_ERROR is returned.

Description
The L2CapReceive() function receives L2CAP layer message (excluding L2CAP header) from
Bluetooth channel indicated by Handle. Buffer only holds information payload. (see in
Bluetooth specification, L2CAP Data Packet Format for more detail)

Status Codes Returned

EFI_SUCCESS The L2CAP message is received successfully.

EFI_NOT_FOUND Handle is invalid or not found.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• BufferSize is NULL.

• *BufferSize is 0.

• Buffer is NULL.

EFI_TIMEOUT Receiving L2CAP message fail due to timeout.
1326 April, 2015 Version 2.5

Network Protocols - Bluetooth
EFI_DEVICE_ERROR Receiving L2CAP message fail due to host controller or device
error.
Version 2.5 April, 2015 1327

Unified Extensible Firmware Interface Specification
BLUETOOTH_IO_PROTOCOL.L2CapAsyncReceive

Summary
Receive L2CAP message (including L2CAP header) in non-blocking way from a specific channel.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_ASYNC_RECEIVE)(
 IN EFI_BLUETOOTH_IO_PROTOCOL *This,
 IN EFI_HANDLE Handle,
 IN EFI_BLUETOOTH_IO_CHANNEL_SERVICE_CALLBACK Callback,
 IN VOID *Context

Parameters
This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

Handle A handle created by
EFI_BLUETOOTH_IO_PROTOCOL.L2CapConnect
indicates which channel to receive.

Callback The callback function. This function is called if the asynchronous
transfer is completed.

Context Data passed into Callback function. This is optional parameter
and may be NULL.

Description

The L2CapAsyncReceive() function receives L2CAP layer message (excluding L2CAP
header) in non-blocking way from Bluetooth channel indicated by Handle. Data in
Callback function only holds information payload. (see in Bluetooth specification, L2CAP Data
Packet Format for more detail)

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_IO_CHANNEL_SERVICE_CALLBACK) (
 IN VOID *Data,
 IN UINTN DataLength,
 IN VOID *Context
);

Data Data received via asynchronous transfer.

DataLength The length of Data in bytes, received via asynchronous transfer.

Context Context passed from asynchronous transfer request.
1328 April, 2015 Version 2.5

Network Protocols - Bluetooth
Status Codes Returned

EFI_SUCCESS The L2CAP asynchronous receive request is submitted
successfully.

EFI_NOT_FOUND Handle is invalid or not found.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• DataLength is 0.

• If an asynchronous receive request already exists on same
Handle.
Version 2.5 April, 2015 1329

Unified Extensible Firmware Interface Specification
BLUETOOTH_IO_PROTOCOL.L2CapConnect

Summary
Do L2CAP connection.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_CONNECT)(
 IN EFI_BLUETOOTH_IO_PROTOCOL *This,
 OUT EFI_HANDLE *Handle,
 IN UINT16 Psm,
 IN UINT16 Mtu,
 IN EFI_BLUETOOTH_IO_CHANNEL_SERVICE_CALLBACK Callback,
 IN VOID *Context
);

Parameters
This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

Handle A handle to indicate this L2CAP connection.

Psm Bluetooth PSM. See Bluetooth specification for detail.

Mtu Bluetooth MTU. See Bluetooth specification for detail.

Callback The callback function. This function is called whenever there is
message received in this channel.

Context Data passed into Callback function. This is optional parameter
and may be NULL.

Description
The L2CapConnect() function does all necessary steps for Bluetooth L2CAP layer connection in
blocking way. It might take long time. Once this function is returned Handle is created to indicate
the connection.

Status Codes Returned

EFI_SUCCESS The Bluetooth L2CAP layer connection is created successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• Handle is NULL.

EFI_DEVICE_ERROR A hardware error occurred trying to do Bluetooth L2CAP
connection.
1330 April, 2015 Version 2.5

Network Protocols - Bluetooth
BLUETOOTH_IO_PROTOCOL.L2CapDisconnect

Summary
Do L2CAP disconnection.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_DISCONNECT)(
 IN EFI_BLUETOOTH_IO_PROTOCOL *This,
 IN EFI_HANDLE Handle
);

Parameters
This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

Handle A handle to indicate this L2CAP connection.

Description
The L2CapDisconnect() function does all necessary steps for Bluetooth L2CAP layer
disconnection in blocking way. It might take long time. Once this function is returned Handle is no
longer valid.

Status Codes Returned

EFI_SUCCESS The Bluetooth L2CAP layer disconnection is created successfully.

EFI_NOT_FOUND Handle is invalid or not found.

EFI_DEVICE_ERROR A hardware error occurred trying to do Bluetooth L2CAP
disconnection.
Version 2.5 April, 2015 1331

Unified Extensible Firmware Interface Specification
BLUETOOTH_IO_PROTOCOL.L2CapRegisterService

Summary
Register L2CAP callback function for special channel.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_IO_L2CAP_REGISTER_SERVICE)(
 IN EFI_BLUETOOTH_IO_PROTOCOL *This,
 OUT EFI_HANDLE *Handle,
 IN UINT16 Psm,
 IN UINT16 Mtu,
 IN EFI_BLUETOOTH_IO_CHANNEL_SERVICE_CALLBACK Callback,
 IN VOID *Context
);

Parameters
This Pointer to the EFI_BLUETOOTH_IO_PROTOCOL instance.

Handle A handle to indicate this L2CAP connection.

Psm Bluetooth PSM. See Bluetooth specification for detail.

Mtu Bluetooth MTU. See Bluetooth specification for detail.

Callback The callback function. This function is called whenever there is
message received in this channel. NULL means unregister.

Context Data passed into Callback function. This is optional parameter
and may be NULL.

Description
The L2CapRegisterService() function registers L2CAP callback function for a special
channel. Once this function is returned Handle is created to indicate the connection.

Status Codes Returned

26.3 EFI Bluetooth Configuration Protocol

EFI_BLUETOOTH_CONFIG_PROTOCOL

Summary
This protocol abstracts user interface configuration for Bluetooth device.

EFI_SUCCESS The Bluetooth L2CAP callback function is registered successfully.

EFI_ALREADY_STARTED The callback function already exists when register.

EFI_NOT_FOUND The callback function does not exist when unregister.
1332 April, 2015 Version 2.5

Network Protocols - Bluetooth
GUID
#define EFI_BLUETOOTH_CONFIG_PROTOCOL_GUID \
 { 0x62960cf3, 0x40ff, 0x4263,\
 { 0xa7, 0x7c, 0xdf, 0xde, 0xbd, 0x19, 0x1b, 0x4b }}

Protocol Interface Structure
typedef struct _EFI_BLUETOOTH_CONFIG_PROTOCOL {
 EFI_BLUETOOTH_CONFIG_INIT Init;
 EFI_BLUETOOTH_CONFIG_SCAN Scan;
 EFI_BLUETOOTH_CONFIG_CONNECT Connect;
 EFI_BLUETOOTH_CONFIG_DISCONNECT Disconnect;
 EFI_BLUETOOTH_CONFIG_GET_DATA GetData;
 EFI_BLUETOOTH_CONFIG_SET_DATA SetData;
 EFI_BLUETOOTH_CONFIG_GET_REMOTE_DATA GetRemoteData;
EFI_BLUETOOTH_CONFIG_REGISTER_PIN_CALLBACK
 RegisterPinCallback;
EFI_BLUETOOTH_CONFIG_REGISTER_GET_LINK_KEY_CALLBACK
 RegisterGetLinkKeyCallback;
EFI_BLUETOOTH_CONFIG_REGISTER_SET_LINK_KEY_CALLBACK
 RegisterSetLinkKeyCallback;
EFI_BLUETOOTH_CONFIG_REGISTER_CONNECT_COMPLETE_CALLBACK
 RegisterLinkConnectCompleteCallback;
} EFI_BLUETOOTH_CONFIG_PROTOCOL;

Parameters
Init Initialize Bluetooth host controller and local device. See the

Init() function description.

Scan Scan Bluetooth device. See the Scan() function description.

Connect Connect one Bluetooth device. See the Connect() function
description.

Disconnect Disconnect one Bluetooth device. See the Disconnect()
function description.

GetData Get Bluetooth configuration data. See the GetData() function
description.

SetData Set Bluetooth configuration data. See the SetData() function
description.

GetRemoteData Get remote Bluetooth device data. See the GetRemoteData()
function description.

RegisterPinCallbackRegister PIN callback function. See the
RegisterPinCallback() function description.

RegisterGetLinkKeyCallback

Register get link key callback function. See the
RegisterGetLinkKeyCallback() function description.

RegisterSetLinkKeyCallback
Version 2.5 April, 2015 1333

Unified Extensible Firmware Interface Specification
Register set link key callback function. See the
RegisterSetLinkKeyCallback() function description.

RegisterLinkConnectCompleteCallback

Register link connect complete callback function. See the
RegisterLinkConnectCompleteCallback() function
description.

Description
The EFI_BLUETOOTH_CONFIG_PROTOCOL abstracts the Bluetooth configuration. User can use
Bluetooth configuration to interactive with Bluetooth bus driver.
1334 April, 2015 Version 2.5

Network Protocols - Bluetooth
BLUETOOTH_CONFIG_PROTOCOL.Init

Summary
Initialize Bluetooth host controller and local device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_CONFIG_INIT)(
 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This
);

Parameters
This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL

instance.

Description
The Init() function initializes Bluetooth host controller and local device.

Status Codes Returned

EFI_SUCCESS The Bluetooth host controller and local device is initialized
successfully.

EFI_DEVICE_ERROR A hardware error occurred trying to initialize the Bluetooth host
controller and local device.
Version 2.5 April, 2015 1335

Unified Extensible Firmware Interface Specification
BLUETOOTH_CONFIG_PROTOCOL.Scan

Summary
Scan Bluetooth device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_CONFIG_SCAN)(
 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,
 IN BOOLEAN ReScan,
 IN UINT8 ScanType,
 IN EFI_BLUETOOTH_CONFIG_SCAN_CALLBACK_FUNCTION Callback
 IN VOID *Context
);

Parameters
This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL

instance.

ReScan If TRUE, a new scan request is submitted no matter there is scan
result before. If FALSE and there is scan result, the previous scan
result is returned and no scan request is submitted.

ScanType Bluetooth scan type, Inquiry and/or Page. See Bluetooth
specification for detail.

Callback The callback function. This function is called if a Bluetooth
device is found during scan process.

Context Data passed into Callback function. This is optional parameter
and may be NULL.

Description
The Scan() function scans Bluetooth device. When this function is returned, it just means scan
request is submitted. It does not mean scan process is started or finished. Whenever there is a
Bluetooth device is found, the Callback function will be called. Callback function might be
called before this function returns or after this function returns.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_CONFIG_SCAN_CALLBACK_FUNCTION) (
 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,
 IN VOID *Context,
 IN EFI_BLUETOOTH_SCAN_CALLBACK_INFORMATION *CallbackInfo
);

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL
instance.
1336 April, 2015 Version 2.5

Network Protocols - Bluetooth
Context Context passed from scan request.

CallbackInfo Data related to scan result. NULL CallbackInfo means scan
complete.

typedef
typedef struct{
 BLUETOOTH_ADDRESS BDAddr;
 UINT8 RemoteDeviceState;
 BLUETOOTH_CLASS_OF_DEVICE ClassOfDevice;
 UINT8
RemoteDeviceName[BLUETOOTH_HCI_COMMAND_LOCAL_READABLE_NAME_MAX_S
IZE];
}EFI_BLUETOOTH_SCAN_CALLBACK_INFORMATION;

#define BLUETOOTH_HCI_COMMAND_LOCAL_READABLE_NAME_MAX_SIZE 248

Status Codes Returned

EFI_SUCCESS The Bluetooth scan request is submitted.

EFI_DEVICE_ERROR A hardware error occurred trying to scan the Bluetooth device.
Version 2.5 April, 2015 1337

Unified Extensible Firmware Interface Specification
BLUETOOTH_CONFIG_PROTOCOL.Connect

Summary
Connect a Bluetooth device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_CONFIG_CONNECT)(
 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,
 IN BLUETOOTH_ADDRESS *BD_ADDR
);

Parameters
This Pointer to the

EFI_BLUETOOTH_CONFIG_PROTOCOLinstance.

BD_ADDR The address of Bluetooth device to be connected.

Description
The Connect() function connects a Bluetooth device. When this function is returned successfully,
a new EFI_BLUETOOTH_IO_PROTOCOL is created.

Status Codes Returned

EFI_SUCCESS The Bluetooth device is connected successfully.

EFI_ALREADY_STARTED The Bluetooth device is already connected.

EFI_NOT_FOUND The Bluetooth device is not found.

EFI_DEVICE_ERROR A hardware error occurred trying to connect the Bluetooth device.
1338 April, 2015 Version 2.5

Network Protocols - Bluetooth
BLUETOOTH_CONFIG_PROTOCOL.Disconnect

Summary
Disconnect a Bluetooth device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_CONFIG_DISCONNECT)(
 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,
 IN BLUETOOTH_ADDRESS *BD_ADDR,
 IN UINT8 Reason
);

Parameters
This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL

instance.

BD_ADDR The address of Bluetooth device to be connected.

Reason luetooth disconnect reason. See Bluetooth specification for detail.

Description
The Disconnect() function disconnects a Bluetooth device. When this function is returned
successfully, the EFI_BLUETOOTH_IO_PROTOCOL associated with this device is destroyed and
all services associated are stopped.

Status Codes Returned

EFI_SUCCESS The Bluetooth device is disconnected successfully.

EFI_NOT_STARTED The Bluetooth device is not connected.

EFI_NOT_FOUND The Bluetooth device is not found.

EFI_DEVICE_ERROR A hardware error occurred trying to disconnect the Bluetooth
device.
Version 2.5 April, 2015 1339

Unified Extensible Firmware Interface Specification
BLUETOOTH_CONFIG_PROTOCOL.GetData

Summary
Get Bluetooth configuration data.

Prototype
typedef

EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_CONFIG_GET_DATA) (
 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,
 IN EFI_BLUETOOTH_CONFIG_DATA_TYPE DataType,
 IN OUT UINTN *DataSize,
 IN OUT VOID *Data
);

Parameters
This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL

instance.

DataType Configuration data type.

DataSize On input, indicates the size, in bytes, of the data buffer specified
by Data. On output, indicates the amount of data actually
returned.

Data A pointer to the buffer of data that will be returned.

Description
The GetData() function returns Bluetooth configuration data. For remote Bluetooth device
configuration data, please use GetRemoteData() function with valid BD_ADDR.

Related Definitions
typedef enum {
 EfiBluetoothConfigDataTypeDeviceName,
 EfiBluetoothConfigDataTypeClassOfDevice,
 EfiBluetoothConfigDataTypeRemoteDeviceState,
 EfiBluetoothConfigDataTypeSdpInfo,
 EfiBluetoothConfigDataTypeBDADDR,
 EfiBluetoothConfigDataTypeDiscoverable,
 EfiBluetoothConfigDataTypeControllerStoredPairedDeviceList,
 EfiBluetoothConfigDataTypeAvailableDeviceList,
 EfiBluetoothConfigDataTypeMax,
} EFI_BLUETOOTH_CONFIG_DATA_TYPE;

EfiBluetoothConfigDataTypeDeviceName

Local/Remote Bluetooth device name. Data structure is zero
terminated CHAR8[].

EfiBluetoothConfigDataTypeClassOfDevice
1340 April, 2015 Version 2.5

Network Protocols - Bluetooth
Local/Remote Bluetooth device ClassOfDevice. Data structure is
BLUETOOTH_CLASS_OF_DEVICE.

EfiBluetoothConfigDataTypeRemoteDeviceState

Remove Bluetooth device state. Data structure is
EFI_BLUETOOTH_CONFIG_REMOTE_DEVICE_STATE_TY
PE.

EfiBluetoothConfigDataTypeSdpInfo

Local/Remote Bluetooth device SDP information. Data structure
is UINT8[].

EfiBluetoothConfigDataTypeBDADDR

Local Bluetooth device address. Data structure is
BLUETOOTH_ADDRESS.

EfiBluetoothConfigDataTypeDiscoverable

Local Bluetooth discoverable state. Data structure is UINT8.
(Page scan and/or Inquiry scan)

EfiBluetoothConfigDataTypeControllerStoredPairedDeviceList

Local Bluetooth controller stored paired device list. Data
structure is BLUETOOTH_ADDRESS[].

EfiBluetoothConfigDataTypeAvailableDeviceList

Local available device list. Data structure is
BLUETOOTH_ADDRESS[].

typedef EFI_BLUETOOTH_CONFIG_REMOTE_DEVICE_STATE_TYPE UINT32;
#define EFI_BLUETOOTH_CONFIG_REMOTE_DEVICE_STATE_CONNECTED 0x1
#define EFI_BLUETOOTH_CONFIG_REMOTE_DEVICE_STATE_PAIRED 0x2

#define BLUETOOTH_HCI_LINK_KEY_SIZE 16

Status Codes Returned

EFI_SUCCESS The Bluetooth configuration data is returned successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• DataSize is NULL.

• *DataSize is 0.

• Data is NULL.

EFI_UNSUPPORTED The DataType is unsupported.

EFI_NOT_FOUND The DataType is not found.

EFI_BUFFER_TOO_SMALL The buffer is too small to hold the buffer.
Version 2.5 April, 2015 1341

Unified Extensible Firmware Interface Specification
BLUETOOTH_CONFIG_PROTOCOL.SetData

Summary
Set Bluetooth configuration data.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_CONFIG_SET_DATA) (
 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,
 IN EFI_BLUETOOTH_CONFIG_DATA_TYPE DataType,
 IN UINTN DataSize,
 IN VOID *Data
);

Parameters
This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL

instance.

DataType Configuration data type.

DataSize Indicates the size, in bytes, of the data buffer specified by Data.

Data A pointer to the buffer of data that will be set.

Description
The SetData() function sets local Bluetooth device configuration data. Not all DataType can be
set.

Status Codes Returned

EFI_SUCCESS The Bluetooth configuration data is set successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• DataSize is 0.

• Data is NULL.

EFI_UNSUPPORTED The DataType is unsupported.

EFI_WRITE_PROTECTED Cannot set configuration data.
1342 April, 2015 Version 2.5

Network Protocols - Bluetooth
BLUETOOTH_CONFIG_PROTOCOL.GetRemoteData

Summary
Get remove Bluetooth device configuration data.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_BLUETOOTH_CONFIG_GET_REMOTE_DATA) (
 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,
 IN EFI_BLUETOOTH_CONFIG_DATA_TYPE DataType,
 IN BLUETOOTH_ADDRESS BDAddr,
 IN OUT UINTN *DataSize,
 IN OUT VOID *Data
);

Parameters
This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL

instance.

DataType Configuration data type.

BDAddr Remote Bluetooth device address.

DataSize On input, indicates the size, in bytes, of the data buffer specified
by Data. On output, indicates the amount of data actually
returned.

Data A pointer to the buffer of data that will be returned.

Description
The GetRemoteData() function returns remote Bluetooth device configuration data.

Status Codes Returned

EFI_SUCCESS The remote Bluetooth device configuration data is returned
successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• DataSize is NULL.

• *DataSize is 0.

• Data is NULL.

EFI_UNSUPPORTED The DataType is unsupported.

EFI_NOT_FOUND The DataType is not found.

EFI_BUFFER_TOO_SMALL The buffer is too small to hold the buffer.
Version 2.5 April, 2015 1343

Unified Extensible Firmware Interface Specification
BLUETOOTH_CONFIG_PROTOCOL.RegisterPinCallback

Summary
Register PIN callback function.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_CONFIG_REGISTER_PIN_CALLBACK) (
 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,
 IN EFI_BLUETOOTH_CONFIG_REGISTER_PIN_CALLBACK_FUNCTION
Callback,
 IN VOID *Context
);

Parameters
This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL

instance.

Callback The callback function. NULL means unregister.

Context Data passed into Callback function. This is optional parameter
and may be NULL.

Description
The RegisterPinCallback() function registers Bluetooth PIN callback function. The
Bluetooth configuration driver must call RegisterPinCallback() to register a callback
function. During pairing, Bluetooth bus driver must trigger this callback function, and Bluetooth
configuration driver must handle callback function according to CallbackType during pairing.
Both Legacy pairing and SSP (secure simple pairing) are required to be supported. See
EFI_BLUETOOTH_PIN_CALLBACK_TYPE below for detail of each pairing mode.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_CONFIG_REGISTER_PIN_CALLBACK_FUNCTION) (
 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,
 IN VOID *Context,
 IN EFI_BLUETOOTH_PIN_CALLBACK_TYPE CallbackType,
 IN VOID *InputBuffer,
 IN UINTN InputBufferSize,
 OUT VOID **OutputBuffer,
 OUT UINTN *OutputBufferSize
);

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL
instance.

Context Context passed from registration.
1344 April, 2015 Version 2.5

Network Protocols - Bluetooth
CallbackType Callback type in EFI_BLUETOOTH_PIN_CALLBACK_TYPE.

InBuffer A pointer to the buffer of data that is input from callback caller.

InputBufferSize Indicates the size, in bytes, of the data buffer specified by
InBuffer.

OutputBuffer A pointer to the buffer of data that will be output from callback
callee. Callee allocates this buffer by using EFI Boot Service
AllocatePool().

OutputBufferSize Indicates the size, in bytes, of the data buffer specified by
OutputBuffer.

typedef enum {
 EfiBluetoothCallbackTypeUserPasskeyNotification,
 EfiBluetoothCallbackTypeUserConfirmationRequest,
 EfiBluetoothCallbackTypeOOBDataRequest,
 EfiBluetoothCallbackTypePinCodeRequest,
 EfiBluetoothCallbackTypeMax,
} EFI_BLUETOOTH_PIN_CALLBACK_TYPE;

EfiBluetoothCallbackTypeUserPasskeyNotification

For SSP – passkey entry. Input buffer is Passkey (4 bytes). No
output buffer. See Bluetooth HCI command for detail.

EfiBluetoothCallbackTypeUserConfirmationRequest

For SSP – just work and numeric comparison. Input buffer is
numeric value (4 bytes). Output buffer is BOOLEAN (1 byte).
See Bluetooth HCI command for detail.

EfiBluetoothCallbackTypeOOBDataRequest

For SSP – OOB. See Bluetooth HCI command for detail.

EfiBluetoothCallbackTypePinCodeRequest

For legacy paring. No input buffer. Output buffer is PIN code (<=
16 bytes). See Bluetooth HCI command for detail.

Status Codes Returned

EFI_SUCCESS The PIN callback function is registered successfully.
Version 2.5 April, 2015 1345

Unified Extensible Firmware Interface Specification
BLUETOOTH_CONFIG_PROTOCOL.RegisterGetLinkKeyCallback

Summary
Register get link key callback function.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_CONFIG_REGISTER_GET_LINK_KEY_CALLBACK) (
 IN EFI_BLUETOOTH_CONFIG_PROTOCOL
*This,
 IN
EFI_BLUETOOTH_CONFIG_REGISTER_GET_LINK_KEY_CALLBACK_FUNCTION
Callback,
 IN VOID
*Context
);

Parameters
This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL

instance.

Callback The callback function. NULL means unregister.

Context Data passed into Callback function. This is optional parameter
and may be NULL.

Description
The RegisterGetLinkKeyCallback() function registers Bluetooth get link key callback
function. The Bluetooth configuration driver may call RegisterGetLinkKeyCallback() to
register a callback function. When Bluetooth bus driver get Link_Key_Request_Event, Bluetooth
bus driver must trigger this callback function if it is registered. Then the callback function in
Bluetooth configuration driver must pass link key to Bluetooth bus driver. When the callback
function is returned Bluetooth bus driver gets link key and must send
HCI_Link_Key_Request_Reply to remote device. If this GetLinkKey callback function is not
registered or Bluetooth configuration driver fails to return a valid link key, the Bluetooth bus driver
must send HCI_Link_Key_Request_Negative_Reply to remote device. The original link key is
passed by Bluetooth bus driver to Bluetooth configuration driver by using
EFI_BLUETOOTH_CONFIG_REGISTER_SET_LINK_KEY_CALLBACK_FUNCTION. The
Bluetooth configuration driver need save link key to a non-volatile safe place. (See Bluetooth
specification, HCI_Link_Key_Request_Reply)
1346 April, 2015 Version 2.5

Network Protocols - Bluetooth
Related Definitions
typedef
EFI_STATUS
(EFIAPI
*EFI_BLUETOOTH_CONFIG_REGISTER_GET_LINK_KEY_CALLBACK_FUNCTION) (
 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,
IN VOID *Context,
IN BLUETOOTH_ADDRESS *BDAddr,
 OUT UINT8
LinkKey[BLUETOOTH_HCI_LINK_KEY_SIZE]
);

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL
instance.

Context Context passed from registration.

CallbackType Callback type in EFI_BLUETOOTH_PIN_CALLBACK_TYPE.

BDAddr A pointer to Bluetooth device address.

LinkKey A pointer to the buffer of link key.

Status Codes Returned

EFI_SUCCESS The link key callback function is registered successfully.
Version 2.5 April, 2015 1347

Unified Extensible Firmware Interface Specification
BLUETOOTH_CONFIG_PROTOCOL.RegisterSetLinkKeyCallback

Summary
Register set link key callback function.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BLUETOOTH_CONFIG_REGISTER_SET_LINK_KEY_CALLBACK) (
 IN EFI_BLUETOOTH_CONFIG_PROTOCOL
*This,
 IN
EFI_BLUETOOTH_CONFIG_REGISTER_SET_LINK_KEY_CALLBACK_FUNCTION
Callback,
 IN VOID
*Context
);

Parameters
This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL

instance.

Callback The callback function. NULL means unregister.

Context Data passed into Callback function. This is optional parameter
and may be NULL.

Description
The RegisterSetLinkKeyCallback() function registers Bluetooth link key callback
function. The Bluetooth configuration driver may call RegisterSetLinkKeyCallback() to
register a callback function to get link key from Bluetooth bus driver. When Bluetooth bus driver
gets Link_Key_Notification_Event, Bluetooth bus driver must call this callback function if it is
registered. Then the callback function in Bluetooth configuration driver must save link key to a safe
place. This link key will be used by
EFI_BLUETOOTH_CONFIG_REGISTER_GET_LINK_KEY_CALLBACK_FUNCTION later.
(See Bluetooth specification, Link_Key_Notification_Event)
1348 April, 2015 Version 2.5

Network Protocols - Bluetooth
Related Definitions
typedef
EFI_STATUS
(EFIAPI
*EFI_BLUETOOTH_CONFIG_REGISTER_SET_LINK_KEY_CALLBACK_FUNCTION) (
 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,
 IN VOID *Context,
 IN BLUETOOTH_ADDRESS *BDAddr,
 IN UINT8
LinkKey[BLUETOOTH_HCI_LINK_KEY_SIZE]
);

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL
instance.

Context Context passed from registration.

CallbackType Callback type in EFI_BLUETOOTH_PIN_CALLBACK_TYPE.

BDAddr A pointer to Bluetooth device address.

LinkKey A pointer to the buffer of link key.

Status Codes Returned

EFI_SUCCESS The link key callback function is registered successfully.
Version 2.5 April, 2015 1349

Unified Extensible Firmware Interface Specification
BLUETOOTH_CONFIG_PROTOCOL.RegisterLinkConnectCompleteCal
lback

Summary
Register link connect complete callback function.

Prototype
typedef
EFI_STATUS
(EFIAPI
*EFI_BLUETOOTH_CONFIG_REGISTER_CONNECT_COMPLETE_CALLBACK) (
 IN EFI_BLUETOOTH_CONFIG_PROTOCOL
*This,
 IN
EFI_BLUETOOTH_CONFIG_REGISTER_CONNECT_COMPLETE_CALLBACK_FUNCTION
Callback,
 IN VOID
*Context
);

Parameters
This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL

instance.

Callback The callback function. NULL means unregister.

Context Data passed into Callback function. This is optional parameter
and may be NULL.

Description
The RegisterLinkConnectCompleteCallback() function registers Bluetooth link
connect complete callback function. The Bluetooth Configuration driver may call
RegisterLinkConnectCompleteCallback() to register a callback function. During
pairing, Bluetooth bus driver must trigger this callback function to report device state, if it is
registered. Then Bluetooth Configuration driver will get information on device connection,
according to CallbackType defined by
EFI_BLUETOOTH_CONNECT_COMPLETE_CALLBACK_TYPE.
1350 April, 2015 Version 2.5

Network Protocols - Bluetooth
Related Definitions
typedef
EFI_STATUS
(EFIAPI
*EFI_BLUETOOTH_CONFIG_REGISTER_CONNECT_COMPLETE_CALLBACK_FUNCTIO
N) (
 IN EFI_BLUETOOTH_CONFIG_PROTOCOL *This,
 IN VOID *Context,
 IN EFI_BLUETOOTH_CONNECT_COMPLETE_CALLBACK_TYPE
CallbackType,
 IN BLUETOOTH_ADDRESS BDAddr,
 IN VOID *InputBuffer,
 IN UINTN InputBufferSize
);

This Pointer to the EFI_BLUETOOTH_CONFIG_PROTOCOL
instance.

Context Context passed from registration.

CallbackType Callback type in
EFI_BLUETOOTH_CONNECT_COMPLETE_CALLBACK_TYP
E.

BDAddr A pointer to Bluetooth device address.

InBuffer A pointer to the buffer of data that is input from callback caller.

InputBufferSize Indicates the size, in bytes, of the data buffer specified by
InBuffer.

typedef enum {
 EfiBluetoothConnCallbackTypeDisconnected,
 EfiBluetoothConnCallbackTypeConnected,
 EfiBluetoothConnCallbackTypeAuthenticated,
 EfiBluetoothConnCallbackTypeEncrypted,
} EFI_BLUETOOTH_CONNECT_COMPLETE_CALLBACK_TYPE;

EfiBluetoothConnCallbackTypeDisconnected

This callback is called when Bluetooth receive
Disconnection_Complete event. Input buffer is Event Parameters of
Disconnection_Complete Event defined in Bluetooth specification.

EfiBluetoothConnCallbackTypeConnected

This callback is called when Bluetooth receive
Connection_Complete event. Input buffer is Event Parameters of
Connection_Complete Event defined in Bluetooth specification.

EfiBluetoothConnCallbackTypeAuthenticated

This callback is called when Bluetooth receive
Authentication_Complete event. Input buffer is Event Parameters
of Authentication_Complete Event defined in Bluetooth
specification.
Version 2.5 April, 2015 1351

Unified Extensible Firmware Interface Specification
EfiBluetoothConnCallbackTypeEncrypted

This callback is called when Bluetooth receive Encryption_Change
event. Input buffer is Event Parameters of Encryption_Change
Event defined in Bluetooth specification.

Status Codes Returned

EFI_SUCCESS The link connect complete callback function is registered
successfully.
1352 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
27
Network Protocols —TCP, IP, IPsec, FTP, TLS and

Configurations

27.1 EFI TCPv4 Protocol
This section defines the EFI TCPv4 (Transmission Control Protocol version 4) Protocol.

27.1.1 TCP4 Service Binding Protocol

EFI_TCP4_SERVICE_BINDING_PROTOCOL

Summary
The EFI TCPv4 Service Binding Protocol is used to locate EFI TCPv4 Protocol drivers to create and
destroy child of the driver to communicate with other host using TCP protocol.

GUID
#define EFI_TCP4_SERVICE_BINDING_PROTOCOL_GUID \
 {0x00720665,0x67EB,0x4a99,\
 {0xBA,0xF7,0xD3,0xC3,0x3A,0x1C,0x7C,0xC9}}

Description
A network application that requires TCPv4 I/O services can call one of the protocol handler services,
such as BS->LocateHandleBuffer(), to search devices that publish an EFI TCPv4 Service
Binding Protocol GUID. Such device supports the EFI TCPv4 Protocol and may be available for
use.

After a successful call to the EFI_TCP4_SERVICE_BINDING_PROTOCOL.CreateChild()
function, the newly created child EFI TCPv4 Protocol driver is in an un-configured state; it is not
ready to do any operation except Poll() send and receive data packets until configured as the
purpose of the user and perhaps some other indispensable function belonged to TCPv4 Protocol
driver is called properly.

Every successful call to the EFI_TCP4_SERVICE_BINDING_PROTOCOL.CreateChild()
function must be matched with a call to the
EFI_TCP4_SERVICE_BINDING_PROTOCOL.DestroyChild() function to release the
protocol driver.
Version 2.5 April, 2015 1353

Unified Extensible Firmware Interface Specification
27.1.2 TCP4 Protocol

EFI_TCP4_PROTOCOL

Summary
The EFI TCPv4 Protocol provides services to send and receive data stream.

GUID
#define EFI_TCP4_PROTOCOL_GUID \
 {0x65530BC7,0xA359,0x410f,\
 {0xB0,0x10,0x5A,0xAD,0xC7,0xEC,0x2B,0x62}}

Protocol Interface Structure
typedef struct _EFI_TCP4_PROTOCOL {
EFI_TCP4_GET_MODE_DATA GetModeData;
 EFI_TCP4_CONFIGURE Configure;
 EFI_TCP4_ROUTES Routes;
 EFI_TCP4_CONNECT Connect;
 EFI_TCP4_ACCEPT Accept;
 EFI_TCP4_TRANSMIT Transmit;
 EFI_TCP4_RECEIVE Receive;
 EFI_TCP4_CLOSE Close;
 EFI_TCP4_CANCEL Cancel;
 EFI_TCP4_POLL Poll;
} EFI_TCP4_PROTOCOL;

Parameters
GetModeData Get the current operational status. See the GetModeData()

function description.

Configure Initialize, change, or brutally reset operational settings of the EFI
TCPv4 Protocol. See the Configure() function description.

Routes Add or delete routing entries for this TCP4 instance. See the
Routes() function description.

Connect Initiate the TCP three-way handshake to connect to the remote
peer configured in this TCP instance. The function is a
nonblocking operation. See the Connect() function
description.

Accept Listen for incoming TCP connection request. This function is a
nonblocking operation. See the Accept() function description.

Transmit Queue outgoing data to the transmit queue. This function is a
nonblocking operation. See the Transmit() function
description.

Receive Queue a receiving request token to the receive queue. This
function is a nonblocking operation. See the Receive()
function description.
1354 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Close Gracefully disconnecting a TCP connection follow RFC 793 or
reset a TCP connection. This function is a nonblocking operation.
See the Close() function description.

Cancel Abort a pending connect, listen, transmit or receive request. See
the Cancel() function description.

Poll Poll to receive incoming data and transmit outgoing TCP
segments. See the Poll() function description.

Description
The EFI_TCP4_PROTOCOL defines the EFI TCPv4 Protocol child to be used by any network
drivers or applications to send or receive data stream. It can either listen on a specified port as a
service or actively connected to remote peer as a client. Each instance has its own independent
settings, such as the routing table.

Note: In this document, all IPv4 addresses and incoming/outgoing packets are stored in network byte
order. All other parameters in the functions and data structures that are defined in this document
are stored in host byte order unless explicitly specified.
Version 2.5 April, 2015 1355

Unified Extensible Firmware Interface Specification
EFI_TCP4_PROTOCOL.GetModeData()

Summary
Get the current operational status.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_GET_MODE_DATA) (
 IN EFI_TCP4_PROTOCOL *This,
 OUT EFI_TCP4_CONNECTION_STATE *Tcp4State OPTIONAL,
 OUT EFI_TCP4_CONFIG_DATA *Tcp4ConfigData OPTIONAL,
 OUT EFI_IPv4_MODE_DATA *Ip4ModeData OPTIONAL,
 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
);

Parameters
This Pointer to the EFI_TCP4_PROTOCOL instance.

Tcp4State Pointer to the buffer to receive the current TCP state. Type
EFI_TCP4_CONNECTION_STATE is defined in “Related
Definitions” below.

Tcp4ConfigData Pointer to the buffer to receive the current TCP configuration.
Type EFI_TCP4_CONFIG_DATA is defined in “Related
Definitions” below.

Ip4ModeData Pointer to the buffer to receive the current IPv4 configuration
data used by the TCPv4 instance. Type EFI_IP4_MODE_DATA
is defined in EFI_IP4_PROTOCOL.GetModeData().

MnpConfigData Pointer to the buffer to receive the current MNP configuration
data used indirectly by the TCPv4 instance. Type
EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

SnpModeData Pointer to the buffer to receive the current SNP configuration data
used indirectly by the TCPv4 instance. Type
EFI_SIMPLE_NETWORK_MODE is defined in the
EFI_SIMPLE_NETWORK_PROTOCOL.

Description
The GetModeData() function copies the current operational settings of this EFI TCPv4 Protocol
instance into user-supplied buffers. This function can also be used to retrieve the operational setting
of underlying drivers such as IPv4, MNP, or SNP.
1356 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Related Definition
typedef struct {
 BOOLEAN UseDefaultAddress;
 EFI_IPv4_ADDRESS StationAddress;
 EFI_IPv4_ADDRESS SubnetMask;
 UINT16 StationPort;
 EFI_IPv4_ADDRESS RemoteAddress;
 UINT16 RemotePort;
 BOOLEAN ActiveFlag;
} EFI_TCP4_ACCESS_POINT;

UseDefaultAddress Set to TRUE to use the default IP address and default routing
table. If the default IP address is not available yet, then the
underlying EFI IPv4 Protocol driver will use
EFI_IP4_CONFIG2_PROTOCOL to retrieve the IP address and
subnet information.

StationAddress The local IP address assigned to this EFI TCPv4 Protocol
instance. The EFI TCPv4 and EFI IPv4 Protocol drivers will only
deliver incoming packets whose destination addresses exactly
match the IP address. Not used when UseDefaultAddress is
TRUE.

SubnetMask The subnet mask associated with the station address. Not used
when UseDefaultAddress is TRUE.

StationPort The local port number to which this EFI TCPv4 Protocol instance
is bound. If the instance doesn’t care the local port number, set
StationPort to zero to use an ephemeral port.

RemoteAddress The remote IP address to which this EFI TCPv4 Protocol instance
is connected. If ActiveFlag is FALSE (i.e., a passive TCPv4
instance), the instance only accepts connections from the
RemoteAddress. If ActiveFlag is TRUE the instance is
connected to the RemoteAddress, i.e., outgoing segments will
be sent to this address and only segments from this address will
be delivered to the application. When ActiveFlag is FALSE
it can be set to zero and means that incoming connection request
from any address will be accepted.

RemotePort The remote port to which this EFI TCPv4 Protocol instance is
connects or connection request from which is accepted by this
EFI TCPv4 Protocol instance. If ActiveFlag is FALSE it can
be zero and means that incoming connection request from any
port will be accepted. Its value can not be zero when
ActiveFlag is TRUE.

ActiveFlag Set it to TRUE to initiate an active open. Set it to FALSE to
initiate a passive open to act as a server.
Version 2.5 April, 2015 1357

Unified Extensible Firmware Interface Specification
typedef struct {
 UINT32 ReceiveBufferSize;
 UINT32 SendBufferSize;
 UINT32 MaxSynBackLog;
 UINT32 ConnectionTimeout;
 UINT32 DataRetries;
 UINT32 FinTimeout;
 UINT32 TimeWaitTimeout;
 UINT32 KeepAliveProbes;
 UINT32 KeepAliveTime;
 UINT32 KeepAliveInterval;
 BOOLEAN EnableNagle;
 BOOLEAN EnableTimeStamp;
 BOOLEAN EnableWindowScaling;
 BOOLEAN EnableSelectiveAck;
 BOOLEAN EnablePathMtuDiscovery;
}EFI_TCP4_OPTION;

ReceiveBufferSize The size of the TCP receive buffer.

SendBufferSize The size of the TCP send buffer.

MaxSynBackLog The length of incoming connect request queue for a passive
instance. When set to zero, the value is implementation specific.

ConnectionTimeout The maximum seconds a TCP instance will wait for before a TCP
connection established. When set to zero, the value is
implementation specific.

DataRetries The number of times TCP will attempt to retransmit a packet on
an established connection. When set to zero, the value is
implementation specific.

FinTimeout How many seconds to wait in the FIN_WAIT_2 states for a final
FIN flag before the TCP instance is closed. This timeout is in
effective only if the application has called Close() to
disconnect the connection completely. It is also called
FIN_WAIT_2 timer in other implementations. When set to zero,
it should be disabled because the FIN_WAIT_2 timer itself is
against the standard.

TimeWaitTimeout How many seconds to wait in TIME_WAIT state before the TCP
instance is closed. The timer is disabled completely to provide a
method to close the TCP connection quickly if it is set to zero. It
is against the related RFC documents.

KeepAliveProbes The maximum number of TCP keep-alive probes to send before
giving up and resetting the connection if no response from the
other end. Set to zero to disable keep-alive probe.

KeepAliveTime The number of seconds a connection needs to be idle before TCP
sends out periodical keep-alive probes. When set to zero, the
1358 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
value is implementation specific. It should be ignored if keep-
alive probe is disabled.

KeepAliveInterval The number of seconds between TCP keep-alive probes after the
periodical keep-alive probe if no response. When set to zero, the
value is implementation specific. It should be ignored if keep-
alive probe is disabled.

EnableNagle Set it to TRUE to enable the Nagle algorithm as defined in
RFC896. Set it to FALSE to disable it.

EnableTimeStamp Set it to TRUE to enable TCP timestamps option as defined in
RFC1323. Set to FALSE to disable it.

EnableWindowScalingSet it to TRUE to enable TCP window scale option as defined in
RFC1323. Set it to FALSE to disable it.

EnableSelectiveAck Set it to TRUE to enable selective acknowledge mechanism
described in RFC 2018. Set it to FALSE to disable it.
Implementation that supports SACK can optionally support
DSAK as defined in RFC 2883.

EnablePathMtudiscovery
Set it to TRUE to enable path MTU discovery as defined in
RFC 1191. Set to FALSE to disable it.

Option setting with digital value will be modified by driver if it is set out of the implementation
specific range and an implementation specific default value will be set accordingly.

//

// EFI_TCP4_CONFIG_DATA
//

typedef struct {
 // Receiving Filters
 // I/O parameters
 UINT8 TypeOfService;
 UINT8 TimeToLive;

 // Access Point
 EFI_TCP4_ACCESS_POINT AccessPoint;

 // TCP Control Options
 EFI_TCP4_OPTION * ControlOption;

} EFI_TCP4_CONFIG_DATA;

TypeOfService TypeOfService field in transmitted IPv4 packets.

TimeToLive TimeToLive field in transmitted IPv4 packets.
Version 2.5 April, 2015 1359

Unified Extensible Firmware Interface Specification
AccessPoint Used to specify TCP communication end settings for a TCP
instance.

ControlOption Used to configure the advance TCP option for a connection. If set
to NULL, implementation specific options for TCP connection
will be used.

//

// EFI_TCP4_CONNECTION_STATE
//

typedef enum {
 Tcp4StateClosed = 0,
 Tcp4StateListen = 1,
 Tcp4StateSynSent = 2,
 Tcp4StateSynReceived = 3,
 Tcp4StateEstablished = 4,
 Tcp4StateFinWait1 = 5,
 Tcp4StateFinWait2 = 6,
 Tcp4StateClosing = 7,
 Tcp4StateTimeWait = 8,
 Tcp4StateCloseWait = 9,
 Tcp4StateLastAck = 10
} EFI_TCP4_CONNECTION_STATE;

Status Codes Returned

EFI_SUCCESS The mode data was read.

EFI_NOT_STARTED No configuration data is available because this instance hasn’t
been started.

EFI_INVALID_PARAMETER This is NULL.
1360 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_TCP4_PROTOCOL.Configure()

Summary
Initialize or brutally reset the operational parameters for this EFI TCPv4 instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_CONFIGURE) (
 IN EFI_TCP4_PROTOCOL *This,
 IN EFI_TCP4_CONFIG_DATA *TcpConfigData OPTIONAL
);

Parameters
This Pointer to the EFI_TCP4_PROTOCOL instance.

TcpConfigData Pointer to the configure data to configure the instance.

Description
The Configure() function does the following:

• Initialize this EFI TCPv4 instance, i.e., initialize the communication end setting, specify active
open or passive open for an instance.

• Reset this TCPv4 instance brutally, i.e., cancel all pending asynchronous tokens, flush
transmission and receiving buffer directly without informing the communication peer.

No other TCPv4 Protocol operation can be executed by this instance until it is configured properly.
For an active TCP4 instance, after a proper configuration it may call Connect() to initiates the
three-way handshake. For a passive TCP4 instance, its state will transit to Tcp4StateListen
after configuration, and Accept() may be called to listen the incoming TCP connection request. If
TcpConfigData is set to NULL, the instance is reset. Resetting process will be done brutally, the
state machine will be set to Tcp4StateClosed directly, the receive queue and transmit queue
will be flushed, and no traffic is allowed through this instance.

Status Codes Returned

EFI_SUCCESS The operational settings are set, changed, or reset
successfully.

EFI_NO_MAPPING When using a default address, configuration (through
DHCP, BOOTP, RARP, etc.) is not finished yet.
Version 2.5 April, 2015 1361

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER One or more following conditions are TRUE:

• This is NULL.

• TcpConfigData
->AccessPoint.StationAddress
isn’t a valid unicast IPv4 address when
TcpConfigData
->AccessPoint.UseDefaultAddress is
FALSE.

• TcpConfigData
->AccessPoint.SubnetMask isn’t a valid
IPv4 address mask when TcpConfigData
-> AccessPoint.UseDefaultAddress is
FALSE. The subnet mask must be contiguous.

• TcpConfigData
->AccessPoint.RemoteAddress isn’t a
valid unicast IPv4 address.

• TcpConfigData
->AccessPoint.RemoteAddress is zero or
TcpConfigData
->AccessPoint.RemotePort is zero when
TcpConfigData
->AccessPoint.ActiveFlag is TRUE.

• A same access point has been configured in other TCP
instance properly.

EFI_ACCESS_DENIED Configuring TCP instance when it is configured without

calling Configure() with NULL to reset it.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

EFI_UNSUPPORTED One or more of the control options are not supported in
the implementation.

EFI_OUT_OF_RESOURCES Could not allocate enough system resources when

executing Configure().
1362 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_TCP4_PROTOCOL.Routes()

Summary
Add or delete routing entries.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_ROUTES) (
 IN EFI_TCP4_PROTOCOL *This,
 IN BOOLEAN DeleteRoute,
 IN EFI_IPv4_ADDRESS *SubnetAddress,
 IN EFI_IPv4_ADDRESS *SubnetMask,
 IN EFI_IPv4_ADDRESS *GatewayAddress
);

Parameters
This Pointer to the EFI_TCP4_PROTOCOL instance.

DeleteRoute Set it to TRUE to delete this route from the routing table. Set it to
FALSE to add this route to the routing table.
DestinationAddress and SubnetMask are used as the
keywords to search route entry.

SubnetAddress The destination network.

SubnetMask The subnet mask of the destination network.

GatewayAddress The gateway address for this route. It must be on the same subnet
with the station address unless a direct route is specified.

Description
The Routes() function adds or deletes a route from the instance’s routing table.

The most specific route is selected by comparing the SubnetAddress with the destination IP
address’s arithmetical AND to the SubnetMask.

The default route is added with both SubnetAddress and SubnetMask set to 0.0.0.0. The
default route matches all destination IP addresses if there is no more specific route.

Direct route is added with GatewayAddress set to 0.0.0.0. Packets are sent to the destination host
if its address can be found in the Address Resolution Protocol (ARP) cache or it is on the local
subnet. If the instance is configured to use default address, a direct route to the local network will be
added automatically.

Each TCP instance has its own independent routing table. Instance that uses the default IP address
will have a copy of the EFI_IP4_CONFIG2_PROTOCOL’s routing table. The copy will be
updated automatically whenever the IP driver reconfigures its instance. As a result, the previous
modification to the instance’s local copy will be lost.

The priority of checking the route table is specific with IP implementation and every IP
implementation must comply with RFC 1122.
Version 2.5 April, 2015 1363

Unified Extensible Firmware Interface Specification
Note: There is no way to set up routes to other network interface cards (NICs) because each NIC has its
own independent network stack that shares information only through EFI TCP4 variable.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The EFI TCPv4 Protocol instance has not been configured.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• SubnetAddress is NULL.

• SubnetMask is NULL.

• GatewayAddress is NULL.

• *SubnetAddress is not NULL a valid subnet address.

• *SubnetMask is not a valid subnet mask.

• *GatewayAddress is not a valid unicast IP address or it is
not in the same subnet.

EFI_OUT_OF_RESOURCES Could not allocate enough resources to add the entry to the routing
table.

EFI_NOT_FOUND This route is not in the routing table.

EFI_ACCESS_DENIED The route is already defined in the routing table.

EFI_UNSUPPORTED The TCP driver does not support this operation.
1364 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_TCP4_PROTOCOL.Connect()

Summary
Initiate a nonblocking TCP connection request for an active TCP instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_CONNECT) (
 IN EFI_TCP4_PROTOCOL *This,
 IN EFI_TCP4_CONNECTION_TOKEN *ConnectionToken,
);

Parameters
This Pointer to the EFI_TCP4_PROTOCOL instance.

ConnectionToken Pointer to the connection token to return when the TCP three way
handshake finishes. Type EFI_TCP4_CONNECTION_TOKEN is
defined in “Related Definition” below.

Description
The Connect() function will initiate an active open to the remote peer configured in current TCP
instance if it is configured active. If the connection succeeds or fails due to any error, the
ConnectionToken->CompletionToken.Event will be signaled and
ConnectionToken->CompletionToken.Status will be updated accordingly. This
function can only be called for the TCP instance in Tcp4StateClosed state. The instance will
transfer into Tcp4StateSynSent if the function returns EFI_SUCCESS. If TCP three way
handshake succeeds, its state will become Tcp4StateEstablished, otherwise, the state will
return to Tcp4StateClosed.

Related Definitions
//

// EFI_TCP4_COMPLETION_TOKEN
//

typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
} EFI_TCP4_COMPLETION_TOKEN;

Event The Event to signal after request is finished and Status field
is updated by the EFI TCPv4 Protocol driver. The type of Event
must be EVT_NOTIFY_SIGNAL, and its Task Priority Level
(TPL) must be lower than or equal to TPL_CALLBACK.

Status The variable to receive the result of the completed operation.
EFI_NO_MEDIA. There was a media error
Version 2.5 April, 2015 1365

Unified Extensible Firmware Interface Specification
The EFI_TCP4_COMPLETION_TOKEN is used as a common header for various asynchronous
tokens.

//

// EFI_TCP4_CONNECTION_TOKEN
//

typedef struct {
 EFI_TCP4_COMPLETION_TOKEN CompletionToken;
} EFI_TCP4_CONNECTION_TOKEN;

Status The Status in the CompletionToken will be set to one of
the following values if the active open succeeds or an unexpected
error happens:

EFI_SUCCESS. The active open succeeds and the instance is
in Tcp4StateEstablished.

EFI_CONNECTION_RESET. The connect fails because the
connection is reset either by instance itself or communication
peer.

EFI_CONNECTION_REFUSED: The connect fails because this
connection is initiated with an active open and the connection is
refused.

EFI_ABORTED. The active open was aborted.

EFI_TIMEOUT. The connection establishment timer expired
and no more specific information is available.

EFI_NETWORK_UNREACHABLE. The active open fails
because an ICMP network unreachable error is received.

EFI_HOST_UNREACHABLE. The active open fails because an
ICMP host unreachable error is received.

EFI_PROTOCOL_UNREACHABLE. The active open fails
because an ICMP protocol unreachable error is received.

EFI_PORT_UNREACHABLE. The connection establishment
timer times out and an ICMP port unreachable error is received.

EFI_ICMP_ERROR. The connection establishment timer
timeout and some other ICMP error is received.

EFI_DEVICE_ERROR. An unexpected system or network
error occurred.
1366 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Status Codes Returned

EFI_SUCCESS The connection request is successfully initiated and the state of
this TCPv4 instance has been changed to

Tcp4StateSynSent.

EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.

EFI_ACCESS_DENIED One or more of the following conditions are TRUE:

• This instance is not configured as an active one.

• This instance is not in Tcp4StateClosed state.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• ConnectionToken is NULL.

• ConnectionToken
->CompletionToken.Event is NULL.

EFI_OUT_OF_RESOURCES The driver can’t allocate enough resource to initiate the active
open.

EFI_DEVICE_ERROR An unexpected system or network error occurred.
Version 2.5 April, 2015 1367

Unified Extensible Firmware Interface Specification
EFI_TCP4_PROTOCOL.Accept()

Summary
Listen on the passive instance to accept an incoming connection request. This is a nonblocking
operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_ACCEPT) (
 IN EFI_TCP4_PROTOCOL *This,
 IN EFI_TCP4_LISTEN_TOKEN *ListenToken
);

Parameters
This Pointer to the EFI_TCP4_PROTOCOL instance.

ListenToken Pointer to the listen token to return when operation finishes. Type
EFI_TCP4_LISTEN_TOKEN is defined in “Related
Definition” below.

Related Definitions
//

// EFI_TCP4_LISTEN_TOKEN
//

typedef struct {
 EFI_TCP4_COMPLETION_TOKEN CompletionToken;
 EFI_HANDLE NewChildHandle;
} EFI_TCP4_LISTEN_TOKEN;

Status The Status in CompletionToken will be set to the
following value if accept finishes:

EFI_SUCCESS. A remote peer has successfully established a
connection to this instance. A new TCP instance has also been
created for the connection.

EFI_CONNECTION_RESET. The accept fails because the
connection is reset either by instance itself or communication
peer.

EFI_ABORTED. The accept request has been aborted.

NewChildHandle The new TCP instance handle created for the established
connection.

Description
The Accept() function initiates an asynchronous accept request to wait for an incoming
connection on the passive TCP instance. If a remote peer successfully establishes a connection with
1368 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
this instance, a new TCP instance will be created and its handle will be returned in ListenToken-
>NewChildHandle. The newly created instance is configured by inheriting the passive instance’s
configuration and is ready for use upon return. The instance is in the Tcp4StateEstablished
state.

The ListenToken->CompletionToken.Event will be signaled when a new connection is
accepted, user aborts the listen or connection is reset.

This function only can be called when current TCP instance is in Tcp4StateListen state.

Status Codes Returned

EFI_SUCCESS The listen token has been queued successfully.

EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.

EFI_ACCESS_DENIED One or more of the following are TRUE:

• This instance is not a passive instance.

• This instance is not in Tcp4StateListen state.

• The same listen token has already existed in the listen token
queue of this TCP instance.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• ListenToken is NULL.
• ListentToken->CompletionToken.Event is
NULL.

EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.

EFI_DEVICE_ERROR Any unexpected and not belonged to above category error.
Version 2.5 April, 2015 1369

Unified Extensible Firmware Interface Specification
EFI_TCP4_PROTOCOL.Transmit()

Summary
Queues outgoing data into the transmit queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_TRANSMIT) (
 IN EFI_TCP4_PROTOCOL *This,
 IN EFI_TCP4_IO_TOKEN *Token
);

Parameters
This Pointer to the EFI_TCP4_PROTOCOL instance.

Token Pointer to the completion token to queue to the transmit queue.
Type EFI_TCP4_IO_TOKEN is defined in “Related
Definitions” below.

Description
The Transmit() function queues a sending request to this TCPv4 instance along with the user
data. The status of the token is updated and the event in the token will be signaled once the data is
sent out or some error occurs.

Related Definitions

//

// EFI_TCP4_IO_TOKEN
//

typedef struct {
 EFI_TCP4_COMPLETION_TOKEN CompletionToken;
 union {
 EFI_TCP4_RECEIVE_DATA *RxData;
 EFI_TCP4_TRANSMIT_DATA *TxData;
 } Packet;
} EFI_TCP4_IO_TOKEN;

Status When transmission finishes or meets any unexpected error it will
be set to one of the following values:

EFI_SUCCESS. The receiving or transmission operation
completes successfully.

EFI_CONNECTION_FIN: The receiving operation fails because
the communication peer has closed the connection and there is no
more data in the receive buffer of the instance.
1370 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_CONNECTION_RESET. The receiving or transmission
operation fails because this connection is reset either by instance
itself or communication peer.

EFI_ABORTED. The receiving or transmission is aborted.

EFI_TIMEOUT. The transmission timer expires and no more
specific information is available.

EFI_NETWORK_UNREACHABLE. The transmission fails
because an ICMP network unreachable error is received.

EFI_HOST_UNREACHABLE. The transmission fails because
an ICMP host unreachable error is received.

EFI_PROTOCOL_UNREACHABLE. The transmission fails
because an ICMP protocol unreachable error is received.

EFI_PORT_UNREACHABLE. The transmission fails and an
ICMP port unreachable error is received.

EFI_ICMP_ERROR. The transmission fails and some other
ICMP error is received.

EFI_DEVICE_ERROR. An unexpected system or network
error occurs.

EFI_NO_MEDIA. There was a media error

RxData When this token is used for receiving, RxData is a pointer to
EFI_TCP4_RECEIVE_DATA. Type
EFI_TCP4_RECEIVE_DATA is defined below.

TxData When this token is used for transmitting, TxData is a pointer to
EFI_TCP4_TRANSMIT_DATA. Type
EFI_TCP4_TRANSMIT_DATA is defined below.

The EFI_TCP4_IO_TOKEN structures are used for both transmit and receive operations.

When used for transmitting, the CompletionToken.Event and TxData fields must be filled in
by the user. After the transmit operation completes, the CompletionToken.Status field is
updated by the instance and the Event is signaled.

• When used for receiving, the CompletionToken.Event and RxData fields must be filled
in by the user. After a receive operation completes, RxData and Status are updated by the
instance and the Event is signaled.

// TCP4 Token Status definition
//

#define EFI_CONNECTION_FIN EFIERR (104)
#define EFI_CONNECTION_RESET EFIERR (105)
#define EFI_CONNECTION_REFUSED EFIERR (106)

Note: EFIERR() sets the maximum bit. Similar to how error codes are described in Appendix D.
Version 2.5 April, 2015 1371

Unified Extensible Firmware Interface Specification
//

// EFI_TCP4_RECEIVE_DATA
//

typedef struct {
 BOOLEAN UrgentFlag;
 UINT32 DataLength;
 UINT32 FragmentCount;
 EFI_TCP4_FRAGMENT_DATA FragmentTable[1];
} EFI_TCP4_RECEIVE_DATA;

UrgentFlag Whether those data are urgent. When this flag is set, the instance
is in urgent mode. The implementations of this specification
should follow RFC793 to process urgent data, and should NOT
mix the data across the urgent point in one token.

DataLength When calling Receive() function, it is the byte counts of all
Fragmentbuffer in FragmentTable allocated by user.
When the token is signaled by TCPv4 driver it is the length of
received data in the fragments.

FragmentCount Number of fragments.

FragmentTable An array of fragment descriptors. Type
EFI_TCP4_FRAGMENT_DATA is defined below.

When TCPv4 driver wants to deliver received data to the application, it will pick up the first queued
receiving token, update its Token->Packet.RxData then signal the Token-
>CompletionToken.Event.

• The FragmentBuffers in FragmentTable are allocated by the application when calling
Receive() function and received data will be copied to those buffers by the driver.
FragmentTable may contain multiple buffers that are NOT in the continuous memory
locations. The application should combine those buffers in the FragmentTable to process
data if necessary.

//

// EFI_TCP4_FRAGMENT_DATA
//

typedef struct {
 UINT32 FragmentLength;
 VOID *FragmentBuffer;
} EFI_TCP4_FRAGMENT_DATA;

FragmentLength Length of data buffer in the fragment.
1372 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
FragmentBuffer Pointer to the data buffer in the fragment.

EFI_TCP4_FRAGMENT_DATA allows multiple receive or transmit buffers to be specified. The
purpose of this structure is to provide scattered read and write.

//**
// EFI_TCP4_TRANSMIT_DATA
//**
typedef struct {
 BOOLEAN Push;
 BOOLEAN Urgent;
 UINT32 DataLength;
 UINT32 FragmentCount;
 EFI_TCP4_FRAGMENT_DATA FragmentTable[1];
} EFI_TCP4_TRANSMIT_DATA;

Push If TRUE, data must be transmitted promptly, and the PUSH bit in
the last TCP segment created will be set. If FALSE, data
transmission may be delay to combine with data from subsequent
Transmit()s for efficiency.

Urgent The data in the fragment table are urgent and urgent point is in
effect if TRUE. Otherwise those data are NOT considered urgent.

DataLength Length of the data in the fragments.

FragmentCount Number of fragments.

FragmentTable A array of fragment descriptors. Type
EFI_TCP4_FRAGMENT_DATA is defined above.

The EFI TCPv4 Protocol user must fill this data structure before sending a packet. The packet may
contain multiple buffers in non-continuous memory locations.

Status Codes Returned

EFI_SUCCESS The data has been queued for transmission.

EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• Token is NULL.

• Token->CompletionToken.Event is NULL.

• Token->Packet.TxData is NULL.

• Token->Packet.FragmentCount is zero.

• Token->Packet.DataLength is not equal to the
sum of fragment lengths.
Version 2.5 April, 2015 1373

Unified Extensible Firmware Interface Specification
EFI_ACCESS_DENIED One or more of the following conditions is TRUE:

• A transmit completion token with the same Token->
CompletionToken.Event was already in the
transmission queue.

• The current instance is in Tcp4StateClosed state.

• The current instance is a passive one and it is in
Tcp4StateListen state.

• User has called Close() to disconnect this connection.

EFI_NOT_READY The completion token could not be queued because the
transmit queue is full.

EFI_OUT_OF_RESOURCES Could not queue the transmit data because of resource
shortage.

EFI_NETWORK_UNREACHABLE There is no route to the destination network or address.

EFI_NO_MEDIA There was a media error.
1374 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_TCP4_PROTOCOL.Receive()

Summary
Places an asynchronous receive request into the receiving queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_RECEIVE) (
 IN EFI_TCP4_PROTOCOL *This,
 IN EFI_TCP4_IO_TOKEN *Token
);

Parameters
This Pointer to the EFI_TCP4_PROTOCOL instance.

Token Pointer to a token that is associated with the receive data
descriptor. Type EFI_TCP4_IO_TOKEN is defined in
EFI_TCP4_PROTOCOL.Transmit().

Description
The Receive() function places a completion token into the receive packet queue. This function is
always asynchronous. The caller must allocate the Token->CompletionToken.Event and the
FragmentBuffer used to receive data. He also must fill the DataLength which represents the
whole length of all FragmentBuffer. When the receive operation completes, the EFI TCPv4
Protocol driver updates the Token->CompletionToken.Status and Token-
>Packet.RxData fields and the Token->CompletionToken.Event is signaled. If got data
the data and its length will be copy into the FragmentTable, in the same time the full length of
received data will be recorded in the DataLength fields. Providing a proper notification function
and context for the event will enable the user to receive the notification and receiving status. That
notification function is guaranteed to not be re-entered.

Status Codes Returned

EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.
Version 2.5 April, 2015 1375

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token->CompletionToken.Event is NULL.

• Token->Packet.RxData is NULL.

• Token->Packet.RxData->DataLength is 0.
• The Token->Packet.RxData->DataLength is not

the sum of all FragmentBuffer length in
FragmentTable.

EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of
system resources (usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The EFI TCPv4 Protocol instance has been reset to startup
defaults.

EFI_ACCESS_DENIED One or more of the following conditions is TRUE:

• A receive completion token with the same Token-
>CompletionToken.Event was already in the receive
queue.

• The current instance is in Tcp4StateClosed state.

• The current instance is a passive one and it is in
Tcp4StateListen state.

• User has called Close() to disconnect this connection.

EFI_CONNECTION_FIN The communication peer has closed the connection and there is no
any buffered data in the receive buffer of this instance.

EFI_NOT_READY The receive request could not be queued because the receive
queue is full.

EFI_NO_MEDIA There was a media error.
1376 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_TCP4_PROTOCOL.Close()

Summary
Disconnecting a TCP connection gracefully or reset a TCP connection. This function is a
nonblocking operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_CLOSE)(
 IN EFI_TCP4_PROTOCOL *This,
 IN EFI_TCP4_CLOSE_TOKEN *CloseToken
);

Parameters
This Pointer to the EFI_TCP4_PROTOCOL instance.

CloseToken Pointer to the close token to return when operation finishes. Type
EFI_TCP4_CLOSE_TOKEN is defined in “Related Definition”
below.

Related Definitions
//

// EFI_TCP4_CLOSE_TOKEN
//

typedef struct {
 EFI_TCP4_COMPLETION_TOKEN CompletionToken;
 BOOLEAN AbortOnClose;
} EFI_TCP4_CLOSE_TOKEN;

Status When close finishes or meets any unexpected error it will be set
to one of the following values:

EFI_SUCCESS. The close operation completes successfully.

EFI_ABORTED. User called configure with NULL without
close stopping.

AbortOnClose Abort the TCP connection on close instead of the standard TCP
close process when it is set to TRUE. This option can be used to
satisfy a fast disconnect.

Description
Initiate an asynchronous close token to TCP driver. After Close() is called, any buffered
transmission data will be sent by TCP driver and the current instance will have a graceful close
working flow described as RFC 793 if AbortOnClose is set to FALSE, otherwise, a rest packet
will be sent by TCP driver to fast disconnect this connection. When the close operation completes
Version 2.5 April, 2015 1377

Unified Extensible Firmware Interface Specification
successfully the TCP instance is in Tcp4StateClosed state, all pending asynchronous operation
is signaled and any buffers used for TCP network traffic is flushed.

Status Codes Returned

EFI_SUCCESS The Close() is called successfully.

EFI_NOT_STARTED This EFI TCPv4 Protocol instance has not been configured.

EFI_ACCESS_DENIED One or more of the following are TRUE:

• Configure() has been called with
TcpConfigData set to NULL and this function has not
returned.

• Previous Close() call on this instance has not finished.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• CloseToken is NULL.

• CloseToken->CompletionToken.Event is
NULL.

EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.

EFI_DEVICE_ERROR Any unexpected and not belonged to above category error.
1378 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_TCP4_PROTOCOL.Cancel()

Summary
Abort an asynchronous connection, listen, transmission or receive request.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_CANCEL)(
 IN EFI_TCP4_PROTOCOL *This,
 IN EFI_TCP4_COMPLETION_TOKEN *Token OPTIONAL
);

Parameters
This Pointer to the EFI_TCP4_PROTOCOL instance.

Token Pointer to a token that has been issued by
EFI_TCP4_PROTOCOL.Connect(),
EFI_TCP4_PROTOCOL.Accept(),
EFI_TCP4_PROTOCOL.Transmit() or
EFI_TCP4_PROTOCOL.Receive(). If NULL, all pending
tokens issued by above four functions will be aborted. Type
EFI_TCP4_COMPLETION_TOKEN is defined in
EFI_TCP4_PROTOCOL.Connect().

Description
The Cancel() function aborts a pending connection, listen, transmit or receive request. If Token
is not NULL and the token is in the connection, listen, transmission or receive queue when it is being
cancelled, its Token->Status will be set to EFI_ABORTED and then Token->Event will be
signaled. If the token is not in one of the queues, which usually means that the asynchronous
operation has completed, EFI_NOT_FOUND is returned. If Token is NULL all asynchronous token
issued by Connect(), Accept(), Transmit() and Receive()will be aborted.

Status Codes Returned

EFI_SUCCESS The asynchronous I/O request is aborted and Token->Event

is signaled.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED This instance hasn’t been configured.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
RARP, etc.) hasn’t finished yet.

EFI_NOT_FOUND The asynchronous I/O request isn’t found in the transmission or
receive queue. It has either completed or wasn’t issued by

Transmit() and Receive().

EFI_UNSUPPORTED The implementation does not support this function.
Version 2.5 April, 2015 1379

Unified Extensible Firmware Interface Specification
EFI_TCP4_PROTOCOL.Poll()

Summary
Poll to receive incoming data and transmit outgoing segments.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP4_POLL) (
 IN EFI_TCP4_PROTOCOL *This
);

Parameters
This Pointer to the EFI_TCP4_PROTOCOL instance.

Description
The Poll() function increases the rate that data is moved between the network and application and
can be called when the TCP instance is created successfully. Its use is optional.

In some implementations, the periodical timer in the MNP driver may not poll the underlying
communications device fast enough to avoid drop packets. Drivers and applications that are
experiencing packet loss should try calling the Poll() function in a high frequency.

Status Codes Returned

27.2 EFI TCPv6 Protocol
This section defines the EFI TCPv6 (Transmission Control Protocol version 6) Protocol.

27.2.1 TCPv6 Service Binding Protocol

EFI_TCP6_SERVICE_BINDING_PROTOCOL

Summary
The EFI TCPv6 Service Binding Protocol is used to locate EFI TCPv6 Protocol drivers to create and
destroy protocol child instance of the driver to communicate with other host using TCP protocol.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_NOT_READY No incoming or outgoing data is processed.

EFI_TIMEOUT Data was dropped out of the transmission or receive queue.
Consider increasing the polling rate.
1380 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
GUID
#define EFI_TCP6_SERVICE_BINDING_PROTOCOL_GUID \
 {0xec20eb79,0x6c1a,0x4664,\
 {0x9a,0x0d,0xd2,0xe4,0xcc,0x16,0xd6, 0x64}}

Description
A network application that requires TCPv6 I/O services can call one of the protocol handler services,
such as BS->LocateHandleBuffer(), to search devices that publish an EFI TCPv6 Service
Binding Protocol GUID. Such device supports the EFI TCPv6 Protocol and may be available for
use.

After a successful call to the EFI_TCP6_SERVICE_BINDING_PROTOCOL.CreateChild()
function, the newly created child EFI TCPv6 Protocol driver is in an un-configured state; it is not
ready to do any operation except Poll() send and receive data packets until configured.

Every successful call to the EFI_TCP6_SERVICE_BINDING_PROTOCOL.CreateChild()
function must be matched with a call to the
EFI_TCP6_SERVICE_BINDING_PROTOCOL.DestroyChild() function to release the
protocol driver.
Version 2.5 April, 2015 1381

Unified Extensible Firmware Interface Specification
27.2.2 TCPv6 Protocol

EFI_TCP6_PROTOCOL

Summary

The EFI TCPv6 Protocol provides services to send and receive data stream.

GUID
#define EFI_TCP6_PROTOCOL_GUID \
 {0x46e44855,0xbd60,0x4ab7,\
 {0xab,0x0d,0xa6,0x79,0xb9,0x44,0x7d,0x77}}

Protocol Interface Structure
typedef struct _EFI_TCP6_PROTOCOL {
 EFI_TCP6_GET_MODE_DATA GetModeData;
 EFI_TCP6_CONFIGURE Configure;
 EFI_TCP6_CONNECT Connect;
 EFI_TCP6_ACCEPT Accept;
 EFI_TCP6_TRANSMIT Transmit;
 EFI_TCP6_RECEIVE Receive;
 EFI_TCP6_CLOSE Close;
 EFI_TCP6_CANCEL Cancel;
 EFI_TCP6_POLL Poll;
} EFI_TCP6_PROTOCOL;

Parameters
GetModeData Get the current operational status. See the GetModeData()

function description.

Configure Initialize, change, or brutally reset operational settings of the EFI
TCPv6 Protocol. See the Configure() function description.

Connect Initiate the TCP three-way handshake to connect to the remote
peer configured in this TCP instance. The function is a
nonblocking operation. See the Connect() function
description.

Accept Listen for incoming TCP connection requests. This function is a
nonblocking operation. See the Accept() function description.

Transmit Queue outgoing data to the transmit queue. This function is a
nonblocking operation. See the Transmit() function
description.

Receive Queue a receiving request token to the receive queue. This
function is a nonblocking operation. See the Receive()
function description.

Close Gracefully disconnect a TCP connection follow RFC 793 or reset
a TCP connection. This function is a nonblocking operation. See
the Close() function description.
1382 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Cancel Abort a pending connect, listen, transmit or receive request. See
the Cancel() function description.

Poll Poll to receive incoming data and transmit outgoing TCP
segments. See the Poll() function description.

Description
The EFI_TCP6_PROTOCOL defines the EFI TCPv6 Protocol child to be used by any network
drivers or applications to send or receive data stream. It can either listen on a specified port as a
service or actively connect to remote peer as a client. Each instance has its own independent settings.

Note: Byte Order: In this document, all IPv6 addresses and incoming/outgoing packets are stored in
network byte order. All other parameters in the functions and data structures that are defined in
this document are stored in host byte order unless explicitly specified.
Version 2.5 April, 2015 1383

Unified Extensible Firmware Interface Specification
EFI_TCP6_PROTOCOL.GetModeData()

Summary
Get the current operational status.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP6_GET_MODE_DATA) (
 IN EFI_TCP6_PROTOCOL *This,
 OUT EFI_TCP6_CONNECTION_STATE *Tcp6State OPTIONAL,
 OUT EFI_TCP6_CONFIG_DATA *Tcp6ConfigData OPTIONAL,
 OUT EFI_IPv6_MODE_DATA *Ip6ModeData OPTIONAL,
 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
);

Parameters
This Pointer to the EFI_TCP6_PROTOCOL instance.

Tcp6State The buffer in which the current TCP state is returned. Type
EFI_TCP6_CONNECTION_STATE is defined in "Related
Definitions" below.

Tcp6ConfigData The buffer in which the current TCP configuration is returned.
Type EFI_TCP6_CONFIG_DATA is defined in "Related
Definitions" below.

Ip6ModeData The buffer in which the current IPv6 configuration data used by
the TCP instance is returned. Type EFI_IP6_MODE_DATA is
defined in EFI_IP6_PROTOCOL.GetModeData().

MnpConfigData The buffer in which the current MNP configuration data used
indirectly by the TCP instance is returned. Type
EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

SnpModeData The buffer in which the current SNP mode data used indirectly by
the TCP instance is returned. Type
EFI_SIMPLE_NETWORK_MODE is defined in the
EFI_SIMPLE_NETWORK_PROTOCOL.

Description
The GetModeData() function copies the current operational settings of this EFI TCPv6 Protocol
instance into user-supplied buffers. This function can also be used to retrieve the operational setting
of underlying drivers such as IPv6, MNP, or SNP.
1384 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Related Definition
typedef struct {
 EFI_IPv6_ADDRESS StationAddress;
 UINT16 StationPort;
 EFI_IPv6_ADDRESS RemoteAddress;
 UINT16 RemotePort;
 BOOLEAN ActiveFlag;
} EFI_TCP6_ACCESS_POINT;

StationAddress The local IP address assigned to this TCP instance. The EFI
TCPv6 driver will only deliver incoming packets whose
destination addresses exactly match the IP address. Set to zero to
let the underlying IPv6 driver choose a source address. If not zero
it must be one of the configured IP addresses in the underlying
IPv6 driver.

StationPort The local port number to which this EFI TCPv6 Protocol instance
is bound. If the instance doesn’t care the local port number, set
StationPort to zero to use an ephemeral port.

RemoteAddress The remote IP address to which this EFI TCPv6 Protocol instance
is connected. If ActiveFlag is FALSE (i.e., a passive TCPv6
instance), the instance only accepts connections from the
RemoteAddress. If ActiveFlag is TRUE the instance will
connect to the RemoteAddress, i.e., outgoing segments will be
sent to this address and only segments from this address will be
delivered to the application. When ActiveFlag is FALSE, it
can be set to zero and means that incoming connection requests
from any address will be accepted.

RemotePort The remote port to which this EFI TCPv6 Protocol instance
connects or from which connection request will be accepted by
this EFI TCPv6 Protocol instance. If ActiveFlag is FALSE it
can be zero and means that incoming connection request from
any port will be accepted. Its value can not be zero when
ActiveFlag is TRUE.

ActiveFlag Set it to TRUE to initiate an active open. Set it to FALSE to
initiate a passive open to act as a server.
Version 2.5 April, 2015 1385

Unified Extensible Firmware Interface Specification
//***
// EFI_TCP6_OPTION
//***
typedef struct {
 UINT32 ReceiveBufferSize;
 UINT32 SendBufferSize;
 UINT32 MaxSynBackLog;
 UINT32 ConnectionTimeout;
 UINT32 DataRetries;
 UINT32 FinTimeout;
 UINT32 TimeWaitTimeout;
 UINT32 KeepAliveProbes;
 UINT32 KeepAliveTime;
 UINT32 KeepAliveInterval;
 BOOLEAN EnableNagle;
 BOOLEAN EnableTimeStamp;
 BOOLEAN EnableWindowScaling;
 BOOLEAN EnableSelectiveAck;
 BOOLEAN EnablePathMtuDiscovery;
} EFI_TCP6_OPTION;

ReceiveBufferSize The size of the TCP receive buffer.

SendBufferSize The size of the TCP send buffer.

MaxSynBackLog The length of incoming connect request queue for a passive
instance. When set to zero, the value is implementation specific.

ConnectionTimeout The maximum seconds a TCP instance will wait for before a TCP
connection established. When set to zero, the value is
implementation specific.

DataRetries The number of times TCP will attempt to retransmit a packet on
an established connection. When set to zero, the value is
implementation specific.

FinTimeout How many seconds to wait in the FIN_WAIT_2 states for a final
FIN flag before the TCP instance is closed. This timeout is in
effective only if the application has called Close() to
disconnect the connection completely. It is also called
FIN_WAIT_2 timer in other implementations. When set to zero,
it should be disabled because the FIN_WAIT_2 timer itself is
against the standard.

TimeWaitTimeout How many seconds to wait in TIME_WAIT state before the TCP
instance is closed. The timer is disabled completely to provide a
method to close the TCP connection quickly if it is set to zero. It
is against the related RFC documents.

KeepAliveProbes The maximum number of TCP keep-alive probes to send before
giving up and resetting the connection if no response from the
other end. Set to zero to disable keep-alive probe.
1386 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
KeepAliveTime The number of seconds a connection needs to be idle before TCP
sends out periodical keep-alive probes. When set to zero, the
value is implementation specific. It should be ignored if keep-
alive probe is disabled.

KeepAliveInterval The number of seconds between TCP keep-alive probes after the
periodical keep-alive probe if no response. When set to zero, the
value is implementation specific. It should be ignored if keep-
alive probe is disabled.

EnableNagle Set it to TRUE to enable the Nagle algorithm as defined in
RFC896. Set it to FALSE to disable it.

EnableTimeStamp Set it to TRUE to enable TCP timestamps option as defined in
RFC1323. Set to FALSE to disable it.

EnableWindowScalingSet it to TRUE to enable TCP window scale option as defined in
RFC1323. Set it to FALSE to disable it.

EnableSelectiveAck Set it to TRUE to enable selective acknowledge mechanism
described in RFC 2018. Set it to FALSE to disable it.
Implementation that supports SACK can optionally support
DSAK as defined in RFC 2883.

EnablePathMtudiscoverySet it to TRUE to enable path MTU discovery as defined in
RFC 1191. Set to FALSE to disable it.

Option setting with digital value will be modified by driver if it is set out of the implementation
specific range and an implementation specific default value will be set accordingly.

//

// EFI_TCP6_CONFIG_DATA
//

typedef struct {
 UINT8 TrafficClass;
 UINT8 HopLimit;
 EFI_TCP6_ACCESS_POINT AccessPoint;
 EFI_TCP6_OPTION *ControlOption;
} EFI_TCP6_CONFIG_DATA;

TrafficClass TrafficClass field in transmitted IPv6 packets.

HopLimit HopLimit field in transmitted IPv6 packets.

AccessPoint Used to specify TCP communication end settings for a TCP
instance.

ControlOption Used to configure the advance TCP option for a connection. If set
to NULL, implementation specific options for TCP connection
will be used.
Version 2.5 April, 2015 1387

Unified Extensible Firmware Interface Specification
//

// EFI_TCP6_CONNECTION_STATE
//

typedef enum {
 Tcp6StateClosed = 0,
 Tcp6StateListen = 1,
 Tcp6StateSynSent = 2,
 Tcp6StateSynReceived = 3,
 Tcp6StateEstablished = 4,
 Tcp6StateFinWait1 = 5,
 Tcp6StateFinWait2 = 6,
 Tcp6StateClosing = 7,
 Tcp6StateTimeWait = 8,
 Tcp6StateCloseWait = 9,
 Tcp6StateLastAck = 10
} EFI_TCP6_CONNECTION_STATE;

Status Codes Returned

EFI_SUCCESS The mode data was read.

EFI_NOT_STARTED No configuration data is available because this instance hasn’t
been started.

EFI_INVALID_PARAMETER This is NULL.
1388 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_TCP6_PROTOCOL.Configure()

Summary
Initialize or brutally reset the operational parameters for this TCP instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP6_CONFIGURE) (
 IN EFI_TCP6_PROTOCOL *This,
 IN EFI_TCP6_CONFIG_DATA *Tcp6ConfigData OPTIONAL
);

Parameters
This Pointer to the EFI_TCP6_PROTOCOL instance.

Tcp6ConfigData Pointer to the configure data to configure the instance.

Description
The Configure() function does the following:

• Initialize this TCP instance, i.e., initialize the communication end settings and specify active
open or passive open for an instance.

• Reset this TCP instance brutally, i.e., cancel all pending asynchronous tokens, flush
transmission and receiving buffer directly without informing the communication peer.

No other TCPv6 Protocol operation except Poll() can be executed by this instance until it is
configured properly. For an active TCP instance, after a proper configuration it may call
Connect() to initiates the three-way handshake. For a passive TCP instance, its state will transit
to Tcp6StateListen after configuration, and Accept() may be called to listen the incoming
TCP connection requests. If Tcp6ConfigData is set to NULL, the instance is reset. Resetting
process will be done brutally, the state machine will be set to Tcp6StateClosed directly, the
receive queue and transmit queue will be flushed, and no traffic is allowed through this instance.

Status Codes Returned

EFI_SUCCESS The operational settings are set, changed, or reset successfully.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
address for this instance, but no source address was available for
use.
Version 2.5 April, 2015 1389

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER One or more of the following conditions are TRUE:

• This is NULL.

• Tcp6ConfigData-
>AccessPoint.StationAddress is neither zero nor
one of the configured IP addresses in the underlying IPv6 driver.

• Tcp6ConfigData-
>AccessPoint.RemoteAddress isn’t a valid unicast
IPv6 address.

• Tcp6ConfigData-
>AccessPoint.RemoteAddress is zero or
Tcp6ConfigData->AccessPoint.RemotePort
is zero when Tcp6ConfigData-
>AccessPoint.ActiveFlag is TRUE.

• A same access point has been configured in other TCP
instance properly.

EFI_ACCESS_DENIED Configuring TCP instance when it is configured without calling

Configure() with NULL to reset it.

EFI_UNSUPPORTED One or more of the control options are not supported in the
implementation.

EFI_OUT_OF_RESOURCES Could not allocate enough system resources when executing

Configure().

EFI_DEVICE_ERROR An unexpected network or system error occurred.
1390 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_TCP6_PROTOCOL.Connect()

Summary
Initiate a nonblocking TCP connection request for an active TCP instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP6_CONNECT) (
 IN EFI_TCP6_PROTOCOL *This,
 IN EFI_TCP6_CONNECTION_TOKEN *ConnectionToken
);

Parameters
This Pointer to the EFI_TCP6_PROTOCOL instance.

ConnectionToken Pointer to the connection token to return when the TCP three-way
handshake finishes. Type EFI_TCP6_CONNECTION_TOKEN is
defined in Related Definition below.

Description
The Connect() function will initiate an active open to the remote peer configured in current TCP
instance if it is configured active. If the connection succeeds or fails due to any error, the
ConnectionToken->CompletionToken.Event will be signaled and
ConnectionToken->CompletionToken.Status will be updated accordingly. This
function can only be called for the TCP instance in Tcp6StateClosed state. The instance will
transfer into Tcp6StateSynSent if the function returns EFI_SUCCESS. If TCP three-way
handshake succeeds, its state will become Tcp6StateEstablished, otherwise, the state will
return to Tcp6StateClosed.

Related Definitions
//

// EFI_TCP6_COMPLETION_TOKEN
//

typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
} EFI_TCP6_COMPLETION_TOKEN;

Event The Event to signal after request is finished and Status field is
updated by the EFI TCPv6 Protocol driver. The type of Event
must be EVT_NOTIFY_SIGNAL.

Status The result of the completed operation. EFI_NO_MEDIA. There
was a media error
Version 2.5 April, 2015 1391

Unified Extensible Firmware Interface Specification
The EFI_TCP6_COMPLETION_TOKEN is used as a common header for various asynchronous
tokens.

//

// EFI_TCP6_CONNECTION_TOKEN
//

typedef struct {
 EFI_TCP6_COMPLETION_TOKEN CompletionToken;
} EFI_TCP6_CONNECTION_TOKEN;

Status The Status in the CompletionToken will be set to one of
the following values if the active open succeeds or an unexpected
error happens:

EFI_SUCCESS: The active open succeeds and the instance’s
state is Tcp6StateEstablished.

EFI_CONNECTION_RESET: The connect fails because the
connection is reset either by instance itself or the communication
peer.

EFI_CONNECTION_REFUSED: The receiving or transmission
operation fails because this connection is refused.

EFI_ABORTED: The active open is aborted.

EFI_TIMEOUT: The connection establishment timer expires and
no more specific information is available.

EFI_NETWORK_UNREACHABLE: The active open fails because
an ICMP network unreachable error is received.

EFI_HOST_UNREACHABLE: The active open fails because an
ICMP host unreachable error is received.

EFI_PROTOCOL_UNREACHABLE: The active open fails
because an ICMP protocol unreachable error is received.

EFI_PORT_UNREACHABLE: The connection establishment
timer times out and an ICMP port unreachable error is received.

EFI_ICMP_ERROR: The connection establishment timer times
out and some other ICMP error is received.

EFI_DEVICE_ERROR: An unexpected system or network error
occurred.

EFI_SECURITY_VIOLATION: The active open was failed
because of IPSec policy check.
1392 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Status Codes Returned

EFI_SUCCESS The connection request is successfully initiated and the state of
this TCP instance has been changed to

Tcp6StateSynSent.

EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.

EFI_ACCESS_DENIED One or more of the following conditions are TRUE:

This instance is not configured as an active one.

This instance is not in Tcp6StateClosed state.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

This is NULL.

ConnectionToken is NULL.

 ConnectionToken-
>CompletionToken.Event is NULL.

EFI_OUT_OF_RESOURCES The driver can’t allocate enough resource to initiate the active
open.

EFI_DEVICE_ERROR An unexpected system or network error occurred.
Version 2.5 April, 2015 1393

Unified Extensible Firmware Interface Specification
EFI_TCP6_PROTOCOL.Accept()

Summary

Listen on the passive instance to accept an incoming connection request. This is a nonblocking oper-
ation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP6_ACCEPT) (
 IN EFI_TCP6_PROTOCOL *This,
 IN EFI_TCP6_LISTEN_TOKEN *ListenToken
);

Parameters

This Pointer to the EFI_TCP6_PROTOCOL instance.

ListenToken Pointer to the listen token to return when operation finishes. Type
EFI_TCP6_LISTEN_TOKEN is defined in Related Definition
below.

Related Definitions
//

// EFI_TCP6_LISTEN_TOKEN
//

typedef struct {
 EFI_TCP6_COMPLETION_TOKEN CompletionToken;
 EFI_HANDLE NewChildHandle;
} EFI_TCP6_LISTEN_TOKEN;

Status The Status in CompletionToken will be set to the
following value if accept finishes:

EFI_SUCCESS: A remote peer has successfully established a
connection to this instance. A new TCP instance has also been
created for the connection.

EFI_CONNECTION_RESET: The accept fails because the
connection is reset either by instance itself or communication
peer.

EFI_ABORTED: The accept request has been aborted.

EFI_SECURITY_VIOLATION: The accept operation was
failed because of IPSec policy check.

NewChildHandle The new TCP instance handle created for the established
connection.
1394 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Description
The Accept() function initiates an asynchronous accept request to wait for an incoming
connection on the passive TCP instance. If a remote peer successfully establishes a connection with
this instance, a new TCP instance will be created and its handle will be returned in ListenToken-
>NewChildHandle. The newly created instance is configured by inheriting the passive instance’s
configuration and is ready for use upon return. The new instance is in the
Tcp6StateEstablished state.

The ListenToken->CompletionToken.Event will be signaled when a new connection is
accepted, user aborts the listen or connection is reset.

This function only can be called when current TCP instance is in Tcp6StateListen state.

Status Codes Returned

EFI_SUCCESS The listen token has been queued successfully.

EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.

EFI_ACCESS_DENIED One or more of the following are TRUE:

This instance is not a passive instance.

This instance is not in Tcp6StateListen state.

The same listen token has already existed in the listen token
queue of this TCP instance.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

This is NULL.

ListenToken is NULL.

ListentToken->CompletionToken.Event is

NULL.

EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.

EFI_DEVICE_ERROR Any unexpected and not belonged to above category error.
Version 2.5 April, 2015 1395

Unified Extensible Firmware Interface Specification
EFI_TCP6_PROTOCOL.Transmit()

Summary
Queues outgoing data into the transmit queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP6_TRANSMIT) (
 IN EFI_TCP6_PROTOCOL *This,
 IN EFI_TCP6_IO_TOKEN *Token
);

Parameters
This Pointer to the EFI_TCP6_PROTOCOL instance.

Token Pointer to the completion token to queue to the transmit queue.
Type EFI_TCP6_IO_TOKEN is defined in "Related
Definitions" below.

Description
The Transmit() function queues a sending request to this TCP instance along with the user data.
The status of the token is updated and the event in the token will be signaled once the data is sent out
or some error occurs.

Related Definitions
//

// EFI_TCP6_IO_TOKEN
//

typedef struct {
EFI_TCP6_COMPLETION_TOKEN CompletionToken;
union {
 EFI_TCP6_RECEIVE_DATA *RxData;
 EFI_TCP6_TRANSMIT_DATA *TxData;
} Packet;
} EFI_TCP6_IO_TOKEN;

Status When transmission finishes or meets any unexpected error it will
be set to one of the following values:

EFI_SUCCESS: The receiving or transmission operation
completes successfully.

EFI_CONNECTION_FIN: The receiving operation fails because
the communication peer has closed the connection and there is no
more data in the receive buffer of the instance.
1396 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_CONNECTION_RESET: The receiving or transmission
operation fails because this connection is reset either by instance
itself or the communication peer.

EFI_ABORTED: The receiving or transmission is aborted.

EFI_TIMEOUT: The transmission timer expires and no more
specific information is available.

EFI_NETWORK_UNREACHABLE: The transmission fails
because an ICMP network unreachable error is received.

EFI_HOST_UNREACHABLE: The transmission fails because an
ICMP host unreachable error is received.

EFI_PROTOCOL_UNREACHABLE: The transmission fails
because an ICMP protocol unreachable error is received.

EFI_PORT_UNREACHABLE: The transmission fails and an
ICMP port unreachable error is received.

EFI_ICMP_ERROR: The transmission fails and some other
ICMP error is received.

EFI_DEVICE_ERROR: An unexpected system or network error
occurs.

EFI_SECURITY_VIOLATION: The receiving or transmission
operation was failed because of IPSec policy check.

RxData When this token is used for receiving, RxData is a pointer to
EFI_TCP6_RECEIVE_DATA. Type
EFI_TCP6_RECEIVE_DATA is defined below.

TxData When this token is used for transmitting, TxData is a pointer to
EFI_TCP6_TRANSMIT_DATA. Type
EFI_TCP6_TRANSMIT_DATA is defined below.

The EFI_TCP6_IO_TOKEN structure is used for both transmit and receive operations.

When used for transmitting, the CompletionToken.Event and TxData fields must be filled in
by the user. After the transmit operation completes, the CompletionToken.Status field is
updated by the instance and the Event is signaled.

When used for receiving, the CompletionToken.Event and RxData fields must be filled in
by the user. After a receive operation completes, RxData and Status are updated by the instance
and the Event is signaled.

//**
// EFI_TCP6_RECEIVE_DATA
//**
typedef struct {
 BOOLEAN UrgentFlag;
 UINT32 DataLength;
 UINT32 FragmentCount;
 EFI_TCP6_FRAGMENT_DATA FragmentTable[1];
} EFI_TCP6_RECEIVE_DATA;
Version 2.5 April, 2015 1397

Unified Extensible Firmware Interface Specification
UrgentFlag Whether the data is urgent. When this flag is set, the instance is in
urgent mode. The implementations of this specification should
follow RFC793 to process urgent data, and should NOT mix the
data across the urgent point in one token.

DataLength When calling Receive() function, it is the byte counts of all
Fragmentbuffer in FragmentTable allocated by user.
When the token is signaled by TCPv6 driver it is the length of
received data in the fragments.

FragmentCount Number of fragments.

FragmentTable An array of fragment descriptors. Type
EFI_TCP6_FRAGMENT_DATA is defined below.

When TCPv6 driver wants to deliver received data to the application, it will pick up the first queued
receiving token, update its Token->Packet.RxData then signal the Token-
>CompletionToken.Event.

The FragmentBuffer in FragmentTable is allocated by the application when calling
Receive() function and received data will be copied to those buffers by the driver.
FragmentTable may contain multiple buffers that are NOT in the continuous memory locations.
The application should combine those buffers in the FragmentTable to process data if necessary.

//**
// EFI_TCP6_FRAGMENT_DATA
//**
typedef struct {
 UINT32 FragmentLength;
 VOID *FragmentBuffer;
} EFI_TCP6_FRAGMENT_DATA;

FragmentLength Length of data buffer in the fragment.

FragmentBuffer Pointer to the data buffer in the fragment.

EFI_TCP6_FRAGMENT_DATA allows multiple receive or transmit buffers to be specified. The
purpose of this structure is to provide scattered read and write.
1398 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
//**
// EFI_TCP6_TRANSMIT_DATA
//**
typedef struct {
 BOOLEAN Push;
 BOOLEAN Urgent;
 UINT32 DataLength;
 UINT32 FragmentCount;
 EFI_TCP6_FRAGMENT_DATA FragmentTable[1];
} EFI_TCP6_TRANSMIT_DATA;

Push If TRUE, data must be transmitted promptly, and the PUSH bit in
the last TCP segment created will be set. If FALSE, data
transmission may be delayed to combine with data from
subsequent Transmit()s for efficiency.

Urgent The data in the fragment table are urgent and urgent point is in
effect if TRUE. Otherwise those data are NOT considered urgent.

DataLength Length of the data in the fragments.

FragmentCount Number of fragments.

FragmentTable An array of fragment descriptors. Type
EFI_TCP6_FRAGMENT_DATA is defined above.

The EFI TCPv6 Protocol user must fill this data structure before sending a packet. The packet may
contain multiple buffers in non-continuous memory locations.

Status Codes Returned

EFI_SUCCESS The data has been queued for transmission.

EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a
source address for this instance, but no source address was
available for use.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• Token is NULL.

• Token->CompletionToken.Event is NULL.

• Token->Packet.TxData is NULL.

• Token->Packet.FragmentCount is zero.

• Token->Packet.DataLength is not equal to the
sum of fragment lengths.
Version 2.5 April, 2015 1399

Unified Extensible Firmware Interface Specification
EFI_ACCESS_DENIED One or more of the following conditions are TRUE:

A transmit completion token with the same Token->
CompletionToken.Event was already in the

transmission queue.
The current instance is in Tcp6StateClosed state.
The current instance is a passive one and it is in

Tcp6StateListen state.

User has called Close() to disconnect this connection.

EFI_NOT_READY The completion token could not be queued because the
transmit queue is full.

EFI_OUT_OF_RESOURCES Could not queue the transmit data because of resource
shortage.

EFI_NETWORK_UNREACHABLE There is no route to the destination network or address.

EFI_NO_MEDIA There was a media error.
1400 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_TCP6_PROTOCOL.Receive()

Summary
Places an asynchronous receive request into the receiving queue.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_TCP6_RECEIVE) (
 IN EFI_TCP6_PROTOCOL *This,
 IN EFI_TCP6_IO_TOKEN *Token
);

Parameters
This Pointer to the EFI_TCP6_PROTOCOL instance.

Token Pointer to a token that is associated with the receive data
descriptor. Type EFI_TCP6_IO_TOKEN is defined in
EFI_TCP6_PROTOCOL.Transmit().

Description
The Receive() function places a completion token into the receive packet queue. This function is
always asynchronous. The caller must allocate the Token->CompletionToken.Event and the
FragmentBuffer used to receive data. The caller also must fill the DataLength which
represents the whole length of all FragmentBuffer. When the receive operation completes, the
EFI TCPv6 Protocol driver updates the Token->CompletionToken.Status and Token-
>Packet.RxData fields and the Token->CompletionToken.Event is signaled. If got data
the data and its length will be copied into the FragmentTable, at the same time the full length of
received data will be recorded in the DataLength fields. Providing a proper notification function
and context for the event will enable the user to receive the notification and receiving status. That
notification function is guaranteed to not be re-entered.

Status Codes Returned

EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
address for this instance, but no source address was available for use.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token->CompletionToken.Event is NULL.

• Token->Packet.RxData is NULL.

• Token->Packet.RxData->DataLength is 0.

• The Token->Packet.RxData->DataLength is not the
sum of all FragmentBuffer length in FragmentTable.
Version 2.5 April, 2015 1401

Unified Extensible Firmware Interface Specification
EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of
system resources (usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The EFI TCPv6 Protocol instance has been reset to startup defaults.

EFI_ACCESS_DENIED One or more of the following conditions is TRUE:

• A receive completion token with the same Token-
>CompletionToken.Event was already in the receive
queue.

• The current instance is in Tcp6StateClosed state.

• The current instance is a passive one and it is in
Tcp6StateListen state.

• User has called Close() to disconnect this connection.

EFI_CONNECTION_FIN The communication peer has closed the connection and there is no
any buffered data in the receive buffer of this instance.

EFI_NOT_READY The receive request could not be queued because the receive queue
is full.

EFI_NO_MEDIA There was a media error.
1402 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_TCP6_PROTOCOL.Close()

Summary
Disconnecting a TCP connection gracefully or reset a TCP connection. This function is a
nonblocking operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP6_CLOSE)(
 IN EFI_TCP6_PROTOCOL *This,
 IN EFI_TCP6_CLOSE_TOKEN *CloseToken
);

Parameters
This Pointer to the EFI_TCP6_PROTOCOL instance.

CloseToken Pointer to the close token to return when operation finishes. Type
EFI_TCP6_CLOSE_TOKEN is defined in Related Definition
below.

Related Definitions
//

// EFI_TCP6_CLOSE_TOKEN
//

typedef struct {
 EFI_TCP6_COMPLETION_TOKEN CompletionToken;
 BOOLEAN AbortOnClose;
} EFI_TCP6_CLOSE_TOKEN;

Status When close finishes or meets any unexpected error it will be set
to one of the following values:

EFI_SUCCESS: The close operation completes successfully.

EFI_ABORTED: User called configure with NULL without
close stopping.

EFI_SECURITY_VIOLATION: The close operation was failed
because of IPSec policy check

AbortOnClose Abort the TCP connection on close instead of the standard TCP
close process when it is set to TRUE. This option can be used to
satisfy a fast disconnect.

Description
Initiate an asynchronous close token to TCP driver. After Close() is called, any buffered
transmission data will be sent by TCP driver and the current instance will have a graceful close
Version 2.5 April, 2015 1403

Unified Extensible Firmware Interface Specification
working flow described as RFC 793 if AbortOnClose is set to FALSE, otherwise, a rest packet
will be sent by TCP driver to fast disconnect this connection. When the close operation completes
successfully the TCP instance is in Tcp6StateClosed state, all pending asynchronous
operations are signaled and any buffers used for TCP network traffic are flushed.

Status Codes Returned

EFI_SUCCESS The Close() is called successfully.

EFI_NOT_STARTED This EFI TCPv6 Protocol instance has not been configured.

EFI_ACCESS_DENIED One or more of the following conditions are TRUE:

CloseToken or CloseToken-
>CompletionToken.Event is already in use.

Previous Close() call on this instance has not finished.

EFI_INVALID_PARAMETER One or more of the following conditions are TRUE:

This is NULL.

CloseToken is NULL.

CloseToken->CompletionToken.Event is

NULL.

EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.

EFI_DEVICE_ERROR Any unexpected and not belonged to above category error.
1404 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_TCP6_PROTOCOL.Cancel()

Summary
Abort an asynchronous connection, listen, transmission or receive request.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP6_CANCEL)(
 IN EFI_TCP6_PROTOCOL *This,
 IN EFI_TCP6_COMPLETION_TOKEN *Token OPTIONAL
);

Parameters
This Pointer to the EFI_TCP6_PROTOCOL instance.

Token Pointer to a token that has been issued by
EFI_TCP6_PROTOCOL.Connect(),
EFI_TCP6_PROTOCOL.Accept(),
EFI_TCP6_PROTOCOL.Transmit() or
EFI_TCP6_PROTOCOL.Receive(). If NULL, all pending
tokens issued by above four functions will be aborted. Type
EFI_TCP6_COMPLETION_TOKEN is defined in
EFI_TCP6_PROTOCOL.Connect().

Description
The Cancel() function aborts a pending connection, listen, transmit or receive request. If Token
is not NULL and the token is in the connection, listen, transmission or receive queue when it is being
cancelled, its Token->Status will be set to EFI_ABORTED and then Token->Event will be
signaled. If the token is not in one of the queues, which usually means that the asynchronous
operation has completed, EFI_NOT_FOUND is returned. If Token is NULL all asynchronous token
issued by Connect(), Accept(), Transmit() and Receive() will be aborted.

Status Codes Returned

EFI_SUCCESS The asynchronous I/O request is aborted and Token->Event

is signaled.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED This instance hasn’t been configured.

EFI_NOT_FOUND The asynchronous I/O request isn’t found in the transmission or
receive queue. It has either completed or wasn’t issued by

Transmit() and Receive().

EFI_UNSUPPORTED The implementation does not support this function.
Version 2.5 April, 2015 1405

Unified Extensible Firmware Interface Specification
EFI_TCP6_PROTOCOL.Poll()

Summary
Poll to receive incoming data and transmit outgoing segments.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TCP6_POLL) (
 IN EFI_TCP6_PROTOCOL *This
);

Parameters
This Pointer to the EFI_TCP6_PROTOCOL instance.

Description
The Poll() function increases the rate that data is moved between the network and application and
can be called when the TCP instance is created successfully. Its use is optional.

In some implementations, the periodical timer in the MNP driver may not poll the underlying com-
munications device fast enough to avoid drop packets. Drivers and applications that are experiencing
packet loss should try calling the Poll() function in a high frequency.

Status Codes Returned

27.3 EFI IPv4 Protocol
This section defines the EFI IPv4 (Internet Protocol version 4) Protocol interface. It is split into the
following three main sections:

• EFI IPv4 Service Binding Protocol

• EFI IPv4 Variable

• EFI IPv4 Protocol

The EFI IPv4 Protocol provides basic network IPv4 packet I/O services, which includes support for
a subset of the Internet Control Message Protocol (ICMP) and may include support for the Internet
Group Management Protocol (IGMP).

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_NOT_READY No incoming or outgoing data is processed.

EFI_TIMEOUT Data was dropped out of the transmission or receive queue.
Consider increasing the polling rate.
1406 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
27.3.1 IP4 Service Binding Protocol

EFI_IP4_SERVICE_BINDING_PROTOCOL

Summary
The EFI IPv4 Service Binding Protocol is used to locate communication devices that are supported
by an EFI IPv4 Protocol driver and to create and destroy instances of the EFI IPv4 Protocol child
protocol driver that can use the underlying communications device.

GUID
#define EFI_IP4_SERVICE_BINDING_PROTOCOL_GUID \
 {0xc51711e7,0xb4bf,0x404a,\
 {0xbf,0xb8,0x0a,0x04,0x8e,0xf1,0xff,0xe4}}

Description
A network application that requires basic IPv4 I/O services can use one of the protocol handler
services, such as BS->LocateHandleBuffer(), to search for devices that publish an EFI IPv4
Service Binding Protocol GUID. Each device with a published EFI IPv4 Service Binding Protocol
GUID supports the EFI IPv4 Protocol and may be available for use.

After a successful call to the EFI_IP4_SERVICE_BINDING_PROTOCOL.CreateChild()
function, the newly created child EFI IPv4 Protocol driver is in an unconfigured state; it is not ready
to send and receive data packets.

Before a network application terminates execution, every successful call to the
EFI_IP4_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_IP4_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

27.3.2 IP4 Protocol

EFI_IP4_PROTOCOL

Summary
The EFI IPv4 Protocol implements a simple packet-oriented interface that can be used by drivers,
daemons, and applications to transmit and receive network packets.
Version 2.5 April, 2015 1407

Unified Extensible Firmware Interface Specification
GUID
#define EFI_IP4_PROTOCOL_GUID \
 {0x41d94cd2,0x35b6,0x455a,\
 {0x82,0x58,0xd4,0xe5,0x13,0x34,0xaa,0xdd}}

Protocol Interface Structure
typedef struct _EFI_IP4_PROTOCOL {
 EFI_IP4_GET_MODE_DATA GetModeData;
 EFI_IP4_CONFIGURE Configure;
 EFI_IP4_GROUPS Groups;
 EFI_IP4_ROUTES Routes;
 EFI_IP4_TRANSMIT Transmit;
 EFI_IP4_RECEIVE Receive;
 EFI_IP4_CANCEL Cancel;
 EFI_IP4_POLL Poll;
} EFI_IP4_PROTOCOL;

Parameters
GetModeData Gets the current operational settings for this instance of the EFI

IPv4 Protocol driver. See the GetModeData() function
description.

Configure Changes or resets the operational settings for the EFI IPv4
Protocol. See the Configure() function description.

Groups Joins and leaves multicast groups. See the Groups() function
description.

Routes Adds and deletes routing table entries. See the Routes()
function description.

Transmit Places outgoing data packets into the transmit queue. See the
Transmit() function description.

Receive Places a receiving request into the receiving queue. See the
Receive() function description.

Cancel Aborts a pending transmit or receive request. See the Cancel()
function description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.

Description
The EFI_IP4_PROTOCOL defines a set of simple IPv4, ICMPv4, and IGMPv4 services that can be
used by any network protocol driver, daemon, or application to transmit and receive IPv4 data
packets.

Note: All the IPv4 addresses that are described in EFI_IP4_PROTOCOL are stored in network byte
order. Both incoming and outgoing IP packets are also in network byte order. All other parameters
that are defined in functions or data structures are stored in host byte order.
1408 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_IP4_PROTOCOL.GetModeData()

Summary
Gets the current operational settings for this instance of the EFI IPv4 Protocol driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_GET_MODE_DATA) (
 IN EFI_IP4_PROTOCOL *This,
 OUT EFI_IP4_MODE_DATA *Ip4ModeData OPTIONAL,
 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
);

Parameters
This Pointer to the EFI_IP4_PROTOCOL instance.

Ip4ModeData Pointer to the EFI IPv4 Protocol mode data structure. Type
EFI_IP4_MODE_DATA is defined in “Related Definitions”
below.

MnpConfigData Pointer to the managed network configuration data structure.
Type EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

SnpData Pointer to the simple network mode data structure. Type
EFI_SIMPLE_NETWORK_MODE is defined in the
EFI_SIMPLE_NETWORK_PROTOCOL.

Description
The GetModeData() function returns the current operational mode data for this driver instance.
The data fields in EFI_IP4_MODE_DATA are read only. This function is used optionally to retrieve
the operational mode data of underlying networks or drivers.
Version 2.5 April, 2015 1409

Unified Extensible Firmware Interface Specification
Related Definitions
//**
// EFI_IP4_MODE_DATA
//**
typedef struct {
 BOOLEAN IsStarted;
 UINT32 MaxPacketSize;
 EFI_IP4_CONFIG_DATA ConfigData;
 BOOLEAN IsConfigured;
 UINT32 GroupCount;
 EFI_IPv4_ADDRESS *GroupTable;
 UINT32 RouteCount;
 EFI_IP4_ROUTE_TABLE *RouteTable;
 UINT32 IcmpTypeCount;
 EFI_IP4_ICMP_TYPE *IcmpTypeList;
} EFI_IP4_MODE_DATA;

IsStarted Set to TRUE after this EFI IPv4 Protocol instance has been
successfully configured with operational parameters by calling
the Configure() interface when EFI IPv4 Protocol instance is
stopped All other fields in this structure are undefined until this
field is TRUE.

Set to FALSE when the instance's operational parameter has been
reset.

MaxPackeSize The maximum packet size, in bytes, of the packet which the
upper layer driver could feed.

ConfigData Current configuration settings. Undefined until IsStarted is
TRUE. Type EFI_IP4_CONFIG_DATA is defined below.

IsConfigured Set to TRUE when the EFI IPv4 Protocol instance has a station
address and subnet mask. If it is using the default address, the
default address has been acquired.
Set to FALSE when the EFI IPv4 Protocol driver is not
configured.

GroupCount Number of joined multicast groups. Undefined until
IsConfigured is TRUE.

GroupTable List of joined multicast group addresses. Undefined until
IsConfigured is TRUE.

RouteCount Number of entries in the routing table. Undefined until
IsConfigured is TRUE.

RouteTable Routing table entries. Undefined until IsConfigured is
TRUE. Type EFI_IP4_ROUTE_TABLE is defined below.

IcmpTypeCount Number of entries in the supported ICMP types list.

IcmpTypeList Array of ICMP types and codes that are supported by this EFI
IPv4 Protocol driver. Type EFI_IP4_ICMP_TYPE is defined
below.
1410 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
The EFI_IP4_MODE_DATA structure describes the operational state of this IPv4 interface.

//**
// EFI_IP4_CONFIG_DATA
//**
typedef struct {
 UINT8 DefaultProtocol;
 BOOLEAN AcceptAnyProtocol;
 BOOLEAN AcceptIcmpErrors;
 BOOLEAN AcceptBroadcast;
 BOOLEAN AcceptPromiscuous;
 BOOLEAN UseDefaultAddress;
 EFI_IPv4_ADDRESS StationAddress;
 EFI_IPv4_ADDRESS SubnetMask;
 UINT8 TypeOfService;
 UINT8 TimeToLive;
 BOOLEAN DoNotFragment;
 BOOLEAN RawData;
 UINT32 ReceiveTimeout;
 UINT32 TransmitTimeout;
} EFI_IP4_CONFIG_DATA;

DefaultProtocol The default IPv4 protocol packets to send and receive. Ignored
when AcceptPromiscuous is TRUE. An updated list of
protocol numbers can be found at “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading “IANA
Assigned Internet Protocol Numbers list”.

AcceptAnyProtocol Set to TRUE to receive all IPv4 packets that get through the
receive filters.
Set to FALSE to receive only the DefaultProtocol IPv4
packets that get through the receive filters. Ignored when
AcceptPromiscuous is TRUE.

AcceptIcmpErrors Set to TRUE to receive ICMP error report packets. Ignored when
AcceptPromiscuous or AcceptAnyProtocol is TRUE.

AcceptBroadcast Set to TRUE to receive broadcast IPv4 packets. Ignored when
AcceptPromiscuous is TRUE.
Set to FALSE to stop receiving broadcast IPv4 packets.

AcceptPromiscuous Set to TRUE to receive all IPv4 packets that are sent to any
hardware address or any protocol address.
Set to FALSE to stop receiving all promiscuous IPv4 packets.

UseDefaultAddress Set to TRUE to use the default IPv4 address and default routing
table. If the default IPv4 address is not available yet, then the EFI
IPv4 Protocol driver will use EFI_IP4_CONFIG2_PROTOCOL
to retrieve the IPv4 address and subnet information. (This field
Version 2.5 April, 2015 1411

Unified Extensible Firmware Interface Specification
can be set and changed only when the EFI IPv4 driver is
transitioning from the stopped to the started states.)

StationAddress The station IPv4 address that will be assigned to this EFI
IPv4Protocol instance. The EFI IPv4 Protocol driver will deliver
only incoming IPv4 packets whose destination matches this IPv4
address exactly. Address 0.0.0.0 is also accepted as a special case
in which incoming packets destined to any station IP address are
always delivered. When EFI_IP4_CONFIG_DATA is used in
Configure (), it is ignored if UseDefaultAddress is
TRUE; When EFI_IP4_CONFIG_DATA is used in
GetModeData (), it contains the default address if
UseDefaultAddress is TRUE and the default address has
been acquired.

SubnetMask The subnet address mask that is associated with the station
address. When EFI_IP4_CONFIG_DATA is used in
Configure (), it is ignored if UseDefaultAddress is
TRUE; When EFI_IP4_CONFIG_DATA is used in
GetModeData (), it contains the default subnet mask if
UseDefaultAddress is TRUE and the default address has
been acquired.

TypeOfService TypeOfService field in transmitted IPv4 packets.

TimeToLive TimeToLive field in transmitted IPv4 packets.

DoNotFragment State of the DoNotFragment bit in transmitted IPv4 packets.

RawData Set to TRUE to send and receive unformatted packets. The other
IPv4 receive filters are still applied. Fragmentation is disabled for
RawData mode. NOTE: Unformatted packets include the IP
header and payload. The media header is appended automatically
for outgoing packets by underlying network drivers.

ReceiveTimeout The timer timeout value (number of microseconds) for the
receive timeout event to be associated with each assembled
packet. Zero means do not drop assembled packets.

TransmitTimeout The timer timeout value (number of microseconds) for the
transmit timeout event to be associated with each outgoing
packet. Zero means do not drop outgoing packets.

The EFI_IP4_CONFIG_DATA structure is used to report and change IPv4 session parameters.

//**
// EFI_IP4_ROUTE_TABLE
//**
typedef struct {
 EFI_IPv4_ADDRESS SubnetAddress;
 EFI_IPv4_ADDRESS SubnetMask;
 EFI_IPv4_ADDRESS GatewayAddress;
} EFI_IP4_ROUTE_TABLE;

SubnetAddress The subnet address to be routed.
1412 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
SubnetMask The subnet mask. If (DestinationAddress &
SubnetMask == SubnetAddress), then the packet is to
be directed to the GatewayAddress.

GatewayAddress The IPv4 address of the gateway that redirects packets to this
subnet. If the IPv4 address is 0.0.0.0, then packets to this subnet
are not redirected.

EFI_IP4_ROUTE_TABLE is the entry structure that is used in routing tables.

//**
// EFI_IP4_ICMP_TYPE
//**
typedef struct {
 UINT8 Type;
 UINT8 Code;
} EFI_IP4_ICMP_TYPE

Type The type of ICMP message. See RFC 792 and RFC 950.

Code The code of the ICMP message, which further describes the
different ICMP message formats under the same Type. See RFC
792 and RFC 950.

EFI_IP4_ICMP_TYPE is used to describe those ICMP messages that are supported by this EFI
IPv4 Protocol driver.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_OUT_OF_RESOURCES The required mode data could not be allocated.
Version 2.5 April, 2015 1413

Unified Extensible Firmware Interface Specification
EFI_IP4_PROTOCOL.Configure()

Summary
Assigns an IPv4 address and subnet mask to this EFI IPv4 Protocol driver instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_CONFIGURE) (
 IN EFI_IP4_PROTOCOL *This,
 IN EFI_IP4_CONFIG_DATA *IpConfigData OPTIONAL
);

Parameters
This Pointer to the EFI_IP4_PROTOCOL instance.

IpConfigData Pointer to the EFI IPv4 Protocol configuration data structure.
Type EFI_IP4_CONFIG_DATA is defined in
EFI_IP4_PROTOCOL.GetModeData().

Description
The Configure() function is used to set, change, or reset the operational parameters and filter
settings for this EFI IPv4 Protocol instance. Until these parameters have been set, no network traffic
can be sent or received by this instance. Once the parameters have been reset (by calling this
function with IpConfigData set to NULL), no more traffic can be sent or received until these
parameters have been set again. Each EFI IPv4 Protocol instance can be started and stopped
independently of each other by enabling or disabling their receive filter settings with the
Configure() function.

When IpConfigData.UseDefaultAddress is set to FALSE, the new station address will be
appended as an alias address into the addresses list in the EFI IPv4 Protocol driver. While set to
TRUE, Configure() will trigger the EFI_IP4_CONFIG2_PROTOCOL to retrieve the default
IPv4 address if it is not available yet. Clients could frequently call GetModeData() to check the
status to ensure that the default IPv4 address is ready.

If operational parameters are reset or changed, any pending transmit and receive requests will be
cancelled. Their completion token status will be set to EFI_ABORTED and their events will be
signaled.

Status Codes Returned

EFI_SUCCESS The driver instance was successfully opened.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_IP_ADDRESS_CONFLICT There is an address conflict in response to the Arp invocation
1414 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• IpConfigData.StationAddress is not a unicast
IPv4 address.

• IpConfigData.SubnetMask is not a valid IPv4 subnet
mask.

EFI_UNSUPPORTED One or more of the following conditions is TRUE:

• A configuration protocol (DHCP, BOOTP, RARP, etc.) could not
be located when clients choose to use the default IPv4 address.
This EFI IPv4 Protocol implementation does not support this
requested filter or timeout setting.

EFI_OUT_OF_RESOURCES The EFI IPv4 Protocol driver instance data could not be allocated.

EFI_ALREADY_STARTED The interface is already open and must be stopped before the IPv4
address or subnet mask can be changed. The interface must also
be stopped when switching to/from raw packet mode.

EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI IPv4
Protocol driver instance is not opened.
Version 2.5 April, 2015 1415

Unified Extensible Firmware Interface Specification
EFI_IP4_PROTOCOL.Groups()

Summary
Joins and leaves multicast groups.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_GROUPS) (
 IN EFI_IP4_PROTOCOL *This,
 IN BOOLEAN JoinFlag,
 IN EFI_IPv4_ADDRESS *GroupAddress OPTIONAL
);

Parameters
This Pointer to the EFI_IP4_PROTOCOL instance.

JoinFlag Set to TRUE to join the multicast group session and FALSE to
leave.

GroupAddress Pointer to the IPv4 multicast address.

Description
The Groups() function is used to join and leave multicast group sessions. Joining a group will
enable reception of matching multicast packets. Leaving a group will disable the multicast packet
reception.

If JoinFlag is FALSE and GroupAddress is NULL, all joined groups will be left.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following is TRUE:

• This is NULL.

• JoinFlag is TRUE and GroupAddress is NULL.

• GroupAddress is not NULL and * GroupAddress is
not a multicast IPv4 address.

EFI_NOT_STARTED This instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_OUT_OF_RESOURCES System resources could not be allocated.

EFI_UNSUPPORTED This EFI IPv4 Protocol implementation does not support multicast
groups.

EFI_ALREADY_STARTED The group address is already in the group table (when

JoinFlag is TRUE).

EFI_NOT_FOUND The group address is not in the group table (when JoinFlag is

FALSE).
1416 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_DEVICE_ERROR An unexpected system or network error occurred.
Version 2.5 April, 2015 1417

Unified Extensible Firmware Interface Specification
EFI_IP4_PROTOCOL.Routes()

Summary
Adds and deletes routing table entries.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_ROUTES) (
 IN EFI_IP4_PROTOCOL *This,
 IN BOOLEAN DeleteRoute,
 IN EFI_IPv4_ADDRESS *SubnetAddress,
 IN EFI_IPv4_ADDRESS *SubnetMask,
 IN EFI_IPv4_ADDRESS *GatewayAddress
);

Parameters
This Pointer to the EFI_IP4_PROTOCOL instance.

DeleteRoute Set to TRUE to delete this route from the routing table. Set to
FALSE to add this route to the routing table. SubnetAddress
and SubnetMask are used as the key to each route entry.

SubnetAddress The address of the subnet that needs to be routed.

SubnetMask The subnet mask of SubnetAddress.

GatewayAddress The unicast gateway IPv4 address for this route.

Description
The Routes() function adds a route to or deletes a route from the routing table.

Routes are determined by comparing the SubnetAddress with the destination IPv4 address
arithmetically AND-ed with the SubnetMask. The gateway address must be on the same subnet as
the configured station address.

The default route is added with SubnetAddress and SubnetMask both set to 0.0.0.0. The
default route matches all destination IPv4 addresses that do not match any other routes.

A GatewayAddress that is zero is a nonroute. Packets are sent to the destination IP address if it
can be found in the ARP cache or on the local subnet. One automatic nonroute entry will be inserted
into the routing table for outgoing packets that are addressed to a local subnet (gateway address of
0.0.0.0).

Each EFI IPv4 Protocol instance has its own independent routing table. Those EFI IPv4 Protocol
instances that use the default IPv4 address will also have copies of the routing table that was
provided by the EFI_IP4_CONFIG2_PROTOCOL, and these copies will be updated whenever the
EIF IPv4 Protocol driver reconfigures its instances. As a result, client modification to the routing
table will be lost.
1418 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Note: There is no way to set up routes to other network interface cards because each network interface
card has its own independent network stack that shares information only through EFI IPv4
variable..

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The driver instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• SubnetAddress is NULL.

• SubnetMask is NULL.

• GatewayAddress is NULL.

• *SubnetAddress is not a valid subnet address.

• *SubnetMask is not a valid subnet mask.

• *GatewayAddress is not a valid unicast IPv4 address.

EFI_OUT_OF_RESOURCES Could not add the entry to the routing table.

EFI_NOT_FOUND This route is not in the routing table (when DeleteRoute is

TRUE).

EFI_ACCESS_DENIED The route is already defined in the routing table (when

DeleteRoute is FALSE).
Version 2.5 April, 2015 1419

Unified Extensible Firmware Interface Specification
EFI_IP4_PROTOCOL.Transmit()

Summary
Places outgoing data packets into the transmit queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_TRANSMIT) (
 IN EFI_IP4_PROTOCOL *This,
 IN EFI_IP4_COMPLETION_TOKEN *Token
);

Parameters
This Pointer to the EFI_IP4_PROTOCOL instance.

Token Pointer to the transmit token. Type
EFI_IP4_COMPLETION_TOKEN is defined in “Related
Definitions” below.

Description
The Transmit() function places a sending request in the transmit queue of this EFI IPv4 Protocol
instance. Whenever the packet in the token is sent out or some errors occur, the event in the token
will be signaled and the status is updated.

Related Definitions
//**
// EFI_IP4_COMPLETION_TOKEN
//**
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 union {
 EFI_IP4_RECEIVE_DATA *RxData;
 EFI_IP4_TRANSMIT_DATA *TxData;
 } Packet;
} EFI_IP4_COMPLETION_TOKEN;

Event This Event will be signaled after the Status field is updated
by the EFI IPv4 Protocol driver. The type of Event must be
EFI_NOTIFY_SIGNAL. The Task Priority Level (TPL) of
Event must be lower than or equal to TPL_CALLBACK.

Status Will be set to one of the following values:

EFI_SUCCESS. The receive or transmit completed
successfully.

EFI_ABORTED. The receive or transmit was aborted.
1420 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_TIMEOUT. The transmit timeout expired.

EFI_ICMP_ERROR. An ICMP error packet was received.

EFI_DEVICE_ERROR. An unexpected system or network
error occurred.

EFI_NO_MEDIA. There was a media error

RxData When this token is used for receiving, RxData is a pointer to the
EFI_IP4_RECEIVE_DATA. Type
EFI_IP4_RECEIVE_DATA is defined below.

TxData When this token is used for transmitting, TxData is a pointer to
the EFI_IP4_TRANSMIT_DATA. Type
EFI_IP4_TRANSMIT_DATA is defined below.

EFI_IP4_COMPLETION_TOKEN structures are used for both transmit and receive operations.

When the structure is used for transmitting, the Event and TxData fields must be filled in by the
EFI IPv4 Protocol client. After the transmit operation completes, EFI IPv4 Protocol updates the
Status field and the Event is signaled.

When the structure is used for receiving, only the Event field must be filled in by the EFI IPv4
Protocol client. After a packet is received, the EFI IPv4 Protocol fills in the RxData and Status
fields and the Event is signaled. If the packet is an ICMP error message, the Status is set to
EFI_ICMP_ERROR, and the packet is delivered up as usual. The protocol from the IP head in the
ICMP error message is used to de-multiplex the packet.

//**
// EFI_IP4_RECEIVE_DATA
//**
typedef struct {
 EFI_TIME TimeStamp;
 EFI_EVENT RecycleSignal;
 UINT32 HeaderLength;
 EFI_IP4_HEADER *Header;
 UINT32 OptionsLength;
 VOID *Options;
 UINT32 DataLength;
 UINT32 FragmentCount;
 EFI_IP4_FRAGMENT_DATA FragmentTable[1];
} EFI_IP4_RECEIVE_DATA;

TimeStamp Time when the EFI IPv4 Protocol driver accepted the
packet.TimeStamp is zero filled if receive timestamps are
disabled or unsupported.

RecycleSignal After this event is signaled, the receive data structure is released
and must not be referenced.

HeaderLength Length of the IPv4 packet header. Zero if
ConfigData.RawData is TRUE.
Version 2.5 April, 2015 1421

Unified Extensible Firmware Interface Specification
Header Pointer to the IPv4 packet header. If the IPv4 packet was
fragmented, this argument is a pointer to the header in the first
fragment. NULL if ConfigData.RawData is TRUE. Type
EFI_IP4_HEADER is defined below.

OptionsLength Length of the IPv4 packet header options. May be zero.

Options Pointer to the IPv4 packet header options. If the IPv4 packet was
fragmented, this argument is a pointer to the options in the first
fragment. May be NULL.

DataLength Sum of the lengths of IPv4 packet buffers in FragmentTable.
May be zero.

FragmentCount Number of IPv4 payload (or raw) fragments. If
ConfigData.RawData is TRUE, this count is the number of
raw IPv4 fragments received so far. May be zero.

FragmentTable Array of payload (or raw) fragment lengths and buffer pointers. If
ConfigData.RawData is TRUE, each buffer points to a raw
IPv4 fragment and thus IPv4 header and options are included in
each buffer. Otherwise, IPv4 headers and options are not included
in these buffers. Type EFI_IP4_FRAGMENT_DATA is defined
below.

The EFI IPv4 Protocol receive data structure is filled in when IPv4 packets have been assembled (or
when raw packets have been received). In the case of IPv4 packet assembly, the individual packet
fragments are only verified and are not reorganized into a single linear buffer.

The FragmentTable contains a sorted list of zero or more packet fragment descriptors. The
referenced packet fragments may not be in contiguous memory locations.

//**
// EFI_IP4_HEADER
//**
#pragma pack(1)
typedef struct {
 UINT8 HeaderLength:4;
 UINT8 Version:4;
 UINT8 TypeOfService;
 UINT16 TotalLength;
 UINT16 Identification;
 UINT16 Fragmentation;
 UINT8 TimeToLive;
 UINT8 Protocol;
 UINT16 Checksum;
 EFI_IPv4_ADDRESS SourceAddress;
 EFI_IPv4_ADDRESS DestinationAddress;
} EFI_IP4_HEADER;
#pragma pack()
1422 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
The fields in the IPv4 header structure are defined in the Internet Protocol version 4 specification,
which can be found at “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading
“Internet Protocol version 4 Specification”.

//**
// EFI_IP4_FRAGMENT_DATA
//**
typedef struct {
 UINT32 FragmentLength;
 VOID *FragmentBuffer;
} EFI_IP4_FRAGMENT_DATA;

FragmentLength Length of fragment data. This field may not be set to zero.

FragmentBuffer Pointer to fragment data. This field may not be set to NULL.

The EFI_IP4_FRAGMENT_DATA structure describes the location and length of the IPv4 packet
fragment to transmit or that has been received.

//**
// EFI_IP4_TRANSMIT_DATA
//**
typedef struct {
 EFI_IPv4_ADDRESS DestinationAddress;
 EFI_IP4_OVERRIDE_DATA *OverrideData;
 UINT32 OptionsLength;
 VOID *OptionsBuffer;
 UINT32 TotalDataLength;
 UINT32 FragmentCount;
 EFI_IP4_FRAGMENT_DATA FragmentTable[1];
} EFI_IP4_TRANSMIT_DATA;

DestinationAddress
The destination IPv4 address. Ignored if RawData is TRUE.

OverrideData If not NULL, the IPv4 transmission control override data. Ignored
if RawData is TRUE. Type EFI_IP4_OVERRIDE_DATA is
defined below.

OptionsLength Length of the IPv4 header options data. Must be zero if the IPv4
driver does not support IPv4 options. Ignored if RawData is
TRUE.

OptionsBuffer Pointer to the IPv4 header options data. Ignored if
OptionsLength is zero. Ignored if RawData is TRUE.

TotalDataLength Total length of the FragmentTable data to transmit.

FragmentCount Number of entries in the fragment data table.

FragmentTable Start of the fragment data table. Type
EFI_IP4_FRAGMENT_DATA is defined above.
Version 2.5 April, 2015 1423

Unified Extensible Firmware Interface Specification
The EFI_IP4_TRANSMIT_DATA structure describes a possibly fragmented packet to be
transmitted.

//**
// EFI_IP4_OVERRIDE_DATA
//**
typedef struct {
 EFI_IPv4_ADDRESS SourceAddress;
 EFI_IPv4_ADDRESS GatewayAddress;
 UINT8 Protocol;
 UINT8 TypeOfService;
 UINT8 TimeToLive;
 BOOLEAN DoNotFragment;
} EFI_IP4_OVERRIDE_DATA;

SourceAddress Source address override.

GatewayAddress Gateway address to override the one selected from the routing
table. This address must be on the same subnet as this station
address. If set to 0.0.0.0, the gateway address selected from
routing table will not be overridden.

Protocol Protocol type override.

TypeOfService Type-of-service override.

TimeToLive Time-to-live override.

DoNotFragment Do-not-fragment override.

The information and flags in the override data structure will override default parameters or settings
for one Transmit() function call.

Status Codes Returned

EFI_SUCCESS The data has been queued for transmission.

EFI_NOT_STARTED This instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.
1424 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_INVALID_PARAMETER One or more of the following is TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL
• Token.Packet.TxData is NULL.
• Token.Packet.TxData.OverrideData.
GatewayAddress in the override data structure is not a
unicast IPv4 address if OverrideData is not NULL.

• Token.Packet.TxData.OverrideData.
SourceAddress is not a unicast IPv4 address if
OverrideData is not NULL.

• Token.Packet.OptionsLength is not zero and
Token.Packet.OptionsBuffer is NULL.

• Token.Packet.FragmentCount is zero.

• One or more of the
Token.Packet.TxData.FragmentTable[].
FragmentLength fields is zero.

• One or more of the
Token.Packet.TxData.FragmentTable[].
FragmentBuffer fields is NULL.

• Token.Packet.TxData.TotalDataLength is
zero or not equal to the sum of fragment lengths.

• The IP header in FragmentTable is not a well-formed
header when RawData is TRUE.

EFI_ACCESS_DENIED The transmit completion token with the same Token.Event

was already in the transmit queue.

EFI_NOT_READY The completion token could not be queued because the transmit
queue is full.

EFI_NOT_FOUND Not route is found to destination address.

EFI_OUT_OF_RESOURCES Could not queue the transmit data.

EFI_BUFFER_TOO_SMALL Token.Packet.TxData.TotalDataLength is too

short to transmit.

EFI_BAD_BUFFER_SIZE The length of the IPv4 header + option length + total data length is
greater than MTU (or greater than the maximum packet size if

Token.Packet.TxData.OverrideData.
DoNotFragment is TRUE.)

EFI_NO_MEDIA There was a media error.
Version 2.5 April, 2015 1425

Unified Extensible Firmware Interface Specification
EFI_IP4_PROTOCOL.Receive()

Summary
Places a receiving request into the receiving queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_RECEIVE) (
 IN EFI_IP4_PROTOCOL *This,
 IN EFI_IP4_COMPLETION_TOKEN *Token
);

Parameters
This Pointer to the EFI_IP4_PROTOCOL instance.

Token Pointer to a token that is associated with the receive data
descriptor. Type EFI_IP4_COMPLETION_TOKEN is defined
in “Related Definitions” of above Transmit().

Description
The Receive() function places a completion token into the receive packet queue. This function is
always asynchronous.

The Token.Event field in the completion token must be filled in by the caller and cannot be
NULL. When the receive operation completes, the EFI IPv4 Protocol driver updates the
Token.Status and Token.Packet.RxData fields and the Token.Event is signaled.

Status Codes Returned

EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This EFI IPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL.

EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of
system resources (usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The EFI IPv4 Protocol instance has been reset to startup defaults.

EFI_ACCESS_DENIED The receive completion token with the same Token.Event was

already in the receive queue.

EFI_NOT_READY The receive request could not be queued because the receive
queue is full.
1426 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_ICMP_ERROR An ICMP error packet was received.

EFI_NO_MEDIA There was a media error.
Version 2.5 April, 2015 1427

Unified Extensible Firmware Interface Specification
EFI_IP4_PROTOCOL.Cancel()

Summary
Abort an asynchronous transmit or receive request.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_CANCEL)(
 IN EFI_IP4_PROTOCOL *This,
 IN EFI_IP4_COMPLETION_TOKEN *Token OPTIONAL
);

Parameters
This Pointer to the EFI_IP4_PROTOCOL instance.

Token Pointer to a token that has been issued by
EFI_IP4_PROTOCOL.Transmit() or
EFI_IP4_PROTOCOL.Receive(). If NULL, all pending
tokens are aborted. Type EFI_IP4_COMPLETION_TOKEN is
defined in EFI_IP4_PROTOCOL.Transmit().

Description
The Cancel() function is used to abort a pending transmit or receive request. If the token is in the
transmit or receive request queues, after calling this function, Token->Status will be set to
EFI_ABORTED and then Token->Event will be signaled. If the token is not in one of the queues,
which usually means the asynchronous operation has completed, this function will not signal the
token and EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS The asynchronous I/O request was aborted and

Token.->Event was signaled. When Token is NULL, all

pending requests were aborted and their events were signaled.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED This instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was not

found in the transmit or receive queue. It has either completed or

was not issued by Transmit() and Receive().
1428 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_IP4_PROTOCOL.Poll()

Summary
Polls for incoming data packets and processes outgoing data packets.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_POLL) (
 IN EFI_IP4_PROTOCOL *This
);

Parameters
This Pointer to the EFI_IP4_PROTOCOL instance.

Description
The Poll() function polls for incoming data packets and processes outgoing data packets.
Network drivers and applications can call the EFI_IP4_PROTOCOL.Poll() function to increase
the rate that data packets are moved between the communications device and the transmit and
receive queues.

In some systems the periodic timer event may not poll the underlying communications device fast
enough to transmit and/or receive all data packets without missing incoming packets or dropping
outgoing packets. Drivers and applications that are experiencing packet loss should try calling the
EFI_IP4_PROTOCOL.Poll() function more often.

Status Codes Returned

27.4 EFI IPv4 Configuration Protocol
This section provides a detailed description of the EFI IPv4 Configuration Protocol.

IMPORTANT NOTICE: The EFI_IP4_CONFIG_PROTOCOL has been replaced with the new
EFI_IP4_CONFIG2_PROTOCOL.

• All new designs based on this specification should exclusively use
EFI_IP4_CONFIG2_PROTOCOL .

• The EFI_IP4_CONFIG_PROTOCOL will be removed in the next revision of this specification.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This EFI IPv4 Protocol instance has not been started.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_NOT_READY No incoming or outgoing data is processed.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
Version 2.5 April, 2015 1429

Unified Extensible Firmware Interface Specification
EFI_IP4_CONFIG_PROTOCOL

IMPORTANT NOTICE: The EFI_IP4_CONFIG_PROTOCOL has been replaced with the new
EFI_IP4_CONFIG2_PROTOCOL.

• All new designs based on this specification should exclusively use
EFI_IP4_CONFIG2_PROTOCOL .

• The EFI_IP4_CONFIG_PROTOCOL will be removed in the next revision of this specification.

Summary
The EFI_IP4_CONFIG_PROTOCOL driver performs platform- and policy-dependent
configuration for the EFI IPv4 Protocol driver.

GUID
#define EFI_IP4_CONFIG_PROTOCOL_GUID \
 {0x3b95aa31,0x3793,0x434b,\
 {0x86,0x67,0xc8,0x07,0x08,0x92,0xe0,0x5e}}

Protocol Interface Structure
typedef struct _EFI_IP4_CONFIG_PROTOCOL {
 EFI_IP4_CONFIG_START Start;
 EFI_IP4_CONFIG_STOP Stop;
 EFI_IP4_CONFIG_GET_DATA GetData;
} EFI_IP4_CONFIG_PROTOCOL;

Parameters
Start Starts running the configuration policy for the EFI IPv4 Protocol

driver. See the Start() function description.

Stop Stops running the configuration policy for the EFI IPv4 Protocol
driver. See the Stop() function description.

GetData Returns the default configuration data (if any) for the EFI IPv4
Protocol driver. See the GetData() function description.

Description
In an effort to keep platform policy code out of the EFI IPv4 Protocol driver, the
EFI_IP4_CONFIG_PROTOCOL driver will be used as the central repository of any platform- and
policy-specific configuration for the EFI IPv4 Protocol driver.

An EFI IPv4 Configuration Protocol interface will be installed on each communications device
handle that is managed by the platform setup policy. The driver that is responsible for creating EFI
IPv4 variable must open the EFI IPv4 Configuration Protocol driver interface
BY_DRIVER|EXCLUSIVE.

An example of a configuration policy decision for the EFI IPv4 Protocol driver would be to use a
static IP address/subnet mask pair on the platform management network interface and then use
dynamic IP addresses that are configured by DHCP on the remaining network interfaces.
1430 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_IP4_CONFIG_PROTOCOL.Start()

IMPORTANT NOTICE: The EFI_IP4_CONFIG_PROTOCOL has been replaced with the new
EFI_IP4_CONFIG2_PROTOCOL.

• All new designs based on this specification should exclusively use
EFI_IP4_CONFIG2_PROTOCOL .

• The EFI_IP4_CONFIG_PROTOCOL will be removed in the next revision of this specification.

Summary
Starts running the configuration policy for the EFI IPv4 Protocol driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_CONFIG_START) (
 IN EFI_IP4_CONFIG_PROTOCOL *This,
 IN EFI_EVENT DoneEvent,
 IN EFI_EVENT ReconfigEvent
);

Parameters
This Pointer to the EFI_IP4_CONFIG_PROTOCOL instance.

DoneEvent Event that will be signaled when the EFI IPv4 Protocol driver
configuration policy completes execution. This event must be of
type EVT_NOTIFY_SIGNAL.

ReconfigEvent Event that will be signaled when the EFI IPv4 Protocol driver
configuration needs to be updated. This event must be of type
EVT_NOTIFY_SIGNAL.

Description
The Start() function is called to determine and to begin the platform configuration policy by the
EFI IPv4 Protocol driver. This determination may be as simple as returning EFI_UNSUPPORTED if
there is no EFI IPv4 Protocol driver configuration policy. It may be as involved as loading some
defaults from nonvolatile storage, downloading dynamic data from a DHCP server, and checking
permissions with a site policy server.

Starting the configuration policy is just the beginning. It may finish almost instantly or it may take
several minutes before it fails to retrieve configuration information from one or more servers. Once
the policy is started, drivers should use the DoneEvent parameter to determine when the
configuration policy has completed. EFI_IP4_CONFIG_PROTOCOL.GetData() must then be
called to determine if the configuration succeeded or failed.

Until the configuration completes successfully, EFI IPv4 Protocol driver instances that are
attempting to use default configurations must return EFI_NO_MAPPING.

Once the configuration is complete, the EFI IPv4 Configuration Protocol driver signals
DoneEvent. The configuration may need to be updated in the future, however; in this case, the EFI
IPv4 Configuration Protocol driver must signal ReconfigEvent, and all EFI IPv4 Protocol driver
Version 2.5 April, 2015 1431

Unified Extensible Firmware Interface Specification
instances that are using default configurations must return EFI_NO_MAPPING until the
configuration policy has been rerun.

Status Codes Returned

EFI_SUCCESS The configuration policy for the EFI IPv4 Protocol driver is now
running.

EFI_INVALID_PARAMETER One or more of the following parameters is NULL:

• This

• DoneEvent
• ReconfigEvent

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ALREADY_STARTED The configuration policy for the EFI IPv4 Protocol driver was
already started.

EFI_DEVICE_ERROR An unexpected system error or network error occurred.

EFI_UNSUPPORTED This interface does not support the EFI IPv4 Protocol driver
configuration.
1432 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_IP4_CONFIG_PROTOCOL.Stop()

IMPORTANT NOTICE: The EFI_IP4_CONFIG_PROTOCOL has been replaced with the new
EFI_IP4_CONFIG2_PROTOCOL.

• All new designs based on this specification should exclusively use
EFI_IP4_CONFIG2_PROTOCOL .

• The EFI_IP4_CONFIG_PROTOCOL will be removed in the next revision of this specification.

Summary
Stops running the configuration policy for the EFI IPv4 Protocol driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_CONFIG_STOP) (
 IN EFI_IP4_CONFIG_PROTOCOL *This
);

Parameters
This Pointer to the EFI_IP4_CONFIG_PROTOCOL instance.

Description
The Stop() function stops the configuration policy for the EFI IPv4 Protocol driver. All
configuration data will be lost after calling Stop().

Status Codes Returned

EFI_SUCCESS The configuration policy for the EFI IPv4 Protocol driver has been
stopped.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED The configuration policy for the EFI IPv4 Protocol driver was not
started.
Version 2.5 April, 2015 1433

Unified Extensible Firmware Interface Specification
EFI_IP4_CONFIG_PROTOCOL.GetData()

IMPORTANT NOTICE: The EFI_IP4_CONFIG_PROTOCOL has been replaced with the new
EFI_IP4_CONFIG2_PROTOCOL.

• All new designs based on this specification should exclusively use
EFI_IP4_CONFIG2_PROTOCOL .

• The EFI_IP4_CONFIG_PROTOCOL will be removed in the next revision of this specification.

Summary
Returns the default configuration data (if any) for the EFI IPv4 Protocol driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_CONFIG_GET_DATA) (
 IN EFI_IP4_CONFIG_PROTOCOL *This,
 IN OUT UINTN *IpConfigDataSize,
 OUT EFI_IP4_IPCONFIG_DATA *IpConfigData OPTIONAL
);

Parameters
This Pointer to the EFI_IP4_CONFIG_PROTOCOL instance.

IpConfigDataSize On input, the size of the IpConfigData buffer. On output, the
count of bytes that were written into the IpConfigData buffer.

IpConfigData Pointer to the EFI IPv4 Configuration Protocol driver
configuration data structure. Type
EFI_IP4_IPCONFIG_DATA is defined in “Related
Definitions” below.

Description
The GetData() function returns the current configuration data for the EFI IPv4 Protocol driver
after the configuration policy has completed.

Related Definitions

//**
// EFI_IP4_IPCONFIG_DATA
//**
typedef struct {
 EFI_IPv4_ADDRESS StationAddress;
 EFI_IPv4_ADDRESS SubnetMask;
 UINT32 RouteTableSize;
 EFI_IP4_ROUTE_TABLE *RouteTable OPTIONAL;
} EFI_IP4_IPCONFIG_DATA;
1434 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
StationAddress Default station IP address, stored in network byte order.

SubnetMask Default subnet mask, stored in network byte order.

RouteTableSize Number of entries in the following RouteTable. May be zero.

RouteTable Default routing table data (stored in network byte order). Ignored
if RouteTableSize is zero. Type
EFI_IP4_ROUTE_TABLE is defined in
EFI_IP4_PROTOCOL.GetModeData().

EFI_IP4_IPCONFIG_DATA contains the minimum IPv4 configuration data that is needed to start
basic network communication. The StationAddress and SubnetMask must be a valid unicast
IP address and subnet mask.

If RouteTableSize is not zero, then RouteTable contains a properly formatted routing table
for the StationAddress/SubnetMask, with the last entry in the table being the default route.

Status Codes Returned

27.5 EFI IPv4 Configuration II Protocol
This section provides a detailed description of the EFI IPv4 Configuration II Protocol.

EFI_IP4_CONFIG2_PROTOCOL

Summary
The EFI_IP4_CONFIG2_PROTOCOL provides the mechanism to set and get various types of
configurations for the EFI IPv4 network stack.

EFI_SUCCESS The EFI IPv4 Protocol driver configuration has been returned.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED The configuration policy for the EFI IPv4 Protocol driver is not
running.

EFI_NOT_READY EFI IPv4 Protocol driver configuration is still running.

EFI_ABORTED EFI IPv4 Protocol driver configuration could not complete.

EFI_BUFFER_TOO_SMALL *IpConfigDataSize is smaller than the configuration data

buffer or IpConfigData is NULL.
Version 2.5 April, 2015 1435

Unified Extensible Firmware Interface Specification
GUID
#define EFI_IP4_CONFIG2_PROTOCOL_GUID \
{ 0x5b446ed1, 0xe30b, 0x4faa,\
 { 0x87, 0x1a, 0x36, 0x54, 0xec, 0xa3, 0x60, 0x80 }}

Protocol Interface Structure
typedef struct _EFI_IP4_CONFIG2_PROTOCOL {
 EFI_IP4_CONFIG2_SET_DATA SetData;
 EFI_IP4_CONFIG2_GET_DATA GetData;
 EFI_IP4_CONFIG2_REGISTER_NOTIFY RegisterDataNotify;
 EFI_IP4_CONFIG2_UNREGISTER_NOTIFY UnregisterDataNotify;
} EFI_IP4_CONFIG2_PROTOCOL;

Parameters
SetData Set the configuration for the EFI IPv4 network stack running on

the communication device this EFI IPv4 Configuration II
Protocol instance manages. See the SetData() function
description.

GetData Get the configuration for the EFI IPv4 network stack running on
the communication device this EFI IPv4 Configuration II
Protocol instance manages. See the GetData() function
description.

RegiseterDataNotify
Register an event that is to be signaled whenever a configuration
process on the specified configuration data is done.

UnregisterDataNotify
Remove a previously registered event for the specified
configuration data.

Description
The EFI_IP4_CONFIG2_PROTOCOL is designed to be the central repository for the common
configurations and the administrator configurable settings for the EFI IPv4 network stack.

An EFI IPv4 Configuration II Protocol instance will be installed on each communication device that
the EFI IPv4 network stack runs on.

Note: All the network addresses described in EFI_IP4_CONFIG2_PROTOCOL are stored in network
byte order. All other parameters defined in functions or data structures are stored in host byte
order.
1436 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_IP4_CONFIG2_PROTOCOL.SetData()

Summary
Set the configuration for the EFI IPv4 network stack running on the communication device this EFI
IPv4 Configuration II Protocol instance manages.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_CONFIG2_SET_DATA) (
 IN EFI_IP4_CONFIG2_PROTOCOL *This,
 IN EFI_IP4_CONFIG2_DATA_TYPE DataType,
 IN UINTN DataSize,
 IN VOID *Data
);

Parameters
This Pointer to the EFI_IP4_CONFIG2_PROTOCOL instance.

DataType The type of data to set. Type
EFI_IP4_CONFIG2_DATA_TYPE is defined in “Related
Definitions” below.

DataSize Size of the buffer pointed to by Data in bytes.

Data The data buffer to set. The type of the data buffer is associated
with the DataType. The various types are defined in “Related
Definitions” below.

Description
This function is used to set the configuration data of type DataType for the EFI IPv4 network stack
running on the communication device this EFI IPv4 Configuration II Protocol instance manages.
The successfully configured data is valid after system reset or power-off.

The DataSize is used to calculate the count of structure instances in the Data for some
DataType that multiple structure instances are allowed.

This function is always non-blocking. When setting some type of configuration data, an
asynchronous process is invoked to check the correctness of the data, such as doing address conflict
detection on the manually set local IPv4 address. EFI_NOT_READY is returned immediately to
indicate that such an asynchronous process is invoked and the process is not finished yet. The caller
willing to get the result of the asynchronous process is required to call RegisterDataNotify()
to register an event on the specified configuration data. Once the event is signaled, the caller can call
GetData() to get back the configuration data in order to know the result. For other types of
configuration data that do not require an asynchronous configuration process, the result of the
operation is immediately returned.
Version 2.5 April, 2015 1437

Unified Extensible Firmware Interface Specification
Related Definitions
//***
// EFI_IP4_CONFIG2_DATA_TYPE
//***
typedef enum {
 Ip4Config2DataTypeInterfaceInfo,
 Ip4Config2DataTypePolicy,
 Ip4Config2DataTypeManualAddress,
 Ip4Config2DataTypeGateway,
 Ip4Config2DataTypeDnsServer,
 Ip4Config2DataTypeMaximum
} EFI_IP4_CONFIG2_DATA_TYPE;

Ip4Config2DataTypeInterfaceInfo

The interface information of the communication device this EFI
IPv4 Configuration II Protocol instance manages. This type of
data is read only. The corresponding Data is of type
EFI_IP4_CONFIG2_INTERFACE_INFO.

Ip4Config2DataTypePolicy

The general configuration policy for the EFI IPv4 network stack
running on the communication device this EFI IPv4
Configuration II Protocol instance manages. The policy will
affect other configuration settings. The corresponding Data is of
type EFI_IP4_CONFIG2_POLICY.

Ip4Config2DataTypeManualAddress

The station addresses set manually for the EFI IPv4 network
stack. It is only configurable when the policy is
Ip4Config2PolicyStatic. The corresponding Data is of
type EFI_IP4_CONFIG2_MANUAL_ADDRESS.

Ip4Config2DataTypeGateway

The gateway addresses set manually for the EFI IPv4 network
stack running on the communication device this EFI IPv4
Configuration II Protocol manages. It is not configurable when
the policy is Ip4Config2PolicyDhcp. The gateway
addresses must be unicast IPv4 addresses. The corresponding
Data is a pointer to an array of EFI_IPv4_ADDRESS
instances.

Ip4Config2DataTypeDnsServer

The DNS server list for the EFI IPv4 network stack running on
the communication device this EFI IPv4 Configuration II
Protocol manages. It is not configurable when the policy is
Ip4Config2PolicyDhcp.The DNS server addresses must be
unicast IPv4 addresses. The corresponding Data is a pointer to
an array of EFI_IPv4_ADDRESS instances.
1438 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
//***
// EFI_IP4_CONFIG2_INTERFACE_INFO
//***
typedef struct {
 CHAR16 Name[32];
 UINT8 IfType;
 UINT32 HwAddressSize;
 EFI_MAC_ADDRESS HwAddress;
 EFI_IPv4_ADDRESS StationAddress;
 EFI_IPv4_ADDRESS SubnetMask;
 UINT32 RouteTableSize;
 EFI_IP4_ROUTE_TABLE *RouteTable OPTIONAL;
} EFI_IP4_CONFIG2_INTERFACE_INFO;

Name The name of the interface. It is a NULL-terminated Unicode
string.

IfType The interface type of the network interface. See RFC 1700,
section “Number Hardware Type”.

HwAddressSize The size, in bytes, of the network interface’s hardware address.

HwAddress The hardware address for the network interface.

StationAddress The station IPv4 address of this EFI IPv4 network stack.

SubnetMask The subnet address mask that is associated with the station
address.

RouteTableSize Size of the following RouteTable , in bytes. May be zero.

RouteTable The route table of the IPv4 network stack runs on this interface.
Set to NULL if RouteTableSize is zero. Type
EFI_IP4_ROUTE_TABLE is defined in
EFI_IP4_PROTOCOL.GetModeData().

The EFI_IP4_CONFIG2_INTERFACE_INFO structure describes the operational state of the
interface this EFI IPv4 Configuration II Protocol instance manages. This type of data is read-only.
When reading, the caller allocated buffer is used to return all of the data, i.e., the first part of the
buffer is EFI_IP4_CONFIG2_INTERFACE_INFO and the followings are the route table if
present. The caller should NOT free the buffer pointed to by RouteTable, and the caller is only
required to free the whole buffer if the data is not needed any more.

//***
// EFI_IP4_CONFIG2_POLICY
//***
typedef enum {
 Ip4Config2PolicyStatic,
 Ip4Config2PolicyDhcp,
 Ip4Config2PolicyMax
} EFI_IP4_CONFIG2_POLICY;

Ip4Config2PolicyStatic
Version 2.5 April, 2015 1439

Unified Extensible Firmware Interface Specification
Under this policy, the
Ip4Config2DataTypeManualAddress,
Ip4Config2DataTypeGateway and
Ip4Config2DataTypeDnsServer configuration data are
required to be set manually. The EFI IPv4 Protocol will get all
required configuration such as IPv4 address, subnet mask and
gateway settings from the EFI IPv4 Configuration II protocol.

Ip4Config2PolicyDhcp

Under this policy, the
Ip4Config2DataTypeManualAddress,
Ip4Config2DataTypeGateway and
Ip4Config2DataTypeDnsServer configuration data are
not allowed to set via SetData(). All of these configurations
are retrieved from DHCP server or other auto-configuration
mechanism.

The EFI_IP4_CONFIG2_POLICY defines the general configuration policy the EFI IPv4
Configuration II Protocol supports. The default policy for a newly detected communication device is
Ip4Config2PolicyDhcp. The configuration data of type
Ip4Config2DataTypeManualAddress, Ip4Config2DataTypeGateway and
Ip4Config2DataTypeDnsServer will be flushed if the policy is changed from
Ip4Config2PolicyStatic to Ip4Config2PolicyDhcp.

//***
// EFI_IP4_CONFIG2_MANUAL_ADDRESS
//***
typedef struct {
 EFI_IPv4_ADDRESS Address;
 EFI_IPv4_ADDRESS SubnetMask;
} EFI_IP4_CONFIG2_MANUAL_ADDRESS;

Address The IPv4 unicast address.

SubnetMask The subnet mask.

The EFI_IP4_CONFIG2_MANUAL_ADDRESS structure is used to set the station address
information for the EFI IPv4 network stack manually when the policy is
Ip4Config2PolicyStatic.

The EFI_IP4_CONFIG2_DATA_TYPE includes current supported data types; this specification
allows future extension to support more data types.

Status Codes Returned

EFI_SUCCESS The specified configuration data for the EFI IPv4 network stack is set
successfully.
1440 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.
• Data is NULL.
• One or more fields in Data do not match the requirement of the data

type indicated by DataType.

EFI_WRITE_PROTECTED The specified configuration data is read-only or the specified
configuration data can not be set under the current policy.

EFI_ACCESS_DENIED Another set operation on the specified configuration data is already in
process.

EFI_NOT_READY An asynchronous process is invoked to set the specified configuration
data and the process is not finished yet.

EFI_BAD_BUFFER_SIZE The DataSize does not match the size of the type indicated by

DataType.

EFI_UNSUPPORTED This DataType is not supported.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_DEVICE_ERROR An unexpected system error or network error occurred.
Version 2.5 April, 2015 1441

Unified Extensible Firmware Interface Specification
EFI_IP4_CONFIG2_PROTOCOL.GetData()

Summary
Get the configuration data for the EFI IPv4 network stack running on the communication device this
EFI IPv4 Configuration II Protocol instance manages.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_CONFIG2_GET_DATA) (
 IN EFI_IP4_CONFIG2_PROTOCOL *This,
 IN EFI_IP4_CONFIG2_DATA_TYPE DataType,
 IN OUT UINTN *DataSize,
 IN VOID *Data OPTIONAL
);

Parameters
This Pointer to the EFI_IP4_CONFIG2_PROTOCOL instance.

DataType The type of data to get. Type
EFI_IP4_CONFIG2_DATA_TYPE is defined in
EFI_IP4_CONFIG2_PROTOCOL.SetData().

DataSize On input, in bytes, the size of Data. On output, in bytes, the size
of buffer required to store the specified configuration data.

Data The data buffer in which the configuration data is returned. The
type of the data buffer is associated with the DataType. Ignored
if DataSize is 0. The various types are defined in
EFI_IP4_CONFIG2_PROTOCOL.SetData().

Description
This function returns the configuration data of type DataType for the EFI IPv4 network stack
running on the communication device this EFI IPv4 Configuration II Protocol instance manages.

The caller is responsible for allocating the buffer used to return the specified configuration data and
the required size will be returned to the caller if the size of the buffer is too small.

EFI_NOT_READY is returned if the specified configuration data is not ready due to an already in
progress asynchronous configuration process. The caller can call RegisterDataNotify() to
register an event on the specified configuration data. Once the asynchronous configuration process is
finished, the event will be signaled and a subsequent GetData() call will return the specified
configuration data.

Status Codes Returned

EFI_SUCCESS The specified configuration data is got successfully.
1442 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_INVALID_PARAMETER One or more of the followings are TRUE:

• This is NULL.

• DataSize is NULL.

• Data is NULL if *DataSize is not zero.

EFI_BUFFER_TOO_SMALL The size of Data is too small for the specified configuration data

and the required size is returned in DataSize.

EFI_NOT_READY The specified configuration data is not ready due to an already in
progress asynchronous configuration process.

EFI_NOT_FOUND The specified configuration data is not found.
Version 2.5 April, 2015 1443

Unified Extensible Firmware Interface Specification
EFI_IP4_CONFIG2_PROTOCOL.RegisterDataNotify ()

Summary

Register an event that is to be signaled whenever a configuration process on the specified
configuration data is done.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_CONFIG2_REGISTER_NOTIFY) (

IN EFI_IP4_CONFIG2_PROTOCOL *This,
IN EFI_IP4_CONFIG2_DATA_TYPE DataType,

 IN EFI_EVENT Event
);

Parameters
This Pointer to the EFI_IP4_CONFIG2_PROTOCOL instance.

DataType The type of data to unregister the event for. Type
EFI_IP4_CONFIG2_DATA_TYPE is defined in
EFI_IP4_CONFIG2_PROTOCOL.SetData().

Event The event to register.

Description
This function registers an event that is to be signaled whenever a configuration process on the
specified configuration data is done. An event can be registered for different DataType
simultaneously and the caller is responsible for determining which type of configuration data causes
the signaling of the event in such case.

Status Codes Returned

EFI_SUCCESS The notification event for the specified configuration data is
registered.

EFI_INVALID_PARAMETER This is NULL or Event is NULL.

EFI_UNSUPPORTED The configuration data type specified by DataType is not

supported.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ACCESS_DENIED The Event is already registered for the DataType.
1444 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_IP4_CONFIG2_PROTOCOL.UnregisterDataNotify ()

Summary
Remove a previously registered event for the specified configuration data.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP4_CONFIG2_UNREGISTER_NOTIFY) (
 IN EFI_IP4_CONFIG2_PROTOCOL *This,
 IN EFI_IP4_CONFIG2_DATA_TYPE DataType,
 IN EFI_EVENT Event
);

Parameters
This Pointer to the EFI_IP4_CONFIG2_PROTOCOL instance.

DataType The type of data to remove the previously registered event for.
Type EFI_IP4_CONFIG2_DATA_TYPE is defined in
EFI_IP4_CONFIG2_PROTOCOL.SetData().

Event The event to unregister.

Description
This function removes a previously registered event for the specified configuration data.

Status Codes Returned

27.6 EFI IPv6 Protocol
This section defines the EFI IPv6 (Internet Protocol version 6) Protocol interface. It is split into the
following three main sections:

• EFI IPv6 Service Binding Protocol

• EFI IPv6 Variable

• EFI IPv6 Protocol

The EFI IPv6 Protocol provides basic network IPv6 packet I/O services, which includes support for
Neighbor Discovery Protocol (ND), Multicast Listener Discovery Protocol (MLD), and a subset of
the Internet Control Message Protocol (ICMPv6).

EFI_SUCCESS The event registered for the specified configuration data is
removed.

EFI_INVALID_PARAMETER This is NULL or Event is NULL.

EFI_NOT_FOUND The Event has not been registered for the specified

DataType.
Version 2.5 April, 2015 1445

Unified Extensible Firmware Interface Specification
27.6.1 IPv6 Service Binding Protocol

EFI_IP6_SERVICE_BINDING_PROTOCOL

Summary
The EFI IPv6 Service Binding Protocol is used to locate communication devices that are supported
by an EFI IPv6 Protocol driver and to create and destroy EFI IPv6 Protocol child instances of the IP6
driver that can use the underlying communications device.

GUID
#define EFI_IP6_SERVICE_BINDING_PROTOCOL _GUID \
 {0xec835dd3,0xfe0f,0x617b,\
 {0xa6,0x21,0xb3,0x50,0xc3,0xe1,0x33,0x88}}

Description
A network application that requires basic IPv6 I/O services can use one of the protocol handler
services, such as BS->LocateHandleBuffer(), to search for devices that publish an EFI IPv6
Service Binding Protocol GUID. Each device with a published EFI IPv6 Service Binding Protocol
GUID supports the EFI IPv6 Protocol and may be available for use.

After a successful call to the EFI_IP6_SERVICE_BINDING_PROTOCOL.CreateChild()
function, the newly created child EFI IPv6 Protocol driver is in an un-configured state; it is not ready
to send and receive data packets.

Before a network application terminates execution, every successful call to the
EFI_IP6_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_IP6_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

27.6.2 IPv6 Protocol

EFI_IP6_PROTOCOL

Summary
The EFI IPv6 Protocol implements a simple packet-oriented interface that can be used by drivers,
daemons, and applications to transmit and receive network packets.
1446 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
GUID
#define EFI_IP6_PROTOCOL_GUID \
 {0x2c8759d5,0x5c2d,0x66ef,\
 {0x92,0x5f,0xb6,0x6c,0x10,0x19,0x57,0xe2}}

Protocol Interface Structure
typedef struct _EFI_IP6_PROTOCOL {
 EFI_IP6_GET_MODE_DATA GetModeData;
 EFI_IP6_CONFIGURE Configure;
 EFI_IP6_GROUPS Groups;
 EFI_IP6_ROUTES Routes;
 EFI_IP6_NEIGHBORS Neighbors;
 EFI_IP6_TRANSMIT Transmit;
 EFI_IP6_RECEIVE Receive;
 EFI_IP6_CANCEL Cancel;
 EFI_IP6_POLL Poll;
} EFI_IP6_PROTOCOL;

Parameters
GetModeData Gets the current operational settings for this instance of the EFI

IPv6 Protocol driver. See the GetModeData() function
description.

Configure Changes or resets the operational settings for the EFI IPv6
Protocol. See the Configure() function description.

Groups Joins and leaves multicast groups. See the Groups() function
description.

Routes Adds and deletes routing table entries. See the Routes()
function description.

Neighbors Adds and deletes neighbor cache entries. See the Neighbors()
function description.

Transmit Places outgoing data packets into the transmit queue. See the
Transmit() function description.

Receive Places a receiving request into the receiving queue. See the
Receive() function description.

Cancel Aborts a pending transmit or receive request. See the Cancel()
function description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.

Description
The EFI_IP6_PROTOCOL defines a set of simple IPv6, and ICMPv6 services that can be used by
any network protocol driver, daemon, or application to transmit and receive IPv6 data packets.

Note: Byte Order: All the IPv6 addresses that are described in EFI_IP6_PROTOCOL are stored in
network byte order. Both incoming and outgoing IP packets are also in network byte order. All
other parameters that are defined in functions or data structures are stored in host byte order.
Version 2.5 April, 2015 1447

Unified Extensible Firmware Interface Specification
EFI_IP6_PROTOCOL.GetModeData()

Summary
Gets the current operational settings for this instance of the EFI IPv6 Protocol driver.

Prototype
typedef

EFI_STATUS
(EFIAPI *EFI_IP6_GET_MODE_DATA) (
 IN EFI_IP6_PROTOCOL *This,
 OUT EFI_IP6_MODE_DATA *Ip6ModeData OPTIONAL,
 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
);

Parameters
This Pointer to the EFI_IP6_PROTOCOL instance.

Ip6ModeData Pointer to the EFI IPv6 Protocol mode data structure. Type
EFI_IP6_MODE_DATA is defined in "Related Definitions"
below.

MnpConfigData Pointer to the managed network configuration data structure.
Type EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

SnpData Pointer to the simple network mode data structure. Type
EFI_SIMPLE_NETWORK_MODE is defined in the
EFI_SIMPLE_NETWORK_PROTOCOL.

Description
The GetModeData() function returns the current operational mode data for this driver instance.
The data fields in EFI_IP6_MODE_DATA are read only. This function is used optionally to
retrieve the operational mode data of underlying networks or drivers.
1448 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Related Definitions
//**
// EFI_IP6_MODE_DATA
//**
typedef struct {
 BOOLEAN IsStarted;
 UINT32 MaxPacketSize;
 EFI_IP6_CONFIG_DATA ConfigData;
 BOOLEAN IsConfigured;
 UINT32 AddressCount;
 EFI_IP6_ADDRESS_INFO *AddressList;
 UINT32 GroupCount;
 EFI_IPv6_ADDRESS *GroupTable;
 UINT32 RouteCount;
 EFI_IP6_ROUTE_TABLE *RouteTable;
 UINT32 NeighborCount;
 EFI_IP6_NEIGHBOR_CACHE *NeighborCache;
 UINT32 PrefixCount;
 EFI_IP6_ADDRESS_INFO *PrefixTable;
 UINT32 IcmpTypeCount;
 EFI_IP6_ICMP_TYPE *IcmpTypeList;
} EFI_IP6_MODE_DATA;

IsStarted

Set to TRUE after this EFI IPv6 Protocol instance is started. All other fields in this structure
are undefined until this field is TRUE. Set to FALSE when the
EFI IPv6 Protocol instance is stopped.

MaxPackeSize The maximum packet size, in bytes, of the packet which the
upper layer driver could feed.

ConfigData Current configuration settings. Undefined until IsStarted is
TRUE. Type EFI_IP6_CONFIG_DATA is defined below.

IsConfigured Set to TRUE when the EFI IPv6 Protocol instance is configured.
The instance is configured when it has a station address and
corresponding prefix length.
Set to FALSE when the EFI IPv6 Protocol instance is not
configured.

AddressCount Number of configured IPv6 addresses on this interface.

AddressList List of currently configured IPv6 addresses and corresponding
prefix lengths assigned to this interface. It is caller’s
responsibility to free this buffer. Type
EFI_IP6_ADDRESS_INFO is defined below.

GroupCount Number of joined multicast groups. Undefined until
IsConfigured is TRUE.

GroupTable List of joined multicast group addresses. It is caller’s
responsibility to free this buffer. Undefined until
IsConfigured is TRUE.
Version 2.5 April, 2015 1449

Unified Extensible Firmware Interface Specification
RouteCount Number of entries in the routing table. Undefined until
IsConfigured is TRUE.

RouteTable Routing table entries. It is caller’s responsibility to free this
buffer. Type EFI_IP6_ROUTE_TABLE is defined below.

NeighborCount Number of entries in the neighbor cache. Undefined until
IsConfigured is TRUE.

NeighborCache Neighbor cache entries. It is caller’s responsibility to free this
buffer. Undefined until IsConfigured is TRUE. Type
EFI_IP6_NEIGHBOR_CACHE is defined below.

PrefixCount Number of entries in the prefix table. Undefined until
IsConfigured is TRUE.

PrefixTable On-link Prefix table entries. It is caller’s responsibility to free this
buffer. Undefined until IsConfigured is TRUE. Type
EFI_IP6_ADDRESS_INFO is defined below.

IcmpTypeCount Number of entries in the supported ICMP types list.

IcmpTypeList Array of ICMP types and codes that are supported by this EFI
IPv6 Protocol driver. It is caller’s responsibility to free this
buffer. Type EFI_IP6_ICMP_TYPE is defined below.

//**
// EFI_IP6_CONFIG_DATA
//**
typedef struct {
 UINT8 DefaultProtocol;
 BOOLEAN AcceptAnyProtocol;
 BOOLEAN AcceptIcmpErrors;
 BOOLEAN AcceptPromiscuous;
 EFI_IPv6_ADDRESS DestinationAddress;
 EFI_IPv6_ADDRESS StationAddress;
 UINT8 TrafficClass;
 UINT8 HopLimit;
 UINT32 FlowLabel;
 UINT32 ReceiveTimeout;
 UINT32 TransmitTimeout;
} EFI_IP6_CONFIG_DATA;

DefaultProtocol For the IPv6 packet to send and receive, this is the default value
of the ‘Next Header’ field in the last IPv6 extension header or in
the IPv6 header if there are no extension headers. Ignored when
AcceptPromiscuous is TRUE. An updated list of protocol
numbers can be found at “Links to UEFI-Related Documents”
(http://uefi.org/uefi) under the heading “IANA Assigned Internet
Protocol Numbers”. The following values are illegal: 0 (IPv6
Hop-by-Hop Option), 1(ICMP), 2(IGMP), 41(IPv6), 43(Routing
Header for IPv6), 44(Fragment Header for IPv6), 59(No Next
1450 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Header for IPv6), 60(Destination Options for IPv6), 124(ISIS
over IPv4).

AcceptAnyProtocol Set to TRUE to receive all IPv6 packets that get through the
receive filters.
Set to FALSE to receive only the DefaultProtocol IPv6
packets that get through the receive filters. Ignored when
AcceptPromiscuous is TRUE.

AcceptIcmpErrors Set to TRUE to receive ICMP error report packets. Ignored when
AcceptPromiscuous or AcceptAnyProtocol is TRUE.

AcceptPromiscuous Set to TRUE to receive all IPv6 packets that are sent to any
hardware address or any protocol address. Set to FALSE to stop
receiving all promiscuous IPv6 packets.

DestinationAddress The destination address of the packets that will be transmitted.
Ignored if it is unspecified.

StationAddress The station IPv6 address that will be assigned to this EFI IPv6
Protocol instance. This field can be set and changed only when
the EFI IPv6 driver is transitioning from the stopped to the started
states. If the StationAddress is specified, the EFI IPv6 Protocol
driver will deliver only incoming IPv6 packets whose destination
matches this IPv6 address exactly. The StationAddress is required
to be one of currently configured IPv6 addresses. An address
containing all zeroes is also accepted as a special case. Under this
situation, the IPv6 driver is responsible for binding a source
address to this EFI IPv6 protocol instance according to the source
address selection algorithm. Only incoming packets destined to
the selected address will be delivered to the user. And the
selected station address can be retrieved through later
GetModeData() call. If no address is available for selecting,
EFI_NO_MAPPING will be returned, and the station address will
only be successfully bound to this EFI IPv6 protocol instance
after IP6ModeData.IsConfigured changed to TRUE.

TrafficClass TrafficClass field in transmitted IPv6 packets. Default value
is zero.

HopLimit HopLimit field in transmitted IPv6 packets.

FlowLabel FlowLabel field in transmitted IPv6 packets. Default value is
zero.

ReceiveTimeout The timer timeout value (number of microseconds) for the
receive timeout event to be associated with each assembled
packet. Zero means do not drop assembled packets.

TransmitTimeout The timer timeout value (number of microseconds) for the
transmit timeout event to be associated with each outgoing
packet. Zero means do not drop outgoing packets.

The EFI_IP6_CONFIG_DATA structure is used to report and change IPv6 session parameters.
Version 2.5 April, 2015 1451

Unified Extensible Firmware Interface Specification
//**
// EFI_IP6_ADDRESS_INFO //
**
typedef struct {
 EFI_IPv6_ADDRESS Address;
 UINT8 PrefixLength;
} EFI_IP6_ADDRESS_INFO;

Address The IPv6 address.

PrefixLength The length of the prefix associated with the Address.

//**
// EFI_IP6_ROUTE_TABLE
//**
typedef struct {
 EFI_IPv6_ADDRESS Gateway;
 EFI_IPv6_ADDRESS Destination;
 UINT8 PrefixLength;
} EFI_IP6_ROUTE_TABLE;

Gateway The IPv6 address of the gateway to be used as the next hop for
packets to this prefix. If the IPv6 address is all zeros, then the
prefix is on-link.

Destination The destination prefix to be routed.

PrefixLength The length of the prefix associated with the Destination.

EFI_IP6_ROUTE_TABLE is the entry structure that is used in routing tables.

//**
// EFI_IP6_NEIGHBOR_CACHE
//**
typedef struct {
 EFI_IPv6_ADDRESS Neighbor;
 EFI_MAC_ADDRESS LinkAddress;
 EFI_IP6_NEIGHBOR_STATE State;
} EFI_IP6_NEIGHBOR_CACHE;

Neighbor The on-link unicast / anycast IP address of the neighbor.

LinkAddress Link-layer address of the neighbor.

State State of this neighbor cache entry.

EFI_IP6_NEIGHBOR_CACHE is the entry structure that is used in neighbor cache. It records a set
of entries about individual neighbors to which traffic has been sent recently.
1452 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
//**
// EFI_IP6_NEIGHBOR_STATE
//**
typedef enum {
 EfiNeighborInComplete,
 EfiNeighborReachable,
 EfiNeighborStale,
 EfiNeighborDelay,
 EfiNeighborProbe
} EFI_IP6_NEIGHBOR_STATE;

Following is a description of the fields in the above enumeration.

EfiNeighborInCompleteAddress resolution is being performed on this entry. Specially,
Neighbor Solicitation has been sent to the solicited-node
multicast address of the target, but corresponding Neighbor
Advertisement has not been received.

EfiNeighborReachablePositive confirmation was received that the forward path to the
neighbor was functioning properly.

EfiNeighborStale Reachable Time has elapsed since the last positive confirmation
was received. In this state, the forward path to the neighbor was
functioning properly.

EfiNeighborDelay This state is an optimization that gives upper-layer protocols
additional time to provide reachability confirmation.

EfiNeighborProbe A reachability confirmation is actively sought by retransmitting
Neighbor Solicitations every RetransTimer milliseconds until a
reachability confirmation is received.

//**
// EFI_IP6_ICMP_TYPE
//**
typedef struct {
 UINT8 Type;
 UINT8 Code;
} EFI_IP6_ICMP_TYPE;

Type The type of ICMP message. See “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading “Internet
Control Message Protocol Version 6 (ICMPv6) Parameters” for
the complete list of ICMP message type.

Code The code of the ICMP message, which further describes the
different ICMP message formats under the same Type. See
“Links to UEFI-Related Documents” (http://uefi.org/uefi) under
the heading “Internet Control Message Protocol Version 6
(ICMPv6) Parameters” for details for code of ICMP message.
Version 2.5 April, 2015 1453

Unified Extensible Firmware Interface Specification
EFI_IP6_ICMP_TYPE is used to describe those ICMP messages that are supported by this EFI
IPv6 Protocol driver.

//***
// ICMPv6 type definitions for error messages
//***
#define ICMP_V6_DEST_UNREACHABLE 0x1
#define ICMP_V6_PACKET_TOO_BIG 0x2
#define ICMP_V6_TIME_EXCEEDED 0x3
#define ICMP_V6_PARAMETER_PROBLEM 0x4

//***
// ICMPv6 type definition for informational messages
//***
#define ICMP_V6_ECHO_REQUEST 0x80
#define ICMP_V6_ECHO_REPLY 0x81
#define ICMP_V6_LISTENER_QUERY 0x82
#define ICMP_V6_LISTENER_REPORT 0x83
#define ICMP_V6_LISTENER_DONE 0x84
#define ICMP_V6_ROUTER_SOLICIT 0x85
#define ICMP_V6_ROUTER_ADVERTISE 0x86
#define ICMP_V6_NEIGHBOR_SOLICIT 0x87
#define ICMP_V6_NEIGHBOR_ADVERTISE 0x88
#define ICMP_V6_REDIRECT 0x89
#define ICMP_V6_LISTENER_REPORT_2 0x8F

//***
// ICMPv6 code definitions for ICMP_V6_DEST_UNREACHABLE
//***
#define ICMP_V6_NO_ROUTE_TO_DEST 0x0
#define ICMP_V6_COMM_PROHIBITED 0x1
#define ICMP_V6_BEYOND_SCOPE 0x2
#define ICMP_V6_ADDR_UNREACHABLE 0x3
#define ICMP_V6_PORT_UNREACHABLE 0x4
#define ICMP_V6_SOURCE_ADDR_FAILED 0x5
#define ICMP_V6_ROUTE_REJECTED 0x6

//***
// ICMPv6 code definitions for ICMP_V6_TIME_EXCEEDED
//***
#define ICMP_V6_TIMEOUT_HOP_LIMIT 0x0
#define ICMP_V6_TIMEOUT_REASSEMBLE 0x1

1454 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
//***
// ICMPv6 code definitions for ICMP_V6_PARAMETER_PROBLEM
//***
#define ICMP_V6_ERRONEOUS_HEADER 0x0
#define ICMP_V6_UNRECOGNIZE_NEXT_HDR 0x1
#define ICMP_V6_UNRECOGNIZE_OPTION 0x2

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER This is NULL

EFI_OUT_OF_RESOURCES The required mode data could not be allocated.
Version 2.5 April, 2015 1455

Unified Extensible Firmware Interface Specification
EFI_IP6_PROTOCOL.Configure()

Summary
Assign IPv6 address and other configuration parameter to this EFI IPv6 Protocol driver instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP6_CONFIGURE) (
 IN EFI_IP6_PROTOCOL *This,
 IN EFI_IP6_CONFIG_DATA *Ip6ConfigData OPTIONAL
);

Parameters
This Pointer to the EFI_IP6_PROTOCOL instance.

Ip6ConfigData Pointer to the EFI IPv6 Protocol configuration data structure.
Type EFI_IP6_CONFIG_DATA is defined in
EFI_IP6_PROTOCOL.GetModeData().

Description
The Configure() function is used to set, change, or reset the operational parameters and filter
settings for this EFI IPv6 Protocol instance. Until these parameters have been set, no network traffic
can be sent or received by this instance. Once the parameters have been reset (by calling this
function with Ip6ConfigData set to NULL), no more traffic can be sent or received until these
parameters have been set again. Each EFI IPv6 Protocol instance can be started and stopped
independently of each other by enabling or disabling their receive filter settings with the
Configure() function.

If Ip6ConfigData.StationAddress is a valid non-zero IPv6 unicast address, it is required
to be one of the currently configured IPv6 addresses list in the EFI IPv6 drivers, or else
EFI_INVALID_PARAMETER will be returned. If Ip6ConfigData.StationAddress is
unspecified, the IPv6 driver will bind a source address according to the source address selection
algorithm. Clients could frequently call GetModeData() to check get currently configured IPv6
address list in the EFI IPv6 driver. If both Ip6ConfigData.StationAddress and
Ip6ConfigData.Destination are unspecified, when transmitting the packet afterwards, the
source address filled in each outgoing IPv6 packet is decided based on the destination of this packet.

If operational parameters are reset or changed, any pending transmit and receive requests will be
cancelled. Their completion token status will be set to EFI_ABORTED and their events will be
signaled.
1456 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Status Codes Returned

EFI_SUCCESS The driver instance was successfully opened.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

This is NULL.

Ip6ConfigData.StationAddress is neither zero nor

a unicast IPv6 address.

Ip6ConfigData.StationAddress is neither zero nor

one of the configured IP addresses in the EFI IPv6 driver.

Ip6ConfigData.DefaultProtocol is illegal.

EFI_OUT_OF_RESOURCES The EFI IPv6 Protocol driver instance data could not be allocated.

EFI_NO_MAPPING The IPv6 driver was responsible for choosing a source address for
this instance, but no source address was available for use.

EFI_ALREADY_STARTED The interface is already open and must be stopped before the IPv6
address or prefix length can be changed.

EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI IPv6
Protocol driver instance is not opened.

EFI_UNSUPPORTED Default protocol specified through

Ip6ConfigData.DefaulProtocol isn’t supported.
Version 2.5 April, 2015 1457

Unified Extensible Firmware Interface Specification
EFI_IP6_PROTOCOL.Groups()

Summary
Joins and leaves multicast groups.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP6_GROUPS) (
 IN EFI_IP6_PROTOCOL *This,
 IN BOOLEAN JoinFlag,
 IN EFI_IPv6_ADDRESS *GroupAddress OPTIONAL
);

Parameters
This Pointer to the EFI_IP6_PROTOCOL instance.

JoinFlag Set to TRUE to join the multicast group session and FALSE to
leave.

GroupAddress Pointer to the IPv6 multicast address.

Description
The Groups() function is used to join and leave multicast group sessions. Joining a group will
enable reception of matching multicast packets. Leaving a group will disable reception of matching
multicast packets. Source-Specific Multicast isn’t required to be supported.

If JoinFlag is FALSE and GroupAddress is NULL, all joined groups will be left.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following is TRUE:

This is NULL.

JoinFlag is TRUE and GroupAddress is NULL.

GroupAddress is not NULL and *GroupAddress is not

a multicast IPv6 address.

GroupAddress is not NULL and *GroupAddress is in the

range of SSM destination address.

EFI_NOT_STARTED This instance has not been started.

EFI_OUT_OF_RESOURCES System resources could not be allocated.

EFI_UNSUPPORTED This EFI IPv6 Protocol implementation does not support multicast
groups.

EFI_ALREADY_STARTED The group address is already in the group table (when

JoinFlag is TRUE).

EFI_NOT_FOUND The group address is not in the group table (when JoinFlag is

FALSE).
1458 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_DEVICE_ERROR An unexpected system or network error occurred.
Version 2.5 April, 2015 1459

Unified Extensible Firmware Interface Specification
EFI_IP6_PROTOCOL.Routes()

Summary
Adds and deletes routing table entries.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP6_ROUTES) (
 IN EFI_IP6_PROTOCOL *This,
 IN BOOLEAN DeleteRoute,
 IN EFI_IPv6_ADDRESS *Destination OPTIONAL,
 IN UINT8 PrefixLength,
 IN EFI_IPv6_ADDRESS *GatewayAddress OPTIONAL
);

Parameters
This Pointer to the EFI_IP6_PROTOCOL instance.

DeleteRoute Set to TRUE to delete this route from the routing table. Set to
FALSE to add this route to the routing table. Destination,
PrefixLength and Gateway are used as the key to each
route entry.

Destination The address prefix of the subnet that needs to be routed.

PrefixLength The prefix length of Destination. Ignored if Destination
is NULL.

GatewayAddress The unicast gateway IPv6 address for this route.

Description
The Routes() function adds a route to or deletes a route from the routing table.

Routes are determined by comparing the leftmost PrefixLength bits of Destination with
the destination IPv6 address arithmetically. The gateway address must be on the same subnet as the
configured station address.

The default route is added with Destination and PrefixLegth both set to all zeros. The
default route matches all destination IPv6 addresses that do not match any other routes.

All EFI IPv6 Protocol instances share a routing table.

Note: There is no way to set up routes to other network interface cards because each network interface
card has its own independent network stack that shares information only through the EFI IPv6
variable.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The driver instance has not been started.
1460 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

This is NULL.

When DeleteRoute is TRUE, both Destination and
GatewayAddress are NULL
When DeleteRoute is FALSE, either Destination or
GatewayAddress is NULL
*GatewayAddress is not a valid unicast IPv6 address.

*GatewayAddress is one of the local configured IPv6

addresses.

EFI_OUT_OF_RESOURCES Could not add the entry to the routing table.

EFI_NOT_FOUND This route is not in the routing table (when DeleteRoute is

TRUE).

EFI_ACCESS_DENIED The route is already defined in the routing table (when

DeleteRoute is FALSE).
Version 2.5 April, 2015 1461

Unified Extensible Firmware Interface Specification
EFI_IP6_PROTOCOL.Neighbors()

Summary
Add or delete Neighbor cache entries.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP6_NEIGHBORS) (
 IN EFI_IP6_PROTOCOL *This,
 IN BOOLEAN DeleteFlag,
 IN EFI_IPv6_ADDRESS *TargetIp6Address,
 IN EFI_MAC_ADDRESS *TargetLinkAddress OPTIONAL
 IN UINT32 Timeout,
 IN BOOLEAN Override
);

Parameters
This Pointer to the EFI_IP6_PROTOCOL instance.

DeleteFlag Set to TRUE to delete the specified cache entry, set to FALSE to
add (or update, if it already exists and Override is TRUE) the
specified cache entry. TargetIp6Address is used as the key
to find the requested cache entry.

TargetIp6Address Pointer to Target IPv6 address.

TargetLinkAddress Pointer to link-layer address of the target. Ignored if NULL.

Timeout Time in 100-ns units that this entry will remain in the neighbor
cache, it will be deleted after Timeout. A value of zero means that
the entry is permanent. A non-zero value means that the entry is
dynamic.

Override If TRUE, the cached link-layer address of the matching entry will
be overridden and updated; if FALSE, EFI_ACCESS_DENIED
will be returned if a corresponding cache entry already existed.

Description
The Neighbors() function is used to add, update, or delete an entry from neighbor cache.

IPv6 neighbor cache entries are typically inserted and updated by the network protocol driver as
network traffic is processed. Most neighbor cache entries will time out and be deleted if the network
traffic stops. Neighbor cache entries that were inserted by Neighbors() may be static (will not
timeout) or dynamic (will time out).

The implementation should follow the neighbor cache timeout mechanism which is defined in
RFC4861. The default neighbor cache timeout value should be tuned for the expected network
environment.
1462 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The driver instance has not been started.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

This is NULL.

TargetIpAddress is NULL.

*TargetLinkAddress is invalid when not NULL.
*TargetIpAddress is not a valid unicast IPv6 address.

*TargetIpAddress is one of the local configured IPv6

addresses.

EFI_OUT_OF_RESOURCES Could not add the entry to the neighbor cache.

EFI_NOT_FOUND This entry is not in the neighbor cache (when DeleteFlag is

TRUE or when DeleteFlag is FALSE while

TargetLinkAddress is NULL.).

EFI_ACCESS_DENIED The to-be-added entry is already defined in the neighbor cache,

and that entry is tagged as un-overridden (when DeleteFlag
is FALSE).
Version 2.5 April, 2015 1463

Unified Extensible Firmware Interface Specification
EFI_IP6_PROTOCOL.Transmit()

Summary
Places outgoing data packets into the transmit queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP6_TRANSMIT) (
 IN EFI_IP6_PROTOCOL *This,
 IN EFI_IP6_COMPLETION_TOKEN *Token
);

Parameters
This Pointer to the EFI_IP6_PROTOCOL instance.

Token Pointer to the transmit token. Type
EFI_IP6_COMPLETION_TOKEN is defined in "Related
Definitions" below.

Description
The Transmit() function places a sending request in the transmit queue of this EFI IPv6 Protocol
instance. Whenever the packet in the token is sent out or some errors occur, the event in the token
will be signaled and the status is updated.

Related Definitions
//**
// EFI_IP6_COMPLETION_TOKEN
//**
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 union {
 EFI_IP6_RECEIVE_DATA *RxData;
 EFI_IP6_TRANSMIT_DATA *TxData;
 } Packet;
} EFI_IP6_COMPLETION_TOKEN;

Event This Event will be signaled after the Status field is updated by
the EFI IPv6 Protocol driver. The type of Event must be
EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values:

EFI_SUCCESS: The receive or transmit completed
successfully.

EFI_ABORTED: The receive or transmit was aborted.
1464 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_TIMEOUT: The transmit timeout expired.

EFI_ICMP_ERROR: An ICMP error packet was received.

EFI_DEVICE_ERROR: An unexpected system or network
error occurred.

EFI_SECURITY_VIOLATION: The transmit or receive was
failed because of an IPsec policy check.

RxData

When the Token is used for receiving, RxData is a pointer to the
EFI_IP6_RECEIVE_DATA. Type
EFI_IP6_RECEIVE_DATA is defined below.

TxData

When the Token is used for transmitting, TxData is a pointer to the
EFI_IP6_TRANSMIT_DATA. Type EFI_IP6_TRANSMIT_DATA is defined
below.

EFI_IP6_COMPLETION_TOKEN structures are used for both transmit and receive operations.

When the structure is used for transmitting, the Event and TxData fields must be filled in by the
EFI IPv6 Protocol client. After the transmit operation completes, the EFI IPv6 Protocol driver
updates the Status field and the Event is signaled.

When the structure is used for receiving, only the Event field must be filled in by the EFI IPv6
Protocol client. After a packet is received, the EFI IPv6 Protocol driver fills in the RxData and
Status fields and the Event is signaled

//**
// EFI_IP6_RECEIVE_DATA
//**
typedef struct _EFI_IP6_RECEIVE_DATA {
 EFI_TIME TimeStamp;
 EFI_EVENT RecycleSignal;
 UINT32 HeaderLength;
 EFI_IP6_HEADER *Header;
 UINT32 DataLength;
 UINT32 FragmentCount;
 EFI_IP6_FRAGMENT_DATA FragmentTable[1];
} EFI_IP6_RECEIVE_DATA;

TimeStamp Time when the EFI IPv6 Protocol driver accepted the packet.
TimeStamp is zero filled if timestamps are disabled or
unsupported.

RecycleSignal After this event is signaled, the receive data structure is released
and must not be referenced.

HeaderLength Length of the IPv6 packet headers, including both the IPv6
header and any extension headers.

Header Pointer to the IPv6 packet header. If the IPv6 packet was
fragmented, this argument is a pointer to the header in the first
fragment. Type EFI_IP6_HEADER is defined below.
Version 2.5 April, 2015 1465

Unified Extensible Firmware Interface Specification
DataLength Sum of the lengths of IPv6 packet buffers in FragmentTable. May
be zero.

FragmentCount Number of IPv6 payload fragments. May be zero.

FragmentTable Array of payload fragment lengths and buffer pointers. Type
EFI_IP6_FRAGMENT_DATA is defined below.

The EFI IPv6 Protocol receive data structure is filled in when IPv6 packets have been assembled. In
the case of IPv6 packet assembly, the individual packet fragments are only verified and are not
reorganized into a single linear buffer.

The FragmentTable contains a sorted list of zero or more packet fragment descriptors. The refer-
enced packet fragments may not be in contiguous memory locations.

//**
// EFI_IP6_HEADER
//**
#pragma pack(1)
typedef struct _EFI_IP6_HEADER {
 UINT8 TrafficClassH:4;
 UINT8 Version:4;
 UINT8 FlowLabelH:4;
 UINT8 TrafficClassL:4;
 UINT16 FlowLabelL;
 UINT16 PayloadLength;
 UINT8 NextHeader;
 UINT8 HopLimit;
 EFI_IPv6_ADDRESS SourceAddress;
 EFI_IPv6_ADDRESS DestinationAddress;
} EFI_IP6_HEADER;
#pragma pack

The fields in the IPv6 header structure are defined in the Internet Protocol version6 specification,
which can be found at “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading
“Internet Protocol version 6 Specification”.

//**
// EFI_IP6_FRAGMENT_DATA
//**
typedef struct _EFI_IP6_FRAGMENT_DATA {
 UINT32 FragmentLength;
 VOID *FragmentBuffer;
} EFI_IP6_FRAGMENT_DATA;

FragmentLength Length of fragment data. This field may not be set to zero.

FragmentBuffer Pointer to fragment data. This field may not be set to NULL.
1466 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
The EFI_IP6_FRAGMENT_DATA structure describes the location and length of the IPv6 packet
fragment to transmit or that has been received.

//**
// EFI_IP6_TRANSMIT_DATA
//**
typedef struct _EFI_IP6_TRANSMIT_DATA {
 EFI_IPv6_ADDRESS DestinationAddress;
 EFI_IP6_OVERRIDE_DATA *OverrideData;
 UINT32 ExtHdrsLength;
 VOID *ExtHdrs;
 UINT8 NextHeader;
 UINT32 DataLength;
 UINT32 FragmentCount;
 EFI_IP6_FRAGMENT_DATA FragmentTable[1];
} EFI_IP6_TRANSMIT_DATA;

DestinationAddress The destination IPv6 address. If it is unspecified,
ConfigData.DestinationAddress will be used instead.

OverrideData If not NULL, the IPv6 transmission control override data. Type
EFI_IP6_OVERRIDE_DATA is defined below.

ExtHdrsLength Total length in byte of the IPv6 extension headers specified in
ExtHdrs

ExtHdrs Pointer to the IPv6 extension headers. The IP layer will append
the required extension headers if they are not specified by
ExtHdrs. Ignored if ExtHdrsLength is zero.

NextHeader The protocol of first extension header in ExtHdrs. Ignored if
ExtHdrsLength is zero.

DataLength Total length in bytes of the FragmentTable data to transmit.

FragmentCount Number of entries in the fragment data table.

FragmentTable Start of the fragment data table. Type
EFI_IP6_FRAGMENT_DATA is defined above.

The EFI_IP6_TRANSMIT_DATA structure describes a possibly fragmented packet to be
transmitted.

//**
// EFI_IP6_OVERRIDE_DATA
//**
typedef struct _EFI_IP6_OVERRIDE_DATA {
 UINT8 Protocol;
 UINT8 HopLimit;
 UINT32 FlowLabel;
} EFI_IP6_OVERRIDE_DATA;

Protocol Protocol type override.
Version 2.5 April, 2015 1467

Unified Extensible Firmware Interface Specification
HopLimit Hop-Limit override.

FlowLabel Flow-Label override.

The information and flags in the override data structure will override default parameters or settings
for one Transmit() function call.
1468 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Status Codes Returned

EFI_SUCCESS The data has been queued for transmission.

EFI_NOT_STARTED This instance has not been started.

EFI_NO_MAPPING The IPv6 driver was responsible for choosing a source address for
this transmission, but no source address was available for use.

EFI_INVALID_PARAMETER One or more of the following is TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL
• Token.Packet.TxData is NULL.
• Token.Packet.ExtHdrsLength is not zero and
Token.Packet.ExtHdrs is NULL.

• Token.Packet.FragmentCount is zero.

• One or more of the
Token.Packet.TxData.FragmentTable[].Fr
agmentLength fields is zero.

• One or more of the
Token.Packet.TxData.FragmentTable[].Fr
agmentBuffer fields is NULL.

• Token.Packet.TxData.DataLength is zero or not
equal to the sum of fragment lengths.

• Token.Packet.TxData.DestinationAddress
is non-zero when DestinationAddress is configured as
non-zero when doing Configure() for this EFI IPv6
protocol instance.

• Token.Packet.TxData.DestinationAddress
is unspecified when DestinationAddress is unspecified
when doing Configure() for this EFI IPv6 protocol
instance.

EFI_ACCESS_DENIED The transmit completion token with the same Token.Event

was already in the transmit queue.

EFI_NOT_READY The completion token could not be queued because the transmit
queue is full.

EFI_NOT_FOUND No route was found to destination address.

EFI_OUT_OF_RESOURCES Could not queue the transmit data.

EFI_BUFFER_TOO_SMALL Token.Packet.TxData.DataLength is too short to

transmit.

EFI_BAD_BUFFER_SIZE If Token.Packet.TxData.DataLength is beyond the

maximum that which can be described through the Fragment Offset
field in Fragment header when performing fragmentation.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_NO_MEDIA There was a media error.
Version 2.5 April, 2015 1469

Unified Extensible Firmware Interface Specification
EFI_IP6_PROTOCOL.Receive()

Summary
Places a receiving request into the receiving queue.

Prototype
typedef

EFI_STATUS
(EFIAPI *EFI_IP6_RECEIVE) (
 IN EFI_IP6_PROTOCOL *This,
 IN EFI_IP6_COMPLETION_TOKEN *Token
);

Parameters
This Pointer to the EFI_IP6_PROTOCOL instance.

Token Pointer to a token that is associated with the receive data
descriptor. Type EFI_IP6_COMPLETION_TOKEN is defined
in "Related Definitions" of above Transmit().

Description
The Receive() function places a completion token into the receive packet queue. This function is
always asynchronous.
The Token.Event field in the completion token must be filled in by the caller and cannot be
NULL. When the receive operation completes, the EFI IPv6 Protocol driver updates the
Token.Status and Token.Packet.RxData fields and the Token.Event is signaled.
1470 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Status Codes Returned

EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This EFI IPv6 Protocol instance has not been started.

EFI_NO_MAPPING When IP6 driver responsible for binding source address to this instance,
while no source address is available for use.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

This is NULL.

Token is NULL.

Token.Event is NULL.

EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of system
resources (usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The EFI IPv6 Protocol instance has been reset to startup defaults.

EFI_ACCESS_DENIED The receive completion token with the same Token.Event was already

in the receive queue.

EFI_NOT_READY The receive request could not be queued because the receive queue is full.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_NO_MEDIA There was a media error.
Version 2.5 April, 2015 1471

Unified Extensible Firmware Interface Specification
EFI_IP6_PROTOCOL.Cancel()

Summary
Abort an asynchronous transmits or receive request.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP6_CANCEL)(
 IN EFI_IP6_PROTOCOL *This,
 IN EFI_IP6_COMPLETION_TOKEN *Token OPTIONAL
);

Parameters
This Pointer to the EFI_IP6_PROTOCOL instance.

Token Pointer to a token that has been issued by EFI_IP6_PROTOCOL
.Transmit() or EFI_IP6_PROTOCOL.Receive(). If
NULL, all pending tokens are aborted. Type
EFI_IP6_COMPLETION_TOKEN is defined in
EFI_IP6_PROTOCOL.Transmit().

Description
The Cancel() function is used to abort a pending transmit or receive request. If the token is in the
transmit or receive request queues, after calling this function, Token->Status will be set to
EFI_ABORTED and then Token->Event will be signaled. If the token is not in one of the
queues, which usually means the asynchronous operation has completed, this function will not signal
the token and EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS The asynchronous I/O request was aborted and

Token->Event was signaled. When Token is NULL, all

pending requests were aborted and their events were signaled.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED This instance has not been started.

EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was not

found in the transmit or receive queue. It has either completed or

was not issued by Transmit() and Receive().

EFI_DEVICE_ERROR An unexpected system or network error occurred.
1472 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_IP6_PROTOCOL.Poll()

Summary
Polls for incoming data packets and processes outgoing data packets.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP6_POLL) (
 IN EFI_IP6_PROTOCOL *This
);

Description
The Poll() function polls for incoming data packets and processes outgoing data packets. Net-
work drivers and applications can call the EFI_IP6_PROTOCOL.Poll() function to increase the
rate that data packets are moved between the communications device and the transmit and receive
queues.
In some systems the periodic timer event may not poll the underlying communications device fast
enough to transmit and/or receive all data packets without missing incoming packets or dropping
outgoing packets. Drivers and applications that are experiencing packet loss should try calling the
EFI_IP6_PROTOCOL.Poll() function more often.

Status Codes Returned

27.7 EFI IPv6 Configuration Protocol
This section provides a detailed description of the EFI IPv6 Configuration Protocol.

EFI_IP6_CONFIG_PROTOCOL

Summary
The EFI_IP6_CONFIG_PROTOCOL provides the mechanism to set and get various types of
configurations for the EFI IPv6 network stack.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This EFI IPv6 Protocol instance has not been started.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_NOT_READY No incoming or outgoing data is processed.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
Version 2.5 April, 2015 1473

Unified Extensible Firmware Interface Specification
GUID
#define EFI_IP6_CONFIG_PROTOCOL_GUID \
 {0x937fe521,0x95ae,0x4d1a,\
 {0x89,0x29,0x48,0xbc,0xd9,0x0a,0xd3,0x1a}

Protocol Interface Structure
typedef struct _EFI_IP6_CONFIG_PROTOCOL {
 EFI_IP6_CONFIG_SET_DATA SetData;
 EFI_IP6_CONFIG_GET_DATA GetData;
 EFI_IP6_CONFIG_REGISTER_NOTIF RegisterDataNotify;
 EFI_IP6_CONFIG_UNREGISTER_NOTIFY UnregisterDataNotify;
} EFI_IP6_CONFIG_PROTOCOL;

Parameters
SetData Set the configuration for the EFI IPv6 network stack running on

the communication device this EFI IPv6 Configuration Protocol
instance manages. See the SetData() function description.

GetData Get the configuration or register an event to monitor the change
of the configuration for the EFI IPv6 network stack running on
the communication device this EFI IPv6 Configuration Protocol
instance manages. See the GetData() function description.

RegiseterDataNotifyRegister an event that is to be signaled whenever a configuration
process on the specified configuration data is done.

UnregisterDataNotifyRemove a previously registered event for the specified
configuration data.

Description
The EFI_IP6_CONFIG_PROTOCOL is designed to be the central repository for the common
configurations and the administrator configurable settings for the EFI IPv6 network stack.

An EFI IPv6 Configuration Protocol instance will be installed on each communication device that
the EFI IPv6 network stack runs on.
1474 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_IP6_CONFIG_PROTOCOL.SetData()

Summary
Set the configuration for the EFI IPv6 network stack running on the communication device this EFI
IPv6 Configuration Protocol instance manages.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP6_CONFIG_SET_DATA) (
 IN EFI_IP6_CONFIG_PROTOCOL *This,
 IN EFI_IP6_CONFIG_DATA_TYPE DataType,
 IN UINTN DataSize,
 IN VOID *Data
);

Parameters
This Pointer to the EFI_IP6_CONFIG_PROTOCOL instance.

DataType The type of data to set. Type EFI_IP6_CONFIG_DATA_TYPE
is defined in "Related Definitions" below.

DataSize Size of the buffer pointed to by Data in bytes.

Data The data buffer to set. The type of the data buffer is associated
with the DataType. The various types are defined in "Related
Definitions" below.

Description
This function is used to set the configuration data of type DataType for the EFI IPv6 network stack
running on the communication device this EFI IPv6 Configuration Protocol instance manages.

The DataSize is used to calculate the count of structure instances in the Data for some
DataType that multiple structure instances are allowed.

This function is always non-blocking. When setting some type of configuration data, an
asynchronous process is invoked to check the correctness of the data, such as doing Duplicate
Address Detection on the manually set local IPv6 addresses. EFI_NOT_READY is returned
immediately to indicate that such an asynchronous process is invoked and the process is not finished
yet. The caller willing to get the result of the asynchronous process is required to call
RegisterDataNotify() to register an event on the specified configuration data. Once the
event is signaled, the caller can call GetData() to get back the configuration data in order to know
the result. For other types of configuration data that do not require an asynchronous configuration
process, the result of the operation is immediately returned.
Version 2.5 April, 2015 1475

Unified Extensible Firmware Interface Specification
Related Definitions
//***
// EFI_IP6_CONFIG_DATA_TYPE
//***
typedef enum {
 Ip6ConfigDataTypeInterfaceInfo,
 Ip6ConfigDataTypeAltInterfaceId,
 Ip6ConfigDataTypePolicy,
 Ip6ConfigDataTypeDupAddrDetectTransmits,
 Ip6ConfigDataTypeManualAddress,
 Ip6ConfigDataTypeGateway,
 Ip6ConfigDataTypeDnsServer,
 Ip6ConfigDataTypeMaximum
} EFI_IP6_CONFIG_DATA_TYPE;

Ip6ConfigDataTypeInterfaceInfoThe interface information of the communication
device this EFI IPv6 Configuration Protocol instance manages.
This type of data is read only. The corresponding Data is of type
EFI_IP6_CONFIG_INTERFACE_INFO.

Ip6ConfigDataTypeAltInterfaceId The alternative interface ID for the
communication device this EFI IPv6 Configuration Protocol
instance manages if the link local IPv6 address generated from
the interfaced ID based on the default source the EFI IPv6
Protocol uses is a duplicate address. The length of the interface
ID is 64 bit. The corresponding Data is of type
EFI_IP6_CONFIG_INTERFACE_ID.

Ip6ConfigDataTypePolicyThe general configuration policy for the EFI IPv6 network
stack running on the communication device this EFI IPv6
Configuration Protocol instance manages. The policy will affect
other configuration settings. The corresponding Data is of type
EFI_IP6_CONFIG_POLICY.

Ip6ConfigDataTypeDupAddrDetectTransmits The number of consecutive
Neighbor Solicitation messages sent while performing Duplicate
Address Detection on a tentative address. A value of zero
indicates that Duplicate Address Detection will not be performed
on tentative addresses. The corresponding Data is of type
EFI_IP6_CONFIG_DUP_ADDR_DETECT_TRANSMITS.

Ip6ConfigDataTypeManualAddressThe station addresses set manually for the EFI
IPv6 network stack. It is only configurable when the policy is
Ip6ConfigPolicyManual. The corresponding Data is a
pointer to an array of EFI_IPv6_ADDRESS instances.

Ip6ConfigDataTypeGatewayThe gateway addresses set manually for the EFI IPv6
network stack running on the communication device this EFI
IPv6 Configuration Protocol manages. It is not configurable when
the policy is Ip6ConfigPolicyAutomatic. The gateway
addresses must be unicast IPv6 addresses. The corresponding
Data is a pointer to an array of EFI_IPv6_ADDRESS instances.
1476 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Ip6ConfigDataTypeDnsServerThe DNS server list for the EFI IPv6 network stack
running on the communication device this EFI IPv6
Configuration Protocol manages. It is not configurable when the
policy is Ip6ConfigPolicyAutomatic.The DNS server
addresses must be unicast IPv6 addresses. The corresponding
Data is a pointer to an array of EFI_IPv6_ADDRESS instances.

//***
// EFI_IP6_CONFIG_INTERFACE_INFO
//***
typedef struct {
 CHAR16 Name[32];
 UINT8 IfType;
 UINT32 HwAddressSize;
 EFI_MAC_ADDRESS HwAddress;
 UINT32 AddressInfoCount;
 EFI_IP6_ADDRESS_INFO *AddressInfo;
 UINT32 RouteCount;
 EFI_IP6_ROUTE_TABLE *RouteTable;
} EFI_IP6_CONFIG_INTERFACE_INFO;

Name The name of the interface. It is a NULL-terminated string.

IfType The interface type of the network interface. See RFC 3232,
section “Number Hardware Type”.

HwAddressSize The size, in bytes, of the network interface’s hardware address.

HwAddress The hardware address for the network interface.

AddressInfoCount Number of EFI_IP6_ADDRESS_INFO structures pointed to by
AddressInfo.

AddressInfo Pointer to an array of EFI_IP6_ADDRESS_INFO instances
which contain the local IPv6 addresses and the corresponding
prefix length information. Set to NULL if AddressInfoCount
is zero. Type EFI_IP6_ADDRESS_INFO is defined in
EFI_IP6_PROTOCOL.GetModeData().

RouteCount Number of route table entries in the following RouteTable.

RouteTable The route table of the IPv6 network stack runs on this interface.
Set to NULL if RouteCount is zero. Type
EFI_IP6_ROUTE_TABLE is defined in
EFI_IP6_PROTOCOL.GetModeData().

The EFI_IP6_CONFIG_INTERFACE_INFO structure describes the operational state of the
interface this EFI IPv6 Configuration Protocol instance manages. This type of data is read-only.
When reading, the caller allocated buffer is used to return all of the data, i.e., the first part of the
buffer is EFI_IP6_CONFIG_INTERFACE_INFO and the followings are the array of
EFI_IP6_ADDRESS_INFO and the route table if present. The caller should NOT free the buffer
pointed to by AddressInfo or RouteTable, and the caller is only required to free the whole
buffer if the data is not needed any more.
Version 2.5 April, 2015 1477

Unified Extensible Firmware Interface Specification
//***
// EFI_IP6_CONFIG_INTERFACE_ID
//***
typedef struct {
 UINT8 Id[8];
} EFI_IP6_CONFIG_INTERFACE_ID;

The EFI_IP6_CONFIG_INTERFACE_ID structure describes the 64-bit interface ID.

//***
// EFI_IP6_CONFIG_POLICY
//***
typedef enum {
 Ip6ConfigPolicyManual,
 Ip6ConfigPolicyAutomatic
} EFI_IP6_CONFIG_POLICY;

Ip6ConfigPolicyManualUnder this policy, the
IpI6ConfigDataTypeManualAddress,
Ip6ConfigDataTypeGateway and
Ip6ConfigDataTypeDnsServer configuration data are
required to be set manually. The EFI IPv6 Protocol will get all
required configuration such as address, prefix and gateway
settings from the EFI IPv6 Configuration protocol.

Ip6ConfigPolicyAutomaticUnder this policy, the
IpI6ConfigDataTypeManualAddress,
Ip6ConfigDataTypeGateway and
Ip6ConfigDataTypeDnsServer configuration data are not
allowed to set via SetData(). All of these configurations are
retrieved from some auto configuration mechanism. The EFI
IPv6 Protocol will use the IPv6 stateless address
autoconfiguration mechanism and/or the IPv6 stateful address
autoconfiguration mechanism described in the related RFCs to
get address and other configuration information.

The EFI_IP6_CONFIG_POLICY defines the general configuration policy the EFI IPv6
Configuration Protocol supports. The default policy for a newly detected communication device is
Ip6ConfigPolicyAutomatic. The configuration data of type
IpI6ConfigDataTypeManualAddress, Ip6ConfigDataTypeGateway and
Ip6ConfigDataTypeDnsServer will be flushed if the policy is changed from
Ip6ConfigPolicyManual to Ip6ConfigPolicyAutomatic.
1478 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
//***
// EFI_IP6_CONFIG_DUP_ADDR_DETECT_TRANSMITS
//***
typedef struct {
 UINT32 DupAddrDetectTransmits;
} EFI_IP6_CONFIG_DUP_ADDR_DETECT_TRANSMITS;

The EFI_IP6_CONFIG_DUP_ADDR_DETECT_TRANSMITS structure describes the number of
consecutive Neighbor Solicitation messages sent while performing Duplicate Address Detection on
a tentative address. The default value for a newly detected communication device is 1.

//***
// EFI_IP6_CONFIG_MANUAL_ADDRESS
//***
typedef struct {
 EFI_IPv6_ADDRESS Address;
 BOOLEAN IsAnycast;
 UINT8 PrefixLength;
} EFI_IP6_CONFIG_MANUAL_ADDRESS;

Address The IPv6 unicast address.

IsAnycast Set to TRUE if Address is anycast.

PrefixLength The length, in bits, of the prefix associated with this Address.

The EFI_IP6_CONFIG_MANUAL_ADDRESS structure is used to set the station address informa-
tion for the EFI IPv6 network stack manually when the policy is Ip6ConfigPolicyManual.

Status Codes Returned

EFI_SUCCESS The specified configuration data for the EFI IPv6 network stack is
set successfully.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

This is NULL.
Data is NULL.
One or more fields in Data do not match the requirement of the

data type indicated by DataType.

EFI_WRITE_PROTECTED The specified configuration data is read-only or the specified
configuration data can not be set under the current policy.

EFI_ACCESS_DENIED Another set operation on the specified configuration data is already
in process.

EFI_NOT_READY An asynchronous process is invoked to set the specified
configuration data and the process is not finished yet.

EFI_BAD_BUFFER_SIZE The DataSize does not match the size of the type indicated by

DataType.

EFI_UNSUPPORTED This DataType is not supported.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
Version 2.5 April, 2015 1479

Unified Extensible Firmware Interface Specification
EFI_DEVICE_ERROR An unexpected system error or network error occurred.
1480 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_IP6_CONFIG_PROTOCOL.GetData()

Summary
Get the configuration data for the EFI IPv6 network stack running on the communication device this
EFI IPv6 Configuration Protocol instance manages.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP6_CONFIG_GET_DATA) (
 IN EFI_IP6_CONFIG_PROTOCOL *This,
 IN EFI_IP6_CONFIG_DATA_TYPE DataType,
 IN OUT UINTN *DataSize,
 IN VOID *Data OPTIONAL
);

Parameters
This Pointer to the EFI_IP6_CONFIG_PROTOCOL instance.

DataType The type of data to get. Type EFI_IP6_CONFIG_DATA_TYPE
is defined in EFI_IP6_CONFIG_PROTOCOL.SetData().

DataSize On input, in bytes, the size of Data. On output, in bytes, the size
of buffer required to store the specified configuration data.

Data The data buffer in which the configuration data is returned. The
type of the data buffer is associated with the DataType. Ignored
if DataSize is 0. The various types are defined in
EFI_IP6_CONFIG_PROTOCOL.SetData().

Description
This function returns the configuration data of type DataType for the EFI IPv6 network stack
running on the communication device this EFI IPv6 Configuration Protocol instance manages.

The caller is responsible for allocating the buffer used to return the specified configuration data and
the required size will be returned to the caller if the size of the buffer is too small.

EFI_NOT_READY is returned if the specified configuration data is not ready due to an already in
progress asynchronous configuration process. The caller can call RegisterDataNotify() to
register an event on the specified configuration data. Once the asynchronous configuration process is
finished, the event will be signaled and a subsequent GetData() call will return the specified con-
figuration data.
Version 2.5 April, 2015 1481

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS The specified configuration data is got successfully.

EFI_INVALID_PARAMETER One or more of the followings are TRUE:

• This is NULL.

• DataSize is NULL.

• Data is NULL if *DataSize is not zero.

EFI_BUFFER_TOO_SMALL The size of Data is too small for the specified configuration data

and the required size is returned in DataSize.

EFI_NOT_READY The specified configuration data is not ready due to an already in
progress asynchronous configuration process.

EFI_NOT_FOUND The specified configuration data is not found.
1482 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_IP6_CONFIG_PROTOCOL.RegisterDataNotify ()

Summary

Register an event that is to be signaled whenever a configuration process on the specified configura-
tion data is done.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP6_CONFIG_REGISTER_NOTIFY) (
 IN EFI_IP6_CONFIG_PROTOCOL *This,
 IN EFI_IP6_CONFIG_DATA_TYPE DataType,
 IN EFI_EVENT Event
);

Parameters
This Pointer to the EFI_IP6_CONFIG_PROTOCOL instance.

DataType The type of data to unregister the event for. Type
EFI_IP6_CONFIG_DATA_TYPE is defined in
EFI_IP6_CONFIG_PROTOCOL.SetData().

Event The event to register.

Description
This function registers an event that is to be signaled whenever a configuration process on the
specified configuration data is done. An event can be registered for different DataType
simultaneously and the caller is responsible for determining which type of configuration data causes
the signaling of the event in such case.

Status Codes Returned

EFI_SUCCESS The notification event for the specified configuration data is
registered.

EFI_INVALID_PARAMETER This is NULL or Event is NULL.

EFI_UNSUPPORTED The configuration data type specified by DataType is not

supported.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ACCESS_DENIED The Event is already registered for the DataType.
Version 2.5 April, 2015 1483

Unified Extensible Firmware Interface Specification
EFI_IP6_CONFIG_PROTOCOL.UnregisterDataNotify ()

Summary

Remove a previously registered event for the specified configuration data.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IP6_CONFIG_UNREGISTER_NOTIFY) (
 IN EFI_IP6_CONFIG_PROTOCOL *This,
 IN EFI_IP6_CONFIG_DATA_TYPE DataType,
 IN EFI_EVENT Event
);

Parameters
This Pointer to the EFI_IP6_CONFIG_PROTOCOL instance.

DataType The type of data to remove the previously registered event for.
Type EFI_IP6_CONFIG_DATA_TYPE is defined in
EFI_IP6_CONFIG_PROTOCOL.SetData().

Event The event to unregister.

Description
This function removes a previously registered event for the specified configuration data.

Status Codes Returned

27.8 IPsec

27.8.1 IPsec Overview
IPsec is a framework of open standards that provides data confidentiality, data integrity, data
authentication and replay protection between participating peers. A set of security services is
provided by IPsec for traffic at the IP layer, in both the IPv4 and IPv6 environment. To the stronger,
IPV6 requires IPSec support.

IPsec is documented in a series of Internet RFCs. The overall IPsec architecture and implementation
are guided by “Security Architecture for the Internet Protocol”, RFC 4301.

EFI_SUCCESS The event registered for the specified configuration data is removed.

EFI_INVALID_PARAMETER This is NULL or Event is NULL.

EFI_NOT_FOUND The Event has not been registered for the specified Data-
Type.
1484 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Two different security protocols – Authentication Header (AH, described in RFC 4302) and
Encapsulated Security Payload (ESP, described in RFC 4303) – are used to provide package-level
security for IP datagram.

This section attempts to capture the generic configuration for an IPsec implementation in an EFI
environment.

27.8.2 EFI IPsec Configuration Protocol
This section provides a detailed description of the EFI IPsec Configuration Protocol. This protocol
sets and obtains the IPsec configuration information.

EFI_IPSEC_CONFIG_PROTOCOL

Summary
The EFI_IPSEC_CONFIG_PROTOCOL provides the mechanism to set and retrieve security and
policy related information for the EFI IPsec protocol driver.

GUID
#define EFI_IPSEC_CONFIG_PROTOCOL_GUID \
 {0xce5e5929,0xc7a3,0x4602,\
 {0xad,0x9e,0xc9,0xda,0xf9,0x4e,0xbf,0xcf}}

Protocol Interface Structure
typedef struct _EFI_IPSEC_CONFIG_PROTOCOL {
 EFI_IPSEC_CONFIG_SET_DATA SetData;
 EFI_IPSEC_CONFIG_GET_DATA GetData;
 EFI_IPSEC_CONFIG_GET_NEXT_SELECTOR GetNextSelector;
 EFI_IPSEC_CONFIG_REGISTER_NOTIFY RegisterDataNotify;
 EFI_IPSEC_CONFIG_UNREGISTER_NOTIFY UnregisterDataNotify;
} EFI_IPSEC_CONFIG_PROTOCOL;

Parameters
SetData Set the configuration and control information for the EFI IPsec

protocol driver. See the SetData() function description.

GetData Look up and retrieve the IPsec configuration data. See the
GetData() function description.

GetNextSelector Enumerates the current IPsec configuration data entry selector.
See the GetNextSelector() function description.

RegiseterNotify
Register an event that is to be signaled whenever a configuration
process on the specified IPsec configuration data is done.

UnregisterNotify
Remove a registered event for the specified IPsec configuration
data.
Version 2.5 April, 2015 1485

Unified Extensible Firmware Interface Specification
Description
The EFI_IPSEC_CONFIG_PROTOCOL provides the ability to set and lookup the IPsec SAD
(Security Association Database), SPD (Security Policy Database) data entry and configure the
security association management protocol such as IKEv2. This protocol is used as the central
repository of any policy-specific configuration for EFI IPsec driver.

EFI_IPSEC_CONFIG_PROTOCOL can be bound to both IPv4 and IPv6 stack. User can use this
protocol for IPsec configuration in both IPv4 and IPv6 environment.
1486 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_IPSEC_CONFIG_PROTOCOL.SetData()

Summary
Set the security association, security policy and peer authorization configuration information for the
EFI IPsec driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IPSEC_CONFIG_SET_DATA) (
 IN EFI_IPSEC_CONFIG_PROTOCOL *This,
 IN EFI_IPSEC_CONFIG_DATA_TYPE DataType,
 IN EFI_IPSEC_CONFIG_SELECTOR *Selector,
 IN VOID *Data
 IN EFI_IPSEC_CONFIG_SELECTOR *InsertBefore OPTIONAL
);

Parameters
This Pointer to the EFI_IPSEC_CONFIG_PROTOCOL instance.

InsertBefore Pointer to one entry selector which describes the expected
position the new data entry will be added. If InsertBefore is
NULL, the new entry will be appended the end of database.

DataType The type of data to be set. Type
EFI_IPSEC_CONFIG_DATA_TYPE is defined in "Related
Definitions" below.

Selector Pointer to an entry selector on operated configuration data
specified by DataType. A NULL Selector causes the entire
specified-type configuration information to be flushed.

Data The data buffer to be set. The structure of the data buffer is
associated with the DataType. The various types are defined in
"Related Definitions" below.

Description
This function is used to set the IPsec configuration information of type DataType for the EFI IPsec
driver.

The IPsec configuration data has a unique selector/identifier separately to identify a data entry. The
selector structure depends on DataType’s definition.

Using SetData() with a Data of NULL causes the IPsec configuration data entry identified by
DataType and Selector to be deleted.
Version 2.5 April, 2015 1487

Unified Extensible Firmware Interface Specification
Related Definitions
//**
// EFI_IPSEC_CONFIG_DATA_TYPE
//**
typedef enum {
 IPsecConfigDataTypeSpd,
 IPsecConfigDataTypeSad,
 IPsecConfigDataTypePad,
 IPsecConfigDataTypeMaximum
} EFI_IPSEC_CONFIG_DATA_TYPE;

IPsecConfigDataTypeSpd

The IPsec Security Policy Database (aka SPD) setting. In IPsec,
an essential element of Security Association (SA) processing is
underlying SPD that specifies what services are to be offered to
IP datagram and in what fashion. The SPD must be consulted
during the processing of all traffic (inbound and outbound),
including traffic not protected by IPsec, that traverses the IPsec
boundary. With this DataType, SetData() function is to set
the SPD entry information, which may add one new entry, delete
one existed entry or flush the whole database according to the
parameter values. The corresponding Data is of type
EFI_IPSEC_SPD_DATA.

IPsecConfigDataTypeSad

The IPsec Security Association Database (aka SAD) setting. A
SA is a simplex connection that affords security services to the
traffic carried by it. Security services are afforded to an SA by the
use of AH, or ESP, but not both. The corresponding Data is of
type EFI_IPSEC_SA_DATA2 or EFI_IPSEC_SAD_DATA.
Compared with EFI_IPSEC_SA_DATA, the
EFI_IPSEC_SA_DATA2 contains the extra Tunnel Source
Address and Tunnel Destination Address thus it is recommended
to be use if the implementation supports tunnel mode.

IPsecConfigDataTypePad

The IPsec Peer Authorization Database (aka PAD) setting, which
provides the link between the SPD and a security association
management protocol. The PAD entry specifies the
authentication protocol (e.g. IKEv1, IKEv2) method used and the
authentication data. The corresponding Data is of type
EFI_IPSEC_PAD_DATA.
1488 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
//**
// EFI_IPSEC_CONFIG_SELECTOR
//**
typedef union {
 EFI_IPSEC_SPD_SELECTOR SpdSelector;
 EFI_IPSEC_SA_ID SaId;
 EFI_IPSEC_PAD_ID PadId;
} EFI_IPSEC_CONFIG_SELECTOR;

The EFI_IPSEC_CONFIG_SELECTOR describes the expected IPsec configuration data selector
of type EFI_IPSEC_CONFIG_DATA_TYPE.

//**
// EFI_IPSEC_SPD_SELECTOR
//**
typedef struct _EFI_IPSEC_SPD_SELECTOR {
 UINT32 LocalAddressCount;
 EFI_IP_ADDRESS_INFO *LocalAddress;
 UINT32 RemoteAddressCount;
 EFI_IP_ADDRESS_INFO *RemoteAddress;
 UINT16 NextLayerProtocol;

 // Several additional selectors depend on the ProtoFamily
 UINT16 LocalPort;
 UINT16 LocalPortRange;
 UINT16 RemotePort;
 UINT16 RemotePortRange;
} EFI_IPSEC_SPD_SELECTOR;

LocalAddressCount Specifies the actual number of entries in LocalAddress.

LocalAddress A list of ranges of IPv4 or IPv6 addresses, which refers to the
addresses being protected by IPsec policy.

RemoteAddressCount
Specifies the actual number of entries in RemoteAddress.

RemoteAddress A list of ranges of IPv4 or IPv6 addresses, which are peer entities
to LocalAddress.

NextLayerProtocol
Next layer protocol. Obtained from the IPv4 Protocol or the IPv6
Next Header fields. The next layer protocol is whatever comes
after any IP extension headers that are present. A zero value is a
wildcard that matches any value in NextLayerProtocol
field.

LocalPort Local Port if the Next Layer Protocol uses two ports (as do TCP,
UDP, and others). A zero value is a wildcard that matches any
value in LocalPort field.

LocalPortRange A designed port range size. The start port is LocalPort, and
the total number of ports is described by LocalPortRange.
Version 2.5 April, 2015 1489

Unified Extensible Firmware Interface Specification
This field is ignored if NextLayerProtocol does not use
ports.

RemotePort Remote Port if the Next Layer Protocol uses two ports. A zero
value is a wildcard that matches any value in RemotePort
field.

RemotePortRange A designed port range size. The start port is RemotePort, and
the total number of ports is described by RemotePortRange.
This field is ignored if NextLayerProtocol does not use
ports.

Note: The LocalPort and RemotePort selectors have different meaning depending on the
NextLayerProtocol field. for example, if NextLayerProtocol value is ICMP,
LocalPort and RemotePort describe the ICMP message type and code. This is described in
section 4.4.1.1 of RFC 4301).

//**
// EFI_IP_ADDRESS_INFO
//**
typedef struct _EFI_IP_ADDRESS_INFO {
 EFI_IP_ADDRESS Address;
 UINT8 PrefixLength;
} EFI_IP_ADDRESS_INFO;

Address The IPv4 or IPv6 address.

PrefixLength The length of the prefix associated with the Address.

#define MAX_PEERID_LEN 128

//**
// EFI_IPSEC_SPD_DATA
//**
typedef struct _EFI_IPSEC_SPD_DATA {
 UINT8 *Name[MAX_PEERID_LEN];
 UINT32 PackageFlag;
 EFI_IPSEC_TRAFFIC_DIR TrafficDirection;
 EFI_IPSEC_ACTION Action;
 EFI_IPSEC_PROCESS_POLICY *ProcessingPolicy;
 UINTN SaIdCount;
 EFI_IPSEC_SA_ID *SaId[1];
} EFI_IPSEC_SPD_DATA;

Name A null-terminated ASCII name string which is used as a symbolic
identifier for an IPsec Local or Remote address. The Name is
optional, and can be NULL.

PackageFlag Bit-mapped list describing Populate from Packet flags. When
creating a SA, if PackageFlag bit is set to TRUE, instantiate
the selector from the corresponding field in the package that
triggered the creation of the SA, else from the value(s) in the
corresponding SPD entry. The PackageFlag bit setting for
1490 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
corresponding selector field of EFI_IPSEC_SPD_SELECTOR:
 Bit 0: EFI_IPSEC_SPD_SELECTOR.LocalAddress
 Bit 1: EFI_IPSEC_SPD_SELECTOR.RemoteAddress
 Bit 2:
EFI_IPSEC_SPD_SELECTOR.NextLayerProtocol
 Bit 3: EFI_IPSEC_SPD_SELECTOR.LocalPort
 Bit 4: EFI_IPSEC_SPD_SELECTOR.RemotePort
 Others: Reserved.

TrafficDirection
The traffic direction of data gram.

Action Processing choices to indicate which action is required by this
policy.

ProcessingPolicy
The policy and rule information for a SPD entry. The type
EFI_IPSEC_PROCESSPOLICY is defined in below.

SaIdCount Specifies the actual number of entries in SaId list.

SaId Pointer to the SAD entry used for the traffic processing. The
existed SAD entry links indicate this is the manual key case.

//**
// EFI_IPSEC_TRAFFIC_DIR
//**
typedef enum {
 EfiIPsecInBound,
 EfiIPsecOutBound
} EFI_IPSEC_TRAFFIC_DIR;

The EFI_IPSEC_TRAFFIC_DIR represents the directionality in an SPD entry. The
EfiIPsecInBound refers to traffic entering an IPsec implementation via the unprotected
interface or emitted by the implementation on the unprotected side of the boundary and directed
towards the protected interface. The EfiIPsecOutBound refers to traffic entering the
implementation via the protected interface, or emitted by the implementation on the protected side of
the boundary and directed toward the unprotected interface.

//**
// EFI_IPSEC_ACTION
//**
typedef enum {
 EfiIPsecActionDiscard,
 EfiIPsecActionBypass,
 EfiIPsecActionProtect
} EFI_IPSEC_ACTION;

For any inbound or outbound datagram, EFI_IPSEC_ACTION represents three possible
processing choices:

EfiIPsecActionDiscard
Version 2.5 April, 2015 1491

Unified Extensible Firmware Interface Specification
Refers to traffic that is not allowed to traverse the IPsec boundary
(in the direction specified by EFI_IPSEC_TRAFFIC_DIR;

EfiIPsecActionByPass

Refers to traffic that is allowed to cross the IPsec boundary
without protection.

EfiIPsecActionProtect

Refers to traffic that is afforded IPsec protection, and for such
traffic the SPD must specify the security protocols to be
employed, their mode, security service options, and the
cryptographic algorithms to be used.

//***
// EFI_IPSEC_PROCESS_POLICY
//***
typedef struct _EFI_IPSEC_PROCESS_POLICY {
 BOOLEAN ExtSeqNum;
 BOOLEAN SeqOverflow;
 BOOLEAN FragCheck;
 EFI_IPSEC_SA_LIFETIME SaLifetime;
 EFI_IPSEC_MODE Mode;
 EFI_IPSEC_TUNNEL_OPTION *TunnelOption;
 EFI_IPSEC_PROTOCOL_TYPE Proto;
 UINT8 AuthAlgoId;
 UINT8 EncAlgoId;
} EFI_IPSEC_PROCESS_POLICY;

If required action of an SPD entry is EfiIPsecActionProtect, the
EFI_IPSEC_PROCESS_POLICY structure describes a policy list for traffic processing.

ExtSeqNum Extended Sequence Number. Is this SA using extended sequence
numbers. 64 bit counter is used if TRUE.

SeqOverflow A flag indicating whether overflow of the sequence number
counter should generate an auditable event and prevent
transmission of additional packets on the SA, or whether rollover
is permitted.

FragCheck Is this SA using stateful fragment checking. TRUE represents
stateful fragment checking.

SaLifetime A time interval after which a SA must be replaced with a new SA
(and new SPI) or terminated. The type
EFI_IPSEC_SA_LIFETIME is defined in below.

Mode IPsec mode: tunnel or transport

TunnelOption Tunnel Option. TunnelOption is ignored if Mode is
EfiIPsecTransport. The type
EFI_IPSEC_TUNNEL_OPTION is defined in below

Proto IPsec protocol: AH or ESP

AuthAlgoId Cryptographic algorithm type used for authentication
1492 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EncAlgoId Cryptographic algorithm type used for encryption. EncAlgo is
NULL when IPsec protocol is AH. For ESP protocol, EncAlgo
can also be used to describe the algorithm if a combined mode
algorithm is used.

//**
// EFI_IPSEC_SA_LIFETIME
//**
typedef struct _EFI_IPSEC_SA_LIFETIME {
 UINT64 ByteCount;
 UINT64 SoftLifetime;
 UINT64 HardLifetime
} EFI_IPSEC_SA_LIFETIME;

EFI_IPSEC_SA_LIFETIME defines the lifetime of an SA, which represents when a SA must be
replaced or terminated. A value of all 0 for each field removes the limitation of a SA lifetime.

ByteCount The number of bytes to which the IPsec cryptographic algorithm
can be applied. For ESP, this is the encryption algorithm and for
AH, this is the authentication algorithm. The ByteCount
includes pad bytes for cryptographic operations.

SoftLifetime A time interval in second that warns the implementation to
initiate action such as setting up a replacement SA.

HardLifetime A time interval in second when the current SA ends and is
destroyed.

//**
// EFI_IPSEC_MODE
//**
typedef enum {
 EfiIPsecTransport,
 EfiIPsecTunnel
} EFI_IPSEC_MODE;

There are two modes of IPsec operation: transport mode and tunnel mode. In
EfiIPsecTransport mode, AH and ESP provide protection primarily for next layer protocols;
In EfiIPsecTunnel mode, AH and ESP are applied to tunneled IP packets.

typedef enum {
 EfiIPsecTunnelClearDf,
 EfiIPsecTunnelSetDf,
 EfiIPsecTunnelCopyDf
} EFI_IPSEC_TUNNEL_DF_OPTION;

The option of copying the DF bit from an outbound package to the tunnel mode header that it emits,
when traffic is carried via a tunnel mode SA. This applies to SAs where both inner and outer headers
are IPv4. The value can be:

EfiIPsecTunnelClearDf: Clear DF bit from inner header

EfiIPsecTunnelSetDf: Set DF bit from inner header
Version 2.5 April, 2015 1493

Unified Extensible Firmware Interface Specification
EfiIPsecTunnelCopyDf: Copy DF bit from inner header

//***
// EFI_IPSEC_TUNNEL_OPTION
//***
typedef struct _EFI_IPSEC_TUNNEL_OPTION {
 EFI_IP_ADDRESS LocalTunnelAddress;
 EFI_IP_ADDRESS RemoteTunnelAddress;
 EFI_IPSEC_TUNNEL_DF_OPTION DF;
} EFI_IPSEC_TUNNEL_OPTION;

LocalTunnelAddress Local tunnel address when IPsec mode is EfiIPsecTunnel

RemoteTunnelAddressRemote tunnel address when IPsec mode is EfiIPsecTunnel

DF The option of copying the DF bit from an outbound package to
the tunnel mode header that it emits, when traffic is carried via a
tunnel mode SA.

//**
// EFI_IPSEC_PROTOCOL_TYPE
//**
typedef enum {
 EfiIPsecAH,
 EfiIPsecESP
} EFI_IPSEC_PROTOCOL_TYPE;

IPsec protocols definition. EfiIPsecAH is the IP Authentication Header protocol which is
specified in RFC 4302. EfiIPsecESP is the IP Encapsulating Security Payload which is specified
in RFC 4303.

//***
// EFI_IPSEC_SA_ID
//***
typedef struct _EFI_IPSEC_SA_ID {
 UINT32 Spi;
 EFI_IPSEC_PROTOCOL_TYPE Proto;
 EFI_IP_ADDRESS DestAddress;
} EFI_IPSEC_SA_ID;

A triplet to identify an SA, consisting of the following members:

Spi Security Parameter Index (aka SPI). An arbitrary 32-bit value
that is used by a receiver to identity the SA to which an incoming
package should be bound.

Proto IPsec protocol: AH or ESP

DestAddress Destination IP address.
1494 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
//***
// EFI_IPSEC_SA_DATA
//***
typedef struct _EFI_IPSEC_SA_DATA {
 EFI_IPSEC_MODE Mode;
 UINT64 SNCount;
 UINT8 AntiReplayWindows;
 EFI_IPSEC_ALGO_INFO AlgoInfo;
 EFI_IPSEC_SA_LIFETIME SaLifetime;
 UINT32 PathMTU;
 EFI_IPSEC_SPD_SELECTOR *SpdSelector;
 BOOLEAN ManualSet
} EFI_IPSEC_SA_DATA;

The data items defined in one SAD entry:

Mode IPsec mode: tunnel or transport

SNCount Sequence Number Counter. A 64-bit counter used to generate the
sequence number field in AH or ESP headers.

ReplayWindows Anti-Replay Window. A 64-bit counter and a bit-map used to
determine whether an inbound AH or ESP packet is a replay.

AlgoInfo AH/ESP cryptographic algorithm, key and parameters.

SaLifeTime Lifetime of this SA.

PathMTU Any observed path MTU and aging variables. The Path MTU
processing is defined in section 8 of RFC 4301.

SpdSelector Link to one SPD entry.

ManualSet Indication of whether it’s manually set or negotiated
automatically. If ManualSet is FALSE, the corresponding SA
entry is inserted through IKE protocol negotiation
Version 2.5 April, 2015 1495

Unified Extensible Firmware Interface Specification
//***
// EFI_IPSEC_SA_DATA2
//***
typedef struct _EFI_IPSEC_SA_DATA2 {
 EFI_IPSEC_MODE Mode;
 UINT64 SNCount;
 UINT8 AntiReplayWindows;
 EFI_IPSEC_ALGO_INFO AlgoInfo;
 EFI_IPSEC_SA_LIFETIME SaLifetime;
 UINT32 PathMTU;
 EFI_IPSEC_SPD_SELECTOR *SpdSelector;
 BOOLEAN ManualSet;
 EFI_IP_ADDRESS TunnelSourceAddress;
 EFI_IP_ADDRESS TunnelDestinationAddress
} EFI_IPSEC_SA_DATA2;

The data items defined in one SAD entry:
Mode IPsec mode: tunnel or transport

SNCount Sequence Number Counter. A 64-bit counter used to generate the
sequence number field in AH or ESP headers.

ReplayWindows Anti-Replay Window. A 64-bit counter and a bit-map used to
determine whether an inbound AH or ESP packet is a replay.

AlgoInfo AH/ESP cryptographic algorithm, key and parameters.

SaLifeTime Lifetime of this SA.

PathMTU Any observed path MTU and aging variables. The Path MTU
processing is defined in section 8 of RFC 4301.

SpdSelector Link to one SPD entry.

ManualSet Indication of whether it's manually set or negotiated
automatically. If ManualSet is FALSE, the corresponding SA
entry is inserted through IKE protocol negotiation

TunnelSourceAddress

The tunnel header IP source address.

TunnelDestinationAddress

The tunnel header IP destination address.
1496 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
//**
// EFI_IPSEC_ALGO_INFO
//**
typedef union {
 EFI_IPSEC_AH_ALGO_INFO AhAlgoInfo;
 EFI_IPSEC_ESP_ALGO_INFO EspAlgoInfo;
} EFI_IPSEC_ALGO_INFO;

//**
// EFI_IPSEC_AH_ALGO_INFO
//**
typedef struct _EFI_IPSEC_AH_ALGO_INFO {
 UINT8 AuthAlgoId;
 UINTN KeyLength;
 VOID *Key;
} EFI_IPSEC_AH_ALGO_INFO;

The security algorithm selection for IPsec AH authentication. The required authentication algorithm
is specified in RFC 4305.

//**
// EFI_IPSEC_ESP_ALGO_INFO
//**
typedef struct _EFI_IPSEC_ESP_ALGO_INFO {
 UINT8 EncAlgoId;
 UINTN EncKeyLength;
 VOID *EncKey;
 UINT8 AuthAlgoId;
 UINTN AuthKeyLength;
 VOID *AuthKey;
} EFI_IPSEC_ESP_ALGO_INFO;

The security algorithm selection for IPsec ESP encryption and authentication. The required
authentication algorithm is specified in RFC 4305. EncAlgoId fields can also specify an ESP
combined mode algorithm (e.g. AES with CCM mode, specified in RFC 4309), which provides both
confidentiality and authentication services.
Version 2.5 April, 2015 1497

Unified Extensible Firmware Interface Specification
//**
// EFI_IPSEC_PAD_ID
//**
typedef struct _EFI_IPSEC_PAD_ID {
 BOOLEAN PeerIdValid;
 union {
 EFI_IP_ADDRESS_INFO IpAddress;
 UINT8 PeerId [MAX_PEERID_LEN];
 } Id;
} EFI_IPSEC_PAD_ID;

The entry selector for IPsec PAD that represents how to authenticate each peer.
EFI_IPSEC_PAD_ID specifies the identifier for PAD entry, which is also used for SPD lookup.

IpAddress Pointer to the IPv4 or IPv6 address range.

PeerId Pointer to a null-terminated ASCII string representing the
symbolic names. A PeerId can be a DNS name, Distinguished
Name, RFC 822 email address or Key ID (specified in section
4.4.3.1 of RFC 4301)

//**
// EFI_IPSEC_PAD_DATA
//**
typedef struct _EFI_IPSEC_PAD_DATA {
 EFI_IPSEC_AUTH_PROTOCOL_TYPE AuthProtocol;
 EFI_IPSEC_AUTH_METHOD AuthMethod;
 BOOLEAN IkeIdFlag;
 UINTN AuthDataSize;
 VOID *AuthData;
 UINTN RevocationDataSize;
 VOID *RevocationData;
} EFI_IPSEC_PAD_DATA;

The data items defined in one PAD entry:

AuthProtocol Authentication Protocol for IPsec security association
management

AuthMethod Authentication method used.

IkeIdFlag The IKE ID payload will be used as a symbolic name for SPD
lookup if IkeIdFlag is TRUE. Otherwise, the remote IP
address provided in traffic selector payloads will be used.

AuthDataSize The size of Authentication data buffer, in bytes.

AuthData Buffer for Authentication data, (e.g., the pre-shared secret or the
trust anchor relative to which the peer's certificate will be
validated).

RevocationDataSize
The size of RevocationData, in bytes.
1498 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
RevocationData Pointer to CRL or OCSP data, if certificates are used for
authentication method.

//**
// EFI_IPSEC_AUTH_PROTOCOL
//**
typedef enum {
 EfiIPsecAuthProtocolIKEv1,
 EfiIPsecAuthProtocolIKEv2,
 EfiIPsecAuthProtocolMaximum
} EFI_IPSEC_AUTH_PROTOCOL_TYPE;

EFI_IPSEC_AUTH_PROTOCOL_TYPE defines the possible authentication protocol for IPsec
security association management.

//**
// EFI_IPSEC_AUTH_METHOD
//**
typedef enum {
 EfiIPsecAuthMethodPreSharedSecret,
 EfiIPsecAuthMethodCertificates,
 EfiIPsecAuthMethodMaximum
} EFI_IPSEC_AUTH_METHOD;

EfiIPsecAuthMethodPreSharedScret

Using Pre-shared Keys for manual security associations.

EfiIPsecAuthMethodCertificates

IKE employs X.509 certificates for SA establishment.

Status Codes Returned

EFI_SUCCESS The specified configuration entry data is set successfully.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL..

EFI_UNSUPPORTED The specified DataType is not supported.

EFI_OUT_OF_RESOURCES The required system resource could not be allocated.
Version 2.5 April, 2015 1499

Unified Extensible Firmware Interface Specification
EFI_IPSEC_CONFIG_PROTOCOL.GetData()

Summary
Return the configuration value for the EFI IPsec driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IPSEC_CONFIG_GET_DATA) (
 IN EFI_IPSEC_CONFIG_PROTOCOL *This,
 IN EFI_IPSEC_CONFIG_DATA_TYPE DataType,
 IN EFI_IPSEC_CONFIG_SELECTOR *Selector,
 IN OUT UINTN *DataSize,
 OUT VOID *Data
);

Parameters
This Pointer to the EFI_IPSEC_CONFIG_PROTOCOL instance.

DataType The type of data to retrieve. Type
EFI_IPSEC_CONFIG_DATA_TYPE is defined in
EFI_IPSEC_CONFIG_PROTOCOL.SetData().

Selector Pointer to an entry selector which is an identifier of the IPsec
configuration data entry. Type
EFI_IPSEC_CONFIG_SELECTOR is defined in the
EFI_IPSEC_CONFIG_PROTOCOL.SetData() function
description.

DataSize On output the size of data returned in Data.

Data The buffer to return the contents of the IPsec configuration data.
The type of the data buffer is associated with the DataType.

Description
This function lookup the data entry from IPsec database or IKEv2 configuration information. The
expected data type and unique identification are described in DataType and Selector
parameters.

Status Codes Returned

EFI_SUCCESS The specified configuration data is got successfully.

EFI_INVALID_PARAMETER One or more of the followings are TRUE:

• This is NULL.

• Selector is NULL.

• DataSize is NULL.

• Data is NULL.

EFI_NOT_FOUND The configuration data specified by Selector is not found.
1500 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_UNSUPPORTED The specified DataType is not supported.

EFI_BUFFER_TOO_SMALL The DataSize is too small for the result. DataSize has been

updated with the size needed to complete the request.
Version 2.5 April, 2015 1501

Unified Extensible Firmware Interface Specification
EFI_IPSEC_CONFIG_PROTOCOL.GetNextSelector()

Summary
Enumerates the current selector for IPsec configuration data entry.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IPSEC_CONFIG_GET_NEXT_SELECTOR) (
 IN EFI_IPSEC_CONFIG_PROTOCOL *This,
 IN EFI_IPSEC_CONFIG_DATA_TYPE DataType,
 IN OUT UINTN *SelectorSize,
 IN OUT EFI_IPSEC_CONFIG_SELECTOR *Selector,
);

Parameters
This Pointer to the EFI_IPSEC_CONFIG_PROTOCOL instance.

DataType The type of IPsec configuration data to retrieve. Type
EFI_IPSEC_CONFIG_DATA_TYPE is defined in
EFI_IPSEC_CONFIG_PROTOCOL.SetData().

SelectorSize The size of the Selector buffer.

Selector On input, supplies the pointer to last Selector that was
returned by GetNextSelector(). On output, returns one
copy of the current entry Selector of a given DataType.
Type EFI_IPSEC_CONFIG_SELECTOR is defined in the
EFI_IPSEC_CONFIG_PROTOCOL.SetData() function
description.

Description
This function is called multiple times to retrieve the entry Selector in IPsec configuration
database. On each call to GetNextSelector(), the next entry Selector are retrieved into the
output interface. If the entire IPsec configuration database has been iterated, the error
EFI_NOT_FOUND is returned. If the Selector buffer is too small for the next Selector copy,
an EFI_BUFFER_TOO_SMALL error is returned, and SelectorSize is updated to reflect the
size of buffer needed.

On the initial call to GetNextSelector() to start the IPsec configuration database search, a
pointer to the buffer with all zero value is passed in Selector. Calls to SetData() between calls
to GetNextSelector may produce unpredictable results.

Status Codes Returned

EFI_SUCCESS The specified configuration data is got successfully.
1502 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_INVALID_PARAMETER One or more of the followings are TRUE:

• This is NULL.

• SelectorSize is NULL.

• Selector is NULL.

EFI_NOT_FOUND The next configuration data entry was not found.

EFI_UNSUPPORTED The specified DataType is not supported.

EFI_BUFFER_TOO_SMALL The SelectorSize is too small for the result. This parameter

has been updated with the size needed to complete the search
request.
Version 2.5 April, 2015 1503

Unified Extensible Firmware Interface Specification
EFI_IPSEC_CONFIG_PROTOCOL.RegisterDataNotify ()

Summary
Register an event that is to be signaled whenever a configuration process on the specified IPsec
configuration information is done.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IPSEC_CONFIG_REGISTER_NOTIFY) (
 IN EFI_IPSEC_CONFIG_PROTOCOL *This,
 IN EFI_IPSEC_CONFIG_DATA_TYPE DataType,
 IN EFI_EVENT Event
);

Parameters
This Pointer to the EFI_IPSEC_CONFIG_PROTOCOL instance.

DataType The type of data to be registered the event for. Type
EFI_IPSEC_CONFIG_DATA_TYPE is defined in
EFI_IPSEC_CONFIG_PROTOCOL.SetData()function
description.

Event The event to be registered.

Description
This function registers an event that is to be signaled whenever a configuration process on the
specified IPsec configuration data is done (e.g. IPsec security policy database configuration is
ready). An event can be registered for different DataType simultaneously and the caller is
responsible for determining which type of configuration data causes the signaling of the event in
such case.

Status Codes Returned

EFI_SUCCESS The event is registered successfully.

EFI_INVALID_PARAMETER This is NULL or Event is NULL.

EFI_ACCESS_DENIED The Event is already registered for the DataType.

EFI_UNSUPPORTED The notify registration unsupported or the specified DataType

is not supported.
1504 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_IPSEC_CONFIG_PROTOCOL.UnregisterDataNotify ()

Summary
Remove the specified event that is previously registered on the specified IPsec configuration data.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IPSEC_CONFIG_UNREGISTER_NOTIFY) (
 IN EFI_IPSEC_CONFIG_PROTOCOL *This,
 IN EFI_IPSEC_CONFIG_DATA_TYPE DataType,
 IN EFI_EVENT Event
);

Parameters

This Pointer to the EFI_IPSEC_CONFIG_PROTOCOL instance.

DataType The configuration data type to remove the registered event for. Type
EFI_IPSEC_CONFIG_DATA_TYPE is defined in EFI_IPSEC_CON-
FIG_PROTOCOL.SetData() function description.

Event The event to be unregistered.

Description
This function removes a previously registered event for the specified configuration data.

Status Codes Returned

27.8.3 EFI IPsec Protocol
This section provides a detailed description of the EFI_IPSEC_PROTOCOL. This protocol handles
IPsec-protected traffic.

EFI_IPSEC_PROTOCOL

Summary
The EFI_IPSEC_PROTOCOL is used to abstract the ability to deal with the individual packets sent
and received by the host and provide packet-level security for IP datagram.

EFI_SUCCESS The event is removed successfully.

EFI_NOT_FOUND The Event specified by DataType could not be found in the

database.

EFI_INVALID_PARAMETER This is NULL or Event is NULL.

EFI_UNSUPPORTED The notify registration unsupported or the specified DataType

is not supported.
Version 2.5 April, 2015 1505

Unified Extensible Firmware Interface Specification
GUID
#define EFI_IPSEC_PROTOCOL_GUID \
 {0xdfb386f7,0xe100,0x43ad,\
 {0x9c,0x9a,0xed,0x90,0xd0,0x8a,0x5e,0x12 }}

Protocol Interface Structure
typedef struct _EFI_IPSEC_PROTOCOL {
 EFI_IPSEC_PROCESS Process;
 EFI_EVENT DisabledEvent;
 BOOLEAN DisabledFlag;
} EFI_IPSEC_PROTOCOL;

Parameters
Process Handle the IPsec message.

DisabledEvent Event signaled when the interface is disabled.

DisabledFlag State of the interface.

Description
The EFI_IPSEC_PROTOCOL provides the ability for securing IP communications by

authenticating and/or encrypting each IP packet in a data stream.

EFI_IPSEC_PROTOCOL can be consumed by both the IPv4 and IPv6 stack. A user can employ
this protocol for IPsec package handling in both IPv4 and IPv6 environment.
1506 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_IPSEC_PROTOCOL.Process()

Summary
Handles IPsec packet processing for inbound and outbound IP packets.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IPSEC_PROCESS) (
 IN EFI_IPSEC_PROTOCOL *This,
 IN EFI_HANDLE NicHandle,
 IN UINT8 IpVer,
 IN OUT VOID *IpHead,
 IN UINT8 *LastHead,
 IN VOID *OptionsBuffer,
 IN UINT32 OptionsLength,
 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
 IN UINT32 *FragmentCount,
 IN EFI_IPSEC_TRAFFIC_DIR TrafficDirection,
 OUT EFI_EVENT *RecycleSignal
)

Related definitions
//**
// EFI_IPSEC_FRAGMENT_DATA //
**
typedef struct _EFI_IPSEC_FRAGMENT_DATA {
 UINT32 FragmentLength;
 VOID *FragmentBuffer;
} EFI_IPSEC_FRAGMENT_DATA;

EFI_IPSEC_FRAGMENT_DATA defines the instances of packet fragments.

Parameters

This Pointer to the EFI_IPSEC_PROTOCOL instance.

NicHandle Instance of the network interface.

 IpVer IPV4 or IPV6.

IpHead Pointer to the IP Header.

LastHead The protocol of the next layer to be processed by IPsec.

OptionsBuffer Pointer to the options buffer.

OptionsLength Length of the options buffer.
Version 2.5 April, 2015 1507

Unified Extensible Firmware Interface Specification
FragmentTable Pointer to a list of fragments.

FragmentCount Number of fragments.

TrafficDirection Traffic direction.

RecycleSignal Event for recycling of resources.

Description
The EFI_IPSEC_PROCESS process routine handles each inbound or outbound packet. The
behavior is that it can perform one of the following actions: bypass the packet, discard the packet, or
protect the packet.

Status Codes Returned

27.8.4 EFI IPsec2 Protocol
This section provides a detailed description of the EFI_IPSEC2_PROTOCOL. This protocol
handles IPsec-protected traffic.

EFI_IPSEC2_PROTOCOL

 Summary
 The EFI_IPSEC2_PROTOCOL is used to abstract the ability to deal with the individual packets
sent and received by the host and provide packet-level security for IP datagram..

GUID
#define EFI_IPSEC2_PROTOCOL_GUID \
{0xa3979e64, 0xace8, 0x4ddc, \
 {0xbc, 0x07, 0x4d, 0x66, 0xb8, 0xfd, 0x09, 0x77}};

Protocol Interface Structure
typedef struct _EFI_IPSEC2_PROTOCOL {
 EFI_IPSEC_PROCESSEXT ProcessExt;
 EFI_EVENT DisabledEvent;
 BOOLEAN DisabledFlag;
} EFI_IPSEC2_PROTOCOL;

Parameters
ProcessExt Handle the IPsec message with the extension header processing

support.

DisabledEvent Event signaled when the interface is disabled.

DisabledFlag State of the interface.

EFI_SUCCESS The packet was bypassed and all buffers remain the same.

EFI_SUCCESS The packet was protected.

EFI_ACCESS_DENIED The packet was discarded.
1508 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Description
The EFI_IPSEC2_PROTOCOL provides the ability for securing IP communications by
authenticating and/or encrypting each IP packet in a data stream.

EFI_IPSEC2_PROTOCOL can be consumed by both the IPv4 and IPv6 stack. A user can employ
this protocol for IPsec package handling in both IPv4 and IPv6 environment.
Version 2.5 April, 2015 1509

Unified Extensible Firmware Interface Specification
EFI_IPSEC2_PROTOCOL.ProcessExt()

Summary
Handles IPsec processing for both inbound and outbound IP packets. Compare with Process()
in EFI_IPSEC_PROTOCOL, this interface has the capability to process Option(Extension Header).

Prototype
Typedef
EFI_STATUS
(EFIAPI *EFI_IPSEC_PROCESSEXT) (
IN EFI_IPSEC2_PROTOCOL *This,
IN EFI_HANDLE NicHandle,
IN UINT8 IpVer,
IN OUT VOID *IpHead,
IN OUT UINT8 *LastHead,
IN OUT VOID **OptionsBuffer,
IN OUT UINT32 *OptionsLength,
IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
IN OUT UINT32 *FragmentCount,
IN EFI_IPSEC_TRAFFIC_DIR TrafficDirection,
OUT EFI_EVENT *RecycleSignal
)

Parameters
This Pointer to the EFI_IPSEC2_PROTOCOL instance.

NicHandle Instance of the network interface.

IpVer IP version.IPV4 or IPV6.

IpHead Pointer to the IP Header it is either the EFI_IP4_HEADER or
EFI_IP6_HEADER.On input, it contains the IP header. On
output,

1) in tunnel mode and the traffic direction is inbound, the buffer
will be reset to zero by IPsec;

2) in tunnel mode and the traffic direction is outbound, the buffer
will reset to be the tunnel IP header.

3) in transport mode, the related fielders (like payload length,
Next header) in IP header will be modified according to the
condition.

LastHead For IP4, it is the next protocol in IP header. For IP6 it is the Next
Header of the last extension header.

OptionsBuffer On input, it contains the options (extensions header) to be
processed by IPsec. On output,

1) in tunnel mode and the traffic direction is outbound, it will be
set to NULL, and that means this contents was wrapped after inner
header and should not be concatenated after tunnel header again;
1510 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
 2) in transport mode and the traffic direction is inbound, if there
are IP options (extension headers) protected by IPsec, IPsec will
concatenate the those options after the input options (extension
headers);

 3) on other situations, the output of contents of
OptionsBuffer might be same with input’s. The caller should
take the responsibility to free the buffer both on input and on
output.

OptionsLength On input, the input length of the options buffer. On output, the
output length of the options buffer.

FragmentTable Pointer to a list of fragments. On input, these fragments contain
the IP payload. On output,

1) in tunnel mode and the traffic direction is inbound, the
fragments contain the whole IP payload which is from the IP
inner header to the last byte of the packet;

2) in tunnel mode and the traffic direction is the outbound, the
fragments contains the whole encapsulated payload which
encapsulates the whole IP payload between the encapsulated
header and encapsulated trailer fields.

3) in transport mode and the traffic direction is inbound, the
fragments contains the IP payload which is from the next layer
protocol to the last byte of the packet;

4) in transport mode and the traffic direction is outbound, the
fragments contains the whole encapsulated payload which
encapsulates the next layer protocol information between the
encapsulated header and encapsulated trailer fields.

FragmentCount Number of fragments.

TrafficDirection Traffic direction.

RecycleSignal Event for recycling of resources.

Description
The EFI_IPSEC_PROCESSEXT process routine handles each inbound or outbound packet with
the support of options (extension headers) processing. The behavior is that it can perform one of the
following actions: bypass the packet, discard the packet, or protect the packet.
Version 2.5 April, 2015 1511

Unified Extensible Firmware Interface Specification
Status Codes Returned

27.9 Network Protocol - EFI FTP Protocol
This section defines the EFI FTPv4 (File Transfer Protocol version 4) Protocol that interfaces over
EFI FTPv4 Protocol

EFI_SUCCESS The packet was bypassed and all buffers remain the
same.

EFI_SUCCESS The packet was processed by IPsec successfully.

EFI_ACCESS_DENIED The packet was discarded.

EFI_NOT_READY The IKE negotiation is invoked and the packet was
discarded.

EFI_INVALID_PARAMETER One of more of following are TRUE
If OptionsBuffer is NULL;

If OptionsLength is NULL;

If FragmentTable is NULL;

If FragmentCount is NULL;
1512 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_FTP4_SERVICE_BINDING_PROTOCOL Summary

Summary
The EFI_FTP4_SERVICE_BINDING_PROTOCOL is used to locate communication devices that
are supported by an EFI FTPv4 Protocol driver and to create and destroy instances of the EFI FTPv4
Protocol child protocol driver that can use the underlying communication device.

GUID
#define EFI_FTP4_SERVICE_BINDING_PROTOCOL_GUID \
 {0xfaaecb1, 0x226e, 0x4782,\
 {0xaa, 0xce, 0x7d, 0xb9, 0xbc, 0xbf, 0x4d, 0xaf}}

Description
A network application or driver that requires FTPv4 I/O services can use one of the protocol handler
services, such as BS->LocateHandleBuffer(), to search for devices that publish an EFI
FTPv4 Service Binding Protocol GUID. Each device with a published EFI FTPv4 Service Binding
Protocol GUID supports the EFI FTPv4 Protocol service and may be available for use.

After a successful call to the EFI_FTP4_SERVICE_BINDING_PROTOCOL.CreateChild()
function, the newly created child EFI FTPv4 Protocol driver instance is in an unconfigured state; it is
not ready to transfer data.

Before a network application terminates execution, every successful call to the
EFI_FTP4_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_FTP4_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

Each instance of the EFI FTPv4 Protocol driver can support one file transfer operation at a time. To
download two files at the same time, two instances of the EFI FTPv4 Protocol driver will need to be
created.

Note: Byte Order: f not specifically specified, the IP addresses used in the EFI_FTP4_PROTOCOL are
in network byte order and the ports are in host byte order.
Version 2.5 April, 2015 1513

Unified Extensible Firmware Interface Specification
EFI_FTP4_PROTOCOL

Summary
The EFI FTPv4 Protocol provides basic services for client-side FTP (File Transfer Protocol)
operations.

GUID`
#define EFI_FTP4_PROTOCOL_GUID \
 {0xeb338826, 0x681b, 0x4295,\
 {0xb3, 0x56, 0x2b, 0x36, 0x4c, 0x75, 0x7b, 0x09}}

Protocol Interface Structure
typedef struct _EFI_FTP4_PROTOCOL {
 EFI_FTP4_GET_MODE_DATA GetModeData;
 EFI_FTP4_CONNECT Connect;
 EFI_FTP4_CLOSE Close;
 EFI_FTP4_CONFIGURE Configure;
 EFI_FTP4_READ_FILE ReadFile;
 EFI_FTP4_WRITE_FILE WriteFile;
 EFI_FTP4_READ_DIRECTORY ReadDirectory;
 EFI_FTP4_POLL Poll;
} EFI_FTP4_PROTOCOL;

Parameters
GetModeData Reads the current operational settings. See the

GetModeData()function description.

Connect Establish control connection with the FTP server by using the
TELNET protocol according to FTP protocol definition. See the
Connect()function description

Close Gracefully disconnecting a FTP control connection This function
is a nonblocking operation. See the Close() function
description.

Configure Sets and clears operational parameters for an FTP child driver.
See the Configure() function description.

ReadFile Downloads a file from an FTPv4 server. See the ReadFile()
function description.

WriteFile Uploads a file to an FTPv4 server. This function may be
unsupported in some EFI implementations. See the
WriteFile() function description.

ReadDirectory Download a related file "directory" from an FTPv4 server. This
function may be unsupported in some implementations. See the
ReadDirectory() function description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.
1514 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_FTP4_PROTOCOL.GetModeData()

Summary
Gets the current operational settings

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FTP4_GET_MODE_DATA)(
 IN EFI_FTP4_PROTOCOL *This,
 OUT EFI_FTP4_CONFIG_DATA *ModeData
);

Parameters
This Pointer to the EFI_FTP4_PROTOCOL instance.

ModeData Pointer to storage for the EFI FTPv4 Protocol driver mode data.
Type EFI_FTP4_CONFIG_DATA is defined in "Related
Definitions" below. The string buffers for Username and
Password in EFI_FTP4_CONFIG_DATA are allocated by the
function, and the caller should take the responsibility to free the
buffer later.

Description
The GetModeData() function reads the current operational settings of this EFI FTPv4 Protocol
driver instance. EFI_FTP4_CONFIG_DATA is defined in the
EFI_FTP4_PROTOCOL.Configure.

Status Codes Returned

EFI_SUCCESS This function is called successfully.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

This is NULL.
ModeData is NULL.

EFI_NOT_STARTED The EFI FTPv4 Protocol driver has not been started.

EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.

EFI_DEVICE_ERROR An unexpected system or network error occurred.
Version 2.5 April, 2015 1515

Unified Extensible Firmware Interface Specification
EFI_FTP4_PROTOCOL.Connect()

Summary
Initiate a FTP connection request to establish a control connection with FTP server

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FTP4_CONNECT) (
 IN EFI_FTP4_PROTOCOL *This,
 IN EFI_FTP4_CONNECTION_TOKEN *Token
);

Parameters
This Pointer to the EFI_FTP4_PROTOCOL instance.

Token Pointer to the token used to establish control connection.

Related Definitions
 //

// EFI_FTP4_CONNECTION_TOKEN
//

typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 } EFI_FTP4_CONNECTION_TOKEN;

Event

The Event to signal after the connection is established and Status field is updated
by the EFI FTP v4 Protocol driver. The type of Event must be
EVENT_NOTIFY_SIGNAL, and its Task Priority Level (TPL) must be lower than or
equal to TPL_CALLBACK. If it is set to NULL, this function will not return until the
function completes

Status The variable to receive the result of the completed operation.

Status Codes Returned

EFI_SUCCESS The FTP connection is established successfully.

EFI_ACCESS_DENIED The FTP server denied the access the user's request to access it.

EFI_CONNECTION_RESET The connect fails because the connection is reset either by instance
itself or communication peer.

EFI_TIMEOUT The connection establishment timer expired and no more specific
information is available.
1516 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Description
The Connect() function will initiate a connection request to the remote FTP server with the
corresponding connection token. If this function returns EFI_SUCCESS, the connection sequence is
initiated successfully. If the connection succeeds or failed due to any error, the Token->Event will
be signaled and Token->Status will be updated accordingly.

Status Codes Returned

EFI_NETWORK_UNREACHABLE The active open fails because an ICMP network unreachable error is
received.

EFI_HOST_UNREACHABLE The active open fails because an ICMP host unreachable error is
received.

EFI_PROTOCOL_UNREACHABLE The active open fails because an ICMP protocol unreachable error is
received.

EFI_PORT_UNREACHABLE The connection establishment timer times out and an ICMP port
unreachable error is received.

EFI_ICMP_ERROR The connection establishment timer timeout and some other ICMP
error is received.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_SUCCESS The connection sequence is successfully initiated.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

² This is NULL.
² Token is NULL.
² Token->Event is NULL.

EFI_NOT_STARTED The EFI FTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.

EFI_DEVICE_ERROR An unexpected system or network error occurred.
Version 2.5 April, 2015 1517

Unified Extensible Firmware Interface Specification
EFI_FTP4_PROTOCOL.Close()

Summary
Disconnecting a FTP connection gracefully.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FTP4_CLOSE)(
 IN EFI_FTP4_PROTOCOL *This,
 IN EFI_FTP4_CONNECTION_TOKEN *Token
);

Parameters
This Pointer to the EFI_FTP4_PROTOCOL instance.

Token Pointer to the token used to close control connection.

Description
The Close() function will initiate a close request to the remote FTP server with the corresponding
connection token. If this function returns EFI_SUCCESS, the control connection with the remote
FTP server is closed.

Status Codes Returned

EFI_SUCCESS The close request is successfully initiated.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.
• ConnectionToken is NULL.
• ConnectionToken->Event is NULL.

EFI_NOT_STARTED The EFI FTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,

RARP, etc.) is not finished yet.

EFI_OUT_OF_RESOURCES Could not allocate enough resource to finish the operation.

EFI_DEVICE_ERROR An unexpected system or network error occurred.
1518 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_FTP4_PROTOCOL.Configure()

Summary
Sets or clears the operational parameters for the FTP child driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FTP4_CONFIGURE) (
 IN EFI_FTP4_PROTOCOL *This,
 IN EFI_FTP4_CONFIG_DATA *FtpConfigData OPTIONAL
);

Parameters
This Pointer to the EFI_FTP4_PROTOCOL instance.

FtpConfigData Pointer to configuration data that will be assigned to the FTP
child driver instance. If NULL, the FTP child driver instance is
reset to startup defaults and all pending transmit and receive
requests are flushed.

Related Definitions
 //

// EFI_FTP4_CONFIG_DATA
//

typedef struct {
 UINT8 *Username;
 UINT8 *Password;
 BOOLEAN Active;
 BOOLEAN UseDefaultSetting;
 EFI_IPv4_ADDRESS StationIp;
 EFI_IPv4_ADDRESS SubnetMask;
 EFI_IPv4_ADDRESS GatewayIp;
 EFI_IPv4_ADDRESS ServerIp;
 UINT16 ServerPort;
 UINT16 AltDataPort;
 UINT8 RepType;
 UINT8 FileStruct;
 UINT8 TransMode;
} EFI_FTP4_CONFIG_DATA;

Username Pointer to a ASCII string that contains user name. The caller is
responsible for freeing Username after GetModeData() is
called.
Version 2.5 April, 2015 1519

Unified Extensible Firmware Interface Specification
Password Pointer to a ASCII string that contains password. The caller is
responsible for freeing Password after GetModeData() is
called.

Active Set it to TRUE to initiate an active data connection. Set it to
FALSE to initiate a passive data connection.

UseDefaultSetting Boolean value indicating if default network setting used.

StationIp IP address of station if UseDefaultSetting is FALSE.

SubnetMask Subnet mask of station if UseDefaultSetting is FALSE.

GatewayIp IP address of gateway if UseDefaultSetting is FALSE.

ServerIp IP address of FTPv4 server.

ServerPort FTPv4 server port number of control connection, and the default
value is 21 as convention.

ALtDataPort FTPv4 server port number of data connection. If it is zero, use
(ServerPort - 1) by convention.

RepType A byte indicate the representation type. The right 4 bit is used for
first parameter, the left 4 bit is use for second parameter

• For the first parameter, 0x0 = image, 0x1 = EBCDIC, 0x2 = ASCII, 0x3 = local

• For the second parameter, 0x0 = Non-print, 0x1 = Telnet format effectors, 0x2 =
Carriage Control

• If it is a local type, the second parameter is the local byte byte size.

• If it is a image type, the second parameter is undefined.

FileStruct Defines the file structure in FTP used. 0x00 = file, 0x01 = record,
0x02 = page

TransMode Defines the transfer mode used in FTP. 0x00 = stream, 0x01 = Block,
0x02 = Compressed

Description
The Configure() function will configure the connected FTP session with the configuration
setting specified in FtpConfigData. The configuration data can be reset by calling
Configure() with FtpConfigData set to NULL.

Status Codes Returned.

EFI_SUCCESS The FTPv4 driver was configured successfully.

EFI_INVALID_PARAMETER One or more following conditions are TRUE:

• This is NULL.

• FtpConfigData.RepType is invalid.

• FtpConfigData.FileStruct is invalid.

• FtpConfigData.TransMode is invalid.

• IP address in FtpConfigData is invalid.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) has not finished yet.
1520 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_UNSUPPORTED One or more of the configuration parameters are not supported by
this implementation.

EFI_OUT_OF_RESOURCES The EFI FTPv4 Protocol driver instance data could not be
allocated.

EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI FTPv4
Protocol driver instance is not configured.
Version 2.5 April, 2015 1521

Unified Extensible Firmware Interface Specification
EFI_FTP4_PROTOCOL.ReadFile()

Summary
Downloads a file from an FTPv4 server.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FTP4_READ_FILE)(
 IN EFI_FTP4_PROTOCOL *This,
 IN EFI_FTP4_COMMAND_TOKEN *Token
);

Parameters
This Pointer to the EFI_FTP4_PROTOCOL instance.

Token Pointer to the token structure to provide the parameters that are
used in this operation. Type EFI_FTP4_COMMAND_TOKEN is
defined in "Related Definitions" below.

Related Definitions
//***
// EFI_FTP4_COMMAND_TOKEN
//***
typedef struct {
 EFI_EVENT Event;
 UINT8 *Pathname;
 UINT64 DataBufferSize;
 VOID *DataBuffer;
 EFI_FTP4_DATA_CALLBACK *DataCallback;
 VOID *Context;
 EFI_STATUS Status;
} EFI_FTP4_COMMAND_TOKEN;

Event The Event to signal after request is finished and Status field
is updated by the EFI FTP v4 Protocol driver. The type of Event
must be EVT_NOTIFY_SIGNAL, and its Task Priority Level
(TPL) must be lower than or equal to TPL_CALLBACK. If it is
set to NULL, related function must wait until the function
completes

Pathname Pointer to a null-terminated ASCII name string.

DataBuffersize The size of data buffer in bytes

DataBuffer Pointer to the data buffer. Data downloaded from FTP server
through connection is downloaded here.

DataCallback Pointer to a callback function. If it is receiving function that leads
to inbound data, the callback function is called when databuffer is
full. Then, old data in the data buffer should be flushed and new
1522 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
data is stored from the beginning of data buffer. If it is a transmit
function that lead to outbound data and DataBufferSize of
Data in DataBuffer has been transmitted, this callback
function is called to supply additional data to be transmitted. The
size of additional data to be transmitted is indicated in
DataBufferSize, again. If there is no data remained,
DataBufferSize should be set to 0

Context Pointer to the parameter for DataCallback.

Status The variable to receive the result of the completed operation.

EFI_SUCCESS

The FTP command is completed successfully.

EFI_ACCESS_DENIED

The FTP server denied the access to the requested file.

EFI_CONNECTION_RESET

The connect fails because the connection is reset either by instance itself or
communication peer.

EFI_TIMEOUT

The connection establishment timer expired and no more specific information is
available.

EFI_NETWORK_UNREACHABLE

The active open fails because an ICMP network unreachable error is received.

EFI_HOST_UNREACHABLE

The active open fails because an ICMP host unreachable error is received.

EFI_PROTOCOL_UNREACHABLE

The active open fails because an ICMP protocol unreachable error is received.

EFI_PORT_UNREACHABLE

The connection establishment timer times out and an ICMP port unreachable error is
received.

EFI_ICMP_ERROR

The connection establishment timer timeout and some other ICMP error is received.

EFI_DEVICE_ERROR

An unexpected system or network error occurred.

Related Definitions
Version 2.5 April, 2015 1523

Unified Extensible Firmware Interface Specification
//**
// EFI_FTP4_DATA_CALLBACK
//**
typedef
EFI_STATUS
(EFIAPI *EFI_FTP4_DATA_CALLBACK)(
 IN EFI_FTP4_PROTOCOL *This,
 IN EFI_FTP4_COMMAND_TOKEN *Token,
);

This Pointer to the EFI_FTP4_PROTOCOL instance.

Token Pointer to the token structure to provide the parameters that are
used in this operation. Type EFI_FTP4_COMMAND_TOKEN is
defined in "Related Definitions" above.

Description
The ReadFile() function is used to initialize and start an FTPv4 download process and
optionally wait for completion. When the download operation completes, whether successfully or
not, the Token.Status field is updated by the EFI FTPv4 Protocol driver and then
Token.Event is signaled (if it is not NULL).

Data will be downloaded from the FTPv4 server into Token.DataBuffer. If the file size is
larger than Token.DataBufferSize, Token.DataCallback will be called to allow for
processing data and then new data will be placed at the beginning of Token.DataBuffer.

 Status Codes Returned

EFI_SUCCESS The data file is being downloaded successfully.

EFI_INVALID_PARAMETER One or more of the parameters is not valid.

• This is NULL.

• Token is NULL.

• Token.Pathname is NULL.

• Token. DataBuffer is NULL.

• Token. DataBufferSize is 0.

EFI_NOT_STARTED The EFI FTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.
1524 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_FTP4_PROTOCOL.WriteFile()

Summary
Uploads a file from an FTPv4 server.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FTP4_WRITE_FILE)(
 IN EFI_FTP4_PROTOCOL *This,
 IN EFI_FTP4_COMMAND_TOKEN *Token
);

Parameters
This Pointer to the EFI_FTP4_PROTOCOL instance.

Token Pointer to the token structure to provide the parameters that are
used in this operation. Type EFI_FTP4_COMMAND_TOKEN is
defined in "EFI_FTP4_READ_FILE" .

Description
The WriteFile() function is used to initialize and start an FTPv4 upload process and optionally
wait for completion. When the upload operation completes, whether successfully or not, the
Token.Status field is updated by the EFI FTPv4 Protocol driver and then Token.Event is
signaled (if it is not NULL).

Data to be uploaded to server is stored into Token.DataBuffer. Token.DataBufferSize
is the number bytes to be transferred. If the file size is larger than Token.DataBufferSize,
Token.DataCallback will be called to allow for processing data and then new data will be
placed at the beginning of Token.DataBuffer. Token.DataBufferSize is updated to
reflect the actual number of bytes to be transferred. Token.DataBufferSize is set to 0 by the
call back to indicate the completion of data transfer.

Status Codes Returned

EFI_SUCCESS The data file is being uploaded successfully.

EFI_UNSUPPORTED The operation is not supported by this implementation.

EFI_INVALID_PARAMETER One or more of the parameters is not valid.

This is NULL.

Token is NULL.

Token.Pathname is NULL.

Token. DataBuffer is NULL.

Token. DataBufferSize is 0.

EFI_NOT_STARTED The EFI FTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP, etc.)
is not finished yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
Version 2.5 April, 2015 1525

Unified Extensible Firmware Interface Specification
EFI_DEVICE_ERROR An unexpected network error or system error occurred.
1526 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_FTP4_PROTOCOL.ReadDirectory()

Summary
Download a data file "directory" from a FTPv4 server. May be unsupported in some EFI
implementations.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FTP4_READ_DIRECTORY) (
 IN EFI_FTP4_PROTOCOL *This,
 IN EFI_FTP4_COMMAND_TOKEN *Token
);

Parameters
This Pointer to the EFI_FTP4_PROTOCOL instance.

Token Pointer to the token structure to provide the parameters that are
used in this operation. Type EFI_FTP4_COMMAND_TOKEN is
defined in "EFI_FTP4_READ_FILE" .

Description
The ReadDirectory() function is used to return a list of files on the FTPv4 server that logically
(or operationally) related to Token.Pathname, and optionally wait for completion. When the
download operation completes, whether successfully or not, the Token.Status field is updated
by the EFI FTPv4 Protocol driver and then Token.Event is signaled (if it is not NULL).

Data will be downloaded from the FTPv4 server into Token.DataBuffer. If the file size is
larger than Token.DataBufferSize, Token.DataCallback will be called to allow for
processing data and then new data will be placed at the beginning of Token.DataBuffer.
Version 2.5 April, 2015 1527

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS The file list information is being downloaded successfully.

EFI_UNSUPPORTED The operation is not supported by this implementation.

EFI_INVALID_PARAMETER One or more of the parameters is not valid.

• This is NULL.

• Token is NULL.

• Token. DataBuffer is NULL.

• Token. DataBufferSize is 0.

EFI_NOT_STARTED The EFI FTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.
1528 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_FTP4_PROTOCOL.Poll()

Summary
Polls for incoming data packets and processes outgoing data packets.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FTP4_POLL) (
 IN EFI_FTP4_PROTOCOL *This
);

Parameters
This Pointer to the EFI_FTP4_PROTOCOL instance.

Description
The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

In some systems, the periodic timer event in the managed network driver may not poll the
underlying communications device fast enough to transmit and/or receive all data packets without
missing incoming packets or dropping outgoing packets. Drivers and applications that are
experiencing packet loss should try calling the Poll() function more often.

Status Codes Returned

27.10 EFI TLS Protocols

27.10.1 EFI TLS Service Binding Protocol

EFI_TLS_SERVICE_BINDING_PROTOCOL

Summary
The EFI TLS Service Binding Protocol is used to locate EFI TLS Protocol drivers to create and
destroy child of the driver to communicate with other host using TLS protocol.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This EFI FTPv4 Protocol instance has not been started.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
Version 2.5 April, 2015 1529

Unified Extensible Firmware Interface Specification
GUID
#define EFI_TLS_SERVICE_BINDING_PROTOCOL_GUID \
 { \
 0x952cb795, 0xff36, 0x48cf, 0xa2, 0x49, 0x4d, 0xf4, 0x86,
0xd6, 0xab, 0x8d \
}

Description
The TLS consumer need locate EFI_TLS_SERVICE_BINDING_PROTOCOL and call
CreateChild() to create a new child of EFI_TLS_PROTOCOL instance. Then use
EFI_TLS_PROTOCOL to start TLS session. After use, the TLS consumer need call
DestroyChild() to destroy it.

27.10.2 EFI TLS Protocol

EFI_TLS_PROTOCOL

Summary
This protocol provides the ability to manage TLS session.

GUID
#define EFI_TLS_PROTOCOL_GUID \
 { 0xca959f, 0x6cfa, 0x4db1, \
 {0x95, 0xbc, 0xe4, 0x6c, 0x47, 0x51, 0x43, 0x90 }}

Protocol Interface Structure
typedef struct _EFI_TLS_PROTOCOL {
 EFI_TLS_SET_SESSION_DATA SetSessionData;
 EFI_TLS_GET_SESSION_DATA GetSessionData;
 EFI_TLS_BUILD_RESPONSE_PACKET BuildResponsePacket;
 EFI_TLS_PROCESS_PACKET ProcessPacket;
} EFI_TLS_PROTOCOL;

Parameters
SetSessionData Set TLS session data. See the SetSessionData () function

description.

GetSessionData Get TLS session data. See the GetSessionData () function
description.

BuildResponsePacket Build response packet according to TLS state machine. This
function is only valid for alert, handshake and
change_cipher_spec content type. See the
BuildResponsePacket () function description.

ProcessPacket Decrypt or encrypt TLS packet during session. This function is
only valid after session connected and for application_data
1530 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
content type. See the ProcessPacket () function
description.

Description
The EFI_TLS_PROTOCOL is used to create, destroy and manage TLS session. For detail of TLS,
please refer to TLS related RFC.
Version 2.5 April, 2015 1531

Unified Extensible Firmware Interface Specification
EFI_TLS_PROTOCOL.SetSessionData ()

Summary
Set TLS session data.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TLS_SET_SESSION_DATA)(
 IN EFI_TLS_PROTOCOL *This,
 IN EFI_TLS_SESSION_DATA_TYPE DataType,
 IN VOID *Data,
 IN UINTN DataSize
);

Parameters
This Pointer to the EFI_TLS_PROTOCOL instance.

DataType TLS session data type. See EFI_TLS_SESSION_DATA_TYPE

Data Pointer to session data.

DataSize Total size of session data.

Description
The SetSessionData() function set data for a new TLS session. All session data should be set
before BuildResponsePacket() invoked.
1532 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Related Definitions
//**
// EFI_TLS_SESSION_DATA_TYPE
//**
typedef enum {
 //
 // Session Configuration
 //
 EfiTlsVersion,
 EfiTlsConnectionEnd,
 EfiTlsCipherList,
 EfiTlsCompressionMethod,
 EfiTlsExtensionData,
 EfiTlsVerifyMethod,
 EfiTlsSessionID,
 EfiTlsSessionState,
 //
 // Session information
 //
 EfiTlsClientRandom,
 EfiTlsServerRandom,
 EfiTlsKeyMaterial,
} EFI_TLS_SESSION_DATA_TYPE;

EfiTlsVersion TLS session Version. The corresponding Data is of type
EFI_TLS_VERSION.

EfiTlsConnectionEndTLS session as client or as server. The corresponding Data is of
EFI_TLS_CONNECTION_END.

EfiTlsCipherList A priority list of preferred algorithms for the TLS session. The
corresponding Data is a list of EFI_TLS_CIPHER.

EfiTlsCompressionMethod

TLS session compression method. The corresponding Data is
of type EFI_TLS_COMPRESSION.

EfiTlsExtensionDataTLS session extension data. The corresponding Data is a list of
type EFI_TLS_EXTENDION.

EfiTlsVerifyMethod TLS session verify method. The corresponding Data is of type
EFI_TLS_VERIFY.

EfiTlsSessionID TLS session data session ID. For SetSessionData(), it is
TLS session ID used for session resumption. For
GetSessionData(), it is the TLS session ID used for current
session. The corresponding Data is of type
EFI_TLS_SESSION_ID.

EfiTlsSessionState TLS session data session state. The corresponding Data is of
type EFI_TLS_SESSION_STATE.
Version 2.5 April, 2015 1533

Unified Extensible Firmware Interface Specification
EfiTlsClientRandom TLS session data client random. The corresponding Data is of
type EFI_TLS_RANDOM.

EfiTlsServerRandom TLS session data server random. The corresponding Data is of
type EFI_TLS_RANDOM.

EfiTlsKeyMaterial TLS session data key material. The corresponding Data is of
type EFI_TLS_MASTER_SECRET.

//**
// EFI_TLS_VERSION
//**
typedef struct {
 UINT8 Major;
 UINT8 Minor;
} EFI_TLS_VERSION;

Note: The TLS version definition is from SSL3.0 to latest TLS (e.g. 1.2). SSL2.0 is obsolete and should not be used.

//**
// EFI_TLS_CONNECTION_END
//**
typedef enum {
 EfiTlsClient,
 EfiTlsServer,
} EFI_TLS_CONNECTION_END;

TLS connection end is to define TLS session as client or as server.

//**
// EFI_TLS_CIPHER
//**
typedef struct {
 UINT8 Data1;
 UINT8 Data2;
} EFI_TLS_CIPHER;

Note: The value of EFI_TLS_CIPHER definition is from RFC 5246, A.5. The Cipher Suite.
1534 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
//**
// EFI_TLS_COMPRESSION
//**
typedef UINT8 EFI_TLS_COMPRESSION;

Note: The value of EFI_TLS_COMPRESSION definition is from RFC 3749.

//**
// EFI_TLS_EXTENSION
//**
typedef struct {
 UINT16 ExtensionType;
 UINT16 Length;
 UINT8 Data[];
} EFI_TLS_EXTENSION;

Note: The definition of EFI_TLS_EXTENSION is from RFC 5246 A.4.1. Hello Messages.

//**
// EFI_TLS_VERIFY
//**
typedef UINT32 EFI_TLS_VERIFY;
#define EFI_TLS_VERIFY_NONE 0x0
#define EFI_TLS_VERIFY_PEER 0x1
#define EFI_TLS_VERIFY_FAIL_IF_NO_PEER_CERT 0x2
#define EFI_TLS_VERIFY_CLIENT_ONCE 0x4

The consumer needs to use either EFI_TLS_VERIFY_NONE or EFI_TLS_VERIFY_PEER.
EFI_TLS_VERIFY_FAIL_IF_NO_PEER_CERT and EFI_TLS_VERIFY_CLIENT_ONCE can
be ORed with EFI_TLS_VERIFY_PEER. EFI_TLS_VERIFY_FAIL_IF_NO_PEER_CERT
means TLS session will fail peer certificate is absent. EFI_TLS_VERIFY_CLIENT_ONCE means
TLS session only verify client once, and doesn’t request certificate during re-negotiation.

//**
// EFI_TLS_RANDOM
//**
typedef struct {
 UINT32 GmtUnixTime;
 UINT8 RandomBytes[28];
} EFI_TLS_RANDOM;

Note: The definition of EFI_TLS_RANDOM is from RFC 5246 A.4.1. Hello Messages.
Version 2.5 April, 2015 1535

Unified Extensible Firmware Interface Specification
//**
// EFI_TLS_MASTER_SECRET
//**
typedef struct {
 UINT8 Data[48];
} EFI_TLS_MASTER_SECRET;

Note: The definition of EFI_TLS_MASTER_SECRETE is from RFC 5246 8.1. Computing the Master Secret.

//**
// EFI_TLS_SESSION_ID
//**
typedef struct {
 UINT8 Data[32];
} EFI_TLS_SESSION_ID;

Note: The definition of EFI_TLS_SESSION_ID is from RFC 5246 A.4.1. Hello Messages.

//**
// EFI_TLS_SESSION_STATE
//**
Typedef enum {
 EfiTlsSessionNotStarted,
 EfiTlsSessionHandShaking,
 EfiTlsSessionDataTransferring,
 EfiTlsSessionClosing,
 EfiTlsSessionError,
} EFI_TLS_SESSION_STATE;

The definition of EFI_TLS_SESSION_STATE is below:

When a new child of TLS protocol is created, the initial state of TLS session is
EfiTlsSessionNotStarted.

The consumer can call BuildResponsePacket() with NULL to get ClientHello to start the
TLS session. Then the status is EfiTlsSessionHandShaking.

During handshake, the consumer need call BuildResponsePacket() with input data from
peer, then get response packet and send to peer. After handshake finish, the TLS session status
becomes EfiTlsSessionDataTransferring, and consume can use ProcessPacket()
for data transferring.

Finally, if consumer wants to active close TLS session, consumer need call SetSessionData to set
TLS session state to EfiTlsSessionClosing, and call BuildResponsePacket() with
NULL to get CloseNotify alert message, and sent it out.

If any error happen during parsing ApplicationData content type, EFI_ABORT will be returned by
ProcessPacket(), and TLS session state will become EfiTlsSessionError. Then
consumer need call BuildResponsePacket() with NULL to get alert message and sent it out.
1536 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Status Codes Returned

EFI_SUCCESS The TLS session data is set successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• Data is NULL.

• DataSize is 0.

EFI_UNSUPPORTED The DataType is unsupported.

EFI_ACCESS_DENIED If the DataType is one of below:

• EfiTlsClientRandom
• EfiTlsServerRandom
• EfiTlsKeyMaterial

EFI_NOT_READY Current TLS session state is NOT

EfiTlsSessionStateNotStarted.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
Version 2.5 April, 2015 1537

Unified Extensible Firmware Interface Specification
EFI_TLS_PROTOCOL.GetSessionData ()

Summary
Get TLS session data.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TLS_GET_SESSION_DATA)(
IN EFI_TLS_PROTOCOL *This,
 IN EFI_TLS_SESSION_DATA_TYPE DataType,
 IN OUT VOID *Data,
 IN OUT UINTN *DataSize
);

Parameters
This Pointer to the EFI_TLS_PROTOCOL instance.

DataType TLS session data type. See EFI_TLS_SESSION_DATA_TYPE

Data Pointer to session data.

DataSize Total size of configuration data. On input, it means the size of
Data buffer. On output, it means the size of copied Data buffer
if EFI_SUCCESS, and means the size of desired Data buffer if
EFI_BUFFER_TOO_SMALL.

Description
The GetSessionData() function return the TLS session information.

Status Codes Returned

EFI_SUCCESS The TLS session data is got successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• Data is NULL.

• DataSize is NULL.

EFI_UNSUPPORTED The DataType is unsupported.

EFI_NOT_FOUND The TLS session data is not found.

EFI_NOT_READY The DataType is not ready in current session state.

EFI_BUFFER_TOO_SMALL The buffer is too small to hold the buffer.
1538 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_TLS_PROTOCOL.BuildResponsePacket ()

Summary
Build response packet according to TLS state machine. This function is only valid for alert,
handshake and change_cipher_spec content type.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TLS_BUILD_RESPONSE_PACKET)(
IN EFI_TLS_PROTOCOL *This,
 IN UINT8 *RequestBuffer, OPTIONAL
 IN UINTN RequestSize, OPTIONAL
 OUT UINT8 *Buffer,
 IN OUT UINTN *BufferSize
);

Parameters
This Pointer to the EFI_TLS_PROTOCOL instance.

RequestBuffer Pointer to the most recently received TLS packet. NULL means
TLS need initiate the TLS session and response packet need to be
ClientHello.

RequestSize Packet size in bytes for the most recently received TLS packet. 0
is only valid when RequestBuffer is NULL.

Buffer Pointer to the buffer to hold the built packet.

BufferSize Pointer to the buffer size in bytes. On input, it is the buffer size
provided by the caller. On output, it is the buffer size in fact
needed to contain the packet.

Description
The BuildResponsePacket() function builds TLS response packet in response to the TLS
request packet specified by RequestBuffer and RequestSize. If RequestBuffer is
NULL and RequestSize is 0, and TLS session status is EfiTlsSessionNotStarted, the
TLS session will be initiated and the response packet needs to be ClientHello. If RequestBuffer
is NULL and RequestSize is 0, and TLS session status is EfiTlsSessionClosing, the TLS
session will be closed and response packet needs to be CloseNotify. If RequestBuffer is NULL
and RequestSize is 0, and TLS session status is EfiTlsSessionError, the TLS session has
errors and the response packet needs to be Alert message based on error type.

Status Codes Returned

EFI_SUCCESS The required TLS packet is built successfully.
Version 2.5 April, 2015 1539

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• RequestBuffer is NULL but RequestSize is NOT 0.

• RequestSize is 0 but RequestBuffer is NOT NULL.

• Buffer is NULL.

• BufferSize is NULL.

EFI_BUFFER_TOO_SMALL BufferSize is too small to hold the response packet.

EFI_NOT_READY Current TLS session state is NOT ready to build

ResponsePacket.
1540 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_TLS_PROTOCOL.ProcessPacket ()

Summary
Decrypt or encrypt TLS packet during session. This function is only valid after session connected
and for application_data content type.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TLS_PROCESS_PACKET)(
 IN EFI_TLS_PROTOCOL *This,
 IN OUT EFI_TLS_FRAGMENT_DATA **FragmentTable,
 IN UINT32 *FragmentCount,
 IN EFI_TLS_CRYPT_MODE CryptMode
);

Parameters
This Pointer to the EFI_TLS_PROTOCOL instance.

FragmentTable Pointer to a list of fragment. The caller will take responsible to
handle the original FragmentTable while it may be
reallocated in TLS driver. If CryptMode is EfiTlsEncrypt,
on input these fragments contain the TLS header and plain text
TLS APP payload; on output these fragments contain the TLS
header and cypher text TLS APP payload. If CryptMode is
EfiTlsDecrypt, on input these fragments contain the TLS
header and cypher text TLS APP payload; on output these
fragments contain the TLS header and plain text TLS APP
payload.

FragmentCount Number of fragment.

CryptMode Crypt mode.

Description
The ProcessPacket () function process each inbound or outbound TLS APP packet.

Related Definitions
//**
// EFI_TLS_FRAGMENT_DATA
//**
typedef struct {
 UINT32 FragmentLength;
 VOID *FragmentBuffer;
} EFI_TLS_FRAGMENT_DATA;

FragmentLength Length of data buffer in the fragment.

FragmentBuffer Pointer to the data buffer in the fragment.
Version 2.5 April, 2015 1541

Unified Extensible Firmware Interface Specification
//**
// EFI_TLS_CRYPT_MODE
//**
typedef enum {
 EfiTlsEncrypt,
 EfiTlsDecrypt,
} EFI_TLS_CRYPT_MODE;

EfiTlsEncrypt Encrypt data provided in the fragment buffers.

EfiTlsDecrypt Decrypt data provided in the fragment buffers.

Status Codes Returned

27.10.3 EFI TLS Configuration Protocol

EFI_TLS_CONFIGURATION_PROTOCOL

Summary
This protocol provides a way to set and get TLS configuration.

GUID
#define EFI_TLS_CONFIGURATION_PROTOCOL_GUID \
 { 0x1682fe44, 0xbd7a, 0x4407, \
 {0xb7, 0xc7, 0xdc, 0xa3, 0x7c, 0xa3, 0x92, 0x2d }}

Protocol Interface Structure
typedef struct _EFI_TLS_CONFIGURATION_PROTOCOL {
 EFI_TLS_CONFIGURATION_SET_DATA SetData;
 EFI_TLS_CONFIGURATION_GET_DATA GetData;
} EFI_TLS_CONFIGURATION_PROTOCOL;

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• FragmentTable is NULL.

• FragmentCount is NULL.

• TrafficDirection is invalid.

EFI_NOT_READY Current TLS session state is NOT

EfiTlsSessionDataTransferring.

EFI_ABORTED Something wrong decryption the message. TLS session status will

become EfiTlsSessionError. The caller need call

BuildResponsePacket() to generate Error Alert

message and send it out.

EFI_OUT_OF_RESOURCES No enough resource to finish the operation.
1542 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
Parameters
SetData Set TLS configuration data. See the SetData() function

description.

GetData Get TLS configuration data. See the GetData() function
description.

Description
The EFI_TLS_CONFIGURATION_PROTOCOL is designed to provide a way to set and get TLS
configuration, such as Certificate, private key file.
Version 2.5 April, 2015 1543

Unified Extensible Firmware Interface Specification
EFI_TLS_CONFIGURATION_PROTOCOL.SetData()

Summary
Set TLS configuration data.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TLS_CONFIGURATION_SET_DATA)(
 IN EFI_TLS_CONFIGURATION_PROTOCOL *This,
 IN EFI_TLS_CONFIG_DATA_TYPE DataType,
 IN VOID *Data,
 IN UINTN DataSize
);

Parameters
This Pointer to the EFI_TLS_CONFIGURATION_PROTOCOL

instance.

DataType Configuration data type. See EFI_TLS_CONFIG_DATA_TYPE

Data Pointer to configuration data.

DataSize Total size of configuration data.

Description
The SetData() function sets TLS configuration to non-volatile storage or volatile storage.

Related Definitions
//**
// EFI_TLS_CONFIG_DATA_TYPE
//**
typedef enum {
 EfiTlsConfigDataTypeHostPublicCert,
 EfiTlsConfigDataTypeHostPrivateKey,
 EfiTlsConfigDataTypeCACertificate,
} EFI_TLS_CONFIG_DATA_TYPE;

EfiTlsConfigDataTypeHostPublicCert

Local host configuration data: public certificate file.

EfiTlsConfigDataTypeHostPrivateKey

Local host configuration data: private key file.

EfiTlsConfigDataTypeCACertificate

CA certificate to verify peer.

Status Codes Returned

EFI_SUCCESS The TLS configuration data is set successfully.
1544 April, 2015 Version 2.5

Network Protocols —TCP, IP, IPsec, FTP, TLS and
Configurations
EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• Data is NULL.

• DataSize is 0.

EFI_UNSUPPORTED The DataType is unsupported.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.
Version 2.5 April, 2015 1545

Unified Extensible Firmware Interface Specification
EFI_TLS_CONFIGURATION_PROTOCOL.GetData()

Summary
Get TLS configuration data.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TLS_CONFIGURATION_GET_DATA)(
 IN EFI_TLS_CONFIGURATION_PROTOCOL *This,
 IN EFI_TLS_CONFIG_DATA_TYPE DataType,
 IN OUT VOID *Data,
 IN OUT UINTN *DataSize
);

Parameters
This Pointer to the EFI_TLS_CONFIGURATION_PROTOCOL

instance.

DataType Configuration data type. See EFI_TLS_CONFIG_DATA_TYPE

Data Pointer to configuration data.

DataSize Total size of configuration data. On input, it means the size of
Data buffer. On output, it means the size of copied Data buffer
if EFI_SUCCESS, and means the size of desired Data buffer if
EFI_BUFFER_TOO_SMALL.

Description
The GetData() function gets TLS configuration.

Status Codes Returned

EFI_SUCCESS The TLS configuration data is got successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• Data is NULL.

• DataSize is NULL.

EFI_UNSUPPORTED The DataType is unsupported.

EFI_NOT_FOUND The TLS configuration data is not found.

EFI_BUFFER_TOO_SMALL The buffer is too small to hold the buffer.
1546 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
28
Network Protocols - ARP, DHCP, DNS, HTTP and

REST

28.1 ARP Protocol
This section defines the EFI Address Resolution Protocol (ARP) Protocol interface. It is split into
the following two main sections:

• ARP Service Binding Protocol (ARPSBP)

• ARP Protocol (ARP)

ARP provides a generic implementation of the Address Resolution Protocol that is described in
RFCs 826 and 1122. For RFCs can be found see “Links to UEFI-Related Documents” (http://
uefi.org/uefi) under the heading “IETF” (RFCs 826 and 1122) for details for code of ICMP
message..

EFI_ARP_SERVICE_BINDING_PROTOCOL

Summary
The ARPSBP is used to locate communication devices that are supported by an ARP driver and to
create and destroy instances of the ARP child protocol driver.

The EFI Service Binding Protocol in Section 2.5.8 defines the generic Service Binding Protocol
functions. This section discusses the details that are specific to the ARP.

GUID
#define EFI_ARP_SERVICE_BINDING_PROTOCOL_GUID \
 {0xf44c00ee,0x1f2c,0x4a00,\
 {0xaa,0x09,0x1c,0x9f,0x3e,0x08,0x00,0xa3}}

Description
A network application (or driver) that requires network address resolution can use one of the
protocol handler services, such as BS->LocateHandleBuffer(), to search for devices that
publish a ARPSBP GUID. Each device with a published ARPSBP GUID supports ARP and may be
available for use.

After a successful call to the EFI_ARP_SERVICE_BINDING_PROTOCOL.CreateChild()
function, the child ARP driver instance is in an unconfigured state; it is not ready to resolve
addresses.

All child ARP driver instances that are created by one
EFI_ARP_SERVICE_BINDING_PROTOCOL instance will share an ARP cache to improve
efficiency.
Version 2.5 April, 2015 1547

Unified Extensible Firmware Interface Specification
Before a network application terminates execution, every successful call to the
EFI_ARP_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_ARP_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

Note: All the network addresses that are described in EFI_ARP_PROTOCOL are stored in network
byte order. Both incoming and outgoing ARP packets are also in network byte order. All other
parameters that are defined in functions or data structures are stored in host byte order.

EFI_ARP_PROTOCOL

Summary
ARP is used to resolve local network protocol addresses into network hardware addresses.

GUID
#define EFI_ARP_PROTOCOL_GUID \
 {0xf4b427bb,0xba21,0x4f16,\
 {0xbc,0x4e,0x43,0xe4,0x16,0xab,0x61,0x9c}}

Protocol Interface Structure
typedef struct _EFI_ARP_PROTOCOL {
 EFI_ARP_CONFIGURE Configure;
 EFI_ARP_ADD Add;
 EFI_ARP_FIND Find;
 EFI_ARP_DELETE Delete;
 EFI_ARP_FLUSH Flush;
 EFI_ARP_REQUEST Request;
 EFI_ARP_CANCEL Cancel;
} EFI_ARP_PROTOCOL;

Parameters
Configure Adds a new station address (protocol type and network address)

to the ARP cache. See the Configure() function description.

Add Manually inserts an entry to the ARP cache for administrative
purpose. See the Add() function description.

Find Locates one or more entries in the ARP cache. See the Find()
function description.

Delete Removes an entry from the ARP cache. See the Delete()
function description.

Flush Removes all dynamic ARP cache entries of a specified protocol
type. See the Flush() function description.

Request Starts an ARP request session. See the Request() function
description.

Cancel Abort previous ARP request session. See the Cancel()
function description.
1548 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
Description
The EFI_ARP_PROTOCOL defines a set of generic ARP services that can be used by any network
protocol driver to resolve subnet local network addresses into hardware addresses. Normally, a
periodic timer event internally sends and receives packets for ARP. But in some systems where the
periodic timer is not supported, drivers and applications that are experiencing packet loss should try
calling the Poll() function of the EFI Managed Network Protocol frequently.

Note: Add() and Delete() are typically used for administrative purposes, such as denying traffic to
and from a specific remote machine, preventing ARP requests from coming too fast, and providing
static address pairs to save time. Find() is also used to update an existing ARP cache entry.
Version 2.5 April, 2015 1549

Unified Extensible Firmware Interface Specification
EFI_ARP_PROTOCOL.Configure()

Summary
Assigns a station address (protocol type and network address) to this instance of the ARP cache.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_CONFIGURE) (
 IN EFI_ARP_PROTOCOL *This,
 IN EFI_ARP_CONFIG_DATA *ConfigData OPTIONAL
);

Parameters
This A pointer to the EFI_ARP_PROTOCOL instance.

ConfigData A pointer to the EFI_ARP_CONFIG_DATA structure. Type
EFI_ARP_CONFIG_DATA is defined in “Related Definitions”
below.

Description
The Configure() function is used to assign a station address to the ARP cache for this instance
of the ARP driver. Each ARP instance has one station address. The EFI_ARP_PROTOCOL driver
will respond to ARP requests that match this registered station address. A call to
Configure()with the ConfigData field set to NULL will reset this ARP instance.

Once a protocol type and station address have been assigned to this ARP instance, all the following
ARP functions will use this information. Attempting to change the protocol type or station address to
a configured ARP instance will result in errors.

Related Definitions
//**
// EFI_ARP_CONFIG_DATA
//**
typedef struct {
 UINT16 SwAddressType;
 UINT8 SwAddressLength;
 VOID *StationAddress;
 UINT32 EntryTimeOut;
 UINT32 RetryCount;
 UINT32 RetryTimeOut;
} EFI_ARP_CONFIG_DATA;

SwAddressType 16-bit protocol type number in host byte order. For more
information see “Links to UEFI-Related Documents” (http://
uefi.org/uefi) under the heading “16-bit protocol type numbers”.
1550 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
SwAddressLength Length in bytes of the station’s protocol address to register.

StationAddress Pointer to the first byte of the protocol address to register. For
example, if SwAddressType is 0x0800 (IP), then
StationAddress points to the first byte of this station’s IP
address stored in network byte order.

EntryTimeOut The timeout value in 100-ns units that is associated with each
new dynamic ARP cache entry. If it is set to zero, the value is
implementation-specific.

RetryCount The number of retries before a MAC address is resolved. If it is
set to zero, the value is implementation-specific.

RetryTimeOut The timeout value in 100-ns units that is used to wait for the ARP
reply packet or the timeout value between two retries. Set to zero
to use implementation-specific value.

Status Codes Returned

EFI_SUCCESS The new station address was successfully registered.

EFI_INVALID_PARAMETER • One or more of the following conditions is TRUE:

• This is NULL.

• SwAddressLength is zero when ConfigData is not
NULL.

• StationAddress is NULL when ConfigData is not
NULL.

EFI_ACCESS_DENIED The SwAddressType, SwAddressLength, or

StationAddress is different from the one that is already

registered.

EFI_OUT_OF_RESOURCES Storage for the new StationAddress could not be allocated.
Version 2.5 April, 2015 1551

Unified Extensible Firmware Interface Specification
EFI_ARP_PROTOCOL.Add()

Summary
Inserts an entry to the ARP cache.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_ADD) (
 IN EFI_ARP_PROTOCOL *This,
 IN BOOLEAN DenyFlag,
 IN VOID *TargetSwAddress OPTIONAL,
 IN VOID *TargetHwAddress OPTIONAL,
 IN UINT32 TimeoutValue,
 IN BOOLEAN Overwrite
);

Parameters
This A pointer to the EFI_ARP_PROTOCOL instance..

DenyFlag Set to TRUE if this entry is a “deny” entry. Set to FALSE if this
entry is a “normal” entry.

TargetSwAddress Pointer to a protocol address to add (or deny). May be set to
NULL if DenyFlag is TRUE.

TargetHwAddress Pointer to a hardware address to add (or deny). May be set to
NULL if DenyFlag is TRUE.

TimeoutValue Time in 100-ns units that this entry will remain in the ARP cache.
A value of zero means that the entry is permanent. A nonzero
value will override the one given by Configure() if the entry
to be added is dynamic entry.

Overwrite If TRUE, the matching cache entry will be overwritten with the
supplied parameters. If FALSE, EFI_ACCESS_DENIED is
returned if the corresponding cache entry already exists.

Description
The Add() function is used to insert entries into the ARP cache.

ARP cache entries are typically inserted and updated by network protocol drivers as network traffic
is processed. Most ARP cache entries will time out and be deleted if the network traffic stops. ARP
cache entries that were inserted by the Add() function may be static (will not time out) or dynamic
(will time out).

Default ARP cache timeout values are not covered in most network protocol specifications (although
RFC 1122 comes pretty close) and will only be discussed in general in this specification. The
timeout values that are used in the EFI Sample Implementation should be used only as a guideline.
Final product implementations of the EFI network stack should be tuned for their expected network
environments.
1552 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
The Add() function can insert the following two types of entries into the ARP cache:

• “Normal” entries

• “Deny” entries

“Normal” entries must have both a TargetSwAddress and TargetHwAddress and are used to
resolve network protocol addresses into network hardware addresses. Entries are keyed by
TargetSwAddress. Each TargetSwAddress can have only one TargetHwAddress. A
TargetHwAddress may be referenced by multiple TargetSwAddress entries.

 “Deny” entries may have a TargetSwAddress or a TargetHwAddress, but not both. These
entries tell the ARP driver to ignore any traffic to and from (and to) these addresses. If a request
comes in from an address that is being denied, then the request is ignored.

If a normal entry to be added matches a deny entry of this driver, Overwrite decides whether to
remove the matching deny entry. On the other hand, an existing normal entry can be removed based
on the value of Overwrite if a deny entry to be added matches the existing normal entry. Two
entries are matched only when they have the same addresses or when one of the normal entry
addresses is the same as the address of a deny entry.

Status Codes Returned

EFI_SUCCESS The entry has been added or updated.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

This is NULL.

DenyFlag is FALSE and TargetHwAddress is NULL.

DenyFlag is FALSE and TargetSwAddress is NULL.

TargetHwAddress is NULL and TargetSwAddress is

NULL.

Both TargetSwAddress and TargetHwAddress are

not NULL when DenyFlag is TRUE.

EFI_OUT_OF_RESOURCES The new ARP cache entry could not be allocated.

EFI_ACCESS_DENIED The ARP cache entry already exists and Overwrite is not

TRUE.

EFI_NOT_STARTED The ARP driver instance has not been configured.
Version 2.5 April, 2015 1553

Unified Extensible Firmware Interface Specification
EFI_ARP_PROTOCOL.Find()

Summary
Locates one or more entries in the ARP cache.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_FIND) (
 IN EFI_ARP_PROTOCOL *This,
 IN BOOLEAN BySwAddress,
 IN VOID *AddressBuffer OPTIONAL,
 OUT UINT32 *EntryLength OPTIONAL,
 OUT UINT32 *EntryCount OPTIONAL,
 OUT EFI_ARP_FIND_DATA **Entries OPTIONAL,
 IN BOOLEAN Refresh
);

Parameters
This A pointer to the EFI_ARP_PROTOCOL instance.

BySwAddress Set to TRUE to look for matching software protocol addresses.
Set to FALSE to look for matching hardware protocol addresses.

AddressBuffer Pointer to address buffer. Set to NULL to match all addresses.

EntryLength The size of an entry in the entries buffer. To keep the
EFI_ARP_FIND_DATA structure properly aligned, this field
may be longer than sizeof(EFI_ARP_FIND_DATA) plus the
length of the software and hardware addresses.

EntryCount The number of ARP cache entries that are found by the specified
criteria.

Entries Pointer to the buffer that will receive the ARP cache entries. Type
EFI_ARP_FIND_DATA is defined in “Related Definitions”
below.

Refresh Set to TRUE to refresh the timeout value of the matching ARP
cache entry.

Description
The Find() function searches the ARP cache for matching entries and allocates a buffer into which
those entries are copied. The first part of the allocated buffer is EFI_ARP_FIND_DATA, following
which are protocol address pairs and hardware address pairs.

When finding a specific protocol address (BySwAddress is TRUE and AddressBuffer is not
NULL), the ARP cache timeout for the found entry is reset if Refresh is set to TRUE. If the found
ARP cache entry is a permanent entry, it is not affected by Refresh.
1554 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
Related Definitions

//***
// EFI_ARP_FIND_DATA
//***
typedef struct {
 UINT32 Size;
 BOOLEAN DenyFlag;
 BOOLEAN StaticFlag;
 UINT16 HwAddressType;
 UINT16 SwAddressType;
 UINT8 HwAddressLength;
 UINT8 SwAddressLength;
} EFI_ARP_FIND_DATA;

Size Length in bytes of this entry.

DenyFlag Set to TRUE if this entry is a “deny” entry.
Set to FALSE if this entry is a “normal” entry.

StaticFlag Set to TRUE if this entry will not time out.
Set to FALSE if this entry will time out.

HwAddressType 16-bit ARP hardware identifier number.

SwAddressType 16-bit protocol type number.

HwAddressLength Length of the hardware address.

SwAddressLength Length of the protocol address.

Status Codes Returned

EFI_SUCCESS The requested ARP cache entries were copied into the buffer.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Both EntryCount and EntryLength are NULL, when
Refresh is FALSE.

EFI_NOT_FOUND No matching entries were found.

EFI_NOT_STARTED The ARP driver instance has not been configured.
Version 2.5 April, 2015 1555

Unified Extensible Firmware Interface Specification
EFI_ARP_PROTOCOL.Delete()

Summary
Removes entries from the ARP cache.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_DELETE) (
 IN EFI_ARP_PROTOCOL *This,
 IN BOOLEAN BySwAddress,
 IN VOID *AddressBuffer OPTIONAL
);

Parameters
This A pointer to the EFI_ARP_PROTOCOL instance.

BySwAddress Set to TRUE to delete matching protocol addresses.
Set to FALSE to delete matching hardware addresses.

AddressBuffer Pointer to the address buffer that is used as a key to look for the
cache entry. Set to NULL to delete all entries.

Description
The Delete() function removes specified ARP cache entries.

Status Codes Returned

EFI_SUCCESS The entry was removed from the ARP cache.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_FOUND The specified deletion key was not found.

EFI_NOT_STARTED The ARP driver instance has not been configured.
1556 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_ARP_PROTOCOL.Flush()

Summary
Removes all dynamic ARP cache entries that were added by this interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_FLUSH) (
 IN EFI_ARP_PROTOCOL *This
);

Parameters
This A pointer to the EFI_ARP_PROTOCOL instance.

Description
The Flush() function deletes all dynamic entries from the ARP cache that match the specified
software protocol type.

Status Codes Returned

EFI_SUCCESS The cache has been flushed.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_FOUND There are no matching dynamic cache entries.

EFI_NOT_STARTED The ARP driver instance has not been configured.
Version 2.5 April, 2015 1557

Unified Extensible Firmware Interface Specification
EFI_ARP_PROTOCOL.Request()

Summary
Starts an ARP request session.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_REQUEST) (
 IN EFI_ARP_PROTOCOL *This,
 IN VOID *TargetSwAddress OPTIONAL,
 IN EFI_EVENT ResolvedEvent OPTIONAL,
 OUT VOID *TargetHwAddress
);

Parameters
This A pointer to the EFI_ARP_PROTOCOL instance..

TargetSwAddress Pointer to the protocol address to resolve.

ResolvedEvent Pointer to the event that will be signaled when the address is
resolved or some error occurs.

TargetHwAddress Pointer to the buffer for the resolved hardware address in network
byte order. The buffer must be large enough to hold the resulting
hardware address. TargetHwAddress must not be NULL.

Description
The Request() function tries to resolve the TargetSwAddress and optionally returns a
TargetHwAddress if it already exists in the ARP cache.

If the registered SwAddressType (see EFI_ARP_PROTOCOL.Add()) is IPv4 or IPv6 and the
TargetSwAddress is a multicast address, then the TargetSwAddress is resolved using the
underlying EFI_MANAGED_NETWORK_PROTOCOL.McastIpToMac() function.

If the TargetSwAddress is NULL, then the network interface hardware broadcast address is
returned immediately in TargetHwAddress.

If the ResolvedEvent is not NULL and the address to be resolved is not in the ARP cache, then
the event will be signaled when the address request completes and the requested hardware address is
returned in the TargetHwAddress. If the timeout expires and the retry count is exceeded or an
unexpected error occurs, the event will be signaled to notify the caller, which should check the
TargetHwAddress to see if the requested hardware address is available. If it is not available, the
TargetHwAddress is filled by zero.

If the address to be resolved is already in the ARP cache and resolved, then the event will be
signaled immediately if it is not NULL, and the requested hardware address is also returned in
TargetHwAddress.
1558 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_SUCCESS The data was copied from the ARP cache into the

TargetHwAddress buffer.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

This is NULL
TargetHwAddress is NULL

EFI_ACCESS_DENIED The requested address is not present in the normal ARP cache but is
present in the deny address list. Outgoing traffic to that address is
forbidden.

EFI_NOT_STARTED The ARP driver instance has not been configured.

EFI_NOT_READY The request has been started and is not finished.

EFI_UNSUPPORTED The requested conversion is not supported in this implementation or
configuration.
Version 2.5 April, 2015 1559

Unified Extensible Firmware Interface Specification
EFI_ARP_PROTOCOL.Cancel()

Summary
Cancels an ARP request session.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_CANCEL) (
 IN EFI_ARP_PROTOCOL *This,
 IN VOID *TargetSwAddress OPTIONAL,
 IN EFI_EVENT ResolvedEvent OPTIONAL
);

Parameters
This A pointer to the EFI_ARP_PROTOCOL instance.

TargetSwAddress Pointer to the protocol address in previous request session.

ResolvedEvent Pointer to the event that is used as the notification event in
previous request session.

Description
The Cancel() function aborts the previous ARP request (identified by This,
TargetSwAddress and ResolvedEvent) that is issued by
EFI_ARP_PROTOCOL.Request(). If the request is in the internal ARP request queue, the
request is aborted immediately and its ResolvedEvent is signaled. Only an asynchronous
address request needs to be canceled. If TargeSwAddress and ResolveEvent are both NULL,
all the pending asynchronous requests that have been issued by This instance will be cancelled and
their corresponding events will be signaled.

Status Codes Returned

EFI_SUCCESS The pending request session(s) is/are aborted and corresponding
event(s) is/are signaled.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• TargetSwAddress is not NULL and ResolvedEvent
is NULL.

• TargetSwAddress is NULL and ResolvedEvent is
not NULL

EFI_NOT_STARTED The ARP driver instance has not been configured.

EFI_NOT_FOUND The request is not issued by

EFI_ARP_PROTOCOL.Request().
1560 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
28.2 EFI DHCPv4 Protocol
This section provides a detailed description of the EFI_DHCP4_PROTOCOL and the
EFI_DHCP4_SERVICE_BINDING_PROTOCOL. The EFI DHCPv4 Protocol is used to collect
configuration information for the EFI IPv4 Protocol drivers and to provide DHCPv4 server and PXE
boot server discovery services.

EFI_DHCP4_SERVICE_BINDING_PROTOCOL

Summary
The EFI DHCPv4 Service Binding Protocol is used to locate communication devices that are
supported by an EFI DHCPv4 Protocol driver and to create and destroy EFI DHCPv4 Protocol child
driver instances that can use the underlying communications device.

GUID
#define EFI_DHCP4_SERVICE_BINDING_PROTOCOL_GUID \
 {0x9d9a39d8,0xbd42,0x4a73,\
 {0xa4,0xd5,0x8e,0xe9,0x4b,0xe1,0x13,0x80}}

Description
A network application or driver that requires basic DHCPv4 services can use one of the protocol
handler services, such as BS->LocateHandleBuffer(), to search for devices that publish an
EFI DHCPv4 Service Binding Protocol GUID. Each device with a published EFI DHCPv4 Service
Binding Protocol GUID supports the EFI DHCPv4 Protocol and may be available for use.

After a successful call to the
EFI_DHCP4_SERVICE_BINDING_PROTOCOL.CreateChild() function, the newly created
EFI DHCPv4 Protocol child driver instance is ready to be used by a network application or driver.

Before a network application or driver terminates execution, every successful call to the
EFI_DHCP4_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_DHCP4_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

EFI_DHCP4_PROTOCOL

Summary
This protocol is used to collect configuration information for the EFI IPv4 Protocol drivers and to
provide DHCPv4 server and PXE boot server discovery services.
Version 2.5 April, 2015 1561

Unified Extensible Firmware Interface Specification
GUID
#define EFI_DHCP4_PROTOCOL_GUID \
 {0x8a219718,0x4ef5,0x4761,\
 {0x91,0xc8,0xc0,0xf0,0x4b,0xda,0x9e,0x56}}

Protocol Interface Structure
typedef struct _EFI_DHCP4_PROTOCOL {
 EFI_DHCP4_GET_MODE_DATA GetModeData;
 EFI_DHCP4_CONFIGURE Configure;
 EFI_DHCP4_START Start;
 EFI_DHCP4_RENEW_REBIND RenewRebind;
 EFI_DHCP4_RELEASE Release;
 EFI_DHCP4_STOP Stop;
 EFI_DHCP4_BUILD Build;
 EFI_DHCP4_TRANSMIT_RECEIVE TransmitReceive;
 EFI_DHCP4_PARSE Parse;
} EFI_DHCP4_PROTOCOL;

Parameters
GetModeData Gets the EFI DHCPv4 Protocol driver status and operational data.

See the GetModeData() function description.

Configure Initializes, changes, or resets operational settings for the EFI
DHCPv4 Protocol driver. See the Configure() function
description.

Start Starts the DHCP configuration process. See the Start()
function description.

RenewRebind Tries to manually extend the lease time by sending a request
packet. See the RenewRebind() function description.

Release Releases the current configuration and returns the EFI DHCPv4
Protocol driver to the initial state. See the Release() function
description.

Stop Stops the DHCP configuration process no matter what state the
driver is in. After being stopped, this driver will not automatically
communicate with the DHCP server. See the Stop() function
description.

Build Puts together a DHCP or PXE packet. See the Build() function
description.

TransmitReceive Transmits a DHCP or PXE packet and waits for response packets.
See the TransmitReceive() function description.

Parse Parses the packed DHCP or PXE option data. See the Parse()
function description.
1562 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
Description
The EFI_DHCP4_PROTOCOL is used to collect configuration information for the EFI IPv4
Protocol driver and provide DHCP server and PXE boot server discovery services.

Byte Order Note
All the IPv4 addresses that are described in EFI_DHCP4_PROTOCOL are stored in network byte
order. Both incoming and outgoing DHCP packets are also in network byte order. All other
parameters that are defined in functions or data structures are stored in host byte order
Version 2.5 April, 2015 1563

Unified Extensible Firmware Interface Specification
EFI_DHCP4_PROTOCOL.GetModeData()

Summary
Returns the current operating mode and cached data packet for the EFI DHCPv4 Protocol driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_GET_MODE_DATA)(
 IN EFI_DHCP4_PROTOCOL *This,
 OUT EFI_DHCP4_MODE_DATA *Dhcp4ModeData
);

Parameters
This Pointer to the EFI_DHCP4_PROTOCOL instance.

Dhcp4ModeData Pointer to storage for the EFI_DHCP4_MODE_DATA structure. Type
EFI_DHCP4_MODE_DATA is defined in “Related Definitions”
below.

Description
The GetModeData() function returns the current operating mode and cached data packet for the
EFI DHCPv4 Protocol driver.

Related Definitions
//**
// EFI_DHCP4_MODE_DATA
//**
typedef struct {
 EFI_DHCP4_STATE State;
 EFI_DHCP4_CONFIG_DATA ConfigData;
 EFI_IPv4_ADDRESS ClientAddress;
 EFI_MAC_ADDRESS ClientMacAddress;
 EFI_IPv4_ADDRESS ServerAddress;
 EFI_IPv4_ADDRESS RouterAddress;
 EFI_IPv4_ADDRESS SubnetMask;
 UINT32 LeaseTime;
 EFI_DHCP4_PACKET *ReplyPacket;
} EFI_DHCP4_MODE_DATA;

State The EFI DHCPv4 Protocol driver operating state. Type
EFI_DHCP4_STATE is defined below.

ConfigData The configuration data of the current EFI DHCPv4 Protocol
driver instance. Type EFI_DHCP4_CONFIG_DATA is defined
in EFI_DHCP4_PROTOCOL.Configure().
1564 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
ClientAddress The client IP address that was acquired from the DHCP server. If
it is zero, the DHCP acquisition has not completed yet and the
following fields in this structure are undefined.

ClientMacAddress The local hardware address.

ServerAddress The server IP address that is providing the DHCP service to this
client.

RouterAddress The router IP address that was acquired from the DHCP server.
May be zero if the server does not offer this address.

SubnetMask The subnet mask of the connected network that was acquired
from the DHCP server.

LeaseTime The lease time (in 1-second units) of the configured IP address.
The value 0xFFFFFFFF means that the lease time is infinite. A
default lease of 7 days is used if the DHCP server does not
provide a value.

ReplyPacket The cached latest DHCPACK or DHCPNAK or BOOTP REPLY
packet. May be NULL if no packet is cached.

The EFI_DHCP4_MODE_DATA structure describes the operational data of the current DHCP
procedure.

//**
// EFI_DHCP4_STATE
//**
typedef enum {
 Dhcp4Stopped = 0x0,
 Dhcp4Init = 0x1,
 Dhcp4Selecting = 0x2,
 Dhcp4Requesting = 0x3,
 Dhcp4Bound = 0x4
 Dhcp4Renewing = 0x5,
 Dhcp4Rebinding = 0x6,
 Dhcp4InitReboot = 0x7,
 Dhcp4Rebooting = 0x8
} EFI_DHCP4_STATE;

Table 192 describes the fields in the above enumeration.

Table 192. DHCP4 Enumerations

Field Description

Dhcp4Stopped The EFI DHCPv4 Protocol driver is stopped and

EFI_DHCP4_PROTOCOL.Configure() needs to be called. The rest of

the EFI_DHCP4_MODE_DATA structure is undefined in this state.

Dhcp4Init The EFI DHCPv4 Protocol driver is inactive and

EFI_DHCP4_PROTOCOL.Start() needs to be called. The rest of the

EFI_DHCP4_MODE_DATA structure is undefined in this state.
Version 2.5 April, 2015 1565

Unified Extensible Firmware Interface Specification
EFI_DHCP4_STATE defines the DHCP operational states that are described in RFC 2131, which
can be obtained at “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading
“RFC 2131”.

A variable number of EFI DHCPv4 Protocol driver instances can coexist but they share the same
state machine. More precisely, each communication device has a separate DHCP state machine if
there are multiple communication devices. Each EFI DHCPv4 Protocol driver instance that is
created by the same EFI DHCPv4 Service Binding Protocol driver instance shares the same state
machine. In this document, when we refer to the state of EFI DHCPv4 Protocol driver, we actually
refer to the state of the communication device from which the current EFI DHCPv4 Protocol Driver
instance is created.

Dhcp4Selecting The EFI DHCPv4 Protocol driver is collecting DHCP offer packets from DHCP

servers. The rest of the EFI_DHCP4_MODE_DATA structure is undefined in

this state.

Dhcp4Requesting The EFI DHCPv4 Protocol driver has sent the request to the DHCP server and is

waiting for a response. The rest of the EFI_DHCP4_MODE_DATA structure is

undefined in this state.

Dhcp4Bound The DHCP configuration has completed. All of the fields in the

EFI_DHCP4_MODE_DATA structure are defined.

Dhcp4Renewing The DHCP configuration is being renewed and another request has been sent
out, but it has not received a response from the server yet. All of the fields in the

EFI_DHCP4_MODE_DATA structure are available but may change soon.

Dhcp4Rebinding The DHCP configuration has timed out and the EFI DHCPv4 Protocol driver is

trying to extend the lease time. The rest of the EFI_DHCP4_MODE structure is

undefined in this state.

Dhcp4InitReboot The EFI DHCPv4 Protocol driver is initialized with a previously allocated or known

IP address. EFI_DHCP4_PROTOCOL.Start() needs to be called to start

the configuration process. The rest of the EFI_DHCP4_MODE_DATA

structure is undefined in this state.

Dhcp4Rebooting The EFI DHCPv4 Protocol driver is seeking to reuse the previously allocated IP
address by sending a request to the DHCP server. The rest of the

EFI_DHCP4_MODE_DATA structure is undefined in this state.

Field Description
1566 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
//***
// EFI_DHCP4_PACKET
//***
#pragma pack(1)
typedef struct {
 UINT32 Size;
 UINT32 Length;
 struct{
 EFI_DHCP4_HEADER Header;
 UINT32 Magik;
 UINT8 Option[1];
 } Dhcp4;
} EFI_DHCP4_PACKET;
#pragma pack()

Size Size of the EFI_DHCP4_PACKET buffer.

Length Length of the EFI_DHCP4_PACKET from the first byte of the
Header field to the last byte of the Option[] field.

Header DHCP packet header.

Magik DHCP magik cookie in network byte order.

Option Start of the DHCP packed option data.

EFI_DHCP4_PACKET defines the format of DHCPv4 packets. See RFC 2131 for more
information.

Status Codes Returned

EFI_SUCCESS The mode data was returned.

EFI_INVALID_PARAMETER This is NULL.
Version 2.5 April, 2015 1567

Unified Extensible Firmware Interface Specification
EFI_DHCP4_PROTOCOL.Configure()

Summary
Initializes, changes, or resets the operational settings for the EFI DHCPv4 Protocol driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_CONFIGURE) (
 IN EFI_DHCP4_PROTOCOL *This,
 IN EFI_DHCP4_CONFIG_DATA *Dhcp4CfgData OPTIONAL
);

Parameters
This Pointer to the EFI_DHCP4_PROTOCOL instance.

Dhcp4CfgData Pointer to the EFI_DHCP4_CONFIG_DATA. Type
EFI_DHCP4_CONFIG_DATA is defined in “Related
Definitions” below.

Description
The Configure() function is used to initialize, change, or reset the operational settings of the EFI
DHCPv4 Protocol driver for the communication device on which the EFI DHCPv4 Service Binding
Protocol is installed. This function can be successfully called only if both of the following are true:

• This instance of the EFI DHCPv4 Protocol driver is in the Dhcp4Stopped, Dhcp4Init,
Dhcp4InitReboot, or Dhcp4Bound states.

• No other EFI DHCPv4 Protocol driver instance that is controlled by this EFI DHCPv4 Service
Binding Protocol driver instance has configured this EFI DHCPv4 Protocol driver.

When this driver is in the Dhcp4Stopped state, it can transfer into one of the following two
possible initial states:

• Dhcp4Init

• Dhcp4InitReboot

The driver can transfer into these states by calling Configure() with a non-NULL
Dhcp4CfgData. The driver will transfer into the appropriate state based on the supplied client
network address in the ClientAddress parameter and DHCP options in the OptionList
parameter as described in RFC 2131.

When Configure() is called successfully while Dhcp4CfgData is set to NULL, the default
configuring data will be reset in the EFI DHCPv4 Protocol driver and the state of the EFI DHCPv4
Protocol driver will not be changed. If one instance wants to make it possible for another instance to
configure the EFI DHCPv4 Protocol driver, it must call this function with Dhcp4CfgData set to
NULL.
1568 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
Related Definitions
//**
// EFI_DHCP4_CONFIG_DATA
//**
typedef struct {
 UINT32 DiscoverTryCount;
 UINT32 *DiscoverTimeout;
 UINT32 RequestTryCount;
 UINT32 *RequestTimeout;
 EFI_IPv4_ADDRESS ClientAddress;
 EFI_DHCP4_CALLBACK Dhcp4Callback;
 VOID *CallbackContext;
 UINT32 OptionCount;
 EFI_DHCP4_PACKET_OPTION **OptionList;
} EFI_DHCP4_CONFIG_DATA;

DiscoverTryCount Number of times to try sending a packet during the
Dhcp4SendDiscover event and waiting for a response during
the Dhcp4RcvdOffer event. (This value is also the number of
entries in the DiscoverTimeout array.) Set to zero to use the
default try counts and timeout values.

DiscoverTimeout Maximum amount of time (in seconds) to wait for returned
packets in each of the retries. Timeout values of zero will default
to a timeout value of one second. Set to NULL to use default
timeout values.

RequestTryCount Number of times to try sending a packet during the
Dhcp4SendRequest event and waiting for a response during
the Dhcp4RcvdAck event before accepting failure. (This value
is also the number of entries in the RequestTimeout array.)
Set to zero to use the default try counts and timeout values.

RequestTimeout Maximum amount of time (in seconds) to wait for return packets
in each of the retries. Timeout values of zero will default to a
timeout value of one second. Set to NULL to use default timeout
values.

ClientAddress For a DHCPDISCOVER, setting this parameter to the previously
allocated IP address will cause the EFI DHCPv4 Protocol driver
to enter the Dhcp4InitReboot state. Also, set this field to
0.0.0.0 to enter the Dhcp4Init state.For a DHCPINFORM this
parameter should be set to the client network address which was
assigned to the client during a DHCPDISCOVER.

Dhcp4Callback The callback function to intercept various events that occurred in
the DHCP configuration process. Set to NULL to ignore all those
events. Type EFI_DHCP4_CALLBACK is defined below.
Version 2.5 April, 2015 1569

Unified Extensible Firmware Interface Specification
CallbackContext Pointer to the context that will be passed to Dhcp4Callback
when it is called.

OptionCount Number of DHCP options in the OptionList.

OptionList List of DHCP options to be included in every packet that is sent
during the Dhcp4SendDiscover event. Pad options are
appended automatically by DHCP driver in outgoing DHCP
packets. If OptionList itself contains pad option, they are
ignored by the driver. OptionList can be freed after
EFI_DHCP4_PROTOCOL.Configure() returns. Ignored if
OptionCount is zero. Type EFI_DHCP4_PACKET_OPTION
is defined below.

//**
// EFI_DHCP4_CALLBACK
//**
typedef EFI_STATUS (*EFI_DHCP4_CALLBACK)(
 IN EFI_DHCP4_PROTOCOL *This,
 IN VOID *Context,
 IN EFI_DHCP4_STATE CurrentState,
 IN EFI_DHCP4_EVENT Dhcp4Event,
 IN EFI_DHCP4_PACKET *Packet, OPTIONAL
 OUT EFI_DHCP4_PACKET **NewPacket OPTIONAL
);

This Pointer to the EFI DHCPv4 Protocol instance that is used to
configure this callback function.

Context Pointer to the context that is initialized by
EFI_DHCP4_PROTOCOL.Configure().

CurrentState The current operational state of the EFI DHCPv4 Protocol driver.
Type EFI_DHCP4_STATE is defined in
EFI_DHCP4_PROTOCOL.GetModeData().

Dhcp4Event The event that occurs in the current state, which usually means a
state transition. Type EFI_DHCP4_EVENT is defined below.

Packet The DHCP packet that is going to be sent or already received.
May be NULL if the event has no associated packet. Do not cache
this packet except for copying it. Type EFI_DHCP4_PACKET is
defined in EFI_DHCP4_PROTOCOL.GetModeData().

NewPacket The packet that is used to replace the above Packet. Do not set
this pointer exactly to the above Packet or a modified Packet.
NewPacket can be NULL if the EFI DHCPv4 Protocol driver
does not expect a new packet to be returned. The user may set
*NewPacket to NULL if no replacement occurs.
1570 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DHCP4_CALLBACK is provided by the consumer of the EFI DHCPv4 Protocol driver to
intercept events that occurred in the configuration process. This structure provides advanced control
of each state transition of the DHCP process. The returned status code determines the behavior of the
EFI DHCPv4 Protocol driver. There are three possible returned values, which are described in the
following table.

//**
// EFI_DHCP4_EVENT
//**
typedef enum {
 Dhcp4SendDiscover = 0x01,
 Dhcp4RcvdOffer = 0x02,
 Dhcp4SelectOffer = 0x03,
 Dhcp4SendRequest = 0x04,
 Dhcp4RcvdAck = 0x05,
 Dhcp4RcvdNak = 0x06,
 Dhcp4SendDecline = 0x07,
 Dhcp4BoundCompleted = 0x08,
 Dhcp4EnterRenewing = 0x09,
 Dhcp4EnterRebinding = 0x0a,
 Dhcp4AddressLost = 0x0b,
 Dhcp4Fail = 0x0c
} EFI_DHCP4_EVENT;

Following is a description of the fields in the above enumeration.

Dhcp4SendDiscover The packet to start the configuration sequence is about to be sent.
The packet is passed to Dhcp4Callback and can be modified
or replaced in Dhcp4Callback.

Dhcp4RcvdOffer A reply packet was just received. This packet is passed to
Dhcp4Callback, which may copy this packet and cache it for
selecting a task later. If the callback returns EFI_SUCCESS, this
driver will finish the selecting state. If EFI_NOT_READY is
returned, this driver will continue to wait for additional reply
packets until the timer expires. In either case,
Dhcp4SelectOffer will occur for the user to select an offer.

EFI_SUCCESS Tells the EFI DHCPv4 Protocol driver to continue the DHCP

process. When it is in the Dhcp4Selecting state, it tells the

EFI DHCPv4 Protocol driver to stop collecting additional packets.

The driver will exit the Dhcp4Selecting state and enter the

Dhcp4Requesting state.

EFI_NOT_READY Only used in the Dhcp4Selecting state. The EFI DHCPv4

Protocol driver will continue to wait for more packets until the retry
timeout expires.

EFI_ABORTED Tells the EFI DHCPv4 Protocol driver to abort the current process

and return to the Dhcp4Init or Dhcp4InitReboot state.
Version 2.5 April, 2015 1571

Unified Extensible Firmware Interface Specification
Dhcp4SelectOffer It is time for Dhcp4Callback to select an offer. This driver
passes the latest received DHCPOFFER packet to the callback.
The Dhcp4Callback may store one packet in the
NewPacket parameter of the function that was selected from
previously received DHCPOFFER packets. If the latest packet is
the selected one or if the user does not care about it, no extra
overhead is needed. Simply skipping this event is enough.

Dhcp4SendRequest A request packet is about to be sent. The user can modify or
replace this packet.

Dhcp4RcvdAck A DHCPACK packet was received and will be passed to
Dhcp4Callback. The callback may decline this DHCPACK
packet by returning EFI_ABORTED. In this case, the EFI
DHCPv4 Protocol driver will proceed to the
Dhcp4SendDecline event.

Dhcp4RcvdNak A DHCPNAK packet was received and will be passed to
Dhcp4Callback. The EFI DHCPv4 Protocol driver will then
return to the Dhcp4Init state no matter what status code is
returned from the callback function.

Dhcp4SendDecline A decline packet is about to be sent. Dhcp4Callback can
modify or replace this packet.The EFI DHCPv4 Protocol driver
will then be set to the Dhcp4Init state.

Dhcp4BoundCompletedThe DHCP configuration process has completed. No packet is
associated with this event.

Dhcp4EnterRenewing It is time to enter the Dhcp4Renewing state and to contact the
server that originally issued the network address. No packet is
associated with this event.

Dhcp4EnterRebindingIt is time to enter the Dhcp4Rebinding state and to contact
any server. No packet is associated with this event.

Dhcp4AddressLost The configured IP address was lost either because the lease has
expired, the user released the configuration, or a DHCPNAK
packet was received in the Dhcp4Renewing or
Dhcp4Rebinding state. No packet is associated with this
event.

Dhcp4Fail The DHCP process failed because a DHCPNAK packet was
received or the user aborted the DHCP process at a time when the
configuration was not available yet. No packet is associated with
this event.
1572 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
//***
// EFI_DHCP4_HEADER
//***
#pragma pack(1)
typedef struct{
 UINT8 OpCode;
 UINT8 HwType;
 UINT8 HwAddrLen;
 UINT8 Hops;
 UINT32 Xid;
 UINT16 Seconds;
 UINT16 Reserved;
 EFI_IPv4_ADDRESS ClientAddr;
 EFI_IPv4_ADDRESS YourAddr;
 EFI_IPv4_ADDRESS ServerAddr;
 EFI_IPv4_ADDRESS GatewayAddr;
 UINT8 ClientHwAddr[16];
 CHAR8 ServerName[64];
 CHAR8 BootFileName[128];
} EFI_DHCP4_HEADER;
#pragma pack()

OpCode Message type. 1 = BOOTREQUEST, 2 = BOOTREPLY.

HwType Hardware address type.

HwAddrLen Hardware address length.

Hops Maximum number of hops (routers, gateways, or relay agents)
that this DHCP packet can go through before it is dropped.

Xid DHCP transaction ID.

Seconds Number of seconds that have elapsed since the client began
address acquisition or the renewal process.

Reserved Reserved for future use.

ClientAddr Client IP address from the client.

YourAddr Client IP address from the server.

ServerAddr IP address of the next server in bootstrap.

GatewayAddr Relay agent IP address.

ClientHwAddr Client hardware address.

ServerName Optional server host name.

BootFileName Boot file name.

EFI_DHCP4_HEADER describes the semantics of the DHCP packet header. This packet header is
in network byte order.
Version 2.5 April, 2015 1573

Unified Extensible Firmware Interface Specification
//***
// EFI_DHCP4_PACKET_OPTION
//***
#pragma pack(1)
typedef struct {
 UINT8 OpCode;
 UINT8 Length;
 UINT8 Data[1];
} EFI_DHCP4_PACKET_OPTION;
#pragma pack()

OpCode DHCP option code.

Length Length of the DHCP option data. Not present if OpCode is 0 or
255.

Data Start of the DHCP option data. Not present if OpCode is 0 or 255
or if Length is zero.

The DHCP packet option data structure is used to reference option data that is packed in the DHCP
packets. Use caution when accessing multibyte fields because the information in the DHCP packet
may not be properly aligned for the machine architecture.

Status Codes Returned

EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the Dhcp4Init or

Dhcp4InitReboot state, if the original state of this driver

was Dhcp4Stopped, Dhcp4Init,

Dhcp4InitReboot, or Dhcp4Bound and the value of

Dhcp4CfgData was not NULL. Otherwise, the state was left

unchanged.

EFI_ACCESS_DENIED This instance of the EFI DHCPv4 Protocol driver was not in the

Dhcp4Stopped, Dhcp4Init, Dhcp4InitReboot, or

Dhcp4Bound state.

EFI_ACCESS_DENIED Another instance of this EFI DHCPv4 Protocol driver is already in a
valid configured state.

EFI_INVALID_PARAMETER • One or more following conditions are TRUE:

• This is NULL.

• DiscoverTryCount > 0 and DiscoverTimeout is
NULL

• RequestTryCount > 0 and RequestTimeout is
NULL.

• OptionCount >0 and OptionList is NULL.

• ClientAddress is not a valid unicast address.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_DEVICE_ERROR An unexpected system or network error occurred.
1574 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DHCP4_PROTOCOL.Start()

Summary
Starts the DHCP configuration process.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_START) (
 IN EFI_DHCP4_PROTOCOL *This,
 IN EFI_EVENT CompletionEvent OPTIONAL
);

Parameters
This Pointer to the EFI_DHCP4_PROTOCOL instance.

CompletionEvent If not NULL, indicates the event that will be signaled when the
EFI DHCPv4 Protocol driver is transferred into the
Dhcp4Bound state or when the DHCP process is aborted.
EFI_DHCP4_PROTOCOL.GetModeData() can be called to
check the completion status. If NULL,
EFI_DHCP4_PROTOCOL.Start() will wait until the driver
is transferred into the Dhcp4Bound state or the process fails.

Description
The Start() function starts the DHCP configuration process. This function can be called only
when the EFI DHCPv4 Protocol driver is in the Dhcp4Init or Dhcp4InitReboot state.

If the DHCP process completes successfully, the state of the EFI DHCPv4 Protocol driver will be
transferred through Dhcp4Selecting and Dhcp4Requesting to the Dhcp4Bound state. The
CompletionEvent will then be signaled if it is not NULL.

If the process aborts, either by the user or by some unexpected network error, the state is restored to
the Dhcp4Init state. The Start() function can be called again to restart the process.

Refer to RFC 2131 for precise state transitions during this process. At the time when each event
occurs in this process, the callback function that was set by
EFI_DHCP4_PROTOCOL.Configure() will be called and the user can take this opportunity to
control the process.

Status Codes Returned

EFI_SUCCESS The DHCP configuration process has started, or it has completed

when CompletionEvent is NULL.

EFI_NOT_STARTED The EFI DHCPv4 Protocol driver is in the Dhcp4Stopped

state. EFI_DHCP4_PROTOCOL.Configure() needs to

be called.

EFI_INVALID_PARAMETER This is NULL.
Version 2.5 April, 2015 1575

Unified Extensible Firmware Interface Specification
EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_TIMEOUT The DHCP configuration process failed because no response was
received from the server within the specified timeout value.

EFI_ABORTED The user aborted the DHCP process.

EFI_ALREADY_STARTED Some other EFI DHCPv4 Protocol instance already started the
DHCP process.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

EFI_NO_MEDIA There was a media error.
1576 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DHCP4_PROTOCOL.RenewRebind()

Summary
Extends the lease time by sending a request packet.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_RENEW_REBIND) (
 IN EFI_DHCP4_PROTOCOL *This,
 IN BOOLEAN RebindRequest,
 IN EFI_EVENT CompletionEvent OPTIONAL
);

Parameters
This Pointer to the EFI_DHCP4_PROTOCOL instance.

RebindRequest If TRUE, this function broadcasts the request packets and enters
the Dhcp4Rebinding state. Otherwise, it sends a unicast
request packet and enters the Dhcp4Renewing state.

CompletionEvent If not NULL, this event is signaled when the renew/rebind phase
completes or some error occurs.
EFI_DHCP4_PROTOCOL.GetModeData() can be called to
check the completion status. If NULL,
EFI_DHCP4_PROTOCOL.RenewRebind() will busy-wait
until the DHCP process finishes.

Description
The RenewRebind() function is used to manually extend the lease time when the EFI DHCPv4
Protocol driver is in the Dhcp4Bound state and the lease time has not expired yet. This function
will send a request packet to the previously found server (or to any server when RebindRequest
is TRUE) and transfer the state into the Dhcp4Renewing state (or Dhcp4Rebinding when
RebindingRequest is TRUE). When a response is received, the state is returned to
Dhcp4Bound.

If no response is received before the try count is exceeded (the RequestTryCount field that is
specified in EFI_DHCP4_CONFIG_DATA) but before the lease time that was issued by the
previous server expires, the driver will return to the Dhcp4Bound state and the previous
configuration is restored. The outgoing and incoming packets can be captured by the
EFI_DHCP4_CALLBACK function.

Status Codes Returned

EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the

Dhcp4Renewing state or is back to the Dhcp4Bound state.
Version 2.5 April, 2015 1577

Unified Extensible Firmware Interface Specification
EFI_NOT_STARTED The EFI DHCPv4 Protocol driver is in the Dhcp4Stopped

state. EFI_DHCP4_PROTOCOL.Configure()needs to

be called.

EFI_INVALID_PARAMETER This is NULL.

EFI_TIMEOUT There was no response from the server when the try count was
exceeded.

EFI_ACCESS_DENIED The driver is not in the Dhcp4Bound state.

EFI_DEVICE_ERROR An unexpected network or system error occurred.
1578 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DHCP4_PROTOCOL.Release()

Summary
Releases the current address configuration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_RELEASE) (
 IN EFI_DHCP4_PROTOCOL *This
);

Parameters
This Pointer to the EFI_DHCP4_PROTOCOL instance.

Description
The Release() function releases the current configured IP address by doing either of the
following:

• Sending a DHCPRELEASE packet when the EFI DHCPv4 Protocol driver is in the
Dhcp4Bound state

• Setting the previously assigned IP address that was provided with the
EFI_DHCP4_PROTOCOL.Configure() function to 0.0.0.0 when the driver is in
Dhcp4InitReboot state

After a successful call to this function, the EFI DHCPv4 Protocol driver returns to the Dhcp4Init
state and any subsequent incoming packets will be discarded silently.

Status Codes Returned

EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the Dhcp4Init phase.

EFI_INVALID_PARAMETER This is NULL.

EFI_ACCESS_DENIED The EFI DHCPv4 Protocol driver is not in the Dhcp4Bound or

Dhcp4InitReboot state.

EFI_DEVICE_ERROR An unexpected network or system error occurred.
Version 2.5 April, 2015 1579

Unified Extensible Firmware Interface Specification
EFI_DHCP4_PROTOCOL.Stop()

Summary
Stops the DHCP configuration process.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_STOP) (
 IN EFI_DHCP4_PROTOCOL *This
);

Parameters
This Pointer to the EFI_DHCP4_PROTOCOL instance.

Description
The Stop() function is used to stop the DHCP configuration process. After this function is called
successfully, the EFI DHCPv4 Protocol driver is transferred into the Dhcp4Stopped state.
EFI_DHCP4_PROTOCOL.Configure() needs to be called before DHCP configuration process
can be started again. This function can be called when the EFI DHCPv4 Protocol driver is in any
state.

Status Codes Returned

EFI_SUCCESS The EFI DHCPv4 Protocol driver is now in the Dhcp4Stopped

state.

EFI_INVALID_PARAMETER This is NULL.

EFI_NO_MEDIA There was a media error.
1580 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DHCP4_PROTOCOL.Build()

Summary
Builds a DHCP packet, given the options to be appended or deleted or replaced.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_BUILD) (
 IN EFI_DHCP4_PROTOCOL *This,
 IN EFI_DHCP4_PACKET *SeedPacket,
 IN UINT32 DeleteCount,
 IN UINT8 *DeleteList OPTIONAL,
 IN UINT32 AppendCount,
 IN EFI_DHCP4_PACKET_OPTION *AppendList[] OPTIONAL,
 OUT EFI_DHCP4_PACKET **NewPacket
);

Parameters
This Pointer to the EFI_DHCP4_PROTOCOL instance.

SeedPacket Initial packet to be used as a base for building new packet. Type
EFI_DHCP4_PACKET is defined in
EFI_DHCP4_PROTOCOL.GetModeData().

DeleteCount Number of opcodes in the DeleteList.

DeleteList List of opcodes to be deleted from the seed packet. Ignored if
DeleteCount is zero.

AppendCount Number of entries in the OptionList.

AppendList Pointer to a DHCP option list to be appended to SeedPacket.
If SeedPacket also contains options in this list, they are
replaced by new options (except pad option). Ignored if
AppendCount is zero. Type EFI_DHCP4_PACKET_OPTION
is defined in EFI_DHCP4_PROTOCOL.Configure().

NewPacket Pointer to storage for the pointer to the new allocated packet. Use
the EFI Boot Service FreePool() on the resulting pointer
when done with the packet.

Description
The Build() function is used to assemble a new packet from the original packet by replacing or
deleting existing options or appending new options. This function does not change any state of the
EFI DHCPv4 Protocol driver and can be used at any time.

Status Codes Returned

EFI_SUCCESS The new packet was built.
Version 2.5 April, 2015 1581

Unified Extensible Firmware Interface Specification
EFI_OUT_OF_RESOURCES Storage for the new packet could not be allocated.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• SeedPacket is NULL.

• SeedPacket is not a well-formed DHCP packet.

• AppendCount is not zero and AppendList is NULL.

• DeleteCount is not zero and DeleteList is NULL.

• NewPacket is NULL
• Both DeleteCount and AppendCount are zero and
NewPacket is not NULL.
1582 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DHCP4_PROTOCOL.TransmitReceive()

Summary
Transmits a DHCP formatted packet and optionally waits for responses.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_TRANSMIT_RECEIVE) (
 IN EFI_DHCP4_PROTOCOL *This,
 IN EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN *Token
);

Parameters
This Pointer to the EFI_DHCP4_PROTOCOL instance.

Token Pointer to the EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN
structure. Type EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN
is defined in “Related Definitions” below.

Description
The TransmitReceive() function is used to transmit a DHCP packet and optionally wait for
the response from servers. This function does not change the state of the EFI DHCPv4 Protocol
driver and thus can be used at any time.

Related Definitions
//***
// EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN
//***
typedef struct {
 EFI_STATUS Status;
 EFI_EVENT CompletionEvent;
 EFI_IPv4_ADDRESS RemoteAddress;
 UINT16 RemotePort;
 EFI_IPv4_ADDRESS GatewayAddress;
 UINT32 ListenPointCount;
 EFI_DHCP4_LISTEN_POINT *ListenPoints;
 UINT32 TimeoutValue;
 EFI_DHCP4_PACKET *Packet;
 UINT32 ResponseCount;
 EFI_DHCP4_PACKET *ResponseList;
} EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN;

Status The completion status of transmitting and receiving. Possible
values are described in the “Status Codes Returned” table below.
Version 2.5 April, 2015 1583

Unified Extensible Firmware Interface Specification
When CompletionEvent is NULL, this status is the same as
the one returned by the TransmitReceive() function.

CompletionEvent If not NULL, the event that will be signaled when the collection
process completes. If NULL, this function will busy-wait until the
collection process competes.

RemoteAddress Pointer to the server IP address. This address may be a unicast,
multicast, or broadcast address.

RemotePort Server listening port number. If zero, the default server listening
port number (67) will be used.

GatewayAddress Pointer to the gateway address to override the existing setting.

ListenPointCount The number of entries in ListenPoints. If zero, the default
station address and port number 68 are used.

ListenPoints An array of station address and port number pairs that are used as
receiving filters. The first entry is also used as the source address
and source port of the outgoing packet. Type
EFI_DHCP4_LISTEN_POINT is defined below.

TimeoutValue Number of seconds to collect responses. Zero is invalid.

Packet Pointer to the packet to be transmitted. Type
EFI_DHCP4_PACKET is defined in
EFI_DHCP4_PROTOCOL.GetModeData().

ResponseCount Number of received packets.

ResponseList Pointer to the allocated list of received packets. The caller must
use the EFI Boot Service FreePool() when done using the
received packets.

//***
// EFI_DHCP4_LISTEN_POINT
//***
typedef struct {
 EFI_IPv4_ADDRESS ListenAddress;
 EFI_IPv4_ADDRESS SubnetMask;
 UINT16 ListenPort;
} EFI_DHCP4_LISTEN_POINT;

ListenAddress Alternate listening address. It can be a unicast, multicast, or
broadcast address. The TransmitReceive() function will
collect only those packets that are destined to this address.

SubnetMask The subnet mask of above listening unicast/broadcast IP address.
Ignored if ListenAddress is a multicast address. If it is
0.0.0.0, the subnet mask is automatically computed from
unicast ListenAddress. Cannot be 0.0.0.0 if
ListenAddress is direct broadcast address on subnet.
1584 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
ListenPort Alternate station source (or listening) port number. If zero, then
the default station port number (68) will be used.

Status Codes Returned

EFI_SUCCESS The packet was successfully queued for transmission.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token.RemoteAddress is zero.

• Token.Packet is NULL.

• Token.Packet is not a well-formed DHCP packet.

• The transaction ID in Token.Packet is in use by another
DHCP process.

EFI_NOT_READY The previous call to this function has not finished yet. Try to call this
function after collection process completes.

EFI_NO_MAPPING The default station address is not available yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_UNSUPPORTED The implementation doesn’t support this function

EFI_NO_MEDIA There was a media error.

Others Some other unexpected error occurred.
Version 2.5 April, 2015 1585

Unified Extensible Firmware Interface Specification
EFI_DHCP4_PROTOCOL.Parse()

Summary
Parses the packed DHCP option data.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP4_PARSE) (
 IN EFI_DHCP4_PROTOCOL *This,
 IN EFI_DHCP4_PACKET *Packet
 IN OUT UINT32 *OptionCount,
 IN OUT EFI_DHCP4_PACKET_OPTION *PacketOptionList[] OPTIONAL
);

Parameters
This Pointer to the EFI_DHCP4_PROTOCOL instance.

Packet Pointer to packet to be parsed. Type EFI_DHCP4_PACKET is
defined in EFI_DHCP4_PROTOCOL.GetModeData().

OptionCount On input, the number of entries in the PacketOptionList.
On output, the number of entries that were written into the
PacketOptionList.

PacketOptionList
List of packet option entries to be filled in. End option or pad
options are not included. Type EFI_DHCP4_PACKET_OPTION
is defined in EFI_DHCP4_PROTOCOL.Configure().

Description
The Parse() function is used to retrieve the option list from a DHCP packet. If *OptionCount
isn’t zero, and there is enough space for all the DHCP options in the Packet, each element of
PacketOptionList is set to point to somewhere in the Packet->Dhcp4.Option where a
new DHCP option begins. If RFC3396 is supported, the caller should reassemble the parsed DHCP
options to get the finial result. If *OptionCount is zero or there isn’t enough space for all of them,
the number of DHCP options in the Packet is returned in OptionCount.

Status Codes Returned

EFI_SUCCESS The packet was successfully parsed.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Packet is NULL.

• Packet is not a well-formed DHCP packet.

• OptionCount is NULL.
1586 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
28.3 EFI DHCP6 Protocol
This section provides a detailed description of the EFI_DHCP6_PROTOCOL and the
EFI_DHCP6_SERVICE_BINDING_PROTOCOL.

28.3.1 DHCP6 Service Binding Protocol

EFI_DHCP6_SERVICE_BINDING_PROTOCOL

Summary
The EFI DHCPv6 Service Binding Protocol is used to locate communication devices that are
supported by an EFI DHCPv6 Protocol driver and to create and destroy EFI DHCPv6 Protocol child
instances that can use the underlying communications device.

GUID
#define EFI_DHCP6_SERVICE_BINDING_PROTOCOL_GUID \
 {0x9fb9a8a1,0x2f4a,0x43a6,\
 {0x88,0x9c,0xd0,0xf7,0xb6,0xc4,0x7a,0xd5}}

Description
A network application or driver that requires basic DHCPv6 services can use one of the protocol
handler services, such as BS->LocateHandleBuffer(), to search for devices that publish an
EFI DHCPv6 Service Binding Protocol GUID. Each device with a published EFI DHCPv6 Service
Binding Protocol GUID supports the EFI DHCPv6 Protocol and may be available for use.

After a successful call to the
EFI_DHCP6_SERVICE_BINDING_PROTOCOL.CreateChild() function, the newly created
EFI DHCPv6 Protocol child instance is ready to be used by a network application or driver.

Before a network application or driver terminates execution, every successful call to the
EFI_DHCP6_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_DHCP6_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

EFI_BUFFER_TOO_SMALL One or more of the following conditions is TRUE:

• *OptionCount is smaller than the number of options that
were found in the Packet.

• PacketOptionList is NULL.

EFI_OUT_OF_RESOURCE The packet is failed to parse because of resource shortage.
Version 2.5 April, 2015 1587

Unified Extensible Firmware Interface Specification
28.3.2 DHCP6 Protocol

EFI_DHCP6_PROTOCOL

Summary
The EFI DHCPv6 Protocol is used to get IPv6 addresses and other configuration parameters from
DHCPv6 servers.

GUID
#define EFI_DHCP6_PROTOCOL_GUID \
 {0x87c8bad7,0x595,0x4053,\
 {0x82,0x97,0xde,0xde,0x39,0x5f,0x5d,0x5b}}

Protocol Interface Structure
typedef struct _EFI_DHCP6_PROTOCOL {
 EFI_DHCP6_GET_MODE_DATA GetModeData;
 EFI_DHCP6_CONFIGURE Configure;
 EFI_DHCP6_START Start;
 EFI_DHCP6_INFO_REQUEST InfoRequest;
 EFI_DHCP6_RENEW_REBIND RenewRebind;
 EFI_DHCP6_DECLINE Decline;
 EFI_DHCP6_RELEASE Release;
 EFI_DHCP6_STOP Stop;
 EFI_DHCP6_PARSE Parse;
} EFI_DHCP6_PROTOCOL;

Parameters
GetModeData

Get the current operating mode data and configuration data for the EFI DHCPv6
Protocol instance. See the GetModeData() function description.

Configure

Initialize or clean up the configuration data for the EFI DHCPv6 Protocol instance.
See the Configure() function description.

Start

Start the DHCPv6 S.A.R.R process. See the Start() function description.

InfoRequest

Request configuration parameters without the assignment of any IPv6 addresses to the
client. See the InfoRequest() function description.

RenewRebind

Tries to manually extend the valid and preferred lifetimes for the IPv6 addresses of the
configured IA by sending Renew or Rebind packet. See the RenewRebind()
function description.
1588 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
Decline

Inform that one or more addresses assigned by a DHCPv6 server are already in use by
another node. See the Decline() function description.

Release

Release one or more addresses associated with the configured IA. See the
Release() function description.

Stop

Stop the DHCPv6 S.A.R.R process. See the Stop() function description.

Parse

Parses the option data in the DHCPv6 packet. See the Parse() function description.

Description
The EFI DHCPv6 Protocol is used to get IPv6 addresses and other configuration parameters from
DHCPv6 servers.

Note: Byte Order: All the IPv6 addresses that are described in EFI_DHCP6_PROTOCOL are stored in
network byte order. Both incoming and outgoing DHCPv6 packets are also in network byte
order. All other parameters that are defined in functions or data structures are stored in host byte
order
Version 2.5 April, 2015 1589

Unified Extensible Firmware Interface Specification
EFI_DHCP6_PROTOCOL.GetModeData ()

Summary
Retrieve the current operating mode data and configuration data for the EFI DHCPv6 Protocol
instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP6_GET_MODE_DATA)(
 IN EFI_DHCP6_PROTOCOL *This,
 OUT EFI_DHCP6_MODE_DATA *Dhcp6ModeData OPTIONAL,
 OUT EFI_DHCP6_CONFIG_DATA *Dhcp6ConfigData OPTIONAL
);

Parameters
This

Pointer to the EFI_DHCP6_PROTOCOL instance.

Dhcp6ModeData

Pointer to the DHCPv6 mode data structure. The caller is responsible for freeing this
structure and each reference buffer. Type EFI_DHCP6_MODE_DATA is defined in
“Related Definitions” below.

Dhcp6ConfigData

Pointer to the DHCPv6 configuration data structure. The caller is responsible for
freeing this structure and each reference buffer. Type EFI_DHCP6_CONFIG_DATA
is defined in EFI_DHCP6_PROTOCOL.Configure().

Description
Retrieve the current operating mode data and configuration data for the EFI DHCPv6 Protocol
instance.

Related Definitions
//**
// EFI_DHCP6_MODE_DATA
//**
typedef struct {
 EFI_DHCP6_DUID *ClientId;
 EFI_DHCP6_IA *Ia;
} EFI_DHCP6_MODE_DATA;

ClientId

Pointer to the DHCPv6 unique identifier. The caller is responsible for freeing this
buffer. Type EFI_DHCP6_DUID is defined below.
1590 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
Ia

Pointer to the configured IA of current instance. The caller can free this buffer after
using it. Type EFI_DHCP6_IA is defined below.

//**
// EFI_DHCP6_DUID
//**
typedef struct {
 UINT16 Length;
 UINT8 Duid[1];
} EFI_DHCP6_DUID;

Length

Length of DUID in octets.

Duid

Array of DUID octets.

The EFI_DHCP6_DUID structure is to specify DHCPv6 unique identifier for either DHCPv6
client or DHCPv6 server. The DUID-UUID shall be used for all transactions.

//**
// EFI_DHCP6_IA
//**
typedef struct {
 EFI_DHCP6_IA_DESCRIPTOR Descriptor;
 EFI_DHCP6_STATE State;
 EFI_DHCP6_PACKACT *ReplyPacket;
 UINT32 IaAddressCount;
 EFI_DHCP6_IA_ADDRESS IaAddress[1];
} EFI_DHCP6_IA;

Descriptor

The descriptor for IA. Type EFI_DHCP6_IA_DESCRIPTOR is defined below.

State

The state of the configured IA. Type EFI_DHCP6_STATE is defined below.

ReplyPacket

Pointer to the cached latest Reply packet. May be NULL if no packet is cached.

IaAddressCount

Number of IPv6 addresses of the configured IA.
Version 2.5 April, 2015 1591

Unified Extensible Firmware Interface Specification
IaAddress

List of the IPv6 addresses of the configured IA. When the state of the configured IA is
in Dhcp6Bound, Dhcp6Renewing and Dhcp6Rebinding, the IPv6 addresses
are usable. Type EFI_DHCP6_IA_ADDRESS is defined below.

//**
// EFI_DHCP6_IA_DESCRIPTOR
//**
typedef struct {
 UINT16 Type;
 UINT32 IaId;
} EFI_DHCP6_IA_DESCRIPTOR;

Type

Type for an IA.

IaId

The identifier for an IA.

#define EFI_DHCP6_IA_TYPE_NA 3
#define EFI_DHCP6_IA_TYPE_TA 4

EFI_DHCP6_IA_TYPE_NA

An IA which carries assigned not temporary address.

EFI_DHCP6_IA_TYPE_TA

An IA which carries assigned temporary address.
1592 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
//**
// EFI_DHCP6_STATE
//**
typedef enum {
 Dhcp6Init = 0x0,
 Dhcp6Selecting = 0x1,
 Dhcp6Requesting = 0x2,
 Dhcp6Declining = 0x3,
 Dhcp6Confirming = 0x4,
 Dhcp6Releasing = 0x5,
 Dhcp6Bound = 0x6,
 Dhcp6Renewing = 0x7,
 Dhcp6Rebinding = 0x8
} EFI_DHCP6_STATE;

Table 193 describes the fields in the above enumeration.

Table 193. Field Descriptions

Dhcp6Init The EFI DHCPv6 Protocol instance is configured, and start() needs
to be called

Dhcp6Selecting A Solicit packet is sent out to discover DHCPv6 server, and the EFI
DHCPv6 Protocol instance is collecting Advertise packets.

Dhcp6Requesting A Request is sent out to the DHCPv6 server, and the EFI DHCPv6
Protocol instance is waiting for Reply packet.

Dhcp6Declining A Decline packet is sent out to indicate one or more addresses of the
configured IA are in use by another node, and the EFI DHCPv6
Protocol instance is waiting for Reply packet.

Dhcp6Confirming A Confirm packet is sent out to confirm the IPv6 addresses of the
configured IA, and the EFI DHCPv6 Protocol instance is waiting for
Reply packet

Dhcp6Releasing A Release packet is sent out to release one or more IPv6 addresses of
the configured IA, and the EFI DHCPv6 Protocol instance is waiting for
Reply packet.

Dhcp6Bound The DHCPv6 S.A.R.R process is completed for the configured IA.

Dhcp6Renewing A Renew packet is sent out to extend lifetime for the IPv6 addresses of
the configured IA, and the EFI DHCPv6 Protocol instance is waiting for
Reply packet.

Dhcp6Rebinding A Rebind packet is sent out to extend lifetime for the IPv6 addresses of
the configured IA, and the EFI DHCPv6 Protocol instance is waiting for
Reply packet.
Version 2.5 April, 2015 1593

Unified Extensible Firmware Interface Specification
 //**
// EFI_DHCP6_IA_ADDRESS
//**
typedef struct {
 EFI_IPv6_ADDRESS IpAddress;
 UINT32 PreferredLifetime;
 UINT32 ValidLifetime;
} EFI_DHCP6_IA_ADDRESS;

IpAddress

The IPv6 address.

PreferredLifetime

The preferred lifetime in unit of seconds for the IPv6 address.

ValidLifetime

The valid lifetime in unit of seconds for the IPv6 address.

The EFI_DHCP6_IA_ADDRESS structure is specify IPv6 address associated with an IA.

//***
// EFI_DHCP6_PACKET
//***
#pragma pack(1)
typedef struct {
 UINT32 Size;
 UINT32 Length;
 struct{
 EFI_DHCP6_HEADER Header;
 UINT8 Option[1];
 } Dhcp6;
} EFI_DHCP6_PACKET;
#pragma pack()

Size

Size of the EFI_DHCP6_PACKET buffer.

Length

Length of the EFI_DHCP6_PACKET from the first byte of the Header field to the last
byte of the Option[] field.

Header

The DHCPv6 packet header.

Option

Start of the DHCPv6 packed option data.

EFI_DHCP6_PACKET defines the format of the DHCPv6 packet. See RFC 3315 for more
information.
1594 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
//***
// EFI_DHCP6_HEADER
//***
#pragma pack(1)
typedef struct{
 UINT32 TransactionId:24;
 UINT32 MessageType:8;
} EFI_DHCP6_HEADER;
#pragma pack()

TransactionId

The DHCPv6 transaction ID.

MessageType

The DHCPv6 message type.

EFI_DHCP6_HEADER defines the format of the DHCPv6 header. See RFC 3315 for more informa-
tion.

Status Codes Returned

EFI_SUCCESS The mode data was returned.

EFI_ACCESS_DENIED The EFI DHCPv6 Protocol instance has not been configured when

Dhcp6ConfigData is not NULL.

EFI_INVALID_PARAMETER One or more following conditions are TRUE:

• This is NULL.

• Both Dhcp6ConfigData and Dhcp6ModeData are

NULL.
Version 2.5 April, 2015 1595

Unified Extensible Firmware Interface Specification
EFI_DHCP6_PROTOCOL.Configure ()

Summary
Initialize or clean up the configuration data for the EFI DHCPv6 Protocol instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP6_CONFIGURE) (
 IN EFI_DHCP6_PROTOCOL *This,
 IN EFI_DHCP6_CONFIG_DATA *Dhcp6CfgData OPTIONAL
);

Parameters
This

Pointer to the EFI_DHCP6_PROTOCOL instance.

Dhcp6CfgData

Pointer to the DHCPv6 configuration data structure. Type
EFI_DHCP6_CONFIG_DATA is defined in “Related Definitions” below.

Description
The Configure() function is used to initialize or clean up the configuration data of the EFI
DHCPv6 Protocol instance.

• When Dhcp6CfgData is not NULL and Configure() is called successfully, the
configuration data will be initialized in the EFI DHCPv6 Protocol instance and the state of the
configured IA will be transferred into Dhcp6Init.

• When Dhcp6CfgData is NULL and Configure() is called successfully, the configuration
data will be cleaned up and no IA will be associated with the EFI DHCPv6 Protocol instance.

To update the configuration data for an EFI DCHPv6 Protocol instance, the original data must be
cleaned up before setting the new configuration data.
1596 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
Related Definitions
//**
// EFI_DHCP6_CONFIG_DATA
//**
typedef struct {
 EFI_DHCP6_CALLBACK Dhcp6Callback;
 VOID *CallbackContext;
 UINT32 OptionCount;
 EFI_DHCP6_PACKET_OPTION **OptionList;
 EFI_DHCP6_IA_DESCRIPTOR IaDescriptor;
 EFI_EVENT IaInfoEvent;
 BOOLEAN ReconfigureAccept;
 BOOLEAN RapidCommit;
 EFI_DHCP6_RETRANSMISSION *SolicitRetransmission;
} EFI_DHCP6_CONFIG_DATA;

Dhcp6Callback

The callback function is to intercept various events that occur in the DHCPv6 S.A.R.R
process. Set to NULL to ignore all those events. Type EFI_DHCP6_CALLBACK is
defined below.

CallbackContext

Pointer to the context that will be passed to Dhcp6Callback.

OptionCount

Number of the DHCPv6 options in the OptionList.

OptionList

List of the DHCPv6 options to be included in Solicit and Request packet. The buffer
can be freed after EFI_DHCP6_PROTOCOL.Configure() returns. Ignored if
OptionCount is zero. OptionList should not contain Client Identifier option
and any IA option, which will be appended by EFI DHCPv6 Protocol instance
automatically. Type EFI_DHCP6_PACKET_OPTION is defined below.

IaDescriptor

The descriptor for the IA of the EFI DHCPv6 Protocol instance. Type
EFI_DHCP6_IA_DESCRIPTOR is defined below.

IaInfoEvent

If not NULL, the event will be signaled when any IPv6 address information of the
configured IA is updated, including IPv6 address, preferred lifetime and valid
lifetime, or the DHCPv6 S.A.R.R process fails. Otherwise, Start(),
renewrebind(), decline(), release() and stop() will be blocking
operations, and they will wait for the exchange process completion or failure.
Version 2.5 April, 2015 1597

Unified Extensible Firmware Interface Specification
ReconfigureAccept

If TRUE, the EFI DHCPv6 Protocol instance is willing to accept Reconfigure packet.
Otherwise, it will ignore it. Reconfigure Accept option can not be specified through
OptionList parameter.

RapidCommit

If TRUE, the EFI DHCPv6 Protocol instance will send Solicit packet with Rapid
Commit option. Otherwise, Rapid Commit option will not be included in Solicit
packet. Rapid Commit option can not be specified through OptionList parameter.

SolicitRetransmission

Parameter to control Solicit packet retransmission behavior. Type
EFI_DHCP6_RETRANSMISSION is defined in “Related Definition” below. The
buffer can be freed after EFI_DHCP6_PROTOCOL.Configure() returns.

//**
// EFI_DHCP6_CALLBACK
//**
typedef EFI_STATUS (EFIAPI *EFI_DHCP6_CALLBACK)(
 IN EFI_DHCP6_PROTOCOL *This,
 IN VOID *Context,
 IN EFI_DHCP6_STATE CurrentState,
 IN EFI_DHCP6_EVENT Dhcp6Event,
 IN EFI_DHCP6_PACKET *Packet,
 OUT EFI_DHCP6_PACKET **NewPacket OPTIONAL
);

This

Pointer to the EFI_DHCP6_PROTOCOL instance that is used to configure this
callback function.

Context

Pointer to the context that is initialized by
EFI_DHCP6_PROTOCOL.Configure().

CurrentState

The current state of the configured IA. Type EFI_DHCP6_STATE is defined in
EFI_DHCP6_PROTOCOL.GetModeData().

Dhcp6Event

The event that occurs in the current state, which usually means a state transition. Type
EFI_DHCP6_EVENT is defined below.

Packet

Pointer to the DHCPv6 packet that is about to be sent or has been received. The EFI
DHCPv6 Protocol instance is responsible for freeing the buffer. Type
EFI_DHCP6_PACKET is defined in EFI_DHCP6_PROTOCOL.GetModeData().
1598 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
NewPacket

Pointer to the new DHCPv6 packet to overwrite the Packet. NewPacket can not
share the buffer with Packet. If *NewPacket is not NULL, the EFI DHCPv6
Protocol instance is responsible for freeing the buffer.

EFI_DHCP6_CALLBACK is provided by the consumer of the EFI DHCPv6 Protocol instance to
intercept events that occurs in the DHCPv6 S.A.R.R process. There are two possible returned values,
which are described in the following table.

Table 194. Callback Return Values

//***
// EFI_DHCP6_PACKET_OPTION
//***
#pragma pack(1)
typedef struct {
 UINT16 OpCode;
 UINT16 OpLen;
 UINT8 Data[1];
} EFI_DHCP6_PACKET_OPTION;
#pragma pack()

OpCode

The DHCPv6 option code, stored in network order.

OpLen

Length of the DHCPv6 option data, stored in network order. From the first byte to the
last byte of the Data field.

Data

The data for the DHCPv6 option.

EFI_DHCP6_PACKET_OPTION defines the format of the DHCPv6 option, stored in network
order. See RFC 3315 for more information. This data structure is used to reference option data that is
packed in the DHCPv6 packet.

EFI_SUCCESS Tell the EFI DHCPv6 Protocol instance to continue
the DHCPv6 S.A.R.R process.

EFI_ABORTED Tell the EFI DHCPv6 Protocol instance to abort the
DHCPv6 S.A.R.R process, and the state of the

configured IA will be transferred to Dhcp6Init.
Version 2.5 April, 2015 1599

Unified Extensible Firmware Interface Specification
//**
// EFI_DHCP6_EVENT
//**
typedef enum {
 Dhcp6SendSolicit = 0x0,
 Dhcp6RcvdAdvertise = 0x1,
 Dhcp6SelectAdvertise = 0x2,
 Dhcp6SendRequest = 0x3,
 Dhcp6RcvdReply = 0x4,
 Dhcp6RcvdReconfigure = 0x5,
 Dhcp6SendDecline = 0x6,
 Dhcp6SendConfirm = 0x7,
 Dhcp6SendRelease = 0x8,
 Dhcp6SendRenew = 0x9,
 Dhcp6SendRebind = 0xa
} EFI_DHCP6_EVENT;

Dhcp6SendSolicit

A Solicit packet is about to be sent. The packet is passed to Dhcp6Callback and
can be modified or replaced in Dhcp6Callback.

Dhcp6RcvdAdvertise

An Advertise packet is received and will be passed to Dhcp6Callback.

Dhcp6SelectAdvertise

It is time for Dhcp6Callback to determine whether select the default Advertise
packet by RFC 3315 policy, or overwrite it by specific user policy.

Dhcp6SendRequest

A Request packet is about to be sent. The packet is passed to Dhcp6Callback and
can be modified or replaced in Dhcp6Callback.

Dhcp6RcvdReply

A Reply packet is received and will be passed to Dhcp6Callback.

Dhcp6RcvdReconfigure

A Reconfigure packet is received and will be passed to Dhcp6Callback.

Dhcp6SendDecline

A Decline packet is about to be sent. The packet is passed to Dhcp6Callback and
can be modified or replaced in Dhcp6Callback.

Dhcp6SendConfirm

A Confirm packet is about to be sent. The packet is passed to Dhcp6Callback and
can be modified or replaced in Dhcp6Callback.

Dhcp6SendRelease

A Release packet is about to be sent. The packet is passed to Dhcp6Callback and
can be modified or replaced in Dhcp6Callback.
1600 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
Dhcp6SendRenew

A Renew packet is about to be sent. The packet is passed to Dhcp6Callback and
can be modified or replaced in Dhcp6Callback.

Dhcp6SendRebind

A Rebind packet is about to be sent. The packet is passed to Dhcp6Callback and
can be modified or replaced in Dhcp6Callback.

//**
// EFI_DHCP6_RETRANSMISSION
//**
typedef struct {
 UINT32 Irt;
 UINT32 Mrc;
 UINT32 Mrt;
 UINT32 Mrd;
} EFI_DHCP6_RETRANSMISSION;

Irt

Initial retransmission timeout.

Mrc

Maximum retransmission count for one packet. If Mrc is zero, there’s no upper limit
for retransmission count.

Mrt

Maximum retransmission timeout for each retry. It’s the upper bound of the number of
retransmission timeout. If Mrt is zero, there is no upper limit for retransmission
timeout.

Mrd

Maximum retransmission duration for one packet. It’s the upper bound of the numbers
the client may retransmit a message. If Mrd is zero, there’s no upper limit for
retransmission duration.

Status Codes Returned

EFI_SUCCESS The mode data was returned.
Version 2.5 April, 2015 1601

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER One or more following conditions are TRUE
• This is NULL.

• OptionCount > 0 and OptionList is NULL.

• OptionList is not NULL, and Client Id option, Reconfigure
Accept option, Rapid Commit option or any IA option is specified
in the OptionList.

• IaDescriptor. Type is neither
EFI_DHCP6_IA_TYPE_NA nor
EFI_DHCP6_IA_TYPE_NA.

• IaDescriptor is not unique.

• Both IaInfoEvent and SolicitRetransmission
are NULL.

• SolicitRetransmission is not NULL, and both
SolicitRetransmission->Mrc and
SolicitRetransmission->Mrd are zero.

EFI_ACCESS_DENIED The EFI DHCPv6 Protocol instance has been already configured

when Dhcp6CfgData is not NULL.

The EFI DHCPv6 Protocol instance has already started the

DHCPv6 S.A.R.R when Dhcp6CfgData is NULL.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_DEVICE_ERROR An unexpected system or network error occurred.
1602 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DHCP6_PROTOCOL.Start ()

Summary
Start the DHCPv6 S.A.R.R process.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP6_START) (
 IN EFI_DHCP6_PROTOCOL *This
);

Parameters
This

Pointer to the EFI_DHCP6_PROTOCOL instance.

Description
The Start() function starts the DHCPv6 S.A.R.R process. This function can be called only when

the state of the configured IA is in the Dhcp6Init state. If the DHCPv6 S.A.R.R process completes suc-
cessfully, the state of the configured IA will be transferred through Dhcp6Selecting and Dhcp6Re-
questing to Dhcp6Bound state. The update of the IPv6 addresses will be notified through
EFI_DHCP6_CONFIG_DATA.IaInfoEvent. At the time when each event occurs in this process, the
callback function set by EFI_DHCP6_PROTOCOL.Configure() will be called and the user can take
this opportunity to control the process. If EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL, the
Start() function call is a blocking operation. It will return after the DHCPv6 S.A.R.R process com-
pletes or aborted by users. If the process is aborted by system or network error, the state of the configured
IA will be transferred to Dhcp6Init. The Start() function can be called again to restart the process.

Status Codes Returned

EFI_SUCCESS The DHCPv6 S.A.R.R process is completed and at least one IPv6
address has been bound to the configured IA when

EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL.

The DHCPv6 S.A.R.R process is started when

EFI_DHCP6_CONFIG_DATA.IaInfoEvent is not

NULL.

EFI_ACCESS_DENIED The EFI DHCPv6 Child instance hasn’t been configured.

EFI_INVALID_PARAMETER This is NULL.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ALREADY_STARTED The DHCPv6 S.A.R.R process has already started.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

EFI_NO_RESPONSE The DHCPv6 S.A.R.R process failed because of no response.

EFI_NO_MAPPING No IPv6 address has been bound to the configured IA after the
DHCPv6 S.A.R.R process.
Version 2.5 April, 2015 1603

Unified Extensible Firmware Interface Specification
EFI_ABORTED The DHCPv6 S.A.R.R process aborted by user.

EFI_NO_MEDIA There was a media error.
1604 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DHCP6_PROTOCOL.InfoRequest ()

Summary
Request configuration information without the assignment of any IA addresses of the client.

Prototype
Typedef
EFI_STATUS
(EFIAPI *EFI_DHCP6_INFO_REQUEST) (
 IN EFI_DHCP6_PROTOCOL *This,
 IN BOOLEAN SendClientId,
 IN EFI_DHCP6_PACKET_OPTION *OptionRequest,
 IN UINT32 OptionCount,
 IN EFI_DHCP6_PACKET_OPTION *OptionList[] OPTIONAL,
 IN EFI_DHCP6_RETRANSMISSION *Retransmission,
 IN EFI_EVENT TimeoutEvent OPTIONAL,
 IN EFI_DHCP6_INFO_CALLBACK ReplyCallback,
 IN VOID *CallbackContext OPTIONAL
);

Parameters
This

Pointer to the EFI_DHCP6_PROTOCOL instance.

SendClientId

If TRUE, the EFI DHCPv6 Protocol instance will build Client Identifier option and
include it into Information Request packet. If FALSE, Client Identifier option will not
be included. Client Identifier option can not be specified through OptionList
parameter.

OptionRequest

Pointer to the Option Request option in the Information Request packet. Option
Request option can not be specified through OptionList parameter.

OptionCount

Number of options in OptionList.

OptionList

List of other DHCPv6 options. These options will be appended to the Option Request
option. The caller is responsible for freeing this buffer. Type is defined in
EFI_DHCP6_PROTOCOL.GetModeData().

Retransmission

Parameter to control Information Request packet retransmission behavior. Type
EFI_DHCP6_RETRANSMISSION is defined in “Related Definition” below. The
buffer can be freed after EFI_DHCP6_PROTOCOL.InfoRequest() returns.
Version 2.5 April, 2015 1605

Unified Extensible Firmware Interface Specification
TimeoutEvent

If not NULL, this event is signaled when the information request exchange aborted
because of no response. If NULL, the function call is a blocking operation; and it will
return after the information-request exchange process finish or aborted by users.

ReplyCallback

The callback function is to intercept various events that occur in the Information
Request exchange process. It should not be set to NULL. Type
EFI_DHCP6_INFO_CALLBACK is defined below.

CallbackContext

Pointer to the context that will be passed to ReplyCallback.

Description
The InfoRequest() function is used to request configuration information without the
assignment of any IPv6 address of the client. Client sends out Information Request packet to obtain
the required configuration information, and DHCPv6 server responds with Reply packet containing
the information for the client. The received Reply packet will be passed to the user by
ReplyCallback function. If user returns EFI_NOT_READY from ReplyCallback, the EFI
DHCPv6 Protocol instance will continue to receive other Reply packets unless timeout according to
the Retransmission parameter. Otherwise, the Information Request exchange process will be
finished successfully if user returns EFI_SUCCESS from ReplyCallback.

Related Definitions
//**
// EFI_DHCP6_CALLBACK
//**
typedef EFI_STATUS (EFIAPI *EFI_DHCP6_INFO_CALLBACK)(
 IN EFI_DHCP6_PROTOCOL *This,
 IN VOID *Context,
 IN EFI_DHCP6_PACKET *Packet,
);

This

Pointer to the EFI_DHCP6_PROTOCOL instance that is used to configure this
callback function.

Context

Pointer to the context that is initialized in the
EFI_DHCP6_PROTOCOL.InfoRequest().

Packet

Pointer to Reply packet that has been received. The EFI DHCPv6 Protocol instance is
responsible for freeing the buffer. Type EFI_DHCP6_PACKET is defined in
EFI_DHCP6_PROTOCOL.GetModeData().
1606 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DHCP6_INFO_CALLBACK is provided by the consumer of the EFI DHCPv6 Protocol
instance to intercept events that occurs in the DHCPv6 Information Request exchange process.
There are three possible returned values, which are described in the following table.

Status Codes Returned

EFI_SUCCESS Tell the EFI DHCPv6 Protocol instance to finish
Information Request exchange process.

EFI_NOT_READY Tell the EFI DHCPv6 Protocol instance to continue
Information Request exchange process.

EFI_ABORTED Tell the EFI DHCPv6 Protocol instance to abort the
Information Request exchange process

EFI_SUCCESS The DHCPv6 information request exchange process completed

when TimeoutEvent is NULL.

Information Request packet has been sent to DHCPv6 server when

TimeoutEvent is not NULL.

EFI_INVALID_PARAMETER One or more following conditions are TRUE:

• This is NULL.

• OptionRequest is NULL or OptionRequest-
>OpCode is invalid.

• OptionCount > 0 and OptionList is NULL.
• OptionList is not NULL, and Client Identify option or

Option Request option is specified in the OptionList.

• Retransmission is NULL.

• Both Retransmission->Mrc and
Retransmission->Mrd are zero.

• ReplyCallback is NULL.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

EFI_NO_RESPONSE The DHCPv6 information request exchange process failed
because of no response, or not all requested-options are
responded by DHCPv6 servers when Timeout happened.

EFI_ABORTED The DHCPv6 information request exchange process aborted by
user.
Version 2.5 April, 2015 1607

Unified Extensible Firmware Interface Specification
EFI_DHCP6_PROTOCOL.RenewRebind ()

Summary
Manually extend the valid and preferred lifetimes for the IPv6 addresses of the configured IA and
update other configuration parameters by sending Renew or Rebind packet.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP6_RENEW_REBIND) (
 IN EFI_DHCP6_PROTOCOL *This,
 IN BOOLEAN RebindRequest
);

Parameters
This

Pointer to the EFI_DHCP6_PROTOCOL instance.

RebindRequest

If TRUE, it will send Rebind packet and enter the Dhcp6Rebinding state.
Otherwise, it will send Renew packet and enter the Dhcp6Renewing state.

Description
The RenewRebind() function is used to manually extend the valid and preferred lifetimes for the
IPv6 addresses of the configured IA and update other configuration parameters by sending Renew or
Rebind packet.

• When RebindRequest is FALSE and the state of the configured IA is Dhcp6Bound, it
will send Renew packet to the previously DHCPv6 server and transfer the state of the configured
IA to Dhcp6Renewing. If valid Reply packet received, the state transfers to Dhcp6Bound
and the valid and preferred timer restarts. If fails, the state transfers to Dhcp6Bound but the
timer continues.

• When RebindRequest is TRUE and the state of the configured IA is Dhcp6Bound, it will
send Rebind packet. If valid Reply packet received, the state transfers to Dhcp6Bound and the
valid and preferred timer restarts. If fails, the state transfers to Dhcp6Init and the IA can’t be
used.
1608 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
Status Codes Returned

EFI_SUCCESS The DHCPv6 renew/rebind exchange process has completed and at

least one IPv6 address of the configured IA has been bound again when

EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL.

The EFI DHCPv6 Protocol instance has sent Renew or Rebind packet

when EFI_DHCP6_CONFIG_DATA.IaInfoEvent is not NULL.

EFI_ACCESS_DENIED The EFI DHCPv6 Child instance hasn’t been configured, or the state of

the configured IA is not in Dhcp6Bound.

EFI_ALREADY_STARTED The state of the configured IA has already entered Dhcp6Renewing

when RebindRequest is FALSE.

The state of the configured IA has already entered Dhcp6Rebinding

when RebindRequest is TRUE.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

EFI_NO_RESPONSE The DHCPv6 renew/rebind exchange process failed because of no

response.

EFI_NO_MAPPING No IPv6 address has been bound to the configured IA after the DHCPv6

renew/rebind exchange process.

EFI_ABORTED The DHCPv6 renew/rebind exchange process aborted by user.
Version 2.5 April, 2015 1609

Unified Extensible Firmware Interface Specification
EFI_DHCP6_PROTOCOL.Decline ()

Summary

Inform that one or more IPv6 addresses assigned by a server are already in use by another node.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP6_DECLINE) (
 IN EFI_DHCP6_PROTOCOL *This,
 IN UINT32 AddressCount,
 IN EFI_IPv6_ADDRESS *Addresses
);

Parameters
This

Pointer to the EFI_DHCP6_PROTOCOL instance.

AddressCount

Number of declining IPv6 addresses.

Addresses

Pointer to the buffer stored all the declining IPv6 addresses.

Description
The Decline() function is used to manually decline the assignment of IPv6 addresses, which
have been already used by another node. If all IPv6 addresses of the configured IA are declined
through this function, the state of the IA will switch through Dhcp6Declining to Dhcp6Init,
otherwise, the state of the IA will restore to Dhcp6Bound after the declining process. The
Decline() can only be called when the IA is in Dhcp6Bound state. If the EFI_DHCP6_CON-
FIG_DATA.IaInfoEvent is NULL, this function is a blocking operation. It will return after the
declining process finishes, or aborted by user.

Status Codes Returned

EFI_SUCCESS The DHCPv6 decline exchange process has completed when

EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL.

The EFI DHCPv6 Protocol instance has sent Decline packet when

EFI_DHCP6_CONFIG_DATA.IaInfoEvent is not

NULL.

EFI_INVALID_PARAMETER One or more following conditions are TRUE
• This is NULL.

• AddressCount is zero or Addresses is NULL.

EFI_NOT_FOUND Any specified IPv6 address is not correlated with the configured IA
for this instance.
1610 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_ACCESS_DENIED The EFI DHCPv6 Child instance hasn’t been configured, or the

state of the configured IA is not in Dhcp6Bound.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

EFI_ABORTED The DHCPv6 decline exchange process aborted by user.
Version 2.5 April, 2015 1611

Unified Extensible Firmware Interface Specification
EFI_DHCP6_PROTOCOL.Release ()

Summary
Release one or more IPv6 addresses associated with the configured IA for current instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP6_RELEASE) (
 IN EFI_DHCP6_PROTOCOL *This,
 IN UINT32 AddressCount,
 IN EFI_IPv6_ADDRESS *Addresses
);

Parameters
This

Pointer to the EFI_DHCP6_PROTOCOL instance.

AddressCount

Number of releasing IPv6 addresses.

Addresses

Pointer to the buffer stored all the releasing IPv6 addresses. Ignored if
AddressCount is zero.

Description

The Release() function is used to manually release the one or more IPv6 address. If Address-
Count is zero, it will release all IPv6 addresses of the configured IA. If all IPv6 addresses of the IA
are released through this function, the state of the IA will switch through Dhcp6Releasing to
Dhcp6Init, otherwise, the state of the IA will restore to Dhcp6Bound after the releasing pro-
cess. The Release() can only be called when the IA is in Dhcp6Bound state. If the EFI_DH-
CP6_CONFIG_DATA.IaInfoEvent is NULL, the function is a blocking operation. It will return
after the releasing process finishes, or aborted by user.

Status Codes Returned

EFI_SUCCESS The DHCPv6 release exchange process has completed when

EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL.

The EFI DHCPv6 Protocol instance has sent Release packet when

EFI_DHCP6_CONFIG_DATA.IaInfoEvent is not

NULL.

EFI_INVALID_PARAMETER One or more following conditions are TRUE
• This is NULL.

• AddressCount is not zero and Addresses is NULL.

EFI_NOT_FOUND Any specified IPv6 address is not correlated with the configured IA
for this instance.
1612 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_ACCESS_DENIED The EFI DHCPv6 Child instance hasn’t been configured, or the

state of the configured IA is not in Dhcp6Bound.

EFI_DEVICE_ERROR An unexpected network or system error occurred.

EFI_ABORTED The DHCPv6 release exchange process aborted by user.
Version 2.5 April, 2015 1613

Unified Extensible Firmware Interface Specification
EFI_DHCP6_PROTOCOL.Stop ()

Summary
Stop the DHCPv6 S.A.R.R process.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP6_STOP) (
 IN EFI_DHCP6_PROTOCOL *This
);

Parameters
This

Pointer to the EFI_DHCP6_PROTOCOL instance.

Description

The Stop() function is used to stop the DHCPv6 S.A.R.R process. If this function is called suc-
cessfully, all the IPv6 addresses of the configured IA will be released and the state of the configured
IA will be transferred to Dhcp6Init.

Status Codes Returned

EFI_SUCCESS The DHCPv6 S.A.R.R process has been stopped when

EFI_DHCP6_CONFIG_DATA.IaInfoEvent is NULL.

The EFI DHCPv6 Protocol instance has sent Release packet if
need release or has been stopped if needn’t, when

EFI_DHCP6_CONFIG_DATA.IaInfoEvent is not

NULL.

EFI_INVALID_PARAMETER This is NULL.

EFI_NO_MEDIA There was a media error.
1614 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DHCP6_PROTOCOL.Parse ()

Summary

Parse the option data in the DHCPv6 packet.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DHCP6_PARSE) (
 IN EFI_DHCP6_PROTOCOL *This,
 IN EFI_DHCP6_PACKET *Packet,
 IN OUT UINT32 *OptionCount,
 IN EFI_DHCP6_PACKET_OPTION *PacketOptionList[] OPTIONAL
);

Parameters
This

Pointer to the EFI_DHCP6_PROTOCOL instance.

Packet

\Pointer to packet to be parsed. Type EFI_DHCP6_PACKET is defined in
EFI_DHCP6_PROTOCOL.GetModeData().

OptionCount

On input, the number of entries in the PacketOptionList. On output, the number of
DHCPv6 options in the Packet.

PacketOptionList

List of pointers to the DHCPv6 options in the Packet. Type
EFI_DHCP6_PACKET_OPTION is defined in
EFI_DHCP6_PROTOCOL.Configure(). The OpCode and OpLen in
EFI_DHCP6_PACKET_OPTION are both stored in network byte order.

Description
The Parse() function is used to retrieve the option list in the DHCPv6 packet.
Version 2.5 April, 2015 1615

Unified Extensible Firmware Interface Specification
Status Codes Returned

28.4 EFI DNSv4 Protocol
This section defines the EFI Domain Name Service Binding Protocol interface. It is split into the
following two main sections.

• DNSv4 Service Binding Protocol (DNSv4SB)

• DNSv4 Protocol (DNSv4)

EFI_DNS4_SERVICE_BINDING_PROTOCOL

Summary
The DNSv4SB is used to locate communication devices that are supported by a DNS driver and to
create and destroy instances of the DNS child protocol driver.

The EFI Service Binding Protocol in Section 2.5.8 defines the generic Service Binding Protocol
functions. This section discusses the details that are specific to the DNSv4.

GUID
#define EFI_DNS4_SERVICE_BINDING_PROTOCOL_GUID \
{ 0xb625b186, 0xe063, 0x44f7,\
 { 0x89, 0x5, 0x6a, 0x74, 0xdc, 0x6f, 0x52, 0xb4}}

Description
A network application (or driver) that requires network address resolution can use one of the
protocol handler services, such as BS->LocateHandleBuffer(), to search for devices that
publish a DNSV4SB GUID. Each device with a published DNSV4SB GUID supports DNS and may
be available for use.

After a successful call to the EFI_DNS4_SERVICE_BINDING_PROTOCOL.CreateChild()
function, the child DNS driver instance is in an unconfigured state; it is not ready to resolve
addresses.

EFI_SUCCESS The packet was successfully parsed.

EFI_INVALID_PARAMETER One or more following conditions are TRUE
• This is NULL.

• Packet is NULL.

• Packet is not a well-formed DHCPv6 packet.

• OptionCount is NULL.

• *OptionCount is not zero and PacketOptionList is
NULL.

EFI_BUFFER_TOO_SMALL *OptionCount is smaller than the number of options that were

found in the Packet.
1616 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
All child DNS driver instances that are created by one
EFI_DNS4_SERVICE_BINDING_PROTOCOL instance will share one copy of DNS cache to
improve efficiency.

Before a network application terminates execution, every successful call to the
EFI_DNS4_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_DNS4_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

Note: All the network addresses that are described in EFI_DNS4_PROTOCOL are stored in network
byte order. Both incoming and outgoing DNS packets are also in network byte order. All other
parameters that are defined in functions or data structures are stored in host byte order.

EFI_DNS4_PROTOCOL

Summary

This protocol provides the function to get the host name and address mapping, also provides pass
through interface to retrieve arbitrary information from DNS.

The EFI_DNS4_Protocol is primarily intended to retrieve host addresses using the standard DNS
protocol (RFC1035), and support for this protocol is required. Implementations may optionally also
support local network name resolution methods such as LLMNR (RFC4795) however DNS queries
shall always take precedence, and any use of local network name protocols would be restricted to
cases where resolution using DNS protocol fails.

As stated above, all instances of EFI_DNS4_Protocol will utilize a common DNS cache containing
the successful results of previous queries on any interface. However, it should be noted that every
instance of EFI_DNS4_Protocol is associated with a specific network device or interface, and that
all network actions initiated using a specific instance of the DNS protocol will occur only via use of
the associated network interface. This means, in a system with multiple network interfaces, that a
specific DNS server will often only be reachable using a specific network instance, and therefore the
protocol user will need to take steps to insure the DNS instance associated with the proper network
interface is used. Or alternatively, the caller may perform DNS functions against all interfaces until
successful result is achieved.
Version 2.5 April, 2015 1617

Unified Extensible Firmware Interface Specification
GUID
#define EFI_DNS4_PROTOCOL_GUID \
{ 0xae3d28cc, 0xe05b, 0x4fa1,\
 {0xa0, 0x11, 0x7e, 0xb5, 0x5a, 0x3f, 0x14, 0x1 }}

Protocol Interface Structure
typedef struct _EFI_DNS4_PROTOCOL {
 EFI_DNS4_GET_MODE_DATA GetModeData;
 EFI_DNS4_CONFIGURE Configure;
 EFI_DNS4_HOST_NAME_TO_IP HostNameToIp;
 EFI_DNS4_IP_TO_HOST_NAME IpToHostName;
 EFI_DNS4_GENERAL_LOOKUP GeneralLookUp;
 EFI_DNS4_UPDATE_DNS_CACHE UpdateDnsCache;
 EFI_DNS4_POLL Poll;
 EFI_DNS4_CANCEL Cancel;
} EFI_DNS4_PROTOCOL;
1618 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DNS4_PROTOCOL.GetModeData()

Summary
Retrieve the current mode data of this DNS instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DNS4_GET_MODE_DATA)(
 IN EFI_DNS4_PROTOCOL *This,
 OUT EFI_DNS4_MODE_DATA *DnsModeData
);

Description
 This function is used to retrieve DNS mode data for this DNS instance.

Parameter
This Pointer to EFI_DNS4_PROTOCOL instance.

DnsModeData Pointer to the caller-allocated storage for the
EFI_DNS4_MODE_DATA structure.

Related Definitions
//**
// EFI_DNS4_MODE_DATA
//**
typedef struct {
 EFI_DNS4_CONFIG_DATA DnsConfigData;
 UINT32 DnsServerCount;
 EFI_IPv4_ADDRESS *DnsServerList;
 UINT32 DnsCacheCount;
 EFI_DNS4_CACHE_ENTRY *DnsCacheList;
} EFI_DNS4_MODE_DATA;

DnsConfigData The current configuration data of this instance. Type
EFI_DNS4_CONFIG_DATA is defined below.

DnsServerCount Number of configured DNS servers.

DnsServerList Pointer to common list of addresses of all configured DNS server
used by EFI_DNS4_PROTOCOL instances. List will include
DNS servers configured by this or any other
EFI_DNS4_PROTOCOL instance. The storage for this list is
allocated by the driver publishing this protocol, and must be freed
by the caller.

DnsCacheCount Number of DNS Cache entries. The DNS Cache is shared among
all DNS instances.
Version 2.5 April, 2015 1619

Unified Extensible Firmware Interface Specification
DnsCacheList Pointer to a buffer containing DnsCacheCount DNS Cache
entry structures. The storage for this list is allocated by the driver
publishing this protocol and must be freed by caller.

//**
// EFI_DNS4_CONFIG_DATA
//**
typedef struct {
 UINTN DnsServerListCount;
 EFI_IPv4_ADDRESS *DnsServerList;
 BOOLEAN UseDefaultSetting;
 BOOLEAN EnableDnsCache;
 UINT8 Protocol;
 EFI_IPv4_ADDRESS StationIp;
 EFI_IPv4_ADDRESS SubnetMask;
 UINT16 LocalPort;
 UINT32 RetryCount;
 UINT32 RetryInterval;
} EFI_DNS4_CONFIG_DATA;

DnsServerListCount Count of the DNS servers. When used with GetModeData(),
this field is the count of originally configured servers when
Configure() was called for this instance. When used with
Configure() this is the count of caller-supplied servers. If the
DnsServerListCount is zero, the DNS server configuration
will be retrieved from DHCP server automatically.

DnsServerList Pointer to DNS server list containing DnsServerListCount
entries or NULL if DnsServerListCount is 0. For
Configure(), this will be NULL when there are no caller-
supplied server addresses, and, the DNS instance will retrieve
DNS server from DHCP Server. The provided DNS server list is
recommended to be filled up in the sequence of preference. When
used with GetModeData(), the buffer containing the list will
be allocated by the driver implementing this protocol and must be
freed by the caller. When used with Configure(), the buffer
containing the list will be allocated and released by the caller.

UseDefaultSetting Set to TRUE to use the default IP address/subnet mask and default
routing table.

EnableDnsCache If TRUE, enable DNS cache function for this DNS instance. If
FALSE, all DNS query will not lookup local DNS cache.

Protocol Use the protocol number defined in “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading “ IANA
Protocol Numbers”. Only TCP or UDP are supported, and other
protocol values are invalid. An implementation can choose to
support only UDP, or both TCP and UDP.
1620 April, 2015 Version 2.5

http://www.iana.org/assignments/protocol-numbers
http://www.iana.org/assignments/protocol-numbers

Network Protocols - ARP, DHCP, DNS, HTTP and REST
StationIp If UseDefaultSetting is FALSE indicates the station
address to use.

SubnetMask If UseDefaultSetting is FALSE indicates the subnet mask
to use.

LocalPort Local port number. Set to zero to use the automatically assigned
port number.

RetryCount Retry number if no response received after RetryInterval.

RetryInterval Minimum interval of retry is 2 second. If the retry interval is less
than 2 second, then use the 2 second.

//**
// EFI_DNS4_CACHE_ENTRY //
**
typedef struct {
 CHAR16 *HostName;
 EFI_IPv4_ADDRESS *IpAddress;
 UINT32 Timeout;
} EFI_DNS4_CACHE_ENTRY;

HostName Host name.

IpAddress IP address of this host.

Timeout Time in second unit that this entry will remain in DNS cache. A
value of zero means that this entry is permanent. A nonzero value
will override the existing one if this entry to be added is dynamic
entry. Implementations may set its default timeout value for the
dynamically created DNS cache entry after one DNS resolve
succeeds.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED When DnsConfigData is queried, no configuration data is

available because this instance has not been configured.

EFI_INVALID_PARAMETER This is NULL or DnsModeData is NULL.

EFI_OUT_OF_RESOURCES Failed to allocate needed resources.
Version 2.5 April, 2015 1621

Unified Extensible Firmware Interface Specification
EFI_DNS4_PROTOCOL.Configure()

Summary
Configures this DNS instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DNS4_CONFIGURE)(
 IN EFI_DNS4_PROTOCOL *This,
 IN EFI_DNS4_CONFIG_DATA *DnsConfigData
);

Descriptions
This function is used to configure DNS mode data for this DNS instance.

Parameters
This Pointer to EFI_DNS4_PROTOCOL instance.

DnsConfigData Pointer to caller-allocated buffer containing
EFI_DNS4_CONFIG_DATA structure containing the desired
Configuration data. If NULL, the driver will reinitialize the
protocol instance to the unconfigured state.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_UNSUPPORTED The designated protocol is not supported.

EFI_INVALID_PARAMTER This is NULL.

The StationIp address provided in DnsConfigData is not a

valid unicast.

DnsServerList is NULL while DnsServerListCount

is not ZERO.

DnsServerListCount is ZERO while DnsServerList

is not NULL.

EFI_OUT_OF_RESOURCES The DNS instance data or required space could not be allocated.

EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI DNSv4
Protocol instance is not configured.

EFI_ALREADY_STARTED Second call to Configure()with DnsConfigData. To

reconfigure the instance the caller must call Configure()
with NULL first to return driver to unconfigured state.
1622 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DNS4_PROTOCOL.HostNameToIp()

Summary
Host name to host address translation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DNS4_HOST_NAME_TO_IP) (
 IN EFI_DNS4_PROTOCOL *This,
 IN CHAR16 *HostName,
 IN EFI_DNS4_COMPLETION_TOKEN *Token
);

Parameter
This Pointer to EFI_DNS4_PROTOCOL instance.

Hostname Pointer to buffer containing fully-qualified Domain Name
including Hostname. To resolve successfully, characters within
the FQDN string must be chosen according to the format and
from within the set of ASCII characters authorized by DNS
specifications. Any translation required for reference to domains
or hostnames defined as containing Unicode characters, for
example use of Punycode, must be performed by caller.

Token Pointer to the caller-allocated completion token to return at the
completion of the process to translate host name to host address.
Type EFI_DNS4_COMPLETION_TOKEN is defined in "Related
Definitions" below.
Version 2.5 April, 2015 1623

Unified Extensible Firmware Interface Specification
Related Definition
//**
// EFI_DNS4_COMPLETION_TOKEN
//**
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 UINT32 RetryCount;
 UINT32 RetryInterval;
 union {
 DNS_HOST_TO_ADDR_DATA *H2AData;
 DNS_ADDR_TO_HOST_DATA *A2HData;
 DNS_GENERAL_LOOKUP_DATA *GLookupData;
 } RspData;
} EFI_DNS4_COMPLETION_TOKEN;

Event This Event will be signaled after the Status field is updated
by the EFI DNS protocol driver. The type of Event must be
EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values.

EFI_SUCCESS: The host name to address translation
completed successfully.

EFI_NOT_FOUND: No matching Resource Record (RR) is
found.

EFI_TIMEOUT: No DNS server reachable, or RetryCount was
exhausted without response from all specified DNS servers.

EFI_DEVICE_ERROR: An unexpected system or network
error occurred.

EFI_NO_MEDIA: There was a media error.

RetryCount Retry number if no response received after RetryInterval. If
zero, use the parameter configured through Dns.Configure()
interface.

RetryInterval Minimum interval of retry is 2 second. If the retry interval is less
than 2 second, then use the 2 second. If zero, use the parameter
configured through Dns.Configure() interface.

H2AData When the Token is used for host name to address translation,
H2AData is a pointer to the DNS_HOST_TO_ADDR_DATA.
Type DNS_HOST_TO_ADDR_DATA is defined below.

A2HData When the Token is used for host address to host name translation,
A2HData is a pointer to the DNS_ADDR_TO_HOST_DATA.
Type DNS_ADDR_TO_HOST_DATA is defined below.

GLookupDATA When the Token is used for a general lookup function,
GLookupDATA is a pointer to the
DNS_GENERAL_LOOKUP_DATA. Type
DNS_GENERAL_LOOKUP_DATA is defined below.
1624 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DNS4_COMPLETION_TOKEN structures are used for host name to address translation, host
address to name translation and general lookup operation, the Event, RetryCount and
RetryInterval fields filed must be filled by the EFI DNS4 Protocol Client. After the operation
completes, the EFI DNS4 protocol driver fill in the RspData and Status field and the Event is
signaled.

//**
// DNS_HOST_TO_ADDR_DATA
//**
typedef struct {
 UINT32 IpCount;
 EFI_IPv4_Address *IpList;
} DNS_HOST_TO_ADDR_DATA;

IpCount Number of the returned IP addresses.

IpList Pointer to the all the returned IP addresses.

//**
// DNS_ADDR_TO_HOST_DATA
//**
typedef struct {
 CHAR16 *HostName;
} DNS_ADDR_TO_HOST_DATA;

HostName Pointer to the primary name for this host address. It’s the caller’s
responsibility to free the response memory.

//**
// DNS_GENERAL_LOOKUP_DATA
//**
typedef struct {
 UINTN RRCount;
 DNS_RESOURCE_RECORD *RRList;
} DNS_GENERAL_LOOKUP_DATA;

RRCount Number of returned matching RRs.

RRList Pointer to the all the returned matching RRs. It’s caller
responsibility to free the allocated memory to hold the returned
RRs.
Version 2.5 April, 2015 1625

Unified Extensible Firmware Interface Specification
//***
// DNS_RESOURCE_RECORD
//***
typedef struct {
 CHAR8 *QName;
 UINT16 QType;
 UINT16 QClass;
 UINT32 TTL;
 UINT16 DataLength;
 CHAR8 *RData;
} DNS_RESOURCE_RECORD;

QName The Owner name.

QType The Type Code of this RR.

QClass The CLASS code of this RR.

TTL 32 bit integer which specify the time interval that the resource
record may be cached before the source of the information should
again be consulted. Zero means this RR cannot be cached.

DataLength 16 big integer which specify the length of RData.

RData A string of octets that describe the resource, the format of this
information varies according to QType and QClass difference.

Description
The HostNameToIp ()function is used to translate the host name to host IP address. A type A
query is used to get the one or more IP addresses for this host.

Status Codes Returned

EFI_SUCCESS The operation was queued successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE

This is NULL.

Token is NULL.

Token.Event is.NULL
HostName is NULL. HostName string is unsupported format.

EFI_NO_MAPPING There’s no source address is available for use.

EFI_NOT_STARTED This instance has not been started.
1626 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DNS4_PROTOCOL.IpToHostName()

Summary
IPv4 address to host name translation also known as Reverse DNS lookup.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DNS4_IP_TO_HOST_NAME) (
 IN EFI_DNS4_PROTOCOL *This,
 IN EFI_IPv4_ADDRESS IpAddress,
 IN EFI_DNS4_COMPLETION_TOKEN *Token
);

Parameter
This Pointer to EFI_DNS4_PROTOCOL instance.

IpAddress IP address.

Token Pointer to the caller-allocated completion used token to translate
host address to host name. Type
EFI_DNS4_COMPLETION_TOKEN is defined in "Related
Definitions" of above HostNameToIp().

Description
The IpToHostName () function is used to translate the host address to host name. A type PTR
query is used to get the primary name of the host. Support of this function is optional.

Status Codes Returned

EFI_SUCCESS The operation was queued successfully.

EFI_UNSUPPORTED This function is not supported

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE

This is NULL.

Token is NULL.

Token.Event is.NULL
IpAddress is not valid IP address.

EFI_NO_MAPPING There’s no source address is available for use.

EFI_ALREADY_STARTED This Token is being used in another DNS session.

EFI_OUT_OF_RESOURCES Failed to allocate needed resources.
Version 2.5 April, 2015 1627

Unified Extensible Firmware Interface Specification
EFI_DNS4_PROTOCOL.GeneralLookup()

Summary
Retrieve arbitrary information from the DNS server.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DNS4_GENERAL_LOOKUP) (
 IN EFI_DNS4_PROTOCOL *This,
 IN CHAR8 *QName,
 IN UINT16 QType,
 IN UINT16 QClass,
 IN EFI_DNS4_COMPLETION_TOKEN *Token
);

Description
This GeneralLookup() function retrieves arbitrary information from the DNS. The caller
supplies a QNAME, QTYPE, and QCLASS, and all of the matching RRs are returned. All RR content
(e.g., TTL) was returned. The caller need parse the returned RR to get required information. This
function is optional.

Parameters
This Pointer to EFI_DNS4_PROTOCOL instance.

QName Pointer to Query Name.

QType Query Type.

QClass Query Name.

Token Point to the caller-allocated completion token to retrieve arbitrary
information. Type EFI_DNS4_COMPLETION_TOKEN is
defined in "Related Definitions" of above HostNameToIp ().

Status Codes Returned

EFI_SUCCESS The operation was queued successfully.

EFI_UNSUPPORTED This function is not supported. Or the requested QType is not

supported

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE

This is NULL.

Token is NULL.

Token.Event is.NULL
QName is NULL.

EFI_NO_MAPPING There’s no source address is available for use.

EFI_ALREADY_STARTED This Token is being used in another DNS session.

EFI_OUT_OF_RESOURCES Failed to allocate needed resources.
1628 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DNS4_PROTOCOL.UpdateDnsCache()

Summary
This function is used to update the DNS Cache.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DNS4_UPDATE_DNS_CACHE) (
 IN EFI_DNS4_PROTOCOL *This,
 IN BOOLEAN DeleteFlag,
 IN BOOLEAN Override,
 IN EFI_DNS4_CACHE_ENTRY DnsCacheEntry
);

Parameters
This Pointer to EFI_DNS4_PROTOCOL instance.

DeleteFlag If FALSE, this function is to add one entry to the DNS Cache. If
TRUE, this function will delete matching DNS Cache entry.

Override If TRUE, the matching DNS cache entry will be overwritten with
the supplied parameter. If FALSE, EFI_ACCESS_DENIED will
be returned if the entry to be added is already exists.

DnsCacheEntry Pointer to DNS Cache entry.

Description
The UpdateDnsCache() function is used to add/delete/modify DNS cache entry. DNS cache can
be normally dynamically updated after the DNS resolve succeeds. This function provided capability
to manually add/delete/modify the DNS cache.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is true:

This is NULL.

DnsCacheEntry.HostName is NULL.

DnsCacheEntry.IpAddress is NULL.

DnsCacheEntry.Timeout is zero.

EFI_ACCESS_DENIED The DNS cache entry already exists and Override is not TRUE.
Version 2.5 April, 2015 1629

Unified Extensible Firmware Interface Specification
EFI_DNS4_PROTOCOL.Poll()

Summary
Polls for incoming data packets and processes outgoing data packets.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DNS4_POLL) (
 IN EFI_DNS4_PROTOCOL *This
);

Parameters
This Pointer to EFI_DNS4_PROTOCOL instance.

Description
The Poll() function can be used by network drivers and applications to increase the rate that
data packets are moved between the communications device and the transmit and receive queues.

In some systems, the periodic timer event in the managed network driver may not poll the
underlying communications device fast enough to transmit and/or receive all data packets without
missing incoming packets or dropping outgoing packets. Drivers and applications that are
experiencing packet loss should try calling the Poll() function more often.

Status Codes Returned

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This EFI DNS Protocol instance has not been started.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
1630 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DNS4_PROTOCOL.Cancel()

Summary
Abort an asynchronous DNS operation, including translation between IP and Host, and general look
up behavior.

Prototype

EFI Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_DNS4_CANCEL) (
 IN EFI_DNS4_PROTOCOL *This,
 IN EFI_DNS4_COMPLETION_TOKEN *Token
);

Parameters
This Pointer to EFI_DNS4_PROTOCOL instance.

Token Pointer to a token that has been issued by
EFI_DNS4_PROTOCOL.HostNameToIp (),
EFI_DNS4_PROTOCOL.IpToHostName() or
EFI_DNS4_PROTOCOL.GeneralLookup(). If NULL, all
pending tokens are aborted.

Description
The Cancel() function is used to abort a pending resolution request. After calling this function,
Token.Status will be set to EFI_ABORTED and then Token.Event will be signaled. If the
token is not in one of the queues, which usually means that the asynchronous operation has
completed, this function will not signal the token and EFI_NOT_FOUND is returned.

Status Codes Returned

28.5 EFI DNSv6 Protocol
This section defines the EFI DNSv6 (Domain Name Service version 6) Protocol. It is split into the
following two main sections.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This EFI DNS4 Protocol instance has not been started.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_FOUND When Token is not NULL, and the asynchronous DNS operation

was not found in the transmit queue. It was either completed or was

not issued by HostNameToIp(), IpToHostName() or

GeneralLookup().
Version 2.5 April, 2015 1631

Unified Extensible Firmware Interface Specification
• DNSv6 Service Binding Protocol (DNSv6SB)

• DNSv6 Protocol (DNSv6)

28.5.1 DNS6 Service Binding Protocol

EFI_DNS6_SERVICE_BINDING_PROTOCOL

Summary

The DNSv6SB is used to locate communication devices that are supported by a DNS driver and to
create and destroy instances of the DNS child protocol driver.

The EFI Service Binding Protocol in Section 2.5.8 defines the generic Service Binding Protocol
functions. This section discusses the details that are specific to the DNSv6.

GUID
#define EFI_DNS6_SERVICE_BINDING_PROTOCOL_GUID \
{ 0x7f1647c8, 0xb76e, 0x44b2,\
 { 0xa5, 0x65, 0xf7, 0xf, 0xf1, 0x9c, 0xd1, 0x9e}}

Description
A network application (or driver) that requires network address resolution can use one of the
protocol handler services, such as BS->LocateHandleBuffer(), to search for devices that
publish a DNSv6SB GUID. Each device with a published DNSv6SB GUID supports DNSv6 and
may be available for use.

After a successful call to the EFI_DNS6_SERVICE_BINDING_PROTOCOL.CreateChild()
function, the child DNS driver instance is in an un-configured state; it is not ready to resolve
addresses.

All child DNS driver instances that are created by one
EFI_DNS6_SERVICE_BINDING_PROTOCOL instance will share one copy of DNS cache to
improve efficiency.

Before a network application terminates execution, every successful call to the
EFI_DNS6_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_DNS6_SERVICE_BINDING_PROTOCOL.DestroyChild()function.

Note: All the network addresses that are described in EFI_DNS6_PROTOCOL are stored in network
byte order. Both incoming and outgoing DNS packets are also in network byte order. All other
parameters that are defined in functions or data structures are stored in host byte order.

28.5.2 DNS6 Protocol

EFI_DNS6_PROTOCOL

Summary
This protocol provides the function to get the host name and address mapping, also provide pass
through interface to retrieve arbitrary information from DNSv6.
1632 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
The EFI_DNS6_Protocol is primarily intended to retrieve host addresses using the standard DNS
protocol (RFC3596), and support for this protocol is required. Implementations may optionally also
support local network name resolution methods such as LLMNR (RFC4795) however DNS queries
shall always take precedence, and any use of local network name protocols would be restricted to
cases where resolution using DNS protocol fails.

As stated above, all instances of EFI_DNS6_Protocol will utilize a common DNS cache containing
the successful results of previous queries on any interface. However, it should be noted that every
instance of EFI_DNS6_Protocol is associated with a specific network device or interface, and that
all network actions initiated using a specific instance of the DNS protocol will occur only via use of
the associated network interface. This means, in a system with multiple network interfaces, that a
specific DNS server will often only be reachable using a specific network instance, and therefore the
protocol user will need to take steps to insure the DNS instance associated with the proper network
interface is used. Or alternatively, the caller may perform DNS functions against all interfaces until
successful result is achieved.

GUID
#define EFI_DNS6_PROTOCOL_GUID \
{ 0xca37bc1f, 0xa327, 0x4ae9,\
 { 0x82, 0x8a, 0x8c, 0x40, 0xd8, 0x50, 0x6a, 0x17 }}

Protocol Interface Structure
typedef struct _EFI_DNS6_PROTOCOL {
 EFI_DNS6_GET_MODE_DATA GetModeData;
 EFI_DNS6_CONFIGURE Configure;
 EFI_DNS6_HOST_NAME_TO_IP HostNameToIp;
 EFI_DNS6_IP_TO_HOST_NAME IpToHostName;
 EFI_DNS6_GENERAL_LOOKUP GeneralLookUp;
 EFI_DNS6_UPDATE_DNS_CACHE UpdateDnsCache;
 EFI_DNS6_POLL Poll;
 EFI_DNS6_CANCEL Cancel;
} EFI_DNS6_PROTOCOL;
Version 2.5 April, 2015 1633

Unified Extensible Firmware Interface Specification
EFI_DNS6_PROTOCOL.GetModeData()

Summary
Retrieve mode data of this DNS instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DNS6_GET_MODE_DATA)(
 IN EFI_DNS6_PROTOCOL *This,
 OUT EFI_DNS6_MODE_DATA *DnsModeData
);

Description
 This function is used to retrieve DNS mode data for this DNS instance.

Parameter
This Pointer to EFI_DNS6_PROTOCOL instance.

DnsModeData Pointer to the caller-allocated storage for the
EFI_DNS6_MODE_DATA data.

Related Definitions
//**
// EFI_DNS6_MODE_DATA
//**
typedef struct {
 EFI_DNS6_CONFIG_DATA DnsConfigData;
 UINT32 DnsServerCount;
 EFI_IPv6_ADDRESS *DnsServerList;
 UINT32 DnsCacheCount;
 EFI_DNS6_CACHE_ENTRY *DnsCacheList;
} EFI_DNS6_MODE_DATA;

DnsConfigData The configuration data of this instance. Type
EFI_DNS6_CONFIG_DATA is defined below.

DnsServerCount Number of configured DNS6 servers.

DnsServerList Pointer to common list of addresses of all configured DNS server
used by EFI_DNS6_PROTOCOL instances. List will include
DNS servers configured by this or any other
EFI_DNS6_PROTOCOL instance. The storage for this list is
allocated by the driver publishing this protocol, and must be freed
by the caller

DnsCacheCount Number of DNS Cache entries. The DNS Cache is shared among
all DNS6 instances.
1634 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
DnsCacheList Pointer to a buffer containing DnsCacheCount DNS Cache
entry structures. The storage for this list is allocated by the driver
publishing this protocol and must be freed by caller.

//**
// EFI_DNS6_CONFIG_DATA
//**
typedef struct {
 BOOLEAN EnableDnsCache;
 UINT8 Protocol;
 EFI_IPv6_ADDRESS StationIp;
 UINT16 LocalPort;
 UINT32 DnsServerCount;
 EFI_IPv6_ADDRESS *DnsServerList;
 UINT32 RetryCount;
 UINT32 RetryInterval;
} EFI_DNS6_CONFIG_DATA;

IsDnsServerAuto If TRUE, the DNS server configuration will be retrieved from
DHCP server. If FALSE, the DNS server configuration will be
manually configured through call of DNSv6.Configure()
interface.

EnableDnsCache If TRUE, enable DNS cache function for this DNS instance. If
FALSE, all DNS query will not lookup local DNS cache.

Protocol Use the protocol number defined in Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading “IANA
Protocol Numbers”. Only TCP or UDP are supported, and other
protocol values are invalid. An implementation can choose to
support only UDP, or both TCP and UDP.

StationIp The local IP address to use. Set to zero to let the underlying IPv6
driver choose a source address. If not zero it must be one of the
configured IP addresses in the underlying IPv6 driver.

DnsServerCount Count of the DNS servers. When used with GetModeData(),
this field is the count of originally configured servers when
Configure() was called for this instance. When used with
Configure() this is the count of caller-supplied servers. If the
DnsServerListCount is zero, the DNS server configuration
will be retrieved from DHCP server automatically.

DnsServerList Pointer to DNS server list containing DnsServerListCount
entries or NULL if DnsServerListCount is 0. For
Configure(), this will be NULL when there are no caller-
supplied server addresses and the DNS instance will retrieve
DNS server from DHCP Server. The provided DNS server list is
recommended to be filled up in the sequence of preference. When
used with GetModeData(), the buffer containing the list will
be allocated by the driver implementing this protocol and must be
freed by the caller. When used with Configure(), the buffer
containing the list will be allocated and released by the caller.
Version 2.5 April, 2015 1635

http://www.iana.org/assignments/protocol-numbers

Unified Extensible Firmware Interface Specification
LocalPort Local port number. Set to zero to use the automatically assigned
port number.

RetryCount Retry number if no response received after RetryInterval.

RetryInterval Minimum interval of retry is 2 second. If the retry interval is less
than 2 second, then use the 2 second.

//**
// EFI_DNS6_CACHE_ENTRY //
**
typedef struct {
 CHAR16 *HostName;
 EFI_IPv6_ADDRESS *IpAddress;
 UINT32 Timeout;
} EFI_DNS6_CACHE_ENTRY;

HostName Host name. This should be interpreted as Unicode characters.

IpAddress IP address of this host.

Timeout Time in second unit that this entry will remain in DNS cache. A
value of zero means that this entry is permanent. A nonzero value
will override the existing one if this entry to be added is dynamic
entry. Implementations may set its default timeout value for the
dynamically created DNS cache entry after one DNS resolve
succeeds.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED When DnsConfigData is queried, no configuration data is

available because this instance has not been configured.

EFI_INVALID_PARAMETER This is NULL or DnsModeData is NULL.

EFI_OUT_OF_RESOURCE Failed to allocate needed resources.
1636 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DNS6_PROTOCOL.Configure()

Summary
Configure this DNS instance

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_DNS6_CONFIGURE)(
 IN EFI_DNS6_PROTOCOL *This,
 IN EFI_DNS6_CONFIG_DATA *DnsConfigData
);

Descriptions
The Configure() function is used to set and change the configuration data for this EFI DNSv6
Protocol driver instance. Reset the DNS instance if DnsConfigData is NULL.

Parameters
This Pointer to EFI_DNS6_PROTOCOL instance.

DnsConfigData Pointer to the configuration data structure. Type
EFI_DNS6_CONFIG_DATA is defined in
EFI_DNS6_PROTOCOL.GetModeData(). All associated
storage to be allocated and released by caller.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMTER This is NULL.

The StationIp address provided in DnsConfigData is not a

valid unicast.

DnsServerList is NULL while DnsServerListCount

is not ZERO.

DnsServerListCount is ZERO while DnsServerList

is not NULL.

EFI_OUT_OF_RESOURCES The DNS instance data or required space could not be allocated.

EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI DNSv6
Protocol instance is not configured.

EFI_UNSUPPORTED The designated protocol is not supported.

EFI_ALREADY_STARTED Second call to Configure() with DnsConfigData. To

reconfigure the instance the caller must call Configure() with

NULL first to return driver to unconfigured state.
Version 2.5 April, 2015 1637

Unified Extensible Firmware Interface Specification
EFI_DNS6_PROTOCOL.HostNameToIp()

Summary
Host name to host address translation

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DNS6_HOST_NAME_TO_IP) (
 IN EFI_DNS6_PROTOCOL *This,
 IN CHAR16 *HostName,
 IN EFI_DNS6_COMPLETION_TOKEN *Token
);

Parameter
This Pointer to EFI_DNS6_PROTOCOL instance.

Hostname Pointer to buffer containing fully-qualified Domain Name
including Hostname. To resolve successfully, characters within
the FQDN string must be chosen according to the format and
from within the set of ASCII characters authorized by DNS
specifications. Any translation required for reference to domains
or hostnames defined as containing Unicode characters, for
example use of Punycode, must be performed by caller.

Token Point to the completion token to translate host name to host
address. Type EFI_DNS6_COMPLETION_TOKEN is defined in
"Related Definitions" below.

Related Definition
//**
// EFI_DNS6_COMPLETION_TOKEN
//**
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 UINT32 RetryCount;
 UINT32 RetryInterval;
 union {
DNS6_HOST_TO_ADDR_DATA *H2AData;
DNS6_ADDR_TO_HOST_DATA *A2HData;
DNS6_GENERAL_LOOKUP_DATA *GLookupData;
 } RspData;
} EFI_DNS6_COMPLETION_TOKEN;

Event This Event will be signaled after the Status field is updated
by the EFI DNSv6 protocol driver. The type of Event must be
EFI_NOTIFY_SIGNAL.

Status Will be set to one of the following values.
1638 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_SUCCESS: The host name to address translation
completed successfully.

EFI_NOT_FOUND: No matching Resource Record (RR) is
found.

EFI_TIMEOUT: No DNS server reachable, or RetryCount
was exhausted without response from all specified DNS servers.

EFI_DEVICE_ERROR: An unexpected system or network
error occurred.

EFI_NO_MEDIA: There was a media error.

RetryCount The parameter configured through DNSv6.Configure()
interface. Retry number if no response received after
RetryInterval.

RetryInterval The parameter configured through DNSv6.Configure()
interface. Minimum interval of retry is 2 second. If the retry
interval is less than 2 second, then use the 2 second.

H2AData When the Token is used for host name to address translation,
H2AData is a pointer to the DNS6_HOST_TO_ADDR_DATA.
Type DNS6_HOST_TO_ADDR_DATA is defined below.

A2HData When the Token is used for host address to host name
translation, A2HData is a pointer to the
DNS6_ADDR_TO_HOST_DATA. Type
DNS6_ADDR_TO_HOST_DATA is defined below.

GLookupDATA When the Token is used for a general lookup function,
GLookupDATA is a pointer to the
DNS6_GENERAL_LOOKUP_DATA. Type
DNS6_GENERAL_LOOKUP_DATA is defined below.

EFI_DNS6_COMPLETION_TOKEN structures are used for host name to address translation, host
address to name translation and general lookup operation, the Event filed must be filled by the EFI
DNSv6 Protocol Client. If the caller attempts to reuse Token before the completion event is
triggered or canceled, EFI_ALREADY_STARTED will be returned. After the operation completes,
the EFI DNSv6 protocol driver fill in the RspData and Status field and the Event is signaled.

//**

// DNS6_HOST_TO_ADDR_DATA

//**

typedef struct {

 UINT32 IpCount;

 EFI_IPv6_ADDRESS *IpList;

} DNS6_HOST_TO_ADDR_DATA;

IpCount Number of the returned IP address

IpList Pointer to the all the returned IP address
Version 2.5 April, 2015 1639

Unified Extensible Firmware Interface Specification
//**

// DNS6_ADDR_TO_HOST_DATA

//**

typedef struct {

 CHAR16 *HostName;

} DNS6_ADDR_TO_HOST_DATA;

HostName Pointer to the primary name for this host address. It’s the caller’s
responsibility to free the response memory.

//**
// DNS6_GENERAL_LOOKUP_DATA
//**
typedef struct {
 UINTN RRCount;
 DNS6_RESOURCE_RECORD *RRList;
} DNS6_GENERAL_LOOKUP_DATA;

RRCount Number of returned matching RRs.

RRList Pointer to the all the returned matching RRs. It’s caller
responsibility to free the allocated memory to hold the returned
RRs

//***
// DNS6_RESOURCE_RECORD
//***
typedef struct {
 CHAR8 *QName;
 UINT16 QType;
 UINT16 QClass;
 UINT32 TTL;
 UINT16 DataLength;
 CHAR8 *RData;
} DNS6_RESOURCE_RECORD;

QName The Owner name.

QType The Type Code of this RR

QClass The CLASS code of this RR.

TTL 32 bit integer which specify the time interval that the resource
record may be cached before the source of the information should
again be consulted. Zero means this RR cannot be cached.

DataLength 16 big integer which specify the length of RData.

RData A string of octets that describe the resource, the format of this
information varies according to QType and QClass difference.
1640 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
Description
The HostNameToIp () function is used to translate the host name to host IP address. A type
AAAA record query is used to get the one or more IPv6 addresses for this host.

Status Codes Returned

EFI_SUCCESS The operation was queued successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE

This is NULL.

Token is NULL.

Token. Event is NULL.
HostName is NULL or buffer contained unsupported

characters.

EFI_NO_MAPPING There’s no source address is available for use.

EFI_ALREADY_STARTED This Token is being used in another DNS session.

EFI_NOT_STARTED This instance has not been started.

EFI_OUT_OF_RESOURCES Failed to allocate needed resources.
Version 2.5 April, 2015 1641

Unified Extensible Firmware Interface Specification
EFI_DNS6_PROTOCOL.IpToHostName()

Summary
Host address to host name translation

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DNS6_IP_TO_HOST_NAME) (
 IN EFI_DNS6_PROTOCOL *This,
 IN EFI_IPv6_ADDRESS IpAddress,
 IN EFI_DNS6_COMPLETION_TOKEN *Token
);

Parameter
This Pointer to EFI_DNS6_PROTOCOL instance.

IpAddress IP address.

Token Point to the completion token to translate host address to host
name. Type EFI_DNS6_COMPLETION_TOKEN is defined in
"Related Definitions" of above HostNameToIp ().

Description
The IpToHostName () function is used to translate the host address to host name. A type PTR
query is used to get the primary name of the host. Implementation can choose to support this
function or not.

Status Codes Returned

EFI_SUCCESS The operation was queued successfully.

EFI_UNSUPPORTED This function is not supported

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE

This is NULL.

Token is NULL.

Token.Event is.NULL

IpAddress is not valid IP address .

EFI_NO_MAPPING There’s no source address is available for use.

EFI_NOT_STARTED This instance has not been started.

EFI_OUT_OF_RESOURCES Failed to allocate needed resources.
1642 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DNS6_PROTOCOL.GeneralLookup()

Summary
This function provides capability to retrieve arbitrary information from the DNS server.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DNS6_GENERAL_LOOKUP) (
 IN EFI_DNS6_PROTOCOL *This,
 IN CHAR8 *QName,
 IN UINT16 QType,
 IN UINT16 QClass,
 IN EFI_DNS6_COMPLETION_TOKEN *Token
);

Description
 This GeneralLookup() function retrieves arbitrary information from the DNS. The caller
supplies a QNAME, QTYPE, and QCLASS, and all of the matching RRs are returned. All RR content
(e.g., TTL) was returned. The caller need parse the returned RR to get required information. The
function is optional. Implementation can choose to support it or not.

Parameters
This Pointer to EFI_DNS6_PROTOCOL instance.

QName Pointer to Query Name.

QType Query Type.

QClass Query Name.

Token Point to the completion token to retrieve arbitrary information.
Type EFI_DNS6_COMPLETION_TOKEN is defined in "Related
Definitions" of above HostNameToIp ().

Status Codes Returned

EFI_SUCCESS The operation was queued successfully.

EFI_UNSUPPORTED This function is not supported. Or the requested QType is not
supported

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE

This is NULL.

Token is NULL.

Token.Event is.NULL
QName is NULL.

EFI_NO_MAPPING There’s no source address is available for use.

EFI_NOT_STARTED This instance has not been started.

EFI_OUT_OF_RESOURCES Failed to allocate needed resources.
Version 2.5 April, 2015 1643

Unified Extensible Firmware Interface Specification
EFI_DNS6_PROTOCOL.UpdateDnsCache()

Summary
This function is to update the DNS Cache.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DNS6_UPDATE_DNS_CACHE) (
 IN EFI_DNS6_PROTOCOL *This,
 IN BOOLEAN DeleteFlag,
 IN BOOLEAN Override,
 IN EFI_DNS6_CACHE_ENTRY DnsCacheEntry
);

Parameters
This Pointer to EFI_DNS6_PROTOCOL instance.

DeleteFlag If FALSE, this function is to add one entry to the DNS Cahce. If
TRUE, this function will delete matching DNS Cache entry.

Override If TRUE, the maching DNS cache entry will be overwritten with
the supplied parameter. If FALSE, EFI_ACCESS_DENIED will
be returned if the entry to be added is already existed.

DnsCacheEntry Pointer to DNS Cache entry.

Description

The UpdateDnsCache() function is used to add/delete/modify DNS cache entry. DNS cache can
be normally dynamically updated after the DNS resolve succeeds. This function provided capability
to manually add/delete/modify the DNS cache.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

This is NULL.

DnsCacheEntry.HostName is NULL.

DnsCacheEntry.IpAddress is NULL.

DnsCacheEntry.Timeout is ZERO.

EFI_ACCESS_DENIED The DNS cache entry already exists and Override is not TRUE.

EFI_OUT_OF_RESOURCE Failed to allocate needed resources.
1644 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_DNS6_PROTOCOL.POLL()

Summary
Polls for incoming data packets and processes outgoing data packets.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DNS6_POLL) (
 IN EFI_DNS6_PROTOCOL *This
);

Parameters
This Pointer to EFI_DNS6_PROTOCOL instance.

Description
The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

In some systems, the periodic timer event in the managed network driver may not poll the
underlying communications device fast enough to transmit and/or receive all data packets without
missing incoming packets or dropping outgoing packets. Drivers and applications that are
experiencing packet loss should try calling the Poll() function more often.

Status Codes Returned

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This EFI DNS Protocol instance has not been started.

EFI_INVALID_PARAMETER This is NULL.

EFI_NO_MAPPING There’s no source address is available for use.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
Version 2.5 April, 2015 1645

Unified Extensible Firmware Interface Specification
EFI_DNS6_PROTOCOL.Cancel()

Abort an asynchronous DNS operation, including translation between IP and Host, and general look
up behavior.

EFI Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_DNS6_CANCEL) (
 IN EFI_DNS6_PROTOCOL *This,
 IN EFI_DNS6_COMPLETION_TOKEN *Token
);

Parameters
This Pointer to EFI_DNS6_PROTOCOL instance.

 Token Pointer to a token that has been issued by
EFI_DNS6_PROTOCOL.HostNameToIp (),
EFI_DNS6_PROTOCOL.IpToHostName() or
EFI_DNS6_PROTOCOL.GeneralLookup(). If NULL, all
pending tokens are aborted.

Description
The Cancel() function is used to abort a pending resolution request. After calling this function,
Token.Status will be set to EFI_ABORTED and then Token.Event will be signaled. If the token
is not in one of the queues, which usually means that the asynchronous operation has completed, this
function will not signal the token and EFI_NOT_FOUND is returned.

Status Codes Returned

28.6 EFI HTTP Protocols
This section defines the EFI HTTP Protocol interface. It is split into the following two main sections.

• HTTP Service Binding Protocol (HTTPSB)

• HTTP Protocol (HTTP)

EFI_SUCCESS The asynchronous DNS operation was aborted and Token->Event
is signaled.

EFI_NOT_STARTED This EFI DNS6 Protocol instance has not been started.

EFI_INVALID_PARAMETER This is NULL.

EFI_NO_MAPPING There’s no source address is available for use.

EFI_NOT_FOUND When Token is not NULL and the asynchronous DNS operation
was not found in the transmit queue, It is either completed or was

not issued by HostNameToIp(), IpToHostName() or

GeneralLookup().
1646 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
28.6.1 HTTP Service Binding Protocol

EFI_HTTP_SERVICE_BINDING_PROTOCOL

Summary
The HTTPSB is used to locate communication devices that are supported by a HTTP driver and to
create and destroy instances of the HTTP child protocol driver.

The EFI Service Binding Protocol in Section 2.5.8 defines the generic Service Binding Protocol
functions. This section discusses the details that are specific to the HTTP.

GUID
#define EFI_HTTP_SERVICE_BINDING_PROTOCOL_GUID \
 {0xbdc8e6af, 0xd9bc, 0x4379,\
 {0xa7, 0x2a, 0xe0, 0xc4, 0xe7, 0x5d, 0xae, 0x1c}}

Description
A network application (or driver) that requires HTTP communication service can use one of the
protocol handler services, such as BS->LocateHandleBuffer(), to search for devices that
publish a HTTPSB GUID. Each device with a published HTTP SB GUID supports HTTP Service
Binding Protocol and may be available for use.

After a successful call to the EFI_HTTP_SERVICE_BINDING_PROTOCOL.CreateChild()
function, the child HTTP driver instance is in an uninitialized state; it is not ready to initiate HTTP
data transfer.

Before a network application terminates execution, every successful call to the
EFI_HTTP_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_HTTP_SERVICE_BINDING_PROTOCOL.DestroyChild() function.
Version 2.5 April, 2015 1647

Unified Extensible Firmware Interface Specification
28.6.2 EFI HTTP Protocol Specific Definitions

EFI_HTTP_PROTOCOL

Protocol GUID
#define EFI_HTTP_PROTOCOL_GUID \
 {0x7A59B29B, 0x910B, 0x4171,\
 {0x82, 0x42, 0xA8, 0x5A, 0x0D, 0xF2, 0x5B, 0x5B}}

Protocol Interface Structure
typedef struct _EFI_HTTP_PROTOCOL {
 EFI_HTTP_GET_MODE_DATA GetModeData;
 EFI_HTTP_CONFIGURE Configure;
 EFI_HTTP_REQUEST Request;
 EFI_HTTP_CANCEL Cancel;
 EFI_HTTP_RESPONSE Response;
 EFI_HTTP_POLL Poll;
} EFI_HTTP_PROTOCOL;

Parameters
GetModeData Gets the current operational status. See the GetModeData()

function description.

Configure Initialize, change, or reset operational settings in the EFI HTTP
protocol instance. See Configure() for function description.

Request Queue a request token into the transmit queue. This function is a
non-blocking operation. See Request() for function
description.

Cancel Abort a pending request or response operation. See Cancel()
for function description.

Response Queue a response token into the receive queue. This function is a
non-blocking operation. See Response() for function
description.

Poll Poll to receive incoming HTTP response and transmit outgoing
HTTP request. See Poll() for function description.

Description
The EFI HTTP protocol is designed to be used by EFI drivers and applications to create and transmit
HTTP Requests, as well as handle HTTP responses that are returned by a remote host. This EFI
protocol uses and relies on an underlying EFI TCP protocol.
1648 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_HTTP_PROTOCOL.GetModeData()

Summary
Returns the operational parameters for the current HTTP child instance.

EFI Protocol
typedef
EFI_STATUS
(EFIAPI * EFI_HTTP_GET_MODE_DATA)(
 IN EFI_HTTP_PROTOCOL *This,
 OUT EFI_HTTP_CONFIG_DATA *HttpConfigData
);

Parameters
This Pointer to EFI_HTTP_PROTOCOL instance.

HttpConfigData Point to buffer for operational parameters of this HTTP instance.
Type EFI_HTTP_CONFIG_DATA is defined in “Related
Definitions” below.

Description
The GetModeData() function is used to read the current mode data (operational parameters) for
this HTTP protocol instance.

Status Codes Returned

//**
// EFI_HTTP_CONFIG_DATA
//**
typedef struct {
 EFI_HTTP_VERSION HttpVersion;
 UINT32 TimeOutMillisec;
 BOOLEAN LocalAddressIsIPv6;
 union {
 EFI_HTTPv4_ACCESS_POINT *IPv4Node;
 EFI_HTTPv6_ACCESS_POINT *IPv6Node;
 } AccessPoint;
} EFI_HTTP_CONFIG_DATA;

HttpVersion HTTP version that this instance will support.

TimeOutMillsec Time out (in milliseconds) when blocking for requests.

EFI_SUCCESS operation succeeded

EFI_INVALID_PARAMETER This is NULL.
Version 2.5 April, 2015 1649

Unified Extensible Firmware Interface Specification
LocalAddressIsIPv6 Defines behavior of EFI DNS and TCP protocols consumed by
this instance. If FALSE, this instance will use
EFI_DNS4_PROTOCOL and EFI_TCP4_PROTOCOL. If
TRUE, this instance will use EFI_DNS6_PROTOCOL and
EFI_TCP6_PROTOCOL.

IPv4Node When LocalAddressIsIPv6 is FALSE, this points to the
local address, subnet, and port used by the underlying TCP
protocol.

IPv6Node When LocalAddressIsIPv6 is TRUE, this points to the
local IPv6 address and port used by the underlying TCP protocol.

//**
// EFI_HTTP_VERSION
//**
typedef enum {
 HttpVersion10,
 HttpVersion11,
 HttpVersionUnsupported
} EFI_HTTP_VERSION;

//**
// EFI_HTTPv4_ACCESS_POINT
//**
typedef struct {
 BOOLEAN UseDefaultAddress;
 EFI_IPv4_ADDRESS LocalAddress;
 EFI_IPv4_ADDRESS LocalSubnet;
 UINT16 LocalPort;
} EFI_HTTPv4_ACCESS_POINT;

UseDefaultAddress Set to TRUE to instruct the EFI HTTP instance to use the default
address information in every TCP connection made by this
instance. In addition, when set to TRUE, LocalAddress,
LocalSubnet, and LocalPort are ignored.

LocalAddress If UseDefaultAddress is set to FALSE, this defines the
local IP address to be used in every TCP connection opened by
this instance.

LocalSubnet If UseDefaultAddress is set to FALSE, this defines the
local subnet to be used in every TCP connection opened by this
instance.

LocalPort If UseDefaultAddress is set to FALSE, this defines the
local port to be used in every TCP connection opened by this
instance.
1650 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
//**
// EFI_HTTPv6_ACCESS_POINT
//**
typedef struct {
 EFI_IPv6_ADDRESS LocalAddress;
 UINT16 LocalPort;
} EFI_HTTPv6_ACCESS_POINT;

LocalAddress Local IP address to be used in every TCP connection opened by
this instance.

LocalPort Local port to be used in every TCP connection opened by this
instance.
Version 2.5 April, 2015 1651

Unified Extensible Firmware Interface Specification
EFI_HTTP_PROTOCOL.Configure()

Summary
Initialize or brutally reset the operational parameters for this EFI HTTP instance.

EFI Protocol
typedef
EFI_STATUS
(EFIAPI * EFI_HTTP_CONFIGURE)(
 IN EFI_HTTP_PROTOCOL*This,
 IN EFI_HTTP_CONFIG_DATA*HttpConfigData
);

Parameters
This Pointer to EFI_HTTP_PROTOCOL instance.

HttpConfigData Pointer to the configure data to configure the instance.

Description
The Configure() function does the following:

• When HttpConfigData is not NULL Initialize this EFI HTTP instance by configuring
timeout, local address, port, etc.

• When HttpConfigData is NULL, reset this EFI HTTP instance by closing all active
connections with remote hosts, canceling all asynchronous tokens, and flush request and
response buffers without informing the appropriate hosts.

Except for GetModeData() and Configure(), no other EFI HTTP function can be executed
by this instance until the Configure() function is executed and returns successfully.

Status Codes Returned

EFI_SUCCESS operation succeeded

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE
This is NULL.

HttpConfigData->LocalAddressIsIPv6 is

FALSE and HttpConfigData->IPv4Node is NULL.

HttpConfigData->LocalAddressIsIPv6 is TRUE

and HttpConfigData->IPv6Node is NULL.

EFI_ALREADY_STARTED Reinitialize this HTTP instance without calling Configure()
with NULL to reset it.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_OUT_OF_RESOURCES Could not allocate enough system resources when executing

Configure().
1652 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_UNSUPPORTED One or more options in ConfigData are not supported in the

implementation.
Version 2.5 April, 2015 1653

Unified Extensible Firmware Interface Specification
EFI_HTTP_PROTOCOL.Request()

Summary
The Request() function queues an HTTP request to this HTTP instance, similar to
Transmit() function in the EFI TCP driver. When the HTTP request is sent successfully, or if
there is an error, Status in token will be updated and Event will be signaled.

EFI Protocol
Typedef
EFI_STATUS
(EFIAPI *EFI_HTTP_REQUEST) (
 IN EFI_HTTP_PROTOCOL *This,
 IN EFI_HTTP_TOKEN *Token
);

Parameters
This Pointer to EFI_HTTP_PROTOCOL instance.

Token Pointer to storage containing HTTP request token. Type
EFI_HTTP_TOKEN is defined in "Related Definitions" below.

Related Definition
//**
// EFI_HTTP_TOKEN
//**
typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 EFI_HTTP_MESSAGE *Message;
} EFI_HTTP_TOKEN;

Event This Event will be signaled after the Status field is updated
by the EFI HTTP Protocol driver. The type of Event must be
EFI_NOTIFY_SIGNAL. The Task Priority Level (TPL) of
Event must be lower than or equal to TPL_CALLBACK.

Status Status will be set to one of the following value if the HTTP
request is successfully sent or if an unexpected error occurs:

EFI_SUCCESS: The HTTP request was successfully sent to the
remote host.

EFI_ABORTED: The HTTP request was canceled by the caller
and removed from the transmit queue.

EFI_TIMEOUT: The HTTP request timed out before reaching
the remote host.

EFI_DEVICE_ERROR: An unexpected system or network error
occurred.

Message Pointer to storage containing HTTP message data.
1654 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
//**
// EFI_HTTP_MESSAGE
//**
typedef struct {
 union {
 EFI_HTTP_REQUEST_DATA *Request;
 EFI_HTTP_RESPONSE_DATA *Response;
 } Data;
 UINTN HeaderCount;
 EFI_HTTP_HEADER *Headers;
 UINTN BodyLength;
 VOID *Body;
} EFI_HTTP_MESSAGE;

Request When the token is used to send a HTTP request, Request is a
pointer to storage that contains such data as URL and HTTP
method.

Response When used to await a response, Response points to storage
containing HTTP response status code.

HeaderCount Number of HTTP header structures in Headers list. On request,
this count is provided by the caller. On response, this count is
provided by the HTTP driver.

Headers Array containing list of HTTP headers. On request, this array is
populated by the caller. On response, this array is allocated and
populated by the HTTP driver. It is the responsibility of the caller
to free this memory on both request and response.

BodyLength Length in bytes of the HTTP body. This can be zero depending
on the HttpMethod type.

Body Body associated with the HTTP request or response. This can be
NULL depending on the HttpMethod type.

The HTTP driver will prepare a request string from the information contained in and queue it to the
underlying TCP instance to be sent to the remote host. Typically, all fields in the structure will
contain content (except Body and BodyLength when HTTP method is not POST or PUT), but
there is a special case when using PUT or POST to send large amounts of data. Depending on the
size of the data, it may not be able to be stored in a contiguous block of memory, so the data will
need to be provided in chunks. In this case, if Body is not NULL and BodyLength is non-zero and
all other fields are NULL or 0, the HTTP driver will queue the data to be sent to the last remote host
that a token was successfully sent. If no previous token was sent successfully, this function will
return EFI_INVALID_PARAMETER.

The HTTP driver is expected to close existing (if any) underlying TCP instance and create new TCP
instance if the host name in the request URL is different from previous calls to Request(). This
is consistent with RFC 2616 recommendation that HTTP clients should attempt to maintain an open
TCP connection between client and host.
Version 2.5 April, 2015 1655

Unified Extensible Firmware Interface Specification
//**
// EFI_HTTP_REQUEST_DATA
//**
typedef struct {
 EFI_HTTP_METHOD Method;
 CHAR16 *Url;
} EFI_HTTP_REQUEST_DATA;

Method The HTTP method (e.g. GET, POST) for this HTTP Request.

Url The URI of a remote host. From the information in this field, the
HTTP instance will be able to determine whether to use HTTP or
HTTPS and will also be able to determine the port number to use.
If no port number is specified, port 80 (HTTP) is assumed. See
RFC 3986 for more details on URI syntax.

//**
// EFI_HTTP_METHOD
//**
typedef enum {
 HttpMethodGet,
 HttpMethodPost,
 HttpMethodPatch,
 HttpMethodOptions,
 HttpMethodConnect,
 HttpMethodHead,
 HttpMethodPut,
 HttpMethodDelete,
 HttpMethodTrace
} EFI_HTTP_METHOD;

//**
// EFI_HTTP_RESPONSE_DATA
//**
typedef struct {
 EFI_HTTP_STATUS_CODE StatusCode;
} EFI_HTTP_RESPONSE_DATA;

StatusCode Response status code returned by the remote host.
1656 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
//**
// EFI_HTTP_HEADER
//**
typedef struct {
 CHAR8 *FieldName;
 CHAR8 *FieldValue;
} EFI_HTTP_HEADER;

FieldName Null terminated string which describes a field name. See RFC
2616 Section 14 for detailed information about field names.

FieldValue Null terminated string which describes the corresponding field
value. See RFC 2616 Section 14 for detailed information about
field values.

typedef enum {
 HTTP_STATUS_UNSUPPORTED_STATUS = 0,
 HTTP_STATUS_100_CONTINUE,
 HTTP_STATUS_101_SWITCHING_PROTOCOLS,
 HTTP_STATUS_200_OK,
 HTTP_STATUS_201_CREATED,
 HTTP_STATUS_202_ACCEPTED,
 HTTP_STATUS_203_NON_AUTHORITATIVE_INFORMATION,
 HTTP_STATUS_204_NO_CONTENT,
 HTTP_STATUS_205_RESET_CONTENT,
 HTTP_STATUS_206_PARTIAL_CONTENT,
 HTTP_STATUS_300_MULTIPLE_CHIOCES,
 HTTP_STATUS_301_MOVED_PERMANENTLY,
 HTTP_STATUS_302_FOUND,
 HTTP_STATUS_303_SEE_OTHER,
 HTTP_STATUS_304_NOT_MODIFIED,
 HTTP_STATUS_305_USE_PROXY,
 HTTP_STATUS_307_TEMPORARY_REDIRECT,
 HTTP_STATUS_400_BAD_REQUEST,
 HTTP_STATUS_401_UNAUTHORIZED,
 HTTP_STATUS_402_PAYMENT_REQUIRED,
 HTTP_STATUS_403_FORBIDDEN,
 HTTP_STATUS_404_NOT_FOUND,
 HTTP_STATUS_405_METHOD_NOT_ALLOWED,
 HTTP_STATUS_406_NOT_ACCEPTABLE,
 HTTP_STATUS_407_PROXY_AUTHENTICATION_REQUIRED,
 HTTP_STATUS_408_REQUEST_TIME_OUT,
 HTTP_STATUS_409_CONFLICT,
 HTTP_STATUS_410_GONE,
 HTTP_STATUS_411_LENGTH_REQUIRED,
 HTTP_STATUS_412_PRECONDITION_FAILED,
 HTTP_STATUS_413_REQUEST_ENTITY_TOO_LARGE,
Version 2.5 April, 2015 1657

Unified Extensible Firmware Interface Specification
 HTTP_STATUS_414_REQUEST_URI_TOO_LARGE,
 HTTP_STATUS_415_UNSUPPORETD_MEDIA_TYPE,
 HTTP_STATUS_416_REQUESTED_RANGE_NOT_SATISFIED,
 HTTP_STATUS_417_EXPECTATION_FAILED,
 HTTP_STATUS_500_INTERNAL_SERVER_ERROR,
 HTTP_STATUS_501_NOT_IMIPLEMENTED,
 HTTP_STATUS_502_BAD_GATEWAY,
 HTTP_STATUS_503_SERVICE_UNAVAILABLE,
 HTTP_STATUS_504_GATEWAY_TIME_OUT,
 HTTP_STATUS_505_HTTP_VERSION_NOT_SUPPORTED
} EFI_HTTP_STATUS_CODE;

Status Codes Returned

EFI_SUCCESS Outgoing data was processed.

EFI_NOT_STARTED This EFI HTTP Protocol instance has not been started.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT Data was dropped out of the transmit or receive queue.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE
This is NULL.

Token->Message is NULL.

Token->Message->Body is not NULL, Token-
>Message->BodyLength is non-zero, and Token-
>Message->Data is NULL, but a previous call to

Request()has not been completed successfully.
1658 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_HTTP_PROTOCOL.Cancel()

Summary
Abort an asynchronous HTTP request or response token.

EFI Protocol
typedef
EFI_STATUS
(EFIAPI * EFI_HTTP_CANCEL)(
 IN EFI_HTTP_PROTOCOL *This,
 IN EFI_HTTP_TOKEN *Token,
);

Parameters
This Pointer to EFI_HTTP_PROTOCOL instance.

Token Point to storage containing HTTP request or response token.

Description
The Cancel() function aborts a pending HTTP request or response transaction. If Token is not
NULL and the token is in transmit or receive queues when it is being cancelled, its Token-
>Status will be set to EFI_ABORTED and then Token->Event will be signaled. If the token is
not in one of the queues, which usually means that the asynchronous operation has completed,
EFI_NOT_FOUND is returned. If Token is NULL, all asynchronous tokens issued by Request()
or Response() will be aborted.

Status Codes Returned

EFI_SUCCESS Request and Response queues are successfully flushed.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED This instance hasn’t been configured.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
RARP, etc.) hasn’t finished yet.

EFI_NOT_FOUND The asynchronous request or response token is not found.

EFI_UNSUPPORTED The implementation does not support this function.
Version 2.5 April, 2015 1659

Unified Extensible Firmware Interface Specification
EFI_HTTP_PROTOCOL.Response()

Summary

The Response() function queues an HTTP response to this HTTP instance, similar to
Receive() function in the EFI TCP driver. When the HTTP request is sent successfully, or if

there is an error, Status in token will be updated and Event will be signaled.

EFI Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_HTTP_RESPONSE) (
 IN EFI_HTTP_PROTOCOL *This,
 IN EFI_HTTP_TOKEN *Token
);

Parameters

This Pointer to EFI_HTTP_PROTOCOL instance.

Token Pointer to storage containing HTTP response token. See
Request() function for the definition of EFI_HTTP_TOKEN.

Description
The HTTP driver will queue a receive token to the underlying TCP instance. When data is received
in the underlying TCP instance, the data will be parsed and Token will be populated with the
response data. If the data received from the remote host contains an incomplete or invalid HTTP
header, the HTTP driver will continue waiting (asynchronously) for more data to be sent from the
remote host before signaling Event in Token.

It is the responsibility of the caller to allocate a buffer for Body and specify the size in
BodyLength. If the remote host provides a response that contains a content body, up to
BodyLength bytes will be copied from the receive buffer into Body and BodyLength will be
updated with the amount of bytes received and copied to Body. This allows the client to download a
large file in chunks instead of into one contiguous block of memory. Similar to HTTP request, if
Body is not NULL and BodyLength is non-zero and all other fields are NULL or 0, the HTTP
driver will queue a receive token to underlying TCP instance. If data arrives in the receive buffer, up
to BodyLength bytes of data will be copied to Body. The HTTP driver will then update
BodyLength with the amount of bytes received and copied to Body.

If the HTTP driver does not have an open underlying TCP connection with the host specified in the
response URL, Response() will return EFI_ACCESS_DENIED. This is consistent with RFC
2616 recommendation that HTTP clients should attempt to maintain an open TCP connection
between client and host.

Status Codes Returned

EFI_SUCCESS Allocation succeeded
1660 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_NOT_STARTED This EFI HTTP
 Protocol instance has not been initialized.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE
This is NULL
Token->Message is NULL.

Token->Message->Body is not NULL, Token-
>Message->BodyLength is non-zero, and Token-
>Message->Data is NULL, but a previous call to

Response()has not been completed successfully

EFI_ACCESS_DENIED An open TCP connection is not present with the host specified by
response URL.
Version 2.5 April, 2015 1661

Unified Extensible Firmware Interface Specification
EFI_HTTP_PROTOCOL.Poll()

Polls for incoming data packets and processes outgoing data packets.

typedef
EFI_STATUS
(EFIAPI *EFI_HTTP_POLL) (
 IN EFI_HTTP_PROTOCOL*This
);

Parameters
This Pointer to EFI_HTTP_PROTOCOL instance.

 Description
The Poll() function can be used by network drivers and applications to increase the rate
that data packets are moved between the communication devices and the transmit and
receive queues. In some systems, the periodic timer event in the managed network driver
may not poll the underlying communications device fast enough to transmit and/or receive
all data packets without missing incoming packets or dropping outgoing packets. Drivers
and applications that are experiencing packet loss should try calling the Poll() function
more often.

Status Codes Returned

28.6.2.1 Usage Examples
Here is an example of a client making a HTTP Request to download a driver bundle from Intel
Driver Download Center. This example includes sample code for how to support a client that is
behind a HTTP proxy server.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_INVALID_PARAMETER This is NULL

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_NOT_READY No incoming or outgoing data is processed.
1662 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
#include <Uefi.h>
#include <HttpProtocol.h>

BOOLEAN gRequestCallbackComplete = FALSE;
BOOLEAN gResponseCallbackComplete = FALSE;

VOID
EFIAPI
RequestCallback(
 IN EFI_EVENT Event,
 IN VOID *Context
)
{
 gRequestCallbackComplete = TRUE;
}

VOID
EFIAPI
ResponseCallback(
 IN EFI_EVENT Event,
 IN VOID *Context
)
{
 gResponseCallbackComplete = TRUE;
}

EFI_STATUS
EFIAPI
HttpClientMain(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)
{
 EFI_STATUS Status;
 EFI_SERVICE_BINDING_PROTOCOL *ServiceBinding;
 EFI_HANDLE *Handle;
 EFI_HTTP_PROTOCOL *HttpProtocol;
 EFI_HTTP_CONFIG_DATA ConfigData;
 EFI_HTTPv4_ACCESS_POINT IPv4Node;
 EFI_HTTP_REQUEST_DATA RequestData;
 EFI_HTTP_HEADER RequestHeader;
 EFI_HTTP_MESSAGE RequestMessage;
 EFI_HTTP_TOKEN RequestToken;
 EFI_HTTP_RESPONSE_DATA ResponseData;
 EFI_HTTP_MESSAGE ResponseMessage;
 EFI_HTTP_TOKEN ResponseToken;
Version 2.5 April, 2015 1663

Unified Extensible Firmware Interface Specification
 UINT8 Buffer[0x100000];
 EFI_TIME Baseline;
 EFI_TIME Current;
 UINTN Timer;
 UINTN Index;
 UINTN ContentDownloaded;
 UINTN ContentLength;

 Status = gBS->LocateProtocol(
 &gEfiHttpServiceBindingProtocolGuid,
 NULL,
 &ServiceBinding
);
 // TODO: Handle error...

 Status = ServiceBinding->CreateChild(ServiceBinding, &Handle);
 // TODO: Handle error...

 Status = gBS->HandleProtocol(Handle, &gEfiHttpProtocolGuid,
&HttpProtocol);
 // TODO: Handle error...

 ConfigData.HttpVersion = HttpVersion11;
 ConfigData.TimeOutMillisec = 0; // Indicates default timeout period
 ConfigData.LocalAddressIsIPv6 = FALSE;

 ZeroMem(&IPv4Node, sizeof(IPv4Node));
 IPv4Node.UseDefaultAddress = TRUE; // Obtain IP address from DHCP
 ConfigData.AccessPoint.IPv4Node = &IPv4Node;

 // The HTTP driver must first be configured before requests or
responses can
 // be processed. This is the same for other network protocols such as
TCP.
 Status = HttpProtocol->Configure(HttpProtocol, &ConfigData);

 // This request message is initialized to request a sample driver
bundle
 // from Intel's driver download center. To download a file, we use HTTP
GET.
 RequestData.Method = HttpMethodGet;
 // URI where the file is located that we want to download.
 RequestData.Url = L"\
http://downloadmirror.intel.com/23418/a08/FYKH-Win8.1-64bit-Driver-
Bundle-Sep2014.zip";
 // This header tells the HTTP driver to relay the HTTP request
1664 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
 // via a proxy server. This header is just used to demonstrate
 // how to relay through a proxy with this driver. The method
 // for obtaining the proxy address is up to the client. The
 // HTTP driver does NOT resolve this on its own.
 RequestHeader.FieldName = "Host";
 RequestHeader.FieldValue = "my.proxyserver.com";
 // Message format just contains a pointer to the request data
 // and body info, if applicable. In the case of HTTP GET, body
 // is not relevant.
 RequestMessage.Data.Request = &RequestData;
 // Just one header being provided in the HTTP message.
 RequestMessage.HeaderCount = 1;
 RequestMessage.Headers = &RequestHeader;
 RequestMessage.BodyLength = 0;
 RequestMessage.Body = NULL;
 // Token format is similar to the token format in EFI TCP protocol.
 RequestToken.Event = NULL;
 Status = gBS->CreateEvent(
 EVT_NOTIFY_SIGNAL,
 TPL_CALLBACK,
 RequestCallback,
 NULL,
 &RequestToken.Event
);
 // TODO: Handle error...
 RequestToken.Status = EFI_SUCCESS;
 RequestToken.Message = &RequestMessage;

 gRequestCallbackComplete = FALSE;
 // Finally, make HTTP request.
 Status = HttpProtocol->Request(HttpProtocol, &RequestToken);
 // TODO: Handle error...

 Status = gRT->GetTime(&Baseline, NULL);
 // TODO: Handle error...

 // Optionally, wait for a certain amount of time before cancelling
 // the request. In this case, we'll allow the network stack 10
 // seconds to send the request successfully.
 for (Timer = 0; !gRequestCallbackComplete && Timer < 10;) {
 // Give the HTTP driver some motivation...
 HttpProtocol->Poll(HttpProtocol);
 // In practice, a call to GetTime() only fails when the total
 // elapsed time between the last call to to GetTime() is less
 // than the resolution of one tick (e.g. 1 second, depending
 // on capabilities of hardware). We only care to check the time
Version 2.5 April, 2015 1665

Unified Extensible Firmware Interface Specification
 // when the call succeeds.
 if (!EFI_ERROR(gRT->GetTime(&Current, NULL)) &&
 Current.Second != Baseline.Second)
 {
 // One second has passed, so update Current time and
 // increment the counter.
 Current = Baseline;
 ++Timer;
 }
 }

 // Cancel request if we did not get a notification from the HTTP
 // driver in a timely manner.
 if (!gRequestCallbackComplete) {
 Status = HttpProtocol->Cancel(HttpProtocol, &RequestToken);
 // TODO: Handle error and exit condition...
 }
 // Assuming we succeed in our request...

 // This response message is different that request in that the
 // HTTP driver is responsible for allocating the headers during
 // a response instead of the caller.
 ResponseData.StatusCode = HTTP_STATUS_UNSUPPORTED_STATUS;
 ResponseMessage.Data.Response = &ResponseData;
 // HeaderCount will be updated by the HTTP driver on response.
 ResponseMessage.HeaderCount = 0;
 // Headers will be populated by the driver on response.
 ResponseMessage.Headers = NULL;
 // BodyLength maximum limit is defined by the caller. On response,
 // the HTTP driver will update BodyLength to the total number of
 // bytes copied to Body. This number will never exceed the initial
 // maximum provided by the caller.
 ResponseMessage.BodyLength = sizeof(Buffer);
 ResponseMessage.Body = Buffer;
 // Token format is similar to the token format in EFI TCP protocol.
 ResponseToken.Event = NULL;
 Status = gBS->CreateEvent(
 EVT_NOTIFY_SIGNAL,
 TPL_CALLBACK,
 NULL,
 &ResponseToken,
 &ResponseToken.Event
);
 ResponseToken.Status = EFI_SUCCESS;
 ResponseToken.Message = &ResponseMessage;
1666 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
 gResponseCallbackComplete = FALSE;
 // Finally, make HTTP request.
 Status = HttpProtocol->Response(HttpProtocol, &ResponseToken);
 // TODO: Handle error...

 Status = gRT->GetTime(&Baseline, NULL);
 // TODO: Handle error...

 // Optionally, wait for a certain amount of time before cancelling.
 for (Timer = 0; !gResponseCallbackComplete && Timer < 10;) {
 HttpProtocol->Poll(HttpProtocol);
 if (!EFI_ERROR(gRT->GetTime(&Current, NULL)) &&
 Current.Second != Baseline.Second)
 {
 // One second has passed, so update Current time and
 // increment the counter.
 Current = Baseline;
 ++Timer;
 }
 }

 // Remove response token from queue if we did not get a notification
 // from the remote host in a timely manner.
 if (!gResponseCallbackComplete) {
 Status = HttpProtocol->Cancel(HttpProtocol, &ResponseToken);
 // TODO: Handle error and exit condition...
 }

 // Assuming we successfully received a response...
 for (Index = 0; Index < ResponseMessage.HeaderCount; ++Index) {
 // We can parse the length of the file from the ContentLength header.
 if (!AsciiStriCmp(ResponseMessage.Headers[Index].FieldName,
"ContentLength")) {
 ContentLength =

AsciiStrDecimalToUintn(ResponseMessage.Headers[Index].FieldValue);
 }
 }

 ContentDownloaded = ResponseMessage.BodyLength;
 // TODO:
 // Downloaded data exists in Buffer[0..ResponseMessage.BodyLength].
 // At this point, depending on business use case, the content can
 // be written to a file, stored on the heap, etc.

 while (ContentDownloaded < ContentLength) {
Version 2.5 April, 2015 1667

Unified Extensible Firmware Interface Specification
 // If we make it here, we haven't yet downloaded the whole file and
 // need to keep going.
 ResponseMessage.Data.Response = NULL;
 if (ResponseMessage.Headers != NULL) {
 // No sense hanging onto this anymore.
 FreePool(ResponseMessage.Headers);
 }
 ResponseMessage.HeaderCount = 0;
 ResponseMessage.BodyLength = sizeof(Buffer);
 ZeroMem(Buffer, sizeof(Buffer));
 // ResponseMessage.Body still points to Buffer.

 gResponseCallbackComplete = FALSE;
 // The HTTP driver accepts a token where Data, Headers, and
 // HeaderCount are all 0 or NULL. The driver will wait for a
 // response from the last remote host which a transaction occured
 // and copy the response directly into Body, updating BodyLength
 // with the total amount copied (downloaded).
 Status = HttpProtocol->Response(HttpProtocol, &ResponseToken);
 // TODO: Handle error...

 Status = gRT->GetTime(&Baseline, NULL);
 // TODO: Handle error...

 // Optionally, wait for a certain amount of time before cancelling.
 for (Timer = 0; !gResponseCallbackComplete && Timer < 10;) {
 HttpProtocol->Poll(HttpProtocol);
 if (!EFI_ERROR(gRT->GetTime(&Current, NULL)) &&
 Current.Second != Baseline.Second)
 {
 // One second has passed, so update Current time and
 // increment the counter.
 Current = Baseline;
 ++Timer;
 }
 }

 // Remove response token from queue if we did not get a notification
 // from the remote host in a timely manner.
 if (!gResponseCallbackComplete) {
 Status = HttpProtocol->Cancel(HttpProtocol, &ResponseToken);
 // TODO: Handle error and exit condition...
 }

 // Assuming we successfully received a response...
 ContentDownloaded += ResponseMessage.BodyLength;
1668 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
 // TODO:
 // Downloaded data exists in Buffer[0..ResponseMessage.BodyLength].
 // Append data to a file, heap memory, etc.
 }

 // Perform any necessary cleanup and handling of downloaded file
 // assuming we succeeded at downloding the content. Depending on
 // where the data was stored as per business need, that data can
 // be consumed at this point. For example, if the data was stored
 // to a file system, the file can be opened and consumed.

 return EFI_SUCCESS;
}

28.6.3 HTTP Utilities Protocol

Summary
This section defines the EFI HTTP Utilities Protocol interface.

EFI_HTTP_UTILITIES_PROTOCOL

Protocol GUID
#define EFI_HTTP_UTILITIES_PROTOCOL_GUID \
{ 0x3E35C163, 0x4074, 0x45DD,\
 { 0x43, 0x1E, 0x23, 0x98, 0x9D, 0xD8, 0x6B, 0x32 }}

Protocol Interface Structure
typedef struct _EFI_HTTP_UTILITIES_PROTOCOL {
 EFI_HTTP_UTILS_BUILD Build;
 EFI_HTTP_UTILS_PARSE Parse;
} EFI_HTTP_UTILITIES_PROTOCOL;

Parameters
Build Create HTTP header based on a combination of seed header,

fields to delete, and fields to append.

Parse Parses HTTP header and produces an array of key/value
pairs.

Description
The EFI HTTP utility protocol is designed to be used by EFI drivers and applications to parse HTTP
headers from a byte stream. This driver is neither dependent on network connectivity, nor the
existence of an underlying network infrastructure.
Version 2.5 April, 2015 1669

Unified Extensible Firmware Interface Specification
EFI_HTTP_UTILITIES_PROTOCOL.Build()

Summary
Provides ability to add, remove, or replace HTTP headers in a raw HTTP message.

EFI Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_HTTP_UTILS_BUILD) (
 IN EFI_HTTP_UTILITIES_PROTOCOL *This,
 IN UINTN SeedMessageSize
 IN VOID *SeedMessage, OPTIONAL
 IN UINTN DeleteCount
 IN CHAR8 *DeleteList[], OPTIONAL
 IN UINTN AppendCount
 IN EFI_HTTP_HEADER *AppendList[], OPTIONAL
 OUT UINTN *NewMessageSize,
 OUT VOID **NewMessage,
);

Parameters
This Pointer to EFI_HTTP_UTILITIES_PROTOCOL instance.

SeedMessageSize Size of the initial HTTP header. This can be zero.

SeedMessage Initial HTTP header to be used as a base for building a new HTTP
header. If NULL, SeedMessageSize is ignored.

DeleteCount Number of null-terminated HTTP header field names in
DeleteList.

DeleteList List of null-terminated HTTP header field names to remove from
SeedMessage. Only the field names are in this list because the
field values are irrelevant to this operation.

AppendCount Number of header fields in AppendList.

AppendList List of HTTP headers to populate NewMessage with. If
SeedMessage is not NULL, AppendList will be appended to
the existing list from SeedMessage in NewMessage

NewMessageSize Pointer to number of header fields in NewMessage.

NewMessage Pointer to a new list of HTTP headers based on

Description
The Build() function is used to manage the headers portion of an HTTP message by providing
the ability to add, remove, or replace HTTP headers.

Status Codes Returned

EFI_SUCCESS Add, remove, and replace operations succeeded.
1670 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
EFI_OUT_OF_RESOURCES Could not allocate memory for NewMessage.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE
This is NULL
Version 2.5 April, 2015 1671

Unified Extensible Firmware Interface Specification
EFI_HTTP_UTILITIES_PROTOCOL.Parse()

Summary
Parse HTTP header into array of key/value pairs.

EFI Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_HTTP_UTILS_PARSE) (
 IN EFI_HTTP_PROTOCOL *This,
 IN CHAR8 *HttpMessage,
 IN UINTN HttpMessageSize,
 OUT EFI_HTTP_HEADER **HeaderFields,
 OUT UINTN *FieldCount
);

Parameters
This Pointer to EFI_HTTP_UTILITIES_PROTOCOL instance.

HttpMessage Contains raw unformatted HTTP header string.

HttpMessageSize Size of HTTP header.

HeaderFields Array of key/value header pairs.

FieldCount Number of headers in HeaderFields.

Description
The Parse() function is used to transform data stored in HttpHeader into a list of fields paired
with their corresponding values.

Status Codes Returned

28.7 EFI REST Protocol
This section defines the EFI REST Protocol interface.

EFI_SUCCESS Allocation succeeded

EFI_NOT_STARTED This EFI HTTP Protocol instance has not been initialized.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE
• This is NULL

• HttpMessage is NULL

• HeaderFields is NULL

• FieldCount is NULL
1672 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
28.7.1 EFI REST Protocol Definitions

EFI_REST_PROTOCOL

Protocol GUID
#define EFI_REST_PROTOCOL_GUID \
 {0x0DB48A36, 0x4E54, 0xEA9C,\
 { 0x9B, 0x09, 0x1E, 0xA5, 0xBE, 0x3A, 0x66, 0x0B }}

Protocol Interface Structure
typedef struct _EFI_REST_PROTOCOL {
 EFI_REST_SEND_RECEIVE SendReceive;
 EFI_REST_GET_TIME GetServiceTime;
} EFI_REST_PROTOCOL;

Parameters
 RestSendReceive Provides an HTTP-like interface to send and receive resources

from a REST service.

 GetServiceTime Returns the current time of the REST service.

Description
The EFI REST protocol is designed to be used by EFI drivers and applications to send and receive
resources from a RESTful service. This protocol abstracts REST (Representational State Transfer)
client functionality. This EFI protocol could be implemented to use an underlying EFI HTTP
protocol, or it could rely on other interfaces that abstract HTTP access to the resources.
Version 2.5 April, 2015 1673

Unified Extensible Firmware Interface Specification
EFI_REST_PROTOCOL.SendReceive()

Summary
 Provides a simple HTTP-like interface to send and receive resources from a REST service.

EFI Protocol
typedef
EFI_STATUS
(EFIAPI *EFI_REST_SEND_RECEIVE)(
 IN EFI_REST_PROTOCOL *This,
 IN EFI_HTTP_MESSAGE *RequestMessage,
 OUT EFI_HTTP_MESSAGE *ResponseMessage
);

Parameters
This Pointer to EFI_REST_PROTOCOL instance for a particular

REST service.

RequestMessage Pointer to the HTTP request data for this resource

ResponseMessage Pointer to the HTTP response data obtained for this requested.

Description
 The SendReceive() function sends an HTTP request to this REST service, and returns a
response when the data is retrieved from the service. RequestMessage contains the HTTP
request to the REST resource identified by RequestMessage.Request.Url. The
ResponseMessage is the returned HTTP response for that request, including any HTTP status.

Status Codes Returned

EFI_SUCCESS operation succeeded

EFI_INVALID_PARAMETER This, RequestMessage, or ResponseMessage

are NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.
1674 April, 2015 Version 2.5

Network Protocols - ARP, DHCP, DNS, HTTP and REST
 EFI_REST_PROTOCOL.GetServiceTime()

typedef
EFI_STATUS
(EFIAPI *EFI_REST_GET_TIME)(
 IN EFI_REST_PROTOCOL *This,
 OUT EFI_TIME *Time
);

Parameters
This Pointer to EFI_REST_PROTOCOL instance.

Time A pointer to storage to receive a snapshot of the current time of
the REST service.

Description
 The GetServiceTime() function is an optional interface to obtain the current time from this
REST service instance. If this REST service does not support retrieving the time, this function
returns EFI_UNSUPPORTED.

Status Codes Returned

EFI_SUCCESS operation succeeded

EFI_INVALID_PARAMETER This or Time are NULL.

EFI_UNSUPPORTED The RESTful service does not support returning the time

EFI_DEVICE_ERROR An unexpected system or network error occurred.
Version 2.5 April, 2015 1675

Unified Extensible Firmware Interface Specification
1676 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
29
Network Protocols — UDP and MTFTP

29.1 EFI UDP Protocol
This chapter defines the EFI UDP (User Datagram Protocol) Protocol that interfaces over the EFI IP
Protocol, and the EFI MTFTP Protocol interface that is built upon the EFI UDP Protocol. Protocols
for version 4 and version 6 of UDP and MTFTP are included.

29.1.1 UDP4 Service Binding Protocol

EFI_UDP4_SERVICE_BINDING_PROTOCOL

Summary
The EFI UDPv4 Service Binding Protocol is used to locate communication devices that are
supported by an EFI UDPv4 Protocol driver and to create and destroy instances of the EFI UDPv4
Protocol child protocol driver that can use the underlying communications device.

GUID
#define EFI_UDP4_SERVICE_BINDING_PROTOCOL_GUID \
 {0x83f01464,0x99bd,0x45e5,\
 {0xb3,0x83,0xaf,0x63,0x05,0xd8,0xe9,0xe6}}

Description
A network application that requires basic UDPv4 I/O services can use one of the protocol handler
services, such as BS->LocateHandleBuffer(), to search for devices that publish a EFI
UDPv4 Service Binding Protocol GUID. Each device with a published EFI UDPv4 Service Binding
Protocol GUID supports the EFI UDPv4 Protocol and may be available for use.

After a successful call to the EFI_UDP4_SERVICE_BINDING_PROTOCOL.CreateChild()
function, the newly created child EFI UDPv4 Protocol driver is in an unconfigured state; it is not
ready to send and receive data packets.

Before a network application terminates execution every successful call to the
EFI_UDP4_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_UDP4_SERVICE_BINDING_PROTOCOL.DestroyChild()function.
Version 2.5 April, 2015 1677

Unified Extensible Firmware Interface Specification
29.1.2 UDP4 Protocol

EFI_UDP4_PROTOCOL

Summary
The EFI UDPv4 Protocol provides simple packet-oriented services to transmit and receive UDP
packets.

GUID
#define EFI_UDP4_PROTOCOL_GUID \
 {0x3ad9df29,0x4501,0x478d,\
 {0xb1,0xf8,0x7f,0x7f,0xe7,0x0e,0x50,0xf3}}

Protocol Interface Structure
typedef struct _EFI_UDP4_PROTOCOL {
EFI_UDP4_GET_MODE_DATA GetModeData;
 EFI_UDP4_CONFIGURE Configure;
 EFI_UDP4_GROUPS Groups;
 EFI_UDP4_ROUTES Routes;
 EFI_UDP4_TRANSMIT Transmit;
 EFI_UDP4_RECEIVE Receive;
 EFI_UDP4_CANCEL Cancel;
 EFI_UDP4_POLL Poll;
} EFI_UDP4_PROTOCOL;

Parameters
GetModeData Reads the current operational settings. See the

GetModeData() function description.

Configure Initializes, changes, or resets operational settings for the EFI
UDPv4 Protocol. See the Configure() function description.

Groups Joins and leaves multicast groups. See the Groups() function
description.

Routes Add and deletes routing table entries. See the Routes()
function description.

Transmit Queues outgoing data packets into the transmit queue. This
function is a nonblocked operation. See the Transmit()
function description.

Receive Places a receiving request token into the receiving queue. This
function is a nonblocked operation. See the Receive()
function description.

Cancel Aborts a pending transmit or receive request. See the Cancel()
function description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.
1678 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
Description
The EFI_UDP4_PROTOCOL defines an EFI UDPv4 Protocol session that can be used by any
network drivers, applications, or daemons to transmit or receive UDP packets. This protocol
instance can either be bound to a specified port as a service or connected to some remote peer as an
active client. Each instance has its own settings, such as the routing table and group table, which are
independent from each other.

Note: In this document, all IPv4 addresses and incoming/outgoing packets are stored in network byte
order. All other parameters in the functions and data structures that are defined in this document
are stored in host byte order.
Version 2.5 April, 2015 1679

Unified Extensible Firmware Interface Specification
EFI_UDP4_PROTOCOL.GetModeData()

Summary
Reads the current operational settings.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP4_GET_MODE_DATA) (
 IN EFI_UDP4_PROTOCOL *This,
 OUT EFI_UDP4_CONFIG_DATA *Udp4ConfigData OPTIONAL,
 OUT EFI_IP4_MODE_DATA *Ip4ModeData OPTIONAL,
 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
);

Parameters
This Pointer to the EFI_UDP4_PROTOCOL instance.

Udp4ConfigData Pointer to the buffer to receive the current configuration data.
Type EFI_UDP4_CONFIG_DATA is defined in “Related
Definitions” below.

Ip4ModeData Pointer to the EFI IPv4 Protocol mode data structure. Type
EFI_IP4_MODE_DATA is defined in
EFI_IP4_PROTOCOL.GetModeData().

MnpConfigData Pointer to the managed network configuration data structure.
Type EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

SnpModeData Pointer to the simple network mode data structure. Type
EFI_SIMPLE_NETWORK_MODE is defined in the
EFI_SIMPLE_NETWORK_PROTOCOL.

Description
The GetModeData() function copies the current operational settings of this EFI UDPv4 Protocol
instance into user-supplied buffers. This function is used optionally to retrieve the operational mode
data of underlying networks or drivers.
1680 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
Related Definition
//

// EFI_UDP4_CONFIG_DATA
//

typedef struct {
 //Receiving Filters
 BOOLEAN AcceptBroadcast;
 BOOLEAN AcceptPromiscuous;
 BOOLEAN AcceptAnyPort;
 BOOLEAN AllowDuplicatePort;
 // I/O parameters
 UINT8 TypeOfService;
 UINT8 TimeToLive;
 BOOLEAN DoNotFragment;
 UINT32 ReceiveTimeout;
 UINT32 TransmitTimeout;
 // Access Point
 BOOLEAN UseDefaultAddress;
 EFI_IPv4_ADDRESS StationAddress;
 EFI_IPv4_ADDRESS SubnetMask;
 UINT16 StationPort;
 EFI_IPv4_ADDRESS RemoteAddress;
 UINT16 RemotePort;
} EFI_UDP4_CONFIG_DATA;

AcceptBroadcast Set to TRUE to accept broadcast UDP packets.

AcceptPromiscuous Set to TRUE to accept UDP packets that are sent to any address.

AcceptAnyPort Set to TRUE to accept UDP packets that are sent to any port.

AllowDuplicatePort Set to TRUE to allow this EFI UDPv4 Protocol child instance to
open a port number that is already being used by another EFI
UDPv4 Protocol child instance.

TypeOfService TypeOfService field in transmitted IPv4 packets.

TimeToLive TimeToLive field in transmitted IPv4 packets.

DoNotFragment Set to TRUE to disable IP transmit fragmentation.

ReceiveTimeout The receive timeout value (number of microseconds) to be
associated with each incoming packet. Zero means do not drop
incoming packets.

TransmitTimeout The transmit timeout value (number of microseconds) to be
associated with each outgoing packet. Zero means do not drop
outgoing packets.

UseDefaultAddress Set to TRUE to use the default IP address and default routing
table. If the default IP address is not available yet, then the
Version 2.5 April, 2015 1681

Unified Extensible Firmware Interface Specification
underlying EFI IPv4 Protocol driver will use
EFI_IP4_CONFIG2_PROTOCOL to retrieve the IP address and
subnet information. Ignored for incoming filtering if
AcceptPromiscuous is set to TRUE.

StationAddress The station IP address that will be assigned to this EFI UDPv4
Protocol instance. The EFI UDPv4 and EFI IPv4 Protocol drivers
will only deliver incoming packets whose destination matches
this IP address exactly. Address 0.0.0.0 is also accepted as a
special case in which incoming packets destined to any station IP
address are always delivered. Not used when
UseDefaultAddress is TRUE. Ignored for incoming filtering
if AcceptPromiscuous is TRUE.

SubnetMask The subnet address mask that is associated with the station
address. Not used when UseDefaultAddress is TRUE.

StationPort The port number to which this EFI UDPv4 Protocol instance is
bound. If a client of the EFI UDPv4 Protocol does not care about
the port number, set StationPort to zero. The EFI UDPv4
Protocol driver will assign a random port number to transmitted
UDP packets. Ignored if AcceptAnyPort is set to TRUE.

RemoteAddress The IP address of remote host to which this EFI UDPv4 Protocol
instance is connecting. If RemoteAddress is not 0.0.0.0, this
EFI UDPv4 Protocol instance will be connected to
RemoteAddress; i.e., outgoing packets of this EFI UDPv4
Protocol instance will be sent to this address by default and only
incoming packets from this address will be delivered to client.
Ignored for incoming filtering if AcceptPromiscuous is
TRUE.

RemotePort The port number of the remote host to which this EFI UDPv4
Protocol instance is connecting. If it is not zero, outgoing packets
of this EFI UDPv4 Protocol instance will be sent to this port
number by default and only incoming packets from this port will
be delivered to client. Ignored if RemoteAddress is 0.0.0.0
and ignored for incoming filtering if AcceptPromiscuous is
TRUE.

Status Codes Returned

EFI_SUCCESS The mode data was read.

EFI_NOT_STARTED When Udp4ConfigData is queried, no configuration data is

available because this instance has not been started.

EFI_INVALID_PARAMETER This is NULL.
1682 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_UDP4_PROTOCOL.Configure()

Summary
• Initializes, changes, or resets the operational parameters for this instance of the EFI UDPv4

Protocol.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP4_CONFIGURE) (
 IN EFI_UDP4_PROTOCOL *This,
 IN EFI_UDP4_CONFIG_DATA *UdpConfigData OPTIONAL
);

Parameters
This Pointer to the EFI_UDP4_PROTOCOL instance.

UdpConfigData Pointer to the buffer to receive the current mode data.

Description
The Configure() function is used to do the following:

• Initialize and start this instance of the EFI UDPv4 Protocol.

• Change the filtering rules and operational parameters.

• Reset this instance of the EFI UDPv4 Protocol.

Until these parameters are initialized, no network traffic can be sent or received by this instance.
This instance can be also reset by calling Configure() with UdpConfigData set to NULL.
Once reset, the receiving queue and transmitting queue are flushed and no traffic is allowed through
this instance.

With different parameters in UdpConfigData, Configure() can be used to bind this instance
to specified port.

Status Codes Returned

EFI_SUCCESS The configuration settings were set, changed, or reset successfully.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more following conditions are TRUE:

• This is NULL.

• UdpConfigData.StationAddress is not a valid
unicast IPv4 address.

• UdpConfigData.SubnetMask is not a valid IPv4
address mask. The subnet mask must be contiguous.

• UdpConfigData.RemoteAddress is not a valid
unicast IPv4 address if it is not zero.
Version 2.5 April, 2015 1683

Unified Extensible Firmware Interface Specification
EFI_ALREADY_STARTED The EFI UDPv4 Protocol instance is already started/configured and

must be stopped/reset before it can be reconfigured. Only
TypeOfService, TimeToLive, DoNotFragment,

ReceiveTimeout, and TransmitTimeout can be

reconfigured without stopping the current instance of the EFI
UDPv4 Protocol.

EFI_ACCESS_DENIED UdpConfigData. AllowDuplicatePort is FALSE
and UdpConfigData.StationPort is already used by

other instance.

EFI_OUT_OF_RESOURCES The EFI UDPv4 Protocol driver cannot allocate memory for this EFI
UDPv4 Protocol instance.

EFI_DEVICE_ERROR An unexpected network or system error occurred and this instance
was not opened.
1684 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_UDP4_PROTOCOL.Groups()

Summary
Joins and leaves multicast groups.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP4_GROUPS) (
 IN EFI_UDP4_PROTOCOL *This,
 IN BOOLEAN JoinFlag,
 IN EFI_IPv4_ADDRESS *MulticastAddress OPTIONAL
);

Parameters
This Pointer to the EFI_UDP4_PROTOCOL instance.

JoinFlag Set to TRUE to join a multicast group. Set to FALSE to leave one
or all multicast groups.

MulticastAddress Pointer to multicast group address to join or leave.

Description
The Groups() function is used to enable and disable the multicast group filtering.

If the JoinFlag is FALSE and the MulticastAddress is NULL, then all currently joined
groups are left.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The EFI UDPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_OUT_OF_RESOURCES Could not allocate resources to join the group.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• JoinFlag is TRUE and MulticastAddress is
NULL.

• JoinFlag is TRUE and *MulticastAddress is not
a valid multicast address.

EFI_ALREADY_STARTED The group address is already in the group table (when

JoinFlag is TRUE).

EFI_NOT_FOUND The group address is not in the group table (when JoinFlag is

FALSE).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
Version 2.5 April, 2015 1685

Unified Extensible Firmware Interface Specification
EFI_UDP4_PROTOCOL.Routes()

Summary
Adds and deletes routing table entries.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP4_ROUTES) (
 IN EFI_UDP4_PROTOCOL *This,
 IN BOOLEAN DeleteRoute,
 IN EFI_IPv4_ADDRESS *SubnetAddress,
 IN EFI_IPv4_ADDRESS *SubnetMask,
 IN EFI_IPv4_ADDRESS *GatewayAddress
);

Parameters
This Pointer to the EFI_UDP4_PROTOCOL instance.

DeleteRoute Set to TRUE to delete this route from the routing table. Set to
FALSE to add this route to the routing table.
DestinationAddress and SubnetMask are used as the
key to each route entry.

SubnetAddress The destination network address that needs to be routed.

SubnetMask The subnet mask of SubnetAddress.

GatewayAddress The gateway IP address for this route.

Description
The Routes() function adds a route to or deletes a route from the routing table.

Routes are determined by comparing the SubnetAddress with the destination IP address and
arithmetically AND-ing it with the SubnetMask. The gateway address must be on the same subnet
as the configured station address.

The default route is added with SubnetAddress and SubnetMask both set to 0.0.0.0. The
default route matches all destination IP addresses that do not match any other routes.

A zero GatewayAddress is a nonroute. Packets are sent to the destination IP address if it can be
found in the Address Resolution Protocol (ARP) cache or on the local subnet. One automatic
nonroute entry will be inserted into the routing table for outgoing packets that are addressed to a
local subnet (gateway address of 0.0.0.0).

Each instance of the EFI UDPv4 Protocol has its own independent routing table. Instances of the EFI
UDPv4 Protocol that use the default IP address will also have copies of the routing table provided by
the EFI_IP4_CONFIG2_PROTOCOL. These copies will be updated automatically whenever the
IP driver reconfigures its instances; as a result, the previous modification to these copies will be lost.
1686 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
Note: There is no way to set up routes to other network interface cards (NICs) because each NIC has its
own independent network stack that shares information only through EFI UDP4 Variable.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The EFI UDPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• SubnetAddress is NULL.

• SubnetMask is NULL.

• GatewayAddress is NULL.

• *SubnetAddress is not a valid subnet address.

• *SubnetMask is not a valid subnet mask.

• *GatewayAddress is not a valid unicast IP address.

EFI_OUT_OF_RESOURCES Could not add the entry to the routing table.

EFI_NOT_FOUND This route is not in the routing table.

EFI_ACCESS_DENIED The route is already defined in the routing table.
Version 2.5 April, 2015 1687

Unified Extensible Firmware Interface Specification
EFI_UDP4_PROTOCOL.Transmit()

Summary
Queues outgoing data packets into the transmit queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP4_TRANSMIT) (
 IN EFI_UDP4_PROTOCOL *This,
 IN EFI_UDP4_COMPLETION_TOKEN *Token
);

Parameters
This Pointer to the EFI_UDP4_PROTOCOL instance.

Token Pointer to the completion token that will be placed into the
transmit queue. Type EFI_UDP4_COMPLETION_TOKEN is
defined in “Related Definitions” below.

Description
The Transmit() function places a sending request to this instance of the EFI UDPv4 Protocol,
alongside the transmit data that was filled by the user. Whenever the packet in the token is sent out
or some errors occur, the Token.Event will be signaled and Token.Status is updated.
Providing a proper notification function and context for the event will enable the user to receive the
notification and transmitting status.

Related Definitions
//

// EFI_UDP4_COMPLETION_TOKEN
//

typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 union {
 EFI_UDP4_RECEIVE_DATA *RxData;
 EFI_UDP4_TRANSMIT_DATA *TxData;
 } Packet;
} EFI_UDP4_COMPLETION_TOKEN;

Event This Event will be signaled after the Status field is updated
by the EFI UDPv4 Protocol driver. The type of Event must be
EVT_NOTIFY_SIGNAL. The Task Priority Level (TPL) of
Event must be lower than or equal to TPL_CALLBACK.
1688 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
Status Will be set to one of the following values:

EFI_SUCCESS. The receive or transmit operation completed
successfully.

EFI_ABORTED. The receive or transmit was aborted.

EFI_TIMEOUT. The transmit timeout expired.

EFI_NETWORK_UNREACHABLE. The destination network is
unreachable. RxData is set to NULL in this situation.

EFI_HOST_UNREACHABLE. The destination host is
unreachable. RxData is set to NULL in this situation.

EFI_PROTOCOL_UNREACHABLE. The UDP protocol is
unsupported in the remote system. RxData is set to NULL in this
situation.

EFI_PORT_UNREACHABLE. No service is listening on the
remote port. RxData is set to NULL in this situation.

EFI_ICMP_ERROR. Some other Internet Control Message
Protocol (ICMP) error report was received. For example, packets
are being sent too fast for the destination to receive them and the
destination sent an ICMP source quench report. RxData is set to
NULL in this situation.

EFI_DEVICE_ERROR. An unexpected system or network
error occurred.

EFI_NO_MEDIA. There was a media error.

RxData When this token is used for receiving, RxData is a pointer to
EFI_UDP4_RECEIVE_DATA. Type
EFI_UDP4_RECEIVE_DATA is defined below.

TxData When this token is used for transmitting, TxData is a pointer to
EFI_UDP4_TRANSMIT_DATA. Type
EFI_UDP4_TRANSMIT_DATA is defined below.

The EFI_UDP4_COMPLETION_TOKEN structures are used for both transmit and receive
operations.

When used for transmitting, the Event and TxData fields must be filled in by the EFI UDPv4
Protocol client. After the transmit operation completes, the Status field is updated by the EFI
UDPv4 Protocol and the Event is signaled.

• When used for receiving, only the Event field must be filled in by the EFI UDPv4 Protocol
client. After a packet is received, RxData and Status are filled in by the EFI UDPv4 Protocol
and the Event is signaled.

• The ICMP related status codes filled in Status are defined as follows:
Version 2.5 April, 2015 1689

Unified Extensible Firmware Interface Specification
//

// UDP4 Token Status definition
//

#define EFI_NETWORK_UNREACHABLE EFIERR(100)
#define EFI_HOST_UNREACHABLE EFIERR(101)
#define EFI_PROTOCOL_UNREACHABLE EFIERR(102)
#define EFI_PORT_UNREACHABLE EFIERR(103)

//

// EFI_UDP4_RECEIVE_DATA
//

typedef struct {
 EFI_TIME TimeStamp;
 EFI_EVENT RecycleSignal;
 EFI_UDP4_SESSION_DATA UdpSession;
 UINT32 DataLength;
 UINT32 FragmentCount;
 EFI_UDP4_FRAGMENT_DATA FragmentTable[1];
} EFI_UDP4_RECEIVE_DATA;

TimeStamp Time when the EFI UDPv4 Protocol accepted the packet.
TimeStamp is zero filled if timestamps are disabled or
unsupported

RecycleSignal Indicates the event to signal when the received data has been
processed.

UdpSession The UDP session data including SourceAddress,
SourcePort, DestinationAddress, and
DestinationPort. Type EFI_UDP4_SESSION_DATA is
defined below.

DataLength The sum of the fragment data length.

FragmentCount Number of fragments. May be zero.

FragmentTable Array of fragment descriptors. IP and UDP headers are included
in these buffers if ConfigData.RawData is TRUE. Otherwise
they are stripped. May be zero. Type
EFI_UDP4_FRAGMENT_DATA is defined below.

EFI_UDP4_RECEIVE_DATA is filled by the EFI UDPv4 Protocol driver when this EFI UDPv4
Protocol instance receives an incoming packet. If there is a waiting token for incoming packets, the
CompletionToken.Packet.RxData field is updated to this incoming packet and the
CompletionToken.Event is signaled. The EFI UDPv4 Protocol client must signal the
RecycleSignal after processing the packet.
1690 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
• FragmentTable could contain multiple buffers that are not in the continuous memory
locations. The EFI UDPv4 Protocol client might need to combine two or more buffers in
FragmentTable to form their own protocol header.

//

// EFI_UDP4_SESSION_DATA
//

typedef struct {
 EFI_IPv4_ADDRESS SourceAddress;
 UINT16 SourcePort;
 EFI_IPv4_ADDRESS DestinationAddress;
 UINT16 DestinationPort;
} EFI_UDP4_SESSION_DATA;

SourceAddress Address from which this packet is sent. If this field is set to zero
when sending packets, the address that is assigned in
EFI_UDP4_PROTOCOL.Configure() is used.

SourcePort Port from which this packet is sent. It is in host byte order. If this
field is set to zero when sending packets, the port that is assigned
in EFI_UDP4_PROTOCOL.Configure() is used. If this
field is set to zero and unbound, a call to
EFI_UDP4_PROTOCOL.Transmit() will fail.

DestinationAddress Address to which this packet is sent.

DestinationPort Port to which this packet is sent. It is in host byte order. If this
field is set to zero and unconnected, the call to
EFI_UDP4_PROTOCOL.Transmit() will fail.

The EFI_UDP4_SESSION_DATA is used to retrieve the settings when receiving packets or to
override the existing settings of this EFI UDPv4 Protocol instance when sending packets.

//

// EFI_UDP4_FRAGMENT_DATA
//

typedef struct {
 UINT32 FragmentLength;
 VOID *FragmentBuffer;
} EFI_UDP4_FRAGMENT_DATA;

FragmentLength Length of the fragment data buffer.

FragmentBuffer Pointer to the fragment data buffer.

EFI_UDP4_FRAGMENT_DATA allows multiple receive or transmit buffers to be specified. The
purpose of this structure is to avoid copying the same packet multiple times.
Version 2.5 April, 2015 1691

Unified Extensible Firmware Interface Specification
//**
// EFI_UDP4_TRANSMIT_DATA
//**
typedef struct {
 EFI_UDP4_SESSION_DATA *UdpSessionData;
 EFI_IPv4_ADDRESS *GatewayAddress;
 UINT32 DataLength;
 UINT32 FragmentCount;
 EFI_UDP4_FRAGMENT_DATA FragmentTable[1];
} EFI_UDP4_TRANSMIT_DATA;

UdpSessionData If not NULL, the data that is used to override the transmitting
settings. Type EFI_UDP4_SESSION_DATA is defined above.

GatewayAddress The next-hop address to override the setting from the routing
table.

DataLength Sum of the fragment data length. Must not exceed the maximum
UDP packet size.

FragmentCount Number of fragments.

FragmentTable Array of fragment descriptors. Type
EFI_UDP4_FRAGMENT_DATA is defined above.

The EFI UDPv4 Protocol client must fill this data structure before sending a packet. The packet may
contain multiple buffers that may be not in a continuous memory location.

Status Codes Returned

EFI_SUCCESS The data has been queued for transmission.

EFI_NOT_STARTED This EFI UDPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.
1692 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_INVALID_PARAMETER One or more of the following are TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL.

• Token.Packet.TxData is NULL.

• Token.Packet.TxData.FragmentCount is
zero.

• Token.Packet.TxData.DataLength is not
equal to the sum of fragment lengths.

• One or more of the
Token.Packet.TxData.FragmentTable[].
FragmentLength fields is zero.

• One or more of the
Token.Packet.TxData.FragmentTable[].
FragmentBuffer fields is NULL.

• Token.Packet.TxData. GatewayAddress
is not a unicast IPv4 address if it is not NULL.

• Token.Packet.TxData.UdpSessionData.So
urceAddress is not a valid unicast IPv4 address or
Token.Packet.TxData.UdpSessionData.D
estinationAddress is zero if the
UdpSessionData is not NULL.

EFI_ACCESS_DENIED The transmit completion token with the same

Token.Event was already in the transmit queue.

EFI_NOT_READY The completion token could not be queued because the
transmit queue is full.

EFI_OUT_OF_RESOURCES Could not queue the transmit data.

EFI_NOT_FOUND There is no route to the destination network or address.

EFI_BAD_BUFFER_SIZE The data length is greater than the maximum UDP packet size.
Or the length of the IP header + UDP header + data length is

greater than MTU if DoNotFragment is TRUE.

EFI_NO_MEDIA There was a media error.
Version 2.5 April, 2015 1693

Unified Extensible Firmware Interface Specification
EFI_UDP4_PROTOCOL.Receive()

Summary
Places an asynchronous receive request into the receiving queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP4_RECEIVE) (
 IN EFI_UDP4_PROTOCOL *This,
 IN EFI_UDP4_COMPLETION_TOKEN *Token
);

Parameters
This Pointer to the EFI_UDP4_PROTOCOL instance.

Token Pointer to a token that is associated with the receive data
descriptor. Type EFI_UDP4_COMPLETION_TOKEN is defined
in EFI_UDP4_PROTOCOL.Transmit().

Description
The Receive() function places a completion token into the receive packet queue. This function is
always asynchronous.

The caller must fill in the Token.Event field in the completion token, and this field cannot be
NULL. When the receive operation completes, the EFI UDPv4 Protocol driver updates the
Token.Status and Token.Packet.RxData fields and the Token.Event is signaled.
Providing a proper notification function and context for the event will enable the user to receive the
notification and receiving status. That notification function is guaranteed to not be re-entered.

Status Codes Returned

EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This EFI UDPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Event is NULL.

EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of
system resources (usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The EFI UDPv4 Protocol instance has been reset to startup
defaults.
1694 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_ACCESS_DENIED A receive completion token with the same Token.Event was

already in the receive queue.

EFI_NOT_READY The receive request could not be queued because the receive
queue is full.

EFI_NO_MEDIA There was a media error.
Version 2.5 April, 2015 1695

Unified Extensible Firmware Interface Specification
EFI_UDP4_PROTOCOL.Cancel()

Summary
Aborts an asynchronous transmit or receive request.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP4_CANCEL)(
 IN EFI_UDP4_PROTOCOL *This,
 IN EFI_UDP4_COMPLETION_TOKEN *Token OPTIONAL
);

Parameters
This Pointer to the EFI_UDP4_PROTOCOL instance.

Token Pointer to a token that has been issued by
EFI_UDP4_PROTOCOL.Transmit() or
EFI_UDP4_PROTOCOL.Receive().If NULL, all pending
tokens are aborted. Type EFI_UDP4_COMPLETION_TOKEN is
defined in EFI_UDP4_PROTOCOL.Transmit().

Description
The Cancel() function is used to abort a pending transmit or receive request. If the token is in the
transmit or receive request queues, after calling this function, Token.Status will be set to
EFI_ABORTED and then Token.Event will be signaled. If the token is not in one of the queues,
which usually means that the asynchronous operation has completed, this function will not signal the
token and EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS The asynchronous I/O request was aborted and Token.Event

was signaled. When Token is NULL, all pending requests are

aborted and their events are signaled.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED This instance has not been started.

EFI_NO_MAPPING When using the default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was not

found in the transmit or receive queue. It has either completed or

was not issued by Transmit() and Receive().
1696 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_UDP4_PROTOCOL.Poll()

Summary
Polls for incoming data packets and processes outgoing data packets.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP4_POLL) (
 IN EFI_UDP4_PROTOCOL *This
);

Parameters
This Pointer to the EFI_UDP4_PROTOCOL instance.

Description
The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

In some systems, the periodic timer event in the managed network driver may not poll the
underlying communications device fast enough to transmit and/or receive all data packets without
missing incoming packets or dropping outgoing packets. Drivers and applications that are
experiencing packet loss should try calling the Poll() function more often.

Status Codes Returned

29.2 EFI UDPv6 Protocol
This section defines the EFI UDPv6 (User Datagram Protocol version 6) Protocol that interfaces
over the EFI IPv6 Protocol.

29.2.1 UDP6 Service Binding Protocol

EFI_UDP6_SERVICE_BINDING_PROTOCOL

Summary
The EFI UDPv6 Service Binding Protocol is used to locate communication devices that are
supported by an EFI UDPv6 Protocol driver and to create and destroy instances of the EFI UDPv6
Protocol child instance that uses the underlying communications device.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
Version 2.5 April, 2015 1697

Unified Extensible Firmware Interface Specification
GUID
#define EFI_UDP6_SERVICE_BINDING_PROTOCOL_GUID \
 {0x66ed4721, 0x3c98, 0x4d3e,\
 {0x81, 0xe3, 0xd0, 0x3d, 0xd3, 0x9a, 0x72, 0x54}}

Description
A network application that requires basic UDPv6 I/O services can use one of the protocol handler
services, such as BS->LocateHandleBuffer(), to search for devices that publish a EFI
UDPv6 Service Binding Protocol GUID. Each device with a published EFI UDPv6 Service Binding
Protocol GUID supports the EFI UDPv6 Protocol and may be available for use.

After a successful call to the EFI_UDP6_SERVICE_BINDING_PROTOCOL.CreateChild()
function, the newly created child EFI UDPv6 Protocol driver is in an un-configured state; it is not
ready to send and receive data packets.

Before a network application terminates execution, every successful call to the
EFI_UDP6_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_UDP6_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

29.2.2 EFI UDP6 Protocol

EFI_UDP6_PROTOCOL

Summary
The EFI UDPv6 Protocol provides simple packet-oriented services to transmit and receive UDP
packets.

GUID
#define EFI_UDP6_PROTOCOL_GUID \
 {0x4f948815, 0xb4b9, 0x43cb,\
 {0x8a, 0x33, 0x90, 0xe0, 0x60, 0xb3, 0x49, 0x55}}

Protocol Interface Structure
typedef struct _EFI_UDP6_PROTOCOL {
 EFI_UDP6_GET_MODE_DATA GetModeData;
 EFI_UDP6_CONFIGURE Configure;
 EFI_UDP6_GROUPS Groups;
 EFI_UDP6_TRANSMIT Transmit;
 EFI_UDP6_RECEIVE Receive;
 EFI_UDP6_CANCEL Cancel;
 EFI_UDP6_POLL Poll;
} EFI_UDP6_PROTOCOl;

Parameters
GetModeData Reads the current operational settings. See the

GetModeData() function description.
1698 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
Configure Initializes, changes, or resets operational settings for the EFI
UDPv6 Protocol. See the Configure() function description.

Groups Joins and leaves multicast groups. See the Groups() function
description.

Transmit Queues outgoing data packets into the transmit queue. This
function is a non-blocked operation. See the Transmit()
function description.

Receive Places a receiving request token into the receiving queue. This
function is a non-blocked operation. See the Receive()
function description.

Cancel Aborts a pending transmit or receive request. See the Cancel()
function description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.

Description
The EFI_UDP6_PROTOCOL defines an EFI UDPv6 Protocol session that can be used by any
network drivers, applications, or daemons to transmit or receive UDP packets. This protocol
instance can either be bound to a specified port as a service or connected to some remote peer as an
active client. Each instance has its own settings, such as group table, that are independent from each
other.

Note: Byte Order: In this document, all IPv6 addresses and incoming/outgoing packets are stored in

network byte order. All other parameters in the functions and data structures that are defined in
this document are stored in host byte order.
Version 2.5 April, 2015 1699

Unified Extensible Firmware Interface Specification
EFI_UDP6_PROTOCOL.GetModeData()

Summary
Read the current operational settings.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP6_GET_MODE_DATA) (
 IN EFI_UDP6_PROTOCOL *This,
 OUT EFI_UDP6_CONFIG_DATA *Udp6ConfigData OPTIONAL,
 OUT EFI_IP6_MODE_DATA *Ip6ModeData OPTIONAL,
 OUT EFI_MANAGED_NETWORK_CONFIG_DATA *MnpConfigData OPTIONAL,
 OUT EFI_SIMPLE_NETWORK_MODE *SnpModeData OPTIONAL
);

Parameters
This Pointer to the EFI_UDP6_PROTOCOL instance.

Udp6ConfigData The buffer in which the current UDP configuration data is
returned. Type EFI_UDP6_CONFIG_DATA is defined in
"Related Definitions" below.

Ip6ModeData The buffer in which the current EFI IPv6 Protocol mode data is
returned. Type EFI_IP6_MODE_DATA is defined in
EFI_IP6_PROTOCOL.GetModeData().

MnpConfigData The buffer in which the current managed network configuration
data is returned. Type
EFI_MANAGED_NETWORK_CONFIG_DATA is defined in
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData().

SnpModeData The buffer in which the simple network mode data is returned.
Type EFI_SIMPLE_NETWORK_MODE is defined in the
EFI_SIMPLE_NETWORK Protocol.

Description
The GetModeData() function copies the current operational settings of this EFI UDPv6 Protocol
instance into user-supplied buffers. This function is used optionally to retrieve the operational mode
data of underlying networks or drivers.
1700 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
Related Definition

// EFI_UDP6_CONFIG_DATA
//

typedef struct {
 //Receiving Filters

 BOOLEAN AcceptPromiscuous;
 BOOLEAN AcceptAnyPort;
 BOOLEAN AllowDuplicatePort;
 //I/O parameters
 ;

 UINT8 TrafficClass;
 UINT8 HopLimit;
 ;
 UINT32 ReceiveTimeout;
 UINT32 TransmitTimeout;
 //Access Point
 EFI_IPv6_ADDRESS StationAddress;
 UINT16 StationPort;
 EFI_IPv6_ADDRESS RemoteAddress;
 UINT16 RemotePort;
} EFI_UDP6_CONFIG_DATA;

AcceptPromiscuous Set to TRUE to accept UDP packets that are sent to any address.

AcceptAnyPort Set to TRUE to accept UDP packets that are sent to any port.

AllowDuplicatePort Set to TRUE to allow this EFI UDPv6 Protocol child instance to
open a port number that is already being used by another EFI
UDPv6 Protocol child instance.

TrafficClass TrafficClass field in transmitted IPv6 packets.

HopLimit HopLimit field in transmitted IPv6 packets.

ReceiveTimeout The receive timeout value (number of microseconds) to be
associated with each incoming packet. Zero means do not drop
incoming packets.

TransmitTimeout The transmit timeout value (number of microseconds) to be
associated with each outgoing packet. Zero means do not drop
outgoing packets.

StationAddress The station IP address that will be assigned to this EFI UDPv6
Protocol instance. The EFI UDPv6 and EFI IPv6 Protocol drivers
will only deliver incoming packets whose destination matches
this IP address exactly. Address 0::/128 is also accepted as a
special case. Under this situation, underlying IPv6 driver is
responsible for binding a source address to this EFI IPv6 protocol
Version 2.5 April, 2015 1701

Unified Extensible Firmware Interface Specification
instance according to source address selection algorithm. Only
incoming packet from the selected source address is delivered.
This field can be set and changed only when the EFI IPv6 driver
is transitioning from the stopped to the started states. If no
address is available for selecting, the EFI IPv6 Protocol driver
will use EFI_IP6_CONFIG_PROTOCOL to retrieve the IPv6
address.

StationPort The port number to which this EFI UDPv6 Protocol instance is
bound. If a client of the EFI UDPv6 Protocol does not care about
the port number, set StationPort to zero. The EFI UDPv6
Protocol driver will assign a random port number to transmitted
UDP packets. Ignored it if AcceptAnyPort is TRUE.

RemoteAddress The IP address of remote host to which this EFI UDPv6 Protocol
instance is connecting. If RemoteAddress is not 0::/128, this
EFI UDPv6 Protocol instance will be connected to
RemoteAddress; i.e., outgoing packets of this EFI UDPv6
Protocol instance will be sent to this address by default and only
incoming packets from this address will be delivered to client.
Ignored for incoming filtering if AcceptPromiscuous is
TRUE.

RemotePort The port number of the remote host to which this EFI UDPv6
Protocol instance is connecting. If it is not zero, outgoing packets
of this EFI UDPv6 Protocol instance will be sent to this port
number by default and only incoming packets from this port will
be delivered to client. Ignored if RemoteAddress is 0::/128
and ignored for incoming filtering if AcceptPromiscuous is
TRUE.

Status Codes Returned

EFI_SUCCESS The mode data was read.

EFI_NOT_STARTED When Udp6ConfigData is queried, no configuration data is

available because this instance has not been started.

EFI_INVALID_PARAMETER This is NULL.
1702 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_UDP6_PROTOCOL.Configure()

Summary
Initializes, changes, or resets the operational parameters for this instance of the EFI UDPv6
Protocol.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP6_CONFIGURE) (
 IN EFI_UDP6_PROTOCOL *This,
 IN EFI_UDP6_CONFIG_DATA *UdpConfigData OPTIONAL
);

Parameters
This Pointer to the EFI_UDP6_PROTOCOL instance.

UdpConfigData Pointer to the buffer contained the configuration data.

Description
The Configure() function is used to do the following:

• Initialize and start this instance of the EFI UDPv6 Protocol.

• Change the filtering rules and operational parameters.

• Reset this instance of the EFI UDPv6 Protocol.

Until these parameters are initialized, no network traffic can be sent or received by this instance.
This instance can be also reset by calling Configure() with UdpConfigData set to NULL.
Once reset, the receiving queue and transmitting queue are flushed and no traffic is allowed through
this instance.

With different parameters in UdpConfigData, Configure() can be used to bind this instance
to specified port.
Version 2.5 April, 2015 1703

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS The configuration settings were set, changed, or reset successfully.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
address for this instance, but no source address was available for
use.

EFI_INVALID_PARAMETER One or more following conditions are TRUE:

This is NULL.

UdpConfigData.StationAddress neither zero nor

one of the configured IP addresses in the underlying IPv6 driver.

UdpConfigData.RemoteAddress is not a valid unicast

IPv6 address if it is not zero.

EFI_ALREADY_STARTED The EFI UDPv6 Protocol instance is already started/configured and

must be stopped/reset before it can be reconfigured. Only
TrafficClass, HopLimit, ReceiveTimeout, and

TransmitTimeout can be reconfigured without stopping the

current instance of the EFI UDPv6 Protocol.

EFI_ACCESS_DENIED UdpConfigData. AllowDuplicatePort is FALSE
and UdpConfigData.StationPort is already used by

other instance.

EFI_OUT_OF_RESOURCES The EFI UDPv6 Protocol driver cannot allocate memory for this EFI
UDPv6 Protocol instance.

EFI_DEVICE_ERROR An unexpected network or system error occurred and this instance
was not opened.
1704 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_UDP6_PROTOCOL.Groups()

Summary
Joins and leaves multicast groups.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP6_GROUPS) (
 IN EFI_UDP6_PROTOCOL *This,
 IN BOOLEAN JoinFlag,
 IN EFI_IPv6_ADDRESS *MulticastAddress OPTIONAL
);

Parameters
This Pointer to the EFI_UDP6_PROTOCOL instance.

JoinFlag Set to TRUE to join a multicast group. Set to FALSE to leave one
or all multicast groups.

MulticastAddress Pointer to multicast group address to join or leave.

Description
The Groups() function is used to join or leave one or more multicast group.

If the JoinFlag is FALSE and the MulticastAddress is NULL, then all currently joined
groups are left.

Status Codes Returned

EFI_SUCCESS The operation completed successfully.

EFI_NOT_STARTED The EFI UDPv6 Protocol instance has not been started.

EFI_OUT_OF_RESOURCES Could not allocate resources to join the group.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

This is NULL.

JoinFlag is TRUE and MulticastAddress is NULL.

JoinFlag is TRUE and *MulticastAddress is not a

valid multicast address.

EFI_ALREADY_STARTED The group address is already in the group table (when

JoinFlag is TRUE).

EFI_NOT_FOUND The group address is not in the group table (when JoinFlag is

FALSE).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
Version 2.5 April, 2015 1705

Unified Extensible Firmware Interface Specification
EFI_UDP6_PROTOCOL.Transmit()

Summary
Queues outgoing data packets into the transmit queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP6_TRANSMIT) (
 IN EFI_UDP6_PROTOCOL *This,
 IN EFI_UDP6_COMPLETION_TOKEN *Token
);

Parameters
This Pointer to the EFI_UDP6_PROTOCOL instance.

Token Pointer to the completion token that will be placed into the
transmit queue. Type EFI_UDP6_COMPLETION_TOKEN is
defined in "Related Definitions" below.

Description
The Transmit() function places a sending request to this instance of the EFI UDPv6 Protocol,
alongside the transmit data that was filled by the user. Whenever the packet in the token is sent out
or some errors occur, the Token.Event will be signaled and Token.Status is updated.
Providing a proper notification function and context for the event will enable the user to receive the
notification and transmitting status.

Related Definitions
//

// EFI_UDP6_COMPLETION_TOKEN
//

typedef struct {
 EFI_EVENT Event;
 EFI_STATUS Status;
 union {
 EFI_UDP6_RECEIVE_DATA *RxData;
 EFI_UDP6_TRANSMIT_DATA *TxData;
 } Packet;
} EFI_UDP6_COMPLETION_TOKEN;

Event This Event will be signaled after the Status field is updated
by the EFI UDPv6 Protocol driver. The type of Event must be
EVT_NOTIFY_SIGNAL.

Status Will be set to one of the following values:
1706 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_SUCCESS: The receive or transmit operation completed successfully.

EFI_ABORTED: The receive or transmit was aborted.

EFI_TIMEOUT: The transmit timeout expired.

EFI_NETWORK_UNREACHABLE: The destination network is unreachable. RxData is set to
NULL in this situation.

EFI_HOST_UNREACHABLE: The destination host is unreachable. RxData is set to NULL in
this situation.

EFI_PROTOCOL_UNREACHABLE: The UDP protocol is unsupported in the remote system.
RxData is set to NULL in this situation.

EFI_PORT_UNREACHABLE: No service is listening on the remote port. RxData is set to
NULL in this situation.

EFI_ICMP_ERROR: Some other Internet Control Message Protocol (ICMP) error report was
received. For example, packets are being sent too fast for the destination to receive them and
the destination sent an ICMP source quench report. RxData is set to NULL in this situation.

EFI_DEVICE_ERROR: An unexpected system or network error occurred.

EFI_SECURITY_VIOLATION: The transmit or receive was failed because of IPsec policy
check.

RxData When this token is used for receiving, RxData is a pointer to
EFI_UDP6_RECEIVE_DATA. Type
EFI_UDP6_RECEIVE_DATA is defined below.

TxData When this token is used for transmitting, TxData is a pointer to
EFI_UDP6_TRANSMIT_DATA. Type
EFI_UDP6_TRANSMIT_DATA is defined below.

The EFI_UDP6_COMPLETION_TOKEN structures are used for both transmit and receive
operations.

When used for transmitting, the Event and TxData fields must be filled in by the EFI UDPv6
Protocol client. After the transmit operation completes, the Status field is updated by the EFI
UDPv6 Protocol and the Event is signaled.

When used for receiving, only the Event field must be filled in by the EFI UDPv6 Protocol client.
After a packet is received, RxData and Status are filled in by the EFI UDPv6 Protocol and the
Event is signaled.
Version 2.5 April, 2015 1707

Unified Extensible Firmware Interface Specification
 //

// EFI_UDP6_RECEIVE_DATA
//

typedef struct {
 EFI_TIME TimeStamp;
 EFI_EVENT RecycleSignal;
 EFI_UDP6_SESSION_DATA UdpSession;
 UINT32 DataLength;
 UINT32 FragmentCount;
 EFI_UDP6_FRAGMENT_DATA FragmentTable[1];
} EFI_UDP6_RECEIVE_DATA;

TimeStamp Time when the EFI UDPv6 Protocol accepted the packet.
TimeStamp is zero filled if timestamps are disabled or
unsupported.

RecycleSignal Indicates the event to signal when the received data has been
processed.

UdpSession The UDP session data including SourceAddress,
SourcePort, DestinationAddress, and DestinationPort.
Type EFI_UDP6_SESSION_DATA is defined below.

DataLength The sum of the fragment data length.

FragmentCount Number of fragments. Maybe zero.

FragmentTable Array of fragment descriptors. Maybe zero. Type
EFI_UDP6_FRAGMENT_DATA is defined below.

EFI_UDP6_RECEIVE_DATA is filled by the EFI UDPv6 Protocol driver when this EFI UDPv6
Protocol instance receives an incoming packet. If there is a waiting token for incoming packets, the
CompletionToken.Packet.RxData field is updated to this incoming packet and the
CompletionToken.Event is signaled. The EFI UDPv6 Protocol client must signal the
RecycleSignal after processing the packet.

FragmentTable could contain multiple buffers that are not in the continuous memory locations.
The EFI UDPv6 Protocol client might need to combine two or more buffers in FragmentTable to
form their own protocol header.
1708 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
//

// EFI_UDP6_SESSION_DATA
//

typedef struct {
 EFI_IPv6_ADDRESS SourceAddress;
 UINT16 SourcePort;
 EFI_IPv6_ADDRESS DestinationAddress;
 UINT16 DestinationPort;
} EFI_UDP6_SESSION_DATA;

SourceAddress Address from which this packet is sent. This filed should not be
used when sending packets.

SourcePort Port from which this packet is sent. It is in host byte order. This
filed should not be used when sending packets.

DestinationAddress Address to which this packet is sent. When sending packet, it’ll
be ignored if it is zero.

DestinationPort Port to which this packet is sent. When sending packet, it’ll be
ignored if it is zero .

The EFI_UDP6_SESSION_DATA is used to retrieve the settings when receiving packets or to
override the existing settings (only DestinationAddress and DestinationPort can be overridden) of
this EFI UDPv6 Protocol instance when sending packets.

//

// EFI_UDP6_FRAGMENT_DATA
//

typedef struct {
 UINT32 FragmentLength;
 VOID *FragmentBuffer;
} EFI_UDP6_FRAGMENT_DATA;

FragmentLength Length of the fragment data buffer.

FragmentBuffer Pointer to the fragment data buffer.

EFI_UDP6_FRAGMENT_DATA allows multiple receive or transmit buffers to be specified. The
purpose of this structure is to avoid copying the same packet multiple times.
Version 2.5 April, 2015 1709

Unified Extensible Firmware Interface Specification
//**
// EFI_UDP6_TRANSMIT_DATA
//**
typedef struct {
 EFI_UDP6_SESSION_DATA *UdpSessionData ;
 UINT32 DataLength;
 UINT32 FragmentCount;
 EFI_UDP6_FRAGMENT_DATA FragmentTable[1];
} EFI_UDP6_TRANSMIT_DATA;

UdpSessionDataIf not NULL, the data that is used to override the transmitting settings.Only the
two filed UdpSessionData.DestinationAddress and
UdpSessionData.DestionPort can be used as the transmitting setting filed. Type
EFI_UDP6_SESSION_DATA is defined above.

DataLength Sum of the fragment data length. Must not exceed the maximum
UDP packet size.

FragmentCount Number of fragments.

FragmentTable Array of fragment descriptors. Type
EFI_UDP6_FRAGMENT_DATA is defined above.

The EFI UDPv6 Protocol client must fill this data structure before sending a packet. The packet may
contain multiple buffers that may be not in a continuous memory location.

Status Codes Returned

EFI_SUCCESS The data has been queued for transmission.

EFI_NOT_STARTED This EFI UDPv6 Protocol instance has not been started.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a
source address for this instance, but no source address was
available for use.
1710 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_INVALID_PARAMETER One or more of the following are TRUE:

This is NULL.

Token is NULL.

Token.Event is NULL.

Token.Packet.TxData is NULL.

Token.Packet.TxData.FragmentCount is zero.

Token.Packet.TxData.DataLength is not equal

to the sum of fragment lengths.
One or more of the

Token.Packet.TxData.FragmentTable[].Fr
agmentLength fields is zero.

One or more of the

Token.Packet.TxData.FragmentTable[].Fr
agmentBuffer fields is NULL.

Token.Packet.TxData.UdpSessionData. DestinationAddress is
not zero and is not valid unicast Ipv6 address if
UdpSessionData is not NULL.

Token.Packet.TxData.UdpSessionData is
NULL and this instance’s UdpConfigData.

RemoteAddress is unspecified.

 Token.Packet.TxData.UdpSession-
Data.DestinationAddress is non-zero when

DestinationAddress is configured as non-zero

when doing Configure() for this EFI Udp6 protocol
instance.

Token.Packet.TxData.UdpSesionData.Dest
inationAddress is zero when

DestinationAddress is unspecified when doing

Configure() for this EFI Udp6 protocol instance

EFI_ACCESS_DENIED The transmit completion token with the same

Token.Event was already in the transmit queue.

EFI_NOT_READY The completion token could not be queued because the trans-

mit queue is full.

EFI_OUT_OF_RESOURCES Could not queue the transmit data.

EFI_NOT_FOUND There is no route to the destination network or address.

EFI_BAD_BUFFER_SIZE The data length is greater than the maximum UDP packet size.

EFI_NO_MEDIA There was a media error.
Version 2.5 April, 2015 1711

Unified Extensible Firmware Interface Specification
EFI_UDP6_PROTOCOL.Receive()

Summary
Places an asynchronous receive request into the receiving queue.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP6_RECEIVE) (
 IN EFI_UDP6_PROTOCOL *This,
 IN EFI_UDP6_COMPLETION_TOKEN *Token
);

Parameters
This Pointer to the EFI_UDP6_PROTOCOL instance.

Token Pointer to a token that is associated with the receive data
descriptor. Type EFI_UDP6_COMPLETION_TOKEN is defined
in EFI_UDP6_PROTOCOL.Transmit().

Description
The Receive() function places a completion token into the receive packet queue. This function is
always asynchronous.

The caller must fill in the Token.Event field in the completion token, and this field cannot be
NULL. When the receive operation completes, the EFI UDPv6 Protocol driver updates the
Token.Status and Token.Packet.RxData fields and the Token.Event is signaled.
Providing a proper notification function and context for the event will enable the user to receive the
notification and receiving status. That notification function is guaranteed to not be re-entered.

Status Codes Returned

EFI_SUCCESS The receive completion token was cached.

EFI_NOT_STARTED This EFI UDPv6 Protocol instance has not been started.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source address for
this instance, but no source address was available for use.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

This is NULL.

Token is NULL.

Token.Event is NULL.

EFI_OUT_OF_RESOURCES The receive completion token could not be queued due to a lack of system
resources (usually memory).

EFI_DEVICE_ERROR An unexpected system or network error occurred.
The EFI UDPv6 Protocol instance has been reset to startup defaults.

EFI_ACCESS_DENIED A receive completion token with the same Token.Event was already in

the receive queue.
1712 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_NOT_READY The receive request could not be queued because the receive queue is full.

EFI_NO_MEDIA There was a media error.
Version 2.5 April, 2015 1713

Unified Extensible Firmware Interface Specification
EFI_UDP6_PROTOCOL.Cancel()

Summary
Aborts an asynchronous transmit or receive request.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP6_CANCEL)(
 IN EFI_UDP6_PROTOCOL *This,
 IN EFI_UDP6_COMPLETION_TOKEN *Token OPTIONAL
);

Parameters
This Pointer to the EFI_UDP6_PROTOCOL instance.

Token Pointer to a token that has been issued by
EFI_UDP6_PROTOCOL.Transmit() or
EFI_UDP6_PROTOCOL.Receive().If NULL, all pending
tokens are aborted. Type EFI_UDP6_COMPLETION_TOKEN is
defined in EFI_UDP6_PROTOCOL.Transmit().

Description
The Cancel() function is used to abort a pending transmit or receive request. If the token is in the
transmit or receive request queues, after calling this function, Token.Status will be set to
EFI_ABORTED and then Token.Event will be signaled. If the token is not in one of the queues,
which usually means that the asynchronous operation has completed, this function will not signal the
token and EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS The asynchronous I/O request was aborted and Token.Event

was signaled. When Token is NULL, all pending requests are

aborted and their events are signaled.

EFI_INVALID_PARAMETER This is NULL.

EFI_NOT_STARTED This instance has not been started.

EFI_NOT_FOUND When Token is not NULL, the asynchronous I/O request was not

found in the transmit or receive queue. It has either completed or

was not issued by Transmit() and Receive().
1714 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_UDP6_PROTOCOL.Poll()

Summary
Polls for incoming data packets and processes outgoing data packets.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UDP6_POLL) (
 IN EFI_UDP6_PROTOCOL *This
);

Parameters
This

Pointer to the EFI_UDP6_PROTOCOL instance.

Description
The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

In some systems, the periodic timer event in the managed network driver may not poll the
underlying communications device fast enough to transmit and/or receive all data packets without
missing incoming packets or dropping outgoing packets. Drivers and applications that are
experiencing packet loss should try calling the Poll() function more often.

Status Codes Returned

29.3 EFI MTFTPv4 Protocol
The following sections defines the EFI MTFTPv4 Protocol interface that is built upon the EFI
UDPv4 Protocol.

EFI_MTFTP4_SERVICE_BINDING_PROTOCOL

Summary
The EFI MTFTPv4 Service Binding Protocol is used to locate communication devices that are
supported by an EFI MTFTPv4 Protocol driver and to create and destroy instances of the EFI
MTFTPv4 Protocol child protocol driver that can use the underlying communications device.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
Version 2.5 April, 2015 1715

Unified Extensible Firmware Interface Specification
GUID
#define EFI_MTFTP4_SERVICE_BINDING_PROTOCOL_GUID \
 {0x2e800be,0x8f01,0x4aa6,\
 {0x94,0x6b,0xd7,0x13,0x88,0xe1,0x83,0x3f}}

Description
A network application or driver that requires MTFTPv4 I/O services can use one of the protocol
handler services, such as BS->LocateHandleBuffer(), to search for devices that publish an
EFI MTFTPv4 Service Binding Protocol GUID. Each device with a published EFI MTFTPv4
Service Binding Protocol GUID supports the EFI MTFTPv4 Protocol service and may be available
for use.

After a successful call to the
EFI_MTFTP4_SERVICE_BINDING_PROTOCOL.CreateChild() function, the newly
created child EFI MTFTPv4 Protocol driver instance is in an unconfigured state; it is not ready to
transfer data.

Before a network application terminates execution, every successful call to the
EFI_MTFTP4_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_MTFTP4_SERVICE_BINDING_PROTOCOL.DestroyChild()
function.

Each instance of the EFI MTFTPv4 Protocol driver can support one file transfer operation at a time.
To download two files at the same time, two instances of the EFI MTFTPv4 Protocol driver will
need to be created.

EFI_MTFTP4_PROTOCOL

Summary
The EFI MTFTPv4 Protocol provides basic services for client-side unicast and/or multicast TFTP
operations.
1716 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
GUID
#define EFI_MTFTP4_PROTOCOL_GUID \
 {0x78247c57,0x63db,0x4708,\
 {0x99,0xc2,0xa8,0xb4,0xa9,0xa6,0x1f,0x6b}}

Protocol Interface Structure
typedef struct _EFI_MTFTP4_PROTOCOL {
 EFI_MTFTP4_GET_MODE_DATA GetModeData;
 EFI_MTFTP4_CONFIGURE Configure;
 EFI_MTFTP4_GET_INFO GetInfo;
 EFI_MTFTP4_PARSE_OPTIONS ParseOptions;
 EFI_MTFTP4_READ_FILE ReadFile;
 EFI_MTFTP4_WRITE_FILE WriteFile;
 EFI_MTFTP4_READ_DIRECTORY ReadDirectory;
 EFI_MTFTP4_POLL Poll;
} EFI_MTFTP4_PROTOCOL;

Parameters
GetModeData Reads the current operational settings. See the

GetModeData() function description.

Configure Initializes, changes, or resets the operational settings for this
instance of the EFI MTFTPv4 Protocol driver. See the
Configure() function description.

GetInfo Retrieves information about a file from an MTFTPv4 server. See
the GetInfo() function description.

ParseOptions Parses the options in an MTFTPv4 OACK (options
acknowledgement) packet. See the ParseOptions()
function description.

ReadFile Downloads a file from an MTFTPv4 server. See the
ReadFile() function description.

WriteFile Uploads a file to an MTFTPv4 server. This function may be
unsupported in some EFI implementations. See the
WriteFile() function description.

ReadDirectory Downloads a related file “directory” from an MTFTPv4 server.
This function may be unsupported in some EFI implementations.
See the ReadDirectory() function description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.

Description
The EFI_MTFTP4_PROTOCOL is designed to be used by UEFI drivers and applications to transmit
and receive data files. The EFI MTFTPv4 Protocol driver uses the underlying EFI UDPv4 Protocol
driver and EFI IPv4 Protocol driver.
Version 2.5 April, 2015 1717

Unified Extensible Firmware Interface Specification
EFI_MTFTP4_PROTOCOL.GetModeData()

Summary
Reads the current operational settings.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_GET_MODE_DATA)(
 IN EFI_MTFTP4_PROTOCOL *This,
 OUT EFI_MTFTP4_MODE_DATA *ModeData
);

Parameters
This Pointer to the EFI_MTFTP4_PROTOCOL instance.

ModeData Pointer to storage for the EFI MTFTPv4 Protocol driver mode
data. Type EFI_MTFTP4_MODE_DATA is defined in “Related
Definitions” below.

Description
The GetModeData()function reads the current operational settings of this EFI MTFTPv4
Protocol driver instance.

Related Definitions
//***
// EFI_MTFTP4_MODE_DATA
//***
typedef struct {
 EFI_MTFTP4_CONFIG_DATA ConfigData;
 UINT8 SupportedOptionCount;
 UINT8 **SupportedOptions;
 UINT8 UnsupportedOptionCount;
 UINT8 **UnsupportedOptions;
} EFI_MTFTP4_MODE_DATA;

ConfigData The configuration data of this instance. Type
EFI_MTFTP4_CONFIG_DATA is defined below.

SupportedOptionCount
The number of option strings in the following
SupportedOptions array.

SupportedOptions An array of pointers to null-terminated ASCII option strings that
are recognized and supported by this EFI MTFTPv4 Protocol
driver implementation.

UnsupportedOptionCount
An array of pointers to null-terminated ASCII option strings that
1718 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
are recognized but not supported by this EFI MTFTPv4 Protocol
driver implementation.

UnsupportedOptions
An array of option strings that are recognized but are not
supported by this EFI MTFTPv4 Protocol driver implementation.

The EFI_MTFTP4_MODE_DATA structure describes the operational state of this instance.

//***
// EFI_MTFTP4_CONFIG_DATA
//***
typedef struct {
 BOOLEAN UseDefaultSetting;
 EFI_IPv4_ADDRESS StationIp;
 EFI_IPv4_ADDRESS SubnetMask;
 UINT16 LocalPort;
 EFI_IPv4_ADDRESS GatewayIp;
 EFI_IPv4_ADDRESS ServerIp;
 UINT16 InitialServerPort;
 UINT16 TryCount;
 UINT16 TimeoutValue;
} EFI_MTFTP4_CONFIG_DATA;

UseDefaultSetting Set to TRUE to use the default station address/subnet mask and
the default route table information.

StationIp If UseDefaultSetting is FALSE, indicates the station
address to use.

SubnetMask If UseDefaultSetting is FALSE, indicates the subnet mask
to use.

LocalPort Local port number. Set to zero to use the automatically assigned
port number.

GatewayIp if UseDefaultSetting is FALSE, indicates the gateway IP
address to use.

ServerIp The IP address of the MTFTPv4 server.

InitialServerPort The initial MTFTPv4 server port number. Request packets are
sent to this port. This number is almost always 69 and using zero
defaults to 69.

TryCount The number of times to transmit MTFTPv4 request packets and
wait for a response.

TimeoutValue The number of seconds to wait for a response after sending the
MTFTPv4 request packet.

The EFI_MTFTP4_CONFIG_DATA structure is used to report and change MTFTPv4 session
parameters.
Version 2.5 April, 2015 1719

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS The configuration data was successfully returned.

EFI_OUT_OF_RESOURCES The required mode data could not be allocated.

EFI_INVALID_PARAMETER This is NULL or ModeData is NULL.
1720 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_MTFTP4_PROTOCOL.Configure()

Summary
Initializes, changes, or resets the default operational setting for this EFI MTFTPv4 Protocol driver
instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_CONFIGURE)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN EFI_MTFTP4_CONFIG_DATA *MtftpConfigData OPTIONAL
);

Parameters
This Pointer to the EFI_MTFTP4_PROTOCOL instance.

MtftpConfigData Pointer to the configuration data structure. Type
EFI_MTFTP4_CONFIG_DATA is defined in
EFI_MTFTP4_PROTOCOL.GetModeData().

Description
The Configure() function is used to set and change the configuration data for this EFI
MTFTPv4 Protocol driver instance. The configuration data can be reset to startup defaults by calling
Configure() with MtftpConfigData set to NULL. Whenever the instance is reset, any
pending operation is aborted. By changing the EFI MTFTPv4 Protocol driver instance configuration
data, the client can connect to different MTFTPv4 servers. The configuration parameters in
MtftpConfigData are used as the default parameters in later MTFTPv4 operations and can be
overridden in later operations.

Status Codes Returned

EFI_SUCCESS The EFI MTFTPv4 Protocol driver was configured successfully.

EFI_INVALID_PARAMETER One or more following conditions are TRUE:

• This is NULL.

• MtftpConfigData.UseDefaultSetting is
FALSE and MtftpConfigData.StationIp is not a
valid IPv4 unicast address.

• MtftpCofigData.UseDefaultSetting is FALSE
and MtftpConfigData.SubnetMask is invalid.

• MtftpCofigData.ServerIp is not a valid IPv4 unicast
address.

• MtftpConfigData.UseDefaultSetting is
FALSE and MtftpConfigData.GatewayIp is not a
valid IPv4 unicast address or is not in the same subnet with
station address.
Version 2.5 April, 2015 1721

Unified Extensible Firmware Interface Specification
EFI_ACCESS_DENIED The EFI configuration could not be changed at this time because
there is one MTFTP background operation in progress.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) has not finished yet.

EFI_UNSUPPORTED A configuration protocol (DHCP, BOOTP, RARP, etc.) could not be
located when clients choose to use the default address settings.

EFI_OUT_OF_RESOURCES The EFI MTFTPv4 Protocol driver instance data could not be
allocated.

EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI
MTFTPv4 Protocol driver instance is not configured.
1722 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_MTFTP4_PROTOCOL.GetInfo()

Summary
Gets information about a file from an MTFTPv4 server.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_GET_INFO)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN EFI_MTFTP4_OVERRIDE_DATA *OverrideData OPTIONAL,
 IN UINT8 *Filename,
 IN UINT8 *ModeStr OPTIONAL,
 IN UINT8 OptionCount,
 IN EFI_MTFTP4_OPTION *OptionList OPTIONAL,
 OUT UINT32 *PacketLength,
 OUT EFI_MTFTP4_PACKET **Packet OPTIONAL
);

Parameters
This Pointer to the EFI_MTFTP4_PROTOCOL instance.

OverrideData Data that is used to override the existing parameters. If NULL, the
default parameters that were set in the
EFI_MTFTP4_PROTOCOL.Configure() function are used.
Type EFI_MTFTP4_OVERRIDE_DATA is defined in “Related
Definitions” below.

Filename Pointer to a null-terminated ASCII file name string.

ModeStr Pointer to a null-terminated ASCII mode string. If NULL, “octet”
will be used.

OptionCount Number of option/value string pairs in OptionList.

OptionList Pointer to array of option/value string pairs. Ignored if
OptionCount is zero. Type EFI_MTFTP4_OPTION is
defined in “Related Definitions” below.

PacketLength The number of bytes in the returned packet.

Packet The pointer to the received packet. This buffer must be freed by
the caller. Type EFI_MTFTP4_PACKET is defined in “Related
Definitions” below.

Description
The GetInfo() function assembles an MTFTPv4 request packet with options; sends it to the
MTFTPv4 server; and may return an MTFTPv4 OACK, MTFTPv4 ERROR, or ICMP ERROR
packet. Retries occur only if no response packets are received from the MTFTPv4 server before the
timeout expires.
Version 2.5 April, 2015 1723

Unified Extensible Firmware Interface Specification
Related Definitions
//

// EFI_MTFTP_OVERRIDE_DATA
//

typedef struct {
 EFI_IPv4_ADDRESS GatewayIp;
 EFI_IPv4_ADDRESS ServerIp;
 UINT16 ServerPort;
 UINT16 TryCount;
 UINT16 TimeoutValue;
} EFI_MTFTP4_OVERRIDE_DATA;

GatewayIp IP address of the gateway. If set to 0.0.0.0, the default gateway
address that was set by the
EFI_MTFTP4_PROTOCOL.Configure() function will not
be overridden.

ServerIp IP address of the MTFTPv4 server. If set to 0.0.0.0, it will use the
value that was set by the
EFI_MTFTP4_PROTOCOL.Configure() function.

ServerPort MTFTPv4 server port number. If set to zero, it will use the value
that was set by the EFI_MTFTP4_PROTOCOL.Configure()
function.

TryCount Number of times to transmit MTFTPv4 request packets and wait
for a response. If set to zero, it will use the value that was set by
the EFI_MTFTP4_PROTOCOL.Configure() function.

TimeoutValue Number of seconds to wait for a response after sending the
MTFTPv4 request packet. If set to zero, it will use the value that
was set by the EFI_MTFTP4_PROTOCOL.Configure()
function.

The EFI_MTFTP4_OVERRIDE_DATA structure is used to override the existing parameters that
were set by the EFI_MTFTP4_PROTOCOL.Configure() function.

//

// EFI_MTFTP4_OPTION
//

typedef struct {
 UINT8 *OptionStr;
 UINT8 *ValueStr;
} EFI_MTFTP4_OPTION;

OptionStr Pointer to the null-terminated ASCII MTFTPv4 option string.

ValueStr Pointer to the null-terminated ASCII MTFTPv4 value string.
1724 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
#pragma pack(1)

//***
// EFI_MTFTP4_PACKET
//***
typedef union {
 UINT16 OpCode;
 EFI_MTFTP4_REQ_HEADER Rrq, Wrq;
 EFI_MTFTP4_OACK_HEADER Oack;
 EFI_MTFTP4_DATA_HEADER Data;
 EFI_MTFTP4_ACK_HEADER Ack;
// This field should be ignored and treated as reserved
 EFI_MTFTP4_DATA8_HEADER Data8;
// This field should be ignored and treated as reserved
 EFI_MTFTP4_ACK8_HEADER Ack8;
 EFI_MTFTP4_ERROR_HEADER Error;
} EFI_MTFTP4_PACKET;

//***
// EFI_MTFTP4_REQ_HEADER
//***
typedef struct {
 UINT16 OpCode;
 UINT8 Filename[1];
} EFI_MTFTP4_REQ_HEADER;

//***
// EFI_MTFTP4_OACK_HEADER
//***
typedef struct {
 UINT16 OpCode;
 UINT8 Data[1];
} EFI_MTFTP4_OACK_HEADER;

//***
// EFI_MTFTP4_DATA_HEADER
//***
typedef struct {
 UINT16 OpCode;
 UINT16 Block;
 UINT8 Data[1];
} EFI_MTFTP4_DATA_HEADER;

//***
// EFI_MTFTP4_ACK_HEADER
//***
typedef struct {
Version 2.5 April, 2015 1725

Unified Extensible Firmware Interface Specification
 UINT16 OpCode;
 UINT16 Block[1];
} EFI_MTFTP4_ACK_HEADER;

//***
// EFI_MTFTP4_DATA8_HEADER
// This field should be ignored and treated as reserved
//***
typedef struct {
 UINT16 OpCode;
 UINT64 Block;
 UINT8 Data[1];
} EFI_MTFTP4_DATA8_HEADER;

//***
// EFI_MTFTP4_ACK8_HEADER
// This field should be ignored and treated as reserved
//***
typedef struct {
 UINT16 OpCode;
 UINT64 Block[1];
} EFI_MTFTP4_ACK8_HEADER;

//***
// EFI_MTFTP4_ERROR_HEADER
//***
typedef struct {
 UINT16 OpCode;
 UINT16 ErrorCode;
 UINT8 ErrorMessage[1];
} EFI_MTFTP4_ERROR_HEADER;

#pragma pack()

Table 195 below describes the parameters that are listed in the MTFTPv4 packet structure
definitions above. All the above structures are byte packed. The pragmas may vary from compiler to
compiler. The MTFTPv4 packet structures are also used by the following functions:

• EFI_MTFTP4_PROTOCOL.ReadFile()

• EFI_MTFTP4_PROTOCOL.WriteFile()

• EFI_MTFTP4_PROTOCOL.ReadDirectory()

• The EFI MTFTPv4 Protocol packet check callback functions

Note: Both incoming and outgoing MTFTPv4 packets are in network byte order. All other parameters
defined in functions or data structures are stored in host byte order.
1726 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
Table 195. Descriptions of Parameters in MTFTPv4 Packet Structures

Data Structure Parameter Description

EFI_MTFTP4_PACKET OpCode Type of packets as defined by the MTFTPv4
packet opcodes. Opcode values are defined
below.

Rrq, Wrq Read request or write request packet header. See
the description for

EFI_MTFTP4_REQ_HEADER below in this

table.

Oack Option acknowledge packet header. See the
description for

EFI_MTFTP4_OACK_HEADER below in this

table.

Data Data packet header. See the description for

EFI_MTFTP4_DATA_HEADER below in this

table.

Ack Acknowledgement packet header. See the

description for EFI_MTFTP4_ACK_HEADER

below in this table.

Data8 This field should be ignored and treated as
reserved.

Data packet header with big block number. See
the description for

EFI_MTFTP4_DATA8_HEADER below in

this table.

Ack8 This field should be ignored and treated as
reserved.

Acknowledgement header with big block number.
See the description for

EFI_MTFTP4_ACK8_HEADER below in this

table.

Error Error packet header. See the description for

EFI_MTFTP4_ERROR_HEADER below in

this table.

EFI_MTFTP4_REQ_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP4_OPCODE_RRQ for a read

request or OpCode =
EFI_MTFTP4_OPCODE_WRQ for a write

request.

Filename The file name to be downloaded or uploaded.
Version 2.5 April, 2015 1727

Unified Extensible Firmware Interface Specification
EFI_MTFTP4_OACK_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP4_OPCODE_OACK.

Data The option strings in the option acknowledgement
packet.

EFI_MTFTP4_DATA_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP4_OPCODE_DATA.

Block Block number of this data packet.

Data The content of this data packet.

EFI_MTFTP4_ACK_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP4_OPCODE_ACK.

Block The block number of the data packet that is being
acknowledged.

EFI_MTFTP4_DATA8_HEADER OpCode This field should be ignored and treated as
reserved.

For this packet type, OpCode =
EFI_MTFTP4_OPCODE_DATA8.

Block This field should be ignored and treated as
reserved.

The block number of data packet.

Data This field should be ignored and treated as
reserved.

The content of this data packet.

EFI_MTFTP4_ACK8_HEADER OpCode This field should be ignored and treated as
reserved.

For this packet type, OpCode =
EFI_MTFTP4_OPCODE_ACK8.

Block This field should be ignored and treated as
reserved.

The block number of the data packet that is being
acknowledged.

EFI_MTFTP4_ERROR_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP4_OPCODE_ERROR.

ErrorCode The error number as defined by the MTFTPv4

packet error codes. Values for ErrorCode are

defined below.

ErrorMessage Error message string.

Data Structure Parameter Description
1728 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
//
// MTFTP Packet OpCodes
//
#define EFI_MTFTP4_OPCODE_RRQ 1
#define EFI_MTFTP4_OPCODE_WRQ 2
#define EFI_MTFTP4_OPCODE_DATA 3
#define EFI_MTFTP4_OPCODE_ACK 4
#define EFI_MTFTP4_OPCODE_ERROR 5
#define EFI_MTFTP4_OPCODE_OACK 6
#define EFI_MTFTP4_OPCODE_DIR 7
//This field should be ignored and treated as reserved.
#define EFI_MTFTP4_OPCODE_DATA8 8
//This field should be ignored and treated as reserved.
#define EFI_MTFTP4_OPCODE_ACK8 9

Following is a description of the fields in the above definition.

EFI_MTFTP4_OPCODE_RRQ The MTFTPv4 packet is a read request.

EFI_MTFTP4_OPCODE_WRQ The MTFTPv4 packet is a write request.

EFI_MTFTP4_OPCODE_DATA The MTFTPv4 packet is a data packet.

EFI_MTFTP4_OPCODE_ACK The MTFTPv4 packet is an acknowledgement packet.

EFI_MTFTP4_OPCODE_ERROR The MTFTPv4 packet is an error packet.

EFI_MTFTP4_OPCODE_OACK The MTFTPv4 packet is an option acknowledgement
packet.

EFI_MTFTP4_OPCODE_DIR The MTFTPv4 packet is a directory query packet.

EFI_MTFTP4_OPCODE_DATA8 This field should be ignored and treated as reserved.

The MTFTPv4 packet is a data packet with a big block
number.

EFI_MTFTP4_OPCODE_ACK8 This field should be ignored and treated as reserved.

The MTFTPv4 packet is an acknowledgement packet with a
big block number.
Version 2.5 April, 2015 1729

Unified Extensible Firmware Interface Specification
//
// MTFTP ERROR Packet ErrorCodes
//
#define EFI_MTFTP4_ERRORCODE_NOT_DEFINED 0
#define EFI_MTFTP4_ERRORCODE_FILE_NOT_FOUND 1
#define EFI_MTFTP4_ERRORCODE_ACCESS_VIOLATION 2
#define EFI_MTFTP4_ERRORCODE_DISK_FULL 3
#define EFI_MTFTP4_ERRORCODE_ILLEGAL_OPERATION 4
#define EFI_MTFTP4_ERRORCODE_UNKNOWN_TRANSFER_ID 5
#define EFI_MTFTP4_ERRORCODE_FILE_ALREADY_EXISTS 6
#define EFI_MTFTP4_ERRORCODE_NO_SUCH_USER 7
#define EFI_MTFTP4_ERRORCODE_REQUEST_DENIED 8

Status Codes Returned

EFI_MTFTP4_ERRORCODE_NOT_DEFINED The error code is not defined. See
the error message in the packet (if
any) for details.

EFI_MTFTP4_ERRORCODE_FILE_NOT_FOUND The file was not found.

EFI_MTFTP4_ERRORCODE_ACCESS_VIOLATION There was an access violation.

EFI_MTFTP4_ERRORCODE_DISK_FULL The disk was full or its allocation
was exceeded.

EFI_MTFTP4_ERRORCODE_ILLEGAL_OPERATION The MTFTPv4 operation was illegal.

EFI_MTFTP4_ERRORCODE_UNKNOWN_TRANSFER_ID The transfer ID is unknown.

EFI_MTFTP4_ERRORCODE_FILE_ALREADY_EXISTS The file already exists.

EFI_MTFTP4_ERRORCODE_NO_SUCH_USER There is no such user.

EFI_MTFTP4_ERRORCODE_REQUEST_DENIED The request has been denied due to
option negotiation.

EFI_SUCCESS An MTFTPv4 OACK packet was received and is in the Packet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Filename is NULL.

• OptionCount is not zero and OptionList is NULL.

• One or more options in OptionList have wrong format.

• PacketLength is NULL.

• One or more IPv4 addresses in OverrideData are not
valid unicast IPv4 addresses if OverrideData is not NULL
and the addresses are not set to all zero.
1730 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_UNSUPPORTED • One or more options in the OptionList are in the
unsupported list of structure EFI_MTFTP4_MODE_DATA.

EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) has not finished yet.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_TFTP_ERROR An MTFTPv4 ERROR packet was received and is in the Packet.

EFI_NETWORK_UNREACHABLE An ICMP network unreachable error packet was received and the

Packet is set to NULL.

EFI_HOST_UNREACHABLE An ICMP host unreachable error packet was received and the

Packet is set to NULL.

EFI_PROTOCOL_UNREACHABLE An ICMP protocol unreachable error packet was received and the

Packet is set to NULL.

EFI_PORT_UNREACHABLE An ICMP port unreachable error packet was received and the

Packet is set to NULL.

EFI_ICMP_ERROR Some other ICMP ERROR packet was received and the Packet

is set to NULL.

EFI_PROTOCOL_ERROR An unexpected MTFTPv4 packet was received and is in the

Packet.

EFI_TIMEOUT No responses were received from the MTFTPv4 server.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

EFI_NO_MEDIA There was a media error.
Version 2.5 April, 2015 1731

Unified Extensible Firmware Interface Specification
EFI_MTFTP4_PROTOCOL.ParseOptions()

Summary
Parses the options in an MTFTPv4 OACK packet.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_PARSE_OPTIONS)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN UINT32 PacketLen,
 IN EFI_MTFTP4_PACKET *Packet,
 OUT UINT32 *OptionCount,
 OUT EFI_MTFT4P_OPTION **OptionList OPTIONAL
);

Parameters
This Pointer to the EFI_MTFTP4_PROTOCOL instance.

PacketLen Length of the OACK packet to be parsed.

Packet Pointer to the OACK packet to be parsed. Type
EFI_MTFTP4_PACKET is defined in
EFI_MTFTP4_PROTOCOL.GetInfo().

OptionCount Pointer to the number of options in following OptionList.

OptionList Pointer to EFI_MTFTP4_OPTION storage. Call the EFI Boot
Service FreePool() to release theOptionList if the options
in this OptionList are not needed any more. Type
EFI_MTFTP4_OPTION is defined in
EFI_MTFTP4_PROTOCOL.GetInfo().

Description
The ParseOptions() function parses the option fields in an MTFTPv4 OACK packet and
returns the number of options that were found and optionally a list of pointers to the options in the
packet.

If one or more of the option fields are not valid, then EFI_PROTOCOL_ERROR is returned and
*OptionCount and *OptionList stop at the last valid option.

Status Codes Returned

EFI_SUCCESS The OACK packet was valid and the OptionCount and

OptionList parameters have been updated.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• PacketLen is 0.

• Packet is NULL or Packet is not a valid MTFTPv4 packet.

• OptionCount is NULL.
1732 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_NOT_FOUND No options were found in the OACK packet.

EFI_OUT_OF_RESOURCES Storage for the OptionList array cannot be allocated.

EFI_PROTOCOL_ERROR One or more of the option fields is invalid.
Version 2.5 April, 2015 1733

Unified Extensible Firmware Interface Specification
EFI_MTFTP4_PROTOCOL.ReadFile()

Summary
Downloads a file from an MTFTPv4 server.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_READ_FILE)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN EFI_MTFTP4_TOKEN *Token
);

Parameters
This Pointer to the EFI_MTFTP4_PROTOCOL instance.

Token Pointer to the token structure to provide the parameters that are
used in this operation. Type EFI_MTFTP4_TOKEN is defined in
“Related Definitions” below.

Description
The ReadFile() function is used to initialize and start an MTFTPv4 download process and
optionally wait for completion. When the download operation completes, whether successfully or
not, the Token.Status field is updated by the EFI MTFTPv4 Protocol driver and then
Token.Event is signaled (if it is not NULL).

Data can be downloaded from the MTFTPv4 server into either of the following locations:

• A fixed buffer that is pointed to by Token.Buffer

• A download service function that is pointed to by Token.CheckPacket

If both Token.Buffer and Token.CheckPacket are used, then Token.CheckPacket will
be called first. If the call is successful, the packet will be stored in Token.Buffer.
1734 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
Related Definitions
//

// EFI_MTFTP4_TOKEN
//

typedef struct {
 EFI_STATUS Status;
 EFI_EVENT Event;
 EFI_MTFTP4_OVERRIDE_DATA *OverrideData;
 UINT8 *Filename;
 UINT8 *ModeStr;
 UINT32 OptionCount;
 EFI_MTFTP4_OPTION *OptionList;
 UINT64 BufferSize;
 VOID *Buffer;
 VOID *Context;
 EFI_MTFTP4_CHECK_PACKET CheckPacket;
 EFI_MTFTP4_TIMEOUT_CALLBACK TimeoutCallback;
 EFI_MTFTP4_PACKET_NEEDED PacketNeeded;
} EFI_MTFTP4_TOKEN;

Status The status that is returned to the caller at the end of the operation
to indicate whether this operation completed successfully.
Defined Status values are listed below.

Event The event that will be signaled when the operation completes. If
set to NULL, the corresponding function will wait until the read or
write operation finishes. The type of Event must be
EVT_NOTIFY_SIGNAL. The Task Priority Level (TPL) of
Event must be lower than or equal to TPL_CALLBACK.

OverrideData If not NULL, the data that will be used to override the existing
configure data. Type EFI_MTFTP4_OVERRIDE_DATA is
defined in EFI_MTFTP4_PROTOCOL.GetInfo().

Filename Pointer to the null-terminated ASCII file name string.

ModeStr Pointer to the null-terminated ASCII mode string. If NULL,
“octet” is used.

OptionCount Number of option/value string pairs.

OptionList Pointer to an array of option/value string pairs. Ignored if
OptionCount is zero. Both a remote server and this driver
implementation should support these options. If one or more
options are unrecognized by this implementation, it is sent to the
remote server without being changed. Type
EFI_MTFTP4_OPTION is defined in
EFI_MTFTP4_PROTOCOL.GetInfo().

BufferSize On input, the size, in bytes, of Buffer. On output, the number
of bytes transferred
Version 2.5 April, 2015 1735

Unified Extensible Firmware Interface Specification
Buffer Pointer to the data buffer. Data that is downloaded from the
MTFTPv4 server is stored here. Data that is uploaded to the
MTFTPv4 server is read from here. Ignored if BufferSize is
zero.

Context Pointer to the context that will be used by CheckPacket,
TimeoutCallback and PacketNeeded.

CheckPacket Pointer to the callback function to check the contents of the
received packet. Type EFI_MTFTP4_CHECK_PACKET is
defined below.

TimeoutCallback Pointer to the function to be called when a timeout occurs. Type
EFI_MTFTP4_TIMEOUT_CALLBACK is defined below.

PacketNeeded Pointer to the function to provide the needed packet contents.
Only used in WriteFile() operation. Type
EFI_MTFTP4_PACKET_NEEDED is defined below.

The EFI_MTFTP4_TOKEN structure is used for both the MTFTPv4 reading and writing operations.
The caller uses this structure to pass parameters and indicate the operation context. After the reading
or writing operation completes, the EFI MTFTPv4 Protocol driver updates the Status parameter
and the Event is signaled if it is not NULL. The following table lists the status codes that are
returned in the Status parameter.
1736 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
Status Codes Returned in the Status Parameter

//

// EFI_MTFTP4_CHECK_PACKET
//

typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_CHECK_PACKET)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN EFI_MTFTP4_TOKEN *Token,
 IN UINT16 PacketLen,
 IN EFI_MTFTP4_PACKET *Packet
);

This Pointer to the EFI_MTFTP4_PROTOCOL instance.

Token The token that the caller provided in the
EFI_MTFTP4_PROTOCOL.ReadFile(), WriteFile()
or ReadDirectory() function. Type
EFI_MTFTP4_TOKEN is defined in
EFI_MTFTP4_PROTOCOL.ReadFile().

PacketLen Indicates the length of the packet.

Packet Pointer to an MTFTPv4 packet. Type EFI_MTFTP4_PACKET is
defined in EFI_MTFTP4_PROTOCOL.GetInfo().

EFI_MTFTP4_CHECK_PACKET is a callback function that is provided by the caller to intercept
the EFI_MTFTP4_OPCODE_DATA or EFI_MTFTP4_OPCODE_DATA8 packets processed in the
EFI_MTFTP4_PROTOCOL.ReadFile() function, and alternatively to intercept
EFI_MTFTP4_OPCODE_OACK or EFI_MTFTP4_OPCODE_ERROR packets during a call to

EFI_SUCCESS The data file has been transferred successfully.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_BUFFER_TOO_SMALL BufferSize is not large enough to hold the downloaded data

in downloading process.

EFI_ABORTED Current operation is aborted by user.

EFI_NETWORK_UNREACHABLE An ICMP network unreachable error packet was received.

EFI_NETWORK_UNREACHABLE AnICMP host unreachable error packet was received.

EFI_NETWORK_UNREACHABLE An ICMP protocol unreachable error packet was received.

EFI_NETWORK_UNREACHABLE An ICMP port unreachable error packet was received .

EFI_ICMP_ERROR Some other ICMP ERROR packet was received.

EFI_TIMEOUT No responses were received from the MTFTPv4 server.

EFI_TFTP_ERROR An MTFTPv4 ERROR packet was received.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

EFI_NO_MEDIA There was a media error.
Version 2.5 April, 2015 1737

Unified Extensible Firmware Interface Specification
EFI_MTFTP4_PROTOCOL.ReadFile(), WriteFile() or ReadDirectory(). Whenever
an MTFTPv4 packet with the type described above is received from a server, the EFI MTFTPv4
Protocol driver will call EFI_MTFTP4_CHECK_PACKET function to let the caller have an
opportunity to process this packet. Any status code other than EFI_SUCCESS that is returned from
this function will abort the transfer process.

//**
// EFI_MTFTP4_TIMEOUT_CALLBACK
//**
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_TIMEOUT_CALLBACK)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN EFI_MTFTP4_TOKEN *Token
);

This Pointer to the EFI_MTFTP4_PROTOCOL instance.

Token The token that is provided in the
EFI_MTFTP4_PROTOCOL.ReadFile() or
EFI_MTFTP4_PROTOCOL.WriteFile() or
EFI_MTFTP4_PROTOCOL.ReadDirectory() functions by
the caller. Type EFI_MTFTP4_TOKEN is defined in
EFI_MTFTP4_PROTOCOL.ReadFile().

EFI_MTFTP4_TIMEOUT_CALLBACK is a callback function that the caller provides to capture the
timeout event in the EFI_MTFTP4_PROTOCOL.ReadFile(),
EFI_MTFTP4_PROTOCOL.WriteFile() or
EFI_MTFTP4_PROTOCOL.ReadDirectory() functions. Whenever a timeout occurs, the EFI
MTFTPv4 Protocol driver will call the EFI_MTFTP4_TIMEOUT_CALLBACK function to notify
the caller of the timeout event. Any status code other than EFI_SUCCESS that is returned from this
function will abort the current download process.

//**
// EFI_MTFTP4_PACKET_NEEDED
//**
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_PACKET_NEEDED)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN EFI_MTFTP4_TOKEN *Token,
 IN OUT UINT16 *Length,
 OUT VOID **Buffer
);

This Pointer to the EFI_MTFTP4_PROTOCOL instance.

Token The token provided in the
EFI_MTFTP4_PROTOCOL.WriteFile() by the caller.
1738 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
Length Indicates the length of the raw data wanted on input, and the
length the data available on output.

Buffer Pointer to the buffer where the data is stored.

EFI_MTFTP4_PACKET_NEEDED is a callback function that the caller provides to feed data to the
EFI_MTFTP4_PROTOCOL.WriteFile() function. EFI_MTFTP4_PACKET_NEEDED
provides another mechanism for the caller to provide data to upload other than a static buffer. The
EFI MTFTP4 Protocol driver always calls EFI_MTFTP4_PACKET_NEEDED to get packet data
from the caller if no static buffer was given in the initial call to
EFI_MTFTP4_PROTOCOL.WriteFile() function. Setting *Length to zero signals the end of
the session. Returning a status code other than EFI_SUCCESS aborts the session.

Status Codes Returned

EFI_SUCCESS The data file is being downloaded.

EFI_INVALID_PARAMETER One or more of the parameters is not valid.

• This is NULL.

• Token is NULL.

• Token.Filename is NULL.

• Token.OptionCount is not zero and
Token.OptionList is NULL.

• One or more options in Token.OptionList have wrong
format.

• Token.Buffer and Token.CheckPacket are both
NULL.

• One or more IPv4 addresses in Token.OverrideData
are not valid unicast IPv4 addresses if
Token.OverrideData is not NULL and the addresses
are not set to all zero.

EFI_UNSUPPORTED • One or more options in the Token.OptionList are in
the unsupported list of structure
EFI_MTFTP4_MODE_DATA.

EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_ALREADY_STARTED This Token is being used in another MTFTPv4 session.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

EFI_NO_MEDIA There was a media error.
Version 2.5 April, 2015 1739

Unified Extensible Firmware Interface Specification
EFI_MTFTP4_PROTOCOL.WriteFile()

Summary
Sends a data file to an MTFTPv4 server. May be unsupported in some EFI implementations.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_WRITE_FILE)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN EFI_MTFTP4_TOKEN *Token
);

Parameters
This Pointer to the EFI_MTFTP4_PROTOCOL instance.

Token Pointer to the token structure to provide the parameters that are
used in this function. Type EFI_MTFTP4_TOKEN is defined in
EFI_MTFTP4_PROTOCOL.ReadFile().

Description
The WriteFile() function is used to initialize an uploading operation with the given option list
and optionally wait for completion. If one or more of the options is not supported by the server, the
unsupported options are ignored and a standard TFTP process starts instead. When the upload
process completes, whether successfully or not, Token.Event is signaled, and the EFI MTFTPv4
Protocol driver updates Token.Status.

The caller can supply the data to be uploaded in the following two modes:

• Through the user-provided buffer

• Through a callback function

With the user-provided buffer, the Token.BufferSize field indicates the length of the buffer,
and the driver will upload the data in the buffer. With an EFI_MTFTP4_PACKET_NEEDED
callback function, the driver will call this callback function to get more data from the user to upload.
See the definition of EFI_MTFTP4_PACKET_NEEDED for more information. These two modes
cannot be used at the same time. The callback function will be ignored if the user provides the
buffer.

Status Codes Returned

EFI_SUCCESS The upload session has started.

EFI_UNSUPPORTED The operation is not supported by this implementation.
1740 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Filename is NULL.

• Token.OptionCount is not zero and
Token.OptionList is NULL.

• One or more options in Token.OptionList have wrong
format.

• Token.Buffer and Token.PacketNeeded are both
NULL.

• One or more IPv4 addresses in Token.OverrideData are
not valid unicast IPv4 addresses if Token.OverrideData
is not NULL and the addresses are not set to all zero.

EFI_UNSUPPORTED • One or more options in the Token.OptionList are in the
unsupported list of structure EFI_MTFTP4_MODE_DATA.

EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP, RARP,
etc.) is not finished yet.

EFI_ALREADY_STARTED This Token is already being used in another MTFTPv4 session.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

EFI_NO_MEDIA There was a media error.
Version 2.5 April, 2015 1741

Unified Extensible Firmware Interface Specification
EFI_MTFTP4_PROTOCOL.ReadDirectory()

Summary
Downloads a data file “directory” from an MTFTPv4 server. May be unsupported in some EFI
implementations.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_READ_DIRECTORY)(
 IN EFI_MTFTP4_PROTOCOL *This,
 IN EFI_MTFTP4_TOKEN *Token
);

Parameters
This Pointer to the EFI_MTFTP4_PROTOCOL instance.

Token Pointer to the token structure to provide the parameters that are
used in this function. Type EFI_MTFTP4_TOKEN is defined in
EFI_MTFTP4_PROTOCOL.ReadFile().

Description
The ReadDirectory() function is used to return a list of files on the MTFTPv4 server that are
logically (or operationally) related to Token.Filename. The directory request packet that is sent
to the server is built with the option list that was provided by caller, if present.

The file information that the server returns is put into either of the following locations:

• A fixed buffer that is pointed to by Token.Buffer

• A download service function that is pointed to by Token.CheckPacket

If both Token.Buffer and Token.CheckPacket are used, then Token.CheckPacket will
be called first. If the call is successful, the packet will be stored in Token.Buffer.

The returned directory listing in the Token.Buffer or EFI_MTFTP4_PACKET consists of a list
of two or three variable-length ASCII strings, each terminated by a null character, for each file in the
directory. If the multicast option is involved, the first field of each directory entry is the static
multicast IP address and UDP port number that is associated with the file name. The format of the
field is ip:ip:ip:ip:port. If the multicast option is not involved, this field and its terminating
null character are not present.

The next field of each directory entry is the file name and the last field is the file information string.
The information string contains the file size and the create/modify timestamp. The format of the
information string is filesize yyyy-mm-dd hh:mm:ss:ffff. The timestamp is
Coordinated Universal Time (UTC; also known as Greenwich Mean Time [GMT]).

Status Codes Returned

EFI_SUCCESS The MTFTPv4 related file "directory" has been downloaded.

EFI_UNSUPPORTED The EFI MTFTPv4 Protocol driver does not support this function.
1742 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_INVALID_PARAMETER One or more of these conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Filename is NULL.

• Token.OptionCount is not zero and
Token.OptionList is NULL.

• One or more options in Token.OptionList have wrong
format.

Token.Buffer and Token.CheckPacket are both

NULL.

• One or more IPv4 addresses in Token.OverrideData
are not valid unicast IPv4 addresses if
Token.OverrideData is not NULL and the addresses
are not set to all zero.

EFI_UNSUPPORTED One or more options in the Token.OptionList are in the

unsupported list of structure EFI_MTFTP4_MODE_DATA.

EFI_NOT_STARTED The EFI MTFTPv4 Protocol driver has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_ALREADY_STARTED This Token is already being used in another MTFTPv4 session.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

EFI_NO_MEDIA There was a media error.
Version 2.5 April, 2015 1743

Unified Extensible Firmware Interface Specification
 EFI_MTFTP4_PROTOCOL.POLL()

Summary
Polls for incoming data packets and processes outgoing data packets.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP4_POLL) (
 IN EFI_MTFTP4_PROTOCOL *This
);

Parameters
This Pointer to the EFI_MTFTP4_PROTOCOL instance.

Description
The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

In some systems, the periodic timer event in the managed network driver may not poll the
underlying communications device fast enough to transmit and/or receive all data packets without
missing incoming packets or dropping outgoing packets. Drivers and applications that are
experiencing packet loss should try calling the Poll() function more often.

Status Codes Returned

29.4 EFI MTFTPv6 Protocol
This section defines the EFI MTFTPv6 Protocol interface that is built upon the EFI UDPv6 Protocol.

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This EFI MTFTPv4 Protocol instance has not been started.

EFI_NO_MAPPING When using a default address, configuration (DHCP, BOOTP,
RARP, etc.) is not finished yet.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
1744 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
29.4.1 MTFTP6 Service Binding Protocol

EFI_MTFTP6_SERVICE_BINDING_PROTOCOL

Summary
The EFI MTFTPv6 Service Binding Protocol is used to locate communication devices that are
supported by an EFI MTFTPv6 Protocol driver and to create and destroy instances of the EFI
MTFTPv6 Protocol child instance that can use the underlying communications device.

GUID
#define EFI_MTFTP6_SERVICE_BINDING_PROTOCOL_GUID \
 {0xd9760ff3,0x3cca,0x4267,\
 {0x80,0xf9,0x75,0x27,0xfa,0xfa,0x42,0x23}}

Description
A network application or driver that requires MTFTPv6 I/O services can use one of the protocol
handler services, such as BS->LocateHandleBuffer(), to search for devices that publish an
EFI MTFTPv6 Service Binding Protocol GUID. Each device with a published EFI MTFTPv6
Service Binding Protocol GUID supports the EFI MTFTPv6 Protocol service and may be available
for use.

After a successful call to the
EFI_MTFTP6_SERVICE_BINDING_PROTOCOL.CreateChild() function, the newly
created child EFI MTFTPv6 Protocol driver instance is in the un-configured state; it is not ready to
transfer data.

Before a network application terminates execution, every successful call to the
EFI_MTFTP6_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_MTFTP6_SERVICE_BINDING_PROTOCOL.DestroyChild()
function.

Each instance of the EFI MTFTPv6 Protocol driver can support one file transfer operation at a time.
To download two files at the same time, two instances of the EFI MTFTPv6 Protocol driver need to
be created.

29.4.2 MTFTP6 Protocol

EFI_MTFTP6_PROTOCOL

Summary
The EFI MTFTPv6 Protocol provides basic services for client-side unicast and/or multicast TFTP
operations.
Version 2.5 April, 2015 1745

Unified Extensible Firmware Interface Specification
GUID
#define EFI_MTFTP6_PROTOCOL_GUID \
 {0xbf0a78ba,0xec29,0x49cf,\
 {0xa1,0xc9,0x7a,0xe5,0x4e,0xab,0x6a,0x51}}

Protocol Interface Structure
typedef struct _EFI_MTFTP6_PROTOCOL {
 EFI_MTFTP6_GET_MODE_DATA GetModeData;
 EFI_MTFTP6_CONFIGURE Configure;
 EFI_MTFTP6_GET_INFO GetInfo;
 EFI_MTFTP6_PARSE_OPTIONS ;
 EFI_MTFTP6_READ_FILE ReadFile;
 EFI_MTFTP6_WRITE_FILE WriteFile;
 EFI_MTFTP6_READ_DIRECTORY ReadDirectory;
 EFI_MTFTP6_POLL Poll;
} EFI_MTFTP6_PROTOCOL;

Parameters
GetModeData Reads the current operational settings. See the

GetModeData() function description.

Configure Initializes, changes, or resets the operational settings for this
instance of the EFI MTFTPv6 Protocol driver. See the
Configure() function description.

GetInfo Retrieves information about a file from an MTFTPv6 server. See
the GetInfo() function description.

Parses the options in an MTFTPv6 OACK (options
acknowledgement) packet. See the () function description.

ReadFile Downloads a file from an MTFTPv6 server. See the
ReadFile() function description.

WriteFile Uploads a file to an MTFTPv6 server. This function may be
unsupported in some EFI implementations. See the
WriteFile() function description.

ReadDirectory Downloads a related file directory from an MTFTPv6 server.
This function may be unsupported in some EFI implementations.
See the ReadDirectory() function description.

Poll Polls for incoming data packets and processes outgoing data
packets. See the Poll() function description.

Description
The EFI_MTFTP6_PROTOCOL is designed to be used by UEFI drivers and applications to transmit
and receive data files. The EFI MTFTPv6 Protocol driver uses the underlying EFI UDPv6 Protocol
driver and EFI IPv6 Protocol driver.
1746 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_MTFTP6_PROTOCOL.GetModeData()

Summary
Read the current operational settings.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_GET_MODE_DATA)(
 IN EFI_MTFTP6_PROTOCOL *This,
 OUT EFI_MTFTP6_MODE_DATA *ModeData
);

Parameters
This

Pointer to the EFI_MTFTP6_PROTOCOL instance.

ModeData

The buffer in which the EFI MTFTPv6 Protocol driver mode data is returned. Type
EFI_MTFTP6_MODE_DATA is defined in "Related Definitions" below.

Description
The GetModeData() function reads the current operational settings of this EFI MTFTPv6
Protocol driver instance.

Related Definitions
//***
// EFI_MTFTP6_MODE_DATA
//***
typedef struct {
 EFI_MTFTP6_CONFIG_DATA ConfigData;
 UINT8 SupportedOptionCount;
 UINT8 **SupportedOptions;
} EFI_MTFTP6_MODE_DATA;

ConfigData The configuration data of this instance. Type
EFI_MTFTP6_CONFIG_DATA is defined below.

SupportedOptionCountThe number of option strings in the following
SupportedOptions array.

SupportedOptions An array of null-terminated ASCII option strings that are
recognized and supported by this EFI MTFTPv6 Protocol driver
implementation. The buffer is read only to the caller and the
caller should NOT free the buffer.

The EFI_MTFTP6_MODE_DATA structure describes the operational state of this instance.
Version 2.5 April, 2015 1747

Unified Extensible Firmware Interface Specification
//***
// EFI_MTFTP6_CONFIG_DATA
//***
typedef struct {
 EFI_IPv6_ADDRESS StationIp;
 UINT16 LocalPort;
 EFI_IPv6_ADDRESS ServerIp;
 UINT16 InitialServerPort;
 UINT16 TryCount;
 UINT16 TimeoutValue;
} EFI_MTFTP6_CONFIG_DATA;

StationIp The local IP address to use. Set to zero to let the underlying IPv6
driver choose a source address. If not zero it must be one of the
configured IP addresses in the underlying IPv6 driver.

LocalPort Local port number. Set to zero to use the automatically assigned
port number.

ServerIp The IP address of the MTFTPv6 server.

InitialServerPort The initial MTFTPv6 server port number. Request packets are
sent to this port. This number is almost always 69 and using zero
defaults to 69.

TryCount The number of times to transmit MTFTPv6 request packets and
wait for a response.

TimeoutValue The number of seconds to wait for a response after sending the
MTFTPv6 request packet.

The EFI_MTFTP6_CONFIG_DATA structure is used to retrieve and change MTFTPv6 session
parameters.

Status Codes Returned

EFI_SUCCESS The configuration data was successfully returned.

EFI_OUT_OF_RESOURCES The required mode data could not be allocated.

EFI_INVALID_PARAMETER This is NULL or ModeData is NULL.
1748 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_MTFTP6_PROTOCOL.Configure()

Summary
Initializes, changes, or resets the default operational setting for this EFI MTFTPv6 Protocol driver
instance.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_CONFIGURE)(
 IN EFI_MTFTP6_PROTOCOL *This,
 IN EFI_MTFTP6_CONFIG_DATA *MtftpConfigData OPTIONAL
);

Parameters
This Pointer to the EFI_MTFTP6_PROTOCOL instance.

MtftpConfigData Pointer to the configuration data structure. Type
EFI_MTFTP6_CONFIG_DATA is defined in
EFI_MTFTP6_PROTOCOL.GetModeData().

Description
The Configure() function is used to set and change the configuration data for this EFI
MTFTPv6 Protocol driver instance. The configuration data can be reset to startup defaults by calling
Configure() with MtftpConfigData set to NULL. Whenever the instance is reset, any
pending operation is aborted. By changing the EFI MTFTPv6 Protocol driver instance configuration
data, the client can connect to different MTFTPv6 servers. The configuration parameters in
MtftpConfigData are used as the default parameters in later MTFTPv6 operations and can be
overridden in later operations.

Status Codes Returned

EFI_SUCCESS The EFI MTFTPv6 Protocol instance was configured successfully.

EFI_INVALID_PARAMETER One or more following conditions are TRUE:

This is NULL.
 MtftpConfigData.StationIp is neither zero nor one

of the configured IP addresses in the underlying IPv6 driver.

MtftpCofigData.ServerIp is not a valid IPv6 unicast

address.

EFI_ACCESS_DENIED The configuration could not be changed at this time because

there is some MTFTP background operation in progress.

 MtftpCofigData.LocalPort is already in use.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
address for this instance, but no source address was available for
use.
Version 2.5 April, 2015 1749

Unified Extensible Firmware Interface Specification
EFI_OUT_OF_RESOURCES The EFI MTFTPv6 Protocol driver instance data could not be
allocated.

EFI_DEVICE_ERROR An unexpected system or network error occurred. The EFI
MTFTPv6 Protocol driver instance is not configured.
1750 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_MTFTP6_PROTOCOL.GetInfo()

Summary

Get information about a file from an MTFTPv6 server.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_GET_INFO)(
 IN EFI_MTFTP6_PROTOCOL *This,
 IN EFI_MTFTP6_OVERRIDE_DATA *OverrideData OPTIONAL,
 IN UINT8 *Filename,
 IN UINT8 *ModeStr OPTIONAL,
 IN UINT8 OptionCount,
 IN EFI_MTFTP6_OPTION *OptionList OPTIONAL,
 OUT UINT32 *PacketLength,
 OUT EFI_MTFTP6_PACKET **Packet OPTIONAL
);

Parameters
This Pointer to the EFI_MTFTP6_PROTOCOL instance.

OverrideData Data that is used to override the existing parameters. If NULL, the
default parameters that were set in the
EFI_MTFTP6_PROTOCOL.Configure() function are used.
Type EFI_MTFTP6_OVERRIDE_DATA is defined in "Related
Definitions" below.

Filename Pointer to an null-terminated ASCII file name string.

ModeStr Pointer to an null-terminated ASCII mode string. If NULL, octet
will be used.

OptionCount Number of option/value string pairs in OptionList.

OptionList Pointer to array of option/value string pairs. Ignored if
OptionCount is zero. Type EFI_MTFTP6_OPTION is
defined in "Related Definitions" below.

PacketLength The number of bytes in the returned packet.

Packet The pointer to the received packet. This buffer must be freed by
the caller. Type EFI_MTFTP6_PACKET is defined in "Related
Definitions" below.

Description
The GetInfo() function assembles an MTFTPv6 request packet with options, sends it to the
MTFTPv6 server, and may return an MTFTPv6 OACK, MTFTPv6 ERROR, or ICMP ERROR
packet. Retries occur only if no response packets are received from the MTFTPv6 server before the
timeout expires.
Version 2.5 April, 2015 1751

Unified Extensible Firmware Interface Specification
Related Definitions
//**
// EFI_MTFTP_OVERRIDE_DATA
//**
typedef struct {
 EFI_IPv6_ADDRESS ServerIp;
 UINT16 ServerPort;
 UINT16 TryCount;
 UINT16 TimeoutValue;
} EFI_MTFTP6_OVERRIDE_DATA;

ServerIp IP address of the MTFTPv6 server. If set to all zero, the value that
was set by the EFI_MTFTP6_PROTOCOL.Configure()
function will be used.

ServerPort MTFTPv6 server port number. If set to zero, it will use the value
that was set by the EFI_MTFTP6_PROTOCOL.Configure()
function.

TryCount Number of times to transmit MTFTPv6 request packets and wait
for a response. If set to zero, the value that was set by
theEFI_MTFTP6_PROTOCOL.Configure() function will
be used.

TimeoutValue Number of seconds to wait for a response after sending the
MTFTPv6 request packet. If set to zero, the value that was set by
the EFI_MTFTP6_PROTOCOL.Configure() function will
be used.

The EFI_MTFTP6_OVERRIDE_DATA structure is used to override the existing parameters that
were set by the EFI_MTFTP6_PROTOCOL.Configure() function.

//**
// EFI_MTFTP6_OPTION
//**
typedef struct {
 UINT8 *OptionStr;
 UINT8 *ValueStr;
} EFI_MTFTP6_OPTION;

OptionStr

Pointer to the null-terminated ASCII MTFTPv6 option string.

ValueStr

Pointer to the null-terminated ASCII MTFTPv6 value string.
1752 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
#pragma pack(1)

//***
// EFI_MTFTP6_PACKET
//***
typedef union {
 UINT16 OpCode;
 EFI_MTFTP6_REQ_HEADER Rrq;
 EFI_MTFTP6_REQ_HEADER Wrq;
 EFI_MTFTP6_OACK_HEADER Oack;
 EFI_MTFTP6_DATA_HEADER Data;
 EFI_MTFTP6_ACK_HEADER Ack;
// This field should be ignored and treated as reserved.
 EFI_MTFTP6_DATA8_HEADER Data8;
// This field should be ignored and treated as reserved.
 EFI_MTFTP6_ACK8_HEADER Ack8;
EFI_MTFTP6_ERROR_HEADER Error;
} EFI_MTFTP6_PACKET;

//***
// EFI_MTFTP6_REQ_HEADER
//***
typedef struct {
 UINT16 OpCode;
 UINT8 Filename[1];
} EFI_MTFTP6_REQ_HEADER;

//***
// EFI_MTFTP6_OACK_HEADER
//***
typedef struct {
 UINT16 OpCode;
 UINT8 Data[1];
} EFI_MTFTP6_OACK_HEADER;

//***
// EFI_MTFTP6_DATA_HEADER
//***
typedef struct {
 UINT16 OpCode;
 UINT16 Block;
 UINT8 Data[1];
} EFI_MTFTP6_DATA_HEADER;

//***
// EFI_MTFTP6_ACK_HEADER
Version 2.5 April, 2015 1753

Unified Extensible Firmware Interface Specification
//***
typedef struct {
 UINT16 OpCode;
 UINT16 Block[1];
} EFI_MTFTP6_ACK_HEADER;

//***
// EFI_MTFTP6_DATA8_HEADER
// This field should be ignored and treated as reserved.
//***
typedef struct {
 UINT16 OpCode;
 UINT64 Block;
 UINT8 Data[1];
} EFI_MTFTP6_DATA8_HEADER;

//***
// EFI_MTFTP6_ACK8_HEADER
//***
typedef struct {
 UINT16 OpCode;
 UINT64 Block[1];
} EFI_MTFTP6_ACK8_HEADER;

//***
// EFI_MTFTP6_ERROR_HEADER
//***
typedef struct {
 UINT16 OpCode;
 UINT16 ErrorCode;
 UINT8 ErrorMessage[1];
} EFI_MTFTP6_ERROR_HEADER;

#pragma pack()

Table 1 below describes the parameters that are listed in the MTFTPv6 packet structure definitions
above. All the above structures are byte packed. The pragmas may vary from compiler to compiler.
The MTFTPv6 packet structures are also used by the following functions:
• EFI_MTFTP6_PROTOCOL.ReadFile()

• EFI_MTFTP6_PROTOCOL.WriteFile()

• EFI_MTFTP6_PROTOCOL.ReadDirectory()

• The EFI MTFTPv6 Protocol packet check callback functions
1754 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
Note: BYTE ORDER: Both incoming and outgoing MTFTPv6 packets are in network byte order. All other
parameters defined in functions or data structures are stored in host byte order.

Table 196. Descriptions of Parameters in MTFTPv6 Packet Structures

Data Structure Parameter Description

EFI_MTFTP6_PACKET OpCode Type of packets as defined by the MTFTPv6 packet
opcodes. Opcode values are defined below.

Rrq, Wrq Read request or write request packet header. See
the description for

EFI_MTFTP6_REQ_HEADER below in this

table.

Oack Option acknowledge packet header. See the

description for EFI_MTFTP6_OACK_HEADER

below in this table.

Data Data packet header. See the description for

EFI_MTFTP6_DATA_HEADER below in this

table.

Ack Acknowledgement packet header. See the

description for EFI_MTFTP6_ACK_HEADER

below in this table.

Data8 This field should be ignored and treated as
reserved.

Data packet header with big block number. See the
description for

EFI_MTFTP6_DATA8_HEADER below in this

table.

Ack8 This field should be ignored and treated as
reserved.

Acknowledgement header with big block number.
See the description for

EFI_MTFTP6_ACK8_HEADER below in this

table.

Error Error packet header. See the description for

EFI_MTFTP6_ERROR_HEADER below in this

table.

EFI_MTFTP6_REQ_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP6_OPCODE_RRQ for a read

request or OpCode =
EFI_MTFTP6_OPCODE_WRQ for a write

request.

Filename The file name to be downloaded or uploaded.

EFI_MTFTP6_OACK_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP6_OPCODE_OACK.
Version 2.5 April, 2015 1755

Unified Extensible Firmware Interface Specification
Data The option strings in the option acknowledgement
packet.

EFI_MTFTP6_DATA_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP6_OPCODE_DATA.

Block Block number of this data packet.

Data The content of this data packet.

EFI_MTFTP6_ACK_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP6_OPCODE_ACK.

Block The block number of the data packet that is being
acknowledged.

EFI_MTFTP6_DATA8_HEADER OpCode This field should be ignored and treated as
reserved.

For this packet type, OpCode =
EFI_MTFTP6_OPCODE_DATA8.

Block This field should be ignored and treated as
reserved.

The block number of data packet.

Data This field should be ignored and treated as
reserved.

The content of this data packet.

EFI_MTFTP6_ACK8_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP6_OPCODE_ACK8.

Block The block number of the data packet that is being
acknowledged.

EFI_MTFTP6_ERROR_HEADER OpCode For this packet type, OpCode =
EFI_MTFTP6_OPCODE_ERROR.

ErrorCode The error number as defined by the MTFTPv6

packet error codes. Values for ErrorCode are

defined below.

ErrorMessag
e

Error message string.
1756 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
//
// MTFTP Packet OpCodes
//
#define EFI_MTFTP6_OPCODE_RRQ 1
#define EFI_MTFTP6_OPCODE_WRQ 2
#define EFI_MTFTP6_OPCODE_DATA 3
#define EFI_MTFTP6_OPCODE_ACK 6
#define EFI_MTFTP6_OPCODE_ERROR 5
#define EFI_MTFTP6_OPCODE_OACK 6
#define EFI_MTFTP6_OPCODE_DIR 7
//This field should be ignored and treated as reserved#define
EFI_MTFTP6_OPCODE_DATA8 8
//This field should be ignored and treated as reserved#define
EFI_MTFTP6_OPCODE_ACK8 9

Following is a description of the fields in the above definition.

Table 197. MTFTPPacket OpCode Descriptions

MTFTP Packet OpCode Description

EFI_MTFTP6_OPCODE_RRQ The MTFTPv6 packet is a read request.

EFI_MTFTP6_OPCODE_WRQ The MTFTPv6 packet is a write request.

EFI_MTFTP6_OPCODE_DATA The MTFTPv6 packet is a data packet.

EFI_MTFTP6_OPCODE_ACK The MTFTPv6 packet is an acknowledgement packet.

EFI_MTFTP6_OPCODE_ERROR The MTFTPv6 packet is an error packet.

EFI_MTFTP6_OPCODE_OACK The MTFTPv6 packet is an option acknowledgement
packet.

EFI_MTFTP6_OPCODE_DIR The MTFTPv6 packet is a directory query packet.

EFI_MTFTP6_OPCODE_DATA8 This field should be ignored and treated as reserved.

The MTFTPv6 packet is a data packet with a big block
number.

EFI_MTFTP6_OPCODE_ACK8 This field should be ignored and treated as reserved.

The MTFTPv6 packet is an acknowledgement packet with a
big block number.
Version 2.5 April, 2015 1757

Unified Extensible Firmware Interface Specification
//
// MTFTP ERROR Packet ErrorCodes
//
#define EFI_MTFTP6_ERRORCODE_NOT_DEFINED 0
#define EFI_MTFTP6_ERRORCODE_FILE_NOT_FOUND 1
#define EFI_MTFTP6_ERRORCODE_ACCESS_VIOLATION 2
#define EFI_MTFTP6_ERRORCODE_DISK_FULL 3
#define EFI_MTFTP6_ERRORCODE_ILLEGAL_OPERATION 6
#define EFI_MTFTP6_ERRORCODE_UNKNOWN_TRANSFER_ID 5
#define EFI_MTFTP6_ERRORCODE_FILE_ALREADY_EXISTS 6
#define EFI_MTFTP6_ERRORCODE_NO_SUCH_USER 7
#define EFI_MTFTP6_ERRORCODE_REQUEST_DENIED 8

Table 198. MTFTP ERROR Packet ErrorCode Descriptions

Status Codes Returned

MTFTP ERROR Packet ErrorCodes Description

EFI_MTFTP6_ERRORCODE_NOT_DEFINED The error code is not defined. See the
error message in the packet (if any) for
details.

EFI_MTFTP6_ERRORCODE_FILE_NOT_FOUND The file was not found.

EFI_MTFTP6_ERRORCODE_ACCESS_VIOLATION There was an access violation.

EFI_MTFTP6_ERRORCODE_DISK_FULL The disk was full or its allocation was
exceeded.

EFI_MTFTP6_ERRORCODE_ILLEGAL_OPERATION The MTFTPv6 operation was illegal.

EFI_MTFTP6_ERRORCODE_UNKNOWN_TRANSFER_ID The transfer ID is unknown.

EFI_MTFTP6_ERRORCODE_FILE_ALREADY_EXISTS The file already exists.

EFI_MTFTP6_ERRORCODE_NO_SUCH_USER There is no such user.

EFI_MTFTP6_ERRORCODE_REQUEST_DENIED The request has been denied due to
option negotiation.

EFI_SUCCESS An MTFTPv6 OACK packet was received and is in the Packet.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Filename is NULL.

• OptionCount is not zero and OptionList is NULL.

• One or more options in OptionList have wrong format.

• PacketLength is NULL.

• OverrideData.ServerIp is not a valid unicast IPv6
address and not set to all zero.
1758 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_UNSUPPORTED One or more options in the OptionList are unsupported by

this implementation.

EFI_NOT_STARTED The EFI MTFTPv6 Protocol driver has not been started.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
address for this instance, but no source address was available for
use.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_TFTP_ERROR An MTFTPv6 ERROR packet was received and is in the Packet.

EFI_NETWORK_UNREACHABLE An ICMP network unreachable error packet was received and the

Packet is set to NULL..

EFI_NETWORK_UNREACHABLE An ICMP host unreachable error packet was received and the

Packet is set to NULL...

EFI_NETWORK_UNREACHABLE An ICMP protocol unreachable error packet was received and the

Packet is set to NULL..

EFI_NETWORK_UNREACHABLE An ICMP port unreachable error packet was received and the

Packet is set to NULL...

EFI_ICMP_ERROR Some other ICMP ERROR packet was received and the Packet

is set to NULL.

EFI_PROTOCOL_ERROR An unexpected MTFTPv6 packet was received and is in the

Packet.

EFI_TIMEOUT No responses were received from the MTFTPv6 server.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.
Version 2.5 April, 2015 1759

Unified Extensible Firmware Interface Specification
EFI_MTFTP6_PROTOCOL.ParseOptions()

Summary

Parse the options in an MTFTPv6 OACK packet.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_PARSE_OPTIONS)(
 IN EFI_MTFTP6_PROTOCOL *This,
 IN UINT32 PacketLen,
 IN EFI_MTFTP6_PACKET *Packet,
 OUT UINT32 *OptionCount,
 OUT EFI_MTFTP6_OPTION **OptionList OPTIONAL
);

Parameters
This Pointer to the EFI_MTFTP6_PROTOCOL instance.

PacketLen Length of the OACK packet to be parsed.

Packet Pointer to the OACK packet to be parsed. Type
EFI_MTFTP6_PACKET is defined in
EFI_MTFTP6_PROTOCOl.GetInfo().

OptionCount Pointer to the number of options in the following OptionList.

OptionList Pointer to EFI_MTFTP6_OPTION storage. Each pointer in the
OptionList points to the corresponding MTFTP option buffer
in the Packet. Call the EFI Boot Service FreePool() to
release the OptionList if the options in this OptionList
are not needed any more. Type EFI_MTFTP6_OPTION is
defined in EFI_MTFTP6_PROTOCOL.GetInfo().

Description
The ParseOptions() function parses the option fields in an MTFTPv6 OACK packet and
returns the number of options that were found and optionally a list of pointers to the options in the
packet.

If one or more of the option fields are not valid, then EFI_PROTOCOL_ERROR is returned and
*OptionCount and *OptionList stop at the last valid option.
1760 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
Status Codes Returned

EFI_SUCCESS The OACK packet was valid and the OptionCount and

OptionList parameters have been updated.

EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

PacketLen is 0.

Packet is NULL or Packet is not a valid MTFTPv6 packet.

OptionCount is NULL.

EFI_NOT_FOUND No options were found in the OACK packet.

EFI_OUT_OF_RESOURCES Storage for the OptionList array can not be allocated.

EFI_PROTOCOL_ERROR One or more of the option fields is invalid.
Version 2.5 April, 2015 1761

Unified Extensible Firmware Interface Specification
EFI_MTFTP6_PROTOCOL.ReadFile()

Summary
Download a file from an MTFTPv6 server.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_READ_FILE)(
 IN EFI_MTFTP6_PROTOCOL *This,
 IN EFI_MTFTP6_TOKEN *Token
);

Parameters
This Pointer to the EFI_MTFTP6_PROTOCOL instance.

Token Pointer to the token structure to provide the parameters that are
used in this operation. Type EFI_MTFTP6_TOKEN is defined in
"Related Definitions" below.

Description
The ReadFile() function is used to initialize and start an MTFTPv6 download process and
optionally wait for completion. When the download operation completes, whether successfully or
not, the Token.Status field is updated by the EFI MTFTPv6 Protocol driver and then
Token.Event is signaled if it is not NULL.

Data can be downloaded from the MTFTPv6 server into either of the following locations:

• A fixed buffer that is pointed to by Token.Buffer

• A download service function that is pointed to by Token.CheckPacket

If both Token.Buffer and Token.CheckPacket are used, then Token.CheckPacket
will be called first. If the call is successful, the packet will be stored in Token.Buffer.
1762 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
Related Definitions
//

// EFI_MTFTP6_TOKEN
//

typedef struct {
 EFI_STATUS Status;
 EFI_EVENT Event;
 EFI_MTFTP6_OVERRIDE_DATA OverrideData;
 UINT8 *Filename;
 UINT8 *ModeStr;
 UINT32 OptionCount;
 EFI_MTFTP6_OPTION* OptionList;
 UINT64 BufferSize;
 VOID *Buffer;
 VOID *Context;
 EFI_MTFTP6_CHECK_PACKET CheckPacket;
 EFI_MTFTP6_TIMEOUT_CALLBACK TimeoutCallback;
 EFI_MTFTP6_PACKET_NEEDED PacketNeeded;
} EFI_MTFTP6_TOKEN;

Status The status that is returned to the caller at the end of the operation
to indicate whether this operation completed successfully.
Defined Status values are listed below.

Event The event that will be signaled when the operation completes. If
set to NULL, the corresponding function will wait until the read or
write operation finishes. The type of Event must be
EVT_NOTIFY_SIGNAL.

OverrideData If not NULL, the data that will be used to override the existing
configure data. Type EFI_MTFTP6_OVERRIDE_DATA is
defined in EFI_MTFTP6_PROTOCOL.GetInfo().

Filename Pointer to the null-terminated ASCII file name string.

ModeStr Pointer to the null-terminated ASCII mode string. If NULL, octet
is used.

OptionCount Number of option/value string pairs.

OptionList Pointer to an array of option/value string pairs. Ignored if
OptionCount is zero. Both a remote server and this driver
implementation should support these options. If one or more
options are unrecognized by this implementation, it is sent to the
remote server without being changed. Type
EFI_MTFTP6_OPTION is defined in
EFI_MTFTP6_PROTOCOL.GetInfo().

BufferSize On input, the size, in bytes, of Buffer. On output, the number
of bytes transferred.
Version 2.5 April, 2015 1763

Unified Extensible Firmware Interface Specification
Buffer Pointer to the data buffer. Data that is downloaded from the
MTFTPv6 server is stored here. Data that is uploaded to the
MTFTPv6 server is read from here. Ignored if BufferSize is
zero.

Context Pointer to the context that will be used by CheckPacket,
TimeoutCallback and PacketNeeded.

CheckPacket Pointer to the callback function to check the contents of the
received packet. Type EFI_MTFTP6_CHECK_PACKET is
defined below.

TimeoutCallback Pointer to the function to be called when a timeout occurs. Type
EFI_MTFTP6_TIMEOUT_CALLBACK is defined below.

PacketNeeded Pointer to the function to provide the needed packet contents.
Only used in WriteFile() operation. Type
EFI_MTFTP6_PACKET_NEEDED is defined below.

The EFI_MTFTP6_TOKEN structure is used for both the MTFTPv6 reading and writing operations.
The caller uses this structure to pass parameters and indicate the operation context. After the reading
or writing operation completes, the EFI MTFTPv6 Protocol driver updates the Status parameter
and the Event is signaled if it is not NULL. The following table lists the status codes that are
returned in the Status parameter.
1764 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
Status Codes Returned in the Status Parameter

//**
// EFI_MTFTP6_CHECK_PACKET
//**
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_CHECK_PACKET)(
 IN EFI_MTFTP6_PROTOCOL *This,
 IN EFI_MTFTP6_TOKEN *Token,
 IN UINT16 PacketLen,
 IN EFI_MTFTP6_PACKET *Packet
);

This Pointer to the EFI_MTFTP6_PROTOCOL instance.

Token The token that the caller provided in the
EFI_MTFTP6_PROTOCOl.ReadFile(), WriteFile() or
ReadDirectory() function. Type EFI_MTFTP6_TOKEN is
defined in EFI_MTFTP6_PROTOCOL.ReadFile().

PacketLen Indicates the length of the packet.

Packet Pointer to an MTFTPv6 packet. Type EFI_MTFTP6_PACKET is
defined in EFI_MTFTP6_PROTOCOL.GetInfo().

EFI_MTFTP6_CHECK_PACKET is a callback function that is provided by the caller to intercept
the EFI_MTFTP6_OPCODE_DATA or EFI_MTFTP6_OPCODE_DATA8 packets processed in the
EFI_MTFTP6_PROTOCOL.ReadFile() function, and alternatively to intercept
EFI_MTFTP6_OPCODE_OACK or EFI_MTFTP6_OPCODE_ERROR packets during a call to
EFI_MTFTP6_PROTOCOL.ReadFile(), WriteFile() or ReadDirectory(). Whenever
an MTFTPv6 packet with the type described above is received from a server, the EFI MTFTPv6

EFI_SUCCESS The data file has been transferred successfully.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_BUFFER_TOO_SMALL BufferSize is not zero but not large enough to hold the

downloaded data in downloading process.

EFI_ABORTED Current operation is aborted by user.

EFI_NETWORK_UNREACHABLE An ICMP network unreachable error packet was received.

EFI_NETWORK_UNREACHABLE An ICMP host unreachable error packet was received..

EFI_NETWORK_UNREACHABLE An ICMP protocol unreachable error packet was received.

EFI_NETWORK_UNREACHABLE An ICMP port unreachable error packet was received.

EFI_ICMP_ERROR Some other ICMP ERROR packet was received.

EFI_TIMEOUT No responses were received from the MTFTPv6 server.

EFI_TFTP_ERROR An MTFTPv6 ERROR packet was received.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.
Version 2.5 April, 2015 1765

Unified Extensible Firmware Interface Specification
Protocol driver will call EFI_MTFTP6_CHECK_PACKET function to let the caller have an
opportunity to process this packet. Any status code other than EFI_SUCCESS that is returned from
this function will abort the transfer process.

//**
// EFI_MTFTP6_TIMEOUT_CALLBACK
//**
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_TIMEOUT_CALLBACK)(
 IN EFI_MTFTP6_PROTOCOL *This,
 IN EFI_MTFTP6_TOKEN *Token
);

This Pointer to the EFI_MTFTP6_PROTOCOL instance.

Token The token that is provided in the
EFI_MTFTP6_PROTOCOL.ReadFile() or
EFI_MTFTP6_PROTOCOL.WriteFile() or
EFI_MTFTP6_PROTOCOL.ReadDirectory() functions
by the caller. Type EFI_MTFTP6_TOKEN is defined in
EFI_MTFTP6_PROTOCOL.ReadFile().

EFI_MTFTP6_TIMEOUT_CALLBACK is a callback function that the caller provides to capture the
timeout event in the EFI_MTFTP6_PROTOCOL.ReadFile(),
EFI_MTFTP6_PROTOCOL.WriteFile() or
EFI_MTFTP6_PROTOCOL.ReadDirectory() functions. Whenever a timeout occurs, the EFI
MTFTPv6 Protocol driver will call the EFI_MTFTP6_TIMEOUT_CALLBACK function to notify
the caller of the timeout event. Any status code other than EFI_SUCCESS that is returned from this
function will abort the current download process.

//**
// EFI_MTFTP6_PACKET_NEEDED
//**
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_PACKET_NEEDED)(
 IN EFI_MTFTP6_PROTOCOL *This,
 IN EFI_MTFTP6_TOKEN Token,
 IN OUT UINT16 *Length,
 OUT VOID **Buffer
);

This Pointer to the EFI_MTFTP6_PROTOCOL instance.

Token The token provided in the EFI_MTFTP6_PROTOCOL
.WriteFile() by the caller.
1766 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
Length Indicates the length of the raw data wanted on input, and the
length the data available on output.

Buffer Pointer to the buffer where the data is stored.

EFI_MTFTP6_PACKET_NEEDED is a callback function that the caller provides to feed data to the
EFI_MTFTP6_PROTOCOL.WriteFile() function. EFI_MTFTP6_PACKET_NEEDED
provides another mechanism for the caller to provide data to upload other than a static buffer. The
EFI MTFTP6 Protocol driver always calls EFI_MTFTP6_PACKET_NEEDED to get packet data
from the caller if no static buffer was given in the initial call to
EFI_MTFTP6_PROTOCOL.WriteFile() function. Setting *Length to zero signals the end
of the session. Returning a status code other than EFI_SUCCESS aborts the session.

Status Codes Returned

EFI_SUCCESS The data file is being downloaded.

EFI_INVALID_PARAMETER One or more of the parameters is not valid.

• This is NULL.

• Token is NULL.

• Token.Filename is NULL.

• Token.OptionCount is not zero and
Token.OptionList is NULL.

• One or more options in Token.OptionList have wrong
format.

• Token.Buffer and Token.CheckPacket are both
NULL.

• Token.OverrideData.ServerIp is not a valid
unicast IPv6 address and not set to all zero..

EFI_UNSUPPORTED One or more options in the Token.OptionList are not

supported by this implementation.

EFI_NOT_STARTED The EFI MTFTPv6 Protocol driver has not been started.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
address for this instance, but no source address was available for
use.

EFI_ALREADY_STARTED This Token is being used in another MTFTPv6 session.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

EFI_NO_MEDIA There was a media error.
Version 2.5 April, 2015 1767

Unified Extensible Firmware Interface Specification
EFI_MTFTP6_PROTOCOL.WriteFile()

Summary
Send a file to an MTFTPv6 server. May be unsupported in some implementations.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_WRITE_FILE)(
 IN EFI_MTFTP6_PROTOCOL *This,
 IN EFI_MTFTP6_TOKEN *Token
);

Parameters
This Pointer to the EFI_MTFTP6_PROTOCOL instance.

Token Pointer to the token structure to provide the parameters that are
used in this function. Type EFI_MTFTP6_TOKEN is defined in
EFI_MTFTP6_PROTOCOL.ReadFile().

Description
The WriteFile() function is used to initialize an uploading operation with the given option list
and optionally wait for completion. If one or more of the options is not supported by the server, the
unsupported options are ignored and a standard TFTP process starts instead. When the upload
process completes, whether successfully or not, Token.Event is signaled, and the EFI MTFTPv6
Protocol driver updates Token.Status.

The caller can supply the data to be uploaded in the following two modes:

• Through the user-provided buffer

• Through a callback function

With the user-provided buffer, the Token.BufferSize field indicates the length of the buffer,
and the driver will upload the data in the buffer. With an EFI_MTFTP6_PACKET_NEEDED
callback function, the driver will call this callback function to get more data from the user to upload.
See the definition of EFI_MTFTP6_PACKET_NEEDED for more information. These two modes
cannot be used at the same time. The callback function will be ignored if the user provides the
buffer.

Status Codes Returned

EFI_SUCCESS The upload session has started.

EFI_UNSUPPORTED The operation is not supported by this implementation.
1768 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Filename is NULL.

• Token.OptionCount is not zero and
Token.OptionList is NULL.

• One or more options in Token.OptionList have wrong
format.

• Token.Buffer and Token.PacketNeeded are
both NULL.

• Token.OverrideData.ServerIp is not a valid
unicast IPv6 address and not set to all zero.

EFI_UNSUPPORTED One or more options in the Token.OptionList are not

supported by this implementation.

EFI_NOT_STARTED The EFI MTFTPv6 Protocol driver has not been started.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
address for this instance, but no source address was available for
use.

EFI_ALREADY_STARTED This Token is already being used in another MTFTPv6 session.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.

EFI_NO_MEDIA There was a media error.
Version 2.5 April, 2015 1769

Unified Extensible Firmware Interface Specification
EFI_MTFTP6_PROTOCOL.ReadDirectory()

Summary
Download a data file directory from an MTFTPv6 server. May be unsupported in some
implementations.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_READ_DIRECTORY)(
 IN EFI_MTFTP6_PROTOCOL *This,
 IN EFI_MTFTP6_TOKEN *Token
);

Parameters
This Pointer to the EFI_MTFTP6_PROTOCOL instance.

Token Pointer to the token structure to provide the parameters that are
used in this function. Type EFI_MTFTP6_TOKEN is defined in
EFI_MTFTP6_PROTOCOL.ReadFile().

Description
The ReadDirectory() function is used to return a list of files on the MTFTPv6 server that are
logically (or operationally) related to Token.Filename. The directory request packet that is sent
to the server is built with the option list that was provided by caller, if present.

The file information that the server returns is put into either of the following locations:

• A fixed buffer that is pointed to by Token.Buffer

• A download service function that is pointed to by Token.CheckPacket

If both Token.Buffer and Token.CheckPacket are used, then Token.CheckPacket
will be called first. If the call is successful, the packet will be stored in Token.Buffer.

The returned directory listing in the Token.Buffer or EFI_MTFTP6_PACKET consists of a list
of two or three variable-length ASCII strings, each terminated by a null character, for each file in the
directory. If the multicast option is involved, the first field of each directory entry is the static
multicast IP address and UDP port number that is associated with the file name. The format of the
field is ip:ip:ip:ip:port. If the multicast option is not involved, this field and its terminating
null character are not present.

The next field of each directory entry is the file name and the last field is the file information string.
The information string contains the file size and the create/modify timestamp. The format of the
information string is filesize yyyy-mm-dd hh:mm:ss:ffff. The timestamp is
Coordinated Universal Time (UTC; also known as Greenwich Mean Time [GMT]).

Status Codes Returned

EFI_SUCCESS The MTFTPv6 related file "directory" has been downloaded.

EFI_UNSUPPORTED The EFI MTFTPv6 Protocol driver does not support this function.
1770 April, 2015 Version 2.5

Network Protocols — UDP and MTFTP
EFI_INVALID_PARAMETER One or more of these conditions is TRUE:

• This is NULL.

• Token is NULL.

• Token.Filename is NULL.

• Token.OptionCount is not zero and
Token.OptionList is NULL.

• One or more options in Token.OptionList have wrong
format.

• Token.Buffer and Token.CheckPacket are both
NULL.

• Token.OverrideData.ServerIp is not a valid
unicast IPv6 address and not set to all zero.

EFI_UNSUPPORTED One or more options in the Token.OptionList are not

supported by this implementation.

EFI_NOT_STARTED The EFI MTFTPv6 Protocol driver has not been started.

EFI_NO_MAPPING The underlying IPv6 driver was responsible for choosing a source
address for this instance, but no source address was available for
use.

EFI_ALREADY_STARTED This Token is already being used in another MTFTPv6 session.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated.

EFI_ACCESS_DENIED The previous operation has not completed yet.

EFI_DEVICE_ERROR An unexpected network error or system error occurred.
Version 2.5 April, 2015 1771

Unified Extensible Firmware Interface Specification
EFI_MTFTP6_PROTOCOL.Poll()

Summary

Polls for incoming data packets and processes outgoing data packets.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MTFTP6_POLL) (
 IN EFI_MTFTP6_PROTOCOL *This
);

Parameters
This

Pointer to the EFI_MTFTP6_PROTOCOL instance.

Description
The Poll() function can be used by network drivers and applications to increase the rate that data
packets are moved between the communications device and the transmit and receive queues.

In some systems, the periodic timer event in the managed network driver may not poll the
underlying communications device fast enough to transmit and/or receive all data packets without
missing incoming packets or dropping outgoing packets. Drivers and applications that are
experiencing packet loss should try calling the Poll() function more often.

Status Codes Returned

EFI_SUCCESS Incoming or outgoing data was processed.

EFI_NOT_STARTED This EFI MTFTPv6 Protocol instance has not been started.

EFI_INVALID_PARAMETER This is NULL.

EFI_DEVICE_ERROR An unexpected system or network error occurred.

EFI_TIMEOUT Data was dropped out of the transmit and/or receive queue.
Consider increasing the polling rate.
1772 April, 2015 Version 2.5

Secure Boot and Driver Signing
30
Secure Boot and Driver Signing

30.1 Secure Boot
This protocol is intended to provide access for generic authentication information associated with
specific device paths. The authentication information is configurable using the defined interfaces.
Successive configuration of the authentication information will overwrite the previously configured
information. Once overwritten, the previous authentication information will not be retrievable.

EFI_AUTHENTICATION_INFO_PROTOCOL

Summary
This protocol is used on any device handle to obtain authentication information associated with the
physical or logical device.

GUID
#define EFI_AUTHENTICATION_INFO_PROTOCOL_GUID \
 {0x7671d9d0,0x53db,0x4173,\
 {0xaa,0x69,0x23,0x27,0xf2,0x1f,0x0b,0xc7}}

Protocol Interface Structure
typedef struct _EFI_AUTHENTICATION_INFO_PROTOCOL {
 EFI_AUTHENTICATION_INFO_PROTOCOL_GET Get;
 EFI_AUTHENTICATION_INFO_PROTOCOL_SET Set;
} EFI_AUTHENTICATION_INFO_PROTOCOL;

Parameters
Get() Used to retrieve the Authentication Information associated with

the controller handle

Set() Used to set the Authentication information associated with the
controller handle

Description
The EFI_AUTHENTICATION_INFO_PROTOCOL provides the ability to get and set the
authentication information associated with the controller handle.
Version 2.5 April, 2015 1773

Unified Extensible Firmware Interface Specification
EFI_AUTHENTICATION_INFO_PROTOCOL.Get()

Summary
Retrieves the Authentication information associated with a particular controller handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_AUTHENTICATION_INFO_PROTOCOL_GET) (
 IN EFI_AUTHENTICATION_INFO_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle,
 OUT VOID **Buffer
);

Parameters
This Pointer to the EFI_AUTHENTICATION_INFO_PROTOCOL

ControllerHandle Handle to the Controller

Buffer Pointer to the authentication information. This function is
responsible for allocating the buffer and it is the caller’s
responsibility to free buffer when the caller is finished with
buffer.

Description
This function retrieves the Authentication Node for a given controller handle.

Status Codes Returned

EFI_SUCCESS Successfully retrieved Authentication information for the given

ControllerHandle

EFI_INVALID_PARAMETER No matching Authentication information found for the given

ControllerHandle

EFI_DEVICE_ERROR The authentication information could not be retrieved due to a
hardware error.
1774 April, 2015 Version 2.5

Secure Boot and Driver Signing
EFI_AUTHENTICATION_INFO_PROTOCOL.Set()

Summary
Set the Authentication information for a given controller handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_AUTHENTICATION_INFO_PROTOCOL_SET) (
 IN EFI_AUTHENTICATION_INFO_PROTOCOL *This,
 IN EFI_HANDLE ControllerHandle
 IN VOID *Buffer
);

Parameters
This Pointer to the EFI_AUTHENTICATION_INFO_PROTOCOL

ControllerHandle Handle to the controller.

Buffer Pointer to the authentication information.

Description
This function sets the authentication information for a given controller handle. If the authentication
node exists corresponding to the given controller handle this function overwrites the previously
present authentication information.

Status Codes Returned

Authentication Nodes
The authentication node is associated with specific controller paths. There can be various types of
authentication nodes, each describing a particular authentication method and associated properties.

Generic Authentication Node Structures
An authentication node is a variable length binary structure that is made up of variable length
authentication information. Table 199 defines the generic structure. The Authentication type GUID
defines the corresponding authentication node.

EFI_SUCCESS Successfully set the Authentication node information for the given

ControllerHandle.

EFI_UNSUPPORTED If the platform policies do not allow setting of the Authentication
information.

EFI_DEVICE_ERROR The authentication node information could not be configured due to
a hardware error.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the data.
Version 2.5 April, 2015 1775

Unified Extensible Firmware Interface Specification
Table 199. Generic Authentication Node Structure

All Authentication Nodes are byte-packed data structures that may appear on any byte boundary. All
code references to Authentication Nodes must assume all fields are UNALIGNED. Since every
Authentication Node contains a length field in a known place, it is possible to traverse
Authentication Node of unknown type.

CHAP (using RADIUS) Authentication Node

This Authentication Node type defines the CHAP authentication using RADIUS information.

GUID
#define EFI_AUTHENTICATION_CHAP_RADIUS_GUID \
 {0xd6062b50,0x15ca,0x11da,\
 {0x92,0x19,0x00,0x10,0x83,0xff,0xca,0x4d}}

Node Definition

Table 200. CHAP Authentication Node Structure using RADIUS

Mnemonic

Byte
Offset

Byte
Length

Description

Type GUID 0 16 Authentication Type GUID

Length 16 2 Length of this structure in bytes.

Specific Authentication
Data

18 n Specific Authentication Data. Type defines the
authentication method and associated type of data.
Size of the data is included in the length.

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 16 EFI_AUTHENTICATION_CHAP_RADIUS_GUID

Length 16 2 Length of this structure in bytes. Total length is
58+P+Q+R+S+T

RADIUS IP Address 18 16 Radius IPv4 or IPv6 Address

Reserved 34 2 Reserved

NAS IP Address 36 16 NAS IPv4 or IPv6 Address

NAS Secret Length 52 2 NAS Secret LengthP

NAS Secret 54 p NAS Secret

CHAP Secret Length 54+P 2 CHAP Secret Length Q

CHAP Secret 56+P q CHAP Secret

CHAP Name Length 56 +Q 2 CHAP Name Length R

CHAP Name 58+P+Q r CHAP Name String

Reverse CHAP
Name Length

58+P+Q+
R

2 Reverse CHAP Name length

Reverse CHAP
Name

60+P+Q+
R

S Reverse CHAP Name
1776 April, 2015 Version 2.5

Secure Boot and Driver Signing
Summary
RADIUS IP Address RADIUS Server IPv4 or IPv6 Address

NAS IP Address Network Access Server IPv4 or IPv6 Address (OPTIONAL)

NAS Secret Length Network Access Server Secret Length in bytes (OPTIONAL)

NAS Secret Network Access Server secret (OPTIONAL)

CHAP Secret Length CHAP Initiator Secret length in bytes

CHAP Secret CHAP Initiator Secret

CHAP Name Length CHAP Initiator Name Length in bytes

CHAP Name CHAP Initiator Name

Reverse CHAP name length Reverse CHAP name length

Reverse CHAP Name Reverse CHAP name

Reverse CHAP Secret LengthReverse CHAP secret length

Reverse CHAP Secret Reverse CHAP secret

CHAP (using local database)Authentication Node
This Authentication Node type defines CHAP using local database information.

GUID
#define EFI_AUTHENTICATION_CHAP_LOCAL_GUID \
 {0xc280c73e,0x15ca,0x11da,\
 {0xb0,0xca,0x00,0x10,0x83,0xff,0xca,0x4d}}

Node Definition

Table 201. CHAP Authentication Node Structure using Local Database

Reverse CHAP
Secret Length

60+P+Q+
R+S

2 Reverse CHAP Length

Reverse CHAP
Secret

62+P+Q+
R+S

T Reverse CHAP Secret

Mnemonic

Byte
Offset

Byte
Length

Description

Type 0 16 EFI_AUTHENTICATION_CHAP_LOCAL_GUID

Length 16 2 Length of this structure in bytes. Total length is
58+P+Q+R+S+T

Reserved 18 2 Reserved for future use

User Secret Length 20 2 User Secret Length

User Secret 22 p User Secret

User Name Length 22+p 2 User Name Length

User Name 24+p q User Name

CHAP Secret Length 24+p+q 2 CHAP Secret Length
Version 2.5 April, 2015 1777

Unified Extensible Firmware Interface Specification
Summary
User Secret Length User Secret Length in bytes

User Secret User Secret

User Name Length User Name Length in bytes

User Name User Name

CHAP Secret Length CHAP Initiator Secret length in bytes

CHAP Secret CHAP Initiator Secret

CHAP Name Length CHAP Initiator Name Length in bytes

CHAP Name CHAP Initiator Name

Reverse CHAP name length Reverse CHAP name length

Reverse CHAP Name Reverse CHAP name

Reverse CHAP Secret LengthReverse CHAP secret length

Reverse CHAP Secret Reverse CHAP secret

30.2 UEFI Driver Signing Overview
This section describes a means of generating a digital signature for a UEFI executable, embedding
that digital signature within the UEFI executable and verifying that the digital signature is from an
authorized source.

The UEFI specification provides a standard format for executables. These executables may be
located on un-secured media (such as a hard drive or unprotected flash device) or may be delivered
via a un-secured transport layer (such as a network) or originate from a un-secured port (such as
ExpressCard device or USB device). In each of these cases, the system provider may decide to
authenticate either the origin of the executable or its integrity (i.e., it has not been tampered with).
This section describes a means of doing so.

30.2.1 Digital Signatures
As a rule, digital signatures require two pieces: the data (often referred to as the message) and a
public/private key pair. In order to create a digital signature, the message is processed by a hashing

CHAP Secret 26+p+q r CHAP Secret

CHAP Name Length 26+p+q+r 2 CHAP Name Length

CHAP Name 28+p+q+r s CHAP Name String

Reverse CHAP
Name Length

58+P+Q+R 2 Reverse CHAP Name length

Reverse CHAP
Name

60+P+Q+R S Reverse CHAP Name

Reverse CHAP
Secret Length

60+P+Q+R
+S

2 Reverse CHAP Length

Reverse CHAP
Secret

62+P+Q+R
+S

T Reverse CHAP Secret
1778 April, 2015 Version 2.5

Secure Boot and Driver Signing
algorithm to create a hash value. This hash value is, in turn, encrypted using a signature algorithm
and the private key to create the digital signature.

Figure 74. Creating A Digital Signature

In order to verify a signature, two pieces of data are required: the original message and the public
key. First, the hash must be calculated exactly as it was calculated when the signature was created.
Then the digital signature is decoded using the public key and the result is compared against the
computed hash. If the two are identical, then you can be sure that message data is the one originally
signed and it has not been tampered with.

Private Key

Message

Hashing Algorithm

Message

Signature Algorithm

Hash Value

Digital
Signature

W
Signed

Message

W

Version 2.5 April, 2015 1779

Unified Extensible Firmware Interface Specification
Figure 75. Verifying a Digital Signature

30.2.2 Embedded Signatures
The signatures used for digital signing of UEFI executables are embedded directly within the
executable itself. Within the header is an array of directory entries. Each of these entries points to
interesting places within the executable image. The fifth data directory entry contains a pointer to a
list of certificates along with the length of the certificate areas. Each certificate may contain a digital
signature used for validating the driver.

The following diagram illustrates how certificates are embedded in the PE/COFF file:

Public Key

Hashing Algorithm

Message

Signature Algorithm

Hash Value

W

Signed
Message

W

Digital
Signature

Validation Signature
1780 April, 2015 Version 2.5

Secure Boot and Driver Signing
Figure 76. Embedded Digital Certificates

Within the PE/COFF optional header is a data directory. The 5th entry, if filled, points to a list of
certificates. Normally, these certificates are appended to the end of the file.

30.2.3 Creating Image Digests from Images
One of the pieces required for creating a digital signature is the image digest. For a detailed
description on how to create image digests from PE/COFF images, refer to the "Creating the PE
Image Hash" section of the Microsoft Authenticode Format specification (see References).

30.2.4 Code Definitions
This section describes data structures used for signing UEFI executables.

MS-DOS Header

PE Header Offset

PE Header

Sections Directory

Section #1

Section #n

Section #2

Debug Information

Certificate #1

PE Signature

Standard Header

Optional Header

Optional Data Directory

Image Data Directory Entry
#1

Image Data Directory Entry
#2

Image Data Directory Entry
#3

Image Data Directory Entry
#4

Image Data Directory Entry
#5 (Certificate Table)

Certificate #2

Certificate #n
Version 2.5 April, 2015 1781

Unified Extensible Firmware Interface Specification
WIN_CERTIFICATE

Summary
The WIN_CERTIFICATE structure is part of the PE/COFF specification.

Prototype
typedef struct _WIN_CERTIFICATE {
 UINT32 dwLength;
 UINT16 wRevision;
 UINT16 wCertificateType;
 //UINT8 bCertificate[ANYSIZE_ARRAY];
} WIN_CERTIFICATE;

dwLength The length of the entire certificate, including the length of the
header, in bytes.

wRevision The revision level of the WIN_CERTIFICATE structure. The
current revision level is 0x0200.

wCertificateType The certificate type. See WIN_CERT_TYPE_xxx for the UEFI
certificate types. The UEFI specification reserves the range of
certificate type values from 0x0EF0 to 0x0EFF.

bCertificate The actual certificate. The format of the certificate depends on
wCertificateType. The format of the UEFI certificates is
defined below.

Related Definitions
#define WIN_CERT_TYPE_PKCS_SIGNED_DATA 0x0002
#define WIN_CERT_TYPE_EFI_PKCS115 0x0EF0
#define WIN_CERT_TYPE_EFI_GUID 0x0EF1

Description
This structure is the certificate header. There may be zero or more certificates. I

• f the wCertificateType field is set to WIN_CERT_TYPE_EFI_PKCS115, then the certificate
follows the format described in WIN_CERTIFICATE_EFI_PKCS1_15.

• If the wCertificateType field is set to WIN_CERT_TYPE_EFI_GUID, then the
certificate follows the format described in WIN_CERTIFICATE_UEFI_GUID.

• If the wCertificateType field is set to WIN_CERT_TYPE_PKCS_SIGNED_DATA then
the certificate is formatted as described in the Authenticode specification.

These certificates can be validated using the contents of the signature database described in
Section 30.4.1. The following table illustrates the relationship between the certificates and the
signature types in the database.

Note: In the case of a WIN_CERT_TYPE_PKCS_SIGNED_DATA (or
WIN_CERT_TYPE_EFI_GUID where CertType = EFI_CERT_TYPE_PKCS7_GUID)
certificate, a match can occur against an entry in the authorized signature database (or the
forbidden signature database; see Section 30.6.1) at any level of the chain of X.509 certificates
1782 April, 2015 Version 2.5

Secure Boot and Driver Signing
present in the certificate, and matches can occur against any of the applicable signature types
defined in Section 30.4):

Table 202. PE/COFF Certificates Types and UEFI Signature Database Certificate Types

WIN_CERTIFICATE_EFI_PKCS1_15

Summary
Certificate which encapsulates the RSASSA_PKCS1-v1_5 digital signature.

Image Certificate Type Verified Using Signature Database Type

WIN_CERT_TYPE_EFI_PKCS115

(Signature Size = 256 bytes)

EFI_CERT_RSA2048_GUID (public key)

WIN_CERT_TYPE_EFI_GUID

(CertType =
EFI_CERT_TYPE_RSA2048_SHA25
6_GUID)

EFI_CERT_RSA2048_GUID (public key).

WIN_CERT_TYPE_EFI_GUID
(CertType =
EFI_CERT_TYPE_PKCS7_GUID)

EFI_CERT_X509_GUID
EFI_CERT_RSA2048_GUID (when applicable)

EFI_CERT_X509_SHA256_GUID

(when applicable)

EFI_CERT_X509_SHA384_GUID

(when applicable)

EFI_CERT_X509_SHA512_GUID

(when applicable)

WIN_CERT_TYPE_PKCS_SIGNED_D
ATA

EFI_CERT_X509_GUID
EFI_CERT_RSA2048_GUID (when applicable)

EFI_CERT_X509_SHA256_GUID

(when applicable)

EFI_CERT_X509_SHA384_GUID

(when applicable)

EFI_CERT_X509_SHA512_GUID

(when applicable)

(Always applicable regardless of whether a
certificate is present or not)

EFI_CERT_SHA1_GUID,
EFI_CERT_SHA224_GUID,
EFI_CERT_SHA256_GUID,
EFI_CERT_SHA384_GUID,
EFI_CERT_SHA512_GUID
In this case, the database contains the hash of the image.
Version 2.5 April, 2015 1783

Unified Extensible Firmware Interface Specification
Prototype
typedef struct _WIN_CERTIFICATE_EFI_PKCS1_15 {

WIN_CERTIFICATE Hdr;
EFI_GUID HashAlgorithm;

// UINT8 Signature[ANYSIZE_ARRAY];
} WIN_CERTIFICATE_EFI_PKCS1_15;

Hdr This is the standard WIN_CERTIFICATE header, where
wCertificateType is set to
WIN_CERT_TYPE_EFI_PKCS1_15.

HashAlgorithm This is the hashing algorithm which was performed on the UEFI
executable when creating the digital signature. It is one of the
enumerated values pre-defined in Section 35.1.2.1. See
EFI_HASH_ALGORITHM_x.

Signature This is the actual digital signature. The size of the signature is the
same size as the key (2048-bit key is 256 bytes) and can be
determined by subtracting the length of the other parts of this
header from the total length of the certificate as found in
Hdr.dwLength.

Description
The WIN_CERTIFICATE_UEFI_PKCS1_15 structure is derived from WIN_CERTIFICATE and
encapsulates the information needed to implement the RSASSA-PKCS1-v1_5 digital signature
algorithm as specified in RFC2437, sections 8-9.

WIN_CERTIFICATE_UEFI_GUID

Summary
Certificate which encapsulates a GUID-specific digital signature.

Prototype
typedef struct _WIN_CERTIFICATE_UEFI_GUID {
 WIN_CERTIFICATE Hdr;
 EFI_GUID CertType;
 UINT8 CertData[ANYSIZE_ARRAY];
} WIN_CERTIFICATE_UEFI_GUID;

Hdr This is the standard WIN_CERTIFICATE header, where
wCertificateType is set to
WIN_CERT_TYPE_EFI_GUID.

CertType This is the unique id which determines the format of the
CertData.

CertData This is the certificate data. The format of the data is determined
by the CertType.
1784 April, 2015 Version 2.5

Secure Boot and Driver Signing
Related Definitions
#define EFI_CERT_TYPE_RSA2048_SHA256_GUID
 {0xa7717414, 0xc616, 0x4977, \
 {0x94, 0x20, 0x84, 0x47, 0x12, 0xa7, 0x35, 0xbf}}
#define EFI_CERT_TYPE_PKCS7_GUID
 {0x4aafd29d, 0x68df, 0x49ee, \
 {0x8a, 0xa9, 0x34, 0x7d, 0x37, 0x56, 0x65, 0xa7}}
typedef struct _EFI_CERT_BLOCK_RSA_2048_SHA256 {
 EFI_GUID HashType;
 UINT8 PublicKey[256];
 UINT8 Signature[256];
} EFI_CERT_BLOCK_RSA_2048_SHA256;

PublicKey The RSA exponent e for this structure is 0x10001.

Signature This signature block is PKCS 1 version 1.5 formatted.

Description
The WIN_CERTIFICATE_UEFI_GUID certificate type allows new types of certificates to be
developed for driver authentication without requiring a new certificate type. The CertType defines
the format of the CertData, which length is defined by the size of the certificate less the fixed size
of the WIN_CERTIFICATE_UEFI_GUID structure.

• If CertType is EFI_CERT_TYPE_RSA2048_SHA256_GUID then the structure which
follows has the format specified by EFI_CERT_BLOCK_RSA_2048_SHA256.

• If CertType is EFI_CERT_TYPE_PKCS7_GUID then the CertData component shall
contain a DER-encoded PKCS #7 version 1.5 [RFC2315] SignedData value.

30.3 Firmware/OS Key Exchange: creating trust relationships
This section describes a means of creating a trust relationship between the platform owner, the
platform firmware, and an operating system. This trust relationship enables the platform firmware
and one or more operating systems to exchange information in a secure manner.

The trust relationship uses two types of asymmetric key pairs:

Platform Key (PK)

The platform key establishes a trust relationship between the platform owner and the
platform firmware. The platform owner enrolls the public half of the key (PKpub) into
the platform firmware. The platform owner can later use the private half of the key
(PKpriv) to change platform ownership or to enroll a Key Exchange Key. For UEFI ,
the recommended Platform Key format is RSA-2048. See “Enrolling The Platform
Key” and “Clearing The Platform Key” for more information.

Key Exchange Key (KEK)

Key exchange keys establish a trust relationship between the operating system and the

platform firmware. Each operating system (and potentially, each 3rd party application
which need to communicate with platform firmware) enrolls a public key (KEKpub)
Version 2.5 April, 2015 1785

Unified Extensible Firmware Interface Specification
into the platform firmware. See “Enrolling Key Exchange Keys” for more
information.

While no Platform Key is enrolled, the SetupMode variable shall be equal to 1. While SetupMode
== 1, the platform firmware shall not require authentication in order to modify the Platform Key,
Key Enrollment Key, OsRecoveryOrder, OsRecovery####, and image security databases.

After the Platform Key is enrolled, the SetupMode variable shall be equal to 0. While SetupMode
== 0, the platform firmware shall require authentication in order to modify the Platform Key, Key
Enrollment Key, OsRecoveryOrder, OsRecovery####, and image security databases.

While no Platform Key is enrolled, and while the variable AuditMode == 0, the platform is said to
be operating in setup mode.

After the Platform Key is enrolled, and while the variable AuditMode == 0, the platform is operating
in user mode. The platform will continue to operate in user mode until the Platform Key is cleared,
or the system is transitioned to either Audit or Deployed Modes. See "Clearing The Platform Key,"
"Transitioning to Audit Mode," and "Transitioning to Deployed Mode" for more information.

Audit Mode enables programmatic discovery of signature list combinations that successfully
authenticate installed EFI images without the risk of rendering a system unbootable. Chosen
signature lists configurations can be tested to ensure the system will continue to boot after the system
is transitioned out of Audit Mode. Details on how to transition to Audit Mode are detailed below in
the section "Transitioning to Audit Mode." After transitioning to Audit Mode, signature enforcement
is disabled such that all images are initialized and enhanced Image Execution Information Table
(IEIT) logging is performed including recursive validation for multi-signed images.

Deployed Mode is the most secure mode. For details on transitioning to Deployed Mode see the
section "Transitioning to Deployed Mode" below. By design, both User Mode and Audit Mode
support unauthenticated transitions to Deployed Mode. However, to move from Deployed Mode to
any other mode requires a secure platform-specific method, or deleting the PK, which is
authenticated.
1786 April, 2015 Version 2.5

Secure Boot and Driver Signing
Figure 77. Secure Boot Modes

30.3.1 Enrolling The Platform Key
The platform owner enrolls the public half of the Platform Key (PKpub) by calling the UEFI Boot
Service SetVariable() as specified in Section 7.2.1. If the platform is in setup mode, then the
new PKpub shall be signed with its PKpriv counterpart. If the platform is in user mode, then the new
PKpub must be signed with the current PKpriv. When the platform is in setup mode, a successful
enrollment of a Platform Key shall cause the platform to immediately transition to user mode.

The authenticated PK variable can always be read but can only be written if:

• The platform is in user mode and the provided PKpub is signed with the current PKpriv;

or if

• The platform is in setup mode and the provided PKpub is signed with its PKpriv counterpart.

The name and GUID of the Platform Key variable are specified in Section 3.3 “Globally Defined
Variables” The variable has the format of a signature database as described in “Signature Database”
below, with exactly one entry.

Audit Mode
PKpub == NULL

AuditMode == 1 (RO)
DeployedMode == 0 (RO)
SetupMode == 1 (RO)

SecureBoot == 0

User Mode
PKpub != NULL

AuditMode == 0 (RW)
DeployedMode == 0 (RW)
SetupMode == 0 (RO)

Setup Mode
PKpub == NULL

AuditMode == 0 (RW)
DeployedMode == 0 (RO)
SetupMode == 1 (RO)

SecureBoot == 0

AuditMode := 1
Side Effects

AuditMode (RO)

AuditMode := 1
Side Effects
Delete PKpub

SetupMode := 1
SecureBoot := 0

Deployed Mode
PKpub != NULL

AuditMode == 0 (RO)
DeployedMode == 1 (RO)
SetupMode == 0 (RO)

Platform Specific
DeployedMode Clear

Enroll Pkpub
Side Effects
SetupMode := 0
DeployedMode (RW)

Enroll PKpub

Side Effects
AuditMode := 0

DeployedMode := 1
SetupMode := 0

DeployedMode := 1
Mode variables (RO)

Platform Specific PKpub Clear
OR
Delete Pkpub
Side Effects
AuditMode (RW)
DeployedMode := 0
SetupMode := 1
SecureBoot := 0
Version 2.5 April, 2015 1787

Unified Extensible Firmware Interface Specification
The platform vendor may provide a default PKpub in the PKDefault variable described in
Section 3.3. This variable is formatted identically to the Platform Key variable. If present, this key
may optionally be used as the public half of the Platform Key when transitioning from setup mode to
user mode. If so, it may be read, placed within an EFI_VARIABLE_AUTHENTICATION or
EFI_VARIABLE_AUTHENTICATION2 structure and copied to the Platform Key variable using
the SetVariable() call.

30.3.2 Clearing The Platform Key
The platform owner clears the public half of the Platform Key (PKpub) by deleting the Platform Key
variable using UEFI Runtime Service SetVariable()and resetting the platform. The data buffer
submitted to the SetVariable() must be signed with the current PKpriv; see Section 7.2 for
details. The name and GUID of the Platform Key variable are specified in Section 3.3, “Globally
Defined Variables”
The platform key may also be cleared using a secure platform-specific method. When platform key
is cleared, the global variable SetupMode must also be updated to 1.

30.3.3 Transitioning to Audit Mode
To enter Audit Mode, a new UEFI variable AuditMode is set to 1. Entering Audit Mode has the side
effect of changing SetupMode == 1, SecureBoot == 0, PK is cleared, and the new DeployedMode ==
0.

Note: The AuditMode variable is only writable before ExitBootServices() is called when the
system is not in Deployed Mode. See Figure 77 for more details.

30.3.4 Transitioning to Deployed Mode
To enter Deployed Mode from Audit Mode, set the variable PK. To enter Deployed Mode from User
Mode, set the variable DeployedMode to 1. Entering Deployed Mode has the side effect of changing
SetupMode == 0, AuditMode == 0 and is made read-only, and DeployedMode == 1 and is made
read-only. See Figure 77 for more details.

30.3.5 Enrolling Key Exchange Keys
Key exchange keys are stored in a signature database as described in "Signature Database" below.
The signature database is stored as an authenticated UEFI variable.

The platform owner enrolls the key exchange keys by either calling SetVariable() as specified
in Section 7.2.1 with the EFI_VARIABLE_APPEND_WRITE attribute set and the Data parameter
containing the new key(s), or by reading the database using GetVariable(), appending the new
key exchange key to the existing keys and then writing the database using SetVariable()as
specified in Section 7.2.1 without the EFI_VARIABLE_APPEND_WRITE attribute set.

The authenticated UEFI variable that stores the key exchange keys (KEKs) can always be read but
only be written if:

• The platform is in user mode and the provided variable data is signed with the current PKpriv;

or if
1788 April, 2015 Version 2.5

Secure Boot and Driver Signing
• The platform is in setup mode (in this case the variable can be written without a signature
validation, but the SetVariable() call needs to be formatted in accordance with the
procedure for authenticated variables in Section 7.2.1)

The name and GUID of the Key Exchange Key variable are specified in Section 3.3, “Globally
Defined Variables.”

The platform vendor may provide a default set of Key Exchange Keys in the KEKDefault variable
described in Section 3.3. If present, these keys (or a subset) may optionally be used when performing
the initial enrollment of Key Exchange Keys. If any are to be used, they may be parsed from the
variable and enrolled as described above.

30.3.6 Platform Firmware Key Storage Requirements

This section describes the platform firmware storage requirements of the different types of keys.

Platform Keys:

The public key must be stored in non-volatile storage which is tamper and delete
resistant.

Key Exchange Keys:

The public key must be stored in non-volatile storage which is tamper resistant.

30.4 Firmware/OS Key Exchange: passing public keys
This section describes a means of passing public keys from the OS to the platform firmware so that
these keys can be used to securely pass information between the OS and the platform firmware.

Typically, the OS has been unable to communicate sensitive information or enforce any sort of
policy because of the possibility of spoofing by a malicious software agent. That is, the platform
firmware has been unable to trust the OS. By enrolling these public keys, authorized by the platform
owner, the platform firmware can now check the signature of data passed by the operating system.

Of course if the malicious software agent is running as part of the OS, such as a rootkit, then any
communication between the firmware and operating system still remains the subject of spoofing as
the malicious code has access to the key exchange key.

30.4.1 Signature Database

EFI_SIGNATURE_DATA

Summary
The format of a signature database.
Version 2.5 April, 2015 1789

Unified Extensible Firmware Interface Specification
Prototype
#pragma pack(1)
typedef struct _EFI_SIGNATURE_DATA {
 EFI_GUID SignatureOwner;
 UINT8 SignatureData[…];
} EFI_SIGNATURE_DATA;

typedef struct _EFI_SIGNATURE_LIST {
 EFI_GUID SignatureType;
 UINT32 SignatureListSize;
 UINT32 SignatureHeaderSize;
 UINT32 SignatureSize;
// UINT8 SignatureHeader[SignatureHeaderSize];
// EFI_SIGNATURE_DATA Signatures[…][SignatureSize];
} EFI_SIGNATURE_LIST;
#pragma pack()

Members
SignatureListSize

Total size of the signature list, including this header.

SignatureType

Type of the signature. GUID signature types are defined in "Related Definitions"
below.

SignatureHeaderSize

Size of the signature header which precedes the array of signatures.

SignatureSize

Size of each signature. Must be at least the size of EFI_SIGNATURE_DATA.

SignatureHeader

Header before the array of signatures. The format of this header is specified by the
SignatureType.

Signatures

An array of signatures. Each signature is SignatureSize bytes in length. The
format of the signature is defined by the SignatureType.

SignatureOwner

An identifier which identifies the agent which added the signature to the list.

Description
The signature database consists of zero or more signature lists. The size of the signature database can
be determined by examining the size of the UEFI variable.
1790 April, 2015 Version 2.5

Secure Boot and Driver Signing
Each signature list is a list of signatures of one type, identified by SignatureType. The signature
list contains a header and then an array of zero or more signatures in the format specified by the
header. The size of each signature in the signature list is specified by SignatureSize.

Each signature has an owner SignatureOwner, which is a GUID identifying the agent which
inserted the signature in the database. Agents might include the operating system or an OEM-
supplied driver or application. Agents may examine this field to understand whether they should
manage the signature or not.

Figure 78. Signature lists

Related Definitions
#define EFI_CERT_SHA256_GUID \
 { 0xc1c41626, 0x504c, 0x4092, \
 { 0xac, 0xa9, 0x41, 0xf9, 0x36, 0x93, 0x43, 0x28 } };

This identifies a signature containing a SHA-256 hash. The SignatureHeader size shall always
be 0. The SignatureSize shall always be 16 (size of SignatureOwner component) + 32
bytes.

#define EFI_CERT_RSA2048_GUID \
 { 0x3c5766e8, 0x269c, 0x4e34, \
 { 0xaa, 0x14, 0xed, 0x77, 0x6e, 0x85, 0xb3, 0xb6 } };

This identifies a signature containing an RSA-2048 key. The key (only the modulus since the public
key exponent is known to be 0x10001) shall be stored in big-endian order.

The SignatureHeader size shall always be 0. The SignatureSize shall always be 16 (size
of SignatureOwner component) + 256 bytes.

SIGNATURE LIST HEADER

SIGNATURE #0

SIGNATURE #1

SIGNATURE #2

SIGNATURE #n

SIGNATURE
LIST #0

SIGNATURE
LIST #1

SIGNATURE
LIST #2

SIGNAT URE HEADER
Version 2.5 April, 2015 1791

Unified Extensible Firmware Interface Specification
#define EFI_CERT_RSA2048_SHA256_GUID \
 { 0xe2b36190, 0x879b, 0x4a3d, \
 { 0xad, 0x8d, 0xf2, 0xe7, 0xbb, 0xa3, 0x27, 0x84 } };

This identifies a signature containing a RSA-2048 signature of a SHA-256 hash. The
SignatureHeader size shall always be 0. The SignatureSize shall always be 16 (size of
SignatureOwner component) + 256 bytes.

#define EFI_CERT_SHA1_GUID \
 { 0x826ca512, 0xcf10, 0x4ac9, \
 { 0xb1, 0x87, 0xbe, 0x01, 0x49, 0x66, 0x31, 0xbd } };

This identifies a signature containing a SHA-1 hash. The SignatureSize shall always be 16
(size of SignatureOwner component) + 20 bytes.

#define EFI_CERT_RSA2048_SHA1_GUID \
 { 0x67f8444f, 0x8743, 0x48f1, \
 { 0xa3, 0x28, 0x1e, 0xaa, 0xb8, 0x73, 0x60, 0x80 } };

This identifies a signature containing a RSA-2048 signature of a SHA-1 hash. The
SignatureHeader size shall always be 0. The SignatureSize shall always be 16 (size of
SignatureOwner component) + 256 bytes.

#define EFI_CERT_X509_GUID \
 { 0xa5c059a1, 0x94e4, 0x4aa7, \
 { 0x87, 0xb5, 0xab, 0x15, 0x5c, 0x2b, 0xf0, 0x72 } };

This identifies a signature based on a DER-encoded X.509 certificate. If the signature is an X.509
certificate then verification of the signature of an image should validate the public key certificate in
the image using certificate path verification, up to this X.509 certificate as a trusted root. The
SignatureHeader size shall always be 0. The SignatureSize may vary but shall always be
16 (size of the SignatureOwner component) + the size of the certificate itself.

Note: This means that each certificate will normally be in a separate EFI_SIGNATURE_LIST.

#define EFI_CERT_SHA224_GUID \
 { 0xb6e5233, 0xa65c, 0x44c9, \
 {0x94, 0x07, 0xd9, 0xab, 0x83, 0xbf, 0xc8, 0xbd} };

This identifies a signature containing a SHA-224 hash. The SignatureHeader size shall always
be 0. The SignatureSize shall always be 16 (size of SignatureOwner component) + 28
bytes.
1792 April, 2015 Version 2.5

Secure Boot and Driver Signing
#define EFI_CERT_SHA384_GUID \
 { 0xff3e5307, 0x9fd0, 0x48c9, \
 {0x85, 0xf1, 0x8a, 0xd5, 0x6c, 0x70, 0x1e, 0x01}};

This identifies a signature containing a SHA-384 hash. The SignatureHeader size shall always
be 0. The SignatureSize shall always be 16 (size of SignatureOwner component) + 48
bytes.

#define EFI_CERT_SHA512_GUID \
 { 0x93e0fae, 0xa6c4, 0x4f50, \
 {0x9f, 0x1b, 0xd4, 0x1e, 0x2b, 0x89, 0xc1, 0x9a}}

This identifies a signature containing a SHA-512 hash. The SignatureHeader size shall always
be 0. The SignatureSize shall always be 16 (size of SignatureOwner component) + 64
bytes.

#define EFI_CERT_X509_SHA256_GUID \
 { 0x3bd2a492, 0x96c0, 0x4079, \
 { 0xb4, 0x20, 0xfc, 0xf9, 0x8e, 0xf1, 0x03, 0xed } };

Prototype
#pragma pack(1)
typedef struct _EFI_CERT_X509_SHA256 {
 EFI_SHA256_HASH ToBeSignedHash;
 EFI_TIME TimeOfRevocation;
 } EFI_CERT_X509_SHA256;
#pragma pack()

Members
ToBeSignedHash

The SHA256 hash of an X.509 certificate’s To-Be-Signed contents.

TimeOfRevocation

The time that the certificate shall be considered to be revoked.

This identifies a signature containing the SHA256 hash of an X.509 certificate’s To-
Be-Signed contents, and a time of revocation. The SignatureHeader size shall
always be 0. The SignatureSize shall always be 16 (size of the
SignatureOwner component) + 48 bytes for an EFI_CERT_X509_SHA256
structure. If the TimeOfRevocation is non-zero, the certificate should be
considered to be revoked from that time and onwards, and otherwise the certificate
shall be considered to always be revoked.
Version 2.5 April, 2015 1793

Unified Extensible Firmware Interface Specification
#define EFI_CERT_X509_SHA384_GUID \
 { 0x7076876e, 0x80c2, 0x4ee6, \
 { 0xaa, 0xd2, 0x28, 0xb3, 0x49, 0xa6, 0x86, 0x5b } };

Prototype
#pragma pack(1)
typedef struct _EFI_CERT_X509_SHA384 {
 EFI_SHA384_HASH ToBeSignedHash;
 EFI_TIME TimeOfRevocation;
} EFI_CERT_X509_SHA384;
#pragma pack()

Members
ToBeSignedHash The SHA384 hash of an X.509 certificate’s To-Be-Signed

contents.

TimeOfRevocation The time that the certificate shall be considered to be revoked.

This identifies a signature containing the SHA384 hash of an X.509 certificate’s To-Be-Signed
contents, and a time of revocation. The SignatureHeader size shall always be 0. The
SignatureSize shall always be 16 (size of the SignatureOwner component) + 64 bytes for
an EFI_CERT_X509_SHA384 structure. If the TimeOfRevocation is non-zero, the certificate
should be considered to be revoked from that time and onwards, and otherwise the certificate shall
be considered to always be revoked.

#define EFI_CERT_X509_SHA512_GUID \
 { 0x446dbf63, 0x2502, 0x4cda, \
 { 0xbc, 0xfa, 0x24, 0x65, 0xd2, 0xb0, 0xfe, 0x9d } };

Prototype
#pragma pack(1)
typedef struct _EFI_CERT_X509_SHA512 {
 EFI_SHA512_HASH ToBeSignedHash;
 EFI_TIME TimeOfRevocation;
} EFI_CERT_X509_SHA512;
#pragma pack()

Members
ToBeSignedHash

The SHA512 hash of an X.509 certificate’s To-Be-Signed contents.

TimeOfRevocation

The time that the certificate shall be considered to be revoked.

This identifies a signature containing the SHA512 hash of an X.509 certificate’s To-Be-Signed
contents, and a time of revocation. The SignatureHeader size shall always be 0. The
SignatureSize shall always be 16 (size of the SignatureOwner component) + 80 bytes for
1794 April, 2015 Version 2.5

Secure Boot and Driver Signing
an EFI_CERT_X509_SHA512 structure. If the TimeOfRevocation is non-zero, the certificate
should be considered to be revoked from that time and onwards, and otherwise the certificate shall
be considered to always be revoked.

30.4.2 Image Execution Information Table

Summary
When AuditMode==0, if the image’s signature is not found in the authorized database, or is found
in the forbidden database, the image will not be started and instead, information about it will be
placed in this table.

When AuditMode==1, an EFI_IMAGE_EXECUTION_INFO element is created in the
EFI_IMAGE_EXECUTION_INFO_TABLE for every certificate found in the certificate table of
every image that is validated.

Additionally for every image, an element will be created in the table for every
EFI_CERT_SHAXXX that is supported by the platform. The contents of Action for each element
are determined by comparing that specific element’s Signature (which will contain exactly 1
EFI_SIGNATURE_DATA) to the currently-configured image security databases and policies, and
shall be either EFI_IMAGE_EXECUTION_AUTH_SIG_PASSED,
EFI_IMAGE_EXECUTION_AUTH_SIG_FAILED, or
EFI_IMAGE_EXECUTION_POLICY_FAILED.

Finally, because the system is in Audit Mode, all modules are initialized even if they fail to
authenticate, and the EFI_IMAGE_EXECUTION_INITIALIZED bit shall be set in Action for
all elements.

Prototype
typedef struct {
 EFI_IMAGE_EXECUTION_ACTION Action;
 UINT32 InfoSize;
// CHAR16 Name[…];
// EFI_DEVICE_PATH_PROTOCOL DevicePath;
// EFI_SIGNATURE_LIST Signature;
} EFI_IMAGE_EXECUTION_INFO;

Parameters
Action

Describes the action taken by the firmware regarding this image. Type EFI_IM-

AGE_EXECUTION_ACTION is described in “Related Definitions” below.

InfoSize

Size of all of the entire structure.

Name

If this image was a UEFI device driver (for option ROM, for example) this is the null-
terminated, user-friendly name for the device. If the image was for an application,
Version 2.5 April, 2015 1795

Unified Extensible Firmware Interface Specification
then this is the name of the application. If this cannot be determined, then a simple
NULL character should be put in this position.

DevicePath

Image device path. The image device path typically comes from the Loaded Image
Device Path Protocol installed on the image handle. If image device path cannot be
determined, a simple end-of-path device node should be put in this position.

Signature

Zero or more image signatures. If the image contained no signatures, then this field is
empty.The type WIN_CERTIFICATE is defined in chapter 26.

Prototype
typedef struct {
 UINTN NumberOfImages;
 EFI_IMAGE_EXECUTION_INFO InformationInfo[…]
} EFI_IMAGE_EXECUTION_INFO_TABLE;

NumberOfImages Number of EFI_IMAGE_EXECUTION_INFO structures.

InformationInfo NumberOfImages instances of
EFI_IMAGE_EXECUTION_INFO structures.

Related Definitions
typedef UINT32 EFI_IMAGE_EXECUTION_ACTION;

#define EFI_IMAGE_EXECUTION_AUTHENTICATION 0x00000007
#define EFI_IMAGE_EXECUTION_AUTH_UNTESTED 0x00000000
#define EFI_IMAGE_EXECUTION_AUTH_SIG_FAILED 0x00000001
#define EFI_IMAGE_EXECUTION_AUTH_SIG_PASSED 0x00000002
#define EFI_IMAGE_EXECUTION_AUTH_SIG_NOT_FOUND 0x00000003
#define EFI_IMAGE_EXECUTION_AUTH_SIG_FOUND 0x00000004
#define EFI_IMAGE_EXECUTION_POLICY_FAILED 0x00000005

#define EFI_IMAGE_EXECUTION_INITIALIZED 0x00000008

Description
This structure describes an image in the EFI System Configuration Table. It is only required in the
case where image signatures are being checked and the image was not initialized because its
signature failed, when AuditMode==1, or was not found in the signature database and an authorized
user or the owner would not authorize its execution. It may be used in other cases as well.

In these cases, the information about the image is copied into the EFI System Configuration Table.
Information about other images which were successfully initialized may also be included as well,
but this is not required.

The Action field describes what action the firmware took with regard to the image and what
other information it has about the image, including the device which it is related to.
1796 April, 2015 Version 2.5

Secure Boot and Driver Signing
First, this field describes the results of the firmware’s attempt to authenticate the image.

1. If EFI_IMAGE_EXECUTION_AUTH_UNTESTED is set, then no authentication attempt was
made.

2. If EFI_IMAGE_EXECUTION_AUTH_SIG_FAILED is set, then the image had at least one
digital signature and the check of the digital signatures failed.

3. If EFI_IMAGE_EXECUTION_AUTH_SIG_PASSED is set, then the image had at least one
valid digital signature and a check of that digital signature passed.

4. If EFI_IMAGE_EXECUTION_AUTH_SIG_NOT_FOUND is set, then the image’s signature
could not be found in the signature database.

5. If EFI_IMAGE_EXECUTION_AUTH_SIG_FOUND is set, then the image’s signature was
found in the signature database.

6. If EFI_IMAGE_EXECUTION_POLICY_FAILED is set, then authentication failed because of
(unspecified) firmware security policy.

Second, this field describes whether the image was initialized or not.

This table can be used by an agent which executes later to audit which images were not loaded and
perhaps query other sources to discover whether the image should be authorized. If so, the agent can
use the method described in “Signature Database Update” to update the Signature Database with the
image’s signature. Switching the system into Audit Mode generates a more verbose table which
provides additional insights to this agent.

If an attempt to boot a legacy non-UEFI OS takes place when the system is in User Mode, the OS
load shall fail and a corresponding EFI_IMAGE_EXECUTION_INFO entry shall be created with
Action set to EFI_IMAGE_EXECUTION_AUTH_UNTESTED, Name set to the NULL-terminated
“Description String” from the BIOS Boot Specification Device Path and DevicePath set to the BIOS
Boot Specification Device Path (see Section 9.3.7).

30.5 UEFI Image Validation

30.5.1 Overview
This section describes a way to use the platform ownership model described in the previous section
and the key exchange mechanism to allow the firmware to authenticate a UEFI image, such as an OS
loader or an option ROM, using the digital signing mechanisms described here.

The hand-off between the platform firmware and the operating system is a critical part of insuring
secure boot. Since there are large numbers of operating systems and a large number of minor
variations in the loaders for those operating systems, it is difficult to carry all possible keys or
signatures within the firmware as it ships. This requires some sort of update mechanism, to identify
the proper loader. But, as with any update mechanism, there is the risk of allowing malicious
software to “authenticate” itself, posing as the real operating system.

Likewise, there are a large number of potential 3rd-party UEFI applications, drivers and option
ROMs and it is difficult to carry all possible keys or signatures within the firmware as it ships.

The mechanism described here requires that the platform firmware maintain a signature database,
with entries for each authorized UEFI image (the authorized UEFI signature database). The
signature database is a single UEFI Variable.
Version 2.5 April, 2015 1797

Unified Extensible Firmware Interface Specification
It also requires that the platform firmware maintain a signature database with entries for each
forbidden UEFI image. This signature database is also a single UEFI variable.

The signature database is checked when the UEFI Boot Manager is about to start a UEFI image. If
the UEFI image’s signature is not found in the authorized database, or is found in the forbidden
database, the UEFI image will be deferred and information placed in the Image Execution
Information Table. In the case of OS Loaders, the next boot option will be selected. The signature
databases may be updated by the firmware, by a pre-OS application or by an OS application or
driver.

If a firmware supports the EFI_CERT_X509_SHA*_GUID signature types, it should support the
RFC3161 timestamp specification. Images whose signature matches one of these types in the
forbidden signature database shall only be considered forbidden if the firmware either does not
support timestamp verification, or the signature type has a time of revocation equal to zero, or the
timestamp does not pass verification against the authorized timestamp and forbidden signature
databases, or finally the signature type's time of revocation is less than or equal to the time recorded
in the image signature's timestamp. If the timestamp's signature is authorized by the authorized
timestamp database and the time recorded in the timestamp is less than the time of revocation, the
image shall not be considered forbidden provided it is not forbidden by any other entry in the
forbidden signature database. Finally, this requires that firmware supporting timestamp verification
must support the authorized timestamp database and have a suitable time stamping authority
certificate in that database.

30.5.2 Authorized User
An authorized user (for the purposes of UEFI image security) is one who possesses a key exchange
key (KEKpriv). This key is used to sign updates to the signature databases.

30.5.3 Signature Database Update
The Authorized, Forbidden, Timestamp, and Recovery signature databases are stored as UEFI
authenticated variables (see Variable Services in Section 7.2) with the GUID
EFI_IMAGE_SECURITY_DATABASE_GUID and the names
EFI_IMAGE_SECURITY_DATABASE , EFI_IMAGE_SECURITY_DATABASE1,
EFI_IMAGE_SECURITY_DATABASE2, and EFI_IMAGE_SECURITY_DATABASE3,
respectively.

These authenticated UEFI variables that store the signature databases (db, dbx, dbr, or dbt) can
always be read but can only be written if:

• The platform is in user mode and the provided variable data is signed with the private half of a
previously enrolled key exchange key (KEKpriv), or the platform private key (PKpriv);

or if

• The platform is in setup mode (in this case the variables can be written without a signature
validation, but the SetVariable() call needs to be formatted in accordance with the
procedure for authenticated variables in Section 7.2.1)

The signature databases are in the form of Signature Databases, as described in “Signature
Database” above.
1798 April, 2015 Version 2.5

Secure Boot and Driver Signing
The platform vendor may provide a default set of entries for the Signature Database in the
dbDefault, dbxDefault, dbtDefault, and dbrDefault variables described in Section 3.3. If present,
these keys (or a subset) may optionally be used when performing the initial enrollment of signature
database entries. If any are to be used, they may be parsed from the variable and enrolled as
described below.

If, when adding a signature to the signature database, SetVariable() returns
EFI_OUT_OF_RESOURCES, indicating there is no more room, the updater may discard the new
signature or it may decide to discard one of the database entries. These authenticated UEFI variables
that store the signature databases (db, or dbx, dbt, or dbr) can always be read but can only be written
if:

The following diagram illustrates the process for adding a new signature by the OS or an application
that has access to a previously enrolled key exchange key using SetVariable(). In the diagram,
the EFI_VARIABLE_APPEND_WRITE attribute is not used. If
EFI_VARIABLE_APPEND_WRITE had been used, then steps 2 and 3 could have been omitted and
step 7 would have included setting the EFI_VARIABLE_APPEND_WRITE attribute.

1. The procedure begins by generating a new signature, in the format described by the Signature
Database.

2. Call GetVariable() using EFI_IMAGE_SECURITY_DATABASE_GUID for the
VendorGuid parameter and EFI_IMAGE_SECURITY_DATABASE for the
VariableName parameter.

3. If the variable exists, go to step 5.

4. Create an empty authorized signature database.

5. Create a new buffer which contains the authorized signature database, along with the new
signature appended to the end.

6. Sign the new signature database using the private half of the Key Exchange Key as described in
SetVariable().

7. Update the authorized signature database using the UEFI Runtime Service SetVariable().

8. If there was no error, go to step 11.

9. If there was an error because of no more resources, determine whether the database can be
shrunk any more. The algorithm by which an agent decides which signatures may be safely
removed is agent-specific. In most cases, agents should not remove signatures where the
SignatureOwner field is not the agent’s. If not, then go to step 11, discarding the new signature.

10. If the signature database could be shrunk further, then remove the entries and go to step 6.

11. Exit.
Version 2.5 April, 2015 1799

Unified Extensible Firmware Interface Specification
Figure 79. Process for adding a new signature by the OS

30.5.3.1 Using The EFI System Configuration Table
During the process of loading UEFI images, the firmware must gather information about which
UEFI images were not started. The firmware may additionally gather information about UEFI
images which were started. The information is used to create the Image Execution Information

1 . A d d N e w
S i g n a t u r e

2 .
G e t V a r i a b l e ()

R e t r i e v e s
S i g n a t u r e
D a t a b a s e

5 . A d d N e w
S i g n a t u r e T o E n d

O f S i g n a t u r e
D a t a b a s e

7 .
S e t V a r i a b l e ()

U p d a t e s
S i g n a t u r e
D a t a b a s e

8 . O u t O f
R e s o u r c e s ?

9 . A n y M o r e
E n t r i e s C a n B e

R e m o v e d ?
Y e s

Y e s

1 0 . R e m o v e O l d
O r U n u s e d E n t r i e s

F r o m D a t a b a s e

1 1 . D o n e

N o

6 . S i g n B u f f e r

3 . D o e s T h e
V a r i a b l e E x i s t ?

4 . C r e a t e A n
E m p t y S i g n a t u r e

D a t a b a s e
N o

Y e s
1800 April, 2015 Version 2.5

Secure Boot and Driver Signing
Table, which is added to the EFI System Configuration Table and assigned the GUID
EFI_IMAGE_SECURITY_DATABASE_GUID.

For each UEFI image, the following information is collected:

• The image hash.

• The user-friendly name of the UEFI image (if known)

• The device path

• The action taken on the device (was it initialized or why was it rejected)

For more information, see the ‘Image Execution Information Table’ above.

30.5.3.2 Firmware Policy

The firmware may approve UEFI images for other reasons than those specified here. For example:
whether the image is in the system flash, whether the device providing the UEFI image is secured (in
a case, etc.) or whether the image contains another type of platform-supported digital signature.

30.5.3.3 Authorization Process

This section describes the process by which an unknown UEFI image might be authorized to run.
Implementations are not required to support all portions of this. For example, an implementation
might defer all UEFI image or none.
Version 2.5 April, 2015 1801

Unified Extensible Firmware Interface Specification
Table 203. Authorization process flow

1. Reset. This is when the platform begins initialization during boot.

1 .
R e s e t

2 . K EY
S T O R E

I N IT IA L I Z ED

3. U E F I
A P P L IC AT I O N
V A LI D A T E D ?

4 . S T A R T U E F I
A P PL I C A T IO N

Y e s

5. U E F I
A P P L IC AT I O N
A P P R O V E D ?

6 . U E F I A P P
S I G N A T U R E
A D D E D T O
D A T AB A S E

Y e s

N o

8. U E F I
A P P L IC AT I O N

H A S H P A SS E D IN
S Y S T E M

C O N F I G U R A T IO N
T A B LE

D e f er

9 . O S A P P
V A L I D A T E S

U E F I
A P PL I C A T IO N

1 0 . U EF I A P P
S I G N A T U R E
D A T AB A S E
U P D A T E D

Y e s

1 1. E n d

N o

N o

7 . G O T O N E XT
B O O T O P T I O N

N o
1802 April, 2015 Version 2.5

Secure Boot and Driver Signing
2. Key Store Initialization. During the firmware initialization and before any signed UEFI images
are initialized, the platform firmware must validate the signature database.

3. UEFI Image Validation Succeeded? During initialization of an UEFI image, the UEFI Boot
Manager decides whether or not the UEFI image should be initialized. By comparing the
calculated UEFI image signature against that in one of the signature databases, the firmware can
determine if there is a match.

At least one valid signature (multiple signatures are allowed as per PE/COFF Section 4.7
"Attribute Certificate Table") or at least one hash value (different hash algorithms may have
been used to create entries in db) of the image must match a record in the security database "db",
and no valid signature nor any hash value of the image may be reflected in the security database
"dbx".

Then, based on this match or its own policy, the firmware can decide whether or not to launch
the UEFI image.

4. Start UEFI Image. If the UEFI Image is approved, then it is launched normally.

5. UEFI Image Not Approved. If the UEFI image was not approved the platform firmware may use
other methods to discover if the UEFI image is authorized, such as consult a disk-based catalog
or ask an authorized user. The result can be one of three responses: Yes, No or Defer.

6. UEFI Image Signature Added To Signature Database. If the user approves of the UEFI image,
then the UEFI image’s signature is saved in the firmware’s signature database. If user approval
is supported, then the firmware be able to update of the Signature Database. For more
information, see Signature Database Update.

7. Go To Next Boot Option. If an UEFI image is rejected, then the next boot option is selected
normally and go to step 3. This is in the case where the image is listed as a boot option.

8. UEFI Image Signature Passed In System Configuration Table. If user defers, then the UEFI
image signature is copied into the Image Execution Information Table in the EFI System
Configuration Table which is available to the operating system.

9. OS Application Validates UEFI Image. An OS application determines whether the image is
valid.

10. UEFI Image Signature Added To Signature Database. For more information, see Signature
Database Update.

11. End.

30.6 Code Definitions

30.6.1 UEFI Image Variable GUID & Variable Name

Summary
Constants used for UEFI signature database variable access.
Version 2.5 April, 2015 1803

Unified Extensible Firmware Interface Specification
Prototype
#define EFI_IMAGE_SECURITY_DATABASE_GUID \
 { 0xd719b2cb, 0x3d3a, 0x4596, \
 { 0xa3, 0xbc, 0xda, 0xd0, 0x0e, 0x67, 0x65, 0x6f }}
#define EFI_IMAGE_SECURITY_DATABASE L”db”
#define EFI_IMAGE_SECURITY_DATABASE1 L”dbx”
#define EFI_IMAGE_SECURITY_DATABASE2 L"dbt"
#define EFI_IMAGE_SECURITY_DATABASE3 L"dbr"

Description
• This GUID and name are used when calling the EFI Runtime Services GetVariable() and

SetVariable().

• The EFI_IMAGE_SECURITY_DATABASE_GUID and
EFI_IMAGE_SECURITY_DATABASE are used to retrieve and change the authorized
signature database.

• The EFI_IMAGE_SECURITY_DATABASE_GUID and
EFI_IMAGE_SECURITY_DATABASE1 are used to retrieve and change the forbidden
signature database.

• The EFI_IMAGE_SECURITY_DATABASE_GUID and
EFI_IMAGE_SECURITY_DATABASE2 are used to retrieve and change the authorized
timestamp signature database.

• The EFI_IMAGE_SECURITY_DATABASE_GUID and
EFI_IMAGE_SECURITY_DATABASE3 are used to retrieve and change the authorized
recovery signature database.

• Firmware shall support the EFI_VARIABLE_APPEND_WRITE flag (see Section 7.2) for the
UEFI signature database variables.

• The signature database variables db, dbt, dbx, and dbr must be stored in tamper-resistant non-
volatile storage.
1804 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31
Human Interface Infrastructure Overview

This section defines the core code and services that are required for an implementation of the Human
Interface Infrastructure (HII). This specification does the following:

• Describes the basic mechanisms to manage user input

• Provides code definitions for the HII-related protocols, functions, and type definitions that are
architecturally required by the UEFI Specification

31.1 Goals
This chapter describes the mechanisms by which UEFI-compliant systems manage user input. The
major areas described include the following:

• String and font management.

• User input abstractions (for keyboards and mice)

• Internal representations of the forms (in the HTML sense) that are used for running a preboot
setup.

• External representations (and derivations) of the forms that are used to pass configuration
information to runtime applications, and the mechanisms to allow the results of those
applications to be driven back into the firmware.

General goals include:

• Simplified localization, the process by which the interface is adapted to a particular language.

• A "forms" representation mechanism that is rich enough to support the complex configuration
issues encountered by platform developers, including stock keeping unit (SKU) management
and interrelationships between questions in the forms.

• Definition of a mechanism to allow most or all the configuration of the system to be performed
during boot, at runtime, and remotely. Where possible, the forms describing the configuration
should be expressed using existing standards such as XML.

• Ability for the different drivers (including those from add-in cards) and applications to
contribute forms, strings, and fonts in a uniform manner while still allowing innovation in the
look and feel for Setup.

Support user-interface on a wide range of display devices:

• Local text display

• Local graphics display

• Remote text display

• Remote graphics display

• Web browser

• OS-present GUI
Version 2.5 April, 2015 1805

Unified Extensible Firmware Interface Specification
Support automated configuration without a display.

31.2 Design Discussion
This section describes the basic concepts behind the Human Interface Infrastructure. This is a set of
protocols that allow a UEFI driver to provide the ability to register user interface and configuration
content with the platform firmware. Unlike legacy option ROMs, the configuration of drivers and
controllers is delayed until a platform management utility chooses to use the services of these
protocols. UEFI drivers are not allowed to perform setup-like operations outside the context of these
protocols. This means that a driver is not allowed to interact with the user outside the context of this
protocol.

The following example shows a basic platform configuration or “setup” model. The drivers and
applications install elements (such as fonts, strings, images and forms) into the HII Database, which
acts as a central repository for the entire platform. The Forms Browser uses these elements to render
the user interface on the display devices and receive information from the user via HID devices.
When complete, the changes made by the user in the Forms Browser are saved, either to the UEFI
global variable storage—(GetVariable() and SetVariable()— or to variable storage
provided by the individual drivers.

Figure 80. Platform Configuration Overview

31.2.1 Drivers And Applications
The user interface elements in the form of package lists are carried by the drivers and applications.
Drivers and applications can create the package lists dynamically, or they can be pre-built and
carried as resources in the driver/application image.

EFI Global
Variable

Store

Driver
Driver

HII
Database

Forms
Browser

HID
Devices

Display
Devices

Driver-Specific
Variable Store
1806 April, 2015 Version 2.5

Human Interface Infrastructure Overview
If they are stored as resources, then an editor can be used to modify the user interface elements
without recompiling. For example, display elements can be modified or deleted, new languages
added, and default values modified.

Figure 81. HII Resources In Drivers & Applications

The means by which the string, font, image and form resources are created is beyond the scope of
this specification. The following diagram shows a few possible implementations. In both cases, the
GUI design is an optional element and the user-interface elements are stored within a text-based
resource file. Eventually, this source file is converted into a RES file (PE/COFF Resource Section)
which can be linked with the main application.

STRINGS, FONTS,
IMAGES, FORMS

STRINGS, FONTS,
IMAGES, FORMS

STRINGS, FONTS,
IMAGES, FORMS

RESOURCE

STRINGS, FONTS,
IMAGES, FORMS

STRINGS, FONTS,
IMAGES, FORMS

SOURCE FILES

FORMS
EDITOR

DRIVER/
APPLICATION

IMAGE

RESOURCES

CODE

COMPILE
/LINKER
Version 2.5 April, 2015 1807

Unified Extensible Firmware Interface Specification

Figure 82. Creating UI Resources With Resource Files

GUI Designer

Text Resource File
(.RC)

Resource File (.RES)

Resource
Compiler

Driver/Application
Image

LINK
1808 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Figure 83. Creating UI Resources With Intermediate Source Representation

31.2.1.1 Platform and Driver Configuration
The intent is for this specification to enable the configuration of various target components in the
system. The normally arduous task of managing user interface and configuration can be greatly
simplified for the consumers of such functionality by enabling the platform to comprehend some
standard user interactions.

GUI Designer

UI Element
Text Representation

(XML, VFR, etc.)

Resource File (.RES)

UI Compiler

Driver/Application
Image

LINK
Version 2.5 April, 2015 1809

Unified Extensible Firmware Interface Specification
Figure 84. The Platform and Standard User Interactions

31.2.1.2 Pre-O/S applications
There are various scenarios where a platform component must interact in some fashion with the user.
Examples of this are when presenting a user with several choices of information (e.g. boot menu)
and sending information to the display (e.g. system status, logo, etc.).

Figure 85. User and Platform Component Interaction

31.2.1.3 Description of User Interface Components
Various components listed in this specification are described in greater detail in their own sections.
The user interface is composed of several distinct components illustrated below.
1810 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Figure 86. User Interface Components

31.2.1.4 Forms
This component describes what type of content needs to be displayed to the user by means of a
binary encoding (i.e., Internal Forms Representation) and also has added context information such as
how to validate certain input and further describes where to store such input if it is intended to be
non-volatile. Applications such as a browser or script engine may use the information with the forms
to validate configuration setting values with or without a user interface.

31.2.1.5 Strings
The strings are the text-based (UCS-2 encoded) representations of the information typically being
referenced by the forms. The intent of this infrastructure is also to seamlessly enable multiple
language support. To that end the strings have the appropriate language designators to differentiate
one language from another.

31.2.1.6 Images/Fonts
Since most content is typically intended to have the ability to be rendered on the local system, the
human interface infrastructure also supports the ability for images and fonts to be accepted and used
by the underlying user interface components.

31.2.1.7 Consumers of the user interface data
The ultimate consumer of the user interface information will be some type of forms browser or
forms processor. There are several usage scenarios which should be supported by this specification.
These are illustrated below:

31.2.1.8 Connected forms browser/processor
The ability to have the forms processing engine render content when directly connected to the target
platform should be apparent. From the forms processing engine perspective, this could be the local
machine or a machine that is network attached. In either case, there is a constructed agent which
feeds the material to the forms processor for purposes of rendering the user interface and interacting
with the user. Note that a forms processor could simply act on the forms data without ever having to
Version 2.5 April, 2015 1811

Unified Extensible Firmware Interface Specification
render the user interface and interact with the user. This situation is much more akin to script
processing and should be a very supportable situation.

Figure 87. Connected Forms Browser/Processor

31.2.1.9 Disconnected Forms Browser/Processor
By enabling the ability to import and export a platform’s settings, this infrastructure can also enable
the ability for offline configuration. In this instance, a forms processor can interpret a given
platform’s form data and enable (either through user interaction or through automated scripting) the
changing of configuration settings. These settings can then be applied to the target platform when a
connection is established.

Figure 88. Disconnected Forms Browser/Processor

31.2.1.10 O/S-Present Forms Browser/Processor
When it is desired that the forms data be used in the presence of an O/S, this specification describes
a means by which to support this capability. By being able to encapsulate the data and export it
through standard means such that an O/S agent (e.g. forms browser/processor) can retrieve it, O/S-
present usage models can be made available for further value-add implementations.
1812 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Figure 89. O/S-Present Forms Browser/Processor

31.2.1.11 Where are the Results Stored
The forms data encodes how to store the changes per configuration question. The ability to save data
to the platform as well as to a proprietary on-board store is provided. The premise is that each of the
target non-volatile store components (e.g. motherboard, add-in device, etc.) would advertise an
interface as described in this specification so that the forms browser/processor can route changes to
the appropriate target.

Figure 90. Platform Data Storage

31.2.2 Localization
Localization is the process by which the interface is adapted to a particular language. The table
below discusses issues with localization and provides possible solutions.
Version 2.5 April, 2015 1813

Unified Extensible Firmware Interface Specification
Table 204. Localization Issues

31.2.3 User Input
To limit the number of required glyphs, we must also limit the amount and type of user input.

User input generally comes from the following main types of devices:

• Keyboards

• Mouse-like pointing devices

Input from other devices, such as limited keys on a front panel, can be handled two ways:

• Treat the limited keys as special-purpose devices with completely unique interfaces.

Issue Example Solution Comment

Directional
display

Right to left printing for
Hebrew.

Printing direction is
a function of the
language.

The display engine
may or may not
support all display
techniques. If a
language supports a
display mechanism
that the display
engine does not, the
language that uses
the font must be
selected.

Punctuation Punctuation is directional.
A comma in a right-to-left
language is different from
a comma in a left-to-right
language.

Character choice is
the choice of the
author or translator.

Line breakage Rules vary from language
to language.

The UEFI preboot
GUI performs little
or no formatting.

The runtime display
depends on the
runtime browser and
is not defined here.

Date and time Most Europeans would
write July 4, 1776, as 4/7/
1776 while the United
States would write it 7/4/
1776 and others would
write 1776/7/4. The
separator characters
between the parts of both
date and time vary as
well.

Generally left to the
creator of the user
interface.

Numbers 12,345.67 in one
language is presented as
12.345,67 in another.

Print only integers
and do not insert
separator
characters.

This solution is
gaining acceptance
around the world as
more people use
computers.
1814 April, 2015 Version 2.5

Human Interface Infrastructure Overview
• Programmatically make the limited keys mimic a keyboard or mouse-like pointing device.

Pointing devices require no localization. They are universally understood by the subset of the world
population addressed in this specification. For example, if a person does not know how to use a
mouse or other pointing device, it is probably not a good idea to allow that person to change a
system’s configuration.

On the other hand, keyboards are localized at the keycaps but not in the electronics. In other words,
a French keyboard and a German keyboard might have very different keys but the software inside
the keyboard—let alone the software in the system at the other end of the wire—cannot know which
set of keycaps are installed.

This specification proposes to solve this issue by using the keys that are common between keyboards
and ignoring language-specific keys. Keys that are available on USB keyboards in preboot mode
include the following:

• Function keys (F1 – F12)

• Number keys (0-9)

• "Upside down T" cursor keys (the arrows, home, end, page up, page down)

• Numeric keypad keys

• The Enter, Space, Tab, and Esc keys

• Modifier keys (shifts, alts, controls, Windows*)

• Number lock

The scan codes for these keys do not vary from language to language. These keys are the standard
keys used for browser navigation although most end-users are unaware of this fact. Help for form-
entry-specific keys must be provided to enable a useful keys-only interface. The one case where
other, language-specific keys may be used is to enter passwords. Because passwords are never
displayed, there is no requirement to translate scan code to Unicode character codes (keyboard
localization) or scan codes to font glyphs.

Additional data can be provided to enable a richer set of input characters. This input is necessary to
support features such as arbitrary text input and passwords.

31.2.4 Keyboard Layout

31.2.4.1 Keyboard Mapping
 UEFI’s keyboard mapping loosely based definitions on ISO 9995. It bases the naming mechanism
on the figure below. The keys highlighted in brown are the keys that nearly all keyboard layouts use
for customizations. However, customization does not necessarily mean that all the keys are different.
In fact, most of the keys are likely to be the same. When modifying the mapping, one can normally
reference the keys in brown as the likely candidates (for whom to create modifications).
Version 2.5 April, 2015 1815

Unified Extensible Firmware Interface Specification
Figure 91. Keyboard Layout

Instead of referencing keys in hardware-specific ways such as scan codes, the HII specification
defines an EFI_KEY enumeration that allows for a simple method of referencing this hardware
abstraction. Type EFI_KEY is defined in
EFI_HII_DATABASE_PROTOCOL.GetKeyboardLayout(). It also provides a way to update
the keyboard layout with a great deal of flexibility. Any of the keys can be mapped to any 16-bit
Unicode character code or control code value.

When defining the values for a particular key, there are six elements that are pertinent to the key:

Key name

The EFI_KEY enumeration defines the names of the above keys.

Unicode Character Code

Defines the Unicode Character Code (if any) of the named key.

Shifted UnicodeCharacter Code

Defines the Unicode Character Code (if any) of the named key while the shift
modifier key is being pressed

Alt-GR Unicode Character Code

Defines the Unicode Character Code (if any) of the named key while the Alt-GR
modifier key (if any) is being pressed.

Shifted Alt-GR UnicodeCharacter Code

Defines the Unicode Character Code (if any) of the named key while the Shift and
Alt-GR modifier key (if any) is being pressed.

Modifier key value

Defines the nonprintable special function that this key has assigned to it.

• Under normal circumstances, a key that has any Unicode character code
definitions generally has a modifier key value of EFI_NULL_MODIFIER. This
value means the key has no special function other than the printing of a character.
An exception to the rule is if any of the Unicode character codes have a value of
0xFFFF. Although rarely used, this value is the one case in which a key might
have both a printable character and an active control key value.

An example of this exception would be the numeric keypad’s insert key. The definition for this key
on a standard US keyboard is as follows:
1816 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Key = EfiKeyZero
Unicode = 0x0030 (basically a ‘0’)
ShiftedUnicode = 0xFFFF (the exception to the rule)
AltGrUnicode = 0x0000
ShiftedAltGrUnicode = 0x0000
Modifier = EFI_INSERT_MODIFIER

This key is one of the few keys that, under normal circumstances, prints something out but also has a
special function. These special functions are generally limited to the numeric keypad; however, this
general limitation does not prevent someone from having the flexibility of defining these types of
variations.

31.2.4.2 Modifier Keys
The definitions of the modifier keys allow for special functionality that is not necessarily
accomplished by a printable character. Many of these modifier keys are flags to toggle certain state
bits on and off inside of a keyboard driver. An example is EFI_CAPS_LOCK_MODIFIER. This
state being active could alter what the typing of a particular key produces. Other control keys, such
as EFI_LEFT_ARROW_MODIFIER and EFI_END_MODIFIER, affect the position of the cursor.
One modifier key is likely unfamiliar to most people who exclusively use US keyboards, and that
key is the EFI_ALT_GR_MODIFIER key. This key’s primary purpose is to activate a secondary
type of shift modifier that exposes additional printable characters on certain keys. In some keyboard
layouts, this key does not exist and is normally the EFI_RIGHT_ALT_MODIFIER key. None of
the other modifier key functions should be a mystery to someone familiar with the usage of a
standard computer keyboard.

An example of a few descriptor entries would be as follows:
Layout = {
 EfiKeyLCtrl,0,0,0,0,EFI_LEFT_CONTROL_MODIFIER, //Left control

 // key
 EfiKeyA0,0,0,0,0,EFI_NULL_MODIFIER, //Not defined
 // windows key
 EfiKeySpaceBar,0x0020,0x0020,0x0020,0x0020,EFI_NULL_MODIFIER
 //(Space Bar)
}

See "Related Definitions" in EFI_HII_DATABASE_PROTOCOL.GetKeyboardLayout() for
the defined modifier values.

31.2.4.3 Non-spacing Keys
Non-spacing keys are a concept that provides the ability to OR together an accent key and another
printable character. Non-spacing keys are defined as special types of modifier characters. They are
typically accent keys that do not advance the cursor and in essence are a type of modifier key in that
they maintain some level of state.

The way a person uses a non-spacing key is that the non-spacing key that maybe has the function of
overlaying an umlaut (two dots) onto whatever the next character might be. The user presses the
umlaut non-spacing key and follows it with a capital A, which yields an "Ä."

An example of a few descriptor entries would be as follows:
Version 2.5 April, 2015 1817

Unified Extensible Firmware Interface Specification
//
// If it’s a dead key, we need to pass a list of physical key
// names, each with a unicode, shifted, altgr, shiftedaltgr
// character code. Each key name will have a Modifier value of
// EFI_NS_KEY_MODIFIER for the first entry, and then the list of
// EFI_NS_KEY_DEPENDENCY_MODIFIER physical key descriptions.
// This eventually will lead to the next normal non-modifier key
// definition.
//
// This requires defining an additional Modifier value of
// EFI_NS_KEY_DEPENDENCY_MODIFIER to signify
// EFI_NS_KEY_MODIFIER children definitions.
//
// The keyboard driver (consumer of the layouts) will know that
// any key definitions with the EFI_NS_KEY_DEPENDENCY_MODIFIER
// modifier do not redefine the value of the specified EFI_KEY.
// They are simply used as a special case augmentation to the
// original EFI_NS_KEY_MODIFIER.
//
// It is an error condition to define a
// EFI_NS_KEY_MODIFIER without having all the
// EFI_NS_KEY_DEPENDENCY_MODIFIER keys defined serially.
//
Layout = {
EfiKeyE0, 0, 0, 0, 0, EFI_NS_KEY_MODIFIER,
EfiKeyC1, 0x00E2, 0x00C2, 0, 0, EFI_NS_KEY_DEPENDENCY_MODIFIER,
EfiKeyD3, 0x00EA, 0x00CA, 0, 0, EFI_NS_KEY_DEPENDENCY_MODIFIER,
EfiKeyD8, 0x00EC, 0x00CC, 0, 0, EFI_NS_KEY_DEPENDENCY_MODIFIER,
EfiKeyD9, 0x00F4, 0x00D4, 0, 0, EFI_NS_KEY_DEPENDENCY_MODIFIER,
EfiKeyD7, 0x00FB, 0x00CB, 0, 0, EFI_NS_KEY_DEPENDENCY_MODIFIER
}

In the above example, a key located at E0 is designated as a dead key. Using a common German
keyboard layout as the example, a circumflex accent "^" is defined as a dead key at the E0 location.
The A, E, I, O, and U characters are valid keys that can be pressed after the dead key and will
produce a valid printable character. These characters are located at C1, D3, D8, D9, and D7
respectively.

The results of the Layout definition provided above would allow for the production of the
following characters: âÂêÊîÎôÔûÛ.

31.2.5 Forms
This specification describes how a UEFI driver or application may present a forms (or dialogs) based
interface. The forms-based interface assumes that each window or screen consists of some window
dressing (title & buttons) and a list of questions. These questions represent individual configuration
settings for the application or driver, although several GUI controls may be used for one question.
1818 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Figure 92. Forms-based Interface Example

The forms are stored in the HII database, along with the strings, fonts and images. The various
attributes of the forms and questions are encoded in IFR (Internal Forms Representation)—with each
object and attribute a byte stream.

Other applications (so-called “Forms Processors”) may use the information within the forms to
validate configuration setting values without a user interface at all.

The Forms Browser provides a forms-based user interface which understands how to read the
contents of the forms, interact with the user, and save the resulting values. The Forms Browser uses
forms data installed by an application or driver during initialization in the HII database. The Forms
Browser organizes the forms so that a user may navigate between the forms, select the individual
questions and change the values using the HID and display devices. When the user has finished
making modifications, the Forms Browser saves the values, either to the global EFI variable store or
else to a private variable store provided by the driver or application.
Version 2.5 April, 2015 1819

Unified Extensible Firmware Interface Specification
Figure 93. Platform Configuration Overview

31.2.5.1 Form Sets
Form sets are logically-related groups of forms.

Attributes
Each forms set has the following attributes:

Form Set Identifier

Uniquely identifies the form set within a package list using a GUID. The Form Set Identifier,
along with a device path, uniquely identifies a form set in a system.

Form Set Class Identifier

Optional array of up to three GUIDs which identify how the form set should be used or
classified. The list of standard form set classes is found in the "Related Definitions" section of
EFI_FORM_BROWSER2_PROTOCOL.SendForm().

Title

Title text for the form set.

Help

Help text for the form set.

Image

Optional title image for the form set.

EFI Global
Variable

Store

Driver
Driver

HII
Database

IFR
Browser

HID
Devices

Display
Devices

Driver-Specific
Variable Store
1820 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Animation

Optional title animation for the form set

Description
Within a form set, there is one parent form and zero or more child forms. The parent form is the first
enabled, visible form in the form set. The child forms are the second or later enabled, visible forms
in the form set. In general, the Forms Browser will provide a means to navigate to the parent form. A
cross-reference (see Section 31.2.5.4.10) is used to navigate between forms within a form set or
between forms in different form sets.

Variable stores are declared within a form set. Variable stores describe the means for retrieval and
storage of configuration settings, and location information within that variable store. For more
information, see Section 31.2.5.6.

Default stores are declared within a form set. Default stores group together different types of default
settings (normal, manufacturing, etc.) and give them a name. See Section 31.2.5.8 for more
information.

The form set can control whether or not to process an individual form by nesting it inside of an
EFI_IFR_DISABLE_IF expression. See Section 31.2.5.2.1 for more information. The form set
can control whether or not to display an individual form by nesting it inside of an
EFI_IFR_SUPPRESS_IF expression.

Syntax
The form set consists of an EFI_IFR_FORM_SET object, where the body consists of

form-set := EFI_IFR_FORM_SET form-set-list

form-set-list := form form-set-list |

EFI_IFR_IMAGE form-set-list |

EFI_IFR_ANIMATION form-set-list |

EFI_IFR_VARSTORE form-set-list |

EFI_IFR_VARSTORE_EFI form-set-list |

EFI_IFR_VARSTORE_NAME_VALUE form-set-list |

EFI_IFR_DEFAULTSTORE form-set-list |

EFI_IFR_DISABLE_IF expression form-set-list |

<empty>

EFI_IFR_SUPPRESS_IF expression form-set-list | <empty>

31.2.5.2 Forms
Forms are logically-related groups of statements (including questions) designed to be displayed
together.

Attributes
Each form has the following attributes:
Version 2.5 April, 2015 1821

Unified Extensible Firmware Interface Specification
Form Identifier

A 16-bit unsigned integer, which uniquely identifies the form within the form set. The Form
Identifier, along with the device path and Form Set Identifier, uniquely identifies a form
within a system.

Title

Title text for the form. The Forms Browser may use this text to describe the nature and
purpose of the form in a window title.

Image

 Optional title image for the form. The Forms Browser may use this image to display the
nature and purpose of the form in a window title.

Animation

Optional title animation for the form set.

Modal

If a form is modal, then the on-form interaction must be completed prior to navigating to
another form. See "User Interaction", Section 31.2.10.1.

The form can control whether or not to process a statement by nesting it inside of an
EFI_IFR_DISABLE_IF expression. See Section 31.2.5.3.2 for more information.

The form can control whether a particular statement is selectable by nesting it inside of an
EFI_IFR_GRAY_OUT_IF expression. Statements that cannot be selected are displayed by Form
Browsers, but cannot be selected by a user. EFI_IFR_GRAY_OUT_IF causes statements to be
displayed with some visual indication. See Section 31.2.5.3.4 for more information.

The form can control whether to display a statement by nesting it inside of an
EFI_IFR_SUPPRESS_IF expression. See Section 31.3.8.3.75 for more information.

Syntax
The form consists of an EFI_IFR_FORM object, where the body consists of:

form := EFI_IFR_FORM form-tag-list |

EFI_IFR_FORM_MAP form-tag-list

form-tag-list := form-tag form-tag-list |

<empty>

form-tag := EFI_IFR_IMAGE |

EFI_IFR_ANIMATION |

EFI_IFR_LOCKED |

EFI_IFR_RULE |

EFI_IFR_MODAL_TAG |

statement |
1822 April, 2015 Version 2.5

Human Interface Infrastructure Overview
question |

 cond-statement-list |

<empty>

statement-list := statement statement-list |

 question statement-list |

 cond-statement-list |

 <empty>

cond-statement-list:= EFI_IFR_DISABLE_IF expression statement-list |

EFI_IFR_SUPPRESS_IF expression statement-list |

EFI_IFR_GRAY_OUT_IF expression statement-list |

question-list := question question-list |

<empty>

Other unknown opcodes are permitted, but will be ignored.

31.2.5.2.1 Enable/Disable

Disabled forms will not be processed at all by a Forms Processor. Forms are enabled unless:

• The form nests inside an EFI_IFR_DISABLE_IF expression which evaluated to false.

• The disabling of forms is evaluated during Forms Processor initialization and is not re-
evaluated.

31.2.5.2.2 Modifiability

Forms can be locked so that a Forms Editor will not change it. Forms are unlocked unless:

• The form has an EFI_IFR_LOCKED in its scope.

The locking of statement is evaluated only during Forms Editor initialization.

31.2.5.2.3 Visibility

Suppressed forms will not be displayed. Forms are visible unless:

• The form is disabled (see Section 31.2.5.4)

• The form is nested inside an EFI_IFR_SUPPRESS_IF expression which evaluates to false.

31.2.5.3 Statements
All displayable items within the body of a form are statements. Statements provide information or
capabilities to the user. Questions (see Section 31.2.5.4) are a specialized form of statement with a
value. Statements are used only by Forms Browsers and are ignored by other Forms Processors.
Version 2.5 April, 2015 1823

Unified Extensible Firmware Interface Specification
Attributes
Statements have the following attributes:

Prompt

The text that will be displayed with the statement.

Help

The extended descriptive text that can be displayed with the statement.

Image

The optional image that will be displayed with the statement.

Animation

The optional animation that will be displayed with the statement.

Other than Questions, there are three types of statements:

• Static Text/Image

• Subtitle

• Cross-Reference

Syntax
statement := subtitle | static-text | reset button

statement-tag-list := statement-tag statement-tag-list |

<empty>

statement-tag := EFI_IFR_IMAGE |

EFI_IFR_LOCKED

EFI_IFR_ANIMATION

31.2.5.3.1 Display

Statement display depends on the Forms Browser. Statements do not describe how the statement
must be displayed but rather provide resources (such as text and images) for use by the Forms
Browser. The Forms Browser uses this information to create the necessary user interface.

The Forms Browser may use the visibility (see Section 31.2.5.3.3) or selectability (see
Section 31.2.5.3.4) of the statements to change the way the item is displayed. The
EFI_IFR_GRAY_OUT_IF expression explicitly requires that nested statements have visual
differentiation from normal statements.

31.2.5.3.2 Enable/Disable

Statements which have been disabled will not be processed at all by a Forms Processor. Statements
are enabled unless:

• The parent statement or question is disabled.

• The statement is nested inside an EFI_IFR_DISABLE_IF expression which evaluated to
false.
1824 April, 2015 Version 2.5

Human Interface Infrastructure Overview
• The disabling of statements is evaluated during Forms Browser initialization and is not re-
evaluated.

31.2.5.3.3 Visibility

Suppressed statements will not be displayed. Statements are displayed unless:

• The parent statement or question is suppressed.

• The statement is disabled (see Section 31.2.5.3.2)

• The statement is nested inside an EFI_IFR_SUPPRESS_IF expression which evaluates to
false.

The suppression of the statements is evaluated during Forms Browser initialization. Subsequently,
the suppression of statements is reevaluated each time a value in any question on the selected form
has changed.

31.2.5.3.4 Evaluation of Selectable Statements

A user in a Forms Browser can choose statements which are selectable. Statements are selectable
unless:

• The parent statement or question is not selectable.

• The statement is suppressed (see Section 31.2.5.3.2).

• The statement is nested inside an EFI_IFR_GRAY_OUT_IF expression which evaluated to
false.

The evaluation of selectable statements takes place during Forms Browser initialization.
Subsequently, selectable statements are reevaluated each time a value in any question on the selected
form has changed.

31.2.5.3.5 Modifiability

A statement can be locked so that a Forms Editor will not change it. Statements are unlocked unless:

• The parent form or parent statement/question is locked.

• The statement has an EFI_IFR_LOCKED in its scope.

The locking of a statement is evaluated only during Forms Editor initialization.

31.2.5.3.6 Static Text/Image

The Forms Browser displays the specified prompt, the specified text and (optionally) the image, but
has no user interaction.

Syntax
static-text := EFI_IFR_TEXT statement-tag-list

31.2.5.3.7 Subtitle

The subtitle is a means of visually grouping questions by providing a separator, some optional
separating text, and an optional image.

Syntax
subtitle := EFI_IFR_SUBTITLE statement-tag-list
Version 2.5 April, 2015 1825

Unified Extensible Firmware Interface Specification
31.2.5.3.8 Reset Button

Attributes
Reset Buttons have the following attributes:

Default Id

Specifies the default set to use when restoring defaults to the current form.

Syntax
reset button := EFI_IFR_RESET_BUTTON statement-tag-list

31.2.5.4 Questions
Questions are statements which have a value. The value corresponds to a configuration setting for
the platform or for a device. The question uniquely identifies the configuration setting, describes the
possible values, the way the value is stored, and how the question should be displayed.

Attributes
Questions have the following attributes (in addition to those of statements):

Question Identifier

A 16-bit unsigned integer which uniquely identifies the question within the form set in which
it appears. The Question Identifier, along with the device path and Form Set Identifier,
uniquely identifies a question within a system.

Default Value

The value used when the user requests that defaults be loaded.

Manufacturing Value

The value used when the user requests that manufacturing defaults are loaded.

Value

Each question has a current value. See Section 31.2.5.4.1 for more information.

Value Format

The format used to store a question’s value.

Value Storage

The means by which values are stored. See Section 31.2.5.4.2 for more information.

Refresh Identifiers

Zero or more GUIDs associated with an event group initialized by the Forms Browser when
the form set containing the question is opened. If the event group associated with the GUID is
signaled (see SignalEvent()), then the question value will be updated from storage.
1826 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Refresh Interval

The minimum number of seconds that must pass before the Forms Browser will automatically
update the current question value from storage. The default value is zero, indicating there will
be no automatic refresh.

Validation

New values assigned to questions can be validated, using validation expressions, or, if
connected, using a callback. See Section 31.2.5.9 for more information.

Callback

If set, the callback will be called when the question’s value is changed. In some cases, the
presence of these callbacks prevents the question’s value from being edited while
disconnected.

The question can control whether a particular option can be displayed by nesting it inside of an
EFI_IFR_SUPPRESS_IF expression. Form Browsers do not display Suppressed Options, but
Suppressed Options may still be examined by Form Processors.

Syntax
question := action-button | boolean | date | number | ordered-list | string | time |

 cross-reference

question-tag-list := question-tag question-tag-list |

 <empty>

question-tag := statement-tag |

 EFI_IFR_INCONSISTENT_IF expression |

 EFI_IFR_NO_SUBMIT_IF expression |

 EFI_IFR_WARNING_IF expression |

 EFI_IFR_DISABLE_IF expression question-list |

 EFI_IFR_REFRESH_ID RefreshEventGroupId |

 EFI_IFR_REFRESH |

 EFI_IFR_VARSTORE_DEVICE

question-option-tag:= EFI_IFR_SUPPRESS_IF expression |

 EFI_IFR_VALUE optional-expression |

 EFI_IFR_READ expression |
 EFI_IFR_WRITE expression |
 default |
 option

question-option-list:= question-tag question-option-list |

 question-option-tag question-option-list |

 <empty>
Version 2.5 April, 2015 1827

Unified Extensible Firmware Interface Specification
Other unknown opcodes are permitted but are ignored.

31.2.5.4.1 Values

Question values are a data type listed in Section 31.2.5.7.4. During initialization of the Forms
Processor or Forms Browser, the values of all enabled questions are retrieved. If the value cannot be
retrieved, then the question’s value is Undefined.

A question with the value of type Undefined will be suppressed. This suppression will be
reevaluated based on Value Refresh or when any question value on the selected form is changed.

When the form is submitted, the modified values are written to Value Storage. When the form is
reset, the question value is set to the default question value. If there is no default question value, the
question value is unchanged.

When a question value is retrieved, the following process is used:

1. Set the this internal constant to have the same value as the one read from the question’s
storage.

2. If present, change the current question value to the value returned by a question’s nested
EFI_IFR_READ operator.
1828 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Figure 94. Question Value Retrieval Process

When a question value is changed, the following process is used:

1. Set the this internal constant to have the same value as the current question value.

2. If present, evaluate the question’s nested EFI_IFR_WRITE (Section 31.3.8.3.94) operator.

3. Write the value to the question’s storage

this = Question’s
value f rom storage

READ QUESTION
VALUE

Quest ion Value =
READ(this)

Question Value =
this

RETURN Quest ion
Value

Question Has
Storage?

Yes

Question Has
Nested

VALUE?
this = VALUE()

this = Undefined

Question Has
Nested READ? Yes

No

Yes

No

No
Version 2.5 April, 2015 1829

Unified Extensible Firmware Interface Specification
Figure 95. Question Value Change Process

31.2.5.4.2 Storage Requirements

Question storage requirements describe the type and size of storage for the value. These storage
requirements describe whether the question’s value will be stored as an EFI global variable or using
driver local storage. It also describes whether the value is packed together with other values in a
buffer, or passed as a name-value pair. See Section 31.2.5.6 for more information.

31.2.5.4.3 Display

Question display depends on the Forms Browser. Questions do not describe how the question must
be displayed. Instead, questions provide resources (such as text and images) and information about
visibility and the ability to edit the question. The Forms Browser uses these to create the necessary
user interface.

Questions can have prompt text, help text and (optionally) an image. The prompt text usually
describes the nature of the question. Help text is displayed either in a special display area or only at
the request of the user. Questions can also have hints which describe how to visually organize the
information

31.2.5.4.4 Action Button

Action buttons are buttons which cause a pre-defined configuration string to process immediately.
There is no storage directly associated with the button.

WRITE
QUESTION

VALUE

WRITE(this)

Write Question
Value to Storage

EXIT

Question Has
Nested
WRITE?

this = Question
Value

Yes

No

No
1830 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Attributes
Action buttons have no additional attributes other than the common question attributes).

Storage

There is no storage associated with the action button.

Results

There are no results associated with the action button.If used in an expression, the question
value will always be Undefined.

Syntax
action-button := EFI_IFR_ACTION question-tag-list

31.2.5.4.5 Boolean

Boolean questions are those that allow a choice between true and false. The question’s value is
Boolean. In general, construct questions so that the prompt text asks questions resulting in ‘yes/
enabled/on’ is ‘true’ and ‘no/disabled/off’ is ‘false’.

Boolean questions may be displayed as a check box, two radio buttons, a selection list, a list box, or
a drop list box.

Attributes
Boolean questions have no additional attributes other than the common question attributes:

Storage

If the boolean question uses Buffer storage or EFI Variable (see Section 31.2.5.6), then the
size is exactly one byte, with the FALSE condition is zero and the TRUE value is 1.

Results

The results are represented as either 0 (FALSE) or 1 (TRUE).

Syntax
boolean := EFI_IFR_CHECKBOX question-option-list

31.2.5.4.6 Date

Date questions allow modification of part or all of a standard calendar date. The format of the date
display depends on the Forms Browser and any localization.

Attributes
Date questions have the following attributes:

Year Suppressed

The year will not be displayed or updated.

Month Suppressed

The month will not be displayed or updated.
Version 2.5 April, 2015 1831

Unified Extensible Firmware Interface Specification
Day Suppressed

The day will not be displayed or updated.

UEFI Storage

In addition to normal question Value Storage, Date questions can optionally be instructed to
save the date to either the system time or system wake-up time using the UEFI runtime
services SetTime() or SetWakeupTime(). In this case, the date and time will be read
first, the modifications made and changes will be written back.

Conversion to and from strings to a date depends on the system localization.

The date value is stored an EFI_HII_TIME structure. The TimeZone field is always set to
EFI_UNSPECIFIED_TIMEZONE. The Daylight field is always set to zero. The contents of the
other fields are undetermined.

Storage

If the date question uses Buffer storage or EFI Variable storage (see Section 31.2.5.6),
then the stored result will occupy exactly the size of EFI_HII_DATE.

Results

Results for date questions are represented as a hex dump of the EFI_HII_DATE
structure. If used in a question, the value will be a buffer containing the contents of the
EFI_HII_DATE structure.

Syntax
date := EFI_IFR_DATE question-option-list

31.2.5.4.7 Number

Number questions allow modification of an integer value up to 64-bits. Number questions can also
specify pre-defined options.

Attributes
Number questions have the following attributes:

Radix

Hint describes the output radix of numbers. The possible values are unsigned decimal, signed
decimal or hexadecimal. Numbers displayed in hexadecimal will be prefixed by ‘0x’

Minimum Value

The minimum unsigned value which can be accepted for this question.

Maximum Value:

The maximum unsigned value which can be accepted for this question.

Skip Value:

Defines the minimum increment between values.
1832 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Storage

If the number question uses Buffer storage or EFI Variable storage (see
Section 31.2.5.6), then the buffer size specified by must be 1, 2, 4 or 8. Also, the
Forms Processor will do implicit error checking to make sure that the signed or
unsigned value can be stored in the Buffer without lost of significant bits. For
example, if the buffer size is 1 byte, then the largest unsigned integer value would be
255. Likewise, the largest signed integer value would be 127 and the smallest signed
integer value would be -128. The Forms Processor will automatically detect this as an
error and generate an appropriate error.

Results

The results are represented as string versions of unsigned hexadecimal values.

Syntax
number := EFI_IFR_NUMERIC question-option-list |

EFI_IFR_ONE_OF question-option-list

31.2.5.4.8 Set

Sets are questions where n containers can be filled with any of m pre-defined choices. This supports
both lists where a given value can only appear in one of the slots or where the same choice can
appear many times.

Each of the containers takes the form of an option which a name, a value and (optionally) an image.

Attributes
Set questions have the following attributes:

Container Count

 Specifies the number of available selectable options.

Unique

If set, then each choice may be used at most, once.

NoEmpty

All slots must be filled with a non-zero value.

Storage

The set questions are stored as a Buffer with one byte for each Container.

Results

Each Container value is represented as two characters, one for each nibble. All hexadecimal
characters (a-f) are in lower-case.

The results are represented as a series of Container values, starting with the lowest Container.

Syntax
ordered-list := EFI_IFR_ORDERED_LIST question-option-list
Version 2.5 April, 2015 1833

Unified Extensible Firmware Interface Specification
Options
Set questions treat the values specified by nested EFI_IFR_ONE_OF_OPTION values as the value
for a single Container, not the entire question storage. This is different from other question types.

Defaults
Set questions treat the default values specified by nested EFI_IFR_DEFAULT or
EFI_IFR_ONE_OF_OPTION opcodes as the default value for all Containers. The default values
must be of type EFI_IFR_TYPE_BUFFER, with each byte in the buffer corresponding to a single
Container value, starting with the first container. If the buffer contains fewer bytes than
MaxContainers, then the remaining Containers will be set to a value of 0.

Default values returned from the ALTCFG section when ExtractConfig() is called fill the
storage starting with the first container.

31.2.5.4.9 String

String questions allow modification of a string.

Attributes
String questions have the following attributes:

Minimum Length

Hint describes the minimum length of the string, in characters.

Maximum Length

Hint describes the maximum length of the string, in characters.

Multi-Line

Hint describes that the string might contain multiple lines.

Output Mask

If set, the text entered will not be displayed.

Storage

The string questions are stored as a NULL-terminated string. If the time question uses Buffer
or EFI Variable storage (see Section 31.2.5.6), then the buffer size must exceed the size of the
NULL-terminated string. If the string is shorter than the length of the buffer, the remainder of
the buffer is filled with NULL characters.

Results

Results for string questions are represented as hex dump of the string, including the
terminating NULL character.

Syntax
string := EFI_IFR_STRING question-option-list |

EFI_IFR_PASSWORD question-option-list
1834 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.2.5.4.10 Cross-Reference

Cross-reference questions provide a selectable means by which users navigate to other forms and/or
other questions. The form and question can be in the current form set, another form set or even in a
form associated with a different device. If the specified form or question does not exist, the button is
not selectable, is grayed-out, or is suppressed.

Attributes
Cross references can have the following attributes:

Form Identifier

The identifier of the target form.

Form Set Identifier

 Optionally specifies an alternate form-set which contains the target form. If specified, then
the focus will be on form within the form set specified by Form Identifier. If the Form
Identifier is not specified, then the first form in the Form Set is used.

Question Identifier

 Optionally specifies the question identifier of the target question on the target form. If
specified then focus will be placed on the question specified by this question identifier.
Otherwise, the focus will be on the first question within the specified form.

Device Path

 Optionally, the device path which contains the Form Identifier. Otherwise, the device path
associated with the form set containing this cross-reference will be used.

Storage

Storage is optional for a cross-reference question. It is only present when the cross-
reference question does not supply any target (i.e., REF5). If the question uses Buffer
or EFI Variable storage (see Section 31.2.5.6), then the buffer size must be exactly the
size of the EFI_HII_REF structure.

Results

Results for cross-reference questions are represented as a hex dump of the question
identifier, form identifier, form set GUID and null-terminated device path text. If used
in a question, the question value will be a buffer containing the EFI_HII_REF
structure..

Syntax
cross-reference := EFI_IFR_REF statement-tag-list

31.2.5.4.11 Time

Time questions allow modification of part or all of a time. The format of the time display depends on
the Forms Browser and any localization.
Version 2.5 April, 2015 1835

Unified Extensible Firmware Interface Specification
Attributes
Time questions have the following attributes:

Hour Suppressed

 The hour will not be displayed or updated.

Minute Suppressed

 The minute will not be displayed or updated.

Second Suppressed

 The second will not be displayed or updated.

UEFI Storage

 In addition to normal question Value Storage, time questions can be instructed to save the
time to either the system time or system wake-up time using the UEFI runtime services
SetTime or SetWakeupTime. In these instances, the date and time is read first, the
modifications made and changes are then written back.

Conversion to and from strings to a time depends on the system localization.

The time value is stored as part of an EFI_HII_TIME structure. The contents of the other fields are
undetermined.

Storage

If the time question uses Buffer or EFI Variable storage (see Section 31.2.5.6), then
the buffer size must be exactly the size of the EFI_HII_TIME structure..

Results

Results for time questions are represented as a hex dump of the EFI_HII_TIME
structure. If used in a question, the value will be a buffer containing the contents of the
EFI_HII_TIME structure.

Syntax
time := EFI_IFR_TIME question-option-list

31.2.5.5 Options
Use Options within questions to give text or graphic description of a particular question value. They
may also describe the choices in the set data type.

Attributes
Options have the following attributes:

Text

The text for the option.

Image

The optional image for the option.
1836 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Animation

The optional animation for the option.

Value

The value for the option.

Default

If set, this is the option selected when the user asks for the defaults. Only one visible option
can have this bit set within a question’s scope.

Manufacturing Default

If set, this is the option selected when manufacturing defaults are set. Only one visible option
can have this bit set within a question’s scope.

Syntax
option := EFI_IFR_ONE_OF_OPTION option-tag-list

option-tag-list := option-tag option-tag-list |

<empty>

option-tag := EFI_IFR_IMAGE

EFI_IFR_ANIMATION

31.2.5.5.1 Visibility

Options which have been suppressed will not be displayed. Options are displayed unless:

• The parent question is suppressed.

• The option is nested inside an EFI_IFR_SUPPRESS_IF expression which evaluated to false.

The suppression of the options is evaluated each time the option is displayed.

31.2.5.6 Storage
Question values are stored in Variable Stores, which are application, platform or device repositories
for configuration settings. In many cases, this is non-volatile storage. In other cases, it holds only the
current behavior of a driver or application.

Question values are retrieved from the variable store when the form is initialized. They are updated
periodically based on question settings and stored back in the variable store when the form is
submitted.

It is possible for a question to have no associated Variable Store. This happens when the VarStoreId
associated with the question is set to zero and, for Date/Time questions, the UEFI Storage is
disabled. For questions with no associated Variable Store, the question must either support the
RETRIEVE and CHANGED callback actions (see
EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack()) or contain an embedded READ or
WRITE opcode: EFI_IFR_READ_OP and EFI_IFR_WRITE_OP (see Section 31.3.8.3.58 and
Section 31.3.8.3.94).
Version 2.5 April, 2015 1837

Unified Extensible Firmware Interface Specification
Because the value associated with a question contained in a Variable Store can be shared by multiple
questions, the questions must all treat the shared information as compatible data types.There are four
types of variable stores:

Buffer Storage

With buffer storage, the application, platform or driver provides the definition of a buffer
which contains the values for one or more questions. The size of the entire buffer is defined in
the EFI_IFR_VARSTORE definition. Each question defines a field in the buffer by providing
an offset within the buffer and the size of the required storage. These variable stores are
exposed by the app/driver using the EFI_HII_CONFIG_ACCESS_PROTOCOL, which is
installed on the same handle as the package list. Question values are retrieved via
EFI_HII_CONFIG_ACCESS_PROTOCOL.ExtractConfig() and updated via
EFI_HII_CONFIG_ACCESS_PROTOCOL.RouteConfig(). Rather than access the
buffer as a whole, Buffer Storage Variable Stores access each field independently, via a list of
one or more (field offset, value) pairs encoded as variable length text strings as defined for the
EFI_HII_CONFIG_ACCESS_PROTOCOL.

Name/Value Storage

With name/value storage, the application provides a string which contains the encoded values
for a single question. These variable stores are exposed by the app/driver using the
EFI_HII_CONFIG_ACCESS_PROTOCOL, which is installed on the same handle as the
package list.

EFI Variable Storage

This is a specialized form of Buffer Storage, which uses the EFI runtime services
GetVariable() and SetVariable()to access the entire buffer defined for the Variable
Store as a single binary object..

EFI Date/Time Storage

For date and time-related questions, the question values can be retrieved using the EFI runtime
services GetTime() and GetWakeupTime() and stored using the EFI runtime services
SetTime() and SetWakeupTime().

The following table summarizes the types of information needed for each type of storage and where
it is retrieved from.

Table 205. Information for Types of Storage

Storage Type Information
Type

Where It Comes From

None Driver Handle Handle specified with NewPackageList() or

derived from

EFI_IFR_VARSTORE_DEVICE.DevicePath
1838 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Buffer Storage Driver Handle Handle specified with NewPackageList() or

derived from

EFI_IFR_VARSTORE_DEVICE.DevicePath

Variable ID Variable store specified by

EFI_IFR_QUESTION_HEADER.VarStoreId
.

Variable Name Variable store specified by

EFI_IFR_QUESTION_HEADER.VarStoreId

Variable Store
Offset

Variable store offset specified by

EFI_IFR_QUESTION_HEADER.VarOffset.

Name/Value
Storage

Driver Handle Handle specified with NewPackageList() or

derived from

EFI_IFR_VARSTORE_DEVICE.DevicePath

Variable ID Variable store specified by

EFI_IFR_QUESTION_HEADER.VarStoreId
.

Variable Name Variable name specified by

EFI_IFR_QUESTION_HEADER.VarStoreIn
fo.VarName.

EFI Variable
Storage

Driver Handle None

Variable ID Variable store specified by

EFI_IFR_QUESTION_HEADER.VarStoreId
.

EFI_Variable
GUID (for
Variable
Services)

EFI variable GUID specified by

EFI_IFR_VARSTORE_EFI.Guid.

EFI_Variable
Name (for
Variable
Services)

EFI variable name specified by

EFI_IFR_VARSTORE_EFI.Name.

Variable Name Variable name specified by

EFI_IFR_QUESTION_HEADER.VarStoreId
.

Variable Store
Offset

Variable store offset specified by

EFI_IFR_QUESTION_HEADER.VarStoreIn
fo.VarOffset.

EFI Date/Time
Storage

Driver Handle None

Variable ID None

Variable Name None

Storage Type Information
Type

Where It Comes From
Version 2.5 April, 2015 1839

Unified Extensible Firmware Interface Specification
31.2.5.7 Expressions
This section describes the expressions used in various expressions in IFR. The expressions are
encoded using normal IFR opcodes, but in RPN (Reverse Polish Notation) where the operands occur
before the operator.

The opcodes fall into these categories:

Unary operators

Functions taking a single sub-expression.

Binary operators.

Functions taking two sub-expressions.

Ternary operators.

Functions taking three sub-expressions.

Built-in functions.

Operators taking zero or more sub-expressions.

Constants.

Numeric and string constants.

Question Values.

Specified by their question identifier.

All integer operations are performed at 64-bit precision.

31.2.5.7.1 Expression Encoding

Expressions are usually encoded within the scope of another binary object. If the expression consists
of more than a single opcode, the first opcode should open a scope (Header.Scope = 1) and use
an EFI_IFR_END opcode to close the scope in order to make sure they can be skipped,

31.2.5.7.2 Expression Stack

When evaluating expressions, the Forms Processor uses a stack to hold intermediate values. Each
operator either pushes a value on the stack, pops a value from the stack, or both. For example, the
EFI_IFR_ONE operator pushes the integer value 1 on the expression stack. The EFI_IFR_ADD
operator pops two integer values from the expression stack, adds them together, and pushes the
result back on the stack.

After evaluating an expression, there should be only one value left on the expression stack.

31.2.5.7.3 Rules

Rules are pre-defined expressions attached to the form. These rules may be used in any expression
within the form’s scope. Each rule is given a unique identifier (0-255) when it is created by
EFI_IFR_RULE. This same identifier is used when the rule is referred to in an expression with
EFI_IFR_RULE_REF.

To save space, rules are intended to allow manual or automatic extraction of common sub-
expressions from form expressions.
1840 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.2.5.7.4 Data Types

The expressions use five basic data types:

Boolean

True or false.

Unsigned Integer

64-bit unsigned integer.

String

Null-terminated string.

Buffer
Fixed size array of unsigned 8-bit integers.

Undefined
Undetermined value. Used when the value cannot be calculated or for run-time errors.

Data conversion is not implicit. Explicit data conversion can be performed using the
EFI_IFR_TO_STRING, EFI_IFR_TO_UINT, and EFI_IFR_TO_BOOLEAN operators.

The Date and Time question values are converted to the Buffer data type filled with the
EFI_HII_DATE and EFI_HII_TIME structure contents (respectively).

The Ref question values are converted to the Buffer data type and filled with the EFI_HII_REF
and structure contents.

Syntax
The expressions have the following syntax:

expression := built-in-function |

constant |

expression unary-op |

expression expression binary-op |

expression expression expression ternary-op

expression-pair-list

 EFI_IFR_MAP

expression-pair-list := expression-pair-list expression expression |
 <empty>

optional-expression:= expression |

 <empty>

built-in-function := EFI_IFR_DUP |

EFI_IFR_EQ_ID_VAL |

EFI_IFR_EQ_ID_ID |
Version 2.5 April, 2015 1841

Unified Extensible Firmware Interface Specification
EFI_IFR_EQ_ID_VAL_LIST |

EFI_IFR_GET |

EFI_IFR_QUESTION_REF1 |

EFI_IFR_QUESTION_REF3 |

EFI_IFR_RULE_REF |

EFI_IFR_STRING_REF1 |

EFI_IFR_THIS |

EFI_IFR_SECURITY

constant := EFI_IFR_FALSE |

EFI_IFR_ONE |

EFI_IFR_ONES |

EFI_IFR_TRUE |

EFI_IFR_UINT8 |

EFI_IFR_UINT16 |

EFI_IFR_UINT32 |

EFI_IFR_UINT64 |

EFI_IFR_UNDEFINED |

EFI_IFR_VERSION |

EFI_IFR_ZERO

binary-op := EFI_IFR_ADD |

EFI_IFR_AND |

EFI_IFR_BITWISE_AND |

EFI_IFR_BITWISE_OR |

EFI_IFR_CATENATE |

EFI_IFR_DIVIDE |

EFI_IFR_EQUAL |

EFI_IFR_GREATER_EQUAL |

EFI_IFR_GREATER_THAN |

EFI_IFR_LESS_EQUAL |

EFI_IFR_LESS_THAN |

EFI_IFR_MATCH |

EFI_IFR_MATCH2 |

EFI_IFR_MODULO |

EFI_IFR_MULTIPLY |

EFI_IFR_NOT_EQUAL |
1842 April, 2015 Version 2.5

Human Interface Infrastructure Overview
EFI_IFR_OR |

EFI_IFR_SHIFT_LEFT |

EFI_IFR_SHIFT_RIGHT |

EFI_IFR_SUBTRACT |

unary-op := EFI_IFR_LENGTH |

EFI_IFR_NOT |

EFI_IFR_BITWISE_NOT |

EFI_IFR_QUESTION_REF2 |

EFI_IFR_SET |

EFI_IFR_STRING_REF2 |

EFI_IFR_TO_BOOLEAN |

EFI_IFR_TO_STRING |

EFI_IFR_TO_UINT |

EFI_IFR_TO_UPPER |

EFI_IFR_TO_LOWER

ternary-op := EFI_IFR_CONDITIONAL |

EFI_IFR_FIND |

EFI_IFR_MID |

EFI_IFR_TOKEN |

EFI_IFR_SPAN

31.2.5.8 Defaults
Defaults are pre-defined question values. The question values may be changed to their defaults
either through a Forms Processor-defined means or when the user selects an
EFI_IFR_RESET_BUTTON statement (see Section 31.2.5.3.8). Each question may have zero or
more default values, with each default value used for different purposes. For example, there might
be a "standard" default value, a default value used for manufacturing and a "safe" default value. A
group of default values used to configure a platform or device for a specific purpose is called default
store.

Default Stores
There are three standard default stores:

Standard Defaults

These are the defaults used to prepare the system/device for normal operation.

Manufacturing Defaults
These are the defaults used to prepare the system/device for manufacturing.

Safe Defaults
These are the defaults used to boot the system in a “safe” or low-risk mode.
Version 2.5 April, 2015 1843

Unified Extensible Firmware Interface Specification
Attributes
Default stores have the following attributes:

Name

 Each default store has a user-readable name

Identifier

 A 16-bit unsigned integer. The values between 0x0000 and 0x3fff are reserved for use by the
UEFI specification. The values between 0x4000 and 0x7fff are reserved for platform
providers. The values between 0x8000 and 0xbfff are reserved for hardware vendors. The
values between 0xc000 and 0xffff are reserved for firmware vendors.

#define EFI_HII_DEFAULT_CLASS_STANDARD 0x0000
#define EFI_HII_DEFAULT_CLASS_MANUFACTURING 0x0001
#define EFI_HII_DEFAULT_CLASS_SAFE 0x0002
#define EFI_HII_DEFAULT_CLASS_PLATFORM_BEGIN 0x4000
#define EFI_HII_DEFAULT_CLASS_PLATFORM_END 0x7fff
#define EFI_HII_DEFAULT_CLASS_HARDWARE_BEGIN 0x8000
#define EFI_HII_DEFAULT_CLASS_HARDWARE_END 0xbfff
#define EFI_HII_DEFAULT_CLASS_FIRMWARE_BEGIN 0xc000
#define EFI_HII_DEFAULT_CLASS_FIRMWARE_END 0xffff

Users of these ranges are encouraged to use the specification defined ranges for maximum
interoperability. Questions or platforms may support defaults for only a sub-set of the possible
default stores. Support for default store 0 ("standard") is recommended.

Defaulting
When retrieving the default values for a question, the Forms Processor uses one of the following
(listed from highest priority to lowest priority):

1. The value returned from the Callback() member function of the Config Access protocol
associated with the question when called with the Action set to one of the
EFI_BROWSER_ACTION_DEFAULT_x values (see Section 33.5). It is recommended that this
form only be used for questions where the default value alters dynamically at runtime.

2. The value returned in the Response parameter of the ConfigAccess() member function
(using the ALTCFG form). See Section 33.2.1.

3. The value specified by an EFI_IFR_DEFAULT opcodes appear within the scope of a question.
(see Section 31.3.8.3.12)

4. One of the Options (see Section 31.2.5.5) has its Standard Default or Manufacturing Default
attribute set.

5. For Boolean questions, the Standard Default or Manufacturing Default values in the Flags field.
(see Section 31.2.5.4.5).

Syntax
Default := EFI_IFR_DEFAULT

default-tag := EFI_IFR_VALUE |

 <empty>
1844 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.2.5.9 Validation
Validation is the process of determining whether a value can be applied to a configuration setting.
Validation takes place at three different points in the editing process: edit-level, question-level and
form-level.

31.2.5.9.1 Edit-Level Validation

First, it takes place while the value is being edited with a Forms Browser. The Forms Browser may
optionally reject values selected by the user which would fail Question-Level validation. For
example, the Forms Browser may limit the length of strings entered so that they meet the Minimum
and Maximum Length.

31.2.5.9.2 Question-Level Validation

Second, it takes place when the value has changed, normally when the user attempts to leave the
control, navigate between the portions of the control or selects one of the option values. At this
point, an error occurs if:

• For a String (see Section 31.2.5.4.9), if the string length is less than the Minimum Length, then
the Forms Processor generates an error.

• For a String (see Section 31.2.5.4.9), if the string length is greater than the Maximum Length,
then the Forms Processor generates an error.

• For a Number (see Section 31.2.5.4.7), if the number cannot fit in the specified variable storage
without loss of significant bits, then the Forms Processor generates an error.

• For all questions, if an EFI_IFR_INCONSISTENT_IF evaluates to TRUE, then the Forms
Processor will display the specified error text.

• For all questions, if an EFI_IFR_WARNING_IF evaluates to TRUE, then the Forms Processor
will display the specified warning text.

31.2.5.9.3 Form-Level Validation

Third, it takes place when exiting the form or when the values are submitted. The error occurs under
two conditions:

• For all questions, if an EFI_IFR_NO_SUBMIT_IF evaluates to TRUE, then the Forms
Processor will display the specified error text.

• If a Forms Processor such as a script processor performs Form-Level validation, where the
concept of a form is not maintained, then the Form-Level validation must occur before
processing question values from other forms or before completion of the configuration session.

31.2.5.10 Forms Processing
Forms Processors interpret the IFR in order to extract information about configuration settings. This
section describes how the IFR should be interpreted and how errors should be handled.

31.2.5.10.1 Error Handling

The Forms Processor may encounter problems in interpreting the IFR. This section describes the
standard ways of handling these issues:
Version 2.5 April, 2015 1845

Unified Extensible Firmware Interface Specification
Unknown Opcodes.

Unknown opcodes have a type which is not recognized by the Forms Processor. In general, the
Forms Processor ignores the opcode, along with any nested opcodes.

Malformed Opcodes.

Malformed objects have a length which is less than the minimum length for that object type. In
this case, the entire form is disabled.

Extended Opcodes.

Extended objects have a length longer than that expected by the Forms Processor. In this case,
the Forms Processor interprets the object normally and ignores the extra data.

Malformed Forms Sets

Malformed forms sets occur when an object’s length would cause it extend beyond the end of
the forms set, or when the end of the forms set occurs while a scope is still open. In this case,
the entire forms set is ignored.

Reserved Bits Set.

The Forms Processor should ignore all set reserved bits.

31.2.5.11 Forms Editing
This section describes considerations for Forms Editors, which are a specialized Forms Processor
which can create and manipulate form lists, forms and questions in their binary form.

31.2.5.11.1 Locking

Locking indicates that a question or statement,--along with its related options, prompts, help text or
images--should not be moved or edited. A statement or question is locked when the IFR_LOCKED
opcode is found within its scope.

UEFI-compliant Forms Editors must allow statements or questions within an image to be locked, but
should not allow them to be unlocked. UEFI-compliant Forms Editors must not allow modification
of locked statements or questions or any of their associated data (including options, text or images).

Note: This mechanism cannot prevent unauthorized modification. However, it does clearly state the
intent of the driver creator that they should not be modified.

31.2.5.11.2 Moving Forms

When forms are moved between form sets, the related data (such as forms, variable stores and
default stores) need to have their references renumbered to avoid conflicts with identifiers in the new
form set. For forms, these include:

• EFI_IFR_FORM or EFI_IFR_FORM_MAP (and all references in EFI_IFR_REF)

• EFI_IFR_DEFAULTSTORE (and all references in EFI_IFR_DEFAULT)

• EFI_IFR_VARSTORE_x (and all references within question headers)
1846 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.2.5.11.3 Moving Questions

When questions are moved between form sets, the related data (such as images and strings) need to
be moved and references to results-processing and storage may need to be revised. For example:

String and Images.

 If the question is being moved to another form set, then all strings and images
associated with the question must be moved to the package list containing the form set
and removed from the current one.

Form Set.

If the question is moved to a package list installed by a different driver, then the
EFI_IFR_VAR_STORAGE_DEVICE (see Section 31.3.8.3.92) should be nested in
the scope of the question, describing the driver installation device path.

Question References.

 If a question value in another form set is referred to in any expressions (such as
EFI_IFR_INCONSISTENT_IF or EFI_IFR_NO_SUBMIT_IF or
EFI_IFR_WARNING_IF) using either EFI_IFR_QUESTION_REF2 (see
Section 31.3.8.3.56) or EFI_IFR_QUESTION_REF1 (see Section) then these must
be converted to a form of EFI_IFR_QUESTION_REF3 (see Section 31.3.8.3.57),
specifying the EFI_GUID of the form set and/or the device path of the package list
containing the form set wherein the question referred to is defined.

When questions are moved between forms, whether in the same form list or another form list,
question behavior reliant on the current form may need revision. One example is the use of
EFI_IFR_RULE_REF in expressions. Here, rules are shortcuts for common expressions used in a
form. If a question is moved to another form, the references to any rules in expressions must be
replaced by the expression itself.

31.2.5.12 Forms Processing & Security Privileges
The IFR provides a way for a Forms Processor to identify which forms, statements, questions and
even question values are available only to users with specific privilege levels and enforce those
privilege levels.

Setup access security privileges are described in terms of GUIDs. The current user profile either has
the specified privilege or it does not. The EFI_IFR_SECURITY opcode returns whether or not
the current user profile has the specified setup access privilege. Combined with the expressions such
as EFI_IFR_DISABLE_IF, EFI_IFR_SUPPRESS_IF, EFI_IFR_GRAY_OUT_IF,
EFI_IFR_WARNING_IF, EFI_IFR_INCONSISTENT_IF and EFI_IFR_NOSUBMIT_IF,
the author of a form can control access to specific forms, statements and questions, or even control
whether specific values are valid.

Forms Processors on systems with multiple setup-related user privilege levels must support report
these correctly when processing the EFI_IFR_SECURITY opcode.

Forms Processors on systems which support the UEFI User Authentication proposal must correctly
inquire from the current user profile whether or not it has security privileges (see Section 34.4.1.6 on
EFI_USER_INFO_ACCESS_SETUP and Section 34.3.1 on
EFI_USER_MANAGER_PROTOCOL.GetInfo()).
Version 2.5 April, 2015 1847

Unified Extensible Firmware Interface Specification
Forms Processors on systems which support re-identification during the platform configuration
process must support reevaluation of the EFI_IFR_SUPPRESS_IF and
EFI_IFR_GRAY_OUT_IF upon receipt of notification that the current user profile has been
changed by using the UEFI Boot Service CreateEventEx() and the
EFI_USER_PROFILE_CHANGED_EVENT_GUID.

31.2.6 Strings
Strings in the UEFI environment are defined using UCS-2, which is a 16-bit-per-character
representation. For user-interface purposes, strings are one of the types of resources which can be
installed into the HII Database (see Section 31.2.9).

In order to facilitate localization, users reference strings by an identifier unique to the package list
which the driver installed. Each identifier may have several translations associated with it, such as
English, French, and Traditional Chinese. When displaying a string, the Forms Browser selects the
actual text to display based on the current platform language setting.

Figure 96. String Identifiers

The actual text for each language is stored separately (in a separate package), which makes it
possible to add and remove language support just by including or excluding the appropriate package.

Each string may have font information, including the font family name, font size and font style,
associated with it. Not all platforms or displays can support fonts and styles beyond the system
default font (see Section 31.2.7), so the font information associated with the string should be viewed
as a set of hints.

31.2.6.1 Configuration Language Paradigm
This specification uses the RFC 4646 language naming scheme to identify the language that a given
string is associated with. Since RFC 4646 allows for the same Primary language tags to contain a

STRING IDENTIFIER #33

ENGLISH: Hello World

FILIPINO: Mubuhay sa
daigdig!

SIMPLIFIED CHINESE: 你
好世界

SPANISH: ¡Hola mundo!

RUSSIAN: здравствуйте !
мир
1848 April, 2015 Version 2.5

Human Interface Infrastructure Overview
large variation of subtags (e.g. regions), a best matching language algorithm is defined in RFC 4647.
Callers of interfaces that require RFC 4646 language codes to retrieve a Unicode string, must use the
RFC 4647 algorithm to lookup the Unicode string with the closest matching RFC 4646 language
code.

Since the majority of strings discussed in this specification are associated with generating a user
interface, the languages that are typically associated with strings have commonly defined languages
such as en-US, zh-Hant, and it-IT. The RFC 4646 standard also reserves for private use languages
prefixed with a value of “x”.

Note: This specification defines for its own purposes one of these private use areas as a special-purpose
language that components can use for extracting information out of. Assume that any private-use
languages encountered by a compliant implementation will likely consider those languages as
configuration languages, and the associated behavior when referencing those languages will be
platform specific. Section 31.2.11.2 describes an example of such a use.

31.2.6.2 Unicode Usage
This section describes how different aspects of the Unicode specification related to the strings within
this specification.

31.2.6.2.1 Private Use Area

Unicode defines a private use area of 6500 characters that may be defined for local uses. Suggested
uses include Egyptian Hieroglyphics; see Developing International Software For Windows 95* and
Windows NT* for more information. UEFI prohibits use of this area in a UEFI environment. This is
because a centralized font database accumulated from the various drivers (a valid implementation)
would end up with collisions in the private use area, and, generally, an XML browser could not
display these characters.

31.2.6.2.2 Surrogate Area

The Unicode specification has two 16-bit character representations: UCS-2 and UTF-16. The UEFI
specification uses UCS-2. The primary difference is that UTF-16 defines surrogate areas (see page
56 in Professional XML) that allow for expanded character representations of the 16-bit Unicode.
These character representations are very similar to Double Byte Character Set (DBCS)—2048
Unicode values split into two groups (D800–DBFF and DC00–DFFF). They are defined as having
16 additional bits of value to make up the character, for a total of about one million extra characters.
UEFI does not support surrogate characters.

31.2.6.2.3 Non-Spacing Characters

Unicode uses the concept of a nonspacing character. These glyphs are used to add accents, and so
on, to other characters by what amounts to logically OR’ing the glyph over the previous glyph.
There does not appear to be any predictable range in the Unicode encoding to determine nonspacing
characters, yet these characters appear in many languages. Further, these characters enable spelling
of several languages including many African languages and Vietnamese.

31.2.6.2.4 Common Control Codes

This specification allows the encoding of font display information within the strings using special
control characters. These control codes are meant as display hints, and different platforms may
ignore them, depending on display capabilities.
Version 2.5 April, 2015 1849

Unified Extensible Firmware Interface Specification
In single-byte encoding, these are in the form 0x7F 0xyy or 0x7F 0x0y 0xzz. Single-byte
encoding is used only when coupled with the Standard Compression Scheme for Unicode, described
in Section 31.3.6.3.

In double-byte encoding, these are in the form 0xF6yy, 0xF7zz or 0xF8zz. When converted to
UCS-2, all control codes should use the 0xFxyy form.

Table 206. Common Control Codes for Font Display Information

31.2.6.2.5 Line Breaks

This section describes the use of control characters to determine where break opportunities within
strings. These guidelines are based on Unicode Technical Report #14, but are significantly
simplified.

Spaces

In general, any of the following space characters is a line-break opportunity:

Value Description Single-Byte
Encoding

Double-Byte
Encoding

0x00 Font Family Select. The subsequent text will be
displayed in the font specified by the following
byte.

0x7F 0x00 0xzz 0xF7zz

0x01 Font Size Select. The subsequent text will be
displayed in the point size, in half points,
specified by the following byte.

0x7F 0x01 0xzz 0xF8zz

0x20 Bold On. 0x7F 0x20 0xF620

0x21 Bold Off 0x7F 0x21 0xF621

0x22 Italic On 0x7F 0x22 0xF622

0x23 Italic Off 0x7F 0x23 0xF623

0x24 Underline On 0x7F 0x24 0xF624

0x25 Underline Off 0x7F 0x25 0xF625

0x26 Emboss ON 0x7F 0x26 0xF626

0x27 Emboss OFF 0x7F 0x27 0xF627

0x28 Shadow ON 0x7F 0x28 0xF628

0x29 Shadow OFF 0x7F 0x29 0xF629

0x2A DblUnderline ON 0x7F 0x2A 0xF62A

0x2B DblUnderline OFF 0x7F 0x2B 0xF62B

0020 SPACE

1680 OGHAM SPACE MARK

2000 EN QUAD

2001 EM QUAD

2002 EN SPACE
1850 April, 2015 Version 2.5

Human Interface Infrastructure Overview
When a space is desired without a line-break opportunity, one of the following spaces should be
used:

In-Word Break Opportunities

In some cases, allowing line-breaks in a word is desirable. These line break opportunities should be
explicitly described using one of the characters from the following list:

Hyphens

The following characters are hyphens and other characters which describe line break opportunities
after the character.

The following characters describe line break opportunities before and after them, but not between a
pair of them:

The following characters describe a hyphen which is not a line-breaking opportunity:

Mandatory Breaks

2003 EM SPACE

2004 THREE-PER-EM SPACE

2005 FOUR-PER-EM SPACE

2006 SIX-PER-EM SPACE

2008 PUNCTUATION SPACE

2009 THIN SPACE

200A HAIR SPACE

205F MEDIUM MATHEMATICAL SPACE

00A0 NO-BREAK SPACE (NBSP)

202F NARROW NO-BREAK SPACE (NNBSP)

200B ZERO WIDTH SPACE (ZWSP)

058A ARMENIAN HYPHEN

2010 HYPHEN

2012 FIGURE DASH

2013 EN DASH

0F0B TIBETAN MARK INTERSYLLABIC TSHEG

1361 ETHIOPIC WORDSPACE

17D5 KHMER SIGN BARIYOOSAN

2014 EM DASH

2011 NON-BREAKING HYPHEN (NBHY)
Version 2.5 April, 2015 1851

Unified Extensible Firmware Interface Specification
The following characters force a line-break:

31.2.7 Fonts
This section describes how fonts are used within the UEFI environment.

UEFI describes a standard font, which is required for all systems which support text display on
bitmapped output devices. The standard font (named ‘system’) is a fixed pitch font, where all
characters are either narrow (8x19) or wide (16x19). UEFI also allows for display of other fonts,
both fixed-pitch and variable-pitch. Platform support for these fonts is optional.

UEFI fonts are described using either the Simplified Font Package (Section 31.3.2) or the normal
Font Package (Section 31.3.3).

31.2.7.1 Font Attributes
Fonts have the following attributes:

Font Name

The font name describes, in broad terms, the visual style of the font. For example, “Arial” or
“Times New Roman” The standard font always has the name “sysdefault”.

Font Size

The font size describes the maximum height of the character cell, in pixels. The standard font
always has the font size of 19.

Font Style

The font style describes standard visual modifies to the base visual style of a font. Supported
font styles include: bold, italic, underline, double-underline, embossed, outline and shadowed.
Some font styles may also be simulated by the font rendering engine. The standard font always
has no additional font styles.

31.2.7.2 Limiting Glyphs
Strings in the UEFI environment can be presented in environments with very different limitations.
The most constrained environment is in the firmware phases prior to discovery of a boot device with
a system partition. The main limitation in this environment is storage space. If unexpected strings
could be displayed before system partition availability, the UEFI environment would have to store
glyphs for all characters in a Unicode font. After system partition discovery, all glyphs could be
made available.

Careful user interface design can limit to a manageable number, the quantity of unexpected
characters that the system could be called on to display. Knowing what strings the firmware is going
to display limits the number of glyphs it is required to carry.

000A NEW LINE

000C FORM FEED

000D CARRIAGE RETURN

2028 LINE SEPARATOR

2029 PARAGRAPH SEPARATOR
1852 April, 2015 Version 2.5

Human Interface Infrastructure Overview
In addition, carefully designed firmware can support a system where a limited number of strings are
displayed before system partition availability. This may be done while enabling the input and
display of large numbers of characters/glyphs using a full font file stored on the system partition. In
such a situation, the designer must ensure that enough information can be displayed. The designer
must also insure that the configuration can be changed using only information from firmware-based
non-volatile storage to obtain access to a satisfactory system partition.

UEFI requires platform support of a font containing the basic Latin character set.

While the system firmware will carry this standard font, there might be times when a UEFI
application or driver requires the printing of a character not contained within the platform firmware.
In this case, a UEFI driver or application can carry this font data and add it to the font already
present in the HII Database. New font glyphs are accepted when there is no font glyph definition for
the Unicode character already in the specified font.

The figure below shows how fonts interact with the HII database and UEFI drivers, even if the font
does not already exist in the database.

Figure 97. Fonts

Human Interface Infrastructure Database

Consists of Form/String/Font that has been
submitted by varying UEFI Drivers

UEFI Driver

Fonts in Database
Unicode Value Font Defined
 ...
0x0040 TRUE
0x0041 TRUE
0x0042 FALSE
 ...

Fonts in Database
Unicode Value Font Defined
…
 0x003F TRUE
 0x0040 TRUE
 0x0041 TRUE
 0x0042 FALSE
...

Fonts Being Submitted
Unicode Value
…
0x003F
0x0041
0x0042
...
Version 2.5 April, 2015 1853

Unified Extensible Firmware Interface Specification
31.2.7.3 Fixed Font Description
To allow a UEFI application or driver to extend the existing fonts with additional characters, the
UEFI driver must be able to provide characters that fit aesthetically with the system font. For this
reason the capability to define attributes of different fonts and to suggest a reasonable default target
for these parameters is important.

Fonts can vary in width, style, baseline, height, size, and so on. The fixed font definition includes
white space and the glyph data, as well as the positioning of the glyph data. This prevents characters
of different fixed fonts from being adjusted at runtime to fit aesthetically together. To provide UEFI
drivers with a basic description of how to design fixed font characters, a subset of industry standard
font terms are defined below:

baseline

The distance from upper left corner of cell to the base of the Caps (A, B, C,…)

cap_height

The distance from the base of the Caps to the top of the Caps

x_height

The distance from the baseline to the top of the lower case ‘x’

descender

The distance some characters extended below the baseline (g, j, p, q, y)

ascender

The distance from the top of the lower case ‘x’ to the tall lower case characters (b, d, f,
h, k, l)

The following figure illustrates the font description terms:

Figure 98. Font Description Terms

This 8x19 system font example (above), follows the original VGA 8x16 definition and creating
double wide vertical lines, giving a bold look to the font (style = bold). Along with matching the
8x19 base system font, if a UEFI driver wants to extend the DBCS (Double Byte Character Set) font,
it must be aware of the parameters that describe the 16x19 font, as shown below.
1854 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Figure 99. 16 x 19 Font Parameters

This 16x19 font example (above) has a style of plain (single width vertical lines) instead of bold like
the 8x19 font, since there is not enough horizontal resolution to cleanly define the DBCS glyphs.
The 16x19 ASCII characters have also been designed in a style matching the DBCS characters,
allowing them to fit aesthetically together. Note that the default 16x19 fixed width characters are not
stored like 1-bit images, one row after another; but instead stored with the left column (19 bytes)
first, followed by the right column (19 bytes) of character data. The figure below shows how the
characters of the previous figure would be laid out in the font structure.
Version 2.5 April, 2015 1855

Unified Extensible Firmware Interface Specification
Figure 100. Font Structure Layout

31.2.7.3.1 System Fixed Font Design Guidelines

To allow a UEFI application or driver to extend the fixed font character set, the UEFI system fonts
must adhere, at least roughly, to the design guidelines in the table below:

Table 207. Guidelines for UEFI System Fonts

In the table above lists the terms in priority order. The most critical guideline to match is the
baseline, followed by cap_height and x_height. The terms descender and ascender are not as critical
to the aesthetic look of the font as are the other terms. These font design parameters are only
guidelines. Failing to match them will not prevent reasonable operation of a UEFI driver that
attempting to extend the system font.

31.2.7.4 Proportional Fonts Description
Unlike the fixed fonts, proportional fonts do not have a predefined character cell; instead the
character cell is created based on the characters that are being displayed in the current line. In a
proportional font only the glyph data is defined, no whitespace. Instead, the proportional font

Term 8 x 19 Font 16 x 19 Font

baseline 15 pixels 14 pixels

cap_height 12 pixels 11 pixels

x_height 8 pixels 7 pixels

descender 3 pixels 4 pixels

ascender 4 pixels 4 pixels
1856 April, 2015 Version 2.5

Human Interface Infrastructure Overview
defines five parameters (Width, Height, Offset_X, Offset_Y, & Advance), which allow the glyph
data to be position in the character cell and calculate the origin of the next character.

In the figure below, you can see these parameters (in ‘[…]’) for the characters shown, in addition
you can see the actual byte storage (the padding to the nearest byte is shown shaded).

Figure 101. Proportional Font Parameters and Byte Padding

To determine font baseline, scan all font glyphs calculating sum of Height and Offset_Y for each
glyph. The largest value of the sum defines location of the baseline.

The font line height is calculated by adding baseline with the largest by absolute value negative
Offset_Y among all the font glyphs.

31.2.7.4.1 Aligning Glyphs to the Baseline

To display a line of proportional glyphs, baseline and line height have to be determined. If all the
characters to be displayed are from the same font, the baseline and line height are the baseline and
line height of the font.

If the characters being displayed are from different fonts, scan glyphs of the characters to be
displayed calculating sum of Height and Offset_Y for each glyph. The largest value of the sum
defines location of the baseline.

The line height is calculated by adding baseline with the largest by absolute value negative Offset_Y
among all the characters to be displayed.

As shown in the following figure, once the baseline value is found it is added to the starting position
of the line to calculate the Origin. From the Origin, each and every glyph can be generated based on
the individual glyph parameters, including the calculation of the next glyph’s Origin.

Figure 102. Aligning Glyphs
Version 2.5 April, 2015 1857

Unified Extensible Firmware Interface Specification
The starting position (upper left hand corner) of the glyph is defined by (Origin_X + Offset_X),
(Origin_Y – (Offset_Y + Height)). The Origin of the next glyph is defined by (Origin_X +
Advance), (Origin_Y).

In addition to determining the line height and baseline values; the scan of the characters also
calculates the line width by totaling up all of the advance values.

31.2.7.4.2 Proportional Font Design Guidelines

This method of aligning glyphs to a baseline allows one to place wildly different characters correctly
position on a single line. However there still is a need for the system proportional fonts to roughly
adhere to overall font height (19 pixels high character cells) and the placement of the baseline at the
bottom of the Caps (if applicable or about 5 pixels up from the bottom of the character cell). These
guidelines are not as critical as the fixed font guidelines, since the character cell height are defined at
runtime, based on what else is displayed with that character.

31.2.8 Images
The format of the images to be stored in the Human Interface Infrastructure (HII) database have been
created to conform to the industry standard 1-bit, 4-bit, 8-bit, and 24-bit video memory layouts. The
24-bit and 32-bit display systems have the exact same display capabilities and the exact same pixel
definition. The difference is that the 32-bit pixels are DWORD aligned for improve CPU efficiency
when accessing video memory. The extra byte that is inserted from the 24-bit and the 32-bit layout
has no bearing on the actual screen.

Video memory is arranged left-to-right, and then top-to-bottom. In a 1-bit or monochrome display,
the most significant bit of the first byte defines the screen’s upper left most pixel. In a 4-bit or 16
color, display the most significant nibble of the first byte defines the screen’s upper left most pixel.
In a 8-bit or 256 color display, the first byte defines the screen’s upper left most pixel.

In both the 24-bit and 32-bit TrueColor displays, the first three bytes defines the screen’s upper left
most pixel. The first byte is the pixel’s blue component value, the next byte is the pixel’s green
component value, and the third byte is the pixel’s red component value (B,G,R). Each color
component value can vary from 0x00 (color off) to 0xFF (color full on), allowing 16.8 millions
colors that can be specified. In the 32-bit TrueColor display modes, the fourth byte is a don’t care.

31.2.8.1 Converting to a 32-bit Display
The UEFI recommended video mode for computer-like devices uses a 32-bit Linear Frame Buffer
video mode. All images stored in the HII database will need conversion to 32-bit before display.

To display a 24-bit image into 32-bit video memory, a pixel of the image is retrieved (read DWORD
value advance pixel offset by 3) and then written to the video memory (write DWORD value
advance pixel offset by 4).

To display any of the non-TrueColor images (1-bit, 4-bit, and 8-bit), there is an extra step of
indirection through the palette definition to get the TrueColor pixel value. First retrieve the palette
index value by isolating the corresponding bits, then index into the associated palette to retrieve the
24-bit (B,G,R) color entry (read DWORD value), then write it to the video memory (write DWORD
value advance pixel offset by 4). For this reason, the palette color entry definition is defined exactly
the same as the image color pixel (B,G,R).
1858 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.2.8.2 Non-TrueColor Displays
It is possible to display the HII database images on non-TrueColor video modes. You cannot
however, display images beyond the bit depth of the target screen resolution. For example you
would be able to display 1-bit, 4-bit, and 8-bit images in a 256 color video mode. To do this you
must create a global palette (256 entries), by merging all images color needs to a best fit palette and
then programming the hardware palette with that data.

The hardware palette color definition (R,G,B) is backwards from the screen pixel definition (B,G,R),
and will have to be swapped before programming. In addition, the hardware palette may only
support 6-bit of magnitude per color component instead of the 8-bit defined in the palette
information section; therefore the values will have to be shifted before writing.

31.2.9 HII Database
The Human Interface Infrastructure (HII) database is the resource that serves as the repository of all
the form, string, image and font data for the system. Drivers that contain information that is
appropriate for the database will export this data to the HII database.

For example, one driver might contain all the motherboard-specific data (the traditional “Setup” for
the system). Additionally, add-in cards may contain their own drivers, which, in turn, have their own
Setup-related data. All of the drivers that contain Setup-related data would export their information
to the HII database, as shown in the figure below.

Figure 103. HII Database

31.2.10 Forms Browser
The UEFI Forms Browser is the service that reads the contents of the HII Database and interprets the
forms data in order to present it to the user. For example, the Forms Browser can be used to gather
all setup-related data and presents it to the user. This service also takes the user input and allows for
changes to be saved into non-volatile storage.

The figure below shows the relationship between the HII database, UEFI drivers, and the UEFI
Forms Browser.

Human Interface Infrastructure Database

Consists of Form/String/Font that has been
submitted by varying UEFI Drivers

UEFI Driver

UEFI Driver

UEFI Driver
Version 2.5 April, 2015 1859

Unified Extensible Firmware Interface Specification
Figure 104. Setup Browser

31.2.10.1 User Interaction
The Forms Browser implementer has great flexibility as to the type of actual user interface provided.
For example, while required to support some forms of navigation (see
EFI_FORM_BROWSER2_PROTOCOL.SendForm() or the cross-reference question), it may
optionally support additional navigation capabilities, such as a back button or a menu bar. This
section describes the rules to which the Forms Browser user-interaction must conform.

31.2.10.1.1 Forms Browser details

The forms browser maintains a collection of one or more forms. The forms browser is required to
provide navigation for these forms if there is more than one (see Section 33.6, “Form Browser
Protocol”).

The forms browser maintains one or more active forms. An active form is any form where the forms
browser is maintaining a set of question values. A form is considered active after all question values
have been read from storage and the EFI_BROWSER_ACTION_FORM_OPEN action has been sent
to all questions on the form which require callback. A form is considered inactive after all question
values have been either discarded or written to storage and the
EFI_BROWSER_ACTION_FORM_CLOSE action has been sent to all questions on the form which
require callback.

The forms browser maintains a selected form. The selected form contains the selected question and
indicates the primary area of user interaction.

The standards form navigation behaviors are:

Navigate Forms.

When the user chooses this required behavior, a new form is selected and, if any questions on
the form are selectable (see Section 31.2.5.3.4), a question is selected. Forms browsers are

Human Interface Infrastructure Database

Consists of Form/String/Font that has been
submitted by varying UEFI Drivers

UEFI Driver

UEFI Driver

UEFI Driver

UEFI Setup Browser
Provides user-interface support
Callable by a protocol interface
1860 April, 2015 Version 2.5

Human Interface Infrastructure Overview
required to provide navigation to (at least) the first form in all form sets when FormId is zero
(see Section 33.6). This behavior cannot be selected if the current form is modal (see
Section 31.2.5.2, “Forms”).

Exit Browser/Discard All.

When the user chooses this optional behavior, the question values for active forms are
discarded, the active forms are deactivated and the forms browser exits with an action request
of EFI_BROWSER_ACTION_REQUEST_EXIT. This behavior cannot be selected if the
current form is modal (see Section 31.2.5.2, “Forms”).

Exit Browser/Submit All.

When the user chooses optional behavior, the question values are written to storage, the active
forms are deactivated and the forms browser exits with an action request of
EFI_BROWSER_ACTION_REQUEST_SUBMIT or
EFI_BROWSER_ACTION_REQUEST_RESET. This behavior cannot be selected if the
current form is modal (see Section 31.2.5.2, “Forms”).

Default.

When the user chooses this optional behavior, the current question values for the questions on
the focus form are updated from one of the default stores and then the
EFI_IFR_BROWSER_ACTION_REQUEST_DEFAULT_x action is sent for each of the
questions with the Callback attribute. This behavior can be initiated by a Reset Button
question (see sectionSection 31.2.5.3.8).

31.2.10.1.2 Selected Form

When a form is made active, the forms browser sends the EFI_BROWSER_ACTION_FORM_OPEN
for all questions supporting callback, retrieves the current question values, saves those as the original
question values and begins refreshing any questions that support it.

The forms browser maintains a current question value for each question on active forms. The current
question value is the last value that the forms browser read from storage/callback (see
Section 31.2.5.4.1, “Values”) or the last value committed by the user. The form is considered
modified if any of the current question values are modified (see Questions, below). The forms
browser refreshes the current question values of at least questions on the selected with a non-zero
refresh interval.

The forms browser maintains a selected question on the selected form. The selected question is the
primary focus of the user’s interaction. When a form is selected, the forms browser must choose a
selectable question (see Section 31.2.5.3.4, “Evaluation of Selectable Statements”) as the selected
question, if one is present on the form.

The standard active form behaviors are:

Exit Browser/Discard All.

When the user chooses this required behavior, the question values for active forms are
discarded, the active forms are deactivated and the forms browser exits with an action request
Version 2.5 April, 2015 1861

Unified Extensible Firmware Interface Specification
of EFI_BROWSER_ACTION_REQUEST_EXIT. This behavior can be initiated by the
function associated with a question with the Callback attribute.

Exit Browser/ Submit All.

When the user chooses this required behavior, the current question values for active forms are
validated (see nosubmitif, Section 31.3.8.3.45) and, if successful, question values for active
forms are written to storage, the active forms are deactivated and the forms browser exits with
an action request of EFI_BROWSER_ACTION_REQUEST_SUBMIT. This behavior can be
initiated by the function associated with a question with the Callback attribute.

Exit Browser/Discard All/Reset Platform.

When the user chooses this required behavior, the question values for active forms are
discarded, the active forms are deactivated and the form browser exits with an action request
of EFI_BROWSER_ACTION_REQUEST_RESET. This behavior can be initiated by the
function associated with a question with the Callback attribute.

Exit Form/Submit Form.

Apply Form. When the user chooses this required behavior, the question values for the
selected form are validated (see ->nosubmitif, BUGBUG<-) and, if successful, question values
for the selected form are written to storage and the selected form is deselected. This behavior
can be initiated by the function associated with a question with the Callback attribute.

Exit Form/Discard Form.

When the user chooses this required behavior, the question values for the selected form are
discarded and the selected form is deselected. This behavior can be initiated by the function
associated with a question with the Callback attribute.

Apply Form.

When the user chooses this required behavior, the question values for the selected form are
validated (see nosubmitif, BUGBUG) and, if successful, question values for the selected form
are written to storage. This behavior can be initiated by the function associated with a question
with the Callback attribute.

Discard Form.

When the user chooses this required behavior, the question values for the selected form are
discarded. This behavior can be initiated by the function associated with a question with the
Callback attribute.

Default.

When the user chooses this required behavior, the current question values for the questions on
the selected form are updated from a default store. This behavior can be initiated by a Reset
Button question (see Section 31.2.5.3.8).
1862 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Navigate To Question.

When the user chooses this required behavior, the selected question is deselected and another
question on the same form is selected. The types of navigation provided between questions on
the same form are beyond the scope of this specification.

Navigate To Form.

 When the user chooses this required behavior, the selected form is deselected and the form
specified by the question is selected. This behavior can be initiated by a Cross-Reference
question. Note that this behavior is distinct from the Navigate Forms behavior described in
Forms Navigation.

From these basic behaviors, more complex behaviors can be constructed. For example, a forms
browser might check whether the form is modified and, if so, prompt the user to select between the
Exit Browser/Discard All and Exit Browser/Submit All behaviors.

31.2.10.1.3 Selected Question

When the user navigates to a question or the forms browser selects a form with a selectable question,
the forms browser places the question in the static state. When the user is choosing another question
values for the selected question (by typing or from a menu or other means), the forms browser places
the question in the changing state. When the user finalizes selection of a question value the forms
browser returns the question to the static state.

The forms browser refreshes all questions in at least the selected form with a non-zero refresh
interval that are not modified. Typically, a forms browser will not update the displayed question
value while the selected question is in the changing state, but will when the selected question is in
the static state. A question is considered modified if there is storage associated with the question (i.e.,
a variable store was specified) and the current question value is different from the original question
value.

The standard active question behaviors are:

Change

When the user chooses this required behavior, the forms browser places the selected question
in the changing state and allows the user to specify a new current question value for the active
question. For example, selecting items in a drop box or beginning to type a new value in an
edit box.

With some question types and user interface styles, this behavior is hidden from the user. For
example, with check boxes or radio buttons as found in most windowed user-interfaces, the
user changes and commits the value with one action. Likewise, with action buttons, selecting
the action button implies both the question value and the commit action.

This behavior corresponds to the CHANGING browser action request for questions that
support callback.

Commit

When the user chooses this required behavior, the forms browser validates the specified
question value (see EFI_IPF_INCONSISTENT_IF, Section 31.3.8.3.33) and, if successful,
Version 2.5 April, 2015 1863

Unified Extensible Firmware Interface Specification
places the selected question in the static state and updates the current question value to that
specified while in the changing state. If the selected question’s current question value is
different than the selected question’s original question value, the selected question is
considered modified. The form browser must then re-evaluate the modifiability, selectability
and visibility of other questions in the selected form.

This behavior corresponds to the CHANGED browser action request for questions that
support callback.

Discard

When the user chooses this required behavior, the forms browser places the question in the
changed state.

31.2.11 Configuration Settings
In order to save user changes to configuration settings after the system reset or power-off, there must
be some form of non-volatile storage available. There are two types of non-volatile storage: system
non-volatile storage or add-in card non-volatile storage. Both types are supported.

In general, settings are not saved to non-volatile storage until the user specifically directs the Forms
Browser to do so. There are exceptions, such as when operating in a batch or script mode, setting a
system password, and updating the system date and time. The underlying platform support dictates
whether or not hardware configuration changes are committed immediately.

As shown in the figure below, when a system reset occurs, the firmware’s initialization routines will
launch the UEFI drivers (e.g. option ROMs). Drivers enabled to take direction from a non-volatile
setting read the updated settings during their initialization.
1864 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Figure 105. Storing Configuration Settings

31.2.11.1 OS Runtime Utilization
Due to the static nature of the data that is contained in the HII Database and the fact that certain
classes of non-volatile storage can be updated during OS run-time, it is possible for an application
running under an OS to read the HII information, make configuration changes and even make
changes.

The figure below shows how an OS makes use of the HII database during runtime. In this case, the
contents of the HII Database is exported to a buffer. The pointer to the buffer is placed in the EFI
System Configuration Table, where it can be retrieved by an OS application.

Human Interface Infrastructure Database

Consists of Form/String/Font that has been
submitted by varying UEFI Drivers

UEFI Driver

UEFI Driver

UEFI Driver

UEFI Configuration Driver
Provides user-interface support
Callable by a protocol interface

System Reset

Initialization
Routines

NVRAM

USER
Changes
Version 2.5 April, 2015 1865

Unified Extensible Firmware Interface Specification
Figure 106. OS Runtime Utilization

The process used to allow an OS application to use this is as follows:

Drivers/applications in the system register user interface data into the HII Database

When the platform transitions from pre-boot to runtime phases of operation, the HII
ExportPackageLists() is called to export the contents of the HII Database into a runtime
buffer.

This runtime buffer is advertised in the UEFI Configuration Table using the HII Database Protocol’s
GUID so that an OS application can find the data.

The HII ExportConfig() is called to export the current configuration into a runtime buffer.

This runtime buffer is advertised in the UEFI Configuration Table using the HII Configuration
Routing Protocol’s GUID so that an OS application can find the data.

When an O/S application wants to display pre-boot configuration content, it searches the UEFI
Configuration Table for the HII Database Protocol’s GUID entry and renders the contents from the
runtime buffer which it points to.

If the OS application needs to update the system configuration, the configuration information can be
updated.

For those configuration settings which are stored in UEFI variables (i.e., using GetVariable()
and SetVariable()), the application can update these using the abstraction provided by the
operating system.

For those configuration settings which are not stored in UEFI variables, the OS application can use
the UEFI UpdateCapsule runtime service to change the configuration.

Human Interface Infrastructure Database

Consists of Form/String/Font that has been
submitted by varying UEFI Drivers

UEFI Configuration Driver
Provides user-interface support
Callable by a protocol interface

Runtime Configuration
Application

Can act as a server to an HTML
browser

OS Buffer
1866 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.2.11.2 Working with a UEFI Configuration Language
By defining the concept of a language that may provide hints to a consumer that the string payload
may contain pre-defined standard keyword content, the user of this solution can export their
configuration data for evaluation. This evaluation enables the consumer to determine if a particular
platform supports a given configuration language, and in-turn be able to adjust known settings that
are stored in a platform-specific manner. An example of this is illustrated below which uses various
component described in this and the other HII chapters of this specification. In the example, a
fictional technology called XYZ exists, and this particular platform supports it. The question is, how
does a standard application which is not privy to the platform’s construction know how this setting is
stored? To-date, this is not a reasonably solvable problem, but in the illustration below, this example
shows how one might go about solving this issue.

Figure 107. Standard Application Obtaining Setting Example

31.2.12 Form Callback Logic
Since it has been the design intent that the forms processor not need to understand the underlying
hardware implementations or design paradigms of the platform, there were certain needs that could
Version 2.5 April, 2015 1867

Unified Extensible Firmware Interface Specification
only be met by calling a more platform knowledgeable component. In this case, the component
would typically be associated with some hardware device (e.g. motherboard, add-in card, etc.). To
facilitate this interaction, some formal interfaces were declared for more platform-specific
components to advertise and the forms processor could then call.

Note that the need for the forms processor to call into an alternate component driver should be
limited as much as possible. The two primary reasons for this are the cases where off-line or O/S-
present configuration is important. The three flow charts which follow describe the typical decisions
that a forms processor would make with regards to handling processes which necessitate a callback.

Figure 108. Typical Forms Processor Decisions Necessitating a Callback (1)

A

Call Callback

(FORM_OPEN)

with Question Id

Call Callback

(RETRIEVE) with

Question Id

For Each Question

Outside of

DISABLE_IF

For Each Question

Inside

DISABLE_IF =

FALSE

Call Callback

(FORM_OPEN)

with Question Id

Call Callback

(RETRIEVE) with

Question Id

Exit

OM13190
1868 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Figure 109. Typical Forms Processor Decisions Necessitating a Callback (2)

Forms Browser

A

User Activity?

Refresh Timer

Expired For

Any Question?

Read Value

Call Callback

(RETRIEVE) with

Question Id &

Value

Update Display,

As Necessary

No

Yes

No

Value

Changed?

No

No

Restore

Defaults?

No

Yes

Exit

Call Callback

(FORM_CLOSE)

with Question Id

Yes

Exit

BYes

Yes, For

Each Question

OM13191
Version 2.5 April, 2015 1869

Unified Extensible Firmware Interface Specification
Figure 110. Typical Forms Processor Decisions Necessitating a Callback (3)

31.2.13 Driver Model Interaction
The ability for a UEFI driver to interact with a target controller is abstracted through the
Configuration Access Protocol. If a particular piece of hardware managed by a controller needs
configuration services, it is the responsibility of that controller to provide this configuration
abstraction for the given device. Regardless of whether a device driver or bus driver is abstracting
the hardware configuration, the interaction with a configured device is identical.

Note that the ability for a driver to provide these access protocols might be done fairly early in the
initialization process. Depending on the hardware capabilities, one might be advantaged in
providing configuration access very early so that being able to determine a given device’s current
settings can be done without a full enumeration of certain bus devices. Also note that the same
recommendations that are made in the DriverBinding sections should still be maintained. These
cover the Supported, Started, and Stopped functions.

Call Callback

(CHANGING) with

Question Id &

Value

Error Other

Than

UNSUPPORTE

D?

Call Callback

(CHANGED) with

Question Id &

Value

No

B

Yes

OM13192
1870 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Figure 111. Driver Model Interactions

31.2.14 Human Interface Component Interactions
The figure below depicts the model used inside a common deployment of HII to manage human
interface components.
Version 2.5 April, 2015 1871

Unified Extensible Firmware Interface Specification
Figure 112. Managing Human Interface Components

31.2.15 Standards Map Forms
Configuration settings are configuration settings. But the way in which they are controlled is driven
by different requirements. For example, the UEFI HII infrastructure focuses primarily on the way in
which the configuration settings can be browsed and manipulated by a user. Other standards such as
the DMTF Command-Line Protocol, focus on the way in which configuration settings can be
manipulated via text commands.

Each configuration method tends to view the configuration settings a different way. In the end, they
are changing the same configuration setting, but their means of exposing the control differs. The
means by which a configuration method (HII, DMTF, WMI, SNMP, etc.) exposes an individual
configuration setting is called a question.

In many cases, there is a one-to-one mapping between the questions exposed by these different
configuration methods. That is, a question, as exposed by one configuration method matches the
semantic meaning of the configuration setting exactly.

However, in other cases, there is not a one-to-one mapping. These cases break down into three broad
categories:

1. Value Shift. In this case, the configuration setting has the same scope as the question exposed by
a configuration method, but the values used to describe them are different. It may be as simple as
1=5, 2=6, 3=7, etc. or something more complicated, where “ON”=1 and “OFF”=0.

2. One-To-Many. In this case, the configuration setting maps to two or more questions exposed by
a configuration method. For example the configuration setting might have the following
enumerated values:

a 0 = Disable Serial Port

b 1 = Enable Serial Port, I/O Port 0x3F8, IRQ 4
1872 April, 2015 Version 2.5

Human Interface Infrastructure Overview
c 2 = Enable Serial Port, I/O Port 0x2F8, IRQ 3

d 3 = Enable Serial Port, I/O Port 0x3E8, IRQ 4

e 4 = Enable Serial Port, I/O Port 0x2E8, IRQ 3

But in the configuration method, the serial port is controlled by three separate questions:

• Question #1: 0 = disable, 1 = enable

• Question #2: I/O Port (disabled if Question #1 = 0)

• Question #3: IRQ (disabled if Question #1 = 0)

Changing the configuration method question #1 to a value of 0 requires that the configuration setting
be set to 0. In this case, there is the possibly of data loss. After changing the configuration setting to
0, the information about the I/O port and IRQ are not preserved.

So, in order to change the configuration setting to the value of 1 would require three of the
configuration method’s questions to change value: Question #1=1, Question #2=0x3F8, Question
#3=IRQ 4.

Figure 113. EFI IFR Form set configuration

3. Many-To-One. In this case, the conditions are reversed from the example described in #2 above.
Now there are three configuration settings which map to a single configuration method question.

For example, the configuration settings are described using three separate questions:

a Question #1: 0 = disable, 1 = enable

b Question #2: I/O Port (disabled if Question #1 = 0)

c Question #3: IRQ (disabled if Question #1 = 0)

EFI_IFR_FORM_SET

EFI_IFR_FORM EFI_IFR_FORM_MAP
(CFG METHOD #1)

ONE-OF QUESTION
(0 = Disable, 1 = 3F8/

IRQ4, etc.)

CHECKBOX
QUESTION (ENABLE)

NUMERIC QUESTION
(I/O PORT)

Button
Configuration

Setting #1

NUMERIC QUESTION
(IRQ)
Version 2.5 April, 2015 1873

Unified Extensible Firmware Interface Specification
But in the configuration method, the serial port is controlled by a single question with the following
enumerated values:

a 0 = Disable Serial Port

b 1 = Enable Serial Port, I/O Port 0x3F8, IRQ 4

c 2 = Enable Serial Port, I/O Port 0x2F8, IRQ 3

d 3 = Enable Serial Port, I/O Port 0x3E8, IRQ 4

e 4 = Enable Serial Port, I/O Port 0x2E8, IRQ 3

So, in order to change the configuration method to the value of 1 would require three configuration
settings to change value: Question #1=1, Question #2=0x3F8, Question #3=IRQ 4.

Figure 114. EFI IFR Form Set question changes

Some configuration settings may involve more than one of these mappings.

Standards map forms describe the questions exposed by these other configuration methods and how
they map back to the configuration settings exposed by the UEFI drivers. Each standards map form
describes the mapping for a single configuration method, along with that configuration method’s
name and version.

The questions within standards map forms are encoded using IFR in the same fashion as those within
other UEFI forms. The prompt strings for these questions are tied back to the names for those
questions within the configuration method (e.g., DMTF CLP).

EFI_IFR_FORM_SET

EFI_IFR_FORM EFI_IFR_FORM_MAP
(CFG METHOD #1)

CHECKBOX
QUESTION (ENABLE)

NUMERIC QUESTION
(I/O PORT)

Button
Configuration

Setting #1

NUMERIC QUESTION
(IRQ)

Button
Configuration

Setting #2

Button
Configuration

Setting #3

ONE-OF QUESTION
1874 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.2.15.1 Create A Question’s Value By Combing Multiple Configuration Settings
Rather than reading directly from storage, these standards map questions retrieve their value using
the EFI_IFR_READ (Section 31.3.8.3.58) operator. This operator can aggregate a value from
more than one configuration settings using EFI_IFR_GET (Section 31.3.8.3.27). This operator can
also change the type (integer, string, Boolean) of the value so that, say, a configuration setting with a
type of integer can be represented in a standards map form as a string.

For example, to map a single question to three configuration settings (CS1, CS2 and CS3) as
described in scenario #3 in Section 31.2.1.5 above would have the following truth table:

Table 208. Truth table: Mapping a single question to three configuration settings

These become the following equations:

x0: Get(CS1) ? x1 : 0

x1: ((Get(CS2) & 0xF00) >> 8) == Get(CS3) + 1 ? x2 : Undefined

x2: Map(Get(CS2),0x3f8,1,0x2F8,2,0x3E8,3,0x2E8,4)

31.2.15.2 Changing Multiple Configuration Settings From One Question’s Value
Rather than writing directly to storage, these standards map questions change their value using the
EFI_IFR_WRITE (Section 31.3.8.3.94) operator. This operator can, in turn, use the
EFI_IFR_SET (Section 31.3.8.3.66) operator to change one or more configuration settings. This
operator can also change the type (integer, string, Boolean, etc.) of the value written so that, say, a
configuration setting with a type of integer can be represented in a standards map form as a string
question.

For example, in example #2 above, the following table applies:

Table 209. Multiple configuration settings Example #2

CS1 CS2 CS3 Q

false X X 0

true 0x3F8 4 1

true 0x2F8 3 2

true 0x3E8 4 3

true 0x2E8 3 4

true any other value any other value Undefined

CS1 CS2 CS3 Q

false X X 0

true 0x3F8 4 1

true 0x3E8 3 2

true 0x2F8 4 3

true 0x2E8 3 4
Version 2.5 April, 2015 1875

Unified Extensible Firmware Interface Specification
Set(CS1,Q != 0) &&

Set(CS2,Map(this,1,0x3F8,2,0x3E8,3,0x2F8,4,0x2E8)) &&

Set(CS3, Map(this,1,4,2,3,3,4,4,3)

31.2.15.3 Value Shifting
Value shifting is facilitated by the EFI_IFR_MAP (Section 31.3.8.3.38) operator. If this operator
finds a value in a list, it replaces it with another value from the list, even if the other value is a
different type.

For example, consider the following list of values

Table 210. Values:

If the integer value 10 were supplied, the value “UEFI Boot Service Driver” would be returned. If
the integer value 20 were supplied, Undefined would be returned.

31.2.15.4 Prompts
In standards map forms, the prompts can be used as the key words for the configuration method.
They should be specified in the language i-uefi unless there are multiple translations available.
Other standards may use the question identifiers as the means of identifying the standard question.

31.3 Code Definitions
This chapter describes the binary encoding of the different package types:

• Font Package

• Simplified Font Package

• String Package

• Image Package

• Device Path Package

• Keyboard Layout Package

• GUID Package

• Forms Package

1 PEI Module

2 DXE Boot Service Driver

3 DXE Runtime Driver

10 UEFI Boot Service Driver

11 UEFI Runtime Driver

12 UEFI Application
1876 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.3.1 Package Lists and Package Headers

EFI_HII_PACKAGE_HEADER

Summary
The header found at the start of each package.

Prototype
typedef struct {
 UINT32 Length:24;
 UINT32 Type:8;
 UINT8 Data[…];
} EFI_HII_PACKAGE_HEADER;

Members
Length The size of the package in bytes.

Type The package type. See EFI_HII_PACKAGE_TYPE_x, below.

Data The package data, the format of which is determined by Type.

Description
Each package starts with a header, as defined above, which indicates the size and type of the
package. When added to a pointer pointing to the start of the header, Length points at the next
package. The package lists form a package list when concatenated together and terminated with an
EFI_HII_PACKAGE_HEADER with a Type of EFI_HII_PACKAGE_END.

The type EFI_HII_PACKAGE_TYPE_GUID is used for vendor-defined HII packages, whose
contents are determined by the Guid.

The range of package types starting with EFI_HII_PACKAGE_TYPE_SYSTEM_BEGIN through
EFI_HII_PACKAGE_TYPE_SYSTEM_END are reserved for system firmware implementers.

Related Definitions
#define EFI_HII_PACKAGE_TYPE_ALL 0x00
#define EFI_HII_PACKAGE_TYPE_GUID 0x01
#define EFI_HII_PACKAGE_FORMS 0x02
#define EFI_HII_PACKAGE_STRINGS 0x04
#define EFI_HII_PACKAGE_FONTS 0x05
#define EFI_HII_PACKAGE_IMAGES 0x06
#define EFI_HII_PACKAGE_SIMPLE_FONTS 0x07
#define EFI_HII_PACKAGE_DEVICE_PATH 0x08
#define EFI_HII_PACKAGE_KEYBOARD_LAYOUT 0x09
#define EFI_HII_PACKAGE_ANIMATIONS 0x0A
#define EFI_HII_PACKAGE_END 0xDF
#define EFI_HII_PACKAGE_TYPE_SYSTEM_BEGIN 0xE0
Version 2.5 April, 2015 1877

Unified Extensible Firmware Interface Specification
#define EFI_HII_PACKAGE_TYPE_SYSTEM_END 0xFF

Table 211. Package Types

31.3.1.1 EFI_HII_PACKAGE_LIST_HEADER

Summary
The header found at the start of each package list.

Prototype
typedef struct {
 EFI_GUIDPackageListGuid;
 UINT32 PackagLength;
} EFI_HII_PACKAGE_LIST_HEADER;

Members
PackageListGuid The unique identifier applied to the list of packages which

follows.

PackageLength The size of the package list (in bytes), including the header.

Description
This header uniquely identifies the package list and is placed in front of a list of packages. Package
lists with the same PackageListGuid value should contain the same data set. Updated versions
should have updated GUIDs.

Package Type Description

EFI_HII_PACKAGE_TYPE_ALL Pseudo-package type used when
exporting package lists. See

ExportPackageList().

EFI_HII_PACKAGE_TYPE_GUID Package type where the format of the
data is specified using a GUID
immediately following the package
header.

EFI_HII_PACKAGE_FORMS Forms package.

EFI_HII_PACKAGE_STRINGS Strings package

EFI_HII_PACKAGE_FONTS Fonts package.

EFI_HII_PACKAGE_IMAGES Images package.

EFI_HII_PACKAGE_SIMPLE_FONTS Simplified (8x19, 16x19) Fonts package

EFI_HII_PACKAGE_DEVICE_PATH Binary-encoded device path.

EFI_HII_PACKAGE_END Used to mark the end of a package list.

EFI_HII_PACKAGE_ANIMATIONS Animations package.

EFI_HII_PACKAGE_TYPE_SYSTEM_BEGIN...
EFI_HII_PACKAGE_TYPE_SYSTEM_END

Package types reserved for use by
platform firmware implementations.
1878 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.3.2 Simplified Font Package
The simplified font package describes the font glyphs for the standard 8x19 pixel (narrow) and
16x19 (wide) fonts. Other fonts should be described using the normal Font Package.

A simplified font package consists of a header and two types of glyph structures—standard-width
(narrow) and wide glyphs.

31.3.2.1 EFI_HII_SIMPLE_FONT_PACKAGE_HDR

Summary
A simplified font package consists of a font header followed by a series of glyph structures.

Prototype
typedef struct _EFI_HII_SIMPLE_FONT_PACKAGE_HDR {
 EFI_HII_PACKAGE_HEADER Header;
 UINT16 NumberOfNarrowGlyphs;
 UINT16 NumberOfWideGlyphs;
 EFI_NARROW_GLYPH NarrowGlyphs[];
 EFI_WIDE_GLYPH WideGlyphs[];
} EFI_HII_SIMPLE_FONT_PACKAGE_HDR;

Members
Header

The header contains a Length and Type field. In the case of a font package, the type
will be EFI_HII_PACKAGE_SIMPLE_FONTS and the length will be the total size
of the font package including the size of the narrow and wide glyphs. See
EFI_HII_PACKAGE_HEADER.

NumberOfNarrowGlyphs The number of NarrowGlyphs that are included in the font
package.

NumberOfWideGlyphs The number of WideGlyphs that are included in the font
package.

NarrowGlyphs An array of EFI_NARROW_GLYPH entries. The number of
entries is specified by NumberOfNarrowGlyphs.

WideGlyphs An array of EFI_WIDE_GLYPH entries. The number of entries
is specified by NumberOfWideGlyphs. To calculate the offset
of WideGlyphs, use the offset of NarrowGlyphs and add the
size of EFI_NARROW_GLYPH multiplied by the
NumberOfNarrowGlyphs.

Description
The glyphs must be sorted by Unicode character code.

It is up to developers who manage fonts to choose efficient mechanisms for accessing fonts. The
contiguous presentation can easily be used because narrow and wide glyphs are not intermixed, so a
binary search is possible (hence the requirement that the glyphs be sorted by weight).
Version 2.5 April, 2015 1879

Unified Extensible Firmware Interface Specification
31.3.2.2 EFI_NARROW_GLYPH

Summary
The EFI_NARROW_GLYPH has a preferred dimension (w x h) of 8 x 19 pixels.

Prototype
typedef struct {
 CHAR16 UnicodeWeight;
 UINT8 Attributes;
 UINT8 GlyphCol1[EFI_GLYPH_HEIGHT];
} EFI_NARROW_GLYPH;

Members
UnicodeWeight The Unicode representation of the glyph. The term weight is the

technical term for a character code.

Attributes The data element containing the glyph definitions; see "Related
Definitions" below.

GlyphCol1 The column major glyph representation of the character. Bits
with values of one indicate that the corresponding pixel is to be
on when normally displayed; those with zero are off.

Description
Glyphs are represented by two structures, one each for the two sizes of glyphs. The narrow glyph
(EFI_NARROW_GLYPH) is the normal glyph used for text display.

Related Definitions
// Contents of EFI_NARROW_GLYPH.Attributes
#define EFI_GLYPH_NON_SPACING 0x01
#define EFI_GLYPH_WIDE 0x02
#define EFI_GLYPH_HEIGHT 19
#define EFI_GLYPH_WIDTH 8

Following is a description of the fields in the above definition:

31.3.2.3 EFI_WIDE_GLYPH

Summary
The EFI_WIDE_GLYPH has a preferred dimension (w x h) of 16 x 19 pixels, which is large enough
to accommodate logographic characters.

EFI_GLYPH_NON_SPACING This symbol is to be printed "on top of" (OR’d with) the

previous glyph before display.

EFI_GLYPH_WIDE This symbol uses 16x19 formats rather than 8x19.
1880 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Prototype
typedef struct {
 CHAR16 UnicodeWeight;
 UINT8 Attributes;
 UINT8 GlyphCol1[EFI_GLYPH_HEIGHT];
 UINT8 GlyphCol2[EFI_GLYPH_HEIGHT];
 UINT8 Pad[3];
} EFI_WIDE_GLYPH;

Members
UnicodeWeight The Unicode representation of the glyph. The term weight is the

technical term for a character code.

Attributes The data element containing the glyph definitions; see "Related
Definitions" in EFI_NARROW_GLYPH for attribute values.

GlyphCol1 and GlyphCol2 The column major glyph representation of the character. Bits
with values of one indicate that the corresponding pixel is to be
on when normally displayed; those with zero are off.

Pad Ensures that sizeof (EFI_WIDE_GLYPH) is twice the
sizeof (EFI_NARROW_GLYPH). The contents of Pad must
be zero.

Description
Glyphs are represented via the two structures, one each for the two sizes of glyphs. The wide glyph
(EFI_WIDE_GLYPH) is large enough to display logographic characters.

31.3.3 Font Package
The font package describes the glyphs for a single font with a single family, size and style. The
package has two parts: a fixed header and the glyph blocks. All structures described here are byte
packed.

31.3.3.1 Fixed Header
The fixed header consists of a standard record header and then the character values in this section,
the flags (including the encoding method) and the offsets of the glyph information, the glyph
bitmaps and the character map.

typedef struct _EFI_HII_FONT_PACKAGE_HDR {
 EFI_HII_PACKAGE_HEADER Header;
 UINT32 HdrSize;
 UINT32 GlyphBlockOffset;
 EFI_HII_GLYPH_INFO Cell;
 EFI_HII_FONT_STYLE FontStyle;
 CHAR16 FontFamily[];
} EFI_HII_FONT_PACKAGE_HDR;
Version 2.5 April, 2015 1881

Unified Extensible Firmware Interface Specification
Header The standard package header, where Header.Type =
EFI_HII_PACKAGE_FONTS.

HdrSize Size of this header.

GlyphBlockOffset The offset, relative to the start of this header, of a series of
variable-length glyph blocks, each describing information about
the bitmap associated with a glyph.

Cell This contains the measurement of the widest and tallest
characters in the font (Cell.Width and Cell.Height). It
also contains the default offset to the horizontal and vertical
origin point of the character cell (Cell.OffsetX and
Cell.OffsetY). Finally, it contains the default AdvanceX.

FontStyle The design style of the font, 1 bit per style. See
EFI_HII_FONT_STYLE.

FontFamily The null-terminated string with the name of the font family to
which the font belongs.

Related Definitions
typedef UINT32 EFI_HII_FONT_STYLE;
#define EFI_HII_FONT_STYLE_NORMAL 0x00000000
#define EFI_HII_FONT_STYLE_BOLD 0x00000001
#define EFI_HII_FONT_STYLE_ITALIC 0x00000002
#define EFI_HII_FONT_STYLE_EMBOSS 0x00010000
#define EFI_HII_FONT_STYLE_OUTLINE 0x00020000
#define EFI_HII_FONT_STYLE_SHADOW 0x00040000
#define EFI_HII_FONT_STYLE_UNDERLINE 0x00080000
#define EFI_HII_FONT_STYLE_DBL_UNDER 0x00100000

31.3.3.2 Glyph Information
For each Unicode character code, the glyph information gives the glyph bitmap, the character size
and the position of the bitmap relative to the origin of the character cell. The glyph information is
encoded as a series of blocks, each with a single byte header. The blocks must be processed in order.

Each block begins with a single byte, which contains the block type.
1882 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Figure 115. Glyph Information Encoded in Blocks

Prototype
typedef struct _EFI_HII_GLYPH_BLOCK {
 UINT8 BlockType;
 UINT8 BlockBody[];
} EFI_HII_GLYPH_BLOCK;

Members
The following table describes the different block types:

Name Value Description

EFI_HII_GIBT_END 0x00 The end of the glyph information.

EFI_HII_GIBT_GLYPH 0x10 Glyph information for a single character value, bit-packed.

EFI_HII_GIBT_GLYPHS 0x11 Glyph information for multiple character values.

EFI_HII_GIBT_GLYPH_DEFAULT 0x12 Glyph information for a single character value, using the
default character cell information.

EFI_HII_GIBT_GLYPHS_DEFAULT 0x13 Glyph information for multiple character values, using the
default character cell information.

EFI_HII_GIBT_DUPLICATE 0x20 Create a duplicate of an existing glyph but with a new
character value.

EFI_HII_GIBT_SKIP2 0x21 Skip a number (1-65535) character values.

GLYPH BLOCK #1 DATA

GLYPH BLOCK #2 DATA

GLYPH BLOCK #n DATA

GLYPH BLOCK
#1 TYPE

GLYPH BLOCK
#2 TYPE

GLYPH BLOCK
#n TYPE
Version 2.5 April, 2015 1883

Unified Extensible Firmware Interface Specification
Description
In order to recreate all glyphs, start at the first block and process them all until a
EFI_HII_GIBT_END block is found. When processing the glyph blocks, each block refers to the
current character value (CharValueCurrent), which is initially set to one (1).

Glyph blocks of an unknown type should be skipped. If they cannot be skipped, then processing
halts.

EFI_HII_GIBT_SKIP1 0x22 Skip a number (1-255) character values.

EFI_HII_GIBT_DEFAULTS 0x23 Set default glyph information for subsequent glyph blocks.

EFI_HII_GIBT_EXT1 0x30 For future expansion (one byte length field)

EFI_HII_GIBT_EXT2 0x31 For future expansion (two byte length field)

EFI_HII_GIBT_EXT4 0x32 For future expansion (four byte length field)

Name Value Description
1884 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Figure 116. Glyph Block Processing
Version 2.5 April, 2015 1885

Unified Extensible Firmware Interface Specification
Related Definitions
typedef struct _EFI_HII_GLYPH_INFO {
 UINT16 Width;
 UINT16 Height;
 INT16 OffsetX;
 INT16 OffsetY;
 INT16 AdvanceX;
} EFI_HII_GLYPH_INFO;

Width Width of the character or character cell, in pixels. For fixed-pitch
fonts, this is the same as the advance.

Height Height of the character or character cell, in pixels.

OffsetX Offset to the horizontal edge of the character cell.

OffsetY Offset to the vertical edge of the character cell.

AdvanceX Number of pixels to advance to the right when moving from the
origin of the current glyph to the origin of the next glyph.

31.3.3.2.1 EFI_HII_GIBT_DEFAULTS

Summary
Changes the default character cell information.

Prototype
typedef struct _EFI_HII_GIBT_DEFAULTS_BLOCK {
 EFI_HII_GLYPH_BLOCK Header;
 EFI_HII_GLYPH_INFO Cell;
} EFI_HII_GIBT_DEFAULTS_BLOCK;

Members
Header

Standard glyph block header, where Header.BlockType =
EFI_HII_GIBT_DEFAULTS.

Cell

The new default cell information which will be applied to all subsequent
GLYPH_DEFAULT and GLYPHS_DEFAULT blocks.

Description
Changes the default cell information used for subsequent EFI_HII_GIBT_GLYPH_DEFAULT
and EFI_HII_GIBT_GLYPHS_DEFAULT glyph blocks. The cell information described by Cell
remains in effect until the next EFI_HII_GIBT_DEFAULTS is found. Prior to the first
EFI_HII_GIBT_DEFAULTS block, the cell information in the fixed header are used.
1886 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.3.3.2.2 EFI_HII_GIBT_DUPLICATE

Summary
Assigns a new character value to a previously defined glyph.

Prototype
typedef struct _EFI_HII_GIBT_DUPLICATE_BLOCK {
 EFI_HII_GLYPH_BLOCK Header;
 CHAR16 CharValue;
} EFI_HII_GIBT_DUPLICATE_BLOCK;

Members
Header

Standard glyph block header, where Header.BlockType =
EFI_HII_GIBT_DUPLICATE.

CharValue

The previously defined character value with the exact same glyph.

Description
Indicates that the glyph with character value CharValueCurrent has the same glyph as a
previously defined character value and increments CharValueCurrent by one.

31.3.3.2.3 EFI_HII_GIBT_END

Summary
Marks the end of the glyph information.

Prototype
typedef struct _EFI_GLYPH_GIBT_END_BLOCK {
 EFI_HII_GLYPH_BLOCK Header;
} EFI_GLYPH_GIBT_END_BLOCK;

Members
Header

Standard glyph block header, where Header.BlockType =
EFI_HII_GIBT_END.

Description
Any glyphs with a character value greater than or equal to CharValueCurrent are empty.

31.3.3.2.4 EFI_HII_GIBT_EXT1, EFI_HII_GIBT_EXT2, EFI_HII_GIBT_EXT4

Summary
Future expansion block types which have a length byte.
Version 2.5 April, 2015 1887

Unified Extensible Firmware Interface Specification
Prototype
typedef struct _EFI_HII_GIBT_EXT1_BLOCK {
 EFI_HII_GLYPH_BLOCK Header;
 UINT8 BlockType2;
 UINT8 Length;
} EFI_HII_GIBT_EXT1_BLOCK;

typedef struct _EFI_HII_GIBT_EXT2_BLOCK {
 EFI_HII_GLYPH_BLOCK Header;
 UINT8 BlockType2;
 UINT16 Length;
} EFI_HII_GIBT_EXT2_BLOCK;

typedef struct _EFI_HII_GIBT_EXT4_BLOCK {
 EFI_HII_GLYPH_BLOCK Header;
 UINT8 BlockType2;
 UINT32 Length;
} EFI_HII_GIBT_EXT4_BLOCK;

Members
Header

Standard glyph block header, where Header.BlockType =
EFI_HII_GIBT_EXT1, EFI_HII_GIBT_EXT2 or EFI_HII_GIBT_EXT4.

Length

Size of the glyph block, in bytes.

BlockType2

Indicates the type of extended block. Currently all extended block types are reserved
for future expansion.

Description
These are reserved for future expansion, with length bytes included so that they can be easily
skipped.

31.3.3.2.5 EFI_HII_GIBT_GLYPH

Summary
Provide the bitmap for a single glyph.

Prototype
typedef struct _EFI_HII_GIBT_GLYPH_BLOCK {
 EFI_HII_GLYPH_BLOCK Header;
 EFI_HII_GLYPH_INFO Cell;
 UINT8 BitmapData[1];
1888 April, 2015 Version 2.5

Human Interface Infrastructure Overview
} EFI_HII_GIBT_GLYPH_BLOCK;

Members
Header

Standard glyph block header, where Header.BlockType =
EFI_HII_GIBT_GLYPH.

Cell

Contains the width and height of the encoded bitmap (Cell.Width and
Cell.Height), the number of pixels (signed) right of the character cell origin
where the left edge of the bitmap should be placed (Cell.OffsetX), the number of
pixels above the character cell origin where the top edge of the bitmap should be
placed (Cell.OffsetY) and the number of pixels (signed) to move right to find the
origin for the next character cell (Cell.AdvanceX).

GlyphCount

The number of glyph bitmaps.

BitmapData

The bitmap data specifies a series of pixels, one bit per pixel, left-to-right, top-to-
bottom. Each glyph bitmap only encodes the portion of the bitmap enclosed by its
character-bounding box, but the entire glyph is padded out to the nearest byte. The
number of bytes per bitmap can be calculated as: ((Cell.Width + 7)/8) *
Cell.Height.

Description
This block provides the bitmap for the character with the value CharValueCurrent and
increments CharValueCurrent by one. Each glyph contains a glyph width and height, a
drawing offset, number of pixels to advance after drawing and then the encoded bitmap.

31.3.3.2.6 EFI_HII_GIBT_GLYPHS

Summary
Provide the bitmaps for multiple glyphs with the same cell information

Prototype
typedef struct _EFI_HII_GIBT_GLYPHS_BLOCK {
 EFI_HII_GLYPH_BLOCK Header;
 EFI_HII_GLYPH_INFO Cell;
 UINT16 Count
 UINT8 BitmapData[1];
} EFI_HII_GIBT_GLYPHS_BLOCK;

Members
Header

Standard glyph block header, where Header.BlockType =
EFI_HII_GIBT_GLYPHS.
Version 2.5 April, 2015 1889

Unified Extensible Firmware Interface Specification
Cell

Contains the width and height of the encoded bitmap (Cell.Width and
Cell.Height), the number of pixels (signed) right of the character cell origin
where the left edge of the bitmap should be placed (Cell.OffsetX), the number of
pixels above the character cell origin where the top edge of the bitmap should be
placed (Cell.OffsetY) and the number of pixels (signed) to move right to find the
origin for the next character cell (Cell.AdvanceX).

BitmapData

The bitmap data specifies a series of pixels, one bit per pixel, left-to-right, top-to-
bottom, for each glyph. Each glyph bitmap only encodes the portion of the bitmap
enclosed by its character-bounding box. The number of bytes per bitmap can be
calculated as: ((Cell.Width + 7)/8) * Cell.Height.

Description
Provides the bitmaps for the characters with the values CharValueCurrent through
CharValueCurrent + Count -1 and increments CharValueCurrent by Count. These
glyphs have identical cell information and the encoded bitmaps are exactly the same number of byes.

31.3.3.2.7 EFI_HII_GIBT_GLYPH_DEFAULT

Summary
Provide the bitmap for a single glyph, using the default cell information.

Prototype
typedef struct _EFI_HII_GIBT_GLYPH_DEFAULT_BLOCK {
 EFI_HII_GLYPH_BLOCK Header;
 UINT8 BitmapData[];
} EFI_HII_GIBT_GLYPH_DEFAULT_BLOCK;

Members
Header

Standard glyph block header, where Header.BlockType =
EFI_HII_GIBT_GLYPH_DEFAULT.

BitmapData

The bitmap data specifies a series of pixels, one bit per pixel, left-to-right, top-to-
bottom. Each glyph bitmap only encodes the portion of the bitmap enclosed by its
character-bounding box. The number of bytes per bitmap can be calculated as:
((Global.Cell.Width + 7)/8) * Global.Cell.Height.

Description
Provides the bitmap for the character with the value CharValueCurrent and increments
CharValueCurrent by 1. This glyph uses the default cell information. The default cell
information is found in the font header or the most recently processed
EFI_HII_GIBT_DEFAULTS.
1890 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.3.3.2.8 EFI_HII_GIBT_GLYPHS_DEFAULT

Summary
Provide the bitmaps for multiple glyphs with the default cell information

Prototype
typedef struct _EFI_HII_GIBT_GLYPHS_DEFAULT_BLOCK {
 EFI_HII_GLYPH_BLOCK Header;
 UINT16 Count;
 UINT8 BitmapData[];
} EFI_HII_GIBT_GLYPHS_DEFAULT_BLOCK;

Members
Header

Standard glyph block header, where Header.BlockType =
EFI_HII_GIBT_GLYPHS_DEFAULT.

Count

Number of glyphs in the glyph block.

BitmapData

The bitmap data specifies a series of pixels, one bit per pixel, left-to-right, top-to-
bottom, for each glyph. Each glyph bitmap only encodes the portion of the bitmap
enclosed by its character-bounding box. The number of bytes per bitmap can be
calculated as: ((Global.Cell.Width + 7)/8) * Global.Cell.Height.

Description
Provides the bitmaps for the characters with the values CharValueCurrent through
CharValueCurrent + Count -1 and increments CharValueCurrent by Count. These
glyphs use the default cell information and the encoded bitmaps have exactly the same number of
byes.

31.3.3.2.9 EFI_HII_GIBT_SKIPx

Summary
Increments the current character value CharValueCurrent by the number specified.

Prototype
typedef struct _EFI_HII_GIBT_SKIP2_BLOCK {
 EFI_HII_GLYPH_BLOCK Header;
 UINT16 SkipCount;
} EFI_HII_GIBT_SKIP2_BLOCK;

typedef struct _EFI_HII_GIBT_SKIP1_BLOCK {
 EFI_HII_GLYPH_BLOCK Header;
 UINT8 SkipCount;
} EFI_HII_GIBT_SKIP1_BLOCK;
Version 2.5 April, 2015 1891

Unified Extensible Firmware Interface Specification
Members
Header

Standard glyph block header, where BlockType = EFI_HII_GIBT_SKIP1 or
EFI_HII_GIBT_SKIP2.

SkipCount

The unsigned 8- or 16-bit value to add to CharValueCurrent.

Description
Increments the current character value CharValueCurrent by the number specified.

31.3.4 Device Path Package

Summary
The device path package is used to carry a device path associated with the package list.

Prototype
typedef struct _EFI_HII_DEVICE_PATH_PACKAGE {
 EFI_HII_PACKAGE_HEADER Header;
//EFI_DEVICE_PATH_PROTOCOL DevicePath[];
} EFI_HII_DEVICE_PATH_PACKAGE;

Parameters
Header

The standard package header, where Header.Type =
EFI_HII_PACKAGE_DEVICE_PATH.

DevicePath

The Device Path description associated with the driver handle that provided the
content sent to the HII database.

Description
This package is created by NewPackageList() when the package list is first added to the HII
database by locating the EFI_DEVICE_PATH_PROTOCOL attached to the driver handle passed in
to that function.

31.3.5 GUID Package
The GUID package is used to carry data where the format is defined by a GUID.

Prototype
typedef struct _EFI_HII_GUID_PACKAGE_HDR {
 EFI_HII_PACKAGE_HEADER Header;
 EFI_GUID Guid;
// Data per GUID definition may follow
1892 April, 2015 Version 2.5

Human Interface Infrastructure Overview
} EFI_HII_GUID_PACKAGE_HDR;

Members
Header

The standard package header, where Header.Type =
EFI_HII_PACKAGE_TYPE_GUID.

Guid

Identifier which describes the remaining data within the package.

Description
This is a free-form package type designed to allow extensibility by allowing the format to be
specified using Guid..

31.3.6 String Package
The Strings package record describes the mapping between string identifiers and the actual text of
the strings themselves. The package consists of three parts: a fixed header, the string information and
the font information.

31.3.6.1 Fixed Header
The fixed header consists of a standard record header and then the string identifiers contained in this
section and the offsets of the string and language information.

Prototype
typedef struct _EFI_HII_STRING_PACKAGE_HDR {
EFI_HII_PACKAGE_HEADER Header;
 UINT32 HdrSize;
 UINT32 StringInfoOffset;
 CHAR16 LanguageWindow[16];
 EFI_STRING_ID LanguageName;
 CHAR8 Language[…];
} EFI_HII_STRING_PACKAGE_HDR;

Members
Header

The standard package header, where Header.Type =
EFI_HII_PACKAGE_STRINGS.

HdrSize

Size of this header.

StringInfoOffset

Offset, relative to the start of this header, of the string information.
Version 2.5 April, 2015 1893

Unified Extensible Firmware Interface Specification
LanguageWindow

Specifies the default values placed in the static and dynamic windows before
processing each SCSU-encoded string.

LanguageName

String identifier within the current string package of the full name of the language
specified by Language.

Language

The null-terminated ASCII string that specifies the language of the strings in the
package. The languages are described as specified by Appendix M.

Related Definition
#define UEFI_CONFIG_LANG ”x-UEFI”
#define UEFI_CONFIG_LANG_2 ”x-i-UEFI”

31.3.6.2 String Information
For each string identifier, the string information gives the string’s text and font. The string
information is encoded as a series of blocks, each with a single byte header. The blocks must be
processed in order, using the current string identifier (StringIdCurrent), which is set initially
to one (1). Processing continues until an EFI_SIBT_END block is found.

The types of blocks are: string blocks, duplicate blocks, font blocks, and skip blocks. String blocks
specify the text and font for the current string identifier and increment to the next string identifier.
Duplicate blocks copy the text of a previous string identifier and increment to the next string
identifier. Skip bocks skip string identifiers, leaving them blank.
1894 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Figure 117. String Information Encoded in Blocks

Each block begins with a single byte, which contains the block type.
typedef struct {
 UINT8 BlockType;
 UINT8 BlockBody[];
} EFI_HII_STRING_BLOCK;

The following table describes the different block types:

Name Value Description

EFI_HII_SIBT_END 0x00 The end of the string information.

EFI_HII_SIBT_STRING_SCSU 0x10 Single string using default font
information.

EFI_HII_SIBT_STRING_SCSU_FONT 0x11 Single string with font information.

EFI_HII_SIBT_STRINGS_SCSU 0x12 Multiple strings using default font
information.

EFI_HII_SIBT_STRINGS_SCSU_FONT 0x13 Multiple strings with font information.

EFI_HII_SIBT_STRING_UCS2 0x14 Single UCS-2 string using default font
information.

EFI_HII_SIBT_STRING_UCS2_FONT 0x15 Single UCS-2 string with font information

EFI_HII_SIBT_STRINGS_UCS2 0x16 Multiple UCS-2 strings using default font
information.

STRING BLOCK #1 DATA

STRING BLOCK #2 DATA

STRING BLOCK #n DATA

STRING BLOCK
#1 TYPE

STRING BLOCK
#2 TYPE

STRING BLOCK
#n TYPE
Version 2.5 April, 2015 1895

Unified Extensible Firmware Interface Specification
When processing the string blocks, each block type refers and modifies the current string identifier
(StringIdCurrent).

EFI_HII_SIBT_STRINGS_UCS2_FONT 0x17 Multiple UCS-2 strings with font
information.

EFI_HII_SIBT_DUPLICATE 0x20 Create a duplicate of an existing string.

EFI_HII_SIBT_SKIP2 0x21 Skip a certain number of string
identifiers.

EFI_HII_SIBT_SKIP1 0x22 Skip a certain number of string
identifiers.

EFI_HII_SIBT_EXT1 0x30 For future expansion (one byte length
field)

EFI_HII_SIBT_EXT2 0x31 For future expansion (two byte length
field)

EFI_HII_SIBT_EXT4 0x32 For future expansion (four byte length
field)

EFI_HII_SIBT_FONT 0x40 Font information.
1896 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Figure 118. String Block Processing: Base Processing

Current = 1

StringBlock.
BlockType =

DUPLICATE?

String[Current] =
String[StringBlock.

StringId]
StringCount = 1

Yes

StringBlock.
BlockType =

SKIPx?

StringCount =
StringBlock.Value

Yes

StringBlock.
BlockType =

EXTx?

Return BlockType
= END?

Advance To Next
Block

Yes

No

No

No

Current +=
StringCount

StringBlock.
BlockType =

FONT

No

No

Font[StringBlock.F
ontId] =

StringBlock.Font
Info

A

B

C

Version 2.5 April, 2015 1897

Unified Extensible Firmware Interface Specification
Figure 119. String Block Processing: SCSU Processing

StringBlock.
BlockType =

STRING_SCS
U?

ProcessScsuString(0,
Current

StringBlock.Text)
StringCount = 1

Yes

StringBlock.
BlockType =

STRINGS_SC
SU?

StringCount =
ProcessScsuString

s(0, Current,
StringBlock.Text)

Yes

StringBlock.
BlockType =

STRING_SCS
U_FONT?

ProcessScsuString(
StringBlock.FontId,

Current,
StringBlock.Text)
StringCount = 1

Yes

StringBlock.
BlockType =

STRINGSS_F
ONT?

StringCount =
ProcessScsuString

s(0, Current,
StringBlock.Text)

Yes

No

No

No

A

CExit

No
1898 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Figure 120. String Block Processing: UTF Processing

31.3.6.2.1 EFI_HII_SIBT_DUPLICATE

Summary
Creates a duplicate of a previously defined string.

Prototype
typedef struct _EFI_HII_SIBT_DUPLICATE_BLOCK {
 EFI_HII_STRING_BLOCK Header;
 EFI_STRING_ID StringId;
} EFI_HII_SIBT_DUPLICATE_BLOCK;

B

StringBlock

BlockType =

 STRING_UCS2?

StringBlock

BlockType =

STRINGS_UCS2_FONT?

StringBlock

BlockType =

STRING_UCS2?

StringBlock

BlockType =

STRINGS_UCS2_FONT?

Exit C

String [Current].Font =

Fonts[0]

String[Current].Text =

StringBlock.Text

StringCount = 1

StringCount =

ProcessUtf16Strings (0, Current,

StringBlock.Text)

String [Current].Font =

Fonts[StringBlock.FontId]

String[Current].Text =

StringBlock.Text

StringCount = 1

StringCount =

ProcessUtf16Strings

(StringBlock.FontId, Current,

StringBlock.Text)

No

No

No

Yes

Yes

Yes

Yes
Version 2.5 April, 2015 1899

Unified Extensible Firmware Interface Specification
Members
Header

Standard string block header, where Header.BlockType =
EFI_HII_SIBT_DUPLICATE.

StringId

The string identifier of a previously defined string with the exact same string text.

Description
Indicates that the string with string identifier StringIdCurrent is the same as a previously
defined string and increments StringIdCurrent by one.

31.3.6.2.2 EFI_HII_SIBT_END

Summary
Marks the end of the string information.

Prototype
typedef struct _EFI_HII_SIBT_END_BLOCK {
 EFI_HII_STRING_BLOCK Header;
} EFI_HII_SIBT_END_BLOCK;

Members
Header

Standard extended header, where Header.Header.BlockType =
EFI_HII_SIBT_EXT2 and Header.BlockType2 = EFI_HII_SIBT_FONT.

BlockType2

Indicates the type of extended block. See Section 31.3.6.2 for a list of all block types.

Description
Any strings with a string identifier greater than or equal to StringIdCurrent are empty.

31.3.6.2.3 EFI_HII_SIBT_EXT1, EFI_HII_SIBT_EXT2, EFI_HII_SIBT_EXT4

Summary
Future expansion block types which have a length byte.

Prototype
typedef struct _EFI_HII_SIBT_EXT1_BLOCK {
EFI_HII_STRING_BLOCK Header;
 UINT8 BlockType2;
 UINT8 Length;
} EFI_HII_SIBT_EXT1_BLOCK;

typedef struct _EFI_HII_SIBT_EXT2_BLOCK {
1900 April, 2015 Version 2.5

Human Interface Infrastructure Overview
EFI_HII_STRING_BLOCK Header;
 UINT8 BlockType2;
 UINT16 Length;
} EFI_HII_SIBT_EXT2_BLOCK;

typedef struct _EFI_HII_SIBT_EXT4_BLOCK {
EFI_HII_STRING_BLOCK Header;
 UINT8 BlockType2;
 UINT32 Length;
} EFI_HII_SIBT_EXT4_BLOCK;

Members
Header

Standard string block header, where Header.BlockType =
EFI_HII_SIBT_EXT1, EFI_HII_SIBT_EXT2 or EFI_HII_SIBT_EXT4.

Length

Size of the string block, in bytes.

BlockType2

 Indicates the type of extended block. See Section 31.3.6.2 for a list of all block types.

Description
These are reserved for future expansion, with length bytes included so that they can be easily
skipped.

31.3.6.2.4 EFI_HII_SIBT_FONT

Summary
Provide information about a single font.

Prototype
typedef struct _EFI_HII_SIBT_FONT_BLOCK {
 EFI_HII_SIBT_EXT2_BLOCK Header;
 UINT8 FontId;
 UINT16 FontSize;
 EFI_HII_FONT_STYLE FontStyle;
 CHAR16 FontName[…];
} EFI_HII_SIBT_FONT_BLOCK;

Members
Header

Standard extended header, where Header.BlockType2 =
EFI_HII_SIBT_FONT.

FontId

Font identifier, which must be unique within the string package.
Version 2.5 April, 2015 1901

Unified Extensible Firmware Interface Specification
FontSize

Character cell size, in pixels, of the font.

FontStyle

Font style. Type EFI_HII_FONT_STYLE is defined in “Related Definitions” in
EFI_HII_FONT_PACKAGE_HDR.

FontName

Null-terminated font family name.

Description
Associates a font identifier FontId with a font name FontName, size FontSize and style
FontStyle. This font identifier may be used with the string blocks. The font identifier 0 is the
default font for those string blocks which do not specify a font identifier.

31.3.6.2.5 EFI_HII_SIBT_SKIP1

Summary
Skips string identifiers.

Prototype
typedef struct _EFI_HII_SIBT_SKIP1_BLOCK {
 EFI_HII_STRING_BLOCK Header;
 UINT8 SkipCount;
} EFI_HII_SIBT_SKIP1_BLOCK;

Members
Header

Standard string block header, where Header.BlockType =
EFI_HII_SIBT_SKIP1.

SkipCount

The unsigned 8-bit value to add to StringIdCurrent.

Description
Increments the current string identifier StringIdCurrent by the number specified.

31.3.6.2.6 EFI_HII_SIBT_SKIP2

Summary
Skips string ids.

Prototype
typedef struct _EFI_HII_SIBT_SKIP2_BLOCK {
 EFI_HII_STRING_BLOCK Header;
 UINT16 SkipCount;
} EFI_HII_SIBT_SKIP2_BLOCK;
1902 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Members
Header

Standard string block header, where Header.BlockType =
EFI_HII_SIBT_SKIP2.

SkipCount

The unsigned 16-bit value to add to StringIdCurrent.

Description
Increments the current string identifier StringIdCurrent by the number specified.

31.3.6.2.7 EFI_HII_SIBT_STRING_SCSU

Summary
Describe a string encoded using SCSU, in the default font.

Prototype
typedef struct _EFI_HII_SIBT_STRING_SCSU_BLOCK {
 EFI_HII_STRING_BLOCK Header;
 UINT8 StringText[];
} EFI_HII_SIBT_STRING_SCSU_BLOCK;

Members
Header

Standard header where Header.BlockType =
EFI_HII_SIBT_STRING_SCSU.

StringText

The string text is a null-terminated string, which is assigned to the string identifier
StringIdCurrent.

Description
This string block provides the SCSU-encoded text for the string in the default font with string
identifier StringIdCurrent and increments StringIdCurrent by one.

31.3.6.2.8 EFI_HII_SIBT_STRING_SCSU_FONT

Summary
Describe a string in the specified font.

Prototype
typedef struct _EFI_HII_SIBT_STRING_SCSU_FONT_BLOCK {
 EFI_HII_STRING_BLOCK Header;
 UINT8 FontIdentifier;
 UINT8 StringText[];
} EFI_HII_SIBT_STRING_SCSU_FONT_BLOCK;
Version 2.5 April, 2015 1903

Unified Extensible Firmware Interface Specification
Members
Header

Standard string block header, where Header.BlockType =
EFI_HII_SIBT_STRING_SCSU_FONT.

FontIdentifier

The identifier of the font to be used as the starting font for the entire string. The
identifier must either be 0 for the default font or an identifier previously specified by
an EFI_HII_SIBT_FONT block. Any string characters that deviates from this font
family, size or style must provide an explicit control character. See Section 31.2.6.2.4.

StringText

The string text is a null-terminated encoded string, which is assigned to the string
identifier StringIdCurrent.

Description
This string block provides the SCSU-encoded text for the string in the font specified by
FontIdentifier with string identifier StringIdCurrent and increments
StringIdCurrent by one.

31.3.6.2.9 EFI_HII_SIBT_STRINGS_SCSU

Summary
Describe strings in the default font.

Prototype
typedef struct _EFI_HII_SIBT_STRINGS_SCSU_BLOCK {
 EFI_HII_STRING_BLOCK Header;
 UINT16 StringCount;
 UINT8 StringText[];
} EFI_HII_SIBT_STRINGS_SCSU_BLOCK;

Members
Header

Standard header where Header.BlockType =
EFI_HII_SIBT_STRINGS_SCSU

StringCount

Number of strings in StringText.

StringText

The strings, where each string is a null-terminated encoded string.

Description
This string block provides the SCSU-encoded text for StringCount strings which have the
default font and which have sequential string identifiers. The strings are assigned the identifiers,
1904 April, 2015 Version 2.5

Human Interface Infrastructure Overview
starting with StringIdCurrent and continuing through StringIdCurrent +
StringCount – 1. StringIdCurrent is incremented by StringCount.

31.3.6.2.10 EFI_HII_SIBT_STRINGS_SCSU_FONT

Summary
Describe strings in the specified font.

Prototype
typedef struct _EFI_HII_SIBT_STRINGS_SCSU_FONT_BLOCK {
 EFI_HII_STRING_BLOCK Header;
 UINT8 FontIdentifier;
 UINT16 StringCount;
 UINT8 StringText[];
} EFI_HII_SIBT_STRINGS_SCSU_FONT_BLOCK;

Members
Header

Standard header where Header.BlockType =
EFI_HII_SIBT_STRINGS_SCSU_FONT.

StringCount

Number of strings in StringText.

FontIdentifier

The identifier of the font to be used as the starting font for the entire string. The
identifier must either be 0 for the default font or an identifier previously specified by
an EFI_HII_SIBT_FONT block. Any string characters that deviates from this font
family, size or style must provide an explicit control character. See Section 31.2.6.2.4.

StringText

The strings, where each string is a null-terminated encoded string.

Description
This string block provides the SCSU-encoded text for StringCount strings which have the font
specified by FontIdentifier and which have sequential string identifiers. The strings are
assigned the identifiers, starting with StringIdCurrent and continuing through
StringIdCurrent + StringCount – 1. StringIdCurrent is incremented by
StringCount.

31.3.6.2.11 EFI_HII_SIBT_STRING_UCS2

Summary
Describe a string in the default font.

Prototype
typedef struct _EFI_HII_SIBT_STRING_UCS2_BLOCK {
Version 2.5 April, 2015 1905

Unified Extensible Firmware Interface Specification
 EFI_HII_STRING_BLOCK Header;
 CHAR16 StringText[];
} EFI_HII_SIBT_STRING_UCS2_BLOCK;

Members
Header

Standard header where Header.BlockType =
EFI_HII_SIBT_STRING_UCS2.

StringText

The string text is a null-terminated UCS-2 string, which is assigned to the string
identifier StringIdCurrent.

Description
This string block provides the UCS-2 encoded text for the string in the default font with string
identifier StringIdCurrent and increments StringIdCurrent by one.

31.3.6.2.12 EFI_HII_SIBT_STRING_UCS2_FONT

Summary
Describe a string in the specified font.

Prototype
typedef struct _EFI_HII_SIBT_STRING_UCS2_FONT_BLOCK {
 EFI_HII_STRING_BLOCK Header;
 UINT8 FontIdentifier;
 CHAR16 StringText[];
} EFI_HII_SIBT_STRING_UCS2_FONT_BLOCK;

Members
Header

Standard header where Header.BlockType =
EFI_HII_SIBT_STRING_UCS2_FONT.

FontIdentifier

The identifier of the font to be used as the starting font for the entire string. The
identifier must either be 0 for the default font or an identifier previously specified by
an EFI_HII_SIBT_FONT block. Any string characters that deviates from this font
family, size or style must provide an explicit control character. See Section 31.2.6.2.4.

StringText

The string text is a null-terminated UCS-2 string, which is assigned to the string
identifier StringIdCurrent.
1906 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Description
This string block provides the UCS-2 encoded text for the string in the font specified by
FontIdentifier with string identifier StringIdCurrent and increments
StringIdCurrent by one.

31.3.6.2.13 EFI_HII_SIBT_STRINGS_UCS2

Summary
Describes strings in the default font.

Prototype
typedef struct _EFI_HII_SIBT_STRINGS_UCS2_BLOCK {
 EFI_HII_STRING_BLOCK Header;
 UINT16 StringCount;
 CHAR16 StringText[];
} EFI_HII_SIBT_STRINGS_UCS2_BLOCK;

Members
Header

Standard header where Header.BlockType =
EFI_HII_SIBT_STRINGS_UCS2.

StringCount

Number of strings in StringText.

StringText

The string text is a series of null-terminated UCS-2 strings, which are assigned to the
string identifiers StringIdCurrent.to StringIdCurrent + StringCount
– 1.

Description
This string block provides the UCS-2 encoded text for the strings in the default font with string
identifiers StringIdCurrent to StringIdCurrent + StringCount – 1 and increments
StringIdCurrent by StringCount.

31.3.6.2.14 EFI_HII_SIBT_STRINGS_UCS2_FONT

Summary
Describes strings in the specified font.

Prototype
typedef struct _EFI_HII_SIBT_STRINGS_UCS2_FONT_BLOCK {
 EFI_HII_STRING_BLOCK Header;
 UINT8 FontIdentifier;
 UINT16 StringCount;
 CHAR16 StringText[];
} EFI_HII_SIBT_STRINGS_UCS2_FONT_BLOCK;
Version 2.5 April, 2015 1907

Unified Extensible Firmware Interface Specification
Members
Header

Standard header where Header.BlockType =
EFI_HII_SIBT_STRINGS_UCS2_FONT.

FontIdentifier

The identifier of the font to be used as the starting font for the entire string. The
identifier must either be 0 for the default font or an identifier previously specified by
an EFI_HII_SIBT_FONT block. Any string characters that deviates from this font
family, size or style must provide an explicit control character. See Section 31.2.6.2.4.

StringCount

Number of strings in StringText.

StringText

The string text is a series of null-terminated UCS-2 strings, which are assigned to the
string identifiers StringIdCurrent.through StringIdCurrent +
StringCount – 1.

Description
This string block provides the UCS-2 encoded text for the strings in the font specified by
FontIdentifier with string identifiers StringIdCurrent to StringIdCurrent +
StringCount – 1 and increments StringIdCurrent by StringCount.

31.3.6.3 String Encoding
Each of the following sections describes part of how string text is encoded.

31.3.6.3.1 Standard Compression Scheme for Unicode (SCSU)

The Unicode consortium provides a standard text compression algorithm, which minimizes the
amount of storage required for multiple-language strings. For more information, see “Links to UEFI-
Related Documents” (http://uefi.org/uefi) under the heading “Unicode Compression Scheme”.

This specification extends the technique described in the following ways:

• The strings use the control code 0x7F to introduce the control codes described in
Section 31.2.6.2.4. The following byte is the control code. The character value 0x7F will be
encoded as 0x01 (SQ0) 0x7F.

• The language information contains default static and dynamic code windows, whereas SCSU
provides fixed values for these.

• Characters between 0xF000 and 0xFCFF should be rejected.

31.3.6.3.2 Unicode 2-Byte Encoding (UCS-2)

The Unicode consortium provides a standard encoding algorithm, which takes two bytes per
character. For more information see “Links to UEFI-Related Documents” (http://uefi.org/uefi) under
the heading “Unicode Consortium”.

Characters between 0xF000 and 0xFCFF should be rejected.
1908 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.3.7 Image Package
The Image package record describes the mapping between image identifiers and the pixels of the
image themselves. The package consists of three parts: a fixed header, image information and the
palette information.

31.3.7.1 Fixed Header

Summary
The fixed header consists of a standard record header and the offsets of the image and palette
information.

Prototype
typedef struct _EFI_HII_IMAGE_PACKAGE_HDR {
 EFI_HII_PACKAGE_HEADER Header;
 UINT32 ImageInfoOffset;
 UINT32 PaletteInfoOffset;
} EFI_HII_IMAGE_PACKAGE_HDR;

Members
Header

Standard package header, where Header.Type = EFI_HII_PACKAGE_IMAGES.

ImageInfoOffset

Offset, relative to this header, of the image information. If this is zero, then there are
no images in the package.

PaletteInfoOffset

Offset, relative to this header, of the palette information. If this is zero, then there are
no palettes in the image package.

31.3.7.2 Image Information
For each image identifier, the image information gives the bitmap and the relevant palette. The
image information is encoded as a series of blocks, each with a single byte header. The blocks must
be processed in order.

Each block begins with a single byte, which contains the block type.
Version 2.5 April, 2015 1909

Unified Extensible Firmware Interface Specification
Figure 121. Image Information Encoded in Blocks

Prototype
typedef struct _EFI_HII_IMAGE_BLOCK {
 UINT8 BlockType;
 UINT8 BlockBody[];
} EFI_HII_IMAGE_BLOCK;

The following table describes the different block types:

Table 212. Block Types

Name Value Description

EFI_HII_IIBT_END 0x00 The end of the image information.

EFI_HII_IIBT_IMAGE_1BIT 0x10 1-bit w/palette

EFI_HII_IIBT_IMAGE_1BIT_TRANS 0x11 1-bit w/palette & transparency

EFI_HII_IIBT_IMAGE_4BIT 0x12 4-bit w/palette

EFI_HII_IIBT_IMAGE_4BIT_TRANS 0x13 4-bit w/palette & transparency

EFI_HII_IIBT_IMAGE_8BIT 0x14 8-bit w/palette

EFI_HII_IIBT_IMAGE_8BIT_TRANS 0x15 8-bit w/palette & transparency

EFI_HII_IIBT_IMAGE_24BIT 0x16 24-bit RGB

IMAGE BLOCK #1 DATA

IMAGE BLOCK #2 DATA

IMAGE BLOCK #n DATA

IMAGE BLOCK
#1 TYPE

IMAGE BLOCK
#2 TYPE

IMAGE BLOCK
#n TYPE
1910 April, 2015 Version 2.5

Human Interface Infrastructure Overview
In order to recreate all images, start at the first block and process them all until an
EFI_HII_IIBT_END_BLOCK block is found. When processing the image blocks, each block
refers to the current image identifier (ImageIdCurrent), which is initially set to one (1).

Image blocks of an unknown type should be skipped. If they cannot be skipped, then processing
halts.

31.3.7.2.1 EFI_HII_IIBT_END

Summary
Marks the end of the image information.

Prototype
define EFI_HII_IIBT_END 0x00

typedef struct _EFI_HII_IIBT_END_BLOCK {
 EFI_HII_IMAGE_BLOCK Header;
} EFI_HII_IIBT_END_BLOCK;

Members
Header

Standard image block header, where Header.BlockType =
EFI_HII_IIBT_END_BLOCK.

BlockType2

 Indicates the type of extended block. See Section 31.3.6.2 for a list of all block types.

Description
Any images with an image identifier greater than or equal to ImageIdCurrent are empty.

31.3.7.2.2 EFI_HII_IIBT_EXT1, EFI_HII_IIBT_EXT2, EFI_HII_IIBT_EXT4

Summary
Generic prefix for image information with a 1-byte length.

EFI_HII_IIBT_IMAGE_24BIT_TRANS 0x17 24-bit RGB w/transparency

EFI_HII_IIBT_IMAGE_JPEG 0x18 JPEG encoded image

EFI_HII_IIBT_DUPLICATE 0x20 Duplicate an existing image identifier

EFI_HII_IIBT_SKIP2 0x21 Skip a certain number of image identifiers.

EFI_HII_IIBT_SKIP1 0x22 Skip a certain number of image identifiers.

EFI_HII_IIBT_EXT1 0x30 For future expansion (one byte length field)

EFI_HII_IIBT_EXT2 0x31 For future expansion (two byte length field)

EFI_HII_IIBT_EXT4 0x32 For future expansion (four byte length field)

Name Value Description
Version 2.5 April, 2015 1911

Unified Extensible Firmware Interface Specification
Prototype
#define EFI_HII_IIBT_EXT1 0x30
typedef struct _EFI_HII_IIBT_EXT1_BLOCK {
 EFI_HII_IMAGE_BLOCK Header;
 UINT8 BlockType2;
 UINT8 Length;
} EFI_HII_IIBT_EXT1_BLOCK;

#define EFI_HII_IIBT_EXT2 0x31

typedef struct _EFI_HII_IIBT_EXT2_BLOCK {
 EFI_HII_IMAGE_BLOCK Header;
 UINT8 BlockType2;
 UINT16 Length;
} EFI_HII_IIBT_EXT2_BLOCK;

#define EFI_HII_IIBT_EXT4 0x32

typedef struct _EFI_HII_IIBT_EXT4_BLOCK {
 EFI_HII_IMAGE_BLOCK Header;
 UINT8 BlockType2;
 UINT32 Length;
} EFI_HII_IIBT_EXT4_BLOCK;

Members
Header

Standard image block header, where Header.BlockType =
EFI_HII_IIBT_EXT1_BLOCK, EFI_HII_IIBT_EXT2_BLOCK or
EFI_HII_IIBT_EXT4_BLOCK.

Length

Size of the image block, in bytes, including the image block header.

BlockType2

 Indicates the type of extended block. See Section 31.3.7.2 for a list of all block types.

Description
Future extensions for image records which need a length-byte length use this prefix.

31.3.7.2.3 EFI_HII_IIBT_IMAGE_1BIT

Summary
One bit-per-pixel graphics image with palette information.
1912 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Prototype
typedef struct _EFI_HII_IIBT_IMAGE_1BIT_BASE {
 UINT16 Width;
 UINT16 Height;
 UINT8 Data[…];
} EFI_HII_IIBT_IMAGE_1BIT_BASE;

#define EFI_HII_IIBT_IMAGE_1BIT 0x10

typedef struct _EFI_HII_IIBT_IMAGE_1BIT_BLOCK {
 EFI_HII_IMAGE_BLOCK Header;
 UINT8 PaletteIndex;
 EFI_HII_IIBT_IMAGE_1BIT_BASE Bitmap;
} EFI_HII_IIBIT_IMAGE_1BIT_BLOCK;

Members
Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_1BIT.

Width

Width of the bitmap in pixels.

Height

Height of the bitmap in pixels.

Bitmap

The bitmap specifies a series of pixels, one bit per pixel, left-to-right, top-to-bottom,
and is padded out to the nearest byte. The number of bytes per bitmap can be
calculated as: ((Width + 7)/8) * Height.

PaletteIndex

Index of the palette in the palette information.

Description
This record assigns the 1-bit-per-pixel bitmap data to the ImageIdCurrent identifier and
increment ImageIdCurrent by one. The image’s upper left hand corner pixel is the most
significant bit of the first bitmap byte. An example of a EFI_HII_IIBT_IMAGE_1BIT structure
is shown below:

0x01 ; Palette Index
0x000B ; Width
0x0013 ; Height
10000000b,00000000b ; Bitmap
11000000b,00000000b
11100000b,00000000b
11110000b,00000000b
11111000b,00000000b
Version 2.5 April, 2015 1913

Unified Extensible Firmware Interface Specification
11111100b,00000000b
11111110b,00000000b
11111111b,00000000b
11111111b,10000000b
11111111b,11000000b
11111111b,11100000b
11111110b,00000000b
11101111b,00000000b
11001111b,00000000b
10000111b,10000000b
00000111b,10000000b
00000011b,11000000b
00000011b,11000000b
00000001b,10000000b

31.3.7.2.4 EFI_HII_IIBT_IMAGE_1BIT_TRANS

Summary
One bit-per-pixel graphics image with palette information and transparency.

Prototype
#define EFI_HII_IIBT_IMAGE_1BIT_TRANS 0x11

typedef struct _EFI_HII_IIBT_IMAGE_1BIT_TRANS_BLOCK {
 EFI_HII_IMAGE_BLOCK Header;
 UINT8 PaletteIndex;
 EFI_HII_IIBT_IMAGE_1BIT_BASE Bitmap;
} EFI_HII_IIBT_IMAGE_1BIT_TRANS_BLOCK;

Members
Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_1BIT_TRANS.

PaletteIndex

Index of the palette in the palette information.

Bitmap

The bitmap specifies a series of pixels, one bit per pixel, left-to-right, top-to-bottom,
and is padded out to the nearest byte. The number of bytes per bitmap can be
calculated as: ((Width + 7)/8) * Height.

Description
This record assigns the 1-bit-per-pixel bitmap data to the ImageIdCurrent identifier and
increment ImageIdCurrent by one. The data in the EFI_HII_IIBT_IMAGE_1BIT_TRANS
structure is exactly the same as the EFI_HII_IIBT_IMAGE_1BIT structure, the difference is
how the data is treated.
1914 April, 2015 Version 2.5

Human Interface Infrastructure Overview
The bitmap pixel value 0 is the ‘transparency’ value and will not be written to the screen. The bitmap
pixel value 1 will be translated to the color specified by Palette.

31.3.7.2.5 EFI_HII_IIBT_IMAGE_24BIT

Summary
A 24 bit-per-pixel graphics image.

Prototype
#define EFI_HII_IIBT_IMAGE_24BIT 0x16

typedef struct _EFI_HII_IIBT_IMAGE_24BIT_BASE
 UINT16 Width;
 UINT16 Height;
 EFI_HII_RGB_PIXEL Bitmap[...];
} EFI_HII_IIBT_IMAGE_24BIT_BASE;

typedef struct _EFI_HII_IIBT_IMAGE_24BIT_BLOCK {
 EFI_HII_IMAGE_BLOCK Header;
 EFI_HII_IIBT_IMAGE_24BIT_BASE Bitmap;
} EFI_HII_IIBT_IMAGE_24BIT_BASE;

Members
Width

Width of the bitmap in pixels.

Height

Height of the bitmap in pixels.

Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_24BIT.

Bitmap

The bitmap specifies a series of pixels, 24 bits per pixel, left-to-right, top-to-bottom.
The number of bytes per bitmap can be calculated as: (Width * 3) * Height. Type
EFI_HII_RGB_PIXEL is defined in “Related Definitions” below.

Description
This record assigns the 24-bit-per-pixel bitmap data to the ImageIdCurrent identifier and
increment ImageIdCurrent by one. The image’s upper left hand corner pixel is composed of the
first three bitmap bytes. The first byte is the pixel’s blue component value, the next byte is the
pixel’s green component value, and the third byte is the pixel’s red component value (B,G,R). Each
color component value can vary from 0x00 (color off) to 0xFF (color full on), allowing 16.8 millions
colors that can be specified.
Version 2.5 April, 2015 1915

Unified Extensible Firmware Interface Specification
Related Definitions
typedef struct _EFI_HII_RGB_PIXEL {
 UINT8 b;
 UINT8 g;
 UINT8 r;
} EFI_HII_RGB_PIXEL;

b

The relative intensity of blue in the pixel’s color, from off (0x00) to full-on (0xFF).

g

The relative intensity of green in the pixel’s color, from off (0x00) to full-on (0xFF).

r

The relative intensity of red in the pixel’s color, from off (0x00) to full-on (0xFF).

31.3.7.2.6 EFI_HII_IIBT_IMAGE_24BIT_TRANS

Summary
A 24 bit-per-pixel graphics image with transparency.

Prototype
#define _EFI_HII_IIBT_IMAGE_24BIT_TRANS 0x17

typedef struct EFI_HII_IIBT_IMAGE_24BIT_TRANS_BLOCK {
 EFI_HII_IMAGE_BLOCK Header;
 EFI_HII_IIBT_IMAGE_24BIT_BASE Bitmap;
} EFI_HII_IIBT_IMAGE_24BIT_TRANS_BLOCK;

Members
Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_24BIT_TRANS.

Bitmap

The bitmap specifies a series of pixels, 24 bits per pixel, left-to-right, top-to-bottom.
The number of bytes per bitmap can be calculated as: (Width * 3) * Height.

Width

Width of the bitmap in pixels.

Height

Height of the bitmap in pixels.

Description
This record assigns the 24-bit-per-pixel bitmap data to the ImageIdCurrent identifier and
increment ImageIdCurrent by one. The data in the EFI_HII_IMAGE_24BIT_TRANS
structure is exactly the same as the EFI_HII_IMAGE_24BIT structure, the difference is how the
data is treated.
1916 April, 2015 Version 2.5

Human Interface Infrastructure Overview
The bitmap pixel value 0x00, 0x00, 0x00 is the ‘transparency’ value and will not be written to the
screen. All other bitmap pixel values will be written as defined to the screen. Since the
‘transparency’ value replaces true black, for image to display black they should use the color 0x00,
0x00, 0x01 (very dark red)

31.3.7.2.7 EFI_HII_IIBT_IMAGE_4BIT

Summary
Four bits-per-pixel graphics image with palette information.

Prototype
typedef struct _EFI_HII_IIBT_IMAGE_4BIT_BASE {
 UINT16 Width;
 UINT16 Height;
 UINT8 Data[…];
} EFI_HII_IIBT_IMAGE_4BIT_BASE;

#define EFI_HII_IIBT_IMAGE_4BIT 0x12

typedef struct _EFI_HII_IIBT_IMAGE_4BIT_BLOCK {
 EFI_HII_IMAGE_BLOCK Header;
 UINT8 PaletteIndex;
 EFI_HII_IIBT_IMAGE_4BIT_BASE Bitmap;
} EFI_HII_IIBT_IMAGE_4BIT_BLOCK;

Members
Width

Width of the bitmap in pixels.

Height

Height of the bitmap in pixels.

Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_4BIT.

PaletteIndex

Index of the palette in the palette information.

Bitmap

The bitmap specifies a series of pixels, four bits per pixel, left-to-right, top-to-bottom,
and is padded out to the nearest byte. The number of bytes per bitmap can be
calculated as: ((Width + 1)/2) * Height.

Description
This record assigns the 4-bit-per-pixel bitmap data to the ImageIdCurrent identifier using the
specified palette and increment ImageIdCurrent by one. The image’s upper left hand corner
pixel is the most significant nibble of the first bitmap byte.
Version 2.5 April, 2015 1917

Unified Extensible Firmware Interface Specification
31.3.7.2.8 EFI_HII_IIBT_IMAGE_4BIT_TRANS

Summary
Four bits-per-pixel graphics image with palette information and transparency.

Prototype
#define EFI_HII_IIBT_IMAGE_4BIT_TRANS 0x13

typedef struct _EFI_HII_IIBT_IMAGE_4BIT_TRANS_BLOCK {
 EFI_HII_IMAGE_BLOCK Header;
 UINT8 PaletteIndex;
 EFI_HII_IIBT_IMAGE_4BIT_BASE Bitmap;
} EFI_HII_IIBT_IMAGE_4BIT_TRANS_BLOCK;

Members
Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_4BIT_TRANS.

PaletteIndex

Index of the palette in the palette information.

Bitmap

The bitmap specifies a series of pixels, four bits per pixel, left-to-right, top-to-bottom,
and is padded out to the nearest byte. The number of bytes per bitmap can be
calculated as: ((Width + 1)/2) * Height.

Description
This record assigns the 4-bit-per-pixel bitmap data to the ImageIdCurrent identifier using the
specified palette and increment ImageIdCurrent by one. The data in the
EFI_HII_IMAGE_4BIT_TRANS structure is exactly the same as the EFI_HII_IMAGE_4BIT
structure, the difference is how the data is treated.

The bitmap pixel value 0 is the ‘transparency’ value and will not be written to the screen. All the
other bitmap pixel values will be translated to the color specified by Palette.

31.3.7.2.9 EFI_HII_IIBT_IMAGE_8BIT

Summary
Eight bits-per-pixel graphics image with palette information.

Prototype
#define EFI_HII_IIBT_IMAGE_8BIT 0x14

typedef struct _EFI_HII_IIBT_IMAGE_8BIT_BASE {
 UINT16 Width;
 UINT16 Height;
 UINT8 Data[…];
1918 April, 2015 Version 2.5

Human Interface Infrastructure Overview
} EFI_HII_IIBT_IMAGE_8BIT_BASE;

typedef struct _EFI_HII_IIBT_IMAGE_8BIT_BLOCK {
 EFI_HII_IMAGE_BLOCK Header;
 UINT8 PaletteIndex;
 EFI_HII_IIBT_IMAGE_8BIT_BASE Bitmap;
} EFI_HII_IIBT_IMAGE_8BIT_BLOCK;

Members
Width

Width of the bitmap in pixels.

Height

Height of the bitmap in pixels.

Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_8BIT.

PaletteIndex

Index of the palette in the palette information.

Bitmap

The bitmap specifies a series of pixels, eight bits per pixel, left-to-right, top-to-bottom.
The number of bytes per bitmap can be calculated as: Width * Height.

Description
This record assigns the 8-bit-per-pixel bitmap data to the ImageIdCurrent identifier using the
specified palette and increment ImageIdCurrent by one. The image’s upper left hand corner
pixel is the first bitmap byte.

31.3.7.2.10 EFI_HII_IIBT_IMAGE_8BIT_TRANS

Summary
Eight bits-per-pixel graphics image with palette information and transparency.

Prototype
#define EFI_HII_IIBT_IMAGE_8BIT_TRANS 0x15

typedef struct _EFI_HII_IIBT_IMAGE_8BIT_TRANS_BLOCK {
 EFI_HII_IMAGE_BLOCK Header;
 UINT8 PaletteIndex;
 EFI_HII_IIBT_IMAGE_8BIT_BASE Bitmap;
} EFI_HII_IIBT_IMAGE_8BIT_TRANS_BLOCK;
Version 2.5 April, 2015 1919

Unified Extensible Firmware Interface Specification
Members
Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_8BIT_TRANS.

PaletteIndex

Index of the palette in the palette information.

Bitmap

The bitmap specifies a series of pixels, eight bits per pixel, left-to-right, top-to-bottom.
The number of bytes per bitmap can be calculated as: Width * Height.

Description
This record assigns the 8-bit-per-pixel bitmap data to the ImageIdCurrent identifier using the
specified palette and increment ImageIdCurrent by one. The data in the
EFI_HII_IMAGE_8BIT_TRANS structure is exactly the same as the EFI_HII_IMAGE_8BIT
structure, the difference is how the data is treated.

The bitmap pixel value 0 is the ‘transparency’ value and will not be written to the screen. All the
other bitmap pixel values will be translated to the color specified by Palette.

31.3.7.2.11 EFI_HII_IIBT_DUPLICATE

Summary
Assigns a new character value to a previously defined image.

Prototype
#define EFI_HII_IIBT_DUPLICATE 0x20

typedef struct _EFI_HII_IIBT_DUPLICATE_BLOCK {
 EFI_HII_IMAGE_BLOCK Header;
 EFI_IMAGE_ID ImageId;
} EFI_HII_IIBT_DUPLICATE_BLOCK;

Members
Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_DUPLICATE.

ImageId

The previously defined image ID with the exact same image.

Description
Indicates that the image with image ID ImageValueCurrent has the same image as a previously
defined image ID and increments ImageValueCurrent by one.
1920 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.3.7.2.12 EFI_HII_IIBT_IMAGE_JPEG

Summary
A true-color bitmap is encoded with JPEG image compression.

Prototype
#define EFI_HII_IIBT_IMAGE_JPEG 0x18

typedef struct _EFI_HII_IIBT_JPEG_BLOCK {
EFI_HII_IMAGE_BLOCK Header;
 UINT32 Size;
 UINT8 Data[…];
} EFI_HII_IIBT_JPEG;

Members
Header

Standard image header, where Header.BlockType =
EFI_HII_IIBT_IMAGE_JPEG.

Size

Specifies the size of the JPEG encoded data.

Data

JPEG encoded data with ‘JFIF’ signature at offset 6 in the data block. The JPEG
encoded data, specifies type of encoding and final size of true-color image.

Description
This record assigns the JPEG image data to the ImageIdCurrent identifier and increment
ImageIdCurrent by one. The JPEG decoder is only required to cover the basic JPEG encoding
types, which are produced by standard available paint packages (for example: MSPaint under
Windows from Microsoft). This would include JPEG encoding of high (1:1:1) and medium (4:1:1)
quality with only three components (R,G,B) – no support for the special gray component encoding.

31.3.7.2.13 EFI_HII_IIBT_SKIP1

Summary
Skips image IDs.

Prototype
#define EFI_HII_IIBT_SKIP1 0x22

typedef struct _EFI_HII_IIBT_SKIP1_BLOCK {
 EFI_HII_IMAGE_BLOCK Header;
 UINT8 SkipCount;
} EFI_HII_IIBT_SKIP1_BLOCK;
Version 2.5 April, 2015 1921

Unified Extensible Firmware Interface Specification
Members
Header

Standard image header, where Header.BlockType = EFI_HII_IIBT_SKIP1.

SkipCount

The unsigned 8-bit value to add to ImageIdCurrent.

Description
Increments the current image ID ImageIdCurrent by the number specified.

31.3.7.2.14 EFI_HII_IIBT_SKIP2

Summary
Skips image IDs.

Prototype
#define EFI_HII_IIBT_SKIP2 0x21

typedef struct _EFI_HII_IIBT_SKIP2_BLOCK {
 EFI_HII_IMAGE_BLOCK Header;
 UINT16 SkipCount;
} EFI_HII_IIBT_SKIP2_BLOCK;

Members
Header

Standard image header, where Header.BlockType = EFI_HII_IIBT_SKIP2.

SkipCount

The unsigned 16-bit value to add to ImageIdCurrent.

Description
Increments the current image ID ImageIdCurrent by the number specified.

31.3.7.3 Palette Information

Summary
This section describes the palette information within an image package.

Prototype
typedef struct _EFI_HII_IMAGE_PALETTE_INFO_HEADER {
 UINT16 PaletteCount;
} EFI_HII_IMAGE_PALETTE_INFO_HEADER;
1922 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Members
PaletteCount

Number of palettes.

Description
This fixed header is followed by zero or more variable-length palette information records. The
structures are assigned a number 1 to n.

31.3.7.3.1 Palette Information Records

Summary
A single palette

Prototype
typedef struct _EFI_HII_IMAGE_PALETTE_INFO {
 UINT16 PaletteSize;
 EFI_HII_RGB_PIXEL PaletteValue[…];
} EFI_HII_IMAGE_PALETTE_INFO;

Members
PaletteSize

Size of the palette information.

PaletteValue

Array of color values. Type EFI_HII_RGB_PIXEL is described in "Related
Definitions" in EFI_HII_IIBT_IMAGE_24BIT.

Description
Each palette information record is an array of 24-bit color structures. The first entry
(PaletteValue[0]) corresponds to color 0 in the source image; the second entry
(PaletteValue[1]) corresponds to color 1, etc. Each palette entry is a three byte entry, with the
first byte equal to the blue component of the color, followed by green, and finally red (B,G,R). Each
color component value can vary from 0x00 (color off) to 0xFF (color full on), allowing 16.8 millions
colors that can be specified.

A black & white 1-bit image would have the following palette structure:

Figure 122. Palette Structure of a Black & White, One-Bit Image

A 4-bit image would have the following palette structure:
Version 2.5 April, 2015 1923

Unified Extensible Firmware Interface Specification
Figure 123. Palette Structure of a Four-Bit Image

The image palette must only contain the palette entries specified in the bitmap. The bitmap should
allocate each color index starting from 0x00, so the palette information can be as small as possible.
The following is an example of a palette structure of a 4-bit image that only uses 6 colors:

Figure 124. Palette Structure of a Four-Bit, Six-Color Image

Each palette entry specifies each unique color in the image. The above figure would be typical of
light blue logo on a black background, with several shades of blue for anti-aliasing the blue logo on
the black background.
1924 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.3.8 Forms Package

The Forms package is used to carry forms-based encoding data.

Prototype
typedef struct _EFI_HII_FORM_PACKAGE_HDR {
 EFI_HII_PACKAGE_HEADER Header;
//EFI_IFR_OP_HEADER OpCodeHeader;
//More op-codes follow
} EFI_HII_FORM_PACKAGE_HDR;

Parameters
Header The standard package header, where Header.Type =

EFI_HII_PACKAGE_FORMS.

OpCodeHeader The header for the first of what will be a series of op-codes
associated with the forms data described in this package. The
syntax of the forms can be referenced in Section 31.2.5.

Description
This is a package type designed to represent Internal Forms Representation (IFR) objects as a
collection of op-codes

31.3.8.1 .Binary Encoding
The IFR is a binary encoding for HII-related objects. Every object has (at least) three attributes:

Opcode. The enumeration of all of the different HII-related objects.

Length. The length of the opcode itself (2-127 bytes).

Scope. If set, this opens up a new scope. Certain objects describe attributes or capabilities which
only apply to the current scope rather than the entire form. The scope extends up to the special END
opcode, which marks the end of the current scope.

The binary objects are encoded as byte stream. Every object begins with a standard header
(EFI_IFR_OP_HEADER), which describes the opcode type, length and scope.

The simple binary object consists of a standard header, which contains a single 8-bit opcode, a 7-bit
length and a 1-bit nesting indicator. The length specifies the number of bytes in the opcode,
including the header. The simple binary object may also have zero or more bytes of fixed, object-
specific, data.

Figure 125. Simple Binary Object

When the Scope bit is set, it marks the beginning of a new scope which applies to all subsequent
opcodes until the matching EFI_IFR_END opcode is found to close the scope. Those opcodes may,
in turn, open new scopes as well, creating nested scopes.

Op

Le
ng

th Opcode-Specific
Fixed DataS

co
pe
Version 2.5 April, 2015 1925

Unified Extensible Firmware Interface Specification
31.3.8.2 Standard Headers

31.3.8.2.1 EFI_IFR_OP_HEADER

Summary
Standard opcode header

Prototype
typedef struct _EFI_IFR_OP_HEADER {
 UINT8 OpCode;
 UINT8 Length:7;
 UINT8 Scope:1;
} EFI_IFR_OP_HEADER;

Members
OpCode Defines which type of operation is being described by this

header. See Section 31.3.8.3 for a list of IFR opcodes.

Length Defines the number of bytes in the opcode, including this header.

Scope If this bit is set, the opcode begins a new scope, which is ended by
an EFI_IFR_END opcode.

Description
Forms are represented in a binary format roughly similar to processor instructions.

Each header contains an opcode, a length and a scope indicator.

If Scope indicator is set, the scope exists until it reaches a corresponding EFI_IFR_END opcode.
Scopes may be nested within other scopes.

Related Definitions
typedef UINT16 EFI_QUESTION_ID;
typedef UINT16 EFI_IMAGE_ID;
typedef UINT16 EFI_STRING_ID;
typedef UINT16 EFI_FORM_ID;
typedef UINT16 EFI_VARSTORE_ID;
typedef UINT16 EFI_ANIMATION_ID;

31.3.8.2.2 EFI_IFR_QUESTION_HEADER

Summary
Standard question header.

Prototype
typedef struct _EFI_IFR_QUESTION_HEADER {
 EFI_IFR_STATEMENT_HEADER Header;
 EFI_QUESTION_ID QuestionId;
 EFI_VARSTORE_ID VarStoreId;
1926 April, 2015 Version 2.5

Human Interface Infrastructure Overview
 union {
 EFI_STRING_ID VarName;
 UINT16 VarOffset;
 } VarStoreInfo;
 UINT8 Flags;
} EFI_IFR_QUESTION_HEADER;

Members
Header The standard statement header.

QuestionId The unique value that identifies the particular question being
defined by the opcode. The value of zero is reserved.

Flags A bit-mask that determines which unique settings are active for
this question. See “Related Definitions” below for the meanings
of the individual bits.

VarStoreId Specifies the identifier of a previously declared variable store to
use when storing the question’s value. A value of zero indicates
no associated variable store.

VarStoreInfo If VarStoreId refers to Buffer Storage
(EFI_IFR_VARSTORE or EFI_IFR_VARSTORE_EFI), then
VarStoreInfo contains a 16-bit Buffer Storage offset
(VarOffset). If VarStoreId refers to Name/Value Storage
(EFI_IFR_VARSTORE_NAME_VALUE), then
VarStoreInfo contains the String ID of the name (VarName)
for this name/value pair.

Description
This is the standard header for questions.

Related Definitions
//**
// Flags values
//**
#define EFI_IFR_FLAG_READ_ONLY 0x01
#define EFI_IFR_FLAG_CALLBACK 0x04
#define EFI_IFR_FLAG_RESET_REQUIRED 0x10
#define EFI_IFR_FLAG_RECONNECT_REQUIRED 0x40
#define EFI_IFR_FLAG_OPTIONS_ONLY 0x80

EFI_IFR_FLAG_READ_ONLY The question is read-only

EFI_IFR_FLAG_CALLBACK Designates if a particular opcode is to be treated as
something that will initiate a callback to a registered
driver.
Version 2.5 April, 2015 1927

Unified Extensible Firmware Interface Specification
31.3.8.2.3 EFI_IFR_STATEMENT_HEADER

Summary
Standard statement header.

Prototype
typedef struct _EFI_IFR_STATEMENT_HEADER {
 EFI_STRING_ID Prompt;
 EFI_STRING_ID Help;
} EFI_IFR_STATEMENT_HEADER;

Members
Prompt The string identifier of the prompt string for this particular

statement. The value 0 indicates no prompt string.

Help The string identifier of the help string for this particular
statement. The value 0 indicates no help string.

Description
This is the standard header for statements, including questions.

31.3.8.3 Opcode Reference
This section describes each of the IFR opcode encodings in detail. The table below lists the opcodes
in numeric order while the reference section lists them in alphabetic order.

Table 213. IFR Opcodes

EFI_IFR_FLAG_RESET_REQUIRED If a particular choice is modified, designates that a
return flag will be activated upon exiting of the
browser, which indicates that the changes that the
user requested require a reset to enact.

EFI_IFR_FLAG_RECONNECT_REQ
UIRED

If a particular choice is modified, designates that a
return flag will be activated upon exiting of the
formset or the browser, which indicates that the
changes that the user requested require a reconnect
to enact.

EFI_IFR_FLAG_OPTIONS_ONLY For questions with options, this indicates that only
the options will be available for user choice.

Opcode Value Description

EFI_IFR_FORM_OP 0x01 Form

EFI_IFR_SUBTITLE_OP 0x02 Subtitle statement

EFI_IFR_TEXT_OP 0x03 Static text/image statement

EFI_IFR_IMAGE_OP 0x04 Static image.

EFI_IFR_ONE_OF_OP 0x05 One-of question
1928 April, 2015 Version 2.5

Human Interface Infrastructure Overview
EFI_IFR_CHECKBOX_OP 0x06 Boolean question

EFI_IFR_NUMERIC_OP 0x07 Numeric question

EFI_IFR_PASSWORD_OP 0x08 Password string question

EFI_IFR_ONE_OF_OPTION_OP 0x09 Option

EFI_IFR_SUPPRESS_IF_OP 0x0A Suppress if conditional

EFI_IFR_LOCKED_OP 0x0B Marks statement/question as locked

EFI_IFR_ACTION_OP 0x0C Button question

EFI_IFR_RESET_BUTTON_OP 0x0D Reset button statement

EFI_IFR_FORM_SET_OP 0x0E Form set

EFI_IFR_REF_OP 0x0F Cross-reference statement

EFI_IFR_NO_SUBMIT_IF_OP 0x10 Error checking conditional

EFI_IFR_INCONSISTENT_IF_OP 0x11 Error checking conditional

EFI_IFR_EQ_ID_VAL_OP 0x12 Return true if question value equals
UINT16

EFI_IFR_EQ_ID_ID_OP 0x13 Return true if question value equals
another question value

EFI_IFR_EQ_ID_VAL_LIST_OP 0x14 Return true if question value is found in list
of UINT16s

EFI_IFR_AND_OP 0x15 Push true if both sub-expressions returns
true.

EFI_IFR_OR_OP 0x16 Push true if either sub-expressions returns
true.

EFI_IFR_NOT_OP 0x17 Push false if sub-expression returns true,
otherwise return true.

EFI_IFR_RULE_OP 0x18 Create rule in current form.

EFI_IFR_GRAY_OUT_IF_OP 0x19 Nested statements, questions or options
will not be selectable if expression returns
true.

EFI_IFR_DATE_OP 0x1A Date question.

EFI_IFR_TIME_OP 0x1B Time question.

EFI_IFR_STRING_OP 0x1C String question

EFI_IFR_REFRESH_OP 0x1D Interval for refreshing a question

EFI_IFR_DISABLE_IF_OP 0x1E Nested statements, questions or options
will not be processed if expression returns
true.

EFI_IFR_ANIMATION_OP 0x1F Animation associated with question

statement, form or form set.

EFI_IFR_TO_LOWER_OP 0x20 Convert a string on the expression stack to
lower case.

Opcode Value Description
Version 2.5 April, 2015 1929

Unified Extensible Firmware Interface Specification
EFI_IFR_TO_UPPER_OP 0x21 Convert a string on the expression stack to
upper case.

EFI_IFR_MAP_OP 0x22 Convert one value to another by selecting a
match from a list.

EFI_IFR_ORDERED_LIST_OP 0x23 Set question

EFI_IFR_VARSTORE_OP 0x24 Define a buffer-style variable storage.

EFI_IFR_VARSTORE_NAME_VALUE_OP 0x25 Define a name/value style variable storage.

EFI_IFR_VARSTORE_EFI_OP 0x26 Define a UEFI variable style variable
storage.

EFI_IFR_VARSTORE_DEVICE_OP 0x27 Specify the device path to use for variable
storage.

EFI_IFR_VERSION_OP 0x28 Push the revision level of the UEFI
Specification to which this Forms
Processor is compliant.

EFI_IFR_END_OP 0x29 Marks end of scope.

EFI_IFR_MATCH_OP 0x2A Push TRUE if string matches a pattern.

EFI_IFR_MATCH2_OP 0x64 Push TRUE if string matches a Regular
Expression pattern.

EFI_IFR_GET_OP 0x2B Return a stored value.

EFI_IFR_SET_OP 0x2C Change a stored value.

EFI_IFR_READ_OP 0x2D Provides a value for the current question or
default.

EFI_IFR_WRITE 0x2E Change a value for the current question.

EFI_IFR_EQUAL_OP 0x2F Push TRUE if two expressions are equal.

EFI_IFR_NOT_EQUAL_OP 0x30 Push TRUE if two expressions are not
equal.

EFI_IFR_GREATER_THAN_OP 0x31 Push TRUE if one expression is greater
than another expression.

EFI_IFR_GREATER_EQUAL_OP 0x32 Push TRUE if one expression is greater
than or equal to another expression.

EFI_IFR_LESS_THAN_OP 0x33 Push TRUE if one expression is less than
another expression.

EFI_IFR_LESS_EQUAL_OP 0x34 Push TRUE if one expression is less than
or equal to another expression.

EFI_IFR_BITWISE_AND_OP 0x35 Bitwise-AND two unsigned integers and
push the result.

EFI_IFR_BITWISE_OR_OP 0x36 Bitwise-OR two unsigned integers and
push the result.

EFI_IFR_BITWISE_NOT_OP 0x37 Bitwise-NOT an unsigned integer and push
the result.

EFI_IFR_SHIFT_LEFT_OP 0x38 Shift an unsigned integer left by a number
of bits and push the result.

Opcode Value Description
1930 April, 2015 Version 2.5

Human Interface Infrastructure Overview
EFI_IFR_SHIFT_RIGHT_OP 0x39 Shift an unsigned integer right by a number
of bits and push the result.

EFI_IFR_ADD_OP 0x3A Add two unsigned integers and push the
result.

EFI_IFR_SUBTRACT_OP 0x3B Subtract two unsigned integers and push
the result.

EFI_IFR_MULTIPLY_OP 0x3C Multiply two unsigned integers and push
the result.

EFI_IFR_DIVIDE_OP 0x3D Divide one unsigned integer by another
and push the result.

EFI_IFR_MODULO_OP 0x3E Divide one unsigned integer by another
and push the remainder.

EFI_IFR_RULE_REF_OP 0x3F Evaluate a rule

EFI_IFR_QUESTION_REF1_OP 0x40 Push a question’s value

EFI_IFR_QUESTION_REF2_OP 0x41 Push a question’s value

EFI_IFR_UINT8_OP 0x42 Push an 8-bit unsigned integer

EFI_IFR_UINT16_OP 0x43 Push a 16-bit unsigned integer.

EFI_IFR_UINT32_OP 0x44 Push a 32-bit unsigned integer

EFI_IFR_UINT64_OP 0x45 Push a 64-bit unsigned integer.

EFI_IFR_TRUE_OP 0x46 Push a boolean TRUE.

EFI_IFR_FALSE_OP 0x47 Push a boolean FALSE

EFI_IFR_TO_UINT_OP 0x48 Convert expression to an unsigned integer

EFI_IFR_TO_STRING_OP 0x49 Convert expression to a string

EFI_IFR_TO_BOOLEAN_OP 0x4A Convert expression to a boolean.

EFI_IFR_MID_OP 0x4B Extract portion of string or buffer

EFI_IFR_FIND_OP 0x4C Find a string in a string.

EFI_IFR_TOKEN_OP 0x4D Extract a delimited byte or character string
from buffer or string.

EFI_IFR_STRING_REF1_OP 0x4E Push a string

EFI_IFR_STRING_REF2_OP 0x4F Push a string

EFI_IFR_CONDITIONAL_OP 0x50 Duplicate one of two expressions
depending on result of the first expression.

EFI_IFR_QUESTION_REF3_OP 0x51 Push a question’s value from a different
form.

EFI_IFR_ZERO_OP 0x52 Push a zero

EFI_IFR_ONE_OP 0x53 Push a one

EFI_IFR_ONES_OP 0x54 Push a 0xFFFFFFFFFFFFFFFF.

EFI_IFR_UNDEFINED_OP 0x55 Push Undefined

Opcode Value Description
Version 2.5 April, 2015 1931

Unified Extensible Firmware Interface Specification
Code Definitions
Each of the following sections gives a detailed description of the opcodes’ behavior.

31.3.8.3.1 EFI_IFR_ACTION

Summary
Create an action button.

Prototype
#define EFI_IFR_ACTION_OP 0x0C
typedef struct _EFI_IFR_ACTION {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;
 EFI_STRING_ID QuestionConfig;
} EFI_IFR_ACTION;

typedef struct _EFI_IFR_ACTION_1 {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;
}_EFI_IFR_ACTION_1;

EFI_IFR_LENGTH_OP 0x56 Push length of buffer or string.

EFI_IFR_DUP_OP 0x57 Duplicate top of expression stack

EFI_IFR_THIS_OP 0x58 Push the current question’s value

EFI_IFR_SPAN_OP 0x59 Return first matching/non-matching
character in a string

EFI_IFR_VALUE_OP 0x5A Provide a value for a question

EFI_IFR_DEFAULT_OP 0x5B Provide a default value for a question.

EFI_IFR_DEFAULTSTORE_OP 0x5C Define a Default Type Declaration

EFI_IFR_FORM_MAP_OP 0x5D Create a standards-map form.

EFI_IFR_CATENATE_OP 0x5E Push concatenated buffers or strings.

EFI_IFR_GUID_OP 0x5F An extensible GUIDed op-code

EFI_IFR_SECURITY_OP 0x60 Returns whether current user profile
contains specified setup access privileges.

EFI_IFR_MODAL_TAG_OP 0x61 Specify current form is modal

EFI_IFR_REFRESH_ID_OP 0x62 Establish an event group for refreshing a
forms-based element.

EFI_IFR_WARNING_IF 0x63 Warning conditional

Opcode Value Description
1932 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Members
Header The standard opcode header, where Header.OpCode =

EFI_IFR_ACTION_OP.

Question The standard question header. See
EFI_IFR_QUESTION_HEADER (Section 31.3.8.2.2) for more
information.

QuestionConfig The results string which is in <ConfigResp> format will be
processed when the button is selected by the user.

Description
Creates an action question. When the question is selected, the configuration string specified by
QuestionConfig will be processed. If QuestionConfig is 0 or is not present, then no no
configuration string will be processed. This is useful when using an action button only for the
callback.

If the question is marked read-only (see EFI_IFR_QUESTION_HEADER) then the action question
cannot be selected.

31.3.8.3.2 EFI_IFR_ANIMATION

Summary
Creates an image for a statement or question.

Prototype
#define EFI_IFR_ANIMATION_OP 0x1F
typedef struct _EFI_IFR_ANIMATION {
 EFI_IFR_OP_HEADER Header;
 EFI_ANIMATION_ID Id;
} EFI_IFR_ANIMATION;

Members
Header Standard opcode header, where Header.OpCode is

EFI_IFR_ANIMATION_OP

Id Animation identifier in the HII database.

Description
Associates an animation from the HII database with the current question, statement or form. If the
specified animation does not exist in the HII database.

31.3.8.3.3 EFI_IFR_ADD

Summary
Pops two unsigned integers, adds them and pushes the result.

Prototype
#define EFI_IFR_ADD_OP 0x3a
Version 2.5 April, 2015 1933

Unified Extensible Firmware Interface Specification
typedef struct _EFI_IFR_ADD {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_ADD;

Members
Header Standard opcode header, where Header.OpCode =

EFI_IFR_ADD_OP.

Description
This opcode performs the following actions:

1. Pop two values from the expression stack. The first popped is the right-hand value. The second
popped is the left-hand value.

2. If the two values do not evaluate to unsigned integers, push Undefined.

3. Zero-extend the left-hand and right-hand values to 64-bits.

4. Add the left-hand value to right-hand value.

5. Push the lower 64-bits of the result. Overflow is ignored.

31.3.8.3.4 EFI_IFR_AND

Summary
Pops two booleans, push TRUE if both are TRUE, otherwise push FALSE.

Prototype
#define EFI_IFR_AND_OP 0x15
typedef struct _EFI_IFR_AND {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_AND;

Members
Header The standard opcode header, where Header.OpCode =

EFI_IFR_AND_OP.

Description
This opcode performs the following actions:

1. Pop two expressions from the expression stack.

2. If the two expressions cannot be evaluated as boolean, push Undefined.

3. If both expressions evaluate to TRUE, then push TRUE. Otherwise, push FALSE.

31.3.8.3.5 EFI_IFR_BITWISE_AND

Summary
Pops two unsigned integers, perform bitwise AND and push the result.
1934 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Prototype
#define EFI_IFR_BITWISE_AND_OP 0x35
typedef struct _EFI_IFR_BITWISE_AND {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_BITWISE_AND;

Members
Header The standard opcode header, where Header.OpCode =

EFI_IFR_BITWISE_AND_OP.

Description
This opcode performs the following actions:

1. Pop two expressions from the expression stack.

2. If the two expressions cannot be evaluated as unsigned integers, push Undefined.

3. Otherwise, zero-extend the unsigned integers to 64-bits.

4. Perform a bitwise-AND on the two values.

5. Push the result.

31.3.8.3.6 EFI_IFR_BITWISE_NOT

Summary
Pop an unsigned integer, perform a bitwise NOT and push the result.

Prototype
#define EFI_IFR_BITWISE_NOT_OP 0x37
typedef struct _EFI_IFR_BITWISE_NOT {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_BITWISE_NOT;

Members
Header The standard opcode header, where Header.OpCode =

EFI_IFR_BITWISE_NOT_OP.

Description
This opcode performs the following actions:

1. Pop an expression from the expression stack.

2. If the expression cannot be evaluated as an unsigned integer, push Undefined.

3. Otherwise, zero-extend the unsigned integer to 64-bits.

4. Perform a bitwise-NOT on the value.

5. Push the result.
Version 2.5 April, 2015 1935

Unified Extensible Firmware Interface Specification
31.3.8.3.7 EFI_IFR_BITWISE_OR

Summary
Pops two unsigned integers, perform bitwise OR and push the result.

Prototype
#define EFI_IFR_BITWISE_OR_OP 0x36
typedef struct _EFI_IFR_BITWISE_OR {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_BITWISE_OR;

Members
Header

Standard opcode header, where OpCode is EFI_IFR_BITWISE_OR_OP.

Description
This opcode performs the following actions:

1. Pop two expressions from the expression stack.

2. If the two expressions cannot be evaluated as unsigned integers, push Undefined.

3. Otherwise, zero-extend the unsigned integers to 64-bits.

4. Perform a bitwise-OR of the two values.

5. Push the result.

31.3.8.3.8 EFI_IFR_CATENATE

Summary
Pops two buffers or strings, concatenates them and pushes the result.

Prototype
#define EFI_IFR_CATENATE_OP 0x5e
typedef struct _EFI_IFR_CATENATE {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_CATENATE;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_CATENATE_OP.

Description
This opcode performs the following actions:

1. Pop two expressions from the expression stack. The first expression popped is the left value and
the second value popped is the right value.

2. If the left or right values cannot be evaluated as a string or a buffer, push Undefined. If the left
or right values are of different types, then push Undefined.
1936 April, 2015 Version 2.5

Human Interface Infrastructure Overview
3. If the left and right values are strings, push a new string which contains the contents of the left
string (without the NULL terminator) followed by the contents of the right string on to the
expression stack.

4. If the left and right values are buffers, push a new buffer that contains the contents of the left
buffer followed by the contents of the right buffer on to the expression stack.

31.3.8.3.9 EFI_IFR_CHECKBOX

Summary
Creates a boolean checkbox.

Prototype
#define EFI_IFR_CHECKBOX_OP 0x06
typedef struct _EFI_IFR_CHECKBOX {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;
 UINT8 Flags;
} EFI_IFR_CHECKBOX;

Members
Header The standard question header, where Header.OpCode =

EFI_IFR_CHECKBOX_OP.

Question The standard question header. See
EFI_IFR_QUESTION_HEADER (Section 31.3.8.2.2) for more
information.

Flags Flags that describe the behavior of the question. All undefined
bits should be zero. See EFI_IFR_CHECKBOX_x in "Related
Definitions" for more information.

Description
Creates a Boolean checkbox question and adds it to the current form. The checkbox has two values:
FALSE if the box is not checked and TRUE if it is.

There are three ways to specify defaults for this question: the Flags field (lowest priority), one or
more nested EFI_IFR_ONE_OF_OPTION, or nested EFI_IFR_DEFAULT (highest priority).

An image may be associated with the question using a nested EFI_IFR_IMAGE. An animation
may be associated with the option using a nested EFI_IFR_ANIMATION.

Related Definitions
#define EFI_IFR_CHECKBOX_DEFAULT 0x01
#define EFI_IFR_CHECKBOX_DEFAULT_MFG 0x02

31.3.8.3.10 EFI_IFR_CONDITIONAL

Summary
Pops two values and a boolean, pushes one of the values depending on the boolean.
Version 2.5 April, 2015 1937

Unified Extensible Firmware Interface Specification
Prototype
#define EFI_IFR_CONDITIONAL_OP 0x50
typedef struct _EFI_IFR_CONDITIONAL {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_CONDITIONAL;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_CONDITIONAL_OP.

Description
This opcode performs the following actions:

1. Pop three values from the expression stack. The first value popped is the right value. The second
expression popped is the middle value. The last expression popped is the left value.

2. If the left value cannot be evaluated as a boolean, push Undefined.

3. If the left expression evaluates to TRUE, push the right value.

4. Otherwise, push the middle value.

31.3.8.3.11 EFI_IFR_DATE

Summary
Create a date question.

Prototype
#define EFI_IFR_DATE_OP 0x1A
typedef struct _EFI_IFR_DATE {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;
 UINT8 Flags;
} EFI_IFR_DATE;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. Header.OpCode =
EFI_IFR_DATE_OP.

Question The standard question header. See Section 31.3.8.2.2 for more
information.

Flags Flags that describe the behavior of the question. All undefined
bits should be zero.

 #define EFI_QF_DATE_YEAR_SUPPRESS 0x01
 #define EFI_QF_DATE_MONTH_SUPPRESS 0x02
 #define EFI_QF_DATE_DAY_SUPPRESS 0x04
 #define EFI_QF_DATE_STORAGE 0x30
1938 April, 2015 Version 2.5

Human Interface Infrastructure Overview
For QF_DATE_STORAGE, there are currently three valid values:

 #define QF_DATE_STORAGE_NORMAL 0x00
 #define QF_DATE_STORAGE_TIME 0x10
 #define QF_DATE_STORAGE_WAKEUP 0x20

Description
Create a Date question (see Section 31.2.5.4.6) and add it to the current form.

There are two ways to specify defaults for this question: one or more nested
EFI_IFR_ONE_OF_OPTION (lowest priority) or nested EFI_IFR_DEFAULT (highest priority).
An image may be associated with the option using a nested EFI_IFR_IMAGE. An animation may
be associated with the question using a nested EFI_IFR_ANIMATION.

31.3.8.3.12 EFI_IFR_DEFAULT

Summary
Provides a default value for the current question

Prototype
#define EFI_IFR_DEFAULT_OP 0x5b
typedef struct _EFI_IFR_DEFAULT {
 EFI_IFR_OP_HEADER Header;
 UINT16 DefaultId;
 UINT8 Type;
 EFI_IFR_TYPE_VALUE Value;
} EFI_IFR_DEFAULT;

typedef struct _EFI_IFR_DEFAULT_2 {
 EFI_IFR_OP_HEADER Header;
 UINT16 DefaultId;
 UINT8 Type;
} EFI_IFR_DEFAULT_2;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_DEFAULT_OP.

DefaultId Identifies the default store for this value. The default store must
have previously been created using
EFI_IFR_DEFAULTSTORE.

Type The type of data in the Value field. See EFI_IFR_TYPE_x in
EFI_IFR_ONE_OF_OPTION.

Value The default value. The actual size of this field depends on Type.
If Type is EFI_IFR_TYPE_OTHER, then the default value is
provided by a nested EFI_IFR_VALUE.
Version 2.5 April, 2015 1939

Unified Extensible Firmware Interface Specification
Description
This opcode specifies a default value for the current question. There are two forms. The first
(EFI_IFR_DEFAULT) assumes that the default value is a constant, embedded directly in the Value
member. The second (EFI_IFR_DEFAULT_2) assumes that the default value is specified using a
nested EFI_IFR_VALUE opcode.

31.3.8.3.13 EFI_IFR_DEFAULTSTORE

Summary
Provides a declaration for the type of default values that a question can be associated with.

Prototype
#define EFI_IFR_DEFAULTSTORE_OP 0x5c
typedef struct _EFI_IFR_DEFAULTSTORE {
 EFI_IFR_OP_HEADER Header;
 EFI_STRING_ID DefaultName;
 UINT16 DefaultId;
} EFI_IFR_DEFAULTSTORE;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_DEFAULTSTORE_OP

DefaultName A string token reference for the human readable string associated
with the type of default being declared.

DefaultId The default identifier, which is unique within the current form
set. The default identifier creates a group of defaults. See Section
for the default identifier ranges.

Description
Declares a class of default which can then have question default values associated with.

An EFI_IFR_DEFAULTSTORE with a specified DefaultId must appear in the IFR before it can
be referenced by an EFI_IFR_DEFAULT.

31.3.8.3.14 EFI_IFR_DISABLE_IF

Summary
Disable all nested questions and expressions if the expression evaluates to TRUE.

Prototype
#define EFI_IFR_DISABLE_IF_OP 0x1e
typedef struct _EFI_IFR_DISABLE_IF {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_DISABLE_IF;
1940 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. Header.OpCode =
EFI_IFR_DISABLE_IF_OP.

Description
All nested statements, questions, options or expressions will not be processed if the expression
appearing as the first nested object evaluates to TRUE. If the expression consists of more than a
single opcode, then the first opcode in the expression must have the Scope bit set and the expression
must end with EFI_IFR_END.

When this opcode appears under a form set, the expression must only rely on constants. When this
opcode appears under a form, the expression may rely on question values in the same form which are
not inside of an EFI_DISABLE_IF expression.

31.3.8.3.15 EFI_IFR_DIVIDE

Summary
Pops two unsigned integers, divide one by the other and pushes the result.

Prototype
#define EFI_IFR_DIVIDE_OP 0x3d
typedef struct _EFI_IFR_DIVIDE {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_DIVIDE;

Members
Header

Standard opcode header, where OpCode is EFI_IFR_DIVIDE.

Description
1. Pop two expressions from the expression stack. The first popped is the right-hand expression.

The second popped is the left-hand expression.

2. If the two expressions do not evaluate to unsigned integers, push Undefined. If the right-hand
expression is equal to zero, push Undefined.

3. Zero-extend the left-hand and right-hand expressions to 64-bits.

4. Divide the left-hand value to right-hand expression.

5. Push the result.

31.3.8.3.16 EFI_IFR_DUP

Summary
Duplicate the top value on the expression stack.
Version 2.5 April, 2015 1941

Unified Extensible Firmware Interface Specification
Prototype
#define EFI_IFR_DUP_OP 0x57
typedef struct _EFI_IFR_DUP {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_DUP;

Members
Header Standard opcode header, where OpCode is EFI_IFR_DUP_OP.

Description
Duplicate the top expression on the expression stack.

Note: This opcode is usually used as an optimization by the tools to help eliminate common sub-
expression calculation and make smaller expressions.

31.3.8.3.17 EFI_IFR_END

Summary
End of the current scope.

Prototype
#define EFI_IFR_END_OP 0x29
typedef struct _EFI_IFR_END {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_END;

Members
Header Standard opcode header, where OpCode is EFI_IFR_END_OP.

Description
Marks the end of the current scope.

31.3.8.3.18 EFI_IFR_EQUAL

Summary
Pop two values, compare and push TRUE if equal, FALSE if not.

Prototype
#define EFI_IFR_EQUAL_OP 0x2f
typedef struct _EFI_IFR_EQUAL {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_EQUAL;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_EQUAL_OP.
1942 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Description
The opcode performs the following actions:

1. Pop two values from the expression stack.

2. If the two values are not strings, Booleans or unsigned integers, push Undefined.

3. If the two values are of different types, push Undefined.

4. Compare the two values. Strings are compared lexicographically.

5. If the two values are equal then push TRUE on the expression stack. If they are not equal, push
FALSE.

31.3.8.3.19 EFI_IFR_EQ_ID_ID

Summary
Push TRUE if the two questions have the same value or FALSE if they are not equal.

Prototype
#define EFI_IFR_EQ_ID_ID_OP 0x13
typedef struct _EFI_IFR_EQ_ID_ID {
 EFI_IFR_OP_HEADER Header;
 EFI_QUESTION_ID QuestionId1;
 EFI_QUESTION_ID QuestionId2;
} EFI_IFR_EQ_ID_ID;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_EQ_ID_ID_OP.

QuestionId1, QuestionId2

Specifies the identifier of the questions whose values will be
compared.

Description
Evaluate the values of the specified questions (QuestionId1, QuestionId2). If the two
values cannot be evaluated or cannot be converted to comparable types, then push Undefined. If they
are equal, push TRUE. Otherwise push FALSE.

31.3.8.3.20 EFI_IFR_EQ_ID_VAL_LIST

Summary
Push TRUE if the question’s value appears in a list of unsigned integers.

Prototype
#define EFI_IFR_EQ_ID_VAL_LIST_OP 0x14
typedef struct _EFI_IFR_EQ_ID_VAL_LIST {
 EFI_IFR_OP_HEADER Header;
 EFI_QUESTION_ID QuestionId;
Version 2.5 April, 2015 1943

Unified Extensible Firmware Interface Specification
 UINT16 ListLength;
 UINT16 ValueList[1];
} EFI_IFR_EQ_ID_VAL_LIST;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_EQ_ID_VAL_LIST_OP.

QuestionId Specifies the identifier of the question whose value will be
compared.

ListLength Number of entries in ValueList.

ValueList Zero or more unsigned integer values to compare against.

Description
Evaluate the value of the specified question (QuestionId). If the specified question cannot be
evaluated as an unsigned integer, then push Undefined. If the value can be found in ValueList,
then push TRUE. Otherwise push FALSE.

31.3.8.3.21 EFI_IFR_EQ_ID_VAL

Summary
Push TRUE if a question’s value is equal to a 16-bit unsigned integer, otherwise FALSE.

Prototype
#define EFI_IFR_EQ_ID_VAL_OP 0x12
typedef struct _EFI_IFR_EQ_ID_VAL {
 EFI_IFR_OP_HEADER Header;
 EFI_QUESTION_ID QuestionId;
 UINT16 Value;
} EFI_IFR_EQ_ID_VAL;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_EQ_ID_VAL_OP.

QuestionId Specifies the identifier of the question whose value will be
compared.

Value Unsigned integer value to compare against.

Description
Evaluate the value of the specified question (QuestionId). If the specified question cannot be
evaluated as an unsigned integer, then push Undefined. If they are equal, push TRUE. Otherwise
push FALSE.
1944 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.3.8.3.22 EFI_IFR_FALSE

Summary
Push a FALSE on to the expression stack.

Prototype
#define EFI_IFR_FALSE_OP 0x47
typedef struct _EFI_IFR_FALSE {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_FALSE;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_FALSE_OP

Description
Push a FALSE on to the expression stack.

31.3.8.3.23 EFI_IFR_FIND

Summary
Pop two strings and an unsigned integer, find one string in the other and the index where found.

Prototype
#define EFI_IFR_FIND_OP 0x4c
typedef struct _EFI_IFR_FIND {
 EFI_IFR_OP_HEADER Header;
 UINT8 Format;
} EFI_IFR_FIND;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_FIND_OP.

Format The following flags govern the matching criteria:

Related Definitions
#define EFI_IFR_FF_CASE_SENSITIVE 0x00
#define EFI_IFR_FF_CASE_INSENSITIVE 0x01

Description
This opcode performs the following actions:
Version 2.5 April, 2015 1945

Unified Extensible Firmware Interface Specification
1. Pop three expressions from the expression stack. The first expression popped is the right-hand
value and the second value popped is the middle value and the last value popped is the left-hand
value.

2. If the left-hand or middle values cannot be evaluated as a string, push Undefined. If the third
expression cannot be evaluated as an unsigned integer, push Undefined.

3. The left-hand value is the string to search. The middle value is the string to compare with. The
right-hand expression is the zero-based index of the search. I

4. If the string is found, push the zero-based index of the found string.

5. Otherwise, if the string is not found or the right-hand value specifies a value which is greater-
than or equal to the length of the left-hand value’s string, push 0xFFFFFFFFFFFFFFFF.

31.3.8.3.24 EFI_IFR_FORM

Summary
Creates a form.

Prototype
#define EFI_IFR_FORM_OP 0x01
typedef struct _EFI_IFR_FORM {
 EFI_IFR_OP_HEADER Header;
 EFI_FORM_ID FormId;
 EFI_STRING_ID FormTitle;
} EFI_IFR_FORM;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. Header.OpCode =
EFI_IFR_FORM_OP.

FormId The form identifier, which uniquely identifies the form within the
form set. The form identifier, along with the device path and form
set GUID, uniquely identifies a form within a system.

FormTitle The string token reference to the title of this particular form.

Description
A form is the encapsulation of what amounts to a browser page. The header defines a FormId,
which is referenced by the form set, among others. It also defines a FormTitle, which is a string
to be used as the title for the form.

31.3.8.3.25 EFI_IFR_FORM_MAP

Summary
Creates a standards map form.

Prototype
#define EFI_IFR_FORM_MAP_OP 0x5D
1946 April, 2015 Version 2.5

Human Interface Infrastructure Overview
typedef struct _EFI_IFR_FORM_MAP_METHOD {
 EFI_STRING_ID MethodTitle;
 EFI_GUID MethodIdentifier;
} EFI_IFR_FORM_MAP_METHOD;

typedef struct _EFI_IFR_FORM_MAP {
 EFI_IFR_OP_HEADER Header;
 EFI_FORM_ID FormId;
 //EFI_IFR_FORM_MAP_METHOD Methods[];
} EFI_IFR_FORM_MAP;

Parameters
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. Header.OpCode =
EFI_IFR_FORM_MAP_OP.

FormId The unique identifier for this particular form.

Methods One or more configuration method’s name and unique identifier.

MethodTitle The string identifier which provides the human-readable name of
the configuration method for this standards map form.

MethodIdentifier Identifier which uniquely specifies the configuration methods
associated with this standards map form. See “Related
Definitions” for current identifiers.

Description
A standards map form describes how the configuration settings are represented for a configuration
method identified by MethodIdentifier. It also defines a FormTitle, which is a string to be
used as the title for the form.

Related Definitions
#define EFI_HII_STANDARD_FORM_GUID \

{ 0x3bd2f4ec, 0xe524, 0x46e4, \
{ 0xa9, 0xd8, 0x51, 0x01, 0x17, 0x42, 0x55, 0x62 } }

An EFI_IFR_FORM_MAP where the method identifier is EFI_HII_STANDARD_FORM_GUID is
semantically identical to a normal EFI_IFR_FORM.

31.3.8.3.26 EFI_IFR_FORM_SET

Summary
The form set is a collection of forms that are intended to describe the pages that will be displayed to
the user.

Prototype
#define EFI_IFR_FORM_SET_OP 0x0E

typedef struct _EFI_IFR_FORM_SET {
Version 2.5 April, 2015 1947

Unified Extensible Firmware Interface Specification
 EFI_IFR_OP_HEADER Header;
 EFI_GUID Guid;
 EFI_STRING_ID FormSetTitle;
 EFI_STRING_ID Help;
 UINT8 Flags;
//EFI_GUID ClassGuid[…];
} EFI_IFR_FORM_SET;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. Header.OpCode =
EFI_IFR_FORM_SET_OP.

Guid The unique GUID value associated with this particular form set.
Type EFI_GUID is defined in
InstallProtocolInterface() in this specification.

FormSetTitle The string token reference to the title of this particular form set.

Help The string token reference to the help of this particular form set.

Flags Flags which describe additional features of the form set. Bits 0:1
= number of members in ClassGuid. Bits 2:7 = Reserved.
Should be set to zero.

ClassGuid Zero to three class identifiers. The standard class identifiers are
described in
EFI_HII_FORM_BROWSER2_PROTOCOL.SendForm().
They do not need to be unique in the form set.

Description
The form set consists of a header and zero or more forms.

31.3.8.3.27 EFI_IFR_GET

Summary
Return a stored value.

Prototype
#define EFI_IFR_GET_OP 0x2B
typedef struct _EFI_IFR_GET {
 EFI_IFR_OP_HEADER Header;
 EFI_VARSTORE_ID VarStoreId;
 union {
 EFI_STRING_ID VarName;
 UINT16 VarOffset;
 } VarStoreInfo;
 UINT8 VarStoreType;
} EFI_IFR_GET;
1948 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Parameters
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. Header.OpCode =
EFI_IFR_GET_OP.

VarStoreId Specifies the identifier of a previously declared variable store to
use when retrieving the value.

VarStoreInfo Depending on the type of variable store selected, this contains
either a 16-bit Buffer Storage offset (VarOffset) or a Name/
Value or EFI Variable name (VarName).

VarStoreType Specifies the type used for storage. The storage types
EFI_IFR_TYPE_x are defined in
EFI_IFR_ONE_OF_OPTION.

Description
This operator takes the value from storage and pushes it on to the expression stack. If the value could
not be retrieved from storage, then Undefined is pushed on to the expression stack.

The type of value retrieved from storage depends on the setting of VarStoreType, as described in
the following table:

Table 214. VarStoreType Descriptions

VarStoreType Storage Description

EFI_IFR_TYPE_NUM_SIZE_8 8-bit unsigned integer

EFI_IFR_TYPE_NUM_SIZE_16 16-bit unsigned integer

EFI_IFR_TYPE_NUM_SIZE_32 32-bit unsigned integer

EFI_IFR_TYPE_NUM_SIZE_64 64-bit unsigned integer

EFI_IFR_TYPE_BOOLEAN 8-bit boolean (0 = false, 1 = true)

EFI_IFR_TYPE_TIME EFI_HII_TIME

EFI_IFR_TYPE_DATE EFI_HII_DATE

EFI_IFR_TYPE_STRING Null-terminated string

EFI_IFR_TYPE_OTHER Invalid

EFI_IFR_TYPE_ACTION Null-Terminated string

EFI_IFR_TYPE_UNDEFINED Invalid

EFI_IFR_TYPE_BUFFER Buffer

 EFI_IFR_TYPE_REF EFI_HII_REF
Version 2.5 April, 2015 1949

Unified Extensible Firmware Interface Specification
31.3.8.3.28 EFI_IFR_GRAY_OUT_IF

Summary
Creates a group of statements or questions which are conditionally grayed-out.

Prototype
#define EFI_IFR_GRAY_OUT_IF_OP 0x19
typedef struct _EFI_IFR_GRAY_OUT_IF {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_GRAY_OUT_IF;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. Header.OpCode =
EFI_IFR_GRAY_OUT_IF_OP.

Description
All nested statements or questions will be grayed out (not selectable and visually distinct) if the
expression appearing as the first nested object evaluates to TRUE. If the expression consists of more
than a single opcode, then the first opcode in the expression must have the Scope bit set and the
expression must end with EFI_IFR_END.

Different browsers may support this option to varying degrees. For example, HTML has no similar
construct so it may not support this facility.

31.3.8.3.29 EFI_IFR_GREATER_EQUAL

Summary
Pop two values, compare, push TRUE if first is greater than or equal the second, otherwise push
FALSE.

Prototype
#define EFI_IFR_GREATER_EQUAL_OP 0x32
typedef struct _EFI_IFR_GREATER_EQUAL {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_GREATER_EQUAL;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_GREATER_EQUAL_OP.

Description
This opcode performs the following actions:

1. Pop two values from the expression stack. The first value popped is the right-hand value and the
second value popped is the left-hand value.

2. If the two values do not evaluate to string, boolean or unsigned integer, push Undefined.
1950 April, 2015 Version 2.5

Human Interface Infrastructure Overview
3. If the two values do not evaluate to the same type, push Undefined.

4. Compare the two values. Strings are compared lexicographically.

5. If the left-hand value is greater than or equal to the right-hand value, push TRUE. Otherwise
push FALSE.

31.3.8.3.30 EFI_IFR_GREATER_THAN

Summary
Pop two values, compare, push TRUE if first is greater than the second, otherwise push FALSE.

Prototype
#define EFI_IFR_GREATER_THAN_OP 0x31
typedef struct _EFI_IFR_GREATER_THAN {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_GREATER_THAN;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_GREATER_THAN_OP

Description
This opcode performs the following actions:

1. Pop two values from the expression stack. The first value popped is the right-hand value and the
second value popped is the left-hand value.

2. If the two values do not evaluate to string, boolean or unsigned integer, push Undefined.

3. If the two values do not evaluate to the same type, push Undefined.

4. Compare the two values. Strings are compared lexicographically.

5. If the left-hand value is greater than the right-hand value, push TRUE. Otherwise push FALSE.

31.3.8.3.31 EFI_IFR_GUID

Summary
A GUIDed operation. This op-code serves as an extensible op-code which can be defined by the
Guid value to have various functionality. It should be noted that IFR browsers or scripts which
cannot interpret the meaning of this GUIDed op-code will skip it.

Prototype
#define EFI_IFR_GUID_OP 0x5F
typedef struct _EFI_IFR_GUID {
 EFI_IFR_OP_HEADER Header;
 EFI_GUID Guid;
//Optional Data Follows
} EFI_IFR_GUID;
Version 2.5 April, 2015 1951

Unified Extensible Firmware Interface Specification
Parameters
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_GUID_OP

Guid The GUID value for this op-code. This field is intended to define
a particular type of special-purpose function, and the format of
the data which immediately follows the Guid field (if any) is
defined by that particular GUID.

31.3.8.3.32 EFI_IFR_IMAGE

Summary
Creates an image for a statement or question.

Prototype
#define EFI_IFR_IMAGE_OP 0x04
typedef struct _EFI_IFR_IMAGE {
 EFI_IMAGE_ID Id;
} EFI_IFR_IMAGE;

Members
Id Image identifier in the HII database.

Description
Specifies the image within the HII database.

31.3.8.3.33 EFI_IFR_INCONSISTENT_IF

Summary
Creates a validation expression and error message for a question.

Prototype
#define EFI_IFR_INCONSISTENT_IF_OP 0x011
typedef struct _EFI_IFR_INCONSISTENT_IF {
 EFI_IFR_OP_HEADER Header;
 EFI_STRING_ID Error;
} EFI_IFR_INCONSISTENT_IF;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. Header.OpCode =
EFI_IFR_INCONSISTENT_IF_OP.

Error The string token reference to the string that will be used for the
consistency check message.
1952 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Description
This tag uses a Boolean expression to allow the IFR creator to check options in a richer manner than
provided by the question tags themselves. For example, this tag might be used to validate that two
options are not using the same address or that the numbers that were entered align to some pattern
(such as leap years and February in a date input field). The tag provides a string to be used in a error
display to alert the user to the issue. Inconsistency tags will be evaluated when the user traverses
from tag to tag. The user should not be allowed to submit the results of a form inconsistency.

31.3.8.3.34 EFI_IFR_LENGTH

Summary
Pop a string or buffer, push its length.

Prototype
#define EFI_IFR_LENGTH_OP 0x56
typedef struct _EFI_IFR_LENGTH {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_LENGTH;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_LENGTH_OP.

Description
This opcode performs the following actions:

1. Pop a value from the expression stack.

2. If the value cannot be evaluated as a buffer or string, then push Undefined.

3. If the value can be evaluated as a buffer, push the length of the buffer, in bytes.

4. If the value can be evaluated as a string, push the length of the string, in characters.

31.3.8.3.35 EFI_IFR_LESS_EQUAL

Summary
Pop two values, compare, push TRUE if first is less than or equal to the second, otherwise push
FALSE.

Prototype
#define EFI_IFR_LESS_EQUAL_OP 0x34
typedef struct _EFI_IFR_LESS_EQUAL {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_LESS_EQUAL;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_LESS_EQUAL_OP.
Version 2.5 April, 2015 1953

Unified Extensible Firmware Interface Specification
Description
This opcode performs the following actions:

1. Pop two values from the expression stack. The first value popped is the right-hand value and the
second value popped is the left-hand value.

2. If the two values do not evaluate to string, boolean or unsigned integer, push Undefined.

3. If the two values do not evaluate to the same type, push Undefined.

4. Compare the two values. Strings are compared lexicographically.

5. If the left-hand value is less than or equal to the right-hand value, push TRUE. Otherwise push
FALSE.

31.3.8.3.36 EFI_IFR_LESS_THAN

Summary
Pop two values, compare, push TRUE if the first is less than the second, otherwise push FALSE.

Prototype
#define EFI_IFR_LESS_THAN_OP 0x33
typedef struct _EFI_IFR_LESS_THAN {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_LESS_THAN;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_LESS_THAN_OP.

Description
This opcode performs the following actions:

1. Pop two values from the expression stack. The first value popped is the right-hand value and the
second value popped is the left-hand value.

2. If the two values do not evaluate to string, boolean or unsigned integer, push Undefined.

3. If the two values do not evaluate to the same type, push Undefined.

4. Compare the two values. Strings are compared lexicographically.

5. If the left-hand value is less than the right-hand value, push TRUE. Otherwise push FALSE.

31.3.8.3.37 EFI_IFR_LOCKED

Summary
Specifies that the statement or question is locked.

Prototype
#define EFI_IFR_LOCKED_OP 0x0B
typedef struct _EFI_IFR_LOCKED {
 EFI_IFR_OP_HEADER Header;
1954 April, 2015 Version 2.5

Human Interface Infrastructure Overview
} EFI_IFR_LOCKED;

Parameters
Header Standard opcode header, where Header.Opcode is

EFI_IFR_LOCKED_OP.

Members
None

Description
The presence of EFI_IFR_LOCKED indicates that the statement or question should not be modified
by a Forms Editor.

31.3.8.3.38 EFI_IFR_MAP

Summary
Pops value, compares against an array of comparison values, pushes the corresponding result value.

Prototype
#define EFI_IFR_MAP_OP 0x22
typedef struct _EFI_IFR_MAP {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_MAP;

Parameters
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_MAP_OP

Description
This operator contains zero or more expression pairs nested within its scope. Each expression pair
contains a match expression and a return expression.

This opcode performs the following actions:

1. This operator pops a single value from the expression stack.

2. Compare this value against the evaluated result of each of the match expressions.

3. If there is a match, then the evaluated result of the corresponding return expression is pushed on
to the expression stack.

4. If there is no match, then Undefined is pushed.

31.3.8.3.39 EFI_IFR_MATCH

Summary
Pop a source string and a pattern string, push TRUE if the source string matches the pattern specified
by the pattern string, otherwise push FALSE.
Version 2.5 April, 2015 1955

Unified Extensible Firmware Interface Specification
Prototype
#define EFI_IFR_MATCH_OP 0x2a
typedef struct _EFI_IFR_MATCH {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_MATCH;

Members
Header Standard opcode header, where Header.Opcode is

EFI_IFR_MATCH_OP.

Description
1. Pop two values from the expression stack. The first value popped is the string and the second

value popped is the pattern.

2. If the string or the pattern cannot be evaluated as a string, then push Undefined.

3. Process the string and pattern using the MetaiMatch function of the
EFI_UNICODE_COLLATION2_PROTOCOL.

4. If the result is TRUE, then push TRUE.

5. If the result is FALSE, then push FALSE.

31.3.8.3.40 EFI_IFR_MID

Summary
Pop a string or buffer and two unsigned integers, push an extracted portion of the string or buffer.

Prototype
#define EFI_IFR_MID_OP 0x4b
typedef struct _EFI_IFR_MID {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_MID;

Members
Header Standard opcode header, where OpCode is EFI_IFR_MID_OP.

Description
1. Pop three values from the expression stack. The first value popped is the right value and the

second value popped is the middle value and the last expression popped is the left value.

2. If the left value cannot be evaluated as a string or a buffer, push Undefined. If the middle or right
value cannot be evaluated as unsigned integers, push Undefined.

3. If the left value is a string, then the middle value is the 0-based index of the first character in the
string to extract and the right value is the length of the string to extract. If the right value is zero
or the middle value is greater than or equal the string’s length, then push an Empty string. Push
the extracted string on the expression stack. If the right value would cause extraction to extend
beyond the end of the string, then only the characters up to and include the last character of the
string are in the pushed result.
1956 April, 2015 Version 2.5

Human Interface Infrastructure Overview
4. If the left value is a buffer, then the middle value is the 0-based index of the first byte in the
buffer to extract and the right value is the length of the buffer to extract. If the right value is zero
or the middle value is greater than the buffer’s length, then push an empty buffer. Push the
extracted buffer on the expression stack. If the right value would cause extraction to extend
beyond the end of the buffer, then only the bytes up to and include the last byte of the buffer are
in the pushed result.

31.3.8.3.41 EFI_IFR_MODAL_TAG

Summary
 Specify that the current form is a modal form.

Prototype
#define EFI_IFR_MODAL_TAG_OP 0x61
typedef struct _EFI_IFR_MODAL_TAG {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_MODAL_TAG;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_MODAL_TAG_OP.

Description
When this opcode is present within the scope of a form, the form is modal; if the opcode is not
present, the form is not modal.

A “modal” form is one that requires specific user interaction before it is deactivated. Examples of
modal forms include error messages or confirmation dialogs.

When a modal form is activated, it is also selected. A modal form is deactivated only when one of
the following occurs:

• The user chooses a “Navigate To Form” behavior (defined in Section 31.2.10.1.2, “Selected
Form”). Note that this is distinct from the “Navigate Forms” behavior.

• A question in the form requires callback, and the callback returns one of the following
ActionRequest values (defined in
EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack()):
— EFI_BROWSER_ACTION_REQUEST_RESET
— EFI_BROWSER_ACTION_REQUEST_SUBMIT
— EFI_BROWSER_ACTION_REQUEST_EXIT
— EFI_BROWSER_ACTION_REQUEST_FORM_SUBMIT_EXIT
— EFI_BROWSER_ACTION_REQUEST_FORM_DISCARD_EXIT

A modal form cannot be deactivated using other navigation behaviors, including:

• Navigate Forms

• Exit Browser/Discard All (except when initiated by a callback as indicated above)

• Exit Browser/Submit All (except when initiated by a callback as indicated above)
Version 2.5 April, 2015 1957

Unified Extensible Firmware Interface Specification
• Exit Browser/Discard All/Reset Platform (except when initiated by a callback as indicated
above)

31.3.8.3.42 EFI_IFR_MODULO

Summary
Pop two unsigned integers, divide one by the other and push the remainder.

Prototype
#define EFI_IFR_MODULO_OP 0x3e
typedef struct _EFI_IFR_MODULO {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_MODULO;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_MODULO_OP.

Description
This opcode performs the following actions:

1. Pop two values from the expression stack. The first value popped is the right-hand value and the
second value popped is the left-hand value.

2. If the two values do not evaluate to unsigned integers, push Undefined. If the right-hand value to
0, push Undefined.

3. Zero-extend the values to 64-bits. Then, divide the left-hand value by the right-hand value.

4. Push the difference between the left-hand value and the product of the right-hand value and the
calculated quotient.

31.3.8.3.43 EFI_IFR_MULTIPLY

Summary
Multiply one unsigned integer by another and push the result.

Prototype
#define EFI_IFR_MULTIPLY_OP 0x3c
typedef struct _EFI_IFR_MULTIPLY {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_MULTPLY;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_MULTIPLY_OP.

Description
This opcode performs the following actions:
1958 April, 2015 Version 2.5

Human Interface Infrastructure Overview
1. Pop two values from the expression stack. The first value popped is the right-hand expression
and the second value popped is the left-hand expression.

2. If the two values do not evaluate to unsigned integers, push Undefined.

3. Zero-extend the values to 64-bits. Then, multiply the right-hand value by the left-hand value.
Push the lower 64-bits of the result.

31.3.8.3.44 EFI_IFR_NOT

Summary
Pop a boolean and, if TRUE, push FALSE. If FALSE, push TRUE.

Prototype
#define EFI_IFR_NOT_OP 0x17
typedef struct _EFI_IFR_NOT {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_NOT;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. Header.OpCode =
EFI_IFR_NOT_OP.

Description
This opcode performs the following actions:

1. Pop one value from the expression stack.

2. If the value cannot be evaluated as a Boolean, push Undefined.

3. If the value evaluates to TRUE, then push FALSE. Otherwise, push TRUE.

31.3.8.3.45 EFI_IFR_NOT_EQUAL

Summary
Pop two values, compare and push TRUE if not equal, otherwise push FALSE.

Prototype
#define EFI_IFR_NOT_EQUAL_OP 0x30
typedef struct _EFI_IFR_NOT_EQUAL {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_NOT_EQUAL;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_NOT_EQUAL_OP.

Description
This opcode performs the following actions:
Version 2.5 April, 2015 1959

Unified Extensible Firmware Interface Specification
1. Pop two values from the expression stack.

2. If the two values are not strings, Booleans or unsigned integers, push Undefined.

3. If the two values are of different types, push Undefined.

4. Compare the two values. Strings are compared lexicographically.

5. If the two values are not equal then push TRUE on the expression stack. If they are equal, push
FALSE.

31.3.8.3.46 EFI_IFR_NO_SUBMIT_IF

Summary
Creates a validation expression and error message for a question.

Prototype
#define EFI_IFR_NO_SUBMIT_IF_OP 0x10
typedef struct _EFI_IFR_NO_SUBMIT_IF {
 EFI_IFR_OP_HEADER Header;
 EFI_STRING_ID Error;
} EFI_IFR_NO_SUBMIT_IF;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. Header.OpCode =
EFI_IFR_NO_SUBMIT_IF_OP.

Error The string token reference to the string that will be used for the
consistency check message.

Description
Creates a conditional expression which will be evaluated when the form is submitted. If the
conditional evaluates to TRUE, then the error message Error will be displayed to the user and the
user will be prevented from submitting the form.

31.3.8.3.47 EFI_IFR_NUMERIC

Summary
Creates a number question.

Prototype
#define EFI_IFR_NUMERIC_OP 0x07
typedef struct _EFI_IFR_NUMERIC {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;
 UINT8 Flags;

 union {
 struct {
1960 April, 2015 Version 2.5

Human Interface Infrastructure Overview
 UINT8 MinValue;
 UINT8 MaxValue;
 UINT8 Step;
 } u8;
 struct {
 UINT16 MinValue;
 UINT16 MaxValue;
 UINT16 Step;
 } u16;
 struct {
 UINT32 MinValue;
 UINT32 MaxValue;
 UINT32 Step;
 } u32;
 struct {
 UINT64 MinValue;
 UINT64 MaxValue;
 UINT64 Step;
 } u64;
 } data;
} EFI_IFR_NUMERIC;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. Header.OpCode =
EFI_IFR_NUMERIC_OP.

Question The standard question header. See Section 31.3.8.2.2 for more
information.

Flags Specifies flags related to the numeric question. See “Related
Definitions”

MinValue The minimum value to be accepted by the browser for this
opcode. The size of the data field may vary from 8 to 64 bits.

MaxValue The maximum value to be accepted by the browser for this
opcode. The size of the data field may vary from 8 to 64 bits.

Step Defines the amount to increment or decrement the value each
time a user requests a value change. If the step value is 0, then the
input mechanism for the numeric value is to be free-form and
require the user to type in the actual value. The size of the data
field may vary from 8 to 64 bits.

Description
Creates a number question on the current form, with built-in error checking and default information.
The storage size depends on the EFI_IFR_NUMERIC_SIZE portion of the Flags field.
Version 2.5 April, 2015 1961

Unified Extensible Firmware Interface Specification
There are two ways to specify defaults for this question: one or more nested
EFI_IFR_ONE_OF_OPTION (lowest priority) or nested EFI_IFR_DEFAULT (highest priority).
An image may be associated with the option using a nested EFI_IFR_IMAGE. An animation may
be associated with the question using a nested EFI_IFR_ANIMATION.

Related Definitions
#define EFI_IFR_NUMERIC_SIZE 0x03
#define EFI_IFR_NUMERIC_SIZE_1 0x00
#define EFI_IFR_NUMERIC_SIZE_2 0x01
#define EFI_IFR_NUMERIC_SIZE_4 0x02
#define EFI_IFR_NUMERIC_SIZE_8 0x03

#define EFI_IFR_DISPLAY 0x30
#define EFI_IFR_DISPLAY_INT_DEC 0x00
#define EFI_IFR_DISPLAY_UINT_DEC 0x10
#define EFI_IFR_DISPLAY_UINT_HEX 0x20

Note: IFR expressions do not support signed types (see Section 31.2.5.7.4 Data Types). The value of a
numeric question is treated during expression evaluation as an unsigned integer even if
EFI_IFR_DISPLAY_INT_DEC flag is specified. However, the
EFI_IFR_DISPLAY_INT_DEC flag is taken into consideration while validating question's
current or default value against MinValue and MaxValue. When
EFI_IFR_DISPLAY_INT_DEC flag is specified, forms processor must treat MinValue,
MaxValue, current question value, and default question value as signed integers.

31.3.8.3.48 EFI_IFR_ONE

Summary
Push a one on to the expression stack.

Prototype
#define EFI_IFR_ONE_OP 0x53
typedef struct _EFI_IFR_ONE {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_ONE;

EFI_IFR_NUMERIC_SIZE Specifies the size of the numeric value, the
storage required and the size of the

MinValue, MaxValue and Step

values in the opcode header.

EFI_IFR_DISPLAY The value will be displayed in signed
decimal, unsigned decimal or unsigned
hexadecimal. Input is still allowed in any
form.
1962 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_ONE_OP

Description
Push a one on to the expression stack.

31.3.8.3.49 EFI_IFR_ONES

Summary
Push 0xFFFFFFFFFFFFFFFF on to the expression stack.

Prototype
#define EFI_IFR_ONES_OP 0x54
typedef struct _EFI_IFR_ONES {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_ONES;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_ONES_OP

Description
Push 0xFFFFFFFFFFFFFFFF on to the expression stack.

31.3.8.3.50 EFI_IFR_ONE_OF

Summary
Creates a select-one-of question.

Prototype
#define EFI_IFR_ONE_OF_OP 0x05

typedef struct _EFI_IFR_ONE_OF {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;
 UINT8 Flags;

 union {
 struct {
 UINT8 MinValue;
 UINT8 MaxValue;
 UINT8 Step;
Version 2.5 April, 2015 1963

Unified Extensible Firmware Interface Specification
 } u8;
 struct {
 UINT16 MinValue;
 UINT16 MaxValue;
 UINT16 Step;
 } u16;
 struct {
 UINT32 MinValue;
 UINT32 MaxValue;
 UINT32 Step;
 } u32;
 struct {
 UINT64 MinValue;
 UINT64 MaxValue;
 UINT64 Step;
 } u64;
 } data;
} EFI_IFR_ONE_OF;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. Header.OpCode =
EFI_IFR_ONE_OF_OP.

Question The standard question header. See Section 31.3.8.2.2 for more
information.

Flags Specifies flags related to the numeric question. See “Related
Definitions” in EFI_IFR_NUMERIC.

MinValue The minimum value to be accepted by the browser for this
opcode. The size of the data field may vary from 8 to 64 bits,
depending on the size specified in Flags

MaxValue The maximum value to be accepted by the browser for this
opcode. The size of the data field may vary from 8 to 64 bits,
depending on the size specified in Flags

Step Defines the amount to increment or decrement the value each
time a user requests a value change. If the step value is 0, then the
input mechanism for the numeric value is to be free-form and
require the user to type in the actual value. The size of the data
field may vary from 8 to 64 bits, depending on the size specified
in Flags

Description
This opcode creates a select-on-of object, where the user must select from one of the nested options.
This is identical to EFI_IFR_NUMERIC.

There are two ways to specify defaults for this question: one or more nested
EFI_IFR_ONE_OF_OPTION (lowest priority) or nested EFI_IFR_DEFAULT (highest priority).
1964 April, 2015 Version 2.5

Human Interface Infrastructure Overview
An image may be associated with the option using a nested EFI_IFR_IMAGE. An animation may
be associated with the question using a nested EFI_IFR_ANIMATION.

31.3.8.3.51 EFI_IFR_ONE_OF_OPTION

Summary
Creates a pre-defined option for a question.

Prototype
#define EFI_IFR_ONE_OF_OPTION_OP 0x09
typedef struct _EFI_IFR_ONE_OF_OPTION {
 EFI_IFR_OP_HEADER Header;
 EFI_STRING_ID Option;
 UINT8 Flags;
 UINT8 Type;
 EFI_IFR_TYPE_VALUE Value;
} EFI_IFR_ONE_OF_OPTION;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. Header.OpCode =
EFI_IFR_ONE_OF_OPTION_OP.

Option The string token reference to the option description string for this
particular opcode.

Flags Specifies the flags associated with the current option. See
EFI_IFR_OPTION_x.

Type Specifies the type of the option’s value. See EFI_IFR_TYPE.

Value The union of all of the different possible values. The actual
contents (and size) of the field depends on Type.

Related Definitions
typedef union {
 UINT8 u8; // EFI_IFR_TYPE_NUM_SIZE_8
 UINT16 u16; // EFI_IFR_TYPE_NUM_SIZE_16
 UINT32 u32; // EFI_IFR_TYPE_NUM_SIZE_32
 UINT64 u64; // EFI_IFR_TYPE_NUM_SIZE_64
 BOOLEAN b; // EFI_IFR_TYPE_BOOLEAN
 EFI_HII_TIME time; // EFI_IFR_TYPE_TIME
 EFI_HII_DATE date; // EFI_IFR_TYPE_DATE
 EFI_STRING_ID string; // EFI_IFR_TYPE_STRING, EFI_IFR_TYPE_ACTION
 EFI_HII_REF ref; // EFI_IFR_TYPE_REF
// UINT8 buffer[]; // EFI_IFR_TYPE_BUFFER
} EFI_IFR_TYPE_VALUE;

typedef struct {
 UINT8 Hour;
Version 2.5 April, 2015 1965

Unified Extensible Firmware Interface Specification
 UINT8 Minute;
 UINT8 Second;
} EFI_HII_TIME;

typedef struct {
 UINT16 Year;
 UINT8 Month;
 UINT8 Day; //
} EFI_HII_DATE;

typedef struct {
 EFI_QUESTION_ID QuestionId;
 EFI_FORM_ID FormId;
 EFI_GUID FormSetGuid;
 EFI_STRING_ID DevicePath;
} EFI_HII_REF;

#define EFI_IFR_TYPE_NUM_SIZE_8 0x00
#define EFI_IFR_TYPE_NUM_SIZE_16 0x01
#define EFI_IFR_TYPE_NUM_SIZE_32 0x02
#define EFI_IFR_TYPE_NUM_SIZE_64 0x03
#define EFI_IFR_TYPE_BOOLEAN 0x04
#define EFI_IFR_TYPE_TIME 0x05
#define EFI_IFR_TYPE_DATE 0x06
#define EFI_IFR_TYPE_STRING 0x07
#define EFI_IFR_TYPE_OTHER 0x08
#define EFI_IFR_TYPE_UNDEFINED 0x09
#define EFI_IFR_TYPE_ACTION 0x0A
#define EFI_IFR_TYPE_BUFFER 0x0B
#define EFI_IFR_TYPE_REF 0x0C

#define EFI_IFR_OPTION_DEFAULT 0x10
#define EFI_IFR_OPTION_DEFAULT_MFG 0x20

Description
Create a selection for use in any of the questions.

The value is encoded within the opcode itself, unless EFI_IFR_TYPE_OTHER is specified, in
which case the value is determined by a nested EFI_IFR_VALUE.

An image may be associated with the option using a nested EFI_IFR_IMAGE. An animation may
be associated with the question using a nested EFI_IFR_ANIMATION.

31.3.8.3.52 EFI_IFR_OR

Summary
Pop two Booleans, push TRUE if either is TRUE. Otherwise push FALSE.
1966 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Prototype
#define EFI_IFR_OR_OP 0x16
typedef struct _EFI_IFR_OR {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_OR;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. Header.OpCode =
EFI_IFR_OR_OP.

Description
This opcode performs the following actions:

1. Pop two values from the expression stack.

2. If either value does not evaluate as a Boolean, then push Undefined.

3. If either value evaluates to TRUE, then push TRUE. Otherwise, push FALSE.

31.3.8.3.53 EFI_IFR_ORDERED_LIST

Summary
Creates a set question using an ordered list.

Prototype
#define EFI_IFR_ORDERED_LIST_OP 0x23

typedef struct _EFI_IFR_ORDERED_LIST {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;
 UINT8 MaxContainers;
 UINT8 Flags;
} EFI_IFR_ORDERED_LIST;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. Header.OpCode =
EFI_IFR_ORDERED_LIST_OP.

Question The standard question header. See Section 31.3.8.2.2 for more
information.

MaxContainers The maximum number of entries for which this tag will maintain
an order. This value also identifies the size of the storage
associated with this tag’s ordering array.

Flags A bit-mask that determines which unique settings are active for
this opcode.
Version 2.5 April, 2015 1967

Unified Extensible Firmware Interface Specification
Description
Create an ordered list question in the current form. One thing to note is that valid values for the
options in ordered lists should never be a 0. The value of 0 is used to determine if a particular "slot"
in the array is empty. Therefore, if in the previous example 3 was followed by a 4 and then followed
by a 0, the valid options to be displayed would be 3 and 4 only.

An image may be associated with the option using a nested EFI_IFR_IMAGE. An animation may
be associated with the question using a nested EFI_IFR_ANIMATION.

Related Definitions
#define EFI_IFR_UNIQUE_SET 0x01
#define EFI_IFR_NO_EMPTY_SET 0x02

These flags determine whether all entries in the list must be unique (EFI_IFR_UNIQUE_SET) and
whether there can be any empty items in the ordered list (EFI_IFR_NO_EMPTY_SET).

31.3.8.3.54 EFI_IFR_PASSWORD

Summary
Creates a password question

Prototype
#define EFI_IFR_PASSWORD_OP 0x08
typedef struct _EFI_IFR_PASSWORD {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;
 UINT16 MinSize;
 UINT16 MaxSize;
} EFI_IFR_PASSWORD;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. Header.OpCode =
EFI_IFR_PASSWORD_OP.

Question The standard question header. See Section 31.3.8.2.2 for more
information.

MinSize The minimum number of characters that can be accepted for this
opcode.

MaxSize The maximum number of characters that can be accepted for this
opcode.

Description
Creates a password question in the current form.

An image may be associated with the option using a nested EFI_IFR_IMAGE. An animation may
be associated with the question using a nested EFI_IFR_ANIMATION.The password question has
two modes of operation. The first is when the Header.Flags has the EFI_IFR_FLAG_CALLBACK
bit not set. If the bit isn't set, the browser will handle all password operations itself, including string
1968 April, 2015 Version 2.5

Human Interface Infrastructure Overview
comparisons as needed. If the password question has the EFI_IFR_FLAG_CALLBACK bit set, then
there will be a formal handshake initiated between the browser and the registered driver that would
accept the callback. See the flowchart represented in Figure 126 and Figure 127 for details.

 (This flowchart is provided in two parts because of page formatting but should be viewed as a single
continuous chart.)

User selects a password
operation in the browser

Browser
Does Password Opcode have
the INTERACTIVE bit set?

No

Browser calls the ConfigAccess.Callback interface
with the Password opcode’s QuestionId.

Check for an existing password by sending a NULL
string value.

Yes

Driver
Is there a preexisting

password?

Driver returns EFI_SUCCESS to indicate
there is no preexisting password.

No

Driver returns EFI_NOT_AVAILABLE_YET or
EFI_UNSUPPORTED to terminate password
processing. Driver returns any other error

indicating that there is a preexisting password.

Yes

Browser prompts for the new password
and calls ConfigAccess.Callback with the

new password string value.

Browser prompts for the existing password and calls
ConfigAccess.Callback with the old password string value.

Driver
Did the user type the
correct preexisting

password?

Driver returns an error other
than EFI_NOT_READY, indicating
that the browser must exit the
password handshake and refresh

the current displayed form.

No
Driver will return

EFI_SUCCESS if password
was accepted and saved.

Driver returns EFI_SUCCESS to indicate the
user typed the correct preexisting password
and wants the user to type a new password.

Driver
Does the driver expect

to change the
password?

Yes

Yes

No

Driver returns an EFI_NOT_READY,
indicating the user mistyped the previous
password. The browser can optionally

alert the user of the error.

User selects a password
operation in the browser

CONTINUED in part two
Version 2.5 April, 2015 1969

Unified Extensible Firmware Interface Specification
Figure 126. Password Flowchart (part one)

Figure 127. Password Flowchart (part two)

31.3.8.3.55 EFI_IFR_QUESTION_REF1

Summary
Push a question’s value on the expression stack.

User selects a password
operation in the browser

Browser checks for an existing password by
comparing against a NULL string value.

Browser
Is there a preexisting password?

Browser returns EFI_SUCCESS to indicate
there is no preexisting password.

No

Browser returns an error,
indicating that there is a
preexisting password.

YesBrowser prompts for the new password

Browser prompts for the existing password and compares
with the old password string value.

Browser
Did the user type the correct

preexisting password?

Browser will return
EFI_SUCCESS

Browser returns EFI_SUCCESS to indicate the
user typed the correct preexisting password
and wants the user to type a new password.

Yes

No

Browser returns an EFI_NOT_READY,
indicating the user mistyped the previous
password. The browser can optionally

alert the user of the error.

CONTINUED FROM part one:
”User selects a password
operation in the browser”
1970 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Prototype
#define EFI_IFR_QUESTION_REF1_OP 0x40
typedef struct _EFI_IFR_QUESTION_REF1 {
 EFI_IFR_OP_HEADER Header;
 EFI_QUESTION_ID QuestionId;
} EFI_IFR_QUESTION_REF1;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. Header.OpCode =
EFI_IFR_QUESTION_REF1_OP.

QuestionId The question’s identifier, which must be unique within the form
set.

Description
Push the value of the question specified by QuestionId on to the expression stack. If the
question’s value cannot be determined or the question does not exist, then push Undefined.

31.3.8.3.56 EFI_IFR_QUESTION_REF2

Summary
Pop an integer from the expression stack, convert it to a question id, and push the question value
associated with that question id onto the expression stack.

Prototype
#define EFI_IFR_QUESTION_REF2_OP 0x41
typedef struct _EFI_IFR_QUESTION_REF2 {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_QUESTION_REF2;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. Header.OpCode =
EFI_IFR_QUESTION_REF2_OP.

Description
This opcode performs the following actions:

1. Pop an integer from the expression stack

2. Convert it to a question id

3. Push the question value associated with that question id onto the expression stack.

If the popped expression cannot be evaluated as an unsigned integer or the value of the unsigned
integer is greater than 0xFFFF, then push Undefined onto the expression stack in step 3. If the value
of the question specified by the unsigned integer, after converted to a question id, cannot be
determined or the question does not exist, also push Undefined onto the expression stack in step 3.
Version 2.5 April, 2015 1971

Unified Extensible Firmware Interface Specification
31.3.8.3.57 EFI_IFR_QUESTION_REF3

Summary
Pop an integer from the expression stack, convert it to a question id, and push the question value
associated with that question id onto the expression stack.

Prototype
#define EFI_IFR_QUESTION_REF3_OP 0x51
typedef struct _EFI_IFR_QUESTION_REF3 {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_QUESTION_REF3;

typedef struct _EFI_IFR_QUESTION_REF3_2 {
 EFI_IFR_OP_HEADER Header;
 EFI_STRING_ID DevicePath;
} EFI_IFR_QUESTION_REF3_2;

typedef struct _EFI_IFR_QUESTION_REF3_3 {
 EFI_IFR_OP_HEADER Header;
 EFI_STRING_ID DevicePath;
 EFI_GUID Guid;
} EFI_IFR_QUESTION_REF3_3;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. Header.OpCode =
EFI_IFR_QUESTION_REF3_OP.

DevicePath Specifies the text representation of the device path containing the
form set where the question is defined. If this is not present or the
value is 0 then the device path installed on the EFI_HANDLE
which was registered with the form set containing the current
question is used.

Guid Specifies the GUID of the form set where the question is defined.
If the value is Nil or this field is not present, then the current form
set is used (if DevicePath is 0) or the only form set attached to
the device path specified by DevicePath is used. If the value is
Nil and there is more than one form set on the specified device
path, then the value Undefined will be pushed.

Description
This opcode performs the following actions:

1. Pop an integer from the expression stack

2. Convert it to a question id

3. Push the question value associated with that question id onto the expression stack.
1972 April, 2015 Version 2.5

Human Interface Infrastructure Overview
If the popped expression cannot be evaluated as an unsigned integer or the value of the unsigned
integer is greater than 0xFFFF, then push Undefined onto the expression stack in step 3. If the value
of the question specified by the unsigned integer, after converted to a question id, cannot be
determined or the question does not exist, also push Undefined onto the expression stack in step 3.

This version allows question values from other forms to be referenced in expressions.

31.3.8.3.58 EFI_IFR_READ

Summary
Provides a value for the current question or default.

Prototype
#define EFI_IFR_READ_OP 0x2D
typedef struct _EFI_IFR_READ {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_READ;

Parameters
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_READ_OP

Description
After reading the value for the current question (if any storage was specified) and setting the this
constant (see EFI_IFR_THIS), this expression will be evaluated (if present) to return the value. If
the FormId and QuestionId are either both not present, or are both set to zero, then the link does
nothing.

31.3.8.3.59 EFI_IFR_REF

Summary
Creates a cross-reference statement.

Prototype
#define EFI_IFR_REF_OP 0x0F
typedef struct _EFI_IFR_REF {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;
 EFI_FORM_ID FormId;
} EFI_IFR_REF;

typedef struct _EFI_IFR_REF2 {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;
 EFI_FORM_ID FormId;
 EFI_QUESTION_ID QuestionId;
Version 2.5 April, 2015 1973

Unified Extensible Firmware Interface Specification
} EFI_IFR_REF2;

typedef struct _EFI_IFR_REF3 {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;
 EFI_FORM_ID FormId;
 EFI_QUESTION_ID QuestionId;
 EFI_GUID FormSetId;
} EFI_IFR_REF3;

typedef struct _EFI_IFR_REF4 {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;
 EFI_FORM_ID FormId;
 EFI_QUESTION_ID QuestionId;
 EFI_GUID FormSetId;
 EFI_STRING_ID DevicePath;
} EFI_IFR_REF4;

typedef struct _EFI_IFR_REF5 {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;
} EFI_IFR_REF5;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. Header.OpCode =
EFI_IFR_REF_OP.

Question Standard question header.See Section 31.3.8.2.2

FormId The form to which this link is referring. If this is zero, then the
link is on the current form. If this is missing, then the link is
determined by the nested EFI_IFR_VALUE.

QuestionId The question on the form to which this link is referring. If this
field is not present (determined by the length of the opcode) or
the value is zero, then the link refers to the top of the form.

FormSetId The form set to which this link is referring. If it is all zeroes
or not present, and DevicePath is not present, then the
link is to the current form set. If it is all zeroes (or not
present) and the DevicePath is present, then the link is to
the first form set associated with the DevicePath.

DevicePath The string identifier that specifies the string containing the
text representation of the device path to which the form set
containing the form specified by FormId. If this field is not
present (determined by the opcode’s length) or the value is zero,
1974 April, 2015 Version 2.5

Human Interface Infrastructure Overview
then the link refers to the current page. The format of the device
path string that this field references is compatible with the Text
format that is specified in the Text Device Node Reference
(Section 9.6.1.6)

Description
Creates a user-selectable link to a form or a question on a form. There are several forms of this
opcode which are distinguished by the length of the opcode.

31.3.8.3.60 EFI_IFR_REFRESH

Summary
Mark a question for periodic refresh.

Prototype
#define EFI_IFR_REFRESH_OP 0x1d
typedef struct _EFI_IFR_REFRESH {
 EFI_IFR_OP_HEADER Header;
 UINT8 RefreshInterval;
} EFI_IFR_REFRESH;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. Header.OpCode =
EFI_IFR_REFRESH_OP.

RefreshInterval Minimum number of seconds before the question value should be
refreshed. A value of zero indicates the question should not be
refreshed automatically.

Description
When placed within the scope of a question, it will force the question’s value to be refreshed at least
every RefreshInterval seconds. The value may be refreshed less often, depending on browser
policy or capabilities.

31.3.8.3.61 EFI_IFR_REFRESH_ID

Summary
Mark an Question for an asynchronous refresh.

Prototype
#define EFI_IFR_REFRESH_ID_OP 0x62
typedef struct _EFI_IFR_REFRESH_ID {
 EFI_IFR_OP_HEADER Header;
 EFI_GUID RefreshEventGroupId;
} EFI_IFR_REFRESH_ID;
Version 2.5 April, 2015 1975

Unified Extensible Firmware Interface Specification
Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. Header.OpCode =
EFI_IFR_REFRESH_ID_OP.

RefreshEventGroupId

The GUID associated with the event group which will be used to
initiate a re-evaluation of an element in a set of forms.

Description
This tag op-code must be placed within the scope of a question or a form. If within the scope of a
question and the event is signaled which belongs to the RefreshEventGroupId, the question
will be refreshed. More than one question may share the same Event Group.

 If the tag op-code is placed within the scope of an EFI_IFR_FORM op-code and the event is
signaled which belongs to the RefreshEventGroupId, the entire form’s contents will be
refreshed.

• If the contents within a form had an EFI_IFR_REFRESH_ID tag op-code placed within the
scope of the form, and an event is signalled, all questions associated with the
RefreshEventGroupId are marked for refresh. The Forms Browser will update the
question value from storage, reparse the forms from the HII database and, at some time later,
reflect that change if the question is displayed.

When interpreting this op-code, a browser must do the following actions:

• The browser will create an event group via CreateEventEx() based on the specified
RefreshEventGroupId when the form set which contains the op-code is opened by the
browser.

• When an event is signaled, all questions associated with the RefreshEventGroupId are
marked for refresh. The Forms Browser will update the question value from storage and, at some
time later, update the question's display.

• The browser will close the event group which was previously created when the form set which
contains the op-code is closed by the browser.

31.3.8.3.62 EFI_IFR_RESET_BUTTON

Summary
Create a reset or submit button on the current form.

Prototype
#define EFI_IFR_RESET_BUTTON_OP 0x0d
typedef struct _EFI_IFR_RESET_BUTTON {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Statement;
 EFI_DEFAULT_ID DefaultId;
} EFI_IFR_RESET_BUTTON;

typedef UINT16 EFI_DEFAULT_ID;
1976 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Members
Header The standard header, where Header.OpCode =

EFI_IFR_RESET_BUTTON_OP.

Statement Standard statement header, including the prompt and help text.

DefaultId Specifies the set of default store to use when restoring the
defaults to the questions on this form. See
EFI_IFR_DEFAULTSTORE (Section 31.3.8.3.13) for more
information.

Description
This opcode creates a user-selectable button that resets the question values for all questions on the
current form to the default values specified by DefaultId. If EFI_IFR_FLAGS_CALLBACK is
set in the question header, then the callback associated with the form set will be called. An image
may be associated with the statement using a nested EFI_IFR_IMAGE. An animation may be
associated with the statement using a nested EFI_IFR_ANIMATION.

31.3.8.3.63 EFI_IFR_RULE

Summary
Create a rule for use in a form and associate it with an identifier.

Prototype
#define EFI_IFR_RULE_OP 0x18
typedef struct _EFI_IFR_RULE {
 EFI_IFR_OP_HEADER Header;
 UINT8 RuleId;
} EFI_IFR_RULE;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. Header.OpCode =
EFI_IFR_RULE_OP.

RuleId Unique identifier for the rule. There can only one rule within a
form with the specified RuleId. If another already exists, then
the form is marked as invalid.

Description
Create a rule, which associates an expression with an identifier and attaches it to the currently
opened form. These rules allow common sub-expressions to be re-used within a form.

31.3.8.3.64 EFI_IFR_RULE_REF

Summary
Evaluate a form rule and push its result on the expression stack.
Version 2.5 April, 2015 1977

Unified Extensible Firmware Interface Specification
Prototype
#define EFI_IFR_RULE_REF_OP 0x3f
typedef struct _EFI_IFR_RULE_REF {
 EFI_IFR_OP_HEADER Header;
 UINT8 RuleId;
} EFI_IFR_RULE_REF;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. Header.OpCode =
EFI_IFR_RULE_REF_OP.

RuleId The rule’s identifier, which must be unique within the form.

Description
Look up the rule specified by RuleId and push the evaluated result on the expression stack. If the
specified rule does not exist, then push Undefined.

31.3.8.3.65 EFI_IFR_SECURITY

Summary
Push TRUE if the current user profile contains the specified setup access permissions.

Prototype
#define EFI_IFR_SECURITY_OP 0x60
typedef struct _EFI_IFR_SECURITY {
 EFI_IFR_OP_HEADER Header;
 EFI_GUID Permissions;
} EFI_IFR_SECURITY;

Members
Header Standard opcode header, where Header.Op =

EFI_IFR_SECURITY_OP.

Permissions Security permission level.

Description
This opcode pushes whether or not the current user profile contains the specified setup access
permissions. This opcode can be used in expressions to disable, suppress or gray-out forms,
statements and questions. It can also be used in checking question values to disallow or allow certain
values.

This opcode performs the following actions:

1. If the current user profile contains the specified setup access permissions, then push TRUE.
Otherwise, push FALSE.
1978 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.3.8.3.66 EFI_IFR_SET

Summary
Change a stored value.

Prototype
#define EFI_IFR_SET_OP 0x2C
typedef struct _EFI_IFR_SET {
 EFI_IFR_OP_HEADER Header;
 EFI_VARSTORE_ID VarStoreId;
 union {
 EFI_STRING_ID VarName;
 UINT16 VarOffset;
 } VarStoreInfo;
 UINT8 VarStoreType;
} EFI_IFR_SET;

Parameters
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. Header.OpCode =
EFI_IFR_SET_OP.

VarStoreId Specifies the identifier of a previously declared variable store to
use when storing the question’s value.

VarStoreInfo Depending on the type of variable store selected, this contains
either a 16-bit Buffer Storage offset (VarOffset) or a Name/
Value or EFI Variable name (VarName).

VarStoreType Specifies the type used for storage. The storage types
EFI_IFR_TYPE_x are defined in
EFI_IFR_ONE_OF_OPTION.

Description
This operator pops an expression from the expression stack. The expression popped is the value.

The value is stored into the variable store identified by VarStoreId and VarStoreInfo.

If the value could be stored successfully, then TRUE is pushed on to the expression stack. Otherwise,
FALSE is pushed on the expression stack.

31.3.8.3.67 EFI_IFR_SHIFT_LEFT

Summary
Pop two unsigned integers, shift one left by the number of bits specified by the other and push the
result.

Prototype
#define EFI_IFR_SHIFT_LEFT_OP 0x38
typedef struct _EFI_IFR_SHIFT_LEFT {
Version 2.5 April, 2015 1979

Unified Extensible Firmware Interface Specification
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_SHIFT_LEFT;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_SHIFT_LEFT_OP.

Description
This opcode performs the following actions:

1. Pop two values from the expression stack. The first value popped is the right-hand value and the
second value popped is the left-hand value.

2. If the two values do not evaluate to unsigned integers, push Undefined.

3. Shift the left-hand value left by the number of bits specified by the right-hand value and push the
result.

31.3.8.3.68 EFI_IFR_SHIFT_RIGHT

Summary
Pop two unsigned integers, shift one right by the number of bits specified by the other and push the
result.

Prototype
#define EFI_IFR_SHIFT_RIGHT_OP 0x39
typedef struct _EFI_IFR_SHIFT_RIGHT {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_SHIFT_RIGHT;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_SHIFT_RIGHT_OP.

Description
This opcode performs the following actions:

1. Pop two values from the expression stack. The first value popped is the right-hand value and the
second value popped is the left-hand value.

2. If the two values do not evaluate to unsigned integers, push Undefined.

3. Shift the left-hand value right by the number of bits specified by the right-hand value and push the
result.

31.3.8.3.69 EFI_IFR_SPAN

Summary
Pop two strings and an unsigned integer, find the first character from one string that contains
characters found in another and push its index.
1980 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Prototype
#define EFI_IFR_SPAN_OP 0x59
typedef struct _EFI_IFR_SPAN {
 EFI_IFR_OP_HEADER Header;
 UINT8 Flags;
} EFI_IFR_SPAN;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_SPAN_OP.

Flags Specifies whether to find the first matching string
(EFI_IFR_FLAGS_FIRST_MATCHING) or the first non-
matching string
(EFI_IFR_FLAGS_FIRST_NON_MATCHING).

Description
This opcode performs the following actions:

1. Pop three values from the expression stack. The first value popped is the right value and the
second value popped is the middle value and the last value popped is the left expression.

2. If the left or middle values cannot be evaluated as a string, push Undefined. If the right value
cannot be evaluated as an unsigned integer, push Undefined.

3. The left string is the string to scan. The middle string consists of character pairs representing the
low-end of a range and the high-end of a range of characters. The right unsigned integer
represents the starting location for the scan.

4. The operation will push the zero-based index of the first character after the right value which
falls within any one of the ranges (EFI_IFR_FLAGS_FIRST_MATCHING) or falls within
none of the ranges (EFI_IFR_FLAGS_FIRST_NON_MATCHING).

Related Definitions
#define EFI_IFR_FLAGS_FIRST_MATCHING 0x00
#define EFI_IFR_FLAGS_FIRST_NON_MATCHING 0x01

31.3.8.3.70 EFI_IFR_STRING

Summary
Defines the string question.

Prototype
#define EFI_IFR_STRING_OP 0x1C
typedef struct _EFI_IFR_STRING {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;
 UINT8 MinSize;
 UINT8 MaxSize;
Version 2.5 April, 2015 1981

Unified Extensible Firmware Interface Specification
 UINT8 Flags;
} EFI_IFR_STRING;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. Header.OpCode =
EFI_IFR_STRING_OP.

Question The standard question header. See Section 31.3.8.2.2 for more
information.

MinSize The minimum number of characters that can be accepted for this
opcode.

MaxSize The maximum number of characters that can be accepted for this
opcode.

Flags Flags which control the string editing behavior. See “Related
Definitions” below.

Description
This creates a string question. The minimum length is MinSize and the maximum length is
MaxSize characters.

An image may be associated with the question using a nested EFI_IFR_IMAGE. An animation
may be associated with the question using a nested EFI_IFR_ANIMATION.

There are two ways to specify defaults for this question: one or more nested
EFI_IFR_ONE_OF_OPTION (lowest priority) or nested EFI_IFR_DEFAULT (highest priority).

If EFI_IFR_STRING_MULTI_LINE is set, it is a hint to the Forms Browser that multi-line text
can be allowed. If it is clear, then multi-line editing should not be allowed.

Related Definitions
#define EFI_IFR_STRING_MULTI_LINE 0x01

31.3.8.3.71 EFI_IFR_STRING_REF1

Summary
Push a string on the expression stack.

Prototype
#define EFI_IFR_STRING_REF1_OP 0x4e
typedef struct _EFI_IFR_STRING_REF1 {
 EFI_IFR_OP_HEADER Header;
 EFI_STRING_ID StringId;
} EFI_IFR_STRING_REF1;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. Header.OpCode =
EFI_IFR_STRING_REF1_OP.
1982 April, 2015 Version 2.5

Human Interface Infrastructure Overview
StringId The string’s identifier, which must be unique within the package
list.

Description
Push the string specified by StringId on to the expression stack. If the string does not exist, then
push an empty string.

31.3.8.3.72 EFI_IFR_STRING_REF2

Summary
Pop a string identifier, push the associated string.

Prototype
#define EFI_IFR_STRING_REF2_OP 0x4f
typedef struct _EFI_IFR_STRING_REF2 {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_STRING_REF2;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. Header.OpCode =
EFI_IFR_STRING_REF2_OP.

Description
This opcode performs the following actions:

1. Pop a value from the expression stack.

2. If the value cannot be evaluated as an unsigned integer or the value of the unsigned integer is
greater than 0xFFFF, push Undefined.

3. If the string specified by the value (converted to a string identifier) cannot be determined or the
string does not exist, push an empty string.

4. Otherwise, push the string on to the expression stack.

31.3.8.3.73 EFI_IFR_SUBTITLE

Summary
Creates a sub-title in the current form.

Prototype
#define EFI_IFR_SUBTITLE_OP 0x02
typedef struct _EFI_IFR_SUBTITLE {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_STATEMENT_HEADER Statement;
 UINT8 Flags;
} EFI_IFR_SUBTITLE;
Version 2.5 April, 2015 1983

Unified Extensible Firmware Interface Specification
Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_SUBTITLE_OP.

Flags Identifies specific behavior for the sub-title.

Description
Subtitle strings are intended to be used by authors to separate sections of questions into semantic
groups. If Header.Scope is set, then the Forms Browser may further distinguish the end of the
semantic group as including only those statements and questions which are nested.

If EFI_IFR_FLAGS_HORIZONTAL is set, then this provides a hint that the nested statements or
questions should be horizontally arranged. Otherwise, they are assumed to be vertically arranged.

An image may be associated with the statement using a nested EFI_IFR_IMAGE. An animation
may be associated with the statement using a nested EFI_IFR_ANIMATION.

Related Definitions
#define EFI_IFR_FLAGS_HORIZONTAL 0x01

31.3.8.3.74 EFI_IFR_SUBTRACT

Summary
Pop two unsigned integers, subtract one from the other, push the result.

Prototype
#define EFI_IFR_SUBTRACT_OP 0x3b
typedef struct _EFI_IFR_SUBTRACT {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_SUBTRACT;

Members
Header

Standard opcode header, where Header.OpCode is EFI_IFR_SUBTRACT_OP.

Description
This opcode performs the following operations:

1. Pop two values from the expression stack. The first value popped is the right-hand value and the
second value popped is the left-hand value.

2. If the two values do not evaluate to unsigned integers, push Undefined.

3. Zero-extend the values to 64-bits.

4. Subtract the right-hand value from the left-hand value.

5. Push the lower 64-bits of the result.
1984 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.3.8.3.75 EFI_IFR_SUPPRESS_IF

Summary
Creates a group of statements or questions which are conditionally invisible.

Prototype
#define EFI_IFR_SUPPRESS_IF_OP 0x0a
typedef struct _EFI_IFR_SUPPRESS_IF {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_SUPPRESS_IF;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. Header.OpCode =
EFI_IFR_SUPPRESS_IF_OP.

Description
The suppress tag causes the nested objects to be hidden from the user if the expression appearing as
the first nested object evaluates to TRUE. If the expression consists of more than a single opcode,
then the first opcode in the expression must have the Scope bit set and the expression must end with
EFI_IFR_END.

This display form is maintained until the scope for this opcode is closed.

31.3.8.3.76 EFI_IFR_TEXT

Summary
Creates a static text and image.

Prototype
#define EFI_IFR_TEXT_OP 0x03
typedef struct _EFI_IFR_TEXT {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_STATEMENT_HEADER Statement;
 EFI_STRING_ID TextTwo;
} EFI_IFR_TEXT;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_TEXT_OP.

Statement Standard statement header.

TextTwo The string token reference to the secondary string for this opcode.

Description
This is a static text/image statement.
Version 2.5 April, 2015 1985

Unified Extensible Firmware Interface Specification
An image may be associated with the statement using a nested EFI_IFR_IMAGE. An animation
may be associated with the question using a nested EFI_IFR_ANIMATION.

31.3.8.3.77 EFI_IFR_THIS

Summary
Push current question’s value.

Prototype
#define EFI_IFR_THIS_OP 0x58
typedef struct _EFI_IFR_THIS {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_THIS;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_THIS_OP.

Description
Push the current question’s value.

31.3.8.3.78 EFI_IFR_TIME

Summary
Create a Time question.

Prototype
#define EFI_IFR_TIME_OP 0x1b
typedef struct _EFI_IFR_TIME {
 EFI_IFR_OP_HEADER Header;
 EFI_IFR_QUESTION_HEADER Question;
 UINT8 Flags;
} EFI_IFR_TIME;

Members
Header Basic question information. Header.Opcode =

EFI_IFR_TIME_OP.

Question The standard question header. See Section 31.3.8.2.2 for more
information.

Flags A bit-mask that determines which unique settings are active for
this opcode.

 QF_TIME_HOUR_SUPPRESS 0x01
 QF_TIME_MINUTE_SUPPRESS 0x02
 QF_TIME_SECOND_SUPPRESS 0x04
1986 April, 2015 Version 2.5

Human Interface Infrastructure Overview
 QF_TIME_STORAGE 0x30

For QF_TIME_STORAGE, there are currently three valid values:
 QF_TIME_STORAGE_NORMAL 0x00
 QF_TIME_STORAGE_TIME 0x10
 QF_TIME_STORAGE_WAKEUP 0x20

Description
Create a Time question (see Section 31.2.5.4.11) and add it to the current form.

An image may be associated with the question using a nested EFI_IFR_IMAGE. An animation
may be associated with the question using a nested EFI_IFR_ANIMATION.

31.3.8.3.79 EFI_IFR_TOKEN

Summary
Pop two strings and an unsigned integer, then push the nth section of the first string using delimiters
from the second string.

Prototype
#define EFI_IFR_TOKEN_OP 0x4d
typedef struct _EFI_IFR_TOKEN {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_TOKEN;

Members
Header Standard opcode header, where OpCode is

EFI_IFR_TOKEN_OP.

Description
This opcode performs the following actions:

1. Pop three values from the expression stack. The first value popped is the right value and the
second value popped is the middle value and the last value popped is the left value.

2. If the left or middle values cannot be evaluated as a string, push Undefined. If the right value
cannot be evaluated as an unsigned integer, push Undefined.

3. The first value is the string. The second value is a string, where each character is a valid delimiter.
The third value is the zero-based index.

4. Push the nth delimited sub-string on to the expression stack (0 = left of the first delimiter). The
end of the string always acts a the final delimiter.

5. The no such string exists, an empty string is pushed.

31.3.8.3.80 EFI_IFR_TO_BOOLEAN

Summary
Pop a value, convert to Boolean and push the result.
Version 2.5 April, 2015 1987

Unified Extensible Firmware Interface Specification
Prototype
#define EFI_IFR_TO_BOOLEAN_OP 0x4A
typedef struct _EFI_IFR_TO_BOOLEAN{
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_TO_BOOLEAN;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_TO_BOOLEAN_OP

Description
This opcode performs the following actions:

1. Pop a value from the expression stack. If the value is Undefined or cannot be evaluated as a
Boolean, push Undefined. Otherwise push the Boolean on the expression stack.

2. When converting from an unsigned integer, zero will be converted to FALSE and any other
value will be converted to TRUE.

3. When converting from a string, if case-insensitive compare with “true” is True, then push
TRUE. If a case-insensitive compare with “false” is TRUE, then push False. Otherwise, push
Undefined.

4. When converting from a buffer, if the buffer is all zeroes, then push False. Otherwise push
True.

31.3.8.3.81 EFI_IFR_TO_LOWER

Summary
Convert a string on the expression stack to lower case.

Prototype
#define EFI_IFR_TO_LOWER_OP 0x20
typedef struct _EFI_IFR_TO_LOWER {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_TO_LOWER;

Members
Header

The sequence that defines the type of opcode as well as the length of the opcode being
defined. For this tag, Header.OpCode = EFI_IFR_TO_LOWER_OP

Description
Pop an expression from the expression stack. If the expression is Undefined or cannot be evaluated
as a string, push Undefined. Otherwise, convert the string to all lower case using the StrLwr
function of the EFI_UNICODE_COLLATION2_PROTOCOL and push the string on the expression
stack.
1988 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.3.8.3.82 EFI_IFR_TO_STRING

Summary
Pop a value, convert to a string, push the result.

Prototype
#define EFI_IFR_TO_STRING_OP 0x49
typedef struct _EFI_IFR_TO_STRING{
 EFI_IFR_OP_HEADER Header;
 UINT8 Format;
} EFI_IFR_TO_STRING;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_TO_STRING_OP

Format When converting from unsigned integers, these flags control the
format:

0 = unsigned decimal

1 = signed decimal

2 = hexadecimal (lower-case alpha)

3 = hexadecimal (upper-case alpha)

When converting from a buffer, these flags control the format:

0 = ASCII

8 = UCS-2

Description
This opcode performs the following actions:

1. Pop a value from the expression stack.

2. If the value is Undefined or cannot be evaluated as a string, push Undefined.

3. Convert the value to a string. When converting from an unsigned integer, the number will be
converted to a unsigned decimal string (Format = 0), signed decimal string (Format = 1) or a
hexadecimal string (Format = 2 or 3).
When converting from a boolean, the boolean will be converted to “True” (True) or “False”
(False). When converting from a buffer, each 8-bit (Format = 0) or 16-bit (Format = 8) value
will be converted into a character and appended to the string, up until the end of the buffer or a
NULL character.

4. Push the result.

31.3.8.3.83 EFI_IFR_TO_UINT

Summary
Pop a value, convert to an unsigned integer, push the result.
Version 2.5 April, 2015 1989

Unified Extensible Firmware Interface Specification
Prototype
#define EFI_IFR_TO_UINT_OP 0x48
typedef struct _EFI_IFR_TO_UINT {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_TO_UINT;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_TO_UINT_OP

Description
1. Pop a value from the expression stack.

2. If the value is Undefined or cannot be evaluated as an unsigned integer, push Undefined.

3. Convert the value to an unsigned integer. When converting from a boolean, if True, push 1 and if
False, push 0. When converting from a string, whitespace is skipped. The prefix ‘0x’ or ‘0X’
indicates to convert from a hexadecimal string while the prefix ‘-‘ indicates conversion from a
signed integer string. When converting from a buffer, if the buffer is greater than 8 bytes in
length, push Undefined. Otherwise, zero-extend the contents of the buffer to 64-bits.

4. Push the result.

31.3.8.3.84 EFI_IFR_TO_UPPER

Summary
Convert a string on the expression stack to upper case.

Prototype
#define EFI_IFR_TO_UPPER_OP 0x21
typedef struct _EFI_IFR_TO_UPPER {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_TO_UPPER;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_TO_UPPER_OP

Description
Pop an expression from the expression stack. If the expression is Undefined or cannot be evaluated
as a string, push Undefined. Otherwise, convert the string to all upper case using the StrUpr
function of the EFI_UNICODE_COLLATION2_PROTOCOL and push the string on the expression
stack.
1990 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.3.8.3.85 EFI_IFR_TRUE

Summary
Push a TRUE on to the expression stack.

Prototype
#define EFI_IFR_TRUE_OP 0x46
typedef struct _EFI_IFR_TRUE {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_TRUE;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_TRUE_OP

Description
Push a TRUE on to the expression stack.

31.3.8.3.86 EFI_IFR_UINT8, EFI_IFR_UINT16, EFI_IFR_UINT32, EFI_IFR_UINT64

Summary
Push an unsigned integer on to the expression stack.

Prototype
#define EFI_IFR_UINT8_OP 0x42
typedef struct _EFI_IFR_UINT8 {
 EFI_IFR_OP_HEADER Header;
 UINT8 Value;
} EFI_IFR_UINT8;

#define EFI_IFR_UINT16_OP 0x43
typedef struct _EFI_IFR_UINT16 {
 EFI_IFR_OP_HEADER Header;
 UINT16 Value;
} EFI_IFR_UINT16;

#define EFI_IFR_UINT32_OP 0x44
typedef struct _EFI_IFR_UINT32 {
 EFI_IFR_OP_HEADER Header;
 UINT32 Value;
} EFI_IFR_UINT32;

#define EFI_IFR_UINT64_OP 0x45
typedef struct _EFI_IFR_UINT64 {
 EFI_IFR_OP_HEADER Header;
Version 2.5 April, 2015 1991

Unified Extensible Firmware Interface Specification
 UINT64 Value;
} EFI_IFR_UINT64;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_UINT8_OP, EFI_IFR_UINT16_OP,
EFI_IFR_UINT32_OP or EFI_IFR_UINT64_OP.

Value The unsigned integer.

Description
Push the specified unsigned integer, zero-extended to 64-bits, on to the expression stack.

31.3.8.3.87 EFI_IFR_UNDEFINED

Summary
Push an Undefined to the expression stack.

Prototype
#define EFI_IFR_UNDEFINED_OP 0x55
typedef struct _EFI_IFR_UNDEFINED {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_UNDEFINED;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_UNDEFINED_OP

Description
Push Undefined on to the expression stack.

31.3.8.3.88 EFI_IFR_VALUE

Summary
Provides a value for the current question or default.

Prototype
#define EFI_IFR_VALUE_OP 0x5a
typedef struct _EFI_IFR_VALUE {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_VALUE;
1992 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_VALUE_OP

Description
Creates a value for the current question or default with no storage. The value is the result of the
expression nested in the scope.

If used for a question, then the question will be read-only.

31.3.8.3.89 EFI_IFR_VARSTORE

Summary
Creates a variable storage short-cut for linear buffer storage.

Prototype
#define EFI_IFR_VARSTORE_OP 0x24
typedef struct {
 EFI_IFR_OP_HEADER Header;
 EFI_GUID Guid;
 EFI_VARSTORE_ID VarStoreId;
 UINT16 Size;
 //UINT8 Name[];
} EFI_IFR_VARSTORE;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_VARSTORE_OP.

Guid The variable’s GUID definition. This field comprises one half of
the variable name, with the other half being the human-readable
aspect of the name, which is represented by the string
immediately following the Size field. Type EFI_GUID is
defined in InstallProtocolInterface() in this
specification.

VarStoreId The variable store identifier, which is unique within the current
form set. This field is the value that uniquely identify this
instance from others. Question headers refer to this value to
designate which is the active variable that is being used. A value
of zero is invalid.

Size The size of the variable store.

Name A null-terminated ASCII string that specifies the name associated
with the variable store. The field is not actually included in the
structure but is included here to help illustrate the encoding of the
opcode. The size of the string, including the null termination, is
included in the opcode's header size.
Version 2.5 April, 2015 1993

Unified Extensible Firmware Interface Specification
Description
This opcode describes a Buffer Storage Variable Store within a form set. A question can select this
variable store by setting the VarStoreId field in its opcode header.

An EFI_IFR_VARSTORE with a specified VarStoreId must appear in the IFR before it can be
referenced by a question.

31.3.8.3.90 EFI_IFR_VARSTORE_NAME_VALUE

Summary
Creates a variable storage short-cut for name/value storage.

Prototype
#define EFI_IFR_VARSTORE_NAME_VALUE_OP 0x25
typedef struct _EFI_IFR_VARSTORE_NAME_VALUE {
 EFI_IFR_OP_HEADER Header;
 EFI_VARSTORE_ID VarStoreId;
 EFI_GUID Guid;
} EFI_IFR_VARSTORE_NAME_VALUE;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. For this tag,
Header.OpCode =
EFI_IFR_VARSTORE_NAME_VALUE_OP.

Guid The variable’s GUID definition. This field comprises one half of
the variable name, with the other half being the human-readable
aspect of the name, which is specified in the VariableName
field in the question’s header (see
EFI_IFR_QUESTION_HEADER). Type EFI_GUID is defined
in InstallProtocolInterface() in the UEFI
Specification.

VarStoreId The variable store identifier, which is unique within the current
form set. This field is the value that uniquely identifies this
variable store definition instance from others. Question headers
refer to this value to designate which is the active variable that is
being used. A value of zero is invalid.

Description
This opcode describes a Name/Value Variable Store within a form set. A question can select this
variable store by setting the VarStoreId field in its question header.

An EFI_IFR_VARSTORE_NAME_VALUE with a specified VarStoreId must appear in the IFR
before it can be referenced by a question.
1994 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.3.8.3.91 EFI_IFR_VARSTORE_EFI

Summary
Creates a variable storage short-cut for EFI variable storage.

Prototype
#define EFI_IFR_VARSTORE_EFI_OP 0x26
typedef struct _EFI_IFR_VARSTORE_EFI {
 EFI_IFR_OP_HEADER Header;
 EFI_VARSTORE_ID VarStoreId;
 EFI_GUID Guid;
 UINT32 Attributes
 UINT16 Size;
 //UINT8 Name[];
} EFI_IFR_VARSTORE_EFI;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_VARSTORE_EFI_OP.

VarStoreId The variable store identifier, which is unique within the current
form set. This field is the value that uniquely identifies this
variable store definition instance from others. Question headers
refer to this value to designate which is the active variable that is
being used. A value of zero is invalid.

Guid The EFI variable’s GUID definition. This field comprises one
half of the EFI variable name, with the other half being the
human-readable aspect of the name, which is specified in the
Name field below. Type EFI_GUID is defined in
InstallProtocolInterface() in this specification.

Attributes Specifies the flags to use for the variable.

Size The size of the variable store.

Name A null-terminated ASCII string that specifies one half of the EFI
name for this variable store. The other half is specified in the
Guid field (above). The Name field is not actually included in
the structure but is included here to help illustrate the encoding of
the opcode. The size of the string, including the null termination,
is included in the opcode's header size.

Description
This opcode describes an EFI Variable Variable Store within a form set. The Guid and Name
specified here will be used with GetVariable() and SetVariable().

• A question can select this variable store by setting the VarStoreId field in its question
header.
Version 2.5 April, 2015 1995

Unified Extensible Firmware Interface Specification
• A question can refer to a specific offset within the EFI Variable using the VarOffset field in
its question header.

Note: Name must be converted to a CHAR16 string before it is passed to GetVariable() or
SetVariable().

An EFI_IFR_VARSTORE_EFI with a specified VarStoreId must appear in the IFR before it
can be referenced by a question.

31.3.8.3.92 EFI_IFR_VARSTORE_DEVICE

Summary
Select the device which contains the variable store.

Prototype
#define EFI_IFR_VARSTORE_DEVICE_OP 0x27
typedef struct _EFI_IFR_VARSTORE_DEVICE {
 EFI_IFR_OP_HEADER Header;
 EFI_STRING_ID DevicePath;
} EFI_IFR_VARSTORE_DEVICE;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. For this tag,
Header.OpCode = EFI_IFR_VARSTORE_DEVICE_OP.

DevicePath Specifies the string which contains the device path of the device
where the variable store resides.

Description
This opcode describes the device path where a variable store resides. Normally, the Forms Processor
finds the variable store on the handle specified when the HII database function
NewPackageList() was called. However, if this opcode is found in the scope of a question, the
handle specified by the text device path DevicePath is used instead.

31.3.8.3.93 EFI_IFR_VERSION

Summary
Push the version of the UEFI specification to which the Forms Processor conforms.

Prototype
#define EFI_IFR_VERSION_OP 0x28
typedef struct _EFI_IFR_VERSION {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_VERSION;
1996 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_VERSION_OP.

Description
Returns the revision level of the UEFI specification with which the Forms Processor is compliant as
a 16-bit unsigned integer, with the form:

[15:8] Major revision

[7:4] Tens digit of the minor revision

[3:0] Ones digit of the minor revision

The fields of the version have the following correlation with the revision of the UEFI system table.
Major revision: EFI_SYSTEM_TABLE_REVISION >> 16
Tens digit of the minor revision: (EFI_SYSTEM_TABLE_REVISION &
0xFFFF)/10
Ones digit of the minor revision: (EFI_SYSTEM_TABLE_REVISION &
0xFFFF)%10

31.3.8.3.94 EFI_IFR_WRITE

Summary
Change a value for the current question.

Prototype
#define EFI_IFR_WRITE_OP 0x2E
typedef struct _EFI_IFR_WRITE {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_WRITE;

Parameters
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_WRITE_OP

Description
Before writing the value of the current question to storage (if any storage was specified), the this
constant is set (see EFI_IFR_THIS) and then this expression is evaluated.

31.3.8.3.95 EFI_IFR_ZERO

Summary
Push a zero on to the expression stack.

Prototype
#define EFI_IFR_ZERO_OP 0x52
Version 2.5 April, 2015 1997

Unified Extensible Firmware Interface Specification
typedef struct _EFI_IFR_ZERO {
 EFI_IFR_OP_HEADER Header;
} EFI_IFR_ZERO;

Members
Header The sequence that defines the type of opcode as well as the length

of the opcode being defined. For this tag, Header.OpCode =
EFI_IFR_ZERO_OP

Description
Push a zero on to the expression stack.

31.3.8.3.96 EFI_IFR_WARNING_IF

Summary
Creates a validation expression and warning message for a question.

Prototype
#define EFI_IFR_WARNING_IF_OP 0x063
typedef struct _EFI_IFR_WARNING_IF {
 EFI_IFR_OP_HEADER Header;
 EFI_STRING_ID Warning;
 UINT8 TimeOut;
} EFI_IFR_WARNING_IF;

Members
Header The byte sequence that defines the type of opcode as well as the

length of the opcode being defined. Header.OpCode =
EFI_IFR_WARNING_IF_OP.

Warning The string token reference to the string that will be used for the
warning check message.

TimeOut The number of seconds for the warning message to be displayed
before it is timed out or acknowledged by the user. A value of
zero indicates that the message is displayed indefinitely until the
user acknowledges it.

Description
This tag uses a Boolean expression to allow the IFR creator to check options in a question, and
provide a warning message if the expression is true. For example, this tag might be used to give a
warning if the user attempts to disable a security setting, or change the value of a sensitive question.
The tag provides a string to be used in a warning display to alert the user of the consequences of
changing the question value. Warning tags will be evaluated when the user traverses from tag to tag.
The browser must display the warning text message and not allow the form to be submitted until
either the user acknowledges the message (with some key press for instance) or the number of
seconds in TimeOut elapses. Unlike inconsistency tags, the user should still be allowed to submit the
results of a form even if the warning expression evaluates to true.
1998 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.3.8.3.97 EFI_IFR_MATCH2

Summary
Pop a source string and a pattern string, push TRUE if the source string matches the Regular
Expression pattern specified by the pattern string, otherwise push FALSE.

Prototype
#define EFI_IFR_MATCH2_OP 0x64
typedef struct _EFI_IFR_MATCH2 {
 EFI_IFR_OP_HEADER Header;
 EFI_GUID SyntaxType;
} EFI_IFR_MATCH2;

Members
Header Standard opcode header, where Header.Opcode

is EFI_IFR_MATCH2_OP.

SyntaxType A GUID that identifies the regular expression syntax type to use
for the pattern string. See
EFI_REGULAR_EXPRESSION_PROTOCOL for current syntax
definitions.

 Description
This opcode performs the following actions:

1. Pop two values from the expression stack. The first value popped is the string and the second
value popped is the pattern.

2. If the string or the pattern cannot be evaluated as a string, then push Undefined.

3. Call GetInfo function of each instance of EFI_REGULAR_EXPRESSION_PROTOCOL,
looking for a SyntaxType that is listed in the set of supported regular expression syntax types
returned by RegExSyntaxTypeList. If the type specified by SyntaxType is not
supported in any of the EFI_REGULAR_EXPRESSION_PROTOCOL instances, or no
EFI_REGULAR_EXPRESSION_PROTOCOL instance was found, push Undefined.

4. Process the string and pattern using the MatchString function of the
EFI_REGULAR_EXPRESSION_PROTOCOL instance that supports the SyntaxType, where
SyntaxType is the SyntaxType input to MatchString.

5. If the returned regular expression Result is TRUE, then push TRUE.

6. If the return regular expression Result is FALSE, then push FALSE.

Note: To ensure interoperability, drivers that publish HII IFR Forms packages should check the system
capabilities by calling the GetInfo function of each EFI_REGULAR_EXPRESSION_PROTCOL
instance during initialization. If the required regular expression syntax type is not supported, the
driver may install its own instance of EFI_REGULAR_EXPRESSION_PROTCOL to add the
Version 2.5 April, 2015 1999

Unified Extensible Firmware Interface Specification
support. The driver may also choose to fall back to other methods of validation, such as using
EFI_IFR_MATCH or callbacks.

31.3.9 Keyboard Package

//***
// EFI_HII_KEYBOARD_PACKAGE_HDR
//***
typedef struct {
 EFI_HII_PACKAGE_HDR Header;
 UINT16 LayoutCount;
//EFI_HII_KEYBOARD_LAYOUT Layout[];
} EFI_HII_KEYBOARD_PACKAGE_HDR;

Header The general pack header which defines both the type of pack and
the length of the entire pack.

LayoutCount The number of keyboard layouts contained in the entire keyboard
pack.

Layout An array of LayoutCount number of keyboard layouts.

31.3.10 Animations Package
The Animation package record describes how, when, and which EFI images to display. The package
consists of two parts: a fixed header and the animation information.

31.3.10.1 Animated Images Package

Summary
The fixed header consists of a standard record header and the

Prototype
typedef struct _EFI_HII_ANIMATION_PACKAGE_HDR {
EFI_HII_ANIMATION_PACKAGE Header;
UINT32 AnimationInfoOffset;
} EFI_HII_ANIMATION_PACKAGE_HDR;

Members
Header Standard image header, where Header.BlockType =

EFI_HII_PACKAGE_ANIMATIONS.

AnimationInfoOffsetOffset, relative to this header, of the animation information. If
this is zero, then there are no animation sequences in the package.

31.3.10.2 Animation Information
For each animated image identifier, the animation information gives a sequence of EFI images to
display and how and when to transition to the next image. The animation information is encoded as a
2000 April, 2015 Version 2.5

Human Interface Infrastructure Overview
series of blocks, with each block prefixed by a single byte header
(EFI_HII_ANIMATION_BLOCK) or one of the extension headers
(EFI_HII_AIBT_EXTx_BLOCK). The blocks must be processed in
order.

Figure 128. Animation Information Encoded in Blocks

Prototype
typedef struct _EFI_HII_ANIMATION_BLOCK {
 UINT8 BlockType;
//UINT8 BlockBody[];
} EFI_HII_ANIMATION_BLOCK;

The following table describes the different block types:

Table 215. Animation Block Types

Name Value Description

EFI_HII_AIBT_END 0x00 The end of the animation information.

EFI_HII_AIBT_OVERLAY_IMAGES 0x10 Animate sequence once by displaying the next
image in the logical window.
Version 2.5 April, 2015 2001

Unified Extensible Firmware Interface Specification
In order to recreate all animation sequences, start at the first block and process them all until either
an EFI_HII_AIBT_END block is found. When processing the animation blocks, each block refers
to the current animation identifier (AnimationIdCurrent), which is initially set to one (1).

Animation blocks of an unknown type should be skipped. If they cannot be skipped, then processing
halts.

31.3.10.2.1 EFI_HII_AIBT_END

Summary
Marks the end of the animation information.

Prototype
None

Members
Header Standard animation header, where Header.BlockType =

EFI_HII_AIBT_END.

Discussion
Any animation sequences with an animation identifier greater than or equal to
AnimationIdCurrent are empty. There is no additional data.

EFI_HII_AIBT_CLEAR_IMAGES 0x11 Animate sequence once by clearing the logical
window before displaying the next image.

EFI_HII_AIBT_RESTORE_SCRN 0x12 Animate sequence once by clearing the restoring
the logical window before displaying the next image.

EFI_HII_AIBT_OVERLAY_IMAGES_LOO
P

0x18 Animate repeating sequence by displaying the next
image in the logical window.

EFI_HII_AIBT_CLEAR_IMAGES_LOOP 0x19 Animate repeating sequence by clearing the logical
window before displaying the next image.

EFI_HII_AIBT_RESTORE_SCRN_LOOP 0x1A Animate repeating sequence by clearing the
restoring the logical window before displaying the
next image.

EFI_HII_AIBT_DUPLICATE 0x20 Duplicate an existing animation identifier

EFI_HII_AIBT_SKIP2 0x21 Skip a certain number of animation identifiers.

EFI_HII_AIBT_SKIP1 0x22 Skip a certain number of animation identifiers.

EFI_HII_AIBT_EXT1 0x30 For future expansion (one byte length field)

EFI_HII_AIBT_EXT2 0x31 For future expansion (two byte length field)

EFI_HII_AIBT_EXT4 0x32 For future expansion (four byte length field)

Name Value Description
2002 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.3.10.2.2 EFI_HII_AIBT_EXT1, EFI_HII_AIBT_EXT2, EFI_HII_AIBT_EXT4

Summary
Generic prefix for animation information with a 1-byte,2-byte or 4-byte length.

Prototype
typedef struct _EFI_HII_AIBT_EXT1_BLOCK {
 EFI_HII_ANIMATION_BLOCK Header;
 UINT8 BlockType2;
 UINT8 Length;
} EFI_HII_AIBT_EXT1_BLOCK;

typedef struct _EFI_HII_AIBT_EXT2_BLOCK {
 EFI_HII_ANIMATION_BLOCK Header;
 UINT8 BlockType2;
 UINT16 Length;
} EFI_HII_AIBT_EXT2_BLOCK;

typedef struct _EFI_HII_AIBT_EXT4_BLOCK {
 EFI_HII_ANIMATION_BLOCK Header;
 UINT8 BlockType2;
 UINT32 Length;
} EFI_HII_AIBT_EXT4_BLOCK;

 Members
 Header Standard animation header, where Header.BlockType =

EFI_HII_AIBT_EXT1, EFI_HII_AIBT_EXT2, or
EFI_HII_AIBT_EXT4.

Length Size of the animation block, in bytes, including the animation
block header.

BlockType2 The block type, as described in Table 212 on page 1910.

Discussion
These records are used for variable sized animation records which need an explicit length.

31.3.10.2.3 EFI_HII_AIBT_OVERLAY_IMAGES

Summary
An animation block to describe an animation sequence that does not cycle, and where one image is
simply displayed over the previous image.

Prototype
typedef struct _EFI_HII_AIBT_OVERLAY_IMAGES_BLOCK {
 EFI_IMAGE_ID DftImageId;
 UINT16 Width;
 UINT16 Height;
Version 2.5 April, 2015 2003

Unified Extensible Firmware Interface Specification
 UINT16 CellCount;
 EFI_HII_ANIMATION_CELL AnimationCell[];
} EFI_HII_AIBT_OVERLAY_IMAGES_BLOCK;

Members
DftImageId This is image that is to be reference by the image protocols, if the

animation function is not supported or disabled. This image can
be one particular image from the animation sequence (if any one
of the animation frames has a complete image) or an alternate
image that can be displayed alone. If the value is zero, no image
is displayed.

Width The overall width of the set of images (logical window width).

Height The overall height of the set of images (logical window height).

CellCount The number of EFI_HII_ANIMATION_CELL contained in the
animation sequence.

AnimationCell An array of CellCount animation cells. The type
EFI_HII_ANIMATION_CELL is defined in “Related
Definitions” below.

Description
This record assigns the animation sequence data to the AnimationIdCurrent identifier and
increment AnimationIdCurrent by one. This animation sequence is meant to be displayed only
once (it is not a repeating sequence). Each image in the sequence will remain on the screen for the
specified delay before the next image in the sequence is displayed.

The header type (either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_OVERLAY_IMAGES.

Related Definition
typedef struct _EFI_HII_ANIMATION_CELL {
 UINT16 OffsetX;
 UINT16 OffsetY;
 EFI_IMAGE_ID ImageId;
 UINT16 Delay;
} EFI_HII_ANIMATION_CELL;

OffsetX The X offset from the upper left hand corner of the logical
window to position the indexed image.

OffsetY The Y offset from the upper left hand corner of the logical
window to position the indexed image.

ImageId The image to display at the specified offset from the upper left
hand corner of the logical window.

Delay The number of milliseconds to delay after displaying the indexed
image and before continuing on to the next linked image. If value
is zero, no delay.
2004 April, 2015 Version 2.5

Human Interface Infrastructure Overview
Related Description
The logical window definition allows the animation to be centered, even though the first image
might be way off center (bounds the sequence of images). All images will be clipped to the defined
logical window, since the logical window is suppose to bound all images, normally there is nothing
to clip. The DftImageId definition allows an alternate image to be displayed if animation is
currently not supported. The DftImageId image is to be centered in the defined logical window.

31.3.10.2.4 EFI_HII_AIBT_CLEAR_IMAGES

Summary
An animation block to describe an animation sequence that does not cycle, and where the logical
window is cleared to the specified color before the next image is displayed.

Prototype
typedef struct _EFI_HII_AIBT_CLEAR_IMAGES_BLOCK {

EFI_IMAGE_ID DftImageId;
UINT16 Width;
UINT16 Height;
UINT16 CellCount;
EFI_HII_RGB_PIXEL BackgndColor;
EFI_HII_ANIMATION_CELL AnimationCell[];

} EFI_HII_AIBT_CLEAR_IMAGES_BLOCK;

Members
DftImageId This is image that is to be reference by the image protocols, if the

animation function is not supported or disabled. This image can
be one particular image from the animation sequence (if any one
of the animation frames has a complete image) or an alternate
image that can be displayed alone. If the value is zero, no image
is displayed.

Width The overall width of the set of images (logical window width).

Height The overall height of the set of images (logical window height).

CellCount The number of EFI_HII_ANIMATION_CELL contained in the
animation sequence.

BackgndColor The color to clear the logical window to before displaying the
indexed image.

AnimationCell An array of CellCount animation cells. The type
EFI_HII_ANIMATION_CELL is defined in “Related
Definitions” in EFI_HII_AIBT_OVERLAY_IMAGES.

Description
This record assigns the animation sequence data to the AnimationIdCurrent identifier and
increment AnimationIdCurrent by one. This animation sequence is meant to be displayed only once
(it is not a repeating sequence). Each image in the sequence will remain on the screen for the
specified delay before the logical window is cleared to the specified color (BackgndColor) and
Version 2.5 April, 2015 2005

Unified Extensible Firmware Interface Specification
the next image is displayed. The logical window is also cleared to the specified color before
displaying the DftImageId image.

The header type (either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_CLEAR_IMAGES.

31.3.10.2.5 EFI_HII_AIBT_RESTORE_SCRN

Summary
An animation block to describe an animation sequence that does not cycle, and where the screen is
restored to the original state before the next image is displayed.

Prototype
typedef struct _EFI_HII_AIBT_RESTORE_SCRN_BLOCK {
 EFI_IMAGE_ID DftImageId;
 UINT16 Width;
 UINT16 Height;
 UINT16 CellCount;
 EFI_HII_ANIMATION_CELL AnimationCell[];
} EFI_HII_AIBT_RESTORE_SCRN_BLOCK;

Members
DftImageId This is image that is to be reference by the image protocols, if the

animation function is not supported or disabled. This image can
be one particular image from the animation sequence (if any one
of the animation frames has a complete image) or an alternate
image that can be displayed alone. If the value is zero, no image
is displayed.

Width The overall width of the set of images (logical window width).

Height The overall height of the set of images (logical window height).

CellCount The number of EFI_HII_ANIMATION_CELL contained in the
animation sequence.

AnimationCell An array of CellCount animation cells. The type
EFI_HII_ANIMATION_CELL is defined in “Related
Definitions” in EFI_HII_AIBT_OVERLAY_IMAGES.

Description
This record assigns the animation sequence data to the AnimationIdCurrent identifier and
increment AnimationIdCurrent by one. This animation sequence is meant to be displayed only
once (it is not a repeating sequence). Before the first image is displayed, the entire defined logical
window is saved to a buffer. Then each image in the sequence will remain on the screen for the
specified delay before the logical window is restored to the original state and the next image is
displayed.

If memory buffers are not available to save the logical window, this structure is treated as
EFI_HII_AIBT_CLEAR_IMAGES structure, with the BackgndColor value set to black.
2006 April, 2015 Version 2.5

Human Interface Infrastructure Overview
The header type (either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_RESTORE_SCRN.

31.3.10.2.6 EFI_HII_AIBT_OVERLAY_IMAGES_LOOP

Summary
An animation block to describe an animation sequence that continuously cycles, and where one
image is simply displayed over the previous image.

Prototype
typedef EFI_HII_AIBT_OVERLAY_IMAGES_BLOCK
EFI_HII_AIBT_OVERLAY_IMAGES_LOOP_BLOCK {
 EFI_IMAGE_ID DftImageId;
 UINT16 Width;
 UINT16 Height;
 UINT16 CellCount;
 EFI_HII_ANIMATION_CELL AnimationCell[];
} EFI_HII_AIBT_OVERLAY_IMAGES_LOOP_BLOCK;

Members
DftImageId This is image that is to be reference by the image protocols, if the

animation function is not supported or disabled. This image can
be one particular image from the animation sequence (if any one
of the animation frames has a complete image) or an alternate
image that can be displayed alone. If the value is zero, no image
is displayed.

Width The overall width of the set of images (logical window width).

Height The overall height of the set of images (logical window height).

CellCount The number of EFI_HII_ANIMATION_CELL contained in the
animation sequence.

AnimationCell An array of CellCount animation cells. The type
EFI_HII_ANIMATION_CELL is defined in “Related
Definitions” in EFI_HII_AIBT_OVERLAY_IMAGES

Description
This record assigns the animation sequence data to the AnimationIdCurrent identifier and
increment AnimationIdCurrent by one. This animation sequence is meant to continuously
cycle until stopped or paused. Each image in the sequence will remain on the screen for the specified
delay before the next image in the sequence is displayed.

The header type (either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_OVERLAY_IMAGES_LOOP.
Version 2.5 April, 2015 2007

Unified Extensible Firmware Interface Specification
31.3.10.2.7 EFI_HII_AIBT_CLEAR_IMAGES_LOOP

Summary
An animation block to describe an animation sequence that continuously cycles, and where the
logical window is cleared to the specified color before the next image is displayed.

Prototype
typedef EFI_HII_AIBT_CLEAR_IMAGES_BLOCK
EFI_HII_AIBT_CLEAR_IMAGES_LOOP_BLOCK {
 EFI_IMAGE_ID DftImageId;
 UINT16 Width;
 UINT16 Height;
 UINT16 CellCount;
 EFI_HII_RGB_PIXEL BackgndColor;
 EFI_HII_ANIMATION_CELL AnimationCell[];
} EFI_HII_AIBT_CLEAR_IMAGES_LOOP_BLOCK;

Members
DftImageId This is image that is to be reference by the image protocols, if the

animation function is not supported or disabled. This image can
be one particular image from the animation sequence (if any one
of the animation frames has a complete image) or an alternate
image that can be displayed alone. If the value is zero, no image
is displayed.

Width The overall width of the set of images (logical window width).

Height The overall height of the set of images (logical window height).

CellCount The number of EFI_HII_ANIMATION_CELL contained in the
animation sequence.

BackgndColor The color to clear the logical window to before displaying the
indexed image.

AnimationCell An array of CellCount animation cells. The type
EFI_HII_ANIMATION_CELL is defined in “Related
Definitions” in EFI_HII_AIBT_OVERLAY_IMAGES

Description
This record assigns the animation sequence data to the AnimationIdCurrent identifier and
increment AnimationIdCurrent by one. This animation sequence is meant to continuously
cycle until stopped or paused. Each image in the sequence will remain on the screen for the specified
delay before the logical window is cleared to the specified color (BackgndColor) and the next
image is displayed. The logical window is also cleared to the specified color before displaying the
DftImageId image.
2008 April, 2015 Version 2.5

Human Interface Infrastructure Overview
The header type (either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_CLEAR_IMAGES_LOOP.

31.3.10.2.8 EFI_HII_AIBT_RESTORE_SCRN_LOOP

Summary
An animation block to describe an animation sequence that continuously cycles, and where the
screen is restored to the original state before the next image is displayed.

Prototype
typedef EFI_HII_AIBT_RESTORE_SCRN_LOOP_BLOCK
EFI_HII_AIBT_RESTORE_SCRN_LOOP_BLOCK {
 EFI_IMAGE_ID DftImageId;
 UINT16 Width;
 UINT16 Height;
 UINT16 CellCount;
 EFI_HII_ANIMATION_CELL AnimationCell[];
} EFI_HII_AIBT_RESTORE_SCRN_LOOP_BLOCK;

Members
Header Standard image header, where Header.BlockType =

EFI_HII_AIBT_RESTORE_SCRN_LOOP.

DftImageId This is image that is to be reference by the image protocols, if the
animation function is not supported or disabled. This image can
be one particular image from the animation sequence (if any one
of the animation frames has a complete image) or an alternate
image that can be displayed alone. If the value is zero, no image
is displayed.

Length Size of the animation block, in bytes, including the animation
block header.

Width The overall width of the set of images (logical window width).

Height The overall height of the set of images (logical window height).

CellCount The number of EFI_HII_ANIMATION_CELL contained in the
animation sequence.

AnimationCell An array of CellCount animation cells. The type
EFI_HII_ANIMATION_CELL is defined in “Related
Definitions” in EFI_HII_AIBT_OVERLAY_IMAGES

Description
This record assigns the animation sequence data to the AnimationIdCurrent identifier and
increment AnimationIdCurrent by one. This animation sequence is meant to continuously
cycle until stopped or paused. Before the first image is displayed, the entire defined logical window
is saved to a buffer. Then each image in the sequence will remain on the screen for the specified
delay before the logical window is restored to the original state and the next image is displayed.
Version 2.5 April, 2015 2009

Unified Extensible Firmware Interface Specification
If memory buffers are not available to save the logical window, this structure is treated as
EFI_HII_AIBT_CLEAR_IMAGES_LOOP structure, with the BackgndColor value set to
black.

The header type (either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_RESTORE_SCRN_LOOP.

31.3.10.2.9 EFI_HII_AIBT_DUPLICATE

Summary
Assigns a new character value to a previously defined animation sequence.

Prototype
typedef struct _EFI_HII_AIBT_DUPLICATE_BLOCK {
 EFI_ANIMATION_ID AnimationId;
} EFI_HII_AIBT_DUPLICATE_BLOCK;

Members
AnimationId The previously defined animation ID with the exact same

animation information.

Discussion
Indicates that the animation sequence with animation ID AnimationIdCurrent has the same
animation information as a previously defined animation ID and increments
AnimationIdCurrent by one.

The header type (either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_DUPLICATE.

31.3.10.2.10 EFI_HII_AIBT_SKIP1

Summary
Skips animation IDs.

Prototype
typedef struct _EFI_HII_AIBT_SKIP1_BLOCK {
 UINT8 SkipCount;
} EFI_HII_AIBT_SKIP1_BLOCK;

Members
SkipCount The unsigned 8-bit value to add to AnimationIdCurrent.

Discussion
Increments the current animation ID AnimationIdCurrent by the number specified. The
header type (either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_SKIP1.
2010 April, 2015 Version 2.5

Human Interface Infrastructure Overview
31.3.10.2.11 EFI_HII_AIBT_SKIP2

Summary
Skips animation IDs.

Prototype
typedef struct _EFI_HII_AIBT_SKIP2_BLOCK {
 UINT16 SkipCount;
} EFI_HII_AIBT_SKIP2_BLOCK;

Members
SkipCount The unsigned 16-bit value to add to AnimationIdCurrent.

Discussion
Increments the current animation ID AnimationIdCurrent by the number specified.

The header type (either BlockType in EFI_HII_ANIMATION_BLOCK or BlockType2 in
EFI_HII_AIBT_EXTx_BLOCK) will be set to EFI_HII_AIBT_SKIP2.
Version 2.5 April, 2015 2011

Unified Extensible Firmware Interface Specification
2012 April, 2015 Version 2.5

HII Protocols
32
HII Protocols

This section provides code definitions for the HII-related protocols, functions, and type definitions,
which are the required architectural mechanisms by which UEFI-compliant systems manage user
input. The major areas described include the following:

• Font management.

• String management.

• Image management.

• Database management.

32.1 Font Protocol

EFI_HII_FONT_PROTOCOL

Summary
Interfaces which retrieve font information.

GUID
#define EFI_HII_FONT_PROTOCOL_GUID \
 { 0xe9ca4775, 0x8657, 0x47fc, \
 {0x97, 0xe7, 0x7e, 0xd6, 0x5a, 0x8, 0x43, 0x24 }}

Protocol
typedef struct _EFI_HII_FONT_PROTOCOL {
 EFI_HII_STRING_TO_IMAGE StringToImage;
 EFI_HII_STRING_ID_TO_IMAGE StringIdToImage;
 EFI_HII_GET_GLYPH GetGlyph;
 EFI_HII_GET_FONT_INFO GetFontInfo;
} EFI_HII_FONT_PROTOCOL;

Members
StringToImage, StringIdToImage

Render a string to a bitmap or to the display.

GetGlyph

Return a specific glyph in a specific font.

GetFontInfo

Return font information for a specific font.
Version 2.5 April, 2015 2013

Unified Extensible Firmware Interface Specification
EFI_HII_FONT_PROTOCOL.StringToImage()

Summary
Renders a string to a bitmap or to the display.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_STRING_TO_IMAGE) (
 IN CONST EFI_HII_FONT_PROTOCOL *This,
 IN EFI_HII_OUT_FLAGS Flags,
 IN CONST EFI_STRING String,
 IN CONST EFI_FONT_DISPLAY_INFO *StringInfo OPTIONAL,
 IN OUT EFI_IMAGE_OUTPUT **Blt,
 IN UINTN BltX,
 IN UINTN BltY,
 OUT EFI_HII_ROW_INFO **RowInfoArray OPTIONAL,
 OUT UINTN *RowInfoArraySize OPTIONAL,
 OUT UINTN *ColumnInfoArray OPTIONAL

);

Parameters
This

A pointer to the EFI_HII_FONT_PROTOCOL instance.

Flags

Describes how the string is to be drawn. EFI_HII_OUT_FLAGS is defined in
Related Definitions, below.

String

Points to the null-terminated string to be displayed.

StringInfo

Points to the string output information, including the color and font. If NULL, then the
string will be output in the default system font and color.

Blt

If this points to a non-NULL on entry, this points to the image, which is Blt.Width
pixels wide and Blt.Height pixels high. The string will be drawn onto this image
and EFI_HII_OUT_FLAG_CLIP is implied. If this points to a NULL on entry, then
a buffer will be allocated to hold the generated image and the pointer updated on exit.
It is the caller’s responsibility to free this buffer.

BltX, BltY

Specifies the offset from the left and top edge of the image of the first character cell in
the image.
2014 April, 2015 Version 2.5

HII Protocols
RowInfoArray

If this is non-NULL on entry, then on exit, this will point to an allocated buffer
containing row information and RowInfoArraySize will be updated to contain the
number of elements. This array describes the characters which were at least partially
drawn and the heights of the rows. It is the caller’s responsibility to free this buffer.

RowInfoArraySize

If this is non-NULL on entry, then on exit it contains the number of elements in
RowInfoArray.

ColumnInfoArray

If this is non-NULL, then on return it will be filled with the horizontal offset for each
character in the string on the row where it is displayed. Non-printing characters will
have the offset ~0. The caller is responsible to allocate a buffer large enough so that
there is one entry for each character in the string, not including the null-terminator. It
is possible when character display is normalized that some character cells overlap.

Description
This function renders a string to a bitmap or the screen using the specified font, color and options. It
either draws the string and glyphs on an existing bitmap, allocates a new bitmap or uses the screen.
The strings can be clipped or wrapped. Optionally, the function also returns the information about
each row and the character position on that row.

If EFI_HII_OUT_FLAG_CLIP is set, then text will be formatted only based on explicit line
breaks and all pixels which would lie outside the bounding box specified by Blt.Width and
Blt.Height are ignored. The information in the RowInfoArray only describes characters
which are at least partially displayed. For the final row, the RowInfoArray.LineHeight and
RowInfoArray.BaseLine may describe pixels which are outside the limit specified by Blt.
Height (unless EFI_HII_OUT_FLAG_CLIP_CLEAN_Y is specified) even though those pixels
were not drawn. The LineWidth may describe pixels which are outside the limit specified by
Blt.Width (unless EFI_HII_OUT_FLAG_CLIP_CLEAN_X is specified) even though those
pixels were not drawn.

If EFI_HII_OUT_FLAG_CLIP_CLEAN_X is set, then it modifies the behavior of
EFI_HII_OUT_FLAG_CLIP so that if a character’s right-most on pixel cannot fit, then it will not
be drawn at all. This flag requires that EFI_HII_OUT_FLAG_CLIP be set.

If EFI_HII_OUT_FLAG_CLIP_CLEAN_Y is set, then it modifies the behavior of
EFI_HII_OUT_FLAG_CLIP so that if a row’s bottom-most pixel cannot fit, then it will not be
drawn at all. This flag requires that EFI_HII_OUT_FLAG_CLIP be set.

If EFI_HII_OUT_FLAG_WRAP is set, then text will be wrapped at the right-most line-break
opportunity prior to a character whose right-most extent would exceed Blt.Width. If no line-
break opportunity can be found, then the text will behave as if
EFI_HII_OUT_FLAG_CLIP_CLEAN_X is set. This flag cannot be used with
EFI_HII_OUT_FLAG_CLIP_CLEAN_X.

If EFI_HII_OUT_FLAG_TRANSPARENT is set, then StringInfo.BackgroundColor is
ignored and all “off” pixels in the character’s drawn will use the pixel value from Blt. This flag
cannot be used if Blt is NULL upon entry.
Version 2.5 April, 2015 2015

Unified Extensible Firmware Interface Specification
If EFI_HII_IGNORE_IF_NO_GLYPH is set, then characters which have no glyphs are not drawn.
Otherwise, they are replaced with Unicode character code 0xFFFD (REPLACEMENT
CHARACTER).

If EFI_HII_IGNORE_LINE_BREAK is set, then explicit line break characters will be ignored.

If EFI_HII_DIRECT_TO_SCREEN is set, then the string will be written directly to the output
device specified by Screen. Otherwise the string will be rendered to the bitmap specified by
Bitmap.

Related Definitions
typedef UINT32 EFI_HII_OUT_FLAGS;

#define EFI_HII_OUT_FLAG_CLIP 0x00000001
#define EFI_HII_OUT_FLAG_WRAP 0x00000002
#define EFI_HII_OUT_FLAG_CLIP_CLEAN_Y 0x00000004
#define EFI_HII_OUT_FLAG_CLIP_CLEAN_X 0x00000008
#define EFI_HII_OUT_FLAG_TRANSPARENT 0x00000010
#define EFI_HII_IGNORE_IF_NO_GLYPH 0x00000020
#define EFI_HII_IGNORE_LINE_BREAK 0x00000040
#define EFI_HII_DIRECT_TO_SCREEN 0x00000080

typedef CHAR16 *EFI_STRING;

typedef struct _EFI_HII_ROW_INFO {
 UINTN StartIndex;
 UINTN EndIndex;
 UINTN LineHeight;
 UINTN LineWidth;
 UINTN BaselineOffset;
} EFI_HII_ROW_INFO;

StartIndex

The index of the first character in the string which is displayed on the line.

EndIndex

The index of the last character in the string which is displayed on the line.

LineHeight

The height of the line, in pixels.

LineWidth

The width of the text on the line, in pixels.

BaselineOffset

The font baseline offset in pixels from the bottom of the row, or 0 if none.
2016 April, 2015 Version 2.5

HII Protocols
Status Codes Returned

EFI_SUCCESS The string was successfully updated.

EFI_OUT_OF_RESOURCES Unable to allocate an output buffer for RowInfoArray or Blt.

EFI_INVALID_PARAMETER The String or Blt was NULL.

EFI_INVALID_PARAMETER Flags were invalid combination
Version 2.5 April, 2015 2017

Unified Extensible Firmware Interface Specification
EFI_HII_FONT_PROTOCOL.StringIdToImage()

Summary
Render a string to a bitmap or the screen containing the contents of the specified string.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_STRING_ID_TO_IMAGE) (
 IN CONST EFI_HII_FONT_PROTOCOL *This,
 IN EFI_HII_OUT_FLAGS Flags,
 IN EFI_HII_HANDLE PackageList,
 IN EFI_STRING_ID StringId,
 IN CONST CHAR8* Language,
 IN CONST EFI_FONT_DISPLAY_INFO *StringInfo OPTIONAL,
 IN OUT EFI_IMAGE_OUTPUT **Blt,
 IN UINTN BltX,
 IN UINTN BltY,
 OUT EFI_HII_ROW_INFO **RowInfoArray OPTIONAL,
 OUT UINTN *RowInfoArraySize OPTIONAL,
 OUT UINTN *ColumnInfoArray OPTIONAL
);

Parameters
This

A pointer to the EFI_HII_FONT_PROTOCOL instance.

Flags

Describes how the string is to be drawn. EFI_HII_OUT_FLAGS is defined in
Related Definitions, below.

PackageList

The package list in the HII database to search for the specified string.

StringId

The string’s id, which is unique within PackageList.

Language

Points to the language for the retrieved string. If NULL, then the current system
language is used.

StringInfo

Points to the string output information, including the color and font. If NULL, then the
string will be output in the default system font and color.
2018 April, 2015 Version 2.5

HII Protocols
Blt

If this points to a non-NULL on entry, this points to the image, which is Blt.Width
pixels wide and Height pixels high. The string will be drawn onto this image and
EFI_HII_OUT_FLAG_CLIP is implied. If this points to a NULL on entry, then a
buffer will be allocated to hold the generated image and the pointer updated on exit. It
is the caller’s responsibility to free this buffer.

BltX, BltY

Specifies the offset from the left and top edge of the output image of the first character
cell in the image.

RowInfoArray

If this is non-NULL on entry, then on exit, this will point to an allocated buffer
containing row information and RowInfoArraySize will be updated to contain
the number of elements. This array describes the characters which were at least
partially drawn and the heights of the rows. It is the caller’s responsibility to free this
buffer.

RowInfoArraySize

If this is non-NULL on entry, then on exit it contains the number of elements in
RowInfoArray.

ColumnInfoArray

If non-NULL, on return it is filled with the horizontal offset for each character in the
string on the row where it is displayed. Non-printing characters will have the offset
~0. The caller is responsible to allocate a buffer large enough so that there is one entry
for each character in the string, not including the null-terminator. It is possible when
character display is normalized that some character cells overlap.

Description
This function renders a string as a bitmap or to the screen and can clip or wrap the string. The bitmap
is either supplied by the caller or else is allocated by the function. The strings are drawn with the
font, size and style specified and can be drawn transparently or opaquely. The function can also
return information about each row and each character’s position on the row.

If EFI_HII_OUT_FLAG_CLIP is set, then text will be formatted only based on explicit line
breaks and all pixels which would lie outside the bounding box specified by Width and Height
are ignored. The information in the RowInfoArray only describes characters which are at least
partially displayed. For the final row, the LineHeight and BaseLine may describe pixels which are
outside the limit specified by Height (unless EFI_HII_OUT_FLAG_CLIP_CLEAN_Y is
specified) even though those pixels were not drawn.

If EFI_HII_OUT_FLAG_CLIP_CLEAN_X is set, then it modifies the behavior of
EFI_HII_OUT_FLAG_CLIP so that if a character’s right-most on pixel cannot fit, then it will not
be drawn at all. This flag requires that EFI_HII_OUT_FLAG_CLIP be set.

If EFI_HII_OUT_FLAG_CLIP_CLEAN_Y is set, then it modifies the behavior of
EFI_HII_OUT_FLAG_CLIP so that if a row’s bottom most pixel cannot fit, then it will not be
drawn at all. This flag requires that EFI_HII_OUT_FLAG_CLIP be set.
Version 2.5 April, 2015 2019

Unified Extensible Firmware Interface Specification
If EFI_HII_OUT_FLAG_WRAP is set, then text will be wrapped at the right-most line-break
opportunity prior to a character whose right-most extent would exceed Width. If no line-break
opportunity can be found, then the text will behave as if EFI_HII_OUT_FLAG_CLIP_CLEAN_X
is set. This flag cannot be used with EFI_HII_OUT_FLAG_CLIP_CLEAN_X.

If EFI_HII_OUT_FLAG_TRANSPARENT is set, then BackgroundColor is ignored and all
“off” pixels in the character’s glyph will use the pixel value from Blt. This flag cannot be used if
Blt is NULL upon entry.

If EFI_HII_IGNORE_IF_NO_GLYPH is set, then characters which have no glyphs are not drawn.
Otherwise, they are replaced with Unicode character code 0xFFFD (REPLACEMENT
CHARACTER).

If EFI_HII_IGNORE_LINE_BREAK is set, then explicit line break characters will be ignored.

If EFI_HII_DIRECT_TO_SCREEN is set, then the string will be written directly to the output
device specified by Screen. Otherwise the string will be rendered to the bitmap specified by
Bitmap.

Status Codes Returned

EFI_SUCCESS The string was successfully updated.

EFI_OUT_OF_RESOURCES Unable to allocate an output buffer for RowInfoArray or Blt.

EFI_INVALID_PARAMETER The StringId or PackageList was NULL.

EFI_INVALID_PARAMETER Flags were invalid combination.

EFI_NOT_FOUND The StringId is not in the specified PackageList.

The specified PackageList is not in the Database.
2020 April, 2015 Version 2.5

HII Protocols
EFI_HII_FONT_PROTOCOL.GetGlyph()

Summary
Return image and information about a single glyph.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GET_GLYPH) (
 IN CONST EFI_HII_FONT_PROTOCOL *This,
 IN CHAR16 Char,
 IN CONST EFI_FONT_DISPLAY_INFO *StringInfo,
 OUT EFI_IMAGE_OUTPUT **Blt;
 OUT UINTN *Baseline OPTIONAL;
);

Parameters
This

A pointer to the EFI_HII_FONT_PROTOCOL instance.

Char

Character to retrieve.

StringInfo

Points to the string font and color information or NULL if the string should use the
default system font and color.

Blt

Thus must point to a NULL on entry. A buffer will be allocated to hold the output and
the pointer updated on exit. It is the caller’s responsibility to free this buffer.On return,
only Blt.Width, Blt.Height, and Blt.Image.Bitmap are valid.

Baseline

Number of pixels from the bottom of the bitmap to the baseline.

Description
Convert the glyph for a single character into a bitmap.

Status Codes Returned

EFI_SUCCESS Glyph bitmap created.

EFI_OUT_OF_RESOURCES Unable to allocate the output buffer

Blt.

EFI_WARN_UNKNOWN_GLYPH The glyph was unknown and was
replaced with the glyph for Unicode
character code 0xFFFD.

EFI_INVALID_PARAMETER Blt is NULL or *Blt is !Null
Version 2.5 April, 2015 2021

Unified Extensible Firmware Interface Specification
EFI_HII_FONT_PROTOCOL.GetFontInfo()

Summary
Return information about a particular font.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GET_FONT_INFO) (
 IN CONST EFI_HII_FONT_PROTOCOL *This,
 IN OUT EFI_FONT_HANDLE *FontHandle,
 IN CONST EFI_FONT_DISPLAY_INFO *StringInfoIn, OPTIONAL
 OUT EFI_FONT_DISPLAY_INFO **StringInfoOut,
 IN CONST EFI_STRING String OPTIONAL
);

typedef VOID *EFI_FONT_HANDLE;

Parameters
This

A pointer to the EFI_HII_FONT_PROTOCOL instance.

FontHandle

On entry, points to the font handle returned by a previous call to GetFontInfo()
or points to NULL to start with the first font. On return, points to the returned font
handle or points to NULL if there are no more matching fonts.

StringInfoIn

Upon entry, points to the font to return information about. If NULL, then the
information about the system default font will be returned.

StringInfoOut

Upon return, contains the matching font’s information. If NULL, then no information
is returned. This buffer is allocated with a call to the Boot Service
AllocatePool(). It is the caller's responsibility to call the Boot Service
FreePool() when the caller no longer requires the contents of StringInfoOut.

String

Points to the string which will be tested to determine if all characters are available. If
NULL, then any font is acceptable.

Description
This function iterates through fonts which match the specified font, using the specified criteria. If
String is non-NULL, then all of the characters in the string must exist in order for a candidate font
to be returned.
2022 April, 2015 Version 2.5

HII Protocols
Status Codes Returned

32.1.1 Code Definitions

EFI_FONT_DISPLAY_INFO

Summary
Describes font output-related information.

Prototype
typedef struct _EFI_FONT_DISPLAY_INFO {
 EFI_GRAPHICS_OUTPUT_BLT_PIXEL ForegroundColor;
 EFI_GRAPHICS_OUTPUT_BLT_PIXEL BackgroundColor;
 EFI_FONT_INFO_MASK FontInfoMask;
 EFI_FONT_INFO FontInfo
} EFI_FONT_DISPLAY_INFO;

Members
FontInfo

The font information. Type EFI_FONT_INFO is defined in
EFI_HII_STRING_PROTOCOL.NewString().

ForegroundColor

The color of the “on” pixels in the glyph in the bitmap.

BackgroundColor

The color of the “off” pixels in the glyph in the bitmap.

FontInfoMask

The font information mask determines which portion of the font information will be
used and what to do if the specific font is not available.

Description
This structure is used for describing the way in which a string should be rendered in a particular font.
FontInfo specifies the basic font information and ForegroundColor and
BackgroundColor specify the color in which they should be displayed. The flags in
FontInfoMask describe where the system default should be supplied instead of the specified
information. The flags also describe what options can be used to make a match between the font
requested and the font available.

EFI_SUCCESS Matching font returned successfully.

EFI_NOT_FOUND No matching font was found.

EFI_OUT_OF_RESOURCES There were insufficient resources to
complete the request.
Version 2.5 April, 2015 2023

Unified Extensible Firmware Interface Specification
If EFI_FONT_INFO_SYS_FONT is specified, then the font name in FontInfo is ignored and the
system font name is used. This flag cannot be used with EFI_FONT_INFO_ANY_FONT.

If EFI_FONT_INFO_SYS_SIZE is specified, then the font height specified in FontInfo is
ignored and the system font height is used instead. This flag cannot be used with
EFI_FONT_INFO_ANY_SIZE.

If EFI_FONT_INFO_SYS_STYLE is specified, then the font style in FontInfo is ignored and
the system font style is used. This flag cannot be used with EFI_FONT_INFO_ANY_STYLE.

If EFI_FONT_INFO_SYS_FORE_COLOR is specified, then ForegroundColor is ignored and
the system foreground color is used.

If EFI_FONT_INFO_SYS_BACK_COLOR is specified, then BackgroundColor is ignored and
the system background color is used.

If EFI_FONT_INFO_RESIZE is specified, then the system may attempt to stretch or shrink a font
to meet the size requested. This flag cannot be used with EFI_FONT_INFO_ANY_SIZE.

If EFI_FONT_INFO_RESTYLE is specified, then the system may attempt to remove some of the
specified styles in order to meet the style requested. This flag cannot be used with
EFI_FONT_INFO_ANY_STYLE.

If EFI_FONT_INFO_ANY_FONT is specified, then the system may attempt to match with any font.
This flag cannot be used with EFI_FONT_INFO_SYS_FONT.

If EFI_FONT_INFO_ANY_SIZE is specified, then the system may attempt to match with any font
size. This flag cannot be used with EFI_FONT_INFO_SYS_SIZE or
EFI_FONT_INFO_RESIZE.

If EFI_FONT_INFO_ANY_STYLE is specified, then the system may attempt to match with any
font style. This flag cannot be used with EFI_FONT_INFO_SYS_STYLE or
EFI_FONT_INFO_RESTYLE.
2024 April, 2015 Version 2.5

HII Protocols
Related Definitions
typedef UINT32 EFI_FONT_INFO_MASK;

#define EFI_FONT_INFO_SYS_FONT 0x00000001
#define EFI_FONT_INFO_SYS_SIZE 0x00000002
#define EFI_FONT_INFO_SYS_STYLE 0x00000004
#define EFI_FONT_INFO_SYS_FORE_COLOR 0x00000010
#define EFI_FONT_INFO_SYS_BACK_COLOR 0x00000020
#define EFI_FONT_INFO_RESIZE 0x00001000
#define EFI_FONT_INFO_RESTYLE 0x00002000
#define EFI_FONT_INFO_ANY_FONT 0x00010000
#define EFI_FONT_INFO_ANY_SIZE 0x00020000
#define EFI_FONT_INFO_ANY_STYLE 0x00040000

EFI_IMAGE_OUTPUT

Summary
Describes information about either a bitmap or a graphical output device.

Prototype
typedef struct _EFI_IMAGE_OUTPUT {
 UINT16 Width;
 UINT16 Height;
 union {
 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *Bitmap;
 EFI_GRAPHICS_OUTPUT_PROTOCOL *Screen;
 } Image;
} EFI_IMAGE_OUTPUT;

Members
Width

Width of the output image.

Height

Height of the output image.

Bitmap

Points to the output bitmap.

Screen

Points to the EFI_GRAPHICS_OUTPUT_PROTOCOL which describes the screen on
which to draw the specified string.
Version 2.5 April, 2015 2025

Unified Extensible Firmware Interface Specification
32.2 String Protocol

EFI_HII_STRING_PROTOCOL

Summary
Interfaces which manipulate string data.

GUID
#define EFI_HII_STRING_PROTOCOL_GUID \
 { 0xfd96974, 0x23aa, 0x4cdc,\
 { 0xb9, 0xcb, 0x98, 0xd1, 0x77, 0x50, 0x32, 0x2a }}

Protocol
typedef struct _EFI_HII_STRING_PROTOCOL {
 EFI_HII_NEW_STRING NewString;
 EFI_HII_GET_STRING GetString;
 EFI_HII_SET_STRING SetString;
 EFI_HII_GET_LANGUAGES GetLanguages;
 EFI_HII_GET_2ND_LANGUAGES GetSecondaryLanguages;
} EFI_HII_STRING_PROTOCOL;

Members
NewString

Add a new string.

GetString

Retrieve a string and related string information.

SetString

Change a string.

GetLanguages

List the languages for a particular package list.

GetSecondaryLanguages

List supported secondary languages for a particular primary language.
2026 April, 2015 Version 2.5

HII Protocols
EFI_HII_STRING_PROTOCOL.NewString()

Summary
Creates a new string in a specific language and add it to strings from a specific package list.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_NEW_STRING) (
 IN CONST EFI_HII_STRING_PROTOCOL *This,
 IN EFI_HII_HANDLE PackageList,
 OUT EFI_STRING_ID *StringId
 IN CONST CHAR8 *Language,
 IN CONST CHAR16 *LanguageName OPTIONAL,
 IN CONST EFI_STRING String,
 IN CONST EFI_FONT_INFO *StringFontInfo
);

Parameters
This

A pointer to the EFI_HII_STRING_PROTOCOL instance.

PackageList

Handle of the package list where this string will be added.

Language

Points to the language for the new string. The language information is in the format
described by Appendix M of the UEFI Specification.

LanguageName

Points to the printable language name to associate with the passed in Language
field. This is analogous to passing in "zh-Hans" in the Language field and
LanguageName might contain "Simplified Chinese" as the printable language.

String

Points to the new null-terminated string.

StringFontInfo

Points to the new string’s font information or NULL if the string should have the
default system font, size and style.

StringId

On return, contains the new strings id, which is unique within PackageList. Type
EFI_STRING_ID is defined in Section 31.3.8.2.1.

Description
This function adds the string String to the group of strings owned by PackageList, with the
specified font information StringFontInfo and returns a new string id. The new string identifier
Version 2.5 April, 2015 2027

Unified Extensible Firmware Interface Specification
is guaranteed to be unique within the package list. That new string identifier is reserved for all
languages in the package list.

Related Definitions
typedef struct {
 EFI_HII_FONT_STYLE FontStyle;
 UINT16 FontSize;
 CHAR16 FontName[…];
} EFI_FONT_INFO;

FontStyle

 The design style of the font. Type EFI_HII_FONT_STYLE is defined in
Section 31.3.3.1 .

FontSize

 The character cell height, in pixels.

FontName

 The null-terminated font family name.

Status Codes Returns

EFI_SUCCESS The new string was added successfully

EFI_OUT_OF_RESOURCES Could not add the string.

EFI_INVALID_PARAMETER String is NULL or StringId is NULL or Language is

NULL.

EFI_NOT_FOUND The input package list could not be found in the current database.
2028 April, 2015 Version 2.5

HII Protocols
EFI_HII_STRING_PROTOCOL.GetString()

Summary
Returns information about a string in a specific language, associated with a package list.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GET_STRING) (
 IN CONST EFI_HII_STRING_PROTOCOL *This,
 IN CONST CHAR8 *Language,
 IN EFI_HII_HANDLE PackageList,
 IN EFI_STRING_ID StringId,
 OUT EFI_STRING String,
 IN OUT UINTN *StringSize,
 OUT EFI_FONT_INFO **StringFontInfo OPTIONAL
);

Parameters
This

A pointer to the EFI_HII_STRING_PROTOCOL instance.

PackageList

The package list in the HII database to search for the specified string.

Language

Points to the language for the retrieved string. Callers of interfaces that require RFC
4646 language codes to retrieve a Unicode string must use the RFC 4647 algorithm to
lookup the Unicode string with the closest matching RFC 4646 language code.

StringId

The string’s id, which is unique within PackageList.

String

Points to the new null-terminated string.

StringSize

On entry, points to the size of the buffer pointed to by String, in bytes. On return,
points to the length of the string, in bytes.

StringFontInfo

Points to a buffer that will be callee allocated and will have the string's font
information into this buffer. The caller is responsible for freeing this buffer. If the
parameter is NULL a buffer will not be allocated and the string font information will
not be returned.
Version 2.5 April, 2015 2029

Unified Extensible Firmware Interface Specification
Description
This function retrieves the string specified by StringId which is associated with the specified
PackageList in the language Language and copies it into the buffer specified by String.

If the string specified by StringId is not present in the specified PackageList, then
EFI_NOT_FOUND is returned. If the string specified by StringId is present, but not in the
specified language then EFI_INVALID_LANGUAGE is returned.

If the buffer specified by StringSize is too small to hold the string, then
EFI_BUFFER_TOO_SMALL will be returned. StringSize will be updated to the size of buffer
actually required to hold the string.

Status Codes Returned

EFI_SUCCESS The string was returned successfully.

EFI_NOT_FOUND The string specified by StringId is not available. The specified

PackageList is not in the Database.

EFI_INVALID_LANGUAGE The string specified by StringId is available but not in the

specified language.

EFI_BUFFER_TOO_SMALL The buffer specified by StringLength is too small to hold the

string.

EFI_INVALID_PARAMETER The Language or StringSize was NULL.

EFI_INVALID_PARAMETER The value referenced by StringLength was not zero and

String was NULL.

EFI_OUT_OF_RESOURCES There were insufficient resources to complete the request.
2030 April, 2015 Version 2.5

HII Protocols
EFI_HII_STRING_PROTOCOL.SetString()

Summary
Change information about the string.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_SET_STRING) (
 IN CONST EFI_HII_STRING_PROTOCOL *This,
 IN EFI_HII_HANDLE PackageList,
 IN EFI_STRING_ID StringId,
 IN CONST CHAR8 *Language,
 IN CONST EFI_STRING String,
 IN CONST EFI_FONT_INFO *StringFontInfo OPTIONAL
);

Parameters
This

A pointer to the EFI_HII_STRING_PROTOCOL instance.

PackageList

The package list containing the strings.

Language

Points to the language for the updated string.

StringId

The string id, which is unique within PackageList.

String

Points to the new null-terminated string.

StringFontInfo

Points to the string’s font information or NULL if the string font information is not
changed.

Description
This function updates the string specified by StringId in the specified PackageList to the text
specified by String and, optionally, the font information specified by StringFontInfo. There
is no way to change the font information without changing the string text.

Status Codes Returned

EFI_SUCCESS The string was successfully updated.

EFI_NOT_FOUND The string specified by StringId is not in the database. The

specified PackageList is not in the Database.
Version 2.5 April, 2015 2031

Unified Extensible Firmware Interface Specification
EFI_INVALID_PARAMETER The String or Language was NULL.

EFI_OUT_OF_RESOURCES The system is out of resources to accomplish the task.
2032 April, 2015 Version 2.5

HII Protocols
EFI_HII_STRING_PROTOCOL.GetLanguages()

Summary
Returns a list of the languages present in strings in a package list.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GET_LANGUAGES) (
 IN CONST EFI_HII_STRING_PROTOCOL *This,
 IN EFI_HII_HANDLE PackageList,
 IN OUT CHAR8 *Languages,
 IN OUT UINTN *LanguagesSize
);

Parameters
This

A pointer to the EFI_HII_STRING_PROTOCOL instance.

PackageList

The package list to examine.

Languages

Points to the buffer to hold the returned null-terminated ASCII string.

LanguageSize

On entry, points to the size of the buffer pointed to by Languages, in bytes. On
return, points to the length of Languages, in bytes.

Description
This function returns the list of supported languages, in the format specified in Appendix M.

Status Codes Returned

EFI_SUCCESS The languages were returned successfully.

EFI_BUFFER_TOO_SMALL The LanguagesSize is too small to hold the list of supported

languages. LanguageSize is updated to contain the required

size.

EFI_NOT_FOUND The specified PackageList is not in the Database.

EFI_INVALID_PARAMETER LanguagesSize is NULL.

EFI_INVALID_PARAMETER The value referenced by LanguagesSize is not zero and

Languages is NULL.
Version 2.5 April, 2015 2033

Unified Extensible Firmware Interface Specification
EFI_HII_STRING_PROTOCOL.GetSecondaryLanguages()

Summary
Given a primary language, returns the secondary languages supported in a package list.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GET_2ND_LANGUAGES) (
 IN CONST EFI_HII_STRING_PROTOCOL *This,
 IN EFI_HII_HANDLE PackageList,
 IN CONST CHAR8* PrimaryLanguage;
 IN OUT CHAR8 *SecondaryLanguages,
 IN OUT UINTN *SecondaryLanguagesSize
);

Parameters
This

A pointer to the EFI_HII_STRING_PROTOCOL instance.

PackageList

The package list to examine.

PrimaryLanguage

Points to the null-terminated ASCII string that specifies the primary language.
Languages are specified in the format specified in Appendix M of the UEFI
Specification.

SecondaryLanguages

Points to the buffer to hold the returned null-terminated ASCII string that describes
the list of secondary languages for the specified PrimaryLanguage. If there are no
secondary languages, the function returns successfully, but this is set to NULL.

SecondaryLanguagesSize

On entry, points to the size of the buffer pointed to by SecondaryLanguages, in
bytes. On return, points to the length of SecondaryLanguages in bytes.

Description
Each string package has associated with it a single primary language and zero or more secondary
languages. This routine returns the secondary languages associated with a package list.

Status Codes Returned

EFI_SUCCESS Secondary languages correctly returned
2034 April, 2015 Version 2.5

HII Protocols
32.3 Image Protocol

EFI_HII_IMAGE_PROTOCOL

Summary
Protocol which allow access to images in the images database.

GUID
#define EFI_HII_IMAGE_PROTOCOL_GUID \
 { 0x31a6406a, 0x6bdf, 0x4e46,\
 { 0xb2, 0xa2, 0xeb, 0xaa, 0x89, 0xc4, 0x9, 0x20 }}

Protocol
typedef struct _EFI_HII_IMAGE_PROTOCOL {
 EFI_HII_NEW_IMAGE NewImage;
 EFI_HII_GET_IMAGE GetImage;
 EFI_HII_SET_IMAGE SetImage;
 EFI_HII_DRAW_IMAGE DrawImage;
 EFI_HII_DRAW_IMAGE_ID DrawImageId;
} EFI_HII_IMAGE_PROTOCOL;

Members
NewImage

Add a new image.

GetImage

Retrieve an image and related font information.

SetImage

Change an image.

EFI_BUFFER_TOO_SMALL The buffer specified by SecondaryLanguagesSize

is too small to hold the returned information.

SecondaryLanguageSize is updated to hold the

size of the buffer required.

EFI_INVALID_LANGUAGE The language specified by FirstLanguage is not

present in the specified package list.

EFI_NOT_FOUND The specified PackageList is not in the Database.

EFI_INVALID_PARAMETER PrimaryLanguage or

SecondaryLanguagesSize is NULL.

EFI_INVALID_PARAMETER The value referenced by

SecondaryLanguagesSize is not zero and

SecondaryLanguages is NULL.
Version 2.5 April, 2015 2035

Unified Extensible Firmware Interface Specification
EFI_HII_IMAGE_PROTOCOL.NewImage()

Summary
Creates a new image and add it to images from a specific package list.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_NEW_IMAGE) (
 IN CONST EFI_HII_IMAGE_PROTOCOL *This,
 IN EFI_HII_HANDLE PackageList,
 OUT EFI_IMAGE_ID *ImageId
 IN CONST EFI_IMAGE_INPUT *Image
);

Parameters
This

A pointer to the EFI_HII_IMAGE_PROTOCOL instance.

PackageList

Handle of the package list where this image will be added.

ImageId

On return, contains the new image id, which is unique within PackageList.

Image

Points to the image.

Description
This function adds the image Image to the group of images owned by PackageList, and returns
a new image identifier (ImageId).

Related Definitions
typedef UINT16 EFI_IMAGE_ID;
typedef struct {
 UINT32 Flags;
 UINT16 Width;
 UINT16 Height;
 EFI_GRAPHICS_OUTPUT_BLT_PIXEL *Bitmap;
} EFI_IMAGE_INPUT;

Flags

Describe image characteristics. If EFI_IMAGE_TRANSPARENT is set, then the
image was designed for transparent display.

#define EFI_IMAGE_TRANSPARENT 0x00000001
2036 April, 2015 Version 2.5

HII Protocols
Width

Image width, in pixels.

Height

Image height, in pixels.

Bitmap

A pointer to the actual bitmap, organized left-to-right, top-to-bottom. The size of the
bitmap is Width * Height *.
sizeof(EFI_GRAPHICS_OUTPUT_BLT_PIXEL).

Status Codes Returns

EFI_SUCCESS The new image was added successfully

EFI_OUT_OF_RESOURCES Could not add the image.

EFI_INVALID_PARAMETER Image is NULL or ImageId is NULL.

EFI_NOT_FOUND The PackageList could not be found.
Version 2.5 April, 2015 2037

Unified Extensible Firmware Interface Specification
EFI_HII_IMAGE_PROTOCOL.GetImage()

Summary
Returns information about an image, associated with a package list.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GET_IMAGE) (
 IN CONST EFI_HII_IMAGE_PROTOCOL *This,
 IN EFI_HII_HANDLE PackageList,
 IN EFI_IMAGE_ID ImageId,
 OUT EFI_IMAGE_INPUT *Image
);

Parameters
This

A pointer to the EFI_HII_IMAGE_PROTOCOL instance.

PackageList

The package list in the HII database to search for the specified image.

ImageId

The image’s id, which is unique within PackageList.

Image

Points to the new image.

Description
This function retrieves the image specified by ImageId which is associated with the specified
PackageList and copies it into the buffer specified by Image.

If the image specified by ImageId is not present in the specified PackageList, then
EFI_NOT_FOUND is returned.

The actual bitmap (Image->Bitmap) should not be freed by the caller and should not be modified
directly.

Status Codes Returned

EFI_SUCCESS The image was returned successfully.

EFI_NOT_FOUND The image specified by ImageId is not available. The specified

PackageList is not in the Database.

EFI_INVALID_PARAMETER Image was NULL.

EFI_OUT_OF_RESOURCES The bitmap could not be retrieved because there was not enough
memory.
2038 April, 2015 Version 2.5

HII Protocols
EFI_HII_IMAGE_PROTOCOL.SetImage()

Summary
Change information about the image.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_SET_IMAGE) (
 IN CONST EFI_HII_IMAGE_PROTOCOL *This,
 IN EFI_HII_HANDLE PackageList,
 IN EFI_IMAGE_ID ImageId,
 IN CONST EFI_IMAGE_INPUT *Image,
);

Parameters
This

A pointer to the EFI_HII_IMAGE_PROTOCOL instance.

PackageList

The package list containing the images.

ImageId

The image id, which is unique within PackageList.

Image

Points to the image.

Description
This function updates the image specified by ImageId in the specified PackageListHandle to
the image specified by Image.

Status Codes Returned

EFI_SUCCESS The image was successfully updated.

EFI_NOT_FOUND The image specified by ImageId is not in the database. The

specified PackageList is not in the Database.

EFI_INVALID_PARAMETER The Image was NULL.
Version 2.5 April, 2015 2039

Unified Extensible Firmware Interface Specification
EFI_HII_IMAGE_PROTOCOL.DrawImage()

Summary
Renders an image to a bitmap or to the display.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_DRAW_IMAGE) (
 IN CONST EFI_HII_IMAGE_PROTOCOL *This,
 IN EFI_HII_DRAW_FLAGS Flags,
 IN CONST EFI_IMAGE_INPUT *Image,
 IN OUT EFI_IMAGE_OUTPUT **Blt,
 IN UINTN BltX,
 IN UINTN BltY,
);

Parameters
This

A pointer to the EFI_HII_IMAGE_PROTOCOL instance.

Flags

Describes how the image is to be drawn. EFI_HII_DRAW_FLAGS is defined in
Related Definitions, below.

Image

Points to the image to be displayed.

Blt

If this points to a non-NULL on entry, this points to the image, which is Width pixels
wide and Height pixels high. The image will be drawn onto this image and
EFI_HII_DRAW_FLAG_CLIP is implied. If this points to a NULL on entry, then a
buffer will be allocated to hold the generated image and the pointer updated on exit. It
is the caller’s responsibility to free this buffer.

BltX, BltY

Specifies the offset from the left and top edge of the image of the first pixel in the
image.

 Description
This function renders an image to a bitmap or the screen using the specified color and options. It
draws the image on an existing bitmap, allocates a new bitmap or uses the screen. The images can be
clipped.

If EFI_HII_DRAW_FLAG_CLIP is set, then all pixels drawn outside the bounding box specified
by Width and Height are ignored.
2040 April, 2015 Version 2.5

HII Protocols
The EFI_HII_DRAW_FLAG_TRANSPARENT flag determines whether the image will be drawn
transparent or opaque. If EFI_HII_DRAW_FLAG_FORCE_TRANS is set then the image’s pixels
will be drawn so that all “off” pixels in the image will be drawn using the pixel value from BLT and
all other pixels will be copied. If EFI_HII_DRAW_FLAG_FORCE_OPAQUE is set, then the
image’s pixels will be copied directly to the destination. If EFI_HII_DRAW_FLAG_DEFAULT is
set, then the image will be drawn transparently or opaque, depending on the image’s transparency
setting (see EFI_IMAGE_TRANSPARENT). Images cannot be drawn transparently if Blt is
NULL.

If EFI_HII_DIRECT_TO_SCREEN is set, then the image will be written directly to the output
device specified by Screen. Otherwise the image will be rendered to the bitmap specified by
Bitmap.

Status Codes Returned

EFI_SUCCESS The image was successfully updated.

EFI_OUT_OF_RESOURCES Unable to allocate an output buffer for Blt.

EFI_INVALID_PARAMETER The Image or Blt was NULL.
Version 2.5 April, 2015 2041

Unified Extensible Firmware Interface Specification
EFI_HII_IMAGE_PROTOCOL.DrawImageId()

Summary
Render an image to a bitmap or the screen containing the contents of the specified image.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_DRAW_IMAGE_ID) (
 IN CONST EFI_HII_IMAGE_PROTOCOL *This,
 IN EFI_HII_DRAW_FLAGS Flags,
 IN EFI_HII_HANDLE PackageList,
 IN EFI_IMAGE_ID ImageId,
 IN OUT EFI_IMAGE_OUTPUT **Blt,
 IN UINTN BltX,
 IN UINTN BltY,
);

Parameters
This

A pointer to the EFI_HII_IMAGE_PROTOCOL instance.

Flags

Describes how the image is to be drawn. EFI_HII_DRAW_FLAGS is defined in
Related Definitions, below.

PackageList

The package list in the HII database to search for the specified image.

ImageId

The image’s id, which is unique within PackageList.

Blt

If this points to a non-NULL on entry, this points to the image, which is Width pixels
wide and Height pixels high. The image will be drawn onto this image and
EFI_HII_DRAW_FLAG_CLIP is implied. If this points to a NULL on entry, then a
buffer will be allocated to hold the generated image and the pointer updated on exit. It
is the caller’s responsibility to free this buffer.

BltX, BltY

Specifies the offset from the left and top edge of the output image of the first pixel in
the image.
2042 April, 2015 Version 2.5

HII Protocols
Description
This function renders an image to a bitmap or the screen using the specified color and options. It
draws the image on an existing bitmap, allocates a new bitmap or uses the screen. The images can be
clipped.

If EFI_HII_DRAW_FLAG_CLIP is set, then all pixels drawn outside the bounding box specified
by Width and Height are ignored.

The EFI_HII_DRAW_FLAG_TRANSPARENT flag determines whether the image will be drawn
transparent or opaque. If EFI_HII_DRAW_FLAG_FORCE_TRANS is set, then the image will be
drawn so that all “off” pixels in the image will be drawn using the pixel value from Blt and all other
pixels will be copied. If EFI_HII_DRAW_FLAG_FORCE_OPAQUE is set, then the image’s pixels
will be copied directly to the destination. If EFI_HII_DRAW_FLAG_DEFAULT is set, then the
image will be drawn transparently or opaque, depending on the image’s transparency setting (see
EFI_IMAGE_TRANSPARENT). Images cannot be drawn transparently if Blt is NULL.

If EFI_HII_DIRECT_TO_SCREEN is set, then the image will be written directly to the output
device specified by Screen. Otherwise the image will be rendered to the bitmap specified by
Bitmap.

Related Definitions
typedef UINT32 EFI_HII_DRAW_FLAGS;
#define EFI_HII_DRAW_FLAG_CLIP 0x00000001
#define EFI_HII_DRAW_FLAG_TRANSPARENT 0x00000030
#define EFI_HII_DRAW_FLAG_DEFAULT 0x00000000
#define EFI_HII_DRAW_FLAG_FORCE_TRANS 0x00000010
#define EFI_HII_DRAW_FLAG_FORCE_OPAQUE 0x00000020
#define EFI_HII_DIRECT_TO_SCREEN 0x00000080

Status Codes Returned

32.4 Database Protocol

EFI_HII_DATABASE_PROTOCOL

Summary
Database manager for HII-related data structures.

EFI_SUCCESS The image was successfully updated.

EFI_OUT_OF_RESOURCES Unable to allocate an output buffer for RowInfoArray or Blt.

EFI_NOT_FOUND The image specified by ImageId is not in the database. The

specified PackageList is not in the Database

EFI_INVALID_PARAMETER The Image or Blt was NULL.
Version 2.5 April, 2015 2043

Unified Extensible Firmware Interface Specification
GUID
#define EFI_HII_DATABASE_PROTOCOL_GUID \
 { 0xef9fc172, 0xa1b2, 0x4693,\
 { 0xb3, 0x27, 0x6d, 0x32, 0xfc, 0x41, 0x60, 0x42 }}

Protocol
typedef struct _EFI_HII_DATABASE_PROTOCOL {
 EFI_HII_DATABASE_NEW_PACK NewPackageList;
 EFI_HII_DATABASE_REMOVE_PACK RemovePackageList;
 EFI_HII_DATABASE_UPDATE_PACK UpdatePackageList;
 EFI_HII_DATABASE_LIST_PACKS ListPackageLists;
 EFI_HII_DATABASE_EXPORT_PACKS ExportPackageLists;
 EFI_HII_DATABASE_REGISTER_NOTIFY RegisterPackageNotify;
 EFI_HII_DATABASE_UNREGISTER_NOTIFY UnregisterPackageNotify;
 EFI_HII_FIND_KEYBOARD_LAYOUTS FindKeyboardLayouts;
 EFI_HII_GET_KEYBOARD_LAYOUT GetKeyboardLayout;
 EFI_HII_SET_KEYBOARD_LAYOUT SetKeyboardLayout;
 EFI_HII_DATABASE_GET_PACK_HANDLE GetPackageListHandle;
} EFI_HII_DATABASE_PROTOCOL;

Members
NewPackageList

Add a new package list to the HII database.

RemovePackageList

Remove a package list from the HII database.

UpdatePackageList

Update a package list in the HII database.

ListPackageLists

List the handles of the package lists within the HII database.

ExportPackageLists

Export package lists from the HII database.

RegisterPackageNotify

Register notification when packages of a certain type are installed.

UnregisterPackageNotify

Unregister notification of packages.

FindKeyboardLayouts

Retrieves a list of the keyboard layouts in the system.

GetKeyboardLayout

Allows a program to extract the current keyboard layout. See the
GetKeyboardLayout() function description.
2044 April, 2015 Version 2.5

HII Protocols
SetKeyboardLayout

Changes the current keyboard layout. See the SetKeyboardLayout() function
description.

GetPackageListHandle

Return the EFI handle associated with a given package list.
Version 2.5 April, 2015 2045

Unified Extensible Firmware Interface Specification
EFI_HII_DATABASE_PROTOCOL.NewPackageList()

Summary
Adds the packages in the package list to the HII database.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_DATABASE_NEW_PACK) (
 IN CONST EFI_HII_DATABASE_PROTOCOL *This,
 IN CONST EFI_HII_PACKAGE_LIST_HEADER *PackageList,
 IN CONST EFI_HANDLE DriverHandle, OPTIONAL
 OUT EFI_HII_HANDLE *Handle
);

Parameters
This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

PackageList

A pointer to an EFI_HII_PACKAGE_LIST_HEADER structure.

DriverHandle

Associate the package list with this EFI handle

Handle

A pointer to the EFI_HII_HANDLE instance. Type EFI_HII_HANDLE is defined
in "Related Definitions" below.

Description
This function adds the packages in the package list to the database and returns a handle. If there is a
EFI_DEVICE_PATH_PROTOCOL associated with the DriverHandle, then this function will
create a package of type EFI_PACKAGE_TYPE_DEVICE_PATH and add it to the package list.

For each package in the package list, registered functions with the notification type NEW_PACK and
having the same package type will be called.

For each call to NewPackageList(), there should be a corresponding call to
EFI_HII_DATABASE_PROTOCOL.RemovePackageList().

Related Definitions
typedef VOID *EFI_HII_HANDLE;

Status Codes Returns

EFI_SUCCESS The package list associated with the Handle
was added to the HII database.
2046 April, 2015 Version 2.5

HII Protocols
EFI_OUT_OF_RESOURCES Unable to allocate necessary resources for the
new database contents.

EFI_INVALID_PARAMETER PackageList is NULL or Handle is

NULL.
Version 2.5 April, 2015 2047

Unified Extensible Firmware Interface Specification
EFI_HII_DATABASE_PROTOCOL.RemovePackageList()

Summary
Removes a package list from the HII database.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_DATABASE_REMOVE_PACK) (
 IN CONST EFI_HII_DATABASE_PROTOCOL *This,
 IN EFI_HII_HANDLE Handle
);

Parameters
This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

Handle

The handle that was registered to the data that is requested for removal. Type
EFI_HII_HANDLE is defined in
EFI_HII_DATABASE_PROTOCOL.NewPackageList() in the Packages
section.

Description
This function removes the package list that is associated with a handle Handle from the HII
database. Before removing the package, any registered functions with the notification type
REMOVE_PACK and the same package type will be called.

For each call to EFI_HII_DATABASE_PROTOCOL.NewPackageList(), there should be a
corresponding call to RemovePackageList.

Status Codes Returned

EFI_SUCCESS The data associated with the Handle was removed from the HII

database.

EFI_NOT_FOUND The specified Handle is not in the Database.
2048 April, 2015 Version 2.5

HII Protocols
EFI_HII_DATABASE_PROTOCOL.UpdatePackageList()

Summary
Update a package list in the HII database.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_DATABASE_UPDATE_PACK) (
 IN CONST EFI_HII_DATABASE_PROTOCOL *This,
 IN EFI_HII_HANDLE Handle,
 IN CONST EFI_HII_PACKAGE_LIST_HEADER *PackageList,
);

Parameters
This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

Handle

The handle that was registered to the data that is requested to be updated. Type
EFI_HII_HANDLE is defined in
EFI_HII_DATABASE_PROTOCOL.NewPackageList() in the Packages
section.

PackageList

A pointer to an instance of EFI_HII_PACKAGE_LIST_HEADER.

Description
This function updates the existing package list (which has the specified Handle) in the HII
databases, using the new package list specified by PackageList. The update process has the
following steps:

Collect all the package types in the package list specified by PackageList. A package type
consists of the Type field of EFI_HII_PACKAGE_HEADER and, if the Type is
EFI_HII_PACKAGE_TYPE_GUID, the Guid field, as defined in
EFI_HII_GUID_PACKAGE_HDR.

Iterate through the packages within the existing package list in the HII database specified by
Handle. If a package’s type matches one of the types collected in step 1, then perform the
following steps:

• Call any functions registered with the notification type REMOVE_PACK.

• Remove the package from the package list and the HII database.

Add all of the packages within the new package list specified by PackageList, using the
following steps:

• Add the package to the package list and the HII database.

• Call any functions registered with the notification type ADD_PACK.
Version 2.5 April, 2015 2049

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS The HII database was successfully updated.

EFI_OUT_OF_RESOURCES Unable to allocate enough memory for the updated database.

EFI_INVALID_PARAMETER PackageList was NULL.

EFI_NOT_FOUND The specified Handle is not in the Database.
2050 April, 2015 Version 2.5

HII Protocols
EFI_HII_DATABASE_PROTOCOL.ListPackageLists()

Summary
Determines the handles that are currently active in the database.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_DATABASE_LIST_PACKS) (
 IN CONST EFI_HII_DATABASE_PROTOCOL *This,
 IN UINT8 PackageType,
 IN CONST EFI_GUID *PackageGuid,
 IN OUT UINTN *HandleBufferLength,
 OUT EFI_HII_HANDLE *Handle
);

Parameters
This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

PackageType

Specifies the package type of the packages to list or
EFI_HII_PACKAGE_TYPE_ALL for all packages to be listed.

PackageGuid

If PackageType is EFI_HII_PACKAGE_TYPE_GUID, then this is the pointer to
the GUID which must match the Guid field of EFI_HII_GUID_PACKAGE_HDR.
Otherwise, it must be NULL.

HandleBufferLength

On input, a pointer to the length of the handle buffer. On output, the length of the
handle buffer that is required for the handles found.

Handle

An array of EFI_HII_HANDLE instances returned. Type EFI_HII_HANDLE is
defined in EFI_HII_DATABASE_PROTOCOL.NewPackageList() in the
Packages section.

Description
This function returns a list of the package handles of the specified type that are currently active in the
database. The pseudo-type EFI_HII_PACKAGE_TYPE_ALL will cause all package handles to be
listed.

Status Codes Returned

EFI_SUCCESS A list of Packages was placed in Handle successfully.

HandleBufferLength is updated with the actual length.
Version 2.5 April, 2015 2051

Unified Extensible Firmware Interface Specification
EFI_BUFFER_TOO_SMALL The HandleBufferLength parameter indicates that Handle
is too small to support the number of handles.

HandleBufferLength is updated with a value that will enable

the data to fit.

EFI_INVALID_PARAMETER HandleBufferLength was NULL.

EFI_INVALID_PARAMETER The value referenced by HandleBufferLength was not zero

and Handle was NULL.

EFI_INVALID_PARAMETER PackageType is a EFI_HII_PACKAGE_TYPE_GUID but

PackageGuid is not NULL .

EFI_INVALID_PARAMETER PackageType is a EFI_HII_PACKAGE_TYPE_GUID but

PackageGuid is NULL .

EFI_NOT_FOUND No matching handles were found
2052 April, 2015 Version 2.5

HII Protocols
EFI_HII_DATABASE_PROTOCOL.ExportPackageLists()

Summary
Exports the contents of one or all package lists in the HII database into a buffer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_DATABASE_EXPORT_PACKS) (
 IN CONST EFI_HII_DATABASE_PROTOCOL *This,
 IN EFI_HII_HANDLE Handle,
 IN OUT UINTN *BufferSize,
 OUT EFI_HII_PACKAGE_LIST_HEADER *Buffer
);

Parameters
This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

Handle

An EFI_HII_HANDLE that corresponds to the desired package list in the HII
database to export or NULL to indicate all package lists should be exported.

BufferSize

On input, a pointer to the length of the buffer. On output, the length of the buffer that
is required for the exported data.

Buffer

A pointer to a buffer that will contain the results of the export function.

Description
This function will export one or all package lists in the database to a buffer. For each package list
exported, this function will call functions registered with EXPORT_PACK and then copy the package
list to the buffer. The registered functions may call
EFI_HII_DATABASE_PROTOCOL.UpdatePackageList() to modify the package list
before it is copied to the buffer.

If the specified BufferSize is too small, then the status EFI_BUFFER_TOO_SMALL will be
returned and the actual package size will be returned in BufferSize.

Status Codes Returned

EFI_SUCCESS Package exported.

EFI_BUFFER_TOO_SMALL BufferSize is too small to hold the package.

EFI_INVALID_PARAMETER BufferSize was NULL

EFI_INVALID_PARAMETER The value referenced by BufferSize was not zero and Buffer

was NULL.
Version 2.5 April, 2015 2053

Unified Extensible Firmware Interface Specification
EFI_NOT_FOUND The specified Handle could not be found in the current database.
2054 April, 2015 Version 2.5

HII Protocols
EFI_HII_DATABASE_PROTOCOL.RegisterPackageNotify()

Summary
Registers a notification function for HII database-related events.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_DATABASE_REGISTER_NOTIFY) (
 IN CONST EFI_HII_DATABASE_PROTOCOL *This,
 IN UINT8 PackageType,
 IN CONST EFI_GUID *PackageGuid,
 IN CONST EFI_HII_DATABASE_NOTIFY PackageNotifyFn,
 IN EFI_HII_DATABASE_NOTIFY_TYPE NotifyType,
 OUT EFI_HANDLE *NotifyHandle
);

Parameters
This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

PackageType

The package type. See EFI_HII_PACKAGE_TYPE_x in
EFI_HII_PACKAGE_HEADER.

PackageGuid

If PackageType is EFI_HII_PACKAGE_TYPE_GUID, then this is the pointer to
the GUID which must match the Guid field of EFI_HII_GUID_PACKAGE_HDR.
Otherwise, it must be NULL.

PackageNotifyFn

Points to the function to be called when the event specified by
NotificationType occurs. See EFI_HII_DATABASE_NOTIFY.

NotifyType

Describes the types of notification which this function will be receiving. See
EFI_HII_DATABASE_NOTIFY_TYPE for more a list of types.

NotifyHandle

Points to the unique handle assigned to the registered notification. Can be used in
EFI_HII_DATABASE_PROTOCOL.UnregisterPackageNotify() to stop
notifications.
Version 2.5 April, 2015 2055

Unified Extensible Firmware Interface Specification
Description
This function registers a function which will be called when specified actions related to packages of
the specified type occur in the HII database. By registering a function, other HII-related drivers are
notified when specific package types are added, removed or updated in the HII database.

Each driver or application which registers a notification should use
EFI_HII_DATABASE_PROTOCOL.UnregisterPackageNotify() before exiting.

If a driver registers a NULL PackageGuid when PackageType is
EFI_HII_PACKAGE_TYPE_GUID, a notification will occur for every package of type
EFI_HII_PACKAGE_TYPE_GUID that is registered.

Related Definitions
EFI_HII_PACKAGE_HEADER is defined in EFI_HII_PACKAGE_HEADER.

EFI_HII_DATABASE_NOTIFY is defined in EFI_HII_DATABASE_NOTIFY.

EIF_HII_DATABASE_NOTIFY_TYPE is defined in EFI_HII_DATABASE_NOTIFY_TYPE.

Returned Status Codes

EFI_SUCCESS Notification registered successfully.

EFI_OUT_OF_RESOURCES Unable to allocate necessary data structures.

EFI_INVALID_PARAMETER NotifyHandle is NULL.

EFI_INVALID_PARAMETER PackageType is not a EFI_HII_PACKAGE_TYPE_GUID

but PackageGuid is not NULL.

EFI_INVALID_PARAMETER PackageType is a EFI_HII_PACKAGE_TYPE_GUID but

PackageGuid is NULL
2056 April, 2015 Version 2.5

HII Protocols
EFI_HII_DATABASE_PROTOCOL.UnregisterPackageNotify()

Summary
Removes the specified HII database package-related notification.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_DATABASE_UNREGISTER_NOTIFY) (
 IN CONST EFI_HII_DATABASE_PROTOCOL *This,
 IN EFI_HANDLE NotificationHandle
);

Parameters
This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

NotificationHandle

The handle of the notification function being unregistered.

Returned Status Codes

EFI_SUCCESS Invalidated

EFI_NOT_FOUND The NotificationHandle could not be found in the

database.
Version 2.5 April, 2015 2057

Unified Extensible Firmware Interface Specification
EFI_HII_DATABASE_PROTOCOL.FindKeyboardLayouts()

Summary
Retrieves a list of the keyboard layouts in the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_FIND_KEYBOARD_LAYOUTS) (
 IN CONST EFI_HII_DATABASE_PROTOCOL *This,
 IN OUT UINT16 *KeyGuidBufferLength,
 OUT EFI_GUID *KeyGuidBuffer
);

Parameters
This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

KeyGuidBufferLength

On input, a pointer to the length of the keyboard GUID buffer. On output, the length
of the handle buffer that is required for the handles found.

KeyGuidBuffer

An array of keyboard layout GUID instances returned.

Description
This routine retrieves an array of GUID values for each keyboard layout that was previously
registered in the system.

Status Codes Returned

EFI_SUCCESS KeyGuidBuffer was updated successfully.

EFI_BUFFER_TOO_SMALL The KeyGuidBufferLength parameter indicates

that KeyGuidBuffer is too small to support the

number of GUIDs. KeyGuidBufferLength is

updated with a value that will enable the data to fit.

EFI_INVALID_PARAMETER KeyGuidBufferLength is NULL.

EFI_INVALID_PARAMETER The value referenced by KeyGuidBufferLength is

not zero and KeyGuidBuffer is NULL.
2058 April, 2015 Version 2.5

HII Protocols
EFI_HII_DATABASE_PROTOCOL.GetKeyboardLayout()

Summary
Retrieves the requested keyboard layout.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_GET_KEYBOARD_LAYOUT) (
 IN CONST EFI_HII_DATABASE_PROTOCOL *This,
 IN EFI_GUID *KeyGuid,
 IN OUT UINIT16 *KeyboardLayoutLength
 OUT EFI_HII_KEYBOARD_LAYOUT *KeyboardLayout
);

Parameters
This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

KeyGuid

A pointer to the unique ID associated with a given keyboard layout. If KeyGuid is
NULL then the current layout will be retrieved.

KeyboardLayout

A pointer to a buffer containing the retrieved keyboard layout. below.

KeyboardLayoutLength

On input, a pointer to the length of the KeyboardLayout buffer. On output, the length
of the data placed into KeyboardLayout.

Description
This routine retrieves the requested keyboard layout. The layout is a physical description of the keys
on a keyboard and the character(s) that are associated with a particular set of key strokes.
Version 2.5 April, 2015 2059

Unified Extensible Firmware Interface Specification
Related Definitions
//***
// EFI_HII_KEYBOARD_LAYOUT
//***
typedef struct {
 UINT16 LayoutLength;
 EFI_GUID Guid;
 UINT32 LayoutDescriptorStringOffset;
 UINT8 DescriptorCount;
 EFI_KEY_DESCRIPTOR Descriptors[];
} EFI_HII_KEYBOARD_LAYOUT;

LayoutLength

The length of the current keyboard layout.

Guid

The unique ID associated with this keyboard layout.

LayoutDescriptorStringOffset

An offset location (0 is the beginning of the EFI_KEYBOARD_LAYOUT instance) of
the string which describes this keyboard layout. The data that is being referenced is in
EFI_DESCRIPTION_STRING_BUNDLE format.

DescriptorCount

The number of Descriptor entries in this layout.

Descriptors

An array of key descriptors.

//***
// EFI_DESCRIPTION_STRING - byte packed data
//***
 CHAR16 Language[];
 CHAR16 Space;
 //CHAR16 DescriptionString[];

Language

The language in RFC 4646 format to associate with DescriptionString.

Space

A space (U-0x0020) character to force as a separator between the Language field
and the formal description string.

DescriptionString

A null-terminated description string.
2060 April, 2015 Version 2.5

HII Protocols
//***
// EFI_DESCRIPTION_STRING_BUNDLE - byte packed data
//
// Example: 2en-US English Keyboard<null>es-ES Keyboard en ingles<null>
// <null> = U-0000
//***
 UINT16 DescriptionCount;
 EFI_DESCRIPTION_STRING DescriptionString[];

DescriptionCount

The number of description strings.

DescriptionString

An array of language-specific description strings.

//***
// EFI_KEY_DESCRIPTOR
//***
typedef struct {
 EFI_KEY Key;
 CHAR16 Unicode;
 CHAR16 ShiftedUnicode;
 CHAR16 AltGrUnicode;
 CHAR16 ShiftedAltGrUnicode;
 UINT16 Modifier;
 UINT16 AffectedAttribute;
} EFI_KEY_DESCRIPTOR;

// A key which is affected by all the standard shift modifiers.
// Most keys would be expected to have this bit active.
#define EFI_AFFECTED_BY_STANDARD_SHIFT 0x0001

// This key is affected by the caps lock so that if a keyboard
// driver would need to disambiguate between a key which had a
// "1" defined versus a "a" character. Having this bit turned on
// would tell the keyboard driver to use the appropriate shifted
// state or not.
#define EFI_AFFECTED_BY_CAPS_LOCK 0x0002

// Similar to the case of CAPS lock, if this bit is active, the
// key is affected by the num lock being turned on.
#define EFI_AFFECTED_BY_NUM_LOCK 0x0004

Key

Used to describe a physical key on a keyboard. Type EFI_KEY is defined below.
Version 2.5 April, 2015 2061

Unified Extensible Firmware Interface Specification
Unicode

Unicode character code for the Key.

ShiftedUnicode

Unicode character code for the key with the shift key being held down.

AltGrUnicode

Unicode character code for the key with the Alt-GR being held down.

ShiftedAltGrUnicode

Unicode character code for the key with the Alt-GR and shift keys being held down.

Modifier

Modifier keys are defined to allow for special functionality that is not necessarily
accomplished by a printable character. Many of these modifier keys are flags to toggle
certain state bits on and off inside of a keyboard driver. Values for Modifier are
defined below.

//***
// EFI_KEY
//***
typedef enum {
 EfiKeyLCtrl, EfiKeyA0, EfiKeyLAlt, EfiKeySpaceBar,
 EfiKeyA2, EfiKeyA3, EfiKeyA4, EfiKeyRCtrl, EfiKeyLeftArrow,
 EfiKeyDownArrow, EfiKeyRightArrow, EfiKeyZero,
 EfiKeyPeriod, EfiKeyEnter, EfiKeyLShift, EfiKeyB0,
 EfiKeyB1, EfiKeyB2, EfiKeyB3, EfiKeyB4, EfiKeyB5, EfiKeyB6,
 EfiKeyB7, EfiKeyB8, EfiKeyB9, EfiKeyB10, EfiKeyRShift,
 EfiKeyUpArrow, EfiKeyOne, EfiKeyTwo, EfiKeyThree,
 EfiKeyCapsLock, EfiKeyC1, EfiKeyC2, EfiKeyC3, EfiKeyC4,
 EfiKeyC5, EfiKeyC6, EfiKeyC7, EfiKeyC8, EfiKeyC9,
 EfiKeyC10, EfiKeyC11, EfiKeyC12, EfiKeyFour, EfiKeyFive,
 EfiKeySix, EfiKeyPlus, EfiKeyTab, EfiKeyD1, EfiKeyD2,
 EfiKeyD3, EfiKeyD4, EfiKeyD5, EfiKeyD6, EfiKeyD7, EfiKeyD8,
 EfiKeyD9, EfiKeyD10, EfiKeyD11, EfiKeyD12, EfiKeyD13,
 EfiKeyDel, EfiKeyEnd, EfiKeyPgDn, EfiKeySeven, EfiKeyEight,
 EfiKeyNine, EfiKeyE0, EfiKeyE1, EfiKeyE2, EfiKeyE3,
 EfiKeyE4, EfiKeyE5, EfiKeyE6, EfiKeyE7, EfiKeyE8, EfiKeyE9,
 EfiKeyE10, EfiKeyE11, EfiKeyE12, EfiKeyBackSpace,
 EfiKeyIns, EfiKeyHome, EfiKeyPgUp, EfiKeyNLck, EfiKeySlash,
 EfiKeyAsterisk, EfiKeyMinus, EfiKeyEsc, EfiKeyF1, EfiKeyF2,
 EfiKeyF3, EfiKeyF4, EfiKeyF5, EfiKeyF6, EfiKeyF7, EfiKeyF8,
 EfiKeyF9, EfiKeyF10, EfiKeyF11, EfiKeyF12, EfiKeyPrint,
 EfiKeySLck, EfiKeyPause

} EFI_KEY;

See the figure below for which key corresponds to the values in the enumeration above. For
example, EfiKeyLCtrl corresponds to the left control key in the lower-left corner of the
2062 April, 2015 Version 2.5

HII Protocols
keyboard, EfiKeyFour corresponds to the 4 key on the numeric keypad, and EfiKeySLck
corresponds to the Scroll Lock key in the upper-right corner of the keyboard.

Figure 129. Keyboard Layout
Version 2.5 April, 2015 2063

Unified Extensible Firmware Interface Specification
//***
// Modifier values
//***
#define EFI_NULL_MODIFIER 0x0000
#define EFI_LEFT_CONTROL_MODIFIER 0x0001
#define EFI_RIGHT_CONTROL_MODIFIER 0x0002
#define EFI_LEFT_ALT_MODIFIER 0x0003
#define EFI_RIGHT_ALT_MODIFIER 0x0004
#define EFI_ALT_GR_MODIFIER 0x0005
#define EFI_INSERT_MODIFIER 0x0006
#define EFI_DELETE_MODIFIER 0x0007
#define EFI_PAGE_DOWN_MODIFIER 0x0008
#define EFI_PAGE_UP_MODIFIER 0x0009
#define EFI_HOME_MODIFIER 0x000A
#define EFI_END_MODIFIER 0x000B
#define EFI_LEFT_SHIFT_MODIFIER 0x000C
#define EFI_RIGHT_SHIFT_MODIFIER 0x000D
#define EFI_CAPS_LOCK_MODIFIER 0x000E
#define EFI_NUM_LOCK_MODIFIER 0x000F
#define EFI_LEFT_ARROW_MODIFIER 0x0010
#define EFI_RIGHT_ARROW_MODIFIER 0x0011
#define EFI_DOWN_ARROW_MODIFIER 0x0012
#define EFI_UP_ARROW_MODIFIER 0x0013
#define EFI_NS_KEY_MODIFIER 0x0014
#define EFI_NS_KEY_DEPENDENCY_MODIFIER 0x0015
#define EFI_FUNCTION_KEY_ONE_MODIFIER 0x0016
#define EFI_FUNCTION_KEY_TWO_MODIFIER 0x0017
#define EFI_FUNCTION_KEY_THREE_MODIFIER 0x0018
#define EFI_FUNCTION_KEY_FOUR_MODIFIER 0x0019
#define EFI_FUNCTION_KEY_FIVE_MODIFIER 0x001A
#define EFI_FUNCTION_KEY_SIX_MODIFIER 0x001B
#define EFI_FUNCTION_KEY_SEVEN_MODIFIER 0x001C
#define EFI_FUNCTION_KEY_EIGHT_MODIFIER 0x001D
#define EFI_FUNCTION_KEY_NINE_MODIFIER 0x001E
#define EFI_FUNCTION_KEY_TEN_MODIFIER 0x001F
#define EFI_FUNCTION_KEY_ELEVEN_MODIFIER 0x0020
#define EFI_FUNCTION_KEY_TWELVE_MODIFIER 0x0021
//
// Keys that have multiple control functions based on modifier
// settings are handled in the keyboard driver implementation.
// For instance PRINT_KEY might have a modifier held down and
// is still a nonprinting character, but might have an alternate
// control function like SYSREQUEST
//
#define EFI_PRINT_MODIFIER 0x0022
#define EFI_SYS_REQUEST_MODIFIER 0x0023
#define EFI_SCROLL_LOCK_MODIFIER 0x0024
2064 April, 2015 Version 2.5

HII Protocols
#define EFI_PAUSE_MODIFIER 0x0025
#define EFI_BREAK_MODIFIER 0x0026
#define EFI_LEFT_LOGO_MODIFIER 0x0027
#define EFI_RIGHT_LOGO_MODIFIER 0x0028
#define EFI_MENU_MODIFIER 0x0029

Status Codes Returned

EFI_SUCCESS The keyboard layout was retrieved successfully.

EFI_NOT_FOUND The requested keyboard layout was not found.

EFI_BUFFER_TOO_SMALL The KeyboardLayoutLength parameter indicates

the KeyboardLayout is too small to hold the keyboard

layout.

EFI_INVALID_PARAMETER KeyboardLayoutLength is NULL

EFI_INVALID_PARAMETER The value referenced by KeyboardLayoutLength is

not zero and KeyboardLayout is NULL.
Version 2.5 April, 2015 2065

Unified Extensible Firmware Interface Specification
EFI_HII_DATABASE_PROTOCOL.SetKeyboardLayout()

Summary
Sets the currently active keyboard layout.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_SET_KEYBOARD_LAYOUT) (
 IN CONST EFI_HII_DATABASE_PROTOCOL *This,
 IN EFI_GUID *KeyGuid
);

Parameters
This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

KeyGuid

A pointer to the unique ID associated with a given keyboard layout.

Description
This routine sets the default keyboard layout to the one referenced by KeyGuid. When this routine
is called, an event will be signaled of the EFI_HII_SET_KEYBOARD_LAYOUT_EVENT_GUID
group type. This is so that agents which are sensitive to the current keyboard layout being changed
can be notified of this change.

Related Definitions

GUID
#define EFI_HII_SET_KEYBOARD_LAYOUT_EVENT_GUID \
 { 0x14982a4f, 0xb0ed, 0x45b8, \
 { 0xa8, 0x11, 0x5a, 0x7a, 0x9b, 0xc2, 0x32, 0xdf }}

Status Codes Returned

EFI_SUCCESS The current keyboard layout was successfully set.

EFI_NOT_FOUND The referenced keyboard layout was not found, so action was
taken.

EFI_INVALID_PARAMETER KeyGuid is NULL.
2066 April, 2015 Version 2.5

HII Protocols
EFI_HII_DATABASE_PROTOCOL.GetPackageListHandle()

Summary
Return the EFI handle associated with a package list.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_DATABASE_GET_PACK_HANDLE) (
 IN CONST EFI_HII_DATABASE_PROTOCOL *This,
 IN EFI_HII_HANDLE PackageListHandle,
 OUT EFI_HANDLE *DriverHandle
);

Parameters
This

A pointer to the EFI_HII_DATABASE_PROTOCOL instance.

PackageListHandle

An EFI_HII_HANDLE that corresponds to the desired package list in the
HIIdatabase.

DriverHandle

On return, contains the EFI_HANDLE which was registered with the package list in
NewPackageList().

Status Codes Returned

32.4.1 Database Structures

EFI_HII_DATABASE_NOTIFY

Summary
Handle a registered notification for a package change to the database.

EFI_SUCCESS The DriverHandle was returned successfully.

EFI_INVALID_PARAMETER The PackageListHandle was not valid.

EFI_INVALID_PARAMETER The DriverHandle must not be NULL.
Version 2.5 April, 2015 2067

Unified Extensible Firmware Interface Specification
Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_DATABASE_NOTIFY) (
 IN UINT8 PackageType,
 IN CONST EFI_GUID *PackageGuid,
 IN CONST EFI_HII_PACKAGE_HEADER *Package,
 IN EFI_HII_HANDLE Handle,
 IN EFI_HII_DATABASE_NOTIFY_TYPE NotifyType
);

Parameters
PackageType

Package type of the notification.

PackageGuid

If PackageType is EFI_HII_PACKAGE_TYPE_GUID, then this is the pointer to
the GUID from the Guid field of EFI_HII_GUID_PACKAGE_HDR. Otherwise, it
must be NULL.

Package

Points to the package referred to by the notification

Handle

The handle of the package list which contains the specified package.

NotifyType

The type of change concerning the database. See
EFI_HII_DATABASE_NOTIFY_TYPE.

Description
Functions which are registered to receive notification of database events have this prototype. The
actual event is encoded in NotifyType. The following table describes how PackageType,
PackageGuid, Handle, and Package are used for each of the notification types.

Notification Type Parameter Description

NEW_PACK PackageType and PackageGuid are the type of

the new package. Package points to the new package.

Handle is the handle of the package list which is being

added to the database.

REMOVE_PACK PackageType and PackageGuid are the type of

the package which is being removed. Package points to

the package being removed. Handle is the package list

from which the package is being removed.
2068 April, 2015 Version 2.5

HII Protocols
EFI_HII_DATABASE_NOTIFY_TYPE

typedef UINTN EFI_HII_DATABASE_NOTIFY_TYPE;

#define EFI_HII_DATABASE_NOTIFY_NEW_PACK 0x00000001
#define EFI_HII_DATABASE_NOTIFY_REMOVE_PACK 0x00000002
#define EFI_HII_DATABASE_NOTIFY_EXPORT_PACK 0x00000004
#define EFI_HII_DATABASE_NOTIFY_ADD_PACK 0x00000008

EXPORT_PACK PackageType and PackageGuid are the type of

the package being exported. Package points to the

existing package in the database. Handle is the package

list being exported.

ADD_PACK PackageType and PackageGuid are the type of

the package being added. Package points to the

package being added. Handle is the package list to

which the package is being added.
Version 2.5 April, 2015 2069

Unified Extensible Firmware Interface Specification
2070 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
33
HII Configuration Processing and Browser

Protocol

33.1 Introduction
This section describes the data and APIs used to manage the system’s configuration: the actual data
that describes the knobs and settings.

33.1.1 Common Configuration Data Format
The configuration data is stored as name / value string pairs. As in e.g. HTML, the name and value
are separated by ‘=’ and the pairs are separated one from the next by ‘&’. The configuration data
structures are thus variable length UNICODE (UCS-2) strings.

Certain names and values have limitations on their syntax to manage routing and to enable extended
support for common storage mechanisms.

33.1.2 Data Flow
There is a two-way flow through the hierarchy of drivers and protocols that parallels the flow in
other parts of HII. Initially, the flow is from the drivers up to the HII database and on to
configuration applications. When changes to configuration are accepted, the flow reverses itself,
going from the configuration applications through the HII database protocols back to the drivers
through separate protocols.

The flow from driver up consists of the current and alternative (default) configurations. The flow
down from the configuration applications consists of changed configurations.

The protocol managed by the HII Database is known as the EFI HII Configuration Routing Protocol,
while the one presented by the drivers themselves is known as the EFI HII Configuration Access
Protocol. The HII Configuration Routing Protocol is the only one that outside callers should invoke.

33.2 Configuration Strings
The configuration strings follow the same general format as HTTP argument strings, which is to say
‘&’ separated name / value pairs. The name and value are separated by ‘=’. The strings are a subset
of full HTML argument strings and do not require quoting, the ‘%’ character sequences used to
insert spaces, ampersands, equal signs, and the like into HTTP argument strings.

33.2.1 String Syntax
Assumptions are typical for BNF with the following extensions

Characters in single quotes, e.g. ‘a’, indicate terminals.
Version 2.5 April, 2015 2071

Unified Extensible Firmware Interface Specification
Square brackets immediately followed by a number n indicate that the contents are to be repeated n
times, so [‘a’]4 would be “aaaa”.

An italicized non-terminal, e. g. <All Printable ASCII Characters> is used to indicate a set of
terminals whose definition is outside the scope of this document.

The syntax for configuration strings is as follows.
2072 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
33.2.1.1 Basic forms
<Dec19> ::= ‘1’ | ‘2’ | … | ‘9’
<DecCh> ::= ‘0’ | <Dec19>
<HexAf> ::= ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’
<Hex1f> ::= <Dec19> | <HexAf>
<HexCh> ::= <DecCh> | <HexAf>
<Number> ::= <HexCh>+
<Alpha> ::= ‘a’ | ... | ‘z’ | ‘A’ | … | ‘Z’

33.2.1.2 Types
<Guid> ::= <HexCh>32
<LabelStart> ::= <Alpha> | “_”
<LabelBody> ::= <LabelStart> | <DecCh>
<Label> ::= <LabelStart> [<LabelBody>]*
<Char> ::= <HexCh>4
<String> ::= [<Char>]+
<AltCfgId> ::= <HexCh>4

33.2.1.3 Routing elements
<GuidHdr> ::= ‘GUID=’<Guid>
<NameHdr> ::= ‘NAME=’<String>
<PathHdr> ::= ‘PATH=’<UEFI binary Device Path represented as hex
number>
<DescHdr> ::= ‘ALTCFG=’<AltCfgId>
<ConfigHdr> ::= <GuidHdr>’&’<NameHdr>’&’<PathHdr>
<AltConfigHdr> ::= <ConfigHdr> ‘&’<DescHdr>

33.2.1.4 Body elements
<ConfigBody> ::= <ConfigElement>*
<ConfigElement> ::= ‘&’<BlockConfig> | ‘&’<NvConfig>
<BlockName> ::= ‘OFFSET=’<Number>’&WIDTH=’<Number>
<BlockConfig> ::= <BlockName>’&VALUE=’<Number>
<RequestElement> ::= ‘&’<BlockName> | ‘&’<Label>
<NvConfig> ::= <Label>’=’<String> | <Label>’=’<Number>

33.2.1.5 Configuration strings
<ConfigRequest> ::= <ConfigHdr><RequestElement>*
<MultiConfigRequest> ::= <ConfigRequest>[‘&’ <ConfigRequest>]*
<ConfigResp> ::= <ConfigHdr><ConfigBody>
<AltResp> ::= <AltConfigHdr><ConfigBody>
<ConfigAltResp> ::= <ConfigResp> [‘&’ <AltResp>]*
<MultiConfigAltResp> ::= <ConfigAltResp> [‘&’ <ConfigAltResp>]*
<MultiConfigResp> ::= <ConfigResp> [‘&’<ConfigResp>]*

Notes:
Version 2.5 April, 2015 2073

Unified Extensible Firmware Interface Specification
The <Number> represents a data buffer and is encoded as a sequence of bytes in the format %02x
in the same order as the buffer bytes reside in memory.

The <Guid> represents a hex encoding of GUID and is encoded as a sequence of bytes in the
format %02x in the same order as the GUID bytes reside in memory.

The syntax for a <Label> is the C label (e.g. Variable) syntax.

The <ConfigHdr> provides routing information. The name field is required even if non-block
storage is targeted. In these cases, it may be used as a way to distinguish like storages from one
another when a driver is being used

The <BlockName> provides addressing information for managing block (e.g. UEFI Variable)
storage. The first number provides the byte offset into the block while the second provides the length
of bytes.

The <PathHdr> presents a hex encoding of a UEFI device path. This is not the printable path since
the printable path is optional in UEFI and to enable simpler comparisons. The data is encoded as
strings with the format %02x bytes in the same order as the device path resides in RAM memory.

The <ConfigRequest> provides a mechanism to request the current configuration for one or
more elements.

The <AltCfgId> is the identifier of a configuration declared in the corresponding IFR.

The name ‘GUID’ is also used to separate <String> or <ConfigRequest> elements in the
equivalent Multi version. That is:

GUID=…&NAME=…&…&fred=12&GUID=…&NAME=…&…&goyle=11

Indicates two <String>, with one ending with fred=12.

The following are reserved <name>s and cannot be used as names in a <ConfigElement>:
2074 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
GUID
NAME
PATH
ALTCFG
OFFSET
WIDTH
VALUE

33.2.1.6 Keyword strings
<NameSpaceId> ::= ‘NAMESPACE=’<String>’&’
<Keyword> ::= ‘KEYWORD=’<String>[‘:’<DecCh>(1/4)]
<DataFilter> ::= ‘Buffer’|‘Numeric’[‘:1’|‘:2’|‘:4’|‘:8’]
<UsageFilter> ::= ‘ReadOnly’|‘ReadWrite’
<Filter> ::=
<UsageFilter>|<DataFilter>|<UsageFilter>’&’<DataFilter>
<KeywordRequest> ::= [<PathHdr>’&’]<Keyword>[’&’<Filter>]
<KeywordResp> ::=
<NameSpaceId><PathHdr>’&’<Keyword>’&VALUE=’<Number>
 [‘&READONLY’]
<MultiKeywordRequest> ::= <KeywordRequest>[‘&’<KeywordRequest>]*
<MultiKeywordResp> ::= <KeywordResp>[‘&’<KeywordResp>]*

Note: For Keyword definitions, see the UEFI Configuration Namespace Registry document on http://uefi.org/
uefi.

The <NameSpaceId> element is equivalent to the platform configuration language being used for the
keyword definition.

The <Keyword> element uses the ‘KEYWORD=’ name to designate that immediately following the
reserved name is a string value associated with a configuration namespace keyword as defined in the
Configuration NameSpace Registry document (http://uefi.org/uefi).
Typically, when a Keyword is defined, the value is a solitary string such as “BIOSVendor”. However,
when certain Keywords are intended to represent a setting that may have multiple instances (e.g.
ChipsetSATAPortEnable), that is when a “:<DecCh>(1/4)” suffix will be appended to the keyword
definition. In that case, we might see something like: “ChipsetSATAPortEnable:5” if a particular platform
had at least five SATA ports and one of the questions was represented by the aforementioned string. It
would also be reasonable to expect that there might also be a “ChipsetSATAPortEnable:1” and a “:2”, “:3”
etc.

If the <PathHdr> element within <KeywordRequest> is omitted, then all instances are returned.

If the Keyboard Handler protocol knows or detects that a particular Keyword is read-only, then the
<KeywordResp> must include the “&READONLY” tag.
Version 2.5 April, 2015 2075

Unified Extensible Firmware Interface Specification
The <DataFilter> element specifies the optional filter based on data type to use when a request is
made. If no filtering is desired, then this element must be omitted from the <KeywordRequest>.
Filtering is not guaranteed to work on any platform configuration language that isn’t defined in the UEFI
Configuration Namespace Document.

DataFilter.Buffer

A sequence of data that has a format that does not fit the common usage case of a
Numeric. This is most commonly represented in ‘C’ as a VOID type, or is a more
complex type such as one typified by a typedef struct.
Other than the EFI_IFR_TYPE_BOOLEAN and EFI_IFR_TYPE_NUM_x data
types, all of the HII configuration data types are treated as a sequence of data.

DataFilter.Numeric

A sequence of data that must be interpreted as a one, two, four, or eight-byte wide
numeric value. For instance, a definition of “Numeric:2” would indicate that the
keyword is a two-byte numeric value. If no byte-size designation is specified, then the
value may vary in size.

The <UsageFilter> element defines the optional filter to use based on usage type when a request is
made. If no filtering is desired, then this element must be omitted from the <KeywordRequest>.

UsageType.ReadOnly

The data for the keyword cannot be changed. It is intended solely for informational
purposes, and can be used to read a setting that may be static or dynamic (e.g. CPU
temperature).

UsageType.ReadWrite

The data for the keyword can be changed.

33.2.1.6.1 An example of some basic keyword-related strings:

<KeywordRequest> to retrieve the current BIOS Vendor name:
KEYWORD=BIOSVendor

33.2.1.6.2 A possible response might look like:
x-UEFI-ns&KEYWORD=BIOSVendor&VALUE=AcmeBIOSCompany

If a request was made to retrieve all of the settings for a platform, a user would initiate a call to
KeywordHandlerGetData() with the KeywordString and NamespaceId being NULL.

33.2.1.6.3 A possible response might look like:
x-UEFI-ns&KEYWORD=BIOSVendor&VALUE=AcmeBIOSCompany&x-UEFI-
extension-ACME&KEYWORD=SpecialSettingX&VALUE=3

In this case, the string returned tells us that there was one discovered keyword called “BIOSVendor”
under the standard UEFI namespace and its value was “AcmeBIOS”. There was also an ACME
branded namespace element which was discovered that had a keyword called “SpecialSettingX”
whose value was 3.
2076 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
33.2.2 String Types
There are six string types. As can be seen from the BNF, the syntax of all is quite similar. The first
three are used in communications between drivers and HII. The last three are used for analogous
communication between external applications and HII.

<ConfigRequest>: This string is used by HII to request the current and any alternative
configurations from a driver. It consists of routing information and only ampersand separated names.

<ConfigAltResp>: A string in this format is returned by the driver in response to a request to
fill in a <ConfigRequest> string. The string consists of the current configuration followed by
possibly several alternative configurations. The alternative configurations have the ALTCFG name /
value pair in addition to the usual GUID, NAME, and PATH entries in the routing prefix. The
ALTCFG value is a Default ID which is used to describe the alternative default configuration.

<ConfigResp>: A sting in this format is handed by the HII to the driver to cause the driver to
change its configuration. It consists of routing information and name / value pairs which correspond
to the questions in the driver’s IFR. Only <ConfigResp> strings which refer to a driver in
question may be handed to that driver. The driver shall reject all others.

<MultiConfigRequest>: A string in this format is handed to HII by an external application in
order to request the current an alternate configurations of the system’s drivers. The format of this
string is a series of <ConfigRequest> strings separated by ampersands. The HII’s job is to
separate the requests and hand them off to the appropriate drivers (as indicated by the routing
headers).

<MultiConfigAltResp>: A string in this format is handed back to an external application
which has requested the current and alternate configurations of the system’s drivers. The format of
this string is a series of <ConfigAltResp> strings separated by ampersands. The HII creates this
string by concatenating the current and alternate configuration strings provided by each driver.

<MultiConfigResp>: A string in this format is handed to the HII in order to update the
system’s configuration. Analogous to the other “Multi” string formats, its syntax is a series of
ampersand separated <ConfigResp> strings. Upon receipt, the HII routes the <ConfigResp>
strings to the corresponding drivers.

33.3 EFI Configuration Keyword Handler Protocol

This section provides a detailed description of the EFI Configuration Keyword Handler Protocol.

EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL

Summary
The EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL provides the mechanism to set and get the
values associated with a keyword exposed through a x-UEFI- prefixed configuration language
namespace.
Version 2.5 April, 2015 2077

Unified Extensible Firmware Interface Specification
GUID
#define EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL_GUID \
{ 0x0a8badd5, 0x03b8, 0x4d19,\
 {0xb1, 0x28, 0x7b, 0x8f, 0x0e, 0xda, 0xa5, 0x96 }}

Protocol Interface Structure
typedef struct _EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL {
 EFI_CONFIG_KEYWORD_HANDLER_SET_DATA SetData;
 EFI_CONFIG_KEYWORD_HANDLER_GET_DATA GetData;
} EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL;

Parameters
SetData Set the data associated with a particular configuration namespace

keyword.

GetData Get the data associated with a particular configuration namespace
keyword.

Description
The EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL allows other components in the platform
(e.g. Browser, Manageability Software, etc.) to retrieve and set configuration settings within the
system.

Keywords are text elements which are associated with a particular configuration option within the
platform. These keywords are intended to add semantic meaning to the configuration option they are
attached to. The text associated for the keyword would be encoded in a UEFI configuration
language. These languages are like French or German or Japanese, but are not designed for display
purposes for an end-user. Instead each language serves as a namespace for the purposes of grouping
and manipulating groups of platform configurations options. See Section 31.2.11.2 (Working with a
UEFI Configuration Language) for more information.

Note: Not all configuration options will be associated with a keyword. Associating a keyword with a
configuration option is at the discretion of the platform and/or the hardware vendor. For more
information about keyword definitions associated with a UEFI namespace, see the UEFI Keyword
Namespace Registry link in the UEFI Link Document.
2078 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
EFI_KEYWORD_HANDLER _PROTOCOL.SetData()

Summary
Set the data associated with a particular configuration namespace keyword.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_KEYWORD_HANDLER _SET_DATA) (
 IN EFI_KEYWORD_HANDLER_PROTOCOL *This,
 IN CONST EFI_STRING KeywordString,
 OUT EFI_STRING *Progress,
 OUT UINT32 *ProgressErr
);

Parameters
This Pointer to the EFI_KEYWORD_HANDLER _PROTOCOL

instance.

KeywordString A null-terminated string in <MultiKeywordResp> format.

Progress On return, points to a character in the KeywordString. Points
to the string’s NULL terminator if the request was successful.
Points to the most recent ‘&’ before the first failing string
element if the request was not successful.

ProgressErr If during the processing of the KeywordString there was a
failure, this parameter gives additional information about the
possible source of the problem. The various errors are defined in
“Related Definitions” below.

Description
This function accepts a <MultiKeywordResp> formatted string, finds the associated keyword
owners, creates a <MultiConfigResp> string from it and forwards it to the
EFI_HII_ROUTING_PROTOCOL.RouteConfig function.

If there is an issue in resolving the contents of the KeywordString, then the function returns an
error and also sets the Progress and ProgressErr with the appropriate information about
where the issue occurred and additional data about the nature of the issue.

In the case when KeywordString containing multiple keywords, when an EFI_NOT_FOUND
error is generated during processing the second or later keyword element, the system storage
associated with earlier keywords is not modified. All elements of the KeywordString must
successfully pass all tests for format and access prior to making any modifications to storage.

In the case when EFI_DEVICE_ERROR is returned from the processing of a KeywordString
containing multiple keywords, the state of storage associated with earlier keywords is undefined.
Version 2.5 April, 2015 2079

Unified Extensible Firmware Interface Specification
Related Definitions
//***
// Progress Errors
//***
#define KEYWORD_HANDLER_NO_ERROR 0x00000000
#define KEYWORD_HANDLER_NAMESPACE_ID_NOT_FOUND 0x00000001
#define KEYWORD_HANDLER_MALFORMED_STRING 0x00000002
#define KEYWORD_HANDLER_KEYWORD_NOT_FOUND 0x00000004
#define KEYWORD_HANDLER_INCOMPATIBLE_VALUE_DETECTED 0x00000008
#define KEYWORD_HANDLER_ACCESS_NOT_PERMITTED 0x00000010
#define KEYWORD_HANDLER_UNDEFINED_PROCESSING_ERROR 0x80000000

The KEYWORD_HANDLER_x values describe the error values returned in the ProgressErr
field.

If no errors were encountered, then KEYWORD_HANDLER_NO_ERROR is returned with no bits are
set.

If the <NameSpaceId> specified by the KeywordString was not found in any of the registered
configuration data, the KEYWORD_HANDLER_NAMESPACE_ID_NOT_FOUND bit is set.

If there was an error in the parsing of the KeywordString, the
KEYWORD_HANDLER_MALFORMED_STRING bit is set.

If there was a keyword specified in the KeywordString which was not found in any of the registered
configuration data, KEYWORD_HANDLER_KEYWORD_NOT_FOUND bit is set.

If the value either passed into KeywordString (during a SetData operation) or the value
discovered for the Keyword (during a GetData operation) did not match what was known to be valid
for the defined keyword, the KEYWORD_HANDLER_INCOMPATIBLE_VALUE_DETECTED bit is
set.

If there was an error as a result of a violation of system policy. For example trying to write a read-
only element, the KEYWORD_HANDLER_ACCESS_NOT_PERMITTED bit is set.

If there was an undefined type of error in processing the passed in data, the
KEYWORD_HANDLER_UNDEFINED_PROCESSING_ERROR bit is set.

Status Codes Returned

EFI_SUCCESS The specified action was completed successfully.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

KeywordString is NULL.
Parsing of the KeywordString resulted in an error. See

Progress and ProgressErr for more data.

EFI_NOT_FOUND An element of the KeywordString was not found. See

ProgressErr for more data.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated. See

ProgressErr for more data.

EFI_ACCESS_DENIED The action violated system policy. See ProgressErr for more

data.
2080 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
EFI_DEVICE_ERROR An unexpected system error occurred. See ProgressErr for

more data.
Version 2.5 April, 2015 2081

Unified Extensible Firmware Interface Specification
EFI_KEYWORD_HANDLER _PROTOCOL.GetData()

Summary
Get the data associated with a particular configuration namespace keyword.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_KEYWORD_HANDLER _GET_DATA) (
 IN EFI_KEYWORD_HANDLER_PROTOCOL *This,
 IN CONST EFI_STRING NameSpaceId, OPTIONAL
 IN CONST EFI_STRING KeywordString, OPTIONAL
 OUT EFI_STRING *Progress,
 OUT UINT32 *ProgressErr,
 OUT EFI_STRING *Results
);

Parameters
This Pointer to the EFI_KEYWORD_HANDLER _PROTOCOL

instance.

NamespaceId A null-terminated string containing the platform configuration
language to search through in the system. If a NULL is passed in,
then it is assumed that any platform configuration language with
the prefix of “x-UEFI-” are searched.

KeywordString A null-terminated string in <MultiKeywordRequest>
format. If a NULL is passed in the KeywordString field, all
of the known keywords in the system for the NameSpaceId
specified are returned in the Results field.

Progress On return, points to a character in the KeywordString. Points
to the string’s NULL terminator if the request was successful.
Points to the most recent ‘&’ before the first failing string
element if the request was not successful.

ProgressErr If during the processing of the KeywordString there was a
failure, this parameter gives additional information about the
possible source of the problem. See the definitions in
SetData() for valid value definitions.

Results A null-terminated string in <MultiKeywordResp> format is
returned which has all the values filled in for the keywords in the
KeywordString. This is a callee-allocated field, and must be
freed by the caller after being used.

Description
This function accepts a <MultiKeywordRequest> formatted string, finds the underlying
keyword owners, creates a <MultiConfigRequest> string from it and forwards it to the
EFI_HII_ROUTING_PROTOCOL.ExtractConfig function.
2082 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
If there is an issue in resolving the contents of the KeywordString, then the function returns an
EFI_INVALID_PARAMETER and also set the Progress and ProgressErr with the
appropriate information about where the issue occurred and additional data about the nature of the
issue.

In the case when KeywordString is NULL, or contains multiple keywords, or when
EFI_NOT_FOUND is generated while processing the keyword elements, the Results string
contains values returned for all keywords processed prior to the keyword generating the error but no
values for the keyword with error or any following keywords.

Status Codes Returned

33.4 EFI HII Configuration Routing Protocol

EFI_HII_CONFIG_ROUTING_PROTOCOL

Summary
The EFI HII Configuration Routing Protocol manages the movement of configuration data from
drivers to configuration applications. It then serves as the single point to receive configuration
information from configuration applications, routing the results to the appropriate drivers.

EFI_SUCCESS The specified action was completed successfully.

EFI_INVALID_PARAMETER One or more of the following are TRUE:

Progress, ProgressErr, or Resuts is NULL.
Parsing of the KeywordString resulted in an error. See

Progress and ProgressErr for more data.

EFI_NOT_FOUND An element of the KeywordString was not found. See

ProgressErr for more data.

EFI_NOT_FOUND The NamespaceId specified was not found. See

ProgressErr for more data.

EFI_OUT_OF_RESOURCES Required system resources could not be allocated. See

ProgressErr for more data.

EFI_ACCESS_DENIED The action violated system policy. See ProgressErr for more

data.

EFI_DEVICE_ERROR An unexpected system error occurred. See ProgressErr for

more data.
Version 2.5 April, 2015 2083

Unified Extensible Firmware Interface Specification
GUID
#define EFI_HII_CONFIG_ROUTING_PROTOCOL_GUID \
 { 0x587e72d7, 0xcc50, 0x4f79,\
 { 0x82, 0x09, 0xca, 0x29, 0x1f, 0xc1, 0xa1, 0x0f }}

Protocol Interface Structure
typedef struct {
 EFI_HII_EXTRACT_CONFIG ExtractConfig;
 EFI_HII_EXPORT_CONFIG ExportConfig
 EFI_HII_ROUTE_CONFIG RouteConfig;
 EFI_HII_BLOCK_TO_CONFIG BlockToConfig;
 EFI_HII_CONFIG_TO_BLOCK ConfigToBlock;
 EFI_HII_GET_ALT_CFG GetAltConfig;
} EFI_HII_CONFIG_ROUTING_PROTOCOL;

Related Definitions
None

Parameters

Description
This protocol defines the configuration routing interfaces between external applications and the HII.

There may only be one instance of this protocol in the system.
2084 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
EFI_HII_CONFIG_ROUTING_PROTOCOL.ExtractConfig()

Summary
This function allows a caller to extract the current configuration for one or more named elements
from one or more drivers.

Prototype
typedef
EFI_STATUS
 (EFIAPI * EFI_HII_EXTRACT_CONFIG) (
 IN CONST EFI_HII_CONFIG_ROUTING_PROTOCOL *This,
 IN CONST EFI_STRING Request,
 OUT EFI_STRING *Progress,
 OUT EFI_STRING *Results
);

Parameters
This

Points to the EFI_HII_CONFIG_ROUTING_PROTOCOL instance.

Request

A null-terminated string in <MultiConfigRequest> format.

Progress

On return, points to a character in the Request string. Points to the string’s null
terminator if request was successful. Points to the most recent ‘&’ before the first
failing name / value pair (or the beginning of the string if the failure is in the first
name / value pair) if the request was not successful

Results

A null-terminated string in <MultiConfigAltResp> format which has all values
filled in for the names in the Request string.

Description
This function allows the caller to request the current configuration for one or more named elements
from one or more drivers. The resulting string is in the standard HII configuration string format. If
Successful Results contains an equivalent string with “=” and the values associated with all
names added in.

The expected implementation is for each <ConfigRequest> substring in the Request, call the
HII Configuration Access Protocol ExtractConfig function for the driver corresponding to the
<ConfigHdr> at the start of the <ConfigRequest> substring. The request fails if no driver
matches the <ConfigRequest> substring.

Note: Alternative configuration strings may also be appended to the end of the current configuration
string. If they are, they must appear after the current configuration. They must contain the same
routing (GUID, NAME, PATH) as the current configuration string. They must have an additional
description indicating the type of alternative configuration the string represents,
Version 2.5 April, 2015 2085

Unified Extensible Firmware Interface Specification
“ALTCFG=<AltCfgId>”. The <AltCfgId> is a reference to a Default ID which stipulates the
type of Default being referenced such as EFI_HII_DEFAULT_CLASS_STANDARD.

As an example, assume that the Request string is:
GUID=…&PATH=…&Fred&George&Ron&Neville

A result might be:
GUID=…&PATH=…&Fred=16&George=16&Ron=12&Neville=11&
GUID=…&PATH=…&ALTCFG=0037&Fred=12&Neville=7

Status Codes Returned

EFI_SUCCESS The Results string is filled with the values

corresponding to all requested names.

EFI_OUT_OF_RESOURCES Not enough memory to store the parts of the results
that must be stored awaiting possible future
protocols.

EFI_NOT_FOUND Routing data doesn’t match any known driver.
Progress set to the “G” in “GUID” of the routing
header that doesn’t match. Note: There is no
requirement that all routing data be validated before
any configuration extraction.

EFI_INVALID_PARAMETER Illegal syntax. Progress set to most recent “&”
before the error or the beginning of the string.

EFI_INVALID_PARAMETER The ExtractConfig function of the underlying HII
Configuration Access Protocol returned
EFI_INVALID_PARAMETER.
Progress set to most recent “&” before the error or
the beginning of the string.

EFI_ACCESS_DENIED The action violated a system policy.
2086 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
EFI_HII_CONFIG_ROUTING_PROTOCOL.ExportConfig()

Summary
This function allows the caller to request the current configuration for the entirety of the current HII
database and returns the data in a null-terminated string.

Prototype
typedef
EFI_STATUS
 (EFIAPI * EFI_HII_EXPORT_CONFIG) (
 IN CONST EFI_HII_CONFIG_ROUTING_PROTOCOL *This,
 OUT EFI_STRING *Results
);

Parameters
This

Points to the EFI_HII_CONFIG_ROUTING_PROTOCOL instance.

Results

A null-terminated string in <MultiConfigAltResp> format which has all values
filled in for the entirety of the current HII database.

Description
This function allows the caller to request the current configuration for all of the current HII database.
The results include both the current and alternate configurations as described in
ExtractConfig() above.

EFI_HII_CONFIG_ACCESS_PROTOCOL.ExtractConfig() interfaces below.

Status Codes Returned

EFI_SUCCESS The Results string is filled with the values

corresponding to all requested names.

EFI_OUT_OF_RESOURCES Not enough memory to store the parts of the
results that must be stored awaiting possible future
protocols.

EFI_INVALID_PARAMETERS For example, passing in a NULL for the

Results parameter would result in this type of

error.
Version 2.5 April, 2015 2087

Unified Extensible Firmware Interface Specification
EFI_HII_CONFIG_ROUTING_PROTOCOL.RouteConfig()

Summary
This function processes the results of processing forms and routes it to the appropriate handlers or
storage.

Prototype
typedef
EFI_STATUS
 (EFIAPI * EFI_HII_ROUTE_CONFIG) (
 IN CONST EFI_HII_CONFIG_ROUTING_PROTOCOL *This,
 IN CONST EFI_STRING Configuration,
 OUT EFI_STRING *Progress
);

Parameters
This

Points to the EFI_HII_CONFIG_ROUTING_PROTOCOL instance.

Configuration

A null-terminated string in <MultiConfigResp> format.

Progress

A pointer to a string filled in with the offset of the most recent ‘&’ before the first
failing name / value pair (or the beginning of the string if the failure is in the first
name / value pair) or the terminating NULL if all was successful.

Description
This function routes the results of processing forms to the appropriate targets. It scans for
<ConfigHdr> within the string and passes the header and subsequent body to the driver whose
location is described in the <ConfigHdr>. Many <ConfigHdr>s may appear as a single request.

The expected implementation is to hand off the various <ConfigResp> substrings to the
Configuration Access Protocol RouteConfig routine corresponding to the driver whose routing
information is defined by the <ConfigHdr> in turn.

Status Codes Returned

EFI_SUCCESS The results have been distributed or are awaiting
distribution.

EFI_OUT_OF_RESOURCES Not enough memory to store the parts of the
results that must be stored awaiting possible future
protocols.

EFI_INVALID_PARAMETERS Passing in a NULL for the Configuration

parameter would result in this type of error.

EFI_NOT_FOUND Target for the specified routing data was not found

EFI_ACCESS_DENIED The action violated a system policy.
2088 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
EFI_HII_CONFIG_ROUTING_PROTOCOL.BlockToConfig()

Summary
This helper function is to be called by drivers to map configuration data stored in byte array
(“block”) formats such as UEFI Variables into current configuration strings.

Prototype
typedef
EFI_STATUS
 (EFIAPI * EFI_HII_BLOCK_TO_CONFIG) (
 IN CONST EFI_HII_CONFIG_ROUTING_PROTOCOL *This,
 IN CONST EFI_STRING ConfigRequest,
 IN CONST UINT8 *Block,
 IN CONST UINTN BlockSize,
 OUT EFI_STRING *Config,
 OUT EFI_STRING *Progress
);

Parameters
This

Points to the EFI_HII_CONFIG_ROUTING_PROTOCOL instance.

ConfigRequest

A null-terminated string in <ConfigRequest> format.

Block

Array of bytes defining the block’s configuration.

BlockSize

Length in bytes of Block.

Config

Filled-in configuration string. String allocated by the function. Returned only if call is
successful. The null-terminated string will be in <ConfigResp> format

Progress

A pointer to a string filled in with the offset of the most recent ‘&’ before the first
failing name / value pair (or the beginning of the string if the failure is in the first
name / value pair) or the terminating NULL if all was successful.

Description
This function extracts the current configuration from a block of bytes. To do so, it requires that the
ConfigRequest string consists of a list of <BlockName> formatted names. It uses the offset in
the name to determine the index into the Block to start the extraction and the width of each name to
determine the number of bytes to extract. These are mapped to a string using the equivalent of the C
“%x” format (with optional leading spaces).

The call fails if, for any (offset, width) pair in ConfigRequest, offset+value >= BlockSize.
Version 2.5 April, 2015 2089

Unified Extensible Firmware Interface Specification
Status Codes Returned

EFI_SUCCESS The request succeeded. Progress points to the null

terminator at the end of the ConfigRequest

string.

EFI_OUT_OF_RESOURCES Not enough memory to allocate Config.

Progress points to the first character of

ConfigRequest.

EFI_INVALID_PARAMETERS Passing in a NULL for the ConfigRequest or

Block parameter would result in this type of

error. Progress points to the first character of

ConfigRequest.

EFI_NOT_FOUND Target for the specified routing data was not found.

Progress points to the “G” in “GUID” of the

errant routing data.

EFI_DEVICE_ERROR Block not large enough. Progress undefined.

EFI_INVALID_PARAMETER Encountered non <BlockName> formatted string.
Block is left updated and Progress points at the ‘&’
preceding the first non-<BlockName>.
2090 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
EFI_HII_CONFIG_ROUTING_PROTOCOL.ConfigToBlock()

Summary
This helper function is to be called by drivers to map configuration strings to configurations stored in
byte array (“block”) formats such as UEFI Variables.

Prototype
typedef
EFI_STATUS
 (EFIAPI * EFI_HII_CONFIG_TO_BLOCK) (
 IN CONST EFI_HII_CONFIG_ROUTING_PROTOCOL *This,
 IN CONST EFI_STRING *ConfigResp,
 IN OUT CONST UINT8 *Block,
 IN OUT UINTN *BlockSize,
 OUT EFI_STRING *Progress
);

Parameters
This

Points to the EFI_HII_CONFIG_ROUTING_PROTOCOL instance.

ConfigResp

A null-terminated string in <ConfigResp> format.

Block

A possibly null array of bytes representing the current block. Only bytes referenced in
the ConfigResp string in the block are modified. If this parameter is null or if the
*BlockSize parameter is (on input) shorter than required by the
Configuration string, only the BlockSize parameter is updated and an
appropriate status (see below) is returned.

BlockSize

The length of the Block in units of UINT8. On input, this is the size of the Block.
On output, if successful, contains the largest index of the modified byte in the Block,
or the required buffer size if the Block is not large enough.

Progress

On return, points to an element of the ConfigResp string filled in with the offset of
the most recent ‘&’ before the first failing name / value pair (or the beginning of the
string if the failure is in the first name / value pair) or the terminating NULL if all was
successful.

Description
This function maps a configuration containing a series of <BlockConfig> formatted name value
pairs in ConfigResp into a Block so it may be stored in a linear mapped storage such as a UEFI
Variable. If present, the function skips GUID, NAME, and PATH in <ConfigResp>. It stops
Version 2.5 April, 2015 2091

Unified Extensible Firmware Interface Specification
when it finds a non-<BlockConfig> name / value pair (after skipping the routing header) or when
it reaches the end of the string.

Example

Assume an existing block containing:

00 01 02 03 04 05

And the ConfigResp string is:

OFFSET=3WIDTH=1&VALUE=7&OFFSET=0&WIDTH=2&VALUE=AA55

The results are

55 AA 02 07 04 05

Status Codes Returned

EFI_SUCCESS The request succeeded. Progress points to the null terminator at the

end of the ConfigResp string.

EFI_OUT_OF_RESOURCES Not enough memory to allocate Config. Progress points to the first

character of ConfigResp.

EFI_INVALID_PARAMETER Passing in a NULL for the ConfigResp or Block parameter

would result in this type of error. Progress points to the first character of

ConfigResp.

EFI_NOT_FOUND Target for the specified routing data was not found. Progress

points to the “G” in “GUID” of the errant routing data.

EFI_BUFFER_TOO_SMALL Block not large enough. Progress undefined. BlockSize is

updated with the required buffer size.

EFI_INVALID_PARAMETER Encountered non <BlockName> formatted name / value pair. Block

is left updated and Progress points at the ‘&’ preceding the first

non-<BlockName>.
2092 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
EFI_HII_CONFIG_ROUTING_PROTOCOL.GetAltCfg()

Summary
This helper function is to be called by drivers to extract portions of a larger configuration string.

Prototype
typedef
EFI_STATUS
 (EFIAPI * EFI_HII_GET_ALT_CFG) (
 IN CONST EFI_HII_CONFIG_ROUTING_PROTOCOL *This,
 IN CONST EFI_STRING ConfigResp,
 IN CONST EFI_GUID *Guid,
 IN CONST EFI_STRING Name,
 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
 IN CONST EFI_STRING AltCfgId,
 OUT EFI_STRING *AltCfgResp
);

Parameters
This

Points to the EFI_HII_CONFIG_ROUTING_PROTOCOL instance.

ConfigResp

A null-terminated string in <ConfigAltResp> format.

Guid

A pointer to the GUID value to search for in the routing portion of the ConfigResp
string when retrieving the requested data. If Guid is NULL, then all GUID values will
be searched for.

Name

A pointer to the NAME value to search for in the routing portion of the
ConfigResp string when retrieving the requested data. If Name is NULL, then all
Name values will be searched for.

DevicePath

A pointer to the PATH value to search for in the routing portion of the ConfigResp
string when retrieving the requested data. If DevicePath is NULL, then all
DevicePath values will be searched for.

AltCfgId

A pointer to the ALTCFG value to search for in the routing portion of the
ConfigResp string when retrieving the requested data. If this parameter is NULL,
then the current setting will be retrieved.
Version 2.5 April, 2015 2093

Unified Extensible Firmware Interface Specification
AltCfgResp

A pointer to a buffer which will be allocated by the function which contains the
retrieved string as requested. This buffer is only allocated if the call was successful.
The null-terminated string will be in <ConfigResp> format.

Description
This function retrieves the requested portion of the configuration string from a larger configuration
string. This function will use the Guid, Name, and DevicePath parameters to find the
appropriate section of the ConfigResp string. Upon finding this portion of the string, it will use
the AltCfgId parameter to find the appropriate instance of data in the ConfigResp string.
Once found, the found data will be copied to a buffer which is allocated by the function so that it can
be returned to the caller. The caller is responsible for freeing this allocated buffer.

Status Codes Returned

33.5 EFI HII Configuration Access Protocol

EFI_HII_CONFIG_ACCESS_PROTOCOL

Summary
The EFI HII configuration routing protocol invokes this type of protocol when it needs to forward
requests to a driver's configuration handler. This protocol is published by drivers providing and
receiving configuration data from HII. The ExtractConfig() and RouteConfig()
functions are typically invoked by the driver which implements the HII Configuration Routing
Protocol. The Callback() function is typically invoked by the Forms Browser.

If the protocol functions modify active form set, they must not change layout and size of the existing
variable stores. The forms browser processes updated IFR package in accordance with the following
rules:

1. If active form set no longer exists, the behavior is browser specific. The browser identifies form
set using a combination of the form set GUID and device path associated with the package list
containing the form set.

2. If form set update has been initiated by the Callback() function, the browser executes
action requested by the function. See
EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack() section for additional details
regarding browser action requests.

EFI_SUCCESS The request succeeded. The requested data was extracted and placed in

the newly allocated AltCfgResp buffer.

EFI_OUT_OF_RESOURCES Not enough memory to allocate AltCfgResp.

EFI_INVALID_PARAMETER Passing in a NULL for the ConfigResp or AltCfgResp would result

in this type of error.
2094 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
Note: If browser action implies saving of the modified questions values, the browser will use
uncommitted data associated with the old form set instance. The HII Configuration Access
implementation is responsible for properly handling such requests.

3. The browser performs standard processing steps that are performed on a form set prior to
displaying it (including reading question values and generating
EFI_BROWSER_ACTION_FORM_OPEN and EFI_BROWSER_ACTION_FORM_RETRIEVE
callbacks).

4. If there is an uncommitted browser data associated with an active form set, the browser applies
it, matching variable stores by their identifiers. If variable store no longer exists, the
uncommitted data for this store is discarded.

Note: Changing layout or size of the existing variable stores during form set update is not allowed and
can lead to unpredictable results.

5. The browser applies prior browsing history, matching forms by their identifiers. If a form saved
in the browsing history no longer exists, the behavior is browser-specific.

6. If all forms in the browsing history have been matched, the browser sets selection on a question
that was active prior to the form set update, matching question by its identifier. If question does
not exist, the first question on the form is selected.

GUID
 #define EFI_HII_CONFIG_ACCESS_PROTOCOL_GUID \
 { 0x330d4706, 0xf2a0, 0x4e4f,\
 {0xa3,0x69, 0xb6, 0x6f,0xa8, 0xd5, 0x43, 0x85}}

Protocol Interface Structure
typedef struct {
 EFI_HII_ACCESS_EXTRACT_CONFIG ExtractConfig;
 EFI_HII_ACCESS_ROUTE_CONFIG RouteConfig;
 EFI_HII_ACCESS_FORM_CALLBACK Callback;
} EFI_HII_CONFIG_ACCESS_PROTOCOL;

Related Definitions
None

Parameters
ExtractConfig

This function breaks apart the request strings routing them to the appropriate drivers.
This function is analogous to the similarly named function in the HII Routing
Protocol.

RouteConfig

This function breaks apart the results strings and returns configuration information as
specified by the request.
Version 2.5 April, 2015 2095

Unified Extensible Firmware Interface Specification
Callback

This function is called from the configuration browser to communicate certain
activities that were initiated by a user.

Description
This protocol provides a callable interface between the HII and drivers. Only drivers which provide
IFR data to HII are required to publish this protocol.
2096 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
EFI_HII_CONFIG_ACCESS_PROTOCOL.ExtractConfig()

Summary
This function allows a caller to extract the current configuration for one or more named elements
from the target driver.

Prototype
typedef
EFI_STATUS
 (EFIAPI * EFI_HII_ACCESS_EXTRACT_CONFIG) (
 IN CONST EFI_HII_CONFIG_ACCESS_PROTOCOL *This,
 IN CONST EFI_STRING Request,
 OUT EFI_STRING *Progress,
 OUT EFI_STRING *Results
);

Parameters
This

Points to the EFI_HII_CONFIG_ACCESS_PROTOCOL.

Request

A null-terminated string in <ConfigRequest> format. Note that this includes the
routing information as well as the configurable name / value pairs. It is invalid for this
string to be in <MultiConfigRequest> format.

If a NULL is passed in for the Request field, all of the settings being abstracted by
this function will be returned in the Results field. In addition, if a ConfigHdr is
passed in with no request elements, all of the settings being abstracted for that
particular ConfigHdr reference will be returned in the Results Field.

Progress

On return, points to a character in the Request string. Points to the string’s null
terminator if request was successful. Points to the most recent ‘&’ before the first
failing name / value pair (or the beginning of the string if the failure is in the first
name / value pair) if the request was not successful

Results

A null-terminated string in <MultiConfigAltResp> format which has all values
filled in for the names in the Request string. String to be allocated by the called
function.

Description
This function allows the caller to request the current configuration for one or more named elements.
The resulting string is in <ConfigAltResp> format.

In order to support forms processors other than a Forms Browser, the configuration returned by this
function must not depend on context in which the function is used. In particular, it must not depend
on the current state of the Forms Browser (including any uncommitted state information) and actions
Version 2.5 April, 2015 2097

Unified Extensible Firmware Interface Specification
performed by the driver callbacks invoked prior to the ExtractConfig call. Section 31.2.1.8 provides
additional details regarding forms browser/processor.

Any and all alternative configuration strings shall also be appended to the end of the current
configuration string. If they are, they must appear after the current configuration. They must contain
the same routing (GUID, NAME, PATH) as the current configuration string. They must have an
additional description indicating the type of alternative configuration the string represents,
"ALTCFG=<AltCfgId>". The <AltCfgId> is a reference to a Default ID which stipulates the
type of Default being referenced such as EFI_HII_DEFAULT_CLASS_STANDARD.

As an example, assume that the Request string is:
GUID=…&PATH=…&Fred&George&Ron&Neville

A result might be:
GUID=…&PATH=…&Fred=16&George=16&Ron=12&Neville=11&GUID=…&PATH=…&
ALTCFG=0037&Fred=12&Neville=7

This function allows the caller to request the current configuration for one or more named elements.
The resulting string is in <ConfigAltResp> format.

Any and all alternative configuration strings shall also be appended to the end of the current
configuration string. If they are, they must appear after the current configuration. They must
contain the same routing (GUID, NAME, PATH) as the current configuration string. They must
have an additional description indicating the type of alternative configuration the string represents,
“ALTCFG=<AltCfgId>”. The <AltCfgId> is a reference to a Default ID which stipulates the
type of Default being referenced such as EFI_HII_DEFAULT_CLASS_STANDARD.

As an example, assume that the Request string is:
GUID=…&PATH=…&Fred&George&Ron&Neville

A result might be:
GUID=…&PATH=…&Fred=16&George=16&Ron=12&Neville=11&
GUID=…&PATH=…&ALTCFG=0037&Fred=12&Neville=7

Status Codes Returned

EFI_SUCCESS The Results string is filled with the values

corresponding to all requested names.

EFI_OUT_OF_RESOURCES Not enough memory to store the parts of the results
that must be stored awaiting possible future
protocols.

EFI_NOT_FOUND A configuration element matching the routing data
is not found. Progress set to the first character in
the routing header.

EFI_INVALID_PARAMETER Illegal syntax. Progress set to most recent ”&”
before the error or the beginning of the string.

EFI_INVALID_PARAMETER Unknown name. Progress points to the “&”

before the name in question.

EFI_ACCESS_DENIED The action violated a system policy.
2098 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
EFI_HII_CONFIG_ACCESS_PROTOCOL.RouteConfig()

Summary
This function processes the results of changes in configuration for the driver that published this
protocol.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_HII_ACCESS_ROUTE_CONFIG) (
 IN CONST EFI_HII_CONFIG_ACCESS_PROTOCOL *This,
 IN CONST EFI_STRING Configuration,
 OUT EFI_STRING *Progress
);

Parameters
This

Points to the EFI_HII_CONFIG_ACCESS_PROTOCOL.

Configuration

A null-terminated string in <ConfigResp> format.

Progress

a pointer to a string filled in with the offset of the most recent ‘&’ before the first
failing name / value pair (or the beginning of the string if the failure is in the first
name / value pair) or the terminating NULL if all was successful.

Description
This function applies changes in a driver's configuration. Input is a Configuration, which has
the routing data for this driver followed by name / value configuration pairs. The driver must apply
those pairs to its configurable storage.

In order to support forms processors other than a Forms Browser, the way in which configuration
data is applied must not depend on context in which the function is used. In particular, it must not
depend on the current state of the Forms Browser (including any uncommitted state information) and
actions performed by the driver callbacks invoked prior to the RouteConfig call. Section 31.2.1.8
provides additional details regarding forms browser/processor.

If the driver's configuration is stored in a linear block of data and the driver's name / value pairs are
in <BlockConfig> format, it may use the ConfigToBlock helper function (above) to simplify
the job.

Status Codes Returned

EFI_SUCCESS The results have been distributed or are awaiting
distribution.
Version 2.5 April, 2015 2099

Unified Extensible Firmware Interface Specification
EFI_OUT_OF_RESOURCES Not enough memory to store the parts of the
results that must be stored awaiting possible future
protocols.

EFI_INVALID_PARAMETERS Passing in a NULL for the Results parameter

would result in this type of error.

EFI_NOT_FOUND Target for the specified routing data was not found

EFI_ACCESS_DENIED The action violated a system policy.
2100 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack()

Summary
This function is called to provide results data to the driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_HII_ACCESS_FORM_CALLBACK) (
 IN CONST EFI_HII_CONFIG_ACCESS_PROTOCOL *This,
 IN EFI_BROWSER_ACTION Action,
 IN EFI_QUESTION_ID QuestionId,
 IN UINT8 Type
 IN OUT EFI_IFR_TYPE_VALUE *Value,
 OUT EFI_BROWSER_ACTION_REQUEST *ActionRequest,
);

Parameters
This

Points to the EFI_HII_CONFIG_ACCESS_PROTOCOL.

Action

Specifies the type of action taken by the browser. See EFI_BROWSER_ACTION_x in
“Related Definitions” below.

QuestionId

A unique value which is sent to the original exporting driver so that it can identify the
type of data to expect. The format of the data tends to vary based on the opcode that
generated the callback.

Type

The type of value for the question. See EFI_IFR_TYPE_x in
EFI_IFR_ONE_OF_OPTION.

Value

A pointer to the data being sent to the original exporting driver. The type is specified
by Type. Type EFI_IFR_TYPE_VALUE is defined in
EFI_IFR_ONE_OF_OPTION.

ActionRequest

On return, points to the action requested by the callback function. Type
EFI_BROWSER_ACTION_REQUEST is specified in SendForm() in the Form
Browser Protocol.

Description
This function is called by the forms browser in response to a user action on a question which has the
EFI_IFR_FLAG_CALLBACK bit set in the EFI_IFR_QUESTION_HEADER. The user action is
Version 2.5 April, 2015 2101

Unified Extensible Firmware Interface Specification
specified by Action. Depending on the action, the browser may also pass the question value using
Type and Value. Upon return, the callback function may specify the desired browser action.

The browser maintains uncommitted browser data (modified and unsaved question values) across
Callback function boundaries. Callback function may change unsaved question values using one of
the following methods:

• Current question's value may be changed by updating the Value parameter.

• Values of other questions from the active formset can be changed using
EFI_FORM_BROWSER2_PROTOCOL.BrowserCallback() interface.

Note: Modification of the question values by the Callback function without notifying the browser using
one of the above mentioned methods can lead to unpredictable browser behavior.

Callback function may request configuration update from the browser by returning an appropriate
ActionRequest.

In order to save uncommitted data, driver should return one of the _SUBMIT actions or _APPLY
action. The browser will then write all modified question values (in case of the _SUBMIT actions) or
modified question values from an active form (in case of the _APPLY action) to storage using
RouteConfig() function. This will include questions modified prior to an invocation of the
Callback() function as well as questions modified by the Callback() function.

The behavior of the ExtractConfig and RouteConfig functions must not depend on the
actions performed by this function.

Callback functions should return EFI_UNSUPPORTED for all values of Action that they do not
support.

Related Definitions
typedef UINTN EFI_BROWSER_ACTION;

#define EFI_BROWSER_ACTION_CHANGING 0
#define EFI_BROWSER_ACTION_CHANGED 1
#define EFI_BROWSER_ACTION_RETRIEVE 2
#define EFI_BROWSER_ACTION_FORM_OPEN 3
#define EFI_BROWSER_ACTION_FORM_CLOSE 4
#define EFI_BROWSER_ACTION_DEFAULT_STANDARD 0x1000
#define EFI_BROWSER_ACTION_DEFAULT_MANUFACTURING 0x1001
#define EFI_BROWSER_ACTION_DEFAULT_SAFE 0x1002
#define EFI_BROWSER_ACTION_DEFAULT_PLATFORM 0x2000
#define EFI_BROWSER_ACTION_DEFAULT_HARDWARE 0x3000
#define EFI_BROWSER_ACTION_DEFAULT_FIRMWARE 0x4000

The following table describes the behavior of the callback for each question type.

Table 216. Callback Behavior

Question Type Type Action
2102 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
The value EFI_BROWSER_ACTION_CHANGING is called before the browser changes the value in
the display (for questions which have a value) or takes an action (in the case of an action button or
cross-reference). If the callback returns EFI_UNSUPPORTED , then the browser will use the value
passed to Callback() and ignore the value returned by Callback(). If the callback returns
EFI_SUCCESS, then the browser will use the value returned by Callback(). If any other error is
returned, then the browser will not update the current question value. ActionRequest is ignored.
The Value represents the updated value. The changes here should not be finalized until the user
submits the results.

The value EFI_BROWSER_ACTION_CHANGED is called after the browser has changed its internal
copy of the question value and displayed it (if appropriate). For action buttons, this is called after the
value has been processed. For cross-references, this is never called. Errors returned are ignored.
ActionRequest is used. The changes here should not be finalized until the user submits the
results.

The value EFI_BROWSER_ACTION_RETRIEVE is called after the browser has read the current question value,

but before it has been displayed. If the callback returns EFI_UNSUPPORTED or any other error then the original

value is used. If EFI_SUCCESS is returned, then the updated value is used.

The value EFI_BROWSER_ACTION_FORM_OPEN is called for each question on a form prior to its
value being retrieved or displayed. If a question appears on more than one form, and the Forms

Action Button EFI_IFR_TYPE_ACTION No special behavior. If the short form of
the opcode is used, then the value will
be a string identifier of zero.

Checkbox EFI_IFR_TYPE_BOOLEAN No special behavior

Cross-Reference EFI_IFR_TYPE_REF
EFI_IFR_TYPE_UNDEFINED

CHANGING: If EFI_UNSUPPORTED
or EFI_SUCCESS, the updated cross-
reference is taken. Any other error the
cross-reference will not be taken.
CHANGED: Never called.
RETRIEVE: Called before displaying
the cross-reference. Error codes
ignored. The Ref field of the Value
parameter is initialized with the REF
question's value prior to CHANGING
and RETRIEVE.

Date EFI_IFR_TYPE_DATE No special behavior

Numeric,
One-Of

EFI_IFR_TYPE_NUM_SIZE_8,
EFI_IFR_TYPE_NUM_SIZE_16
,
EFI_IFR_TYPE_NUM_SIZE_32
,
EFI_IFR_TYPE_NUM_SIZE_64

No special behavior.

Ordered-List EFI_IFR_TYPE_BUFFER No special behavior

String, Password EFI_IFR_TYPE_STRING No special behavior.

Time EFI_IFR_TYPE_DATE No special behavior.
Version 2.5 April, 2015 2103

Unified Extensible Firmware Interface Specification
Browser supports more than one form being active simultaneously, this may be called more than
once, even prior to any EFI_BROWSER_ACTION_FORM_CLOSE callback."

The value EFI_BROWSER_ACTION_FORM_CLOSE is called for each question on a form after the
processing of any submit actions for that form. If a question appears on more than one form, and the
Forms Processor supports more than one form being active simultaneously, this will be called more
than once.

When Action specifies one of the "default" actions, such as
EFI_BROWSER_ACTION_DEFAULT_STANDARD, etc. it indicates that the Forms Processor is
attempting to retrieve the default value for the specified question. The proposed default value is
passed in using Type and Value and reflects the value which the Forms Processor was able to
select based on the lower-priority defaulting methods (see Section 31.2.5.8). If the function returns
EFI_SUCCESS, then the updated value will be used. If the function does not have an updated
default value for the specified question or specified default store, or does not provide any support for
the actions, it should return EFI_UNSUPPORTED, and the returned value will be ignored.

The DEFAULT_PLATFORM, DEFAULT_HARDWARE and DEFAULT_FIRMWARE represent ranges
of 4096 (0x1000) possible default store identifiers. The DEFAULT_STANDARD represents the range
of 4096 possible action values reserved for UEFI-defined default store identifiers. See
Section 31.2.5.8 for more information on defaults.

typedef UINTN EFI_BROWSER_ACTION_REQUEST;

#define EFI_BROWSER_ACTION_REQUEST_NONE 0
#define EFI_BROWSER_ACTION_REQUEST_RESET 1
#define EFI_BROWSER_ACTION_REQUEST_SUBMIT 2
#define EFI_BROWSER_ACTION_REQUEST_EXIT 3
#define EFI_BROWSER_ACTION_REQUEST_FORM_SUBMIT_EXIT 4
#define EFI_BROWSER_ACTION_REQUEST_FORM_DISCARD_EXIT 5
#define EFI_BROWSER_ACTION_REQUEST_FORM_APPLY 6
#define EFI_BROWSER_ACTION_REQUEST_FORM_DISCARD 7
#define EFI_BROWSER_ACTION_REQUEST_RECONNECT 8

If the callback function returns with the ActionRequest set to _NONE, then the Forms Browser
will take no special behavior.

If the callback function returns with the ActionRequest set to _RESET, then the Forms Browser
will exit and request the platform to reset.

If the callback function returns with the ActionRequest set to _SUBMIT, then the Forms
Browser will save all modified question values to storage and exit.

If the callback function returns with the ActionRequest et to _EXIT, then the Forms Browser
will discard all modified question values and exit.

If the callback function returns with the ActionRequest set to _FORM_SUBMIT_EXIT, then
the Forms Browser will write all modified question values on the selected form to storage and then
exit the selected form.

If the callback function returns with the ActionRequest set to _FORM_DISCARD_EXIT, then
the Forms Browser will discard the modified question values on the selected form and then exit the
selected form.
2104 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
If the callback function returns with the ActionRequest set to _FORM_APPLY, then the Forms
Browser will write all modified current question values on the selected form to storage.

If the callback function returns with the ActionRequest set to _FORM_DISCARD, then the
Forms Browser will discard the current question values on the selected form and replace them with
the original question values.

A hardware and/or software configuration change was performed by the user, and the controller
needs to be reconnected for the driver to recognize the change. The passed in controller handle will
be the same handle that the EFI_HII_CONFIG_ACCESS_PROTOCOL is installed on. The UEFI
Browser is required to call the EFI Boot Service DisconnectController() followed by the
EFI Boot Service ConnectController()to reconnect the controller and then exit.

Status Codes Returned

33.6 Form Browser Protocol
The EFI_FORM_BROWSER2_PROTOCOL is the interface to call for drivers to leverage the EFI
configuration driver interface.

EFI_FORM_BROWSER2_PROTOCOL

Summary
The EFI_FORM_BROWSER2_PROTOCOL is the interface to the UEFI configuration driver. This
interface will allow the caller to direct the configuration driver to use either the HII database or use
the passed-in packet of data.

EFI_SUCCESS The callback successfully handled the action.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the variable and
its data.

EFI_DEVICE_ERROR The variable could not be saved.

EFI_UNSUPPORTED The specified Action is not supported by the callback.
Version 2.5 April, 2015 2105

Unified Extensible Firmware Interface Specification
GUID
#define EFI_FORM_BROWSER2_PROTOCOL_GUID \
 { 0xb9d4c360, 0xbcfb, 0x4f9b, \
 { 0x92, 0x98, 0x53, 0xc1, 0x36, 0x98, 0x22, 0x58 } }

Protocol Interface Structure
typedef struct _EFI_FORM_BROWSER2_PROTOCOL {
 EFI_SEND_FORM2 SendForm;
 EFI_BROWSER_CALLBACK2 BrowserCallback;
} EFI_FORM_BROWSER2_PROTOCOL;

Parameters
SendForm

Browse the specified configuration forms. See the SendForm() function
description.

BrowserCallback

Routine used to expose internal configuration state of the browser. This is primarily
used by callback handler routines which were called by the browser and in-turn need
to get additional information from the browser itself. See the
BrowserCallback() function description.

Description
This protocol is the interface to call for drivers to leverage the EFI configuration driver interface.
2106 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
EFI_FORM_BROWSER2_PROTOCOL.SendForm()

Summary
Initialize the browser to display the specified configuration forms.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SEND_FORM2) (
 IN CONST EFI_FORM_BROWSER2_PROTOCOL *This,
 IN EFI_HII_HANDLE *Handles,
 IN UINTN HandleCount,
 IN CONST EFI_GUID *FormsetGuid, OPTIONAL
 IN EFI_FORM_ID FormId, OPTIONAL
 IN CONST EFI_SCREEN_DESCRIPTOR *ScreenDimensions, OPTIONAL
 OUT EFI_BROWSER_ACTION_REQUEST *ActionRequest OPTIONAL
);

Parameters
This

A pointer to the EFI_FORM_BROWSER2_PROTOCOL instance.

Handles

A pointer to an array of HII handles to display. This value should correspond to the
value of the HII form package that is required to be displayed. Type
EFI_HII_HANDLE is defined in
EFI_HII_DATABASE_PROTOCOL.NewPackageList() in Section 31.3.1.

HandleCount

The number of handles in the array specified by Handle.

FormsetGuid

This field points to the EFI_GUID which must match the Guid field or one of the
elements of the ClassId field in the EFI_IFR_FORM_SET op-code. If
FormsetGuid is NULL, then this function will display the form set class
EFI_HII_PLATFORM_SETUP_FORMSET_GUID.

FormId

This field specifies the identifier of the form within the form set to render as the first
displayable page. If this field has a value of 0x0000, then the Forms Browser will
render the first enabled form in the form set.

ScreenDimensions

Points to recommended form dimensions, including any non-content area, in
characters. Type EFI_SCREEN_DESCRIPTOR is defined in "Related Definitions"
below.
Version 2.5 April, 2015 2107

Unified Extensible Firmware Interface Specification
ActionRequested

Points to the action recommended by the form.

Description
This function is the primary interface to the Forms Browser. The Forms Browser displays the forms
specified by FormsetGuid and FormId from all of HII handles specified by Handles. If more
than one form can be displayed, the Forms Browser will provide some means for the user to navigate
between the forms in addition to that provided by cross-references in the forms themselves.

If ScreenDimensions is non-NULL, then it points to a recommended display size for the form.
If browsing in text mode, then these are recommended character positions. If browsing in graphics
mode, then these values are converted to pixel locations using the standard font size (8 pixels per
horizontal character cell and 19 pixels per vertical character cell). If ScreenDimensions is
NULL the browser may choose the size based on platform policy. The browser may choose to ignore
the size based on platform policy.

If ActionRequested is non-NULL, then upon return, it points to an enumerated value (see
EFI_BROWSER_ACTION_x in “Related Definitions” below) which describes the action requested
by the user. If set to EFI_BROWSER_ACTION_NONE, then no specific action was requested by the
form. If set to EFI_BROWSER_ACTION_RESET, then the form requested that the platform be
reset. The browser may, based on platform policy, ignore such action requests.

If FormsetGuid is set to EFI_HII_PLATFORM_SETUP_FORMSET_GUID, it indicates that
the form set contains forms designed to be used for platform configuration. If FormsetGuid is set
to EFI_HII_DRIVER_HEALTH_FORMSET_GUID, it indicates that the form set contains forms
designed to be used for support of the Driver Health Protocol (see Section 10.10). If FormsetGuid is
set to EFI_HII_USER_CREDENTIAL_FORMSET_GUID, it indicates that the form set contains
forms designed to be used for support of the User Credential Protocol (see Section 34.3.2) Other
values may be used for other applications.

Related Definitions
//**
// EFI_SCREEN_DESCRIPTOR
//**
typedef struct {
 UINTN LeftColumn;
 UINTN RightColumn;
 UINTN TopRow;
 UINTN BottomRow;
} EFI_SCREEN_DESCRIPTOR;

LeftColumn

Value that designates the text column where the browser window will begin from the
left-hand side of the screen

RightColumn

Value that designates the text column where the browser window will end on the
right-hand side of the screen.
2108 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
TopRow

Value that designates the text row from the top of the screen where the browser
window will start.

BottomRow

Value that designates the text row from the bottom of the screen where the browser
window will end.

typedef UINTN EFI_BROWSER_ACTION_REQUEST;

#define EFI_BROWSER_ACTION_REQUEST_NONE 0
#define EFI_BROWSER_ACTION_REQUEST_RESET 1
#define EFI_BROWSER_ACTION_REQUEST_SUBMIT 2
#define EFI_BROWSER_ACTION_REQUEST_EXIT 3

The value EFI_BROWSER_ACTION_REQUEST_NONE indicates that no specific caller action is
required. The value EFI_BROWSER_ACTION_REQUEST_RESET indicates that the caller
requested a platform reset. The value EFI_BROWSER_ACTION_REQUEST_SUBMIT indicates
that a callback requested that the browser submit all values and exit. The value
EFI_BROWSER_ACTION_REQUEST_EXIT indicates that a callback requested that the browser
exit without saving all values.

#define EFI_HII_PLATFORM_SETUP_FORMSET_GUID \
 { 0x93039971, 0x8545, 0x4b04, \
 { 0xb4, 0x5e, 0x32, 0xeb, 0x83, 0x26, 0x04, 0x0e } }

#define EFI_HII_DRIVER_HEALTH_FORMSET_GUID \
 { 0xf22fc20c, 0x8cf4, 0x45eb, \
 { 0x8e, 0x06, 0xad, 0x4e, 0x50, 0xb9, 0x5d, 0xd3 } }

#define EFI_HII_USER_CREDENTIAL_FORMSET_GUID \
 { 0x337f4407, 0x5aee, 0x4b83, \
 { 0xb2, 0xa7, 0x4e, 0xad, 0xca, 0x30, 0x88, 0xcd } }

Status Codes Returned

EFI_SUCCESS The function completed successfully

EFI_NOT_FOUND No valid forms could be found to display.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.
Version 2.5 April, 2015 2109

Unified Extensible Firmware Interface Specification
EFI_FORM_BROWSER2_PROTOCOL.BrowserCallback()

Summary
This function is called by a callback handler to retrieve uncommitted state data from the browser.

Prototype
EFI_STATUS
 (EFIAPI *EFI_BROWSER_CALLBACK2) (
 IN CONST EFI_FORM_BROWSER2_PROTOCOL *This,
 IN OUT UINTN *ResultsDataSize,
 IN OUT EFI_STRING ResultsData,
 IN BOOLEAN RetrieveData,
 IN CONST EFI_GUID *VariableGuid, OPTIONAL
 IN CONST CHAR16 *VariableName OPTIONAL
);

Parameters
This

A pointer to the EFI_FORM_BROWSER2_PROTOCOL instance.

ResultsDataSize

A pointer to the size of the buffer associated with ResultsData. On input, the size in
bytes of ResultsData. On output, the size of data returned in ResultsData.

ResultsData

A string returned from an IFR browser or equivalent. The results string will have no
routing information in them.

RetrieveData

A BOOLEAN field which allows an agent to retrieve (if RetrieveData = TRUE) data
from the uncommitted browser state information or set (if RetrieveData = FALSE)
data in the uncommitted browser state information.

VariableGuid

An optional field to indicate the target variable GUID name to use.

VariableName

An optional field to indicate the target human-readable variable name.

Description
This service is typically called by a driver's callback routine which was in turn called by the browser.
The routine called this service in the browser to retrieve or set certain uncommitted state information
that resides in the open formsets.

Status Codes Returned

EFI_SUCCESS The results have been distributed or are awaiting distribution.
2110 April, 2015 Version 2.5

HII Configuration Processing and Browser Protocol
EFI_BUFFER_TOO_SMALL The ResultsDataSize specified was too small to

contain the results data.
Version 2.5 April, 2015 2111

Unified Extensible Firmware Interface Specification
2112 April, 2015 Version 2.5

User Identification
34
User Identification

34.1 User Identification Overview
This section describes services which describe the current user of the platform. A user is the entity
which is controlling the behavior of the machine. The user may be an individual, a class or group of
individuals or another machine.

Each user has a user profile. There is always at least one user profile for a machine. This profile
governs the behavior of the user identification process until a another user has been selected. The
nature and definition of these privileges are beyond the scope of this section. One user profile is
always active and describes the platform’s current user.

New user profiles are introduced into the system through enrollment. During enrollment,
information about a new user is gathered. Some of this information identifies the user for specific
purposes, such as a user’s name or a user’s network domain. Other information is gathered in the
form of credentials, which is information which can be used at a later time to verify the identity of a
user. Credentials are generally divided into three categories: something you know (password),
something you have (smart card, smart token, RFID), something you are (fingerprint). The means by
which a platform determines the user’s identity based on credentials is user identification.

In the simplest case, a single set of credentials are required to establish a user’s identity. This is
called single-factor authentication. In more rigorous cases, multiple credentials might be required to
establish a user’s identity or different privilege levels given if only a single factor is available. This
is called multi-factor authentication.

If the credentials are checked only once, this is called static authentication. For example, a sign-on
box where the user enters a password and provides a fingerprint would be examples of static
authentication. However, if credentials (and thus the user’s identity) can be changed during system
execution, this is called dynamic authentication. For example, a smart token which can be hot-
removed from the system or an RFID tag which is moved in and out of range would be examples of
dynamic authentication.

The user identity manager is the optional UEFI driver which manages the process of determining the
user’s identity and storing information about the user.

The user enrollment manager is the optional application which adds or enrolls new users, gathering
the necessary information to ascertain their identity in the future.

The credential provider driver manages a single class of credentials. Examples include a USB
fingerprint sensor, a smart card or a password. The means by which these drivers are selected and
invoked is beyond the scope of this specification.

34.1.1 User Identify
The process of identifying the user occurs after platform initialization has made the services
described in the EFI System Table available. Before the Boot Manager behavior described in chapter
3, a user profile must be established. The user profile established might be:
Version 2.5 April, 2015 2113

Unified Extensible Firmware Interface Specification
• A default user profile, giving a standard set of privileges. This is similar to a “guest” login.

• A default user profile, based on a User Credential Provider where Default() returns
AutoLogon = TRUE.

• A specific user profile, established using the Identify() function of the User Manager.

Every time the user profile is modified, the User Identity Manager will signal the
EFI_EVENT_GROUP_USER_PROFILE_CHANGED event. The current user profile can only be
changed by calling the User Identity Manager’s Identify() function or as the result of a
credential provider calling the Notify() function (when dynamic authentication is supported).
The Identify() function changes the current user profile after examining the credentials
provided by the various credential providers and comparing these against those found in the user
profile database.

Figure 130. User Identity

When the UEFI Boot Manager signals the EFI_EVENT_GROUP_READY_TO_BOOT event group,
the User Identity Manager publishes the current user profile information in the EFI System
Configuration Table.

Depending on the security considerations in the implementation (see Section 34.1.4), user
identification can continue into different phases of execution.

1. Boot Manager, Once. In this scenario, identification is permitted until the
EFI_EVENT_GROUP_READY_TO_BOOT is signaled by the Boot Manager. After this time,
user identification is not allowed again. This is the simplest, since the user profile database can
be locked at this time using a simple one-time lock.

2. Boot Manager, Multiple. In this scenario, identification is permitted until the
EFI_EVENT_GROUP_READY_TO_BOOT is signaled by the Boot Manager. After this time, if

User
Profile

Database

Credential
Provider

Credential
Provider

Identify
()

Current
User

Profile

UEFI
Forms

Browser
2114 April, 2015 Version 2.5

User Identification
the boot option returns back into the Boot Manager, identification is allowed again. This
scenario requires that the user profile database only be updatable while in the Boot Manager.

3. Until ExitBootServices. In this scenario, identification is permitted until the
EFI_EVENT_GROUP_EXIT_BOOT_SERVICES is signaled by the Boot Manager. This
scenario requires that the user profile database cannot be updated by unauthorized executables.

34.1.2 User Profiles
The user profiles are collections of information about users. There is always a current user (and thus,
a currently selected user profile). The user profiles are stored in a user profile database.

Each user profile has the following attributes:

 User Identifier

User identifiers are unique to a particular user profile. The uniqueness of the user
profile identifier must persist across reboots. Credentials return this identifier during
the identification process.

 User Identification Policy

The user identification policy determines which credentials must be presented in order
to establish the user’s identity and set the user profile as the current user profile. The
policy consists of a boolean expression consisting of credential handles and the
operators AND, OR and NOT. This allows the user profile to be selected, for example,
depending on a password credential OR a fingerprint credential. Or the profile might
be selected depending on a password credential AND a fingerprint credential.

 User Privileges

The user privileges control what the user can and cannot do. For example, can the user
enroll other users, boot off of a selected device, etc.

 User Information

User information consists of typed data records attached to the user profile handle.
Some of this information is non-volatile. Some of this information may be provided
by a specific credential driver. User information is classified as public, private or
protected:

• Public user information is available at any time.

• Private user information is only available while it is part of the current user
profile.

• Protected user information is only available once user has been authenticated by a
credential provider.

Drivers and applications can be notified when the current user profile is changed, by using the UEFI
Boot Service CreateEventEx() and the EFI_EVENT_GROUP_USER_PROFILE_CHANGED

User profiles are available while the User Identity Manager is running, but only the current user
profile is available after the UEFI Boot Manager has started execution.
Version 2.5 April, 2015 2115

Unified Extensible Firmware Interface Specification
34.1.2.1 User Profile Database
The user profile database is a repository of all users known to the user identity manager. The user
profile database should be maintained in non-volatile memory and this memory must be protected
against corruption and erasure.

The user profile database is considered “open” if the user profile database can still be updated and
the current profile can still be changed using the EFI User Manager Protocol. The user profile
database is considered “closed” if the user profile database cannot be updated nor the current user
profile changes using the EFI User Manager Protocol.

34.1.2.2 User Identification Policy
The user identification policy is a boolean expression which determines which class of credential or
which credential providers must assert the user’s identity in order to a user profile to be eligible for
selection as the current user profile.

For example, assume that you want a password:
CredentialClass(Password)

This expression would assert true if any credential provider asserts that a user has successfully
entered a password.

CredentialClass(Password) && CredentialClass(Fingerprint)

This expression would require the user to present both a fingerprint AND a password in order to
select this user profile.

CredentialClass(Password) || CredentialClass(Fingerprint)

This expression, on the other hand, allows the user to present a fingerprint OR a password in order to
select this user profile.

Let’s say you only want the Phoenix password provider:
CredentialClass(Password) && CredentialProvider(Phoenix)

In all of these cases, the class of credential and the provider of the credential are actually GUIDs.
The standard credential class GUIDs are assigned by this specification. The credential provider
identifiers are generated by the companies creating the credential providers.

34.1.3 Credential Providers
The User Credential Provider drivers follow the UEFI driver model. During initialization, they
install an instance of the EFI Driver Binding Protocol. For hardware devices, the User Credential
Provider may consume the bus I/O protocol and produce the User Credential Protocol. For software-
based User Credential Providers, the User Credential Protocol could be installed on the image
handler. The exact implementation depends on the number of separate credential types that the User
Identity Manager will display.

When Start() is called, they:

1. Install one instance of the EFI_USER_CREDENTIAL2_PROTOCOL for each simultaneous
user which might be authenticated. For example, if more than one smart token were inserted,
2116 April, 2015 Version 2.5

User Identification
then one instance might be created for each token. However, for a fingerprint sensor, one
instance might be created for all fingerprint sensors managed by the same driver.

2. Install the user-interface forms used for interacting with the user using the HII Database
Protocol. The form must be encoded using the GUID
EFI_USER_CREDENTIAL2_PROTOCOL_GUID.

3. Install the EFI HII Configuration Access Protocol to handle interaction with the UEFI forms
browser. This protocol is called to retrieve the current information from the credential provider.
It is also called when the user presses OK to save the current form values. It also provides the
callback functionality which allows real-time processing of the form values.

User Credential Providers are responsible to creating a one-to-one mapping between a device,
fingerprint or password and a user identifier.

This specification does not explicitly support passing of user credential information related to
operating system logon to an OS-present environment. For example, User Credential Providers may
encrypt the user credential information and pass it, either as a part of the User Information Table or
the EFI System Configuration Table, to an OS-present driver or application.

This specification does not explicitly support OS-present update of user credential information or
user identification policy. Such support may be implemented in many ways, including the usage of
write-authenticated EFI variables (see SetVariable()) or capsules (seeUpdateCapsule()).

34.1.4 Security Considerations
Since the current profile details a number of security-related privileges, it is important that the User
Identity Manager and User Credential Providers and the environment in which they execute are
trusted.

This includes:

• Protecting the storage area where these drivers are stored

• Protecting the means by which these drivers are selected.

• Protecting the execution environment of these drivers from unverified drivers.

• The data structures used by these drivers should not be corrupted by unauthorized drivers while
they are still being used.
Version 2.5 April, 2015 2117

Unified Extensible Firmware Interface Specification
User Identity
Manager

User Credential
Driver

Boot Manager

Option ROM

OS Loaded From Boot ####

Shell
Drivers Loaded

From
Driver####

On-Board
Silicon Driver

On-Board
Silicon Driver

Driver From
Unprotected

Flash

In many cases, the User Identity Manager, the User Credential drivers and the on-board drivers are
located in a protected location (e.g. a write-protected flash device) and the platform policy for these
locations allows them to be trusted.

However, other drivers may be loaded from unprotected location or may be loaded from devices
(such as PCI cards) or a hard drive which are easily replaced. Therefore, all drivers loaded prior to
the User Identity Manager should be verified. No unverified drivers or applications should be
allowed to execute while decisions based on the current user policy are still being made.

For example, either the default platform policy must successfully be able to verify drivers listed in
the Driver#### load options, or else the user must be identified prior to processing these drivers.
Otherwise, the drivers’ execution should be deferred. If the user profile is changed through a
subsequent call to Identify() or through dynamic authentication, the Driver#### options
may not be processed again.

In systems where the user profile database and current user profile can be protected from corruption,
the user profile database is closed when the system signals the event EFI
EXIT_BOOT_SERVICES_EVENT_GUID. In systems where the user profile database and current
user profile cannot be protected from corruption, the user profile database is closed when the system
signals the event EFI_READY_TO_BOOT_EVENT_GUID.
2118 April, 2015 Version 2.5

User Identification
34.1.5 Deferred Execution
The platform may need to defer the execution of an image because of security considerations. For
example, see LoadImage(). Information about the images which are not executed because of security
considerations may be recorded and then reported by installing an instance of the
EFI_DEFERRED_IMAGE_LOAD_PROTOCOL (see Section 34.3.3). There may be more than one
producer of the protocol.

The firmware’s boot manager may use the instances of this protocol in order to automatically load
drivers whose execution was deferred because of inadequate privileges once the current user profile
contains adequate security privileges.

This boot manager can reevaluate the deferred images each time that the event
EFI_EVENT_GROUP_USER_IDENTITY_CHANGED is signaled

Images which have been loaded may not be unloaded when the current user profile is changed, even
if the new user profile would have prevented that driver from being loaded.

34.2 User Identification Process
This section describes the typical initialization steps required for the user identification process.

34.2.1 User Identification Process
1. The User Identity Manager is launched. This driver reads all of the user profiles from the user

profile database, sets the default user profile as the current profile, and installs an instance of the
EFI_USER_MANAGER_PROTOCOL.

2. Each credential provider driver registers their user-interface related forms and installs an
instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

3. The User Identity Manager’s Identify() function is called to select the current user.

4. The User Identity Manager enumerates all of the User Credential Providers required by the User
Identification Policy.

a Select the User Credential Provider which returns Default = TRUE from the
Default() function. If more than one return TRUE or none return TRUE, choose a
default based on implementation-specific criteria (last-logged-on, etc.)

b If that credential provider also returns AutoLogon = TRUE from the Default()
function, then call User(). If no error was returned and a user profile with the specified
user identifier exists, select the specified user profile as the current user profile and jump to
step 9.

5. The User Identity Manager enumerates all of the User Credential Providers required by the User
Identification Policy:

a Call the Title() and (optionally) the Tile() function to retrieve the text and image
indicated for each User Credential Provider.

b Call the Form() function to retrieve the form indicated for each User Credential Provider.

c Create the user interface to allow the user to select between the different User Credential
Providers.

d Highlight the default User Credential Provider, as specified in step 4.a.
Version 2.5 April, 2015 2119

Unified Extensible Firmware Interface Specification
6. If the user selects one of the User Credential Providers, call Select(). If AutoLogon =
TRUE on return, then call User(). If no error was returned and a user profile with the specified
user identifier exists, select the specified user profile as the current user profile and jump to step
9.

7. Interact with the user. Regular interaction can occur using the Callback() functions. If
another User Credential Provider is selected then Deselect() is called for the current User
Credential Provider and Select() is called for the newly selected User Credential Provider.

8. If the user presses OK then the User Manager will saved settings using the EFI Configuration
Access protocol. Then it will call the User() function of each credential provider. If it returns
successfully and one of the user policies evaluates to true, then select the specified user profile
as the current user profile and go to step 9. Otherwise display an error and go back.

9. Go through all of the credential providers using GetNextInfo() and GetInfo() and add
the information to the current user profile.

10. Exit

34.2.2 Changing The Current User Profile
This section describes the typical actions taken when the current user profile is changed.

1. If there was already a valid current user profile, then all records marked as private in that profile
are no longer available.

2. All records marked as private in the new user profile will be available.

3. The handle of the current user profile is changed.

4. An event with the GUID EFI_EVENT_GROUP_USER_IDENTITY_CHANGED is signaled to
indicate that the current user profile has been changed.

34.2.3 Ready To Boot
Before the boot manager is read to pass control to the boot option and signals the
EFI_EVENT_GROUP_READY_TO_BOOT event group, the User Identity Manager will publish the
current user profile into the EFI System Configuration Table with the
EFI_USER_MANAGER_PROTOCOL_GUID. The format is described in “User Information Table”
(page 58). It will also save all non-volatile profile information.

User Credential drivers with non-volatile storage should also store non-volatile credential
information which has changed.

34.3 Code Definitions

34.3.1 User Manager Protocol

EFI_USER_MANAGER_PROTOCOL

Summary
Reports information about a user.
2120 April, 2015 Version 2.5

User Identification
GUID
#define EFI_USER_MANAGER_PROTOCOL_GUID \
 { 0x6fd5b00c, 0xd426, 0x4283, \
 { 0x98, 0x87, 0x6c, 0xf5, 0xcf, 0x1c, 0xb1, 0xfe } };

Protocol Interface Structure
typedef struct _EFI_USER_MANAGER_PROTOCOL {
 EFI_USER_PROFILE_CREATE Create;
 EFI_USER_PROFILE_DELETE Delete;
 EFI_USER_PROFILE_GET_NEXT GetNext;
 EFI_USER_PROFILE_CURRENT Current;
 EFI_USER_PROFILE_IDENTIFY Identify;
 EFI_USER_PROFILE_FIND Find;
 EFI_USER_PROFILE_NOTIFY Notify;
 EFI_USER_PROFILE_GET_INFO GetInfo;
 EFI_USER_PROFILE_SET_INFO SetInfo;
 EFI_USER_PROFILE_DELETE_INFO DeleteInfo;
 EFI_USER_PROFILE_GET_NEXT_INFO GetNextInfo;
} EFI_USER_MANAGER_PROTOCOL;

Parameters
Create

Create a new user profile.

Delete

Delete an existing user profile.

GetNext

Cycle through all user profiles.

Current

Return the current user profile.

Identify

Identify a user and set the current user profile using credentials.

Find

Find a user by a piece of user information.

Notify

Notify the user manager driver that credential information has changed.

GetInfo

Return information from a user profile.

SetInfo

Change information in a user profile.
Version 2.5 April, 2015 2121

Unified Extensible Firmware Interface Specification
DeleteInfo

Delete information from a user profile.

GetNextInfo

Cycle through all information from a user profile.

Description
This protocol manages user profiles.
2122 April, 2015 Version 2.5

User Identification
EFI_USER_MANAGER_PROTOCOL.Create()

Summary
Create a new user profile.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USER_PROFILE_CREATE) (
 IN CONST EFI_USER_MANAGER_PROTOCOL *This,
 OUT EFI_USER_PROFILE_HANDLE *User
);

Parameters
This

Points to this instance of the EFI_USER_MANAGER_PROTOCOL.

User

On return, points to the new user profile handle. The user profile handle is unique only
during this boot.

Description
This function creates a new user profile with only a new user identifier attached and returns its
handle. The user profile is non-volatile, but the handle User can change across reboots.

If the current user profile does not permit creation of new user profiles then
EFI_ACCESS_DENIED will be returned. If creation of new user profiles is not supported, then
EFI_UNSUPPORTED is returned.

Related Definitions
typedef VOID *EFI_USER_PROFILE_HANDLE;

Status Codes Returned

EFI_SUCCESS User profile was successfully created.

EFI_ACCESS_DENIED Current user does not have sufficient permissions to create a user
profile.

EFI_UNSUPPORTED Creation of new user profiles is not supported.

EFI_INVALID_PARAMETER User is NULL.
Version 2.5 April, 2015 2123

Unified Extensible Firmware Interface Specification
EFI_USER_MANAGER_PROTOCOL.Delete()

Summary
Delete an existing user profile.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USER_PROFILE_DELETE) (
 IN CONST EFI_USER_MANAGER_PROTOCOL *This,
 IN EFI_USER_PROFILE_HANDLE User
);

Parameters
This

Points to this instance of the EFI_USER_MANAGER_PROTOCOL.

User

User profile handle. Type EFI_USER_PROFILE_HANDLE is defined in
Create().

Description
Delete an existing user profile. If the current user profile does not permit deletion of user profiles
then EFI_ACCESS_DENIED will be returned. If there is only a single user profile then
EFI_ACCESS_DENIED will be returned. If deletion of user profiles is not supported, then
EFI_UNSUPPORTED will be returned.

Status Codes Returned

EFI_SUCCESS User profile was successfully deleted.

EFI_ACCESS_DENIED Current user does not have sufficient permissions to delete a user
profile or there is only one user profile.

EFI_UNSUPPORTED Deletion of new user profiles is not supported.

EFI_INVALID_PARAMETER User does not refer to a valid user profile.
2124 April, 2015 Version 2.5

User Identification
EFI_USER_MANAGER_PROTOCOL.GetNext()

Summary
Enumerate all of the enrolled users on the platform.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USER_PROFILE_GET_NEXT)(
 IN CONST EFI_USER_MANAGER_PROTOCOL *This,
 IN OUT EFI_USER_PROFILE_HANDLE *User
);

Parameters
This

Points to the instance of this EFI_USER_MANAGER_PROTOCOL.

User

On entry, points to the previous user profile handle or NULL to start enumeration. On
exit, points to the next user profile handle or NULL if there are no more user profiles.

Description
This function returns the next enrolled user profile. To retrieve the first user profile handle, point
User at a NULL. Each subsequent call will retrieve another user profile handle until there are no
more, at which point User will point to NULL.

Note: There is always at least one user profile.

Status Codes Returned

EFI_SUCCESS Next enrolled user profile successfully returned.

EFI_INVALID_PARAMETER User is NULL.

EFI_ACCESS_DENIED Next enrolled user profile was not successfully returned.
Version 2.5 April, 2015 2125

Unified Extensible Firmware Interface Specification
EFI_USER_MANAGER_PROTOCOL.Current()

Summary
Return the current user profile handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USER_PROFILE_CURRENT)(
 IN CONST EFI_USER_MANAGER_PROTOCOL *This,
 OUT EFI_USER_PROFILE_HANDLE *CurrentUser
);

Parameters
This

Points to this instance of the EFI_USER_MANAGER_PROTOCOL.

CurrentUser

On return, points to the current user profile handle.

Description
This function returns the current user profile handle.

Status Codes Returned

EFI_SUCCESS Current user profile handle returned successfully.

EFI_INVALID_PARAMETER CurrentUser is NULL.
2126 April, 2015 Version 2.5

User Identification
EFI_USER_MANAGER_PROTOCOL.Identify()

Summary

Identify a user.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USER_IDENTIFY) (
 IN CONST EFI_USER_MANAGER_PROTOCOL *This,
 OUT EFI_USER_PROFILE_HANDLE *User
);

Parameters
This

Points to the instance of the EFI_USER_MANAGER_PROTOCOL.

User

On return, points to the user profile handle for the current user profile.

Description
Identify the user and, if authenticated, returns the user handle and changes the current user profile.

All user information marked as private in a previously selected profile is no longer available for
inspection.

Whenever the current user profile is changed then the an event with the GUID
EFI_EVENT_GROUP_USER_PROFILE_CHANGED is signaled.

The function can only be called at TPL_APPLICATION.

Related Definitions
#define EFI_EVENT_GROUP_USER_PROFILE_CHANGED \
 { 0xbaf1e6de, 0x209e, 0x4adb, \
 { 0x8d, 0x96, 0xfd, 0x8b, 0x71, 0xf3, 0xf6, 0x83 } }

Status Codes Returned

EFI_SUCCESS User was successfully identified.

EFI_INVALID_PARAMETER User is NULL.

EFI_ACCESS_DENIED User was not successfully identified.
Version 2.5 April, 2015 2127

Unified Extensible Firmware Interface Specification
EFI_USER_MANAGER_PROTOCOL.Find()

Summary
Find a user using a user information record.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USER_PROFILE_FIND)(
 IN CONST EFI_USER_MANAGER_PROTOCOL *This,
 IN OUT EFI_USER_PROFILE_HANDLE *User,
 IN OUT EFI_USER_INFO_HANDLE *UserInfo OPTIONAL,
 IN CONST EFI_USER_INFO *Info,
 IN UINTN InfoSize
);

Parameters
This

Points to this instance of the EFI_USER_MANAGER_PROTOCOL.

User

On entry, points to the previously returned user profile handle or NULL to start
searching with the first user profile. On return, points to the user profile handle or
NULL if not found.

UserInfo

On entry, points to the previously returned user information handle or NULL to start
searching with the first. On return, points to the user information handle of the user
information record or NULL if not found. Can be NULL, in which case only one user
information record per user can be returned. Type EFI_USER_INFO_HANDLE is
defined in “Related Definitions” below.

Info

Points to the buffer containing the user information to be compared to the user
information record.If the user information record data is empty, then only the user
information record type is compared.

If InfoSize is 0, then the user information record data must be empty.

InfoSize

The size of Info, in bytes.

Description
This function searches all user profiles for the specified user information record. The search starts
with the user information record handle following UserInfo and continues until either the
information is found or there are no more user profiles.
2128 April, 2015 Version 2.5

User Identification
A match occurs when the Info.InfoType field matches the user information record type and the
user information record data matches a portion of Info.

Status Codes Returned

Related Definitions
typedef VOID *EFI_USER_INFO_HANDLE;

EFI_SUCCESS User information was found. User points to the user profile handle and

UserInfo points to the user information handle.

EFI_NOT_FOUND User information was not found. User points to NULL and UserInfo
points to NULL.

EFI_INVALID_PARAMETER User is NULL. Or Info is NULL.
Version 2.5 April, 2015 2129

Unified Extensible Firmware Interface Specification
EFI_USER_MANAGER_PROTOCOL.Notify()

Summary
Called by credential provider to notify of information change.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_USER_PROFILE_NOTIFY)(
 IN CONST EFI_USER_MANAGER_PROTOCOL *This,
 IN EFI_HANDLE Changed
);

Parameters
This

Points to this instance of the EFI_USER_MANAGER_PROTOCOL.

Changed

Handle on which is installed an instance of the
EFI_USER_CREDENTIAL2_PROTOCOL where the user has changed.

Description
This function allows the credential provider to notify the User Identity Manager when user status has
changed.

If the User Identity Manager doesn’t support asynchronous changes in credentials, then this function
should return EFI_UNSUPPORTED.

If current user does not exist, and the credential provider can identify a user, then make the user to be
current user and signal the EFI_EVENT_GROUP_USER_PROFILE_CHANGED event.

If current user already exists, and the credential provider can identify another user, then switch
current user to the newly identified user, and signal the
EFI_EVENT_GROUP_USER_PROFILE_CHANGED event.

If current user was identified by this credential provider and now the credential provider cannot
identify current user, then logout current user and signal the
EFI_EVENT_GROUP_USER_PROFILE_CHANGED event.

Status Codes Returned

EFI_SUCCESS The User Identity Manager has handled the notification.

EFI_NOT_READY The function was called while the specified credential provider was not
selected.

EFI_UNSUPPORTED The User Identity Manager doesn’t support asynchronous notifications.
2130 April, 2015 Version 2.5

User Identification
EFI_USER_MANAGER_PROTOCOL.GetInfo()

Summary
Return information attached to the user.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USER_PROFILE_GET_INFO)(
 IN CONST EFI_USER_MANAGER_PROTOCOL *This,
 IN EFI_USER_PROFILE_HANDLE User,
 IN EFI_USER_INFO_HANDLE UserInfo,
 OUT EFI_USER_INFO *Info,
 IN OUT UINTN *InfoSize
);

Parameters
This

Points to this instance of the EFI_USER_MANAGER_PROTOCOL.

User

Handle of the user whose profile will be retrieved.

UserInfo

Handle of the user information data record. Type EFI_USER_INFO_HANDLE is
defined in GetInfo().

Info

On entry, points to a buffer of at least *InfoSize bytes. On exit, holds the user
information. If the buffer is too small to hold the information, then
EFI_BUFFER_TOO_SMALL is returned and InfoSize is updated to contain the
number of bytes actually required. Type EFI_USER_INFO is described in “Related
Definitions” below.

InfoSize

On entry, points to the size of Info. On return, points to the size of the user
information.

Description
This function returns user information. The format of the information is described in User
Information. The function may return EFI_ACCESS_DENIED if the information is marked private
and the handle specified by User is not the current user profile. The function may return
EFI_ACCESS_DENIED if the information is marked protected and the information is associated
with a credential provider for which the user has not been authenticated.
Version 2.5 April, 2015 2131

Unified Extensible Firmware Interface Specification
Status Codes Returned

Related Definitions
typedef struct {
 EFI_GUID Credential;
 UINT8 InfoType;
 UINT8 Reserved1;
 EFI_USER_INFO_ATTRIBS InfoAttribs;
 UINT32 InfoSize;
} EFI_USER_INFO;

Credential

The user credential identifier associated with this user information or else Nil if the
information is not associated with any specific credential.

InfoType

The type of user information. See EFI_USER_INFO_x_RECORD in User
Information for a description of the different types of user information.

Reserved1

Must be set to 0.

InfoAttribs

The attributes of the user profile information.

InfoSize

The size of the user information, in bytes, including this header.

EFI_SUCCESS Information returned successfully.

EFI_ACCESS_DENIED The information about the specified user cannot be accessed by the
current user.

EFI_BUFFER_TOO_SMALL The number of bytes specified by *InfoSize is too small to hold

the returned data. The actual size required is returned in

*InfoSize.

EFI_NOT_FOUND User does not refer to a valid user profile or UserInfo does not

refer to a valid user info handle.

EFI_INVALID_PARAMETER Info is NULL or InfoSize is NULL
2132 April, 2015 Version 2.5

User Identification
typedef UINT16 EFI_USER_INFO_ATTRIBS;

#define EFI_USER_INFO_STORAGE 0x000F
#define EFI_USER_INFO_STORAGE_VOLATILE 0x0000
#define EFI_USER_INFO_STORAGE_CREDENTIAL_NV 0x0001
#define EFI_USER_INFO_STORAGE_PLATFORM_NV 0x0002

#define EFI_USER_INFO_ACCESS 0x0070
#define EFI_USER_INFO_PUBLIC 0x0010
#define EFI_USER_INFO_PRIVATE 0x0020
#define EFI_USER_INFO_PROTECTED 0x0030
#define EFI_USER_INFO_EXCLUSIVE 0x0080

The EFI_USER_INFO_STORAGE_x values describe how the user information should be stored.
If EFI_USER_INFO_STORAGE_VOLATILE is specified, then the user profile information will be
lost after a reboot. If EFI_USER_INFO_STORAGE_CREDENTIAL_NV is specified, then the
information will be stored by the driver which created the handle Credential. If
USER_INFO_STORAGE_PLATFORM_NV is specified, then the information will be stored by the
User Identity Manager in platform non-volatile storage.

There are three levels of access to information associated with the user profile: public, private or
protected. If EFI_USER_INFO_PUBLIC is specified, then the user profile information is available
always. If EFI_USER_INFO_PRIVATE is specified, then the user profile information is only
available if the user has been authenticated (whether or not they are the current user). If
EFI_USER_INFO_PROTECTED is specified, then the user profile information is only available if
the user has been authenticated and is the current user.

If EFI_USER_INFO_EXCLUSIVE is specified then there can only be one user information record
of this type in the user profile. Attempts to use SetInfo() will fail.
Version 2.5 April, 2015 2133

Unified Extensible Firmware Interface Specification
EFI_USER_MANAGER_PROTOCOL.SetInfo()

Summary
Add or update user information.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USER_PROFILE_SET_INFO) (
 IN CONST EFI_USER_MANAGER_PROTOCOL *This,
 IN EFI_USER_PROFILE_HANDLE User,
 IN OUT EFI_USER_INFO_HANDLE *UserInfo,
 IN CONST EFI_USER_INFO *Info,
 IN UINTN InfoSize
);

Parameters
This

Points to this instance of the EFI_USER_MANAGER_PROTOCOL.

User

Handle of the user whose profile will be changed.

UserInfo

On entry, points to the handle of the user information record to change or NULL if the
user information should be added to the user profile. On exit, points to the handle of
the user credential information record.

Info

Points to the user information. See EFI_USER_INFO for more information.

InfoSize

The size of Info, in bytes.

Description
This function changes user information. If NULL is pointed to by UserInfo, then a new user
information record is created and its handle is returned in UserInfo. Otherwise, the existing one is
replaced.

If EFI_USER_INFO_IDENTITY_POLICY_RECORD is changed, it is the caller's responsibility
to keep it to be synced with the information on credential providers.

If EFI_USER_INFO_EXCLUSIVE is specified in Info and a user information record of the same
type already exists in the user profile, then EFI_ACCESS_DENIED will be returned and
UserInfo will point to the handle of the existing record.

Status Codes Returned

EFI_SUCCESS User profile information was successfully changed/added.
2134 April, 2015 Version 2.5

User Identification
EFI_ACCESS_DENIED The record is exclusive.

EFI_SECURITY_VIOLATION The current user does not have permission to change the specified
user profile or user information record.

EFI_NOT_FOUND User does not refer to a valid user profile or UserInfo does not

refer to a valid user info handle.

EFI_INVALID_PARAMETER Info is NULL or InfoSize is NULL
Version 2.5 April, 2015 2135

Unified Extensible Firmware Interface Specification
EFI_USER_MANAGER_PROTOCOL.DeleteInfo()

Summary
Delete user information.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USER_PROFILE_DELETE_INFO) (
 IN CONST EFI_USER_MANAGER_PROTOCOL *This,
 IN EFI_USER_PROFILE_HANDLE User,
 IN EFI_USER_INFO_HANDLE UserInfo
);

Parameters
This

Points to this instance of the EFI_USER_MANAGER_PROTOCOL.

User

Handle of the user whose information will be deleted.

UserInfo

Handle of the user information to remove.

Description
Delete the user information attached to the user profile specified by the UserInfo.

Status Codes Returned

EFI_SUCCESS User information deleted successfully.

EFI_NOT_FOUND User information record UserInfo does not exist in the user profile.

EFI_ACCESS_DENIED The current user does not have permission to delete this user information.
2136 April, 2015 Version 2.5

User Identification
EFI_USER_MANAGER_PROTOCOL.GetNextInfo()

Summary
Enumerate all of the enrolled users on the platform.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USER_PROFILE_GET_NEXT_INFO)(
 IN CONST EFI_USER_MANAGER_PROTOCOL *This,
 IN EFI_USER_PROFILE_HANDLE User,
 IN OUT EFI_USER_INFO_HANDLE *UserInfo
);

Parameters
This

Points to the instance of this EFI_USER_MANAGER_PROTOCOL.

User

Handle of the user whose information will be enumerated

UserInfo

On entry, points to the previous user information handle or NULL to start enumeration.
On exit, points to the next user information handle or NULL if there is no more user
information.

Description
This function returns the next user information record. To retrieve the first user information record
handle, point UserInfo at a NULL. Each subsequent call will retrieve another user information
record handle until there are no more, at which point UserInfo will point to NULL.

Status Codes Returned

34.3.2 Credential Provider Protocols

EFI_USER_CREDENTIAL2_PROTOCOL

Summary
Provide support for a single class of credentials

EFI_SUCCESS User information returned.

EFI_NOT_FOUND No more user information found.

EFI_INVALID_PARAMETER UserInfo is NULL.
Version 2.5 April, 2015 2137

Unified Extensible Firmware Interface Specification
GUID
#define EFI_USER_CREDENTIAL2_PROTOCOL_GUID \
 { 0xe98adb03, 0xb8b9, 0x4af8, \
 { 0xba, 0x20, 0x26, 0xe9, 0x11, 0x4c, 0xbc, 0xe5 } }

Prototype
typedef struct _EFI_USER_CREDENTIAL2_PROTOCOL {
 EFI_GUID Identifier;
 EFI_GUID Type;
 EFI_CREDENTIAL_ENROLL Enroll;
 EFI_CREDENTIAL_FORM Form;
 EFI_CREDENTIAL_TILE Tile;
 EFI_CREDENTIAL_TITLE Title;
 EFI_CREDENTIAL_USER User;
 EFI_CREDENTIAL_SELECT Select;
 EFI_CREDENTIAL_DESELECT Deselect;
 EFI_CREDENTIAL_DEFAULT Default;
 EFI_CREDENTIAL_GET_INFO GetInfo;
 EFI_CREDENTIAL_GET_NEXT_INFO GetNextInfo;
 EFI_CREDENTIAL_CAPABILITIES Capabilities;
 EFI_CREDENTIAL_DELETE Delete;
} EFI_USER_CREDENTIAL2_PROTOCOL;

Parameters
Identifier

Uniquely identifies this credential provider.

Type

Identifies this class of User Credential Provider. See EFI_CREDENTIAL_CLASS_x
in “Related Definitions” below.

Enroll

Enroll a user using this credential provider.

Form

Return the form set and form identifier for the form.

Tile

Returns an optional bitmap image used to identify this credential provider.

Title

Returns a string used to identify this credential provider.

User

Returns the user profile identifier ascertained by using this credential.

Select

Called when a credential provider is selected.
2138 April, 2015 Version 2.5

User Identification
Deselect

Called when a credential provider is deselected.

Default

Returns whether the credential provider can provide the default credential.

GetInfo

Return user information provided by the credential provider.

GetNextInfo

Cycle through all user information available from the credential provider.

Capabilities

Bitmask which describes the capabilities supported by the credential provider. Type
EFI_CREDENTIAL_CAPABILITIES is defined in “Related Definitions” below.

Delete

Delete a user on this credential provider.

Description
Attached to a device handle, this protocol identifies a single means of identifying the user.

If EFI_CREDENTIAL_CAPABILITIES_ENROLL is specified, then this credential provider
supports the ability to enroll new user identification information using the Enroll() function.
Version 2.5 April, 2015 2139

Unified Extensible Firmware Interface Specification
Related Definitions
#define EFI_USER_CREDENTIAL_CLASS_UNKNOWN \
 { 0x5cf32e68, 0x7660, 0x449b, \
 { 0x80, 0xe6, 0x7e, 0xa3, 0x6e, 0x3, 0xf6, 0xa8 } };

#define EFI_USER_CREDENTIAL_CLASS_PASSWORD \
 { 0xf8e5058c, 0xccb6, 0x4714, \
 { 0xb2, 0x20, 0x3f, 0x7e, 0x3a, 0x64, 0xb, 0xd1 } };

#define EFI_USER_CREDENTIAL_CLASS_SMART_CARD \
 { 0x5f03ba33, 0x8c6b, 0x4c24, \
 { 0xaa, 0x2e, 0x14, 0xa2, 0x65, 0x7b, 0xd4, 0x54 } };

#define EFI_USER_CREDENTIAL_CLASS_FINGERPRINT \
 { 0x32cba21f, 0xf308, 0x4cbc, \
 { 0x9a, 0xb5, 0xf5, 0xa3, 0x69, 0x9f, 0x4, 0x4a } };

#define EFI_USER_CREDENTIAL_CLASS_HANDPRINT \
 { 0x5917ef16, 0xf723, 0x4bb9, \
 { 0xa6, 0x4b, 0xd8, 0xc5, 0x32, 0xf4, 0xd8, 0xb5 } };

#define EFI_USER_CREDENTIAL_CLASS_SECURE_CARD \
 { 0x8a6b4a83, 0x42fe, 0x45d2, \
 { 0xa2, 0xef, 0x46, 0xf0, 0x6c, 0x7d, 0x98, 0x52 } };

typedef UINT64 EFI_CREDENTIAL_CAPABILITIES;

#define EFI_CREDENTIAL_CAPABILITIES_ENROLL
0x0000000000000001
2140 April, 2015 Version 2.5

User Identification
EFI_USER_CREDENTIAL2_PROTOCOL.Enroll()

Summary
Enroll a user on a credential provider.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CREDENTIAL2_ENROLL)(
 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,
 IN EFI_USER_PROFILE_HANDLE User
);

Parameters
This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

User

The user profile to enroll.

Description
This function enrolls a user on this credential provider. If the user exists on this credential provider,
update the user information on this credential provider; otherwise add the user information on
credential provider.

Status Codes Returned

EFI_SUCCESS User profile was successfully enrolled

EFI_ACCESS_DENIED Current user profile does not permit enrollment on the user profile
handle. Either the user profile cannot enroll on any user profile or
cannot enroll on a user profile other than the current user profile.

EFI_UNSUPPORTED This credential provider does not support enrollment in the pre-OS.

EFI_DEVICE_ERROR The new credential could not be created because of a device error.

EFI_INVALID_PARAMETER User does not refer to a valid user profile handle.
Version 2.5 April, 2015 2141

Unified Extensible Firmware Interface Specification
EFI_USER_CREDENTIAL2_PROTOCOL.Form()

Summary
Returns the user interface information used during user identification.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CREDENTIAL_FORM)(
 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,
 OUT EFI_HII_HANDLE *Hii,
 OUT EFI_GUID *FormSetId,
 OUT EFI_FORM_ID *FormId
);

Parameters
This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

Hii

On return, holds the HII database handle. Type EFI_HII_HANDLE is defined in
EFI_HII_DATABASE_PROTOCOL.NewPackageList() in the Packages
section.

FormSetId

On return, holds the identifier of the form set which contains the form used during
user identification.

FormId

On return, holds the identifier of the form used during user identification.

Description
This function returns information about the form used when interacting with the user during user
identification. The form is the first enabled form in the form-set class
EFI_HII_USER_CREDENTIAL_FORMSET_GUID installed on the HII handle HiiHandle. If
the user credential provider does not require a form to identify the user, then this function should
return EFI_NOT_FOUND.

Status Codes Returned

EFI_SUCCESS Form returned successfully.

EFI_NOT_FOUND Form not returned.

EFI_INVALID_PARAMETER Hii is NULL or FormSetId is NULL or FormId is NULL
2142 April, 2015 Version 2.5

User Identification
EFI_USER_CREDENTIAL2_PROTOCOL.Tile()

Summary
Returns bitmap used to describe the credential provider type.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CREDENTIAL_TILE)(
 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,
 IN OUT UINTN *Width,
 IN OUT UINTN *Height,
 OUT EFI_HII_HANDLE *Hii,
 OUT EFI_IMAGE_ID *Image
);

Parameters
This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

Width

On entry, points to the desired bitmap width. If NULL then no bitmap information will
be returned. On exit, points to the width of the bitmap returned.

Height

On entry, points to the desired bitmap height. If NULL then no bitmap information will
be returned. On exit, points to the height of the bitmap returned.

Hii

On return, holds the HII database handle. Type EFI_HII_HANDLE is defined in
EFI_HII_DATABASE_PROTOCOL.NewPackageList() in the Packages
section.

Image

On return, holds the HII image identifier. Type EFI_IMAGE_ID is defined in this
specification, Section 32.3.

Description
This optional function returns a bitmap which is less than or equal to the number of pixels specified
by Width and Height. If no such bitmap exists, then EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS Image identifier returned successfully.

EFI_NOT_FOUND Image identifier not returned.

EFI_INVALID_PARAMETER Hii is NULL or Image is NULL.
Version 2.5 April, 2015 2143

Unified Extensible Firmware Interface Specification
EFI_USER_CREDENTIAL2_PROTOCOL.Title()

Summary
Returns string used to describe the credential provider type.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CREDENTIAL_TITLE)(
 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,
 OUT EFI_HII_HANDLE *Hii,
 OUT EFI_STRING_ID *String
);

Parameters
This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

Hii

On return, holds the HII database handle. TType EFI_HII_HANDLE is defined in
EFI_HII_DATABASE_PROTOCOL.NewPackageList() in the Packages
section.

String

On return, holds the HII string identifier. Type EFI_STRING_ID is defined in
Section 31.3.8.2.1.

Description
This function returns a string which describes the credential provider. If no such string exists, then
EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS String identifier returned successfully.

EFI_NOT_FOUND String identifier not returned.

EFI_INVALID_PARAMETER Hii is NULL or String is NULL.
2144 April, 2015 Version 2.5

User Identification
EFI_USER_CREDENTIAL2_PROTOCOL.User()

Summary
Return the user identifier associated with the currently authenticated user.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CREDENTIAL_USER)(
 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,
 IN EFI_USER_PROFILE_HANDLE User,
 OUT EFI_USER_INFO_IDENTIFIER *Identifier
);

Parameters
This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

User

The user profile handle of the user profile currently being considered by the user
identity manager. If NULL, then no user profile is currently under consideration.

Identifier

On return, points to the user identifier. Type EFI_USER_INFO_IDENTIFIER is
defined in “Related Definitions” below.

Description
This function returns the user identifier of the user authenticated by this credential provider. This
function is called after the credential-related information has been submitted on a form OR after a
call to Default() has returned that this credential is ready to log on.

This function can return one of five possible responses:

• If no user profile can yet be identified, then EFI_NOT_READY is returned.

• If the user has been locked out, then EFI_ACCESS_DENIED is returned.

• If the user specified by User is identified, then Identifier returns with the user identifier
associated with that handle and EFI_SUCCESS is returned.

• If Identifier is NULL, then EFI_INVALID_PARAMETER is returned.

• If specified User does not refer to a valid user profile, then EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS User identifier returned successfully.

EFI_NOT_READY No user identifier can be returned.

EFI_ACCESS_DENIED The user has been locked out of this user credential.
Version 2.5 April, 2015 2145

Unified Extensible Firmware Interface Specification
EFI_NOT_FOUND User is not NULL, and the specified user handle can't be found in

user profile database

EFI_INVALID_PARAMETER Identifier is NULL.
2146 April, 2015 Version 2.5

User Identification
EFI_USER_CREDENTIAL2_PROTOCOL.Select()

Summary
Indicate that user interface interaction has begun for the specified credential.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CREDENTIAL_SELECT)(
 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,
 OUT EFI_CREDENTIAL_LOGON_FLAGS *AutoLogon
);

Parameters
This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

AutoLogon

On return, points to the credential provider’s capabilities after the credential provider
has been selected by the user. Type EFI_CREDENTIAL_LOGON_FLAGS is
defined in “Related Definitions” below.

Description
This function is called when a credential provider is selected by the user. If AutoLogon returns
FALSE, then the user interface will be constructed by the User Identity Manager.

Related Definitions
typedef UINT32 EFI_CREDENTIAL_LOGON_FLAGS;

#define EFI_CREDENTIAL_LOGON_FLAG_AUTO 0x00000001
#define EFI_CREDENTIAL_LOGON_FLAG_DEFAULT 0x00000002

If EFI_CREDENTIAL_LOGON_FLAG_AUTO is set, then the User Identity Manager may use this
as a hint to try logging on immediately. If not set, then the User Identity Manager may use this as an
indication to wait for the user to submit the information.

If EFI_CREDENTIAL_LOGON_FLAG_DEFAULT is set, then the User Identity Manager may use
this as a hint to use this credential provider as the default credential provider. If more than one
credential provider returns with this set, then the selection is implementation specific. If
EFI_CREDENTIAL_LOGON_FLAG_DEFAULT is set and
EFI_CREDENTIAL_LOGON_FLAG_AUTO is set then the User Identity Manager may uses this as
a hint to log the user on immediately.

Status Codes Returned

EFI_SUCCESS Credential provider successfully selected.

EFI_INVALID_PARAMETER AutoLogon is NULL
Version 2.5 April, 2015 2147

Unified Extensible Firmware Interface Specification
EFI_USER_CREDENTIAL2_PROTOCOL.Deselect()

Summary
Indicate that user interface interaction has ended for the specified credential.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CREDENTIAL_DESELECT)(
 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This
);

Parameters
This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

Description
This function is called when a credential provider is deselected by the user.

Status Codes Returned

EFI_SUCCESS Credential provider successfully selected.
2148 April, 2015 Version 2.5

User Identification
EFI_USER_CREDENTIAL2_PROTOCOL.Default()

Summary
Return the default logon behavior for this user credential.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CREDENTIAL_DEFAULT)(
 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,
 OUT EFI_CREDENTIAL_LOGON_FLAGS *AutoLogon
);

Parameters
This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

AutoLogon

On return, holds whether the credential provider should be used by default to
automatically log on the user. Type EFI_CREDENTIAL_LOGON_FLAGS is defined
in EFI_USER_CREDENTIAL2_PROTOCOL.Select().

Description
This function reports the default login behavior regarding this credential provider.

Status Codes Returned

EFI_SUCCESS Default information successfully returned.

EFI_INVALID_PARAMETER AutoLogon is NULL
Version 2.5 April, 2015 2149

Unified Extensible Firmware Interface Specification
EFI_USER_CREDENTIAL2_PROTOCOL.GetInfo()

Summary
Return information attached to the credential provider.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CREDENTIAL_GET_INFO)(
 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,
 IN EFI_USER_INFO_HANDLE UserInfo,
 OUT EFI_USER_INFO *Info,
 IN OUT UINTN *InfoSize
);

Parameters
This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

UserInfo

Handle of the user information data record. Type EFI_USER_INFO_HANDLE is
defined in GetInfo().

Info

On entry, points to a buffer of at least *InfoSize bytes. On exit, holds the user
information. If the buffer is too small to hold the information, then
EFI_BUFFER_TOO_SMALL is returned and InfoSize is updated to contain the
number of bytes actually required. Type EFI_USER_INFO is described in “Related
Definitions” below.

InfoSize

On entry, points to the size of Info. On return, points to the size of the user
information.

Description
This function returns user information.

Status Codes Returned

EFI_SUCCESS Information returned successfully.

EFI_BUFFER_TOO_SMALL The size specified by InfoSize is too small to hold all of the user

information. The size required is returned in *InfoSize.

EFI_NOT_FOUND The specified UserInfo does not refer to a valid user info handle

EFI_INVALID_PARAMETER Info is NULL or InfoSize is NULL
2150 April, 2015 Version 2.5

User Identification
EFI_USER_CREDENTIAL2_PROTOCOL.GetNextInfo()

Summary
Enumerate all of the user information records on the credential provider..

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_USER_CREDENTIAL_GET_NEXT_INFO)(
 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,
 IN OUT EFI_USER_INFO_HANDLE *UserInfo
);

Parameters
This

Points to the instance of this EFI_USER_CREDENTIAL2_PROTOCOL.

UserInfo

On entry, points to the previous user information handle or NULL to start
enumeration. On exit, points to the next user information handle or NULL if there is
no more user information.

Description
This function returns the next user information record. To retrieve the first user information record
handle, point UserInfo at a NULL. Each subsequent call will retrieve another user information
record handle until there are no more, at which point UserInfo will point to NULL.

Status Codes Returned

EFI_SUCCESS User information returned.

EFI_NOT_FOUND No more user information found.

EFI_INVALID_PARAMETER UserInfo is NULL.
Version 2.5 April, 2015 2151

Unified Extensible Firmware Interface Specification
EFI_USER_CREDENTIAL2_PROTOCOL.Delete()

Summary
Delete a user on a credential provider.

Prototype
typedef
EFI_STATUS (EFIAPI *EFI_CREDENTIAL_DELETE)(
 IN CONST EFI_USER_CREDENTIAL2_PROTOCOL *This,
 IN EFI_USER_PROFILE_HANDLE User
);

Parameters
This

Points to this instance of the EFI_USER_CREDENTIAL2_PROTOCOL.

User

The user profile handle to delete.

Description
This function deletes a user on this credential provider.

Status Codes Returned

34.3.3 Deferred Image Load Protocol

EFI_DEFERRED_IMAGE_LOAD_PROTOCOL

Summary
Enumerates images whose load was deferred due to security considerations.

EFI_SUCCESS User profile was successfully deleted .

EFI_ACCESS_DENIED Current user profile does not permit deletion on the user profile handle.
Either the user profile cannot delete on any user profile or cannot delete
on a user profile other than the current user profile.

EFI_UNSUPPORTED This credential provider does not support deletion in the pre-OS.

EFI_DEVICE_ERROR The new credential could not be deleted because of a device error.

EFI_INVALID_PARAMETER User does not refer to a valid user profile handle.
2152 April, 2015 Version 2.5

User Identification
GUID
#define EFI_DEFERRED_IMAGE_LOAD_PROTOCOL_GUID \
 { 0x15853d7c, 0x3ddf, 0x43e0, \
 { 0xa1, 0xcb, 0xeb, 0xf8, 0x5b, 0x8f, 0x87, 0x2c } };

Protocol Interface Structure
typedef struct _EFI_DEFERRED_IMAGE_LOAD_PROTOCOL {
 EFI_DEFERRED_IMAGE_INFO GetImageInfo();
} EFI_DEFERRED_IMAGE_LOAD_PROTOCOL;

Members
GetImageInfo

Return information about a single deferred image. See GetImageInfo() for more
information.

Description
This protocol returns information about images whose load was denied because of security
considerations. This information can be used by the Boot Manager or another agent to reevaluate the
images when the current security profile has been changed, such as when the current user profile
changes. There can be more than one instance of this protocol installed.
Version 2.5 April, 2015 2153

Unified Extensible Firmware Interface Specification
EFI_DEFERRED_IMAGE_LOAD_PROTOCOL.GetImageInfo()

Summary
Returns information about a deferred image.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DEFERRED_IMAGE_INFO)(
 IN EFI_DEFERRED_IMAGE_LOAD_PROTOCOL *This,
 IN UINTN ImageIndex,
 OUT EFI_DEVICE_PATH_PROTOCOL **ImageDevicePath,
 OUT VOID **Image,
 OUT UINTN *ImageSize,
 OUT BOOLEAN *BootOption
);

Parameters
This

Points to this instance of the EFI_DEFERRED_IMAGE_LOAD_PROTOCOL.

ImageIndex

Zero-based index of the deferred index.

ImageDevicePath

On return, points to a pointer to the device path of the image. The device path should
not be freed by the caller.

Image

On return, points to the first byte of the image or NULL if the image is not available.
The image should not be freed by the caller unless LoadImage() has been called
successfully.

ImageSize

On return, the size of the image, or 0 if the image is not available.

BootOption

On return, points to TRUE if the image was intended as a boot option or FALSE if it
was not intended as a boot option.

Description
This function returns information about a single deferred image. The deferred images are numbered
consecutively, starting with 0. If there is no image which corresponds to ImageIndex, then
EFI_NOT_FOUND is returned. , All deferred images may be returned by iteratively calling this
function until EFI_NOT_FOUND is returned.

Image may be NULL and ImageSize set to 0 if the decision to defer execution was made because
of the location of the executable image rather than its actual contents.
2154 April, 2015 Version 2.5

User Identification
Status Codes Returned

34.4 User Information
This section describes the different user information and the format of the data. Each of the
following records is prefixed with the EFI_USER_INFO structure. The format of the record is
determined by the type specified by the InfoType field in the structure, as listed in the table
below:

Table 217. Record values and descriptions

EFI_SUCCESS Image information returned successfully.

EFI_NOT_FOUND ImageIndex does not refer to a valid image.

EFI_INVALID_PARAMETER ImageDevicePath is NULL or Image is NULL or ImageSize

is NULL or BootOption is NULL

Name Value Description

EFI_USER_INFO_EMPTY_RECORD 0x00 No information.

EFI_USER_INFO_NAME_RECORD 0x01 User’s name

EFI_USER_INFO_CREATE_DATE_RECORD 0x02 Date which the user profile
was created.

EFI_USER_INFO_USAGE_DATE_RECORD 0x03 Date which the user profile
was last modified.

EFI_USER_INFO_USAGE_COUNT_RECORD 0x04 Number of times the
credential has been used.

EFI_USER_INFO_IDENTIFIER_RECORD 0x05 User’s unique identifier *

EFI_USER_INFO_CREDENTIAL_TYPE_RECORD 0x06 Credential type.

EFI_USER_INFO_CREDENTIAL_TYPE_NAME_RECORD 0x07 Credential type name.

EFI_USER_INFO_CREDENTIAL_PROVIDER_RECORD 0x08 Credential provider

EFI_USER_INFO_CREDENTIAL_PROVIDER_NAME_RE
CORD

0x09 Credential provider name

EFI_USER_INFO_PKCS11_RECORD 0x0A PKCS11 Data Object

EFI_USER_INFO_CBEFF_RECORD 0x0B ISO 19785 (Common
Biometric Exchange
Formats Framework) Data
Object

EFI_USER_INFO_FAR_RECORD 0x0C How exact a match is
required for biometric
identification, measured in
percentage.

EFI_USER_INFO_RETRY_RECORD 0x0D Number of retries allowed
during verification.

EFI_USER_INFO_ACCESS_POLICY_RECORD 0x0E Access control information.
Version 2.5 April, 2015 2155

Unified Extensible Firmware Interface Specification
34.4.1 EFI_USER_INFO_ACCESS_POLICY_RECORD

Summary
Provides the user’s pre-OS access rights.

Prototype
#define EFI_USER_INFO_ACCESS_POLICY_RECORD 0x0E

typedef EFI_USER_INFO_ACCESS_CONTROL
EFI_USER_INFO_ACCESS_POLICY;

Description
This structure described the access policy for the user. There can be, at most, one access policy
record per credential (including NULL credential). Policy records with a credential specified means
that the policy is associated specifically with the credential.

The policy is detailed in a series of encapsulated records of type
EFI_USER_INFO_ACCESS_CONTROL.

Related Definitions
typedef struct {
 UINT32 Type;
 UINT32 Size;
} EFI_USER_INFO_ACCESS_CONTROL;

Type

Specifies the type of user access control. See EFI_USER_INFO_ACCESS_x for
more information.

Size

Specifies the size of the user access control record, in bytes, including this header.

34.4.1.1 EFI_USER_INFO_ACCESS_FORBID_LOAD

Summary
Forbids the user from booting or loading executables from the specified device path or any child
device paths.

EFI_USER_INFO_IDENTITY_POLICY_RECORD 0x0F User identity expression.

EFI_USER_INFO_GUID_RECORD 0xFF Extended profile
information, qualified by a
GUID in the header.
2156 April, 2015 Version 2.5

User Identification
Prototype
#define EFI_USER_INFO_ACCESS_FORBID_LOAD 0x00000001

Description
This record prohibits the user from loading any executables from zero or device paths or any child
device paths. The device paths may contain a specific executable name, in which case the
prohibition applies to only that executable.

The record is a series of normal UEFI device paths (not multi-instance device paths).

This prohibition is overridden by the EFI_USER_INFO_ACCESS_PERMIT_LOAD record.

34.4.1.2 EFI_USER_INFO_ACCESS_PERMIT_LOAD

Summary
Permits the user from booting or loading executables from the specified device path or any child
device paths.

Prototype
#define EFI_USER_INFO_ACCESS_PERMIT_LOAD 0x00000002

Description
This record allows the user to load executables from locations specified by zero or more device paths
or child paths. The device paths may contain specific executable names, in which case, the
permission applies only to that executable.

The record is a series of normal UEFI device paths (not multi-instance device paths).

This prohibition overrides any restrictions put in place by the
EFI_USER_INFO_ACCESS_FORBID_LOAD record.

34.4.1.3 EFI_USER_INFO_ACCESS_ENROLL_SELF

Summary
Presence of this record indicates that a user can update enrollment information.

Prototype
#define EFI_USER_INFO_ACCESS_ENROLL_SELF 0x00000003

Description
If this record is present, then the pre-OS environment will allow the user to initiate an update of
authentication information for his/her own profile, but not other user information or other user’s
information. This would allow, for example, fingerprint update or password change.

There is no data for this record.
Version 2.5 April, 2015 2157

Unified Extensible Firmware Interface Specification
34.4.1.4 EFI_USER_INFO_ACCESS_ENROLL_OTHERS

Summary
Presence of this record indicates that a user can enroll new users.

Prototype
#define EFI_USER_INFO_ACCESS_ENROLL_OTHERS 0x00000004

Description

If this record is present, then the pre-OS environment will allow the user to initiate enrollment of new user profiles. It does not give
permission to update existing user profiles.

There is no data for this record.

34.4.1.5 EFI_USER_INFO_ACCESS_MANAGE

Summary
Presence of this record indicates that a user can update the user information of any user.

Prototype
#define EFI_USER_INFO_ACCESS_MANAGE 0x00000005

Description
If this record is present, then the pre-OS environment will allow the user to update any information
about his/her own profile or other profiles.

There is no data for this record.

34.4.1.6 EFI_USER_INFO_ACCESS_SETUP

Summary
Describes permissions usable when configuring the platform.

Prototype
#define EFI_USER_INFO_ACCESS_SETUP 0x00000006

Description
This record describes access permission for use in configuring the platform using an UEFI Forms
Processor using zero or more GUIDs. There are three standard values (see below) and any number of
others may be added.

Table 218. Standard values for access to configure the platform

EFI_USER_INFO_ACCESS_SETUP_ADMIN_GUID System administrator only.

EFI_USER_INFO_ACCESS_SETUP_NORMAL_GUID Normal user.
2158 April, 2015 Version 2.5

User Identification
 Related Definitions
#define EFI_USER_INFO_ACCESS_SETUP_ADMIN_GUID \
 { 0x85b75607, 0xf7ce, 0x471e, \
 { 0xb7, 0xe4, 0x2a, 0xea, 0x5f, 0x72, 0x32, 0xee } };

#define EFI_USER_INFO_ACCESS_SETUP_NORMAL_GUID \
 { 0x1db29ae0, 0x9dcb, 0x43bc, \
 { 0x8d, 0x87, 0x5d, 0xa1, 0x49, 0x64, 0xdd, 0xe2 } };

#define EFI_USER_INFO_ACCESS_SETUP_RESTRICTED_GUID \
 { 0xbdb38125, 0x4d63, 0x49f4, \
 { 0x82, 0x12, 0x61, 0xcf, 0x5a, 0x19, 0x0a, 0xf8 } };

34.4.1.7 EFI_USER_INFO_ACCESS_FORBID_CONNECT

Summary
Forbids UEFI drivers from being started from the specified device path(s) or any child device paths.

Prototype
#define EFI_USER_INFO_ACCESS_FORBID_CONNECT 0x00000007

Description
This record prohibits UEFI drivers from being started from the specified device path(s) or any of
their child device path(s). This is enforced in the ConnectController() function.

This record prohibits the user from loading a device driver associated with zero or more device paths
or their child paths.

The record is a series of normal UEFI device paths (not multi-instance device paths).

This prohibition is overridden by the EFI_USER_INFO_ACCESS_PERMIT_CONNECT record.

34.4.1.8 EFI_USER_INFO_ACCESS_PERMIT_CONNECT

Summary
Permits UEFI drivers to be started on the specified device path(s) or any child device paths.

Prototype
#define EFI_USER_INFO_ACCESS_PERMIT_CONNECT 0x00000008

Description
This record allows loading of device drivers associated with zero or more device paths or their child
paths.

EFI_USER_INFO_ACCESS_SETUP_RESTRICTED_
GUID

Restricted user.
Version 2.5 April, 2015 2159

Unified Extensible Firmware Interface Specification
The record is a series of normal UEFI device paths (not multi-instance device paths).

This prohibition overrides any restrictions put in place by the
EFI_USER_INFO_ACCESS_FORBID_CONNECT record.

34.4.1.9 EFI_USER_INFO_ACCESS_BOOT_ORDER

Summary
Modifies the boot order.

Prototype
#define EFI_USER_INFO_ACCESS_BOOT_ORDER 0x00000009

typedef UINT32 EFI_USER_INFO_ACCESS_BOOT_ORDER_HDR;

#define EFI_USER_INFO_ACCESS_BOOT_ORDER_MASK 0x000F
#define EFI_USER_INFO_ACCESS_BOOT_ORDER_INSERT 0x0000
#define EFI_USER_INFO_ACCESS_BOOT_ORDER_APPEND 0x0001
#define EFI_USER_INFO_ACCESS_BOOT_ORDER_REPLACE 0x0002

#define EFI_USER_INFO_ACCESS_BOOT_ORDER_NODEFAULT 0x0010

Description
This exclusive record allows the user profile to insert new boot options at the beginning of the boot
order (EFI_USER_INFO_ACCESS_BOOT_ORDER_INSERT), append new boot options to the
end of the boot order (EFI_USER_INFO_ACCESS_BOOT_ORDER_APPEND) or replace the entire
boot order (EFI_USER_INFO_ACCESS_BOOT_ORDER_REPLACE). If
EFI_USER_INFO_ACCESS_BOOT_ORDER_NODEFAULT is specified then the Boot Manager
will not attempt find a default boot device when the default boot order is does not lead to a bootable
device.

The boot options specified by this record are still subject to the permissions specified by
EFI_USER_INFO_ACCESS_FORBID_LOAD and
EFI_USER_INFO_ACCESS_PERMIT_LOAD.

The record consists of a single EFI_USER_INFO_ACCESS_BOOT_ORDER_HDR followed by
zero or more UEFI device paths.

34.4.2 EFI_USER_INFO_CBEFF_RECORD

Summary
Provides standard biometric information in the format specified by the ISO 19785 (Common
Biometric Exchange Formats Framework) specification.
2160 April, 2015 Version 2.5

User Identification
Prototype
#define EFI_USER_INFO_CBEFF_RECORD 0x0B
typedef VOID *EFI_USER_INFO_CBEFF;

34.4.3 EFI_USER_INFO_CREATE_DATE_RECORD

Summary
Provides the date and time when the user profile was created.

Prototype
#define EFI_USER_INFO_CREATE_DATE_RECORD 0x02
typedef EFI_TIME EFI_USER_INFO_CREATE_DATE;

Description
The optional record describing the date and time when the user profile was created. Type
EFI_TIME is defined in GetTime() in this specification.

34.4.4 EFI_USER_INFO_CREDENTIAL_PROVIDER_RECORD

Summary
Specifies the credential provider.

Prototype
#define EFI_USER_INFO_CREDENTIAL_PROVIDER_RECORD 0x08
typedef EFI_GUID EFI_USER_INFO_CREDENTIAL_PROVIDER;

Description
This record specifies the credential provider via a unique GUID. The credential’s handle is found in
the EFI_USER_INFO structure associated with this user information record.

34.4.5 EFI_USER_INFO_CREDENTIAL_PROVIDER_NAME_RECORD

Summary
Specifies the user-readable name of a particular credential’s provider.

Prototype
#define EFI_USER_INFO_CREDENTIAL_PROVIDER_NAME_RECORD 0x09
typedef CHAR16 *EFI_USER_INFO_CREDENTIAL_PROVIDER_NAME;

Description
This record specifies the null-terminated name of a particular credential provider. The credential’s
handle is found in the EFI_USER_INFO structure associated with this user information record.
Version 2.5 April, 2015 2161

Unified Extensible Firmware Interface Specification
34.4.6 EFI_USER_INFO_CREDENTIAL_TYPE_RECORD

Summary
Specifies the type of a particular credential associated with the user profile.

Prototype
#define EFI_USER_INFO_CREDENTIAL_TYPE_RECORD 0x06
typedef EFI_GUID EFI_USER_INFO_CREDENTIAL_TYPE;

Description
This record specifies the type of a particular credential. The credential’s identifier is found in the
Credential field of the EFI_USER_INFO structure. The credential types are listed with the
EFI_USER_CREDENTIAL2_PROTOCOL.

34.4.7 EFI_USER_INFO_CREDENTIAL_TYPE_NAME_RECORD

Summary
Specifies the user-readable name of a particular credential type.

Prototype
#define EFI_USER_INFO_CREDENTIAL_TYPE_NAME_RECORD 0x07
typedef CHAR16 *EFI_USER_INFO_CREDENTIAL_TYPE_NAME;

Description
This record specifies the null-terminated name of a particular credential type. The credential’ handle
is found in the EFI_USER_INFO structure associated with this user information record

34.4.8 EFI_USER_INFO_GUID_RECORD

Summary
Provides placeholder for additional user profile information identified by a GUID.

Prototype
#define EFI_USER_INFO_GUID_RECORD 0xFF
typedef EFI_GUID EFI_USER_INFO_GUID;

Description
This record type provides extensibility by prefixing further data fields in the record with a GUID
which identifies the format.
2162 April, 2015 Version 2.5

User Identification
34.4.9 EFI_USER_INFO_FAR_RECORD

Summary
Indicates how close of a match the fingerprint must be in order to be considered a match.

Prototype
#define EFI_USER_INFO_FAR_RECORD 0x0C
typedef UINT8 EFI_USER_INFO_FAR;

Description
This record specifies how accurate the fingerprint template match must be in order to be considered
a match, as a percentage from 0 (no match) to 100 (perfect match). The accuracy may be for all
fingerprint sensors (EFI_USER_INFO.Credential is zero) or for a particular fingerprint sensor
(EFI_USER_INFO.Credential is non-zero).

Access:
Exclusive: No

Modify: Only with user-enrollment permissions.

Visibility: Public

34.4.10 EFI_USER_INFO_IDENTIFIER_RECORD

Summary
Provides a unique non-volatile user identifier for each enrolled user.

Prototype
#define EFI_USER_INFO_IDENTIFIER_RECORD 0x05
typedef UINT8 EFI_USER_INFO_IDENTIFIER[16];

Description
The user identifier is unique to each enrolled user and non-volatile. Each user profile must have
exactly one of these user information records installed. The format of the value is not specified.

Access
Exclusive: Yes

Modify: Only with user-enrollment permissions.

Visibility: Public.

34.4.11 EFI_USER_INFO_IDENTITY_POLICY_RECORD

Summary
Provides the expression which determines which credentials are required to assert user identity.
Version 2.5 April, 2015 2163

Unified Extensible Firmware Interface Specification
Prototype
#define EFI_USER_INFO_IDENTITY_POLICY_RECORD 0x0F
typedef struct {
 UINT32 Type;
 UINT32 Length;
} EFI_USER_INFO_IDENTITY_POLICY;

Parameters
Type

Specifies either an operator or a data item. See EFI_USER_INFO_IDENTITY_x in
“Related Definitions” below.

Length

The length of this block, in bytes, including this header.

Description
The user identity policy is an expression made up of operators and data items. If the expression
evaluates to TRUE, then this user profile can be selected as the current profile. If the expression
evaluates to FALSE, then this user profile cannot be selected as the current profile.

Data items are pushed onto an expression stack. Operators pop items off of the expression stack,
perform an operator and push the results back.

Note: If there is no user identity policy set for a user profile, then FALSE is assumed.

Access
Exclusive: Yes

Modify: Only with user-enrollment permissions.

Visibility: Public.

Related Definitions
#define EFI_USER_INFO_IDENTITY_FALSE 0x00
#define EFI_USER_INFO_IDENTITY_TRUE 0x01
#define EFI_USER_INFO_IDENTITY_CREDENTIAL_TYPE 0x02
#define EFI_USER_INFO_IDENTITY_CREDENTIAL_PROVIDER 0x03
#define EFI_USER_INFO_IDENTITY_NOT 0x10
#define EFI_USER_INFO_IDENTITY_AND 0x11
#define EFI_USER_INFO_IDENTITY_OR 0x12

Type Name Description

EFI_USER_INFO_IDENTITY_FALSE Push FALSE on to the expression stack.

EFI_USER_INFO_IDENTITY_TRUE Push TRUE on to the expression stack.
2164 April, 2015 Version 2.5

User Identification
34.4.12 EFI_USER_INFO_NAME_RECORD

Summary
Provide the user’s name for the enrolled user.

Prototype
#define EFI_USER_INFO_NAME_RECORD 0x01
typedef CHAR16 *EFI_USER_INFO_NAME;

Description
The user’s name is a NULL-terminated string.

Access
Exclusive: Yes

Visibility: Public.

34.4.13 EFI_USER_INFO_PKCS11_RECORD

Summary
Provides PKCS#11 credential information from a smart card.

EFI_USER_INFO_IDENTITY_CREDEN-

TIAL_TYPE

If a credential provider with the specified
class asserts the user’s identity, push

TRUE. Otherwise push FALSE. The

EFI_USER_INFO_IDENTITY_PO
LICY structure is followed immediately

by a GUID.

EFI_USER_INFO_IDENTITY_CREDEN-

TIAL_PROVIDER

If a credential provider with the specified
provider identifier asserts the user’s

identity, push TRUE. Otherwise, push

FALSE. The

EFI_USER_INFO_IDENTITY_PO
LICY structure is followed immediately

by a GUID.

EFI_USER_INFO_IDENTITY_NOT Pop a boolean off the stack. If TRUE,

then push FALSE. If FALSE, then push

TRUE.

EFI_USER_INFO_IDENTITY_AND Pop two Booleans off the stack. If both are

TRUE, then push TRUE. Otherwise

push FALSE.

EFI_USER_INFO_IDENTITY_OR Pop two Booleans off the stack. If either is

TRUE, then push TRUE. Otherwise push

FALSE.
Version 2.5 April, 2015 2165

Unified Extensible Firmware Interface Specification
Prototype
#define EFI_USER_INFO_PKCS11_RECORD 0x0A

34.4.14 EFI_USER_INFO_RETRY_RECORD

Summary
Indicates how many attempts the user has to with a particular credential before the system prevents
further attempts.

Prototype
#define EFI_USER_INFO_RETRY_RECORD 0x0D
typedef UINT8 EFI_USER_INFO_RETRY;

Description
This record indicates the number of times the user may fail identification with all credential
providers (EFI_USER_INFO.Credential is zero) or a particular credential provider
(EFI_USER_INFO.Credential is non-zero).

Access:
Exclusive: No

Modify: Only with user-enrollment permissions.

Visibility: Public

34.4.15 EFI_USER_INFO_USAGE_DATE_RECORD

Summary
Provides the date and time when the user profile was selected.

Prototype
#define EFI_USER_INFO_USAGE_DATE_RECORD 0x03
typedef EFI_TIME EFI_USER_INFO_USAGE_DATE;

Description
The optional record describing the date and time when the user profile was last selected. Type
EFI_TIME is defined in GetTime() in this specification.

34.4.16 EFI_USER_INFO_USAGE_COUNT_RECORD

Summary
Provides the number of times that the user profile has been selected.
2166 April, 2015 Version 2.5

User Identification
Prototype
#define EFI_USER_INFO_USAGE_COUNT 0x04
typedef UINT64 EFI_USER_INFO_USAGE_COUNT;

Description
The optional record describing the number of times that the user profile was selected.

34.5 User Information Table

Summary
A collection of EFI_USER_INFO records, prefixed with this header.

Prototype
typedef struct {
 UINT64 Size;
} EFI_USER_INFO_TABLE;

Members
Size

Total size of the user information table, in bytes.

Description
This header is followed by a series of records. Each record is prefixed by the EFI_USER_INFO
structure. The total size of this header and all records is equal to Size.
Version 2.5 April, 2015 2167

Unified Extensible Firmware Interface Specification
2168 April, 2015 Version 2.5

Secure Technologies
35
Secure Technologies

35.1 Hash Overview
For the purposes of this specification, a hash function takes a variable length input and generates a
fixed length hash value. In general, hash functions are collision-resistant, which means that it is
infeasible to find two distinct inputs which produce the same hash value. Hash functions are
generally one-way which means that it is infeasible to find an input based on the output hash value.

This specification describes a protocol which allows a driver to produce a protocol which supports
zero or more hash functions.

35.1.1 Hash References
The following references define the standard means of creating the hashes used in this specification:

Secure Hash Standard (SHS) (FIPS PUB 180-3), National Institute of Standards and Technology
(October 2008).

For more information

• see “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Archived
FIPS publication”.

• see “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “ MD5
Message-Digest Algorithm”. EFI Hash Protocols

EFI_HASH_SERVICE_BINDING_PROTOCOL

Summary
The EFI Hash Service Binding Protocol is used to locate hashing services support provided by a
driver and create and destroy instances of the EFI Hash Protocol so that a multiple drivers can use
the underlying hashing services.

The EFI Service Binding Protocol that is defined in Section 2.5.8 defines the generic Service
Binding Protocol functions. This section discusses the details that are specific to the EFI Hash
Protocol.

GUID
#define EFI_HASH_SERVICE_BINDING_PROTOCOL_GUID \
 {0x42881c98,0xa4f3,0x44b0,\
 {0xa3,0x9d,0xdf,0xa1,0x86,0x67,0xd8,0xcd}}

Description
An application (or driver) that requires hashing services can use one of the protocol handler services,
such as BS->LocateHandleBuffer(), to search for devices that publish an EFI Hash Service
Binding Protocol.
Version 2.5 April, 2015 2169

Unified Extensible Firmware Interface Specification
After a successful call to the
EFI_HASH_SERVICE_BINDING_PROTOCOL.CreateChild()function, the child EFI Hash
Protocol driver instance is ready for use. The instance of EFI_HASH_PROTOCOL must be obtained
by performing HandleProtocol() against the handle returned by CreateChild(). Use of
other methods, such as LocateHandle(), are not supported.

Once obtained, the driver may use the EFI_HASH_PROTOCOL instance for any number of non-
overlapping hash operations. Overlapping hash operations require an additional call to
EFI_HASH_SERVICE_BINDING_PROTOCOL.CreateChild() for a new instance.

Before a driver or application terminates execution, every successful call to the
EFI_HASH_SERVICE_BINDING_PROTOCOL.CreateChild() function must be matched
with a call to the EFI_HASH_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

EFI_HASH_PROTOCOL

Summary
This protocol describes standard hashing functions.

GUID
#define EFI_HASH_PROTOCOL_GUID \
 {0xc5184932,0xdba5,0x46db,\
 {0xa5,0xba,0xcc,0x0b,0xda,0x9c,0x14,0x35}}

Protocol Interface Structure
typedef _EFI_HASH_PROTOCOL {
 EFI_HASH_GET_HASH_SIZE GetHashSize;
 EFI_HASH_HASH Hash;
} EFI_HASH_PROTOCOL;

Parameters
GetHashSize Return the size of a specific type of resulting hash.

Hash Create a hash for the specified message.

Description
This protocol allows creating a hash of an arbitrary message digest using one or more hash
algorithms. The GetHashSize returns the expected size of the hash for a particular algorithm and
whether or not that algorithm is, in fact, supported. The Hash actually creates a hash using the
specified algorithm.

Related Definitions
None.
2170 April, 2015 Version 2.5

Secure Technologies
EFI_HASH_PROTOCOL.GetHashSize()

Summary
Returns the size of the hash which results from a specific algorithm.

Prototype
EFI_STATUS
EFIAPI
GetHashSize(
 IN CONST EFI_HASH_PROTOCOL *This,
 IN CONST EFI_GUID *HashAlgorithm,
 OUT UINTN *HashSize
);

Parameters
This Points to this instance of EFI_HASH_PROTOCOL.

HashAlgorithm Points to the EFI_GUID which identifies the algorithm to use.
See Section 35.1.2.1.

HashSize Holds the returned size of the algorithm’s hash.

Description
This function returns the size of the hash which will be produced by the specified algorithm.

Related Definitions
None

Status Codes Returned

EFI_SUCCESS Hash size returned successfully.

EFI_INVALID_PARAMETER HashSize is NULL or HashAlgorithm is NULL.

EFI_UNSUPPORTED The algorithm specified by HashAlgorithm is not supported by

this driver.
Version 2.5 April, 2015 2171

Unified Extensible Firmware Interface Specification
EFI_HASH_PROTOCOL.Hash()

Summary
Creates a hash for the specified message text.

Prototype
EFI_STATUS
EFIAPI
Hash(
 IN CONST EFI_HASH_PROTOCOL *This,
 IN CONST EFI_GUID *HashAlgorithm,
 IN BOOLEAN Extend,
 IN CONST UINT8 *Message,
 IN UINT64 MessageSize,
 IN OUT EFI_HASH_OUTPUT *Hash
);

Parameters
This Points to this instance of EFI_HASH_PROTOCOL.

HashAlgorithm Points to the EFI_GUID which identifies the algorithm to use.
See Section 35.1.2.1.

Extend Specifies whether to create a new hash (FALSE) or extend the
specified existing hash (TRUE).

Message Points to the start of the message.

MessageSize The size of Message, in bytes. Must be integer multiple of
block size.

Hash On input, if Extend is TRUE, then this parameter holds a pointer
to a pointer to an array containing the hash to extend. If Extend
is FALSE, then this parameter holds a pointer to a pointer to a
caller-allocated array that will receive the result of the hash
computation. On output (regardless of the value of Extend), the
array will contain the result of the hash computation.

Description
This function creates the hash of the specified message text based on the specified algorithm
HashAlgorithm and copies the result to the caller-provided buffer Hash. If Extend is TRUE,
then the hash specified on input by Hash is extended. If Extend is FALSE, then the starting hash
value will be that specified by the algorithm.

Note: For the all algorithms used with EFI_HASH_PROTOCOL, the following apply:

• The EFI_HASH_PROTOCOL.Hash() function does not perform padding of message data
for these algorithms. Hence, MessageSize shall always be an integer multiple of the
HashAlgorithm block size, and the final supplied Message in a sequence of invocations
2172 April, 2015 Version 2.5

Secure Technologies
shall contain caller-provided padding. This will ensure that the final Hash output will be the
correct hash of the provided message(s).

• The result of a Hash() call for one of these algorithms when the caller does not supply
message data whose length is an integer multiple of the algorithm’s block size is a returned
error.

• The EFI_HASH_OUTPUT options for these two algorithms shall be EFI_SHA1_HASH and
EFI_SHA256_HASH, respectively.

• Callers using these algorithms may consult the aforementioned Secure Hash Standard for
details on how to perform proper padding required by standard prior to final invocation.

Related Definitions
EFI_HASH_OUTPUT

Status Codes Returned

35.1.2 Other Code Definitions

EFI_SHA1_HASH, EFI_SHA224_HASH, EFI_SHA256_HASH,
EFI_SHA384_HASH, EFI_SHA512HASH, EFI_MD5_HASH

Summary
Data structure which holds the result of the hash.

EFI_SUCCESS Hash returned successfully.

EFI_INVALID_PARAMETER Message or Hash,HashAlgorithm i s NULL or

MessageSize is 0. MessageSize is not an integer

multiple of block size.

EFI_UNSUPPORTED The algorithm specified by HashAlgorithm is not supported

by this driver. Includes HashAlgorithm being passed as a

null error.

EFI_UNSUPPORTED Extend is TRUE and the algorithm doesn’t support extending the

hash.
Version 2.5 April, 2015 2173

Unified Extensible Firmware Interface Specification
Prototype
typedef UINT8 EFI_MD5_HASH[16];
typedef UINT8 EFI_SHA1_HASH[20];
typedef UINT8 EFI_SHA224_HASH[28];
typedef UINT8 EFI_SHA256_HASH[32];
typedef UINT8 EFI_SHA384_HASH[48];
typedef UINT8 EFI_SHA512_HASH[64];
typedef union _EFI_HASH_OUTPUT {
 EFI_MD5_HASH *Md5Hash;
 EFI_SHA1_HASH *Sha1Hash;
 EFI_SHA224_HASH *Sha224Hash;
 EFI_SHA256_HASH *Sha256Hash;
 EFI_SHA384_HASH *Sha384Hash;
 EFI_SHA512_HASH *Sha512Hash;
 } EFI_HASH_OUTPUT;

Description
These prototypes describe the expected hash output values from the Hash function of the
EFI_HASH_PROTOCOL.

Related Definitions
None

35.1.2.1 EFI Hash Algorithms
The following table gives the EFI_GUID for standard hash algorithms and the corresponding
ASN.1 OID (Object Identifier):

Note: Use of the following algorithms with EFI_HASH_PROTOCOL is deprecated.

• EFI_HASH_ALGORITHM_SHA1_GUID

• EFI_HASH_ALGORITHM_SHA224_GUID

• EFI_HASH_ALGORITHM_SHA256_GUID

• EFI_HASH_ALGORITHM_SHA384_GUID

• EFI_HASH_ALGORITHM_SHA512_GUID

• EFI_HASH_ALGORTIHM_MD5_GUID
2174 April, 2015 Version 2.5

Secure Technologies
Table 219. EFI Hash Algorithms

Note: For the EFI_HASH_ALGORITHM_SHA1_NOPAD_GUID and the
EFI_HASH_ALGORITHM_SHA256_NOPAD_GUID, the following apply:

• The EFI_HASH_PROTOCOL.Hash() function does not perform padding of message data
for these algorithms. Hence, MessageSize shall always be an integer multiple of the
HashAlgorithm block size, and the final supplied Message in a sequence of
invocations shall contain caller-provided padding. This will ensure that the final Hash
output will be the correct hash of the provided message(s).

• The result of a Hash() call for one of these algorithms when the caller does not supply
message data whose length is an integer multiple of the algorithm’s block size is undefined.

• The EFI_HASH_OUTPUT options for these two algorithms shall be EFI_SHA1_HASH and
EFI_SHA256_HASH, respectively.

• Callers using these algorithms may consult the aforementioned Secure Hash Standard for
details on how to perform proper padding.

35.2 Hash2 Protocols

35.2.1 EFI Hash2 Service Binding Protocol

EFI_HASH2_SERVICE_BINDING_PROTOCOL

Summary
The EFI Hash2 Service Binding Protocol is used to locate EFI_HASH2_PROTOCOL hashing
services support provided by a driver and create and destroy instances of the
EFI_HASH2_PROTOCOL Protocol so that a multiple drivers can use the underlying hashing
services.

Algorithm EFI_GUID OID

SHA-1 (No
padding done
by
implementation)

#define
EFI_HASH_ALGORITHM_SHA1_NOPAD
_GUID {0x24c5dc2f, 0x53e2,
0x40ca,
{0x9e, 0xd6, 0xa5, 0xd9,
0xa4, 0x9f, 0x46, 0x3b}}

id-sha1 OBJECT
IDENTIFIER ::= { iso(1)
identified-organization(
3) oiw(14) secsig(3)
algorithms(2) 26 }

SHA-256 (No
padding done
by
implementation)

#define
EFI_HASH_ALGORITHM_SHA256_NOP
AD_GUID {0x8628752a, 0x6cb7,
0x4814,
{0x96, 0xfc, 0x24, 0xa8,
0x15, 0xac, 0x22, 0x26}}

id-sha256 OBJECT
IDENTIFIER ::= { joint-
iso-itu-t (2) country
(16) us (840)
organization (1) gov
(101) csor (3)
nistalgorithm (4)
hashalgs (2) 1}
Version 2.5 April, 2015 2175

Unified Extensible Firmware Interface Specification
The EFI Service Binding Protocol that is defined in Section 2.5.8 defines the generic Service
Binding Protocol functions. This section discusses the details that are specific to the EFI Hash
Protocol.

GUID
#define EFI_HASH2_SERVICE_BINDING_PROTOCOL_GUID \
{0xda836f8d, 0x217f, 0x4ca0, 0x99, 0xc2, 0x1c, \
0xa4, 0xe1, 0x60, 0x77, 0xea}

Description
An application (or driver) that requires hashing services can use one of the protocol handler services,
such as BS->LocateHandleBuffer(), to search for devices that publish an
EFI_HASH2_SERVICE_BINDING_PROTOCOL.

After a successful call to the EFI_HASH2_SERVICE_BINDING_PROTOCOL member
CreateChild()function, the child instance of EFI_HASH2_PROTOCOL Protocol driver
instance is ready for use. The instance of EFI_HASH2_PROTOCOL must be obtained by
performing HandleProtocol() against the handle returned by CreateChild(). Use of
other methods, such as LocateHandle() is not supported.

Once obtained, the driver may use the EFI_HASH2_PROTOCOL instance for any number of non-
overlapping hash operations. Overlapping hash operations require an additional call to
EFI_HASH_SERVICE_BINDING_PROTOCOL.CreateChild()for a new instance.

Before a driver or application using the instance terminates execution, every successful call to the
EFI_HASH_SERVICE_BINDING_PROTOCOL.CreateChild()function must be matched
with a call to the EFI_HASH_SERVICE_BINDING_PROTOCOL.DestroyChild() function.

35.2.2 EFI Hash2 Protocol

EFI_HASH2_PROTOCOL

Summary
This protocol describes hashing functions for which the algorithm-required message padding and
finalization are performed by the supporting driver. In previous versions of the specification, the
algorithms supported by EFI_HASH2_PROTOCOL were also available for use with
EFI_HASH_PROTOCOL but this usage has been deprecated.
2176 April, 2015 Version 2.5

Secure Technologies
GUID
#define EFI_HASH2_PROTOCOL_GUID \
 {
 0x55b1d734, 0xc5e1, 0x49db, 0x96, 0x47, 0xb1, 0x6a, \
 0xfb, 0xe, 0x30, 0x5b}

Protocol Interface Structure
typedef _EFI_HASH2_PROTOCOL {
 EFI_HASH2_GET_HASH_SIZE GetHashSize;
 EFI_HASH2_HASH Hash;
 EFI_HASH2_HASH_INIT HashInit;
 EFI_HASH2_HASH_UPDATE HashUpdate;
 EFI_HASH2_HASH_FINAL HashFinal;
} EFI_HASH2_PROTOCOL;

Parameters
GetHashSize Return the result size of a specific type of resulting hash.

Hash Create a final non-extendable hash for a single message block in a
single call.

HashInit Initializes an extendable multi-part hash calculation

HashUpdate Continues a hash in progress by supplying the first or next
sequential portion of the message text

HashFinal Finalizes a hash in progress by padding as required by algorithm
and returning the hash output.

Description
This protocol allows creating a hash of an arbitrary message digest using one or more hash
algorithms. The GetHashSize() function returns the expected size of the hash for a supported
algorithm and an error if that algorithm is not supported. The Hash() function creates a final, non-
extendable, hash of a single message block using the specified algorithm. The three functions
HashInit(), HashUpdate(), HashFinal(), generates the hash of a multi-part message,
with input composed of one or more message pieces.

For a specific handle representing an instance of EFI_HASH2_PROTOCOL, if Hash() is called
after a call to HashInit() and prior to the matching call to HashFinal(), the multi-part hash
started by HashInit() will be canceled and calls to HashUpdate() or HashFinal() will
return an error status unless proceeded by a new call to HashInit().

Note: Algorithms EFI_HASH_ALGORITHM_SHA1_NOPAD and
EFI_HASH_ALGORITHM_SHA256_NOPAD_GUID are not compatible with
EFI_HASH2_PROTOCOL and will return EFI_UNSUPPORTED if used with any
EFI_HASH2_PROTOCOL function.

Related Definitions
None
Version 2.5 April, 2015 2177

Unified Extensible Firmware Interface Specification
Note: The following hash function invocations will produce identical hash results for all supported
EFI_HASH2_PROTOCOL algorithms. The data in quotes is the message.

Table 220. Identical hash results

Hash(“ABCDEF”) HashInit() HashInit ()

HashUpdate(“ABCDEF”) HashUpdate (“ABC”)

HashFinal() HashUpdate (“DE”)

HashUpdate (“F”)

HashFinal ()
2178 April, 2015 Version 2.5

Secure Technologies
Figure 131. Hash workflow

START

Single
Message
Block?

Hash()

HashInit()

HashUpdate()

HashFinal()

More
Message
Blocks?

RESULT

Single Block Multiple Blocks
Version 2.5 April, 2015 2179

Unified Extensible Firmware Interface Specification
EFI_HASH2_PROTOCOL.GetHashSize()

Summary
Returns the size of the hash which results from a specific algorithm.

Prototype
EFI_STATUS
EFIAPI
GetHashSize(
 IN CONST EFI_HASH2_PROTOCOL *This,
 IN CONST EFI_GUID *HashAlgorithm,
 OUT UINTN *HashSize
);

Parameters
This Points to this instance of EFI_HASH2_PROTOCOL.

HashAlgorithm Points to the EFI_GUID which identifies the algorithm to use.
See Section 35.2.3

HashSize Holds the returned size of the algorithm’s hash.

Description
This function returns the size of the hash result buffer which will be produced by the specified
algorithm.

Related Definitions
None

Status Codes Returned

EFI_SUCCESS Hash size returned successfully.

EFI_INVALID_PARAMETER This or HashSize is NULL

EFI_UNSUPPORTED The algorithm specified by HashAlgorithm is not supported by

this driver or, HashAlgorithm is null.
2180 April, 2015 Version 2.5

Secure Technologies
EFI_HASH2_PROTOCOL.Hash()

Summary
Creates a hash for a single message text. The hash is not extendable. The output is final with any
algorithm-required padding added by the function.

Prototype
EFI_STATUS
EFIAPI
Hash(
 IN CONST EFI_HASH2_PROTOCOL *This,
 IN CONST EFI_GUID *HashAlgorithm,
 IN CONST UINT8 *Message,
 IN UINTN MessageSize,
 IN OUT EFI_HASH2_OUTPUT *Hash
);

Parameters
This Points to this instance of EFI_HASH2_PROTOCOL.

HashAlgorithm Points to the EFI_GUID which identifies the algorithm to use.
See Table 221.

Message Points to the start of the message.

MessageSize The size of Message, in bytes.

Hash On input, points to a caller-allocated buffer of the size returned
by GetHashSize() for the specified HashAlgorithm. On
output, the buffer holds the resulting hash computed from the
message.

Description
This function creates the hash of specified single block message text based on the specified
algorithm HashAlgorithm and copies the result to the caller-provided buffer Hash. The resulting
hash cannot be extended. All padding required by HashAlgorithm is added by the
implementation.

Related Definitions
EFI_HASH2_OUTPUT

Status Codes Returned

EFI_SUCCESS Hash returned successfully.

EFI_INVALID_PARAMETER This, or Hash is NULL..

EFI_UNSUPPORTED The algorithm specified by HashAlgorithm is not supported

by this driver or HashAlgorithm is Null.
Version 2.5 April, 2015 2181

Unified Extensible Firmware Interface Specification
EFI_OUT_OF_RESOURCES Some resource required by the function is not available or

MessageSize is greater than platform maximum.
2182 April, 2015 Version 2.5

Secure Technologies
EFI_HASH2_PROTOCOL.HashInit()

Summary
This function must be called to initialize a digest calculation to be subsequently performed using the
EFI_HASH2_PROTOCOL functions HashUpdate() and HashFinal().

Prototype
EFI_STATUS
EFIAPI
HashInit(
 IN CONST EFI_HASH2_PROTOCOL *This,
 IN CONST EFI_GUID *HashAlgorithm,
);

Parameters

This Points to instance of EFI_HASH2_PROTOCOL.

HashAlgorithm Points to the EFI_GUID which identifies the algorithm to use.
See Table 221

Description

This function

Related Definitions

Status Codes Returned

EFI_SUCCESS Initialized successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_UNSUPPORTED The algorithm specified by HashAlgorithm is not supported

by this function or HashAlgorithm is Null.

EFI_OUT_OF_RESOURCES Process failed due to lack of required resource.

EFI_ALREADY_STARTED This function is called when the operation in progress is still in

processing Hash(), or HashInit() is already called before

and not terminated by HashFinal() yet on the same instance.
Version 2.5 April, 2015 2183

Unified Extensible Firmware Interface Specification
EFI_HASH2_PROTOCOL.HashUpdate()

Summary
Updates the hash of a computation in progress by adding a message text.

Prototype
EFI_STATUS
EFIAPI
HashUpdate(
 IN CONST EFI_HASH2_PROTOCOL *This,
 IN CONST UINT8 *Message,
 IN UINTN MessageSize
);

Parameters
This Points to instance of EFI_HASH2_PROTOCOL.

Message Points to the start of the message.

MessageSize The size of Message, in bytes.

Description
This function extends the hash of ongoing hash operation with the supplied message text. This
function should be called one or more times with portions of the total message text to be hashed.. A
zero-length message input will return EFI_SUCCESS and has no impacts on the ongoing hash
instance.

Related Definitions

Status Codes Returned

EFI_SUCCESS Digest in progress updated successfully.

EFI_INVALID_PARAMETER This or Hash is NULL.

EFI_OUT_OF_RESOURCES Some resource required by the function is not available or

MessageSize is greater than platform maximum.

EFI_NOT_READY This call was not preceded by a valid call to HashInit(), or

the operation in progress was terminated by a call to Hash() or
HashFinal()on the same instance.
2184 April, 2015 Version 2.5

Secure Technologies
EFI_HASH2_PROTOCOL.HashFinal()

Summary
Finalizes a hash operation in progress and returns calculation result. The output is final with any
necessary padding added by the function. The hash may not be further updated or extended after
HashFinal().

Prototype
EFI_STATUS
EFIAPI
HashFinal(
 IN CONST EFI_HASH2_PROTOCOL *This,
 IN OUT EFI_HASH2_OUTPUT *Hash
);

Parameters
This Points to instance of EFI_HASH2_PROTOCOL.

Hash On input, points to a caller-allocated buffer of the size returned
by GetHashSize() for the specified HashAlgorithm
specified in preceding HashInit(). On output, the buffer
holds the resulting hash computed from the message.

Description
This function finalizes the hash of a hash operation in progress. The resulting final hash cannot be
extended.
Version 2.5 April, 2015 2185

Unified Extensible Firmware Interface Specification
Related Definitions
EFI_HASH2_OUTPUT

Status Codes Returned

Table 221. Algorithms that may be used with EFI_HASH2_PROTOCOL

EFI_SUCCESS Hash returned successfully.

EFI_INVALID_PARAMETER This or Hash is NULL

EFI_NOT_READY This call was not preceded by a valid call to HashInit()and at

least one call to HashUpdate(), or the operation in progress

was canceled by a call to Hash()on the same instance.

EFI_GUID OID

SHA-1 #define
EFI_HASH_ALGORITHM_SHA1_GUID
{0x2ae9d80f, 0x3fb2, 0x4095,
{ 0xb7, 0xb1, 0xe9, 0x31,
0x57, 0xb9, 0x46, 0xb6}}

id-sha1 OBJECT
IDENTIFIER ::= { iso(1)
identified-
organization(3) oiw(14)
secsig(3) algorithms(2)
26
}

SHA-224 #define
EFI_HASH_ALGORITHM_SHA224_GUI
D { 0x8df01a06, 0x9bd5,
0x4bf7, { 0xb0, 0x21, 0xdb,
0x4f, 0xd9, 0xcc, 0xf4, 0x5b
} }

SHA-256 #define
EFI_HASH_ALGORITHM_SHA256_GUI
D { 0x51aa59de, 0xfdf2,
0x4ea3, { 0xbc, 0x63, 0x87,
0x5f, 0xb7, 0x84, 0x2e, 0xe9
} }

id-sha256 OBJECT
IDENTIFIER ::= { joint-
iso-itu-t (2)
country (16) us (840)
organization (1) gov
(101)
csor (3) nistalgorithm
(4) hashalgs (2) 1}

SHA-384 #define
EFI_HASH_ALGORITHM_SHA384_GUI
D { 0xefa96432, 0xde33,
0x4dd2, { 0xae, 0xe6, 0x32,
0x8c, 0x33, 0xdf, 0x77, 0x7a
} }

id-sha384 OBJECT
IDENTIFIER ::= { joint-
iso-itu-t (2)
country (16) us (840)
organization (1) gov
(101)
csor (3) nistalgorithm
(4) hashalgs (2) 2}
2186 April, 2015 Version 2.5

Secure Technologies
Note: SHA-1 and MD5 are included for backwards compatibility. New driver implementations are
encouraged to consider stronger algorithms.

35.2.3 Other Code Definitions

EFI_HASH2_OUTPUT

Summary
Data structure which holds the result of the hash operation from EFI_HASH2_PROTOCOL hash
operations.

Prototype
typedef UINT8 EFI_MD5_HASH2[16];
typedef UINT8 EFI_SHA1_HASH2[20];
typedef UINT8 EFI_SHA224_HASH2[28];
typedef UINT8 EFI_SHA256_HASH2[32];
typedef UINT8 EFI_SHA384_HASH2[48];
typedef UINT8 EFI_SHA512_HASH2[64];
typedef union _EFI_HASH2_OUTPUT {
 EFI_MD5_HASH2 Md5Hash;
 EFI_SHA1_HASH2 Sha1Hash;
 EFI_SHA224_HASH2 Sha224Hash;
 EFI_SHA256_HASH2 Sha256Hash;
 EFI_SHA384_HASH2 Sha384Hash;
 EFI_SHA512_HASH2 Sha512Hash;
 } EFI_HASH2_OUTPUT;

SHA-512 #define
EFI_HASH_ALGORITHM_SHA512_GUI
D { 0xcaa4381e, 0x750c,
0x4770, { 0xb8, 0x70, 0x7a,
0x23, 0xb4, 0xe4, 0x21, 0x30
} }

id-sha512 OBJECT
IDENTIFIER ::= { joint-
iso-itu-t (2)
country (16) us (840)
organization (1) gov
(101)
csor (3) nistalgorithm
(4) hashalgs (2) 3}

MD5 #define
EFI_HASH_ALGORTIHM_MD5_GUID {
0xaf7c79c, 0x65b5, 0x4319, {
0xb0, 0xae, 0x44, 0xec, 0x48,
0x4e, 0x4a, 0xd7 } }

id-md5 OBJECT IDENTIFIER
::= {
iso (1) member-body (2)
us (840) rsadsi (113549)
digestAlgorithm (2) 5}

EFI_GUID OID
Version 2.5 April, 2015 2187

Unified Extensible Firmware Interface Specification
Description
These prototypes describe the expected hash output values from the hashing functions of the
EFI_HASH2_PROTOCOL.

Related Definitions
None

35.3 Key Management Service

EFI_KEY_MANAGEMENT_SERVICE_PROTOCOL

Summary
The Key Management Service (KMS) protocol provides services to generate, store, retrieve, and
manage cryptographic keys. The intention is to specify a simple generic protocol that could be used
for many implementations.

The management keys have a simple construct – they consist of key identifier and key data, both of
variable size.

A driver implementing the protocol may need to provide basic key service that consists of a key
store and cryptographic key generation capability. It may connect to an external key server over the
network, or to a Hardware Security Module (HSM) attached to the system it runs on, or anything
else that is capable of providing the key management service.

Authentication and access control is not addressed by this protocol. It is assumed it is addressed at
the system level and done by the driver implementing the protocol, if applicable to the
implementation.

GUID
#define EFI_KMS_PROTOCOL_GUID \
 {0xEC3A978D,0x7C4E, 0x48FA,\
 {0x9A,0xBE,0x6A,0xD9,0x1C,0xC8,0xF8,0x11}}

Protocol Interface Structure
#define EFI_KMS_DATA_TYPE_NONE 0
#define EFI_KMS_DATA_TYPE_BINARY 1
#define EFI_KMS_DATA_TYPE_ASCII 2
#define EFI_KMS_DATA_TYPE_UNICODE 4
#define EFI_KMS_DATA_TYPE_UTF8 8

Where appropriate, EFI_KMS_DATA_TYPE values may be combined using a bitwise ‘OR’
operation to indicate support for multiple data types.
2188 April, 2015 Version 2.5

Secure Technologies
typedef struct _EFI_KMS_SERVICE_PROTOCOL {
 EFI_KMS_GET_SERVICE_STATUS GetServiceStatus;
 EFI_KMS_REGISTER_CLIENT RegisterClient;
 EFI_KMS_CREATE_KEY CreateKey;
 EFI_KMS_GET_KEY GetKey;
 EFI_KMS_ADD_KEY AddKey;
 EFI_KMS_DELETE_KEY DeleteKey;
 EFI_KMS_GET_KEY_ATTRIBUTES GetKeyAttributes;
 EFI_KMS_ADD_KEY_ATTRIBUTES AddKeyAttributes;
 EFI_KMS_DELETE_KEY_ATTRIBUTES DeleteKeyAttributes;
 EFI_KMS_GET_KEY_BY_ATTRIBUTES GetKeyByAttributes;
 UINT32 ProtocolVersion;
 EFI_GUID ServiceId;
 CHAR16 *ServiceName;
 UINT32 ServiceVersion;
 BOOLEAN ServiceAvailable;
 BOOLEAN ClientIdSupported;
 BOOLEAN ClientIdRequired;
 UINT16 ClientIdMaxSize;
 UINT8 ClientNameStringTypes;
 BOOLEAN ClientNameRequired;
 UINT16 ClientNameMaxCount;
 BOOLEAN ClientDataSupported;
 UINTN ClientDataMaxSize;
 BOOLEAN KeyIdVariableLenSupported;
 UINTN KeyIdMaxSize;
 UINTN KeyFormatsCount;
 EFI_GUID *KeyFormats;
 BOOLEAN KeyAttributesSupported;
 UINT8 KeyAttributeIdStringTypes;
 UINT16 KeyAttributeIdMaxCount;
 UINTN KeyAttributesCount;
 EFI_KMS_KEY_ATTRIBUTE *KeyAttributes;
} EFI_KMS_PROTOCOL;

Parameters
GetServiceStatus Get the current status of the key management service. If the

implementation has not yet connected to the KMS, then a call to
this function will initiate a connection. This is the only function
that is valid for use prior to the service being marked available.

RegisterClient Register a specific client with the KMS.

CreateKey Request the generation of a new key and retrieve it.

GetKey Retrieve an existing key.

AddKey Add a local key to the KMS database. If there is an existing key
with this key identifier in the KMS database, it will be replaced
with the new key.
Version 2.5 April, 2015 2189

Unified Extensible Firmware Interface Specification
DeleteKey Delete an existing key from the KMS database.

AddKeyAttributes Add attributes to an existing key in the KMS database.

GetKeyAttributes Get attributes for an existing key in the KMS database.

DeleteKeyAttributesDelete attributes for an existing key in the KMS database.

GetKeyByAttributes Get existing key(s) with the specified attributes.

ProtocolVersion The version of this EFI_KMS_PROTOCOL structure. This must
be set to 0x00020040 for the initial version of this protocol.

ServiceId Optional GUID used to identify a specific KMS. This GUID may
be supplied by the provider, by the implementation, or may be
null. If it is null, then the ServiceName must not be null.

ServiceName Optional pointer to a unicode string which may be used to
identify the KMS or provide other information about the supplier.

ServiceVersion Optional 32-bit value which may be used to indicate the version
of the KMS provided by the supplier.

ServiceAvailable TRUE if and only if the service is active and available for use. To
avoid unnecessary delays in POST, this protocol may be installed
without connecting to the service. In this case, the first call to the
GetServiceStatus() function will cause the
implementation to connect to the supported service and mark it as
available. The capabilities of this service as defined in the
remainder of this protocol are not guaranteed to be valid until the
service has been marked available.
FALSE otherwise.

ClientIdSupported TRUE if and only if the service supports client identifiers. Client
identifiers may be used for auditing, access control or any other
purpose specific to the implementation.
FALSE otherwise.

ClientIdRequired TRUE if and only if the service requires a client identifier in order
to process key requests.
FALSE otherwise.

ClientIdMaxSize The maximum size in bytes for the client identifier.

ClientNameStringTypes

The client name string type(s) supported by the KMS service. If
client names are not supported, this field will be set to
EFI_KMS_DATA_TYPE_NONE. Otherwise, it will be set to the
inclusive ‘OR’ of all client name formats supported. Client
names may be used for auditing, access control or any other
purpose specific to the implementation.

ClientNameRequired TRUE if and only if the KMS service requires a client name to be
supplied to the service.
FALSE otherwise.

ClientNameMaxCount The maximum number of characters allowed for the client name.

ClientDataSupported
2190 April, 2015 Version 2.5

Secure Technologies
TRUE if and only if the service supports arbitrary client data
requests. The use of client data requires the caller to have specific
knowledge of the individual KMS service and should be used
only if absolutely necessary.
FALSE otherwise.

ClientDataMaxSize The maximum size in bytes for the client data. If the maximum
data size is not specified by the KMS or it is not known, then this
field must be filled with all ones.

KeyIdVariableLenSupported

TRUE if variable length key identifiers are supported.
FALSE if a fixed length key identifier is supported.

KeyIdMaxLen If KeyIdVariableLenSupported is TRUE, this is the
maximum supported key identifier length in bytes. Otherwise this
is the fixed length of key identifier supported. Key ids shorter
than the fixed length will be padded on the right with blanks.

KeyFormatsCount The number of key format/size GUIDs returned in the
KeyFormats field.

KeyFormats A pointer to an array of EFI_GUID values which specify key
formats/sizes supported by this KMS. Each format/size pair will
be specified by a separate EFI_GUID. At least one key format/
size must be supported. All formats/sizes with the same hashing
algorithm must be contiguous in the array, and for each hashing
algorithm, the key sizes must be in ascending order. See “Related
Definitions” for GUIDs which identify supported key formats/
sizes.

‘This list of GUIDs supported by the KMS is not required to be
exhaustive, and the KMS may provide support for additional key
formats/sizes. Users may request key information using an
arbitrary GUID, but any GUID not recognized by the
implementation or not supported by the KMS will return an error
code of EFI_UNSUPPORTED.

KeyAttributesSupported

TRUE if key attributes are supported.
FALSE if key attributes are not supported.

KeyAttributeIdStringTypes
The key attribute identifier string type(s) supported by the KMS
service. If key attributes are not supported, this field will be set to
EFI_KMS_DATA_TYPE_NONE. Otherwise, it will be set to the
inclusive ‘OR’ of all key attribute identifier string types
supported. EFI_KMS_DATA_TYPE_BINARY is not valid for
this field.

KeyAttributeIdMaxCount

The maximum number of characters allowed for the client name.

KeyAttributesCount The number of predefined KeyAttributes structures returned
in the KeyAttributes parameter. If the KMS does not
support predefined key attributes, or if it does not provide a
Version 2.5 April, 2015 2191

Unified Extensible Firmware Interface Specification
method to obtain predefined key attributes data, then this field
must be zero.

KeyAttributes A pointer to an array of KeyAttributes structures which
contains the predefined attributes supported by this KMS. Each
structure must contain a valid key attribute identifier and should
provide any other information as appropriate for the attribute,
including a default value if one exists. This variable must be set
to NULL if the KeyAttributesCount variable is zero. It
must point to a valid buffer if the KeyAttributesCount
variable is non-zero.

This list of predefined attributes is not required to be exhaustive,
and the KMS may provide additional predefined attributes not
enumerated in this list. The implementation does not distinguish
between predefined and used defined attributes, and therefore,
predefined attributes not enumerated will still be processed to the
KMS.

Related Definitions
Functions defined for this protocol typically require the caller to provide information about the
client, the keys to be processed, and/or attributes of the keys to be processed. Four structures,
EFI_KMS_CLIENT_INFO, EFI_KMS_KEY_DESCRIPTOR,
EFI_KMS_DYNAMIC_ATTRIBUTE, and EFI_KMS_KEY_ATTRIBUTE define the information to
be passed to these functions.

typedef struct {
 UINT16 ClientIdSize;
 VOID *ClientId;
 UINT8 ClientNameType;
 UINT8 ClientNameCount;
 VOID *ClientName;
} EFI_KMS_CLIENT_INFO;

ClientIdSize The size in bytes for the client identifier.

ClientId Pointer to a valid client identifier.

ClientNameType The client name string type used by this client. The string type
set here must be one of the string types reported in the
ClientNameStringTypes field of the KMS protocol. If
the KMS does not support client names, this field should be set to
EFI_KMS_DATA_TYPE_NONE.

ClientNameCount The size in characters for the client name. This field will be
ignored if ClientNameStringType is set to
EFI_KMS_DATA_TYPE_NONE. Otherwise, it must contain
number of characters contained in the ClientName field.

ClientName Pointer to a client name. This field will be ignored if
ClientNameStringType is set to
EFI_KMS_DATA_TYPE_NONE. Otherwise, it must point to a
valid string of the specified type.
2192 April, 2015 Version 2.5

Secure Technologies
The key formats recognized by the KMS protocol are defined by an EFI_GUID which specifies a
(key-algorithm, key-size) pair. The names of these GUIDs are in the format
EFI_KMS_KEY_(key-algorithm)_(key-size)_GUID, where the key-size is expressed in
bits. The key formats recognized fall into three categories, generic (no algorithm), hash algorithms,
and encrypted algorithms.

Generic Key Data:
The following GUIDs define formats that contain generic key data of a specific size in bits, but
which is not associated with any specific key algorithm(s).

#define EFI_KMS_FORMAT_GENERIC_128_GUID \
 {0xec8a3d69,0x6ddf,0x4108,\
 {0x94,0x76,0x73,0x37,0xfc,0x52,0x21,0x36}}

#define EFI_KMS_FORMAT_GENERIC_160_GUID \
 {0xa3b3e6f8,0xefca,0x4bc1,\
 {0x88,0xfb,0xcb,0x87,0x33,0x9b,0x25,0x79}}

#define EFI_KMS_FORMAT_GENERIC_256_GUID \
 {0x70f64793,0xc323,0x4261,\
 {0xac,0x2c,0xd8,0x76,0xf2,0x7c,0x53,0x45}}

#define EFI_KMS_FORMAT_GENERIC_512_GUID \
 {0x978fe043,0xd7af,0x422e,\
 {0x8a,0x92,0x2b,0x48,0xe4,0x63,0xbd,0xe6}}

#define EFI_KMS_FORMAT_GENERIC_1024_GUID \
 {0x43be0b44,0x874b,0x4ead,\
 {0xb0,0x9c,0x24,0x1a,0x4f,0xbd,0x7e,0xb3}}

#define EFI_KMS_FORMAT_GENERIC_2048_GUID \
 {0x40093f23,0x630c,0x4626,\
 {0x9c,0x48,0x40,0x37,0x3b,0x19,0xcb,0xbe}}

#define EFI_KMS_FORMAT_GENERIC_3072_GUID \
 {0xb9237513,0x6c44,0x4411,\
 {0xa9,0x90,0x21,0xe5,0x56,0xe0,0x5a,0xde}}

Hash Algorithm Key Data:
These GUIDS define key data formats that contain data generated by basic hash algorithms with no
cryptographic properties.
Version 2.5 April, 2015 2193

Unified Extensible Firmware Interface Specification
#define EFI_KMS_FORMAT_MD2_128_GUID \
 {0x78be11c4,0xee44,0x4a22,\
 {0x9f,0x05,0x03,0x85,0x2e,0xc5,0xc9,0x78}}

#define EFI_KMS_FORMAT_MDC2_128_GUID \
 {0xf7ad60f8,0xefa8,0x44a3,\
 {0x91,0x13,0x23,0x1f,0x39,0x9e,0xb4,0xc7}}

#define EFI_KMS_FORMAT_MD4_128_GUID \
 {0xd1c17aa1,0xcac5,0x400f,0xbe,\
 {0x17,0xe2,0xa2,0xae,0x06,0x67,0x7c}}

#define EFI_KMS_FORMAT_MDC4_128_GUID \
 {0x3fa4f847,0xd8eb,0x4df4,\
 {0xbd,0x49,0x10,0x3a,0x0a,0x84,0x7b,0xbc}}

#define EFI_KMS_FORMAT_MD5_128_GUID \
 {0xdcbc3662,0x9cda,0x4b52,\
 {0xa0,0x4c,0x82,0xeb,0x1d,0x23,0x48,0xc7}}

#define EFI_KMS_FORMAT_MD5SHA_128_GUID \
 {0x1c178237,0x6897,0x459e,\
 {0x9d,0x36,0x67,0xce,0x8e,0xf9,0x4f,0x76}}

#define EFI_KMS_FORMAT_SHA1_160_GUID \
 {0x453c5e5a,0x482d,0x43f0,\
 {0x87,0xc9,0x59,0x41,0xf3,0xa3,0x8a,0xc2}}

#define EFI_KMS_FORMAT_SHA256_256_GUID \
 {0x6bb4f5cd,0x8022,0x448d,\
 {0xbc,0x6d,0x77,0x1b,0xae,0x93,0x5f,0xc6}}

#define EFI_KMS_FORMAT_SHA512 512_GUID \
 {0x2f240e12,0xe14d,0x475c,\
 {0x83,0xb0,0xef,0xff,0x22,0xd7,0x7b,0xe7}}

Encryption Algorithm Key Data:
These GUIDs define key data formats that contain data generated by cryptographic key algorithms.
There may or may not be a separate data hashing algorithm associated with the key algorithm.
2194 April, 2015 Version 2.5

Secure Technologies
#define EFI_KMS_FORMAT_AESXTS_128_GUID \
 {0x4776e33f,0xdb47,0x479a,\
 {0xa2,0x5f,0xa1,0xcd,0x0a,0xfa,0xb3,0x8b}}

#define EFI_KMS_FORMAT_AESXTS_256_GUID \
 {0xdc7e8613,0xc4bb,0x4db0,\
 {0x84,0x62,0x13,0x51,0x13,0x57,0xab,0xe2}}

#define EFI_KMS_FORMAT_AESCBC_128_GUID \
 {0xa0e8ee6a,0x0e92,0x44d4,\
 {0x86,0x1b,0x0e,0xaa,0x4a,0xca,0x44,0xa2}}

#define EFI_KMS_FORMAT_AESCBC_256_GUID \
 {0xd7e69789,0x1f68,0x45e8,\
 {0x96,0xef,0x3b,0x64,0x07,0xa5,0xb2,0xdc}}

#define EFI_KMS_FORMAT_RSASHA1_1024_GUID \
 {0x56417bed,0x6bbe,0x4882,\
 {0x86,0xa0,0x3a,0xe8,0xbb,0x17,0xf8,0xf9}}

#define EFI_KMS_FORMAT_RSASHA1_2048_GUID \
 {0xf66447d4,0x75a6,0x463e,\
 {0xa8,0x19,0x07,0x7f,0x2d,0xda,0x05,0xe9}}

#define EFI_KMS_FORMAT_RSASHA256_2048_GUID \
 {0xa477af13,0x877d,0x4060,
 {0xba,0xa1,0x25,0xd1,0xbe,0xa0,0x8a,0xd3}}

#define EFI_KMS_FORMAT_RSASHA256_3072_GUID \
 {0x4e1356c2,0xeed,0x463f,\
 {0x81,0x47,0x99,0x33,0xab 0xdb,0xc7,0xd5}}

The encryption algorithms defined above have the following properties

Table 222. Encryption algorithm properties.

EFI_KMS_FORMAT Encryption Description Key Data Size Hash
Function

AESXTS_128 Symmetric encryption using
XTS-AES 128 bit keys

Key data is a concatenation of two
fields of equal size for a total size of
256 bits

N/A

AESXTS_256 Symmetric encryption using
block cipher XTS-AES 256
bit keys

Key data is a concatenation of two
fields of equal size for a total size of
512 bits

N/A

AESCBC_128 Symmetric encryption using
block cipher AES-CBC 128
bit keys

128 bits N/A
Version 2.5 April, 2015 2195

Unified Extensible Firmware Interface Specification
typedef struct {
 UINT8 KeyIdentifierSize;
 VOID *KeyIdentifier;
 EFI_GUID KeyFormat;
 VOID *KeyValue;
 EFI_STATUS KeyStatus;
} EFI_KMS_KEY_DESCRIPTOR;

KeyIdentifierSize The size of the KeyIdentifier field in bytes. This field is
limited to the range 0 to 255.

KeyIdentifier Pointer to an array of KeyIdentifierType elements.

KeyFormat An EFI_GUID which specifies the algorithm and key value size
for this key.

KeyValue Pointer to a key value for a key specified by the KeyFormat
field. A NULL value for this field indicates that no key is
available.

KeyStatus Specifies the results of KMS operations performed with this
descriptor. This field is used to indicate the status of individual
operations when a KMS function is called with multiple
EFI_KMS_KEY_DESCRIPTOR structures. KeyStatus codes
returned for the individual key requests are:

AESCBC_256 Symmetric encryption using
block cipher AES-CBC 256
bit keys

256 bits N/A

RSASHA1_1024 Asymmetric encryption using
block cipher RSA 1024 bit
keys

1024 bits SHA1

RSASHA1_2048 Asymmetric encryption using
block cipher RSA 2048 bit
keys

2048 bits SHA1

RSASHA256_2048 Asymmetric encryption using
block cipher RSA 2048 bit
keys

2048 bits SHA256

RSASHA256_3072 Asymmetric encryption using
block cipher RSA 3072 bit
keys

3072 bits SHA256
2196 April, 2015 Version 2.5

Secure Technologies
Status Codes Returned

#define EFI_KMS_ATTRIBUTE_TYPE_NONE 0x00
#define EFI_KMS_ATTRIBUTE_TYPE_INTEGER 0x01
#define EFI_KMS_ATTRIBUTE_TYPE_LONG_INTEGER 0x02
#define EFI_KMS_ATTRIBUTE_TYPE_BIG_INTEGER 0x03
#define EFI_KMS_ATTRIBUTE_TYPE_ENUMERATION 0x04
#define EFI_KMS_ATTRIBUTE_TYPE_BOOLEAN 0x05
#define EFI_KMS_ATTRIBUTE_TYPE_BYTE_STRING 0x06
#define EFI_KMS_ATTRIBUTE_TYPE_TEXT_STRING 0x07
#define EFI_KMS_ATTRIBUTE_TYPE_DATE_TIME 0x08
#define EFI_KMS_ATTRIBUTE_TYPE_INTERVAL 0x09
#define EFI_KMS_ATTRIBUTE_TYPE_STRUCTURE 0x0A
#define EFI_KMS_ATTRIBUTE_TYPE_DYNAMIC 0x0B

typedef struct {
 UINT32 FieldCount;
 EFI_KMS_DYNAMIC_FIELD Field[1];
} EFI_KMS_DYNAMIC_ATTRIBUTE;

FieldCount The number of members in the
EFI_KMS_DYNAMIC_ATTRIBUTE structure.

Field An array of EFI_KMS_DYNAMIC_FIELD structures.

EFI_SUCCESS Successfully processed this key.

EFI_WARN_STALE_DATA Successfully processed this key, however, the key’s parameters
exceed internal policies/limits and should be replaced.

EFI_COMPROMISED_DATA Successfully processed this key, but the key may have been
compromised and must be replaced.

EFI_UNSUPPORTED Key format is not supported by the service.

EFI_OUT_OF_RESOURCES Could not allocate resources for the key processing.

EFI_TIMEOUT Timed out waiting for device or key server.

EFI_DEVICE_ERROR Device or key server error.

EFI_INVALID_PARAMETER KeyFormat is invalid.

EFI_NOT_FOUND The key does not exist on the KMS.
Version 2.5 April, 2015 2197

Unified Extensible Firmware Interface Specification
typedef struct {
 UINT16 Tag;
 UINT16 Type;
 UINT32 Length;
 UINT8 KeyAttributeData[1];
} EFI_KMS_DYNAMIC_FIELD;

Tag Part of a tag-type-length triplet that identifies the
KeyAttributeData formatting. The definition of the value is
outside the scope of this standard and may be defined by the
KMS.

Type Part of a tag-type-length triplet that identifies the
KeyAttributeData formatting. The definition of the value is
outside the scope of this standard and may be defined by the
KMS.

Length Length in bytes of the KeyAttributeData.

KeyAttributeData An array of bytes to hold the attribute data associated with the
KeyAttributeIdentifier.

typedef struct {
 UINT8 KeyAttributeIdentifierType;
 UINT8 KeyAttributeIdentifierCount;
 VOID *KeyAttributeIdentifier;
 UINT16 KeyAttributeInstance;
 UINT16 KeyAttributeType;
 UINT16 KeyAttributeValueSize;
 VOID *KeyAttributeValue;
 EFI_STATUS KeyAttributeStatus;
} EFI_KMS_KEY_ATTRIBUTE;

KeyAttributeIdentifierType
The data type used for the KeyAttributeIdentifier field.
Values for this field are defined by the EFI_KMS_DATA_TYPE
constants, except that EFI_KMS_DATA_TYPE_BINARY is not
valid for this field.

KeyAttributeIdentifierCount
The length of the KeyAttributeIdentifier field in units
defined by KeyAttributeIdentifierType field. This
field is limited to the range 0 to 255.

KeyAttributeIdentifier
Pointer to an array of KeyAttributeIdentifierType
elements. For string types, there must not be a null-termination
element at the end of the array.

KeyAttributeInstanceThe instance number of this attribute. If there is only one
instance, the value is set to one. If this value is set to 0xFFFF (all
2198 April, 2015 Version 2.5

Secure Technologies
binary 1’s) then this field should be ignored if an output or treated
as a wild card matching any value if it is an input. If the attribute
is stored with this field, it will match any attribute request
regardless of the setting of the field in the request. If set to
0xFFFF in the request, it will match any attribute with the same
KeyAttributeIdentifier.

KeyAttributeType The data type of the KeyAttributeValue (e.g. struct, bool,
etc.). See the list of KeyAttributeType definitions.

KeyAttributeValueSize

The size in bytes of the KeyAttribute field. A value of zero
for this field indicates that no key attribute value is available.

KeyAttributeValue Pointer to a key attribute value for the attribute specified by the
KeyAttributeIdentifier field. If the
KeyAttributeValueSize field is zero, then this field must
be NULL.

KeyAttributeStatus Specifies the results of KMS operations performed with this
attribute. This field is used to indicate the status of individual
operations when a KMS function is called with multiple
EFI_KMS_KEY_ATTRIBUTE structures. KeyAttributeStatus
codes returned for the individual key attribute requests are:

Status Codes Returned

Description
The EFI_KMS_SERVICE_PROTOCOL defines a UEFI protocol that can be used by UEFI drivers
and applications to access cryptographic keys associated with their operation that are stored and
possibly managed by a remote key management service (KMS). For example, a storage device
driver may require a set of one or more keys to enable access to regions on the storage devices that it
manages.

The protocol can be used to request the generation of new keys from the KMS, to register locally
generated keys with the KMS, to retrieve existing keys from the KMS, and to delete obsolete keys

EFI_SUCCESS Successfully processed this request.

EFI_WARN_STALE_DATA Successfully processed this request, however, the key’s
parameters exceed internal policies/limits and should be
replaced.

EFI_COMPROMISED_DATA Successfully processed this request, but the key may have been
compromised and must be replaced.

EFI_UNSUPPORTED Key attribute format is not supported by the service.

EFI_OUT_OF_RESOURCES Could not allocate resources for the request processing.

EFI_TIMEOUT Timed out waiting for device or key server.

EFI_DEVICE_ERROR Device or key server error.

EFI_INVALID_PARAMETER A field in the EFI_KMS_KEY_ATTRIBUTE structure is

invalid.

EFI_NOT_FOUND The key attribute does not exist on the KMS.
Version 2.5 April, 2015 2199

Unified Extensible Firmware Interface Specification
from the KMS. It also allows the device driver to manage attributes associated with individual keys
on the KMS, and to retrieve keys based on those attributes.

A platform implementing this protocol may use internal or external key servers to provide the
functionality required by this protocol. For external servers, the protocol implementation is
expected to supply and maintain the connection parameters required to connect and authenticate to
the remote server. The connection may be made during the initial installation of the protocol, or it
may be delayed until the first GetServiceStatus() request is received.

Each client using the KMS protocol may identify itself to the protocol implementation using a
EFI_KMS_CLIENT_INFO structure. If the KMS supported by this protocol requires the client to
provide a client identifier, then this structure must be provided on all function calls.

While this protocol is intended to abstract the functions associated with storing and managing keys
so that the protocol user does not have to be aware of the specific KMS providing the service, it can
also be used by callers which must interact directly with a specific KMS. For these users, the
protocol manages the connection to the KMS while the user controls the operational interface via a
client data pass thru function.

The EFI_KMS_SERVICE_PROTOCOL provides the capability for the caller to pass arbitrary data
to the KMS or to receive such data back from the KMS via parameters on most functions. The use
of such data is at the discretion of the caller, but it should only be used sparingly as it reduces the
interoperability of the caller’s software.
2200 April, 2015 Version 2.5

Secure Technologies
EFI_KMS_PROTOCOL.GetServiceStatus()

Summary
Get the current status of the key management service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_KMS_GET_SERVICE_STATUS) (
 IN EFI_KMS_PROTOCOL *This
);

Parameters
This Pointer to the

EFI_KEY_MANAGEMENT_SERVICE_PROTOCOL instance.

Description
The GetServiceStatus() function allows the user to query the current status of the KMS and
should be called before attempting any operations to the KMS. If the protocol has not been marked
as available, then the user must call this function to attempt to initiate the connection to the KMS as
it may have been deferred to the first user by the system firmware.

If the connection to the KMS has not yet been established by the system firmware, then this function
will attempt to establish the connection, update the protocol structure content as appropriate, and
mark the service as available.

Status Codes Returned

EFI_SUCCESS The KMS is ready for use.

EFI_NOT_READY No connection to the KMS is available.

EFI_NO_MAPPING No valid connection configuration exists for the KMS.

EFI_NO_RESPONSE No response was received from the KMS.

EFI_DEVICE_ERROR An error occurred when attempting to access the KMS.

EFI_INVALID_PARAMETER This is NULL.
Version 2.5 April, 2015 2201

Unified Extensible Firmware Interface Specification
EFI_KMS_PROTOCOL.RegisterClient()

Summary
Register client information with the supported KMS.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_KMS_REGISTER_CLIENT) (
 IN EFI_KMS_PROTOCOL *This,
 IN EFI_KMS_CLIENT_INFO *Client,
 IN OUT UINTN *ClientDataSize OPTIONAL,
 IN OUT VOID **ClientData OPTIONAL
);

Parameters
This Pointer to the

EFI_KEY_MANAGEMENT_SERVICE_PROTOCOL instance.

Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.

ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data specified
by the ClientData parameter. This parameter may be NULL,
in which case the ClientData parameter will be ignored and
no data will be transferred to or from the KMS. If the parameter
is not NULL, then ClientData must be a valid pointer. If the
value pointed to is 0, no data will be transferred to the KMS, but
data may be returned by the KMS. For all non-zero values
*ClientData will be transferred to the KMS, which may also
return data to the caller. In all cases, the value upon return to the
caller will be the size of the data block returned to the caller,
which will be zero if no data is returned from the KMS.

ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if
it supports the use of client data. This parameter may be NULL if
and only if the ClientDataSize parameter is also NULL.
Upon return to the caller, *ClientData points to a block of
data of *ClientDataSize that was returned from the KMS.
If the returned value for *ClientDataSize is zero, then the
returned value for *ClientData must be NULL and should be
ignored by the caller. The KMS protocol consumer is responsible
for freeing all valid buffers used for client data regardless of
whether they are allocated by the caller for input to the function
or by the implementation for output back to the caller.

Description
The RegisterClient() function registers client information with the KMS using a
EFI_KMS_CLIENT_INFO structure.
2202 April, 2015 Version 2.5

Secure Technologies
There are two methods of handling client information. The caller may supply a client identifier in
the EFI_KMS_CLIENT_INFO structure prior to making the call along with an optional name
string. The client identifier will be passed on to the KMS if it supports client identifiers. If the KMS
accepts the client id, then the EFI_KMS_CLIENT_INFO structure will be returned to the caller
unchanged. If the KMS does not accept the client id, it may simply reject the request, or it may
supply an alternate identifier of its own,

The caller may also request a client identifier from the KMS by passing NULL values in the
EFI_KMS_CLIENT_INFO structure. If the KMS supports this action, it will generate the identifier
and return it in the structure. Otherwise, the implementation may generate a unique identifier,
returning it in the structure, or it may indicate that the function is unsupported.

The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block
of data to/from the KMS for uses such as auditing or access control. The KMS protocol
implementation does not alter this data block other than to package it for transmission to the KMS.
The use of these parameters is optional.

Status Codes Returned

EFI_SUCCESS The client information has been accepted by the KMS.

EFI_NOT_READY No connection to the KMS is available.

EFI_NO_RESPONSE There was no response from the device or the key server.

EFI_ACCESS_DENIED Access was denied by the device or the key server.

EFI_DEVICE_ERROR An error occurred when attempting to access the KMS.

EFI_OUT_OF_RESOURCES Required resources were not available to perform the function.

EFI_INVALID_PARAMETER This is NULL.

EFI_UNSUPPORTED The KMS does not support the use of client identifiers.
Version 2.5 April, 2015 2203

Unified Extensible Firmware Interface Specification
EFI_KMS_PROTOCOL.CreateKey()

Summary
Request that the KMS generate one or more new keys and associate them with key identifiers. The
key value(s) is returned to the caller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_KMS_CREATE_KEY) (
 IN EFI_KMS_PROTOCOL *This,
 IN EFI_KMS_CLIENT_INFO *Client,
 IN OUT UINT16 *KeyDescriptorCount,
 IN OUT EFI_KMS_KEY_DESCRIPTOR *KeyDescriptors,
 IN OUT UINTN *ClientDataSize OPTIONAL,
 IN OUT VOID **ClientData OPTIONAL
);

Parameters
This Pointer to this EFI_KMS_PROTOCOL instance.

Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.

KeyDescriptorCount Pointer to a count of the number of key descriptors to be
processed by this operation. On return, this number will be
updated with the number of key descriptors successfully
processed.

KeyDescriptors Pointer to an array of EFI_KMS_KEY_DESCRIPTOR structures
which describe the keys to be generated.

On input, the KeyIdentifierSize and the
KeyIdentifier may specify an identifier to be used for the
key, but this is not required. The KeyFormat field must specify
a key format GUID reported as supported by the KeyFormats
field of the EFI_KMS_PROTOCOL. The value for this field in
the first key descriptor will be considered the default value for
subsequent key descriptors requested in this operation if those
key descriptors have a NULL GUID in the key format field.

On output, the KeyIdentifierSize and KeyIdentifier
fields will specify an identifier for the key which will be either
the original identifier if one was provided, or an identifier
generated either by the KMS or the KMS protocol
implementation. The KeyFormat field will be updated with
the GUID used to generate the key if it was a NULL GUID, and
the KeyValue field will contain a pointer to memory containing
the key value for the generated key. Memory for both the
KeyIdentifier and the KeyValue fields will be allocated
with the BOOT_SERVICES_DATA type and must be freed by the
2204 April, 2015 Version 2.5

Secure Technologies
caller when it is no longer needed. Also, the KeyStatus field
must reflect the result of the request relative to that key.

ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data specified
by the ClientData parameter. This parameter may be NULL,
in which case the ClientData parameter will be ignored and
no data will be transferred to or from the KMS. If the parameter
is not NULL, then ClientData must be a valid pointer. If the
value pointed to is 0, no data will be transferred to the KMS, but
data may be returned by the KMS. For all non-zero values
*ClientData will be transferred to the KMS, which may also
return data to the caller. In all cases, the value upon return to the
caller will be the size of the data block returned to the caller,
which will be zero if no data is returned from the KMS.

ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if
it supports the use of client data. This parameter may be NULL if
and only if the ClientDataSize parameter is also NULL.
Upon return to the caller, *ClientData points to a block of
data of *ClientDataSize that was returned from the KMS.
If the returned value for *ClientDataSize is zero, then the
returned value for *ClientData must be NULL and should be
ignored by the caller. The KMS protocol consumer is responsible
for freeing all valid buffers used for client data regardless of
whether they are allocated by the caller for input to the function
or by the implementation for output back to the caller.

Description

The CreateKey() method requests the generation of one or more new keys, and key identifier
and key values are returned to the caller. The support of this function is optional as some key servers
do not provide a key generation capability.

The Client parameter identifies the caller to the key management service. This identifier may be
used for auditing or access control. This parameter is optional unless the KMS requires a client
identifier in order to perform the requested action.

The KeyDescriptorCount and KeyDescriptors parameters are used to specify the key
algorithm, size, and attributes for the requested keys. Any number of keys may be requested in a
single operation, regardless of whether the KMS supports multiple key definitions in a single request
or not. The KMS protocol implementation is responsible for generating the appropriate requests
(single/multiple) to the KMS.

The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block
of data to/from the KMS for uses such as auditing or access control. The KMS protocol
implementation does not alter this data block other than to package it for transmission to the KMS.
The use of these parameters is optional.
Version 2.5 April, 2015 2205

Unified Extensible Firmware Interface Specification
Status Codes Returned

The CreateKey() function will return a status which indicates the overall status of the request.
Note that this may be different from the status reported for individual key requests.

EFI_SUCCESS Successfully generated and retrieved all requested keys.

EFI_UNSUPPORTED This function is not supported by the KMS.
 --OR--
One (or more) of the key requests submitted is not supported by
the KMS. Check individual key request(s) to see which ones
may have been processed.

EFI_OUT_OF_RESOURCES Required resources were not available for the operation.

EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
request(s) to see which ones may have been processed.

EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a

ClientId is required by the server and either no id was

provided or an invalid id was provided

EFI_DEVICE_ERROR An error occurred when attempting to access the KMS. Check
individual key request(s) to see which ones may have been
processed.

EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
KeyDescriptorCount is NULL, or Keys is NULL

EFI_NOT_FOUND One or more EFI_KMS_KEY_DESCRIPTOR structures

could not be processed properly. KeyDescriptorCount

contains the number of structures which were successfully
processed. Individual structures will reflect the status of the
processing for that structure.
2206 April, 2015 Version 2.5

Secure Technologies
EFI_KMS_PROTOCOL.GetKey()

Summary
Retrieve an existing key.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_KMS_GET_KEY) (
 IN EFI_KMS_PROTOCOL *This,
 IN EFI_KMS_CLIENT_INFO *Client,
 IN OUT UINT16 *KeyDescriptorCount,
 IN OUT EFI_KMS_KEY_DESCRIPTOR *KeyDescriptors,
 IN OUT UINTN *ClientDataSize OPTIONAL,
 IN OUT VOID **ClientData OPTIONAL
);

Parameters
This Pointer to this EFI_KMS_PROTOCOL instance.

Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.

KeyDescriptorCount Pointer to a count of the number of keys to be processed by this
operation. On return, this number will be updated with number of
keys successfully processed.

KeyDescriptors Pointer to an array of EFI_KMS_KEY_DESCRIPTOR structures
which describe the keys to be retrieved from the KMS. On input,
the KeyIdentifierSize and the KeyIdentifier must
specify an identifier to be used to retrieve a specific key. All
other fields in the descriptor should be NULL. On output, the
KeyIdentifierSize and KeyIdentifier fields will be
unchanged, while the KeyFormat and KeyValue fields will
be updated values associated with this key identifier. Memory
for the KeyValue field will be allocated with the
BOOT_SERVICES_DATA type and must be freed by the caller
when it is no longer needed. Also, the KeyStatus field will
reflect the result of the request relative to the individual key
descriptor.

ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data specified
by the ClientData parameter. This parameter may be NULL,
in which case the ClientData parameter will be ignored and
no data will be transferred to or from the KMS. If the parameter
is not NULL, then ClientData must be a valid pointer. If the
value pointed to is 0, no data will be transferred to the KMS, but
data may be returned by the KMS. For all non-zero values
*ClientData will be transferred to the KMS, which may also
return data to the caller. In all cases, the value upon return to the
caller will be the size of the data block returned to the caller,
which will be zero if no data is returned from the KMS.
Version 2.5 April, 2015 2207

Unified Extensible Firmware Interface Specification
ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if
it supports the use of client data. This parameter may be NULL if
and only if the ClientDataSize parameter is also NULL.
Upon return to the caller, *ClientData points to a block of
data of *ClientDataSize that was returned from the KMS.
If the returned value for *ClientDataSize is zero, then the
returned value for *ClientData must be NULL and should
be ignored by the caller. The KMS protocol consumer is
responsible for freeing all valid buffers used for client data
regardless of whether they are allocated by the caller for input to
the function or by the implementation for output back to the
caller.

Description
The GetKey() function retrieves one or more existing keys from the KMS and returns the key
values to the caller. This function must be supported by every KMS protocol instance.

The Client parameter identifies the caller to the key management service. It may be used for
auditing or access control. The use of this parameter is optional unless the KMS requires it in order
to perform the requested action.

The KeyDescriptorCount and KeyDescriptors parameters are used to specify the
identifier(s) to be used to retrieve the key values, which will be returned in the KeyFormat and
KeyValue fields of each EFI_KMS_KEY_DESCRIPTOR structure. Any number of keys may be
requested in a single operation, regardless of whether the KMS supports multiple key definitions in a
single request or not. The KMS protocol implementation is responsible for generating the
appropriate requests (single/multiple) to the KMS.

The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block
of data to/from the KMS for uses such as auditing or access control. The KMS protocol
implementation does not alter this data block other than to package it for transmission to the KMS.
The use of these parameters is optional.

Status Codes Returned
The GetKey() function will return a status which indicates the overall status of the request. Note
that this may be different from the status reported for individual key requests.

EFI_SUCCESS Successfully retrieved all requested keys.

EFI_OUT_OF_RESOURCES Could not allocate resources for the method processing.

EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
request(s) to see which ones may have been processed.

EFI_BUFFER_TOO_SMALL If multiple keys are associated with a single identifier, and the

KeyValue buffer does not contain enough structures

(KeyDescriptorCount) to contain all the key data, then

the available structures will be filled and

KeyDescriptorCount will be updated to indicate the

number of keys which could not be processed.
2208 April, 2015 Version 2.5

Secure Technologies
EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a

ClientId is required by the server and either none or an

invalid id was provided

EFI_DEVICE_ERROR Device or key server error. Check individual key request(s) to
see which ones may have been processed.

EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
KeyDescriptorCount is NULL, or Keys is NULL

EFI_NOT_FOUND One or more EFI_KMS_KEY_DESCRIPTOR structures

could not be processed properly. KeyDescriptorCount

contains the number of structures which were successfully
processed. Individual structures will reflect the status of the
processing for that structure.

EFI_UNSUPPORTED The implementation/KMS does not support this function
Version 2.5 April, 2015 2209

Unified Extensible Firmware Interface Specification
EFI_KMS_PROTOCOL.AddKey()

Summary
Add a new key.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_KMS_ADD_KEY) (
 IN EFI_KMS_PROTOCOL *This,
 IN EFI_KMS_CLIENT_INFO *Client,
 IN OUT UINT16 *KeyDescriptorCount,
 IN OUT EFI_KMS_KEY_DESCRIPTOR *KeyDescriptors,
 IN OUT UINTN *ClientDataSize OPTIONAL,
 IN OUT VOID **ClientData OPTIONAL
);

Parameters
This Pointer to this EFI_KMS_PROTOCOL instance.

Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.

KeyDescriptorCount Pointer to a count of the number of keys to be processed by this
operation. On normal returns, this number will be updated with
number of keys successfully processed.

KeyDescriptors Pointer to an array of EFI_KMS_KEY_DESCRIPTOR structures
which describe the keys to be added. On input, the KeyId field
for first key must contain valid identifier data to be used for
adding a key to the KMS. The values for these fields in this key
definition will be considered default values for subsequent keys
requested in this operation. A value of 0 in any subsequent
KeyId field will be replaced with the current default value. The
KeyFormat and KeyValue fields for each key to be added
must contain consistent values to be associated with the given
KeyId. On return, the KeyStatus field will reflect the result
of the operation for each key request.

ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data specified
by the ClientData parameter. This parameter may be NULL,
in which case the ClientData parameter will be ignored and
no data will be transferred to or from the KMS. If the parameter
is not NULL, then ClientData must be a valid pointer. If the
value pointed to is 0, no data will be transferred to the KMS, but
data may be returned by the KMS. For all non-zero values
*ClientData will be transferred to the KMS, which may also
return data to the caller. In all cases, the value upon return to the
caller will be the size of the data block returned to the caller,
which will be zero if no data is returned from the KMS.
2210 April, 2015 Version 2.5

Secure Technologies
ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if
it supports the use of client data. This parameter may be NULL if
and only if the ClientDataSize parameter is also NULL.
Upon return to the caller, *ClientData points to a block of
data of *ClientDataSize that was returned from the KMS.
If the returned value for *ClientDataSize is zero, then the
returned value for *ClientData must be NULL and should be
ignored by the caller. The KMS protocol consumer is responsible
for freeing all valid buffers used for client data regardless of
whether they are allocated by the caller for input to the function
or by the implementation for output back to the caller.

Description
The AddKey() function registers a new key with the key management service. The support for
this method is optional, as not all key servers support importing keys from clients.

The Client parameter identifies the caller to the key management service. It may be used for
auditing or access control. The use of this parameter is optional unless the KMS requires it in order
to perform the requested action.

The KeyDescriptorCount and KeyDescriptors parameters are used to specify the key
identifier, key format and key data to be registered on the. Any number of keys may be registered in
a single operation, regardless of whether the KMS supports multiple key definitions in a single
request or not. The KMS protocol implementation is responsible for generating the appropriate
requests (single/multiple) to the KMS.

The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block
of data to/from the KMS for uses such as auditing or access control. The KMS protocol
implementation does not alter this data block other than to package it for transmission to the KMS.
The use of these parameters is optional.

Status Codes Returned
The AddKey() function will return a status which indicates the overall status of the request. Note
that this may be different from the status reported for individual key requests.

EFI_SUCCESS Successfully added all requested keys.

EFI_OUT_OF_RESOURCES Could not allocate required resources.

EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
request(s) to see which ones may have been processed.

EFI_BUFFER_TOO_SMALL If multiple keys are associated with a single identifier, and the

KeyValue buffer does not contain enough structures

(KeyDescriptorCount) to contain all the key data, then

the available structures will be filled and

KeyDescriptorCount will be updated to indicate the

number of keys which could not be processed.

EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a

ClientId is required by the server and either none or an

invalid id was provided
Version 2.5 April, 2015 2211

Unified Extensible Firmware Interface Specification
EFI_DEVICE_ERROR Device or key server error. Check individual key request(s) to
see which ones may have been processed.

EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
KeyDescriptorCount is NULL, or Keys is NULL

EFI_NOT_FOUND One or more EFI_KMS_KEY_DESCRIPTOR structures

could not be processed properly. KeyDescriptorCount

contains the number of structures which were successfully
processed. Individual structures will reflect the status of the
processing for that structure.

EFI_UNSUPPORTED The implementation/KMS does not support this function
2212 April, 2015 Version 2.5

Secure Technologies
EFI_KMS_PROTOCOL.DeleteKey()

Summary
Delete an existing key from the KMS database.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_KMS_DELETE_KEY) (
 IN EFI_KMS_PROTOCOL *This,
 IN EFI_KMS_CLIENT_INFO *Client,
 IN OUT UINT16 *KeyDescriptorCount,
 IN OUT EFI_KMS_KEY_DESCRIPTOR *KeyDescriptors,
 IN OUT UINTN *ClientDataSize OPTIONAL,
 IN OUT VOID **ClientData OPTIONAL
);

Parameters
This Pointer to this EFI_KMS_PROTOCOL instance.

Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.

KeyDescriptorCount Pointer to a count of the number of keys to be processed by this
operation. On normal returns, this number will be updated with
number of keys successfully processed.

KeyDescriptors Pointer to an array of EFI_KMS_KEY_DESCRIPTOR structures
which describe the keys to be deleted. On input, the KeyId
field for first key must contain valid identifier data to be used for
adding a key to the KMS. The values for these fields in this key
definition will be considered default values for subsequent keys
requested in this operation. A value of 0 in any subsequent
KeyId field will be replaced with the current default value. The
KeyFormat and KeyValue fields are ignored, but should be
0. On return, the KeyStatus field will reflect the result of the
operation for each key request.

ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data specified
by the ClientData parameter. This parameter may be NULL,
in which case the ClientData parameter will be ignored and
no data will be transferred to or from the KMS. If the parameter
is not NULL, then ClientData must be a valid pointer. If the
value pointed to is 0, no data will be transferred to the KMS, but
data may be returned by the KMS. For all non-zero values
*ClientData will be transferred to the KMS, which may also
return data to the caller. In all cases, the value upon return to the
caller will be the size of the data block returned to the caller,
which will be zero if no data is returned from the KMS.

ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if
it supports the use of client data. This parameter may be NULL if
Version 2.5 April, 2015 2213

Unified Extensible Firmware Interface Specification
and only if the ClientDataSize parameter is also NULL.
Upon return to the caller, *ClientData points to a block of
data of *ClientDataSize that was returned from the KMS.
If the returned value for *ClientDataSize is zero, then the
returned value for *ClientData must be NULL and should be
ignored by the caller. The KMS protocol consumer is responsible
for freeing all valid buffers used for client data regardless of
whether they are allocated by the caller for input to the function
or by the implementation for output back to the caller.

Description
The DeleteKey() function deregisters an existing key from the device or KMS. The support for
this method is optional, as not all key servers support deleting keys from clients.

The Client parameter identifies the caller to the key management service. It may be used for
auditing or access control. The use of this parameter is optional unless the KMS requires it in order
to perform the requested action.

The KeyDescriptorCount and KeyDescriptors parameters are used to specify the key
identifier(s) for the keys to be deleted. Any number of keys may be deleted in a single operation,
regardless of whether the KMS supports multiple key definitions in a single request or not. The
KMS protocol implementation is responsible for generating the appropriate requests (single/
multiple) to the KMS.

The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block
of data to/from the KMS for uses such as auditing or access control. The KMS protocol
implementation does not alter this data block other than to package it for transmission to the KMS.
The use of these parameters is optional.

Status Codes Returned
The DeleteKey() function will return a status which indicates the overall status of the request.
Note that this may be different from the status reported for individual key requests.

EFI_SUCCESS Successfully deleted all requested keys.

EFI_OUT_OF_RESOURCES Could not allocate required resources.

EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
request(s) to see which ones may have been processed.

EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a

ClientId is required by the server and either none or an

invalid id was provided

EFI_DEVICE_ERROR Device or key server error. Check individual key request(s) to
see which ones may have been processed.

EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
KeyDescriptorCount is NULL, or Keys is NULL
2214 April, 2015 Version 2.5

Secure Technologies
EFI_NOT_FOUND One or more EFI_KMS_KEY_DESCRIPTOR structures

could not be processed properly. KeyDescriptorCount

contains the number of structures which were successfully
processed. Individual structures will reflect the status of the
processing for that structure.

EFI_UNSUPPORTED The implementation/KMS does not support this function
Version 2.5 April, 2015 2215

Unified Extensible Firmware Interface Specification
EFI_KMS_PROTOCOL.GetKeyAttributes()

Summary
Get one or more attributes associated with a specified key identifier. If none are found, the returned
attributes count contains a value of zero.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_KMS_GET_KEY_ATTRIBUTES) (
 IN EFI_KMS_PROTOCOL *This,
 IN EFI_KMS_CLIENT_INFO *Client,
 IN UINT8 *KeyIdentifierSize,
 IN CONST VOID *KeyIdentifier,
 IN OUT UINT16 *KeyAttributesCount,
 IN OUT EFI_KMS_KEY_ATTRIBUTE *KeyAttributes,
 IN OUT UINTN *ClientDataSize OPTIONAL,
 IN OUT VOID **ClientData OPTIONAL
);

Parameters
This Pointer to this EFI_KMS_PROTOCOL instance.

Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.

KeyIdentifierSize Pointer to the size in bytes of the KeyIdentifier variable.

KeyIdentifier Pointer to the key identifier associated with this key.

KeyAttributesCount Pointer to the number of EFI_KMS_KEY_ATTRIBUTE
structures associated with the Key identifier. If none are found,
the count value is zero on return. On input this value reflects the
number of KeyAttributes that may be returned. On output,
the value reflects the number of completed KeyAttributes
structures found.

KeyAttributes Pointer to an array of EFI_KMS_KEY_ATTRIBUTE structures
associated with the Key Identifier. On input, the fields in the
structure should be NULL. On output, the attribute fields will
have updated values for attributes associated with this key
identifier.

ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data specified
by the ClientData parameter. This parameter may be NULL,
in which case the ClientData parameter will be ignored and
no data will be transferred to or from the KMS. If the parameter
is not NULL, then ClientData must be a valid pointer. If the
value pointed to is 0, no data will be transferred to the KMS, but
data may be returned by the KMS. For all non-zero values
*ClientData will be transferred to the KMS, which may also
return data to the caller. In all cases, the value upon return to the
2216 April, 2015 Version 2.5

Secure Technologies
caller will be the size of the data block returned to the caller,
which will be zero if no data is returned from the KMS.

ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if
it supports the use of client data. This parameter may be NULL if
and only if the ClientDataSize parameter is also NULL.
Upon return to the caller, *ClientData points to a block of
data of *ClientDataSize that was returned from the KMS.
If the returned value for *ClientDataSize is zero, then the
returned value for *ClientData must be NULL and should be
ignored by the caller. The KMS protocol consumer is responsible
for freeing all valid buffers used for client data regardless of
whether they are allocated by the caller for input to the function
or by the implementation for output back to the caller.

Description
The GetKeyAttributes() function returns one or more attributes for a key.

The ClientIdentifierSize and ClientIdentifier parameters identify the caller to the
key management service. It may be used for auditing or access control. The use of this parameter is
optional unless the KMS requires it in order to perform the requested action.

The KeyIdentifierSize and KeyIdentifier parameters identify the key whose
attributes are to be returned by the key management service. They may be used to retrieve additional
information about a key, whose format is defined by the KeyAttribute. Attributes returned may
be of the same or different names.

The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block
of data to/from the KMS for uses such as auditing or access control. The KMS protocol
implementation does not alter this data block other than to package it for transmission to the KMS.
The use of these parameters is optional unless the KMS requires it in order to perform the requested
action.

Status Codes Returned
The GetKeyAttributes() function will return a status which indicates the overall status of
the request. Note that this may be different from the status reported for individual key attribute
requests.

EFI_SUCCESS Successfully retrieved all key attributes.

EFI_OUT_OF_RESOURCES Could not allocate resources for the method processing.

EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
attribute request(s) to see which ones may have been
processed.

EFI_BUFFER_TOO_SMALL If multiple key attributes are associated with a single identifier,

and the KeyAttributes buffer does not contain enough

structures (KeyAttributesCount) to contain all the key

attributes data, then the available structures will be filled and

KeyAttributesCount will be updated to indicate the

number of key attributes which could not be processed.
Version 2.5 April, 2015 2217

Unified Extensible Firmware Interface Specification
EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a

ClientId is required by the server and either none or an

invalid id was provided

EFI_DEVICE_ERROR Device or key server error. Check individual key attribute
request(s) (i.e., key attribute status for each) to see which ones
may have been processed.

EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,

KeyIdentifierSize is NULL , or KeyIdentifier

is NULL, or KeyAttributes is NULL, or

KeyAttributesSize is NULL.

EFI_NOT_FOUND The KeyIdentifier could not be found.

KeyAttributesCount contains zero. Individual

structures will reflect the status of the processing for that
structure.

EFI_UNSUPPORTED The implementation/KMS does not support this function
2218 April, 2015 Version 2.5

Secure Technologies
EFI_KMS_PROTOCOL.AddKeyAttributes()

Summary
Add one or more attributes to a key specified by a key identifier.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_KMS_ADD_KEY_ATTRIBUTES) (
 IN EFI_KMS_PROTOCOL *This,
 IN EFI_KMS_CLIENT_INFO *Client,
 IN UINT *KeyIdentifierSize,
 IN CONST VOID *KeyIdentifier,
 IN OUT UINT16 *KeyAttributesCount,
 IN OUT EFI_KMS_KEY_ATTRIBUTE *KeyAttributes,
 IN OUT UINTN *ClientDataSize OPTIONAL,
 IN OUT VOID **ClientData OPTIONAL
);

Parameters
This Pointer to this EFI_KMS_PROTOCOL instance.

Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.

KeyIdentifierSize Pointer to the size in bytes of the KeyIdentifier variable.

KeyIdentifier Pointer to the key identifier associated with this key.

KeyAttributesCount Pointer to the number of EFI_KMS_KEY_ATTRIBUTE
structures to associate with the Key. On normal returns, this
number will be updated with the number of key attributes
successfully processed.

KeyAttributes Pointer to an array of EFI_KMS_KEY_ATTRIBUTE structures
providing the attribute information to associate with the key. On
input, the values for the fields in the structure are completely
filled in. On return the KeyAttributeStatus field will
reflect the result of the operation for each key attribute request.

ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data specified
by the ClientData parameter. This parameter may be NULL,
in which case the ClientData parameter will be ignored and
no data will be transferred to or from the KMS. If the parameter
is not NULL, then ClientData must be a valid pointer. If the
value pointed to is 0, no data will be transferred to the KMS, but
data may be returned by the KMS. For all non-zero values
*ClientData will be transferred to the KMS, which may also
return data to the caller. In all cases, the value upon return to the
caller will be the size of the data block returned to the caller,
which will be zero if no data is returned from the KMS.

ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if
Version 2.5 April, 2015 2219

Unified Extensible Firmware Interface Specification
it supports the use of client data. This parameter may be NULL if
and only if the ClientDataSize parameter is also NULL.
Upon return to the caller, *ClientData points to a block of
data of *ClientDataSize that was returned from the KMS.
If the returned value for *ClientDataSize is zero, then the
returned value for *ClientData must be NULL and should be
ignored by the caller. The KMS protocol consumer is responsible
for freeing all valid buffers used for client data regardless of
whether they are allocated by the caller for input to the function
or by the implementation for output back to the caller.

Description
The AddKeyAttributes() function adds one or more key attributes. If this function is not
supported by a KMS protocol instance then it is assumed that there is an alternative means available
for attribute management in the KMS.

The Client parameters identify the caller to the key management service. It may be used for
auditing or access control. The use of this parameter is optional unless the KMS requires it in order
to perform the requested action.

The KeyIdentifierSize and KeyIdentifier parameters identify the key whose
attributes are to be modified by the key management service

The KeyAttributesCount and KeyAttributes parameters are used to specify the key
attributes data to be registered on the KMS. Any number of attributes may be registered in a single
operation, regardless of whether the KMS supports multiple key attribute definitions in a single
request or not. The KMS protocol implementation is responsible for generating the appropriate
requests (single/multiple) to the KMS. In certain error situations, the status of each attribute is
updated indicating if that attribute was successfully registered or not.

The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block
of data to/from the KMS for uses such as auditing or access control. The KMS protocol
implementation does not alter this data block other than to package it for transmission to the KMS.
The use of these parameters is optional unless the KMS requires it in order to perform the requested
action.

Status Codes Returned
The AddKeyAttributes() function will return a status which indicates the overall status of the
request. Note that this may be different from the status reported for individual key attribute requests.
Status codes returned for AddKeyAttributes()are:

EFI_SUCCESS Successfully added all requested key attributes.

EFI_OUT_OF_RESOURCES Could not allocate required resources.

EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
attribute request(s) to see which ones may have been
processed.
2220 April, 2015 Version 2.5

Secure Technologies
EFI_BUFFER_TOO_SMALL If multiple keys attributes are associated with a single key

identifier, and the attributes buffer does not contain

enough structures (KeyAttributesCount) to contain all

the data, then the available structures will be filled and

KeyAttributesCount will be updated to indicate the

number of key attributes which could not be processed. The
status of each key attribute is also updated indicating success or
failure for that attribute in case there are other errors for those
attributes that could be processed.

EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a

ClientId is required by the server and either none or an

invalid id was provided

EFI_DEVICE_ERROR Device or key server error. Check individual key attribute
request(s) (i.e., key attribute status for each) to see which ones
may have been processed.

EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,

KeyAttributesCount is NULL, or KeyAttributes

is NULL, or KeyIdentifierSize is NULL, or

KeyIdentifer is NULL.

EFI_NOT_FOUND The KeyIdentifier could not be found. On return the

KeyAttributesCount contains the number of attributes

processed. Individual structures will reflect the status of the
processing for that structure.

EFI_UNSUPPORTED The implementation/KMS does not support this function
Version 2.5 April, 2015 2221

Unified Extensible Firmware Interface Specification
EFI_KMS_PROTOCOL.DeleteKeyAttributes()

Summary
Delete attributes to a key specified by a key identifier.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_KMS_DELETE_KEY_ATTRIBUTES) (
 IN EFI_KMS_PROTOCOL *This,
 IN EFI_KMS_CLIENT_INFO *Client,
 IN UINT8 *KeyIdentifierSize,
 IN CONST VOID *KeyIdentifier,
 IN OUT UINT16 *KeyAttributesCount,
 IN OUT EFI_KMS_KEY_ATTRIBUTE *KeyAttributes,
 IN OUT UINTN *ClientDataSize OPTIONAL,
 IN OUT VOI **ClientData OPTIONAL
);

Parameters
This Pointer to this EFI_KMS_PROTOCOL instance.

Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.

KeyIdentifierSize Pointer to the size in bytes of the KeyIdentifier variable.

KeyIdentifier Pointer to the key identifier associated with this key.

KeyAttributesCount Pointer to the number of EFI_KMS_KEY_ATTRIBUTE
structures associated with the Key. On input, the count value is
one or more. On normal returns, this number will be updated with
the number of key attributes successfully processed.

KeyAttributes Pointer to an array of EFI_KMS_KEY_ATTRIBUTE structures
associated with the key. On input, the values for the fields in the
structure are completely filled in. On return the
KeyAttributeStatus field will reflect the result of the
operation for each key attribute request.

ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data specified
by the ClientData parameter. This parameter may be NULL,
in which case the ClientData parameter will be ignored and
no data will be transferred to or from the KMS. If the parameter
is not NULL, then ClientData must be a valid pointer. If the
value pointed to is 0, no data will be transferred to the KMS, but
data may be returned by the KMS. For all non-zero values
*ClientData will be transferred to the KMS, which may also
return data to the caller. In all cases, the value upon return to the
caller will be the size of the data block returned to the caller,
which will be zero if no data is returned from the KMS.

ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if
2222 April, 2015 Version 2.5

Secure Technologies
it supports the use of client data. This parameter may be NULL if
and only if the ClientDataSize parameter is also NULL.
Upon return to the caller, *ClientData points to a block of
data of *ClientDataSize that was returned from the KMS.
If the returned value for *ClientDataSize is zero, then the
returned value for *ClientData must be NULL and should be
ignored by the caller. The KMS protocol consumer is responsible
for freeing all valid buffers used for client data regardless of
whether they are allocated by the caller for input to the function
or by the implementation for output back to the caller.

Description
The DeleteKeyAttributes() function removes key attributes for a key with the key
management service.

The Client parameter identifies the caller to the key management service. It may be used for
auditing or access control. The use of this parameter is optional unless the KMS requires it in order
to perform the requested action.

The KeyIdentifierSize and KeyIdentifier parameters identify the key whose
attributes are to be modified by the key management service

The KeyAttributesCount and KeyAttributes parameters are used to specify the key
attributes data to be deleted on the KMS. Any number of attributes may be deleted in a single
operation, regardless of whether the KMS supports multiple key attribute definitions in a single
request or not. The KMS protocol implementation is responsible for generating the appropriate
requests (single/multiple) to the KMS. In certain error situations, the status of each attribute is
updated indicating if that attribute was successfully deleted or not.

The KeyAttributesCount and KeyAttributes parameters are used to specify the key
attributes data to be deleted on the KMS. Any number of attributes may be deleted in a single
operation, regardless of whether the KMS supports multiple key attribute definitions in a single
request or not. The KMS protocol implementation is responsible for generating the appropriate
requests (single/multiple) to the KMS. In certain error situations, the status of each attribute is
updated indicating if that attribute was successfully deleted or not.

The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block
of data to/from the KMS for uses such as auditing or access control. The KMS protocol
implementation does not alter this data block other than to package it for transmission to the KMS.
The use of these parameters is optional unless the KMS requires it in order to perform the requested
action.

Status Codes Returned
The DeleteKeyAttributes() function will return a status which indicates the overall status
of the request. Note that this may be different from the status reported for individual key attribute
requests. Status codes returned for the method are:

EFI_SUCCESS Successfully deleted all requested key attributes.

EFI_OUT_OF_RESOURCES Could not allocate required resources.
Version 2.5 April, 2015 2223

Unified Extensible Firmware Interface Specification
EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
attribute request(s) to see which ones may have been
processed.

EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a

ClientId is required by the server and either none or an

invalid id was provided

EFI_DEVICE_ERROR Device or key server error. Check individual key attribute
request(s) (i.e., key attribute status for each) to see which ones
may have been processed.

EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
KeyAttributesCount is NULL, or
KeyAttributes is NULL, or KeyIdentifierSize

is NULL, or KeyIdentifer is NULL.

EFI_NOT_FOUND The KeyIdentifier could not be found or the attribute

could not be found. On return the KeyAttributesCount

contains the number of attributes processed. Individual
structures will reflect the status of the processing for that
structure.

EFI_UNSUPPORTED The implementation/KMS does not support this function
2224 April, 2015 Version 2.5

Secure Technologies
EFI_KMS_PROTOCOL.GetKeyByAttributes()

Summary
Retrieve one or more key that has matched all of the specified key attributes.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_KMS_GET_KEY_BY_ATTRIBUTES) (
 IN EFI_KMS_PROTOCOL *This,
 IN EFI_KMS_CLIENT_INFO *Client,
 IN UINTN *KeyAttributeCount,
 IN OUT EFI_KMS_KEY_ATTRIBUTE *KeyAttributes,
 IN OUT UINTN *KeyDescriptorCount,
 IN OUT EFI_KMS_KEY_DESCRIPTOR *KeyDescriptors,
 IN OUT UINTN *ClientDataSize OPTIONAL,
 IN OUT VOID **ClientData OPTIONAL
);

Parameters
This Pointer to this EFI_KMS_PROTOCOL instance.

Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.

KeyAttributeCount Pointer to a count of the number of key attribute structures that
must be matched for each returned key descriptor. On input the
count value is one or more. On normal returns, this number will
be updated with the number of key attributes successfully
processed.

KeyAttributes Pointer to an array of EFI_KMS_KEY_ATTRIBUTE structure
to search for. On input, the values for the fields in the structure
are completely filled in. On return the KeyAttributeStatus field
will reflect the result of the operation for each key attribute
request.

KeyDescriptorCount Pointer to a count of the number of key descriptors matched by
this operation. On entry, this number will be zero. On return, this
number will be updated to the number of key descriptors
successfully found.

KeyDescriptors Pointer to an array of EFI_KMS_KEY_DESCRIPTOR structures
which describe the keys from the KMS having the
KeyAttribute(s) specified. On input, this pointer will be
NULL. On output, the array will contain an
EFI_KMS_KEY_DESCRIPTOR structure for each key meeting
the search criteria. Memory for the array and all KeyValue
fields will be allocated with the EfiBootServicesData type
and must be freed by the caller when it is no longer needed. Also,
the KeyStatus field of each descriptor will reflect the result of
the request relative to that key descriptor.
Version 2.5 April, 2015 2225

Unified Extensible Firmware Interface Specification
ClientDataSize Pointer to the size, in bytes, of an arbitrary block of data specified
by the ClientData parameter. This parameter may be NULL,
in which case the ClientData parameter will be ignored and
no data will be transferred to or from the KMS. If the parameter
is not NULL, then ClientData must be a valid pointer. If the
value pointed to is 0, no data will be transferred to the KMS, but
data may be returned by the KMS. For all non-zero values
*ClientData will be transferred to the KMS, which may also
return data to the caller. In all cases, the value upon return to the
caller will be the size of the data block returned to the caller,
which will be zero if no data is returned from the KMS.

ClientData Pointer to a pointer to an arbitrary block of data of
*ClientDataSize that is to be passed directly to the KMS if
it supports the use of client data. This parameter may be NULL if
and only if the ClientDataSize parameter is also NULL.
Upon return to the caller, *ClientData points to a block of
data of *ClientDataSize that was returned from the KMS.
If the returned value for *ClientDataSize is zero, then the
returned value for *ClientData must be NULL and should be
ignored by the caller. The KMS protocol consumer is responsible
for freeing all valid buffers used for client data regardless of
whether they are allocated by the caller for input to the function
or by the implementation for output back to the caller.

Description
The GetKeyByAttributes() function returns the keys found by searches for matching key
attribute(s). This function must be supported by every KMS protocol instance that supports the use
of key attributes as indicated in the protocol’s KeyAttributesSupported field.

The Client parameter identifies the caller to the key management service. It may be used for
auditing or access control. The use of this parameter is optional unless the KMS requires it in order
to perform the requested action.

The KeyAttributesCount and KeyAttributes parameters are used to specify the key
attributes data to be searched for on the KMS. Any number of attributes may be searched for in a
single operation, regardless of whether the KMS supports multiple key attribute definitions in a
single request or not. The KMS protocol implementation is responsible for generating the
appropriate requests (single/multiple) to the KMS. In certain error situations, the status of each
attribute is updated indicating if that attribute was successfully found or not. If an attribute specifies
a wildcard KeyAttributeInstance value, then the provider returns all instances of the
attribute.

The KeyDescriptorCount and KeyDescriptors parameters are used to return the
EFI_KMS_KEY_DESCRIPTOR structures for keys meeting the search criteria. Any number of
keys may be returned in a single operation, regardless of whether the KMS supports multiple key
definitions in a single request or not. The KMS protocol implementation is responsible for
generating the appropriate requests (single/multiple) to the KMS.

The ClientDataSize and ClientData parameters allow the caller to pass an arbitrary block
of data to/from the KMS for uses such as auditing or access control. The KMS protocol
implementation does not alter this data block other than to package it for transmission to the KMS.
2226 April, 2015 Version 2.5

Secure Technologies
The use of these parameters is optional unless the KMS requires it in order to perform the requested
action.

Status Codes Returned
The GetKeyByAttributes() function will return a status which indicates the overall status of
the request. Note that this may be different from the status reported for individual keys.

35.4 PKCS7 Verify Protocol

EFI_PKCS7_VERIFY_PROTOCOL

Summary
The EFI_PKCS7_VERIFY_PROTOCOL may be used to verify data signed with PKCS#7
formatted authentication. The PKCS#7 data to be verified must be binary DER encoded. Additional
information on the supported ASN.1 formatting is provided below.

EFI_SUCCESS Successfully retrieved all requested keys.

EFI_OUT_OF_RESOURCES Could not allocate required resources.

EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
attribute request(s) to see which ones may have been
processed.

EFI_BUFFER_TOO_SMALL If multiple keys are associated with the attribute(s), and the

KeyValue buffer does not contain enough structures

(KeyDescriptorCount) to contain all the key data, then

the available structures will be filled and

KeyDescriptorCount will be updated to indicate the

number of keys which could not be processed.

EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a

ClientId is required by the server and either none or an

invalid id was provided

EFI_DEVICE_ERROR Device or key server error. Check individual key attribute
request(s) (i.e., key attribute status for each) to see which ones
may have been processed.

EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
KeyDescriptorCount is NULL, or
KeyDescriptors is NULL or KeyAttributes is

NULL, or KeyAttributesCount is NULL.

EFI_NOT_FOUND One or more EFI_KMS_KEY_ATTRIBUTE structures could

not be processed properly. KeyAttributeCount contains

the number of structures which were successfully processed.
Individual structures will reflect the status of the processing for
that structure.

EFI_UNSUPPORTED The implementation/KMS does not support this function
Version 2.5 April, 2015 2227

http://tools.ietf.org/html/rfc2315

Unified Extensible Firmware Interface Specification
Drivers that supply PKCS7 verification function should publish the
EFI_PKCS7_VERIFY_PROTOCOL. Drivers wishing to use the

EFI_PKCS7_VERIFY_PROTOCOL may get a reference with LocateProtocol().

GUID
#define EFI_PKCS7_VERIFY_PROTOCOL_GUID \
{ 0x47889fb2, 0xd671, 0x4fab,\
 { 0xa0, 0xca, 0xdf, 0xe, 0x44,\ 0xdf, 0x70, 0xd6 }}

Protocol Interface Structure
typedef struct _EFI_PKCS7_VERIFY_PROTOCOL {
 EFI_PKCS7_VERIFY_BUFFER VerifyBuffer;
 EFI_PKCS7_VERIFY_SIGNATURE VerifySignature;
} EFI_PKCS7_VERIFY_PROTOCOL;

Parameters
VerifyBuffer Examine a DER-encoded PKCS7-signed memory buffer with

signature containing embedded data content, or buffer with
detached signature and separate data content buffer, and verify
using supplied signature lists.

VerifySignature Examine a DER-encoded PKCS7-signed memory buffer with
signature and, using caller-supplied hash value for signed data,
verify using supplied signature lists.

Description
The EFI_PKCS7_VERIFY_PROTOCOL is used to verify data signed using PKCS7 structure.
PKCS7 is a general-purpose cryptographic standard (see references). The PKCS7 data to be verified
must be ASN.1 (DER) encoded. Implementation must support SHA256 as digest algorithm with
RSA digest encryption. Support of other hash algorithms is optional. See Table 223.

Table 223. Details of Supported Signature Format.

Signature Buffer Format Details

Encoding Binary DER

ASN.1 root of Embedded Signed Data ContentInfo with SignedData content type

ASN.1 root of Detached Signature SignedData or

ContentInfo with SignedData content type

Embedded Data Type Typically ‘Data’ (1.2.840.113549.1.7.1) or other defined OID type
(however caller should not depend upon specialized OID
processing during PKCS validation.)

Digest (Hash) Algorithm

(VerifyBuffer function)

Support of SHA-256 (2.16.840.1.101.3.4.2.1) is required, other
algorithms are optional

Digest Encryption RSA (1.2.840.113549.1.1.1)

Certificate validity dates See TimeStampDb description

Signature authenticatedAttributes Ignored by function
2228 April, 2015 Version 2.5

Secure Technologies
References
PKCS7 is defined by RFC2315. For more information see “Links to UEFI-Related Documents”
(http://uefi.org/uefi) under the heading “RFC2315 (defines PKCS7)”.

Timestamping See TimeStampDb description
Version 2.5 April, 2015 2229

Unified Extensible Firmware Interface Specification
EFI_PKCS7_VERIFY_PROTOCOL.VerifyBuffer()

Summary
This function processes a buffer containing binary DER-encoded PKCS7 signature. The signed data
content may be embedded within the buffer or separated. Function verifies the signature of the
content is valid and signing certificate was not revoked and is contained within a list of trusted
signers.

Prototype
typedef
EFI_STATUS
(EFIAPI *VerifyBuffer)(
 IN EFI_PKCS7_VERIFY_PROTOCOL *This,
 IN VOID *SignedData,
 IN UINTN SignedDataSize,
 IN VOID *InData OPTIONAL,
 IN UINTN InDataSize
 IN EFI_SIGNATURE_LIST **AllowedDb,
 IN EFI_SIGNATURE_LIST **RevokedDb OPTIONAL,
 IN EFI_SIGNATURE_LIST **TimeStampDb OPTIONAL,
 OUT VOID *Content OPTIONAL,
 IN OUT UINTN *ContentSize
);

Parameters
This Pointer to EFI_PKCS7_VERIFY_PROTOCOL instance.

SignedData Points to buffer containing ASN.1 DER-encoded PKCS
signature.

SignedDataSize The size of SignedData buffer in bytes.

InData In case of detached signature, Indata points to buffer
containing the raw message data previously signed and to be
verified by function. In case of SignedData containing
embedded data, InData must be NULL.

InDataSize When InData is used, the size of InData buffer in bytes.
When InData is NULL, this parameter must be 0.

AllowedDb Pointer to a list of pointers to EFI_SIGNATURE_LIST
structures. The list is terminated by a null pointer. The
EFI_SIGNATURE_LIST structures contain lists of X.509
certificates of approved signers. See Chapter 27 for definition of
EFI_SIGNATURE_LIST. Function recognizes signer
certificates of type EFI_CERT_X509_GUID. Any hash
certificate in AllowedDb list is ignored by this function.
Function returns success if signer of the buffer is within this list
(and not within RevokedDb). This parameter is required.

RevokedDb Optional pointer to a list of pointers to EFI_SIGNATURE_LIST
structures. The list is terminated by a null pointer. List of X.509
2230 April, 2015 Version 2.5

Secure Technologies
certificates of revoked signers and revoked file hashes. Except as
noted in description of TimeStampDb, signature verification
will always fail if the signer of the file or the hash of the data
component of the buffer is in RevokedDb list. This list is
optional and caller may pass Null or pointer to NULL if not
required.

TimeStampDb Optional pointer to a list of pointers to
EFI_SIGNATURE_LIST structures. The list is terminated by a
null pointer. This parameter can be used to pass a list of X.509
certificates of trusted time stamp signers. This list is optional and
caller may pass Null or pointer to NULL if not required.

Content On input, points to an optional caller-allocated buffer into which
the function will copy the content portion of the file after
verification succeeds. This parameter is optional and if NULL, no
copy of content from file is performed.

ContentSize On input, points to the size in bytes of the optional buffer
Content previously allocated by caller. On output, if the
verification succeeds, the value referenced by ContentSize
will contain the actual size of the content from signed file. If
ContentSize indicates the caller-allocated buffer is too small
to contain content, an error is returned, and ContentSize will
be updated with the required size. This parameter must be 0 if
Content is Null.

Description
This function processes the buffer SignedData for PCKS7 verification. The data that was signed
using PKCS is referred to as the ‘Message’. In the process of creating a signature of the message, a
SHA256 or other hash of the message bytes, called the ‘Message Digest’, is encrypted using a
private key held in secret by the signer. The encrypted hash and the X.509 public key certificate of
the signer are formatted according to the ASN.1 PKCS#7 Schema (See References). For the buffer
type with the embedded data, the ASN.1 syntax is also used to wrap the data and combine the
message data with the signature structure.

The SignedData buffer must be ASN.1 DER-encoded format with structure according to the
subset defined in the introduction to this protocol. Both embedded content and detached signature
formats are supported. In case of embedded content, SignedData contains both the PKCS7
signature structure and the message content that was signed. In the case of detached signature,
SignedData contains only the signature data and InData is used to supply the data to be
verified. To pass verification the X.509 public certificate of the signer of the file must be found in
AllowedDb and not be present in RevokedDb. Additionally if RevokedDb contains a specific
Hash signature that matches the hash calculated for the content, the file will also fail verification.
The message content will be copied to the caller-supplied buffer Content (when present) with
ContentSize updated to reflect the total size in bytes of the extracted content.

The VerifyBuffer() function performs several steps. First, the buffer containing the user-
provided signature is parsed, the content is located and a hash calculated, and the PKCS7 signature
of that hash is verified by decrypting the hash calculated at time of signing. Match of current hash
with decrypted hash provides indication the structure contained in buffer has not been modified
since signing. Next the protocol function attempts to match the signing certificate included within
Version 2.5 April, 2015 2231

Unified Extensible Firmware Interface Specification
the signed data again the members of an (optional) list of caller-provided revoked certificates
(RevokedDb). The hash of the data is also compared against any hash items contained in
RevokedDb list. Next the signing certificate is matched against the caller-provided list of trusted
signatures. If the signature is valid, the certificate or hash are not in the revoked list, and the
certificate is in the trusted list, the file passes verification.

When TimeStampDb list is present this information modifies the processing of revoked certificates
found in both AllowedDb and RevokedDb. When PCKS7 signings that are time-stamped by
trusted signer in TimeStampDb list, and which time-stamping occurred prior to the time of
certificate revocation noted in certificate in RevokedDb list, the signing will be allowed and return
EFI_SUCCESS. TimeStampDb parameter is optional and may be NULL or a pointer to NULL
when not used. Except in the processing of certificates found in both AllowedDb and
RevokedDb, TimeStampDb is not used and time-stamping is not otherwise required for signings
verified by certificate only in AllowedDb.

The verification function can handle both embedded data or detached signature formats. In case of
embedded data, the function will optionally extract the original signed data and supply back to caller
in caller-supplied buffer. For a detached signature the caller must provide the original message data
in buffer pointed to by Indata. For consistency, when both InData and Content are provided,
the function will copy contents of InData to Content.

In case where the ContentSize indicated by caller is too small to contain the entire content
extracted from the file, EFI_BUFFER_TOO_SMALL error is returned, and ContentSize is
updated to reflect the required size.

Note: When signing certificate is matched to AllowedDb or RevokedDb lists, a match can occur
against an entry in the list at any level of the chain of X.509 certificates present in the PCKS
certificate list. This supports signing with a certificate that chains to one of the certificates in the
AllowedDb or RevokedDb lists.

Related Definitions
None

Status Codes Returned

EFI_SUCCESS Content signature was verified against hash of content, the signer’s

certificate was not found in RevokedDb, and was found in

AllowedDb or if in signer is found in both AllowedDb and

RevokedDb, the signing was allowed by reference to

TimeStampDb as described above, and no hash matching

content hash was found in RevokedDb.

EFI_SECURITY_VIOLATION The SignedData buffer was correctly formatted but signer was

in RevokedDb or not in AllowedDb. Also returned if

matching content hash found in RevokedDb.

EFI_COMPROMISED_DATA Calculated hash differs from signed hash.

EFI_INVALID_PARAMETER SIgnedData is NULL or SIgnedDataSize is zero.

AllowedDb is NULL.
2232 April, 2015 Version 2.5

Secure Technologies
EFI_INVALID_PARAMETER Content is not NULL and ContentSize is NULL.

EFI_ABORTED Unsupported or invalid format in TImeStampDb, RevokedDb

or AllowedDb list contents was detected.

EFI_NOT_FOUND Content not found because InData is NULL and no content

embedded in SIgnedData.

EFI_UNSUPPORTED The SignedData buffer was not correctly formatted for

processing by the function.

EFI_UNSUPPORTED Signed data embedded in SIgnedData but InData is not

NULL.

EFI_BUFFER_TOO_SMALL The size of buffer indicated by ContentSize is too small to

hold the content. ContentSize updated to required size.
Version 2.5 April, 2015 2233

Unified Extensible Firmware Interface Specification
EFI_PKCS7_VERIFY_PROTOCOL.VerifySignature()

Summary
This function processes a buffer containing binary DER-encoded detached PKCS7 signature. The
hash of the signed data content is calculated and passed by the caller. Function verifies the signature
of the content is valid and signing certificate was not revoked and is contained within a list of trusted
signers.

Prototype
typedef
EFI_STATUS
(EFIAPI *VerifySignature)(
 IN EFI_PKCS7_VERIFY_PROTOCOL *This,
 IN VOID *Signature,
 IN UINTN SignatureSize,
 IN VOID *InHash,
 IN UINTN InHashSize
 IN EFI_SIGNATURE_LIST **AllowedDb,
 IN EFI_SIGNATURE_LIST **RevokedDb OPTIONAL,
 IN EFI_SIGNATURE_LIST **TimeStampDb OPTIONAL,
);

Parameters
This Pointer to EFI_PKCS7_VERIFY_PROTOCOL instance.

Signature Points to buffer containing ASN.1 DER-encoded PKCS detached
signature.

SignatureSize The size of Signature buffer in bytes.

InHash InHash points to buffer containing the caller calculated hash of
the data. This parameter may not be NULL.

InHashSize The size in bytes of InHash buffer.

AllowedDb Pointer to a list of pointers to EFI_SIGNATURE_LIST
structures. The list is terminated by a null pointer. The
EFI_SIGNATURE_LIST structures contain lists of X.509
certificates of approved signers. See Chapter 27 for definition of
EFI_SIGNATURE_LIST. Function recognizes signer
certificates of type EFI_CERT_X509_GUID. Any hash
certificate in AllowedDb list is ignored by this function.
Function returns success if signer of the buffer is within this list
(and not within RevokedDb). This parameter is required.

RevokedDb Pointer to a list of pointers to EFI_SIGNATURE_LIST
structures. The list is terminated by a null pointer. List of X.509
certificates of revoked signers and revoked file hashes. Signature
verification will always fail if the signer of the file or the hash of
the data component of the buffer is in RevokedDb list. This
parameter is optional and caller may pass Null if not required.
2234 April, 2015 Version 2.5

Secure Technologies
TimeStampDb Optional pointer to a list of pointers to
EFI_SIGNATURE_LIST structures. The list is terminated by a
null pointer. This parameter can be used to pass a list of X.509
certificates of trusted time stamp counter-signers.

Description
This function processes the buffer Signature for PCKS7 verification using hash of the data
calculated and pass by caller in the InHash buffer. The data that was signed using PKCS is referred
to as the ‘Message’. In the process of creating a signature of the message, a hash of the message
bytes, called the ‘Message Digest’, is encrypted using a private key held in secret by the signer. The
encrypted hash and the X.509 public key certificate of the signer are formatted according to the
ASN.1 PKCS#7 Schema (See References). Any data embedded within the PKCS structure is
ignored by the function. This function does not support extraction of signature from executable file
formats. The address of the PKCS Signature block must be located and passed by the called.

The hash size passed in InHashSize must match the size of the signed hash embedded within the
PKCS signature structure or an error is returned.

The SignedData buffer must be ASN.1 DER-encoded format with structure according to the
subset defined in the introduction to this protocol. Both embedded content and detached signature
formats are supported however embedded data is ignored. To pass verification the X.509 public
certificate of the signer of the file must be found in AllowedDb and not be present in RevokedDb.
Additionally, if RevokedDb contains a specific Hash signature that matches the hash calculated for
the content, the file will also fail verification.

When TimeStampDb list is present this information modifies the processing of revoked certificates
found in both AllowedDb and RevokedDb. When PCKS7 signings that are time-stanped by
trusted signer in TimeStampDb list, and which time-stamping occurred prior to the time of
certificate revocation noted in certificate in RevokedDb list, the signing will be allowed and return
EFI_SUCCESS. TimeStampDb parameter is optional and may be NULL or a pointer to NULL
when not used. Except in the processing of certificates found in both AllowedDb and
RevokedDb, TimeStampDb is not used and time-stamping is not otherwise required for signings
verified by certificate only in AllowedDb.

The VerifySignature() function performs several steps. First, the buffer containing the user-
provided signature is parsed, (any embedded content is ignored), and the PKCS7 signature of hash
data is verified by decrypting the hash calculated at time of signing. Match of caller provided hash
with decrypted hash provides indication the signed data has not been modified since signing. Next
the protocol function attempts to match the signing certificate included within the signed data again
the members of an (optional) list of caller-provided revoked certificates (RevokedDb). The hash of
the data is also compared against any hash items contained in RevokedDb list. Next the signing
certificate is matched against the caller-provided list of trusted signatures. If the signature is valid,
the certificate or hash are not in the revoked list, and the certificate is in the trusted list, the file
passes verification.

Note: When signing certificate is matched to AllowedDb or RevokedDb lists, a match can occur
against an entry in the list at any level of the chain of X.509 certificates present in the PCKS
Version 2.5 April, 2015 2235

Unified Extensible Firmware Interface Specification
certificate list. This supports signing with a certificate that chains to one of the certificates in the
AllowedDb or RevokedDb lists.

Related Definitions
None

Status Codes Returned

35.5 Random Number Generator Protocol
This section defines the Random Number Generator (RNG) protocol. This protocol is used to
provide random numbers for use in applications, or entropy for seeding other random number
generators. Consumers of the protocol can ensure that drivers implementing the protocol produce
RNG values in a well-known manner.

When a Deterministic Random Bit Generator (DRBG) is used on the output of a (raw) entropy
source, its security level must be at least 256 bits.

EFI_RNG_PROTOCOL

Summary
This protocol provides standard RNG functions. It can be used to provide random bits for use in
applications, or entropy for seeding other random number generators.

EFI_SUCCESS Signed hash was verified against caller-provided hash of content,

the signer’s certificate was not found in RevokedDb, and was

found in AllowedDb or if in signer is found in both

AllowedDb and RevokedDb, the signing was allowed by

reference to TimeStampDb as described above, and no hash

matching content hash was found in RevokedDb.

EFI_SECURITY_VIOLATION The SignedData buffer was correctly formatted but signer was

in RevokedDb or not in AllowedDb. Also returned if

matching content hash found in RevokedDb.

EFI_COMPROMISED_DATA Caller provided hash differs from signed hash. Or, caller and
encrypted hash are different sizes.

EFI_INVALID_PARAMETER Signature is NULL or SignatureSize is zero.

InHash is NULL or InhashSize is zero. AllowedDb is

NULL.

EFI_ABORTED Unsupported or invalid format in TimeStampDb, RevokedDb

or AllowedDb list contents was detected.

EFI_UNSUPPORTED The Signature buffer was not correctly formatted for

processing by the function.
2236 April, 2015 Version 2.5

Secure Technologies
GUID
#define EFI_RNG_PROTOCOL_GUID \
{ 0x3152bca5, 0xeade, 0x433d,\
 {0x86, 0x2e, 0xc0, 0x1c, 0xdc, 0x29, 0x1f, 0x44}}

Protocol Interface Structure
typedef struct _EFI_RNG_PROTOCOL {
 EFI_RNG_GET_INFO GetInfo
 EFI_RNG_GET_RNG GetRNG;
} EFI_RNG_PROTOCOL;

Parameters
GetInfo Returns information about the random number generation

implementation.

GetRNG Returns the next set of random numbers.

Description
This protocol allows retrieval of RNG values from an UEFI driver. The GetInfo service returns
information about the RNG algorithms the driver supports. The GetRNG service creates a RNG
value using an (optionally specified) RNG algorithm.
Version 2.5 April, 2015 2237

http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf

Unified Extensible Firmware Interface Specification
EFI_RNG_PROTOCOL.GetInfo

Summary
Returns information about the random number generation implementation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_RNG_GET_INFO) (
 IN EFI_RNG_PROTOCOL *This,
 IN OUT UINTN *RNGAlgorithmListSize,
 OUT EFI_RNG_ALGORITHM *RNGAlgorithmList
);

Parameters
This A pointer to the EFI_RNG_PROTOCOL instance.

RNGAlgorithmListSizeOn input, the size in bytes of RNGAlgorithmList. On output
with a return code of EFI_SUCCESS, the size in bytes of the
data returned in RNGAlgorithmList.

On output with a return code of EFI_BUFFER_TOO_SMALL,
the size of RNGAlgorithmList required to obtain the list.

RNGAlgorithmList A caller-allocated memory buffer filled by the driver with one
EFI_RNG_ALGORITHM element for each supported RNG
algorithm. The list must not change across multiple calls to the
same driver. The first algorithm in the list is the default algorithm
for the driver.

Description
This function returns information about supported RNG algorithms.

A driver implementing the RNG protocol need not support more than one RNG algorithm, but shall
support a minimum of one RNG algorithm.

Related Definitions
typedef EFI_GUID EFI_RNG_ALGORITHM;

Status Codes Returned

EFI_SUCCESS The RNG algorithm list was returned successfully.

EFI_UNSUPPORTED The service is not supported by this driver.

EFI_DEVICE_ERROR The list of algorithms could not be retrieved due to a hardware or
firmware error.

EFI_BUFFER_TOO_SMALL The buffer RNGAlgorithmList is too small to hold the result.
2238 April, 2015 Version 2.5

http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf

Secure Technologies
EFI_RNG_PROTOCOL.GetRNG

Summary
Produces and returns an RNG value using either the default or specified RNG algorithm.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_RNG_GET_RNG) (
 IN EFI_RNG_PROTOCOL *This,
 IN EFI_RNG_ALGORITHM *RNGAlgorithm, OPTIONAL
 IN UINTN RNGValueLength,
 OUT UINT8 *RNGValue
);

Parameters

This A pointer to the EFI_RNG_PROTOCOL instance.

RNGAlgorithm A pointer to the EFI_RNG_ALGORITHM that identifies the RNG
algorithm to use. May be NULL in which case the function will
use its default RNG algorithm.

RNGValueLength The length in bytes of the memory buffer pointed to by
RNGValue. The driver shall return exactly this number of bytes.

RNGValue A caller-allocated memory buffer filled by the driver with the
resulting RNG value.

Description

This function fills the RNGValue buffer with random bytes from the specified RNG algorithm.
The driver must not reuse random bytes across calls to this function. It is the caller’s responsibility
to allocate the RNGValue buffer.

Status Codes Returned

EFI_SUCCESS The RNG value was returned successfully.

EFI_UNSUPPORTED The algorithm specified by RNGAlgorithm is not supported by this

driver.

EFI_DEVICE_ERROR An RNG value could not be retrieved due to a hardware or firmware
error.

EFI_NOT_READY There is not enough random data available to satisfy the length requested by

RNGValueLength.

EFI_INVALID_PARAMETER RNGValue is null or RNGValueLength is zero.
Version 2.5 April, 2015 2239

Unified Extensible Firmware Interface Specification
35.5.1 EFI RNG Algorithm Definitions

Summary
This sub-section provides EFI_GUID values for a selection of EFI_RNG_PROTOCOL algorithms.
The algorithms listed are optional, not meant to be exhaustive and may be augmented by vendors or
other industry standards.

The “raw” algorithm, when supported, is intended to provide entropy directly from the source,
without it going through some deterministic random bit generator.

Prototype
#define EFI_RNG_ALGORITHM_SP800_90_HASH_256_GUID \
 {0xa7af67cb, 0x603b, 0x4d42,\
 {0xba, 0x21, 0x70, 0xbf, 0xb6, 0x29, 0x3f, 0x96}}

#define EFI_RNG_ALGORITHM_SP800_90_HMAC_256_GUID \
 {0xc5149b43, 0xae85, 0x4f53,\
 {0x99, 0x82, 0xb9, 0x43, 0x35, 0xd3, 0xa9, 0xe7}}

#define EFI_RNG_ALGORITHM_SP800_90_CTR_256_GUID \
 {0x44f0de6e, 0x4d8c, 0x4045, \
 {0xa8, 0xc7, 0x4d, 0xd1, 0x68, 0x85, 0x6b, 0x9e}}

#define EFI_RNG_ALGORITHM_X9_31_3DES_GUID \
 {0x63c4785a, 0xca34, 0x4012,\
 {0xa3, 0xc8, 0x0b, 0x6a, 0x32, 0x4f, 0x55, 0x46}}

#define EFI_RNG_ALGORITHM_X9_31_AES_GUID \
 {0xacd03321, 0x777e, 0x4d3d,\
 {0xb1, 0xc8, 0x20, 0xcf, 0xd8, 0x88, 0x20, 0xc9}}

#define EFI_RNG_ALGORITHM_RAW \
 {0xe43176d7, 0xb6e8, 0x4827,\
 {0xb7, 0x84, 0x7f, 0xfd, 0xc4, 0xb6, 0x85, 0x61}}

35.5.2 RNG References
NIST SP 800-90, “Recommendation for Random Number Generation Using Deterministic Random
Bit Generators,” March 2007. See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under
the heading “Recommendation for Random Number Generation Using Deterministic Random Bit
Generators”.

NIST, “Recommended Random Number Generator Based on ANSI X9.31 Appendix A.2.4 Using
the 3-Key Triple DES and AES Algorithms,” January 2005. See “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading “Recommended Random Number Generator
Based on ANSI X9.31”.
2240 April, 2015 Version 2.5

Secure Technologies
35.6
Smart Card Reader and Smart Card Edge Protocols

The UEFI Smart Card Reader Protocol provides an abstraction for device to provide smart card
reader support. This protocol is very close to Part 5 of PC/SC workgroup specifications and provides
an API to applications willing to communicate with a smart card or a smart card reader.

35.6.1 Smart Card Reader Protocol

EFI_SMART_CARD_READER_PROTOCOL Summary

Smart card aware application invokes this protocol to get access to an inserted smart card in the
reader or to the reader itself.

GUID
#define EFI_SMART_CARD_READER_PROTOCOL_GUID \
 {0x2a4d1adf, 0x21dc, 0x4b81,\
 {0xa4, 0x2f, 0x8b, 0x8e, 0xe2, 0x38, 0x00, 0x60}}

Protocol Interface Structure
typedef struct _EFI_SMART_CARD_READER_PROTOCOL {
 EFI_SMART_CARD_READER_CONNECT SCardConnect;
 EFI_SMART_CARD_READER_DISCONNECT SCardDisconnect;
 EFI_SMART_CARD_READER_STATUS SCardStatus;
 EFI_SMART_CARD_READER_TRANSMIT SCardTransmit;
 EFI_SMART_CARD_READER_CONTROL SCardControl;
 EFI_SMART_CARD_READER_GET_ATTRIB SCardGetAttrib;
} EFI_SMART_CARD_READER_PROTOCOL;

Members
SCardConnect Requests a connection to the smart card or smart card reader.

SCardDisconnect Closes the previously open connection.

SCardStatus Provides informations on smart card status and reader name.

SCardTransmit Exchanges data with smart card or smart card reader.

SCardControl Gives direct control to the smart card reader.

SCardGetAttrib Retrieves reader characteristics.

Description
This protocol allows UEFI applications to communicate and get/set all necessary information to the
smart card reader.

Overview
This document aims at defining a standard way for UEFI applications to use a smart card. The key
points are:
Version 2.5 April, 2015 2241

Unified Extensible Firmware Interface Specification
• Provide an API as close as possible to Part 5 of the existing PC/SC interface. See “Links to
UEFI-Related Documents” (http://uefi.org/uefi) under the heading “PC/SC Workgroup
Specifications”.

• Remove any unnecessary complexity of PC/SC implementation in a classic OS:
— Assume no connection sharing
— No resource manager
— Reduced set of APIs

Note that this document only focuses on PC/SC Part 5 (access to smart card/smart card reader from
an application). Abstracting the smart card (Parts 6/9) is not the scope of this document.

Main differences with existing PC/SC implementation on Linux/MacOS/Windows:

• There is no resource manager, driver exposes Part 5 instead of Part 3

• It is not possible to share a smart card between UEFI applications/drivers

• Reader enumeration is different:
— On classic PC/SC, SCardListReaders is used
— In UEFI, reader list is available via OpenProtocol/ScardStatus calls
2242 April, 2015 Version 2.5

Secure Technologies
 EFI_SMART_CARD_READER_PROTOCOL.SCardConnect()

Summary
 This function requests connection to the smart card or the reader, using the appropriate reset type
and protocol.

Prototype
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_READER_PROTOCOL_CONNECT) (
 IN EFI_SMART_CARD_READER_PROTOCOL *This,
 IN UINT32 AccessMode,
 IN UINT32 CardAction,
 IN UINT32 PreferredProtocols,
 OUT UINT32 *ActiveProtocol
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_SMART_CARD_READER_PROTOCOL is defined in the
EFI_SMART_CARD_READER_PROTOCOL description.

 AccessMode See “related definitions” below.

 CardAction SCARD_CA_NORESET, SCARD_CA_COLDRESET or
SCARD_CA_WARMRESET.

 PreferredProtocols Bitmask of acceptable protocols. See “related definitions” below.

 ActiveProtocol A flag that indicates the active protocol. See “related definitions”
below.
Version 2.5 April, 2015 2243

Unified Extensible Firmware Interface Specification
Related Definitions
//
// Codes for access mode
//
#define SCARD_AM_READER 0x0001 // Exclusive access to reader
#define SCARD_AM_CARD 0x0002 // Exclusive access to card
//
// Codes for card action
//
#define SCARD_CA_NORESET 0x0000 // Don’t reset card
#define SCARD_CA_COLDRESET 0x0001 // Perform a cold reset
#define SCARD_CA_WARMRESET 0x0002 // Perform a warm reset
#define SCARD_CA_UNPOWER 0x0003 // Power off the card
#define SCARD_CA_EJECT 0x0004 // Eject the card
//
// Protocol types
//
#define SCARD_PROTOCOL_UNDEFINED 0x0000
#define SCARD_PROTOCOL_T0 0x0001
#define SCARD_PROTOCOL_T1 0x0002
#define SCARD_PROTOCOL_RAW 0x0004

Description
The SCardConnect function requests access to the smart card or the reader. Upon success, it is
then possible to call SCardTransmit.

If AccessMode is set to SCARD_AM_READER, PreferredProtocols must be set to
SCARD_PROTOCOL_UNDEFINED and CardAction to SCARD_CA_NORESET else function
fails with EFI_INVALID_PARAMETER.

Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL

EFI_INVALID_PARAMETER AccessMode is not valid.

EFI_INVALID_PARAMETER CardAction is not valid.

EFI_INVALID_PARAMETER Invalid combination of AccessMode/CardAction/

PreferredProtocols.

EFI_NOT_READY A smart card is inserted but failed to return an ATR.

EFI_UNSUPPORTED PreferredProtocols does not contain an available protocol

to use.

EFI_NO_MEDIA AccessMode is set to SCARD_AM_CARD but there is no smart

card inserted.

EFI_ACCESS_DENIED Access is already locked by a previous SCardConnect call.

EFI_DEVICE_ERROR Any other error condition, typically a reader removal.
2244 April, 2015 Version 2.5

Secure Technologies
EFI_SMART_CARD_READER_PROTOCOL.SCardDisconnect()

Summary
 This function releases a connection previously taken by SCardConnect.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_READER_PROTOCOL_DISCONNECT) (
 IN EFI_SMART_CARD_READER_PROTOCOL *This,
 IN UINT32 CardAction
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_SMART_CARD_READER_PROTOCOL is defined in the
EFI_SMART_CARD_READER_PROTOCOL description.

 CardAction See “related definitions” for CardAction in SCardConnect
description.

Description
The SCardDisconnect function releases the lock previously taken by SCardConnect. In case
the smart card has been removed before this call, this function returns EFI_SUCCESS. If there is no
previous call to SCardConnect, this function returns EFI_SUCCESS.

Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL

EFI_INVALID_PARAMETER CardAction value is unknown.

EFI_UNSUPPORTED Reader does not support Eject card feature (disconnect was not
performed).

EFI_DEVICE_ERROR Any other error condition, typically a reader removal.
Version 2.5 April, 2015 2245

Unified Extensible Firmware Interface Specification
EFI_SMART_CARD_READER_PROTOCOL.SCardStatus()

Summary
 This function retrieves some basic information about the smart card and reader.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_READER_PROTOCOL_STATUS) (
 IN EFI_SMART_CARD_READER_PROTOCOL *This,
 OUT CHAR16 *ReaderName OPTIONAL,
 IN OUT UINTN *ReaderNameLength OPTIONAL,
 OUT UINT32 *State OPTIONAL,
 OUT UINT32 *CardProtocol OPTIONAL,
 OUT UINT8 *Atr OPTIONAL,
 IN OUT UINTN *AtrLength OPTIONAL
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_SMART_CARD_READER_PROTOCOL is defined in the
EFI_SMART_CARD_READER_PROTOCOL description.

 ReaderName A pointer to a NULL terminated string that will contain the reader
name.

 ReaderNameLength On input, a pointer to the variable that holds the maximal size, in
bytes,of ReaderName.

On output, the required size, in bytes, for ReaderName.

 State Current state of the smart card reader. See “related definitions”
below.

 CardProtocol Current protocol used to communicate with the smart card. See
“related definitions” in SCardConnect.

 Atr A pointer to retrieve the ATR of the smart card.

 AtrLength On input, a pointer to hold the maximum size, in bytes, of Atr
(usually 33).

On output, the required size, in bytes, for the smart card ATR.
2246 April, 2015 Version 2.5

Secure Technologies
Related Definitions
//
// Codes for state type
//
#define SCARD_UNKNOWN 0x0000 /* state is unknown */
#define SCARD_ABSENT 0x0001 /* Card is absent */
#define SCARD_INACTIVE 0x0002 /* Card is present and not
powered*/
#define SCARD_ACTIVE 0x0003 /* Card is present and powered */

 Description
The SCardStatus function retrieves basic reader and card information.

If ReaderName, State, CardProtocol or Atr is NULL, the function does not fail but does
not fill in such variables.

If EFI_SUCCESS is not returned, ReaderName and Atr contents shall not be considered as valid.

Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL

EFI_INVALID_PARAMETER ReaderName is not NULL but ReaderNameLength is NULL

EFI_INVALID_PARAMETER Atr is not NULL but AtrLength is NULL

EFI_BUFFER_TOO_SMALL ReaderNameLength is not big enough to hold the reader name.

ReaderNameLength has been updated to the required value.

EFI_BUFFER_TOO_SMALL AtrLength is not big enough to hold the ATR.

AtrLength has been updated to the required value.

EFI_DEVICE_ERROR Any other error condition, typically a reader removal.
Version 2.5 April, 2015 2247

Unified Extensible Firmware Interface Specification
EFI_SMART_CARD_READER_PROTOCOL.SCardTransmit()

Summary
 This function sends a command to the card or reader and returns its response.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_READER_PROTOCOL_TRANSMIT) (
 IN EFI_SMART_CARD_READER_PROTOCOL *This,
 IN UINT8 *CAPDU,
 IN UINTN CAPDULength,
 OUT UINT8 *RAPDU,
 IN OUT UINTN *RAPDULength
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_SMART_CARD_READER_PROTOCOL is defined in the
EFI_SMART_CARD_READER_PROTOCOL description.

 CAPDU A pointer to a byte array that contains the Command APDU to
send to the smart card or reader.

 CAPDULength Command APDU size, in bytes.

 RAPDU A pointer to a byte array that will contain the Response APDU.

 RAPDULength On input, the maximum size, in bytes, of the Response APDU.
On output, the size, in bytes, of the Response APDU.

Description
This function sends a command to the card or reader and returns its response. The protocol to use to
communicate with the smart card has been selected through SCardConnect call.

In case RAPDULength indicates a buffer too small to hold the response APDU, the function fails
with EFI_BUFFER_TOO_SMALL.

Note: the caller has to call previously SCardConnect to make sure the reader/card is not already
accessed by another application or driver.

Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL

EFI_INVALID_PARAMETER CAPDU is NULL or CAPDULength is 0.

EFI_BUFFER_TOO_SMALL RAPDULength is not big enough to hold the response APDU.

RAPDULength has been updated to the required value..

EFI_NO_MEDIA There is no card in the reader.
2248 April, 2015 Version 2.5

Secure Technologies
EFI_NOT_READY Card is not powered.

EFI_PROTOCOL_ERROR A protocol error has occurred.

EFI_TIMEOUT The reader did not respond.

EFI_ACCESS_DENIED A communication with the reader/card is already pending.

EFI_DEVICE_ERROR Any other error condition, typically a reader removal.
Version 2.5 April, 2015 2249

Unified Extensible Firmware Interface Specification
EFI_SMART_CARD_READER_PROTOCOL.SCardControl()

Summary
 This function provides direct access to the reader.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_READER_PROTOCOL_CONTROL) (
 IN EFI_SMART_CARD_READER_PROTOCOL *This,
 IN UINT32 ControlCode,
 IN UINT8 *InBuffer OPTIONAL,
 IN UINTN InBufferLength OPTIONAL,
 OUT UINT8 *OutBuffer OPTIONAL,
 IN OUT UINTN *OutBufferLength OPTIONAL
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_SMART_CARD_READER_PROTOCOL is defined in the
EFI_SMART_CARD_READER_PROTOCOL description.

 ControlCode The control code for the operation to perform.

See “related definitions” below.

 InBuffer A pointer to the input parameters.

 InBufferLength Size, in bytes, of input parameters.

 OutBuffer A pointer to the output parameters.

 OutBufferLength On input, maximal size, in bytes, to store output parameters.

On output, the size, in bytes, of output parameters.

Description
This function gives direct control to send commands to the driver or the reader.

The ControlCode to use is vendor dependant; the only standard code defined is the one to get PC/
SC part 10 features. See “related definitions” below.

InBuffer and Outbuffer may be NULL when ControlCode operation does not require
them.
2250 April, 2015 Version 2.5

Secure Technologies
Note: the caller has to call previously SCardConnect to make sure the reader/card is not already
accessed by another application or driver.

Related Definitions
//
// Macro to generate a ControlCode & PC/SC part 10 control code
//
#define SCARD_CTL_CODE(code) (0x42000000 + (code))
#define CM_IOCTL_GET_FEATURE_REQUEST SCARD_CTL_CODE(3400)

Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL

EFI_INVALID_PARAMETER ControlCode requires input parameters but:

• InBuffer is NULL or InBufferLenth is NULL –or-

• InBuffer is not NULL but InBufferLenth is less than

EFI_INVALID_PARAMETER OutBuffer is not NULL but OutBufferLength is NULL

EFI_UNSUPPORTED ControlCode is not supported.

EFI_BUFFER_TOO_SMALL OutBufferLength is not big enough to hold the output

parameters.

OutBufferLength has been updated to the required value.

EFI_NO_MEDIA There is no card in the reader and the control code specified requires
one.

EFI_NOT_READY ControlCode requires a powered card to operate.

EFI_PROTOCOL_ERROR A protocol error has occurred.

EFI_TIMEOUT The reader did not respond.

EFI_ACCESS_DENIED A communication with the reader/card is already pending.

EFI_DEVICE_ERROR Any other error condition, typically a reader removal.
Version 2.5 April, 2015 2251

Unified Extensible Firmware Interface Specification
EFI_SMART_CARD_READER_PROTOCOL.SCardGetAttrib()

Summary
 This function retrieves a reader or smart card attribute.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_READER_PROTOCOL_GET_ATTRIB) (
 IN EFI_SMART_CARD_READER_PROTOCOL *This,
 IN UINT32 Attrib,
 OUT UINT8 *OutBuffer,
 IN OUT UINTN *OutBufferLength
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_SMART_CARD_READER_PROTOCOL is defined in the
EFI_SMART_CARD_READER_PROTOCOL description.

 Attrib Identifier for the attribute to retrieve.

See “related definitions” below. Note that all attributes might not
be implemented.

 OutBuffer A pointer to a buffer that will contain attribute data.

 OutBufferLength On input, maximal size, in bytes, to store attribute data.

On output, the size, in bytes, of attribute data.

Related Definitions
Possibly supported attrib values are listed in the PC/SC Specification, Part 3. See Section Q for
document access.

Description
The SCardGetAttrib function retrieves an attribute from the reader driver.
2252 April, 2015 Version 2.5

Secure Technologies
Status Codes Returned

35.6.2 Smart Card Edge Protocol
The Smart Card Edge Protocol provides an abstraction for device to provide Smart Card support.

EFI_SMART_CARD_EDGE_PROTOCOL

Summary
Smart Card aware application invokes this protocol to get access to an inserted Smart Card in the
reader.

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL

EFI_INVALID_PARAMETER OutBuffer is NULL or OutBufferLength is 0.

EFI_BUFFER_TOO_SMALL OutBufferLength is not big enough to hold the output

parameters.

OutBufferLength has been updated to the required value.

EFI_UNSUPPORTED Attrib is not supported.

EFI_NO_MEDIA There is no card in the reader and Attrib value requires one.

EFI_NOT_READY Attrib requires a powered card to operate.

EFI_PROTOCOL_ERROR A protocol error has occurred.

EFI_TIMEOUT The reader did not respond.

EFI_DEVICE_ERROR Any other error condition, typically a reader removal.
Version 2.5 April, 2015 2253

Unified Extensible Firmware Interface Specification
GUID
#define EFI_SMART_CARD_EDGE_PROTOCOL_GUID \
{ 0xd317f29b, 0xa325, 0x4712,\
 { 0x9b, 0xf1, 0xc6, 0x19, 0x54, 0xdc, 0x19, 0x8c } }

Protocol Interface Structure
typedef struct _EFI_SMART_CARD_EDGE_PROTOCOL {
 EFI_SMART_CARD_EDGE_GET_CONTEXT GetContext;
 EFI_SMART_CARD_EDGE_CONNECT Connect;
 EFI_SMART_CARD_EDGE_DISCONNECT Disconnect;
 EFI_SMART_CARD_EDGE_GET_CSN GetCsn;
 EFI_SMART_CARD_EDGE_GET_READER_NAME GetReaderName;
 EFI_SMART_CARD_EDGE_VERIFY_PIN VerifyPin;
 EFI_SMART_CARD_EDGE_GET_PIN_REMAINING GetPinRemaining;
 EFI_SMART_CARD_EDGE_GET_DATA GetData;
 EFI_SMART_CARD_EDGE_GET_CREDENTIAL GetCredential;
 EFI_SMART_CARD_EDGE_SIGN_DATA SignData;
 EFI_SMART_CARD_EDGE_DECRYPT_DATA DecryptData;
 EFI_SMART_CARD_EDGE_BUILD_DH_AGREEMENT BuildDHAgreement;
} EFI_SMART_CARD_EDGE_PROTOCOL;

Members
GetContext Request the driver contex.

Connect Request a connection to the Smart Card.

Disconnect Close a previously open connection.

GetCSN Get Card Serial Number.

GetReaderName Get name of Smart Card reader used.

VerifyPin Verify Smart Card PIN.

GetPinRemaining Get number of remaining PIN tries.

GetData Get specific data.

GetCredential Get credentials the Smart Card holds.

SignData Sign a data.

DecryptData Decrypt a data.

BuildDHAgreement Construct a DH (Diffie Hellman) agreement for key derivation.

Description
This protocol allows UEFI applications to interface with a Smart Card during boot process for
authentication or data signing / decryption, especially if the application has to make use of PKI.

Overview
This document aims at defining a standard way for UEFI applications to use a Smart Card in PKI
(Public Key Infrastructure) context. The key points are:

• Each Smart Card or set of Smart Card have specific behavior.
2254 April, 2015 Version 2.5

Secure Technologies
• Smart Card applications often interface with PKCS #11 API or other cryptographic interface
like CNG.

• During boot process not all the possibility of a cryptographic interface, like PKCS #11, are
useful, for example it is neither the moment to perform Smart Card administration or Smart Card
provisioning nor to process debit or credit operation with Smart Card.

Consequently this protocol focused on those points:

• Offering standard access to Smart Card functionalities that:
— Authenticate User
— Sign data
— Decrypt data
— Get certificates

• With an API that is enough close with PKCS#11 API that it could be considered as a brick to
build a “tiny PKCS#11”.

• An implementation of the protocol can be dedicated to a specific Smart Card or a specific set of
Smart Card.

• An implementation of the protocol shall poll for Smart Card reader attachment and removal.

• An implementation of the protocol shall poll for Smart Card insertion and removal. On insertion
the protocol shall check if it supports this Smart Card.

Typically an implementation of this protocol will lean on a Smart Card reader protocol
(EFI_SMART_CARD_READER_PROTOCOL).
Version 2.5 April, 2015 2255

Unified Extensible Firmware Interface Specification
EFI_SMART_CARD_EDGE_PROTOCOL.GetContext()

Summary

 This function retrieves the context driver.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_EDGE_GET_CONTEXT) (
 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,
 OUT UINTN *NumberAidSupported,
 IN OUT UINTN *AidTableSize OPTIONAL,
 OUT SMART_CARD_AID *AidTable OPTIONAL,
 OUT UINTN *NumberSCPresent,
 IN OUT UINTN *CsnTableSize OPTIONAL,
 OUT SMART_CARD_CSN *CsnTable OPTIONAL,
 OUT UINT32 *VersionScEdgeProtocol OPTIONAL
);

Parameters
 This Indicates a pointer to the calling context. Type

 EFI_SMART_CARD_EDGE_PROTOCOL is defined in the

 EFI_SMART_CARD_EDGE_PROTOCOL description.

 NumberAidSupported

Number of AIDs this protocol supports.

 AidTableSize On input, number of items allocated for the AID table.

On output, number of items returned by protocol.

 AidTable Table of the AIDs supported by the protocol.

 NumberSCPresent Number of currently present Smart Cards that are supported by
protocol.

 CsnTableSize On input, the number of items the buffer CSN table can contain.

On output, the number of items returned by the protocol.

 CsnTable Table of the CSN of the Smart Card present and supported by
protocol.

 VersionScEdgeProtocol

EFI_SMART_CARD_EDGE_PROTOCOL version.
2256 April, 2015 Version 2.5

Secure Technologies
Related Definitions
//
// Maximum size for a Smart Card AID (Application IDentifier)
//
#define SCARD_AID_MAXSIZE 0x0010
//
// Size of CSN (Card Serial Number)
//
#define SCARD_CSN_SIZE 0x0010
//
//Current specification version 1.00
//
#define SMART_CARD_EDGE_PROTOCOL_VERSION_1 0x00000100

// Parameters type definition
//
typedef UINT8 SMART_CARD_AID[SCARD_AID_MAXSIZE];
typedef UINT8 SMART_CARD_CSN[SCARD_CSN_SIZE];

Description
The GetContext function returns the context of the protocol, the application identifiers supported
by the protocol and the number and the CSN unique identifier of Smart Cards that are present and
supported by protocol.

If AidTableSize, AidTable, CsnTableSize, CsnTable or VersionProtocol is
NULL, the function does not fail but does not fill in such variables.

In case AidTableSize indicates a buffer too small to hold all the protocol AID table, only the
first AidTableSize items of the table are returned in AidTable.

In case CsnTableSize indicates a buffer too small to hold the entire table of Smart Card CSN
present, only the first CsnTableSize items of the table are returned in CsnTable.

VersionScEdgeProtocol returns the version of the EFI_SMART_CARD_EDGE_PROTOCOL
this driver uses. For this protocol specification value is
SMART_CARD_EDGE_PROTOCOL_VERSION_1.

In case of Smart Card removal the internal CSN list is immediately updated, even if a connection is
opened with that Smart Card.

Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER NumberSCPresent Is NULL.
Version 2.5 April, 2015 2257

Unified Extensible Firmware Interface Specification
EFI_SMART_CARD_EDGE_PROTOCOL. Connect()

Summary
 This function establish a connection with a Smart Card the protocol support.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_EDGE_CONNECT) (
 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,
 OUT EFI_HANDLE *SCardHandle,
 IN UINT8 *ScardCsn OPTIONAL,
 OUT UINT8 *ScardAid OPTIONAL
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.

 ScardCsn CSN of the Smart Card the connection has to be established.

 ScardAid AID of the Smart Card the connection has been established.

Description
The Connect function establishes a connection with a Smart Card.

In case of success the SCardHandle can be used.

If the ScardCsn is NULL the connection is established with the first Smart Card the protocol finds
in its table of Smart Card present and supported. Else it establish context with the Smart Card whose
CSN given by ScardCsn.

If ScardAid is not NULL the function returns the Smart Card AID the protocol supports.

After a successful connect the SCardHandle will remain existing even in case Smart Card
removed from Smart Card reader, but all function invoking this SCardHandle will fail.
SCardHandle is released only on Disconnect.

Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER SCardHandle is NULL.

EFI_NO_MEDIA No Smart Card supported by protocol is present, Smart Card with CSN

ScardCsn or Reader has been removed. A Disconnect should be

performed.
2258 April, 2015 Version 2.5

Secure Technologies
EFI_SMART_CARD_EDGE_PROTOCOL.Disconnect()

Summary
 This function releases a connection previously established by Connect.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_EDGE_DISCONNECT) (
 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,
 IN EFI_HANDLE SCardHandle
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection to release.

Description
The Disconnect function releases the connection previously established by a Connect. In case
the Smart Card or the Smart Card reader has been removed before this call, this function returns
EFI_SUCCESS.

Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.
Version 2.5 April, 2015 2259

Unified Extensible Firmware Interface Specification

ed. A
EFI_SMART_CARD_EDGE_PROTOCOL.GetCsn

Summary
 This function returns the Smart Card serial number.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_EDGE_GET_CSN) (
 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,
 IN EFI_HANDLE SCardHandle,
 OUT UINT8 Csn[SCARD_CSN_SIZE]
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.

 Csn The Card Serial number, 16 bytes array.

Description
The GetCsn function returns the 16 bytes Smart Card Serial number.

Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been remov

Disconnect should be performed.
2260 April, 2015 Version 2.5

Secure Technologies

ed. A
EFI_SMART_CARD_EDGE_PROTOCOL.GetReaderName

Summary
 This function returns the name of the Smart Card reader used for this connection.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_EDGE_GET_READER_NAME) (
 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,
 IN EFI_HANDLE SCardHandle,
 IN OUT UINTN *ReaderNameLength,
 OUT CHAR16 *ReaderName OPTIONAL
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.

 ReaderNameLength On input, a pointer to the variable that holds the maximal size, in
bytes, of ReaderName.

On output, the required size, in bytes, for ReaderName.

 ReaderName A pointer to a NULL terminated string that will contain the reader
name.

Description
The GetReaderName function returns the name of the Smart Card reader used for this connection.

Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_INVALID_PARAMETER ReaderNameLength is NULL.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been remov

Disconnect should be performed.
Version 2.5 April, 2015 2261

Unified Extensible Firmware Interface Specification
EFI_SMART_CARD_EDGE_PROTOCOL.VerifyPin()

Summary
 This function authenticates a Smart Card user by presenting a PIN code.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_EDGE_VERIFY_PIN) (
 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,
 IN EFI_HANDLE SCardHandle,
 IN INT32 PinSize,
 IN UINT8 *PinCode,
 OUT BOOLEAN *PinResult,
 OUT UINT32 *RemainingAttempts OPTIONAL
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.

 PinSize PIN code buffer size.

 PinCode PIN code to present to the Smart Card.

 PinResult Result of PIN code presentation to the Smart Card.

TRUE when Smard Card founds the PIN code correct.

 RemainingAttempts Number of attempts still possible.

Description
The VerifyPin function presents a PIN code to the Smart Card.

If Smart Card found the PIN code correct the user is considered authenticated to current application,
and the function returns TRUE.

Negative or null PinSize value rejected if PinCode is not NULL

A NULL PinCode buffer means the application didn’t know the PIN, in that case:

• If PinSize value is negative the caller only wants to know if the current chain of the elements
Smart Card Edge protocol, Smart Card Reader protocol and Smart Card Reader supports the
Secure Pin Entry PCSC V2 functionality.

• If PinSize value is positive or null the caller ask to perform the verify PIN using the Secure
PIN Entry functionality.

In PinCode buffer, the PIN value is always given in plaintext, in case of secure messaging the
SMART_CARD_EDGE_PROTOCOL will be in charge of all intermediate treatments to build the
correct Smart Card APDU.
2262 April, 2015 Version 2.5

Secure Technologies

tive

ed. A
Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_UNSUPPORTED Pinsize < 0 and Secure PIN Entry functionality not supported.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_INVALID_PARAMETER Bad value for PinSize: value not supported by Smart Card or, nega

with PinCode not null.

EFI_INVALID_PARAMETER PinResult is NULL.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been remov

Disconnect should be performed.
Version 2.5 April, 2015 2263

Unified Extensible Firmware Interface Specification
EFI_SMART_CARD_EDGE_PROTOCOL.GetPinRemaining()

Summary
 This function gives the remaining number of attempts for PIN code presentation.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_EDGE_GET_PIN_REMAINING) (
 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,
 IN EFI_HANDLE SCardHandle,
 OUT UINT32 *RemainingAttempts
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.

 RemainingAttempts Number of attempts still possible.

Description
The number of attempts to present a correct PIN is limited and depends on Smart Card and on PIN.

This function will retrieve the number of remaining possible attempts.

Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_INVALID_PARAMETER RemainingAttempts is NULL.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been

removed. A Disconnect should be performed.
2264 April, 2015 Version 2.5

Secure Technologies
EFI_SMART_CARD_EDGE_PROTOCOL.GetData()

Summary
 This function returns a specific data from Smart Card.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_EDGE_GET_DATA) (
 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,
 IN EFI_HANDLE SCardHandle,
 IN EFI_GUID *DataId,
 IN OUT UINTN *DataSize,
 OUT VOID *Data OPTIONAL
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.

 DataId The type identifier of the data to get.

 DataSize On input, in bytes, the size of Data. On output, in bytes, the size
of buffer required to store the specified data.

 Data The data buffer in which the data is returned. The type of the data
buffer is associated with the DataId. Ignored if *DataSize is
0.

Description
This function returns a data from Smart Card. The function is generic for any kind of data, but driver
and application must share an EFI_GUID that identify the data.

Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_INVALID_PARAMETER DataId is NULL.

EFI_INVALID_PARAMETER DataSize is NULL.

EFI_INVALID_PARAMETER Data is NULL, and *DataSize is not zero.

EFI_NOT_FOUND DataId unknown for this driver.

EFI_BUFFER_TOO_SMALL The size of Data is too small for the specified data and the required

size is returned in DataSize.
Version 2.5 April, 2015 2265

Unified Extensible Firmware Interface Specification
EFI_ACCESS_DENIED Operation not performed, conditions not fulfilled. PIN not verified.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been

removed. A Disconnect should be performed.
2266 April, 2015 Version 2.5

Secure Technologies
EFI_SMART_CARD_EDGE_PROTOCOL.GetCredentials()

Summary
 This function retrieve credentials store into the Smart Card.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_EDGE_GET_CREDENTIAL) (
 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,
 IN EFI_HANDLE SCardHandle,
 IN OUT UINTN *CredentialSize,
 OUT UINT8 *CredentialList OPTIONAL
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.

 CredentialSize On input, in bytes, the size of buffer to store the list of credential.
On output, in bytes, the size of buffer required to store the entire
list of credentials.

 CredentialList List of credentials stored into the Smart Card. A list of TLV (Tag
Length Value) elements organized in containers array.
Version 2.5 April, 2015 2267

Unified Extensible Firmware Interface Specification
Related Definitions

//Type of data elements in credentials list
#define SC_EDGE_TAG_HEADER 0x0000 \
 // value of tag field for header,
 // the number of containers
#define SC_EDGE_TAG_CERT 0x0001 // value of tag field for
certificate
#define SC_EDGE_TAG_KEY_ID 0x0002 // value of tag field for
key index
 // associated with certificate
#define SC_EDGE_TAG_KEY_TYPE 0x0003 // value of tag field for
key type
#define SC_EDGE_TAG_KEY_SIZE 0x0004 // value of tag field for
key size

//Length of L fields of TLV items
#define SC_EDGE_L_SIZE_HEADER 1 // size of L field for header
#define SC_EDGE_L_SIZE_CERT 2 // size of L field for
certificate (big endian)
#define SC_EDGE_L_SIZE_KEY_ID 1 // size of L field for key
index
#define SC_EDGE_L_SIZE_KEY_TYPE 1 // size of L field for key
type
#define SC_EDGE_L_SIZE_KEY_SIZE 2 // size of L field for key
size (big endian)

//Some TLV items have a fixed value for L field
#define SC_EDGE_L_VALUE_HEADER 1 // value of L field for header
#define SC_EDGE_L_VALUE_KEY_ID 1 // value of L field for key
index
#define SC_EDGE_L_VALUE_KEY_TYPE 1 // value of L field for key
type
#define SC_EDGE_L_VALUE_KEY_SIZE 2 // value of L field for key
size

//Possible values for key type
#define SC_EDGE_RSA_EXCHANGE 0x01 //RSA decryption
#define SC_EDGE_RSA_SIGNATURE 0x02 //RSA signature
#define SC_EDGE_ECDSA_256 0x03 //ECDSA signature
#define SC_EDGE_ECDSA_384 0x04 //ECDSA signature
#define SC_EDGE_ECDSA_521 0x05 //ECDSA signature
#define SC_EDGE_ECDH_256 0x06 //ECDH agreement
#define SC_EDGE_ECDH_384 0x07 //ECDH agreement
#define SC_EDGE_ECDH_521 0x08 //ECDH agreement
2268 April, 2015 Version 2.5

Secure Technologies

e

ed. A
Description
The function returns a series of items in TLV (Tag Length Value) format.

First TLV item is the header item that gives the number of following containers (0x00, 0x01, Nb
containers).

All these containers are a series of 4 TLV items:

• The certificate item (0x01, certificate size, certificate)

• The Key identifier item (0x02, 0x01, key index)

• The key type item (0x03, 0x01, key type)

• The key size item (0x04, 0x02, key size), key size in number of bits.

Numeric multi-bytes values are on big endian format, most significant byte first:

• The L field value for certificate (2 bytes)

• The L field value for key size (2 bytes)

• The value field for key size (2 bytes)

Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_INVALID_PARAMETER CredentialSize is NULL.

EFI_INVALID_PARAMETER CredentialList is NULL, if CredentialSize is not zero.

EFI_BUFFER_TOO_SMALL The size of CredentialList is too small for the specified data and th

required size is returned in CredentialSize.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been remov

Disconnect should be performed.
Version 2.5 April, 2015 2269

Unified Extensible Firmware Interface Specification
EFI_SMART_CARD_EDGE_PROTOCOL.SignData()

Summary
 This function signs an already hashed data with a Smart Card private key.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_EDGE_SIGN_DATA) (
 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,
 IN EFI_HANDLE SCardHandle,
 IN UINTN KeyId,
 IN UINTN KeyType,
 IN EFI_GUID *HashAlgorithm,
 IN EFI_GUID *PaddingMethod,
 IN UINT8 *HashedData,
 OUT UINT8 *SignatureData
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.

 KeyId Identifier of the key container, retrieved in a key index item of
credentials.

 KeyType The key type, retrieved in a key type item of credentials.

 HashAlgorithm Hash algorithm used to hash the, one of:

• EFI_HASH_ALGORITHM_SHA1_GUID

• EFI_HASH_ALGORITHM_SHA256_GUID

• EFI_HASH_ALGORITHM_SHA384_GUID

• EFI_HASH_ALGORITHM_SHA512_GUID

 PaddingMethod Padding method used jointly with hash algorithm, one of:

• EFI_PADDING_RSASSA_PKCS1V1P5_GUID

• EFI_PADDING_RSASSA_PSS_GUID

 HashedData Hash of the data to sign. Size is function of the
HashAlgorithm.

 SignatureData Resulting signature with private key KeyId. Size is function of
the KeyType and key size retrieved in the associated key size
item of credentials.
2270 April, 2015 Version 2.5

Secure Technologies

ed. A
Related Definitions

//
// Padding methods GUIDs for signature
//

//
// RSASSA- PKCS#1-V1.5 padding method, for signature
//
#define EFI_PADDING_RSASSA_PKCS1V1P5_GUID \
{0x9317ec24,0x7cb0,0x4d0e,\
{0x8b,0x32,0x2e,0xd9,0x20,0x9c,0xd8,0xaf}}

//
// RSASSA-PSS padding method, for signature
//
#define EFI_PADDING_RSASSA_PSS_GUID \
{0x7b2349e0,0x522d,0x4f8e,\
{0xb9,0x27,0x69,0xd9,0x7c,0x9e,0x79,0x5f}}

Description
This function signs data, actually it is the hash of these data that is given to the function.

SignatureData buffer shall be big enough for signature. Signature size is function key size and
key type.

Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_INVALID_PARAMETER KeyId is not valid.

EFI_INVALID_PARAMETER KeyType is not valid or not corresponding to KeyId.

EFI_INVALID_PARAMETER HashAlgorithm is NULL.

EFI_INVALID_PARAMETER HashAlgorithm is not valid.

EFI_INVALID_PARAMETER PaddingMethod is NULL.

EFI_INVALID_PARAMETER PaddingMethod is not valid.

EFI_INVALID_PARAMETER HashedData is NULL.

EFI_INVALID_PARAMETER SignatureData is NULL.

EFI_ACCESS_DENIED Operation not performed, conditions not fulfilled. PIN not verified.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been remov

Disconnect should be performed.
Version 2.5 April, 2015 2271

Unified Extensible Firmware Interface Specification
EFI_SMART_CARD_EDGE_PROTOCOL.DecryptData()

Summary
 This function decrypts data with a PKI/RSA Smart Card private key.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_EDGE_DECRYPT_DATA) (
 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,
 IN EFI_HANDLE SCardHandle,
 IN UINTN KeyId,
 IN EFI_GUID *HashAlgorithm,
 IN EFI_GUID *PaddingMethod,
 IN UINTN EncryptedSize,
 IN UINT8 *EncryptedData,
 IN OUT UINTN *PlaintextSize,
 OUT UINT8 *PlaintextData
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.

 KeyId Identifier of the key container, retrieved in a key index item of
credentials.

 HashAlgorithm Hash algorithm used to hash the, one of:

• EFI_HASH_ALGORITHM_SHA1_GUID

• EFI_HASH_ALGORITHM_SHA256_GUID

• EFI_HASH_ALGORITHM_SHA384_GUID

• EFI_HASH_ALGORITHM_SHA512_GUID

 PaddingMethod Padding method used jointly with hash algorithm, one of:

• EFI_PADDING_NONE_GUID

• EFI_PADDING_RSAES_PKCS1V1P5_GUID

• EFI_PADDING_RSAES_OAEP_GUID

 EncryptedSize Size of data to decrypt

 EncryptedData Data to decrypt

 PlaintextSize On input, in bytes, the size of buffer to store the decrypted data.
On output, in bytes, the size of buffer required to store the
decrypted data.

 PlaintextData Buffer for decrypted data, padding removed.
2272 April, 2015 Version 2.5

Secure Technologies
Related Definitions

//
// Padding methods GUIDs for decryption
//

//
// No padding, for decryption
//
#define EFI_PADDING_NONE_GUID \
{0x3629ddb1,0x228c,0x452e,\
{0xb6,0x16,0x09,0xed,0x31,0x6a,0x97,0x00}}

//
// RSAES-PKCS#1-V1.5 padding, for decryption
//
#define EFI_PADDING_RSAES_PKCS1V1P5_GUID \
{0xe1c1d0a9,0x40b1,0x4632,\
{0xbd,0xcc,0xd9,0xd6,0xe5,0x29,0x56,0x31}}

//
// RSAES-OAEP padding, for decryption
//
#define EFI_PADDING_RSAES_OAEP_GUID \
{0xc1e63ac4,0xd0cf,0x4ce6,\
{0x83,0x5b,0xee,0xd0,0xe6,0xa8,0xa4,0x5b}}

Description
The function decrypts some PKI / RSA encrypted data with private key securely stored into the
Smart Card.

The KeyId must reference a key of type SC_EDGE_RSA_EXCHANGE.

Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_INVALID_PARAMETER KeyId is not valid or associated key not of type

SC_EDGE_RSA_EXCHANGE.

EFI_INVALID_PARAMETER HashAlgorithm is NULL.

EFI_INVALID_PARAMETER HashAlgorithm is not valid.

EFI_INVALID_PARAMETER PaddingMethod is NULL.

EFI_INVALID_PARAMETER PaddingMethod is not valid.
Version 2.5 April, 2015 2273

Unified Extensible Firmware Interface Specification

 size

ed. A
EFI_INVALID_PARAMETER EncryptedSize is 0.

EFI_INVALID_PARAMETER EncryptedData is NULL.

EFI_INVALID_PARAMETER PlaintextSize is NULL.

EFI_INVALID_PARAMETER PlaintextData is NULL.

EFI_ACCESS_DENIED Operation not performed, conditions not fulfilled. PIN not verified.

EFI_BUFFER_TOO_SMALL PlaintextSize is too small for the plaintext data and the required

is returned in PlaintextSize.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been remov

Disconnect should be performed.
2274 April, 2015 Version 2.5

Secure Technologies
EFI_SMART_CARD_EDGE_PROTOCOL.BuildDHAgreement()

Summary
 This function performs a secret Diffie Hellman agreement calculation that would be used to derive
a symmetric encryption / decryption key.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SMART_CARD_EDGE_BUILD_DH_AGREEMENT) (
 IN EFI_SMART_CARD_EDGE_PROTOCOL *This,
 IN EFI_HANDLE SCardHandle,
 IN UINTN KeyId,
 IN UINT8 *dataQx,
 IN UINT8 *dataQy,
 OUT UINT8 *DHAgreement
);

Parameters
 This Indicates a pointer to the calling context. Type

EFI_SMART_CARD_EDGE_PROTOCOL is defined in the
EFI_SMART_CARD_EDGE_PROTOCOL description.

 SCardHandle Handle on Smart Card connection.

 KeyId Identifier of the key container, retrieved in a key index item of
credentials.

 dataQx Public key x coordinate. Size is the same as key size for KeyId.

Stored in big endian format.

 dataQy Public key y coordinate. Size is the same as key size for KeyId.

Stored in big endian format.

 DHAgreement Buffer for DH agreement computed. Size must be bigger or equal
to key size for KeyId.

Description
The function compute a DH agreement that should be diversified to generate a symmetric key to
proceed encryption or decryption.

The application and the Smart Card shall agree on the diversification process.

The KeyId must reference a key of one of the types: SC_EDGE_ECDH_256,
SC_EDGE_ECDH_384 or SC_EDGE_ECDH_521.
Version 2.5 April, 2015 2275

Unified Extensible Firmware Interface Specification

ed. A
Status Codes Returned

EFI_SUCCESS The requested command completed successfully.

EFI_INVALID_PARAMETER This is NULL.

EFI_INVALID_PARAMETER No connection for SCardHandle value.

EFI_INVALID_PARAMETER KeyId is not valid.

EFI_INVALID_PARAMETER dataQx is NULL.

EFI_INVALID_PARAMETER dataQy is NULL.

EFI_INVALID_PARAMETER DHAgreement is NULL.

EFI_ACCESS_DENIED Operation not performed, conditions not fulfilled. PIN not verified.

EFI_NO_MEDIA Smart Card or Reader of SCardHandle connection has been remov

Disconnect should be performed.
2276 April, 2015 Version 2.5

Protocols— Timestamp Protocol
36
Protocols— Timestamp Protocol

36.1 EFI Timestamp Protocol

EFI_TIMESTAMP_PROTOCOL

Summary
The Timestamp protocol provides a platform independent interface for retrieving a high resolution
timestamp counter.

GUID
#define EFI_TIMESTAMP_PROTOCOL_GUID \
 { 0xafbfde41, 0x2e6e, 0x4262,\
 { 0xba, 0x65, 0x62, 0xb9, 0x23, 0x6e, 0x54, 0x95 }}

Protocol Interface Structure
typedef struct _ EFI_TIMESTAMP_PROTOCOL {
 TIMESTAMP_GET GetTimestamp;
 TIMESTAMP_GET_PROPERTIES GetProperties;
} EFI_TIMESTAMP_PROTOCOL;
Version 2.5 April, 2015 2277

Unified Extensible Firmware Interface Specification
EFI_TIMESTAMP_PROTOCOL.GetTimestamp()

Summary
Retrieves the current timestamp counter value.

Prototype
typedef
UINT64
(EFIAPI *TIMESTAMP_GET) (
 VOID
);

Description
Retrieves the current value of a 64-bit free running timestamp counter.

The counter shall count up in proportion to the amount of time that has passed. The counter value
will always roll over to zero. The properties of the counter can be retrieved from GetProperties().

The caller should be prepared for the function to return the same value twice across successive calls.
The counter value will not go backwards other than when wrapping, as defined by EndValue in
GetProperties().

The frequency of the returned timestamp counter value must remain constant. Power management
operations that affect clocking must not change the returned counter frequency. The quantization of
counter value updates may vary as long as the value reflecting time passed remains consistent.

Return Value
The current value of the free running timestamp counter.
2278 April, 2015 Version 2.5

Protocols— Timestamp Protocol
EFI_TIMESTAMP_PROTOCOL.GetProperties ()

Summary
Obtains timestamp counter properties including frequency and value limits.

Prototype
typedef
EFI_STATUS
(EFIAPI *TIMESTAMP_GET_PROPERTIES) (
 OUT EFI_TIMESTAMP_PROPERTIES *Properties
);

Parameters
Properties

The properties of the timestamp counter. See "Related Definitions" below.

Description
Retrieves the timestamp counter properties structure.

Related Definitions
typedef struct {
 UINT64 Frequency;

 UINT64 EndValue;
 } EFI_TIMESTAMP_PROPERTIES;

Frequency The frequency of the timestamp counter in Hz.

EndValue The value that the timestamp counter ends with immediately
before it rolls over. For example, a 64-bit free running counter
would have an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit
free running counter would have an EndValue of 0xFFFFFF.

Status Codes Returned

EFI_SUCCESS The properties were successfully retrieved.

EFI_DEVICE_ERROR An error occurred trying to retrieve the properties of the

timestamp counter subsystem. Properties is not

updated.

EFI_INVALID_PARAMETER Properties is NULL.
Version 2.5 April, 2015 2279

Unified Extensible Firmware Interface Specification
2280 April, 2015 Version 2.5

Appendix A
GUID and Time Formats

All EFI GUIDs (Globally Unique Identifiers) have the format described in RFC 4122 and comply
with the referenced algorithms for generating GUIDs. It should also be noted that TimeLow,
TimeMid, TimeHighAndVersion fields in the EFI are encoded as little endian.The following table
defines the format of an EFI GUID (128 bits).

Table 224. EFI GUID Format

This appendix for GUID defines a 60-bit timestamp format that is used to generate the GUID. All
EFI time information is stored in 64-bit structures that contain the following format: The timestamp
is a 60-bit value containing a count of 100-nanosecond intervals since 00:00:00.00, 15 October 1582
(the date of Gregorian reform to the Christian calendar). This time value will not roll over until the
year 3400 AD. It is assumed that a future version of the EFI specification can deal with the
year-3400 issue by extending this format if necessary.

This specification also defines a standard text representation of the GUID. This format is also
sometimes called the “registry format”. It consists of 36 characters, as follows:

aabbccdd-eeff-gghh-iijj-kkllmmnnoopp

The pairs aa – pp are two characters in the range ‘0’-‘9’, ‘a’-‘f’ or ‘A’-F’, with each pair
representing a single byte hexadecimal value.

The following table describes the relationship between the text representation and a 16-byte buffer,
the structure defined in Table 224 and the EFI_GUID structure.

Table 225. Text representation relationships

Mnemonic

Byte
Offset

Byte
Length

Description

TimeLow 0 4 The low field of the timestamp.

TimeMid 4 2 The middle field of the timestamp.

TimeHighAndVersion 6 2 The high field of the timestamp multiplexed with the
version number.

ClockSeqHighAndReserved 8 1 The high field of the clock sequence multiplexed with
the variant.

ClockSeqLow 9 1 The low field of the clock sequence.

Node 10 6 The spatially unique node identifier. This can be based
on any IEEE 802 address obtained from a network
card. If no network card exists in the system, a
cryptographic-quality random number can be used.

String Offset In Buffer Relationship To Table 224 Relationship To EFI_GUID

aa 3 TimeLow[24:31] Data1[24:31]

bb 2 TimeLow[16:23] Data1[16:23]
Version 2.5 April, 2015 2281

Unified Extensible Firmware Interface Specification
cc 1 TimeLow[8:15] Data1[8:15]

dd 0 TimeLow[0:7] Data1[0:7]

ee 5 TimeMid[8:15] Data2[8:15]

ff 4 TimeMid[0:7] Data2[0:7]

gg 7 TimeHighAndVersion[8:15] Data3[8:15]

hh 6 TimeHighAndVersion[0:7] Data3[0:7]

ii 8 ClockSeqHighAndReserved[0:7] Data4[0:7]

jj 9 ClockSeqLow[0:7] Data4[8:15]

kk 10 Node[0:7] Data4[16:23]

ll 11 Node[8:15] Data4[24:31]

mm 12 Node[16:23] Data4[32:39]

nn 13 Node[24:31] Data4[40:47]

oo 14 Node[32:39] Data4[48:55]

pp 15 Node[40:47] Data4[56:63]
2282 April, 2015 Version 2.5

Appendix B
Console

The EFI console was designed to allow input from a wide variety of devices. This appendix provides
examples of the mapping of keyboard input from various types of devices to EFI scan codes. While
representative of common console devices in use today, it is not intended to be a comprehensive list.
EFI application programmers can use this table to identify the EFI Scan Code generated by a specific
key press. The description of the example device input data that generates a EFI Scan Code may be
useful to EFI driver writers, as well as showing the limitations on which EFI Scan codes can be
generated by different types of console input devices.

The EFI console was designed so that it could map to common console devices. This appendix
explains how an EFI console could map to a VGA with PC AT 101/102, PC ANSI, or
ANSI X3.64 consoles.

B.1 EFI_SIMPLE_TEXT_INPUT_PROTOCOL and
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL

Table 226 and Table 227 give examples of how input from a set of common input devices is mapped
to EFI scan codes. Terminals and terminal emulators generally report function and editing keys as
escape or control sequences. These sequences are formed by a control character followed by one or
more additional graphic characters that indicate what the sequence means. ANSI X3.64 terminals
generally require an ANSI parser to determine how to interpret a sequence and how to determine that
the sequence is complete. These terminals can generate sequences using either 8-bit controls or 7-bit
control sequences. Older terminal types, such as the VT100+ have a simpler set of sequences that
can be interpreted using simple case statements. These terminals usually generate only 7-bit data,
and 7-bit control sequences.

In the tables below, the CSI character is the 8-bit control character 0x9B, and is equivalent to the 7-
bit control sequence "ESC [" (the 0x1B control ESC followed by the left bracket character 0x5B).
The sequences are shown with spaces for readability, but do not contain the space character.

The VT100+ column represents a common class of terminal emulation that is a superset of the
Digital Equipment Corporation (DEC) VT100 terminal. This includes VT-UTF8 (Hyperterm) and
PC_ANSI terminal types. The ANSI X3.64 column shows the sequences generated by the DEC
VT200 through VT500 terminals, which are an ANSI X3.64 / ISO 6429 compliant.

The USB HID and AT 101/102 columns show the scan codes generated by two common directly
attached keyboards. These keyboards are generally used in combination with a VGA text display to
form a "VGA Console".

In the table below, the cells with N/A contained in them are simply intended to reflect that the key
may be defined for that terminal or keyboard, but there is no industry standard or consistent mapping
for the key. Some input devices might not implement all of these keys.
Version 2.5 April, 2015 2283

Unified Extensible Firmware Interface Specification
Table 226. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_PROTOCOL

Table 227. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL

EFI Scan Code

Description

ANSI X3.64 /
DEC VT200-
500 (8-bit
mode)

VT100+
(7-bit
mode)

USB
Keyboard
HID Values

AT 101/102
Keyboard
Scan Codes

0x00 Null scan code N/A N/A 0x00 N/A

0x01 UP ARROW CSI A ESC [A 0x52 0xe0, 0x48

0x02 DOWN ARROW CSI B ESC [B 0x51 0xe0, 0x50

0x03 RIGHT ARROW CSI C ESC [C 0x4F 0xe0, 0x4d

0x04 LEFT ARROW CSI D ESC [D 0x50 0xe0, 0x4b

0x05 Home CSI 1 ~ ESC h 0x4A 0xe0, 0x47

0x06 End CSI 4 ~ ESC k 0x4D 0xe0, 0x4f

0x07 Insert CSI 2 ~ ESC + 0x49 0xe0, 0x52

0x08 Delete CSI 3 ~ ESC - 0x4C 0xe0, 0x53

0x09 Page Up CSI 5 ~ ESC ? 0x4B 0xe0, 0x49

0x0a Page Down CSI 6 ~ ESC / 0x4E 0xe0, 0x51

0x0b Function 1 CSI 1 1 ~ ESC 1 0x3A 0x3b

0x0c Function 2 CSI 1 2 ~ ESC 2 0x3B 0x3c

0x0d Function 3 CSI 1 3 ~ ESC 3 0x3C 0x3d

0x0e Function 4 CSI 1 4 ~ ESC 4 0x3D 0x3e

0x0f Function 5 CSI 1 5 ~ ESC 5 0x3E 0x3f

0x10 Function 6 CSI 1 7 ~ ESC 6 0x3F 0x40

0x11 Function 7 CSI 1 8 ~ ESC 7 0x40 0x41

0x12 Function 8 CSI 1 9 ~ ESC 8 0x41 0x42

0x13 Function 9 CSI 2 0 ~ ESC 9 0x42 0x43

0x14 Function 10 CSI 2 1 ~ ESC 0 0x43 0x44

0x17 Escape ESC ESC 0x29 0x01

EFI Scan Code

Description

ANSI X3.64 /
DEC VT200-
500 (8-bit
mode)

VT100+
(7-bit
mode)

USB
Keyboard
HID Values

AT 101/102
Keyboard
Scan Codes

0x15 Function 11 CSI 2 3 ~ ESC ! 0x44 0x57

0x16 Function 12 CSI 2 4 ~ ESC @ 0x45 0x58

0x48 Pause N/A N/A 0x48 0xe1, 0x1d,
0x45

0x68 Function 13 CSI 2 5 ~ N/A 0x68 N/A

0x69 Function 14 CSI 2 6 ~ N/A 0x69 N/A

0x6A Function 15 CSI 2 7 ~ N/A 0x6A N/A
2284 April, 2015 Version 2.5

B.2 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL
Table 228 defines how the programmatic methods of the
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL could be implemented as PC ANSI or ANSI X3.64
terminals. Detailed descriptions of PC ANSI and ANSI X3.64 escape sequences are as follows. The
same type of operations can be supported via a PC AT type INT 10h interface.

Table 228. Control Sequences to Implement EFI_SIMPLE_TEXT_INPUT_PROTOCOL

0x6B Function 16 CSI 2 8 ~ N/A 0x6B N/A

0x6C Function 17 CSI 2 9 ~ N/A 0x6C N/A

0x6D Function 18 CSI 3 0 ~ N/A 0x6D N/A

0x6E Function 19 CSI 3 1 ~ N/A 0x6E N/A

0x6F Function 20 CSI 3 2 ~ N/A 0x6F N/A

0x70 Function 21 N/A N/A 0x70 N/A

0x71 Function 22 N/A N/A 0x71 N/A

0x72 Function 23 N/A N/A 0x72 N/A

0x73 Function 24 N/A N/A 0x73 N/A

0x7F Mute N/A N/A 0x7F N/A

0x80 Volume Up N/A N/A 0x80 N/A

0x81 Volume Down N/A N/A 0x81 N/A

0x100 Brightness Up N/A N/A N/A N/A

0x101 Brightness Down N/A N/A N/A N/A

0x102 Suspend N/A N/A N/A N/A

0x103 Hibernate N/A N/A N/A N/A

0x104 Toggle Display N/A N/A N/A N/A

0x105 Recovery N/A N/A N/A N/A

0x106 Eject N/A N/A N/A N/A

0x8000-0xFFFF OEM Reserved N/A N/A N/A N/A

PC ANSI
Codes

ANSI X3.64
Codes

Description

ESC [2 J CSI 2 J Clear Display Screen.

ESC [0 m CSI 0 m Normal Text.

EFI Scan Code

Description

ANSI X3.64 /
DEC VT200-
500 (8-bit
mode)

VT100+
(7-bit
mode)

USB
Keyboard
HID Values

AT 101/102
Keyboard
Scan Codes
Version 2.5 April, 2015 2285

Unified Extensible Firmware Interface Specification
ESC [1 m CSI 1 m Bright Text.

ESC [7 m CSI 7 m Reversed Text.

ESC [30 m CSI 30 m Black foreground, compliant with ISO Standard 6429.

ESC [31 m CSI 31 m Red foreground, compliant with ISO Standard 6429.

ESC [32 m CSI 32 m Green foreground, compliant with ISO Standard 6429.

ESC [33 m CSI 33 m Yellow foreground, compliant with ISO Standard 6429.

ESC [34 m CSI 34 m Blue foreground, compliant with ISO Standard 6429.

ESC [35 m CSI 35 m Magenta foreground, compliant with ISO Standard 6429.

ESC [36 m CSI 36 m Cyan foreground, compliant with ISO Standard 6429.

ESC [37 m CSI 37 m White foreground, compliant with ISO Standard 6429.

ESC [40 m CSI 40 m Black background, compliant with ISO Standard 6429.

ESC [41 m CSI 41 m Red background, compliant with ISO Standard 6429.

ESC [42 m CSI 42 m Green background, compliant with ISO Standard 6429.

ESC [43 m CSI 43 m Yellow background, compliant with ISO Standard 6429.

ESC [44 m CSI 44 m Blue background, compliant with ISO Standard 6429.

ESC [45 m CSI 45 m Magenta background, compliant with ISO Standard 6429.

ESC [46 m CSI 46 m Cyan background, compliant with ISO Standard 6429.

ESC [47 m CSI 47 m White background, compliant with ISO Standard 6429.

ESC [= 3 h CSI = 3 h Set Mode 80x25 color.

ESC [row;col H CSI row;col H Set cursor position to row;col. Row and col are strings of ASCII digits.

PC ANSI
Codes

ANSI X3.64
Codes

Description
2286 April, 2015 Version 2.5

Appendix C
Device Path Examples

This appendix presents an example EFI Device Path and explains its relationship to the ACPI name
space. An example system design is presented along with its corresponding ACPI name space.
These physical examples are mapped back to EFI Device Paths.

C.1 Example Computer System
Figure 132 represents a hypothetical computer system architecture that will be used to discuss the
construction of EFI Device Paths. The system consists of a memory controller that connects directly
to the processors’ front side bus. The memory controller is only part of a larger chipset, and it
connects to a root PCI host bridge chip, and a secondary root PCI host bridge chip. The secondary
PCI host bridge chip produces a PCI bus that contains a PCI to PCI bridge. The root PCI host bridge
produces a PCI bus, and also contains USB, ATA66, and AC ’97 controllers. The root PCI host
bridge also contains an LPC bus that is used to connect a SIO (Super IO) device. The SIO contains
a PC-AT-compatible floppy disk controller, and other PC-AT-compatible devices like a keyboard
controller.

Figure 132. Example Computer System

The remainder of this appendix describes how to construct a device path for three example devices
from the system in Figure 132. The following is a list of the examples used:

• Legacy floppy

OM13179

CPU CPU

AGP PDRAM

PCI 33MHz

LPC

PCI Slots

3

P
C

I S
lo

ts

PCI Slots

2

1FDC
KBD
GPIO
Serial

Parallel
Mouse

IR

SIO

USB ATA66 AC'97

Memory
Controller Secondary

PCI Host
Bridge

Root PCI
Host

Bridge

Memory
Controller

PCI to PCI
Bridge
Version 2.5 April, 2015 2287

Unified Extensible Firmware Interface Specification
• IDE Disk

• Secondary root PCI bus with PCI to PCI bridge

Figure 133 is a partial ACPI name space for the system in Figure 132. Figure 133 is based on
Figure 5-3 in the Advanced Configuration and Power Interface Specification.

Figure 133. Partial ACPI Name Space for Example System

C.2 Legacy Floppy
The legacy floppy controller is contained in the SIO chip that is connected root PCI bus host bridge
chip. The root PCI host bridge chip produces PCI bus 0, and other resources that appear directly to
the processors in the system.

In ACPI this configuration is represented in the _SB, system bus tree, of the ACPI name space.
PCI0 is a child of _SB and it represents the root PCI host bridge. The SIO appears to the system to
be a set of ISA devices, so it is represented as a child of PCI0 with the name ISA0. The floppy
controller is represented by FLPY as a child of the ISA0 bus.

The EFI Device Path for the legacy floppy is defined in Table 229. It would contain entries for the
following things:

• Root PCI Bridge. ACPI Device Path _HID PNP0A03, _UID 0. ACPI name space _SB\PCI0

• PCI to ISA Bridge. PCI Device Path with device and function of the PCI to ISA bridge. ACPI
name space _SB\PCI0\ISA0

OM13180

Root of ACPI Name Space

_ SB - System Bus Tree

PCI0 - Root PCI Bus

_HID & _UID - ACPI Device ID and Unique ID
_CRS - Current Resources (Bus, I/O, Memory)

IDE0 - IDE Device

_ADR - PCI Device #, Function #

 PRIM - Primary IDE Channel

_ADR - Primary 0, Secondary 1

 MAST - Master IDE Device
2

_ADR - Master 0, Slave 1

ISA0 - ISA Bridge

_HID & _UID - ACPI Device ID and Unique ID
_ADR - PCI Device #, Function #

FLPY - Legacy Floppy

_HID - Address of Floppy

PCI0 - Secondary Root PCI Bus

_HID & _UID - ACPI Device ID and Unique ID
_CRS - Current Resources (Bus, I/O, Memory)

1

3

KEY...

Device Object

Data Object

Example Platform
Reference1
2288 April, 2015 Version 2.5

• Floppy Plug and Play ID. ACPI Device Path _HID PNP0303, _UID 0. ACPI name space
_SB\PCI0\ISA0\FLPY

• End Device Path

Table 229. Legacy Floppy Device Path

C.3 IDE Disk
The IDE Disk controller is a PCI device that is contained in a function of the root PCI host bridge.
The root PCI host bridge is a multi function device and has a separate function for chipset registers,
USB, and IDE. The disk connected to the IDE ATA bus is defined as being on the primary or
secondary ATA bus, and of being the master or slave device on that bus.

In ACPI this configuration is represented in the _SB, system bus tree, of the ACPI name space.
PCI0 is a child of _SB and it represents the root PCI host bridge. The IDE controller appears to the
system to be a PCI device with some legacy properties, so it is represented as a child of PCI0 with
the name IDE0. PRIM is a child of IDE0 and it represents the primary ATA bus of the IDE
controller. MAST is a child of PRIM and it represents that this device is the ATA master device on
this primary ATA bus.

Byte
Offset

Byte
Length

Data

Description

0 1 0x02 Generic Device Path Header – Type ACPI Device Path

1 1 0x01 Sub type – ACPI Device Path

2 2 0x0C Length

4 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

8 4 0x0000 _UID

C 1 0x01 Generic Device Path Header – Type Hardware Device Path

D 1 0x01 Sub type PCI Device Path

E 2 0x06 Length

10 1 0x00 PCI Function

11 1 0x10 PCI Device

12 1 0x02 Generic Device Path Header – Type ACPI Device Path

13 1 0x01 Sub type – ACPI Device Path

14 2 0x0C Length

16 4 0x41D0,
0x0303

_HID PNP0303

1A 4 0x0000 _UID

1E 1 0xFF Generic Device Path Header – Type End Device Path

1F 1 0xFF Sub type – End Device Path

20 2 0x04 Length
Version 2.5 April, 2015 2289

Unified Extensible Firmware Interface Specification
The EFI Device Path for the PCI IDE controller is defined in Table 230. It would contain entries for
the following things:

• Root PCI Bridge. ACPI Device Path _HID PNP0A03, _UID 0. ACPI name space _SB\PCI0

• PCI IDE controller. PCI Device Path with device and function of the IDE controller. ACPI
name space _SB\PCI0\IDE0

• ATA Address. ATA Messaging Device Path for Primary bus and Master device. ACPI name
space _SB\PCI0\IDE0\PRIM\MAST

• End Device Path

Table 230. IDE Disk Device Path

C.4 Secondary Root PCI Bus with PCI to PCI Bridge
The secondary PCI host bridge materializes a second set of PCI buses into the system. The PCI
buses on the secondary PCI host bridge are totally independent of the PCI buses on the root PCI host
bridge. The only relationship between the two is they must be configured to not consume the same
resources. The primary PCI bus of the secondary PCI host bridge also contains a PCI to PCI bridge.
There is some arbitrary PCI device plugged in behind the PCI to PCI bridge in a PCI slot.

Byte
Offset

Byte
Length

Data

Description

0 1 0x02 Generic Device Path Header – Type ACPI Device Path

1 1 0x01 Sub type – ACPI Device Path

2 2 0x0C Length

4 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

8 4 0x0000 _UID

C 1 0x01 Generic Device Path Header – Type Hardware Device Path

D 1 0x01 Sub type PCI Device Path

E 2 0x06 Length

10 1 0x01 PCI Function

11 1 0x10 PCI Device

12 1 0x03 Generic Device Path Header – Messaging Device Path

13 1 0x01 Sub type – ATAPI Device Path

14 2 0x06 Length

16 1 0x00 Primary =0, Secondary = 1

17 1 0x00 Master = 0, Slave = 1

18 2 0x0000 LUN

1A 1 0xFF Generic Device Path Header – Type End Device Path

1B 1 0xFF Sub type – End Device Path

1C 2 0x04 Length
2290 April, 2015 Version 2.5

In ACPI this configuration is represented in the _SB, system bus tree, of the ACPI name space.
PCI1 is a child of _SB and it represents the secondary PCI host bridge. The PCI to PCI bridge and
the device plugged into the slot on its primary bus are not described in the ACPI name space. These
devices can be fully configured by following the applicable PCI specification.

The EFI Device Path for the secondary root PCI bridge with a PCI to PCI bridge is defined in
Table 231. It would contain entries for the following things:

• Root PCI Bridge. ACPI Device Path _HID PNP0A03, _UID 1. ACPI name space _SB\PCI1

• PCI to PCI Bridge. PCI Device Path with device and function of the PCI Bridge. ACPI name
space _SB\PCI1, PCI to PCI bridges are defined by PCI specification and not ACPI.

• PCI Device. PCI Device Path with the device and function of the PCI device. ACPI name space
_SB\PCI1, PCI devices are defined by PCI specification and not ACPI.

• End Device Path.

Table 231. Secondary Root PCI Bus with PCI to PCI Bridge Device Path

C.5 ACPI Terms
Names in the ACPI name space that start with an underscore (“_”) are reserved by the ACPI
specification and have architectural meaning. All ACPI names in the name space are four characters
in length. The following four ACPI names are used in this specification.

Byte
Offset

Byte
Length

Data

Description

0 1 0x02 Generic Device Path Header – Type ACPI Device Path

1 1 0x01 Sub type – ACPI Device Path

2 2 0x0C Length

4 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents the compressed string ‘PNP’ and is
encoded in the low order bytes. The compression method is described in
the ACPI Specification.

8 4 0x0001 _UID

C 1 0x01 Generic Device Path Header – Type Hardware Device Path

D 1 0x01 Sub type PCI Device Path

E 2 0x06 Length

10 1 0x00 PCI Function for PCI to PCI bridge

11 1 0x0c PCI Device for PCI to PCI bridge

12 1 0x01 Generic Device Path Header – Type Hardware Device Path

13 1 0x01 Sub type PCI Device Path

14 2 0x08 Length

16 1 0x00 PCI Function for PCI Device

17 1 0x00 PCI Device for PCI Device

18 1 0xFF Generic Device Path Header – Type End Device Path

19 1 0xFF Sub type – End Device Path

1A 2 0x04 Length
Version 2.5 April, 2015 2291

Unified Extensible Firmware Interface Specification
_ADR. The Address on a bus that has standard enumeration. An example would be PCI, where the
enumeration method is described in the PCI Local Bus specification.

_CRS. The current resource setting of a device. A _CRS is required for devices that are not
enumerated in a standard fashion. _CRS is how ACPI converts nonstandard devices into Plug and
Play devices.

_HID. Represents a device’s Plug and Play hardware ID, stored as a 32-bit compressed EISA ID.
_HID objects are optional in ACPI. However, a _HID object must be used to describe any device
that will be enumerated by the ACPI driver in the OS. This is how ACPI deals with non–Plug and
Play devices.

_UID. Is a serial number style ID that does not change across reboots. If a system contains more than
one device that reports the same _HID, each device must have a unique _UID. The _UID only needs
to be unique for device that have the exact same _HID value.

C.6 EFI Device Path as a Name Space
Figure 134 shows the EFI Device Path for the example system represented as a name space. The
Device Path can be represented as a name space, but EFI does support manipulating the Device Path
as a name space. You can only access Device Path information by locating the
DEVICE_PATH_INTERFACE from a handle. Not all the nodes in a Device Path will have a handle.

Figure 134. EFI Device Path Displayed As a Name Space
2292 April, 2015 Version 2.5

Appendix D
Status Codes

EFI interfaces return an EFI_STATUS code. Table 233, Table 234, and Table 235 list these codes
for success, errors, and warnings, respectively. The range of status codes that have the highest bit set
and the next to highest bit clear are reserved for use by EFI. The range of status codes that have both
the highest bit set and the next to highest bit set are reserved for use by OEMs. Success and warning
codes have their highest bit clear, so all success and warning codes have positive values. The range
of status codes that have both the highest bit clear and the next to highest bit clear are reserved for
use by EFI. The range of status code that have the highest bit clear and the next to highest bit set are
reserved for use by OEMs. Table 232 lists the status code ranges described above.

Table 232. EFI_STATUS Code Ranges

Table 233. EFI_STATUS Success Codes (High Bit Clear)

Table 234. EFI_STATUS Error Codes (High Bit Set)

Supported
32-bit Range

Supported 64-bit
Architecture Ranges

Description

0x00000000-
0x1fffffff

0x0000000000000000-
0x1fffffffffffffff

Warning codes reserved for use by UEFI main specification.

0x20000000-
0x3fffffff

0x2000000000000000-
0x3fffffffffffffff

Warning codes reserved for use by the Platform
Initialization Architecture Specification.

0x40000000-
0x7fffffff

0x4000000000000000-
0x7fffffffffffffff

Warning codes reserved for OEM usage.

0x80000000-
0x9fffffff

0x8000000000000000-
0x9fffffffffffffff

Error codes reserved for use by UEFI main spec.

0xa0000000-
0xbfffffff

0xa000000000000000-
0xbfffffffffffffff

Error codes reserved for use by the Platform Initialization
Architecture Specification.

0xc0000000-
0xffffffff

0xc000000000000000-
0xcfffffffffffffff

Error codes reserved for OEM usage.

Mnemonic Value Description

EFI_SUCCESS 0 The operation completed successfully.

Mnemonic Value Description

EFI_LOAD_ERROR 1 The image failed to load.

EFI_INVALID_PARAMETER 2 A parameter was incorrect.

EFI_UNSUPPORTED 3 The operation is not supported.
Version 2.5 April, 2015 2293

Unified Extensible Firmware Interface Specification
EFI_BAD_BUFFER_SIZE 4 The buffer was not the proper size for the request.

EFI_BUFFER_TOO_SMALL 5 The buffer is not large enough to hold the requested data.
The required buffer size is returned in the appropriate
parameter when this error occurs.

EFI_NOT_READY 6 There is no data pending upon return.

EFI_DEVICE_ERROR 7 The physical device reported an error while attempting the
operation.

EFI_WRITE_PROTECTED 8 The device cannot be written to.

EFI_OUT_OF_RESOURCES 9 A resource has run out.

EFI_VOLUME_CORRUPTED 10 An inconstancy was detected on the file system causing the
operating to fail.

EFI_VOLUME_FULL 11 There is no more space on the file system.

EFI_NO_MEDIA 12 The device does not contain any medium to perform the
operation.

EFI_MEDIA_CHANGED 13 The medium in the device has changed since the last
access.

EFI_NOT_FOUND 14 The item was not found.

EFI_ACCESS_DENIED 15 Access was denied.

EFI_NO_RESPONSE 16 The server was not found or did not respond to the request.

EFI_NO_MAPPING 17 A mapping to a device does not exist.

EFI_TIMEOUT 18 The timeout time expired.

EFI_NOT_STARTED 19 The protocol has not been started.

EFI_ALREADY_STARTED 20 The protocol has already been started.

EFI_ABORTED 21 The operation was aborted.

EFI_ICMP_ERROR 22 An ICMP error occurred during the network operation.

EFI_TFTP_ERROR 23 A TFTP error occurred during the network operation.

EFI_PROTOCOL_ERROR 24 A protocol error occurred during the network operation.

EFI_INCOMPATIBLE_VERSION 25 The function encountered an internal version that was
incompatible with a version requested by the caller.

EFI_SECURITY_VIOLATION 26 The function was not performed due to a security violation.

EFI_CRC_ERROR 27 A CRC error was detected.

EFI_END_OF_MEDIA 28 Beginning or end of media was reached

EFI_END_OF_FILE 31 The end of the file was reached.

EFI_INVALID_LANGUAGE 32 The language specified was invalid.

EFI_COMPROMISED_DATA 33 The security status of the data is unknown or compromised
and the data must be updated or replaced to restore a valid
security status.

EFI_IP_ADDRESS_CONFLICT 34 There is an address conflict address allocation

Mnemonic Value Description
2294 April, 2015 Version 2.5

Table 235. EFI_STATUS Warning Codes (High Bit Clear)

Mnemonic Value Description

EFI_WARN_UNKNOWN_GLYPH 1 The string contained one or more characters that the device
could not render and were skipped.

EFI_WARN_DELETE_FAILURE 2 The handle was closed, but the file was not deleted.

EFI_WARN_WRITE_FAILURE 3 The handle was closed, but the data to the file was not
flushed properly.

EFI_WARN_BUFFER_TOO_SMALL 4 The resulting buffer was too small, and the data was
truncated to the buffer size.

EFI_WARN_STALE_DATA 5 The data has not been updated within the timeframe set by
local policy for this type of data.
Version 2.5 April, 2015 2295

Unified Extensible Firmware Interface Specification
2296 April, 2015 Version 2.5

Appendix E
Universal Network Driver Interfaces

E.1 Introduction
This appendix defines the 32/64-bit H/W and S/W Universal Network Driver Interfaces (UNDIs).
These interfaces provide one method for writing a network driver; other implementations are
possible.

E.1.1 Definitions

Table 236. Definitions

Term Definition

BC BaseCode
The PXE BaseCode, included as a core protocol in EFI, is comprised of a simple network stack
(UDP/IP) and a few common network protocols (DHCP, Bootserver Discovery, TFTP) that are
useful for remote booting machines.

LOM LAN On Motherboard
This is a network device that is built onto the motherboard (or baseboard) of the machine.

NBP Network Bootstrap Program
This is the first program that is downloaded into a machine that has selected a PXE capable
device for remote boot services.
A typical NBP examines the machine it is running on to try to determine if the machine is capable
of running the next layer (OS or application). If the machine is not capable of running the next
layer, control is returned to the EFI boot manager and the next boot device is selected. If the
machine is capable, the next layer is downloaded and control can then be passed to the
downloaded program.
Though most NBPs are OS loaders, NBPs can be written to be standalone applications such as
diagnostics, backup/restore, remote management agents, browsers, etc.

NIC Network Interface Card
Technically, this is a network device that is inserted into a bus on the motherboard or in an
expansion board. For the purposes of this document, the term NIC will be used in a generic
sense, meaning any device that enables a network connection (including LOMs and network
devices on external busses (USB, 1394, etc.)).

ROM Read-Only Memory
When used in this specification, ROM refers to a nonvolatile memory storage device on a NIC.
Version 2.5 April, 2015 2297

Unified Extensible Firmware Interface Specification
E.1.2 Referenced Specifications
When implementing PXE services, protocols, ROMs or drivers, it is a good idea to understand the
related network protocols and BIOS specifications. Table 237 below includes all of the
specifications referenced in this document.

Table 237. Referenced Specifications

PXE Preboot Execution Environment
The complete PXE specification covers three areas; the client, the network and the server.
Client
• Makes network devices into bootable devices.

• Provides APIs for PXE protocol modules in EFI and for universal drivers in the OS.

Network
• Uses existing technology: DHCP, TFTP, etc.

• Adds “vendor specific” tags to DHCP to define PXE specific operation within DHCP.

• Adds multicast TFTP for high bandwidth remote boot applications.

• Defines Bootserver discovery based on DHCP packet format.

•

Server
• Bootserver: Responds to Bootserver discovery requests and serves up remote boot images.

• proxyDHCP: Used to ease the transition of PXE clients and servers into existing network
infrastructure. proxyDHCP provides the additional DHCP information that is needed by PXE
clients and Bootservers without making changes to existing DHCP servers.

• MTFTP: Adds multicast support to a TFTP server.

• Plug-In Modules: Example proxyDHCP and Bootservers provided in the PXE SDK (software
development kit) have the ability to take plug-in modules (PIMs). These PIMs are used to
change/enhance the capabilities of the proxyDHCP and Bootservers.

UNDI Universal Network Device Interface
UNDI is an architectural interface to NICs. Traditionally NICs have had custom interfaces and
custom drivers (each NIC had a driver for each OS on each platform architecture). Two
variations of UNDI are defined in this specification: H/W UNDI and S/W UNDI. H/W UNDI is an
architectural hardware interface to a NIC. S/W UNDI is a software implementation of the H/W
UNDI.

Acronym Protocol/Specification

ARP Address Resolution Protocol – Required reading for those implementing the PXE Base

Code Protocol. See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading

“Address Resolution Protocol”.

Assigned
Numbers

Lists the reserved numbers used in the RFCs and in this specification. See “Links to UEFI-

Related Documents” (http://uefi.org/uefi) under the heading “Assigned Numbers”.

BIOS Basic Input/Output System – Contact your BIOS manufacturer for reference and
programming manuals.

Term Definition
2298 April, 2015 Version 2.5

BOOTP Bootstrap Protocol –

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Bootstrap
Protocol (BOOTP)”.

These references are included for backward compatibility. BC protocol supports DHCP and
BOOTP:
• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “BOOTP

Clarifications and Extensions”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Bootstrap
Protocol (BOOTP) Interoperation Between DHCP and BOOTP”.

Required reading for those implementing the PXE Base Code Protocol BC protocol or PXE
Bootservers.

DHCP Dynamic Host Configuration Protocol

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “DHCP”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Index of
RFC (IETF)”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “DHCP
Reconfigure Extension”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “DHCP for
Ipv4”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading

“Interoperations between DHCP and BOOTP”.
Required reading for those implementing the PXE Base Code Protocol or PXE Bootservers.

EFI Extensible Firmware Interface

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Intel
Developer Centers”.

Required reading for those implementing NBPs, OS loaders and preboot applications for
machines with the EFI preboot environment.

ICMP Internet Control Message Protocol

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “ICMP for
Ipv4”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “ICMP for
Ipv6”.

Required reading for those implementing the BC protocol.

IETF Internet Engineering Task Force

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Internet
Engineering Task Force (IETF)”.

This is a good starting point for obtaining electronic copies of Internet standards, drafts,
and RFCs.

IGMP Internet Group Management Protocol

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Internet
Group Management Protocol”.

Required reading for those implementing the PXE Base Code Protocol.

Acronym Protocol/Specification
Version 2.5 April, 2015 2299

Unified Extensible Firmware Interface Specification
IP Internet Protocol
Ipv4: http://www.ietf.org/rfc/rfc0791.txt

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Ipv4”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Ipv6”.

Required reading for those implementing the BC protocol.

MTFTP Multicast TFTP – Defined in the 16-bit PXE specification.
Required reading for those implementing the PXE Base Code Protocol.

PCI Peripheral Component Interface

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Peripheral
Component Interface (PCI)”.

Source for PCI specifications. Required reading for those implementing S/W or H/W UNDI on a
PCI NIC or LOM.

PnP Plug-and-Play – http://www.phoenix.com/en/support/white+papers-specs/

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Plug and
Play”.

Source for PnP specifications.

PXE Preboot eXecution Environment
16-bit PXE v2.1:

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Preboot
eXecution Environment (PXE)”.

Required reading.

RFC Request For Comments –

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Request for
Comments”.

TCP Transmission Control Protocol

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “TCPv4”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “TCPv6”.

Required reading for those implementing the PXE Base Code Protocol .

TFTP Trivial File Transfer Protocol
TFTP

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “TFTP
Protocol”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “TFTP
Option Extension”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “TFTP
Blocksize Option”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “TFTP
Timeout Interval and Transfer Size Options”.

Required reading for those implementing the PXE Base Code Protocol.

UDP User Datagram Protocol

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “UDP over
IPv4”.

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “UDP over
IPv6”.

Required reading for those implementing the PXE Base Code Protocol.

Acronym Protocol/Specification
2300 April, 2015 Version 2.5

http://www.ietf.org/rfc/rfc0791.txt
http://www.phoenix.com/en/support/white+papers-specs/

E.1.3 OS Network Stacks
This is a simplified overview of three OS network stacks that contain three types of network drivers:
Custom, S/W UNDI and H/W UNDI. Figure 135 depicts an application bound to an OS protocol
stack, which is in turn bound to a protocol driver that is bound to three NICs. Table 238 below gives
a brief list of pros and cons about each type of driver implementation.

Figure 135. Network Stacks with Three Classes of Drivers

Table 238. Driver Types: Pros and Cons

WfM Wired for Management

• See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Wired for
Management”.

Recommended reading for those implementing the PXE Base Code Protocol or PXE
Bootservers.

Driver Pro Con

Custom • Can be very fast and efficient.
NIC vendor tunes driver to OS
& device.

• OS vendor does not have to
write NIC driver.

• New driver for each OS/architecture must be
maintained by NIC vendor.

• OS vendor must trust code supplied by third-party.

• OS vendor cannot test all possible driver/NIC versions.

• Driver must be installed before NIC can be used.

• Possible performance sink if driver is poorly written.

• Possible security risk if driver has back door.

Acronym Protocol/Specification

OM13182

Application - 1

OS Protocol Stack

Custom

NIC
Specific
Protocol

Driver

NIC Specific
Protocol Driver

Application - 2

OS Protocol Stack

S/W UNDI

OS Universal Protocol Driver

Application - 3

OS Protocol Stack

H/W UNDI

OS Universal Protocol Driver

NIC - 2
Vend - B

NIC - 3
Vend - B

NIC - 1
Vendor - A

NIC - 5
Vend - D

NIC - 6
Vend - D

NIC - 4
Vendor - C

H/W UNDI
NIC - 9

Vendor - F

H/W UNDI
NIC - 8

Vendor - F

H/W UNDI
NIC - 7

Vendor - E
Version 2.5 April, 2015 2301

Unified Extensible Firmware Interface Specification
E.2 Overview
There are three major design changes between this specification and the 16-bit UNDI in version 2.1
of the PXE Specification:

• A new architectural hardware interface has been added.

• All UNDI commands use the same command format.

• BC is no longer part of the UNDI ROM.

E.2.1 32/64-bit UNDI Interface
The !PXE structures are used locate and identify the type of 32/64-bit UNDI interface (H/W or S/
W), as shown in Figure 136. These structures are normally only used by the system BIOS and
universal network drivers.

S/W UNDI • S/W UNDI driver is simpler
than a Custom driver. Easier
to test outside of the OS
environment.

• OS vendor can tune the
universal protocol driver for
best OS performance.

• NIC vendor only has to write
one driver per processor
architecture.

• Slightly slower than Custom or H/W UNDI because of
extra call layer between protocol stack and NIC.

• S/W UNDI driver must be loaded before NIC can be
used.

• OS vendor has to write the universal driver.

• Possible performance sink if driver is poorly written.

• Possible security risk if driver has back door.

H/W UNDI • H/W UNDI provides a common
architectural interface to all
network devices.

• OS vendor controls all security
and performance issues in
network stack.

• NIC vendor does not have to
write any drivers.

• NIC can be used without an
OS or driver installed (preboot
management).

• OS vendor has to write the universal driver (this might
also be a Pro, depending on your point of view).

Driver Pro Con
2302 April, 2015 Version 2.5

Figure 136. !PXE Structures for H/W and S/W UNDI

The !PXE structures used for H/W and S/W UNDIs are similar but not identical. The difference in
the format is tied directly to the differences required by the implementation. The !PXE structures for
32/64-bit UNDI are not compatible with the !PXE structure for 16-bit UNDI.

The !PXE structure for H/W UNDI is built into the NIC hardware. The first nine fields (from offsets
0x00 to 0x0F) are implemented as read-only memory (or ports). The last three fields (from Len to
Len + 0x0F) are implemented as read/write memory (or ports). The optional reserved field at 0x10
is not defined in this specification and may be used for vendor data.

The !PXE structure for S/W UNDI can be loaded into system memory from one of three places;
ROM on a NIC, system nonvolatile storage, or external storage. Since there are no direct memory or
I/O ports available in the S/W UNDI !PXE structure, an indirect callable entry point is provided. S/
W UNDI developers are free to make their internal designs as simple or complex as they desire, as
long as all of the UNDI commands in this specification are implemented.

Descriptions of the fields in the !PXE structures is given in Table 239.

Table 239. !PXE Structure Field Definitions

Identifier Value Description

Signature “!PXE” !PXE structure signature. This field is used to locate an UNDI hardware or
software interface in system memory (or I/O) space. ‘!’ is in the first (lowest
address) byte, ‘P’ is in the second byte, ‘X’ in the third and ‘E’ in the last. This
field must be aligned on a 16-byte boundary (the last address byte must be
zero).

Len Varies Number of !PXE structure bytes to checksum.
When computing the checksum of this structure the Len field MUST be used as
the number of bytes to checksum. The !PXE structure checksum is computed
by adding all of the bytes in the structure, starting with the first byte of the
structure Signature: '!'. If the 8-bit sum of all of the unsigned bytes in this
structure is not zero, this is not a valid !PXE structure.

OM13183

!PXE
H/W UNDI

Offset

0x00

0x04

0x08

0x0C

0x00 0x01 0x02 0x03

Signature
Len Fudge Rev IFcnt

Major Minor reserved

Implementation

Status

Command

CDBaddr

Len
Len +
0x04
Len +
0x08
Len +
0x0C

!PXE
S/W UNDI

Offset

0x00

0x04

0x08

0x0C

0x00 0x01 0x02 0x03

Signature
Len Fudge Rev IFcnt

Major Minor IFcntExt Reserved

Implementation

Entry Point

reserved #bus

BusTypes(s)

0x10

0x14

0x18

0x1C

0x10 reserved

0x20 More BusTypes(s)

 Major Minor IFcntExt Reserved
Version 2.5 April, 2015 2303

Unified Extensible Firmware Interface Specification
Fudge Varies This field is used to make the 8-bit checksum of this structure equal zero.

Rev 0x03 Revision of this structure.

IFcnt Varies This field reports the number (minus one) of physical external network
connections that are controlled by this !PXE interface. (If there is one network
connector, this field is zero. If there are two network connectors, this field is
one.)
For !PXE structure revision 0x03 or higher, in addition to this field, the value in
IFcntExt field must be left-shifted by 8-bits and ORed with IFcnt to get the 16-bit
value for the total number (minus one) of physical external network connections
that are controlled by this !PXE interface.

Major Varies UNDI command interface. Minor revision number.
0x00 (Alpha): This version of UNDI does not operate as a runtime driver. The
callback interface defined in the UNDI Start command is required.
0x10 (Beta):. This version of UNDI can operate as an OS runtime driver. The
callback interface defined in the UNDI Start command is required

Minor Varies UNDI command interface. Minor revision number.
0x00 (Alpha): This version of UNDI does not operate as a runtime driver. The
callback interface defined in the UNDI Start command is required.
0x10 (Beta):. This version of UNDI can operate as an OS runtime driver. The
callback interface defined in the UNDI Start command is required.

IFcntExt Varies If the !PXE structure revision 0x02 or earlier, this field is reserved and must be
set to zero.
If the !PXE structure revision 0x03 or higher, this field reports the upper 8-bits of
the number of physical external network connections that is controlled by this
!PXE interface.

reserved 0x00 This field is reserved and must be set to zero.

Implementation Varies Identifies type of UNDI

Identifier Value Description
2304 April, 2015 Version 2.5

(S/W or H/W, 32 bit or 64 bit) and what features have been implemented. The
implementation bits are defined below. Undefined bits must be set to zero by
UNDI implementers. Applications/drivers must not rely on the contents of
undefined bits (they may change later revisions).
Bit 0x00: Command completion interrupts supported (1) or not supported (0)
Bit 0x01: Packet received interrupts supported (1) or not supported (0)
Bit 0x02: Transmit complete interrupts supported (1) or not supported (0)
Bit 0x03: Software interrupt supported (1) or not supported (0)
Bit 0x04: Filtered multicast receives supported (1) or not supported (0)
Bit 0x05: Broadcast receives supported (1) or not supported (0)
Bit 0x06: Promiscuous receives supported (1) or not supported (0)
Bit 0x07: Promiscuous multicast receives supported (1) or not supported (0)
Bit 0x08: Station MAC address settable (1) or not settable (0)
Bit 0x09: Statistics supported (1) or not supported (0)
Bit 0x0A,0x0B: NvData not available (0), read only (1), sparse write supported
(2), bulk write supported (3)
Bit 0x0C: Multiple frames per command supported (1) or not supported (0)
Bit 0x0D: Command queuing supported (1) or not supported (0)
Bit 0x0E: Command linking supported (1) or not supported (0)
Bit 0x0F: Packet fragmenting supported (1) or not supported (0)
Bit 0x10: Device can address 64 bits (1) or only 32 bits (0)
Bit 0x1E: S/W UNDI: Entry point is virtual address (1) or unsigned offset from
start of !PXE structure (0).
Bit 0x1F: Interface type: H/W UNDI (1) or S/W UNDI (0)

H/W UNDI Fields

Reserved Varies This field is optional and may be used for OEM & vendor unique data. If this
field is present its length must be a multiple of 16 bytes and must be included in
the !PXE structure checksum. This field, if present, will always start on a
16-byte boundary.
Note: The size/contents of the !PXE structure may change in future revisions
of this specification. Do not rely on OEM & vendor data starting at the same
offset from the beginning of the !PXE structure. It is recommended that the
OEM & vendor data include a signature that drivers/applications can search for.

Identifier Value Description
Version 2.5 April, 2015 2305

Unified Extensible Firmware Interface Specification
Status Varies UNDI operation, command and interrupt status flags.
This is a read-only port. Undefined status bits must be set to zero. Reading
this port does NOT clear the status.
Bit 0x00: Command completion interrupt pending (1) or not pending (0)
Bit 0x01: Packet received interrupt pending (1) or not pending (0)
Bit 0x02: Transmit complete interrupt pending (1) or not pending (0)
Bit 0x03: Software interrupt pending (1) or not pending (0)
Bit 0x04: Command completion interrupts enabled (1) or disabled (0)
Bit 0x05: Packet receive interrupts enabled (1) or disabled (0)
Bit 0x06: Transmit complete interrupts enabled (1) or disabled (0)
Bit 0x07: Software interrupts enabled (1) or disabled (0)
Bit 0x08: Unicast receive enabled (1) or disabled (0)
Bit 0x09: Filtered multicast receive enabled (1) or disabled (0)
Bit 0x0A: Broadcast receive enabled (1) or disabled (0)
Bit 0x0B: Promiscuous receive enabled (1) or disabled (0)
Bit 0x0C: Promiscuous multicast receive enabled (1) or disabled (0)
Bit 0x1D: Command failed (1) or command succeeded (0)
Bits 0x1F:0x1E: UNDI state: Stopped (0), Started (1), Initialized (2), Busy (3)

Command Varies Use to execute commands, clear interrupt status and enable/disable receive
levels. This is a read/write port. Read reflects the last write.
Bit 0x00: Clear command completion interrupt (1) or NOP (0)
Bit 0x01: Clear packet received interrupt (1) or NOP (0)
Bit 0x02: Clear transmit complete interrupt (1) or NOP (0)
Bit 0x03: Clear software interrupt (1) or NOP (0)
Bit 0x04: Command completion interrupt enable (1) or disable (0)
Bit 0x05: Packet receive interrupt enable (1) or disable (0)
Bit 0x06: Transmit complete interrupt enable (1) or disable (0)
Bit 0x07: Software interrupt enable (1) or disable (0). Setting this bit to (1) also
generates a software interrupt.
Bit 0x08: Unicast receive enable (1) or disable (0)
Bit 0x09: Filtered multicast receive enable (1) or disable (0)
Bit 0x0A: Broadcast receive enable (1) or disable (0)
Bit 0x0B: Promiscuous receive enable (1) or disable (0)
Bit 0x0C: Promiscuous multicast receive enable (1) or disable (0)
Bit 0x1F: Operation type: Clear interrupt and/or filter (0), Issue command (1)

CDBaddr Varies Write the physical address of a CDB to this port. (Done with one 64-bit or two
32-bit writes, depending on processor architecture.) When done, use one
32-bit write to the command port to send this address into the command queue.
Unused upper address bits must be set to zero.

S/W UNDI Fields

EntryPoint Varies S/W UNDI API entry point address. This is either a virtual address or an offset
from the start of the !PXE structure. Protocol drivers will push the 64-bit virtual
address of a CDB on the stack and then call the UNDI API entry point. When
control is returned to the protocol driver, the protocol driver must remove the
address of the CDB from the stack.

reserved Zero Reserved for future use.

BusTypeCnt Varies This field is the count of 4-byte BusType entries in the next field.

Identifier Value Description
2306 April, 2015 Version 2.5

E.2.1.1 Issuing UNDI Commands
How commands are written and status is checked varies a little depending on the type of UNDI (H/
W or S/W) implementation being used. The command flowchart shown in Figure 137 is a high-level
diagram on how commands are written to both H/W and S/W UNDI.

Figure 137. Issuing UNDI Commands

E.2.2 UNDI Command Format
The format of the CDB is the same for all UNDI commands. Figure 138 shows the structure of the
CDB. Some of the commands do not use or always require the use of all of the fields in the CDB.
When fields are not used they must be initialized to zero or the UNDI will return an error. The
StatCode and StatFlags fields must always be initialized to zero or the UNDI will return an error.
All reserved fields (and bit fields) must be initialized to zero or the UNDI will return an error.

BusType Varies This field defines the type of bus S/W UNDI is written to support:
“PCIR,” “PCCR,” “USBR” or “1394.” This field is formatted like the Signature
field. If the S/W UNDI supports more than one BusType there will be more than
one BusType identifier in this field.

Identifier Value Description

OM13184

Step 1
Fill in CDB(s). Commands may
be linked if supported by UNDI.

Step 2 (H/W UNDI)
Write physical address of first
CDB to CDBaddr register.

Step 3 (H/W UNDI)
Initiate command execution
(write to UNDI Command port)

Step 4 (H/W UNDI)
Wait for completion status. Can
be polled in separate thread of
interrupt driven, if supported by
UNDI.

Step 2 (S/W UNDI)
Push virtual address of first CDB
onto CPU stack.

Step 3 (S/W UNDI)
Initiate command execution (Call
S/W UNDI API entry point).

Step 4 (S/W UNDI)
Wait for completion status. Some
S/W UNDI implementations can
be polled or interrupt driven,
others will not return until
command execution completes.

CDB

Step 5
Issue more commands.
Version 2.5 April, 2015 2307

Unified Extensible Firmware Interface Specification
Basically, the rule is: Do it right, or don’t do it at all.

Figure 138. UNDI Command Descriptor Block (CDB)

Descriptions of the CDB fields are given in Table 240.

Table 240. UNDI CDB Field Definitions

Identifier Description

OpCode Operation Code (Function Number, Command Code, etc.)
This field is used to identify the command being sent to the UNDI. The meanings of some
of the bits in the OpFlags and StatFlags fields, and the format of the CPB and DB
structures depends on the value in the OpCode field. Commands sent with an OpCode
value that is not defined in this specification will not be executed and will return a
StatCode of PXE_STATCODE_INVALID_CDB.

OpFlags Operation Flags
This bit field is used to enable/disable different features in a specific command operation.
It is also used to change the format/contents of the CPB and DB structures. Commands
sent with reserved bits set in the OpFlags field will not be executed and will return a
StatCode of PXE_STATCODE_INVALID_CDB.

CPBsize Command Parameter Block Size
This field should be set to a number that is equal to the number of bytes that will be read
from CPB structure during command execution. Setting this field to a number that is too
small will cause the command to not be executed and a StatCode of
PXE_STATCODE_INVALID_CDB will be returned.
The contents of the CPB structure will not be modified.

DBsize Data Block Size
This field should be set to a number that is equal to the number of bytes that will be written
into the DB structure during command execution. Setting this field to a number that is
smaller than required will cause an error. It may be zero in some cases where the
information is not needed.

OM13185

CDB
Command Descriptor Block

Offset

0x00

0x04

0x08

0x0C

0x00 0x01 0x02 0x03

OpCode OpFlags

CPBaddr

DBaddr
0x10

0x14

0x18

0x1C

CPBsize DBsize

StatCode StatFlags

IFnum Control
2308 April, 2015 Version 2.5

E.3 UNDI C Definitions
The definitions in this section are used to aid in the portability and readability of the example 32/64-
bit S/W UNDI source code and the rest of this specification.

E.3.1 Portability Macros
These macros are used for storage and communication portability.

CPBaddr Command Parameter Block Address
For H/W UNDI, this field must be the physical address of the CPB structure. For S/W
UNDI, this field must be the virtual address of the CPB structure. If the operation does not
have/use a CPB, this field must be initialized to PXE_CPBADDR_NOT_USED. Setting up
this field incorrectly will cause command execution to fail and a StatCode of
PXE_STATCODE_INVALID_CDB will be returned.

DBaddr Data Block Address
For H/W UNDI, this field must be the physical address of the DB structure. For S/W
UNDI, this field must be the virtual address of the DB structure. If the operation does not
have/use a CPB, this field must be initialized to PXE_DBADDR_NOT_USED. Setting up this
field incorrectly will cause command execution to fail and a StatCode of
PXE_STATCODE_INVALID_CDB will be returned.

StatCode Status Code
This field is used to report the type of command completion: success or failure (and the
type of failure). This field must be initialized to zero before the command is issued. The
contents of this field is not valid until the PXE_STATFLAGS_COMMAND_COMPLETE status
flag is set. If this field is not initialized to PXE_STATCODE_INITIALIZE the UNDI
command will not execute and a StatCode of PXE_STATCODE_INVALID_CDB will be
returned.

StatFlags Status Flags
This bit field is used to report command completion and identify the format, if any, of the
DB structure. This field must be initialized to zero before the command is issued. Until
the command state changes to error or complete, all other CDB fields must not be
changed. If this field is not initialized to PXE_STATFLAGS_INITIALIZE the UNDI
command will not execute and a StatCode of PXE_STATCODE_INVALID_CDB will be
returned.
Bits 0x0F & 0x0E: Command state: Not started (0), Queued (1), Error (2), Complete (3).

IFnum Interface Number
This field is used to identify which network adapter (S/W UNDI) or network connector (H/
W UNDI) this command is being sent to. If an invalid interface number is given, the
command will not execute and a StatCode of PXE_STATCODE_INVALID_CDB will be
returned.

Control Process Control
This bit field is used to control command UNDI inter-command processing. Setting
control bits that are not supported by the UNDI will cause the command execution to fail
with a StatCode of PXE_STATCODE_INVALID_CDB.
Bit 0x00: Another CDB follows this one (1) or this is the last or only CDB in the list (0).
Bit 0x01: Queue command if busy (1), fail if busy (0).

Identifier Description
Version 2.5 April, 2015 2309

Unified Extensible Firmware Interface Specification
E.3.1.1 PXE_INTEL_ORDER or PXE_NETWORK_ORDER
This macro is used to control conditional compilation in the S/W UNDI source code. One of these
definitions needs to be uncommented in a common PXE header file.
//#define PXE_INTEL_ORDER 1 // little-endian
//#define PXE_NETWORK_ORDER 1 // big-endian

E.3.1.2 PXE_UINT64_SUPPORT or PXE_NO_UINT64_SUPPORT
This macro is used to control conditional compilation in the PXE source code. One of these
definitions must to be uncommented in the common PXE header file.
//#define PXE_UINT64_SUPPORT 1 // UINT64 supported
//#define PXE_NO_UINT64_SUPPORT 1 // UINT64 not supported

E.3.1.3 PXE_BUSTYPE
Used to convert a 4-character ASCII identifier to a 32-bit unsigned integer.
#if PXE_INTEL_ORDER
#define PXE_BUSTYPE(a,b,c,d) \
((((PXE_UINT32)(d) & 0xFF) << 24) | \
(((PXE_UINT32)(c) & 0xFF) << 16) | \
(((PXE_UINT32)(b) & 0xFF) << 8) | \
((PXE_UINT32)(a) & 0xFF))
#else
#define PXE_BUSTYPE(a,b,c,d) \
((((PXE_UINT32)(a) & 0xFF) << 24) | \
(((PXE_UINT32)(b) & 0xFF) << 16) | \
(((PXE_UINT32)(c) & 0xFF) << 8) | \
((PXE_UINT32)(f) & 0xFF))
#endif

//***
// UNDI ROM ID and device ID signature
//***
#define PXE_BUSTYPE_PXE PXE_BUSTYPE('!', 'P', 'X', 'E')

//***
// BUS ROM ID signatures
//***
#define PXE_BUSTYPE_PCI PXE_BUSTYPE('P', 'C', 'I', 'R')
#define PXE_BUSTYPE_PC_CARD PXE_BUSTYPE('P', 'C', 'C', 'R')
#define PXE_BUSTYPE_USB PXE_BUSTYPE('U', 'S', 'B', 'R')
#define PXE_BUSTYPE_1394 PXE_BUSTYPE('1', '3', '9', '4')

E.3.1.4 PXE_SWAP_UINT16
This macro swaps bytes in a 16-bit word.
#ifdef PXE_INTEL_ORDER
#define PXE_SWAP_UINT16(n) \
((((PXE_UINT16)(n) & 0x00FF) << 8) | \
2310 April, 2015 Version 2.5

(((PXE_UINT16)(n) & 0xFF00) >> 8))
#else
#define PXE_SWAP_UINT16(n) (n)
#endif

E.3.1.5 PXE_SWAP_UINT32
This macro swaps bytes in a 32-bit word.
#ifdef PXE_INTEL_ORDER
#define PXE_SWAP_UINT32(n) \
((((PXE_UINT32)(n) & 0x000000FF) << 24) | \
(((PXE_UINT32)(n) & 0x0000FF00) << 8) | \
(((PXE_UINT32)(n) & 0x00FF0000) >> 8) | \
(((PXE_UINT32)(n) & 0xFF000000) >> 24)
#else
#define PXE_SWAP_UINT32(n) (n)
#endif

E.3.1.6 PXE_SWAP_UINT64
This macro swaps bytes in a 64-bit word for compilers that support 64-bit words.
#if PXE_UINT64_SUPPORT != 0
#ifdef PXE_INTEL_ORDER
#define PXE_SWAP_UINT64(n) \
((((PXE_UINT64)(n) & 0x00000000000000FF) << 56) | \
(((PXE_UINT64)(n) & 0x000000000000FF00) << 40) | \
(((PXE_UINT64)(n) & 0x0000000000FF0000) << 24) | \
(((PXE_UINT64)(n) & 0x00000000FF000000) << 8) | \
(((PXE_UINT64)(n) & 0x000000FF00000000) >> 8) | \
(((PXE_UINT64)(n) & 0x0000FF0000000000) >> 24) | \
(((PXE_UINT64)(n) & 0x00FF000000000000) >> 40) | \
(((PXE_UINT64)(n) & 0xFF00000000000000) >> 56)
#else
#define PXE_SWAP_UINT64(n) (n)
#endif
#endif // PXE_UINT64_SUPPORT

This macro swaps bytes in a 64-bit word, in place, for compilers that do not support 64-bit words.
This version of the 64-bit swap macro cannot be used in expressions.
#if PXE_NO_UINT64_SUPPORT != 0
#if PXE_INTEL_ORDER
#define PXE_SWAP_UINT64(n) \
{ \
PXE_UINT32 tmp = (PXE_UINT64)(n)[1]; \
(PXE_UINT64)(n)[1] = PXE_SWAP_UINT32((PXE_UINT64)(n)[0]); \
(PXE_UINT64)(n)[0] = PXE_SWAP_UINT32(tmp); \
}
#else
#define PXE_SWAP_UINT64(n) (n)
Version 2.5 April, 2015 2311

Unified Extensible Firmware Interface Specification
#endif
#endif // PXE_NO_UINT64_SUPPORT

E.3.2 Miscellaneous Macros

E.3.2.1 Miscellaneous
#define PXE_CPBSIZE_NOT_USED 0 // zero
#define PXE_DBSIZE_NOT_USED 0 // zero
#define PXE_CPBADDR_NOT_USED (PXE_UINT64)0 // zero
#define PXE_DBADDR_NOT_USED (PXE_UINT64)0 // zero

E.3.3 Portability Types
The examples given below are just that, examples. The actual typedef instructions used in a new
implementation may vary depending on the compiler and processor architecture.

The storage sizes defined in this section are critical for PXE module inter-operation. All of the
portability typedefs define little endian (Intel® format) storage. The least significant byte is stored in
the lowest memory address and the most significant byte is stored in the highest memory address, as
shown in Figure 139.

Figure 139. Storage Types

E.3.3.1 PXE_CONST
The const type does not allocate storage. This type is a modifier that is used to help the compiler
optimize parameters that do not change across function calls.
#define PXE_CONST const

E.3.3.2 PXE_VOLATILE
The volatile type does not allocate storage. This type is a modifier that is used to help the compiler
deal with variables that can be changed by external procedures or hardware events.
#define PXE_VOLATILE volatile

E.3.3.3 PXE_VOID
The void type does not allocate storage. This type is used only to prototype functions that do not
return any information and/or do not take any parameters.
typedef void PXE_VOID;

OM13186

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

UINT8 UINT16 UINT32 UINT64

LSB MSB
2312 April, 2015 Version 2.5

E.3.3.4 PXE_UINT8
Unsigned 8-bit integer.
typedef unsigned char PXE_UINT8;

E.3.3.5 PXE_UINT16
Unsigned 16-bit integer.
typedef unsigned short PXE_UINT16;

E.3.3.6 PXE_UINT32
Unsigned 32-bit integer.
typedef unsigned PXE_UINT32;

E.3.3.7 PXE_UINT64
Unsigned 64-bit integer.
#if PXE_UINT64_SUPPORT != 0
typedef unsigned long PXE_UINT64;
#endif // PXE_UINT64_SUPPORT

If a 64-bit integer type is not available in the compiler being used, use this definition:
#if PXE_NO_UINT64_SUPPORT != 0
typedef PXE_UINT32 PXE_UINT64[2];
#endif // PXE_NO_UINT64_SUPPORT

E.3.3.8 PXE_UINTN
Unsigned integer that is the default word size used by the compiler. This needs to be at least a 32-bit
unsigned integer.
typedef unsigned PXE_UINTN;

E.3.4 Simple Types
The PXE simple types are defined using one of the portability types from the previous section.

E.3.4.1 PXE_BOOL
Boolean (true/false) data type. For PXE zero is always false and nonzero is always true.
typedef PXE_UINT8 PXE_BOOL;
#define PXE_FALSE 0 // zero
#define PXE_TRUE (!PXE_FALSE)

E.3.4.2 PXE_OPCODE
UNDI OpCode (command) descriptions are given in the next chapter. There are no BC OpCodes,
BC protocol functions are discussed later in this document.

typedef PXE_UINT16 PXE_OPCODE;

// Return UNDI operational state.
#define PXE_OPCODE_GET_STATE 0x0000
Version 2.5 April, 2015 2313

Unified Extensible Firmware Interface Specification
// Change UNDI operational state from Stopped to Started.
#define PXE_OPCODE_START 0x0001

// Change UNDI operational state from Started to Stopped.
#define PXE_OPCODE_STOP 0x0002

// Get UNDI initialization information.
#define PXE_OPCODE_GET_INIT_INFO 0x0003

// Get NIC configuration information.
#define PXE_OPCODE_GET_CONFIG_INFO 0x0004

// Changed UNDI operational state from Started to Initialized.
#define PXE_OPCODE_INITIALIZE 0x0005

// Reinitialize the NIC H/W.
#define PXE_OPCODE_RESET 0x0006

// Change the UNDI operational state from Initialized to Started.
#define PXE_OPCODE_SHUTDOWN 0x0007

// Read & change state of external interrupt enables.
#define PXE_OPCODE_INTERRUPT_ENABLES 0x0008

// Read & change state of packet receive filters.
#define PXE_OPCODE_RECEIVE_FILTERS 0x0009

// Read & change station MAC address.
#define PXE_OPCODE_STATION_ADDRESS 0x000A

// Read traffic statistics.
#define PXE_OPCODE_STATISTICS 0x000B

// Convert multicast IP address to multicast MAC address.
#define PXE_OPCODE_MCAST_IP_TO_MAC 0x000C

// Read or change nonvolatile storage on the NIC.
#define PXE_OPCODE_NVDATA 0x000D

// Get & clear interrupt status.
#define PXE_OPCODE_GET_STATUS 0x000E

// Fill media header in packet for transmit.
#define PXE_OPCODE_FILL_HEADER 0x000F

// Transmit packet(s).
2314 April, 2015 Version 2.5

#define PXE_OPCODE_TRANSMIT 0x0010

// Receive packet.
#define PXE_OPCODE_RECEIVE 0x0011

// Last valid PXE UNDI OpCode number.
#define PXE_OPCODE_LAST_VALID 0x0011

E.3.4.3 PXE_OPFLAGS
typedef PXE_UINT16 PXE_OPFLAGS;

#define PXE_OPFLAGS_NOT_USED 0x0000

//***
// UNDI Get State
//***

// No OpFlags

//***
// UNDI Start
//***

// No OpFlags

//***
// UNDI Stop
//***

// No OpFlags

//***
// UNDI Get Init Info
//***

// No Opflags

//***
// UNDI Get Config Info
//***

// No Opflags

//***
// UNDI Initialize
//***
Version 2.5 April, 2015 2315

Unified Extensible Firmware Interface Specification
#define PXE_OPFLAGS_INITIALIZE_CABLE_DETECT_MASK 0x0001
#define PXE_OPFLAGS_INITIALIZE_DETECT_CABLE 0x0000
#define PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE 0x0001

//***
// UNDI Reset
//***

#define PXE_OPFLAGS_RESET_DISABLE_INTERRUPTS 0x0001
#define PXE_OPFLAGS_RESET_DISABLE_FILTERS 0x0002

//***
// UNDI Shutdown
//***

// No OpFlags

//***
// UNDI Interrupt Enables
//***

// Select whether to enable or disable external interrupt
// signals. Setting both enable and disable will return
// PXE_STATCODE_INVALID_OPFLAGS.

#define PXE_OPFLAGS_INTERRUPT_OPMASK 0xC000
#define PXE_OPFLAGS_INTERRUPT_ENABLE 0x8000
#define PXE_OPFLAGS_INTERRUPT_DISABLE 0x4000
#define PXE_OPFLAGS_INTERRUPT_READ 0x0000

// Enable receive interrupts. An external interrupt will be
// generated after a complete non-error packet has been received.

#define PXE_OPFLAGS_INTERRUPT_RECEIVE 0x0001

// Enable transmit interrupts. An external interrupt will be
// generated after a complete non-error packet has been
// transmitted.

#define PXE_OPFLAGS_INTERRUPT_TRANSMIT 0x0002

// Enable command interrupts. An external interrupt will be
// generated when command execution stops.

#define PXE_OPFLAGS_INTERRUPT_COMMAND 0x0004
2316 April, 2015 Version 2.5

// Generate software interrupt. Setting this bit generates an
// external interrupt, if it is supported by the hardware.

#define PXE_OPFLAGS_INTERRUPT_SOFTWARE 0x0008

//***
// UNDI Receive Filters
//***

// Select whether to enable or disable receive filters.
// Setting both enable and disable will return
// PXE_STATCODE_INVALID_OPCODE.

#define PXE_OPFLAGS_RECEIVE_FILTER_OPMASK 0xC000
#define PXE_OPFLAGS_RECEIVE_FILTER_ENABLE 0x8000
#define PXE_OPFLAGS_RECEIVE_FILTER_DISABLE 0x4000
#define PXE_OPFLAGS_RECEIVE_FILTER_READ 0x0000

// To reset the contents of the multicast MAC address filter
// list, set this OpFlag:

#define PXE_OPFLAGS_RECEIVE_FILTERS_RESET_MCAST_LIST 0x2000

// Enable unicast packet receiving. Packets sent to the
// current station MAC address will be received.

#define PXE_OPFLAGS_RECEIVE_FILTER_UNICAST 0x0001

// Enable broadcast packet receiving. Packets sent to the
// broadcast MAC address will be received.

#define PXE_OPFLAGS_RECEIVE_FILTER_BROADCAST 0x0002

// Enable filtered multicast packet receiving. Packets sent to
// any of the multicast MAC addresses in the multicast MAC
// address filter list will be received. If the filter list is
// empty, no multicast

#define PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST 0x0004

// Enable promiscuous packet receiving. All packets will be
// received.

#define PXE_OPFLAGS_RECEIVE_FILTER_PROMISCUOUS 0x0008

// Enable promiscuous multicast packet receiving. All multicast
// packets will be received.
Version 2.5 April, 2015 2317

Unified Extensible Firmware Interface Specification
#define PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST 0x0010

//***
// UNDI Station Address
//***

#define PXE_OPFLAGS_STATION_ADDRESS_READ 0x0000
#define PXE_OPFLAGS_STATION_ADDRESS_WRITE 0x0000
#define PXE_OPFLAGS_STATION_ADDRESS_RESET 0x0001

//***
// UNDI Statistics
//***

#define PXE_OPFLAGS_STATISTICS_READ 0x0000
#define PXE_OPFLAGS_STATISTICS_RESET 0x0001

//***
// UNDI MCast IP to MAC
//***

// Identify the type of IP address in the CPB.

#define PXE_OPFLAGS_MCAST_IP_TO_MAC_OPMASK 0x0003
#define PXE_OPFLAGS_MCAST_IPV4_TO_MAC 0x0000
#define PXE_OPFLAGS_MCAST_IPV6_TO_MAC 0x0001

//***
// UNDI NvData
//***

// Select the type of nonvolatile data operation.

#define PXE_OPFLAGS_NVDATA_OPMASK 0x0001
#define PXE_OPFLAGS_NVDATA_READ 0x0000
#define PXE_OPFLAGS_NVDATA_WRITE 0x0001

//***
// UNDI Get Status
//***

// Return current interrupt status. This will also clear any
// interrupts that are currently set. This can be used in a
// polling routine. The interrupt flags are still set and
// cleared even when the interrupts are disabled.
2318 April, 2015 Version 2.5

#define PXE_OPFLAGS_GET_INTERRUPT_STATUS 0x0001

// Return list of transmitted buffers for recycling. Transmit
// buffers must not be changed or unallocated until they have
// recycled. After issuing a transmit command, wait for a
// transmit complete interrupt. When a transmit complete
// interrupt is received, read the transmitted buffers. Do not
// plan on getting one buffer per interrupt. Some NICs and UNDIs
// may transmit multiple buffers per interrupt.

#define PXE_OPFLAGS_GET_TRANSMITTED_BUFFERS 0x0002

// Return current media status.

#define PXE_OPFLAGS_GET_MEDIA_STATUS 0x0004

//***
// UNDI Fill Header
//***

#define PXE_OPFLAGS_FILL_HEADER_OPMASK 0x0001
#define PXE_OPFLAGS_FILL_HEADER_FRAGMENTED 0x0001
#define PXE_OPFLAGS_FILL_HEADER_WHOLE 0x0000

//***
// UNDI Transmit
//***

// S/W UNDI only. Return after the packet has been transmitted.
// A transmit complete interrupt will still be generated and the
// transmit buffer will have to be recycled.

#define PXE_OPFLAGS_SWUNDI_TRANSMIT_OPMASK 0x0001
#define PXE_OPFLAGS_TRANSMIT_BLOCK 0x0001
#define PXE_OPFLAGS_TRANSMIT_DONT_BLOCK 0x0000

#define PXE_OPFLAGS_TRANSMIT_OPMASK 0x0002
#define PXE_OPFLAGS_TRANSMIT_FRAGMENTED 0x0002
#define PXE_OPFLAGS_TRANSMIT_WHOLE 0x0000

//***
// UNDI Receive
//***

// No OpFlags
Version 2.5 April, 2015 2319

Unified Extensible Firmware Interface Specification
E.3.4.4 PXE_STATFLAGS

typedef PXE_UINT16 PXE_STATFLAGS;

#define PXE_STATFLAGS_INITIALIZE 0x0000

//***
// Common StatFlags that can be returned by all commands.
//***

// The COMMAND_COMPLETE and COMMAND_FAILED status flags must be
// implemented by all UNDIs. COMMAND_QUEUED is only needed by
// UNDIs that support command queuing.

#define PXE_STATFLAGS_STATUS_MASK 0xC000
#define PXE_STATFLAGS_COMMAND_COMPLETE 0xC000
#define PXE_STATFLAGS_COMMAND_FAILED 0x8000
#define PXE_STATFLAGS_COMMAND_QUEUED 0x4000

//***
// UNDI Get State
//***

#define PXE_STATFLAGS_GET_STATE_MASK 0x0003
#define PXE_STATFLAGS_GET_STATE_INITIALIZED 0x0002
#define PXE_STATFLAGS_GET_STATE_STARTED 0x0001
#define PXE_STATFLAGS_GET_STATE_STOPPED 0x0000

//***
// UNDI Start
//***

// No additional StatFlags

//***
// UNDI Get Init Info
//***

#define PXE_STATFLAGS_CABLE_DETECT_MASK 0x0001
#define PXE_STATFLAGS_CABLE_DETECT_NOT_SUPPORTED 0x0000
#define PXE_STATFLAGS_CABLE_DETECT_SUPPORTED 0x0001
#define PXE_STATFLAGS_GET_STATUS_NO_MEDIA_MASK 0x0002
#define PXE_STATFLAGS_GET_STATUS_NO_MEDIA_NOT_SUPPORTED 0x0000
#define PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED 0x0002

//***
// UNDI Initialize
2320 April, 2015 Version 2.5

//***

#define PXE_STATFLAGS_INITIALIZED_NO_MEDIA 0x0001

//***
// UNDI Reset
//***

#define PXE_STATFLAGS_RESET_NO_MEDIA 0x0001

//***
// UNDI Shutdown
//***

// No additional StatFlags

//***
// UNDI Interrupt Enables
//***

// If set, receive interrupts are enabled.
#define PXE_STATFLAGS_INTERRUPT_RECEIVE 0x0001

// If set, transmit interrupts are enabled.
#define PXE_STATFLAGS_INTERRUPT_TRANSMIT 0x0002

// If set, command interrupts are enabled.
#define PXE_STATFLAGS_INTERRUPT_COMMAND 0x0004

//***
// UNDI Receive Filters
//***

// If set, unicast packets will be received.
#define PXE_STATFLAGS_RECEIVE_FILTER_UNICAST 0x0001

// If set, broadcast packets will be received.
#define PXE_STATFLAGS_RECEIVE_FILTER_BROADCAST 0x0002

// If set, multicast packets that match up with the multicast
// address filter list will be received.
#define PXE_STATFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST 0x0004

// If set, all packets will be received.
#define PXE_STATFLAGS_RECEIVE_FILTER_PROMISCUOUS 0x0008

// If set, all multicast packets will be received.
Version 2.5 April, 2015 2321

Unified Extensible Firmware Interface Specification
#define PXE_STATFLAGS_RECEIVE_FILTER_ALL_MULTICAST 0x0010

//***
// UNDI Station Address
//***

// No additional StatFlags

//***
// UNDI Statistics
//***

// No additional StatFlags

//***
// UNDI MCast IP to MAC
//***

// No additional StatFlags

//***
// UNDI NvData
//***

// No additional StatFlags

//***
// UNDI Get Status
//***

// Use to determine if an interrupt has occurred.
#define PXE_STATFLAGS_GET_STATUS_INTERRUPT_MASK 0x000F
#define PXE_STATFLAGS_GET_STATUS_NO_INTERRUPTS 0x0000

// If set, at least one receive interrupt occurred.
#define PXE_STATFLAGS_GET_STATUS_RECEIVE 0x0001

// If set, at least one transmit interrupt occurred.

#define PXE_STATFLAGS_GET_STATUS_TRANSMIT 0x0002

// If set, at least one command interrupt occurred.
#define PXE_STATFLAGS_GET_STATUS_COMMAND 0x0004

// If set, at least one software interrupt occurred.
#define PXE_STATFLAGS_GET_STATUS_SOFTWARE 0x0008
2322 April, 2015 Version 2.5

// This flag is set if the transmitted buffer queue is empty.
// This flag will be set if all transmitted buffer addresses
// get written into the DB.
#define PXE_STATFLAGS_GET_STATUS_TXBUF_QUEUE_EMPTY 0x0010

// This flag is set if no transmitted buffer addresses were
// written into the DB. (This could be because DBsize was
// too small.)
#define PXE_STATFLAGS_GET_STATUS_NO_TXBUFS_WRITTEN 0x0020

// This flag is set if there is no media detected
#define PXE_STATFLAGS_GET_STATUS_NO_MEDIA 0x0040

//***
// UNDI Fill Header
//***

// No additional StatFlags

//***
// UNDI Transmit
//***

// No additional StatFlags.

//***
// UNDI Receive
//***

// No additional StatFlags.

E.3.4.5 PXE_STATCODE
typedef PXE_UINT16 PXE_STATCODE;

#define PXE_STATCODE_INITIALIZE 0x0000

//***
// Common StatCodes returned by all UNDI commands, UNDI protocol
// functions and BC protocol functions.
//***

#define PXE_STATCODE_SUCCESS 0x0000
#define PXE_STATCODE_INVALID_CDB 0x0001
#define PXE_STATCODE_INVALID_CPB 0x0002
#define PXE_STATCODE_BUSY 0x0003
#define PXE_STATCODE_QUEUE_FULL 0x0004
#define PXE_STATCODE_ALREADY_STARTED 0x0005
Version 2.5 April, 2015 2323

Unified Extensible Firmware Interface Specification
#define PXE_STATCODE_NOT_STARTED 0x0006
#define PXE_STATCODE_NOT_SHUTDOWN 0x0007
#define PXE_STATCODE_ALREADY_INITIALIZED 0x0008
#define PXE_STATCODE_NOT_INITIALIZED 0x0009
#define PXE_STATCODE_DEVICE_FAILURE 0x000A
#define PXE_STATCODE_NVDATA_FAILURE 0x000B
#define PXE_STATCODE_UNSUPPORTED 0x000C
#define PXE_STATCODE_BUFFER_FULL 0x000D
#define PXE_STATCODE_INVALID_PARAMETER 0x000E
#define PXE_STATCODE_INVALID_UNDI 0x000F
#define PXE_STATCODE_IPV4_NOT_SUPPORTED 0x0010
#define PXE_STATCODE_IPV6_NOT_SUPPORTED 0x0011
#define PXE_STATCODE_NOT_ENOUGH_MEMORY 0x0012
#define PXE_STATCODE_NO_DATA 0x0013

E.3.4.6 PXE_IFNUM
typedef PXE_UINT16 PXE_IFNUM;

// This interface number must be passed to the S/W UNDI Start
// command.

#define PXE_IFNUM_START 0x0000

// This interface number is returned by the S/W UNDI Get State
// and Start commands if information in the CDB, CPB or DB is
// invalid.

#define PXE_IFNUM_INVALID 0x0000

E.3.4.7 PXE_CONTROL
typedef PXE_UINT16 PXE_CONTROL;

// Setting this flag directs the UNDI to queue this command for
// later execution if the UNDI is busy and it supports command
// queuing. If queuing is not supported, a
// PXE_STATCODE_INVALID_CONTROL error is returned. If the queue
// is full, a PXE_STATCODE_CDB_QUEUE_FULL error is returned.

#define PXE_CONTROL_QUEUE_IF_BUSY 0x0002

// These two bit values are used to determine if there are more
// UNDI CDB structures following this one. If the link bit is
// set, there must be a CDB structure following this one.
// Execution will start on the next CDB structure as soon as this
// one completes successfully. If an error is generated by this
// command, execution will stop.
2324 April, 2015 Version 2.5

#define PXE_CONTROL_LINK 0x0001
#define PXE_CONTROL_LAST_CDB_IN_LIST 0x0000

E.3.4.8 PXE_FRAME_TYPE
typedef PXE_UINT8 PXE_FRAME_TYPE;

#define PXE_FRAME_TYPE_NONE 0x00
#define PXE_FRAME_TYPE_UNICAST 0x01
#define PXE_FRAME_TYPE_BROADCAST 0x02
#define PXE_FRAME_TYPE_FILTERED_MULTICAST 0x03
#define PXE_FRAME_TYPE_PROMISCUOUS 0x04
#define PXE_FRAME_TYPE_PROMISCUOUS_MULTICAST 0x05

E.3.4.9 PXE_IPV4
This storage type is always big endian, not little endian.
typedef PXE_UINT32 PXE_IPV4;

E.3.4.10 PXE_IPV6
This storage type is always big endian, not little endian.

typedef struct s_PXE_IPV6 {
 PXE_UINT32 num[4];
} PXE_IPV6;

E.3.4.11 PXE_MAC_ADDR
This storage type is always big endian, not little endian.

typedef struct {
 PXE_UINT8 num[32];
} PXE_MAC_ADDR;

E.3.4.12 PXE_IFTYPE
The interface type is returned by the Get Initialization Information command and is used by the BC
DHCP protocol function. This field is also used for the low order 8-bits of the H/W type field in
ARP packets. The high order 8-bits of the H/W type field in ARP packets will always be set to 0x00
by the BC.

typedef PXE_UINT8 PXE_IFTYPE;

// This information is from the ARP section of RFC 3232.

// 1 Ethernet (10Mb)
// 2 Experimental Ethernet (3Mb)
// 3 Amateur Radio AX.25
// 4 Proteon ProNET Token Ring
// 5 Chaos
// 6 IEEE 802 Networks
// 7 ARCNET
Version 2.5 April, 2015 2325

Unified Extensible Firmware Interface Specification
// 8 Hyperchannel
// 9 Lanstar
// 10 Autonet Short Address
// 11 LocalTalk
// 12 LocalNet (IBM PCNet or SYTEK LocalNET)
// 13 Ultra link
// 14 SMDS
// 15 Frame Relay
// 16 Asynchronous Transmission Mode (ATM)
// 17 HDLC
// 18 Fibre Channel
// 19 Asynchronous Transmission Mode (ATM)
// 20 Serial Line
// 21 Asynchronous Transmission Mode (ATM)

#define PXE_IFTYPE_ETHERNET 0x01
#define PXE_IFTYPE_TOKENRING 0x04
#define PXE_IFTYPE_FIBRE_CHANNEL 0x12

E.3.4.13 PXE_MEDIA_PROTOCOL
Protocol type. This will be copied into the media header without doing byte swapping. Protocol type
numbers can be obtained from the assigned numbers RFC 3232.

typedef UINT16 PXE_MEDIA_PROTOCOL;

E.3.5 Compound Types
All PXE structures must be byte packed.

E.3.5.1 PXE_HW_UNDI
This section defines the C structures and #defines for the !PXE H/W UNDI interface.

#pragma pack(1)
typedef struct s_pxe_hw_undi {
 PXE_UINT32 Signature; // PXE_ROMID_SIGNATURE
 PXE_UINT8 Len; // sizeof(PXE_HW_UNDI)
 PXE_UINT8 Fudge; // makes 8-bit cksum equal zero
 PXE_UINT8 Rev; // PXE_ROMID_REV
 PXE_UINT8 IFcnt; // physical connector count
 lower byte
 PXE_UINT8 MajorVer; // PXE_ROMID_MAJORVER
 PXE_UINT8 MinorVer; // PXE_ROMID_MINORVER
 PXE_UINT8 IFcntExt; // physical connector count
 upper byte
 PXE_UINT8 reserved; // zero, not used
 PXE_UINT32 Implementation; // implementation flags
} PXE_HW_UNDI;
#pragma pack()
2326 April, 2015 Version 2.5

ftp://ftp.isi.edu/in-notes/rfc1521.txt
http://www.faqs.org/rfcs/rfc2460.html
http://www.faqs.org/rfcs/rfc791.html
http://www.opengroup.org/pubs/catalog/c914.htm
http://www.phoenix.com/en/support/white+papers-specs/
http://acpi.info/index.html

// Status port bit definitions

// UNDI operation state

#define PXE_HWSTAT_STATE_MASK 0xC0000000
#define PXE_HWSTAT_BUSY 0xC0000000
#define PXE_HWSTAT_INITIALIZED 0x80000000
#define PXE_HWSTAT_STARTED 0x40000000
#define PXE_HWSTAT_STOPPED 0x00000000

// If set, last command failed

#define PXE_HWSTAT_COMMAND_FAILED 0x20000000

// If set, identifies enabled receive filters

#define PXE_HWSTAT_PROMISCUOUS_MULTICAST_RX_ENABLED 0x00001000
#define PXE_HWSTAT_PROMISCUOUS_RX_ENABLED 0x00000800
#define PXE_HWSTAT_BROADCAST_RX_ENABLED 0x00000400
#define PXE_HWSTAT_MULTICAST_RX_ENABLED 0x00000200
#define PXE_HWSTAT_UNICAST_RX_ENABLED 0x00000100

// If set, identifies enabled external interrupts

#define PXE_HWSTAT_SOFTWARE_INT_ENABLED 0x00000080
#define PXE_HWSTAT_TX_COMPLETE_INT_ENABLED 0x00000040
#define PXE_HWSTAT_PACKET_RX_INT_ENABLED 0x00000020
#define PXE_HWSTAT_CMD_COMPLETE_INT_ENABLED 0x00000010

// If set, identifies pending interrupts

#define PXE_HWSTAT_SOFTWARE_INT_PENDING 0x00000008
#define PXE_HWSTAT_TX_COMPLETE_INT_PENDING 0x00000004
#define PXE_HWSTAT_PACKET_RX_INT_PENDING 0x00000002
#define PXE_HWSTAT_CMD_COMPLETE_INT_PENDING 0x00000001

// Command port definitions

// If set, CDB identified in CDBaddr port is given to UNDI.
// If not set, other bits in this word will be processed.

#define PXE_HWCMD_ISSUE_COMMAND 0x80000000
#define PXE_HWCMD_INTS_AND_FILTS 0x00000000

// Use these to enable/disable receive filters.

#define PXE_HWCMD_PROMISCUOUS_MULTICAST_RX_ENABLE 0x00001000
Version 2.5 April, 2015 2327

http://www.ietf.org/rfc/rfc0826.txt
http://www.acpi.info/spec.htm
http://www.ietf.org/rfc/rfc1700.txt
http://www.phoenix.com/en/support/white+papers-specs/
http://www.ietf.org/rfc/rfc0951.txt
http://www.opengroup.org/onlinepubs/9629399/toc.htm
http://www.microsoft.com/hwdev/tech/pnp/
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2132.txt
http://developer.intel.com/technology/efi

Unified Extensible Firmware Interface Specification
#define PXE_HWCMD_PROMISCUOUS_RX_ENABLE 0x00000800
#define PXE_HWCMD_BROADCAST_RX_ENABLE 0x00000400
#define PXE_HWCMD_MULTICAST_RX_ENABLE 0x00000200
#define PXE_HWCMD_UNICAST_RX_ENABLE 0x00000100

// Use these to enable/disable external interrupts

#define PXE_HWCMD_SOFTWARE_INT_ENABLE 0x00000080
#define PXE_HWCMD_TX_COMPLETE_INT_ENABLE 0x00000040
#define PXE_HWCMD_PACKET_RX_INT_ENABLE 0x00000020
#define PXE_HWCMD_CMD_COMPLETE_INT_ENABLE 0x00000010

// Use these to clear pending external interrupts

#define PXE_HWCMD_CLEAR_SOFTWARE_INT 0x00000008
#define PXE_HWCMD_CLEAR_TX_COMPLETE_INT 0x00000004
#define PXE_HWCMD_CLEAR_PACKET_RX_INT 0x00000002
#define PXE_HWCMD_CLEAR_CMD_COMPLETE_INT 0x00000001

E.3.5.2 PXE_SW_UNDI
This section defines the C structures and #defines for the !PXE S/W UNDI interface.

#pragma pack(1)
typedef struct s_pxe_sw_undi {
 PXE_UINT32 Signature; // PXE_ROMID_SIGNATURE
 PXE_UINT8 Len; // sizeof(PXE_SW_UNDI)
 PXE_UINT8 Fudge; // makes 8-bit cksum zero
 PXE_UINT8 Rev; // PXE_ROMID_REV
 PXE_UINT8 IFcnt; // physical connector count
 lower byte
 PXE_UINT8 MajorVer; // PXE_ROMID_MAJORVER
 PXE_UINT8 MinorVer; // PXE_ROMID_MINORVER
 PXE_UINT8 IFcntExt; // physical connector count
 upper byte
 PXE_UINT8 reserved1; // zero, not used
 PXE_UINT32 Implementation; // Implementation flags
 PXE_UINT64 EntryPoint; // API entry point
 PXE_UINT8 reserved2[3]; // zero, not used
 PXE_UINT8 BusCnt; // number of bustypes supported
 PXE_UINT32 BusType[1]; // list of supported bustypes
} PXE_SW_UNDI;
#pragma pack()

E.3.5.3 PXE_UNDI
PXE_UNDI combines both the H/W and S/W UNDI types into one typedef and has #defines for
common fields in both H/W and S/W UNDI types.
#pragma pack(1)
2328 April, 2015 Version 2.5

http://developer.intel.com/design/servers/desguide/hdgv3.htm
http://www.intel.com/design/pentium4/manuals/
http://t13.org/project/d1386r5a.pdf
http://developer.intel.com/design/itanium/index.htm
http://developer.intel.com/design/ia-64
http://developer.intel.com/design/ia-64
http://developer.intel.com/design/ia-64

typedef union u_pxe_undi {
 PXE_HW_UNDI hw;
 PXE_SW_UNDI sw;
} PXE_UNDI;
#pragma pack()

// Signature of !PXE structure

#define PXE_ROMID_SIGNATURE PXE_BUSTYPE ('!', 'P', 'X', 'E')

// !PXE structure format revision)
// See “Links to UEFI-Related Documents” (http://uefi.org/uefi)
// under the heading “UDP over IPv6”.

#define PXE_ROMID_REV 0x02

// UNDI command interface revision. These are the values that
// get sent in option 94 (Client Network Interface Identifier) in
// the DHCP Discover and PXE Boot Server Request packets.
// See “Links to UEFI-Related Documents” (http://uefi.org/uefi)
// under the heading “IETF Organization”.

#define PXE_ROMID_MAJORVER 0x03
#define PXE_ROMID_MINORVER 0x01

// Implementation flags

#define PXE_ROMID_IMP_HW_UNDI 0x80000000
#define PXE_ROMID_IMP_SW_VIRT_ADDR 0x40000000
#define PXE_ROMID_IMP_64BIT_DEVICE 0x00010000
#define PXE_ROMID_IMP_FRAG_SUPPORTED 0x00008000
#define PXE_ROMID_IMP_CMD_LINK_SUPPORTED 0x00004000
#define PXE_ROMID_IMP_CMD_QUEUE_SUPPORTED 0x00002000
#define PXE_ROMID_IMP_MULTI_FRAME_SUPPORTED 0x00001000
#define PXE_ROMID_IMP_NVDATA_SUPPORT_MASK 0x00000C00
#define PXE_ROMID_IMP_NVDATA_BULK_WRITABLE 0x00000C00
#define PXE_ROMID_IMP_NVDATA_SPARSE_WRITABLE 0x00000800
#define PXE_ROMID_IMP_NVDATA_READ_ONLY 0x00000400
#define PXE_ROMID_IMP_NVDATA_NOT_AVAILABLE 0x00000000
#define PXE_ROMID_IMP_STATISTICS_SUPPORTED 0x00000200
#define PXE_ROMID_IMP_STATION_ADDR_SETTABLE 0x00000100
#define PXE_ROMID_IMP_PROMISCUOUS_MULTICAST_RX_SUPPORTED 0x00000080
#define PXE_ROMID_IMP_PROMISCUOUS_RX_SUPPORTED 0x00000040
#define PXE_ROMID_IMP_BROADCAST_RX_SUPPORTED 0x00000020
#define PXE_ROMID_IMP_FILTERED_MULTICAST_RX_SUPPORTED 0x00000010
#define PXE_ROMID_IMP_SOFTWARE_INT_SUPPORTED 0x00000008
#define PXE_ROMID_IMP_TX_COMPLETE_INT_SUPPORTED 0x00000004
Version 2.5 April, 2015 2329

http://www.1394ta.org/Technology/Specifications/specifications.htm

Unified Extensible Firmware Interface Specification
#define PXE_ROMID_IMP_PACKET_RX_INT_SUPPORTED 0x00000002
#define PXE_ROMID_IMP_CMD_COMPLETE_INT_SUPPORTED 0x00000001

E.3.5.4 PXE_CDB
PXE UNDI command descriptor block.

#pragma pack(1)
typedef struct s_pxe_cdb {
 PXE_OPCODE OpCode;
 PXE_OPFLAGS OpFlags;
 PXE_UINT16 CPBsize;
 PXE_UINT16 DBsize;
 PXE_UINT64 CPBaddr;
 PXE_UINT64 DBaddr;
 PXE_STATCODE StatCode;
 PXE_STATFLAGS StatFlags;
 PXE_UINT16 IFnum;
 PXE_CONTROL Control;
} PXE_CDB;
#pragma pack()

E.3.5.5 PXE_IP_ADDR
This storage type is always big endian, not little endian.

#pragma pack(1)
typedef union u_pxe_ip_addr {
 PXE_IPV6 IPv6;
 PXE_IPV4 IPv4;
} PXE_IP_ADDR;
#pragma pack()

E.3.5.6 PXE_DEVICE
This typedef is used to identify the network device that is being used by the UNDI. This information
is returned by the Get Config Info command.

#pragma pack(1)
typedef union pxe_device {

 // PCI and PC Card NICs are both identified using bus, device
 // and function numbers. For PC Card, this may require PC
 // Card services to be loaded in the BIOS or preboot
 // environment.
 struct {
 // See S/W UNDI ROMID structure definition for PCI and
 // PCC BusType definitions.
 PXE_UINT32 BusType;

 // Bus, device & function numbers that locate this device.
 PXE_UINT16 Bus;
2330 April, 2015 Version 2.5

http://www.phoenix.com/en/support/white+papers-specs/

 PXE_UINT8 Device;
 PXE_UINT8 Function;
 } PCI, PCC;

} PXE_DEVICE;
#pragma pack()

E.4 UNDI Commands
All 32/64-bit UNDI commands use the same basic command format, the CDB (Command
Descriptor Block). CDB fields that are not used by a particular command must be initialized to zero
by the application/driver that is issuing the command. (See “Links to UEFI-Related Documents”
(http://uefi.org/uefi) under the heading “DMTF BIOS specifications”.)

All UNDI implementations must set the command completion status
(PXE_STATFLAGS_COMMAND_COMPLETE) after command execution completes. Applications
and drivers must not alter or rely on the contents of any of the CDB, CPB or DB fields until the
command completion status is set.

All commands return status codes for invalid CDB contents and, if used, invalid CPB contents.
Commands with invalid parameters will not execute. Fix the error and submit the command again.

Figure 140 describes the different UNDI states (Stopped, Started and Initialized), shows the
transitions between the states and which UNDI commands are valid in each state.
Version 2.5 April, 2015 2331

Unified Extensible Firmware Interface Specification

Figure 140. UNDI States, Transitions & Valid Commands

Note: All memory addresses including the CDB address, CPB address, and the DB address submitted to
the S/W UNDI by the protocol drivers must be processor-based addresses. All memory addresses
submitted to the H/W UNDI must be device based addresses.

Note: Additional requirements for S/W UNDI implementations: Processor register contents must be
unchanged by S/W UNDI command execution (The application/driver does not have to save
processor registers when calling S/W UNDI). Processor arithmetic flags are undefined
(application/driver must save processor arithmetic flags if needed). Application/driver must
remove CDB address from stack after control returns from S/W UNDI.

Note: Additional requirements for 32-bit network devices: All addresses given to the S/W UNDI must be
32-bit addresses. Any address that exceeds 32 bits (4 GiB) will result in a return of one of the
following status codes: PXE_STATCODE_INVALID_PARAMETER,
PXE_STATCODE_INVALID_CDB or PXE_STATCODE_INVALID_CPB.

When executing linked commands, command execution will stop at the end of the CDB list (when
the PXE_CONTROL_LINK bit is not set) or when a command returns an error status code.

Note: Buffers requested via the MemoryRequired field in s_pxe_db_get_init_info
(seeAppendix E.4.5.5) will be allocated via PCI_IO.AllocateBuffer(). However, the
2332 April, 2015 Version 2.5

buffers passed to various UNDI commands are not guaranteed to be allocated via
AllocateBuffer().

Note: Calls to Map_Mem() of type TO_AND_FROM_DEVICE must only be used for common DMA
buffers. Such buffers must be requested via the MemoryRequired field in
s_pxe_db_get_init_info and provided through the Initialize command

E.4.1 Command Linking and Queuing
When linking commands, the CDBs must be stored consecutively in system memory without any
gaps in between. Do not set the Link bit in the last CDB in the list. As shown in Figure 141, the
Link bit must be set in all other CDBs in the list.

Figure 141. Linked CDBs

When the H/W UNDI is executing commands, the State bits in the Status field in the !PXE structure
will be set to Busy (3).

When H/W or S/W UNDI is executing commands and a new command is issued, a StatCode of
PXE_STATCODE_BUSY and a StatFlag of PXE_STATFLAG_COMMAND_FAILURE is set in the
CDB. For linked commands, only the first CDB will be set to Busy, all other CDBs will be
unchanged. When a linked command fails, execution on the list stops. Commands after the failing
command will not be run.

As shown in Figure 142, when queuing commands, only the first CDB needs to have the Queue
Control flag set. If queuing is supported and the UNDI is busy and there is room in the command
queue, the command (or list of commands) will be queued.

OM13188

Linked CDBs
0x00

0x1F
0x20

0x3F

Set Link bit.

0x40

0x5F

Set Link bit.

Do not set
Link bit.

CDB

CDB

CDB
Version 2.5 April, 2015 2333

Unified Extensible Firmware Interface Specification
Figure 142. Queued CDBs

When a command is queued a StatFlag of PXE_STATFLAG_COMMAND_QUEUED is set (if linked
commands are queued only the StatFlag of the first CDB gets set). This signals that the command
was added to the queue. Commands in the queue will be run on a first-in, first-out, basis. When a
command fails, the next command in the queue is run. When a linked command in the queue fails,
execution on the list stops. The next command, or list of commands, that was added to the command
queue will be run.

E.4.2 Get State
This command is used to determine the operational state of the UNDI. An UNDI has three possible
operational states:

• Stopped. A stopped UNDI is free for the taking. When all interface numbers (IFnum) for a
particular S/W UNDI are stopped, that S/W UNDI image can be relocated or removed. A
stopped UNDI will accept Get State and Start commands.

• Started. A started UNDI is in use. A started UNDI will accept Get State, Stop, Get Init Info,
and Initialize commands.

• Initialized. An initialized UNDI is in used. An initialized UNDI will accept all commands
except: Start, Stop, and Initialize.

Drivers and applications must not start using UNDIs that have been placed into the Started or
Initialized states by another driver or application.

3.0 and 3.1 S/W UNDI: No callbacks are performed by this UNDI command.

OM13189

Queued CDBs
0x00

0x1F
0x20

0x3F

Set Queue bit.
Set Link bit.

0x40

0x5F

Set Queue bit.
Set Link bit.

Set Queue bit.
Set Link bit.

CDB

CDB

CDB
2334 April, 2015 Version 2.5

http://www.intel.com/labs/manage/wfm/wfmspecs.htm
http://www.phoenix.com/en/support/white+papers-specs/
http://www.phoenix.com/en/support/white+papers-specs/

E.4.2.1 Issuing the Command
To issue a Get State command, create a CDB and fill it in as shown in the table below:

E.4.2.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

E.4.2.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

If the command completes successfully, use PXE_STATFLAGS_GET_STATE_MASK to check the
state of the UNDI.

CDB Field How to initialize the CDB structure for a Get State command

OpCode PXE_OPCODE_GET_STATE

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. StatFlags contain operational state.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued. All other fields are unchanged.

INITIALIZE Command has not been executed or queued.

StatCode Reason

SUCCESS Command completed successfully. StatFlags contain operational state.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

StatFlags Reason

STOPPED The UNDI is stopped.

STARTED The UNDI is started, but not initialized.
Version 2.5 April, 2015 2335

Unified Extensible Firmware Interface Specification
E.4.3 Start
This command is used to change the UNDI operational state from stopped to started. No other
operational checks are made by this command. Protocol driver makes this call for each network
interface supported by the UNDI with a set of call back routines and a unique identifier to identify
the particular interface. UNDI does not interpret the unique identifier in any way except that it is a
64-bit value and it will pass it back to the protocol driver as a parameter to all the call back routines
for any particular interface. If this is a S/W UNDI, the callback functions Delay(), Virt2Phys(),
Map_Mem(), UnMap_Mem(), and Sync_Mem() functions will not be called by this command.

E.4.3.1 Issuing the Command
To issue a Start command for H/W UNDI, create a CDB and fill it in as shows in the table below:

To issue a Start command for S/W UNDI, create a CDB and fill it in as shows in the table below:

INITIALIZED The UNDI is initialized.

CDB Field How to initialize the CDB structure for a H/W UNDI Start command

OpCode PXE_OPCODE_START

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed

CDB Field How to initialize the CDB structure for a S/W UNDI Start command

OpCode PXE_OPCODE_START

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize sizeof(PXE_CPB_START)

DBsize PXE_DBSIZE_NOT_USED

CPBaddr Address of a PXE_CPB_START structure.

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed
2336 April, 2015 Version 2.5

http://developer.intel.com/design/itanium
http://developer.intel.com/design/itanium
http://developer.intel.com/design/itanium

E.4.3.2 Preparing the CPB
For the 3.1 S/W UNDI Start command, the CPB structure shown below must be filled in and the
CDB must be set to sizeof(struct s_pxe_cpb_start_31).

#pragma pack(1)
typedef struct s_pxe_cpb_start_31 {
 UINT64 Delay;
 //
 // Address of the Delay() callback service.
 // This field cannot be set to zero.
 //
 // VOID
 // Delay(
 // IN UINT64 UniqueId,
 // IN UINT64 Microseconds);
 //
 // UNDI will never request a delay smaller than 10 microseconds

 // and will always request delays in increments of 10
 // microseconds. The Delay() callback routine must delay
 // between n and n + 10 microseconds before returning control
 // to the UNDI.
 //

 UINT64 Block;
 //
 // Address of the Block() callback service.
 // This field cannot be set to zero.
 //
 // VOID
 // Block(
 // IN UINT64 UniqueId,
 // IN UINT32 Enable);
 //
 // UNDI may need to block multithreaded/multiprocessor access
 // to critical code sections when programming or accessing the
 // network device. When UNDI needs a block, it will call the
 // Block()callback service with Enable set to a non-zero value.

 // When UNDI no longer needs the block, it will call Block()
 // with Enable set to zero.
 //

 UINT64 Virt2Phys;
 //
 // Convert a virtual address to a physical address.
 // This field can be set to zero if virtual and physical
Version 2.5 April, 2015 2337

Unified Extensible Firmware Interface Specification
 // addresses are identical.
 //
 // VOID
 // Virt2Phys(
 // IN UINT64 UniqueId,
 // IN UINT64 Virtual,
 // OUT UINT64 PhysicalPtr);
 //
 // UNDI will pass in a virtual address and a pointer to storage

 // for a physical address. The Virt2Phys() service converts
 // the virtual address to a physical address and stores the
 // resulting physical address in the supplied buffer. If no
 // conversion is needed, the virtual address must be copied
 // into the supplied physical address buffer.
 //

 UINT64 Mem_IO;
 //
 // Read/Write network device memory and/or I/O register space.
 // This field cannot be set to zero.
 //
 // VOID
 // Mem_IO(
 // IN UINT64 UniqueId,
 // IN UINT8 AccessType,
 // IN UINT8 Length,
 // IN UINT64 Port,
 // IN OUT UINT64 BufferPtr);
 //
 // UNDI uses the Mem_IO() service to access the network device
 // memory and/or I/O registers. The AccessType is one of the
 // PXE_IO_xxx or PXE_MEM_xxx constants defined at the end of
 // this section. The Length is 1, 2, 4 or 8. The Port number
 // is relative to the base memory or I/O address space for this

 // device.BufferPtr points to the data to be written to the
 // Port or will contain the data that is read from the Port.
 //

 UINT64 Map_Mem;
 //
 // Map virtual memory address for DMA.
 // This field can be set to zero if there is no mapping
 // service.
 //
 // VOID
2338 April, 2015 Version 2.5

 // Map_Mem(
 // IN UINT64 UniqueId,
 // IN UINT64 Virtual,
 // IN UINT32 Size,
 // IN UINT32 Direction,
 // OUT UINT64 PhysicalPtr);
 //
 // When UNDI needs to perform a DMA transfer it will request a
 // virtual-to-physical mapping using the Map_Mem() service.
The
 // Virtual parameter contains the virtual address to be mapped.
 // The minimum Size of the virtual memory buffer to be mapped.
 // Direction is one of the TO_DEVICE, FROM_DEVICE or
 // TO_AND_FROM_DEVICE constants defined at the end of this
 // section.PhysicalPtr contains the mapped physical address or
 // a copy of the Virtual address if no mapping is required.
 //

 UINT64 UnMap_Mem;
 //
 // Un-map previously mapped virtual memory address.
 // This field can be set to zero only if the Map_Mem() service
 // is also set to zero.
 //
 // VOID
 // UnMap_Mem(
 // IN UINT64 UniqueId,
 // IN UINT64 Virtual,
 // IN UINT32 Size,
 // IN UINT32 Direction,
 // IN UINT64 PhysicalPtr);
 //
 // When UNDI is done with the mapped memory, it will use the
 // UnMap_Mem() service to release the mapped memory.
 //

 UINT64 Sync_Mem;
 //
 // Synchronise mapped memory.
 // This field can be set to zero only if the Map_Mem() service
 // is also set to zero.
 //
 // VOID
 // Sync_Mem(
 // IN UINT64 UniqueId,
 // IN UINT64 Virtual,
 // IN UINT32 Size,
Version 2.5 April, 2015 2339

Unified Extensible Firmware Interface Specification
 // IN UINT32 Direction,
 // IN UINT64 PhysicalPtr);
 //
 // When the virtual and physical buffers need to be
 // synchronized, UNDI will call the Sync_Mem() service.
 //

 UINT64 UniqueId;
 //
 // UNDI will pass this value to each of the callback services.
 // A unique ID number should be generated for each instance of
 // the UNDI driver that will be using these callback services.
 //
} PXE_CPB_START_31;
#pragma pack()

For the 3.0 S/W UNDI Start command, the CPB structure shown below must be filled in and the
CDB must be set to sizeof(struct s_pxe_cpb_start_30).

#pragma pack(1)
typedef struct s_pxe_cpb_start_30 {
 UINT64 Delay;
 //
 // Address of the Delay() callback service.
 // This field cannot be set to zero.
 //
 // VOID
 // Delay(
 // IN UINT64 Microseconds);
 //
 // UNDI will never request a delay smaller than 10 microseconds

 // and will always request delays in increments of 10.
 // microseconds The Delay() callback routine must delay between

 // n and n + 10 microseconds before returning control to the
 // UNDI.
 //

 UINT64 Block;
 //
 // Address of the Block() callback service.
 // This field cannot be set to zero.
 //
 // VOID
 // Block(
 // IN UINT32 Enable);
 //
2340 April, 2015 Version 2.5

 // UNDI may need to block multithreaded/multiprocessor access
 // to critical code sections when programming or accessing the
 // network device. When UNDI needs a block, it will call the
 // Block()callback service with Enable set to a non-zero value.

 // When UNDI no longer needs the block, it will call Block()
 // with Enable set to zero.
 //

 UINT64 Virt2Phys;
 //
 // Convert a virtual address to a physical address.
 // This field can be set to zero if virtual and physical
 // addresses are identical.
 //
 // VOID
 // Virt2Phys(
 // IN UINT64 Virtual,
 // OUT UINT64 PhysicalPtr);
 //
 // UNDI will pass in a virtual address and a pointer to storage

 // for a physical address. The Virt2Phys() service converts
 // the virtual address to a physical address and stores the
 // resulting physical address in the supplied buffer. If no
 // conversion is needed, the virtual address must be copied
 // into the supplied physical address buffer.
 //

 UINT64 Mem_IO;
 //
 // Read/Write network device memory and/or I/O register space.
 // This field cannot be set to zero.
 //
 // VOID
 // Mem_IO(
 // IN UINT8 AccessType,
 // IN UINT8 Length,
 // IN UINT64 Port,
 // IN OUT UINT64 BufferPtr);
 //
 // UNDI uses the Mem_IO() service to access the network device
 // memory and/or I/O registers. The AccessType is one of the
 // PXE_IO_xxx or PXE_MEM_xxx constants defined at the end of
 // this section. The Length is 1, 2, 4 or 8. The Port number
 // is relative to the base memory or I/O address space for this
Version 2.5 April, 2015 2341

Unified Extensible Firmware Interface Specification
 // device.BufferPtr points to the data to be written to the
 // Port or will contain the data that is read from the Port.
 //
} PXE_CPB_START_30;
#pragma pack()

#define TO_AND_FROM_DEVICE 0
// Provides both read and write access to system memory by both
// the processor and a bus master. The buffer is coherent from
// both the processor's and the bus master's point of view.

#define FROM_DEVICE 1
// Provides a write operation to system memory by a bus master.

#define TO_DEVICE 2
// Provides a read operation from system memory by a bus master.

E.4.3.3 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

E.4.3.4 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

E.4.4 Stop
This command is used to change the UNDI operational state from started to stopped.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI is now started.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. UNDI is now started.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

ALREADY_STARTED The UNDI is already started.
2342 April, 2015 Version 2.5

E.4.4.1 Issuing the Command
To issue a Stop command, create a CDB and fill it in as shows in the table below:

E.4.4.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

E.4.4.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

CDB Field How to initialize the CDB structure for a Stop command

OpCode PXE_OPCODE_STOP

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI is now stopped.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has not been executed or queued.

StatCode Reason

SUCCESS Command completed successfully. UNDI is now stopped.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_SHUTDOWN The UNDI is initialized and must be shutdown before it can be stopped.
Version 2.5 April, 2015 2343

Unified Extensible Firmware Interface Specification
E.4.5 Get Init Info
This command is used to retrieve initialization information that is needed by drivers and applications
to initialized UNDI.

E.4.5.1 Issuing the Command
To issue a Get Init Info command, create a CDB and fill it in as shows in the table below:

E.4.5.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

E.4.5.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

CDB Field How to initialize the CDB structure for a Get Init Info command

OpCode PXE_OPCODE_GET_INIT_INFO

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize sizeof(PXE_DB_INIT_INFO)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of a PXE_DB_INIT_INFO structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB can be used.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. DB can be used.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.
2344 April, 2015 Version 2.5

E.4.5.4 StatFlags
To determine if cable detection is supported by this UNDI/NIC, use these macros with the value
returned in the CDB.StatFlags field:
PXE_STATFLAGS_CABLE_DETECT_MASK
PXE_STATFLAGS_CABLE_DETECT_NOT_SUPPORTED
PXE_STATFLAGS_CABLE_DETECT_SUPPORTED
PXE_STATFLAGS_GET_STATUS_NO_MEDIA_MASK
PXE_STATFLAGS_GET_STATUS_NO_MEDIA_NOT_SUPPORTED
PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED

E.4.5.5 DB
#pragma pack(1)
typedef struct s_pxe_db_get_init_info {

 // Minimum length of locked memory buffer that must be given to
 // the Initialize command. Giving UNDI more memory will
 // generally give better performance.

 // If MemoryRequired is zero, the UNDI does not need and will
 // not use system memory to receive and transmit packets.

 PXE_UINT32 MemoryRequired;

 // Maximum frame data length for Tx/Rx excluding the media
 // header.
 //
 PXE_UINT32 FrameDataLen;

 // Supported link speeds are in units of mega bits. Common
 // ethernet values are 10, 100 and 1000. Unused LinkSpeeds[]
 // entries are zero filled.

 PXE_UINT32 LinkSpeeds[4];

 // Number of nonvolatile storage items.

 PXE_UINT32 NvCount;

 // Width of nonvolatile storage item in bytes. 0, 1, 2 or 4

 PXE_UINT16 NvWidth;

 // Media header length. This is the typical media header
 // length for this UNDI. This information is needed when
 // allocating receive and transmit buffers.

 PXE_UINT16 MediaHeaderLen;
Version 2.5 April, 2015 2345

Unified Extensible Firmware Interface Specification
 // Number of bytes in the NIC hardware (MAC) address.

 PXE_UINT16 HWaddrLen;

 // Maximum number of multicast MAC addresses in the multicast
 // MAC address filter list.

 PXE_UINT16 MCastFilterCnt;

 // Default number and size of transmit and receive buffers that
 // will be allocated by the UNDI. If MemoryRequired is
 // nonzero, this allocation will come out of the memory buffer
 // given to the Initialize command. If MemoryRequired is zero,
 // this allocation will come out of memory on the NIC.

 PXE_UINT16 TxBufCnt;
 PXE_UINT16 TxBufSize;
 PXE_UINT16 RxBufCnt;
 PXE_UINT16 RxBufSize;

 // Hardware interface types defined in the Assigned Numbers RFC
 // and used in DHCP and ARP packets.
 // See the PXE_IFTYPE typedef and PXE_IFTYPE_xxx macros.

 PXE_UINT8 IFtype;

 // Supported duplex options. This can be one or a combination
 // of more than one constants defined as PXE_DUPLEX_xxxxx
 // below. This value indicates the ability of UNDI to
 // change/control the duplex modes of the NIC.

 PXE_UINT8 SupportedDuplexModes;

 // Supported loopback options. This field can be one or a
 // combination of more than one constants defined as
 // PXE_LOOPBACK_xxxxx #defines below. This value indicates
 // the ability of UNDI to change/control the loopback modes
 // of the NIC

 PXE_UINT8 SupportedLoopBackModes;
} PXE_DB_GET_INIT_INFO;
#pragma pack()

#define PXE_MAX_TXRX_UNIT_ETHER 1500
#define PXE_HWADDR_LEN_ETHER 0x0006
2346 April, 2015 Version 2.5

#define PXE_DUPLEX_DEFAULT 0
#define PXE_DUPLEX_ENABLE_FULL_SUPPORTED 1
#define PXE_DUPLEX_FORCE_FULL_SUPPORTED 2

#define PXE_LOOPBACK_INTERNAL_SUPPORTED 1
#define PXE_LOOPBACK_EXTERNAL_SUPPORTED 2

E.4.6 Get Config Info
This command is used to retrieve configuration information about the NIC being controlled by
 the UNDI.

E.4.6.1 Issuing the Command
To issue a Get Config Info command, create a CDB and fill it in as shown in the table below:

E.4.6.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

E.4.6.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

CDB Field How to initialize the CDB structure for a Get Config Info command

OpCode PXE_OPCODE_GET_CONFIG_INFO

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize sizeof(PXE_DB_CONFIG_INFO)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of a PXE_DB_CONFIG_INFO structure

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB has been written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason
Version 2.5 April, 2015 2347

Unified Extensible Firmware Interface Specification
E.4.6.4 DB
#pragma pack(1)
typedef struct s_pxe_pci_config_info {

 // This is the flag field for the PXE_DB_GET_CONFIG_INFO union.
 // For PCI bus devices, this field is set to PXE_BUSTYPE_PCI.

 PXE_UINT32 BusType;

 // This identifies the PCI network device that this UNDI
 // interface is bound to.

 PXE_UINT16 Bus;
 PXE_UINT8 Device;
 PXE_UINT8 Function;

 // This is a copy of the PCI configuration space for this
 // network device.

 union {
 PXE_UINT8 Byte[256];
 PXE_UINT16 Word[128];
 PXE_UINT32 Dword[64];
 } Config;
} PXE_PCI_CONFIG_INFO;
#pragma pack()
#pragma pack(1)
typedef struct s_pxe_pcc_config_info {

 // This is the flag field for the PXE_DB_GET_CONFIG_INFO union.
 // For PCC bus devices, this field is set to PXE_BUSTYPE_PCC.

 PXE_UINT32 BusType;

 // This identifies the PCC network device that this UNDI
 // interface is bound to.

 PXE_UINT16 Bus;
 PXE_UINT8 Device;
 PXE_UINT8 Function;

SUCCESS Command completed successfully. DB has been written.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.
2348 April, 2015 Version 2.5

 // This is a copy of the PCC configuration space for this
 // network device.

 union {
 PXE_UINT8 Byte[256];
 PXE_UINT16 Word[128];
 PXE_UINT32 Dword[64];
} Config;
} PXE_PCC_CONFIG_INFO;
#pragma pack()

#pragma pack(1)
typedef union u_pxe_db_get_config_info {
 PXE_PCI_CONFIG_INFO pci;
 PXE_PCC_CONFIG_INFO pcc;
} PXE_DB_GET_CONFIG_INFO;
#pragma pack()

E.4.7 Initialize
This command resets the network adapter and initializes UNDI using the parameters supplied in the
CPB. The Initialize command must be issued before the network adapter can be setup to transmit
and receive packets. This command will not enable the receive unit or external interrupts.

Once the memory requirements of the UNDI are obtained by using the Get Init Info command, a
block of kernel (nonswappable) memory may need to be allocated by the protocol driver. The
address of this kernel memory must be passed to UNDI using the Initialize command CPB. This
memory is used for transmit and receive buffers and internal processing.

Initializing the network device will take up to four seconds for most network devices and in some
extreme cases (usually poor cables) up to twenty seconds. Control will not be returned to the caller
and the COMMAND_COMPLETE status flag will not be set until the NIC is ready to transmit.

E.4.7.1 Issuing the Command
To issue an Initialize command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for an Initialize command

OpCode PXE_OPCODE_INITIALIZE

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_INITIALIZE)

DBsize sizeof(PXE_DB_INITIALIZE)

CPBaddr Address of a PXE_CPB_INITIALIZE structure.

Dbaddr Address of a PXE_DB_INITIALIZE structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE
Version 2.5 April, 2015 2349

Unified Extensible Firmware Interface Specification
E.4.7.2 OpFlags
Cable detection can be enabled or disabled by setting one of the following OpFlags:
PXE_OPFLAGS_INITIALIZE_CABLE_DETECT
PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE

E.4.7.3 Preparing the CPB
If the MemoryRequired field returned in the PXE_DB_GET_INIT_INFO structure is zero, the
Initialize command does not need to be given a memory buffer or even a CPB structure. If the
MemoryRequired field is nonzero, the Initialize command does need a memory buffer.
#pragma pack(1)
typedef struct s_pxe_cpb_initialize {

 // Address of first (lowest) byte of the memory buffer.
 // This buffer must be in contiguous physical memory and cannot
 // be swapped out. The UNDI will be using this for transmit
 // and receive buffering. This address must be a processor-
 // based address for S/W UNDI and a device-based address for
 // H/W UNDI.

 PXE_UINT64 MemoryAddr;

 // MemoryLength must be greater than or equal to MemoryRequired
 // returned by the Get Init Info command.

 PXE_UINT32 MemoryLength;

 // Desired link speed in Mbit/sec. Common ethernet values are
 // 10, 100 and 1000. Setting a value of zero will auto-detect
 // and/or use the default link speed (operation depends on
 // UNDI/NIC functionality).

 PXE_UINT32 LinkSpeed;

 // Suggested number and size of receive and transmit buffers to
 // allocate. If MemoryAddr and MemoryLength are nonzero, this
 // allocation comes out of the supplied memory buffer. If
 // MemoryAddr and MemoryLength are zero, this allocation comes
 // out of memory on the NIC.

 // If these fields are set to zero, the UNDI will allocate
 // buffer counts and sizes as it sees fit.

 PXE_UINT16 TxBufCnt;

Ifnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.
2350 April, 2015 Version 2.5

 PXE_UINT16 TxBufSize;
 PXE_UINT16 RxBufCnt;
 PXE_UINT16 RxBufSize;

 // The following configuration parameters are optional and must
 // be zero to use the default values.
 // The possible values for these parameters are defined below.

 PXE_UINT8 DuplexMode;

 PXE_UINT8 LoopBackMode;
} PXE_CPB_INITIALIZE;
#pragma pack()

#define PXE_DUPLEX_AUTO_DETECT 0x00
#define PXE_FORCE_FULL_DUPLEX 0x01

#define PXE_FORCE_HALF_DUPLEX 0x02

#define PXE_LOOPBACK_NORMAL 0
#define PXE_LOOPBACK_INTERNAL 1
#define PXE_LOOPBACK_EXTERNAL 2

E.4.7.4 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

E.4.7.5 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI and network device is
now initialized. DB has been written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. UNDI and network device is now
initialized. DB has been written. Check StatFlags.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.
Version 2.5 April, 2015 2351

Unified Extensible Firmware Interface Specification
E.4.7.6 StatFlags
Check the StatFlags to see if there is an active connection to this network device. If the no media
StatFlag is set, the UNDI and network device are still initialized.

PXE_STATFLAGS_INITIALIZED_NO_MEDIA

E.4.7.7 Before Using the DB
#pragma pack(1)
typedef struct s_pxe_db_initialize {

 // Actual amount of memory used from the supplied memory
 // buffer. This may be less that the amount of memory
 // supplied and may be zero if the UNDI and network device
 // do not use external memory buffers. Memory used by the
 // UNDI and network device is allocated from the lowest
 // memory buffer address.

 PXE_UINT32 MemoryUsed;

 // Actual number and size of receive and transmit buffers that
 // were allocated.

 PXE_UINT16 TxBufCnt;
 PXE_UINT16 TxBufSize;
 PXE_UINT16 RxBufCnt;
 PXE_UINT16 RxBufSize
} PXE_DB_INITIALIZE;
#pragma pack()

E.4.8 Reset
This command resets the network adapter and reinitializes the UNDI with the same parameters
provided in the Initialize command. The transmit and receive queues are emptied and any pending
interrupts are cleared. Depending on the state of the OpFlags, the receive filters and external
interrupt enables may also be reset.

Resetting the network device may take up to four seconds and in some extreme cases (usually poor
cables) up to twenty seconds. Control will not be returned to the caller and the
COMMAND_COMPLETE status flag will not be set until the NIC is ready to transmit.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

ALREADY_INITIALIZED The UNDI is already initialized.

DEVICE_FAILURE The network device could not be initialized.

NVDATA_FAILURE The nonvolatile storage could not be read.
2352 April, 2015 Version 2.5

E.4.8.1 Issuing the Command
To issue a Reset command, create a CDB and fill it in as shows in the table below:

E.4.8.2 OpFlags
Normally the settings of the receive filters and external interrupt enables are unchanged by the Reset
command. These two OpFlags will alter the operation of the Reset command.
PXE_OPFLAGS_RESET_DISABLE_INTERRUPTS
PXE_OPFLAGS_RESET_DISABLE_FILTERS

E.4.8.3 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

E.4.8.4 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

CDB Field How to initialize the CDB structure for a Reset command

OpCode PXE_OPCODE_RESET

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBSIZE_NOT_USED

DBaddr PXE_DBSIZE_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI and network device have
been reset. Check StatFlags.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. UNDI and network device have
been reset. Check StatFlags.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.
Version 2.5 April, 2015 2353

Unified Extensible Firmware Interface Specification
E.4.8.5 StatFlags
Check the StatFlags to see if there is an active connection to this network device. If the no media
StatFlag is set, the UNDI and network device are still reset.

PXE_STATFLAGS_RESET_NO_MEDIA

E.4.9 Shutdown
The Shutdown command resets the network adapter and leaves it in a safe state for another driver to
initialize. Any pending transmits or receives are lost. Receive filters and external interrupt enables
are reset (disabled). The memory buffer assigned in the Initialize command can be released or
reassigned.

Once UNDI has been shutdown, it can then be stopped or initialized again. The Shutdown command
changes the UNDI operational state from initialized to started.

E.4.9.1 Issuing the Command
To issue a Shutdown command, create a CDB and fill it in as shown in the table below:

E.4.9.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

DEVICE_FAILURE The network device could not be initialized.

NVDATA_FAILURE The nonvolatile storage is not valid.

CDB Field How to initialize the CDB structure for a Shutdown command

OpCode PXE_OPCODE_SHUTDOWN

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBSIZE_NOT_USED

DBaddr PXE_DBSIZE_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.

StatFlags Reason
2354 April, 2015 Version 2.5

E.4.9.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

E.4.10 Interrupt Enables
The Interrupt Enables command can be used to read and/or change the current external interrupt
enable settings. Disabling an external interrupt enable prevents an external (hardware) interrupt
from being signaled by the network device, internally the interrupt events can still be polled by using
the Get Status command.

E.4.10.1 Issuing the Command
To issue an Interrupt Enables command, create a CDB and fill it in as shows in the table below:

E.4.10.2 OpFlags
To read the current external interrupt enables settings set CDB.OpFlags to:

COMMAND_COMPLETE Command completed successfully. UNDI and network device are
shutdown.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. UNDI and network device are shutdown.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

CDB Field How to initialize the CDB structure for an Interrupt Enables command

OpCode PXE_OPCODE_INTERRUPT_ENABLES

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.
Version 2.5 April, 2015 2355

Unified Extensible Firmware Interface Specification
PXE_OPFLAGS_INTERRUPT_READ

To enable or disable external interrupts set one of these OpFlags:
PXE_OPFLAGS_INTERRUPT_DISABLE
PXE_OPFLAGS_INTERRUPT_ENABLE

When enabling or disabling interrupt settings, the following additional OpFlag bits are used to
specify which types of external interrupts are to be enabled or disabled:

PXE_OPFLAGS_INTERRUPT_RECEIVE
PXE_OPFLAGS_INTERRUPT_TRANSMIT
PXE_OPFLAGS_INTERRUPT_COMMAND
PXE_OPFLAGS_INTERRUPT_SOFTWARE

Setting PXE_OPFLAGS_INTERRUPT_SOFTWARE does not enable an external interrupt type, it
generates an external interrupt.

E.4.10.3 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

E.4.10.4 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

E.4.10.5 StatFlags
If the command was successful, the CDB.StatFlags field reports which external interrupt enable
types are currently set. Possible CDB.StatFlags bit settings are:

• PXE_STATFLAGS_INTERRUPT_RECEIVE

• PXE_STATFLAGS_INTERRUPT_TRANSMIT

• PXE_STATFLAGS_INTERRUPT_COMMAND

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Check StatFlags.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. Check StatFlags.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.
2356 April, 2015 Version 2.5

The bits set in CDB.StatFlags may be different than those that were requested in
CDB.OpFlags. For example: If transmit and receive share an external interrupt line, setting either
the transmit or receive interrupt will always enable both transmit and receive interrupts. In this case
both transmit and receive interrupts will be reported in CDB.StatFlags. Always expect to get
more than you ask for!

E.4.11 Receive Filters
This command is used to read and change receive filters and, if supported, read and change the
multicast MAC address filter list. Control will not be returned to the caller and the
COMMAND_COMPLETE status flag will not be set until the NIC is ready to receive.

E.4.11.1 Issuing the Command
To issue a Receive Filters command, create a CDB and fill it in as shows in the table below:

E.4.11.2 OpFlags
To read the current receive filter settings set the CDB.OpFlags field to:

• PXE_OPFLAGS_RECEIVE_FILTER_READ

To change the current receive filter settings set one of these OpFlag bits:

• PXE_OPFLAGS_RECEIVE_FILTER_ENABLE

• PXE_OPFLAGS_RECEIVE_FILTER_DISABLE

When changing the receive filter settings, at least one of the OpFlag bits in this list must be selected:

• PXE_OPFLAGS_RECEIVE_FILTER_UNICAST

• PXE_OPFLAGS_RECEIVE_FILTER_BROADCAST

• PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST

• PXE_OPFLAGS_RECEIVE_FILTER_PROMISCUOUS

• PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST

To clear the contents of the multicast MAC address filter list, set this OpFlag:

CDB Field How to initialize the CDB structure for a Receive Filters command

OpCode PXE_OPCODE_RECEIVE_FILTERS

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_RECEIVE_FILTERS)

DBsize sizeof(PXE_DB_RECEIVE_FILTERS)

CPBaddr Address of PXE_CPB_RECEIVE_FILTERS structure.

DBaddr Address of PXE_DB_RECEIVE_FILTERS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.
Version 2.5 April, 2015 2357

Unified Extensible Firmware Interface Specification
• PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST

E.4.11.3 Preparing the CPB
The receive filter CPB is used to change the contents multicast MAC address filter list. To leave the
multicast MAC address filter list unchanged, set the CDB.CPBsize field to
PXE_CPBSIZE_NOT_USED and CDB.CPBaddr to PXE_CPBADDR_NOT_USED.

To change the multicast MAC address filter list, set CDB.CPBsize to the size, in bytes, of the
multicast MAC address filter list and set CDB.CPBaddr to the address of the first entry in the
multicast MAC address filter list.
typedef struct s_pxe_cpb_receive_filters {

 // List of multicast MAC addresses. This list, if present,
 // will replace the existing multicast MAC address filter list.

 PXE_MAC_ADDR MCastList[n];
} PXE_CPB_RECEIVE_FILTERS;

E.4.11.4 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

E.4.11.5 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

E.4.11.6 StatFlags
The receive filter settings in CDB.StatFlags are:

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Check StatFlags. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. Check StatFlags. DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.
2358 April, 2015 Version 2.5

• PXE_STATFLAGS_RECEIVE_FILTER_UNICAST

• PXE_STATFLAGS_RECEIVE_FILTER_BROADCAST

• PXE_STATFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST

• PXE_STATFLAGS_RECEIVE_FILTER_PROMISCUOUS

• PXE_STATFLAGS_RECEIVE_FILTER_ALL_MULTICAST

Unsupported receive filter settings in OpFlags are promoted to the next more liberal receive filter
setting. For example: If broadcast or filtered multicast are requested and are not supported by the
network device, but promiscuous is; the promiscuous status flag will be set.

E.4.11.7 DB
The DB is used to read the current multicast MAC address filter list. The CDB.DBsize and
CDB.DBaddr fields can be set to PXE_DBSIZE_NOT_USED and PXE_DBADDR_NOT_USED if
the multicast MAC address filter list does not need to be read. When reading the multicast MAC
address filter list extra entries in the DB will be filled with zero.
typedef struct s_pxe_db_receive_filters {

 // Filtered multicast MAC address list.

 PXE_MAC_ADDR MCastList[n];
} PXE_DB_RECEIVE_FILTERS;

E.4.12 Station Address
This command is used to get current station and broadcast MAC addresses and, if supported, to
change the current station MAC address.

E.4.12.1 Issuing the Command
To issue a Station Address command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Station Address command

OpCode PXE_OPCODE_STATION_ADDRESS

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_STATION_ADDRESS)

DBsize sizeof(PXE_DB_STATION_ADDRESS)

CPBaddr Address of PXE_CPB_STATION_ADDRESS structure.

DBaddr Address of PXE_DB_STATION_ADDRESS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.
Version 2.5 April, 2015 2359

Unified Extensible Firmware Interface Specification
E.4.12.2 OpFlags
To read current station and broadcast MAC addresses set the OpFlags field to:

• PXE_OPFLAGS_STATION_ADDRESS_READ

To change the current station to the address given in the CPB set the OpFlags field to:

• PXE_OPFLAGS_STATION_ADDRESS_WRITE

To reset the current station address back to the power on default, set the OpFlags field to:

• PXE_OPFLAGS_STATION_ADDRESS_RESET

E.4.12.3 Preparing the CPB
To change the current station MAC address the CDB.CPBsize and CDB.CPBaddr fields must be
set.
typedef struct s_pxe_cpb_station_address {

 // If supplied and supported, the current station MAC address
 // will be changed.

 PXE_MAC_ADDR StationAddr;
} PXE_CPB_STATION_ADDRESS;

E.4.12.4 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

E.4.12.5 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.
2360 April, 2015 Version 2.5

E.4.12.6 Before Using the DB
The DB is used to read the current station, broadcast and permanent station MAC addresses. The
CDB.DBsize and CDB.DBaddr fields can be set to PXE_DBSIZE_NOT_USED and
PXE_DBADDR_NOT_USED if these addresses do not need to be read.
typedef struct s_pxe_db_station_address {

 // Current station MAC address.
 PXE_MAC_ADDR StationAddr;

 // Station broadcast MAC address.
 PXE_MAC_ADDR BroadcastAddr;

 // Permanent station MAC address.
 PXE_MAC_ADDR PermanentAddr;
} PXE_DB_STATION_ADDRESS;

E.4.13 Statistics
This command is used to read and clear the NIC traffic statistics. Before using this command check
to see if statistics is supported in the !PXE.Implementation flags.

E.4.13.1 Issuing the Command
To issue a Statistics command, create a CDB and fill it in as shown in the table below:

E.4.13.2 OpFlags
To read the current statistics counters set the OpFlags field to:
PXE_OPFLAGS_STATISTICS_READ

To reset the current statistics counters set the OpFlags field to:
PXE_OPFLAGS_STATISTICS_RESET

UNSUPPORTED The requested operation is not supported.

CDB Field How to initialize the CDB structure for a Statistics command

OpCode PXE_OPCODE_STATISTICS

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize sizeof(PXE_DB_STATISTICS)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of PXE_DB_STATISTICS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.
Version 2.5 April, 2015 2361

Unified Extensible Firmware Interface Specification
E.4.13.3 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or
PXE_STATFLAGS_COMMAND_FAILED,the command has not been executed by the UNDI.

E.4.13.4 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

E.4.13.5 DB
Unsupported statistics counters will be zero filled by UNDI.
typedef struct s_pxe_db_statistics {

 // Bit field identifying what statistic data is collected by
 // the UNDI/NIC.
 // If bit 0x00 is set, Data[0x00] is collected.
 // If bit 0x01 is set, Data[0x01] is collected.
 // If bit 0x20 is set, Data[0x20] is collected.
 // If bit 0x21 is set, Data[0x21] is collected.
 // Etc.
 PXE_UINT64 Supported;

 // Statistic data.

 PXE_UINT64 Data[64];
} PXE_DB_STATISTICS;

// Total number of frames received. Includes frames with errors
// and dropped frames.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

UNSUPPORTED This command is not supported.
2362 April, 2015 Version 2.5

#define PXE_STATISTICS_RX_TOTAL_FRAMES 0x00

// Number of valid frames received and copied into receive
// buffers.
#define PXE_STATISTICS_RX_GOOD_FRAMES 0x01

// Number of frames below the minimum length for the media.
// This would be <64 for ethernet.
#define PXE_STATISTICS_RX_UNDERSIZE_FRAMES 0x02

// Number of frames longer than the maximum length for the
// media. This would be >1500 for ethernet.
#define PXE_STATISTICS_RX_OVERSIZE_FRAMES 0x03

// Valid frames that were dropped because receive buffers
// were full.
#define PXE_STATISTICS_RX_DROPPED_FRAMES 0x04

// Number of valid unicast frames received and not dropped.
#define PXE_STATISTICS_RX_UNICAST_FRAMES 0x05

// Number of valid broadcast frames received and not dropped.
#define PXE_STATISTICS_RX_BROADCAST_FRAMES 0x06

// Number of valid mutlicast frames received and not dropped.
#define PXE_STATISTICS_RX_MULTICAST_FRAMES 0x07

// Number of frames w/ CRC or alignment errors.
#define PXE_STATISTICS_RX_CRC_ERROR_FRAMES 0x08

// Total number of bytes received. Includes frames with errors
// and dropped frames.
#define PXE_STATISTICS_RX_TOTAL_BYTES 0x09

// Transmit statistics.
#define PXE_STATISTICS_TX_TOTAL_FRAMES 0x0A
#define PXE_STATISTICS_TX_GOOD_FRAMES 0x0B
#define PXE_STATISTICS_TX_UNDERSIZE_FRAMES 0x0C
#define PXE_STATISTICS_TX_OVERSIZE_FRAMES 0x0D
#define PXE_STATISTICS_TX_DROPPED_FRAMES 0x0E
#define PXE_STATISTICS_TX_UNICAST_FRAMES 0x0F
#define PXE_STATISTICS_TX_BROADCAST_FRAMES 0x10
#define PXE_STATISTICS_TX_MULTICAST_FRAMES 0x11
#define PXE_STATISTICS_TX_CRC_ERROR_FRAMES 0x12
#define PXE_STATISTICS_TX_TOTAL_BYTES 0x13

// Number of collisions detection on this subnet.
Version 2.5 April, 2015 2363

Unified Extensible Firmware Interface Specification
#define PXE_STATISTICS_COLLISIONS 0x14

// Number of frames destined for unsupported protocol.
#define PXE_STATISTICS_UNSUPPORTED_PROTOCOL 0x15

E.4.14 MCast IP To MAC
Translate a multicast IPv4 or IPv6 address to a multicast MAC address.

E.4.14.1 Issuing the Command
To issue a MCast IP To MAC command, create a CDB and fill it in as shown in the table below:

E.4.14.2 OpFlags
To convert a multicast IP address to a multicast MAC address the UNDI needs to know the format of
the IP address. Set one of these OpFlags to identify the format of the IP addresses in the CPB:
PXE_OPFLAGS_MCAST_IPV4_TO_MAC
PXE_OPFLAGS_MCAST_IPV6_TO_MAC

E.4.14.3 Preparing the CPB
Fill in an array of one or more multicast IP addresses. Be sure to set the CDB.CPBsize and
CDB.CPBaddr fields accordingly.
typedef struct s_pxe_cpb_mcast_ip_to_mac {

 // Multicast IP address to be converted to multicast
 // MAC address.
 PXE_IP_ADDR IP[n];
} PXE_CPB_MCAST_IP_TO_MAC;

CDB Field How to initialize the CDB structure for a MCast IP To MAC command

OpCode PXE_OPCODE_MCAST_IP_TO_MAC

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_MCAST_IP_TO_MAC)

DBsize sizeof(PXE_DB_MCAST_IP_TO_MAC)

CPBaddr Address of PXE_CPB_MCAST_IP_TO_MAC structure.

Dbaddr Address of PXE_DB_MCAST_IP_TO_MAC structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

Ifnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.
2364 April, 2015 Version 2.5

E.4.14.4 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

E.4.14.5 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

E.4.14.6 Before Using the DB
The DB is where the multicast MAC addresses will be written.
typedef struct s_pxe_db_mcast_ip_to_mac {

 // Multicast MAC address.

 PXE_MAC_ADDR MAC[n];
} PXE_DB_MCAST_IP_TO_MAC;

E.4.15 NvData
This command is used to read and write (if supported by NIC H/W) nonvolatile storage on the NIC.
Nonvolatile storage could be EEPROM, FLASH or battery backed RAM.

E.4.15.1 Issuing the Command
To issue a NvData command, create a CDB and fill it in as shown in the table below:

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

CDB Field How to initialize the CDB structure for a NvData command

OpCode PXE_OPCODE_NVDATA

OpFlags Set as needed.
Version 2.5 April, 2015 2365

Unified Extensible Firmware Interface Specification
E.4.15.2 Preparing the CPB
There are two types of nonvolatile data CPBs, one for sparse updates and one for bulk updates.
Sparse updates allow updating of single nonvolatile storage items. Bulk updates always update all
nonvolatile storage items. Check the !PXE.Implementation flags to see which type of
nonvolatile update is supported by this UNDI and network device.

If you do not need to update the nonvolatile storage set the CDB.CPBsize and CDB.CPBaddr
fields to PXE_CPBSIZE_NOT_USED and PXE_CPBADDR_NOT_USED.

E.4.15.2.1 Sparse NvData CPB

typedef struct s_pxe_cpb_nvdata_sparse {
 // NvData item list. Only items in this list will be updated.

 struct {

 // Nonvolatile storage address to be changed.
 PXE_UINT32 Addr;

 // Data item to write into above storage address.
 union {
 PXE_UINT8 Byte;
 PXE_UINT16 Word;
 PXE_UINT32 Dword;
 } Data;
 } Item[n];
} PXE_CPB_NVDATA_SPARSE;

E.4.15.2.2 Bulk NvData CPB

// When using bulk update, the size of the CPB structure must be
// the same size as the nonvolatile NIC storage.

typedef union u_pxe_cpb_nvdata_bulk {

 // Array of byte-wide data items.
 PXE_UINT8 Byte[n];

CPBsize sizeof(PXE_CPB_NVDATA)

DBsize sizeof(PXE_DB_NVDATA)

CPBaddr Address of PXE_CPB_NVDATA structure.

Dbaddr Address of PXE_DB_NVDATA structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

Ifnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.
2366 April, 2015 Version 2.5

 // Array of word-wide data items.
 PXE_UINT16 Word[n];

 // Array of dword-wide data items.
 PXE_UINT32 Dword[n];
} PXE_CPB_NVDATA_BULK;

E.4.15.3 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

E.4.15.4 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

E.4.15.4.1 DB

Check the width and number of nonvolatile storage items. This information is returned by the Get
Init Info command.
typedef struct s_pxe_db_nvdata {

 // Arrays of data items from nonvolatile storage.
 union {

 // Array of byte-wide data items.
 PXE_UINT8 Byte[n];

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Nonvolatile data is updated
from CPB and/or written to DB.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. Nonvolatile data is updated from
CPB and/or written to DB.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

UNSUPPORTED Requested operation is unsupported.
Version 2.5 April, 2015 2367

Unified Extensible Firmware Interface Specification
 // Array of word-wide data items.
 PXE_UINT16 Word[n];

 // Array of dword-wide data items.
 PXE_UINT32 Dword[n];
 } Data;
} PXE_DB_NVDATA;

E.4.16 Get Status
This command returns the current interrupt status and/or the transmitted buffer addresses and the
current media status. If the current interrupt status is returned, pending interrupts will be
acknowledged by this command. Transmitted buffer addresses that are written to the DB are
removed from the transmitted buffer queue.

This command may be used in a polled fashion with external interrupts disabled.

E.4.16.1 Issuing the Command
To issue a Get Status command, create a CDB and fill it in as shown in the table below:

E.4.16.1.1 Setting OpFlags

Set one or a combination of the OpFlags below to return the interrupt status and/or the transmitted
buffer addresses and/or the media status.
PXE_OPFLAGS_GET_INTERRUPT_STATUS
PXE_OPFLAGS_GET_TRANSMITTED_BUFFERS
PXE_OPFLAGS_GET_MEDIA_STATUS

CDB Field How to initialize the CDB structure for a Get Status command

OpCode PXE_OPCODE_GET_STATUS

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize Sizeof(PXE_DB_GET_STATUS)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of PXE_DB_GET_STATUS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.
2368 April, 2015 Version 2.5

E.4.16.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

E.4.16.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

E.4.16.4 StatFlags
If the command completes successfully and the PXE_OPFLAGS_GET_INTERRUPT_STATUS
OpFlag was set in the CDB, the current interrupt status is returned in the CDB.StatFlags field
and any pending interrupts will have been cleared.
PXE_STATFLAGS_GET_STATUS_RECEIVE
PXE_STATFLAGS_GET_STATUS_TRANSMIT
PXE_STATFLAGS_GET_STATUS_COMMAND
PXE_STATFLAGS_GET_STATUS_SOFTWARE

The StatFlags above may not map directly to external interrupt signals. For example: Some NICs
may combine both the receive and transmit interrupts to one external interrupt line. When a receive
and/or transmit interrupt occurs, use the Get Status to determine which type(s) of interrupt(s)
occurred.

This flag is set if the transmitted buffer queue is empty. This flag will be set if all transmitted buffer
addresses get written t into the DB.
PXE_STATFLAGS_GET_STATUS_TXBUF_QUEUE_EMPTY

This flag is set if no transmitted buffer addresses were written into the DB.
PXE_STATFLAGS_GET_STATUS_NO_TXBUFS_WRITTEN

This flag is set if there is no media present.
PXE_STATFLAGS_GET_STATUS_NO_MEDIA

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. StatFlags and/or DB are updated.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. StatFlags and/or DB are updated.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.
Version 2.5 April, 2015 2369

Unified Extensible Firmware Interface Specification
E.4.16.5 Using the DB
When reading the transmitted buffer addresses there should be room for at least one 64-bit address in
the DB. Once a complete transmitted buffer address is written into the DB, the address is removed
from the transmitted buffer queue. If the transmitted buffer queue is full, attempts to use the
Transmit command will fail.
#pragma pack(1)
typedef struct s_pxe_db_get_status {

 // Length of next receive frame (header + data). If this is
 // zero, there is no next receive frame available.

 PXE_UINT32 RxFrameLen;

 // Reserved, set to zero.

 PXE_UINT32 reserved;

 // Addresses of transmitted buffers that need to be recycled.

 PXE_UINT64 xBuffer[n];
} PXE_DB_GET_STATUS;
#pragma pack()

E.4.17 Fill Header
This command is used to fill the media header(s) in transmit packet(s).

E.4.17.1 Issuing the Command
To issue a Fill Header command, create a CDB and fill it in as shown in the table below:

E.4.17.2 OpFlags
Select one of the OpFlags below so the UNDI knows what type of CPB is being used.

CDB Field How to initialize the CDB structure for a Fill Header command

OpCode PXE_OPCODE_FILL_HEADER

OpFlags Set as needed.

CPBsize PXE_CPB_FILL_HEADER

DBsize PXE_DBSIZE_NOT_USED

CPBaddr Address of a PXE_CPB_FILL_HEADER structure.

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.
2370 April, 2015 Version 2.5

PXE_OPFLAGS_FILL_HEADER_WHOLE
PXE_OPFLAGS_FILL_HEADER_FRAGMENTED

E.4.17.3 Preparing the CPB
If multiple frames per command are supported (see !PXE.Implementation flags), multiple
CPBs can be packed together. The CDB.CPBsize field lets the UNDI know how many CPBs are
packed together.

E.4.17.4 Nonfragmented Frame
#pragma pack(1)
typedef struct s_pxe_cpb_fill_header {

 // Source and destination MAC addresses. These will be copied
 // into the media header without doing byte swapping.
 PXE_MAC_ADDR SrcAddr;
 PXE_MAC_ADDR DestAddr;

 // Address of first byte of media header. The first byte of
 // packet data follows the last byte of the media header.
 PXE_UINT64 MediaHeader;

 // Length of packet data in bytes (not including the media
 // header).
 PXE_UINT32 PacketLen;

 // Protocol type. This will be copied into the media header
 // without doing byte swapping. Protocol type numbers can be
 // obtained from the Assigned Numbers RFC 3232.
 PXE_UINT16 Protocol;

 // Length of the media header in bytes.
 PXE_UINT16 MediaHeaderLen;
} PXE_CPB_FILL_HEADER;
#pragma pack()

#define PXE_PROTOCOL_ETHERNET_IP 0x0800
#define PXE_PROTOCOL_ETHERNET_ARP 0x0806

E.4.17.5 Fragmented Frame
#pragma pack(1)
typedef struct s_pxe_cpb_fill_header_fragmented {

 // Source and destination MAC addresses. These will be copied
 // into the media header without doing byte swapping.
 PXE_MAC_ADDR SrcAddr;
 PXE_MAC_ADDR DestAddr;
Version 2.5 April, 2015 2371

Unified Extensible Firmware Interface Specification
 // Length of packet data in bytes (not including the media
 // header).

 PXE_UINT32 PacketLen;
 // Protocol type. This will be copied into the media header
 // without doing byte swapping. Protocol type numbers can be
 // obtained from the Assigned Numbers RFC 3232.
 PXE_MEDIA_PROTOCOL Protocol;

 // Length of the media header in bytes.
 PXE_UINT16 MediaHeaderLen;

 // Number of packet fragment descriptors.
 PXE_UINT16 FragCnt;

 // Reserved, must be set to zero.
 PXE_UINT16 reserved;

 // Array of packet fragment descriptors. The first byte of the
 // media header is the first byte of the first fragment.

 struct {

 // Address of this packet fragment.
 PXE_UINT64 FragAddr;

 // Length of this packet fragment.
 PXE_UINT32 FragLen;

 // Reserved, must be set to zero.
 PXE_UINT32 reserved;
 } FragDesc[n];
} PXE_CPB_FILL_HEADER_FRAGMENTED;
#pragma pack()

E.4.17.6 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Frame is ready to transmit.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.
2372 April, 2015 Version 2.5

E.4.17.7 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

E.4.18 Transmit
The Transmit command is used to place a packet into the transmit queue. The data buffers given to
this command are to be considered locked and the application or universal network driver loses the
ownership of those buffers and must not free or relocate them until the ownership returns.

When the packets are transmitted, a transmit complete interrupt is generated (if interrupts are
disabled, the transmit interrupt status is still set and can be checked using the Get Status command).

Some UNDI implementations and network adapters support transmitting multiple packets with one
transmit command. If this feature is supported, multiple transmit CPBs can be linked in one transmit
command.

Though all UNDIs support fragmented frames, the same cannot be said for all network devices or
protocols. If a fragmented frame CPB is given to UNDI and the network device does not support
fragmented frames (see !PXE.Implementation flags), the UNDI will have to copy the
fragments into a local buffer before transmitting.

E.4.18.1 Issuing the Command
To issue a Transmit command, create a CDB and fill it in as shown in the table below:

StatCode Reason

SUCCESS Command completed successfully. Frame is ready to transmit.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

CDB Field How to initialize the CDB structure for a Transmit command

OpCode PXE_OPCODE_TRANSMIT

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_TRANSMIT)

DBsize PXE_DBSIZE_NOT_USED

CPBaddr Address of a PXE_CPB_TRANSMIT structure.

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).
Version 2.5 April, 2015 2373

Unified Extensible Firmware Interface Specification
E.4.18.2 OpFlags
Check the !PXE.Implementation flags to see if the network device support fragmented
packets. Select one of the OpFlags below so the UNDI knows what type of CPB is being used.
PXE_OPFLAGS_TRANSMIT_WHOLE
PXE_OPFLAGS_TRANSMIT_FRAGMENTED

In addition to selecting whether or not fragmented packets are being given, S/W UNDI needs to
know if it should block until the packets are transmitted. H/W UNDI cannot block, these two
OpFlag settings have no affect when used with H/W UNDI.
PXE_OPFLAGS_TRANSMIT_BLOCK
PXE_OPFLAGS_TRANSMIT_DONT_BLOCK

E.4.18.3 Preparing the CPB
If multiple frames per command are supported (see !PXE.Implementation flags), multiple
CPBs can be packed together. The CDB.CPBsize field lets the UNDI know how may frames are
to be transmitted.

E.4.18.4 Nonfragmented Frame
#pragma pack(1)
typedef struct s_pxe_cpb_transmit {

 // Address of first byte of frame buffer. This is also the
 // first byte of the media header. This address must be a
 // processor-based address for S/W UNDI and a device-based
 // address for H/W UNDI.
 PXE_UINT64 FrameAddr;

 // Length of the data portion of the frame buffer in bytes. Do
 // not include the length of the media header.
 PXE_UINT32 DataLen;

 // Length of the media header in bytes.
 PXE_UINT16 MediaheaderLen;

 // Reserved, must be zero.
 PXE_UINT16 reserved;
} PXE_CPB_TRANSMIT;
#pragma pack()

E.4.18.5 Fragmented Frame
#pragma pack(1)
typedef struct s_pxe_cpb_transmit_fragments {

 // Length of packet data in bytes (not including the media
 // header).

Control Set as needed.
2374 April, 2015 Version 2.5

 PXE_UINT32 FrameLen;

 // Length of the media header in bytes.
 PXE_UINT16 MediaheaderLen;

 // Number of packet fragment descriptors.
 PXE_UINT16 FragCnt;

 // Array of frame fragment descriptors. The first byte of the
 // first fragment is also the first byte of the media header.
 struct {
// Address of this frame fragment. This address must be a
// processor-based address for S/W UNDI and a device-based
// address for H/W UNDI.
 PXE_UINT64 FragAddr;

 // Length of this frame fragment.
 PXE_UINT32 FragLen;

 // Reserved, must be set to zero.
 PXE_UINT32 reserved;
 } FragDesc[n];
} PXE_CPB_TRANSMIT_FRAGMENTS;
#pragma pack()

E.4.18.6 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

E.4.18.7 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Use the Get Status command to
see when frame buffers can be reused.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. Use the Get Status command to
see when frame buffers can be reused.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.
Version 2.5 April, 2015 2375

Unified Extensible Firmware Interface Specification
E.4.19 Receive
When the network adapter has received a frame, this command is used to copy the frame into driver/
application storage. Once a frame has been copied, it is removed from the receive queue.

E.4.19.1 Issuing the Command
To issue a Receive command, create a CDB and fill it in as shown in the table below:

E.4.19.2 Preparing the CPB
If multiple frames per command are supported (see !PXE.Implementation flags), multiple
CPBs can be packed together. For each complete received frame, a receive buffer large enough to
contain the entire unfragmented frame needs to be described in the CPB. Note that if a smaller than
required buffer is provided, only a portion of the packet is received into the buffer, and the remainder
of the packet is lost. Subsequent attempts to receive the same packet with a corrected (larger) buffer
will be unsuccessful, because the packet will have been flushed from the queue.
#pragma pack(1)
typedef struct s_pxe_cpb_receive {

 // Address of first byte of receive buffer. This is also the
 // first byte of the frame header. This address must be a
 // processor-based address for S/W UNDI and a device-based
 // address for H/W UNDI.

 PXE_UINT64 BufferAddr;

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Wait for queued commands to complete. Try
again later.

BUFFER_FULL Transmit buffer is full. Call Get Status command to empty buffer.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

CDB Field How to initialize the CDB structure for a Receive command

OpCode PXE_OPCODE_RECEIVE

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_RECEIVE)

DBsize sizeof(PXE_DB_RECEIVE)

CPBaddr Address of a PXE_CPB_RECEIVE structure.

DBaddr Address of a PXE_DB_RECEIVE structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to

(!PXE.IFcnt | (!PXE.IFcntExt << 8)).

Control Set as needed.
2376 April, 2015 Version 2.5

 // Length of receive buffer. This must be large enough to hold
 // the received frame (media header + data). If the length of
 // smaller than the received frame, data will be lost.
 PXE_UINT32 BufferLen;

 // Reserved, must be set to zero.
 PXE_UINT32 reserved;
} PXE_CPB_RECEIVE;
#pragma pack()

E.4.19.3 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

E.4.19.4 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field contains
the result of the command execution.

E.4.19.5 Using the DB
If multiple frames per command are supported (see !PXE.Implementation flags), multiple
DBs can be packed together.
#pragma pack(1)
typedef struct s_pxe_db_receive {

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Frames received and DB is
written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

StatCode Reason

SUCCESS Command completed successfully. Frames received and DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Wait for queued commands to complete. Try
again later.

NO_DATA Receive buffers are empty.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.
Version 2.5 April, 2015 2377

Unified Extensible Firmware Interface Specification
 // Source and destination MAC addresses from media header.
 PXE_MAC_ADDR SrcAddr;
 PXE_MAC_ADDR DestAddr;

 // Length of received frame. May be larger than receive buffer
 // size. The receive buffer will not be overwritten. This is
 // how to tell if data was lost because the receive buffer was
 // too small.
 PXE_UINT32 FrameLen;

 // Protocol type from media header.
 PXE_PROTOCOL Protocol;

 // Length of media header in received frame.
 PXE_UINT16 MediaHeaderLen;

 // Type of receive frame.
 PXE_FRAME_TYPE Type;

 // Reserved, must be zero.
 PXE_UINT8 reserved[7];
} PXE_DB_RECEIVE;
#pragma pack()

E.4.20 PXE 2.1 specification wire protocol clarifications

E.4.20.1 Issue #1-time-outs
Where the PXE 2.1 specification reads:

DHCP Discover will be retried four times. The four timeouts are 4, 8, 16 and 32 seconds
respectively.

If a DHCPOFFER is received without an Option #60 tag "PXEClient", DHCP Discover will be
retried on the 4-and 8-second timeouts in an attempt to receive a PXE response.

Because of spanning tree algorithms in routers, the behavior should be as follows:

DHCP Discover will be retried four times. The four timeouts are 4, 8, 16 and 32 seconds
respectively.

This process could be iterated three times.

If a DHCPOFFER is received without an Option #60 tag "PXEClient", DHCP Discover will be
retried on the 4-and 8-second timeouts in an attempt to receive a PXE response.

E.4.20.2 Issue #2 - siaddr/option 54 precedence
Where the PXE 2.1 specification reads:

Boot server IP address (Read from the DHCP option 54 (server identifier), if not found, use the
2378 April, 2015 Version 2.5

siaddr field.)

The behavior should be reversed, namely:

Ascertain the Boot server IP address from siaddr field. If not found, use the value in the DHCP
option 54 (server identifier).
Version 2.5 April, 2015 2379

Unified Extensible Firmware Interface Specification
2380 April, 2015 Version 2.5

Appendix F
Using the Simple Pointer Protocol

The Simple Pointer Protocol is intended to provide a simple mechanism for an application to interact
with the user with some type of pointer device. To keep this interface simple, many of the custom
controls that are typically present in an OS-present environment were left out. This includes the
ability to adjust the double-click speed and the ability to adjust the pointer speed. Instead, the
recommendations for how the Simple Pointer Protocol should be used are listed here.

X-Axis Movement:

If the Simple Pointer Protocol is being used to move a pointer or cursor around on an output display,
the movement along the x-axis should move the pointer or cursor horizontally.

Y-Axis Movement:

If the Simple Pointer Protocol is being used to move a pointer or cursor around on an output display,
the movement along the y-axis should move the pointer or cursor vertically.

Z-Axis Movement:

If the Simple Pointer Protocol is being used to move a pointer or cursor around on an output display,
and the application that is using the Simple Pointer Protocol supports scrolling, then the movement
along the z-axis should scroll the output display.

Double Click Speed:

If two clicks of the same button on a pointer occur in less than 0.5 seconds, then a double-click event
has occurred. If a the same button is pressed with more than 0.5 seconds between clicks, then this is
interpreted as two single-click events.

Pointer Speed:

The Simple Pointer Protocol returns the movement of the pointer device along an axis in counts.
The Simple Pointer Protocol also contains a set of resolution fields that define the number of counts
that will be received for each millimeter of movement of the pointer device along an axis. From
these two values, the consumer of this protocol can determine the distance the pointer device has
been moved in millimeters along an axis. For most applications, movement of a pointer device will
result in the movement of a pointer on the screen. For each millimeter of motion by the pointer
device in the x-axis, the pointer on the screen will be moved 2 percent of the screen width. For each
millimeter of motion by the pointer device in the y-axis, the pointer on the screen will be moved
2 percent of the screen height.
Version 2.5 April, 2015 2381

Unified Extensible Firmware Interface Specification
2382 April, 2015 Version 2.5

Appendix G
Using the EFI Extended SCSI Pass Thru Protocol

This appendix describes how an EFI utility might gain access to the EFI SCSI Pass Thru interfaces.
The basic concept is to use the EFI_BOOT_SERVICES.LocateHandle() boot service to
retrieve the list of handles that support the EFI_EXT_SCSI_PASS_THRU_PROTOCOL. Each of
these handles represents a different SCSI channel present in the system. Each of these handles can
then be used the retrieve the EFI_EXT_SCSI_PASS_THRU_PROTOCOL interface with the
EFI_BOOT_SERVICES.HandleProtocol() boot service. The
EFI_EXT_SCSI_PASS_THRU_PROTOCOL interface provides the services required to access any
of the SCSI devices attached to a SCSI channel. The services of the
EFI_EXT_SCSI_PASS_THRU_PROTOCOL are then to loop through the Target IDs of all the
SCSI devices on the SCSI channel.

#include “efi.h”
#include “efilib.h”

#include EFI_PROTOCOL_DEFINITION(ExtScsiPassThru)

EFI_GUID gEfiExtScsiPassThruProtocolGuid = EFI_EXT_SCSI_PASS_THRU_PROTOCOL_GUID;

EFI_STATUS
UtilityEntryPoint(
 EFI_HANDLE ImageHandle,
 EFI_SYSTEM_TABLE SystemTable
)
{
 EFI_STATUS Status;
 UINTN NoHandles;
 EFI_HANDLE *HandleBuffer;
 UINTN Index;
 EFI_EXT_SCSI_PASS_THRU_PROTOCOL *ExtScsiPassThruProtocol;

 //
 // Initialize EFI Library
 //
 InitializeLib (ImageHandle, SystemTable);

 //
 // Get list of handles that support the
 // EFI_EXT_SCSI_PASS_THRU_PROTOCOL
 //
 NoHandles = 0;
 HandleBuffer = NULL;
 Status = LibLocateHandle(
 ByProtocol,
 &gEfiExtScsiPassThruProtocolGuid,
 NULL,
 &NoHandles,
 &HandleBuffer
);

 if (EFI_ERROR(Status)) {
Version 2.5 April, 2015 2383

Unified Extensible Firmware Interface Specification
 BS->Exit(ImageHandle,EFI_SUCCESS,0,NULL);
 }

 //
 // Loop through all the handles that support
 // EFI_EXT_SCSI_PASS_THRU
 //
 for (Index = 0; Index < NoHandles; Index++) {

 //
 // Get the EFI_EXT_SCSI_PASS_THRU_PROTOCOL Interface
 // on each handle
 //
 BS->HandleProtocol(
 HandleBuffer[Index],
 &gEfiExtScsiPassThruProtocolGuid,
 (VOID **)&ExtScsiPassThruProtocol
);

 if (!EFI_ERROR(Status)) {

 //
 // Use the EFI_EXT_SCSI_PASS_THRU Interface to
 // perform tests
 //
 Status = DoScsiTests(ScsiPassThruProtocol);
 }
 }
 return EFI_SUCCESS;
}

EFI_STATUS
DoScsiTests(
 EFI_EXT_SCSI_PASS_THRU_PROTOCOL *ExtScsiPassThruProtocol
)

{
 EFI_STATUS Status;
 UINT32 Target;
 UINT64 Lun;
 EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET Packet;
 EFI_EVENT Event;

 //
 // Get first Target ID and LUN on the SCSI channel
 //
 Target = 0xffffffff;
 Lun = 0;
 Status = ExtScsiPassThruProtocol-> GetNextTargetLun(
 ExtScsiPassThruProtocol,
 &Target,
 &Lun
);

 //
 // Loop through all the SCSI devices on the SCSI channel
 //
 while (!EFI_ERROR (Status)) {

 //
 // Blocking I/O example.
2384 April, 2015 Version 2.5

 // Fill in Packet before calling PassThru()
 //
 Status = ExtScsiPassThruProtocol->PassThru(
 ExtScsiPassThruProtocol,
 Target,
 Lun,
 &Packet,
 NULL
);

 //
 // Non Blocking I/O
 // Fill in Packet and create Event before calling PassThru()
 //
 Status = ExtScsiPassThruProtocol->PassThru(
 ExtScsiPassThruProtocol,
 Target,
 Lun,
 &Packet,
 &Event
);

 //
 // Get next Target ID and LUN on the SCSI channel
 //
 Status = ExtScsiPassThruProtocol-> GetNextTargetLun(
 ExtScsiPassThruProtocol,
 &Target,
 &Lun
);
 }

 return EFI_SUCCESS;
}

Version 2.5 April, 2015 2385

Unified Extensible Firmware Interface Specification
2386 April, 2015 Version 2.5

Appendix H
Compression Source Code

/*++

Copyright (c) 2001–2002 Intel Corporation

Module Name:

 Compress.c

Abstract:

 Compression routine. The compression algorithm is a mixture of
 LZ77 and Huffman Coding. LZ77 transforms the source data into a
 sequence of Original Characters and Pointers to repeated strings.
 This sequence is further divided into Blocks and Huffman codings
 are applied to each Block.

Revision History:
--*/

#include <string.h>
#include <stdlib.h>
#include "eficommon.h"

//
// Macro Definitions
//

typedef INT16 NODE;
#define UINT8_MAX 0xff
#define UINT8_BIT 8
#define THRESHOLD 3
#define INIT_CRC 0
#define WNDBIT 13
#define WNDSIZ (1U << WNDBIT)
#define MAXMATCH 256
#define PERC_FLAG 0x8000U
#define CODE_BIT 16
#define NIL 0
#define MAX_HASH_VAL (3 * WNDSIZ + (WNDSIZ / 512 + 1) * UINT8_MAX)
#define HASH(p, c) ((p) + ((c) << (WNDBIT - 9)) + WNDSIZ * 2)
#define CRCPOLY 0xA001
#define UPDATE_CRC(c) mCrc = mCrcTable[(mCrc ^ (c)) & 0xFF] ^ (mCrc >>
UINT8_BIT)

//
// C: the Char&Len Set; P: the Position Set; T: the exTra Set
//

#define NC (UINT8_MAX + MAXMATCH + 2 - THRESHOLD)
#define CBIT 9
#define NP (WNDBIT + 1)
#define PBIT 4
#define NT (CODE_BIT + 3)
Version 2.5 April, 2015 2387

Unified Extensible Firmware Interface Specification
#define TBIT 5
#if NT > NP
 #define NPT NT
#else
 #define NPT NP
#endif

//
// Function Prototypes
//

STATIC
VOID
PutDword(
 IN UINT32 Data
);

STATIC
EFI_STATUS
AllocateMemory (
);

STATIC
VOID
FreeMemory (
);

STATIC
VOID
InitSlide (
);

STATIC
NODE
Child (
 IN NODE q,
 IN UINT8 c
);

STATIC
VOID
MakeChild (
 IN NODE q,
 IN UINT8 c,
 IN NODE r
);

STATIC
VOID
Split (
 IN NODE Old
);

STATIC
VOID
InsertNode (
);

STATIC
VOID
DeleteNode (
2388 April, 2015 Version 2.5

);

STATIC
VOID
GetNextMatch (
);

STATIC
EFI_STATUS
Encode (
);

STATIC
VOID
CountTFreq (
);

STATIC
VOID
WritePTLen (
 IN INT32 n,
 IN INT32 nbit,
 IN INT32 Special
);

STATIC
VOID
WriteCLen (
);

STATIC
VOID
EncodeC (
 IN INT32 c
);

STATIC
VOID
EncodeP (
 IN UINT32 p
);

STATIC
VOID
SendBlock (
);

STATIC
VOID
Output (
 IN UINT32 c,
 IN UINT32 p
);

STATIC
VOID
HufEncodeStart (
);

STATIC
VOID
Version 2.5 April, 2015 2389

Unified Extensible Firmware Interface Specification
HufEncodeEnd (
);

STATIC
VOID
MakeCrcTable (
);

STATIC
VOID
PutBits (
 IN INT32 n,
 IN UINT32 x
);

STATIC
INT32
FreadCrc (
 OUT UINT8 *p,
 IN INT32 n
);

STATIC
VOID
InitPutBits (
);

STATIC
VOID
CountLen (
 IN INT32 i
);

STATIC
VOID
MakeLen (
 IN INT32 Root
);

STATIC
VOID
DownHeap (
 IN INT32 i
);

STATIC
VOID
MakeCode (
 IN INT32 n,
 IN UINT8 Len[],
 OUT UINT16 Code[]
);

STATIC
INT32
MakeTree (
 IN INT32 NParm,
 IN UINT16 FreqParm[],
 OUT UINT8 LenParm[],
 OUT UINT16 CodeParm[]
);
2390 April, 2015 Version 2.5

//
// Global Variables
//

STATIC UINT8 *mSrc, *mDst, *mSrcUpperLimit, *mDstUpperLimit;

STATIC UINT8 *mLevel, *mText, *mChildCount, *mBuf, mCLen[NC], mPTLen[NPT],
*mLen;
STATIC INT16 mHeap[NC + 1];
STATIC INT32 mRemainder, mMatchLen, mBitCount, mHeapSize, mN;
STATIC UINT32 mBufSiz = 0, mOutputPos, mOutputMask, mSubBitBuf, mCrc;
STATIC UINT32 mCompSize, mOrigSize;

STATIC UINT16 *mFreq, *mSortPtr, mLenCnt[17], mLeft[2 * NC - 1], mRight[2 * NC -
1],
 mCrcTable[UINT8_MAX + 1], mCFreq[2 * NC - 1], mCTable[4096],
mCCode[NC],
 mPFreq[2 * NP - 1], mPTCode[NPT], mTFreq[2 * NT - 1];

STATIC NODE mPos, mMatchPos, mAvail, *mPosition, *mParent, *mPrev, *mNext =
NULL;

//
// functions
//

EFI_STATUS
Compress (
 IN UINT8 *SrcBuffer,
 IN UINT32 SrcSize,
 IN UINT8 *DstBuffer,
 IN OUT UINT32 *DstSize
)
/*++

Routine Description:

 The main compression routine.

Arguments:

 SrcBuffer - The buffer storing the source data
 SrcSize - The size of the source data
 DstBuffer - The buffer to store the compressed data
 DstSize - On input, the size of DstBuffer; On output,
 the size of the actual compressed data.

Returns:

 EFI_BUFFER_TOO_SMALL - The DstBuffer is too small. In this case,
 DstSize contains the size needed.
 EFI_SUCCESS - Compression is successful.

--*/
{
 EFI_STATUS Status = EFI_SUCCESS;

 //
Version 2.5 April, 2015 2391

Unified Extensible Firmware Interface Specification
 // Initializations
 //

 mBufSiz = 0;
 mBuf = NULL;
 mText = NULL;
 mLevel = NULL;
 mChildCount = NULL;
 mPosition = NULL;
 mParent = NULL;
 mPrev = NULL;
 mNext = NULL;

 mSrc = SrcBuffer;
 mSrcUpperLimit = mSrc + SrcSize;
 mDst = DstBuffer;
 mDstUpperLimit = mDst + *DstSize;

 PutDword(0L);
 PutDword(0L);

 MakeCrcTable ();

 mOrigSize = mCompSize = 0;
 mCrc = INIT_CRC;

 //
 // Compress it
 //

 Status = Encode();
 if (EFI_ERROR (Status)) {
 return EFI_OUT_OF_RESOURCES;
 }

 //
 // Null terminate the compressed data
 //
 if (mDst < mDstUpperLimit) {
 *mDst++ = 0;
 }

 //
 // Fill in compressed size and original size
 //
 mDst = DstBuffer;
 PutDword(mCompSize+1);
 PutDword(mOrigSize);

 //
 // Return
 //

 if (mCompSize + 1 + 8 > *DstSize) {
 *DstSize = mCompSize + 1 + 8;
 return EFI_BUFFER_TOO_SMALL;
 } else {
 *DstSize = mCompSize + 1 + 8;
 return EFI_SUCCESS;
 }
2392 April, 2015 Version 2.5

}

STATIC
VOID
PutDword(
 IN UINT32 Data
)
/*++

Routine Description:

 Put a dword to output stream

Arguments:

 Data - the dword to put

Returns: (VOID)

--*/
{
 if (mDst < mDstUpperLimit) {
 *mDst++ = (UINT8)(((UINT8)(Data)) & 0xff);
 }

 if (mDst < mDstUpperLimit) {
 *mDst++ = (UINT8)(((UINT8)(Data >> 0x08)) & 0xff);
 }

 if (mDst < mDstUpperLimit) {
 *mDst++ = (UINT8)(((UINT8)(Data >> 0x10)) & 0xff);
 }

 if (mDst < mDstUpperLimit) {
 *mDst++ = (UINT8)(((UINT8)(Data >> 0x18)) & 0xff);
 }
}

STATIC
EFI_STATUS
AllocateMemory ()
/*++

Routine Description:

 Allocate memory spaces for data structures used in compression process

Arguments: (VOID)

Returns:

 EFI_SUCCESS - Memory is allocated successfully
 EFI_OUT_OF_RESOURCES - Allocation fails

--*/
{
 UINT32 i;

 mText = malloc (WNDSIZ * 2 + MAXMATCH);
 for (i = 0; i < WNDSIZ * 2 + MAXMATCH; i ++) {
Version 2.5 April, 2015 2393

Unified Extensible Firmware Interface Specification
 mText[i] = 0;
 }
 mLevel = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof(*mLevel));
 mChildCount = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof(*mChildCount));
 mPosition = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof(*mPosition));
 mParent = malloc (WNDSIZ * 2 * sizeof(*mParent));
 mPrev = malloc (WNDSIZ * 2 * sizeof(*mPrev));
 mNext = malloc ((MAX_HASH_VAL + 1) * sizeof(*mNext));

 mBufSiz = 16 * 1024U;
 while ((mBuf = malloc(mBufSiz)) == NULL) {
 mBufSiz = (mBufSiz / 10U) * 9U;
 if (mBufSiz < 4 * 1024U) {
 return EFI_OUT_OF_RESOURCES;
 }
 }
 mBuf[0] = 0;

 return EFI_SUCCESS;
}

VOID
FreeMemory ()
/*++

Routine Description:

 Called when compression is completed to free memory previously allocated.

Arguments: (VOID)

Returns: (VOID)

--*/
{
 if (mText) {
 free (mText);
 }

 if (mLevel) {
 free (mLevel);
 }

 if (mChildCount) {
 free (mChildCount);
 }

 if (mPosition) {
 free (mPosition);
 }

 if (mParent) {
 free (mParent);
 }

 if (mPrev) {
 free (mPrev);
 }

 if (mNext) {
 free (mNext);
2394 April, 2015 Version 2.5

 }

 if (mBuf) {
 free (mBuf);
 }

 return;
}

STATIC
VOID
InitSlide ()
/*++

Routine Description:

 Initialize String Info Log data structures

Arguments: (VOID)

Returns: (VOID)

--*/
{
 NODE i;

 for (i = WNDSIZ; i <= WNDSIZ + UINT8_MAX; i++) {
 mLevel[i] = 1;
 mPosition[i] = NIL; /* sentinel */
 }
 for (i = WNDSIZ; i < WNDSIZ * 2; i++) {
 mParent[i] = NIL;
 }
 mAvail = 1;
 for (i = 1; i < WNDSIZ - 1; i++) {
 mNext[i] = (NODE)(i + 1);
 }

 mNext[WNDSIZ - 1] = NIL;
 for (i = WNDSIZ * 2; i <= MAX_HASH_VAL; i++) {
 mNext[i] = NIL;
 }
}

STATIC
NODE
Child (
 IN NODE q,
 IN UINT8 c
)
/*++

Routine Description:

 Find child node given the parent node and the edge character

Arguments:

 q - the parent node
Version 2.5 April, 2015 2395

Unified Extensible Firmware Interface Specification
 c - the edge character

Returns:

 The child node (NIL if not found)

--*/
{
 NODE r;

 r = mNext[HASH(q, c)];
 mParent[NIL] = q; /* sentinel */
 while (mParent[r] != q) {
 r = mNext[r];
 }

 return r;
}

STATIC
VOID
MakeChild (
 IN NODE q,
 IN UINT8 c,
 IN NODE r
)
/*++

Routine Description:

 Create a new child for a given parent node.

Arguments:

 q - the parent node
 c - the edge character
 r - the child node

Returns: (VOID)

--*/
{
 NODE h, t;

 h = (NODE)HASH(q, c);
 t = mNext[h];
 mNext[h] = r;
 mNext[r] = t;
 mPrev[t] = r;
 mPrev[r] = h;
 mParent[r] = q;
 mChildCount[q]++;
}

STATIC
VOID
Split (
 NODE Old
)
/*++
2396 April, 2015 Version 2.5

Routine Description:

 Split a node.

Arguments:

 Old - the node to split

Returns: (VOID)

--*/
{
 NODE New, t;

 New = mAvail;
 mAvail = mNext[New];
 mChildCount[New] = 0;
 t = mPrev[Old];
 mPrev[New] = t;
 mNext[t] = New;
 t = mNext[Old];
 mNext[New] = t;
 mPrev[t] = New;
 mParent[New] = mParent[Old];
 mLevel[New] = (UINT8)mMatchLen;
 mPosition[New] = mPos;
 MakeChild(New, mText[mMatchPos + mMatchLen], Old);
 MakeChild(New, mText[mPos + mMatchLen], mPos);
}

STATIC
VOID
InsertNode ()
/*++

Routine Description:

 Insert string info for current position into the String Info Log

Arguments: (VOID)

Returns: (VOID)

--*/
{
 NODE q, r, j, t;
 UINT8 c, *t1, *t2;

 if (mMatchLen >= 4) {

 //
 // We have just got a long match, the target tree
 // can be located by MatchPos + 1. Traverse the tree
 // from bottom up to get to a proper starting point.
 // The usage of PERC_FLAG ensures proper node deletion
 // in DeleteNode() later.
 //

 mMatchLen--;
 r = (INT16)((mMatchPos + 1) | WNDSIZ);
 while ((q = mParent[r]) == NIL) {
Version 2.5 April, 2015 2397

Unified Extensible Firmware Interface Specification
 r = mNext[r];
 }
 while (mLevel[q] >= mMatchLen) {
 r = q; q = mParent[q];
 }
 t = q;
 while (mPosition[t] < 0) {
 mPosition[t] = mPos;
 t = mParent[t];
 }
 if (t < WNDSIZ) {
 mPosition[t] = (NODE)(mPos | PERC_FLAG);
 }
 } else {

 //
 // Locate the target tree
 //

 q = (INT16)(mText[mPos] + WNDSIZ);
 c = mText[mPos + 1];
 if ((r = Child(q, c)) == NIL) {
 MakeChild(q, c, mPos);
 mMatchLen = 1;
 return;
 }
 mMatchLen = 2;
 }

 //
 // Traverse down the tree to find a match.
 // Update Position value along the route.
 // Node split or creation is involved.
 //

 for (; ;) {
 if (r >= WNDSIZ) {
 j = MAXMATCH;
 mMatchPos = r;
 } else {
 j = mLevel[r];
 mMatchPos = (NODE)(mPosition[r] & ~PERC_FLAG);
 }
 if (mMatchPos >= mPos) {
 mMatchPos -= WNDSIZ;
 }
 t1 = &mText[mPos + mMatchLen];
 t2 = &mText[mMatchPos + mMatchLen];
 while (mMatchLen < j) {
 if (*t1 != *t2) {
 Split(r);
 return;
 }
 mMatchLen++;
 t1++;
 t2++;
 }
 if (mMatchLen >= MAXMATCH) {
 break;
 }
 mPosition[r] = mPos;
2398 April, 2015 Version 2.5

 q = r;
 if ((r = Child(q, *t1)) == NIL) {
 MakeChild(q, *t1, mPos);
 return;
 }
 mMatchLen++;
 }
 t = mPrev[r];
 mPrev[mPos] = t;
 mNext[t] = mPos;
 t = mNext[r];
 mNext[mPos] = t;
 mPrev[t] = mPos;
 mParent[mPos] = q;
 mParent[r] = NIL;

 //
 // Special usage of 'next'
 //
 mNext[r] = mPos;

}

STATIC
VOID
DeleteNode ()
/*++

Routine Description:

 Delete outdated string info. (The Usage of PERC_FLAG
 ensures a clean deletion)

Arguments: (VOID)

Returns: (VOID)

--*/
{
 NODE q, r, s, t, u;

 if (mParent[mPos] == NIL) {
 return;
 }

 r = mPrev[mPos];
 s = mNext[mPos];
 mNext[r] = s;
 mPrev[s] = r;
 r = mParent[mPos];
 mParent[mPos] = NIL;
 if (r >= WNDSIZ || --mChildCount[r] > 1) {
 return;
 }
 t = (NODE)(mPosition[r] & ~PERC_FLAG);
 if (t >= mPos) {
 t -= WNDSIZ;
 }
 s = t;
 q = mParent[r];
 while ((u = mPosition[q]) & PERC_FLAG) {
Version 2.5 April, 2015 2399

Unified Extensible Firmware Interface Specification
 u &= ~PERC_FLAG;
 if (u >= mPos) {
 u -= WNDSIZ;
 }
 if (u > s) {
 s = u;
 }
 mPosition[q] = (INT16)(s | WNDSIZ);
 q = mParent[q];
 }
 if (q < WNDSIZ) {
 if (u >= mPos) {
 u -= WNDSIZ;
 }
 if (u > s) {
 s = u;
 }
 mPosition[q] = (INT16)(s | WNDSIZ | PERC_FLAG);
 }
 s = Child(r, mText[t + mLevel[r]]);
 t = mPrev[s];
 u = mNext[s];
 mNext[t] = u;
 mPrev[u] = t;
 t = mPrev[r];
 mNext[t] = s;
 mPrev[s] = t;
 t = mNext[r];
 mPrev[t] = s;
 mNext[s] = t;
 mParent[s] = mParent[r];
 mParent[r] = NIL;
 mNext[r] = mAvail;
 mAvail = r;
}

STATIC
VOID
GetNextMatch ()
/*++

Routine Description:

 Advance the current position (read in new data if needed).
 Delete outdated string info. Find a match string for current position.

Arguments: (VOID)

Returns: (VOID)

--*/
{
 INT32 n;

 mRemainder--;
 if (++mPos == WNDSIZ * 2) {
 memmove(&mText[0], &mText[WNDSIZ], WNDSIZ + MAXMATCH);
 n = FreadCrc(&mText[WNDSIZ + MAXMATCH], WNDSIZ);
 mRemainder += n;
 mPos = WNDSIZ;
 }
2400 April, 2015 Version 2.5

 DeleteNode();
 InsertNode();
}

STATIC
EFI_STATUS
Encode ()
/*++

Routine Description:

 The main controlling routine for compression process.

Arguments: (VOID)

Returns:

 EFI_SUCCESS - The compression is successful
 EFI_OUT_0F_RESOURCES - Not enough memory for compression process

--*/
{
 EFI_STATUS Status;
 INT32 LastMatchLen;
 NODE LastMatchPos;

 Status = AllocateMemory();
 if (EFI_ERROR(Status)) {
 FreeMemory();
 return Status;
 }

 InitSlide();

 HufEncodeStart();

 mRemainder = FreadCrc(&mText[WNDSIZ], WNDSIZ + MAXMATCH);

 mMatchLen = 0;
 mPos = WNDSIZ;
 InsertNode();
 if (mMatchLen > mRemainder) {
 mMatchLen = mRemainder;
 }
 while (mRemainder > 0) {
 LastMatchLen = mMatchLen;
 LastMatchPos = mMatchPos;
 GetNextMatch();
 if (mMatchLen > mRemainder) {
 mMatchLen = mRemainder;
 }

 if (mMatchLen > LastMatchLen || LastMatchLen < THRESHOLD) {

 //
 // Not enough benefits are gained by outputting a pointer,
 // so just output the original character
 //

 Output(mText[mPos - 1], 0);
 } else {
Version 2.5 April, 2015 2401

Unified Extensible Firmware Interface Specification

 //
 // Outputting a pointer is beneficial enough, do it.
 //

 Output(LastMatchLen + (UINT8_MAX + 1 - THRESHOLD),
 (mPos - LastMatchPos - 2) & (WNDSIZ - 1));
 while (--LastMatchLen > 0) {
 GetNextMatch();
 }
 if (mMatchLen > mRemainder) {
 mMatchLen = mRemainder;
 }
 }
 }

 HufEncodeEnd();
 FreeMemory();
 return EFI_SUCCESS;
}

STATIC
VOID
CountTFreq ()
/*++

Routine Description:

 Count the frequencies for the Extra Set

Arguments: (VOID)

Returns: (VOID)

--*/
{
 INT32 i, k, n, Count;

 for (i = 0; i < NT; i++) {
 mTFreq[i] = 0;
 }
 n = NC;
 while (n > 0 && mCLen[n - 1] == 0) {
 n--;
 }
 i = 0;
 while (i < n) {
 k = mCLen[i++];
 if (k == 0) {
 Count = 1;
 while (i < n && mCLen[i] == 0) {
 i++;
 Count++;
 }
 if (Count <= 2) {
 mTFreq[0] = (UINT16)(mTFreq[0] + Count);
 } else if (Count <= 18) {
 mTFreq[1]++;
 } else if (Count == 19) {
 mTFreq[0]++;
 mTFreq[1]++;
2402 April, 2015 Version 2.5

 } else {
 mTFreq[2]++;
 }
 } else {
 mTFreq[k + 2]++;
 }
 }
}

STATIC
VOID
WritePTLen (
 IN INT32 n,
 IN INT32 nbit,
 IN INT32 Special
)
/*++

Routine Description:

 Outputs the code length array for the Extra Set or the Position Set.

Arguments:

 n - the number of symbols
 nbit - the number of bits needed to represent 'n'
 Special - the special symbol that needs to be take care of

Returns: (VOID)

--*/
{
 INT32 i, k;

 while (n > 0 && mPTLen[n - 1] == 0) {
 n--;
 }
 PutBits(nbit, n);
 i = 0;
 while (i < n) {
 k = mPTLen[i++];
 if (k <= 6) {
 PutBits(3, k);
 } else {
 PutBits(k - 3, (1U << (k - 3)) - 2);
 }
 if (i == Special) {
 while (i < 6 && mPTLen[i] == 0) {
 i++;
 }
 PutBits(2, (i - 3) & 3);
 }
 }
}

STATIC
VOID
WriteCLen ()
/*++

Routine Description:
Version 2.5 April, 2015 2403

Unified Extensible Firmware Interface Specification
 Outputs the code length array for Char&Length Set

Arguments: (VOID)

Returns: (VOID)

--*/
{
 INT32 i, k, n, Count;

 n = NC;
 while (n > 0 && mCLen[n - 1] == 0) {
 n--;
 }
 PutBits(CBIT, n);
 i = 0;
 while (i < n) {
 k = mCLen[i++];
 if (k == 0) {
 Count = 1;
 while (i < n && mCLen[i] == 0) {
 i++;
 Count++;
 }
 if (Count <= 2) {
 for (k = 0; k < Count; k++) {
 PutBits(mPTLen[0], mPTCode[0]);
 }
 } else if (Count <= 18) {
 PutBits(mPTLen[1], mPTCode[1]);
 PutBits(4, Count - 3);
 } else if (Count == 19) {
 PutBits(mPTLen[0], mPTCode[0]);
 PutBits(mPTLen[1], mPTCode[1]);
 PutBits(4, 15);
 } else {
 PutBits(mPTLen[2], mPTCode[2]);
 PutBits(CBIT, Count - 20);
 }
 } else {
 PutBits(mPTLen[k + 2], mPTCode[k + 2]);
 }
 }
}

STATIC
VOID
EncodeC (
 IN INT32 c
)
{
 PutBits(mCLen[c], mCCode[c]);
}

STATIC
VOID
EncodeP (
 IN UINT32 p
)
{

2404 April, 2015 Version 2.5

 UINT32 c, q;

 c = 0;
 q = p;
 while (q) {
 q >>= 1;
 c++;
 }
 PutBits(mPTLen[c], mPTCode[c]);
 if (c > 1) {
 PutBits(c - 1, p & (0xFFFFU >> (17 - c)));
 }
}

STATIC
VOID
SendBlock ()
/*++

Routine Description:

 Huffman code the block and output it.

Argument: (VOID)

Returns: (VOID)

--*/
{
 UINT32 i, k, Flags, Root, Pos, Size;
 Flags = 0;

 Root = MakeTree(NC, mCFreq, mCLen, mCCode);
 Size = mCFreq[Root];
 PutBits(16, Size);
 if (Root >= NC) {
 CountTFreq();
 Root = MakeTree(NT, mTFreq, mPTLen, mPTCode);
 if (Root >= NT) {
 WritePTLen(NT, TBIT, 3);
 } else {
 PutBits(TBIT, 0);
 PutBits(TBIT, Root);
 }
 WriteCLen();
 } else {
 PutBits(TBIT, 0);
 PutBits(TBIT, 0);
 PutBits(CBIT, 0);
 PutBits(CBIT, Root);
 }
 Root = MakeTree(NP, mPFreq, mPTLen, mPTCode);
 if (Root >= NP) {
 WritePTLen(NP, PBIT, -1);
 } else {
 PutBits(PBIT, 0);
 PutBits(PBIT, Root);
 }
 Pos = 0;
 for (i = 0; i < Size; i++) {
 if (i % UINT8_BIT == 0) {
Version 2.5 April, 2015 2405

Unified Extensible Firmware Interface Specification
 Flags = mBuf[Pos++];
 } else {
 Flags <<= 1;
 }
 if (Flags & (1U << (UINT8_BIT - 1))) {
 EncodeC(mBuf[Pos++] + (1U << UINT8_BIT));
 k = mBuf[Pos++] << UINT8_BIT;
 k += mBuf[Pos++];
 EncodeP(k);
 } else {
 EncodeC(mBuf[Pos++]);
 }
 }
 for (i = 0; i < NC; i++) {
 mCFreq[i] = 0;
 }
 for (i = 0; i < NP; i++) {
 mPFreq[i] = 0;
 }
}

STATIC
VOID
Output (
 IN UINT32 c,
 IN UINT32 p
)
/*++

Routine Description:

 Outputs an Original Character or a Pointer

Arguments:

 c - The original character or the 'String Length' element of a Pointer
 p - The 'Position' field of a Pointer

Returns: (VOID)

--*/
{
 STATIC UINT32 CPos;

 if ((mOutputMask >>= 1) == 0) {
 mOutputMask = 1U << (UINT8_BIT - 1);
 if (mOutputPos >= mBufSiz - 3 * UINT8_BIT) {
 SendBlock();
 mOutputPos = 0;
 }
 CPos = mOutputPos++;
 mBuf[CPos] = 0;
 }
 mBuf[mOutputPos++] = (UINT8) c;
 mCFreq[c]++;
 if (c >= (1U << UINT8_BIT)) {
 mBuf[CPos] |= mOutputMask;
 mBuf[mOutputPos++] = (UINT8)(p >> UINT8_BIT);
 mBuf[mOutputPos++] = (UINT8) p;
 c = 0;
2406 April, 2015 Version 2.5

 while (p) {
 p >>= 1;
 c++;
 }
 mPFreq[c]++;
 }
}

STATIC
VOID
HufEncodeStart ()
{
 INT32 i;

 for (i = 0; i < NC; i++) {
 mCFreq[i] = 0;
 }
 for (i = 0; i < NP; i++) {
 mPFreq[i] = 0;
 }
 mOutputPos = mOutputMask = 0;
 InitPutBits();
 return;
}

STATIC
VOID
HufEncodeEnd ()
{
 SendBlock();

 //
 // Flush remaining bits
 //
 PutBits(UINT8_BIT - 1, 0);

 return;
}

STATIC
VOID
MakeCrcTable ()
{
 UINT32 i, j, r;

 for (i = 0; i <= UINT8_MAX; i++) {
 r = i;
 for (j = 0; j < UINT8_BIT; j++) {
 if (r & 1) {
 r = (r >> 1) ^ CRCPOLY;
 } else {
 r >>= 1;
 }
 }
 mCrcTable[i] = (UINT16)r;
 }
}

STATIC
VOID
Version 2.5 April, 2015 2407

Unified Extensible Firmware Interface Specification
PutBits (
 IN INT32 n,
 IN UINT32 x
)
/*++

Routine Description:

 Outputs rightmost n bits of x

Arguments:

 n - the rightmost n bits of the data is used
 x - the data

Returns: (VOID)

--*/
{
 UINT8 Temp;

 if (n < mBitCount) {
 mSubBitBuf |= x << (mBitCount -= n);
 } else {

 Temp = (UINT8)(mSubBitBuf | (x >> (n -= mBitCount)));
 if (mDst < mDstUpperLimit) {
 *mDst++ = Temp;
 }
 mCompSize++;

 if (n < UINT8_BIT) {
 mSubBitBuf = x << (mBitCount = UINT8_BIT - n);
 } else {

 Temp = (UINT8)(x >> (n - UINT8_BIT));
 if (mDst < mDstUpperLimit) {
 *mDst++ = Temp;
 }
 mCompSize++;

 mSubBitBuf = x << (mBitCount = 2 * UINT8_BIT - n);
 }
 }
}

STATIC
INT32
FreadCrc (
 OUT UINT8 *p,
 IN INT32 n
)
/*++

Routine Description:

 Read in source data

Arguments:

 p - the buffer to hold the data
2408 April, 2015 Version 2.5

 n - number of bytes to read

Returns:

 number of bytes actually read

--*/
{
 INT32 i;

 for (i = 0; mSrc < mSrcUpperLimit && i < n; i++) {
 *p++ = *mSrc++;
 }
 n = i;

 p -= n;
 mOrigSize += n;
 while (--i >= 0) {
 UPDATE_CRC(*p++);
 }
 return n;
}

STATIC
VOID
InitPutBits ()
{
 mBitCount = UINT8_BIT;
 mSubBitBuf = 0;
}

STATIC
VOID
CountLen (
 IN INT32 i
)
/*++

Routine Description:

 Count the number of each code length for a Huffman tree.

Arguments:

 i - the top node

Returns: (VOID)

--*/
{
 STATIC INT32 Depth = 0;

 if (i < mN) {
 mLenCnt[(Depth < 16) ? Depth : 16]++;
 } else {
 Depth++;
 CountLen(mLeft [i]);
 CountLen(mRight[i]);
 Depth--;
 }
Version 2.5 April, 2015 2409

Unified Extensible Firmware Interface Specification
}

STATIC
VOID
MakeLen (
 IN INT32 Root
)
/*++

Routine Description:

 Create code length array for a Huffman tree

Arguments:

 Root - the root of the tree

--*/
{
 INT32 i, k;
 UINT32 Cum;

 for (i = 0; i <= 16; i++) {
 mLenCnt[i] = 0;
 }
 CountLen(Root);

 //
 // Adjust the length count array so that
 // no code will be generated longer than the designated length
 //

 Cum = 0;
 for (i = 16; i > 0; i--) {
 Cum += mLenCnt[i] << (16 - i);
 }
 while (Cum != (1U << 16)) {
 mLenCnt[16]--;
 for (i = 15; i > 0; i--) {
 if (mLenCnt[i] != 0) {
 mLenCnt[i]--;
 mLenCnt[i+1] += 2;
 break;
 }
 }
 Cum--;
 }
 for (i = 16; i > 0; i--) {
 k = mLenCnt[i];
 while (--k >= 0) {
 mLen[*mSortPtr++] = (UINT8)i;
 }
 }
}

STATIC
VOID
DownHeap (
 IN INT32 i
)
{

2410 April, 2015 Version 2.5

 INT32 j, k;

 //
 // priority queue: send i-th entry down heap
 //

 k = mHeap[i];
 while ((j = 2 * i) <= mHeapSize) {
 if (j < mHeapSize && mFreq[mHeap[j]] > mFreq[mHeap[j + 1]]) {
 j++;
 }
 if (mFreq[k] <= mFreq[mHeap[j]]) {
 break;
 }
 mHeap[i] = mHeap[j];
 i = j;
 }
 mHeap[i] = (INT16)k;
}

STATIC
VOID
MakeCode (
 IN INT32 n,
 IN UINT8 Len[],
 OUT UINT16 Code[]
)
/*++

Routine Description:

 Assign code to each symbol based on the code length array

Arguments:

 n - number of symbols
 Len - the code length array
 Code - stores codes for each symbol

Returns: (VOID)

--*/
{
 INT32 i;
 UINT16 Start[18];

 Start[1] = 0;
 for (i = 1; i <= 16; i++) {
 Start[i + 1] = (UINT16)((Start[i] + mLenCnt[i]) << 1);
 }
 for (i = 0; i < n; i++) {
 Code[i] = Start[Len[i]]++;
 }
}

STATIC
INT32
MakeTree (
 IN INT32 NParm,
 IN UINT16 FreqParm[],
 OUT UINT8 LenParm[],
Version 2.5 April, 2015 2411

Unified Extensible Firmware Interface Specification
 OUT UINT16 CodeParm[]
)
/*++

Routine Description:

 Generates Huffman codes given a frequency distribution of symbols

Arguments:

 NParm - number of symbols
 FreqParm - frequency of each symbol
 LenParm - code length for each symbol
 CodeParm - code for each symbol

Returns:

 Root of the Huffman tree.

--*/
{
 INT32 i, j, k, Avail;

 //
 // make tree, calculate len[], return root
 //

 mN = NParm;
 mFreq = FreqParm;
 mLen = LenParm;
 Avail = mN;
 mHeapSize = 0;
 mHeap[1] = 0;
 for (i = 0; i < mN; i++) {
 mLen[i] = 0;
 if (mFreq[i]) {
 mHeap[++mHeapSize] = (INT16)i;
 }
 }
 if (mHeapSize < 2) {
 CodeParm[mHeap[1]] = 0;
 return mHeap[1];
 }
 for (i = mHeapSize / 2; i >= 1; i--) {

 //
 // make priority queue
 //
 DownHeap(i);
 }
 mSortPtr = CodeParm;
 do {
 i = mHeap[1];
 if (i < mN) {
 *mSortPtr++ = (UINT16)i;
 }
 mHeap[1] = mHeap[mHeapSize--];
 DownHeap(1);
 j = mHeap[1];
 if (j < mN) {
 *mSortPtr++ = (UINT16)j;
2412 April, 2015 Version 2.5

 }
 k = Avail++;
 mFreq[k] = (UINT16)(mFreq[i] + mFreq[j]);
 mHeap[1] = (INT16)k;
 DownHeap(1);
 mLeft[k] = (UINT16)i;
 mRight[k] = (UINT16)j;
 } while (mHeapSize > 1);

 mSortPtr = CodeParm;
 MakeLen(k);
 MakeCode(NParm, LenParm, CodeParm);

 //
 // return root
 //
 return k;
}

Version 2.5 April, 2015 2413

Unified Extensible Firmware Interface Specification
2414 April, 2015 Version 2.5

Appendix I
Decompression Source Code

=/*++

Copyright (c) 2001–2002 Intel Corporation

Module Name:

 Decompress.c

Abstract:

 Decompressor.

--*/

#include "EfiCommon.h"

#define BITBUFSIZ 16
#define WNDBIT 13
#define WNDSIZ (1U << WNDBIT)
#define MAXMATCH 256
#define THRESHOLD 3
#define CODE_BIT 16
#define UINT8_MAX 0xff
#define BAD_TABLE -1

//
// C: Char&Len Set; P: Position Set; T: exTra Set
//

#define NC (0xff + MAXMATCH + 2 - THRESHOLD)
#define CBIT 9
#define NP (WNDBIT + 1)
#define NT (CODE_BIT + 3)
#define PBIT 4
#define TBIT 5
#if NT > NP
 #define NPT NT
#else
 #define NPT NP
#endif

typedef struct {
 UINT8 *mSrcBase; //Starting address of compressed data
 UINT8 *mDstBase; //Starting address of decompressed data

 UINT16 mBytesRemain;
 UINT16 mBitCount;
 UINT16 mBitBuf;
 UINT16 mSubBitBuf;
 UINT16 mBufSiz;
 UINT16 mBlockSize;
Version 2.5 April, 2015 2415

Unified Extensible Firmware Interface Specification
 UINT32 mDataIdx;
 UINT32 mCompSize;
 UINT32 mOrigSize;
 UINT32 mOutBuf;
 UINT32 mInBuf;

 UINT16 mBadTableFlag;

 UINT8 mBuffer[WNDSIZ];
 UINT16 mLeft[2 * NC - 1];
 UINT16 mRight[2 * NC - 1];
 UINT32 mBuf;
 UINT8 mCLen[NC];
 UINT8 mPTLen[NPT];
 UINT16 mCTable[4096];
 UINT16 mPTTable[256];
} SCRATCH_DATA;

//
// Function Prototypes
//

STATIC
VOID
FillBuf (
 IN SCRATCH_DATA *Sd,
 IN UINT16 NumOfBits
);

STATIC
VOID
Decode (
 SCRATCH_DATA *Sd,
 UINT16 NumOfBytes
);

//
// Functions
//

EFI_STATUS
EFIAPI
GetInfo (
 IN EFI_DECOMPRESS_PROTOCOL *This,
 IN VOID *Source,
 IN UINT32 SrcSize,
 OUT UINT32 *DstSize,
 OUT UINT32 *ScratchSize
)
/*++

Routine Description:

 The implementation of EFI_DECOMPRESS_PROTOCOL.GetInfo().

Arguments:

 This - Protocol instance pointer.
 Source - The source buffer containing the compressed data.
2416 April, 2015 Version 2.5

 SrcSize - The size of source buffer
 DstSize - The size of destination buffer.
 ScratchSize - The size of scratch buffer.

Returns:

 EFI_SUCCESS - The size of destination buffer and the size of scratch
buffer are successful retrieved.
 EFI_INVALID_PARAMETER - The source data is corrupted

--*/
{
 UINT8 *Src;

 *ScratchSize = sizeof (SCRATCH_DATA);

 Src = Source;
 if (SrcSize < 8) {
 return EFI_INVALID_PARAMETER;
 }

 *DstSize = Src[4] + (Src[5] << 8) + (Src[6] << 16) + (Src[7] << 24);
 return EFI_SUCCESS;
}

EFI_STATUS
EFIAPI
Decompress (
 IN EFI_DECOMPRESS_PROTOCOL *This,
 IN VOID *Source,
 IN UINT32 SrcSize,
 IN OUT VOID *Destination,
 IN UINT32 DstSize,
 IN OUT VOID *Scratch,
 IN UINT32 ScratchSize
)
/*++

Routine Description:

 The implementation of EFI_DECOMPRESS_PROTOCOL.Decompress().

Arguments:

 This - The protocol instance.
 Source - The source buffer containing the compressed data.
 SrcSize - The size of the source buffer
 Destination - The destination buffer to store the decompressed data
 DstSize - The size of the destination buffer.
 Scratch - The buffer used internally by the decompress routine. This
buffer is needed to store intermediate data.
 ScratchSize - The size of scratch buffer.

Returns:

 EFI_SUCCESS - Decompression is successful
 EFI_INVALID_PARAMETER - The source data is corrupted

--*/
{

Version 2.5 April, 2015 2417

Unified Extensible Firmware Interface Specification
 UINT32 Index;
 UINT16 Count;
 UINT32 CompSize;
 UINT32 OrigSize;
 UINT8 *Dst1;
 EFI_STATUS Status;
 SCRATCH_DATA *Sd;
 UINT8 *Src;
 UINT8 *Dst;

 Status = EFI_SUCCESS;
 Src = Source;
 Dst = Destination;
 Dst1 = Dst;

 if (ScratchSize < sizeof (SCRATCH_DATA)) {
 return EFI_INVALID_PARAMETER;
 }

 Sd = (SCRATCH_DATA *)Scratch;

 if (SrcSize < 8) {
 return EFI_INVALID_PARAMETER;
 }

 CompSize = Src[0] + (Src[1] << 8) + (Src[2] << 16) + (Src[3] << 24);
 OrigSize = Src[4] + (Src[5] << 8) + (Src[6] << 16) + (Src[7] << 24);

 if (SrcSize < CompSize + 8) {
 return EFI_INVALID_PARAMETER;
 }

 Src = Src + 8;

 for (Index = 0; Index < sizeof(SCRATCH_DATA); Index++) {
 ((UINT8*)Sd)[Index] = 0;
 }

 Sd->mBytesRemain = (UINT16)(-1);
 Sd->mSrcBase = Src;
 Sd->mDstBase = Dst;
 Sd->mCompSize = CompSize;
 Sd->mOrigSize = OrigSize;

 //
 // Fill the first two bytes
 //
 FillBuf(Sd, BITBUFSIZ);

 while (Sd->mOrigSize > 0) {

 Count = (UINT16) (WNDSIZ < Sd->mOrigSize? WNDSIZ: Sd->mOrigSize);
 Decode (Sd, Count);

 if (Sd->mBadTableFlag != 0) {
 //
 // Something wrong with the source
 //
 return EFI_INVALID_PARAMETER;
 }
2418 April, 2015 Version 2.5

 for (Index = 0; Index < Count; Index ++) {
 if (Dst1 < Dst + DstSize) {
 *Dst1++ = Sd->mBuffer[Index];
 } else {
 return EFI_INVALID_PARAMETER;
 }
 }

 Sd->mOrigSize -= Count;
 }

 if (Sd->mBadTableFlag != 0) {
 Status = EFI_INVALID_PARAMETER;
 } else {
 Status = EFI_SUCCESS;
 }

 return Status;
}

STATIC
VOID
FillBuf (
 IN SCRATCH_DATA *Sd,
 IN UINT16 NumOfBits
)
/*++

Routine Description:

 Shift mBitBuf NumOfBits left. Read in NumOfBits of bits from source.

Arguments:

 Sd - The global scratch data
 NumOfBit - The number of bits to shift and read.

Returns: (VOID)

--*/
{
 Sd->mBitBuf = (UINT16)(Sd->mBitBuf << NumOfBits);

 while (NumOfBits > Sd->mBitCount) {

 Sd->mBitBuf |= (UINT16)(Sd->mSubBitBuf <<
 (NumOfBits = (UINT16)(NumOfBits - Sd->mBitCount)));

 if (Sd->mCompSize > 0) {

 //
 // Get 1 byte into SubBitBuf
 //
 Sd->mCompSize --;
 Sd->mSubBitBuf = 0;
 Sd->mSubBitBuf = Sd->mSrcBase[Sd->mInBuf ++];
 Sd->mBitCount = 8;

 } else {
Version 2.5 April, 2015 2419

Unified Extensible Firmware Interface Specification
 Sd->mSubBitBuf = 0;
 Sd->mBitCount = 8;

 }
 }

 Sd->mBitCount = (UINT16)(Sd->mBitCount - NumOfBits);
 Sd->mBitBuf |= Sd->mSubBitBuf >> Sd->mBitCount;
}

STATIC
UINT16
GetBits(
 IN SCRATCH_DATA *Sd,
 IN UINT16 NumOfBits
)
/*++

Routine Description:

 Get NumOfBits of bits out from mBitBuf. Fill mBitBuf with subsequent
 NumOfBits of bits from source. Returns NumOfBits of bits that are
 popped out.

Arguments:

 Sd - The global scratch data.
 NumOfBits - The number of bits to pop and read.

Returns:

 The bits that are popped out.

--*/
{
 UINT16 OutBits;

 OutBits = (UINT16)(Sd->mBitBuf >> (BITBUFSIZ - NumOfBits));

 FillBuf (Sd, NumOfBits);

 return OutBits;
}

STATIC
UINT16
MakeTable (
 IN SCRATCH_DATA *Sd,
 IN UINT16 NumOfChar,
 IN UINT8 *BitLen,
 IN UINT16 TableBits,
 OUT UINT16 *Table
)
/*++

Routine Description:

 Creates Huffman Code mapping table according to code length array.
2420 April, 2015 Version 2.5

Arguments:

 Sd - The global scratch data
 NumOfChar - Number of symbols in the symbol set
 BitLen - Code length array
 TableBits - The width of the mapping table
 Table - The table

Returns:

 0 - OK.
 BAD_TABLE - The table is corrupted.

--*/
{
 UINT16 Count[17];
 UINT16 Weight[17];
 UINT16 Start[18];
 UINT16 *p;
 UINT16 k;
 UINT16 i;
 UINT16 Len;
 UINT16 Char;
 UINT16 JuBits;
 UINT16 Avail;
 UINT16 NextCode;
 UINT16 Mask;

 for (i = 1; i <= 16; i ++) {
 Count[i] = 0;
 }

 for (i = 0; i < NumOfChar; i++) {
 Count[BitLen[i]]++;
 }

 Start[1] = 0;

 for (i = 1; i <= 16; i ++) {
 Start[i + 1] = (UINT16)(Start[i] + (Count[i] << (16 - i)));
 }

 if (Start[17] != 0) {/*(1U << 16)*/
 return (UINT16)BAD_TABLE;
 }

 JuBits = (UINT16)(16 - TableBits);

 for (i = 1; i <= TableBits; i ++) {
 Start[i] >>= JuBits;
 Weight[i] = (UINT16)(1U << (TableBits - i));
 }

 while (i <= 16) {
 Weight[i++] = (UINT16)(1U << (16 - i));
 }

 i = (UINT16)(Start[TableBits + 1] >> JuBits);

 if (i != 0) {
Version 2.5 April, 2015 2421

Unified Extensible Firmware Interface Specification
 k = (UINT16)(1U << TableBits);
 while (i != k) {
 Table[i++] = 0;
 }
 }

 Avail = NumOfChar;
 Mask = (UINT16)(1U << (15 - TableBits));

 for (Char = 0; Char < NumOfChar; Char++) {

 Len = BitLen[Char];
 if (Len == 0) {
 continue;
 }

 NextCode = (UINT16)(Start[Len] + Weight[Len]);

 if (Len <= TableBits) {

 for (i = Start[Len]; i < NextCode; i ++) {
 Table[i] = Char;
 }

 } else {

 k = Start[Len];
 p = &Table[k >> JuBits];
 i = (UINT16)(Len - TableBits);

 while (i != 0) {
 if (*p == 0) {
 Sd->mRight[Avail] = Sd->mLeft[Avail] = 0;
 *p = Avail ++;
 }

 if (k & Mask) {
 p = &Sd->mRight[*p];
 } else {
 p = &Sd->mLeft[*p];
 }

 k <<= 1;
 i --;
 }

 *p = Char;

 }

 Start[Len] = NextCode;
 }

 //
 // Succeeds
 //
 return 0;
}

STATIC
2422 April, 2015 Version 2.5

UINT16
DecodeP (
 IN SCRATCH_DATA *Sd
)
/*++

Routine description:

 Decodes a position value.

Arguments:

 Sd - the global scratch data

Returns:

 The position value decoded.

--*/
{
 UINT16 Val;
 UINT16 Mask;

 Val = Sd->mPTTable[Sd->mBitBuf >> (BITBUFSIZ - 8)];

 if (Val >= NP) {
 Mask = 1U << (BITBUFSIZ - 1 - 8);

 do {

 if (Sd->mBitBuf & Mask) {
 Val = Sd->mRight[Val];
 } else {
 Val = Sd->mLeft[Val];
 }

 Mask >>= 1;
 } while (Val >= NP);
 }

 //
 // Advance what we have read
 //
 FillBuf (Sd, Sd->mPTLen[Val]);

 if (Val) {
 Val = (UINT16)((1U << (Val - 1)) + GetBits (Sd, (UINT16)(Val - 1)));
 }

 return Val;
}

STATIC
UINT16
ReadPTLen (
 IN SCRATCH_DATA *Sd,
 IN UINT16 nn,
 IN UINT16 nbit,
 IN UINT16 Special
)
Version 2.5 April, 2015 2423

Unified Extensible Firmware Interface Specification
/*++

Routine Description

 Reads code lengths for the Extra Set or the Position Set

Arguments:

 Sd - The global scratch data
 nn - Number of symbols
 nbit - Number of bits needed to represent nn
 Special - The special symbol that needs to be taken care of

Returns:

 0 - OK.
 BAD_TABLE - Table is corrupted.

--*/
{
 UINT16 n;
 UINT16 c;
 UINT16 i;
 UINT16 Mask;

 n = GetBits (Sd, nbit);

 if (n == 0) {
 c = GetBits (Sd, nbit);

 for (i = 0; i < 256; i ++) {
 Sd->mPTTable[i] = c;
 }

 for (i = 0; i < nn; i++) {
 Sd->mPTLen[i] = 0;
 }

 return 0;
 }

 i = 0;

 while (i < n) {

 c = (UINT16)(Sd->mBitBuf >> (BITBUFSIZ - 3));

 if (c == 7) {
 Mask = 1U << (BITBUFSIZ - 1 - 3);
 while (Mask & Sd->mBitBuf) {
 Mask >>= 1;
 c += 1;
 }
 }

 FillBuf (Sd, (UINT16)((c < 7) ? 3 : c - 3));

 Sd->mPTLen [i++] = (UINT8)c;

 if (i == Special) {
 c = GetBits (Sd, 2);
2424 April, 2015 Version 2.5

 while ((INT16)(--c) >= 0) {
 Sd->mPTLen[i++] = 0;
 }
 }
 }

 while (i < nn) {
 Sd->mPTLen [i++] = 0;
 }

 return (MakeTable (Sd, nn, Sd->mPTLen, 8, Sd->mPTTable));
}

STATIC
VOID
ReadCLen (
 SCRATCH_DATA *Sd
)
/*++

Routine Description:

 Reads code lengths for Char&Len Set.

Arguments:

 Sd - the global scratch data

Returns: (VOID)

--*/
{
 UINT16 n;
 UINT16 c;
 UINT16 i;
 UINT16 Mask;

 n = GetBits(Sd, CBIT);

 if (n == 0) {
 c = GetBits(Sd, CBIT);

 for (i = 0; i < NC; i ++) {
 Sd->mCLen[i] = 0;
 }

 for (i = 0; i < 4096; i ++) {
 Sd->mCTable[i] = c;
 }

 return;
 }

 i = 0;
 while (i < n) {

 c = Sd->mPTTable[Sd->mBitBuf >> (BITBUFSIZ - 8)];
 if (c >= NT) {
 Mask = 1U << (BITBUFSIZ - 1 - 8);
Version 2.5 April, 2015 2425

Unified Extensible Firmware Interface Specification
 do {

 if (Mask & Sd->mBitBuf) {
 c = Sd->mRight [c];
 } else {
 c = Sd->mLeft [c];
 }

 Mask >>= 1;

 }while (c >= NT);
 }

 //
 // Advance what we have read
 //
 FillBuf (Sd, Sd->mPTLen[c]);

 if (c <= 2) {

 if (c == 0) {
 c = 1;
 } else if (c == 1) {
 c = (UINT16)(GetBits (Sd, 4) + 3);
 } else if (c == 2) {
 c = (UINT16)(GetBits (Sd, CBIT) + 20);
 }

 while ((INT16)(--c) >= 0) {
 Sd->mCLen[i++] = 0;
 }

 } else {

 Sd->mCLen[i++] = (UINT8)(c - 2);

 }
 }

 while (i < NC) {
 Sd->mCLen[i++] = 0;
 }

 MakeTable (Sd, NC, Sd->mCLen, 12, Sd->mCTable);

 return;
}

STATIC
UINT16
DecodeC (
 SCRATCH_DATA *Sd
)
/*++

Routine Description:

 Decode a character/length value.

Arguments:
2426 April, 2015 Version 2.5

 Sd - The global scratch data.

Returns:

 The value decoded.

--*/
{
 UINT16 j;
 UINT16 Mask;

 if (Sd->mBlockSize == 0) {

 //
 // Starting a new block
 //

 Sd->mBlockSize = GetBits(Sd, 16);
 Sd->mBadTableFlag = ReadPTLen (Sd, NT, TBIT, 3);
 if (Sd->mBadTableFlag != 0) {
 return 0;
 }

 ReadCLen (Sd);

 Sd->mBadTableFlag = ReadPTLen (Sd, NP, PBIT, (UINT16)(-1));
 if (Sd->mBadTableFlag != 0) {
 return 0;
 }
 }

 Sd->mBlockSize --;
 j = Sd->mCTable[Sd->mBitBuf >> (BITBUFSIZ - 12)];

 if (j >= NC) {
 Mask = 1U << (BITBUFSIZ - 1 - 12);

 do {
 if (Sd->mBitBuf & Mask) {
 j = Sd->mRight[j];
 } else {
 j = Sd->mLeft[j];
 }

 Mask >>= 1;
 } while (j >= NC);
 }

 //
 // Advance what we have read
 //
 FillBuf(Sd, Sd->mCLen[j]);

 return j;
}

STATIC
VOID
Decode (
Version 2.5 April, 2015 2427

Unified Extensible Firmware Interface Specification
 SCRATCH_DATA *Sd,
 UINT16 NumOfBytes
)
 /*++

Routine Description:

 Decode NumOfBytes and put the resulting data at starting point of mBuffer.
 The buffer is circular.

Arguments:

 Sd - The global scratch data
 NumOfBytes - Number of bytes to decode

Returns: (VOID)

 --*/
{
 UINT16 di;
 UINT16 r;
 UINT16 c;

 r = 0;
 di = 0;

 Sd->mBytesRemain --;
 while ((INT16)(Sd->mBytesRemain) >= 0) {
 Sd->mBuffer[di++] = Sd->mBuffer[Sd->mDataIdx++];

 if (Sd->mDataIdx >= WNDSIZ) {
 Sd->mDataIdx -= WNDSIZ;
 }

 r ++;
 if (r >= NumOfBytes) {
 return;
 }
 Sd->mBytesRemain --;
 }

 for (;;) {
 c = DecodeC (Sd);
 if (Sd->mBadTableFlag != 0) {
 return;
 }

 if (c < 256) {

 //
 // Process an Original character
 //

 Sd->mBuffer[di++] = (UINT8)c;
 r ++;
 if (di >= WNDSIZ) {
 return;
 }

 } else {
2428 April, 2015 Version 2.5

 //
 // Process a Pointer
 //

 c = (UINT16)(c - (UINT8_MAX + 1 - THRESHOLD));
 Sd->mBytesRemain = c;

 Sd->mDataIdx = (r - DecodeP(Sd) - 1) & (WNDSIZ - 1); //Make circular

 di = r;

 Sd->mBytesRemain --;
 while ((INT16)(Sd->mBytesRemain) >= 0) {
 Sd->mBuffer[di++] = Sd->mBuffer[Sd->mDataIdx++];
 if (Sd->mDataIdx >= WNDSIZ) {
 Sd->mDataIdx -= WNDSIZ;
 }

 r ++;
 if (di >= WNDSIZ) {
 return;
 }
 Sd->mBytesRemain --;
 }
 }
 }

 return;
}

Version 2.5 April, 2015 2429

Unified Extensible Firmware Interface Specification
2430 April, 2015 Version 2.5

Appendix J
EFI Byte Code Virtual Machine Opcode List

The following table lists the opcodes for EBC instructions. Note that opcodes only require 6 bits of
the opcode byte of EBC instructions. The other two bits are used for other encodings that are
dependent on the particular instruction.

Table 241. EBC Virtual Machine Opcode Summary

Opcode Description

0x00 BREAK [break code]

0x01 JMP32{cs|cc} {@}R1 {Immed32|Index32}

JMP64{cs|cc} Immed64

0x02 JMP8{cs|cc} Immed8

0x03 CALL32{EX}{a} {@}R1 {Immed32|Index32}

CALL64{EX}{a} Immed64

0x04 RET

0x05 CMP[32|64]eq R1, {@}R2 {Index16|Immed16}

0x06 CMP[32|64]lte R1, {@}R2 {Index16|Immed16}

0x07 CMP[32|64]gte R1, {@}R2 {Index16|Immed16}

0x08 CMP[32|64]ulte R1, {@}R2 {Index16|Immed16}

0x09 CMP[32|64]ugte R1, {@}R2 {Index16|Immed16}

0x0A NOT[32|64] {@}R1, {@}R2 {Index16|Immed16}

0x0B NEG[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x0C ADD[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x0D SUB[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x0E MUL[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x0F MULU[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x10 DIV[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x11 DIVU[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x12 MOD[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x13 MODU[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x14 AND[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x15 OR[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x16 XOR[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x17 SHL[32|64] {@}R1,{@}R2 {Index16|Immed16}
Version 2.5 April, 2015 2431

Unified Extensible Firmware Interface Specification
0x18 SHR[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x19 ASHR[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x1A EXTNDB[32|64] {@}R1, {@}R2 {Index16|Immed16}

0x1B EXTNDW[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x1C EXTNDD[32|64] {@}R1,{@}R2 {Index16|Immed16}

0x1D MOVbw {@}R1 {Index16}, {@}R2 {Index16}

0x1E MOVww {@}R1 {Index16}, {@}R2 {Index16}

0x1F MOVdw {@}R1 {Index16}, {@}R2 {Index16}

0x20 MOVqw {@}R1 {Index16}, {@}R2 {Index16}

0x21 MOVbd {@}R1 {Index32}, {@}R2 {Index32}

0x22 MOVwd {@}R1 {Index32}, {@}R2 {Index32}

0x23 MOVdd {@}R1 {Index32}, {@}R2 {Index32}

0x24 MOVqd {@}R1 {Index32}, {@}R2 {Index32}

0x25 MOVsnw {@}R1 {Index16}, {@}R2 {Index16|Immed16}

0x26 MOVsnd {@}R1 {Index32}, {@}R2 {Index32|Immed32}

0x27 Reserved

0x28 MOVqq {@}R1 {Index64}, {@}R2 {Index64}

0x29 LOADSP [Flags], R2

0x2A STORESP R1, [IP|Flags]

0x2B PUSH[32|64] {@}R1 {Index16|Immed16}

0x2C POP[32|64] {@}R1 {Index16|Immed16}

0x2D CMPI[32|64][w|d]eq {@}R1 {Index16}, Immed16|Immed32

0x2E CMPI[32|64][w|d]lte {@}R1 {Index16}, Immed16|Immed32

0x2F CMPI[32|64][w|d]gte {@}R1 {Index16}, Immed16|Immed32

0x30 CMPI[32|64][w|d]ulte {@}R1 {Index16}, Immed16|Immed32

0x31 CMPI[32|64][w|d]ugte {@}R1 {Index16}, Immed16|Immed32

0x32 MOVnw {@}R1 {Index16}, {@}R2 {Index16}

0x33 MOVnd {@}R1 {Index32}, {@}R2 {Index32}

0x34 Reserved

0x35 PUSHn {@}R1 {Index16|Immed16}

0x36 POPn {@}R1 {Index16|Immed16}

0x37 MOVI[b|w|d|q][w|d|q] {@}R1 {Index16}, Immed16|32|64

0x38 MOVIn[w|d|q] {@}R1 {Index16}, Index16|32|64

Opcode Description
2432 April, 2015 Version 2.5

0x39 MOVREL[w|d|q] {@}R1 {Index16}, Immed16|32|64

0x3A Reserved

0x3B Reserved

0x3C Reserved

0x3D Reserved

0x3E Reserved

0x3F Reserved

Opcode Description
Version 2.5 April, 2015 2433

Unified Extensible Firmware Interface Specification
2434 April, 2015 Version 2.5

Appendix K
Alphabetic Function Lists

This appendix contains two tables that list all EFI functions alphabetically. Table 242 lists the
functions in pure alphabetic order. Functions that have the same name can be distinguished by the
associated service or protocol (column 2). For example, there are Flush() functions from the EFI
PCI I/O Protocol, the File System Protocol, and the PCI Root Bridge I/O Protocol. Table 243 orders
the functions alphabetically within a service or protocol. That is, column one names the service or
protocol, and column two lists the functions in the service or protocol.

Table 242. Functions Listed in Alphabetic Order

Function Name Service or Protocol Subservice Function Description

Accept() EFI_TCP4_PROTOCOL Listen on the passive
instance to accept an
incoming connection
request. This is a
nonblocking operation.

Add() EFI_ARP_PROTOCOL Inserts an entry to the
ARP cache.

AllocateBuffer() EFI PCI I/O Protocol Allocates pages that are
suitable for a common
buffer mapping.

AllocateBuffer() PCI Root Bridge I/O
Protocol

Allocates pages that are
suitable for a common
buffer mapping.

EFI_BOOT_SERVICES.Al
locatePages()

Boot Services Memory
Allocation
Services

Allocates memory pages
of a particular type.

EFI_BOOT_SERVICES.Al
locatePool()

Boot Services Memory
Allocation
Services

Allocates pool of a
particular type.

AppendDeviceNode() Device Path Utilities
Protocol

Appends the device
node to the specified
device path.

AppendDevicePath() Device Path Utilities
Protocol

Appends the device
path to the specified
device path.

AppendDevicePathInst
ance()

Device Path Utilities
Protocol

Appends a device path
instance to another
device path.

Arp() PXE Base Code
Protocol

Uses the ARP protocol
to resolve a MAC
address.
Version 2.5 April, 2015 2435

Unified Extensible Firmware Interface Specification
AsyncInterruptTransf
er()

USB2 Host Controller
Protocol

Submits an
asynchronous interrupt
transfer to an interrupt
endpoint of a USB
device.

AsyncIsochronousTran
sfer()

USB2 Host Controller
Protocol

Submits nonblocking
USB isochronous
transfer.

Attributes() EFI PCI I/O Protocol Performs an operation
on the attributes that this
PCI controller supports.

BlockToConfig() EFI_HII_CONFIG_ROU
TING_PROTOCOL

This helper function is to
be called by drivers to
map configuration data
stored in byte array
(“block”) formats such
as UEFI Variables into
current configuration
strings.

Blt() Graphics Output
Protocol

Blt a rectangle of pixels
on the graphics screen.
Blt stands for BLock
Transfer.

BrowserCallback() EFI_FORM_BROWSER
2_PROTOCOL

This function is called by
a callback handler to
retrieve uncommitted
state data from the
browser.

Build() EFI_DHCP4_PROTOC
OL

Builds a DHCP packet,
given the options to be
appended or deleted or
replaced.

BuildDevicePath() Extended SCSI Pass
Thru Protocol

Used to allocate and
build a device path node
for a SCSI device on a
SCSI channel.

BuildDevicePath() NVM Express Pass Thru
Protocol

Used to allocate and
build a device path node
for an NVM Express
controller.

BulkTransfer() USB2 Host Controller
Protocol

Submits a bulk transfer
to a bulk endpoint of a
USB device.

EFI_BOOT_SERVICES.Ca
lculateCrc32()

Boot Services Miscellaneous
Boot Services

Computes and returns a
32-bit CRC for a data
buffer.

Function Name Service or Protocol Subservice Function Description
2436 April, 2015 Version 2.5

Callback() PXE Base Code
Callback Protocol

Callback routine used by
the PXE Base Code

Dhcp(),

Discover(),

Mtftp(),

UdpWrite(), and

Arp() functions.

CallBack() EFI_HII_CONFIG_ACC
ESS_PROTOCOL.

This function is called to
provide results data to
the driver.

Cancel() EFI_IP4_PROTOCOL. Abort an asynchronous
transmit or receive
request.

Cancel() EFI_MANAGED_NETW
ORK_PROTOCOL

Aborts an asynchronous
transmit or receive
request.

Cancel() EFI_TCP4_PROTOCOL Abort an asynchronous
connection, listen,
transmission or receive
request.

Cancel() EFI_UDP4_PROTOCO
L

Aborts an asynchronous
transmit or receive
request.

EFI_BOOT_SERVICES.Ch
eckEvent()

Boot Services Event, Timer, and
Task Priority
Services

Checks whether an
event is in the signaled
state.

ClearRootHubPortFeat
ure()

USB2 Host Controller
Protocol

Clears the feature for
the specified root hub
port.

ClearScreen() Simple Text Output
Protocol

Clears the screen with
the currently set
background color.

Close() EFI File Protocol Closes the current file
handle.

Close() EFI_TCP4_PROTOCOL Disconnecting a TCP
connection gracefully or
reset a TCP connection.
This function is a
nonblocking operation.

EFI_BOOT_SERVICES.Cl
oseEvent()

Boot Services Event, Timer, and
Task Priority
Services

Closes and frees an
event structure.

Function Name Service or Protocol Subservice Function Description
Version 2.5 April, 2015 2437

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.Cl
oseProtocol()

Boot Services Protocol Handler
Services

Removes elements from
the list of agents
consuming a protocol
interface.

ConfigToBlock() EFI_HII_CONFIG_ROU
TING_PROTOCOL

This helper function is to
be called by drivers to
map configuration
strings to configurations
stored in byte array
(“block”) formats such
as UEFI Variables.

Configuration() PCI Root Bridge I/O
Protocol

Gets the current
resource settings for this
PCI root bridge

Configure() EFI_ARP_PROTOCOL Assigns a station
address (protocol type
and network address) to
this instance of the ARP
cache.

Configure() EFI_DHCP4_PROTOC
OL

Initializes, changes, or
resets the operational
settings for the EFI
DHCPv4 Protocol driver.

Configure() EFI_IP4_PROTOCOL. Assigns an IPv4
address and subnet
mask to this EFI IPv4
Protocol driver instance.

Configure() EFI_MANAGED_NETW
ORK_PROTOCOL

Sets or clears the
operational parameters
for the MNP child driver.

Configure() EFI_MTFTP4_PROTOC
OL

Initializes, changes, or
resets the default
operational setting for
this EFI MTFTPv4
Protocol driver instance.

Configure() EFI_TCP4_PROTOCOL Initialize or brutally reset
the operational
parameters for this EFI
TCPv4 instance.

Configure() EFI_UDP4_PROTOCO
L

Initializes, changes, or
resets the operational
parameters for this
instance of the EFI
UDPv4
Protocol.

Function Name Service or Protocol Subservice Function Description
2438 April, 2015 Version 2.5

Connect() EFI_TCP4_PROTOCOL Initiate a nonblocking
TCP connection request
for an active TCP
instance.

EFI_BOOT_SERVICES.Co
nnectController()

Boot Services Protocol Handler
Services

Uses a set of
precedence rules to find
the best set of drivers to
manage a controller.

ControlTransfer() USB2 Host Controller
Protocol

Submits a control
transfer to a target USB
device.

ConvertDeviceNodeToT
ext()

Device Path to Text
Protocol

Converts a device node
to text.

ConvertDevicePathToT
ext()

Device Path to Text
Protocol

Converts a device path
to text.

ConvertPointer() Runtime Services Virtual Memory
Services

Converts internal
pointers when switching
to virtual addressing.

ConvertTextToDeviceN
ode()

Device Path from Text
Protocol

Converts text to a device
node.

ConvertTextToDeviceP
ath()

Device Path from Text
Protocol

Converts text to a device
path.

EFI_BOOT_SERVICES.Co
pyMem()

Boot Services Miscellaneous
Boot Services

Copies the contents of
one buffer to another
buffer.

CopyMem() EFI PCI I/O Protocol Allows one region of PCI
memory space to be
copied to another region
of PCI memory space

CopyMem() PCI Root Bridge I/O
Protocol

Allows one region of PCI
root bridge memory
space to be copied to
another region of PCI
root bridge memory
space.

CreateChild() EFI Service Binding
Protocol

Creates a child handle
and installs a protocol.

CreateDeviceNode() Device Path Utilities
Protocol

Allocates memory for a
device node with the
specified type and sub-
type.

EFI_BOOT_SERVICES.Cr
eateEventEx()

Boot Services Event, Timer, and
Task Priority
Services

Creates a general-
purpose event structure.

Function Name Service or Protocol Subservice Function Description
Version 2.5 April, 2015 2439

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.Cr
eateEventEx()

Boot Services Event, Timer, and
Task Priority
Services

Create an event
structure as part of an
event group.

CreateThunk() EBC Interpreter Protocol Creates a thunk for an
EBC image entry point
or protocol service, and
returns a pointer to the
thunk.

Decompress() Decompress Protocol Decompresses a
compressed source
buffer into an
uncompressed
destination buffer.

Delete() EFI_ARP_PROTOCOL Removes entries from
the ARP cache.

Delete() EFI File Protocol Deletes a file.

DestroyChild() EFI Service Binding
Protocol

Destroys a child handle
with a protocol installed
on it.

Dhcp() PXE Base Code
Protocol

Attempts to complete a
DHCPv4 D.O.R.A.
(discover / offer /
request / acknowledge)
or DHCPv6 S.A.R.R
(solicit / advertise /
request / reply)
sequence.

EFI_BOOT_SERVICES.Di
sconnectController()

Boot Services Protocol Handler
Services

Informs a set of drivers
to stop managing a
controller.

Discover() PXE Base Code
Protocol

Attempts to complete
the PXE Boot Server
and/or boot image
discovery sequence.

DrawImage() EFI_HII_IMAGE_PROT
OCOL

Renders an image to a
bitmap or to the display.

DrawImageId() EFI_HII_IMAGE_PROT
OCOL

Renders an image to a
bitmap or to the display.

DriverLoaded() EFI Platform Driver
Override Protocol

Used to associate a
driver image handle with
a device path returned
on a prior call.

DuplicateDevicePath(
)

Device Path Utilities
Protocol

Duplicates a device path
structure.

Function Name Service or Protocol Subservice Function Description
2440 April, 2015 Version 2.5

EFI_IMAGE_ENTRY_POIN
T

Boot Services Image Services Prototype of an EFI
Image’s entry point.

EnableCursor() Simple Text Output
Protocol

Turns the visibility of the
cursor on/off.

ExecuteScsiCommand() EFI SCSI I/O Protocol Sends a SCSI Request
Packet to the SCSI
Device for execution.

EFI_BOOT_SERVICES.Ex
it()

Boot Services Image Services Exits the image’s entry
point.

EFI_BOOT_SERVICES.Ex
itBootServices()

Boot Services Image Services Terminates boot
services.

ExportConfig() EFI_HII_CONFIG_ROU
TING_PROTOCOL

This function processes
the results of processing
forms and routes it to
the appropriate handlers
or storage.

ExportPackageLists() EFI_HII_DATABASE_P
ROTOCOL

Exports the contents of
one or all package lists
in the HII database into
a buffer.

ExtractConfig() EFI_HII_CONFIG_ACC
ESS_PROTOCOL.

This function processes
the results of processing
forms and routes it to
the appropriate handlers
or storage.

ExtractConfig() EFI_HII_CONFIG_ROU
TING_PROTOCOL

This function processes
the results of processing
forms and routes it to
the appropriate handlers
or storage.

FatToStr() Status Codes Returned Converts an 8.3 FAT file
name in an OEM
character set to a Null-
terminated string.

Fill Header UNDI Commands This command is used
to fill the media
header(s) in transmit
packet(s).

Find() EFI_ARP_PROTOCOL Locates one or more
entries in the ARP
cache.

FindKeyboardLayouts() EFI_HII_DATABASE_P
ROTOCOL

Retrieves a list of the
keyboard layouts in the
system.

Function Name Service or Protocol Subservice Function Description
Version 2.5 April, 2015 2441

Unified Extensible Firmware Interface Specification
Flush() EFI_ARP_PROTOCOL Removes all dynamic
ARP cache entries that
were added by this
interface.

Flush() EFI File Protocol Flushes all modified
data associated with the
file to the device.

Flush() EFI PCI I/O Protocol Flushes all PCI posted
write transactions to
system memory.

Flush() PCI Root Bridge I/O
Protocol

Flushes all PCI posted
write transactions to
system memory.

FlushBlocks() EFI Block I/O Protocol Flushes any cached
blocks.

Free() Boot Integrity Services
Protocol

Frees memory
structures allocated and
returned by other
functions in the

EFI_BIS_PROTOC
OL.

FreeBuffer() EFI PCI I/O Protocol Frees pages that were
allocated with

AllocateBuffer
().

FreeBuffer() PCI Root Bridge I/O
Protocol

Free pages that were
allocated with

AllocateBuffer
().

EFI_BOOT_SERVICES.Fr
eePages()

Boot Services Memory
Allocation
Services

Frees memory pages.

EFI_BOOT_SERVICES.Fr
eePool()

Boot Services Memory
Allocation
Services

Frees allocated pool.

Get() EFI_AUTHENTICATION
_INFO_PROTOCOL

Retrieves the
Authentication
information associated
with a particular
controller handle.

 Get() EFI_ISCSI_INITIATOR_
NAME_PROTOCOL

Retrieves the current set
value of iSCSI Initiator
Name.

Function Name Service or Protocol Subservice Function Description
2442 April, 2015 Version 2.5

Get Config Info UNDI Commands This command is used
to retrieve configuration
information about the
NIC being controlled by
the UNDI.

Get Init Info UNDI Commands This command is used
to retrieve initialization
information that is
needed by drivers and
applications to initialize
UNDI.

Get State UNDI Commands This command is used
to determine the
operational state of the
UNDI.

Get Status UNDI Commands This command returns
the current interrupt
status and/or the
transmitted buffer
addresses.

GetAttributes() PCI Root Bridge I/O
Protocol

Gets the attributes that a
PCI root bridge supports
setting with

SetAttributes(
), and the attributes that

a PCI root bridge is
currently using.

GetBarAttributes() EFI PCI I/O Protocol Gets the attributes that
this PCI controller
supports setting on a
BAR using

SetBarAttribut
es(), and retrieves the

list of resource
descriptors for a BAR.

GetBootObjectAuthori
zationCertificate()

Boot Integrity Services
Protocol

Retrieves the current
digital certificate (if any)
used by the

EFI_BIS_PROTOC
OL as the source of

authorization for
verifying boot objects
and altering
configuration
parameters

Function Name Service or Protocol Subservice Function Description
Version 2.5 April, 2015 2443

Unified Extensible Firmware Interface Specification
GetBootObjectAuthori
zationCheckFlag()

Boot Integrity Services
Protocol

Retrieves the current
setting of the
authorization check flag
that indicates whether or
not authorization checks
are required for boot
objects.

GetBootObjectAuthori
zationUpdateToken()

Boot Integrity Services
Protocol

Retrieves an
uninterpreted token
whose value gets
included and signed in a
subsequent request to
alter the configuration
parameters, to protect
against attempts to
“replay” such a request.

GetCapability() USB2 Host Controller
Protocol

Retrieves the
capabilities of the USB
host controller.

GetControl() Serial I/O Protocol Reads the status of the
control bits on a serial
device.

GetControllerName() EFI Component Name
Protocol

Retrieves a string that is
the user readable name
of the controller that is
being managed by a
UEFI driver.

GetData() EFI_IP4_CONFIG_PRO
TOCOL

Returns the default
configuration data (if
any) for the EFI IPv4
Protocol driver.

GetDevicePathSize() Device Path Utilities
Protocol

Returns the size of the
specified device path, in
bytes.

GetDeviceLocation() EFI SCSI I/O Protocol Retrieves the device
location in the SCSI
channel.

GetDeviceType() EFI SCSI I/O Protocol Retrieves the type of
SCSI device.

GetDriver() EFI Bus Specific Driver
Override Protocol

Uses a bus-specific
algorithm to retrieve a
driver image handle for
a controller.

GetDriver() EFI Platform Driver
Override Protocol

Retrieves the image
handle of the platform
override driver for a
controller in the system.

Function Name Service or Protocol Subservice Function Description
2444 April, 2015 Version 2.5

GetDriverName() EFI Component Name
Protocol

Retrieves a string that is
the user readable name
of the UEFI driver.

GetDriverPath() EFI Platform Driver
Override Protocol

Retrieves the device
path of the platform
override driver for a
controller in the system.

GetEdid(EFI_EDID_OVERRIDE_
PROTOCOL

Returns policy
information and
potentially a
replacement EDID for
the specified video
output device.

GetFontInfo() EFI_HII_FONT_PROTO
COL

Return information
about a particular font.

GetGlyph() EFI_HII_FONT_PROTO
COL

Return information
about a single glyph.

GetHashSize() EFI_HASH_PROTOCO
L

Returns the size of the
hash which results from
a specific algorithm.

GetImage() EFI_HII_IMAGE_PROT
OCOL

Returns information
about an image,
associated with a
package list.

GetInfo() Decompress Protocol Given the compressed
source buffer, this
function retrieves the
size of the
uncompressed
destination buffer and
the size of the scratch
buffer required to
perform the
decompression.

GetInfo() EFI File Protocol Gets the requested file
or volume information.

GetInfo() EFI_MTFTP4_PROTOC
OL

Gets information about a
file from an MTFTPv4
server.

GetKeyboardLayout() EFI_HII_DATABASE_P
ROTOCOL

Retrieves the requested
keyboard layout.

GetLanguages() EFI_HII_STRING_PRO
TOCOL

Returns a list of the
languages present in
strings in a package list.

Function Name Service or Protocol Subservice Function Description
Version 2.5 April, 2015 2445

Unified Extensible Firmware Interface Specification
GetLocation() EFI PCI I/O Protocol Retrieves this PCI
controller’s current PCI
bus number, device
number, and function
number.

GetMaximumProcessorI
ndex()

EFI Debug Support
Protocol

Returns the maximum
processor index value
that may be used with

RegisterPeriod
icCallback() and

RegisterExcept
ionCallback()

EFI_BOOT_SERVICES.Ge
tMemoryMap()

Boot Services Memory
Allocation
Services

Returns the current boot
services memory map
and memory map key.

GetModeData() EFI_DHCP4_PROTOC
OL

Returns the current
operating mode and
cached data packet for
the EFI DHCPv4
Protocol driver.

GetModeData() EFI_IP4_PROTOCOL. Gets the current
operational settings for
this instance of the EFI
IPv4 Protocol driver.

GetModeData() EFI_MANAGED_NETW
ORK_PROTOCOL

Returns the operational
parameters for the
current MNP child
driver. May also support
returning the underlying
SNP driver mode data.

GetModeData() EFI_MTFTP4_PROTOC
OL

Reads the current
operational settings.

GetModeData() EFI_TCP4_PROTOCOL Get the current
operational status.

GetModeData() EFI_UDP4_PROTOCO
L

Reads the current
operational settings.

EFI_NVM_EXPRESS_PASS
_THRU_PROTOCOL.GetNa
mespace()

EFI_NVM_EXPRESS_P
ASS_THRU_PROTOC
OL

Translates a device path
node to a namespace
ID.

GetNextDevicePathIns
tance()

Device Path Utilities
Protocol

Retrieves the next
device path instance
from a device path data
structure.

Function Name Service or Protocol Subservice Function Description
2446 April, 2015 Version 2.5

GetNextHighMonotonic
Count()

Runtime Services Miscellaneous
Runtime Services

Returns the next high 32
bits of a platform's
monotonic counter.

EFI_BOOT_SERVICES.Ge
tNextMonotonicCount(
)

Boot Services Miscellaneous
Boot Services

Returns a monotonically
increasing count for the
platform.

EFI_NVM_EXPRESS_PASS
_THRU_PROTOCOL.GetNe
xtNamespace()

EFI_NVM_EXPRESS_P
ASS_THRU_PROTOC
OL

Retrieves the next
namespace ID for this
NVM Express controller.

GetNextTarget() Extended SCSI Pass
Thru Protocol

Retrieves the list of legal
Target IDs for the SCSI
devices on a SCSI
channel.

GetNextTargetLun() Extended SCSI Pass
Thru Protocol

Retrieves the list of legal
Target IDs and LUNs for
the SCSI devices on a
SCSI channel.

GetNextVariableName(
)

Runtime Services Variable Services Enumerates the current
variable names.

GetPackageListHandle() EFI_HII_DATABASE_P
ROTOCOL

Return the EFI handle
associated with a
package list.

GetPosition() EFI File Protocol Returns the current file
position.

GetRootHubPortStatus
()

USB2 Host Controller
Protocol

Retrieves the status of
the specified root hub
port.

GetSecondaryLanguages() EFI_HII_STRING_PRO
TOCOL

Given a primary
language, returns the
secondary languages
supported in a package
list.

GetSignatureInfo() Boot Integrity Services
Protocol

Retrieves information
about the digital
signature algorithms
supported and the
identity of the installed
authorization certificate,
if any.

GetState() EFI_ABSOLUTE_POIN
TER_PROTOCOL

Retrieves the current
state of a pointer device.

GetState() Simple Pointer Protocol Retrieves the current
state of a pointer device.

Function Name Service or Protocol Subservice Function Description
Version 2.5 April, 2015 2447

Unified Extensible Firmware Interface Specification
GetState() USB2 Host Controller
Protocol

Retrieves the current
state of the USB host
controller.

GetStatus() EFI_SIMPLE_NETWOR
K_PROTOCOL

Reads the current
interrupt status and
recycled transmit buffer
status from the network
interface.

GetString() EFI_HII_STRING_PRO
TOCOL

Returns information
about a string in a
specific language,
associated with a
package list.

GetTargetLun() Extended SCSI Pass
Thru Protocol

Used to translate a
device path node to a
Target ID and LUN.

GetTime() Runtime Services Time Services Returns the current time
and date, and the time-
keeping capabilities of
the platform.

GetVariable() Runtime Services Variable Services Returns the value of the
specific variable.

GetVersion() EBC Interpreter Protocol Gets the version of
the associated EBC
interpreter.

GetWakeupTime() Runtime Services Time Services Returns the current
wakeup alarm clock
setting.

Groups() EFI_IP4_PROTOCOL. Joins and leaves
multicast groups.

Groups() EFI_MANAGED_NETW
ORK_PROTOCOL

Enables and disables
receive filters for
multicast address. This
function may be
unsupported in some
MNP implementations.

Groups() EFI_UDP4_PROTOCO
L

Joins and leaves
multicast groups.

EFI_BOOT_SERVICES.Ha
ndleProtocol()

Boot Services Protocol Handler
Services

Queries the list of
protocol handlers on a
device handle for the
requested Protocol
Interface.

Hash() EFI_HASH_PROTOCO
L

Creates a hash for the
specified message text.

Function Name Service or Protocol Subservice Function Description
2448 April, 2015 Version 2.5

Initialize() Boot Integrity Services
Protocol

Initializes an application
instance of the

EFI_BIS_PROTOC
OL, returning a handle

for the application
instance.

Initialize() EFI_SIMPLE_NETWOR
K_PROTOCOL

Resets the network
adapter and allocates
the transmit and receive
buffers required by the
network interface; also
optionally allows space
for additional transmit
and receive buffers to be
allocated

Initialize UNDI Commands This command resets
the network adapter and
initializes UNDI using
the parameters supplied
in the CPB.

InstallAcpiTable() EFI_ACPI_TABLE_PRO
TOCOL

Installs an ACPI table
into the RSDT/XSDT.

EFI_BOOT_SERVICES.In
stallConfigurationTa
ble()

Boot Services Miscellaneous
Boot Services

Adds, updates, or
removes a configuration
table from the EFI
System Table.

EFI_BOOT_SERVICES.In
stallMultipleProtoco
lInterfaces()

Boot Services Protocol Handler
Services

Installs one or more
protocol interfaces onto
a handle.

EFI_BOOT_SERVICES.In
stallProtocolInterfa
ce()

Boot Services Protocol Handler
Services

Adds a protocol
interface to an existing
or new device handle.

Interrupt Enables UNDI Commands The Interrupt Enables
command can be used
to read and/or change
the current external
interrupt enable settings.

InvalidateInstructio
nCache()

EFI Debug Support
Protocol

Invalidate the instruction
cache of the processor.

Io.Read() EFI PCI I/O Protocol Allows BAR relative
reads to PCI I/O space.

Io.Read() PCI Root Bridge I/O
Protocol

Allows reads from I/O
space.

Io.Write() EFI PCI I/O Protocol Allows BAR relative
writes to PCI I/O space.

Function Name Service or Protocol Subservice Function Description
Version 2.5 April, 2015 2449

Unified Extensible Firmware Interface Specification
Io.Write() PCI Root Bridge I/O
Protocol

Allows writes to I/O
space.

IsDevicePathMultiIns
tance()

Device Path Utilities
Protocol

Returns TRUE if this is a
multi-instance device
path.

IsochronousTransfer(
)

USB2 Host Controller
Protocol

Submits isochronous
transfer to an
isochronous endpoint of
a USB device.

ListPackageLists() EFI_HII_DATABASE_P
ROTOCOL

Determines the handles
that are currently active
in the database.

LoadFile() Load File Protocol Causes the driver to
load the requested file.

EFI_BOOT_SERVICES.Lo
adImage()

Boot Services Image Services Function to dynamically
load another EFI Image.

EFI_BOOT_SERVICES.Lo
cateDevicePath()

Boot Services Protocol Handler
Services

Locates the closest
handle that supports the
specified protocol on the
specified device path.

EFI_BOOT_SERVICES.Lo
cateHandle()

Boot Services Protocol Handler
Services

Locates the handle(s)
that support the
specified protocol.

EFI_BOOT_SERVICES.Lo
cateHandleBuffer()

Boot Services Protocol Handler
Services

Retrieves the list of
handles from the handle
database that meet the
search criteria. The
return buffer is
automatically allocated.

EFI_BOOT_SERVICES.Lo
cateProtocol()

Boot Services Protocol Handler
Services

Finds the first handle in
the handle database the
supports the requested
protocol.

Map() EFI PCI I/O Protocol Provides the PCI
controller specific
address needed to
access system memory
for DMA.

Map() PCI Root Bridge I/O
Protocol

Provides the PCI
controller specific
addresses needed to
access system memory
for DMA.

Function Name Service or Protocol Subservice Function Description
2450 April, 2015 Version 2.5

MCast IP To MAC UNDI Commands Translate a multicast
IPv4 or IPv6 address to
a multicast MAC
address.

McastIpToMac() EFI_MANAGED_NETW
ORK_PROTOCOL

Translates an IP
multicast address to a
hardware (MAC)
multicast address. This
function may be
unsupported in some
MNP implementations.

MCastIPtoMAC() EFI_SIMPLE_NETWOR
K_PROTOCOL

Allows a multicast IP
address to be mapped
to a multicast HW MAC
address.

Mem.Read() EFI PCI I/O Protocol Allows BAR relative
reads to PCI memory
space.

Mem.Read() PCI Root Bridge I/O
Protocol

Allows reads from
memory mapped I/O
space.

Mem.Write() EFI PCI I/O Protocol Allows BAR relative
writes to PCI memory
space.

Mem.Write() PCI Root Bridge I/O
Protocol

Allows writes to memory
mapped I/O space.

MetaiMatch() Status Codes Returned Performs a case
insensitive comparison
between a pattern string
and a string.

Mtftp() PXE Base Code
Protocol

Is used to perform TFTP
and MTFTP services.

No associated function EFI Device Path
Protocol

Can be used on any
device handle to obtain
generic path/location
information concerning
the physical device or
logical device.

No associated function EFI Driver Entry Point The main entry point for
a UEFI driver.

NewImage() EFI_HII_IMAGE_PROT
OCOL

Creates a new image
and add it to images
from a specific package
list.

Function Name Service or Protocol Subservice Function Description
Version 2.5 April, 2015 2451

Unified Extensible Firmware Interface Specification
NewPackageList() EFI_HII_DATABASE_P
ROTOCOL

Adds the packages in
the package list to the
HII database.

NewString() EFI_HII_STRING_PRO
TOCOL

Creates a new string in
a specific language and
add it to strings from a
specific package list.

NVDATA():

EFI_SIMPLE_NETWORK.N
vData()

EFI_SIMPLE_NETWOR
K_PROTOCOL

Allows read and writes
to the NVRAM device
attached to a network
interface.

NvData UNDI Commands This command is used
to read and write (if
supported by NIC
hardware) nonvolatile
storage on the NIC.

Open() EFI File Protocol Opens or creates a new
file.

EFI_BOOT_SERVICES.Op
enProtocol()

Boot Services Protocol Handler
Services

Adds elements to the list
of agents consuming a
protocol interface.

EFI_BOOT_SERVICES.Op
enProtocolInformatio
n()

Boot Services Protocol Handler
Services

Retrieve the list of
agents that are currently
consuming a protocol
interface.

OpenVolume() EFI_SIMPLE_FILE_SY
STEM_PROTOCOL

Opens the volume for
file I/O access.

OutputString():

EFI_SIMPLE_TEXT_OUTP
UT_PROTOCOL.OutputSt
ring()

EFI_SIMPLE_TEXT_O
UTPUT_PROTOCOL

Displays the string on
the device at the current
cursor location.

Parse() EFI_DHCP4_PROTOC
OL

Parses the packed
DHCP option data.

() EFI_MTFTP4_PROTOC
OL

Parses the options in an
MTFTPv4 OACK
packet.

PassThru() Extended SCSI Pass
Thru Protocol

Sends a SCSI Request
Packet to a SCSI device
that is connected to the
SCSI channel.

PassThru() NVM Express Pass Thru
Protocol

Sends an NVM
Express Command
Packet to an NVM
Express controller.

Function Name Service or Protocol Subservice Function Description
2452 April, 2015 Version 2.5

Pci.Read() EFI PCI I/O Protocol Allows PCI controller
relative reads to PCI
configuration space.

Pci.Read() PCI Root Bridge I/O
Protocol

Allows reads from PCI
configuration space.

Pci.Write() EFI PCI I/O Protocol Allows PCI controller
relative writes to PCI
configuration space.

Pci.Write() PCI Root Bridge I/O
Protocol

Allows writes to PCI
configuration space

Poll() EFI Debugport Protocol Determine if there is any
data available to be read
from the debugport
device.

Poll() EFI_IP4_PROTOCOL. Polls for incoming data
packets and processes
outgoing data packets.

Poll() EFI_MANAGED_NETW
ORK_PROTOCOL

Polls for incoming data
packets and processes
outgoing data packets.

Poll() EFI_MTFTP4_PROTOC
OL

Polls for incoming data
packets and processes
outgoing data packets.

Poll() EFI_TCP4_PROTOCOL Poll to receive incoming
data and transmit
outgoing segments.

Poll() EFI_UDP4_PROTOCO
L

Polls for incoming data
packets and processes
outgoing data packets.

PollIo() EFI PCI I/O Protocol Polls an address in PCI
I/O space until an exit
condition is met, or a
timeout occurs.

PollIo() PCI Root Bridge I/O
Protocol

Polls an address in I/O
space until an exit
condition is met, or a
timeout occurs.

PollMem() EFI PCI I/O Protocol Polls an address in PCI
memory space until an
exit condition is met, or
a timeout occurs

PollMem() PCI Root Bridge I/O
Protocol

Polls an address in
memory mapped I/O
space until an exit
condition is met, or a
timeout occurs.

Function Name Service or Protocol Subservice Function Description
Version 2.5 April, 2015 2453

Unified Extensible Firmware Interface Specification
EFI_BOOT_SERVICES.Pr
otocolsPerHandle()

Boot Services Protocol Handler
Services

Retrieves the list of
protocols installed on a
handle. The return
buffer is automatically
allocated.

Query() EFI Platform to Driver
Configuration Protocol

Called by the UEFI

Driver Start()

function to get
configuration
information from the
platform.

QueryCapsuleCapabili
ties()

Runtime Services Returns whether a
capsule can be updated
by calling

UpdateCapsule(
).

QueryMode() Graphics Output
Protocol

Returns information for
an available graphics
mode that the graphics
device and the set of
active video output
devices supports.

QueryMode() Simple Text Output
Protocol

Queries information
about the output
device’s supported text
mode.

QueryVariableInfo() Runtime Services Variable Services Returns information
about variables.

EFI_BOOT_SERVICES.Ra
iseTPL()

Boot Services Event, Timer, and
Task Priority
Services

Raises the task priority
level.

Release() EFI_DHCP4_PROTOC
OL

Releases the current
address configuration.

RenewRebind() EFI_DHCP4_PROTOC
OL

Extends the lease time
by sending a request
packet.

Read() EFI Debugport Protocol Receive a buffer of
characters from the
debugport device.

Read() EFI File Protocol Reads bytes from a file.

Read() Serial I/O Protocol Receives a buffer of
characters from a serial
device.

Function Name Service or Protocol Subservice Function Description
2454 April, 2015 Version 2.5

ReadBlocks() EFI Block I/O Protocol Reads the requested
number of blocks from
the device.

ReadDirectory() EFI_MTFTP4_PROTOC
OL

Downloads a data file
“directory” from an
MTFTPv4 server. May
be unsupported in some
EFI implementations.

ReadFile() EFI_MTFTP4_PROTOC
OL

Downloads a file from an
MTFTPv4 server.

ReadKeyStrokeEx() EFI_SIMPLE_TEXT_IN
PUT_EX_PROTOCOL

Reads the next
keystroke from the input
device.

RegisterKeyNotify() EFI_SIMPLE_TEXT_IN
PUT_EX_PROTOCOL

Register a notification
function for a particular
keystroke for the input
device.

ReadDisk() Disk I/O Protocol Reads data from the
disk.

ReadKeyStroke() Simple Text Input
Protocol

Reads a keystroke from
a simple input device.

Receive() EFI_IP4_PROTOCOL. Places a receiving
request into the
receiving queue.

Receive() EFI_MANAGED_NETW
ORK_PROTOCOL

Places an asynchronous
receiving request into
the receiving queue.

Receive() EFI_SIMPLE_NETWOR
K_PROTOCOL

Receives a packet from
the network interface.

Receive() EFI_TCP4_PROTOCOL Places an asynchronous
receive request into the
receiving queue.

Receive() EFI_UDP4_PROTOCO
L

Places an asynchronous
receive request into the
receiving queue.

Receive UNDI Commands When the network
adapter has received a
frame, this command is
used to copy the frame
into driver/application
storage.

Function Name Service or Protocol Subservice Function Description
Version 2.5 April, 2015 2455

Unified Extensible Firmware Interface Specification
Receive Filters UNDI Commands This command is used
to read and change
receive filters and, if
supported, read and
change the multicast
MAC address filter list.

ReceiveFilters() EFI_SIMPLE_NETWOR
K_PROTOCOL

Enables and disables
the receive filters for the
network interface and, if
supported, manages the
filtered multicast HW
MAC address list.

RegisterICacheFlush(
)

EBC Interpreter Protocol Called to register a
callback function that
the EBC interpreter can
call to flush the
processor instruction
cache after creating
thunks.

RegisterExceptionCal
lback()

EFI Debug Support
Protocol

Registers a callback
function that will be
called each time the
specified processor
exception occurs.

RegisterPackageNotify() EFI_HII_DATABASE_P
ROTOCOL

Registers a notification
function for HII
database-related
events.

RegisterPeriodicCall
back()

EFI Debug Support
Protocol

Registers a callback
function that will be
invoked periodically and
asynchronously to the
execution of EFI.

EFI_BOOT_SERVICES.Re
gisterProtocolNotify
()

Boot Services Protocol Handler
Services

Registers for protocol
interface installation
notifications.

EFI_BOOT_SERVICES.Re
installProtocolInter
face()

Boot Services Protocol Handler
Services

Replaces a protocol
interface.

RemovePackageList() EFI_HII_DATABASE_P
ROTOCOL

Removes a package list
from the HII database.

Request() EFI_ARP_PROTOCOL Starts an ARP request
session.

Reset() EFI_ABSOLUTE_POIN
TER_PROTOCOL

Resets the pointer
device hardware.

Function Name Service or Protocol Subservice Function Description
2456 April, 2015 Version 2.5

Reset() EFI Block I/O Protocol Resets the block device
hardware.

Reset() EFI Debugport Protocol Resets the debugport
hardware.

Reset() Serial I/O Protocol Resets the hardware
device.

Reset() Simple Text Input
Protocol

Resets a simple input
device.

Reset() EFI_SIMPLE_TEXT_IN
PUT_EX_PROTOCOL

Resets the input device
hardware.

Reset() EFI_SIMPLE_NETWOR
K_PROTOCOL

Resets the network
adapter, and reinitializes
it with the parameters
that were provided in the
previous call to

Initialize().

Reset() Simple Pointer Protocol Resets the pointer
device hardware.

Reset() Simple Text Output
Protocol

Resets the ConsoleOut
device.

Reset UNDI Commands This command resets
the network adapter and
reinitializes the UNDI
with the same
parameters provided in

the Initialize

command.

Reset() USB2 Host Controller
Protocol

Software reset of USB.

ResetBus() EFI SCSI I/O Protocol Resets the bus the SCSI
device is attached to.

ResetChannel() Extended SCSI Pass
Thru Protocol

Resets the SCSI
channel.

ResetDevice() EFI SCSI I/O Protocol Resets the SCSI device.

ResetSystem() Runtime Services Miscellaneous
Runtime Services

Resets the entire
platform.

ResetTargetLun() Extended SCSI Pass
Thru Protocol

Resets a SCSI device
that is connected to the
SCSI channel.

Function Name Service or Protocol Subservice Function Description
Version 2.5 April, 2015 2457

Unified Extensible Firmware Interface Specification
Response() EFI Platform to Driver
Configuration Protocol

Called by the UEFI

Driver Start()

function to let the
platform know how UEFI
driver processed the
data return from

Query().

EFI_BOOT_SERVICES.Re
storeTPL()

Boot Services Event, Timer, and
Task Priority
Services

Restores/lowers the task
priority level.

Routes() EFI_IP4_PROTOCOL. Adds and deletes
routing table entries.

Routes() EFI_TCP4_PROTOCOL Add or delete routing
entries

Routes() EFI_UDP4_PROTOCO
L

Adds and deletes
routing table entries.

RouteConfig() EFI_HII_CONFIG_ACC
ESS_PROTOCOL.

This function processes
the results of changes in
configuration for the
driver that published this
protocol.

RouteConfig() EFI_HII_CONFIG_ROU
TING_PROTOCOL

This function processes
the results of processing
forms and routes it to
the appropriate handlers
or storage.

RunDiagnostics() EFI Driver Diagnostics
Protocol

Runs diagnostics on a
controller.

SendForm() EFI_FORM_BROWSER
2_PROTOCOL

Provides direction to the
configuration driver
whether to use the HII
database or a passed-in
set of data. This function
also establishes a
pointer to the calling
driver’s callback
interface.

Set() EFI_AUTHENTICATION
_INFO_PROTOCOL

Set the Authentication
information for a given
controller handle.

Set() EFI_ISCSI_INITIATOR_
NAME_PROTOCOL

Sets the iSCSI Initiator
Name.

SetAttribute() Simple Text Output
Protocol

Sets the foreground and
background color of the
text that is output.

Function Name Service or Protocol Subservice Function Description
2458 April, 2015 Version 2.5

SetAttributes() PCI Root Bridge I/O
Protocol

Sets attributes for a
resource range on a PCI
root bridge.

SetAttributes() Serial I/O Protocol Sets communication
parameters for a serial
device.

SetBarAttributes() EFI PCI I/O Protocol Sets the attributes for a
range of a BAR on a PCI
controller.

SetControl() Serial I/O Protocol Sets the control bits on a
serial device.

SetCursorPosition() Simple Text Output
Protocol

Sets the current cursor
position.

SetImage() EFI_HII_IMAGE_PROT
OCOL

Change information
about the image.

SetInfo() EFI File Protocol Sets the requested file
information.

SetIpFilter() PXE Base Code
Protocol

Updates the IP receive
filters of a network
device and enables
software filtering.

SetKeyboardLayout() EFI_HII_DATABASE_P
ROTOCOL

Sets the currently active
keyboard layout.

EFI_BOOT_SERVICES.Se
tMem()

Boot Services Miscellaneous
Boot Services

Fills a buffer with a
specified value.

SetMode() Simple Text Output
Protocol

Sets the current mode of
the output device.

SetMode() Graphics Output
Protocol

Set the video device into
the specified mode and
clears the output display
to black.

SetPackets() PXE Base Code
Protocol

Updates the contents of
the cached DHCP and
Discover packets.

SetParameters() PXE Base Code
Protocol

Updates the parameters
that affect the operation
of the PXE Base Code
Protocol.

SetPosition() EFI File Protocol Sets the current file
position.

SetRootHubPortFeatur
e()

USB2 Host Controller
Protocol

Sets the feature for the
specified root hub port.

SetState() EFI_SIMPLE_TEXT_IN
PUT_EX_PROTOCOL

Set certain state for the
input device.

Function Name Service or Protocol Subservice Function Description
Version 2.5 April, 2015 2459

Unified Extensible Firmware Interface Specification
SetState() USB2 Host Controller
Protocol

Sets the USB host
controller to a specific
state.

SetStationIp() PXE Base Code
Protocol

Updates the station IP
address and/or subnet
mask values.

SetString() EFI_HII_STRING_PRO
TOCOL

Change information
about the string.

SetTime() Runtime Services Time Services Sets the current local
time and date
information.

EFI_BOOT_SERVICES.Se
tTimer()

Boot Services Event, Timer, and
Task Priority
Services

Sets an event to be
signaled at a particular
time.

SetVariable() Runtime Services Variable Services Sets the value of the
specified variable.

SetVirtualAddressMap
()

Runtime Services Virtual Memory
Services

Used by an OS loader to
convert from physical
addressing to virtual
addressing.

SetWakeupTime() Runtime Services Time Services Sets the system wakeup
alarm clock time.

EFI_BOOT_SERVICES.Se
tWatchdogTimer()

Boot Services Miscellaneous
Boot Services

Resets and sets the
system's watchdog
timer.

Shutdown() Boot Integrity Services
Protocol

Ends the lifetime of an
application instance of
the

EFI_BIS_PROTOC
OL, invalidating its

application instance
handle.

Shutdown() EFI_SIMPLE_NETWOR
K_PROTOCOL

Resets the network
adapter and leaves it in
a state safe for another
driver to initialize.

Shutdown UNDI Commands Resets the network
adapter and leaves it in
a safe state for another
driver to initialize.

EFI_BOOT_SERVICES.Si
gnalEvent()

Boot Services Event, Timer, and
Task Priority
Services

Signals an event.

EFI_BOOT_SERVICES.St
all()

Boot Services Miscellaneous
Boot Services

Stalls the processor.

Function Name Service or Protocol Subservice Function Description
2460 April, 2015 Version 2.5

Start() EFI_DHCP4_PROTOC
OL

Starts the DHCP
configuration process.

Start() EFI Driver Binding
Protocol

Starts a device
controller or a bus
controller.

Start() EFI_IP4_CONFIG_PRO
TOCOL

Starts running the
configuration policy for
the EFI IPv4 Protocol
driver.

Start() PXE Base Code
Protocol

Enables the use of PXE
Base Code Protocol
functions.

Start() EFI_SIMPLE_NETWOR
K_PROTOCOL

Changes the network
interface from the
stopped state to the
started state.

Start UNDI Commands This command is used
to change the UNDI
operational state from
stopped to started.

EFI_BOOT_SERVICES.St
artImage()

Boot Services Image Services Function to transfer
control to the Image’s
entry point.

Station Address UNDI Commands This command is used
to get current station
and broadcast MAC
addresses and, if
supported, to change
the current station MAC
address.

StationAddress() EFI_SIMPLE_NETWOR
K_PROTOCOL

Allows the station
address of the network
interface to be modified.

Statistics() EFI_SIMPLE_NETWOR
K_PROTOCOL

Allows the statistics on
the network interface to
be reset and/or
collected.

Statistics UNDI Commands This command is used
to read and clear the
NIC traffic statistics.

Stop() EFI Driver Binding
Protocol

Stops a device controller
or a bus controller.

Stop() EFI_DHCP4_PROTOC
OL

Stops the DHCP
configuration process.

Function Name Service or Protocol Subservice Function Description
Version 2.5 April, 2015 2461

Unified Extensible Firmware Interface Specification
Stop() EFI_IP4_CONFIG_PRO
TOCOL

Stops running the
configuration policy for
the EFI IPv4 Protocol
driver.

Stop() PXE Base Code
Protocol

Disables the use of PXE
Base Code Protocol
functions.

Stop() EFI_SIMPLE_NETWOR
K_PROTOCOL

Changes the network
interface from the
started state to the
stopped state.

Stop UNDI Commands This command is used
to change the UNDI
operational state from
started to stopped.

StriColl() Status Codes Returned Performs a case-
insensitive comparison
between two strings.

StringIdToImage() EFI_HII_FONT_PROTO
COL

Render a string to a
bitmap or the screen
containing the contents
of the specified string.

StringToImage() EFI_HII_FONT_PROTO
COL

Renders a string to a
bitmap or to the display.

StrLwr() Status Codes Returned Converts all the
characters in a Null-
terminated string to
lower case characters.

StrToFat() Status Codes Returned Converts a Null-
terminated string to legal
characters in a FAT
filename using an OEM
character set.

StrUpr() Status Codes Returned Converts all the
characters in a Null-
terminated string to
upper case characters.

Supported() EFI Driver Binding
Protocol

Tests to see if driver
supports a given
controller, and further
tests to see if driver
supports creating a
handle for a specified
child device.

Function Name Service or Protocol Subservice Function Description
2462 April, 2015 Version 2.5

SyncInterruptTransfe
r()

USB2 Host Controller
Protocol

Submits a synchronous
interrupt transfer to an
interrupt endpoint of a
USB device.

TapeRead() Tape I/O Protocol Reads a block of data
from the tape.

TapeReset() Tape I/O Protocol Resets the tape device
or its parent bus.

TapeRewind() Tape I/O Protocol Rewinds the tape.

TapeSpace() Tape I/O Protocol Positions the tape.

TapeWrite() Tape I/O Protocol Writes a block of data to
the tape.

TapeWriteFM() Tape I/O Protocol Write filemarks to the
tape.

TestString() Simple Text Output
Protocol

Tests to see if the
ConsoleOut device
supports this string.

Transmit() EFI_IP4_PROTOCOL. Places outgoing data
packets into the transmit
queue.

Transmit() EFI_MANAGED_NETW
ORK_PROTOCOL

Places asynchronous
outgoing data packets
into the transmit queue.

Transmit() EFI_UDP4_PROTOCO
L

Queues outgoing data
packets into the transmit
queue.

Transmit() EFI_SIMPLE_NETWOR
K_PROTOCOL

Places a packet in the
transmit queue of the
network interface.

Transmit() EFI_TCP4_PROTOCOL Queues outgoing data
into the transmit queue.

Transmit UNDI Commands The Transmit command
is used to place a packet
into the transmit queue.

TransmitReceive() EFI_DHCP4_PROTOC
OL

Transmits a DHCP
formatted packet and
optionally waits for
responses.

UdpRead() PXE Base Code
Protocol

Reads a UDP packet
from a network
interface.

UdpWrite() PXE Base Code
Protocol

Writes a UDP packet to
a network interface.

Function Name Service or Protocol Subservice Function Description
Version 2.5 April, 2015 2463

Unified Extensible Firmware Interface Specification
UninstallAcpiTable() EFI_ACPI_TABLE_PRO
TOCOL

Removes an ACPI table
from the RSDT/XSDT.

EFI_BOOT_SERVICES.Un
installMultipleProto
colInterfaces()

Boot Services Protocol Handler
Services

Uninstalls one or more
protocol interfaces from
a handle.

EFI_BOOT_SERVICES.Un
installProtocolInter
face()

Boot Services Protocol Handler
Services

Removes a protocol
interface from a device
handle.

Unload() Loaded Image Protocol Requests an image to
unload.

EFI_BOOT_SERVICES.Un
loadImage()

Boot Services Image Services Unloads an image.

UnloadImage() EBC Interpreter Protocol Called when an EBC
image is unloaded to
allow the interpreter to
perform any cleanup
associated with the
image’s execution.

Unmap() EFI PCI I/O Protocol Releases any resources

allocated by Map().

Unmap() PCI Root Bridge I/O
Protocol

Releases any resources

allocated by Map().

UnregisterPackageNotify() EFI_HII_DATABASE_P
ROTOCOL

Removes the specified
HII database package-
related notification.

UpdateBootObjectAuth
orization()

Boot Integrity Services
Protocol

Requests that the
configuration
parameters be altered
by installing or removing
an authorization
certificate or changing
the setting of the check
flag.

UpdateCapsule() Runtime Services Miscellaneous
Runtime Services

Passes capsules to the
firmware with both
virtual and physical
mapping.

UpdatePackageList() EFI_HII_DATABASE_P
ROTOCOL

Update a package list in
the HII database.

UnregisterKeyNotify() EFI_SIMPLE_TEXT_IN
PUT_EX_PROTOCOL

Set certain state for the
input device.

UsbAsyncInterruptTra
nsfer()

USB I/O Protocol Nonblock USB interrupt
transfer.

Function Name Service or Protocol Subservice Function Description
2464 April, 2015 Version 2.5

UsbAsyncIsochronousT
ransfer()

USB I/O Protocol Nonblock USB
isochronous transfer.

UsbBulkTransfer() USB I/O Protocol Accesses the USB
Device through USB
Bulk Transfer Pipe.

UsbControlTransfer() USB I/O Protocol Accesses the USB
Device through USB
Control Transfer Pipe.

UsbGetConfigDescript
or()

USB I/O Protocol Retrieves the activated
configuration descriptor
of a USB device.

UsbGetDeviceDescript
or()

USB I/O Protocol Retrieves the device
descriptor of a USB
device.

UsbGetEndpointDescri
ptor()

USB I/O Protocol Retrieves the endpoint
descriptor of a USB
Controller.

UsbGetInterfaceDescr
iptor()

USB I/O Protocol Retrieves the interface
descriptor of a USB
Controller.

UsbGetStringDescript
or()

USB I/O Protocol Retrieves the string
descriptor inside a USB
Device.

UsbGetSupportedLangu
ages()

USB I/O Protocol Retrieves the array of
languages that the USB
device supports.

UsbIsochronousTransf
er()

USB I/O Protocol Accesses the USB
Device through USB
Isochronous Transfer
Pipe.

UsbPortReset() USB I/O Protocol Resets and reconfigures
the USB controller.

UsbSyncInterruptTran
sfer()

USB I/O Protocol Accesses the USB
Device through USB
Synchronous Interrupt
Transfer Pipe.

VerifyBootObject() Boot Integrity Services
Protocol

Verifies a boot object
according to the
supplied digital
signature and the
current authorization
certificate and check
flag setting.

Function Name Service or Protocol Subservice Function Description
Version 2.5 April, 2015 2465

Unified Extensible Firmware Interface Specification
Table 243. Functions Listed Alphabetically within a Service or Protocol

VerifyObjectWithCred
ential()

Boot Integrity Services
Protocol

Verifies a data object
according to a supplied
digital signature and a
supplied digital
certificate.

EFI_BOOT_SERVICES.Wa
itForEvent()

Boot Services Event, Timer, and
Task Priority
Services

Stops execution until an
event is signaled.

Write() EFI Debugport Protocol Send a buffer of
characters to the
debugport device.

Write() EFI File Protocol Writes bytes to a file.

Write() Serial I/O Protocol Sends a buffer of
characters to a serial
device.

WriteBlocks() EFI Block I/O Protocol Writes the requested
number of blocks to the
device.

WriteDisk() Disk I/O Protocol Writes data to the disk.

WriteFile() EFI_MTFTP4_PROTOC
OL

Sends a data file to an
MTFTPv4 server. May
be unsupported in some
EFI implementations.

Service or Protocol Function Function Description

EFI Block I/O Protocol FlushBlocks() Flushes any cached blocks.

ReadBlocks() Reads the requested number of blocks from the
device.

Reset() Resets the block device hardware.

WriteBlocks() Writes the requested number of blocks to the
device.

Function Name Service or Protocol Subservice Function Description
2466 April, 2015 Version 2.5

EFI_BIS_PROTO
COL

Free():

EFI_BIS_PROTOCOL.
Free()

Frees memory structures allocated and returned by

other functions in the EFI_BIS_PROTOCOL.

GetBootObjectAuthorization

Certificate():

EFI_BIS_PROTOCOL.
GetBootObjectAuth
orizationCertific
ate()

Retrieves the current digital certificate (if any) used

by the EFI_BIS_PROTOCOL as the source of

authorization for verifying boot objects and altering
configuration parameters.

GetBootObjectAuthorization
CheckFlag():

EFI_BIS_PROTOCOL.
GetBootObjectAuth
orizationCheckFla
g()

Retrieves the current setting of the authorization
check flag that indicates whether or not
authorization checks are required for boot objects.

EFI_BIS_PROTOCOL.
GetBootObjectAuth
orizationUpdateTo
ken()

Retrieves an uninterpreted token whose value gets
included and signed in a subsequent request to
alter the configuration parameters, to protect
against attempts to “replay” such a request.

GetSignatureInfo(
)

Retrieves information about the digital signature
algorithms supported and the identity of the
installed authorization certificate, if any.

Initialize() Initializes an application instance of the

EFI_BIS_PROTOCOL, returning a handle for

the application instance.

Shutdown() Ends the lifetime of an application instance of the

EFI_BIS_PROTOCOL, invalidating its

application instance handle.

UpdateBootObjectA
uthorization()

Requests that the configuration parameters be
altered by installing or removing an authorization
certificate or changing the setting of the check flag.

VerifyBootObject(
)

Verifies a boot object according to the supplied
digital signature and the current authorization
certificate and check flag setting.

VerifyObjectWithC
redential()

Verifies a data object according to a supplied digital
signature and a supplied digital certificate.

Service or Protocol Function Function Description
Version 2.5 April, 2015 2467

Unified Extensible Firmware Interface Specification
Boot Services EFI_BOOT_SERVICES
.AllocatePages()

Allocates memory pages of a particular type.

EFI_BOOT_SERVICES
.AllocatePool()

Allocates pool of a particular type.

EFI_BOOT_SERVICES
.CalculateCrc32()

Computes and returns a 32-bit CRC for a data
buffer.

EFI_BOOT_SERVICES
.CheckEvent()

Checks whether an event is in the signaled state.

EFI_BOOT_SERVICES
.CloseEvent()

Closes and frees an event structure.

EFI_BOOT_SERVICES
.CloseProtocol()

Removes elements from the list of agents
consuming a protocol interface.

EFI_BOOT_SERVICES
.ConnectControlle
r()

Uses a set of precedence rules to find the best set
of drivers to manage a controller.

EFI_BOOT_SERVICES
.CopyMem()

Copies the contents of one buffer to another buffer.

EFI_BOOT_SERVICES
.CreateEventEx()

Creates a general-purpose event structure.

Service or Protocol Function Function Description
2468 April, 2015 Version 2.5

Boot Services EFI_BOOT_SERVICES
.CreateEventEx()

Creates an event in a group.

EFI_BOOT_SERVICES
.DisconnectContro
ller()

Informs a set of drivers to stop managing a
controller.

EFI_IMAGE_ENTRY_P
OINT

Prototype of an EFI Image’s entry point.

EFI_BOOT_SERVICES
.Exit()

Exits the image’s entry point.

EFI_BOOT_SERVICES
.ExitBootServices
()

Terminates boot services.

EFI_BOOT_SERVICES
.FreePages()

Frees memory pages.

EFI_BOOT_SERVICES
.FreePool()

Frees allocated pool.

EFI_BOOT_SERVICES
.GetMemoryMap()

Returns the current boot services memory map and
memory map key.

EFI_BOOT_SERVICES
.GetNextMonotonic
Count()

Returns a monotonically increasing count for the
platform.

EFI_BOOT_SERVICES
.HandleProtocol()

Queries the list of protocol handlers on a device
handle for the requested Protocol Interface.

EFI_BOOT_SERVICES
.InstallConfigura
tionTable()

Adds, updates, or removes a configuration table
from the EFI System Table

EFI_BOOT_SERVICES
.InstallMultipleP
rotocolInterfaces
()

Installs one or more protocol interfaces onto a
handle.

EFI_BOOT_SERVICES
.InstallProtocolI
nterface()

Adds a protocol interface to an existing or new
device handle.

EFI_BOOT_SERVICES
.LoadImage()

Function to dynamically load another EFI Image.

EFI_BOOT_SERVICES
.LocateDevicePath
()

Locates the closest handle that supports the
specified protocol on the specified device path.

EFI_BOOT_SERVICES
.LocateHandle()

Locates the handle(s) that support the specified
protocol.

Service or Protocol Function Function Description
Version 2.5 April, 2015 2469

Unified Extensible Firmware Interface Specification
Boot Services EFI_BOOT_SERVICES
.LocateProtocol()

Finds the first handle in the handle database the
supports the requested protocol.

EFI_BOOT_SERVICES
.OpenProtocol()

Adds elements to the list of agents consuming a
protocol interface.

EFI_BOOT_SERVICES
.OpenProtocolInfo
rmation()

Retrieve the list of agents that are currently
consuming a protocol interface.

EFI_BOOT_SERVICES
.ProtocolsPerHand
le()

Retrieves the list of protocols installed on a handle.
The return buffer is automatically allocated.

EFI_BOOT_SERVICES
.RestoreTPL()

Raises the task priority level.

EFI_BOOT_SERVICES
.RegisterProtocol
Notify()

Registers for protocol interface installation
notifications

EFI_BOOT_SERVICES
.ReinstallProtoco
lInterface()

Replaces a protocol interface.

EFI_BOOT_SERVICES
.RestoreTPL()

Restores/lowers the task priority level.

EFI_BOOT_SERVICES
.SetMem()

Fills a buffer with a specified value.

EFI_BOOT_SERVICES
.SetTimer()

Sets an event to be signaled at a particular time.

EFI_BOOT_SERVICES
.SetWatchdogTimer
()

Resets and sets the system's watchdog timer.

EFI_BOOT_SERVICES
.SignalEvent()

Signals an event.

EFI_BOOT_SERVICES
.Stall()

Stalls the processor.

EFI_BOOT_SERVICES
.StartImage()

Function to transfer control to the Image’s entry
point.

EFI_BOOT_SERVICES
.UninstallMultipl
eProtocolInterfac
es()

Uninstalls one or more protocol interfaces from a
handle.

EFI_BOOT_SERVICES
.UninstallProtoco
lInterface()

Removes a protocol interface from a device handle.

Service or Protocol Function Function Description
2470 April, 2015 Version 2.5

EFI_ABSOLUTE_POI
NTER_PROTOCOL

GetState()

Reset()

EFI Debugport
Protocol

Poll() Determine if there is any data available to be read
from the debugport device.

Read() Receive a buffer of characters from the debugport
device.

Reset() Resets the debugport hardware.

Write() Send a buffer of characters to the debugport
device.

EFI Debug Support
Protocol

GetMaximumProcess
orIndex()

Returns the maximum processor index value that
may be used with

RegisterPeriodicCallback() and

RegisterExceptionCallback().

InvalidateInstruc
tionCache()

Invalidate the instruction cache of the processor.

RegisterException
Callback()

Registers a callback function that will be called
each time the specified processor exception occurs.

RegisterPeriodicC
allback()

Registers a callback function that will be invoked
periodically and asynchronously to the execution
of EFI.

Decompress Protocol Decompress() Decompresses a compressed source buffer into an
uncompressed destination buffer.

GetInfo() Given the compressed source buffer, this function
retrieves the size of the uncompressed destination
buffer and the size of the scratch buffer required to
perform the decompression.

Device Path from Text
Protocol

ConvertTextToDevi
ceNode()

Converts text to a device node.

ConvertTextToDevi
cePath()

Converts text to a device path.

Device Path to Text
Protocol

ConvertDeviceNode
ToText()

Converts a device node to text.

ConvertDevicePath
ToText()

Converts a device path to text.

Service or Protocol Function Function Description
Version 2.5 April, 2015 2471

Unified Extensible Firmware Interface Specification
Device Path Utilities
Protocol

AppendDeviceNode(
)

Appends the device node to the specified device
path.

AppendDevicePath(
)

Appends the device path to the specified device
path.

AppendDevicePathI
nstance()

Appends a device path instance to another device
path.

CreateDeviceNode(
)

Allocates memory for a device node with the
specified type and sub-type.

DuplicateDevicePa
th()

Duplicates a device path structure.

GetDevicePathSize
()

Returns the size of the specified device path, in
bytes.

GetNextDevicePath
Instance()

Retrieves the next device path instance from a
device path data structure.

IsDevicePathMulti
Instance()

Returns TRUE if this is a multi-instance device
path.

Disk I/O Protocol ReadDisk() Reads data from the disk.

WriteDisk() Writes data to the disk.

EFI_ABSOLUTE_POI
NTER_PROTOCOL

GetState() Retrieves the current state of a pointer device.

Reset() Retrieves the current state of a pointer device.

EFI_ACPI_TABLE_P
ROTOCOL

InstallAcpiTable() Installs an ACPI table into the RSDT/XSDT.

UninstallAcpiTable() Removes an ACPI table from the RSDT/XSDT.

EFI_ARP_PROTOCO
L

Add() Inserts an entry to the ARP cache.

Cancel() Cancels an ARP request session.

Configure() Assigns a station address (protocol type and
network address) to this instance of the ARP cache.

Delete() Removes entries from the ARP cache.

Find() Locates one or more entries in the ARP cache.

Flush() Removes all dynamic ARP cache entries that were
added by this interface.

Request() Starts an ARP request session.

EFI_AUTHENTICATI
ON_INFO_PROTOC
OL

Get() Retrieves the Authentication information associated
with a particular controller handle.

Set() Set the Authentication information for a given
controller handle.

Service or Protocol Function Function Description
2472 April, 2015 Version 2.5

EFI Bus Specific
Driver Override
Protocol

GetDriver() Uses a bus specific algorithm to retrieve a driver
image handle for a controller.

EBC Interpreter
Protocol

CreateThunk() Creates a thunk for an EBC image entry point or
protocol service, and returns a pointer to the thunk.

RegisterICacheFlu
sh()

Called to register a callback function that the EBC
interpreter can call to flush the processor instruction
cache after creating thunks.

UnloadImage() Called when an EBC image is unloaded to allow the
interpreter to perform any cleanup associated with
the image’s execution.

GetVersion() Gets the version of the associated EBC interpreter.

EFI Component Name
Protocol

GetControllerName
()

Retrieves a string that is the user readable name of
the controller that is being managed by a UEFI
driver.

GetDriverName() Retrieves a string that is the user readable name of
the UEFI driver.

EFI Device Path
Protocol

No associated function Can be used on any device handle to obtain generic
path/location information concerning the physical
device or logical device.

EFI_DHCP4_PROTO
COL

Build() Builds a DHCP packet, given the options to be
appended or deleted or replaced.

Configure() Initializes, changes, or resets the operational
settings for the EFI DHCPv4 Protocol driver.

GetModeData() Returns the current operating mode and cached
data packet for the EFI DHCPv4 Protocol driver.

Parse() Parses the packed DHCP option data.

Release() Releases the current address configuration.

RenewRebind() Extends the lease time by sending a request
packet.

Start() Starts the DHCP configuration process.

Stop() Stops the DHCP configuration process.

TransmitReceive() Transmits a DHCP formatted packet and optionally
waits for responses.

EFI Driver Binding
Protocol

Start() Starts a device controller or a bus controller.

Stop() Stops a device controller or a bus controller.

Supported() Tests to see if driver supports a given controller,
and further tests to see if driver supports creating a
handle for a specified child device.

EFI Driver Diagnostics
Protocol

RunDiagnostics() Runs diagnostics on a controller.

EFI Driver Entry Point No associated function The main entry point for a UEFI Driver.

Service or Protocol Function Function Description
Version 2.5 April, 2015 2473

Unified Extensible Firmware Interface Specification
EFI_EDID_OVERRID
E_PROTOCOL

GetEdid() Returns policy information and potentially a
replacement EDID for the specified video output
device.

EFI File Protocol Close() Closes the current file handle.

Delete() Deletes a file.

Flush() Flushes all modified data associated with the file to
the device.

GetInfo() Gets the requested file or volume information.

GetPosition() Returns the current file position.

Open() Opens or creates a new file.

Read() Reads bytes from a file.

SetInfo() Sets the requested file information.

SetPosition() Sets the current file position.

Write() Writes bytes to a file.

EFI_FORM_BROWS
ER2_PROTOCOL

BrowserCallback() 1 This function is called by a callback handler to
retrieve uncommitted state data from the browser.

SendForm() Provides direction to the configuration driver
whether to use the HII database or a passed-in set
of data. This function also establishes a pointer to
the calling driver’s callback interface.

EFI_HASH_PROTOC
OL

GetHashSize() Returns the size of the hash which results from a
specific algorithm.

Hash() Creates a hash for the specified message text.

EFI_HII_CONFIG_AC
CESS_PROTOCOL.

CallBack() This function is called to provide results data to the
driver.

ExtractConfig() This function processes the results of processing
forms and routes it to the appropriate handlers or
storage.

RouteConfig() This function processes the results of changes in
configuration for the driver that published this
protocol.

EFI_HII_CONFIG_RO
UTING_PROTOCOL

.BlockToConfig() This helper function is to be called by drivers to map
configuration data stored in byte array (“block”)
formats such as UEFI Variables into current
configuration strings.

ConfigToBlock() This helper function is to be called by drivers to map
configuration strings to configurations stored in byte
array (“block”) formats such as UEFI Variables.

ExportConfig() This function processes the results of processing
forms and routes it to the appropriate handlers or
storage.

Service or Protocol Function Function Description
2474 April, 2015 Version 2.5

ExtractConfig() This function processes the results of processing
forms and routes it to the appropriate handlers or
storage.

RouteConfig() This function processes the results of processing
forms and routes it to the appropriate handlers or
storage.

EFI_HII_DATABASE_
PROTOCOL

ExportPackageLists() Exports the contents of one or all package lists in
the HII database into a buffer.

FindKeyboardLayouts() Retrieves a list of the keyboard layouts in the
system.

GetKeyboardLayout() Retrieves the requested keyboard layout.

GetPackageListHandle() Return the EFI handle associated with a package
list.

ListPackageLists() Determines the handles that are currently active in
the database.

NewPackageList() Adds the packages in the package list to the HII
database.

RegisterPackageNotify() Registers a notification function for HII database-
related events.

RemovePackageList() Removes a package list from the HII database.

SetKeyboardLayout() Sets the currently active keyboard layout.

UnregisterPackageNotify() Removes the specified HII database package-
related notification.

UpdatePackageList() Update a package list in the HII database.

EFI_HII_FONT_PRO
TOCOL

GetFontInfo() Return information about a particular font.

GetGlyph() Return information about a single glyph.

StringIdToImage() Render a string to a bitmap or the screen containing
the contents of the specified string.

StringToImage() Renders a string to a bitmap or to the display.

EFI_HII_IMAGE_PRO
TOCOL

DrawImage() Renders an image to a bitmap or to the display.

DrawImageId() Renders an image to a bitmap or to the display.

GetImage() Returns information about an image, associated
with a package list.

NewImage() Creates a new image and add it to images from a
specific package list.

SetImage() Change information about the image.

EFI_HII_STRING_PR
OTOCOL

GetLanguages() Returns a list of the languages present in strings in
a package list.

GetSecondaryLanguages() Given a primary language, returns the secondary
languages supported in a package list.

Service or Protocol Function Function Description
Version 2.5 April, 2015 2475

Unified Extensible Firmware Interface Specification
GetString() Returns information about a string in a specific
language, associated with a package list.

NewString() Creates a new string in a specific language and add
it to strings from a specific package list.

SetString() Change information about the string.

EFI_IP4_CONFIG_P
ROTOCOL

GetData() Returns the default configuration data (if any) for
the EFI IPv4 Protocol driver.

Start() Starts running the configuration policy for the EFI
IPv4 Protocol driver.

Stop() Stops running the configuration policy for the EFI
IPv4 Protocol driver.

EFI_IP4_PROTOCOL Cancel() Abort an asynchronous transmit or receive request.

Configure() Assigns an IPv4 address and subnet mask to this
EFI IPv4 Protocol driver instance.

GetModeData() Gets the current operational settings for this
instance of the EFI IPv4 Protocol driver.

Groups() Joins and leaves multicast groups.

Poll() Polls for incoming data packets and processes
outgoing data packets.

Receive() Places a receiving request into the receiving queue.

Routes() Adds and deletes routing table entries.

Transmit() Places outgoing data packets into the transmit
queue.

EFI_ISCSI_INITIATO
R_NAME_PROTOCO
L

Get() Retrieves the current set value of iSCSI Initiator
Name.

Set() Sets the iSCSI Initiator Name.

EFI_MANAGED_NET
WORK_PROTOCOL

Cancel() Aborts an asynchronous transmit or receive
request.

Configure() Sets or clears the operational parameters for the
MNP child driver.

GetModeData() Returns the operational parameters for the current
MNP child driver. May also support returning the
underlying SNP driver mode data.

Groups() Enables and disables receive filters for multicast
address. This function may be unsupported in some
MNP implementations.

McastIpToMac() Translates an IP multicast address to a hardware
(MAC) multicast address. This function may be
unsupported in some MNP implementations.

Poll() Polls for incoming data packets and processes
outgoing data packets.

Receive() Places an asynchronous receiving request into the
receiving queue.

Service or Protocol Function Function Description
2476 April, 2015 Version 2.5

Transmit() Places asynchronous outgoing data packets into
the transmit queue.

EFI_MTFTP4_PROT
OCOL

Configure() Initializes, changes, or resets the default
operational setting for this EFI MTFTPv4 Protocol
driver instance.

GetInfo() Gets information about a file from an MTFTPv4
server.

GetModeData() Reads the current operational settings.

() Parses the options in an MTFTPv4 OACK packet.

Poll() Polls for incoming data packets and processes
outgoing data packets.

ReadDirectory() Downloads a data file “directory” from an MTFTPv4
server. May be unsupported in some EFI
implementations.

ReadFile() Downloads a file from an MTFTPv4 server.

WriteFile() Sends a data file to an MTFTPv4 server. May be
unsupported in some EFI implementations.

EFI Platform Driver
Override Protocol

DriverLoaded() Used to associate a driver image handle with a
device path returned on a prior call.

GetDriver() Retrieves the image handle of the platform override
driver for a controller in the system.

GetDriverPath() Retrieves the device path of the platform override
driver for a controller in the system.

EFI Platform to Driver
Configuration Protocol

Query() Called by the UEFI Driver Start() function to

get configuration information from the platform.

Response() Called by the UEFI Driver Start() function to let

the platform know how UEFI driver processed the

data return from Query().

EFI SCSI I/O Protocol GetDeviceType() Retrieves the type of SCSI device.

GetDeviceLocation
()

Retrieves the device location in the SCSI channel.

ResetBus() Resets the bus the SCSI device is attached to.

ResetDevice() Resets the SCSI device.

ExecuteScsiComman
d()

Sends a SCSI Request Packet to the SCSI Device
for execution.

EFI Service Binding
Protocol

CreateChild() Creates a child handle and installs a protocol.

DestroyChild() Destroys a child handle with a protocol installed on
it.

Service or Protocol Function Function Description
Version 2.5 April, 2015 2477

Unified Extensible Firmware Interface Specification
EFI PCI I/O Protocol AllocateBuffer() Allocates pages that are suitable for a common
buffer mapping.

Attributes() Performs an operation on the attributes that this
PCI controller supports.

CopyMem() Allows one region of PCI memory space to be
copied to another region of PCI memory space

Flush() Flushes all PCI posted write transactions to system
memory.

FreeBuffer() Frees pages that were allocated with

AllocateBuffer().

GetBarAttributes(
)

Gets the attributes that this PCI controller supports
setting on a BAR using

SetBarAttributes(), and retrieves the list

of resource descriptors for a BAR.

GetLocation() Retrieves this PCI controller’s current PCI bus
number, device number, and function number.

Io.Read() Allows BAR relative reads to PCI I/O space.

Io.Write() Allows BAR relative writes to PCI I/O space.

Map() Provides the PCI controller specific address needed
to access system memory for DMA.

Mem.Read() Allows BAR relative reads to PCI memory space.

Mem.Write() Allows BAR relative writes to PCI memory space.

Pci.Read() Allows PCI controller relative reads to PCI
configuration space.

Pci.Write() Allows PCI controller relative writes to PCI
configuration space.

PollIo() Polls an address in PCI I/O space until an exit
condition is met, or a timeout occurs.

PollMem() Polls an address in PCI memory space until an exit
condition is met, or a timeout occurs

SetBarAttributes(
)

Sets the attributes for a range of a BAR on a PCI
controller.

Unmap() Releases any resources allocated by Map().

EFI_SIMPLE_TEXT_I
NPUT_EX_PROTOC
OL

ReadKeyStrokeEx() Reads the next keystroke from the input device.

RegisterKeyNotify() Register a notification function for a particular
keystroke for the input device.

Reset() Resets the input device hardware.

SetState() Set certain state for the input device.

UnregisterKeyNotify() Set certain state for the input device.

Service or Protocol Function Function Description
2478 April, 2015 Version 2.5

EFI_TCP4_PROTOC
OL

Accept() Listen on the passive instance to accept an
incoming connection request. This is a nonblocking
operation.

Cancel() Abort an asynchronous connection, listen,
transmission or receive request.

Close() Disconnecting a TCP connection gracefully or reset
a TCP connection. This function is a
nonblocking operation.

Configure() Initialize or brutally reset the operational
parameters for this EFI TCPv4 instance.

Connect() Initiate a nonblocking TCP connection request for
an active TCP instance.

GetModeData() Get the current operational status.

Poll() Poll to receive incoming data and transmit outgoing
segments.

Receive() Places an asynchronous receive request into the
receiving queue.

Routes() Add or delete routing entries

Transmit() Queues outgoing data into the transmit queue.

EFI_UDP4_PROTOC
OL

Cancel() Aborts an asynchronous transmit or receive
request.

Configure() Initializes, changes, or resets the operational
parameters for this instance of the EFI UDPv4
Protocol.

GetModeData() Reads the current operational settings.

Groups() Joins and leaves multicast groups.

Poll() Polls for incoming data packets and processes
outgoing data packets.

Receive() Places an asynchronous receive request into the
receiving queue.

Routes() Adds and deletes routing table entries.

Transmit() Queues outgoing data packets into the transmit
queue.

Service or Protocol Function Function Description
Version 2.5 April, 2015 2479

Unified Extensible Firmware Interface Specification
Extended SCSI Pass
Thru Protocol

BuildDevicePath() Allocates and builds a device path node for a SCSI
Device on a SCSI channel.

GetNextTarget() Retrieves the list of legal Target IDs for the SCSI
devices on a SCSI channel.

GetNextTargetLun(
)

Retrieves the list of legal Target IDs and LUNs for
the SCSI devices on a SCSI channel.

GetTargetLun() Translates a device path node to a Target ID and
LUN.

PassThru() Sends a SCSI Request Packet to a SCSI device
that is connected to the SCSI channel.

ResetChannel() Resets the SCSI channel.

ResetTargetLun() Resets a SCSI device that is connected to the SCSI
channel.

EFI_SIMPLE_TEXT_I
NPUT_EX_PROTOC
OL

ReadKeyStrokeEx() Reads the next keystroke from the input device.

RegisterKeyNotify() Register a notification function for a particular
keystroke for the input device.

Reset() Resets the input device hardware.

SetState() Set certain state for the input device.

UnregisterKeyNotify() Set certain state for the input device.

Graphics Output
Protocol

Blt() Blt a rectangle of pixels on the graphics screen. Blt
stands for BLock Transfer.

QueryMode() Returns information for an available graphics mode
that the graphics device and the set of active video
output devices supports.

SetMode() Set the video device into the specified mode and
clears the visible portions of the output display to
black.

Load File Protocol LoadFile() Causes the driver to load the requested file.

Loaded Image
Protocol

Unload() Requests an image to unload.

NVM Express Pass
Thru Protocol

BuildDevicePath() Used to allocate and build a device path node for an
NVM Express controller.

GetNamespace() Translates a device path node to a namespace ID.

GetNextNamespace() Retrieves the next namespace ID for this NVM
Express controller.

PassThru() Sends an NVM Express Command Packet to an
NVM Express controller.

Service or Protocol Function Function Description
2480 April, 2015 Version 2.5

PCI Root Bridge I/O
Protocol

AllocateBuffer() Allocates pages that are suitable for a common
buffer mapping.

Configuration() Gets the current resource settings for this PCI root
bridge

CopyMem() Allows one region of PCI root bridge memory space
to be copied to another region of PCI root bridge
memory space.

Flush() Flushes all PCI posted write transactions to system
memory.

FreeBuffer() Free pages that were allocated with

AllocateBuffer().

GetAttributes() Gets the attributes that a PCI root bridge supports

setting with SetAttributes(), and the

attributes that a PCI root bridge is currently using.

Io.Read() Allows reads from I/O space.

Io.Write() Allows writes to I/O space.

Map() Provides the PCI controller specific addresses
needed to access system memory for DMA.

Mem.Read() Allows reads from memory mapped I/O space.

Mem.Write() Allows writes to memory mapped I/O space.

Pci.Read() Allows reads from PCI configuration space.

Pci.Write() Allows writes to PCI configuration space

PollIo() Polls an address in I/O space until an exit condition
is met, or a timeout occurs.

PollMem() Polls an address in memory mapped I/O space until
an exit condition is met, or a timeout occurs.

SetAttributes() Sets attributes for a resource range on a PCI root
bridge.

Unmap() Releases any resources allocated by Map().

PXE Base Code
Callback Protocol

Callback() Callback routine used by the PXE Base Code

Dhcp(), Discover(), Mtftp(),

UdpWrite(), and Arp() functions.

Service or Protocol Function Function Description
Version 2.5 April, 2015 2481

Unified Extensible Firmware Interface Specification
PXE Base Code
Protocol

Arp() Uses the ARP protocol to resolve a MAC address.

Dhcp() Attempts to complete a DHCPv4 D.O.R.A.
(discover / offer / request / acknowledge) or
DHCPv6 S.A.R.R (solicit / advertise / request /
reply) sequence.

Callback() Callback function that is invoked when the PXE
Base Code Protocol is waiting for an event.

Discover() Attempts to complete the PXE Boot Server and/or
boot image discovery sequence.

Mtftp() Is used to perform TFTP and MTFTP services.

SetIpFilter() Updates the IP receive filters of a network device
and enables software filtering.

SetPackets() Updates the contents of the cached DHCP and
Discover packets.

SetParameters() Updates the parameters that affect the operation of
the PXE Base Code Protocol.

SetStationIp() Updates the station IP address and/or subnet mask
values.

Start() Enables the use of PXE Base Code Protocol
functions.

Stop() Disables the use of PXE Base Code Protocol
functions.

UdpRead() Reads a UDP packet from a network interface.

UdpWrite() Writes a UDP packet to a network interface.

Runtime Services ConvertPointer() Used by EFI components to convert internal
pointers when switching to virtual addressing.

GetNextHighMonoto
nicCount()

Returns the next high 32 bits of a platform's
monotonic counter.

GetNextVariableNa
me()

Enumerates the current variable names.

GetTime() Returns the current time and date, and the time-
keeping capabilities of the platform.

GetVariable() Returns the value of the specific variable.

GetWakeupTime() Returns the current wakeup alarm clock setting.

QueryCapsuleCapab
ilities()

Returns whether a capsule can be updated by

calling UpdateCapsule().

QueryVariableInfo
()

Returns information about variables.

ResetSystem() Resets the entire platform.

SetTime() Sets the current local time and date information.

Service or Protocol Function Function Description
2482 April, 2015 Version 2.5

Runtime Services SetVariable() Sets the value of the specified variable.

SetVirtualAddress
Map()

Used by an OS loader to convert from physical
addressing to virtual addressing.

SetWakeupTime() Sets the system wakeup alarm clock time.

UpdateCapsule() Passes capsules to the firmware with both virtual
and physical mapping.

Serial I/O Protocol GetControl() Reads the status of the control bits on a serial
device.

Read() Receives a buffer of characters from a serial
device.

Reset() Resets the hardware device.

SetAttributes() Sets communication parameters for a serial device.

SetControl() Sets the control bits on a serial device.

Write() Sends a buffer of characters to a serial device.

Simple File System
Protocol

OpenVolume() Opens the volume for file I/O access.

Simple Text Input
Protocol

ReadKeyStroke() Reads a keystroke from a simple input device.

Reset() Resets a simple input device.

EFI_SIMPLE_NETW
ORK_PROTOCOL

GetStatus() Reads the current interrupt status and recycled
transmit buffer status from the network interface.

Initialize() Resets the network adapter and allocates the
transmit and receive buffers required by the
network interface; also optionally allows space for
additional transmit and receive buffers to be
allocated

MCastIPtoMAC() Allows a multicast IP address to be mapped to a
multicast HW MAC address.

NvData() Allows read and writes to the NVRAM device
attached to a network interface.

Receive() Receives a packet from the network interface.

ReceiveFilters() Enables and disables the receive filters for the
network interface and, if supported, manages the
filtered multicast HW MAC address list

Reset() Resets the network adapter, and reinitializes it with
the parameters that were provided in the previous

call to Initialize().

Service or Protocol Function Function Description
Version 2.5 April, 2015 2483

Unified Extensible Firmware Interface Specification
EFI_SIMPLE_NETW
ORK_PROTOCOL

Shutdown() Resets the network adapter and leaves it in a state
safe for another driver to initialize.

Start() Changes the network interface from the stopped
state to the started state.

StationAddress() Allows the station address of the network interface
to be modified.

Statistics() Allows the statistics on the network interface to be
reset and/or collected.

Stop() Changes the network interface from the started
state to the stopped state.

Transmit() Places a packet in the transmit queue of the
network interface.

Simple Pointer
Protocol

GetState() Retrieves the current state of a pointer device.

Reset() Resets the pointer device hardware.

Simple Text Output
Protocol

ClearScreen() Clears the screen with the currently set background
color.

EnableCursor() Turns the visibility of the cursor on/off.

OutputString() Displays the string on the device at the current
cursor location.

QueryMode() Queries information concerning the output device’s
supported text mode.

Reset() Resets the ConsoleOut device.

SetAttribute() Sets the foreground and background color of the
text that is output.

SetCursorPosition
()

Sets the current cursor position.

SetMode() Sets the current mode of the output device.

TestString() Tests to see if the ConsoleOut device supports this
string.

Tape I/O Protocol TapeRead() Reads a block of data from the tape.

TapeReset() Resets the tape device or its parent bus.

TapeRewind() Rewinds the tape.

TapeSpace() Positions the tape.

TapeWrite() Writes a block of data to the tape.

TapeWriteFM() Write filemarks to the tape.

Service or Protocol Function Function Description
2484 April, 2015 Version 2.5

UNDI Commands Fill Header This command is used to fill the media header(s) in
transmit packet(s).

Get Config Info This command is used to retrieve configuration
information about the NIC being controlled by the
UNDI.

Get Init Info This command is used to retrieve initialization
information that is needed by drivers and
applications to initialized UNDI.

Get State This command is used to determine the operational
state of the UNDI.

Get Status This command returns the current interrupt status
and/or the transmitted buffer addresses.

Initialize This command resets the network adapter and
initializes UNDI using the parameters supplied in
the CPB.

Interrupt Enables The Interrupt Enables command can be used to
read and/or change the current external interrupt
enable settings.

MCast IP To MAC Translate a multicast IPv4 or IPv6 address to a
multicast MAC address.

NvData This command is used to read and write (if
supported by NIC H/W) nonvolatile storage on the
NIC.

Receive When the network adapter has received a frame,
this command is used to copy the frame into driver/
application storage.

Receive Filters This command is used to read and change receive
filters and, if supported, read and change the
multicast MAC address filter list.

Reset This command resets the network adapter and
reinitializes the UNDI with the same parameters
provided in the Initialize command.

Shutdown The Shutdown command resets the network
adapter and leaves it in a safe state for another
driver to initialize.

Service or Protocol Function Function Description
Version 2.5 April, 2015 2485

Unified Extensible Firmware Interface Specification
UNDI Commands Start This command is used to change the UNDI
operational state from stopped to started.

Station Address This command is used to get current station and
broadcast MAC addresses and, if supported, to
change the current station MAC address.

Statistics This command is used to read and clear the NIC
traffic statistics.

Stop This command is used to change the UNDI
operational state from started to stopped.

Transmit The Transmit command is used to place a packet
into the transmit queue.

Status Codes
Returned

FatToStr() Converts an 8.3 FAT file name in an OEM character
set to a Null-terminated string.

MetaiMatch() Performs a case insensitive comparison between a
pattern string and a Unicode string.

StriColl() Performs a case-insensitive comparison between
two Unicode strings.

StrLwr() Converts all the Unicode characters in a Null-
terminated string to lower case Unicode characters.

StrToFat() Converts a Null-terminated string to legal
characters in a FAT filename using an OEM
character set.

StrUpr() Converts all the characters in a Null-terminated
Unicode string to upper case Unicode characters.

USB2 Host Controller
Protocol

AsyncInterruptTra
nsfer()

Submits an asynchronous interrupt transfer to an
interrupt endpoint of a USB device.

AsyncIsochronousT
ransfer()

Submits nonblocking USB isochronous transfer.

BulkTransfer() Submits a bulk transfer to a bulk endpoint of a USB
device.

ClearRootHubPortF
eature()

Clears the feature for the specified root hub port.

ControlTransfer() Submits a control transfer to a target USB device.

GetCapability() Retrieves the capabilities of the USB host
controller.

GetRootHubPortSta
tus()

Retrieves the status of the specified root hub port.

GetState() Retrieves the current state of the USB host
controller.

Service or Protocol Function Function Description
2486 April, 2015 Version 2.5

USB2 Host Controller
Protocol

IsochronousTransf
er()

Submits isochronous transfer to an isochronous
endpoint of a USB device.

Reset() Software reset of USB.

SetRootHubPortFea
ture()

Sets the feature for the specified root hub port.

SetState() Sets the USB host controller to a specific state.

SyncInterruptTran
sfer()

Submits a synchronous interrupt transfer to an
interrupt endpoint of a USB device.

USB I/O Protocol UsbAsyncInterrupt
Transfer()

Nonblock USB interrupt transfer.

UsbAsyncIsochrono
usTransfer()

Nonblock USB isochronous transfer.

UsbBulkTransfer() Accesses the USB Device through USB Bulk
Transfer Pipe.

UsbControlTransfe
r()

Accesses the USB Device through USB Control
Transfer Pipe.

UsbGetConfigDescr
iptor()

Retrieves the activated configuration descriptor of a
USB device.

UsbGetDeviceDescr
iptor()

Retrieves the device descriptor of a USB device.

UsbGetEndpointDes
criptor()

Retrieves the endpoint descriptor of a USB
Controller.

UsbGetInterfaceDe
scriptor()

Retrieves the interface descriptor of a USB
Controller.

UsbGetStringDescr
iptor()

Retrieves the string descriptor inside a USB Device.

UsbGetSupportedLa
nguages()

Retrieves the array of languages that the USB
device supports.

UsbIsochronousTra
nsfer()

Accesses the USB Device through USB
Isochronous Transfer Pipe.

UsbPortReset() Resets and reconfigures the USB controller.

UsbSyncInterruptT
ransfer()

Accesses the USB Device through USB
Synchronous Interrupt Transfer Pipe.

Service or Protocol Function Function Description
Version 2.5 April, 2015 2487

Unified Extensible Firmware Interface Specification
2488 April, 2015 Version 2.5

Appendix L
EFI 1.10 Protocol Changes and Deprecation List

L.1 Protocol and GUID Name Changes from EFI 1.10
This appendix lists the Protocol , GUID, and revision identifier name changes and the deprecated
protocols compared to the EFI Specification 1.10. The protocols listed are not Runtime, Reentrant or
MP Safe. Protocols are listed by EFI 1.10 name.

For protocols in the table whose TPL is not <= TPL_NOTIFY:

This function must be called at a TPL level less then or equal to %%%%.

%%%% is TPL_CALLBACK or TPL_APPLICATION. The <= is done via text.

Table 244. Protocol Name changes

EFI 1.10 Protocol Name UEFI Specification Protocol Name

EFI_LOADED_IMAGE EFI_LOADED_IMAGE_PROTOCOL

 TPL <= TPL_NOTIFY

New GUID name EFI_LOADED_IMAGE_PROTOCOL_GUID

EFI_DEVICE_PATH EFI_DEVICE_PATH_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_DEVICE_PATH_PROTOCOL_GUID

SIMPLE_INPUT_INTERFACE EFI_SIMPLE_INPUT_PROTOCOL

TPL <= TPL_APPLICATION

New GUID name EFI_SIMPLE_INPUT_PROTOCOL_GUID

SIMPLE_TEXT_OUTPUT_INTERFACE EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

TPL <=TPL_CALLBACK

New GUID name EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL_GUID

SERIAL_IO_INTERFACE EFI_SERIAL_IO_PROTOCOL

TPL <=TPL_CALLBACK

New GUID name EFI_SERIAL_IO_PROTOCOL_GUID

EFI_LOAD_FILE_INTERFACE EFI_LOAD_FILE_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_LOAD_FILE_PROTOCOL_GUID

EFI_FILE_IO_INTERFACE EFI_SIMPLE_FILE_SYSTEM_PROTOCOL

TPL <=TPL_CALLBACK

New GUID name EFI_FILE_SYSTEM_PROTOCOL_GUID

EFI_FILE EFI_FILE_PROTOCOL

TPL <= TPL_CALLBACK

New GUID name EFI_FILE_PROTOCOL_GUID

EFI_DISK_IO EFI_DISK_IO_PROTOCOL
Version 2.5 April, 2015 2489

Unified Extensible Firmware Interface Specification
Table 245. Revision Identifier Name Changes

TPL <=TPL_CALLBACK

New GUID name EFI_DISK_IO_PROTOCOL_GUID

EFI_BLOCK_IO EFI_BLOCK_IO_PROTOCOL

TPL <=TPL_CALLBACK

New GUID name EFI_BLOCK_IO_PROTOCOL_GUID

UNICODE_COLLATION_INTERFACE EFI_UNICODE_COLLATION_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_UNICODE_COLLATION_PROTOCOL_GUID

EFI_SIMPLE_NETWORK EFI_SIMPLE_NETWORK_PROTOCOL

TPL <=TPL_CALLBACK

New GUID name EFI_SIMPLE_NETWORK_PROTOCOL_GUID

EFI_NETWORK_INTERFACE_IDENTIFIER
_INTERFACE

EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL_
GUID

EFI_PXE_BASE_CODE EFI_PXE_BASE_CODE_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_PXE_BASE_CODE _PROTOCOL_GUID

EFI_PXE_BASE_CODE_CALLBACK EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL_GUID

EFI_DEVICE_IO_INTERFACE EFI_DEVICE_IO_PROTOCOL

TPL <= TPL_NOTIFY

New GUID name EFI_DEVICE_IO_PROTOCOL_GUID

EFI 1.10 Revision Identifier Name UEFI Specification Revision Identifier Name

EFI_LOADED_IMAGE_INFORMATION_REVISIO
N

EFI_LOADED_IMAGE_PROTOCOL_REVISION

SERIAL_IO_INTERFACE_REVISION EFI_SERIAL_IO_PROTOCOL_REVISION

EFI_FILE_IO_INTERFACE_REVISION EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_REVISIO
N

EFI_FILE_REVISION EFI_FILE_PROTOCOL_REVISION

EFI_DISK_IO_INTERFACE_REVISION EFI_DISK_IO_PROTOCOL_REVISION

EFI_BLOCK_IO_INTERFACE_REVISION EFI_BLOCK_IO_PROTOCOL_REVISION

EFI_SIMPLE_NETWORK_INTERFACE_REVISIO
N

EFI_SIMPLE_NETWORK_PROTOCOL_REVISION

EFI_NETWORK_INTERFACE_IDENTIFIER_INTE
RFACE_REVISION

EFI_NETWORK_INTERFACE_IDENTIFIER_PROTO
COL_REVISION

EFI 1.10 Protocol Name UEFI Specification Protocol Name
2490 April, 2015 Version 2.5

L.2 Deprecated Protocols
Device I/O Protocol – The support of the Device I/O Protocol (see EFI 1.1 Chapter 18) has been
replaced by the use of the PCI Root Bridge I/O protocols which are described in Section 13.2 of the
UEFI Specification. Note: certain “legacy” EFI applications such as some of the ones that reside in
the EFI Toolkit assume the presence of Device I/O.

 UGA I/O + UGA Draw Protocol – The support of the UGA * Protocols (see EFI 1.1 Section 10.7)
have been replaced by the use of the EFI Graphics Output Protocol described in Section 11 of the
UEFI Specification.

USB Host Controller Protocol (version that existed for EFI 1.1) – The support of the USB Host
Controller Protocol (see EFI 1.1 Section 14.1) has been replaced by the use of a UEFI instance that
covers both USB 1.1 and USB 2.0 support, and is described in Section 16 of the UEFI Specification.
It replaces the pre-existing protocol definition.

SCSI Passthru Protocol – The support of the SCSI Passthru Protocol (see EFI 1.1 Section 13.1) has
been replaced by the use of the Extended SCSI Passthru Protocol which is described in Chapter
Section 14.7 of the UEFI Specification.

BIS Protocol – Remains as an optional protocol.

Driver Configuration Protocol - the EFI_DRIVER_CONFIGURATION_PROTOCOL has been
removed.

EFI_PXE_BASE_CODE_INTERFACE_REVISION EFI_PXE_BASE_CODE_PROTOCOL_REVISION

EFI_PXE_BASE_CODE_CALLBACK_INTERFACE
_REVISION

EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL
_REVISION

EFI 1.10 Revision Identifier Name UEFI Specification Revision Identifier Name
Version 2.5 April, 2015 2491

Unified Extensible Firmware Interface Specification
2492 April, 2015 Version 2.5

Appendix M
Formats--Language Codes and Language Code

Arrays

This appendix lists the formats for language codes and language code arrays.

M.1 Specifying individual language codes
The preferred representation of a language code is done via an RFC 4646 language code identifier*.

Table 246. Alias codes supported in addition to RFC 4646

An RFC 4646 language code is represented as a null-terminated ASCII string.

An RFC 4646 language string must be constructed according to the tag creation rules in section 2.3
of RFC 4646. For example, when constructing the primary language tag for a locale identifier, if a 2
character ISO 639-1 language code exists along with a 3 character ISO 639-2 language code, then
the ISO 639-1 language code must be used. Further, if an ISO 639-1 tag does not exist, then the ISO
639-2/T (Terminology) tag must be for the primary locale before an ISO 639-2/B (Bibliographic) tag
may be used. See RFC 4646 for a complete discussion of this topic.

To provide backwards compatibility with preexisting EFI 1.10 drivers, a UEFI platforms may
support deprecated protocols which represent languages in the ISO 639-2 format. This includes the
following protocols: UNICODE_COLLATION_INTERFACE,
EFI_DRIVER_CONFIGURATION_PROTOCOL,

EFI_DRIVER_DIAGNOSTICS_PROTOCOL, and EFI_COMPONENT_NAME_PROTOCOL. The
deprecated LangCodes and Lang global variables may also be supported by a platform for
backwards compatibility.

M.1.1 Specifying language code arrays:
Native RFC 4646 format array:

An array of RFC 4646 character codes is represented as a NULL terminated char8 array of RFC
4646 language code strings. Each of these strings is delimited by a semicolon (';') character. For
example, an array of US English and Traditional Chinese would be represented as the NULL-
terminated string "en-us;zh-Hant”.

RFC string Supported Alias String

zh-Hans zh-chs

zh-Hant zh-cht
Version 2.5 April, 2015 2493

Unified Extensible Firmware Interface Specification
2494 April, 2015 Version 2.5

Appendix N
Common Platform Error Record

N.1 Introduction
This appendix describes the common platform error record format for representing platform
hardware errors.

N.2 Format
The general format of the common platform error record is illustrated in Figure 143. The record
consists of a header; followed by one or more section descriptors; and for each descriptor, an
associated section which may contain either error or informational data.

Figure 143. Error Record Format

N.2.1 Record Header
The record header includes information which uniquely identifies a hardware error record on a given
system. The contents of the record header are described in Table 247. The header is immediately
followed by an array of one or more section descriptors. Sections may be either error sections, which
contain error information retrieved from hardware, or they may be informational sections, which
contain contextual information relevant to the error. An error record must contain at least one
section.

Record Header

Section Descriptor

Section Descriptor

Section Descriptor

Section

Section

Section
Version 2.5 April, 2015 2495

Unified Extensible Firmware Interface Specification
Table 247. Error record header

Mnemonic Byte
Offset

Byte
Length

Description

Signature Start 0 4 ASCII 4-character array "CPER" (0x43,0x50,0x45,0x52).
Identifies this structure as a hardware error record.

Revision 4 2 This is a 2-byte field representing a major and minor version
number for the error record definition in BCD format. The
interpretation of the major and minor version number is as
follows:
Byte 0 – Minor (01): An increase in this revision indicates that
changes to the headers and sections are backward compatible with
software that use earlier revisions. Addition of new GUID types,
errata fixes or clarifications are covered by a bump up.
Byte 1 – Major (01): An increase in this revision indicates that
the changes are not backward compatible from a software
perspective.

Signature End 6 4 Must be 0xFFFFFFFF

Section Count 10 2 This field indicates the number of valid sections associated
with the record, corresponding to each of the following
section descriptors.

Error Severity 12 4 Indicates the severity of the error condition. The severity of
the error record corresponds to the most severe error
section.
 0 - Recoverable (also called non-fatal uncorrected)
 1 - Fatal
 2 - Corrected
 3 - Informational
All other values are reserved.
Note that severity of "Informational" indicates that the record
could be safely ignored by error handling software.

Validation Bits 16 4 This field indicates the validity of the following fields:
Bit 0 – If 1, the PlatformID field contains valid information
Bit 1 – If 1, the TimeStamp field contains valid information
Bit2 – If 1, the PartitionID field contains valid information
Bits 3-31: Reserved, must be zero.

Record Length 20 4 Indicates the size of the actual error record, including the
size of the record header, all section descriptors, and section
bodies. The size may include extra buffer space to allow for
the dynamic addition of error sections descriptors and
bodies.
2496 April, 2015 Version 2.5

Timestamp 24 8 The timestamp correlates to the time when the error
information was collected by the system software and may
not necessarily represent the time of the error event. The
timestamp contains the local time in BCD format.
Byte 7 – Byte 0:
Byte 0: Seconds
Byte 1: Minutes
Byte 2: Hours
Byte 3:
Bit 0 – Timestamp is precise if this bit
is set and correlates to the time of the
error event.
Bit 7:1 – Reserved
Byte 4: Day
Byte 5: Month
Byte 6: Year
Byte 7: Century

Platform ID 32 16 This field uniquely identifies the platform with a GUID. The
platform’s SMBIOS UUID should be used to populate this
field. Error analysis software may use this value to uniquely
identify a platform.

Partition ID 48 16 If the platform has multiple software partitions, system
software may associate a GUID with the partition on which
the error occurred.

Creator ID 64 16 This field contains a GUID indicating the creator of the error
record. This value may be overwritten by subsequent owners

of the record.

Mnemonic Byte
Offset

Byte
Length

Description
Version 2.5 April, 2015 2497

Unified Extensible Firmware Interface Specification
Notification Type 80 16 This field holds a pre-assigned GUID value indicating the
record association with an error event notification type. The
defined types are:

CMC
{0x2DCE8BB1, 0xBDD7, 0x450e, {0xB9, 0xAD, 0x9C, 0xF4,
0xEB, 0xD4, 0xF8, 0x90}}

CPE
{0x4E292F96, 0xD843, 0x4a55, {0xA8, 0xC2, 0xD4, 0x81,
0xF2, 0x7E, 0xBE, 0xEE}}

MCE
{0xE8F56FFE, 0x919C, 0x4cc5, {0xBA, 0x88, 0x65, 0xAB,
0xE1, 0x49, 0x13, 0xBB}}

PCIe
{0xCF93C01F, 0x1A16, 0x4dfc, {0xB8, 0xBC, 0x9C, 0x4D,
0xAF, 0x67, 0xC1, 0x04}}

INIT
{0xCC5263E8, 0x9308, 0x454a, {0x89, 0xD0, 0x34, 0x0B,
0xD3, 0x9B, 0xC9, 0x8E}}

NMI
{0x5BAD89FF, 0xB7E6, 0x42c9, {0x81, 0x4A, 0xCF, 0x24,
0x85, 0xD6, 0xE9, 0x8A}}

Boot
{0x3D61A466, 0xAB40, 0x409a, {0xA6, 0x98, 0xF3, 0x62,
0xD4, 0x64, 0xB3, 0x8F}}

DMAr
{0x667DD791, 0xC6B3, 0x4c27, {0x8A, 0x6B, 0x0F,
0x8E,0x72, 0x2D, 0xEB, 0x41}}

Record ID 96 8 This value, when combined with the Creator ID, uniquely
identifies the error record across other error records on a
given system.

Flags 104 4 Flags field contains information that describes the error
record. See Table 2 for defined flags.

Persistence
Information

108 8 This field is produced and consumed by the creator of the
error record identified in the Creator ID field. The format of
this field is defined by the creator and it is out of scope of this
specification.

Reserved 116 12 Reserved. Must be zero.

Mnemonic Byte
Offset

Byte
Length

Description
2498 April, 2015 Version 2.5

Table 248 lists the flags that may be used to qualify an error record in the Error Record Header’s
Flags field.

Table 248. Error Record Header Flags

N.2.1.1 Notification Type

A notification type identifies the mechanism by which an error event is reported to system
software. This information helps consumers of error information (e.g. management
applications or humans) by identifying the source of the error information. This allows, for
instance, all CMC error log entries to be filtered from an error event log.

Listed below are the standard notification types. Each standard notification type is identified by a
GUID. For error notification types that do not conform to one of the standard types, a platform-
specific GUID may be defined to identify the notification type.

• Machine Check Exception (MCE): {0xE8F56FFE, 0x919C, 0x4cc5, {0xBA, 0x88, 0x65, 0xAB,
0xE1, 0x49, 0x13, 0xBB}}
A Machine Check Exception is a processor-generated exception class interrupt used to system
software of the presence of a fatal or recoverable error condition.

• Corrected Machine Check (CMC): {0x2DCE8BB1, 0xBDD7, 0x450e, {0xB9, 0xAD, 0x9C,
0xF4,0xEB, 0xD4, 0xF8, 0x90}}
Corrected Machine Checks identify error conditions that have been corrected by hardware or
system firmware. CMCs are reported by the processor and may be reported via interrupt or by
polling error status registers.

• Corrected Platform Error (CPE): {0x4E292F96, 0xD843, 0x4a55, {0xA8, 0xC2, 0xD4, 0x81,
0xF2, 0x7E, 0xBE, 0xEE}}

Section Descriptor 128 Nx72 An array of SectionCount descriptors for the associated
sections. The number of valid sections is equivalent to the
SectionCount. The buffer size of the record may include
more space to dynamically add additional Section
Descriptors to the error record.

Value Description

1 HW_ERROR_FLAGS_RECOVERED: Qualifies an error condition as one that has been
recovered by system software.

2 HW_ERROR_FLAGS_PREVERR: Qualifies an error condition as one that occurred during a
previous session. For instance, of the OS detects an error and determines that the system must
be reset; it will save the error record before stopping the system. Upon restarting the OS marks
the error record with this flag to know that the error is not live.

4 HW_ERROR_FLAGS_SIMULATED: Qualifies an error condition as one that was intentionally
caused. This allows system software to recognize errors that are injected as a means of validating
or testing error handling mechanisms.

Mnemonic Byte
Offset

Byte
Length

Description
Version 2.5 April, 2015 2499

Unified Extensible Firmware Interface Specification
Corrected Platform Errors identify corrected errors from the platform (i.e., external memory
controller, system bus, etc.). CPEs can be reported via interrupt or by polling error status
registers.

• Non-Maskable Interrupt (NMI): {0x5BAD89FF, 0xB7E6, 0x42c9, {0x81, 0x4A, 0xCF, 0x24,
0x85, 0xD6, 0xE9, 0x8A}}
Non-Maskable Interrupts are used on X64 platforms to report fatal or recoverable platform error
conditions. NMIs are reported via interrupt vector 2 on IA32 and X64 processor architecture
platforms.

• PCI Express Error (PCIe): {0xCF93C01F, 0x1A16, 0x4dfc, {0xB8, 0xBC, 0x9C, 0x4D, 0xAF,
0x67, 0xC1, 0x04}}
See the PCI Express standard v1.1 for details regarding PCI Express Error Reporting. This
notification type identifies errors that were reported to the system via an interrupt on a PCI
Express root port.

• INIT Record (INIT): {0xCC5263E8, 0x9308, 0x454a, {0x89, 0xD0, 0x34, 0x0B, 0xD3, 0x9B,
0xC9, 0x8E}}
IPF Platforms optionally implement a mechanism (switch or button on the chassis) by which an
operator may reset a system and have the system generate an INIT error record. This error record
is documented in the IPF SAL specification. System software retrieves an INIT error record by
querying the SAL for existing INIT records.

• BOOT Error Record (BOOT): {0x3D61A466, 0xAB40, 0x409a, {0xA6, 0x98, 0xF3, 0x62,
0xD4, 0x64, 0xB3, 0x8F}}
The BOOT Notification Type represents error conditions which are unhandled by system
software and which result in a system shutdown/reset. System software retrieves a BOOT error
record during boot by querying the platform for existing BOOT records. As an example,
consider an x64 platform which implements a service processor. In some scenarios, the service
processor may detect that the system is either hung or is in such a state that it cannot safely
proceed without risking data corruption. In such a scenario the service processor may record
some minimal error information in its system event log (SEL) and unilaterally reset the machine
without notifying the OS or other system software. In such scenarios, system software is
unaware of the condition that caused the system reset. A BOOT error record would contain
information that describes the error condition that led to the reset so system software can log the
information and use it for health monitoring.

• DMA Remapping Error (DMAr): {0x667DD791, 0xC6B3, 0x4c27, {0x8A, 0x6B, 0x0F, 0x8E,
0x72, 0x2D, 0xEB, 0x41}}
The DMA Remapping Notification Type identifies fault conditions generated by the DMAr unit
when processing un-translated, translation and translated DMA requests. The fault conditions
are reported to the system using a message signaled interrupt.

N.2.2 Section Descriptor

Table 249. Section Descriptor

Mnemonic Byte
Offset

Byte
Length

Description

Section Offset 0 4 Offset in bytes of the section body from the base of the
record header.

Section Length 4 4 The length in bytes of the section body.
2500 April, 2015 Version 2.5

Revision 8 2 This is a 2-byte field representing a major and minor version
number for the error record definition in BCD format. The
interpretation of the major and minor version number is as
follows:
Byte 0 – Minor (00): An increase in this revision indicates that
changes to the headers and sections are backward compatible with
software that uses earlier revisions. Addition of new GUID types,
errata fixes or clarifications are covered by a bump up.
Byte 1 – Major (01): An increase in this revision indicates that
the changes are not backward compatible from a software
perspective

Validation Bits 10 1 This field indicates the validity of the following fields:
Bit 0 - If 1, the FRUId field contains valid information
Bit 1 - If 1, the FRUString field contains valid information
Bits 7:2 – Reserved, must be zero.

Reserved 11 1 Must be zero.

Flags 12 4 Flag field contains information that describes the error
section as follows:
Bit 0 – Primary: If set, identifies the section as the section to
be associated with the error condition. This allows for FRU
determination and for error recovery operations. By
identifying a primary section, the consumer of an error record
can determine which section to focus on. It is not always
possible to identify a primary section so this flag should be
taken as a hint.
Bit 1 – Containment Warning: If set, the error was not
contained within the processor or memory hierarchy and the
error may have propagated to persistent storage or network.
Bit 2 – Reset: If set, the component has been reset and must
be re-initialized or re-enabled by the operating system prior
to use.
Bit 3 – Error threshold exceeded: If set, OS may choose to
discontinue use of this resource.
Bit 4 – Resource not accessible: If set, the resource could
not be queried for error information due to conflicts with other
system software or resources. Some fields of the section will
be invalid.
Bit 5 – Latent error: If set this flag indicates that action has
been taken to ensure error containment (such a poisoning
data), but the error has not been fully corrected and the data
has not been consumed. System software may choose to
take further corrective action before the data is consumed.
Bit 6 through 31 – Reserved.

Mnemonic Byte
Offset

Byte
Length

Description
Version 2.5 April, 2015 2501

Unified Extensible Firmware Interface Specification
Section Type 16 16 This field holds a pre-assigned GUID value indicating that it
is a section of a particular error. The different error section
types are as defined below:
 Processor Generic
• {0x9876CCAD, 0x47B4, 0x4bdb, {0xB6, 0x5E, 0x16,

0xF1, 0x93, 0xC4, 0xF3, 0xDB}}

 Processor Specific
• IA32/X64:{0xDC3EA0B0, 0xA144, 0x4797, {0xB9, 0x5B,

0x53, 0xFA, 0x24, 0x2B, 0x6E, 0x1D}}

• IPF: {0xe429faf1, 0x3cb7, 0x11d4, {0xb, 0xca, 0x7, 0x00,
0x80, 0xc7, 0x3c, 0x88, 0x81}}1

Platform Memory
• {0xA5BC1114, 0x6F64, 0x4EDE, {0xB8, 0x63, 0x3E,

0x83, 0xED, 0x7C, 0x83, 0xB1}}

PCIe}}
• {0xD995E954, 0xBBC1, 0x430F, {0xAD, 0x91, 0xB4,

0x4D, 0xCB, 0x3C, 0x6F, 0x35}}

Firmware Error Record Reference
• {0x81212A96, 0x09ED, 0x4996, {0x94, 0x71, 0x8D, 0x72,

0x9C, 0x8E, 0x69, 0xED}}

PCI/PCI-X Bus
• {0xC5753963, 0x3B84, 0x4095, {0xBF, 0x78, 0xED,

0xDA, 0xD3, 0xF9, 0xC9, 0xDD}}

PCI Component/Device
• {0xEB5E4685, 0xCA66, 0x4769, {0xB6, 0xA2, 0x26,

0x06, 0x8B, 0x00, 0x13, 0x26}}

DMAr Generic
• {0x5B51FEF7, 0xC79D, 0x4434, {0x8F, 0x1B, 0xAA,

• 0x62, 0xDE, 0x3E, 0x2C, 0x64}}

Intel® VT for Directed I/O specific DMAr section
• {0x71761D37, 0x32B2, 0x45cd, {0xA7, 0xD0, 0xB0,

• 0xFE 0xDD, 0x93, 0xE8, 0xCF}}

IOMMU specific DMAr section
• {0x036F84E1, 0x7F37, 0x428c, {0xA7, 0x9E, 0x57,

• 0x5F, 0xDF, 0xAA, 0x84, 0xEC}}

FRU Id 32 16 GUID representing the FRU ID, if it exists, for the section
reporting the error. The default value is zero indicating an
invalid FRU ID. System software can use this to uniquely
identify a physical device for tracking purposes. Association
of a GUID to a physical device is done by the platform in an
implementation-specific way (i.e., PCIe Device can lock a
GUID to a PCIe Device ID).

Mnemonic Byte
Offset

Byte
Length

Description
2502 April, 2015 Version 2.5

N.2.3 Non-standard Section Body
Information that does not conform to one the standard formats (i.e., those defined in sections 2.4
through 2.9 of this document) may be recorded in the error record in a non-standard section. The
type (e.g. format) of a non-standard section is identified by the GUID populated in the Section
Descriptor’s Section Type field. This allows the information to be decoded by consumers if the
format is externally documented. Examples of information that might be placed in a non-standard
section include the IPF raw SAL error record, Error information recorded in implementation-specific
PCI configuration space, and IPMI error information recorded in an IPMI SEL.

N.2.4 Processor Error Sections
The processor error sections are divided into two different components as described below:

1. Processor Generic Error Section: This section holds information about processor errors in a
generic form and will be common across all processor architectures. An example or error
information provided is the generic information of cache, tlb, etc., errors.

2. Processor Specific Error Section: This section consists of error information, which is specific to
a processor architecture. In addition, certain processor architecture state at the time of error may
also be captured in this section. This section is unique to each processor architecture (Itanium
Processor Family, IA32/X64).

N.2.4.1 Generic Processor Error Section
The Generic Processor Error Section describes processor reported hardware errors for logical
processors in the system.

Section Type: {0x9876CCAD, 0x47B4, 0x4bdb, {0xB6, 0x5E, 0x16, 0xF1, 0x93, 0xC4, 0xF3,
0xDB}}

Section Severity 48 4 This field indicates the severity associated with the error
section.
0 – Recoverable (also called non-fatal uncorrected)
1 – Fatal
2 – Corrected
3 – Informational
All other values are reserved.
Note that severity of "Informational" indicates that the section
contains extra information that can be safely ignored by error
handling software.

FRU Text 52 20 ASCII string identifying the FRU hardware.

1. For an IPF processor-specific error section, the GUID listed is the value from section B.2.3
of the SAL specification. The format of the data for this section is same as the Processor
Device Error Info in the SAL specification.

Mnemonic Byte
Offset

Byte
Length

Description
Version 2.5 April, 2015 2503

Unified Extensible Firmware Interface Specification
Table 250. Processor Generic Error Section

Name Byte
Offset

Byte
Length

Description

Validation Bits 0 8 The validation bit mask indicates whether or not each of the
following fields is valid in this section.
Bit 0 – Processor Type Valid
Bit 1 – Processor ISA Valid
Bit 2 – Processor Error Type Valid
Bit 3 – Operation Valid
Bit 4 – Flags Valid
Bit 5 – Level Valid
Bit 6 – CPU Version Valid
Bit 7 – CPU Brand Info Valid
Bit 8 – CPU Id Valid
Bit 9 – Target Address Valid
Bit 10 – Requester Identifier Valid
Bit 11 – Responder Identifier Valid
Bit 12 – Instruction IP Valid
All other bits are reserved and must be zero.

Processor
Type

8 1 Identifies the type of the processor architecture.
0: IA32/X64
1: IA64
All other values reserved.

Processor ISA 9 1 Identifies the type of the instruction set executing when the error
occurred:
0: IA32
1: IA64
2: X64
All other values are reserved.

Processor
Error Type

10 1 Indicates the type of error that occurred:
0x00: Unknown
0x01: Cache Error
0x02: TLB Error
0x04: Bus Error
0x08: Micro-Architectural Error
All other values reserved.

Operation 11 1 Indicates the type of operation:
0: Unknown or generic
1: Data Read
2: Data Write
3: Instruction Execution
All other values reserved.
2504 April, 2015 Version 2.5

Flags 12 1 Indicates additional information about the error:
Bit 0: Restartable – If 1, program execution can be restarted
reliably after the error.
Bit 1: Precise IP – If 1, the instruction IP captured is directly
associated with the error.
Bit 2: Overflow – If 1, a machine check overflow occurred (a
second error occurred while the results of a previous error were
still in the error reporting resources).
Bit 3: Corrected – If 1, the error was corrected by hardware and/
or firmware.
All other bits are reserved and must be zero.

Level 13 1 Level of the structure where the error occurred, with 0 being the
lowest level of cache.

Reserved 14 2 Must be zero.

CPU Version
Info

16 8 This field represents the CPU Version Information and returns
Family, Model, and stepping information (e.g. As provided by
CPUID instruction with EAX=1 input with output values from EAX
on the IA32/X64 processor or as provided by CPUID Register 3
register – Version Information on IA64 processors).

CPU Brand
String

24 128 This field represents the null-terminated ASCII Processor Brand
String (e.g. As provided by the CPUID instruction with
EAX=0x80000002 and ECX=0x80000003 for IA32/X64
processors or the return from PAL_BRAND_INFO for IA64
processors).

Processor ID 152 8 This value uniquely identifies the logical processor (e.g. As
programmed into the local APIC ID register on IA32/X64
processors or programmed into the LID register on IA64
processors).

Target
Address

160 8 Identifies the target address associated with the error.

Requestor
Identifier

168 8 Identifies the requestor associated with the error.

Responder
Identifier

176 8 Identifies the responder associated with the error.

Instruction IP 184 8 Identifies the instruction pointer when the error occurred.

Name Byte
Offset

Byte
Length

Description
Version 2.5 April, 2015 2505

Unified Extensible Firmware Interface Specification
N.2.4.2 IA32/X64 Processor Error Section
Type:{0xDC3EA0B0, 0xA144, 0x4797, {0xB9, 0x5B, 0x53, 0xFA, 0x24, 0x2B, 0x6E, 0x1D}}

Table 251. Processor Error Record

N.2.4.2.1 IA32/X64 Processor Error Information Structure

As described above, the processor error section contains a collection of structures called Processor
Error Information Structures that contain processor structure specific error information. This section

Mnemonic Byte
Offset

Byte
Length

Description

Validation Bits 0 8 The validation bit mask indicates each of the following field is
valid in this section:

Bit0 – LocalAPIC_ID Valid
Bit1 – CPUID Info Valid
Bits 2-7 – Number of Processor Error Information Structure
(PROC_ERR_INFO_NUM)
Bit 8– 13 Number of Processor Context Information Structure
(PROC_CONTEXT_INFO_NUM)
Bits 14-63 – Reserved

Local APIC_ID 8 8 This is the processor APIC ID programmed into the APIC ID
registers.

CPUID Info 16 48 This field represents the CPU ID structure of 48 bytes and
returns Model, Family, and stepping information as provided
by the CPUID instruction with EAX=1 input and output values
from EAX, EBX, ECX, and EDX null extended to 64-bits.

Processor Error
Info

64 Nx64 This is a variable-length structure consisting of N different 64
byte structures, each representing a single processor error
information structure. The value of N ranges from 0-63 and is
as indicated by PROC_ERR_INFO_NUM.

Processor Context 64+Nx64 NxX This is a variable size field providing the information for the
processor context state such as MC Bank MSRs and general
registers. The value of N ranges from 0-63 and is as indicated
by PROC_CONTEXT_INFO_NUM. Each processor context
information structure is padded with zeros if the size is not a
multiple of 16 bytes.
2506 April, 2015 Version 2.5

details the layout of the Processor Error Information Structure and the detailed check information
which is contained within.

Table 252. IA32/X64 Processor Error Information Structure

IA32/X64 Cache Check Structure

Type:{0xA55701F5, 0xE3EF, 0x43de, {0xAC, 0x72, 0x24, 0x9B, 0x57, 0x3F, 0xAD, 0x2C}}

Table 253. IA32/X64 Cache Check Structure

Mnemonic Byte
Offset

Byte
Length

Description

Error Structure Type 0 16 This field holds a pre-assigned GUID indicating the type of
Processor Error Information structure. The following
Processor Error Information Structure Types have pre-
defined GUID.
Cache Error Information (Cache Check)
TLB Error Information (TLB Check)
Bus Error Information (Bus Check)
Micro-architecture Specific Error Information (MS Check)

Validation Bits 16 8 Bit 0 – Check Info Valid
Bit 1 – Target Address Identifier Valid
Bit 2 – Requestor Identifier Valid
Bit 3 – Responder Identifier Valid
Bit 4 – Instruction Pointer Valid
Bits 5-63 – Reserved

Check Information 24 8 StructureErrorType specific error check structure.

Target Identifier 32 8 Identifies the target associated with the error.

Requestor Identifier 40 8 Identifies the requestor associated with the error.

Responder Identifier 48 8 Identifies the responder associated with the error.

Instruction Pointer 56 8 Identifies the instruction executing when the error occurred.

Field Name Bits Description

ValidationBits 15:0 Indicates which fields in the Cache Check structure are valid:
Bit 0 – Transaction Type Valid
Bit 1 – Operation Valid
Bit 2 – Level Valid
Bit 3 – Processor Context Corrupt Valid
Bit 4 – Uncorrected Valid
Bit 5 – Precise IP Valid
Bit 6 – Restartable Valid
Bit 7– Overflow Valid
Bits 8 – 15 Reserved

TransactionType 17:16 Type of cache error:
0 – Instruction
1 – Data Access
2 – Generic
All other values are reserved
Version 2.5 April, 2015 2507

Unified Extensible Firmware Interface Specification
Operation 21:18 Type of cache operation that caused the error:
0 – generic error (type of error cannot be determined)
1 – generic read (type of instruction or data request cannot be
determined)
2 – generic write (type of instruction or data request cannot be
determined)
3 – data read
4 – data write
5 – instruction fetch
6 – prefetch
7 – eviction
8 – snoop
All other values are reserved.

Level 24:22 Cache Level

Processor Context
Corrupt

25 This field indicates that the processor context might have
been corrupted.
0 - Processor context not corrupted
1 - Processor context corrupted

Uncorrected 26 This field indicates whether the error was corrected or
uncorrected:
0: Corrected
1: Uncorrected

Precise IP 27 This field indicates that the instruction pointer pushed onto the
stack is directly associated with the error

Restartable IP 28 This field indicates that program execution can be restarted
reliably at the instruction pointer pushed onto the stack

Overflow 29 This field indicates an error overflow occurred
0 - Overflow not occurred
1 - Overflow occurred

63:30 Reserved

Field Name Bits Description
2508 April, 2015 Version 2.5

IA32/X64 TLB Check Structure

Type:{0xFC06B535, 0x5E1F, 0x4562, {0x9F, 0x25, 0x0A, 0x3B, 0x9A, 0xDB, 0x63, 0xC3}}

Table 254. IA32/X64 TLB Check Structure

Field Name Bits Description

Validation Bits 15:0 Indicate which fields in the Cache_Check structure are valid
Bit 0 – Transaction Type Valid
Bit 1 – Operation Valid
Bit 2 – Level Valid
Bit 3 – Processor Context Corrupt Valid
Bit 4 – Uncorrected Valid
Bit 5 – Precise IP Valid
Bit 6 – Restartable IP Valid
Bit 7 – Overflow Valid
Bit 8 – 15 Reserved

Transaction Type 17:16 Type of TLB error
0 – Instruction
1 – Data Access
2 – Generic
All other values are reserved

Operation 21:18 Type of TLB access operation that caused the machine
check:
0 – generic error (type of error cannot be determined)
1 – generic read (type of instruction or data request cannot be
determined)
2 – generic write (type of instruction or data request cannot be
determined)
3 – data read
4 – data write
5 – instruction fetch
6 – prefetch
All other values are reserved.

Level 24:22 TLB Level

Processor Context
Corrupt

25 This field indicates that the processor context might have
been corrupted.
0 - Processor context not corrupted
1 - Processor context corrupted

Uncorrected 26 This field indicates whether the error was corrected or
uncorrected:
0: Corrected
1: Uncorrected

PreciseIP 27 This field indicates that the instruction pointer pushed onto the
stack is directly associated with the error.

Restartable IP 28 This field indicates the program execution can be restarted
reliably at the instruction pointer pushed onto the stack.
Version 2.5 April, 2015 2509

Unified Extensible Firmware Interface Specification
IA32/X64 Bus Check Structure

Type:{0x1CF3F8B3, 0xC5B1, 0x49a2, {0xAA, 0x59, 0x5E, 0xEF, 0x92, 0xFF, 0xA6, 0x3C}}

Table 255. IA32/X64 Bus Check Structure

Overflow 29 This field indicates an error overflow occurred
0 - Overflow not occurred
1 - Overflow occurred

63:30 Reserved

Field Name Bits Description

Validation Bits 15:0 Indicate which fields in the Cache_Check structure are valid
Bit 0 – Transaction Type Valid
Bit 1 – Operation Valid
Bit 2 – Level Valid
Bit 3 – Processor Context Corrupt Valid
Bit 4 – Uncorrected Valid
Bit 5 – Precise IP Valid
Bit 6 – Restartable IP Valid
Bit 7 – Overflow Valid
Bit 8 – Participation Type Valid
Bit 9 – Time Out Valid
Bit 10 – Address Space Valid
Bit 11 – 15 Reserved

Transaction Type 17:16 Type of Bus error
0 – Instruction
1 – Data Access
2 – Generic
All other values are reserved

Operation 21:18 Type of bus access operation that caused the machine
check:
0 – generic error (type of error cannot be determined)
1 – generic read (type of instruction or data request cannot
be determined)
2 – generic write (type of instruction or data request cannot
be determined)
3 – data read
4 – data write
5 – instruction fetch
6 – prefetch
All other values are reserved.

Level 24:22 Indicate which level of the bus hierarchy the error occurred
in.

Processor Context
Corrupt

25 This field indicates that the processor context might have
been corrupted.
0 - Processor context not corrupted
1 - Processor context corrupted

Field Name Bits Description
2510 April, 2015 Version 2.5

IA32/X64 MS Check Field Description

Type: {0x48AB7F57, 0xDC34, 0x4f6c, {0xA7, 0xD3, 0xB0, 0xB5, 0xB0, 0xA7, 0x43, 0x14}}

Table 256. IA32/X64 MS Check Field Description

Uncorrected 26 This field indicates whether the error was corrected or
uncorrected:
0: Corrected
1: Uncorrected

PreciseIP 27 This field indicates that the instruction pointer pushed onto
the stack is directly associated with the error.

Restartable IP 28 This field indicates the program execution can be restarted
reliably at the instruction pointer pushed onto the stack.

Overflow 29 This field indicates an error overflow occurred
0 - Overflow not occurred
1 - Overflow occurred

Participation Type 31:30 Type of Participation
0 – Local Processor originated request
1 – Local processor Responded to request
2 – Local processor Observed
3 - Generic

Time Out 32 This field indicates that the request timed out.

Address Space 34:33 0 – Memory Access
1 – Reserved
2 – I/O
3 – Other Transaction

63:35 Reserved

Field Name Bits Description

Validation Bits 15:0 Indicate which fields in the Cache_Check structure are valid
Bit 0 – Error Type Valid
Bit 1 – Processor Context Corrupt Valid
Bit 2 – Uncorrected Valid
Bit 3 – Precise IP Valid
Bit 4 – Restartable IP Valid
Bit 5 – Overflow Valid
Bit 6 – 15 Reserved

Error Type 18:16 Identifies the operation that caused the error:
0 – No Error
1 – Unclassified
2 – Microcode ROM Parity Error
3 – External Error
4 – FRC Error
5 – Internal Unclassified
All other value are processor specific.

Field Name Bits Description
Version 2.5 April, 2015 2511

Unified Extensible Firmware Interface Specification
N.2.4.2.2 IA32/X64 Processor Context Information Structure

As described above, the processor error section contains a collection of structures called Processor
Context Information that contain processor context state specific to the IA32/X64 processor
architecture. This section details the layout of the Processor Context Information Structure and the
detailed processor context type information.

Table 257. IA32/X64 Processor Context Information

Processor
Context Corrupt

19 This field indicates that the processor context might have been
corrupted.
0 - Processor context not corrupted
1 - Processor context corrupted

Uncorrected 20 This field indicates whether the error was corrected or uncorrected:
0: Corrected
1: Uncorrected

Precise IP 21 This field indicates that the instruction pointer pushed onto the stack
is directly associated with the error.

Restartable IP 22 This field indicates the program execution can be restarted reliably
at the instruction pointer pushed onto the stack.

Overflow 23 This field indicates an error overflow occurred
0 - Overflow not occurred
1 - Overflow occurred

63:24 Reserved

Mnemonic Byte
Offset

Byte
Length

Description

Register
Context
Type

0 2 bytes Value indicating the type of processor context state being reported:
0 – Unclassified Data
1 – MSR Registers (Machine Check and other MSRs)
2 – 32-bit Mode Execution Context
3 – 64-bit Mode Execution Context
4 – FXSAVE Context
5 – 32-bit Mode Debug Registers (DR0-DR7)
6 – 64-bit Mode Debug Registers (DR0-DR7)
7 – Memory Mapped Registers
Others - Reserved

Register
Array Size

2 2 bytes Represents the total size of the array for the Data Type being reported
in bytes.

MSR
Address

4 4 bytes This field contains the starting MSR address for the type 1 register
context.

MM
Register
Address

8 8 bytes This field contains the starting memory address for the type 7 register
context.

Field Name Bits Description
2512 April, 2015 Version 2.5

Table 258 shows the register context type 2, 32-bit mode execution context.

Table 258. IA32 Register State

Table 259 shows the register context type 3, 64-bit mode execution context.

Table 259. X64 Register State

Register
Array

16 N bytes This field will provide the contents of the actual registers or raw data.
The number of Registers or size of the raw data reported is determined
by (Array Size / 8) or otherwise specified by the context structure type
definition.

Offset Length Field

0 4 bytes EAX

4 4 bytes EBX

8 4 bytes ECX

12 4 bytes EDX

16 4 bytes ESI

20 4 bytes EDI

24 4 bytes EBP

28 4 bytes ESP

32 2 bytes CS

34 2 bytes DS

36 2 bytes SS

38 2 bytes ES

40 2 bytes FS

42 2 bytes GS

44 4 bytes EFLAGS

48 4 bytes EIP

52 4 bytes CR0

56 4 bytes CR1

60 4 bytes CR2

64 4 bytes CR3

68 4 bytes CR4

72 8 bytes GDTR

80 8 bytes IDTR

88 2 bytes LDTR

90 2 bytes TR

Offset Length Field

0 8 bytes RAX

8 8 bytes RBX
Version 2.5 April, 2015 2513

Unified Extensible Firmware Interface Specification
N.2.4.3 IA64 Processor Error Section
Refer to the Intel Itanium Processor Family System Abstraction Layer specification for finding the
IA64 specific error section body definition.

16 8 bytes RCX

24 8 bytes RDX

32 8 bytes RSI

40 8 bytes RDI

48 8 bytes RBP

56 8 bytes RSP

64 8 bytes R8

72 8 bytes R9

80 8 bytes R10

88 8 bytes R11

96 8 bytes R12

104 8 bytes R13

112 8 bytes R14

120 8 bytes R15

128 2 bytes CS

130 2 bytes DS

132 2 bytes SS

134 2 bytes ES

136 2 bytes FS

138 2 bytes GS

140 4 bytes Reserved

144 8 bytes RFLAGS

152 8 bytes EIP

160 8 bytes CR0

168 8 bytes CR1

176 8 bytes CR2

184 8 bytes CR3

192 8 bytes CR4

200 8 bytes CR8

208 16 bytes GDTR

224 16 bytes IDTR

240 2 bytes LDTR

242 2 bytes TR

Offset Length Field
2514 April, 2015 Version 2.5

N.2.5 Memory Error Section
Type: {0xA5BC1114, 0x6F64, 0x4EDE, {0xB8, 0x63, 0x3E, 0x83, 0xED, 0x7C, 0x83, 0xB1}}

Table 260. Memory Error Record

Mnemonic Byte
Offset

Byte
Length

Description

Validation Bits 0 8 Indicates which fields in the memory error record are valid.
Bit 0 – Error Status Valid
Bit 1 – Physical Address Valid
Bit 2 – Physical Address Mask Valid
Bit 3 – Node Valid
Bit 4 – Card Valid
Bit 5 – Module Valid
Bit 6 – Bank Valid (When Bank is addressed via group/address,
refer to Bit 19 and 20)
Bit 7 – Device Valid
Bit 8 – Row Valid
 1 - the Row field at Offset 42 contains row number (15:0)
 and row number (17:16) are 00b
 0 - the Row field at Offset 42 is not used, or is defined by

 Bit 18 (Extended Row Bit 16 and 17
Valid).

Bit 9 – Column Valid
Bit 10 – Bit Position Valid
Bit 11 – Platform Requestor Id Valid
Bit 12 – Platform Responder Id Valid
Bit 13 – Memory Platform Target Valid
Bit 14 – Memory Error Type Valid
Bit 15 - Rank Number Valid
Bit 16 - Card Handle Valid
Bit 17 - Module Handle Valid
Bit 18 - Extended Row Bit 16 and 17 Valid (refer to Byte Offset 42
 and 73 below)
 1 - the Row field at Offset 42 contains row number (15:0)
 and the Extended field at Offset 73 contains row number
 (17:16)
 0 - the Extended field at Offset 73 and the Row field at
 Offset 42 are not used, or the Rowfield at Offset 42 is
 defined by Bit 8 (Row Valid).
 When this bit is set to 1, Bit 8 (Row Valid) must be set
 to 0.
Bit 19 - Bank Group Valid
Bit 20 - Bank Address Valid
Bit 21 - Chip Identification Valid
Bit 22-63 Reserved

Error Status 8 8 Memory error status information. See section 0 for error status
details.
Version 2.5 April, 2015 2515

Unified Extensible Firmware Interface Specification
Physical
Address

16 8 The physical address at which the memory error occurred.

Physical
Address Mask

24 8 Defines the valid address bits in the Physical Address field. The
mask specifies the granularity of the physical address which is
dependent on the hw/ implementation factors such as interleaving.

Node 32 2 In a multi-node system, this value identifies the node containing the
memory in error.

Card 34 2 The card number of the memory error location.

Module 36 2 The module or rank number of the memory error location. (NODE,
CARD, and MODULE should provide the information necessary to
identify the failing FRU).

Bank 38 2 The bank number of the memory associated with the error.
When Bank is addressed via group/address
Bit 7:0 - Bank Address
Bit 15:8 - Bank Group

Device 40 2 The device number of the memory associated with the error.

Row 42 2 First 16 bits (15:0) of the row number of the memory error location.
This field is valid if either "Row Valid" or "Extended Row Bit 16 and
17" Validation Bits at Offset 0 is set to 1..

Column 44 2 The column number of the memory error location.

Bit Position 46 2 The bit position at which the memory error occurred.

Requestor ID 48 8 Hardware address of the device that initiated the transaction that
took the error.

Responder ID 56 8 Hardware address of the device that responded to the transaction.

Target ID 64 8 Hardware address of the intended target of the transaction.

Memory Error
Type

72 1 Identifies the type of error that occurred:
0 – Unknown
1 – No error
2 – Single-bit ECC
3 – Multi-bit ECC
4 – Single-symbol ChipKill ECC
5 – Multi-symbol ChipKill ECC
6 – Master abort
7 – Target abort
8 – Parity Error
9 – Watchdog timeout
10 – Invalid address
11 – Mirror Broken
12 – Memory Sparing
13 - Scrub corrected error
14 - Scrub uncorrected error
15 - Physical Memory Map-out event
 All other values reserved.

Mnemonic Byte
Offset

Byte
Length

Description
2516 April, 2015 Version 2.5

N.2.6 Memory Error Section 2
Type: { 0x61EC04FC, 0x48E6, 0xD813, { 0x25, 0xC9, 0x8D, 0xAA, 0x44, 0x75, 0x0B, 0x12 } };

Extended 73 1 Bit 0 - Bit 16 of the row number of the memory error location.
• This field is valid if "Extended Row Bit 16 and 17" Validation Bits

at Offset 0 is set to 1.

Bit 1 - Bit 17 of the row number of the memory error location.
• This field is valid if "Extended Row Bit 16 and 17" Validation Bits

at Offset 0 is set to 1.

Bit 4:2 - Reserved
Bit 7:5 - Chip Identification.

Rank Number 74 2 The Rank number of the memory error location.

Card Handle 76 2 If bit 16 in Validation Bits is 1, this field contains the SMBIOS
handle for the Type 16 Memory Array Structure that represents the
memory card.

Module
Handle

78 2 If bit 17 in Validation Bits is 1, this field contains the SMBIOS
handle for the Type 17 Memory Device Structure that represents
the Memory Module.

Mnemonic Byte
Offset

Byte
Length

Description
Version 2.5 April, 2015 2517

Unified Extensible Firmware Interface Specification
Table 261. Memory Error Record 2

Mnemonic Byte
Offset

Byte

Length

Description

Validation
Bits

0 8 Indicates which fields in the memory error record are valid.
Bit 0 – Error Status Valid
Bit 1 – Physical Address Valid
Bit 2 – Physical Address Mask Valid
Bit 3 – Node Valid
Bit 4 – Card Valid
Bit 5 – Module Valid
Bit 6 – Bank Valid
(When Bank is addressed via group/address, refer to Bit 20 and 21)
Bit 7 – Device Valid
Bit 8 – Row Valid
Bit 9 – Column Valid
Bit 10 - Rank Valid
Bit 11 – Bit Position Valid
Bit 12 – Chip Identification Valid
Bit 13 – Memory Error Type Valid
Bit 14 - Status Valid
Bit 15 – Requestor ID Valid
Bit 16 – Responder ID Valid
Bit 17 – Target ID Valid
Bit 18 - Card Handle Valid
Bit 19 - Module Handle Valid
Bit 20 – Bank Group Valid
Bit 21 – Bank Address Valid
Bit 22-63 Reserved

Error Status 8 8 Memory error status information. See section 0 for error status details.

Physical
Address

16 8 The physical address at which the memory error occurred.

Physical
Address
Mask

24 8 Defines the valid address bits in the Physical Address field. The mask
specifies the granularity of the physical address which is dependent on
the hardware implementation factors such as interleaving.

Node 32 2 In a multi-node system, this value identifies the node containing the
memory in error.

Card 34 2 The card number of the memory error location.

Module 36 2 The module number of the memory error location. (NODE, CARD, and
MODULE should provide the information necessary to identify the failing
FRU).

Bank 38 2 The bank number of the memory associated with the error.
When Bank is addressed via group/address (e.g., DDR4)
Bit 7:0 – Bank Address
Bit 15:8 – Bank Group

Device 40 4 The device number of the memory associated with the error.

Row 44 4 The row number of the memory error location.

Column 48 4 The column number of the memory error location.
2518 April, 2015 Version 2.5

N.2.7 PCI Express Error Section
Type: {0xD995E954, 0xBBC1, 0x430F, {0xAD, 0x91, 0xB4, 0x4D, 0xCB, 0x3C, 0x6F, 0x35}}

Rank 52 4 The rank number of the memory error location.

Bit Position 56 4 The bit position at which the memory error occurred.

Chip
Identification

60 1 The Chip Identification. This is an encoded field used to address the die
in 3DS packages.

Memory
Error Type

61 1 Identifies the type of error that occurred:
0 – Unknown
1 – No error
2 – Single-bit ECC
3 – Multi-bit ECC
4 – Single-symbol ChipKill ECC
5 – Multi-symbol ChipKill ECC
6 – Master abort
7 – Target abort
8 – Parity Error
9 – Watchdog timeout
10 – Invalid address
11 – Mirror Broken
12 – Memory Sparing
13 - Scrub corrected error
14 - Scrub uncorrected error
15 - Physical Memory Map-out event All other values reserved.
16 – 255 Reserved

Status 62 1 Bit 0:
If set to 0, the memory error is corrected; if set to 1, the memory error is
uncorrected
Bit 1-7: Reserved values are 0

Reserved 63 1 Reserved values are 0

Requestor ID 64 8 Hardware address of the device that initiated the transaction that took the
error.

Responder
ID

72 8 Hardware address of the device that responded to the transaction.

Target ID 80 8 Hardware address of the intended target of the transaction.

Card Handle 88 4 This field contains the SMBIOS handle for the Type 16 Memory Array
Structure that represents the memory card.

Module
Handle

92 4 This field contains the SMBIOS handle for the Type 17 Memory Device
Structure that represents the Memory Module.

Mnemonic Byte
Offset

Byte

Length

Description
Version 2.5 April, 2015 2519

Unified Extensible Firmware Interface Specification
Table 262. PCI Express Error Record

Mnemonic Byte
Offset

Byte
Length

Description

Validation Bits 0 8 Indicates which of the following fields is valid:
Bit 0 –Port Type Valid
Bit 1 – Version Valid
Bit 2 – Command Status Valid
Bit 3 – Device ID Valid
Bit 4 – Device Serial Number Valid
Bit 5 – Bridge Control Status Valid
Bit 6 – Capability Structure Status Valid
Bit 7 – AER Info Valid
Bit 8-63 – Reserved

Port Type 8 4 PCIe Device/Port Type as defined in the PCI Express
capabilities register:
0: PCI Express End Point
1: Legacy PCI End Point Device
4: Root Port
5: Upstream Switch Port
6: Downstream Switch Port
7: PCI Express to PCI/PCI-X Bridge
8: PCI/PCI-X to PCI Express Bridge
9: Root Complex Integrated Endpoint Device
10: Root Complex Event Collector

Version 12 4 PCIe Spec. version supported by the platform:
Byte 0-1: PCIe Spec. Version Number
Byte0: Minor Version in BCD
Byte1: Major Version in BCD
Byte2-3: Reserved

Command Status 16 4 Byte0-1: PCI Command Register
Byte2-3: PCI Status Register

Reserved 20 4 Must be zero

Device ID 24 16 PCIe Root Port PCI/bridge PCI compatible device number and
bus number information to uniquely identify the root port or
bridge. Default values for both the bus numbers is zero.
Byte 0-1: Vendor ID
Byte 2-3: Device ID
Byte 4-6: Class Code
Byte 7: Function Number
Byte 8: Device Number
Byte 9-10: Segment Number
Byte 11: Root Port/Bridge Primary Bus Number or device bus
number
Byte 12: Root Port/Bridge Secondary Bus Number
Byte 13-14: Bit0:2: Reserved Bit3:15 Slot Number
Byte 15 Reserved

Device Serial
Number

40 8 Byte 0-3: PCIe Device Serial Number Lower DW
Byte 4-7: PCIe Device Serial Number Upper DW
2520 April, 2015 Version 2.5

N.2.8 PCI/PCI-X Bus Error Section
Type: {0xC5753963, 0x3B84, 0x4095, {0xBF, 0x78, 0xED, 0xDA, 0xD3, 0xF9, 0xC9, 0xDD}}

Table 263. PCI/PCI-X Bus Error Section

Bridge Control
Status

48 4 This field is valid for bridges only.
Byte 0-1: Bridge Secondary Status Register
Byte 2-3: Bridge Control Register

Capability Structure 52 60 PCIe Capability Structure.
• The 60-byte structure is used to report device capabilities.

This structure is used to report the 36-byte PCIe 1.1
Capability Structure (See Figure 7-9 of the PCI Express
Base Specification, Rev 1.1) with the last 24 bytes padded.

• This structure is also used to report the 60-byte PCIe 2.0
Capability Structure (See Figure 7-9 of the PCI Express 2.0
Base Specification.)

• The fields in the structure vary with different device types.

• The "Next CAP pointer" field should be considered invalid
and any reserved fields of the structure are reserved for
future use.

Note that PCIe devices without AER
(PCIe_AER_INFO_STRUCT_VALID_BIT=0) may report
status using this structure.

AER Info 112 96 PCIe Advanced Error Reporting Extended Capability
Structure.

Mnemonic Byte
Offset

Byte
Length

Description

Validation
Bits

0 8 Indicates which of the following fields is valid:
Bit 0 –Error Status Valid
Bit 1 – Error Type Valid
Bit 2 – Bus Id Valid
Bit 3 – Bus Address Valid
Bit 4 – Bus Data Valid
Bit 5 – Command Valid
Bit 6 – Requestor Id Valid
Bit 7 – Completer Id Valid
Bit 8 – Target Id Valid
Bit 9-63 Reserved

Error
Status

8 8 PCI Bus Error Status. See section 0 for details.

Mnemonic Byte
Offset

Byte
Length

Description
Version 2.5 April, 2015 2521

Unified Extensible Firmware Interface Specification
N.2.9 PCI/PCI-X Component Error Section
Type: {0xEB5E4685, 0xCA66, 0x4769, {0xB6, 0xA2, 0x26, 0x06, 0x8B, 0x00, 0x13, 0x26}}

Table 264. PCI/PCI-X Component Error Section

Error Type 16 2 PCI Bus error Type
Byte 0:
0 – Unknown or OEM system specific error
1 – Data Parity Error
2 – System Error
3 – Master Abort
4 – Bus Timeout or No Device Present (No DEVSEL#)
5 – Master Data Parity Error
6 – Address Parity Error
7 – Command Parity Error
Others – Reserved
Byte 1:
Reserved

Bus Id 18 2 Bits 0:7 – Bus Number
Bits 8:15 – Segment Number

Reserved 20 4

Bus
Address

24 8 Memory or I/O address on the bus at the time of the error.

Bus Data 32 8 Data on the PCI bus at the time of the error.

Bus
Command

40 8 Bus command or operation at the time of the error.
Byte 7: Bits 7-1: Reserved (should be zero)
Byte 7: Bit 0: If 0, then the command is a PCI command. If 1, the
command is a PCI-X command.

Bus
Requestor
Id

48 8 PCI Bus Requestor Id.

Bus
Completer
Id

56 8 PCI Bus Responder Id.

Target Id 64 8 PCI Bus intended target identifier.

Mnemonic Byte
Offset

Byte
Length

Description

Validation Bits 0 8 Indicate which fields are valid:
Bit 0 – Error Status Valid
Bit 1 – Id Info Valid
Bit 2 – Memory Number Valid
Bit 3 – IO Number Valid
Bit 4 – Register Data Pair Valid
Bit 5-63 Reserved

Mnemonic Byte
Offset

Byte
Length

Description
2522 April, 2015 Version 2.5

N.2.10 Firmware Error Record Reference
Type: {0x81212A96, 0x09ED, 0x4996, {0x94, 0x71, 0x8D, 0x72, 0x9C, 0x8E, 0x69, 0xED}}

Table 265. Firmware Error Record Reference

N.2.11 DMAr Error Sections
The DMAr error sections are divided into two different components as described below:

DMAr Generic Error Section:

This section holds information about DMAr errors in a generic form and will be
common across all DMAr unit architectures.

Error Status 8 8 PCI Component Error Status. See section 0 for details.

Id Info 16 16 Identification Information:
Bytes 0-1: Vendor Id
Bytes 1-2: Device Id
Bytes 4-6: Class Code
Byte 7: Function Number
Byte 8: Device Number
Byte 9: Bus Number
Byte 10: Segment Number
Bytes 11-15: Reserved

Memory Number 32 4 Number of PCI Component Memory Mapped register address/
data pair values present in this structure.

IO Number 36 4 Number of PCI Component Programmed IO register address/
data pair values present in this structure.

Register Data
Pairs

40 2x8xN An array of address/data pair values. The address and data
information may be from 2 to 8 bytes of actual data represented
in the 8 byte array locations.

Mnemonic Byte
Offset

Byte
Length

Description

Firmware Error
Record Type

0 1 Identifies the type of firmware error record that is referenced by
this section:
0: IPF SAL Error Record
All other values reserved

Reserved 1 7 Must be zero.

Record Identifier 8 8 This value uniquely identifies the firmware error record
referenced by this section. This value may be used to retrieve
the referenced firmware error record using means appropriate
for the error record type.

Mnemonic Byte
Offset

Byte
Length

Description
Version 2.5 April, 2015 2523

Unified Extensible Firmware Interface Specification
Architecture specific DMAr Error Section:

This section consists of DMA remapping errors specific to the architecture. In
addition, certain state information of the DMAr unit is captured at the time of error.
This section is unique for each DMAr architecture (VT-d, IOMMU).

N.2.11.1 DMAr Generic Error Section
Type: {0x5B51FEF7, 0xC79D, 0x4434, {0x8F, 0x1B, 0xAA, 0x62, 0xDE, 0x3E, 0x2C, 0x64}}

Table 266. DMAr Generic Errors

Mnemonic Byte
Offset

Byte
Length

Description

Requester-ID 0 2 Device ID associated with a fault condition

Segment
Number

2 2 PCI segment associated with a device

Fault Reason 4 1 1h: Domain mapping table entry is not present
2h: Invalid domain mapping table entry
3h: DMAr unit’s attempt to access the domain mapping table
resulted in an error
4h: Reserved bit set to non-zero value in the domain
mapping table
5h: DMA request to access an address beyond the device
address width
6h: Invalid read or write access
7h: Invalid device request
8h: DMAr unit’s attempt to access the address translation
table resulted in an error
9h: Reserved bit set to non-zero value in the address
translation table
Ah: Illegal command error
Bh: DMAr unit’s attempt to access the command buffer
resulted in an error
Other values are reserved

Access Type 5 1 0h: DMA Write
1h: DMA Read
Other values are reserved

Address Type 6 1 0h: Untranslated request
1h: Translation request
Other values are reserved

Architecture
Type

7 1 1h: VT-d architecture
2h: IOMMU architecture
Other values are reserved

Device
Address

8 8 This field contains the 64-bit device virtual address in the
faulted DMA request.

Reserved 16 16 Must be 0
2524 April, 2015 Version 2.5

N.2.11.2 Intel® VT for Directed I/O specific DMAr Error Section
Type: {0x71761D37, 0x32B2, 0x45cd, {0xA7, 0xD0, 0xB0, 0xFE 0xDD, 0x93, 0xE8, 0xCF}}

All fields in this error section are specific to Intel’s VT-d architecture. This error section has a fixed
size.

Table 267. Intel® VT for Directed I/O specific DMAr Errors

N.2.11.3 IOMMU specific DMAr Error Section
Type: {0x036F84E1, 0x7F37, 0x428c, {0xA7, 0x9E, 0x57, 0x5F, 0xDF, 0xAA, 0x84, 0xEC}}

All fields in this error record are specific to AMD’s IOMMU specification. This error section has a
fixed size.

Mnemonic Byte
Offset

Byte
Length

Description

Version 0 1 Value of version register as defined in VT-d architecture

Revision 1 1 Value of revision field in VT-d specific DMA remapping
reporting structure

OemId 2 6 Value of OEM ID field in VT-d specific DMA remapping
reporting structure

Capability 8 8 Value of capability register in VT-d architecture

Extended
Capability

16 8 Value of extended capability register in VT-d architecture

Global
Command

24 4 Value of Global Command register in VT-d architecture
programmed by the operating system

Global Status 28 4 Value of Global Status register in VT-d architecture

Fault Status 32 4 Value of Fault Status register in VT-d architecture

Reserved 36 12 Must be 0

Fault record 48 16 Fault record as defined in the VT-d specification

Root Entry 64 16 Value from the root entry table for the given requester-ID

Context Entry 80 16 Value from the context entry table for the given requester-ID.

Level 6 Page
Table Entry

96 8 PTE entry for device virtual address in page level 6

Level 5 Page
Table Entry

104 8 PTE entry for device virtual address in page level 5

Level 4 Page
Table Entry

112 8 PTE entry for device virtual address in page level 4

Level 3 Page
Table Entry

120 8 PTE entry for device virtual address in page level 3

Level 2 Page
Table Entry

128 8 PTE entry for device virtual address in page level 2.

Level 1 Page
Table Entry

136 8 PTE entry for device virtual address in page level 1
Version 2.5 April, 2015 2525

Unified Extensible Firmware Interface Specification
Table 268. IOMMU specific DMAr Errors

N.2.12 Error Status
The error status definition provides the capability to abstract information from implementation-
specific error registers into generic error codes.

Table 269. Error Status Fields

Mnemonic Byte
Offset

Byte
Length

Description

Revision 0 1 Specifies the IOMMU specification revision

Reserved 1 7 Must be 0

Control 8 8 IOMMU control register

Status 16 8 IOMMU status register

Reserved 24 8 Must be 0

Event Log
Entry

32 16 IOMMU fault related event log entry as defined in the
IOMMU specification

Reserved 48 16 Must be 0

Device Table
Entry

64 32 Value from the device table for a given Requester ID

Level 6 Page
Table Entry

96 8 PTE entry for device virtual address in page level 6

Level 5 Page
Table Entry

104 8 PTE entry for device virtual address in page level 5

Level 4 Page
Table Entry

112 8 PTE entry for device virtual address in page level 4

Level 3 Page
Table Entry

120 8 PTE entry for device virtual address in page level 3

Level 2 Page
Table Entry

128 8 PTE entry for device virtual address in page level 2

Level 1 Page
Table Entry

136 8 PTE entry for device virtual address in page level 1

Bit Position Description

7:0 Reserved

15:8 Encoded value for the Error_Type. See Table 20 Error Types for details.

16 Address: Error was detected on the address signals or on the address portion of the
transaction.

17 Control: Error was detected on the control signals or in the control portion of the
transaction.

18 Data: Error was detected on the data signals or in the data portion of the transaction.

19 Responder: Error was detected by the responder of the transaction.

20 Requester: Error was detected by the requester of the transaction.
2526 April, 2015 Version 2.5

Table 270. Error Types

21 First Error: If multiple errors are logged for a section type, this is the first error in the
chronological sequence. Setting of this bit is optional.

22 Overflow: Additional errors occurred and were not logged due to lack of logging resources.

63:23 Reserved.

Encoding Description

1 ERR_INTERNAL Error detected internal to the component.

16 ERR_BUS Error detected in the bus.

Detailed Internal Errors

4 ERR_MEM Storage error in memory (DRAM).

5 ERR_TLB Storage error in TLB.

6 ERR_CACHE Storage error in cache.

7 ERR_FUNCTION Error in one or more functional units.

8 ERR_SELFTEST component failed self test.

9 ERR_FLOW Overflow or undervalue of internal queue.

Detailed Bus Errors

17 ERR_MAP Virtual address not found on IO-TLB or IO-PDIR.

18 ERR_IMPROPER Improper access error.

19 ERR_UNIMPL Access to a memory address which is not mapped to any component

20 ERR_LOL Loss of Lockstep

21 ERR_RESPONSE Response not associated with a request

22 ERR_PARITY Bus parity error (must also set the A, C, or D Bits).

23 ERR_PROTOCOL Detection of a protocol error.

24 ERR_ERROR Detection of a PATH_ERROR

25 ERR_TIMEOUT Bus operation timeout.

26 ERR_POISONED A read was issued to data that has been poisoned.

All Others Reserved.

Bit Position Description
Version 2.5 April, 2015 2527

Unified Extensible Firmware Interface Specification
2528 April, 2015 Version 2.5

Appendix O
 UEFI ACPI Data Table

To prevent ACPI namespace collision, a UEFI ACPI table format is defined. This allows creation of
ACPI tables without colliding with tables reserved in the namespace.

Table 271. UEFI Table Structure

The first use of this UEFI ACPI table format is the SMM Communication ACPI Table. This table
describes a special software SMI that can be used to initiate inter-mode communication in the OS
present environment by non-firmware agents with SMM code.

Table 272. SMM Communication ACPI Table.

Field Byte
Length

Byte Offset Description

Header

Signature 4 0 ‘UEFI’ (0x55, 0x45, 0x46, 0x49). Signature for UEFI drivers
that produce ACPI tables.

Length 4 4 Length, in bytes, of the entire BOOT Table

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 For the UEFI Table, the table ID is the manufacture model
ID.

OEM Revision 4 24 OEM revision of UEFI table for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator
Revision

4 32 Revision of utility that created the table.

Identifier 16 36 This value contains a GUID which identifies the remaining
table contents.

DataOffset 2 52 Specifies the byte offset to the remaining data in the UEFI
table.

Data X DataOffset Contains the rest of the UEFI table contents

Field Byte
Lengt
h

Byte
Offset

Description

Signature 4 0 ‘UEFI’ (0x55, 0x45, 0x46, 0x49) Signature for UEFI drivers that
produce ACPI tables.

Length 4 4 66+N. Length, in bytes, of the entire Table. N is a length of the
optional implementation specific data that can be included in this
table.
Version 2.5 April, 2015 2529

Unified Extensible Firmware Interface Specification
Related Definitions
typedef struct {
 EFI_GUID HeaderGuid;
 UINTN MessageLength;
 UINT8 Data[ANYSIZE_ARRAY];
} EFI_SMM_COMMUNICATE_HEADER;

HeaderGuid

Allows for disambiguation of the message format. Type EFI_GUID is defined in
InstallProtocolInterface().

MessageLength

Describes the size of Data (in bytes) and does not include the size of the header.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM
Table ID

8 16 For the UEFI Table, the table ID is the manufacturer model ID.

OEM
Revision

4 24 OEM revision of UEFI table for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator
Revision

4 32 Revision of utility that created the table.

Identifier 16 36 GUID {0xc68ed8e2, 0x9dc6, 0x4cbd, 0x9d, 0x94, 0xdb, 0x65, \
0xac, 0xc5, 0xc3, 0x32}

DataOffset 2 52 Must be 54 for this version of the specification. Specifies the byte

offset of the SW SMI Number field, relative to the start of this

table. Future expansion may place additional fields between

DataOffset and SW SMI Number, so this offset should

always be used to calculate the location of SW SMI Number.

SW SMI
Number

4 54 Number to write into software SMI triggering port.

Buffer Ptr
Address

8 58 Address of the communication buffer pointer. The pointer address
(this field) and the pointer value (the actual address of the
communication buffer) are 64-bit physical addresses.
The creator of this table must initialize pointer value with 0. The
communication buffer must be prefixed with the

EFI_SMM_COMMUNICATE_HEADER defined in the

"Related Definitions" section below.

Field Byte
Lengt
h

Byte
Offset

Description
2530 April, 2015 Version 2.5

Data

Designates an array of bytes that is MessageLength in size

In order to initiate inter-mode communication OS present agent has to perform the following tasks:

• Prepare communication data buffer that starts with the EFI_SMM_COMMUNICATE_HEADER.

• Check the value of the communication buffer pointer (a value at the address specified by the
Buffer Ptr Address field). If the pointer's value is zero, update it with the address of the
communication buffer. If the pointer's value is non-zero, another inter-mode communication
transaction is in progress, and the current communication attempt has to be postponed or
canceled.

Note: These steps must be performed as an atomic transaction. For example, on IA-32/x64 platforms
this can be done using the CMPXCHG CPU instruction.

• Generate software SMI using value from the SMM Communication ACPI Table. The actual
means of generating the software SMI is platform-specific.

• Set communication buffer pointer's value to zero.
Version 2.5 April, 2015 2531

Unified Extensible Firmware Interface Specification
2532 April, 2015 Version 2.5

Appendix P
Hardware Error Record Persistence Usage

The OS determines if a platform implements support for Hardware Error Record Persistence by
reading the HwErrRecSupport globally defined variable. If the attempt to read this variable returns
EFI_NOT_FOUND (14), then the OS will infer that the platform does not implement Hardware
Error Record Persistence. If the attempt to read this variable succeeds, then the OS uses the returned
value to determine whether the platform supports Hardware Error Record Persistence. A non-zero
value indicates that the platform supports Hardware Error Record Persistence.

P.1 Determining space
To determine the amount of space (in bytes) guaranteed by the platform for saving hardware error
records, the OS invokes QueryVariableInfo, setting the HR bit in the Attributes bitmask.

P.2 Saving Hardware error records
To save a hardware error record, the OS invokes SetVariable, supplying
EFI_HARDWARE_ERROR_VARIABLE as the VendorGuid and setting the HR bit in the
Attributes bitmask. The VariableName will be constructed by the OS by concatenating an index to
the string “HwErrRec” (i.e., HwErrRec0001). The index portion of the variable name is determined
by reading all of the hardware error record variables currently stored on the platform and choosing
an appropriate index value based on the names of the existing variables. The platform saves the
supplied Data. If insufficient space is present to store the record, the platform will return
EFI_OUT_OF_RESOURCES, in which case, the OS may clear an existing record and retry. A retry
attempt may continue to fail with status EFI_OUT_OF_RESOURCES if a reboot is required to
coalesce resources after deletion. The OS may only save error records after ExitBootServices is
called. Firmware may also use the Hardware Error Record Persistence interface to write error
records, but it may only do so before ExitBootServices is called. If firmware uses this interface to
write an error record, it must use the VariableName format used by the OS as described above and
the error records it creates must contain the firmware’s CreatorId. Firmware may overwrite error
records whose CreatorId matches the firmware’s CreatorId. Firmware may overwrite error records
that have been cleared by other components.

During OS initialization, the OS discovers the names of all persisted error record variables by
enumerating the current variable names using GetNextVariableName. Having identified the names
of all error record variables, the OS will then read and process all of the error records from the store.
After the OS processes an error record, it clears the variable if it was the creator of the variable
(determined by checking the CreatorId field of the error record).

P.3 Clearing error record variables
To clear error record variables, the OS invokes SetVariable, supplying
EFI_HARDWARE_ERROR_VARIABLE as the VendorGuid and setting the HR bit in the
Attributes bitmask. The supplied DataSize, and Data parameters will all be set to zero to indicate
that the variable is to be cleared. The supplied VariableName identifies which error record variable
Version 2.5 April, 2015 2533

Unified Extensible Firmware Interface Specification
is to be cleared. The OS may only clear error records after ExitBootServices has been called. The OS
itself may only clear error records which it created (e.g. error records whose CreatorId matches that
of the OS). However, a management application running on the OS may clear error records created
by other components. This enables error records created by firmware or other OSes to be cleared by
the currently running OS.
2534 April, 2015 Version 2.5

Appendix Q
References

Q.1 Related Information
The following publications and sources of information may be useful to you or are referred to by this
specification:

• "8802.1x Port-based access control” at “Links to UEFI-Related Documents” (http://uefi.org/
uefi) .

• "802.1X-2004, IEEE Standard for Local and Metropolitan Area Networks Port-Based Network
Access Control” at “Links to UEFI-Related Documents” (http://uefi.org/uefi)..

• "AMD64 Architecture Programmer’s Manual” at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• "Advanced Configuration and Power Interface Specification, 3.0”. at “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading

• "Advanced Configuration and Power Interface Specification, 4.0” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "Address Resolution Protocol; Refer to Appendix E, “32/ 64-Bit UNDI Specification” at “Links
to UEFI-Related Documents” (http://uefi.org/uefi).

• "BIOS Boot Specification Version 1.01” at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• “CAE Specification [UUID], DCE 1.1:Remote Procedure Call, Document Number C706,
Universal Unique Identifier Appendix” at “Links to UEFI-Related Documents” (http://uefi.org/
uefi).

• "[BASE64] RFC 1521: MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms
for Specifying and Describing the Format of Internet Message Bodies” at “Links to UEFI-
Related Documents” (http://uefi.org/uefi) .

• "Bluetooth Network Encapsulation Protocol (BNEP) Specification, version 1.0” at “Links to
UEFI-Related Documents” (http://uefi.org/uefi) .

• "BLUETOOTH SPECIFICATION, version 4.1” at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• Bootstrap Protocol; This reference is included for backward compatibility. BC protocol
supports DHCP and BOOTP. Refer to Appendix E, “32/ 64-Bit UNDI Specification, RFC
0951” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• [DBCS] Japanese Language DBCS (Double Byte Character Set): MS-DOS Version, Sizuoka
Information Industry, AX Conference, 1991.

• “[EAP] Tunneled TLS Authentication Protocol Version 1 (EAP-TTLSv1)” at “Links to UEFI-
Related Documents” (http://uefi.org/uefi).

• [ECMA 262] ECMA Script Language Specification (ECMA-262) Edition 5.1”.at “Links to
UEFI-Related Documents” (http://uefi.org/uefi) under the heading "
Version 2.5 April, 2015 2535

Unified Extensible Firmware Interface Specification
• "EFI Specification Version 1.02” heading at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• "EFI Specification Version 1.10” heading at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• "El Torito” Bootable CD-ROM Format Specification, Version 1.0” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• Envisioning Information, Edward R. Tufte, Graphics Press, 1990.

• File Verification Using CRC, Mark R. Nelson, Dr. Dobbs, May 1994

• HTML: The Definitive Guide, 2nd Edition, Chuck Musciano and Bill Kennedy, O’Reilly and
Associates, Inc., 1997, ISBN: 1-56592-235-2.

• "IEEE Standard for Local and metropolitan area networks: Virtual Bridged Local Area
Networks, IEEE Std 802.1Q - 2005” heading at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• "Information Technology — BIOS Enhanced Disk Drive Services (EDD), working draft T13/
1386D, Revision 5a” heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Intel 64 and IA=32 Architecture Software Developer’s Manual ” heading at “Links to UEFI-
Related Documents” (http://uefi.org/uefi).

• "iSCSI Boot Firmware Table (iBFT) as defined in ACPI 3.0b Specification, Version 1.01,”
heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "ISO Standard 9995, Keyboard layouts for text and office systems” heading at “Links to UEFI-
Related Documents” (http://uefi.org/uefi).

• "Itanium® Architecture Software Developer’s Manual, Volume 1: Application Architecture,
Rev. 2.2,” heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture, Rev.
2.2” heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Itanium® Architecture Software Developer’s Manual, Volume 3: Instruction Set Reference,
Rev. 2.2” heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Itanium® Software Conventions and Runtime Architecture Guide” heading at “Links to UEFI-
Related Documents” (http://uefi.org/uefi).

• "Itanium® System Abstraction Layer Specification” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• IEEE 1394 Specification, http://www.1394ta.org/Technology/Specifications/specifications.htm

• "Internet Engineering Task Force (IETF)” heading at “Links to UEFI-Related Documents”
(http://uefi.org/uefi). Refer to Appendix E, “32/64-Bit UNDI Specification,” for more
information.

• "ISO 639-2:1998. Codes for the Representation of Names of Languages – Part2: Alpha-3 code”
heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• ISO/IEC 3309:1991(E), Information Technology - Telecommunications and information
exchange between systems - High-level data link control (HDLC) procedures - Frame structure,
International Organization For Standardization, Fourth edition 1991-06-01
2536 April, 2015 Version 2.5

• ITU-T Rec. V.42, Error-Correcting Procedures for DCEs using asynchronous-to-synchronous
conversion, October, 1996

• JavaScript: The Definitive Guide, 3rd Edition, David Flanagan, O’Reilly and Associates, Inc.,
1998, ISBN: 1-56592-392-8.

• JavaScript: The Complete Reference, Thomas Powell & Fritz Schneider (McGraw-Hill/
Osborne, Emeryville California, 2004)

• "Microsoft Extensible Firmware Initiative FAT32 File System Specification, Version 1.03”
heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Microsoft Portable Executable and Common Object File Format Specification, Version 8.1”
heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Microsoft Windows Authenticode Portable Executable Signature Format, Version 1.0” heading
at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "OSTA Universal Disk Format Specification, Revision 2.00” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "PCI BIOS Specification, Revision 3.0” heading at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• "Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications” at “Links to UEFI-Related Documents” (http://uefi.org/uefi) .

• "PCI Express Base Specification, Revision 2.1” heading at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "PCI Hot-Plug Specification, Revision 1.0,” heading at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "PCI Local Bus Specification, Revision 3.0” heading at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "Plug and Play BIOS Specification, Version 1.0A,” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "POST Memory Manager Specification, Version 1.01,” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• Professional XML, Didier Martin, Mark Birbeck, et. al., Wrox Press, April, 2000, ISBN: 1-
861003-11-0.

• [PUI] Programming the User Interface: Principles and Examples, Judith R. Brown, Steve
Cunningham, John Wiley & Sons, 1989, ISBN: 0-471-63843-9.

• "Microsoft’s PEAP version 0” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• [PKCS] The Public-Key Cryptography Standards, RSA Laboratories, Redwood City, CA: RSA
Data Security, Inc.

• "PC/SC Specification, Part 3: Requirements for PC-Connected Interface Devices” at “Links to
UEFI-Related Documents” (http://uefi.org/uefi).

• "Processor Architecture Type” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Protected EAP Protocol (PEAP)” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).
Version 2.5 April, 2015 2537

Unified Extensible Firmware Interface Specification
• "Protected EAP Protocol (PEAP) Version 2” at “Links to UEFI-Related Documents” (http://
uefi.org/uefi) .

• "Request For Comments” heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).
Refer to Appendix E, “32/64-Bit UNDI Specification,” for more information.

• "[RFC0768] User Datagram Protocol – UDP over IPv4” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC 791] Internet Protocol DARPA Internet Program Protocol (IPv4) Specification” at
“Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC0792] ICMP for Ipv4” heading at “Links to UEFI-Related Documents” (http://uefi.org/
uefi). Refer to Appendix E, “32/64-Bit UNDI Specification,” for more information

• "[RFC0793] Transmission Control Protocol – TCPv4” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi). Refer to Appendix E,“32/64-Bit UNDI Specification,”
for more information.

• "[RFC 1034] Domain Names - Concepts and Facilities” at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "[RFC 1035] Domain Names - Implementation and Specification” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC1350] Trivial File Transfer Protocol – TFTP” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi). Refer to Appendix E, “32/64-Bit UNDI Specification,” for
more information.

• "[RFC 1700] ASSIGNED NUMBERS” ate “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• "[RFC 1994] PPP Challenge Handshake Authentication Protocol (CHAP)” at “Links to UEFI-
Related Documents” (http://uefi.org/uefi).

• "[RFC2131] Dynamic Host Configuration Protocol” at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "[RFC2132] DHCP Options and BOOTP Vendor Extensions,” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC2147] Transmission Control Protocol v6 – TCPv6” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi). Refer to Appendix E,“32/64-Bit UNDI Specification,”
for more information. Refer to Appendix E, “32/64-Bit UNDI Specification,” for more
information.

• "[RFC2236] Internet Group Management Protocol” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC 2246] The TLS Protocol Version 1.0” at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• "[RFC2315] Cryptographic Message Syntax Version 1.5” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC2347] TFTP Option Extension” heading at “Links to UEFI-Related Documents” (http://
uefi.org/uefi). Refer to Appendix E, “32/64-Bit UNDI Specification,” for more information.
2538 April, 2015 Version 2.5

• "[RFC2348] TFTP Blocksize Option” heading at “Links to UEFI-Related Documents” (http://
uefi.org/uefi). Refer to Appendix E, “32/64-Bit UNDI Specification,” for more information.

• "[RFC2349] TFTP Timeout Interval and Transfer Size Options” heading at “Links to UEFI-
Related Documents” (http://uefi.org/uefi). Refer to Appendix E, “32/64-Bit UNDI
Specification,” for more information.

• "[RFC 2407]The Internet IP Security Domain of Interpretation for ISAKMP” at “Links to UEFI-
Related Documents” (http://uefi.org/uefi) .

• "[RFC 2408]Internet Security Association and Key Management Protocol(ISAKMP)” at “Links
to UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC 2409]The Internet Key Exchange (IKE)” at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• "[RFC2454] User Datagram Protocol – UDP over IPv6” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC 2459] Internet X.509 Public Key Infrastructure Certificate and CRL Profile” at “Links to
UEFI-Related Documents” (http://uefi.org/uefi) .

• "[RFC 2460] Internet Protocol, Version 6 (IPv6) Specification” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC2463] ICMP for Ipv6” heading at “Links to UEFI-Related Documents” (http://uefi.org/
uefi). Refer to Appendix E, “32/64-Bit UNDI Specification,” for more information

• "[RFC 2759] Microsoft PPP CHAP Extensions, Version 2” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC 2818] HTTP Over TLS” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC 3004] The User Class option for DHCP” at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• [RFC 3232] J. Reynolds, "Assigned Numbers: RFC 1700 is Replaced by an On-line Database",
January 2002

• "[RFC 3315] Dynamic Host Configuration Protocol for IPv6 (DHCPv6)” at “Links to UEFI-
Related Documents” (http://uefi.org/uefi).

• "[RFC 3396] Encoding Long Options in the Dynamic Host Configuration Protocol” at “Links to
UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC 3513] Internet Protocol Version 6 (IPv6) Addressing Architecture” at “Links to UEFI-
Related Documents” (http://uefi.org/uefi) under the heading.

• "[RFC 3596] DNS Extensions to Support IP Version 6” at “Links to UEFI-Related Documents”
(http://uefi.org/uefi) .

• "[RFC 3617] Uniform Resource Identifier (URI) Scheme and Applicability Statement for the
Trivial File Transfer Protocol (TFTP)” at “Links to UEFI-Related Documents” (http://uefi.org/
uefi).

• "[RFC 3646] DNS Configuration options for Dynamic Host Configuration Protocol for IPv6
(DHCPv6)” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC 3720] Internet Small Computer Systems Interface (iSCSI)” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).
Version 2.5 April, 2015 2539

Unified Extensible Firmware Interface Specification
• "[RFC 3748] Extensible Authentication Protocol (EAP)” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC 3986]Uniform Resource Identifiers (URI): Generic Syntax” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC 4173] Bootstrapping Clients using the Internet Small Computer System Interface (iSCSI)
Protocol” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC 4301]Security Architecture for the Internet Protocol” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC 4303]IP Encapsulation Security Payload (ESP)” at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "[RFC 4346] The Transport Layer Security (TLS) Protocol Version 1.1” at “Links to UEFI-
Related Documents” (http://uefi.org/uefi) under the heading.

• "[RFC 4347] Datagram Transport Layer Security” at “Links to UEFI-Related Documents”
(http://uefi.org/uefi) under the heading

• "[RFC4578] Dynamic Host Configuration Protocol (DHCP) Options for the Intel Preboot
eXecution Environment (PXE)” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC 5216] The EAP-TLS Authentication Protocol” at “Links to UEFI-Related Documents”
(http://uefi.org/uefi) under the heading.

• "[RFC 5246] The Transport Layer Security (TLS) Protocol Version 1.2” at “Links to UEFI-
Related Documents” (http://uefi.org/uefi).

• "[RFC 5247] Extensible Authentication Protocol (EAP) Key Management Framework” at
“Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC 5281] Extensible Authentication Protocol Tunneled Transport Layer Security
Authenticated Protocol Version 0” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "[RFC 5970] DHCPv6 Options for Network Boot,” at “Links to UEFI-Related Documents”
(http://uefi.org/uefi).

• "[RFC 6101] The Secure Sockets Layer (SSL) Protocol Version 3.0” at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "[RFC 6347] Datagram Transport Layer Security Version 1.2 (DTLS)” at “Links to UEFI-
Related Documents” (http://uefi.org/uefi).

• "[SM spec] Common Security: CDSA and CSSM, Version 2 (with corrigenda), was Signed
Manifest Specification” at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• Super VGA Graphics Programming Secrets, Steve Rimmer, Windcrest / McGraw-Hill, 1993,
ISBN: 0-8306-4428-8.

• "System Management BIOS Reference Specification, Version 2.6.1” heading at “Links to UEFI-
Related Documents” (http://uefi.org/uefi).

• The Visual Display of Quantitative Information, Edward R. Tufte, Graphics Press, 1983.

• "The Unicode Standard, Version 5.2” heading at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• "Universal Serial Bus PC Legacy Compatibility Specification, Version 0.9,” heading at “Links
to UEFI-Related Documents” (http://uefi.org/uefi).
2540 April, 2015 Version 2.5

• "Universal Serial Bus Specification, Revision 2.0” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "USB Battery Charging Specification” heading at “Links to UEFI-Related Documents” (http://
uefi.org/uefi).

• XML: A Primer, Simon St. Laurent, MIS:Press, 1998, ISBN:1-5582-8592-X.

Q.2 Prerequisite Specifications
In general, this specification requires that functionality defined in a number of other existing
specifications be present on a system that implements this specification. This specification
requires that those specifications be implemented at least to the extent that all the required
elements are present.

This specification prescribes the use and extension of previously established industry specification
tables whenever possible. The trend to remove runtime call-based interfaces is well documented.
The ACPI (Advanced Configuration and Power Interface) specification is an example of new and
innovative firmware technologies that were designed on the premise that OS developers prefer to
minimize runtime calls into firmware. ACPI focuses on no runtime calls to the BIOS.

Q.2.1 ACPI Specification
The interface defined by the Advanced Configuration and Power Interface (ACPI) Specification is
the primary OS runtime interface for IA-32, x64 and Itanium platforms. ACPI fully defines the
methodology that allows the OS to discover and configure all platform resources. ACPI allows the
description of non-Plug and Play motherboard devices in a plug and play manner. ACPI also is
capable of describing power management and hot plug events to the OS. (For more information on
ACPI, see “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading "ACPI”; see
also http://uefi.org/acpi).

Q.2.2 Additional Considerations for Itanium-Based Platforms
Any information or service that is available in Itanium architecture firmware specifications
supercedes any requirement in the common supported 32-bit and Itanium architecture specifications
listed above. The Itanium architecture firmware specifications (currently the Itanium® System
Abstraction Layer Specification and portions of the Intel® Itanium® Architecture Software
Developer’s Manual, volumes 1–3) define the baseline functionality required for all Itanium
architecture platforms. The major addition that UEFI makes to these Itanium architecture firmware
specifications is that it defines a boot infrastructure and a set of services that constitute a common
platform definition for high-volume Itanium architecture–based systems to implement based on the
more generalized Itanium architecture firmware specifications.

The following specifications are the required Intel Itanium architecture specifications for all Itanium
architecture–based platforms:

• "Itanium® System Abstraction Layer Specification” heading at “Links to UEFI-Related
Documents” (http://uefi.org/uefi).

• "Itanium® Architecture Software Developer’s Manual, Volume 1: Application Architecture,
Rev. 2.2,” heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).
Version 2.5 April, 2015 2541

Unified Extensible Firmware Interface Specification
• "Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture, Rev.
2.2” heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• "Itanium® Architecture Software Developer’s Manual, Volume 3: Instruction Set Reference,
Rev. 2.2” heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).
2542 April, 2015 Version 2.5

Appendix R
Glossary

_ADR

A reserved name in ACPI name space. It refers to an address on a bus that has
standard enumeration. An example would be PCI, where the enumeration method is
described in the PCI Local Bus specification.

_CRS

A reserved name in ACPI name space. It refers to the current resource setting of a
device. A _CRS is required for devices that are not enumerated in a standard fashion.
_CRS is how ACPI converts nonstandard devices into Plug and Play devices.

_HID

A reserved name in ACPI name space. It represents a device’s plug and play
hardware ID and is stored as a 32-bit compressed EISA ID. _HID objects are optional
in ACPI. However, a _HID object must be used to describe any device that will be
enumerated by the ACPI driver in the OS. This is how ACPI deals with non–Plug and
Play devices.

_UID

A reserved name in ACPI name space. It is a serial number style ID that does not
change across reboots. If a system contains more than one device that reports the
same _HID, each device must have a unique _UID. The _UID only needs to be
unique for device that have the exact same _HID value.

ACPI Device Path

A Device Path that is used to describe devices whose enumeration is not described in
an industry-standard fashion. These devices must be described using ACPI AML in
the ACPI name space; this type of node provides linkage to the ACPI name space.

ACPI

Refers to the Advanced Configuration and Power Interface Specification and to the
concepts and technology it discusses. The specification defines a new interface to the
system board that enables the operating system to implement operating
system-directed power management and system configuration.

Alt-GR Unicode

Represents the character code of a key when the Alt-GR modifier key is held down.
This key (A2) in some keyboard layouts is defined as the right alternate key and
serves the same function as the left alternate key. However, in many other layouts it is
a secondary modifier key similar to shift. For instance, key C1 is equated to the letter
a and its Unicode character code in the typical U.K. keyboard is a non-shifted
character code of 0x0061. When holding down the Alt-GR key in conjunction with the
Version 2.5 April, 2015 2543

Unified Extensible Firmware Interface Specification
pressing of key C1, , the value on the same keyboard often produces an á, which is a
character code 0x00E1.

Base Code (BC)

The PXE Base Code, included as a core protocol in EFI, is comprised of a simple
network stack (UDP/IP) and a few common network protocols (DHCP, Bootserver
Discovery, TFTP) that are useful for remote booting machines.

BC

See Base Code (BC)

Big Endian

A memory architecture in which the low-order byte of a multibyte datum is at the
highest address, while the high-order byte is at the lowest address. See Little Endian.

BIOS Boot Specification Device Path

A Device Path that is used to point to boot legacy operating systems; it is based on the
BIOS Boot Specification, Version 1.01.

BIOS Parameter Block (BPB)

The first block (sector) of a partition. It defines the type and location of the FAT File
System on a drive.

BIOS

Basic Input/Output System. A collection of low-level I/O service routines.

Block I/O Protocol

A protocol that is used during boot services to abstract mass storage devices. It allows
boot services code to perform block I/O without knowing the type of a device or its
controller.

Block Size

The fundamental allocation unit for devices that support the Block I/O Protocol. Not
less than 512 bytes. This is commonly referred to as sector size on hard disk drives.

Boot Device

The Device Handle that corresponds to the device from which the currently executing
image was loaded.

Boot Manager

The part of the firmware implementation that is responsible for implementing system
boot policy. Although a particular boot manager implementation is not specified in
this document, such code is generally expected to be able to enumerate and handle
transfers of control to the available OS loaders as well as UEFI applications and
drivers on a given system. The boot manager would typically be responsible for
interacting with the system user, where applicable, to determine what to load during
system startup. In cases where user interaction is not indicated, the boot manager
would determine what to load and, if multiple items are to be loaded, what the
sequencing of such loads would be.
2544 April, 2015 Version 2.5

Block Size

The fundamental allocation unit for devices that support the Block I/O Protocol. Not
less than 512 bytes. This is commonly referred to as sector size on disk drives.

Boot Services Driver

A program that is loaded into boot services memory and stays resident until boot
services terminates.

Boot Services Table

A table that contains the firmware entry points for accessing boot services functions
such as Task Priority Services and Memory Allocation Services. The table is accessed
through a pointer in the System Table.

Boot Services Time

The period of time between platform initialization and the call to
ExitBootServices(). During this time, EFI Drivers and applications are loaded
iteratively and the system boots from an ordered list of EFI OS loaders.

Boot Services

The collection of interfaces and protocols that are present in the boot environment.
The services minimally provide an OS loader with access to platform capabilities
required to complete OS boot. Services are also available to drivers and applications
that need access to platform capability. Boot services are terminated once the
operating system takes control of the platform.

BPB

See BIOS Parameter Block (BPB).
Callback

Target function which augments the Forms Processor’s ability to evaluate or process
configuration settings. Callbacks are not available when the Forms Processor is
operating in a Disconnected state.

CIM

See Common Information Model (CIM).

Cluster

A collection of disk sectors. Clusters are the basic storage units for disk files. See
File Allocation Table (FAT).

COFF

Common Object File Format, a standard file format for binary images.

Coherency Domain

(1) The global set of resources that is visible to at least one processor in a platform.
(2) The address resources of a system as seen by a processor. It consists of both
system memory and I/O space.
Version 2.5 April, 2015 2545

Unified Extensible Firmware Interface Specification
Common Information Model (CIM)

An object-oriented schema defined by the DMTF. CIM is an information model that
provides a common way to describe and share management information enterprise-
wide.

Console I/O Protocol

A protocol that is used during Boot Services to handle input and output of text-based
information intended for the system administrator. It has two parts, a Simple Input
Protocol that is used to obtain input from the ConsoleIn device and a Simple Text
Output Protocol that is used to control text-based output devices. The Console I/O
Protocol is also known as the EFI Console I/O Protocol.

ConsoleIn

The device handle that corresponds to the device used for user input in the boot
services environment. Typically the system keyboard.

ConsoleOut

The device handle that corresponds to the device used to display messages to the user
from the boot services environment. Typically a display screen.

DBCS

Double Byte Character Set.

Desktop Management Interface (DMI)

A platform management information framework, built by the DMTF and designed to
provide manageability for desktop and server computing platforms by providing an
interface that is:
(1) independent of any specific desktop operating system, network operating system,
network protocol, management protocol, processor, or hardware platform;
(2) easy for vendors to implement; and
(3) easily mapped to higher-level protocols.

Desktop Management Task Force (DMTF)

The DMTF is a standards organization comprised of companies from all areas of the
computer industry. Its purpose is to create the standards and infrastructure for cost-
effective management of PC systems.

Device Handle

A handle points to a list of one or more protocols that can respond to requests for
services for a given device referred to by the handle.

Device I/O Protocol

A protocol that is used during boot services to access memory and I/O. Also called
the EFI Device I/O Protocol.

Device Path Instance

When an environment variable represents multiple devices, it is possible for a device
path to contain multiple device paths. An example of this would be the ConsoleOut
environment variable that consists of both a VGA console and a serial output console.
2546 April, 2015 Version 2.5

This environment variable would describe a console output stream that would send
output to both devices and therefore has a Device Path that consists of two complete
device paths. Each of these paths is a device path instance.

Device Path Node

A variable-length generic data structure that is used to build a device path. Nodes are
distinguished by type, subtype, length, and path-specific data. See Device Path.

Device Path Protocol

A protocol that is used during boot services to provide the information needed to
construct and manage Device Paths. Also called the EFI Device Path Protocol.

Device Path

A variable-length binary data structure that is composed of variable-length generic
device path nodes and is used to define the programmatic path to a logical or physical
device. There are six major types of device paths: Hardware Device Path, ACPI
Device Path, Messaging Device Path, Media Device Path, BIOS Boot Specification
Device Path, and End of Hardware Device Path.

DHCP

See Dynamic Host Configuration Protocol (DHCP).

Disconnected

The state when a Forms Processor is manipulating a form set without being connected
to the Target’s pre-OS environment. For example, after booting an OS, a Forms
Processor cannot execute call-backs or read the configuration settings. For example,
when running a Forms Browser while on a remote machine that is not connected to the
Target. In these cases, the Forms Processor has limited knowledge of the Target’s
current configuration settings and limited or no ability to use call-backs.

Disk I/O Protocol

A protocol that is used during boot services to abstract Block I/O devices to allow
non-block-sized I/O operations. Also called the EFI Disk I/O Protocol.

DMI

See DBCS.

DMTF

See Desktop Management Task Force (DMTF).

DNS

Domain Name System. A protocol used manipulating and translating hostname and IP
address

DTLS

Datagram Transport Layer Security. A protocol to provide communication privacy
above UDP.
Version 2.5 April, 2015 2547

Unified Extensible Firmware Interface Specification
Dynamic Host Configuration Protocol (DHCP)

A protocol that is used to get information from a configuration server. DHCP is
defined by the Desktop Management Task Force (DMTF), not EFI.

EAP

Extensible Authentication Protocol. An authentication framework which supports
multiple authentication methods

EBC Image

Executable EBC image following the PE32 file format.

EBC

See EFI Byte Code (EBC).

EFI

Extensible Firmware Interface. An interface between the operating system (OS) and
the platform firmware.

EFI Application

Modular code that may be loaded in the boot services environment to accomplish
platform specific tasks within that environment. Examples of possible applications
might include diagnostics or disaster recovery tools shipped with a platform that run
outside the OS environment. Applications may be loaded in accordance with policy
implemented by the platform firmware to accomplish a specific task. Control is then
returned from the application to the platform firmware.

EFI Byte Code (EBC)

The binary encoding of instructions as output by the EBC C compiler and linker. The
EBC Image is executed by the interpreter.

EFI Drivers

A module of code typically inserted into the firmware via protocol interfaces. Drivers
may provide device support during the boot process or they may provide platform
services. It is important not to confuse drivers in this specification with OS drivers
that load to provide device support once the OS takes control of the platform.

EFI File

A container consisting of a number of blocks that holds an image or a data file within
a file system that complies with this specification.

EFI Hard Disk

A hard disk that supports the new EFI partitioning scheme (GUID Partition).

EFI OS Loader

The first piece of operating system code loaded by the firmware to initiate the OS boot
process. This code is loaded at a fixed address and then executed. The OS takes
control of the system prior to completing the OS boot process by calling the interface
that terminates all boot services.
2548 April, 2015 Version 2.5

EFI-compliant

Refers to a platform that complies with this specification.

EFI-conformant

See EFI-compliant.

End of Hardware Device Path

A Device Path which, depending on the subtype, is used to indicate the end of the
Device Path instance or Device Path structure.

Enhanced Mode (EM)

The 64-bit architecture extension that makes up part of the Intel® Itanium®
architecture.

Event Services

The set of functions used to manage events. Includes
EFI_BOOT_SERVICES.CheckEvent(),
EFI_BOOT_SERVICES.CreateEvent(),
EFI_BOOT_SERVICES.CloseEvent(),
EFI_BOOT_SERVICES.SignalEvent(), and
EFI_BOOT_SERVICES.WaitForEvent().

Event

An EFI data structure that describes an “event”—for example, the expiration
of a timer.

Event Services

The set of functions used to manage events.Includes
EFI_BOOT_SERVICES.CheckEvent(),
EFI_BOOT_SERVICES.CreateEvent(),
EFI_BOOT_SERVICES.CloseEvent(),
EFI_BOOT_SERVICES.SignalEvent(), and
EFI_BOOT_SERVICES.WaitForEvent().

FAT File System

The file system on which the EFI File system is based. See File Allocation Table
(FAT) and GUID Partition Table (GPT).

FAT

See File Allocation Table (FAT).

File Allocation Table (FAT)

A table that is used to identify the clusters that make up a disk file. File allocation
tables come in three flavors: FAT12, which uses 12 bits for cluster numbers; FAT16,
which uses 16 bits; and FAT32, which allots 32 bits but only uses 28 (the other 4 bits
are reserved for future use).
Version 2.5 April, 2015 2549

Unified Extensible Firmware Interface Specification
File Handle Protocol

A component of the File System Protocol. It provides access to a file or directory.
Also called the EFI File Handle Protocol.

File System Protocol

A protocol that is used during boot services to obtain file-based access to a device. It
has two parts, a Simple File System Protocol that provides a minimal interface for file-
type access to a device, and a File Handle Protocol that provides access to a file or
directory.

Firmware

Any software that is included in read-only memory (ROM).

Font

A graphical representation corresponding to a character set, in this case Unicode. The
following are the same Latin letter in three fonts using the same size (14):

A

A

A

Font glyph

The individual elements of a font corresponding to single characters are called font
glyphs or simply glyphs. The first character in each of the above three lines is a glyph
for the letter "A" in three different fonts.

Form

Logical grouping of questions with a unique identifier.

Form Set

An HII database package describing a group of forms, including one parent form and
zero or more child forms.

Forms Browser

A Forms Processor capable of displaying the user-interface information a display and
interacting with a user.

Forms Processor

An application capable of reading and processing the forms data within a forms set.

Globally Unique Identifier (GUID)

A 128-bit value used to differentiate services and structures in the boot services
environment. The format of a GUID is defined in Appendix A. See Protocol.

Glyph

The individual elements of a font corresponding to single characters. May also be
called font keyboard layout glyphs. Also see font glyph above.
2550 April, 2015 Version 2.5

GPT: See GUID Partition Table (GPT).

GPT disk layout:

The data layout on a disk consisting of a protective MBR in LBA 0, a GPT Header in
LBA 1, and additional GPT structures and partitions in the remaining LBAs. See
chapter 5.

GPTHeader

The header in a GUID Partition Table (GPT). Among other things, it contains the
number of GPT Partition Entries and the first and last LBAs that can be used for the
entries.

GPT Partition Entry

A data structure that characterizes a Partition in the GPT disk layout. Among other
things, it specifies the starting and ending LBA of the partition.

GUID Partition Table (GPT)

A data structure that describes one or more partitions. It consists of a GPTHeader and,
typically, at least one GPTPartition Entry. There are two GUID partition tables: the
Primary Partition Table (located in LBA 1 of the disk) and a Backup Partition Table
(located in the last LBA of the disk). The Backup Partition Table is a copy of the
Primary Partition Table.

GPTPartition Entry

A data structure that characterizes a GUID Partition. Among other things, it specifies
the starting and ending LBA of the partition.

GUID Partition

A contiguous group of sectors on an EFI Hard Disk.

Handle

See Device Handle.

Hardware Device Path

A Device Path that defines how a hardware device is attached to the resource domain
of a system (the resource domain is simply the shared memory, memory mapped I/O,
and I/O space of the system).

HII

Human Interface Infrastructure.

HII Database

The centralized repository for HII-related information, organized as package lists.

HTML

Hypertext Markup Language. A particular implementation of SGML focused on
hypertext applications. HTML is a fairly simple language that enables the description
of pages (generally Internet pages) that include links to other pages and other data
types (such as graphics). When applied to a larger world, HTML has many
Version 2.5 April, 2015 2551

Unified Extensible Firmware Interface Specification
shortcomings, including localization (q.v.) and formatting issues. The HTML form
concept is of particular interest to this application.

HTTP

Hypertext transfer protocol. HTTP functions as request-response protocol in the
client-server computing rule.

IA-32

See Intel® Architecture-32 (IA-32).

IFR

Internal Form Representation. Used to represent forms in EFI so that it can be
interpreted as is or expanded easily into XHTML.

Image Handle

A handle for a loaded image; image handles support the loaded image protocol.

Image Handoff State

The information handed off to a loaded image as it begins execution; it consists of the
image’s handle and a pointer to the image’s system table.

Image Header

The initial set of bytes in a loaded image. They define the image’s encoding.

Image Services

The set of functions used to manage EFI images. Includes
EFI_BOOT_SERVICES.LoadImage(),
EFI_BOOT_SERVICES.StartImage(),
EFI_BOOT_SERVICES.UnloadImage(), EFI_BOOT_SERVICES.Exit(),
EFI_BOOT_SERVICES.ExitBootServices(), and
EFI_IMAGE_ENTRY_POINT.

Image

(1) An executable file stored in a file system that complies with this specification.
Images may be drivers, applications or OS loaders. Also called an EFI Image.

(2) Executable binary file containing EBC and data. Output by the EBC linker.

IME

Input Method Editor. A program or subprogram that is used to map keystrokes to
logographic characters. For example, IMEs are used (possibly with user intervention)
to map the Kana (Hirigana or Katakana) characters on Japanese keyboards to Kanji.

Intel® Architecture-32 (IA-32)

The 32-bit and 16-bit architecture described in the Intel Architecture Software
Developer’s Manual. IA-32 is the architecture of the Intel® P6 family of processors,
which includes the Intel® Pentium® Pro, Pentium II, Pentium III, and Pentium 4
processors.
2552 April, 2015 Version 2.5

http://www.unicode.org/unicode/reports/tr6
http://www.unicode.org/unicode/reports/tr6

Intel® Itanium® Architecture

The Intel architecture that has 64-bit instruction capabilities, new performance-
enhancing features, and support for the IA-32 instruction set. This architecture is
described in the Itanium™ Architecture Software Developer’s Manual.

internationalization

In this context, is the process of making a system usable across languages and cultures
by using universally understood symbols. Internationalization is difficult due to the
differences in cultures and the difficulty of creating obvious symbols; for example,
why does a red octagon mean "Stop"?

Interpreter

The software implementation that decodes EBC binary instructions and executes them
on a VM. Also called EBC interpreter.

Keyboard layout

The physical representation of a user’s keyboard. The usage of this is in conjunction to
a structure that equates the physical key(s) and the associated action it represents. For
instance, key C1 is equated to the letter a and its Unicode value in the typical U.K.
keyboard is a non-shifted value of 0x0061.

LAN On Motherboard (LOM)

This is a network device that is built onto the motherboard (or baseboard) of the
machine.

LBA:

See Logical Block Address (LBA).

Legacy Platform

A platform which, in the interests of providing backward-compatibility, retains
obsolete technology.

LFN

See Long File Names (LFN).

Little Endian

A memory architecture in which the low-order byte of a multibyte datum is at the
lowest address, while the high-order byte is at the highest address. See Big Endian.

Load File Protocol

A protocol that is used during boot services to find and load other modules of code.

Loaded Image Protocol

A protocol that is used during boot services to obtain information about a loaded
image. Also called the EFI Loaded Image Protocol.
Version 2.5 April, 2015 2553

http://www.unicode.org/
http://www.unicode.org/
http://www.unicode.org/

Unified Extensible Firmware Interface Specification
Loaded Image

A file containing executable code. When started, a loaded image is given its image
handle and can use it to obtain relevant image data.

Localization

The process of focusing a system in so that it works using the symbols of a language/
culture. To a major extent the following design is influenced by the requirements of
localization.

Logical Block Address (LBA):

The address of a logical block on a disk. The first LBA on a disk is LBA 0.

Logographic

A character set that uses characters to represent words or parts of words rather than
syllables or sounds. Kanji is logographic but Kana characters are not.

LOM

See LAN On Motherboard (LOM).

Long File Names (LFN)

Refers to an extension to the FAT File System that allows file names to be longer than
the original standard (eight characters plus a three-character extension).

Machine Check Abort (MCA)

The system management and error correction facilities built into the Intel Itanium
processors.

Master Boot Record (MBR)

The data structure that resides on the LBA 0 of a hard disk and defines the partitions
on the disk.

MBR

See Master Boot Record (MBR).

MBR boot code:

 x86 code in the first LBA of a disk.

MBR disk layout:

The data layout on a disk consisting of an MBR in LBA 0 and partitions described by
the MBR in the remaining LBAs. See chapter 5 and Appendix NEW.

MBR Partition Record

A data structure that characterizes a Partition in the MBR disk layout.

MCA

See Machine Check Abort (MCA).
2554 April, 2015 Version 2.5

Media Device Path

A Device Path that is used to describe the portion of a medium that is being abstracted
by a boot service. For example, a Media Device Path could define which partition on
a hard drive was being used.

Memory Allocation Services

The set of functions used to allocate and free memory, and to retrieve the memory
map. Includes EFI_BOOT_SERVICES.AllocatePages(),
EFI_BOOT_SERVICES.FreePages(),
EFI_BOOT_SERVICES.AllocatePool(),
EFI_BOOT_SERVICES.FreePool(), and
EFI_BOOT_SERVICES.GetMemoryMap().

Memory Map

A collection of structures that defines the layout and allocation of system memory
during the boot process. Drivers and applications that run during the boot process
prior to OS control may require memory. The boot services implementation is
required to ensure that an appropriate representation of available and allocated
memory is communicated to the OS as part of the hand-off of control.

Memory Type

One of the memory types defined by UEFI for use by the firmware and UEFI
applications. Among others, there are types for boot services code, boot services data,
Runtime Services code, and runtime services data. Some of the types are used for one
purpose before EFI_BOOT_SERVICES.ExitBootServices() is called and
another purpose after.

Messaging Device Path

A Device Path that is used to describe the connection of devices outside the
Coherency Domain of the system. This type of node can describe physical messaging
information (e.g., a SCSI ID) or abstract information (e.g., networking protocol IP
addresses).

Miscellaneous Service

Various functions that are needed to support the EFI environment. Includes
EFI_BOOT_SERVICES.InstallConfigurationTable(),
ResetSystem(), EFI_BOOT_SERVICES.Stall(),
EFI_BOOT_SERVICES.SetWatchdogTimer(),
EFI_BOOT_SERVICES.GetNextMonotonicCount(), and
GetNextHighMonotonicCount().

MTFTP

See Multicast Trivial File Transfer Protocol (MTFTP).

Multicast Trivial File Transfer Protocol (MTFTP)

A protocol used to download a Network Boot Program to many clients
simultaneously from a TFTP server.
Version 2.5 April, 2015 2555

Unified Extensible Firmware Interface Specification
Name Space

In general, a collection of device paths; in an EFI Device Path.

Native Code

Low level instructions that are native to the host processor. As such, the processor
executes them directly with no overhead of interpretation. Contrast this with EBC,
which must be interpreted by native code to operate on a VM.

NBP

See Network Bootstrap Program (NBP) or Network Boot Program.

Network Boot Program

A remote boot image downloaded by a PXE client using the Trivial File Transport
Protocol (TFTP) or the Multicast Trivial File Transfer Protocol (MTFTP). See
Network Bootstrap Program (NBP).

Network Bootstrap Program (NBP)

This is the first program that is downloaded into a machine that has selected a PXE
capable device for remote boot services.

A typical NBP examines the machine it is running on to try to determine if the
machine is capable of running the next layer (OS or application). If the machine is not
capable of running the next layer, control is returned to the EFI boot manager and the
next boot device is selected. If the machine is capable, the next layer is downloaded
and control can then be passed to the downloaded program.

Though most NBPs are OS loaders, NBPs can be written to be standalone applications
such as diagnostics, backup/restore, remote management agents, browsers, etc.

Network Interface Card (NIC)

Technically, this is a network device that is inserted into a bus on the motherboard or
in an expansion board. For the purposes of this document, the term NIC will be used
in a generic sense, meaning any device that enables a network connection (including
LOMs and network devices on external buses (USB, 1394, etc.)).

NIC

See Network Interface Card (NIC).

Non-spacing key

Typically an accent key that does not advance the cursor and is used to create special
characters similar to ÄäÊê. This function is provided only on certain keyboard
layouts.

NV

Nonvolatile.

Package

HII information with a unique type, such as strings, fonts, images or forms.
2556 April, 2015 Version 2.5

Package List

Group of packages identified by a GUID.

Page Memory

A set of contiguous pages. Page memory is allocated by
EFI_BOOT_SERVICES.AllocatePages() and returned by
EFI_BOOT_SERVICES.FreePages().

Partition Discovery

The process of scanning a block device to determine whether it contains a Partition.

Partition

A contiguous set of LBAs on a disk, described by the MBR and/or GPT disk layouts.

PC-AT

Refers to a PC platform that uses the AT form factor for their motherboards.

PCI Bus Driver

Software that creates a handle for every PCI Controller on a PCI Host Bus Controller
and installs both the PCI I/O Protocol and the Device Path Protocol onto that handle.
It may optionally perform PCI Enumeration if resources have not already been
allocated to all the PCI Controllers on a PCI Host Bus Controller. It also loads and
starts any UEFI drivers found in any PCI Option ROMs discovered during PCI
Enumeration. If a driver is found in a PCI Option ROM, the PCI Bus Driver will also
attach the Bus Specific Driver Override Protocol to the handle for the PCI Controller
that is associated with the PCI Option ROM that the driver was loaded from.

PCI Bus

A collection of up to 32 physical PCI Devices that share the same physical PCI bus.
All devices on a PCI Bus share the same PCI Configuration Space.

PCI Configuration Space

The configuration channel defined by PCI to configure PCI Devices into the resource
domain of the system. Each PCI device must produce a standard set of registers in the
form of a PCI Configuration Header, and can optionally produce device specific
registers. The registers are addressed via Type 0 or Type 1 PCI Configuration Cycles
as described by the PCI Specification. The PCI Configuration Space can be shared
across multiple PCI Buses. On most PC-AT architecture systems and typical Intel®
chipsets, the PCI Configuration Space is accessed via I/O ports 0xCF8 and 0xCFC.
Many other implementations are possible.

PCI Controller

A hardware components that is discovered by a PCI Bus Driver, and is managed by a
PCI Device Driver. PCI Functions and PCI Controller are used equivalently in this
document.

PCI Device Driver

Software that manages one or more PCI Controllers of a specific type. A driver will
use the PCI I/O Protocol to produce a device I/O abstraction in the form of another
Version 2.5 April, 2015 2557

Unified Extensible Firmware Interface Specification
protocol (i.e., Block I/O, Simple Network, Simple Input, Simple Text Output, Serial I/
O, Load File).

PCI Devices

A collection of up to 8 PCI Functions that share the same PCI Configuration Space. A
PCI Device is physically connected to a PCI Buses.

PCI Enumeration

The process of assigning resources to all the PCI Controllers on a given PCI Host Bus
Controller. This includes PCI Bus Number assignments, PCI Interrupt assignments,
PCI I/O resource allocation, the PCI Memory resource allocation, the PCI
Prefetchable Memory resource allocation, and miscellaneous PCI DMA settings.

PCI Functions

A controller that provides some type of I/O services. It consumes some combination
of PCI I/O, PCI Memory, and PCI Prefetchable Memory regions, and up to 256 bytes
of the PCI Configuration Space. The PCI Function is the basic unit of configuration
for PCI.

PCI Host Bus Controller

A chipset component that produces PCI I/O, PCI Memory, and PCI Prefetchable
Memory regions in a single Coherency Domain. A PCI Host Bus Controller is
composed of one or more PCI Root Bridges.

PCI I/O Protocol

A software interface that provides access to PCI Memory, PCI I/O, and PCI
Configuration spaces for a PCI Controller. It also provides an abstraction for PCI Bus
Master DMA.

PCI Option ROM

A ROM device that is accessed through a PCI Controller, and is described in the PCI
Controller’s Configuration Header. It may contain one or more PCI Device Drivers
that are used to manage the PCI Controller.

PCI Root Bridge I/O Protocol

A software abstraction that provides access to the PCI I/O, PCI Memory, and PCI
Prefetchable Memory regions in a single Coherency Domain.

PCI Root Bridge

A chipset component(s) that produces a physical PCI Local Bus.

PCI Segment

A collection of up to 256 PCI Buses that share the same PCI Configuration Space. PCI
Segment is defined in Section 6.5.6 of the ACPI 2.0 Specification as the _SEG object.
The SAL_PCI_CONFIG_READ and SAL_PCI_CONFIG_WRITE procedures
defined in chapter 9 of the SAL Specification define how to access the PCI
Configuration Space in a system that supports multiple PCI Segments. If a system
only supports a single PCI Segment the PCI Segment number is defined to be zero.
2558 April, 2015 Version 2.5

The existence of PCI Segments enables the construction of systems with greater than
256 PCI buses.

Pool Memory

A set of contiguous bytes. A pool begins on, but need not end on, an “8-byte”
boundary. Pool memory is allocated in pages—that is, firmware allocates enough
contiguous pages to contain the number of bytes specified in the allocation request.
Hence, a pool can be contained within a single page or extend across multiple pages.
Pool memory is allocated by EFI_BOOT_SERVICES.AllocatePool() and
returned by EFI_BOOT_SERVICES.FreePool().

Preboot Execution Environment (PXE)

A means by which agents can be loaded remotely onto systems to perform
management tasks in the absence of a running OS. To enable the interoperability of
clients and downloaded bootstrap programs, the client preboot code must provide a set
of services for use by a downloaded bootstrap. It also must ensure certain aspects of
the client state at the point in time when the bootstrap begins executing.

The complete PXE specification covers three areas; the client, the network and the
server.

Client

• Makes network devices into bootable devices.

• Provides APIs for PXE protocol modules in EFI and for universal drivers in the
OS.

Network

• Uses existing technology: DHCP, TFTP, etc.

• Adds “vendor-specific” tags to DHCP to define PXE-specific operation within
DHCP.

• Adds multicast TFTP for high bandwidth remote boot applications.

• Defines Bootserver discovery based on DHCP packet format.

Server

• Bootserver: Responds to Bootserver discovery requests and serves up remote
boot images.

• proxyDHCP: Used to ease the transition of PXE clients and servers into existing
network infrastructure. proxyDHCP provides the additional DHCP information
that is needed by PXE clients and Bootservers without making changes to existing
DHCP servers.

• MTFTP: Adds multicast support to a TFTP server.

• Plug-In Modules: Example proxyDHCP and Bootservers provided in the PXE
SDK (software development kit) have the ability to take plug-in modules (PIMs).
These PIMs are used to change/enhance the capabilities of the proxyDHCP and
Bootservers.
Version 2.5 April, 2015 2559

Unified Extensible Firmware Interface Specification
Protocol Handler Services

The set of functions used to manipulate handles, protocols, and protocol interfaces.
Includes EFI_BOOT_SERVICES.InstallProtocolInterface(),
EFI_BOOT_SERVICES.UninstallProtocolInterface(),
EFI_BOOT_SERVICES.ReinstallProtocolInterface(),
EFI_BOOT_SERVICES.HandleProtocol(),
EFI_BOOT_SERVICES.RegisterProtocolNotify(),
EFI_BOOT_SERVICES.LocateHandle(), and
EFI_BOOT_SERVICES.LocateDevicePath().

Protocol Handler

A function that responds to a call to a HandleProtocol request for a given handle.
A protocol handler returns a protocol interface structure.

Protocol Interface Structure

The set of data definitions and functions used to access a particular type of device.
For example, BLOCK_IO is a protocol that encompasses interfaces to read and write
blocks from mass storage devices. See Protocol.

Protocol Revision Number

The revision number associated with a protocol. See Protocol.

Protocol

The information that defines how to access a certain type of device during boot
services. A protocol consists of a Globally Unique Identifier (GUID), a protocol
revision number, and a protocol interface structure. The interface structure contains
data definitions and a set of functions for accessing the device. A device can have
multiple protocols. Each protocol is accessible through the device’s handle.

PXE Base Code Protocol

A protocol that is used to control PXE-compatible devices. It may be used by the
firmware’s boot manager to support booting from remote locations. Also called the
EFI PXE Base Code Protocol.

PXE

See Preboot Execution Environment (PXE).

Question

IFR which describes how a single configuration setting should be presented, stored, and
validated.

Read-Only Memory (ROM)

When used with reference to the UNDI specification, ROM refers to a nonvolatile
memory storage device on a NIC.

Reset
The action which forces question values to be reset to their defaults.
2560 April, 2015 Version 2.5

ROM

See Question .

Runtime Services Driver

A program that is loaded into runtime services memory and stays resident during
runtime.

Runtime Services Table

A table that contains the firmware entry points for accessing runtime services
functions such as Time Services and Virtual Memory Services. The table is accessed
through a pointer in the System Table.

Runtime Services

Interfaces that provide access to underlying platform specific hardware that may be
useful during OS runtime, such as timers. These services are available during the boot
process but also persist after the OS loader terminates boot services.

SAL

See System Abstraction Layer (SAL).

scan code

A value representing the location of a key on a keyboard. Scan codes may also encode
make (key press) and break (key release) and auto-repeat information.

Serial Protocol

A Protocol that is used during boot services to abstract byte stream devices-that is, to
communicate with character-based I/O devices.

SGML

Standard Generalized Markup Language. A markup language for defining markup
languages.

shifted Unicode

Shifted Unicode represents the Unicode character code of a key when the shift
modifier key is held down. For instance, key C1 is equated to the letter a and its
Unicode character code in the typical U.K. keyboard is a non-shifted value of 0x0061.
When the shift key is held down in conjunction with the pressing of key C1, however,
the value on the same keyboard often produces an A, which is a the Unicode character
code 0x0041.

A Protocol that is used during boot services to abstract byte stream devices—that is, to
communicate with character-based I/O devices.

Simple File System Protocol

A component of the File System Protocol. It provides a minimal interface for file-type
access to a device.
Version 2.5 April, 2015 2561

Unified Extensible Firmware Interface Specification
Simple Input Protocol

A protocol that is used to obtain input from the ConsoleIn device. It is one of two
protocols that make up the Console I/O Protocol.

Simple Network Protocol

A protocol that is used to provide a packet-level interface to a network adapter. Also
called the EFI Simple Network Protocol.

Simple Text Output Protocol

A protocol that is used to control text-based output devices. It is one of two protocols
that make up the Console I/O Protocol.

SKU

Stock keeping unit. An acronym commonly used to reference a “version” of a
particular platform. An example might be “We have three different SKUs of this
platform.”

SMBIOS

See System Management BIOS (SMBIOS).

SNIA

Storage Network Industry Association.(www.snia.org)

SNIA Common RAID Disk Data Format

Storage Network Industry Association Common RAID Disk Data Format
Specification, Revision 1.2, July 28, 2006. (www.snia.org)

SSL

Secure Sockets Layer. A security protocol that provides communications privacy over
the Internet. It is predecessor to TLS.

StandardError

The device handle that corresponds to the device used to display error messages to the
user from the boot services environment.

Status Codes

Success, error, and warning codes returned by boot services and runtime services
functions.

string

A null-terminated array of 16-bit UCS-2 encoded Unicode characters. All strings in
this specification are encoded using UCS-2 unless otherwise specified.

 Submit

The action which forces modified question values to be written back to storage.

System Abstraction Layer (SAL)

Firmware that abstracts platform implementation differences, and provides the basic
platform software interface to all higher level software.
2562 April, 2015 Version 2.5

System Management BIOS (SMBIOS)

A table-based interface that is required by the Wired for Management Baseline
Specification. It is used to relate platform-specific management information to the OS
or to an OS-based management agent.

System Table

Table that contains the standard input and output handles for a UEFI application, as
well as pointers to the boot services and runtime services tables. It may also contain
pointers to other standard tables such as the ACPI, SMBIOS, and SAL System tables.
A loaded image receives a pointer to its system table when it begins execution. Also
called the EFI System Table.

Target

The system being configured.

Task Priority Level (TPL)

The boot services environment exposes three task priority levels: “normal,”
“callback,” and “notify.”

Task Priority Services

The set of functions used to manipulate task priority levels. Includes
EFI_BOOT_SERVICES.RaiseTPL() and
EFI_BOOT_SERVICES.RestoreTPL().

TFTP

See Trivial File Transport Protocol (TFTP).

Time Format

The format for expressing time in an EFI-compliant platform. For more information,
see Appendix A.

Time Services

The set of functions used to manage time. Includes GetTime(), SetTime(),
GetWakeupTime(), and SetWakeupTime().

Timer Services

The set of functions used to manipulate timers. Contains a single function,
EFI_BOOT_SERVICES.SetTimer().

TLS

Transport Layer Security. A protocol to provide privacy and data integrity between
two communicating applications above TCP.

TPL

See Target .

Trivial File Transport Protocol (TFTP)

A protocol used to download a Network Boot Program from a TFTP server.
Version 2.5 April, 2015 2563

Unified Extensible Firmware Interface Specification
UNDI

See Universal Network Device Interface (UNDI).

Unicode Collation Protocol

A protocol that is used during boot services to perform case-insensitive comparisons
of strings.

Unicode

An industry standard internationalized character set used for human readable message
display.

Universal Network Device Interface (UNDI)

UNDI is an architectural interface to NICs. Traditionally NICs have had custom
interfaces and custom drivers (each NIC had a driver for each OS on each platform
architecture). Two variations of UNDI are defined in this specification: H/W UNDI
and S/W UNDI. H/W UNDI is an architectural hardware interface to a NIC. S/W
UNDI is a software implementation of the H/W UNDI.

Universal Serial Bus (USB)

A bi-directional, isochronous, dynamically attachable serial interface for adding
peripheral devices such as serial ports, parallel ports, and input devices on a single
bus.

URI

Uniform resource identifier. URI is a string of characters used to identify a name of
a resource.

USB Bus Driver

Software that enumerates and creates a handle for each newly attached USB
Controller and installs both the USB I/O Protocol and the Device Path Protocol onto
that handle, starts that device driver if applicable. For each newly detached USB
Controller, the device driver is stopped, the USB I/O Protocol and the Device Path
Protocol are uninstalled from the device handle, and the device handle is destroyed.

USB Bus

A collection of up to 127 physical USB Devices that share the same physical USB
bus. All devices on a USB Bus share the bandwidth of the USB Bus.

USB Controller

A hardware component that is discovered by a USB Bus Driver, and is managed by a
USB Device Driver. USB Interface and USB Controller are used equivalently in this
document.

USB Device Driver

Software that manages one or more USB Controller of a specific type. A driver will
use the USB I/O Protocol to produce a device I/O abstraction in the form of another
protocol (i.e., Block I/O, Simple Network, Simple Input, Simple Text Output, Serial I/
O, Load File).
2564 April, 2015 Version 2.5

http://en.wikipedia.org/wiki/Character_string_(computer_science)
http://en.wikipedia.org/wiki/Character_(computing)
http://en.wikipedia.org/wiki/Identifier
http://en.wikipedia.org/wiki/Resource_(computer_science)
http://en.wikipedia.org/wiki/Resource_(computer_science)

USB Device

A USB peripheral that is physically attached to the USB Bus.

USB Enumeration

A periodical process to search the USB Bus to detect if there have been any USB
Controller attached or detached. If an attach event is detected, then the USB
Controllers device address is assigned, and a child handle is created. If a detach event
is detected, then the child handle is destroyed.

USB Host Controller

Moves data between system memory and devices on the USB Bus by processing data
structures and generating the USB transactions. For USB 1.1, there are currently two
types of USB Host Controllers: UHCI and OHCI.

USB Hub

A special USB Device through which more USB devices can be attached to the USB
Bus.

USB I/O Protocol

A software interface that provides services to manage a USB Controller, and services
to move data between a USB Controller and system memory.

USB Interface

The USB Interface is the basic unit of a physical USB Device.

USB

See Universal Serial Bus (USB).

Variable Services

The set of functions used to manage variables. Includes GetVariable(),
SetVariable(), and GetNextVariableName().

Virtual Memory Services

The set of functions used to manage virtual memory. Includes
SetVirtualAddressMap() and ConvertPointer().

VM

The Virtual Machine, a pseudo processor implementation consisting of registers
which are manipulated by the interpreter when executing EBC instructions.

Watchdog Time

An alarm timer that may be set to go off. This can be used to regain control in cases
where a code path in the boot services environment fails to or is unable to return
control by the expected path.

WfM

See Wired for Management (WfM).
Version 2.5 April, 2015 2565

Unified Extensible Firmware Interface Specification
Wired for Management (WfM)

Refers to the Wired for Management Baseline Specification. The Specification
defines a baseline for system manageability issues; its intent is to help lower the cost
of computer ownership.

x64

Processors that are compatible with instruction sets and operation modes as
exemplified by the AMD64 or Intel® Extended Memory 64 Technology
(Intel® EM64T) architecture.

XHTML

Extensible HTML. XHTML "will obey all of the grammar rules of XML (properly
nested elements, quoted attributes, and so on), while conforming to the vocabulary of
HTML (the elements and attributes that are available for use ant their relationships to
one another)." [PXML, pg., 153]. Although not completely defined, XHTML is
basically the intersection of XML and HTML and does support forms.

XML

Extensible Markup Language. A subset of SGML. Addresses many of the problems
with HTML but does not currently (1.0) support forms in any specified way.
2566 April, 2015 Version 2.5

Index

Symbols
_ADR, definition of 2227
_CID 282
_CRS, definition of 2227
_HID 282
_HID, definition of 2227
_UID 282
_UID, definition of 2227
!PXE structure field definitions 1990
!PXE structures 1989

Numerics
32/64-bit UNDI interface 1989

A
ACPI 2226
ACPI _ADR 316
ACPI _ADR Device Path 284
ACPI Device Path, definition of 2227
ACPI name space 1975, 1979
ACPI Source Language 277
ACPI Terms 1979
ACPI, definition of 2227
ADD 919
Advanced Configuration and Power Interface
specification 2226
Advanced Configuration and Power Interface
specification See also related information
AllocateBuffer() 669, 717
AllocatePages() 141
AllocatePool() 149
alphabetic function lists 2121
AND 920
ANSI 3.64 terminals, and SIMPLE_TEX-
T_OUTPUT 1973
Application, EFI 19, 20
ARP cache entries 1060
ARP Protocol

Functions
Add() 1356

Configure() 1354
Delete() 1360
Find() 1358
Flush() 1361
Request() 1362, 1364

GUID 1352
Interface Structure 1352

ARP Service Binding Protocol
GUID 1351

Arp() 1083
Arrow shapes 460
ASHR 921
ASL See ACPI Source Language
AsyncInterruptTransfer() 806
AsyncIsochronousTransfer() 814
Attribute bits, EFI PCI I/O Protocol 695
Attribute bits, PCI Root Bridge I/O 649
attributes

architecturally defined 74
Attributes, SIMPLE_TEXT_OUTPUT 466
Attributes() 722

B
Base Code (BC), definition of 2228
bibliography 2221
Big Endian, definition of 2228
BIOS code 7
BIOS Parameter Block 519
BIOS Parameter Block (BPB), definition of
2228
BIOS, definition of 2228
BIS_ALG_ID 1113
BIS_APPLICATION_HANDLE 1102
BIS_CERT_ID 1112
Block Elements Code Chart 460
Block I/O Protocol 581, 591

Functions
FlushBlocks() 591, 598
Readblocks() 587, 594
Reset() 586, 593
Version 2.5 April, 2015 2567

Unified Extensible Firmware Interface Specification
WriteBlocks() 589, 596
GUID 582, 592
Interface Structure 582, 592
Revision Number 582

Block Size, definition of 2228
Blt buffer 495
Blt Operation Table 505, 509
Blt() 504
Boot Device, definition of 2228
Boot Integrity Services Protocol 1098

Functions
Free() 1106
GetBootObjectAuthorizationCertifi-

cate() 1107
GetBootObjectAuthorizationCheck-

Flag() 1108
GetBootObjectAuthorizationUpdate-

Token() 1109
GetSignatureInfo() 1110
Initialize() 1101
Shutdown() 1105
UpdateBootObjectAuthorizationUpdat

eBootObjectAuthoriza-
tion_EFI_BIS() 1115

VerifyBootObject() 1123
VerifyObjectWithCredential() 1131

GUID 1099
Interface Structure 1099

boot manager 67
default media boot 69

Boot Manager, definition of 2228
boot mechanisms 79
boot order list 67
boot process

illustration of 17
overview 17

boot sequence 67
Boot Services 115, 221

global functions 115, 221
handle-based functions 115, 221

boot services 8
Boot Services Driver, definition of 2229
Boot Services Table, definition of 2229

Boot Services Table, EFI 84
Boot Services Time, definition of 2229
Boot Services, definition of 2229
booting

future boot media 81
via a network device 81
via Load File Protocol 80
via Simple File Protocol 79

booting from
CD-ROM and DVD-ROM 523
diskettes 523
hard drives 523
network devices 524
removable media 523

BPB See BIOS Parameter Block
BREAK 922
BulkTransfer() 803
bus-specific driver override protocol 380

C
CalculateCrc32() 220
CALL 924
Callback() 1097
calling conventions 27

general 22
IA-32 24

CDB 1994
CheckEvent() 132
ClearRootHubPortFeature () 823
ClearScreen() 467
Close() 533
CloseEvent() 128
CloseEventExCreateEventEx 124
CloseProtocol() 177
Cluster, definition of 2229
CMP 926
CMPI 928
COFF, definition of 2229
Coherency Domain, definition of 2229
Common Information Model (CIM), definition
of 2230
compressed data

bit order 888
2568 April, 2015 Version 2.5

block body 892
block header 890
format 888, 890
overall structure 889

Compression Algorithm Specification 887
compression source code 2073
compressor design 893
Configuration() 677
ConnectController() 181
Console 1971
Console I/O protocol 439
ConsoleIn 439
ConsoleIn, definition of 2230
ConsoleOut 453
ConsoleOut, definition of 2230
ControlTransfer() 800
conventions 11

data structure descriptions 11
function descriptions 12
instruction descriptions 13
procedure descriptions 12
protocol descriptions 12
pseudo-code conventions 13

ConvertPointer() 251
CopyMem() 215, 664, 711
CreateEvent() 120
CreateEventEx 116, 124, 129
CreateThunk() 968
cursor movement 2067

D
Debug Image Info Table 884
Debug Support Protocol 858

Functions
GetMaximumProcessorIndex() 861
InvalidateInstructionCache() 875
RegisterExceptionCallback() 870
RegisterPeriodicCallback() 862

GUID 859
Interface Structure 859

Debugport device path 881
Debugport Protocol 876

Functions

Poll() 881
Read() 880
Reset() 878
Write() 879

GUID 876
Interface Structure 877

Decompress Protocol 900
Functions

Decompress() 903
GetInfo() 901

GUID 900
Interface Structure 900

Decompress() 903
decompression source code 2101
decompressor design 899
Defined GUID Partition Entry

Attributes 113
Partition Type GUIDs 113

Delete() 534
design overview 8
Desktop Management Interface (DMI), defini-
tion of 2230
Desktop Management Task Force (DMTF),
definition of 2230
Device Handle, definition of 2230
Device Path

for IDE disk 1977
for legacy floppy 1976
for secondary root PCI bus with PCI to PCI

bridge 1978
Device Path Generation, Rules 315

Hardware vs. Messaging Device Paths 316
Housekeeping 315
Media Device Path 317
Other 317
with ACPI _ADR 316
with ACPI _HID and _UID 315

Device Path Instance, definition of 2230
Device Path Node, definition of 2231
Device Path Protocol 277

GUID 278
Interface Structure 278

device path protocol 277
Version 2.5 April, 2015 2569

Unified Extensible Firmware Interface Specification
Device Path, ACPI 282
Device Path, BIOS Boot Specification 317
Device Path, definition of 2231
Device Path, hardware

memory-mapped 281
PCCARD 281
PCI 280
vendor 281, 282

Device Path, media 310
Boot Specification 314
CD-ROM Media 311
File Path Media 312
hard drive 310
Media Protocol 312
Vendor-Defined Media 312

Device Path, messaging 285
1394 287
ATAPI 285
FibreChannel 285
I2O 292
InfiniBand 293
IPv4 292
IPv6 293
MAC Address 292
SCSI 285
UART 294
UART flow control 295
USB 288
USB class 291
Vendor-Defined 295

Device Path, nodes
ACPI Device Path 278
BIOS Boot Specification Device Path 279
End of Hardware Device Path 279
End This Instance of a Device Path 279
generic 279
Hardware Device Path 278
Media Device Path 278
Messaging Device Path 278

Device Path,overview 277
device paths

EFI simple pointer 474
PS/2 mouse 475

serial mouse 476
USB mouse 477

DHCP packet 1058
Dhcp() 1066
DHCP4 Option Data

Interface Structure 1378
DHCP4 Packet Data

Interface Structure 1371, 1398
DisconnectController() 186
Discover() 1068
Disk I/O Protocol 569

Functions
ReadDisk() 321, 322, 323, 324, 325,

345, 346, 348, 349, 559, 561,
563, 564, 566, 567, 571, 787,
788, 1174, 1175, 1901, 1902,
1910, 1911, 1913, 1914, 1915

WriteDisk() 572, 1165, 1166, 1170,
1172, 1173, 1176, 1179, 1180

GUID 317, 344, 347, 557, 570, 786, 1164,
1168, 1517, 1900, 1907

Interface Structure 318, 344, 347, 557, 570,
786, 1164, 1168, 1517, 1900, 1907

Revision Number 570
DIV 930
DIVU 931
document

attributes 6
audience 8
contents 2
goals 6
organization 2
purpose 1

driver binding protocol 351
driver diagnostics protocol 383
Driver Model Boot Services 152
Driver Signing 1522
DriverLoaded() 379
Dynamic Host Configuration Protocol (DH-
CP), definition of 2231

E
EBC Image, definition of 2231
2570 April, 2015 Version 2.5

EBC Instruction
ADD 919
AND 920
ASHR 921
BREAK 922
CALL 924
CMP 926
CMPI 928
DIV 930
DIVU 931
EXTNDB 932
EXTNDD 933
EXTNDW 934
JMP 935
JMP8 937
LOADSP 938
MOD 939
MODU 940
MOV 941
MOVI 943
MOVIn 945
MOVn 946
MOVREL 947
MOVsn 948
MUL 950
MULU 951
NEG 952
NOT 953
OR 954
POP 955
POPn 956
PUSH 957
PUSHn 958
RET 959
SHL 960
SHR 961
STORESP 962
SUB 963
XOR 964

EBC instruction descriptions 13
EBC instruction encoding 916
EBC instruction operands 914

direct operands 914

immediate operands 915
indirect operands 915
indirect with index operands 915

EBC Instruction Set 918
EBC instruction set 918
EBC instruction syntax 916
EBC Interpreter Protocol 967

Functions
CreateThunk() 968
GetVersion() 972
RegisterICacheFlush() 970
UnloadImage() 969

GUID 967
Interface Structure 967

EBC Tools 972
EBC tools

C coding convention 972
debug support 977
EBC C compiler 972
EBC interface assembly instructions 973
EBC linker 976
EBC to EBC arguments calling convention

974
EBC to native arguments calling conven-

tion 973
function return values 974
function returns 974
image loader 977
native to EBC arguments calling conven-

tion 973
stack maintenance and argument passing

973
thunking 974
VM exception handling 977

EBC virtual machine 909
architectural requirements 965
runtime and software conventions 965

EFI Application 19, 20, 519
EFI Application, definition of 2232
EFI Boot Manager 520
EFI Boot Services Table 84
EFI Bus-Specific Driver Override Protocol

functions
Version 2.5 April, 2015 2571

Unified Extensible Firmware Interface Specification
GetDriver() 382
EFI Byte Code (EBC) 909
EFI Byte Code (EBC), definition of 2232
EFI Byte Code Virtual Machine 2
EFI Component Name Protocol 683

functions
GetControllerName() 391
GetDriverName() 389

EFI Debug Support Protocol 858
EFI debug support table 883
EFI Debugport Protocol 876
EFI debugport variable 882
EFI DHCPv4 Protocol

Functions
Build() 1385
GetModeData() 1368, 1394
Parse() 1390, 1419
Release() 1383, 1414, 1416
RenewRebind() 1381, 1409, 1412
Start() 1372, 1379, 1400, 1407
Stop() 1384, 1418
TransmitReceive() 1387

GUID 1366, 1392
Interface Structure 1366, 1392

EFI DHCPv4 Service Binding Protocol
GUID 1365, 1391

EFI Directory Structure 520
EFI Driver 519
EFI Driver Binding Protocol

functions
Start() 360
Stop() 369
Supported() 354

EFI Driver Configuration Protocol
functions

OptionsValid() 406
SetOptions() 404

EFI Driver Diagnostics Protocol 683
EFI Driver Diagnstics Protocol

functions
RunDiagnostics() 385

EFI Driver Model 1
EFI driver model 9

EFI Driver, definition of 2232
EFI File, definition of 2232
EFI Hard Disk, definition of 2232
EFI Image 18, 519
EFI Image handoff state 29

IA-32 26
EFI Image Header 18

PE32+ image format 18
EFI Image, definition of 2236
EFI IPv4 Configuration Protocol

Functions
GetData() 1264
Start() 1261
Stop() 1263

GUID 1260
Interface Structure 1260

EFI IPv4 Protocol
Functions

Cancel() 1258, 1292
GetModeData() 1239, 1268
Groups() 1246, 1278
Open() 1244, 1276
Receive() 1256, 1290
Route() 1248, 1280
Transmit() 1250, 1284

GUID 1238, 1267
Interface Structure 1238, 1267

EFI IPv4 Service Binding Protocol
GUID 1237, 1266

EFI MTFTP4 Protocol
Functions

WriteFile() 1484
EFI MTFTPv4 Protocol

Functions
Configure() 1465, 1493
GetInfo() 1467
GetModeData () 1462
ParseOptions() 1476
ReadDirectory() 1486
ReadFile() 1478

Interface Structure 1461
EFI MTFTPv4 Service Binding Protocol

GUID 1460
2572 April, 2015 Version 2.5

EFI OS Loader 19, 519
EFI OS loader, definition of 2232
EFI partitioning scheme 107
EFI Platform Driver Override Protocol

functions
DriverLoaded() 379
GetDriver() 375
GetDriverPath() 377

EFI Runtime Services Table 84
EFI Scan Codes, SIMPLE_INPUT_INTER-
FACE 440
EFI Service Binding Protocol

Functions
CreateChild() 394
DestroyChild() 398

GUID 393
Interface Structure 393

EFI Specification 1
Design Overview 8
Goals 6
Target Audience 8

EFI System Table 83
EFI system table location 884
EFI Tables

EFI_BOOT_SERVICES 88
EFI_CONFIGURATION_TABLE 94
EFI_RUNTIME_SERVICES 92
EFI_SYSTEM_TABLE 86
EFI_TABLE_HEADER 85

EFI tables
EFI_IMAGE_ENTRY_POINT 83

EFI time 1969
EFI UDPv4 Protocol

Functions
Cancel() 1209, 1440, 1458
GetModeData() 1186, 1191, 1424,

1427, 1444, 1447
Groups() 1429, 1449
Poll() 1210, 1441, 1459
Receive() 1205, 1438, 1456
Route() 1193, 1430
Transmit() 1198, 1200, 1432, 1450

GUID 1184, 1422, 1442

Interface Structure 1184, 1422, 1442
EFI USB Host Controller Protocol

functions
AsyncInterruptTransfer() 806
AsyncIsochronousTransfer () 814
BulkTransfer() 803
ClearRootHubPortFeature () 823
ControlTransfer() 800
GetRootHubPortNumber () 792
GetRootHubPortStatus () 817
GetState() 796
IsochronousTransfer() 811
Reset() 794
SetRootHubPortFeature () 821
SetState() 798
SyncInterruptTransfer() 809

EFI_ALLOCATE_TYPE 141
EFI_ARP_CONFIG_DATA 1354
EFI_ARP_FIND_DATA 1359
EFI_ARP_PROTOCOL 1352
EFI_ARP_SERVICE_BINDING_PROTO-
COL 1351
EFI_AUTHENTICATION_INFO_PROTO-
COL 1517
EFI_BIS_PROTOCOL 1098
EFI_BIS_SIGNATURE_INFO 1110
EFI_BIS_VERSION 1102
EFI_BLOCK_IO_MEDIA 583
EFI_BOOT_SERVICES table 88
EFI_BUS_SPECIFIC_DRIVER_OVER-
RIDE_PROTOCOL 380
EFI_COMPONENT_NAME2_PROTOCOL
387
EFI_CONFIGURATION_TABLE 94
EFI_DECOMPRESS_PROTOCOL 900
EFI_DEVICE_PATH 278
EFI_DEVICE_PATH protocol 277
EFI_DEVICE_PATH_UTILITIES_PROTO-
COL 317, 318, 319, 320, 321, 322, 323, 324,
325, 326, 344, 345, 346, 347, 348, 349
EFI_DHCP4_CALLBACK 1374, 1402, 1410
EFI_DHCP4_CONFIG_DATA 1373, 1395,
1401, 1405
Version 2.5 April, 2015 2573

Unified Extensible Firmware Interface Specification
EFI_DHCP4_EVENT 1375
EFI_DHCP4_HEADER 1377, 1399, 1403
EFI_DHCP4_LISTEN_POINT 1388
EFI_DHCP4_MODE_DATA 1368, 1394,
1395, 1396, 1398
EFI_DHCP4_PACKET 1371, 1398
EFI_DHCP4_PACKET_OPTION 1378
EFI_DHCP4_PROTOCOL 1365, 1366, 1367,
1368, 1369, 1370, 1372, 1374, 1379, 1381,
1382, 1383, 1384, 1385, 1387, 1388, 1390,
1391, 1392, 1400, 1402, 1407, 1409, 1410,
1412, 1418, 1419
EFI_DHCP4_SERVICE_BINDING_PROTO-
COL 393, 1365, 1391
EFI_DHCP4_STATE 1369, 1397, 1404
EFI_DHCP4_TRANSMIT_RECEIVE_TO-
KEN 1387
EFI_DRIVER_BINDING_PROTOCOL 351
EFI_DRIVER_DIAGNOSTIC_TYPE 386
EFI_DRIVER_DIAGNOSTICS_PROTO-
COL 383
EFI_EBC_PROTOCOL 967
EFI_EDID_ACTIVE_PROTOCOL 507
EFI_EDID_DISCOVERED_PROTOCOL 506
EFI_EVENT 120
EFI_FILE_INFO 553

GUID 554
EFI_FILE_SYSTEM_INFO 555

GUID 555
EFI_FILE_SYSTEM_VOLUME_LABEL 556

GUID 556
EFI_GRAPHICS_OUTPUT_PROTO-
COL_SET_MODE 503
EFI_GUID 157
EFI_HANDLE 156
EFI_HASH_PROTOCOL 1900, 1901, 1902,
1904, 1906, 1907, 1910, 1911, 1913, 1914,
1915, 1918, 1919
EFI_IMAGE_ENTRY_POINT 83, 206
EFI_INPUT_KEY 453
EFI_INTERFACE_TYPE 157
EFI_IP4_COMPLETION_TOKEN 1250,
1284, 1285, 1286, 1287

EFI_IP4_CONFIG_DATA 1241, 1270
EFI_IP4_CONFIG_PROTOCOL 1187, 1193,
1241, 1244, 1248, 1259, 1260, 1261, 1263,
1264, 1426, 1430, 1446
EFI_IP4_FRAGMENT_DATA 1253
EFI_IP4_HEADER 1252
EFI_IP4_ICMP_TYPE 1243, 1273
EFI_IP4_IPCONFIG_DATA 1264
EFI_IP4_MODE_DATA 1240, 1269
EFI_IP4_OVERRIDE_DATA 1254
EFI_IP4_PROTOCOL 1186, 1237, 1238,
1239, 1244, 1246, 1248, 1250, 1256, 1258,
1259, 1265, 1267, 1268, 1276, 1278, 1280,
1282, 1284, 1290, 1292, 1293, 1424
EFI_IP4_RECEIVE_DATA 1251
EFI_IP4_ROUTE_TABLE 1242, 1272
EFI_IP4_SERVICE_BINDING_PROTOCOL
393, 1237, 1265, 1266
EFI_IP4_TRANSMIT_DATA 1253
EFI_ISCSI_INITIATOR_NAME_PROTO-
COL 786
EFI_LBA 583
EFI_LOADED_IMAGE Protocol 271
EFI_LOCATE_SEARCH_TYPE 164
EFI_MANAGED_NETWORK_COMPLE-
TION_TOKEN 1149
EFI_MANAGED_NETWORK_CONFIG_-
DATA 1142
EFI_MANAGED_NETWORK_FRAG-
MENT_DATA 1153
EFI_MANAGED_NETWORK_PROTOCOL
1140
EFI_MANAGED_NETWORK_RECEIVE_-
DATA 1150
EFI_MANAGED_NETWORK_SER-
VICE_BINDING_PROTOCOL 1139
EFI_MANAGED_NETWORK_TRANS-
MIT_DATA 1152
EFI_MEMORY_DESCRIPTOR 145
EFI_MEMORY_TYPE 142
EFI_MTFTP4_ACK_HEADER 1469, 1497
EFI_MTFTP4_ACK8_HEADER 1470, 1498
EFI_MTFTP4_DATA_HEADER 1469, 1497
2574 April, 2015 Version 2.5

EFI_MTFTP4_DATA8_HEADER 1470, 1498
EFI_MTFTP4_ERROR_HEADER 1470, 1498
EFI_MTFTP4_OACK_HEADER 1469, 1497
EFI_MTFTP4_PACKET 1469, 1497
EFI_MTFTP4_PROTOCOL 1460, 1461,
1462, 1465, 1467, 1468, 1470, 1476, 1478,
1479, 1481, 1482, 1483, 1484, 1486, 1488,
1495, 1504, 1506, 1509, 1510, 1512, 1516
EFI_MTFTP4_REQ_HEADER 1469, 1497
EFI_NETWORK_INTERFACE_TYPE 1050
EFI_NETWORK_STATISTICS 1037
EFI_OPEN_PROTOCOL_BY_CHILD_-
CONTROLLER 172
EFI_OPEN_PROTOCOL_BY_DRIVER 173,
175
EFI_OPEN_PROTOCOL_BY_HAN-
DLE_PROTOCOL 172, 174
EFI_OPEN_PROTOCOL_EXCLUSIVE 173,
176
EFI_OPEN_PROTOCOL_GET_PROTO-
COL 172, 175
EFI_OPEN_PROTOCOL_TEST_PROTO-
COL 172, 175
EFI_OPTIONAL_PTR 251
EFI_PARITY_TYPE 486
EFI_PCI_IO_PROTOCOL_ACCESS 695
EFI_PCI_IO_PROTOCOL_AT-
TRIBUTE_OPERATION 722
EFI_PCI_IO_PROTOCOL_CONFIG 695
EFI_PCI_IO_PROTOCOL_CONFIG_AC-
CESS 695
EFI_PCI_IO_PROTOCOL_IO_MEM 694
EFI_PCI_IO_PROTOCOL_POLL_IO_MEM
694
EFI_PCI_IO_PROTOCOL_WIDTH 694
EFI_PCI_ROOT_BRIDGE_IO_PROTO-
COL_ACCESS 648
EFI_PCI_ROOT_BRIDGE_IO_PROTO-
COL_IO_MEM 648
EFI_PCI_ROOT_BRIDGE_IO_PROTO-
COL_POLL_IO_MEM 648
EFI_PCI_ROOT_BRIDGE_IO_PROTO-
COL_WIDTH 647

EFI_PHYSICAL_ADDRESS 142
EFI_PLATFORM_DRIVER_OVER-
RIDE_PROTOCOL 373
EFI_PXE_BASE_CODE_CALL-
BACK_PROTOCOL 1096
EFI_PXE_BASE_CODE_CALL-
BACK_STATUS 1097
EFI_PXE_BASE_CODE_FUNCTION 1097
EFI_PXE_BASE_CODE_MODE 1053
EFI_PXE_BASE_CODE_MTFTP_INFO
1073
EFI_PXE_BASE_CODE_PROTOCOL 1051
EFI_PXE_BASE_CODE_TFTP_OPCODE
1073
EFI_RESET_TYPE 254
EFI_RUNTIME_SERVICES table 92
EFI_SERVICE_BINDING_PROTOCOL 393
EFI_SIMPLE_NETWORK_MODE 1024
EFI_SIMPLE_NETWORK_PROTOCOL
1021
EFI_SIMPLE_NETWORK_STATE 1026
EFI_SIMPLE_POINTER_MODE 470
EFI_SIMPLE_POINTER_STATE 473
EFI_STATUS codes ranges 1981
EFI_STATUS Error Codes 1981
EFI_STATUS Success Codes 1981
EFI_STATUS warning codes 1983
EFI_STOP_BITS_TYPE 486
EFI_SYSTEM_TABLE 86
EFI_TABLE_HEADER 85
EFI_TAPE_IO_PROTOCOL 557
EFI_TCP4_PROTOCOL 1184, 1185, 1186,
1191, 1193, 1195, 1198, 1200, 1205, 1207,
1209, 1210
EFI_TCP4_SERVICE_BINDING_PROTO-
COL 393, 1183
EFI_TIME 241
EFI_TIME_CAPABILITIES 243
EFI_UDP4_COMPLETION_TOKEN 1195,
1196, 1198, 1207, 1432, 1450
EFI_UDP4_CONFIG_DATA 1189, 1190,
1425
EFI_UDP4_FRAGMENT_DATA 1202, 1435,
Version 2.5 April, 2015 2575

Unified Extensible Firmware Interface Specification
1453
EFI_UDP4_PROTOCOL 1422, 1423, 1424,
1427, 1429, 1430, 1432, 1435, 1438, 1440,
1441, 1442
EFI_UDP4_RECEIVE_DATA 1202, 1434,
1452
EFI_UDP4_SERVICE_BINDING_PROTO-
COL 393, 1421
EFI_UDP4_SESSION_DATA 1435, 1453
EFI_UDP4_TRANSMIT_DATA 1203, 1436
EFI_UNICODE_COLLATION_PROTOCOL
605
EFI_USB_IO Protocol 827
EFI_USB2_HC_PROTOCOL 789
EFI_VIRTUAL_ADDRESS 147
EFI, definition of 2232
EFI-compliant, definition of 2232
El Torito 519, 521, 522
EnableCursor() 469
End of Hardware Device Path, definition of
2232
Enhanced Mode (EM), definition of 2232
error codes 1981
Event Services 116

function list 116
functions

CheckEvent() 132
CloseEvent() 128
CreateEvent() 120
SignalEvent () 129
WaitForEvent() 130

overview 116
event, definition of 2233
Exit() 208
ExitBootServices() 210
Extensible Firmware Interface Specification 1
EXTNDB 932
EXTNDD 933
EXTNDW 934

F
FAT file system 518
FAT File System, definition of 2233

FAT variants 519
FatToStr() 612
File Allocation Table (FAT), definition of 2233
file attribute bits, EFI_FILE_INFO 554
File Attributes, EFI_FILE_PROTOCOL 531
File Handle Protocol 527

Functions
Close() 533
Delete() 534
EFI_FILE_SYSTEM_INFO 555, 556
EFI_GENERIC_FILE_INFO 553
Flush() 553
GetInfo() 549
GetPosition() 548
Open() 530
Read() 535
SetInfo() 551
SetPosition() 547
Write() 537

Interface Structure 528
Revision Number 528

file names 519
file system format 518, 519
File System Protocol 524
Fill Header 2056
Firmware Interrupts level 117
firmware menu 17
Firmware, definition of 2233
Flush() 553, 672, 720
FlushBlocks() 591, 598
Free() 1106
FreeBuffer() 671, 719
FreePages() 144
FreePool() 150
Functions

in alphabetic order 2121
in alphabetic order within service or proto-

col 2152

G
Geometric Shapes Code Chart 460
Get Config Info 2033
Get Init Info 2030
2576 April, 2015 Version 2.5

Get State 2020
Get Status 2054
GetAttributes() 673
GetBarAttributes() 725
GetBootObjectAuthorizationCertificate() 1107
GetBootObjectAuthorizationCheckFlag()
1108
GetBootObjectAuthorizationUpdateToken()
1109
GetControl() 492

control bits 492
GetControllerName() 391
GetDriver() 375, 382
GetDriverName() 389
GetDriverPath() 377
GetInfo() 549, 901
GetLocation() 721
GetMaximumProcessorIndex() 861
GetMemoryMap() 145
GetNextHighMonotonicCount() 255
GetNextMonotonicCount() 217
GetNextVariableName() 227
GetPosition() 548
GetRootHubPortNumber() 792
GetRootHubPortStatus() 817

PortChangeStatus bit definition 818
PortStatus bit definition 817

GetSignatureInfo() 1110
GetState() 473, 796
GetStatus() 1043
GetTime() 241
GetVariable() 225
GetVersion() 972
GetWakeupTime() 246
globally unique identifier, definition of 2234
glossary 2227
GPT See GUID Partition Table
GUID Partition Entry 112
GUID Partition Entry, definition of 2235
GUID Partition Table 521

GPT 107, 108, 110, 111, 112, 113, 518,
521, 522

GUID Partition Table Header 110, 522

GUID Partition Table Header, definition of
2234
GUID Partition Table, definition of 2234
GUID Partition, definition of 2235
GUID, definition of 2234

H
Handle, definition of 2235
HandleProtocol() 166
Hardware Device Path, definition of 2235
Hash

Hash 1899
Headless system 277
Huffman code generation 897
Huffman coding 2073
HYPERLINK "ch10.doc" l "SIMPLE_TEX-
T_OUTPUT"
08d0c9ea79f9bace118c8200aa004ba90b0200
0000090000000303000000000000c00000000
0000046000009000000636831302e646f6300f
fffadde0000000000000000000000000000000
0000000001600000010000000030063006800
310030002e0064006f0063001300000053004
9004d0050004c0045005f0054004500580054
005f004f00550054005000550054000000-
SIMPLE_TEXT_OUTPUT implementation
control sequences

0013000000530049004d0050004c004500
5f0054004500580054005f004f005
50054005000550054000000SIM-
PLE_TEXT_OUTPUT implemen-
tation control sequences 1973

I
IA-32

EFI Image handoff state 26
ICMP error packet 1058
ICMP Message Types and Codes

Data Structure 1243, 1273
IDE disk device path 1978
Image Handle, definition of 2235
Image Handoff State, definition of 2235
Image Header, definition of 2235
Version 2.5 April, 2015 2577

Unified Extensible Firmware Interface Specification
Image Services
function list 199
functions

EFI_IMAGE_ENTRY_POINT 206
Exit() 208
ExitBootServices() 210
LoadImage() 200
StartImage() 203
UnloadImage() 205

overview 197
Image, definition of 2236
images

loading 17
implementation requirements

general 59
required elements 59

information, resources 2221
Initialize 2035
Initialize() 1029, 1101
InstallConfigurationTable() 218
InstallMultipleProtocolInterfaces() 195
InstallProtocolInterface() 156
instruction summary

EFI byte code virtual machine 2117
Intel Architecture-32 (IA-32), definition of
2236
Intel® Itanium™ Architecture, definition of
2236
interfaces

general categories 21
purpose 20

Interpreter, definition of 2236
Interrupt Enables 2041
InterruptStatus interrupt bit mask settings 1043
InvalidateInstructionCache() 875
Io.Read() 660, 707
Io.Write() 660, 707
IP filter operation 1079
IP4 Protocol

Functions
Poll() 1259, 1293

IPv4 Fragment Data
Data Structure 1253

IPv4 Header
Data Structure 1252

IPv4 IOCTL Data
Data Structure 1241, 1270

IPv4 Mode Data
Data Structure 1240, 1269

IPv4 Override Data
Data Structure 1254

IPv4 Receive Data
Data Structure 1251

IPv4 Route Table
Data Structure 1242, 1272

IPv4 Transmit Data
Data Structure 1253

ISO-9660 522
IsochronousTransfer() 811
Itanium architecture

EFI Image handoff state 29
firmware specifications 2226
platforms 2226
requirements, related to this specification

2226
Itanium™

firmware specifications See also related in-
formation

J
JMP 935
JMP8 937

L
LAN On Motherboard (LOM), definition of
2237
LBA See Logical Block Address
legacy floppy device path 1977
legacy interfaces 6
legacy Master Boot Record 103

and GPT Partitions 105
Partition Record 104

legacy MBR 519
legacy OS 7
Legacy Platform, definition of 2237
legacy systems, support of 11
2578 April, 2015 Version 2.5

Little Endian, definition of 2237
Load File Protocol 1062

Functions
LoadFile() 514

GUID 513
Interface Structure 513

Loaded Image Protocol 271
functions

Unload() 274
GUID 272
Interface Stucture 272
Revision Number 272

Loaded Image, definition of 2237
LoadFile() 514
LoadImage() 200
LOADSP 938
LocateDevicePath() 168
LocateHandle() 164
LocateHandleBuffer() 191
LocateProtocol() 194
long file names 519
Long File Names (LFN), definition of 2237
LZ77 coding 2073

M
Machine Check Abort (MCA), definition of
2238
Managed Network Protocol

Functions
Cancel() 1156
Configure() 1145
GetModeData() 1142
Groups() 1148
McastIpToMac() 1147
Poll() 1157
Receive() 1155
Transmit() 1149

GUID 1140
Interface Structure 1140

Managed Network Service Binding Protocol
GUID 1139

Map() 666, 714
Master Boot Record 518

Master Boot Record (MBR), definition of 2238
MAX_MCAST_FILTER_CNT 1026
MBR See Master Boot Record
MCast IP To MAC 2050
MCastIPtoMAC() 1040
Media Device Path, definition of 2238
media formats 523
Mem.Read() 658, 705
Mem.Write() 658, 705
Memory Allocation Services

function list 137
functions

AllocatePages() 141
AllocatePool() 149
FreePages() 144
FreePool() 150
GetMemoryMap() 145

overview 137
Memory Attribute Definitions 146
memory map 138
Memory Map, definition of 2238
Memory Type, definition of 2238
memory type, usage

after HYPERLINK l “ExitBootServices"
08d0c9ea79f9bace118c8200aa004-
ba90b02000000080000001100000
0450078006900740042006f006f00
7400530065007200760069006300
650073000000ExitBootServices()
138

before HYPERLINK l “ExitBootServices"
08d0c9ea79f9bace118c8200aa004-
ba90b02000000080000001100000
0450078006900740042006f006f00
7400530065007200760069006300
650073000000ExitBootServices()
138

Messaging Device Path, definition of 2239
MetaiMatch() 608
migration requirements 11

EFI support on a legacy platform 11
legacy OS support 11

migration, from legacy systems 11
Version 2.5 April, 2015 2579

Unified Extensible Firmware Interface Specification
Miscellaneous Boot Services
overview 211

Miscellaneous Runtime Services
overview 252

Miscellaneous Services
function list 211, 252
functions

CalculateCrc32() 220
CopyMem() 215
GetNextHighMonotonicCount() 255
GetNextMonotonicCount() 217
InstallConfigurationTable() 218
ResetSystem() 238, 253, 257, 263
SetMem() 216
SetWatchdogTimer() 212
Stall() 214

MOD 939
MODU 940
MOV 941
MOVI 943
MOVIn 945
MOVn 946
MOVREL 947
MOVsn 948
Mtftp() 1072
MTFTP4 Packet Definitions 1469, 1497
MUL 950
Multicast Trivial File Transfer Protocol (MT-
FTP), definition of 2239
MULU 951

N
Name Space

EFI device path 1980
Name space 277
Name Space, definition of 2239
Native Code, definition of 2239
natural indexing 912
NEG 952
Network Boot Program, definition of 2239
Network Bootstrap Program (NBP), definition
of 2239
Network Interface Card (NIC), definition of

2240
Network Interface Identifier Protocol 1048

GUID 1049
Interface Structure 1049
Revision Number 1049

nonvolatile storage 741
NOT 953
NvData 2051
NvData() 1041
NVRAM variables 67

O
opcode summary

EFI byte code virtual machine 2117
Open Modes, EFI_FILE_PROTOCOL 531
Open() 530
OpenProtocol() 170
OpenProtocolInformation() 179
OpenVolume() 526
operating system loader, definition of 2232
Option ROM 6
option ROM 10, 909

EBC 910
legacy 910
relocatable image 910
size restrictions 910

option ROM formats 978
OptionsValid() 406
OR 954
OS loader, definition of 2232
OS Loader, EFI 19
OS network stacks 1988
OutputString() 458
overview of design 8

P
Page Memory, definition of 2240
partition discovery 521
Partition Discovery, definition of 2240
partitioning scheme, EFI 107
PCANSI terminals, and SIMPLE_TEX-
T_OUTPUT 1973
PCI bus driver responsibilities 733
2580 April, 2015 Version 2.5

PCI Bus Driver, definition of 2240
PCI bus drivers 684
PCI Bus, definition of 2241
PCI Configuration Space, definition of 2241
PCI Controller, definition of 2241
PCI device driver responsibilities 735
PCI Device Driver, definition of 2241
PCI device drivers 689
PCI device paths 729
PCI Device, definition of 2241
PCI driver initialization 682
PCI driver model 681
PCI Enumeration, definition of 2241
PCI Function, definition of 2241
PCI Host Bus Controller, definition of 2241
PCI hot-plug events 742
PCI I/O Protocol 691

Functions
AllocateBuffer() 717
Attributes() 722
CopyMem() 711
Flush() 720
FreeBuffer() 719
GetBarAttributes() 725
GetLocation() 721
Io.Read() 707
Io.Write() 707
Map() 714
Mem.Read() 705
Mem.Write() 705
Pci.Read() 709
Pci.Write() 709
PollIo() 703
PollMem() 701
SetBarAttributes() 728
Unmap() 716

GUID 692
Interface Structure 692

PCI Option ROM, definition of 2242
PCI option ROMs 731
PCI root bridge device paths 678
PCI Root Bridge I/O Protocol 646

Functions

AllocateBuffer() 669
Configuration() 677
CopyMem() 664
Flush() 672
FreeBuffer() 671
GetAttributes() 673
Io.Read() 660
Io.Write() 660
Map() 666
Mem.Read() 658
Mem.Write() 658
Pci.Read() 662
Pci.Write() 662
PollIo() 656
PollMem() 654
SetAttributes() 675
Unmap() 668

GUID 411, 646
Interface Structure 646

PCI root bridge I/O support 641
PCI Root Bridge, definition of 2242
PCI Segment, definition of 2242
Pci.Read() 662, 709
Pci.Write() 662, 709
PE32+ image format 18
platform driver override protocol 373
plug and play option ROMs

and boot services 20
pointer movement 2067
Poll() 881
PollIo() 656, 703
PollMem() 654, 701
Pool Memory, definition of 2242
POP 955
POPn 956
Preboot Execution Environment (PXE), defini-
tion of 2242
prerequisite specifications 2225
Protocol

11.7Graphics Output Protocol 284
23.4PXE Base Code Callback 1055, 1064,

1096
ARP 4, 393, 394, 395, 396, 397, 398, 399,
Version 2.5 April, 2015 2581

Unified Extensible Firmware Interface Specification
400, 401, 1052, 1053, 1054, 1056,
1057, 1060, 1061, 1083, 1084,
1085, 1098, 1193, 1248, 1351,
1352, 1353, 1354, 1355, 1356,
1357, 1358, 1359, 1360, 1361,
1362, 1363, 1364, 1430

ARP Service Binding 1351
Block I/O 581, 591
Boot Integrity Services 1098
Boot Integrity Services (BIS) 1054, 1098
Console I/O 3, 158, 439
Debug Support 858
Debugport 876
Decompress 900
Device Path 277
Disk I/O 569
EBC Interpreter 967
EFI DHCPv4 Service Binding 1365, 1370,

1372, 1391
EFI IPv4 4, 1187, 1236, 1237, 1238, 1239,

1240, 1241, 1243, 1244, 1245,
1246, 1248, 1249, 1250, 1251,
1252, 1256, 1259, 1260, 1261,
1262, 1263, 1264, 1265, 1266,
1267, 1268, 1269, 1270, 1271,
1273, 1276, 1277, 1278, 1280,
1284, 1285, 1286, 1290, 1291,
1293, 1365, 1367, 1421, 1424,
1426, 1446, 1461

EFI MTFTPv4 4, 1335, 1337, 1338, 1340,
1341, 1344, 1345, 1348, 1349,
1459, 1460, 1461, 1462, 1463,
1465, 1466, 1470, 1475, 1478,
1480, 1482, 1483, 1484, 1485,
1486, 1487, 1488, 1493, 1503,
1506, 1508, 1509, 1510, 1511,
1512, 1513, 1514, 1515, 1516

EFI MTFTPv4 Service Binding 1459
EFI Service Binding 392, 1139, 1351
EFI TCPv4 4, 1183, 1184, 1185, 1186,

1187, 1191, 1194, 1195, 1197,
1199, 1203, 1205, 1206, 1208

EFI TCPv4 Service Binding 1183

EFI UDPv4 4, 1421, 1422, 1423, 1424,
1425, 1426, 1427, 1428, 1429,
1430, 1431, 1432, 1433, 1434,
1435, 1436, 1438, 1459, 1461, 1488

File Handle 527
File System 524
Load File 1062
Loaded Image 271
Managed Network 4, 1139, 1353
Managed Network Service Binding 4, 1139
Network Interface Identifier 1048, 1050,

1061, 1062
PCI I/O 691
PCI Root Bridge I/O 646
PXE Base Code 1051
PXE Base Code Callback 1096
Serial I/O 483
Simple File System 524
Simple Input 439, 450
Simple Network 1021, 1035, 1038, 1039,

1040, 1048, 1051, 1062, 1140
Simple Pointer 469
Unicode Collation 605

Protocol Handler Services
function list 150
functions 150

CloseProtocol() 177
ConnectController() 181
DisconnectController() 186
HandleProtocol() 166
InstallMultipleProtocolInterfaces() 195
InstallProtocolInterface() 156
LocateDevicePath () 168
LocateHandle() 164
LocateHandleBuffer() 191
LocateProtocol() 194
OpenProtocol() 170
OpenProtocolInformation() 179
ProtocolsPerHandle() 189
RegisterProtocolNotify() 162
ReinstallProtocolInterface() 160
UninstallMutipleProtocolInterfaces()

197
2582 April, 2015 Version 2.5

UninstallProtocolInterface() 158
overview 150

Protocol Handler, definition of 2243
Protocol Interface, definition of 2243
Protocol Revision Number, definition of 2243
Protocol, definition of 2243
protocols 41

code illustrating 42
construction of 41
EFI_BUS_SPECIFIC_DRIVER_OVER-

RIDE_PROTOCOL 380
EFI_DEVICE_PATH 277
EFI_DRIVER_BINDING_PROTOCOL

351
EFI_DRIVER_DIAGNOSTICS_PROTO-

COL 383
EFI_PLATFORM_DRIVER_OVER-

RIDE_PROTOCOL 373
EFI_USB_IO Protocol 827
EFI_USB2_HC_PROTOCOL 789
list of 42
UGA protocols 494

ProtocolsPerHandle() 189
PUSH 957
PUSHn 958
PXE Base Code Callback Protocol 1096

Functions
Callback() 1097

GUID 1096
Interface Structure 1096
Revision Number 1096

PXE Base Code Protocol 1051
Functions

Arp() 1083
Dhcp() 1066
Discover() 1068
Mtftp() 1072
SetIpFilter() 1081
SetPackets() 1089
SetParameters() 1085
SetStationIp() 1087
Start() 1063
Stop() 1065

UdpRead() 1078
UdpWrite() 1076

GUID 1052
Interface Structure 1052
Revision Number 1052

PXE boot server bootstrap types 1069
PXE tag definitions for EFI 1061

Q
QueryCapsuleCapsule() 263
QueryMode() 463

R
Read() 535, 880
Read(), SERIAL_IO 494
ReadBlocks() 587, 594
ReadDisk() 571
ReadKeyStroke() 453
Read-Only Memory (ROM), definition of 2244
Receive 2062
Receive Filters 2043
Receive() 1047
ReceiveFilters() 1032
ReceiveFilterSetting bit mask values 1026
references 2221
RegisterExceptionCallback() 870
RegisterICacheFlush() 970
RegisterPeriodicCallback() 862
RegisterProtocolNotify() 162
ReinstallProtocolInterface() 160
related information 2221
Reset, PXE 2038
Reset, UNDI 2038
Reset(), Debugport Protocol 878
Reset(), EFI_BLOCK_IO 586, 593
Reset(), EFI_SIMPLE_POINTER 472
Reset(), SERIAL_IO 487
Reset(), Simple Network Protocol 1030
Reset(), SIMPLE_INPUT 452
Reset(), SIMPLE_TEXT_OUTPUT 457
Reset(), USB Host Controller 794
ResetSystem() 238, 253, 257, 263
RestoreTPL() 137
Version 2.5 April, 2015 2583

Unified Extensible Firmware Interface Specification
RET 959
RunDiagnostics() 385
Runtime Services 115, 221

Miscellaneous Runtime Services 252
Time Services 240
Variable Services 223
Virtual Memory Services 248

runtime services 8, 21
Runtime Services Driver, definition of 2244
Runtime Services Table, definition of 2244
Runtime Services Table, EFI 84
Runtime Services, definition of 2244

S
SAL, definition of 2244
SAS Boot 296, 298
SCSI Pass Thru device paths 761
SCSI Pass Thru Protocol

using 2069
Secondary Root PCI Bus with PCI to PCI
Bridge Device Path 1979
Security

Driver Signing 1522
Hash 1899, 1900, 1901, 1902, 1903, 1904,

1907, 1910, 1911, 1913, 1914,
1915, 1916, 1918, 1919

Serial I/O Protocol 483
Functions

GetControl() 492
Read() 494
Reset() 487
SetAttributes() 488
SetControl() 490
Write() 493

GUID 484
Interface Structure 484
Revision Number 484

SERIAL_IO_MODE 485
services 20
SetAttribute() 465
SetAttributes() 488, 675
SetBarAttributes() 728
SetControl() 490

control bits 490
SetCursorPosition() 468
SetInfo() 551
SetIpFilter() 1081
SetMem() 216
SetMode() 464, 503, 509
SetOptions() 404
SetPackets() 1089
SetParameters() 1085
SetPosition() 547
SetRootHubPortFeature () 821
SetState() 798
SetStationIp() 1087
SetTime() 245
SetTimer() 133
SetVariable() 229
SetVirtualAddressMap() 249
SetWakeupTime() 247
SetWatchdogTimer() 212
SHL 960
SHR 961
Shutdown 2040
Shutdown() 1031, 1105
SignalEvent() 129
Simple File System Protocol 524

functions
OpenVolume() 526

GUID 524
Interface Structure 524
Revision Number 524

Simple Input Protocol 439, 450
Functions

ReadKeyStroke() 453
Reset() 452

GUID 451
Interface Structure 451
Scan Codes for 440

Simple Network Protocol 1021, 1051, 1062
Functions

GetStatus() 1043
Initialize() 1029
MCastIPtoMAC() 1040
NVData() 1041
2584 April, 2015 Version 2.5

Receive() 1047
ReceiveFilters() 1032
Reset() 1030
Shutdown() 1031
Start() 1027
StationAddress() 1035
Statistics() 1036
Stop() 1028
Transmit() 1045

GUID 1022
Interface Structure 1022
Revision Number 1022

Simple Pointer Protocol 469, 2067
Functions

GetState() 473
Reset() 472

GUID 470
Protocol Interface Structure 470

Simple Text Output Protocol
Functions

ClearScreen() 467
EnableCursor() 469
OutputString() 458
Querymode() 463
Reset() 457
SetAttribute() 465
SetCursorPosition() 468
Setmode() 464
TestString() 462

GUID 454
Interface Structure 454

SIMPLE_INPUT protocol, implementation
1971
SIMPLE_TEXT_OUTPUT protocol, imple-
mentation 1971
SIMPLE_TEXT_OUTPUT_MODE 455
SMBIOS, definition of 2245
specifications, other 2225
specifications, prerequisite 2225
Stall() 214
StandardError 453
StandardError, definition of 2246
Start 2022

Start() 360, 1027
Start(), PXE Base Code Protocol 1063
StartImage() 203
Station Address 2045
StationAddress() 1035
Statistics 2047
Statistics() 1036
Status Codes, definition of 2246
Stop 2028
Stop() 369, 1028
Stop(), PXE Base Code Protocol 1065
STORESP 962
StriColl() 607
StrLwr() 610
StrToFat() 613
StrUpr() 611
SUB 963
success codes 1981
Supported() 354
SyncInterruptTransfer() 809
System Abstraction Layer (SAL), definition of
2246
System Management BIOS (SMBIOS), defini-
tion of 2246
System Partition 518, 520
system partition 8
System Table, definition of 2246
System Table, EFI 83

T
table-based interfaces 8
Task Priority Level (TPL), definition of 2246
task priority levels

general 116
restrictions 117
usage 116

Task Priority Services 116
function list 116
functions

RestoreTPL() 137
overview 116

terminology, definitions 2227
TestString() 462
Version 2.5 April, 2015 2585

Unified Extensible Firmware Interface Specification
TFTP error packet 1058
Time Format, definition of 2246
Time Services

function list 240
functions

GetTime() 241
GetWakeupTime() 246
SetTime() 245
SetWakeupTime() 247

overview 240
Timer Services 116

function list 116
functions

SetTimer() 133
overview 116

TPL restrictions 117
TPL See task priority levels
TPL_APPLICATION level 116, 117
TPL_HIGH_LEVEL 117
TPL_NOTIFY level 117
Transmit 2059
Transmit() 1045
Trivial File Transport Protocol (TFTP), defini-
tion of 2247

U
UDP port filter operation 1079
UDP4 Service Binding Protocol

GUID 1183, 1421, 1442
UdpRead() 1078
UdpWrite() 1076
UGA Draw Protocol

Functions
Blt() 504
SetMode() 503, 509

GUID 496
protocol interface structure 496

UGA protocols 494
UNDI C definitions 1995
UNDI CDB 1994
UNDI CDB field definitions 1994
UNDI command descriptor block 1994
UNDI command format 1993

UNDI commands 2017
Fill Header 2056
Get Config Info 2033
Get Init Info 2030
Get State 2020
Get Status 2054
Initialize 2035
Interrupt Enables 2041
issuing 1993
linking & queuing 2018
MCast IP To MAC 2050
NvData 2051
Receive 2062
Receive Filters 2043
Reset 2038
Shutdown 2040
Start 2022
Station Address 2045
Statistics 2047
Stop 2028
Transmit 2059

UNDI Specification
Definitions 1985
driver types 1988
Referenced Specifications 1986

UNDI Specification, 32/64-Bit 1985
Unicode Collation Protocol 605

Functions
FatToStr() 612
MetaiMatch() 608
StriColl() 607
StrLwr() 610
StrToFat() 613
StrUpr() 611

GUID 605
Interface Structure 605

Unicode control characters, supported 440
UNICODE DRAWING CHARACTERS 459
Unicode, definition of 2247
UninstallMultipleProtocolInterfaces() 197
UninstallProtocolInterface() 158
Universal Graphics Adapter protocols 494
Universal Network Device Interface (UNDI),
2586 April, 2015 Version 2.5

definition of 2247
Universal Serial Bus (USB), definition of 2247
Unload() 274
UnloadImage() 205, 969
Unmap() 668, 716
Update Capsule 256
UpdateBootObjectAuthorization() 1115

Manifest Syntax 1116
UpdateCapsule() 257
USB Bus Driver 825

Bus Enumeration 826
Driver Binding Protocol 825
Entry Point 825
Hot-Plug Event 825

USB Bus Driver, definition of 2247
USB Bus, definition of 2247
USB Controller, definition of 2248
USB Device Driver 826

Driver Binding Protocol 826
Entry Point 826

USB Device Driver, definition of 2248
USB Device, definition of 2248
USB Driver Model 824
USB Enumeration, definition of 2248
USB Host Controller Protocol 789

GUID 790
Interface Structure 790

USB host controller protocol 789
USB Host Controller, definition of 2248
USB hub port change status bitmap 819
USB hub port status bitmap 818
USB Hub, definition of 2248
USB I/O Protocol

functions
UsbAsyncInterruptTransfer () 835
UsbAsyncIsochronousTransfer () 843
UsbBulkTransfer () 833
UsbControlTransfer() 830
UsbGetConfigDescriptor () 847
UsbGetDeviceDescriptor () 845
UsbGetEndpointDescriptor() 851
UsbGetInterfaceDescriptor () 849
UsbGetStringDescriptor() 853

UsbGetSupportedLanguages() 854
UsbIsochronousTransfer () 841
UsbPortReset() 855
UsbSyncInterruptTransfer () 839

USB I/O protocol 827
GUID 827
Interface Structure 827

USB Interface, definition of 2248
USB port feature 822
USB transfer result error codes 831
UsbAsyncInterruptTransfer() 835
UsbAsyncIsochronousTransfer () 843
UsbBulkTransfer() 833
UsbControlTransfer() 830
UsbGetConfigDescriptor() 847
UsbGetDeviceDescriptor () 845
UsbGetEndpointDescriptor() 851
UsbGetInterfaceDescriptor() 849
UsbGetStringDescriptor() 853
UsbGetSupportedLanguages() 854
UsbIsochronousTransfer() 841
UsbPortReset() 855
UsbSyncInterruptTransfer() 839

V
Variable Attributes 226
Variable Services

function list 224
functions

GetNextVariableName() 227
GetVariable() 225
SetVariable() 229

overview 223
variables

global 74
non-volatile 74

VerifyBootObject() 1123
Manifest Syntax 1123

VerifyObjectWithCredential() 1131
Manifest Syntax 1132

virtual machine 909
registers 911

Virtual Memory Services
Version 2.5 April, 2015 2587

Unified Extensible Firmware Interface Specification
function list 248
functions

ConvertPointer() 251
SetVirtualAddressMap () 249

overview 248
VM, definition of 2249

W
WaitForEvent() 130
warning codes 1983
Watchdog timer, definition of 2249
web sites 2221
WIN_CERTIFICATE 1526, 1527, 1528, 1529
Wired for Management (WfM), definition of
2249
Write() 537, 879
Write(), SERIAL_IO 493
WriteBlocks() 589, 596
WriteDisk() 572

X
x64 30
XOR 964
2588 April, 2015 Version 2.5

	Acknowledgements
	Revision History
	Contents
	Tables
	Figures
	1 Introduction
	1.1 UEFI Driver Model Extensions
	1.2 Overview
	1.3 Goals
	1.4 Target Audience
	1.5 UEFI Design Overview
	1.6 UEFI Driver Model
	1.6.1 UEFI Driver Model Goals
	1.6.2 Legacy Option ROM Issues

	1.7 Migration Requirements
	1.7.1 Legacy Operating System Support
	1.7.2 Supporting the UEFI Specification on a Legacy Platform

	1.8 Conventions Used in this Document
	1.8.1 Data Structure Descriptions
	1.8.2 Protocol Descriptions
	1.8.3 Procedure Descriptions
	1.8.4 Instruction Descriptions
	1.8.5 Pseudo-Code Conventions
	1.8.6 Typographic Conventions
	1.8.7 Number formats
	1.8.8 Binary prefixes

	2 Overview
	2.1 Boot Manager
	2.1.1 UEFI Images
	2.1.2 Applications
	2.1.3 UEFI OS Loaders
	2.1.4 UEFI Drivers

	2.2 Firmware Core
	2.2.1 UEFI Services
	2.2.2 Runtime Services

	2.3 Calling Conventions
	2.3.1 Data Types
	2.3.2 IA-32 Platforms
	2.3.3 Intel® Itanium®-Based Platforms
	2.3.4 x64 Platforms
	2.3.5 AArch32 Platforms
	2.3.6 AArch64 Platforms

	2.4 Protocols
	2.5 UEFI Driver Model
	2.5.1 Legacy Option ROM Issues
	2.5.2 Driver Initialization
	2.5.3 Host Bus Controllers
	2.5.4 Device Drivers
	2.5.5 Bus Drivers
	2.5.6 Platform Components
	2.5.7 Hot-Plug Events
	2.5.8 EFI Services Binding

	2.6 Requirements
	2.6.1 Required Elements
	2.6.2 Platform-Specific Elements
	2.6.3 Driver-Specific Elements
	2.6.4 Extensions to this Specification published elsewhere

	3 Boot Manager
	3.1 Firmware Boot Manager
	3.1.1 Boot Manager Programming
	3.1.2 Load Option Processing
	3.1.3 Load Options
	3.1.4 Boot Manager Capabilities
	3.1.5 Launching Boot#### Applications
	3.1.6 Launching Boot#### Load Options Using Hot Keys
	3.1.7 Required System Preparation Applications

	3.2 Boot Manager Policy Protocol
	EFI_BOOT_MANAGER_POLICY_PROTOCOL
	EFI_BOOT_MANAGER_PROTOCOL.ConnectDevicePath()
	EFI_BOOT_MANAGER_PROTOCOL.ConnectDeviceClass()

	3.3 Globally Defined Variables
	3.4 Boot Option Recovery
	3.4.1 OS-Defined Boot Option Recovery
	3.4.2 Platform-Defined Boot Option Recovery
	3.4.3 Boot Option Variables Default Boot Behavior

	3.5 Boot Mechanisms
	3.5.1 Boot via the Simple File Protocol
	3.5.2 Boot via LOAD_FILE PROTOCOL

	4 EFI System Table
	4.1 UEFI Image Entry Point
	EFI_IMAGE_ENTRY_POINT

	4.2 EFI Table Header
	EFI_TABLE_HEADER

	4.3 EFI System Table
	EFI_SYSTEM_TABLE

	4.4 EFI Boot Services Table
	EFI_BOOT_SERVICES

	4.5 EFI Runtime Services Table
	EFI_RUNTIME_SERVICES

	4.6 EFI Configuration Table & Properties Table
	EFI_CONFIGURATION_TABLE
	EFI_PROPERTIES_TABLE

	4.7 Image Entry Point Examples
	4.7.1 Image Entry Point Examples
	4.7.2 UEFI Driver Model Example
	4.7.3 UEFI Driver Model Example (Unloadable)
	4.7.4 EFI Driver Model Example (Multiple Instances)

	5 GUID Partition Table (GPT) Disk Layout
	5.1 GPT and MBR disk layout comparison
	5.2 LBA 0 Format
	5.2.1 Legacy Master Boot Record (MBR)
	5.2.2 OS Types
	5.2.3 Protective MBR

	5.3 GUID Partition Table (GPT) Disk Layout
	5.3.1 GPT overview
	5.3.2 GPT Header
	5.3.3 GPT Partition Entry Array

	6 Services — Boot Services
	6.1 Event, Timer, and Task Priority Services
	EFI_BOOT_SERVICES.CreateEvent()
	EFI_BOOT_SERVICES.CreateEventEx()
	EFI_BOOT_SERVICES.CloseEvent()
	EFI_BOOT_SERVICES.SignalEvent()
	EFI_BOOT_SERVICES.WaitForEvent()
	EFI_BOOT_SERVICES.CheckEvent()
	EFI_BOOT_SERVICES.SetTimer()
	EFI_BOOT_SERVICES.RaiseTPL()
	EFI_BOOT_SERVICES.RestoreTPL()

	6.2 Memory Allocation Services
	EFI_BOOT_SERVICES.AllocatePages()
	EFI_BOOT_SERVICES.FreePages()
	EFI_BOOT_SERVICES.GetMemoryMap()
	EFI_BOOT_SERVICES.AllocatePool()
	EFI_BOOT_SERVICES.FreePool()

	6.3 Protocol Handler Services
	EFI_BOOT_SERVICES.InstallProtocolInterface()
	EFI_BOOT_SERVICES.UninstallProtocolInterface()
	EFI_BOOT_SERVICES.ReinstallProtocolInterface()
	EFI_BOOT_SERVICES.RegisterProtocolNotify()
	EFI_BOOT_SERVICES.LocateHandle()
	EFI_BOOT_SERVICES.HandleProtocol()
	EFI_BOOT_SERVICES.LocateDevicePath()
	EFI_BOOT_SERVICES.OpenProtocol()
	EFI_BOOT_SERVICES.CloseProtocol()
	EFI_BOOT_SERVICES.OpenProtocolInformation()
	EFI_BOOT_SERVICES.ConnectController()
	EFI_BOOT_SERVICES.DisconnectController()
	EFI_BOOT_SERVICES.ProtocolsPerHandle()
	EFI_BOOT_SERVICES.LocateHandleBuffer()
	EFI_BOOT_SERVICES.LocateProtocol()
	EFI_BOOT_SERVICES.InstallMultipleProtocolInterfaces()
	EFI_BOOT_SERVICES.UninstallMultipleProtocolInterfaces()

	6.4 Image Services
	EFI_BOOT_SERVICES.LoadImage()
	EFI_BOOT_SERVICES.StartImage()
	EFI_BOOT_SERVICES.UnloadImage()
	EFI_IMAGE_ENTRY_POINT
	EFI_BOOT_SERVICES.Exit()
	EFI_BOOT_SERVICES.ExitBootServices()

	6.5 Miscellaneous Boot Services
	EFI_BOOT_SERVICES.SetWatchdogTimer()
	EFI_BOOT_SERVICES.Stall()
	EFI_BOOT_SERVICES.CopyMem()
	EFI_BOOT_SERVICES.SetMem()
	EFI_BOOT_SERVICES.GetNextMonotonicCount()
	EFI_BOOT_SERVICES.InstallConfigurationTable()
	EFI_BOOT_SERVICES.CalculateCrc32()

	7 Services — Runtime Services
	7.1 Runtime Services Rules and Restrictions
	7.1.1 Exception for Machine Check, INIT, and NMI.

	7.2 Variable Services
	GetVariable()
	GetNextVariableName()
	SetVariable()
	7.2.1 Using the EFI_VARIABLE_AUTHENTICATION_2 descriptor (Recommended)
	7.2.2 Using the EFI_VARIABLE_AUTHENTICATION descriptor
	QueryVariableInfo()

	7.2.3 Hardware Error Record Persistence

	7.3 Time Services
	GetTime()
	SetTime()
	GetWakeupTime()
	SetWakeupTime()

	7.4 Virtual Memory Services
	SetVirtualAddressMap()
	ConvertPointer()

	7.5 Miscellaneous Runtime Services
	7.5.1 Reset System
	ResetSystem()

	7.5.2 Get Next High Monotonic Count
	GetNextHighMonotonicCount()

	7.5.3 Update Capsule
	UpdateCapsule()
	QueryCapsuleCapabilities()

	7.5.4 Exchanging information between the OS and Firmware
	7.5.5 Delivery of Capsules via file on Mass Storage device
	7.5.6 UEFI variable reporting on the Success or any Errors encountered in processing of capsules after restart

	8 Protocols — EFI Loaded Image
	8.1 EFI Loaded Image Protocol
	EFI_LOADED_IMAGE_PROTOCOL
	EFI_LOADED_IMAGE_PROTOCOL.Unload()

	8.2 EFI Loaded Image Device Path Protocol
	EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

	9 Protocols — Device Path Protocol
	9.1 Device Path Overview
	9.2 EFI Device Path Protocol
	EFI_DEVICE_PATH_PROTOCOL

	9.3 Device Path Nodes
	9.3.1 Generic Device Path Structures
	9.3.2 Hardware Device Path
	9.3.3 ACPI Device Path
	9.3.4 ACPI _ADR Device Path
	9.3.5 Messaging Device Path
	9.3.6 Media Device Path
	9.3.7 BIOS Boot Specification Device Path

	9.4 Device Path Generation Rules
	9.4.1 Housekeeping Rules
	9.4.2 Rules with ACPI _HID and _UID
	9.4.3 Rules with ACPI _ADR
	9.4.4 Hardware vs. Messaging Device Path Rules
	9.4.5 Media Device Path Rules
	9.4.6 Other Rules

	9.5 Device Path Utilities Protocol
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetDevicePathSize()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.DuplicateDevicePath()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePath()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDeviceNode()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDevicePathInstan ce()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetNextDevicePathInstan ce()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.CreateDeviceNode()
	EFI_DEVICE_PATH_UTILITIES_PROTOCOL.IsDevicePathMultiInstanc e()

	9.6 EFI Device Path Display Format Overview
	9.6.1 Design Discussion
	9.6.2 Device Path to Text Protocol
	EFI_DEVICE_PATH_TO_TEXT_PROTOCOL
	EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDeviceNodeToTex t()
	EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDevicePathToText ()

	9.6.3 Device Path from Text Protocol
	EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL
	EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL.ConvertTextToDeviceN ode()
	EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL.ConvertTextToDeviceP ath()

	10 Protocols — UEFI Driver Model
	10.1 EFI Driver Binding Protocol
	EFI_DRIVER_BINDING_PROTOCOL
	EFI_DRIVER_BINDING_PROTOCOL.Supported()
	EFI_DRIVER_BINDING_PROTOCOL.Start()
	EFI_DRIVER_BINDING_PROTOCOL.Stop()

	10.2 EFI Platform Driver Override Protocol
	EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL
	EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriver()
	EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriverPath()
	EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.DriverLoaded()

	10.3 EFI Bus Specific Driver Override Protocol
	EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL
	EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL.GetDriver()

	10.4 EFI Driver Diagnostics Protocol
	EFI_DRIVER_DIAGNOSTICS2_PROTOCOL
	EFI_DRIVER_DIAGNOSTICS2_PROTOCOL.RunDiagnostics()

	10.5 EFI Component Name Protocol
	EFI_COMPONENT_NAME2_PROTOCOL
	EFI_COMPONENT_NAME2_PROTOCOL.GetDriverName()
	EFI_COMPONENT_NAME2_PROTOCOL.GetControllerName()

	10.6 EFI Service Binding Protocol
	EFI_SERVICE_BINDING_PROTOCOL
	EFI_SERVICE_BINDING_PROTOCOL.CreateChild()
	EFI_SERVICE_BINDING_PROTOCOL.DestroyChild()

	10.7 EFI Platform to Driver Configuration Protocol
	EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL
	EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Query()
	EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Respon se()
	10.7.1 DMTF SM CLP ParameterTypeGuid

	10.8 EFI Driver Supported EFI Version Protocol
	EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL

	10.9 EFI Driver Family Override Protocol
	10.9.1 Overview
	EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL
	EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL.GetVersion ()

	10.10 EFI Driver Health Protocol
	EFI_DRIVER_HEALTH_PROTOCOL
	EFI_DRIVER_HEALTH_PROTOCOL.GetHealthStatus()
	EFI_DRIVER_HEALTH_PROTOCOL.Repair ()
	10.10.1 UEFI Boot Manager Algorithms
	10.10.2 UEFI Driver Algorithms

	10.11 EFI Adapter Information Protocol
	EFI_ADAPTER_INFORMATION_PROTOCOL
	EFI_ADAPTER_INFORMATION_PROTOCOL. EFI_ADAPTER_GET_INFO()
	EFI_ADAPTER_INFORMATION_PROTOCOL. EFI_ADAPTER_INFO_SET_INFO()
	EFI_ADAPTER_INFORMATION_PROTOCOL. EFI_ADAPTER_INFO_GET_SUPPORTED_TYPES()

	10.12 EFI Adapter Information Protocol Information Types
	10.12.1 Network Media State
	10.12.2 Network Boot
	10.12.3 SAN MAC Address
	10.12.4 IPV6 Support from UNDI

	11 Protocols — Console Support
	11.1 Console I/O Protocol
	11.1.1 Overview
	11.1.2 ConsoleIn Definition

	11.2 Simple Text Input Ex Protocol
	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL
	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.Reset()
	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.ReadKeyStrokeEx()
	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.SetState()
	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.RegisterKeyNotify()
	EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.UnregisterKeyNotify()

	11.3 Simple Text Input Protocol
	EFI_SIMPLE_TEXT_INPUT_PROTOCOL
	EFI_SIMPLE_TEXT_INPUT_PROTOCOL.Reset()
	EFI_SIMPLE_TEXT_INPUT_PROTOCOL.ReadKeyStroke()
	11.3.1 ConsoleOut or StandardError

	11.4 Simple Text Output Protocol
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.Reset()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.OutputString()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.TestString()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.QueryMode()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetMode()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetAttribute()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.ClearScreen()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetCursorPosition()
	EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.EnableCursor()

	11.5 Simple Pointer Protocol
	EFI_SIMPLE_POINTER_PROTOCOL
	EFI_SIMPLE_POINTER_PROTOCOL.Reset()
	EFI_SIMPLE_POINTER_PROTOCOL.GetState()

	11.6 EFI Simple Pointer Device Paths
	11.7 Absolute Pointer Protocol
	EFI_ABSOLUTE_POINTER_PROTOCOL
	EFI_ABSOLUTE_POINTER_PROTOCOL.Reset()
	EFI_ABSOLUTE_POINTER_PROTOCOL.GetState()

	11.8 Serial I/O Protocol
	EFI_SERIAL_IO_PROTOCOL
	EFI_SERIAL_IO_PROTOCOL.Reset()
	EFI_SERIAL_IO_PROTOCOL.SetAttributes()
	EFI_SERIAL_IO_PROTOCOL.SetControl()
	EFI_SERIAL_IO_PROTOCOL.GetControl()
	EFI_SERIAL_IO_PROTOCOL.Write()
	EFI_SERIAL_IO_PROTOCOL.Read()

	11.9 Graphics Output Protocol
	11.9.1 Blt Buffer
	EFI_GRAPHICS_OUTPUT_PROTOCOL
	EFI_GRAPHICS_OUTPUT_PROTOCOL.QueryMode()
	EFI_GRAPHICS_OUTPUT_PROTOCOL.SetMode()
	EFI_GRAPHICS_OUTPUT_PROTOCOL.Blt()
	EFI_EDID_DISCOVERED_PROTOCOL
	EFI_EDID_ACTIVE_PROTOCOL
	EFI_EDID_OVERRIDE_PROTOCOL
	EFI_EDID_OVERRIDE_PROTOCOL.GetEdid()

	11.10 Rules for PCI/AGP Devices

	12 Protocols - Media Access
	12.1 Load File Protocol
	EFI_LOAD_FILE_PROTOCOL
	EFI_LOAD_FILE_PROTOCOL.LoadFile()

	12.2 Load File 2 Protocol
	EFI_LOAD_FILE2_PROTOCOL
	EFI_LOAD_FILE2_PROTOCOL.LoadFile()

	12.3 File System Format
	12.3.1 System Partition
	12.3.2 Partition Discovery
	12.3.3 Number and Location of System Partitions
	12.3.4 Media Formats

	12.4 Simple File System Protocol
	EFI_SIMPLE_FILE_SYSTEM_PROTOCOL
	EFI_SIMPLE_FILE SYSTEM_PROTOCOL.OpenVolume()

	12.5 EFI File Protocol
	EFI_FILE_PROTOCOL
	EFI_FILE_PROTOCOL.Open()
	EFI_FILE_PROTOCOL.Close()
	EFI_FILE_PROTOCOL.Delete()
	EFI_FILE_PROTOCOL.Read()
	EFI_FILE_PROTOCOL.Write()
	EFI_FILE_PROTOCOL.OpenEx()
	EFI_FILE_PROTOCOL.ReadEx()
	EFI_FILE_PROTOCOL.WriteEx()
	EFI_FILE_PROTOCOL.SetPosition()
	EFI_FILE_PROTOCOL.GetPosition()
	EFI_FILE_PROTOCOL.GetInfo()
	EFI_FILE_PROTOCOL.SetInfo()
	EFI_FILE_PROTOCOL.Flush()
	EFI_FILE_INFO
	EFI_FILE_SYSTEM_INFO
	EFI_FILE_SYSTEM_VOLUME_LABEL

	12.6 Tape Boot Support
	12.6.1 Tape I/O Support
	12.6.2 Tape I/O Protocol
	EFI_TAPE_IO_PROTOCOL
	EFI_TAPE_IO_PROTOCOL.TapeRead()
	EFI_TAPE_IO_PROTOCOL.TapeWrite()
	EFI_TAPE_IO_PROTOCOL.TapeRewind()
	EFI_TAPE_IO_PROTOCOL.TapeSpace()
	EFI_TAPE_IO_PROTOCOL.TapeWriteFM()
	EFI_TAPE_IO_PROTOCOL.TapeReset()

	12.6.3 Tape Header Format

	12.7 Disk I/O Protocol
	EFI_DISK_IO_PROTOCOL
	EFI_DISK_IO_PROTOCOL.ReadDisk()
	EFI_DISK_IO_PROTOCOL.WriteDisk()

	12.8 Disk I/O 2 Protocol
	EFI_DISK_IO2_PROTOCOL
	EFI_DISK_IO2_PROTOCOL.Cancel()
	EFI_DISK_IO2_PROTOCOL.ReadDiskEx()
	EFI_DISK_IO2_PROTOCOL.WriteDiskEx()
	EFI_DISK_IO2_PROTOCOL.FlushDiskEx()

	12.9 EFI Block I/O Protocol
	EFI_BLOCK_IO_PROTOCOL
	EFI_BLOCK_IO_PROTOCOL.Reset()
	EFI_BLOCK_IO_PROTOCOL.ReadBlocks()
	EFI_BLOCK_IO_PROTOCOL.WriteBlocks()
	EFI_BLOCK_IO_PROTOCOL.FlushBlocks()

	12.10 EFI Block I/O 2 Protocol
	EFI_BLOCK_IO2_PROTOCOL
	EFI_BLOCK_IO2_PROTOCOL.Reset()
	EFI_BLOCK_IO2_PROTOCOL.ReadBlocksEx()
	EFI_BLOCK_IO2_PROTOCOL.WriteBlocksEx()
	EFI_BLOCK_IO2_PROTOCOL.FlushBlocksEx()

	12.11 Inline Cryptographic Interface
	EFI_BLOCK_IO_CRYPTO_PROTOCOL
	EFI_BLOCK_IO_CRYPTO_PROTOCOL.Reset()
	EFI_BLOCK_IO_CRYPTO_PROTOCOL.GetCapabilities()
	EFI_BLOCK_IO_CRYPTO_PROTOCOL.SetConfiguration()
	EFI_BLOCK_IO_CRYPTO_PROTOCOL.GetConfiguration()
	EFI_BLOCK_IO_CRYPTO_PROTOCOL.ReadExtended()
	EFI_BLOCK_IO_CRYPTO_PROTOCOL.WriteExtended()
	EFI_BLOCK_IO_CRYPTO_PROTOCOL.FlushBlocks()

	12.12 ATA Pass Thru Protocol
	EFI_ATA_PASS_THRU_PROTOCOL
	EFI_ATA_PASS_THRU_PROTOCOL.PassThru()
	EFI_ATA_PASS_THRU_PROTOCOL.GetNextPort()
	EFI_ATA_PASS_THRU_PROTOCOL.GetNextDevice()
	EFI_ATA_PASS_THRU_PROTOCOL.BuildDevicePath()
	EFI_ATA_PASS_THRU_PROTOCOL.GetDevice()
	EFI_ATA_PASS_THRU_PROTOCOL.ResetPort()
	EFI_ATA_PASS_THRU_PROTOCOL.ResetDevice()

	12.13 Storage Security Command Protocol
	EFI_STORAGE_SECURITY_COMMAND_PROTOCOL
	EFI_STORAGE_SECURITY_COMMAND_PROTOCOL.ReceiveData()
	EFI_STORAGE_SECURITY_COMMAND_PROTOCOL.SendData()

	12.14 NVM Express Pass Through Protocol
	EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL
	EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.PassThru()
	EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNextNamespace()
	EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.BuildDevicePath()
	EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNamespace()

	13 Protocols - PCI Bus Support
	13.1 PCI Root Bridge I/O Support
	13.1.1 PCI Root Bridge I/O Overview

	13.2 PCI Root Bridge I/O Protocol
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollMem()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PollIo()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Read() EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Write()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Read() EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Io.Write()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read() EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.CopyMem()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Map()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Unmap()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.AllocateBuffer()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.FreeBuffer()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Flush()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.SetAttributes()
	EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()
	13.2.1 PCI Root Bridge Device Paths

	13.3 PCI Driver Model
	13.3.1 PCI Driver Initialization
	13.3.2 PCI Bus Drivers
	13.3.3 PCI Device Drivers

	13.4 EFI PCI I/O Protocol
	EFI_PCI_IO_PROTOCOL
	EFI_PCI_IO_PROTOCOL.PollMem()
	EFI_PCI_IO_PROTOCOL.PollIo()
	EFI_PCI_IO_PROTOCOL.Mem.Read() EFI_PCI_IO_PROTOCOL.Mem.Write()
	EFI_PCI_IO_PROTOCOL.Io.Read() EFI_PCI_IO_PROTOCOL.Io.Write()
	EFI_PCI_IO_PROTOCOL.Pci.Read() EFI_PCI_IO_PROTOCOL.Pci.Write()
	EFI_PCI_IO_PROTOCOL.CopyMem()
	EFI_PCI_IO_PROTOCOL.Map()
	EFI_PCI_IO_PROTOCOL.Unmap()
	EFI_PCI_IO_PROTOCOL.AllocateBuffer()
	EFI_PCI_IO_PROTOCOL.FreeBuffer()
	EFI_PCI_IO_PROTOCOL.Flush()
	EFI_PCI_IO_PROTOCOL.GetLocation()
	EFI_PCI_IO_PROTOCOL.Attributes()
	EFI_PCI_IO_PROTOCOL.GetBarAttributes()
	EFI_PCI_IO_PROTOCOL.SetBarAttributes()
	13.4.1 PCI Device Paths
	13.4.2 PCI Option ROMs
	13.4.3 Nonvolatile Storage
	13.4.4 PCI Hot-Plug Events

	14 Protocols — SCSI Driver Models and Bus Support
	14.1 SCSI Driver Model Overview
	14.2 SCSI Bus Drivers
	14.2.1 Driver Binding Protocol for SCSI Bus Drivers
	14.2.2 SCSI Enumeration

	14.3 SCSI Device Drivers
	14.3.1 Driver Binding Protocol for SCSI Device Drivers

	14.4 EFI SCSI I/O Protocol
	EFI_SCSI_IO_PROTOCOL
	EFI_SCSI_IO_PROTOCOL.GetDeviceType()
	EFI_SCSI_IO_PROTOCOL.GetDeviceLocation()
	EFI_SCSI_IO_PROTOCOL.ResetBus()
	EFI_SCSI_IO_PROTOCOL.ResetDevice()
	EFI_SCSI_IO_PROTOCOL.ExecuteScsiCommand()

	14.5 SCSI Device Paths
	14.5.1 SCSI Device Path Example
	14.5.2 ATAPI Device Path Example
	14.5.3 Fibre Channel Device Path Example
	14.5.4 InfiniBand Device Path Example

	14.6 SCSI Pass Thru Device Paths
	14.7 Extended SCSI Pass Thru Protocol
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.PassThru()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTargetLun()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetTargetLun()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetChannel()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetTargetLun()
	EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget()

	15 Protocols - iSCSI Boot
	15.1 Overview
	15.1.1 iSCSI UEFI Driver Layering

	15.2 EFI iSCSI Initiator Name Protocol
	EFI_ISCSI_INITIATOR_NAME_PROTOCOL
	EFI_ISCSI_INITIATOR_NAME_PROTOCOL. Get()
	EFI_ISCSI_INITIATOR_NAME_PROTOCOL.Set()

	16 Protocols — USB Support
	16.1 USB2 Host Controller Protocol
	16.1.1 USB Host Controller Protocol Overview
	EFI_USB2_HC_PROTOCOL
	EFI_USB2_HC_PROTOCOL.GetCapability()
	EFI_USB2_HC_PROTOCOL.Reset()
	EFI_USB2_HC_PROTOCOL.GetState()
	EFI_USB2_HC_PROTOCOL.SetState()
	EFI_USB2_HC_PROTOCOL.ControlTransfer()
	EFI_USB2_HC_PROTOCOL.BulkTransfer()
	EFI_USB2_HC_PROTOCOL.AsyncInterruptTransfer()
	EFI_USB2_HC_PROTOCOL.SyncInterruptTransfer()
	EFI_USB2_HC_PROTOCOL.IsochronousTransfer()
	EFI_USB2_HC_PROTOCOL.AsyncIsochronousTransfer()
	EFI_USB2_HC_PROTOCOL.GetRootHubPortStatus()
	EFI_USB2_HC_PROTOCOL.SetRootHubPortFeature()
	EFI_USB2_HC_PROTOCOL.ClearRootHubPortFeature()

	16.2 USB Driver Model
	16.2.1 Scope
	16.2.2 USB Bus Driver
	16.2.3 USB Device Driver
	16.2.4 USB I/O Protocol
	EFI_USB_IO_PROTOCOL
	EFI_USB_IO_PROTOCOL.UsbControlTransfer()
	EFI_USB_IO_PROTOCOL.UsbBulkTransfer()
	EFI_USB_IO_PROTOCOL.UsbAsyncInterruptTransfer()
	EFI_USB_IO_PROTOCOL.UsbSyncInterruptTransfer()
	EFI_USB_IO_PROTOCOL.UsbIsochronousTransfer()
	EFI_USB_IO_PROTOCOL.UsbAsyncIsochronousTransfer()
	EFI_USB_IO_PROTOCOL.UsbGetDeviceDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetConfigDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetInterfaceDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetEndpointDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetStringDescriptor()
	EFI_USB_IO_PROTOCOL.UsbGetSupportedLanguages()
	EFI_USB_IO_PROTOCOL.UsbPortReset()

	16.3 USB Function Protocol
	EFI_USBFN_IO_PROTOCOL
	EFI_USBFN_IO_PROTOCOL.DetectPort()
	EFI_USBFN_IO_PROTOCOL.ConfigureEnableEndpoints()
	EFI_USBFN_IO_PROTOCOL.GetEndpointMaxPacketSize()
	EFI_USBFN_IO_PROTOCOL.GetDeviceInfo()
	EFI_USBFN_IO_PROTOCOL.GetVendorIdProductId()
	EFI_USBFN_IO_PROTOCOL.AbortTransfer()
	EFI_USBFN_IO_PROTOCOL.GetEndpointStallState()
	EFI_USBFN_IO_PROTOCOL.SetEndpointStallState()
	EFI_USBFN_IO_PROTOCOL.EventHandler()
	EFI_USBFN_IO_PROTOCOL.Transfer()
	EFI_USBFN_IO_PROTOCOL.GetMaxTransferSize()
	EFI_USBFN_IO_PROTOCOL.AllocateTransferBuffer()
	EFI_USBFN_IO_PROTOCOL.FreeTransferBuffer()
	EFI_USBFN_IO_PROTOCOL.StartController()
	EFI_USBFN_IO_PROTOCOL.StopController()
	EFI_USBFN_IO_PROTOCOL.SetEndpointPolicy()
	EFI_USBFN_IO_PROTOCOL.GetEndpointPolicy()

	17 Protocols - Debugger Support
	17.1 Overview
	17.2 EFI Debug Support Protocol
	17.2.1 EFI Debug Support Protocol Overview
	EFI_DEBUG_SUPPORT_PROTOCOL
	EFI_DEBUG_SUPPORT_PROTOCOL.GetMaximumProcessorIndex()
	EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodicCallback()
	EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback()
	EFI_DEBUG_SUPPORT_PROTOCOL.InvalidateInstructionCache()

	17.3 EFI Debugport Protocol
	17.3.1 EFI Debugport Overview
	EFI_DEBUGPORT_PROTOCOL
	EFI_DEBUGPORT_PROTOCOL.Reset()
	EFI_DEBUGPORT_PROTOCOL.Write()
	EFI_DEBUGPORT_PROTOCOL.Read()
	EFI_DEBUGPORT_PROTOCOL.Poll()

	17.3.2 Debugport Device Path
	17.3.3 EFI Debugport Variable

	17.4 EFI Debug Support Table
	17.4.1 Overview
	17.4.2 EFI System Table Location
	17.4.3 EFI Image Info

	18 Protocols - Compression Algorithm Specification
	18.1 Algorithm Overview
	18.2 Data Format
	18.2.1 Bit Order
	18.2.2 Overall Structure
	18.2.3 Block Structure

	18.3 Compressor Design
	18.3.1 Overall Process
	18.3.2 String Info Log
	18.3.3 Huffman Code Generation

	18.4 Decompressor Design
	18.5 Decompress Protocol
	EFI_DECOMPRESS_PROTOCOL
	EFI_DECOMPRESS_PROTOCOL.GetInfo()
	EFI_DECOMPRESS_PROTOCOL.Decompress()

	19 Protocols - ACPI Protocols
	EFI_ACPI_TABLE_PROTOCOL
	EFI_ACPI_TABLE_PROTOCOL.InstallAcpiTable()
	EFI_ACPI_TABLE_PROTOCOL.UninstallAcpiTable()

	20 Protocols - String Services
	20.1 Unicode Collation Protocol
	EFI_UNICODE_COLLATION_PROTOCOL
	EFI_UNICODE_COLLATION_PROTOCOL.StriColl()
	EFI_UNICODE_COLLATION_PROTOCOL.MetaiMatch()
	EFI_UNICODE_COLLATION_PROTOCOL.StrLwr()
	EFI_UNICODE_COLLATION_PROTOCOL.StrUpr()
	EFI_UNICODE_COLLATION_PROTOCOL.FatToStr()
	EFI_UNICODE_COLLATION_PROTOCOL.StrToFat()

	20.2 Regular Expression Protocol
	EFI_REGULAR_EXPRESSION_PROTOCOL
	EFI_REGULAR_EXPRESSION_PROTOCOL.MatchString()
	EFI_REGULAR_EXPRESSION_PROTOCOL.GetInfo()
	20.2.1 EFI Regular Expression Syntax Type Definitions

	21 EFI Byte Code Virtual Machine
	21.1 Overview
	21.1.1 Processor Architecture Independence
	21.1.2 OS Independent
	21.1.3 EFI Compliant
	21.1.4 Coexistence of Legacy Option ROMs
	21.1.5 Relocatable Image
	21.1.6 Size Restrictions Based on Memory Available

	21.2 Memory Ordering
	21.3 Virtual Machine Registers
	21.4 Natural Indexing
	21.4.1 Sign Bit
	21.4.2 Bits Assigned to Natural Units
	21.4.3 Constant
	21.4.4 Natural Units

	21.5 EBC Instruction Operands
	21.5.1 Direct Operands
	21.5.2 Indirect Operands
	21.5.3 Indirect with Index Operands
	21.5.4 Immediate Operands

	21.6 EBC Instruction Syntax
	21.7 Instruction Encoding
	21.7.1 Instruction Opcode Byte Encoding
	21.7.2 Instruction Operands Byte Encoding
	21.7.3 Index/Immediate Data Encoding

	21.8 EBC Instruction Set
	ADD
	AND
	ASHR
	BREAK
	CALL
	CMP
	CMPI
	DIV
	DIVU
	EXTNDB
	EXTNDD
	EXTNDW
	JMP
	JMP8
	LOADSP
	MOD
	MODU
	MOV
	MOVI
	MOVIn
	MOVn
	MOVREL
	MOVsn
	MUL
	MULU
	NEG
	NOT
	OR
	POP
	POPn
	PUSH
	PUSHn
	RET
	SHL
	SHR
	STORESP
	SUB
	XOR

	21.9 Runtime and Software Conventions
	21.9.1 Calling Outside VM
	21.9.2 Calling Inside VM
	21.9.3 Parameter Passing
	21.9.4 Return Values
	21.9.5 Binary Format

	21.10 Architectural Requirements
	21.10.1 EBC Image Requirements
	21.10.2 EBC Execution Interfacing Requirements
	21.10.3 Interfacing Function Parameters Requirements
	21.10.4 Function Return Requirements
	21.10.5 Function Return Values Requirements

	21.11 EBC Interpreter Protocol
	EFI_EBC_PROTOCOL
	EFI_EBC_PROTOCOL.CreateThunk()
	EFI_EBC_PROTOCOL.UnloadImage()
	EFI_EBC_PROTOCOL.RegisterICacheFlush()
	EFI_EBC_PROTOCOL.GetVersion()

	21.12 EBC Tools
	21.12.1 EBC C Compiler
	21.12.2 C Coding Convention
	21.12.3 EBC Interface Assembly Instructions
	21.12.4 Stack Maintenance and Argument Passing
	21.12.5 Native to EBC Arguments Calling Convention
	21.12.6 EBC to Native Arguments Calling Convention
	21.12.7 EBC to EBC Arguments Calling Convention
	21.12.8 Function Returns
	21.12.9 Function Return Values
	21.12.10 Thunking
	21.12.11 EBC Linker
	21.12.12 Image Loader
	21.12.13 Debug Support

	21.13 VM Exception Handling
	21.13.1 Divide By 0 Exception
	21.13.2 Debug Break Exception
	21.13.3 Invalid Opcode Exception
	21.13.4 Stack Fault Exception
	21.13.5 Alignment Exception
	21.13.6 Instruction Encoding Exception
	21.13.7 Bad Break Exception
	21.13.8 Undefined Exception

	21.14 Option ROM Formats
	21.14.1 EFI Drivers for PCI Add-in Cards
	21.14.2 Non-PCI Bus Support

	22 Firmware Update and Reporting
	22.1 Firmware Management Protocol
	EFI_FIRMWARE_MANAGEMENT_PROTOCOL
	EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetImageInfo()
	EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetImage()
	EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetImage()
	EFI_FIRMWARE_MANAGEMENT_PROTOCOL.CheckImage()
	EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetPackageInfo()
	EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetPackageInfo()

	22.2 Delivering Capsules Containing Updates to Firmware Management Protocol
	22.2.1 EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID
	22.2.2 DEFINED FIRMWARE MANAGEMENT PROTOCOL DATA CAPSULE STRUCTURE
	22.2.3 Firmware Processing of the Capsule Identified by EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID

	22.3 EFI System Resource Table
	EFI_SYSTEM_RESOURCE_TABLE
	22.3.1 Adding and Removing Devices from the ESRT
	22.3.2 ESRT and Firmware Management Protocol
	22.3.3 Mapping Firmware Management Protocol Descriptors to ESRT Entries

	23 Network Protocols - SNP, PXE, BIS and HTTP Boot
	23.1 Simple Network Protocol
	EFI_SIMPLE_NETWORK_PROTOCOL
	EFI_SIMPLE_NETWORK.Start()
	EFI_SIMPLE_NETWORK.Stop()
	EFI_SIMPLE_NETWORK.Initialize()
	EFI_SIMPLE_NETWORK.Reset()
	EFI_SIMPLE_NETWORK.Shutdown()
	EFI_SIMPLE_NETWORK.ReceiveFilters()
	EFI_SIMPLE_NETWORK.StationAddress()
	EFI_SIMPLE_NETWORK.Statistics()
	EFI_SIMPLE_NETWORK.MCastIPtoMAC()
	EFI_SIMPLE_NETWORK.NvData()
	EFI_SIMPLE_NETWORK.GetStatus()
	EFI_SIMPLE_NETWORK.Transmit()
	EFI_SIMPLE_NETWORK.Receive()

	23.2 Network Interface Identifier Protocol
	EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL

	23.3 PXE Base Code Protocol
	EFI_PXE_BASE_CODE_PROTOCOL
	EFI_PXE_BASE_CODE_PROTOCOL.Start()
	EFI_PXE_BASE_CODE_PROTOCOL.Stop()
	EFI_PXE_BASE_CODE_PROTOCOL.Dhcp()
	EFI_PXE_BASE_CODE_PROTOCOL.Discover()
	EFI_PXE_BASE_CODE_PROTOCOL.Mtftp()
	EFI_PXE_BASE_CODE_PROTOCOL.UdpWrite()
	EFI_PXE_BASE_CODE_PROTOCOL.UdpRead()
	EFI_PXE_BASE_CODE_PROTOCOL.SetIpFilter()
	EFI_PXE_BASE_CODE_PROTOCOL.Arp()
	EFI_PXE_BASE_CODE_PROTOCOL.SetParameters()
	EFI_PXE_BASE_CODE_PROTOCOL.SetStationIp()
	EFI_PXE_BASE_CODE_PROTOCOL.SetPackets()
	23.3.1 Netboot6

	23.4 PXE Base Code Callback Protocol
	EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL
	EFI_PXE_BASE_CODE_CALLBACK.Callback()

	23.5 Boot Integrity Services Protocol
	EFI_BIS_PROTOCOL
	EFI_BIS_PROTOCOL.Initialize()
	EFI_BIS_PROTOCOL.Shutdown()
	EFI_BIS_PROTOCOL.Free()
	EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCertificate()
	EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCheckFlag()
	EFI_BIS_PROTOCOL.GetBootObjectAuthorizationUpdateToken()
	EFI_BIS_PROTOCOL.GetSignatureInfo()
	EFI_BIS_PROTOCOL.UpdateBootObjectAuthorization()
	EFI_BIS_PROTOCOL.VerifyBootObject()
	EFI_BIS_PROTOCOL.VerifyObjectWithCredential()

	23.6 DHCP options for ISCSI on IPV6
	23.7 HTTP Boot
	23.7.1 Boot from URL
	23.7.2 Concept configuration for a typical HTTP Boot scenario
	23.7.3 Protocol Layout for UEFI HTTP Boot Client concept configuration for a typical HTTP Boot scenario
	23.7.4 Concept of Message Exchange in a typical HTTP Boot scenario (IPv4 in Corporate Environment)
	23.7.5 Concept of Message Exchange in HTTP Boot scenario (IPv6)

	24 Network Protocols — Managed Network
	24.1 EFI Managed Network Protocol
	EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL
	EFI_MANAGED_NETWORK_PROTOCOL
	EFI_MANAGED_NETWORK_PROTOCOL.GetModeData()
	EFI_MANAGED_NETWORK_PROTOCOL.Configure()
	EFI_MANAGED_NETWORK_PROTOCOL.McastIpToMac()
	EFI_MANAGED_NETWORK_PROTOCOL.Groups()
	EFI_MANAGED_NETWORK_PROTOCOL.Transmit()
	EFI_MANAGED_NETWORK_PROTOCOL.Receive()
	EFI_MANAGED_NETWORK_PROTOCOL.Cancel()
	EFI_MANAGED_NETWORK_PROTOCOL.Poll()

	25 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
	25.1 VLAN Configuration Protocol
	EFI_VLAN_CONFIG_PROTOCOL
	EFI_VLAN_CONFIG_PROTOCOL.Set ()
	EFI_VLAN_CONFIG_PROTOCOL.Find()
	EFI_VLAN_CONFIG_PROTOCOL.Remove ()

	25.2 EAP Protocol
	EFI_EAP_PROTOCOL
	EFI_EAP.SetDesiredAuthMethod()
	EFI_EAP.RegisterAuthMethod()
	25.2.1 EAPManagement Protocol
	EFI_EAP_MANAGEMENT_PROTOCOL
	EFI_EAP_MANAGEMENT.GetSystemConfiguration()
	EFI_EAP_MANAGEMENT.SetSystemConfiguration()
	EFI_EAP_MANAGEMENT.InitializePort()
	EFI_EAP_MANAGEMENT.UserLogon()
	EFI_EAP_MANAGEMENT.UserLogoff()
	EFI_EAP_MANAGEMENT.GetSupplicantStatus()
	EFI_EAP_MANAGEMENT.SetSupplicantConfiguration()
	EFI_EAP_MANAGEMENT.GetSupplicantStatistics()

	25.2.2 EFI EAP Management2 Protocol
	EFI_EAP_MANAGEMENT2_PROTOCOL
	EFI_EAP_MANAGEMENT2_PROTOCOL.GetKey()

	25.2.3 EFI EAP Configuration Protocol
	EFI_EAP_CONFIGURATION_PROTOCOL
	EFI_EAP_CONFIGURATION_PROTOCOL.SetData()
	EFI_EAP_CONFIGURATION_PROTOCOL.GetData()

	25.3 EFI Wireless MAC Connection Protocol
	EFI_WIRELESS_MAC_CONNECTION_PROTOCOL
	EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Scan()
	EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Associate()
	EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Disassociate()
	EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Authenticate()
	EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Deauthenticate()

	25.4 EFI Supplicant Protocol
	EFI_SUPPLICANT_PROTOCOL
	EFI_SUPPLICANT_PROTOCOL.BuildResponsePacket()
	EFI_SUPPLICANT_PROTOCOL.ProcessPacket()
	EFI_SUPPLICANT_PROTOCOL.SetData()
	EFI_SUPPLICANT_PROTOCOL.GetData()

	26 Network Protocols - Bluetooth
	26.1 EFI Bluetooth Host Controller Protocol
	EFI_BLUETOOTH_HC_PROTOCOL
	BLUETOOTH_HC_PROTOCOL.SendCommand()
	BLUETOOTH_HC_PROTOCOL.ReceiveEvent()
	BLUETOOTH_HC_PROTOCOL.AsyncReceiveEvent()
	BLUETOOTH_HC_PROTOCOL.SendACLData()
	BLUETOOTH_HC_PROTOCOL.ReceiveACLData()
	BLUETOOTH_HC_PROTOCOL.AsyncReceiveACLData()
	BLUETOOTH_HC_PROTOCOL.SendSCOData()
	BLUETOOTH_HC_PROTOCOL.ReceiveSCOData()
	BLUETOOTH_HC_PROTOCOL.AsyncReceiveSCOData()

	26.2 EFI Bluetooth Bus Protocol
	EFI_BLUETOOTH_IO_SERVICE_BINDING_PROTOCOL
	EFI_BLUETOOTH_IO_PROTOCOL
	BLUETOOTH_IO_PROTOCOL.GetDeviceInfo
	BLUETOOTH_IO_PROTOCOL.GetSdpInfo
	BLUETOOTH_IO_PROTOCOL.L2CapRawSend
	BLUETOOTH_IO_PROTOCOL.L2CapRawReceive
	BLUETOOTH_IO_PROTOCOL.L2CapRawAsyncReceive
	BLUETOOTH_IO_PROTOCOL.L2CapSend
	BLUETOOTH_IO_PROTOCOL.L2CapReceive
	BLUETOOTH_IO_PROTOCOL.L2CapAsyncReceive
	BLUETOOTH_IO_PROTOCOL.L2CapConnect
	BLUETOOTH_IO_PROTOCOL.L2CapDisconnect
	BLUETOOTH_IO_PROTOCOL.L2CapRegisterService

	26.3 EFI Bluetooth Configuration Protocol
	EFI_BLUETOOTH_CONFIG_PROTOCOL
	BLUETOOTH_CONFIG_PROTOCOL.Init
	BLUETOOTH_CONFIG_PROTOCOL.Scan
	BLUETOOTH_CONFIG_PROTOCOL.Connect
	BLUETOOTH_CONFIG_PROTOCOL.Disconnect
	BLUETOOTH_CONFIG_PROTOCOL.GetData
	BLUETOOTH_CONFIG_PROTOCOL.SetData
	BLUETOOTH_CONFIG_PROTOCOL.GetRemoteData
	BLUETOOTH_CONFIG_PROTOCOL.RegisterPinCallback
	BLUETOOTH_CONFIG_PROTOCOL.RegisterGetLinkKeyCallback
	BLUETOOTH_CONFIG_PROTOCOL.RegisterSetLinkKeyCallback
	BLUETOOTH_CONFIG_PROTOCOL.RegisterLinkConnectCompleteCal lback

	27 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations
	27.1 EFI TCPv4 Protocol
	27.1.1 TCP4 Service Binding Protocol
	EFI_TCP4_SERVICE_BINDING_PROTOCOL

	27.1.2 TCP4 Protocol
	EFI_TCP4_PROTOCOL
	EFI_TCP4_PROTOCOL.GetModeData()
	EFI_TCP4_PROTOCOL.Configure()
	EFI_TCP4_PROTOCOL.Routes()
	EFI_TCP4_PROTOCOL.Connect()
	EFI_TCP4_PROTOCOL.Accept()
	EFI_TCP4_PROTOCOL.Transmit()
	EFI_TCP4_PROTOCOL.Receive()
	EFI_TCP4_PROTOCOL.Close()
	EFI_TCP4_PROTOCOL.Cancel()
	EFI_TCP4_PROTOCOL.Poll()

	27.2 EFI TCPv6 Protocol
	27.2.1 TCPv6 Service Binding Protocol
	EFI_TCP6_SERVICE_BINDING_PROTOCOL

	27.2.2 TCPv6 Protocol
	EFI_TCP6_PROTOCOL
	EFI_TCP6_PROTOCOL.GetModeData()
	EFI_TCP6_PROTOCOL.Configure()
	EFI_TCP6_PROTOCOL.Connect()
	EFI_TCP6_PROTOCOL.Accept()
	EFI_TCP6_PROTOCOL.Transmit()
	EFI_TCP6_PROTOCOL.Receive()
	EFI_TCP6_PROTOCOL.Close()
	EFI_TCP6_PROTOCOL.Cancel()
	EFI_TCP6_PROTOCOL.Poll()

	27.3 EFI IPv4 Protocol
	27.3.1 IP4 Service Binding Protocol
	EFI_IP4_SERVICE_BINDING_PROTOCOL

	27.3.2 IP4 Protocol
	EFI_IP4_PROTOCOL
	EFI_IP4_PROTOCOL.GetModeData()
	EFI_IP4_PROTOCOL.Configure()
	EFI_IP4_PROTOCOL.Groups()
	EFI_IP4_PROTOCOL.Routes()
	EFI_IP4_PROTOCOL.Transmit()
	EFI_IP4_PROTOCOL.Receive()
	EFI_IP4_PROTOCOL.Cancel()
	EFI_IP4_PROTOCOL.Poll()

	27.4 EFI IPv4 Configuration Protocol
	EFI_IP4_CONFIG_PROTOCOL
	EFI_IP4_CONFIG_PROTOCOL.Start()
	EFI_IP4_CONFIG_PROTOCOL.Stop()
	EFI_IP4_CONFIG_PROTOCOL.GetData()
	Related Definitions

	27.5 EFI IPv4 Configuration II Protocol
	EFI_IP4_CONFIG2_PROTOCOL
	EFI_IP4_CONFIG2_PROTOCOL.SetData()
	EFI_IP4_CONFIG2_PROTOCOL.GetData()
	EFI_IP4_CONFIG2_PROTOCOL.RegisterDataNotify ()
	EFI_IP4_CONFIG2_PROTOCOL.UnregisterDataNotify ()

	27.6 EFI IPv6 Protocol
	27.6.1 IPv6 Service Binding Protocol
	EFI_IP6_SERVICE_BINDING_PROTOCOL

	27.6.2 IPv6 Protocol
	EFI_IP6_PROTOCOL
	EFI_IP6_PROTOCOL.GetModeData()
	EFI_IP6_PROTOCOL.Configure()
	EFI_IP6_PROTOCOL.Groups()
	EFI_IP6_PROTOCOL.Routes()
	EFI_IP6_PROTOCOL.Neighbors()
	EFI_IP6_PROTOCOL.Transmit()
	EFI_IP6_PROTOCOL.Receive()
	EFI_IP6_PROTOCOL.Cancel()
	EFI_IP6_PROTOCOL.Poll()

	27.7 EFI IPv6 Configuration Protocol
	EFI_IP6_CONFIG_PROTOCOL
	EFI_IP6_CONFIG_PROTOCOL.SetData()
	EFI_IP6_CONFIG_PROTOCOL.GetData()
	EFI_IP6_CONFIG_PROTOCOL.RegisterDataNotify ()
	EFI_IP6_CONFIG_PROTOCOL.UnregisterDataNotify ()

	27.8 IPsec
	27.8.1 IPsec Overview
	27.8.2 EFI IPsec Configuration Protocol
	EFI_IPSEC_CONFIG_PROTOCOL
	EFI_IPSEC_CONFIG_PROTOCOL.SetData()
	EFI_IPSEC_CONFIG_PROTOCOL.GetData()
	EFI_IPSEC_CONFIG_PROTOCOL.GetNextSelector()
	EFI_IPSEC_CONFIG_PROTOCOL.RegisterDataNotify ()
	EFI_IPSEC_CONFIG_PROTOCOL.UnregisterDataNotify ()

	27.8.3 EFI IPsec Protocol
	EFI_IPSEC_PROTOCOL
	EFI_IPSEC_PROTOCOL.Process()

	27.8.4 EFI IPsec2 Protocol
	EFI_IPSEC2_PROTOCOL
	EFI_IPSEC2_PROTOCOL.ProcessExt()

	27.9 Network Protocol - EFI FTP Protocol
	EFI_FTP4_SERVICE_BINDING_PROTOCOL Summary
	EFI_FTP4_PROTOCOL
	EFI_FTP4_PROTOCOL.GetModeData()
	EFI_FTP4_PROTOCOL.Connect()
	EFI_FTP4_PROTOCOL.Close()
	EFI_FTP4_PROTOCOL.Configure()
	EFI_FTP4_PROTOCOL.ReadFile()
	EFI_FTP4_PROTOCOL.WriteFile()
	EFI_FTP4_PROTOCOL.ReadDirectory()
	EFI_FTP4_PROTOCOL.Poll()

	27.10 EFI TLS Protocols
	27.10.1 EFI TLS Service Binding Protocol
	EFI_TLS_SERVICE_BINDING_PROTOCOL

	27.10.2 EFI TLS Protocol
	EFI_TLS_PROTOCOL
	EFI_TLS_PROTOCOL.SetSessionData ()
	EFI_TLS_PROTOCOL.GetSessionData ()
	EFI_TLS_PROTOCOL.BuildResponsePacket ()
	EFI_TLS_PROTOCOL.ProcessPacket ()

	27.10.3 EFI TLS Configuration Protocol
	EFI_TLS_CONFIGURATION_PROTOCOL
	EFI_TLS_CONFIGURATION_PROTOCOL.SetData()
	EFI_TLS_CONFIGURATION_PROTOCOL.GetData()

	28 Network Protocols - ARP, DHCP, DNS, HTTP and REST
	28.1 ARP Protocol
	EFI_ARP_SERVICE_BINDING_PROTOCOL
	EFI_ARP_PROTOCOL
	EFI_ARP_PROTOCOL.Configure()
	EFI_ARP_PROTOCOL.Add()
	EFI_ARP_PROTOCOL.Find()
	Related Definitions
	EFI_ARP_PROTOCOL.Delete()
	EFI_ARP_PROTOCOL.Flush()
	EFI_ARP_PROTOCOL.Request()
	EFI_ARP_PROTOCOL.Cancel()

	28.2 EFI DHCPv4 Protocol
	EFI_DHCP4_SERVICE_BINDING_PROTOCOL
	EFI_DHCP4_PROTOCOL
	EFI_DHCP4_PROTOCOL.GetModeData()
	EFI_DHCP4_PROTOCOL.Configure()
	EFI_DHCP4_PROTOCOL.Start()
	EFI_DHCP4_PROTOCOL.RenewRebind()
	EFI_DHCP4_PROTOCOL.Release()
	EFI_DHCP4_PROTOCOL.Stop()
	EFI_DHCP4_PROTOCOL.Build()
	EFI_DHCP4_PROTOCOL.TransmitReceive()
	EFI_DHCP4_PROTOCOL.Parse()

	28.3 EFI DHCP6 Protocol
	28.3.1 DHCP6 Service Binding Protocol
	EFI_DHCP6_SERVICE_BINDING_PROTOCOL

	28.3.2 DHCP6 Protocol
	EFI_DHCP6_PROTOCOL
	EFI_DHCP6_PROTOCOL.GetModeData ()
	EFI_DHCP6_PROTOCOL.Configure ()
	EFI_DHCP6_PROTOCOL.Start ()
	EFI_DHCP6_PROTOCOL.InfoRequest ()
	EFI_DHCP6_PROTOCOL.RenewRebind ()
	EFI_DHCP6_PROTOCOL.Decline ()
	EFI_DHCP6_PROTOCOL.Release ()
	EFI_DHCP6_PROTOCOL.Stop ()
	EFI_DHCP6_PROTOCOL.Parse ()

	28.4 EFI DNSv4 Protocol
	EFI_DNS4_SERVICE_BINDING_PROTOCOL
	EFI_DNS4_PROTOCOL
	EFI_DNS4_PROTOCOL.GetModeData()
	EFI_DNS4_PROTOCOL.Configure()
	EFI_DNS4_PROTOCOL.HostNameToIp()
	EFI_DNS4_PROTOCOL.IpToHostName()
	EFI_DNS4_PROTOCOL.GeneralLookup()
	EFI_DNS4_PROTOCOL.UpdateDnsCache()
	EFI_DNS4_PROTOCOL.Poll()
	EFI_DNS4_PROTOCOL.Cancel()

	28.5 EFI DNSv6 Protocol
	28.5.1 DNS6 Service Binding Protocol
	EFI_DNS6_SERVICE_BINDING_PROTOCOL

	28.5.2 DNS6 Protocol
	EFI_DNS6_PROTOCOL
	EFI_DNS6_PROTOCOL.GetModeData()
	EFI_DNS6_PROTOCOL.Configure()
	EFI_DNS6_PROTOCOL.HostNameToIp()
	EFI_DNS6_PROTOCOL.IpToHostName()
	EFI_DNS6_PROTOCOL.GeneralLookup()
	EFI_DNS6_PROTOCOL.UpdateDnsCache()
	EFI_DNS6_PROTOCOL.POLL()
	EFI_DNS6_PROTOCOL.Cancel()

	28.6 EFI HTTP Protocols
	28.6.1 HTTP Service Binding Protocol
	EFI_HTTP_SERVICE_BINDING_PROTOCOL

	28.6.2 EFI HTTP Protocol Specific Definitions
	EFI_HTTP_PROTOCOL
	EFI_HTTP_PROTOCOL.GetModeData()
	EFI_HTTP_PROTOCOL.Configure()
	EFI_HTTP_PROTOCOL.Request()
	EFI_HTTP_PROTOCOL.Cancel()
	EFI_HTTP_PROTOCOL.Response()
	EFI_HTTP_PROTOCOL.Poll()

	28.6.3 HTTP Utilities Protocol
	EFI_HTTP_UTILITIES_PROTOCOL
	EFI_HTTP_UTILITIES_PROTOCOL.Build()
	EFI_HTTP_UTILITIES_PROTOCOL.Parse()

	28.7 EFI REST Protocol
	28.7.1 EFI REST Protocol Definitions
	EFI_REST_PROTOCOL
	EFI_REST_PROTOCOL.SendReceive()
	EFI_REST_PROTOCOL.GetServiceTime()

	29 Network Protocols — UDP and MTFTP
	29.1 EFI UDP Protocol
	29.1.1 UDP4 Service Binding Protocol
	EFI_UDP4_SERVICE_BINDING_PROTOCOL

	29.1.2 UDP4 Protocol
	EFI_UDP4_PROTOCOL
	EFI_UDP4_PROTOCOL.GetModeData()
	EFI_UDP4_PROTOCOL.Configure()
	EFI_UDP4_PROTOCOL.Groups()
	EFI_UDP4_PROTOCOL.Routes()
	EFI_UDP4_PROTOCOL.Transmit()
	EFI_UDP4_PROTOCOL.Receive()
	EFI_UDP4_PROTOCOL.Cancel()
	EFI_UDP4_PROTOCOL.Poll()

	29.2 EFI UDPv6 Protocol
	29.2.1 UDP6 Service Binding Protocol
	EFI_UDP6_SERVICE_BINDING_PROTOCOL

	29.2.2 EFI UDP6 Protocol
	EFI_UDP6_PROTOCOL
	EFI_UDP6_PROTOCOL.GetModeData()
	EFI_UDP6_PROTOCOL.Configure()
	EFI_UDP6_PROTOCOL.Groups()
	EFI_UDP6_PROTOCOL.Transmit()
	EFI_UDP6_PROTOCOL.Receive()
	EFI_UDP6_PROTOCOL.Cancel()
	EFI_UDP6_PROTOCOL.Poll()

	29.3 EFI MTFTPv4 Protocol
	EFI_MTFTP4_SERVICE_BINDING_PROTOCOL
	EFI_MTFTP4_PROTOCOL
	EFI_MTFTP4_PROTOCOL.GetModeData()
	EFI_MTFTP4_PROTOCOL.Configure()
	EFI_MTFTP4_PROTOCOL.GetInfo()
	EFI_MTFTP4_PROTOCOL.ParseOptions()
	EFI_MTFTP4_PROTOCOL.ReadFile()
	EFI_MTFTP4_PROTOCOL.WriteFile()
	EFI_MTFTP4_PROTOCOL.ReadDirectory()
	EFI_MTFTP4_PROTOCOL.POLL()

	29.4 EFI MTFTPv6 Protocol
	29.4.1 MTFTP6 Service Binding Protocol
	EFI_MTFTP6_SERVICE_BINDING_PROTOCOL

	29.4.2 MTFTP6 Protocol
	EFI_MTFTP6_PROTOCOL
	EFI_MTFTP6_PROTOCOL.GetModeData()
	EFI_MTFTP6_PROTOCOL.Configure()
	EFI_MTFTP6_PROTOCOL.GetInfo()
	EFI_MTFTP6_PROTOCOL.ParseOptions()
	EFI_MTFTP6_PROTOCOL.ReadFile()
	EFI_MTFTP6_PROTOCOL.WriteFile()
	EFI_MTFTP6_PROTOCOL.ReadDirectory()
	EFI_MTFTP6_PROTOCOL.Poll()

	30 Secure Boot and Driver Signing
	30.1 Secure Boot
	EFI_AUTHENTICATION_INFO_PROTOCOL
	EFI_AUTHENTICATION_INFO_PROTOCOL.Get()
	EFI_AUTHENTICATION_INFO_PROTOCOL.Set()

	30.2 UEFI Driver Signing Overview
	30.2.1 Digital Signatures
	30.2.2 Embedded Signatures
	30.2.3 Creating Image Digests from Images
	30.2.4 Code Definitions
	WIN_CERTIFICATE
	WIN_CERTIFICATE_EFI_PKCS1_15
	WIN_CERTIFICATE_UEFI_GUID

	30.3 Firmware/OS Key Exchange: creating trust relationships
	30.3.1 Enrolling The Platform Key
	30.3.2 Clearing The Platform Key
	30.3.3 Transitioning to Audit Mode
	30.3.4 Transitioning to Deployed Mode
	30.3.5 Enrolling Key Exchange Keys
	30.3.6 Platform Firmware Key Storage Requirements

	30.4 Firmware/OS Key Exchange: passing public keys
	30.4.1 Signature Database
	EFI_SIGNATURE_DATA

	30.4.2 Image Execution Information Table

	30.5 UEFI Image Validation
	30.5.1 Overview
	30.5.2 Authorized User
	30.5.3 Signature Database Update

	30.6 Code Definitions
	30.6.1 UEFI Image Variable GUID & Variable Name

	31 Human Interface Infrastructure Overview
	31.1 Goals
	31.2 Design Discussion
	31.2.1 Drivers And Applications
	31.2.2 Localization
	31.2.3 User Input
	31.2.4 Keyboard Layout
	31.2.5 Forms
	31.2.6 Strings
	31.2.7 Fonts
	31.2.8 Images
	31.2.9 HII Database
	31.2.10 Forms Browser
	31.2.11 Configuration Settings
	31.2.12 Form Callback Logic
	31.2.13 Driver Model Interaction
	31.2.14 Human Interface Component Interactions
	31.2.15 Standards Map Forms

	31.3 Code Definitions
	31.3.1 Package Lists and Package Headers
	EFI_HII_PACKAGE_HEADER

	31.3.2 Simplified Font Package
	31.3.3 Font Package
	31.3.4 Device Path Package
	31.3.5 GUID Package
	31.3.6 String Package
	31.3.7 Image Package
	31.3.8 Forms Package
	31.3.9 Keyboard Package
	31.3.10 Animations Package

	32 HII Protocols
	32.1 Font Protocol
	EFI_HII_FONT_PROTOCOL
	EFI_HII_FONT_PROTOCOL.StringToImage()
	EFI_HII_FONT_PROTOCOL.StringIdToImage()
	EFI_HII_FONT_PROTOCOL.GetGlyph()
	EFI_HII_FONT_PROTOCOL.GetFontInfo()
	32.1.1 Code Definitions
	EFI_FONT_DISPLAY_INFO
	EFI_IMAGE_OUTPUT

	32.2 String Protocol
	EFI_HII_STRING_PROTOCOL
	EFI_HII_STRING_PROTOCOL.NewString()
	EFI_HII_STRING_PROTOCOL.GetString()
	EFI_HII_STRING_PROTOCOL.SetString()
	EFI_HII_STRING_PROTOCOL.GetLanguages()
	EFI_HII_STRING_PROTOCOL.GetSecondaryLanguages()

	32.3 Image Protocol
	EFI_HII_IMAGE_PROTOCOL
	EFI_HII_IMAGE_PROTOCOL.NewImage()
	EFI_HII_IMAGE_PROTOCOL.GetImage()
	EFI_HII_IMAGE_PROTOCOL.SetImage()
	EFI_HII_IMAGE_PROTOCOL.DrawImage()
	EFI_HII_IMAGE_PROTOCOL.DrawImageId()

	32.4 Database Protocol
	EFI_HII_DATABASE_PROTOCOL
	EFI_HII_DATABASE_PROTOCOL.NewPackageList()
	EFI_HII_DATABASE_PROTOCOL.RemovePackageList()
	EFI_HII_DATABASE_PROTOCOL.UpdatePackageList()
	EFI_HII_DATABASE_PROTOCOL.ListPackageLists()
	EFI_HII_DATABASE_PROTOCOL.ExportPackageLists()
	EFI_HII_DATABASE_PROTOCOL.RegisterPackageNotify()
	EFI_HII_DATABASE_PROTOCOL.UnregisterPackageNotify()
	EFI_HII_DATABASE_PROTOCOL.FindKeyboardLayouts()
	EFI_HII_DATABASE_PROTOCOL.GetKeyboardLayout()
	EFI_HII_DATABASE_PROTOCOL.SetKeyboardLayout()
	EFI_HII_DATABASE_PROTOCOL.GetPackageListHandle()
	32.4.1 Database Structures
	EFI_HII_DATABASE_NOTIFY
	EFI_HII_DATABASE_NOTIFY_TYPE

	33 HII Configuration Processing and Browser Protocol
	33.1 Introduction
	33.1.1 Common Configuration Data Format
	33.1.2 Data Flow

	33.2 Configuration Strings
	33.2.1 String Syntax
	33.2.2 String Types

	33.3 EFI Configuration Keyword Handler Protocol
	EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL
	EFI_KEYWORD_HANDLER _PROTOCOL.SetData()
	EFI_KEYWORD_HANDLER _PROTOCOL.GetData()

	33.4 EFI HII Configuration Routing Protocol
	EFI_HII_CONFIG_ROUTING_PROTOCOL
	EFI_HII_CONFIG_ROUTING_PROTOCOL.ExtractConfig()
	EFI_HII_CONFIG_ROUTING_PROTOCOL.ExportConfig()
	EFI_HII_CONFIG_ROUTING_PROTOCOL.RouteConfig()
	EFI_HII_CONFIG_ROUTING_PROTOCOL.BlockToConfig()
	EFI_HII_CONFIG_ROUTING_PROTOCOL.ConfigToBlock()
	EFI_HII_CONFIG_ROUTING_PROTOCOL.GetAltCfg()

	33.5 EFI HII Configuration Access Protocol
	EFI_HII_CONFIG_ACCESS_PROTOCOL
	EFI_HII_CONFIG_ACCESS_PROTOCOL.ExtractConfig()
	EFI_HII_CONFIG_ACCESS_PROTOCOL.RouteConfig()
	EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack()

	33.6 Form Browser Protocol
	EFI_FORM_BROWSER2_PROTOCOL
	EFI_FORM_BROWSER2_PROTOCOL.SendForm()
	EFI_FORM_BROWSER2_PROTOCOL.BrowserCallback()

	34 User Identification
	34.1 User Identification Overview
	34.1.1 User Identify
	34.1.2 User Profiles
	34.1.3 Credential Providers
	34.1.4 Security Considerations
	34.1.5 Deferred Execution

	34.2 User Identification Process
	34.2.1 User Identification Process
	34.2.2 Changing The Current User Profile
	34.2.3 Ready To Boot

	34.3 Code Definitions
	34.3.1 User Manager Protocol
	EFI_USER_MANAGER_PROTOCOL
	EFI_USER_MANAGER_PROTOCOL.Create()
	EFI_USER_MANAGER_PROTOCOL.Delete()
	EFI_USER_MANAGER_PROTOCOL.GetNext()
	EFI_USER_MANAGER_PROTOCOL.Current()
	EFI_USER_MANAGER_PROTOCOL.Identify()
	EFI_USER_MANAGER_PROTOCOL.Find()
	EFI_USER_MANAGER_PROTOCOL.Notify()
	EFI_USER_MANAGER_PROTOCOL.GetInfo()
	EFI_USER_MANAGER_PROTOCOL.SetInfo()
	EFI_USER_MANAGER_PROTOCOL.DeleteInfo()
	EFI_USER_MANAGER_PROTOCOL.GetNextInfo()

	34.3.2 Credential Provider Protocols
	EFI_USER_CREDENTIAL2_PROTOCOL
	EFI_USER_CREDENTIAL2_PROTOCOL.Enroll()
	EFI_USER_CREDENTIAL2_PROTOCOL.Form()
	EFI_USER_CREDENTIAL2_PROTOCOL.Tile()
	EFI_USER_CREDENTIAL2_PROTOCOL.Title()
	EFI_USER_CREDENTIAL2_PROTOCOL.User()
	EFI_USER_CREDENTIAL2_PROTOCOL.Select()
	EFI_USER_CREDENTIAL2_PROTOCOL.Deselect()
	EFI_USER_CREDENTIAL2_PROTOCOL.Default()
	EFI_USER_CREDENTIAL2_PROTOCOL.GetInfo()
	EFI_USER_CREDENTIAL2_PROTOCOL.GetNextInfo()
	EFI_USER_CREDENTIAL2_PROTOCOL.Delete()

	34.3.3 Deferred Image Load Protocol
	EFI_DEFERRED_IMAGE_LOAD_PROTOCOL
	EFI_DEFERRED_IMAGE_LOAD_PROTOCOL.GetImageInfo()

	34.4 User Information
	34.4.1 EFI_USER_INFO_ACCESS_POLICY_RECORD
	34.4.2 EFI_USER_INFO_CBEFF_RECORD
	34.4.3 EFI_USER_INFO_CREATE_DATE_RECORD
	34.4.4 EFI_USER_INFO_CREDENTIAL_PROVIDER_RECORD
	34.4.5 EFI_USER_INFO_CREDENTIAL_PROVIDER_NAME_RECORD
	34.4.6 EFI_USER_INFO_CREDENTIAL_TYPE_RECORD
	34.4.7 EFI_USER_INFO_CREDENTIAL_TYPE_NAME_RECORD
	34.4.8 EFI_USER_INFO_GUID_RECORD
	34.4.9 EFI_USER_INFO_FAR_RECORD
	34.4.10 EFI_USER_INFO_IDENTIFIER_RECORD
	34.4.11 EFI_USER_INFO_IDENTITY_POLICY_RECORD
	34.4.12 EFI_USER_INFO_NAME_RECORD
	34.4.13 EFI_USER_INFO_PKCS11_RECORD
	34.4.14 EFI_USER_INFO_RETRY_RECORD
	34.4.15 EFI_USER_INFO_USAGE_DATE_RECORD
	34.4.16 EFI_USER_INFO_USAGE_COUNT_RECORD

	34.5 User Information Table

	35 Secure Technologies
	35.1 Hash Overview
	35.1.1 Hash References
	EFI_HASH_SERVICE_BINDING_PROTOCOL
	EFI_HASH_PROTOCOL
	EFI_HASH_PROTOCOL.GetHashSize()
	EFI_HASH_PROTOCOL.Hash()

	35.1.2 Other Code Definitions
	EFI_SHA1_HASH, EFI_SHA224_HASH, EFI_SHA256_HASH, EFI_SHA384_HASH, EFI_SHA512HASH, EFI_MD5_HASH

	35.2 Hash2 Protocols
	35.2.1 EFI Hash2 Service Binding Protocol
	EFI_HASH2_SERVICE_BINDING_PROTOCOL

	35.2.2 EFI Hash2 Protocol
	EFI_HASH2_PROTOCOL
	EFI_HASH2_PROTOCOL.GetHashSize()
	EFI_HASH2_PROTOCOL.Hash()
	EFI_HASH2_PROTOCOL.HashInit()
	EFI_HASH2_PROTOCOL.HashUpdate()
	EFI_HASH2_PROTOCOL.HashFinal()

	35.2.3 Other Code Definitions
	EFI_HASH2_OUTPUT

	35.3 Key Management Service
	EFI_KEY_MANAGEMENT_SERVICE_PROTOCOL
	EFI_KMS_PROTOCOL.GetServiceStatus()
	EFI_KMS_PROTOCOL.RegisterClient()
	EFI_KMS_PROTOCOL.CreateKey()
	EFI_KMS_PROTOCOL.GetKey()
	EFI_KMS_PROTOCOL.AddKey()
	EFI_KMS_PROTOCOL.DeleteKey()
	EFI_KMS_PROTOCOL.GetKeyAttributes()
	EFI_KMS_PROTOCOL.AddKeyAttributes()
	EFI_KMS_PROTOCOL.DeleteKeyAttributes()
	EFI_KMS_PROTOCOL.GetKeyByAttributes()

	35.4 PKCS7 Verify Protocol
	EFI_PKCS7_VERIFY_PROTOCOL
	EFI_PKCS7_VERIFY_PROTOCOL.VerifyBuffer()
	EFI_PKCS7_VERIFY_PROTOCOL.VerifySignature()

	35.5 Random Number Generator Protocol
	EFI_RNG_PROTOCOL
	EFI_RNG_PROTOCOL.GetInfo
	EFI_RNG_PROTOCOL.GetRNG
	35.5.1 EFI RNG Algorithm Definitions
	35.5.2 RNG References

	35.6 Smart Card Reader and Smart Card Edge Protocols
	35.6.1 Smart Card Reader Protocol
	EFI_SMART_CARD_READER_PROTOCOL Summary
	EFI_SMART_CARD_READER_PROTOCOL.SCardConnect()
	EFI_SMART_CARD_READER_PROTOCOL.SCardDisconnect()
	EFI_SMART_CARD_READER_PROTOCOL.SCardStatus()
	EFI_SMART_CARD_READER_PROTOCOL.SCardTransmit()
	EFI_SMART_CARD_READER_PROTOCOL.SCardControl()
	EFI_SMART_CARD_READER_PROTOCOL.SCardGetAttrib()

	35.6.2 Smart Card Edge Protocol
	EFI_SMART_CARD_EDGE_PROTOCOL
	EFI_SMART_CARD_EDGE_PROTOCOL.GetContext()
	EFI_SMART_CARD_EDGE_PROTOCOL. Connect()
	EFI_SMART_CARD_EDGE_PROTOCOL.Disconnect()
	EFI_SMART_CARD_EDGE_PROTOCOL.GetCsn
	EFI_SMART_CARD_EDGE_PROTOCOL.GetReaderName
	EFI_SMART_CARD_EDGE_PROTOCOL.VerifyPin()
	EFI_SMART_CARD_EDGE_PROTOCOL.GetPinRemaining()
	EFI_SMART_CARD_EDGE_PROTOCOL.GetData()
	EFI_SMART_CARD_EDGE_PROTOCOL.GetCredentials()
	EFI_SMART_CARD_EDGE_PROTOCOL.SignData()
	EFI_SMART_CARD_EDGE_PROTOCOL.DecryptData()
	EFI_SMART_CARD_EDGE_PROTOCOL.BuildDHAgreement()

	36 Protocols— Timestamp Protocol
	36.1 EFI Timestamp Protocol
	EFI_TIMESTAMP_PROTOCOL
	EFI_TIMESTAMP_PROTOCOL.GetTimestamp()
	EFI_TIMESTAMP_PROTOCOL.GetProperties ()

	Appendix A GUID and Time Formats
	Appendix B Console
	B.1 EFI_SIMPLE_TEXT_INPUT_PROTOCOL and EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL
	B.2 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL

	Appendix C Device Path Examples
	C.1 Example Computer System
	C.2 Legacy Floppy
	C.3 IDE Disk
	C.4 Secondary Root PCI Bus with PCI to PCI Bridge
	C.5 ACPI Terms
	C.6 EFI Device Path as a Name Space

	Appendix D Status Codes
	Appendix E Universal Network Driver Interfaces
	E.1 Introduction
	E.1.1 Definitions
	E.1.2 Referenced Specifications
	E.1.3 OS Network Stacks

	E.2 Overview
	E.2.1 32/64-bit UNDI Interface
	E.2.2 UNDI Command Format

	E.3 UNDI C Definitions
	E.3.1 Portability Macros
	E.3.2 Miscellaneous Macros
	E.3.3 Portability Types
	E.3.4 Simple Types
	E.3.5 Compound Types

	E.4 UNDI Commands
	E.4.1 Command Linking and Queuing
	E.4.2 Get State
	E.4.3 Start
	E.4.4 Stop
	E.4.5 Get Init Info
	E.4.6 Get Config Info
	E.4.7 Initialize
	E.4.8 Reset
	E.4.9 Shutdown
	E.4.10 Interrupt Enables
	E.4.11 Receive Filters
	E.4.12 Station Address
	E.4.13 Statistics
	E.4.14 MCast IP To MAC
	E.4.15 NvData
	E.4.16 Get Status
	E.4.17 Fill Header
	E.4.18 Transmit
	E.4.19 Receive
	E.4.20 PXE 2.1 specification wire protocol clarifications

	Appendix F Using the Simple Pointer Protocol
	Appendix G Using the EFI Extended SCSI Pass Thru Protocol
	Appendix H Compression Source Code
	Appendix I Decompression Source Code
	Appendix J EFI Byte Code Virtual Machine Opcode List
	Appendix K Alphabetic Function Lists
	Appendix L EFI 1.10 Protocol Changes and Deprecation List
	L.1 Protocol and GUID Name Changes from EFI 1.10
	L.2 Deprecated Protocols

	Appendix M Formats--Language Codes and Language Code Arrays
	M.1 Specifying individual language codes
	M.1.1 Specifying language code arrays:

	Appendix N Common Platform Error Record
	N.1 Introduction
	N.2 Format
	N.2.1 Record Header
	N.2.2 Section Descriptor
	N.2.3 Non-standard Section Body
	N.2.4 Processor Error Sections
	N.2.5 Memory Error Section
	N.2.6 Memory Error Section 2
	N.2.7 PCI Express Error Section
	N.2.8 PCI/PCI-X Bus Error Section
	N.2.9 PCI/PCI-X Component Error Section
	N.2.10 Firmware Error Record Reference
	N.2.11 DMAr Error Sections
	N.2.12 Error Status

	Appendix O UEFI ACPI Data Table
	Appendix P Hardware Error Record Persistence Usage
	P.1 Determining space
	P.2 Saving Hardware error records
	P.3 Clearing error record variables

	Appendix Q References
	Q.1 Related Information
	Q.2 Prerequisite Specifications
	Q.2.1 ACPI Specification
	Q.2.2 Additional Considerations for Itanium-Based Platforms

	Appendix R Glossary
	Index

