

Text Mining
Classification,

Clustering, and
Applications

© 2009 by Taylor and Francis Group, LLC

Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

Understanding Complex Datasets: Data Mining with Matrix Decompositions
David Skillicorn

COMPUTATIONAL METHODS OF FEATURE SELECTION
Huan Liu and Hiroshi Motoda

CONSTRAINED CLUSTERING: Advances in Algorithms, Theory, and Applications
Sugato Basu, Ian Davidson, and Kiri L. Wagstaff

KNOWLEDGE DISCOVERY FOR COUNTERTERRORISM AND LAW ENFORCEMENT
David Skillicorn

MULTIMEDIA DATA MINING: A Systematic Introduction to Concepts and Theory
Zhongfei Zhang and Ruofei Zhang

NEXT GENERATION OF DATA MINING
Hillol Kargupta, Jiawei Han, Philip S. Yu, Rajeev Motwani, and Vipin Kumar

DATA MINING FOR DESIGN AND MARKETING
Yukio Ohsawa and Katsutoshi Yada

THE TOP TEN ALGORITHMS IN DATA MINING
Xindong Wu and Vipin Kumar

GEOGRAPHIC DATA MINING AND KNOWLEDGE DISCOVERY, Second Edition
Harvey J. Miller and Jiawei Han

TEXT MINING: CLASSIFICATION, CLUSTERING, AND APPLICATIONS
Ashok N. Srivastava and Mehran Sahami

Published Titles

Series Editor

Vipin Kumar
University of Minnesota

Department of Computer Science and Engineering
Minneapolis, Minnesota, U.S.A

AIMS AND SCOPE

This series aims to capture new developments and applications in data mining and knowledge
discovery, while summarizing the computational tools and techniques useful in data analysis. This
series encourages the integration of mathematical, statistical, and computational methods and
techniques through the publication of a broad range of textbooks, reference works, and hand-
books. The inclusion of concrete examples and applications is highly encouraged. The scope of the
series includes, but is not limited to, titles in the areas of data mining and knowledge discovery
methods and applications, modeling, algorithms, theory and foundations, data and knowledge
visualization, data mining systems and tools, and privacy and security issues.

© 2009 by Taylor and Francis Group, LLC

Chapman & Hall/CRC

Data Mining and Knowledge Discovery Series

Text Mining
Classification,

Clustering, and
Applications

Edited by

Ashok N. Srivastava
Mehran Sahami

CRC Press
Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK

© 2009 by Taylor and Francis Group, LLC

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor and Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4200-5940-3 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Text mining : classification, clustering, and applications / Ashok Srivastava, Mehran
Sahami.

p. cm. ‑‑ (Chapman & Hall/CRC data mining and knowledge discovery series)
Includes bibliographical references and index.
ISBN 978‑1‑4200‑5940‑3 (hardcover : alk. paper)
1. Data mining‑‑Statistical methods. I. Srivastava, Ashok, 1969‑ II. Sahami, Mehran.

III. Title. IV. Series.

QA76.9.D343T393 2009
006.3’12‑‑dc22	 2009013047

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2009 by Taylor and Francis Group, LLC

http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com
http://www.copyright.com

To my mom, dad, Lynn, and Leela
for all that you have given me.

−A.N.S.

To Heather, William, and Claire
for always keeping the truly important things in perspective.

−M.S.

© 2009 by Taylor and Francis Group, LLC

Contents

List of Figures xiii

List of Tables xix

Introduction xxi

About the Editors xxvii

Contributor List xxix

1 Analysis of Text Patterns Using Kernel Methods 1
Marco Turchi, Alessia Mammone, and Nello Cristianini
1.1 Introduction . 1
1.2 General Overview on Kernel Methods 1

1.2.1 Finding Patterns in Feature Space 5
1.2.2 Formal Properties of Kernel Functions 8
1.2.3 Operations on Kernel Functions 10

1.3 Kernels for Text . 11
1.3.1 Vector Space Model 11
1.3.2 Semantic Kernels . 13
1.3.3 String Kernels . 17

1.4 Example . 19
1.5 Conclusion and Further Reading 22

2 Detection of Bias in Media Outlets with Statistical Learning
Methods 27
Blaz Fortuna, Carolina Galleguillos, and Nello Cristianini
2.1 Introduction . 27
2.2 Overview of the Experiments 29
2.3 Data Collection and Preparation 30

2.3.1 Article Extraction from HTML Pages 31
2.3.2 Data Preparation . 31
2.3.3 Detection of Matching News Items 32

2.4 News Outlet Identification . 35
2.5 Topic-Wise Comparison of Term Bias 38
2.6 News Outlets Map . 40

2.6.1 Distance Based on Lexical Choices 42

vii
© 2009 by Taylor and Francis Group, LLC

viii

2.6.2 Distance Based on Choice of Topics 43
2.7 Related Work . 44
2.8 Conclusion . 45
2.9 Appendix A: Support Vector Machines 48
2.10 Appendix B: Bag of Words and Vector Space Models 48
2.11 Appendix C: Kernel Canonical Correlation Analysis 49
2.12 Appendix D: Multidimensional Scaling 50

3 Collective Classification for Text Classification 51
Galileo Namata, Prithviraj Sen, Mustafa Bilgic, and Lise Getoor
3.1 Introduction . 51
3.2 Collective Classification: Notation and Problem Definition . . 53
3.3 Approximate Inference Algorithms for Approaches Based on

Local Conditional Classifiers 53
3.3.1 Iterative Classification 54
3.3.2 Gibbs Sampling . 55
3.3.3 Local Classifiers and Further Optimizations 55

3.4 Approximate Inference Algorithms for Approaches Based on
Global Formulations . 56
3.4.1 Loopy Belief Propagation 58
3.4.2 Relaxation Labeling via Mean-Field Approach 59

3.5 Learning the Classifiers . 60
3.6 Experimental Comparison . 60

3.6.1 Features Used . 60
3.6.2 Real-World Datasets 60
3.6.3 Practical Issues . 63

3.7 Related Work . 64
3.8 Conclusion . 66
3.9 Acknowledgments . 66

4 Topic Models 71
David M. Blei and John D. Lafferty
4.1 Introduction . 71
4.2 Latent Dirichlet Allocation 72

4.2.1 Statistical Assumptions 73
4.2.2 Exploring a Corpus with the Posterior Distribution . . 75

4.3 Posterior Inference for LDA 76
4.3.1 Mean Field Variational Inference 78
4.3.2 Practical Considerations 81

4.4 Dynamic Topic Models and Correlated Topic Models 82
4.4.1 The Correlated Topic Model 82
4.4.2 The Dynamic Topic Model 84

4.5 Discussion . 89

© 2009 by Taylor and Francis Group, LLC

ix

5 Nonnegative Matrix and Tensor Factorization for Discussion
Tracking 95
Brett W. Bader, Michael W. Berry, and Amy N. Langville
5.1 Introduction . 95

5.1.1 Extracting Discussions 96
5.1.2 Related Work . 96

5.2 Notation . 97
5.3 Tensor Decompositions and Algorithms 98

5.3.1 PARAFAC-ALS . 100
5.3.2 Nonnegative Tensor Factorization 100

5.4 Enron Subset . 102
5.4.1 Term Weighting Techniques 103

5.5 Observations and Results . 105
5.5.1 Nonnegative Tensor Decomposition 105
5.5.2 Analysis of Three-Way Tensor 106
5.5.3 Analysis of Four-Way Tensor 108

5.6 Visualizing Results of the NMF Clustering 111
5.7 Future Work . 116

6 Text Clustering with Mixture of von Mises-Fisher Distribu-
tions 121
Arindam Banerjee, Inderjit Dhillon, Joydeep Ghosh, and Suvrit Sra
6.1 Introduction . 121
6.2 Related Work . 123
6.3 Preliminaries . 124

6.3.1 The von Mises-Fisher (vMF) Distribution 124
6.3.2 Maximum Likelihood Estimates 125

6.4 EM on a Mixture of vMFs (moVMF) 126
6.5 Handling High-Dimensional Text Datasets 127

6.5.1 Approximating κ . 128
6.5.2 Experimental Study of the Approximation 130

6.6 Algorithms . 132
6.7 Experimental Results . 134

6.7.1 Datasets . 135
6.7.2 Methodology . 138
6.7.3 Simulated Datasets . 138
6.7.4 Classic3 Family of Datasets 140
6.7.5 Yahoo News Dataset 143
6.7.6 20 Newsgroup Family of Datasets 143
6.7.7 Slashdot Datasets . 145

6.8 Discussion . 146
6.9 Conclusions and Future Work 148

© 2009 by Taylor and Francis Group, LLC

x

7 Constrained Partitional Clustering of Text Data: An
Overview 155
Sugato Basu and Ian Davidson
7.1 Introduction . 155
7.2 Uses of Constraints . 157

7.2.1 Constraint-Based Methods 157
7.2.2 Distance-Based Methods 158

7.3 Text Clustering . 159
7.3.1 Pre-Processing . 161
7.3.2 Distance Measures . 162

7.4 Partitional Clustering with Constraints 163
7.4.1 COP-KMeans . 163
7.4.2 Algorithms with Penalties – PKM, CVQE 164
7.4.3 LCVQE: An Extension to CVQE 167
7.4.4 Probabilistic Penalty – PKM 167

7.5 Learning Distance Function with Constraints 168
7.5.1 Generalized Mahalanobis Distance Learning 168
7.5.2 Kernel Distance Functions Using AdaBoost 169

7.6 Satisfying Constraints and Learning Distance Functions . . . 170
7.6.1 Hidden Markov Random Field (HMRF) Model 170
7.6.2 EM Algorithm . 173
7.6.3 Improvements to HMRF-KMeans 173

7.7 Experiments . 174
7.7.1 Datasets . 174
7.7.2 Clustering Evaluation 175
7.7.3 Methodology . 176
7.7.4 Comparison of Distance Functions 176
7.7.5 Experimental Results 177

7.8 Conclusions . 180

8 Adaptive Information Filtering 185
Yi Zhang
8.1 Introduction . 185
8.2 Standard Evaluation Measures 188
8.3 Standard Retrieval Models and Filtering Approaches 190

8.3.1 Existing Retrieval Models 190
8.3.2 Existing Adaptive Filtering Approaches 192

8.4 Collaborative Adaptive Filtering 194
8.5 Novelty and Redundancy Detection 196

8.5.1 Set Difference . 199
8.5.2 Geometric Distance 199
8.5.3 Distributional Similarity 200
8.5.4 Summary of Novelty Detection 201

8.6 Other Adaptive Filtering Topics 201
8.6.1 Beyond Bag of Words 202

© 2009 by Taylor and Francis Group, LLC

xi

8.6.2 Using Implicit Feedback 202
8.6.3 Exploration and Exploitation Trade Off 203
8.6.4 Evaluation beyond Topical Relevance 203

8.7 Acknowledgments . 204

9 Utility-Based Information Distillation 213
Yiming Yang and Abhimanyu Lad
9.1 Introduction . 213

9.1.1 Related Work in Adaptive Filtering (AF) 213
9.1.2 Related Work in Topic Detection and Tracking (TDT) 214
9.1.3 Limitations of Current Solutions 215

9.2 A Sample Task . 216
9.3 Technical Cores . 218

9.3.1 Adaptive Filtering Component 218
9.3.2 Passage Retrieval Component 219
9.3.3 Novelty Detection Component 220
9.3.4 Anti-Redundant Ranking Component 220

9.4 Evaluation Methodology . 221
9.4.1 Answer Keys . 221
9.4.2 Evaluating the Utility of a Sequence of Ranked Lists . 223

9.5 Data . 225
9.6 Experiments and Results . 226

9.6.1 Baselines . 226
9.6.2 Experimental Setup 226
9.6.3 Results . 227

9.7 Concluding Remarks . 229
9.8 Acknowledgments . 229

10 Text Search-Enhanced with Types and Entities 233
Soumen Chakrabarti, Sujatha Das, Vijay Krishnan, and Kriti Puniyani
10.1 Entity-Aware Search Architecture 233

10.1.1 Guessing Answer Types 234
10.1.2 Scoring Snippets . 235
10.1.3 Efficient Indexing and Query Processing 236
10.1.4 Comparison with Prior Work 236

10.2 Understanding the Question 236
10.2.1 Answer Type Clues in Questions 239
10.2.2 Sequential Labeling of Type Clue Spans 240
10.2.3 From Type Clue Spans to Answer Types 245
10.2.4 Experiments . 247

10.3 Scoring Potential Answer Snippets 251
10.3.1 A Proximity Model . 253
10.3.2 Learning the Proximity Scoring Function 255
10.3.3 Experiments . 257

10.4 Indexing and Query Processing 260

© 2009 by Taylor and Francis Group, LLC

xii

10.4.1 Probability of a Query Atype 262
10.4.2 Pre-Generalize and Post-Filter 262
10.4.3 Atype Subset Index Space Model 265
10.4.4 Query Time Bloat Model 266
10.4.5 Choosing an Atype Subset 269
10.4.6 Experiments . 271

10.5 Conclusion . 272
10.5.1 Summary . 272
10.5.2 Ongoing and Future Work 273

© 2009 by Taylor and Francis Group, LLC

List of Figures

1.1 Modularity of kernel-based algorithms: the data are trans-
formed into a kernel matrix, by using a kernel function; then
the pattern analysis algorithm uses this information to find
interesting relations, which are all written in the form of a
linear combination of kernel functions. 3

1.2 The evolutionary rooted tree built using a 4-spectrum kernel
and the Neighbor Joining algorithm. 20

1.3 Multi-dimensional scaling using a 4-spectrum kernel distance
matrix. 21

2.1 Number of discovered pairs vs. time window size 34
2.2 Distribution of BEP for 300 random sets 38
2.3 Relative distance between news outlets using the BEP metric 43
2.4 Relative distance between news outlets, using the Topic simi-

larity . 44

3.1 A small text classification problem. Each box denotes a doc-
ument, each directed edge between a pair of boxes denotes
a hyperlink, and each oval node denotes a random variable.
Assume the smaller oval nodes within each box represent the
presence of the words, w1, w2, and w3, in the document and
the larger oval nodes the label of the document where the set
of label values is L = {L1, L2}. A shaded oval denotes an
observed variable whereas an unshaded oval node denotes an
unobserved variable whose value needs to be predicted. . . . 52

4.1 Five topics from a 50-topic LDA model fit to Science from
1980–2002. 72

4.2 A graphical model representation of the latent Dirichlet allo-
cation (LDA). Nodes denote random variables; edges denote
dependence between random variables. Shaded nodes denote
observed random variables; unshaded nodes denote hidden
random variables. The rectangular boxes are “plate notation,”
which denote replication. 74

4.3 Five topics from a 50-topic model fit to the Yale Law Journal
from 1980–2003. 75

xiii
© 2009 by Taylor and Francis Group, LLC

xiv

4.4 (See color insert.) The analysis of a document from Sci-
ence. Document similarity was computed using Eq. (4.4);
topic words were computed using Eq. (4.3). 77

4.5 One iteration of mean field variational inference for LDA. This
algorithm is repeated until the objective function in Eq. (4.6)
converges. 80

4.6 The graphical model for the correlated topic model in Sec-
tion 4.4.1. 84

4.7 A portion of the topic graph learned from the 16,351 OCR arti-
cles from Science (1990-1999). Each topic node is labeled with
its five most probable phrases and has font proportional to its
popularity in the corpus. (Phrases are found by permutation
test.) The full model can be browsed with pointers to the origi-
nal articles at http://www.cs.cmu.edu/ lemur/science/ and on
STATLIB. (The algorithm for constructing this graph from the
covariance matrix of the logistic normal is given in (9).) . . . 85

4.8 A graphical model representation of a dynamic topic model
(for three time slices). Each topic’s parameters βt,k evolve
over time. 86

4.9 Two topics from a dynamic topic model fit to the Science
archive (1880–2002). 88

4.10 The top ten most similar articles to the query in Science
(1880–2002), scored by Eq. (4.4) using the posterior distri-
bution from the dynamic topic model. 89

5.1 PARAFAC provides a three-way decomposition with some
similarity to the singular value decomposition. 99

5.2 (See color insert.) Five discussion topics identified in the three-
way analysis over months. 106

5.3 Three discussion topics identified in the three-way analysis
over days. 108

5.4 Weekly betting pool identified in the three-way (top) and four-
way (bottom) analyses. 109

5.5 Long running discussion on FERC’s various rulings of RTOs. 110
5.6 Forwarding of Texas A&M school fight song. 111
5.7 (See color insert.) Pixel plot of the raw Enron term-by-email

matrix. 112
5.8 (See color insert.) Pixel plot of the reordered Enron term-by-

email matrix. 113
5.9 (See color insert.) Pixel plot of the reordered Enron term-by-

document matrix with term and document labels. 114
5.10 (See color insert.) Close-up of one section of pixel plot of the

reordered Enron term-by-document matrix. 115

6.1 True and approximated κ values with d = 1000 130

© 2009 by Taylor and Francis Group, LLC

xv

6.2 Comparison of approximations for varying d, κ = 500. 131
6.3 Comparison of approximations for varying r̄ (with d = 1000). 132
6.4 (See color insert.) Small-mix dataset and its clustering by

soft-moVMF. 139
6.5 Comparison of the algorithms for the Classic3 datasets and

the Yahoo News dataset. 142
6.6 Comparison of the algorithms for the 20 Newsgroup and some

subsets. 144
6.7 Comparison of the algorithms for more subsets of 20 News-

group data. 145
6.8 (See color insert.) Variation of entropy of hidden variables

with number of iterations (soft-movMF). 148

7.1 Input instances and constraints. 158
7.2 Constraint-based clustering. 159
7.3 Input instances and constraints. 160
7.4 Distance-based clustering. 160
7.5 Clustering using KMeans. 164
7.6 Clustering under constraints using COP-KMeans. 165
7.7 DistBoost algorithm. 169
7.8 A hidden Markov random field. 171
7.9 Graphical plate model of variable dependence. 171
7.10 HMRF-KMeans algorithm. 174
7.11 Comparison of cosine and Euclidean distance. 178
7.12 Results on News-Different-3. 178
7.13 Results on News-Related-3. 179
7.14 Results on News-Similar-3. 179

8.1 A typical filtering system. A filtering system can serve many
users, although only one user is shown in the figure. Infor-
mation can be documents, images, or videos. Without loss of
generality, we focus on text documents in this chapter. . . . 186

8.2 Illustration of dependencies of variables in the hierarchical
model. The rating, y, for a document, x, is conditioned on
the document and the user model, wm, associated with the
user m. Users share information about their models through
the prior, Φ = (μ, Σ). 195

9.1 PNDCU Scores of Indri and CAFÉ for two dampen-
ing factors (p), and various settings (PRF: Pseudo Rele-
vance Feedback, F: Feedback, N: Novelty Detection, A: Anti-
Redundant Ranking). 227

9.2 Performance of CAFÉ and Indri across chunks. 228

© 2009 by Taylor and Francis Group, LLC

xvi

10.1 (See color insert.) Document as a linear sequence of tokens,
some connected to a type hierarchy. Some sample queries and
their approximate translation to a semi-structured form are
shown. 235

10.2 (See color insert.) The IR4QA system that we describe in this
paper. 237

10.3 Summary of % accuracy for UIUC data. (1) SNoW accuracy
without the related word dictionary was not reported. With
the related-word dictionary, it achieved 91%. (2) SNoW with
a related-word dictionary achieved 84.2% but the other algo-
rithms did not use it. Our results are summarized in the last
two rows; see text for details. 240

10.4 2- and 3-state transition models. 241
10.5 Stanford Parser output example. 242
10.6 A multi-resolution tabular view of the question parse showing

tag and num attributes in each cell. capital city is the informer
span with y = 1. 242

10.7 The meta-learning approach. 245
10.8 Effect of feature choices. 248
10.9 A significant boost in question classification accuracy is seen

when two levels of non-local features are provided to the SVM,
compared to just the POS features at the leaf of the parse tree. 249

10.10 Effect of number of CRF states, and comparison with the
heuristic baseline (Jaccard accuracy expressed as %). 250

10.11 Percent accuracy with linear SVMs, “perfect” informer spans
and various feature encodings. The ‘Coarse’ column is for the
6 top-level UIUC classes and the ‘fine’ column is for the 50
second-level classes. 251

10.12 Summary of % accuracy broken down by broad syntactic ques-
tion types. a: question bigrams, b: perfect informers only,
c: heuristic informers only, d: CRF informers only, e–g: bi-
grams plus perfect, heuristic and CRF informers. 252

10.13 (See color insert.) Setting up the proximity scoring problem. 254
10.14 Relative CPU times needed by RankSVM and RankExp as a

function of the number of ordering constraints. 258
10.15 βj shows a noisy unimodal pattern. 259
10.16 End-to-end accuracy using RankExp β is significantly better

than IR-style ranking. Train and test years are from 1999,
2000, 2001. R300 is recall at k = 300 out of 261 test questions.
C = 0.1, C = 1 and C = 10 gave almost identical results. . 259

10.17 Relative sizes of the corpus and various indexes for
TREC 2000. 261

10.18 Highly skewed atype frequencies in TREC query logs. . . . 261
10.19 Log likelihood of validation data against the Lidstone smooth-

ing parameter �. 263

© 2009 by Taylor and Francis Group, LLC

xvii

10.20 Pre-generalization and post-filtering. 263
10.21 Sizes of the additional indices needed for pre-generalize and

post-filter query processing, compared to the usual indices for
TREC 2000. 265

10.22
∑

a∈R corpusCount(a) is a very good predictor of the size of
the atype subset index. (Root atypes are not indexed.) . . . 266

10.23 tscan is sufficiently concentrated that replacing the distribution
by a constant number is not grossly inaccurate. 267

10.24 Like tscan, tforward is concentrated and can be reasonably re-
placed by a point estimate. 268

10.25 Scatter of observed against estimated query bloat. 269
10.26 Histogram of observed-to-estimated bloat ratio for individual

queries with a specific R occupying an estimated 145MB of
atype index. 269

10.27 The inputs are atype set A and workload W . The output is a
series of trade-offs between index size of R and average query
bloat over W . 270

10.28 (See color insert.) Estimated space-time tradeoffs produced
by AtypeSubsetChooser. The y-axis uses a log scale. Note
that the curve for � = 10−3 (suggested by Figure 10.19) has
the lowest average bloat. 272

10.29 Estimated bloat for various values of � for a specific estimated
index size of 145MB. The y-axis uses a log scale. 273

10.30 Estimated and observed space-time tradeoffs produced by
AtypeSubsetChooser. 274

10.31 Average time per query (with and without generalization) for
various estimated index sizes. 275

© 2009 by Taylor and Francis Group, LLC

List of Tables

2.1 Number of news items collected from different outlets. 31
2.2 Number of discovered news pairs. 33
2.3 Results for outlet identification of a news item 36
2.4 Results for news outlet identification of a news item from the

set of news item pairs . 37
2.5 Main topics covered by CNN or Al Jazeera 40
2.6 Number of discovered pairs 41
2.7 Conditional probabilities of a story 41
2.8 Number of news articles covered by all four news outlets . . . 42
2.9 BEP metric distances . 43

3.1 Accuracy results for WebKB. CC algorithms outperformed
their CO counterparts significantly, and LR versions outper-
formed NB versions significantly. The differences between ICA-
NB and GS-NB, and the differences between ICA-LR and GS-
LR, are not statistically significant. Both LBP and MF out-
performed ICA-LR and GS-LR significantly. 62

3.2 Accuracy results for the Cora dataset. CC algorithms outper-
formed their CO counterparts significantly. LR versions signif-
icantly outperformed NB versions. ICA-NB outperformed GS-
NB for SS and M, the other differences between ICA and GS
were not significant (both NB and LR versions). Even though
MF outperformed ICA-LR, GS-LR, and LBP, the differences
were not statistically significant. 63

3.3 Accuracy results for the CiteSeer dataset. CC algorithms sig-
nificantly outperformed their CO counterparts except for ICA-
NB and GS-NB for matched cross-validation. CO and CC al-
gorithms based on LR outperformed the NB versions, but the
differences were not significant. ICA-NB outperformed GS-NB
significantly for SS; but, the rest of the differences between LR
versions of ICA and GS, LBP and MF were not significant. . 64

5.1 Eleven of the 197 email authors represented in the term-author-
time array X. 103

6.1 Approximations κ̂ for a sampling of κ and d values. 129
6.2 True and estimated parameters for small-mix 139

xix
© 2009 by Taylor and Francis Group, LLC

xx

6.3 Performance of soft-moVMF on big-mix dataset. 140
6.4 Comparative confusion matrices for 3 clusters of Classic3 (rows

represent clusters). 140
6.5 Comparative confusion matrices for 3 clusters of Classic300. . 141
6.6 Comparative confusion matrices for 3 clusters of Classic400. . 141
6.7 Comparative confusion matrices for 5 clusters of Classic3. . . 141
6.8 Performance comparison of algorithms averaged over 5 runs. . 145
6.9 Five of the topics obtained by running batch vMF on slash-7. 146

7.1 Text datasets used in experimental evaluation 175

8.1 The values assigned to relevant and non-relevant documents
that the filtering system did and did not deliver. R−, R+, N+,
and N− correspond to the number of documents that fall into
the corresponding category. AR, AN , BR, and BN correspond
to the credit/penalty for each element in the category. . . . 188

© 2009 by Taylor and Francis Group, LLC

Introduction

Recent years have witnessed an immense growth in the amount of textual
information available, both on the World Wide Web and in institutional doc-
ument repositories. In this context, text mining has become extremely preva-
lent, giving rise to an age where vast amounts of textual information can
be accessed, analyzed, and processed in a fraction of a second. The bene-
fits of text mining go well beyond search and have yielded innovations that
help people better understand and make use of the information in document
repositories. The development of new technologies to tackle problems such
as topic detection, tracking, and trending—where a machine automatically
identifies emergent topics in a text corpus—is bound to have wide application
in the future. Such applications can be found in ubiquitous consumer-based
applications as well as systems focused on banking and finance, health care,
aerospace, manufacturing, and the natural sciences.

Indeed, there are numerous applications of text mining, including cutting-
edge research in the analysis and classification of news reports, email and
spam filtering, hierarchical topic extraction from web pages, automated ontol-
ogy extraction and management, and competitive intelligence. Each of these
applications relies on an appropriate representation of the text corpora and a
set of highly scalable, language independent and reliable algorithms for text
analysis. Moreover, a systematic framework for incorporating domain knowl-
edge, where available, is often essential for a successful application. Thus, the
algorithms need to be flexible enough to learn appropriate patterns from the
text corpora but also seamlessly include prior domain information as needed.

At a high level, computational methods to analyze large text corpora fall
into two main categories: those based on statistical methods and those based
on linguistic methods. Statistical methods usually build on an underlying
statistical or probabilistic framework and often do not take meaning, seman-
tics, and other linguistic properties into account. Such methods rely on the
development of a mathematical representation of text. The most common
representation is the so-called “bag-of-words” matrix, where each document
in a corpus is represented as a vector containing the frequency of occurrence
of each word in that document. For many real-world applications, this matrix
is very large and extremely sparse, thus leading to the development of special
methods for working with such matrices. A key point of this representation,
however, is that the semantic information in the documents, which humans
use to truly understand the meaning of the text, is lost. However, research
over the last 25 years has shown that this representation can still yield ex-

xxi
© 2009 by Taylor and Francis Group, LLC

xxii

tremely good results for a variety of applications, and it is still the favored
representation in many text mining methods. To wit, an early paper in the
field showed that inference methods based on a linear decomposition of these
matrices could achieve a passing score on the TOEFL exam!

Linguistic methods, which are often based on natural language processing
techniques, attempt to deconstruct documents based on a computer repre-
sentation of a spoken or written language. These methods facilitate the pro-
cess of extracting and representing meaning and casual relationships that are
naturally expressed in language through the use of language models. This
model-based approach can potentially yield a more expressive underlying rep-
resentation of text, enabling a wide variety of text processing applications.
For example, deeper representations of the underlying structure of text can
lead to the automatic extraction and representation of an ontology or provide
a machine-understandable representation of knowledge. While model-based
systems hold great promise, they can also be quite difficult to build, as such
models tend to have many built-in assumptions which make them hard to
maintain and debug as new needs and applications arise.

The focus of this book is on statistical methods for text mining and anal-
ysis. Specifically, we examine methods to automatically cluster and classify
text documents as well as the application of these methods in a variety of ar-
eas, such as adaptive information filtering, information distillation, and text
search. The first three chapters of this book focus on classification of docu-
ments into predefined categories, presenting both state-of-the-art algorithms
as well as their use in practice. The next four chapters describe novel methods
for clustering documents into groups which are not predefined. Such meth-
ods seek to automatically determine topical structures that may exist in a
document corpus. The final three chapters of the book describe various text
mining applications that have significant implications for future research and
industrial use. The individual chapters in the book are outlined in more detail
below.

The goal of this book is to provide both an overview of various text min-
ing methods and applications at the forefront of current research, while also
serving as a reference for many standard technologies on which such systems
are based. As a result, this book can provide insights for active researchers
in text mining, while also serving as an introduction to more advanced topics
for students pursuing graduate work in the area.

Chapter 1 gives a broad view of the field of text analysis using kernel meth-
ods, which are a widely used class of advanced algorithms in machine learning.
The authors provide a substantial overview of the field by showing how data
can be mapped to high, potentially infinite dimensional vector spaces, while
maintaining polynomial time computations. Specific kernels are discussed
that are relevant for text mining along with the mathematical properties of
these kernels. The methods are demonstrated on the problem of modeling the
evolution of linguistic sequences.

Chapter 2 shows an innovative application of kernel methods in the area

© 2009 by Taylor and Francis Group, LLC

xxiii

of detecting bias in the news media. The chapter, building on the theoretical
discussions in the Chapter 1, focuses on the application of support vector ma-
chines and kernel canonical correlation analysis and other statistical methods
to detecting bias in four online news organizations: CNN, Al Jazeera, Inter-
national Herald Tribune, and Detriot News. The authors show how kernel
methods and other traditional statistical methods can be used to identify sys-
tematic bias in the content of news outlets. The most important terms for
discriminating between news outlets are determined using these algorithms,
and the results of this analysis are revealing even to the casual news reader.

Realizing that many documents in a corpus may be linked in various ways,
such as having similar content, shared authors, or citations of the same works,
the authors of Chapter 3 present methods for addressing collective classifica-
tion problems. In this setting, the information regarding links between docu-
ments is explicitly modeled in order to capture the intuition that documents
that are linked are more likely to have the same topical content or classifi-
cation. The problem of collective classification is defined and formal models
for this task are presented. The methods are empirically compared, show-
ing that methods making use of the collective classification paradigm tend to
outperform those that do not.

As the first chapter of the book focused on document clustering (as opposed
to classification), Chapter 4 presents methods for generating topics models.
Such techniques use probabilistic methods to analyze the underlying topical
structure that may be present in a document collection. Starting with a
description of Latent Dirichlet Allocation (LDA), one of the most widely used
topic models, the chapter lays a theoretical foundation for topic modeling
and then presents state-of-the-art extensions of the basic LDA model. These
techniques are applied to model the evolution of topics in the journal Science,
showing the intriguing evolution of the use of language in describing scientific
topics over the span of a century.

Chapter 5 presents models for discussion tracking based on techniques from
linear algebra, introducing a new set of algorithms based on factorizing the
bag-of-words matrix. The authors provide the mathematical framework for
non-negative matrix and tensor factorization (NMF) and discuss its applica-
tion to the Enron dataset, which contains over 500,000 emails between 150
employees. This text corpus is an ideal dataset to use to discover underlying
discussion threads and to evaluate these factorization algorithms. The NMF
algorithms operate on positive matrices (i.e., matrices for which all elements
are greater than or equal to zero) and yield a matrix factorization where each
element in the factorization is also guaranteed to be non-negative. This has
been empirically shown to provide highly interpretable results since the fac-
torization better matches the non-negativity constraint of the data. Other
factorization approaches such as singular value decomposition and principal
components analysis do not share this desirable property. The extension from
matrices to tensors allows for a third time dimension to be included in the
analysis, again a variation from the standard matrix factorization approaches.

© 2009 by Taylor and Francis Group, LLC

xxiv

The sixth chapter discusses the classical problem of clustering a collection
of documents into a set of k clusters. Although clustering is a standard tech-
nique with numerous algorithms (such as k-means, hierarchical methods, and
density based methods) this paper explores the use of a probabilistic frame-
work based on the von Mises-Fisher distribution for directional data. When
using this method, the document vectors in the bag-of-words matrix are nor-
malized to have unit length. Thus, each vector is effectively a point on a
high-dimensional unit sphere. The authors derive the Expectation Maximiza-
tion algorithm for the von Mises-Fisher distribution, and use their analysis
to help explain some of the underlying reasons for the success of the cosine-
similarity measure that is widely used in text clustering.

Chapter 7 examines the incorporation of externally defined constraints in
document clustering tasks. Specifically, in such a semi-supervised clustering
setting, additional information regarding which document pairs should be
placed in the same cluster and which should not is available for guiding an
algorithm in the formation of clusters. The authors discuss various algorithms
that make use of such constraint information, showing experimental results
highlighting the power that even a small number of constraints can provide
in improving the quality of algorithmically induced clusters.

Shifting the focus from algorithms to applications, Chapter 8 discusses the
use of text mining methods in adaptive information filtering, where the user
has a stable set of interests and the incoming data to be analyzed are arriving
dynamically over time. In many common situations where the in-flow of data
is immense, such as tracking information on particular companies in order to
gather competitive business intelligence or make more informed stock trades,
adaptive filtering is necessary in order to deliver to users only the information
that is truly relevant for them. The author covers several classical algorithms
and evaluation metrics for information retrieval and filtering, using them to
lay a foundation to then further discuss applications in adaptive filtering.

Combining adaptive filtering technology with mechanisms for novelty detec-
tion and user feedback is the subject of Chapter 9, which presents systems for
utility-based information distillation. Such systems focus on not only deliver-
ing relevant documents to users, but also minimizing the amount of redundant
information users see. Thereby, such systems have the net goal of maximizing
user utility by optimizing the novelty of the relevant information provided to
users. Several systems are empirically compared and an analysis is provided of
the components which seem to provide the greatest benefit to overall system
performance.

Finally, Chapter 10 examines methods for enhancing text search by using
information about types of objects and entities in the text to better interpret
the intent of the users of information retrieval systems. By inferring informa-
tion about the type of information that users may be looking for in answer
to their queries, the authors show how it is possible to build more powerful
retrieval engines. Moreover, an analysis of the practical costs associated with

© 2009 by Taylor and Francis Group, LLC

xxv

such enhanced systems shows them to be quite reasonable both in terms of
storage and performance.

Text mining is a broad and continually expanding research area, which has
already had significant impact in the information systems people use on a
daily basis, such as search engines and document management systems. We
hope that readers find the work presented in this book to capture both the
technical depth as well as immense practical potential of this research area.
There is no doubt that text mining will continue to play a critical role in the
development of future information systems, and advances in research will be
instrumental to their success.

The editors are indebted to the chapter authors, without whose contribu-
tions this book would not exist. We also thank the teams of reviewers who
helped ensure the high quality of the work herein, and also Randi Cohen at
Taylor & Francis, who has helped guide this process from beginning to end.
A. N. Srivastava wishes to thank the NASA Aviation Safety Program, Inte-
grated Vehicle Health Management project for supporting this work. Mehran
Sahami would like to thank Google Inc. and Stanford University for providing
the support and flexibility to pursue this project.

© 2009 by Taylor and Francis Group, LLC

About the Editors

Ashok N. Srivastava, Ph.D. is the Principal Investigator of the Integrated
Vehicle Health Management research project in the NASA Aeronautics Re-
search Mission Directorate. He also leads the Intelligent Data Understanding
group at NASA Ames Research Center. His research interests include data
mining, machine learning, and application domains such as systems health
management and the earth and space sciences. He has published over 50
technical papers and has won numerous awards, including the NASA Ex-
ceptional Achievement Medal, the NASA Distinguished Performance Award,
several NASA Group Achievement Awards, the IBM Golden Circle Award,
and other awards during graduate school. Ashok holds a Ph.D. in Electrical
Engineering from the University of Colorado at Boulder.

Mehran Sahami is an Associate Professor and Associate Chair for Educa-
tion in the Computer Science Department at Stanford University. His research
interests include machine learning, web search, and computer science educa-
tion. Previously, Mehran was a Senior Research Scientist at Google Inc.,
and continues to maintain a consulting appointment there. He has published
over 35 technical papers, holds four patents, and has helped organize numer-
ous technical conferences and symposia. He received his Ph.D. in Computer
Science from Stanford in 1999.

xxvii
© 2009 by Taylor and Francis Group, LLC

Contributor List

Brett W. Bader
Sandia National Laboratories
Albuquerque, New Mexico

Arindam Banerjee
University of Minnesota
Twin Cities, Minnesota

Sugato Basu
Google Research
Mountain View, California

Michael W. Berry
University of Tennessee
Knoxville, Tennessee

Mustafa Bilgic
University of Maryland
College Park, Maryland

David M. Blei
Princeton University
Princeton, New Jersey

Soumen Chakrabarti
Indian Institute of Technology
Bombay, India

Nello Cristianini
University of Bristol
Bristol, UK

Sujatha Das
University of Pennsylvania
Philadelphia, Pennsylvania

Ian Davidson
University of California, Davis
Davis, California

Inderjit Dhillon
University of Texas at Austin
Austin, Texas

Blaz Fortuna
Institute Jozef Stefan
Slovenia

Carolina Galleguillos
University of California
San Diego, California

Lise Getoor
University of Maryland
College Park, Maryland

Joydeep Ghosh
University of Texas at Austin
Austin, Texas

Vijay Krishnan
Yahoo!
Sunnyvale, California

Abhimanyu Lad
Carnegie Mellon University
Pittsburgh, Pennsylvania

John D. Lafferty
Carnegie Mellon University
Pittsburgh, Pennsylvania

xxix
© 2009 by Taylor and Francis Group, LLC

xxx

Amy N. Langville
College of Charleston
Charleston, South Carolina

Alessia Mammone
Sapienza University of Rome
Rome, Italy

Galileo Namata
University of Maryland
College Park, Maryland

Kriti Puniyani
Carnegie Mellon University
Pittsburgh, Pennsylvania

Prithviraj Sen
University of Maryland
College Park, Maryland

Suvrit Sra
Max-Planck Institute for Biological
Cybernetics
Tübingen, Germany

Marco Turchi
University of Bristol
Bristol, UK

Yiming Yang
Carnegie Mellon University
Pittsburgh, Pennsylvania

Yi Zhang
University of California
Santa Cruz, California

© 2009 by Taylor and Francis Group, LLC

Chapter 1

Analysis of Text Patterns Using
Kernel Methods

Marco Turchi, Alessia Mammone, and Nello Cristianini

1.1 Introduction . 1
1.2 General Overview on Kernel Methods . 1
1.3 Kernels for Text . 11
1.4 Example . 19
1.5 Conclusion and Further Reading . 22

1.1 Introduction

The kernel approach offers a very general framework for performing pattern
analysis on many types of data and it can be used in a wide variety of tasks and
application areas. The kernel technique also enables us to use feature spaces
whose dimensionality is more than polynomial in the relevant parameters
of the systems even though the computational cost of the pattern analysis
algorithm remains polynomial.

Our aim in this chapter is to illustrate the key ideas underlying the pro-
posed approach, by giving a theoretical background on kernels, their main
characteristics and how to build them. Then, starting from the representa-
tion of a document, we will outline kernel functions that can be used in text
analysis.

1.2 General Overview on Kernel Methods

Throughout the chapter we will assume that we have a set of data and
that we want to detect interesting relationships within it. Text documents
will be our running example. In the following pages we will not assume any
restrictions about the data-type.

1
© 2009 by Taylor and Francis Group, LLC

2 Analysis of Text Patterns Using Kernel Methods

The first step of the kernel approach is to embed the data items (e.g.,
documents) into a Euclidean space where the patterns can be represented by
a linear relation. This step reduces many complex problems to a class of linear
problems, and algorithms used to solve them are efficient and well understood.
Depending on the data and on the patterns that are to be expected, it is
necessary to choose a function that defines an embedding map.

The second step is to detect relations within the embedded data set, using
a robust and efficient pattern analysis algorithm. Once again the choice of a
particular pattern analysis algorithm depends on the problem at hand.

The strength of the kernel approach is that the embedding and subsequent
analysis are performed in a modular fashion, so it is possible to consider these
two parts as separate and the embedding step does not need to be performed
explicitly, as will be described shortly.

Given a general input space X ⊆ R
n and a linear pattern analysis algorithm,

we first embed X into a high dimensional feature space F ⊆ R
N and then

relations are detected in the embedded data using the linear pattern analysis
algorithms. The feature space can be defined as

F = {φ(x) : x ∈ X}

where φ : X → F ⊆ R
N is the embedding map and x is a vector containing

the feature’s value.
Linear algorithms are preferred because of their efficiency and indeed they

are well understood, both from a statistical and computational perspective.
Since φ can be non-linear, any linear relation in F obtained by a linear algo-
rithm can correspond to a non-linear relation in X . Examples include classical
methods such as Least Squares, Linear Regression, etc.

Duality. The fundamental observation of the kernel approach is that lin-
ear relations can be represented by using inner products 〈φ(x), φ(z)〉 between
all pairs of observed points x, z ∈ X and without explicitly using their co-
ordinates in R

N . This is called the dual representation of linear relations,
and has far-reaching consequences for algorithm application. It is possible
to apply most linear pattern analysis algorithms given the relative positions
of data points in a feature space, without ever needing to know their actual
coordinates.

The function that returns the inner product between the images of any two
data points in the feature space is called kernel. Examples include kernels for
text, kernels for images that induce similarity between objects using different
aspects of them.

Kernel Function. A kernel is a function κ that for all x, z ∈ X satisfies

κ(x, z) = 〈φ(x), φ(z)〉

© 2009 by Taylor and Francis Group, LLC

Analysis of Text Patterns Using Kernel Methods 3

where φ is a mapping from X to an (inner product) feature space F

φ : x �−→ φ(x) ∈ F.

x and z can be elements of any set, and in this chapter they will be text
documents. Clearly, the image φ(x) is a vector in R

N .

Kernel Matrix. The square matrix K ∈ R
n×n such that Kij = κ(xi,xj)

for a set of vectors {x1, . . . ,xn} ⊆ X and some kernel function κ is called
kernel matrix.

Modularity. As we pointed out, the kernel component is data specific, while
the pattern analysis algorithm is general purpose. Similarly, substituting a
different algorithm while retaining the chosen kernel leads us to perform a
different type of pattern analysis. Clearly, the same kernel function or algo-
rithm can be suitably reused and adapted to very different kinds of problems.
Figure 1.1 shows the stages involved in the implementation of a typical kernel
approach analysis. The data are processed using a kernel to create a kernel
matrix, which in turn is processed by a pattern analysis algorithm to obtain a
pattern function. This function will be used to understand unseen examples.

FIGURE 1.1: Modularity of kernel-based algorithms: the data are trans-
formed into a kernel matrix, by using a kernel function; then the pattern
analysis algorithm uses this information to find interesting relations, which
are all written in the form of a linear combination of kernel functions.

Using efficient kernels, we can look for linear relations in very high dimen-
sional spaces at a very low computational cost. If it is necessary to consider
a non-linear map φ, we are still provided with an efficient way to discover

© 2009 by Taylor and Francis Group, LLC

4 Analysis of Text Patterns Using Kernel Methods

non-linear relations in the data, by using a linear algorithms in a different
space.

If X is not a vector space itself, as is the case of text, the use of kernels
enables us to operate on generic entities with essentially algebraic tools. In
fact, kernel functions make possible the use of structured input space, i.e., with
an exponential or even infinite number of dimensions, and we can produce
practical algorithms having computation time that scales polynomially in the
number of training examples.

From a computational point of view kernel methods exhibit two funda-
mental properties; they make it possible to access very high-dimensional and
flexible feature spaces at low computational cost, and then pattern analysis
algorithms can solve and compute convex optimization problems efficiently
without suffering from local minima, no matter the complexity of the result-
ing function classes.

Example. We now give an example of a kernel function whose complexity
is less than the dimension of its corresponding feature space F . Consider a
two-dimensional input space X ⊆ R

2 together with the feature map

φ : x = (x1, x2) �−→ φ(x) =(x2
1, x

2
2,
√

2x1x2) ∈ F = R
3.

Here, the data are moved from a two-dimensional to a three-dimensional
space using the feature map, and the linear relations in the feature space cor-
respond to quadratic relations in the input space. The resulting composition
of the feature map with the inner product in the feature space is the following:

〈φ(x), φ(z)〉 =
〈
(x2

1, x
2
2,
√

2x1x2), (z2
1 , z2

2 ,
√

2z1z2)
〉

= x2
1z

2
1 + x2

2z
2
2 + 2x1x2z1z2

= (x1z1 + x2z2)2 = 〈x, z〉2 .

Hence, the function

κ(x, z) = 〈x, z〉2

is a kernel function and F = R
3 is the corresponding feature space. Once

again we are computing the inner product between the projections of two
points into the feature space without explicitly evaluating their coordinates.

It is important to highlight that the feature space is not uniquely deter-
mined by the kernel function; the same kernel computes the inner product
corresponding to the four-dimensional feature map

φ : x = (x1, x2) �−→ φ(x) =(x2
1, x

2
2, x1x2, x2x1) ∈ F = R

4.

This property of the kernel function does not affect the algorithms discussed
in this chapter.

© 2009 by Taylor and Francis Group, LLC

Analysis of Text Patterns Using Kernel Methods 5

1.2.1 Finding Patterns in Feature Space

To reinforce the idea that the feature mapping need not be explicit we give
examples of how to perform some elementary and often-used calculations in
feature space, only using the information provided via the kernel function.
The basic relations we measure in the feature space also form the basis of
classical linear algorithms from statistics. At the end of this section, we will
outline how a linear classifier can be built using dual representation.

Given a finite subset S = {x1, . . . ,x�} of an input space X and a kernel
κ(x, z) satisfying

κ(x, z) = 〈φ(x), φ(z)〉

where φ is a feature map into a feature space F , let φ(S) = {φ(x1), . . . , φ(x�)}
be the image of S under the map φ. Hence φ(S) is a subset of the inner
product space F . Just considering the inner product information contained
in the kernel matrix K, significant information about the embedded data set
φ(S) can be obtained. The element

Kij = κ(xi,xj), i, j = 1, . . . , �

is a general entry in the kernel matrix.
Working in a kernel-defined feature space means that we are not able to ex-

plicitly represent points but despite this handicap there is a surprising amount
of useful information that can be obtained about φ(S).

Norm of Feature Vectors. The simplest example of this is the evaluation
of the norm of φ(x); it is given by

‖φ(x)‖2 =
√

‖φ(x)‖2 =
√
〈φ(x), φ(x)〉 =

√
κ(x,x).

The norms of linear combinations of images in the feature space can be
evaluated with the following

∥
∥
∥
∥
∥

�∑

i=1

αiφ(xi)

∥
∥
∥
∥
∥

2

=

〈
�∑

i=1

αiφ(xi),
�∑

j=1

αjφ(xj)

〉

=
�∑

i=1

αi

�∑

j=1

αj 〈φ(xi), φ(xj)〉

=
�∑

i,j=1

αiαjκ(xi,xj).

© 2009 by Taylor and Francis Group, LLC

6 Analysis of Text Patterns Using Kernel Methods

Distance between Feature Vectors. The length of the line joining two
images φ(x) and φ(z) can be computed as

‖φ(x) − φ(z)‖2 = 〈φ(x) − φ(z), φ(x) − φ(z)〉
= 〈φ(x), φ(x)〉 − 2 〈φ(x), φ(z)〉 + 〈φ(z), φ(z)〉
= κ(x,x) − 2κ(x, z) + κ(z, z). (1.1)

It is easy to find out that this is a special case of the norm. The algorithms
demonstrated at the end of this chapter are based on distance.

Norm and Distance from the Center of Mass. Consider now the center
of mass of the set φ(S). This is the vector

φS =
1
�

�∑

i=1

φ(xi).

As with all points in the feature space we have not an explicit vector rep-
resentation of this point, but in this case there may not exist a point in X
whose image under φ is φS . However we can compute the norm of the points
of φS using only evaluations of the kernel on the inputs:

‖φS‖2
2 = 〈φS , φS〉 =

〈
1
�

�∑

i=1

φ(xi),
1
�

�∑

j=1

φ(xj)

〉

=
1
�2

�∑

i,j=1

〈φ(xi), φ(xj)〉 =
1
�2

�∑

i,j=1

κ(xi,xj).

Hence, the square of the norm of the center of mass is equal to the average
of the entries in the kernel matrix. This implies that this sum is equal to
zero if the center of mass is at the origin of the coordinate system and greater
than zero otherwise. The distance of the image of a point x from the center
of mass φS is:

‖φ(x) − φS‖2 = 〈φ(x), φ(x)〉 + 〈φS , φS〉 − 2〈φ(x), φS〉

= κ(x,x) +
1
�2

�∑

i,j=1

κ(xi,xj) −
2
�

�∑

i=1

κ(x,xi). (1.2)

Linear Classification. Classification, also called categorization in text
analysis, is one of the possible tasks that can be solved using kernel approach.
The aim is to assign any input of our training set to one of a finite set of
categories; the classification is binary if there are two categories, otherwise we
are considering a multi-class problem.

© 2009 by Taylor and Francis Group, LLC

Analysis of Text Patterns Using Kernel Methods 7

Given a finite subset

S = {(x1, y1), . . . , (x�, y�)}

of points xi ∈ X ⊆ R
n with labels yi ∈ Y = {−1, +1}, we want to find a

classification function
g(x) = sgn (w′x + b)

such that
E (|g(x) − y|)

is small. Note that for convention sgn(0) = 1. Since g is a linear function,
it can be regarded as the hyperplane defined by w′x + b separating the data
according to their labels. The vector w defines a direction perpendicular to
the hyperplane, while varying the value of b moves the hyperplane parallel to
itself. We call the vector w the weight vector.

There are many different algorithms for selecting the weight vector and
many of them can be implemented in dual form. Two examples of linear
classifiers are Rosenblatt’s Perceptron (21) and Regularized Fisher’s Discrim-
inant (27). Now, considering the weight vector w as a function of the training
examples

w =
�∑

j=1

αjyjxj

the function g(x) can be rewritten in dual coordinates for the Perceptron:

g(x) = sgn (〈w · x〉 + b) =

= sgn

⎛

⎝

〈
�∑

j=1

αjyjxj · x
〉

+ b

⎞

⎠ =

= sgn

⎛

⎝
�∑

j=1

αjyj〈xj · x〉 + b

⎞

⎠

where, since the sign of xj is given by the classification yj , the αj are positive
with values proportional to the number of times misclassification of xj has
caused the weight to be updated; points that have caused fewer mistakes have
smaller αj , whereas difficult points will have large values.

In Regularized Fisher’s Discriminant the weight vector w is chosen to max-
imize the regularized quotient:

F (w) =
(μ+

w − μ−
w)2

(σ+
w)2 + (σ−

w)2 + λ‖w‖2

where μ+
w is the mean of the elements in class +1 onto the direction w, μ−

w

the mean of the elements in class −1, and the (σ+
w)2, (σ−

w)2 the corresponding

© 2009 by Taylor and Francis Group, LLC

8 Analysis of Text Patterns Using Kernel Methods

standard deviations of the function {〈w ·xj〉+ b : yj = i} for i = {1,−1}; the
term λ‖w‖2 has the aim to regularize the norm of the weight vector. Also in
this case, it is possible to rewrite the weight’s vector w as a linear combination
of the training examples and the function g(x) in dual coordinates. For an
explicit derivation see (27).

Only if there exists an hyperplane that correctly classifies the data, the
Perceptron procedure is guaranteed to converge; furthermore, the algorithm
may give different results depending on the order in which the elements are
processed, indeed several different solutions exist. Fisher’s Discriminant does
not suffer from these problems because its solution is unique since it finds the
hyperplane (w, b) on which the projection of the data is maximally separated.

Fisher’s Linear Discriminant (FDA), Partial Least Squares (PLS), Ridge
Regression (RR), Principal Components Analysis (PCA), K-means and Spec-
tral Clustering (SC), Canonical Correlation Analysis (CCA), Novelty Detec-
tion (ND), and many others can all be implemented in a dual form following
the approaches outlined here. We refer the reader to (25; 18; 29; 6; 19; 1; 27)
for more information on these methods, to (3) for a tutorial on kernel methods
based on eigenvalue problems (PCA, CCA, PLS, FDA and SC), and to (33; 32)
for two nice examples of the use of kernel methods in real life problems.

Owing to the level of maturity already achieved in these algorithmic do-
mains, recently the focus of kernel methods research is shifting towards the
design of kernels defined on general data types (such as strings, text, nodes
of a graph, trees, graphs,. . .). Major issues in kernel design are expressive
power and efficiency of evaluation (10; 13; 30; 17; 12).

1.2.2 Formal Properties of Kernel Functions

So far, the only way of verifying that the considered function is a kernel is to
construct a feature space, for which the function corresponds to first perform-
ing the feature mapping and then computing the inner product between the
two images. An alternative method of demonstrating that a candidate func-
tion is a kernel is Mercer’s Theorem; it provides a characterization of when
a function κ(x, z) is a kernel. This is an important theoretical tool useful to
create new kernels, and combine different kernels to form new ones.

The kernel matrix Kij = κ(xi,xj), formed by evaluating a kernel on all
pairs of any set of inputs, is a positive semi-definite matrix.

Finitely Positive Semi-Definite Functions A function

κ : X × X −→ R

satisfies the finitely positive semi-definite property if it is a symmetric function
for which the matrices formed by restriction to any finite subset of the space
X are positive semi-definite. Note that this definition does not require the set
X to be a vector space.

© 2009 by Taylor and Francis Group, LLC

Analysis of Text Patterns Using Kernel Methods 9

The finitely positive semi-definite property completely characterizes ker-
nels because it is possible to construct the feature space assuming only this
property. The result is stated in the form of a theorem.

THEOREM 1.1 Characterization of kernels
A function

κ : X × X −→ R

can be decomposed
κ(x, z) = 〈φ(x), φ(z)〉

into a feature map φ into a Hilbert space F applied to both its arguments
followed by the evaluation of the inner product in F if and only if it satisfies
the finitely positive semi-definite property.

A preliminary concept useful to outline the Mercer’s Theorem is the follow-
ing.

Let L2(X) be the vector space of square integrable functions on a compact
subset X of R

n with the definitions of addition and scalar multiplication;
formally

L2(X) =
{

f :
∫

X

f(x)2dx < ∞
}

.

For mathematical details see (27).

THEOREM 1.2 Mercer
Let X be a compact subset of R

n. Suppose κ is a continuous symmetric
function such that the integral operator Tκ : L2(X) → L2(X),

(Tκf) (·) =
∫

X

κ(·,x)f(x)dx

is positive, that is
∫

X×X

κ(x, z)f(x)f(z)dxdz ≥ 0

for all f ∈ L2(X). Then we can expand κ(x, z) in a uniformly convergent
series (on X × X) in terms of functions φj, satisfying 〈φi, φj〉 = δij:

κ(x, z) =
∞∑

j=1

φj(x)φj(z).

Furthermore, the series
∑∞

i=1 ‖φi‖2
L2(X) is convergent.

The conditions of Mercer’s Theorem are equivalent to requiring that for
every finite subset of X , the corresponding matrix is positive semi-definite
(6).

© 2009 by Taylor and Francis Group, LLC

10 Analysis of Text Patterns Using Kernel Methods

Kernel Matrix as an Interface. All the information that is required by
the pattern analysis algorithm is inside the kernel matrix. The kernel matrix
can be seen as an interface between the input data and the pattern analysis
algorithm (see Figure 1.1), in the sense that all the data information passes
through the bottleneck. Several model adaptations and selection methods are
implemented by manipulating the kernel matrix. This property in some sense
is also a limitation, because if the kernel is too general no useful relation can
be highlighted in data.

1.2.3 Operations on Kernel Functions

As we pointed out, the positive semi-definiteness property is the core for
the characterization of kernel functions. New functions are kernels if they are
finitely positive semi-definite. So it is sufficient to verify that the function
is a kernel and this demonstrates that there exists a feature space map for
which the function computes the corresponding inner product. It is important
to introduce some operations on kernel functions which always give as result
a new positive semi-definite function. We will say that the class of kernel
functions is closed under such operations.

The following two propositions can be viewed as showing that kernels satisfy
a number of closure properties, allowing us to create more complicated kernels
from simpler ones.

PROPOSITION 1.1 Closure properties
Let κ1 and κ2 be kernels over X × X, X ⊆ R

n, a ∈ R
+, f(·) a real-valued

function on X, φ : X −→ R
N with κ3 a kernel over R

N × R
N , and B a

symmetric positive semi-definite n × n matrix. Then the following functions
are kernels:

1. κ(x, z) = κ1(x, z) + κ2(x, z)

2. κ(x, z) = aκ1(x, z)

3. κ(x, z) = κ1(x, z)κ2(x, z)

4. κ(x, z) = f(x)f(z)

5. κ(x, z) = κ3(φ(x), φ(z))

6. κ(x, z) = x′Bz with x, z ∈ X

PROPOSITION 1.2
Let κ1(x, z) be a kernel over X × X, where x, z ∈ X, and p(x) a polynomial
with positive coefficients. Then the following functions are also kernels:

1. Polynomial kernel (4):

κ(x, z) =p(κ1(x, z))

© 2009 by Taylor and Francis Group, LLC

Analysis of Text Patterns Using Kernel Methods 11

2. (27):

κ(x, z) = exp(κ1(x, z))

3. Gaussian kernel (4):

κ(x, z) = exp(−‖x − z‖2
/(2σ2)) with x, z ∈ X

Now we have all necessary tools to discuss kernel applications in text prob-
lems.

1.3 Kernels for Text

In the last twenty five-years, the constant growth of the Web has produced
an explosion of readily available digital text. This huge amount of data has
become one of the main research interests of Artificial Intelligence. Many
algorithms and text representations have been developed obtaining successful
results. The goal of this section is to introduce some applications of Kernel
Methods in this area.

Typically, pattern analysis algorithms are originally developed to be ap-
plied to vectorial data. However, for many other types of data it is possible to
explicitly or implicitly construct a feature space capturing relevant informa-
tion from this data. Unfortunately even when it can be expressed explicitly,
often this feature space is so high dimensional that the algorithms can not
be used in their original form for computational reasons. However many of
these algorithms can be reformulated into a kernel version. These kernel ver-
sions directly operate on the kernel matrix rather than on the feature vectors.
For many data types, methods have been devised to efficiently evaluate these
kernels, avoiding the explicit construction of the feature vectors. In this way,
the introduction of kernels defined for a much wider variety of data structures
significantly extended the application domain of linear algorithms. Now we
introduce and discuss various kernels which are commonly used in text.

1.3.1 Vector Space Model

The Vector Space Model (VSM) representation for a document d has been
introduced by (23) in 1975. The main idea consists of representing a docu-
ment as a vector, in particular as a bag of words. This set contains only the
words that belong to the document and their frequency. This means that a
document is represented by the words that it contains. In this representation,
punctuation is ignored, and a sentence is broken into elementary elements
(words) losing the order and the grammar information. These two observa-
tions are crucial, because they show that it is impossible to reconstruct the

© 2009 by Taylor and Francis Group, LLC

12 Analysis of Text Patterns Using Kernel Methods

original document given its bag of words; it means that the mapping is not
one to one.

We consider a word as a sequence of letters from a defined alphabet. In this
chapter we use word and term as synonyms. We consider a corpus as a set of
documents, and a dictionary as the set of words that appear into the corpus.
We can view a document as a bag of terms. This bag can be seen as a vector,
where each component is associated with one term from the dictionary

φ : d �−→ φ (d) = (tf (t1, d) , tf (t2, d) , . . . , tf (tN , d)) ∈ R
N ,

where tf(ti, d) is the frequency of the term ti in d. If the dictionary contains
N terms, a document is mapped into a N dimensional space. In general, N is
quite large, around a hundred thousand words, and it produces a sparse VSM
representation of the document, where few tf(ti, d) are non-zero.

A corpus of � documents can be represented as a document-term matrix
whose rows are indexed by the documents and whose columns are indexed by
the terms. Each entry in position (i, j) is the term frequency of the term tj
in document i.

D =

⎛

⎜
⎝

tf (t1, d1) · · · tf (tN , d1)
...

. . .
...

tf (t1, d�) · · · tf (tN , d�)

⎞

⎟
⎠ .

From matrix D, we can construct:

• the term-document matrix: D′

• the term-term matrix: D′D

• the document-document matrix: DD′

It is important to note that the document-term matrix is the dataset S,
while the document-document matrix is our kernel matrix.

Quite often the corpus size is smaller than the dictionary size, so the doc-
ument representation can be more efficient. Here, the dual description corre-
spond to the document representation view of the problem, and the primal to
the term representation. In the dual, a document is represented as the counts
of terms that appear in it. In the primal, a term is represented as the counts
of the documents in which it appears.

The VSM representation has some drawbacks. The most important is that
bag of words is not able to map documents that contain semantically equiva-
lent words into the same feature vectors. A classical example is synonymous
words which contain the same information, but are assigned distinct compo-
nents. Another effect is the complete loss of context information around a
word. To mitigate this effect, it is possible to apply different techniques. The
first consists in applying different weight wi to each coordinate. This is quite
common in text mining, where uninformative words, called stop words, are re-
moved from the document. Another important consideration is the influence

© 2009 by Taylor and Francis Group, LLC

Analysis of Text Patterns Using Kernel Methods 13

of the length of the document. Long documents contain more words than the
short ones, and hence they are represented by feature vectors with greater
norm. This effect can be removed by normalizing the kernel (for more details
see (27)). Stop word removal and normalization are two examples of opera-
tions that can be performed and repeated as a series of successive embedding
steps.

1.3.1.1 Vector Space Kernel

We have just defined the function φ, which maps a document into a row
vector, in which each entry is the term frequency of that term in that doc-
ument. This vector has a number of entries equal to the number of words
inside the dictionary, but few of them have non-zero value.

Matrix D can be created using this representation. We refer to X as a
matrix of training examples by features. There is a direct correspondence be-
tween X and D, where features become terms, and training examples become
documents.

We create a kernel matrix K = DD′ corresponding to the vector space
kernel

κ (d1, d2) = 〈φ (d1) , φ (d2)〉 =
N∑

j=1

tf (tj , d1) tf (tj , d2) .

An interesting property of the Vector Space Kernel is the computational
cost. In fact, the time to compute the kernel is proportional to the length
of the two documents O(|d1| + |d2|). This is due to the process of sparse
vector representation. Each document is preprocessed, and it is split into a
list of terms using spaces as term separators. Each word inside the vocabu-
lary is associated with a unique numeric id. This allows a document to be
transformed into a sequence of ids together with term frequencies and sorted
in ascending order, according to id. A document d becomes a list L(d) of
pairs (id:term, frequency). Now it is a simple and efficient task to compute
κ(d1, d2) = A(L(d1), L(d2)), where A(.) is an algorithm that traverses the
lists, computing products of frequencies whenever the term ids match. This
means that when we compute the kernel, it does not involve evaluation of the
feature vector φ(d), but the representation as a list of terms L(d). When we
work with high dimensional space, it ensures a cost proportional to the sum
of the length of the documents.

1.3.2 Semantic Kernels

An important problem with the bag of words is that it does not contain
information about the semantic content of words. An evolution of the Vector
Space kernel is semantic kernels. They simply try to expand the basic VS
kernel using the linear transformation φ̃(d) = φ(d)S. S is a matrix N × k
and we refer to it as semantic matrix. We can rewrite the definition of kernel

© 2009 by Taylor and Francis Group, LLC

14 Analysis of Text Patterns Using Kernel Methods

using the new feature vector φ̃:

κ̃ (d1, d2) = φ (d1)SS′φ (d2)
′ = φ̃ (d1) φ̃ (d2)

′ .

Different choices of S lead to different variants of the VSMs. We can con-
sider S as a product of successive embeddings. We define it as S = RP, where
R is a diagonal matrix giving the term weightings and P is a proximity matrix
defining semantic spreading between different terms of the corpus.

In Information Retrieval (IR), the term frequency is considered a local fea-
ture of the document. In particular tasks, terms need to carry an absolute
information across the documents into the corpus or a given topic. Several
measures have been proposed for term weighting such as mutual information
(8), entropy (26), or term frequency of words across the documents. We con-
sider an absolute measure known as idf (11) that weights terms as a function
of their inverse document frequency. If the corpus contains � documents, and
df(t) is the number of documents that contain the term t, the idf weight is

w (t) = ln
(

�

df (t)

)

.

Idf is implicitly able to downweight the stop words. If a term is present in
each document, then w(t) = 0. In general it is preferable to create a stop word
list, and remove the stop word before computing the vector representation.
This helps to decrease the dictionary size.

The idf rule is just an example of a kind of term weight. In general, we
can develop a new VSM choosing the term weightings matrix R as a diagonal
matrix in the following way:

Rtt = w (t) .

The associated kernel computes the inner product

κ̃ (d1, d2) = φ (d1)RR′φ (d2)
′ =

∑

t

w (t)2 tf (t, d1) tf (t, d2) .

This kernel merges the tf and idf representation well known in IR as tf-idf.
It is implementable by a weighted version Aw of the algorithm A:

κ̃ (d1, d2) = Aw (L (d1) , L (d2)) .

The tf-idf representation is able to highlight discriminative terms and down-
weight irrelevant terms, but it is not able to take into account semantic in-
formation about two or more terms or about two or more documents. This
semantic information can be introduced into the semantic kernel using the
proximity matrix P. This matrix needs to have non-zero off-diagonal entries,
Pij > 0 for i �= j, when the term i is semantically correlated with term j.
Given P, the vector space kernel becomes

© 2009 by Taylor and Francis Group, LLC

Analysis of Text Patterns Using Kernel Methods 15

κ̃ (d1, d2) = φ (d1)PP′φ (d2)
′ (1.3)

which corresponds to representing a document by a less sparse vector φ (d)P
that has non-zero entries for all terms that are semantically similar to those
present in the document ḋ.

The matrix PP′ encodes the semantic strength among terms. We can
expand the equation (1.3) substituting PP′ with Q

κ̃ (d1, d2) =
∑

i,j

φ (d1)i Qi,jφ (d2)j

so that we can view Qij as encoding the amount of semantic relation be-
tween terms i and j. Note that defining the similarity by inferring Q requires
the additional constraint that Q be positive semi-definite, suggesting that
defining P will in general be more straightforward. A simple example of se-
mantic similarity mapping is stemming, that consists of removing inflection
from words.

1.3.2.1 Designing the Proximity Matrix

Extracting semantic information among terms in documents is still an open
issue in IR. More techniques have been developed in the last few years. In this
part of the chapter, we introduce different methods to compute the matrix
P, learning the relationship directly from a corpus or a set of documents.
Though we present the algorithms in a term-based representation, we will in
many cases show how to implement them in dual form, hence avoiding the
explicit computation of the matrix P.

Semantic Information from Semantic Network. Wordnet (9) is a well
known example of freely available semantic network. It contains semantic
relationship between terms in a hierarchical structure. More general terms
occur higher in the tree structure. A semantic proximity matrix can be ob-
tained by the distance between two terms in the hierarchical tree provided by
Wordnet, by setting the entry Pij to reflect the semantic proximity between
the terms i and j.

Generalized VSM. The generalized VSM (GVSM) is a variation of the
classical VSM, where semantic similarity between terms is used. The main
idea of this approach is that two terms are semantically related if they fre-
quently co-occur in the same documents. This implies that two documents
can be considered similar also if they do not share any terms, but the terms
they contain co-occur in other documents. If the VSM represents a document
as bag of words, the GSVM represents a document as a vector of its similar-
ities with the different documents in the corpus. A document is represented
by

φ (d) = φ (d)D′,

© 2009 by Taylor and Francis Group, LLC

16 Analysis of Text Patterns Using Kernel Methods

where D is the document–term matrix, equivalent to taking P = D′. This
definition does not make immediately clear that it implements a semantic
similarity, but if we compute the corresponding kernel

κ̃ (d1, d2) = φ (d1)D′Dφ (d2)
′
,

we can observe that the matrix D′D has a non-zero (i, j)-th entry if and only
if there is a document in the corpus in which the i-th and j-th terms co-occur,
since

(D′D)ij =
∑

d

tf (i, d) tf (j, d) .

The strength of a semantic relationship between two terms that co-occurs in
a document is measured by the frequency and number of their co-occurrences.
This approach can be used to reduce the space dimension. In fact, if we have
less documents than terms, we map from the vectors indexed by terms to a
lower-dimensional space indexed by the documents of the corpus.

Latent Semantic Kernels. Another approach based on the use of co-
occurence information is Latent Semantic Indexing (LSI) (7). This method is
very close to GSVM, the main difference is that it uses singular value decom-
position (SVD) to extract the semantic information from the co-occurrences.
SVD of a matrix considers the first k columns of the left and right singu-
lar vectors matrices U and V corresponding to the k largest singular values.
Thus, the word-by-document matrix D′ is factorized as

D′ = UΣV′

where U and V are unitary matrices whose columns are the eigenvectors of
D′D and DD′ respectively. LSI now projects the documents into the space
spanned by the first k columns of U, using these new k-dimensional vectors
for subsequent processing

d �−→ φ (d)Uk,

where Uk is the matrix containing the first k columns of U. The eigenvectors
define the subspace that minimizes the sum-squared differences between the
points and their projections, so it defines the subspace with minimal sum-
squared residuals. Hence, the eigenvectors for a set of documents can be
viewed as concepts described by linear combinations of terms chosen in such
a way that the documents are described as accurately as possible using only
k such concepts. The aim of SVD is to extract few high correlated dimen-
sions/concepts able to approximately reconstruct the whole feature vector.

The new kernel can be defined as

κ̃ (d1, d2) = φ (d1)UkU′
kφ (d2)

′ ,

© 2009 by Taylor and Francis Group, LLC

Analysis of Text Patterns Using Kernel Methods 17

and the proximity matrix P is hence equal to Uk. Note that there is a
correspondence between the LSI and PCA in the feature space.

1.3.3 String Kernels

A document can be seen in different ways. Often it is modelled as a sequence
of paragraphs, or a sequence of sentences. Reducing the granularity, it can be
seen as a sequence of words or a string of symbols. In the previous section, we
have seen a document viewed as a bag of words. Now we consider a document
as a string of letters. This new representation allows different kinds of analysis.
In this section, we introduce several kernels that provide an interesting way
to compare documents working on substrings.

The p-spectrum Kernel. Perhaps the most natural way to compare two
strings in many applications is to count how many (contiguous) substrings
of length p they have in common. We define the spectrum of order p (or p-
spectrum) of a sequence s as the histogram of frequencies of all its (contiguous)
substrings of length p. We define the p-spectrum kernel (15) as the inner
product of the p-spectra. Formally, the feature space F associated with the
p-spectrum kernel is indexed by I = Σp, where Σ denotes the alphabet, and
Σp is the set of all finite strings of length p, with the embedding given by

φp
u (s) = |{(v1, v2) : s = v1uv2}| , u ∈ Σp

and the associated p-spectrum kernel between sequences s and t is defined as

κp (s, t) = 〈φp (s) , φp (t)〉 =
∑

u∈Σp

φp
u (s)φp

u (t) .

The Mismatch Kernel. When isolated substitutions are likely to occur in
a sequence, the p-spectrum kernel might be too stringent to result in a useful
similarity measure. In those cases, it makes sense to use a modification of the
p-spectrum, where the feature of a sequence s associated to the substring u
is equal to the number of contiguous substrings in s that differ by no more
than a maximal number m of characters from u. For two substrings u and v
of equal length, we use d (u, v) to denote the number of characters in which u
and v differ. The mismatch kernel (16) κp,m is defined by the feature mapping

φp,m
u (s) = |{(v1, v2) : s = v1vv2 : |u| = |v| = p, d (u, v) ≤ m}| .

The associated mismatch kernel is defined as

κp,m (s, t) = 〈φp,m (s) , φp,m (t)〉 =
∑

u∈Σp

φp,m
u (s)φp,m

u (t) .

© 2009 by Taylor and Francis Group, LLC

18 Analysis of Text Patterns Using Kernel Methods

The Trie-based Implementation. Direct implementations of these ker-
nels would be very slow to evaluate due to the potentially large dimensionality
of the feature space, which is exponential in p. Fortunately, however, much
faster implementations of string kernels can be obtained by exploiting an ef-
ficient data structure known as a ‘trie.’ A trie over an alphabet Σ is a tree
whose edges are labeled with a symbol from Σ. A complete trie of depth p is a
trie containing the maximal number of nodes consistent with the depth of the
tree being p, each parent node having a downward branch for each alphabet
symbol from Σ.

In a complete trie there is a one to one correspondence between the nodes
at depth k and the strings of length k, the correspondence being between the
node and the string on the path to that node from the root. (The string
associated with the root node is the empty string ε.) Hence, we will refer to
the nodes of a trie by their associated string. The key observation behind
the trie-based approach is that one can regard the leaves of the complete
trie of depth p as the indices of the feature space indexed by the set Σp of
strings of length p. So the coordinates of the vector φ(s) (corresponding to
the dimensions of the feature space F) are conveniently organized in the trie,
which can be used to obtain an efficient search strategy.

The use of this data structure reduces the computational cost of the p-
spectrum kernel and mismatch kernel. In both of the kernels, the implemen-
tation is based on the traversal of the trie in a depth-first fashion, each time
attaching to the explored node a list of substrings of s that match to the
substring corresponding to that node. The key difference between p-spectrum
kernel and mismatch kernel trie implementation is that in the mismatch ker-
nel when we process a substring it can be added to lists associated with more
than one child node. We have an overall complexity of O (p (|s| + |t|))for the
p-spectrum kernel and O

(
pm+1 |Σ|m (|s| + |t|)

)
for the mismatch kernel. In

this chapter we do not go deep into the implementation of these two kernels
using the trie data structure; for more details see (17) and (27).

Computing an Entire Kernel Matrix. Instead of maintaining a list for
two strings s and t at each internal node of the trie, we can maintain a list for
a whole set of strings between which we want to compute the kernel functions.
Whenever a leaf node is reached, all these kernel functions can be incremented
based on the feature values of each of the strings corresponding to that leaf
node. This can be carried out efficiently; the traversal of the trie remains
linear in the sum of the lengths of all strings, and only the operations at the
leaf nodes, where the kernel values are incremented, are inherently quadratic
in the number of strings. The result is the full kernel matrix K, containing
the kernel function between the ith and jth sequences at position (i, j) and
symmetrically at position (j, i). Normalized kernel and distance matrices can
then promptly be computed from it.

© 2009 by Taylor and Francis Group, LLC

Analysis of Text Patterns Using Kernel Methods 19

1.4 Example

At the end this chapter, we want to show by an example the main charac-
teristics of Kernel Methods. In Figure 1.1 in Section 1.2, we have introduced
concepts as kernel function, kernel matrix, and pattern analysis algorithm;
now we see how they work in practice.

In this example, for more details see (5), we model the evolution of linguistic
sequences by comparing their statistical properties. We will see how languages
belonging to the same linguistic family have very similar statistical proper-
ties. We will use these statistical properties to embed the sequences into a
vector space, to obtain their pairwise distances and hypothesize an evolution-
ary tree. The comparison among languages is performed by p-spectrum kernel
and mismatch kernel. Both algorithms demonstrated are based on computing
the distance between documents in feature space as defined in equation (1.1)
in Section 1.2.1.

We have used the language dataset introduced by (2). Their dataset is
made of the translation of the “Universal Declaration of Human Rights” (20)
in the most important language branches: Romance, Celtic, German, Slavic,
Ugrofinnic, Altaic, Baltic, and the Basque language. Our dataset contains
42 languages from this dataset. Each document has been preprocessed and
it has been transformed into a string of the letters belonging to the English
alphabet plus the space.

The experiments have been performed with value of p = 4, allowing one
mismatch. With both the kernels, we have obtained a kernel matrix of size
42 × 42. From the kernel matrix we have computed the distance matrix us-
ing equation (1.1). On the distance matrix, we have applied two different
pattern analysis algorithms, neighbor joining (NJ) algorithm (22; 28) and
multidimensional scaling (MDS) algorithm (14). NJ is a standard method
in computational biology for reconstructing phylogenetic trees based on pair-
wise distances between the leaf taxa. MDS is a visualization tool for the
exploratory analysis of high-dimensional data.

Here we present results relative to the p-spectrum kernel with p = 4; there
are various elements of interest, both where they match accepted taxonomy
and where they (apparently) violate it. The Neighbor Joining tree, see Figure
1.2, correctly recovers most of the families and subfamilies that are known
from linguistics. An analysis of the order of branching of various subfamilies
shows that our statistical analysis can capture interesting relations, e.g., the
recent split of the Slavic languages in the Balkans; the existence of a Scandi-
navian subfamily within the Germanic family; the relation between Afrikaans
and Dutch; the Celtic cluster; and the very structured Romance family. A
look at the MDS plot, Figure 1.3, shows that English ends up halfway between
Romance and Germanic clusters; and Romanian is close to both Slavic and
Turkic clusters.

© 2009 by Taylor and Francis Group, LLC

20 Analysis of Text Patterns Using Kernel Methods

Basque

Kurdish

Turkish

Uzbek

Hungarian

Sami-Lappish

Estonian

Finnish

Latvian

Polish

Czech

Slovenian

Croatian

Bosnian

Serbian

Albanian

Romanian

Nigerian-Pidgin-English

English

Latin

Friulian

Corsican

Italian

Galician

Portuguese

French

Asturian

Spanish

Catalan

Welsh

Irish-Gaelic

Scottish-Gaelic

Icelandic

Swedish

Danish

Norwegian-Nynorsk

Breton

German

Luxembourgish

Frisian

Afrikaans

Dutch

FIGURE 1.2: The evolutionary rooted tree built using a 4-spectrum kernel
and the Neighbor Joining algorithm.

© 2009 by Taylor and Francis Group, LLC

Analysis of Text Patterns Using Kernel Methods 21

FIGURE 1.3: Multi-dimensional scaling using a 4-spectrum kernel distance
matrix.

© 2009 by Taylor and Francis Group, LLC

22 Analysis of Text Patterns Using Kernel Methods

In this example, we have shown that kernel methods are capable to reveal
useful and complex information in linguistics data. Besides, what we have
presented here may be regarded as an exposition of the versatility of kernel
methods.

1.5 Conclusion and Further Reading

Kernel Methods and Pattern Analysis can be considered two of the most
important topics in machine learning in the last few years. Their adaptability
and modularity has produced a variety of kernels and algorithms in a number
of different topic areas. In particular, well known algorithms have been mod-
ified into a kernel version. Thousands of papers have already been published
in this field, and accessing the primary literature is becoming increasingly a
daunting task. Comprehensive introductions to the field have appeared, par-
ticularly the textbooks (27), (6), (24), (31). Many websites are also available,
with free software and pointers to recent publications in the field.

In particular www.kernel-methods.net and www.support-vector.net
contain free material, whereas www.kernel-machines.org contains updated
pointers to all main events in the kernel methods community.

The field of Kernel Methods is a crucial part of modern Pattern Analysis,
and a great deal of active research is devoted to do it.

Acknowledgment Marco Turchi is supported by the EU Project SMART.

References

[1] F. R. Bach and M. I. Jordan. Kernel independent component analysis.
Journal of Machine Learning Research, 3:1–48, 2002.

[2] D. Benedetto, E. Caglioti, and V. Loreto. Language trees and zipping.
Physical Review Letters, 88(4), January 2002.

[3] T. De Bie, N. Cristianini, and R. Rosipal. Eigenproblems in pattern
recognition. In E. Bayro-Corrochano, editor, Handbook of Computa-
tional Geometry for Pattern Recognition, Computer Vision, Neurocom-
puting and Robotics. Springer-Verlag, 2004.

[4] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm
for optimal margin classifiers. In COLT ’92: Proceedings of the Fifth

© 2009 by Taylor and Francis Group, LLC

http://www.kernel-methods.net
http://www.support-vector.net
http://www.kernel-machines.org

Analysis of Text Patterns Using Kernel Methods 23

Annual Workshop on Computational Learning Theory, pages 144–152,
New York, NY, USA, 1992. ACM.

[5] M. Bresco, M. Turchi, T. Bie, and N. Cristianini. Modeling sequence
evolution with kernel methods. Comput. Optim. Appl., 38(2):281–298,
2007.

[6] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector
Machines. Cambridge University Press, Cambridge, U.K., 2000.

[7] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman. Indexing by latent semantic analysis. Journal of the
American Society of Information Science, 41(6):391–407, 1990.

[8] R. Fano. Transmission of Information: A Statistical Theory of Commu-
nications. MIT Press, Cambridge, 1961.

[9] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press,
1998.

[10] T. Jaakkola, M. Diekhans, and D. Haussler. Using the fisher kernel
method to detect remote protein homologies. In Proceedings of the Sev-
enth International Conference on Intelligent Systems for Molecular Bi-
ology (ISMB99), 1999.

[11] K. S. Jones. A statistical interpretation of term specificity and its ap-
plication in retrieval. Journal of Documentation, (28:1):l–21, 1972.

[12] H. Kashima, K. Tsuda, and A. Inokuchi. Kernel methods in compu-
tational biology. In B. Schoelkopf, K. Tsuda, and J.P. Vert, editors,
Handbook of Computational Geometry for Pattern Recognition. Springer-
Verlag, 2004.

[13] R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other
discrete structures. In Proceedings of the International Conference on
Machine Learning (ICML02), pages 315–322, 2002.

[14] J. B. Kruskal and M. Wish. Multidimensional Scaling. Sage Publications,
Beverly Hills, CA, 1978.

[15] C. S. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string
kernel for svm protein classification. In Pacific Symposium on Biocom-
puting, pages 566–575, 2002.

[16] C. S. Leslie, E. Eskin, J. Weston, and W. S. Noble. Mismatch string ker-
nels for svm protein classification. In K. Obermayer, S. Becker, S. Thrun,
editor, NIPS 2002, volume 15, pages 1441 – 1448, Cambridge, MA, USA,
2003. MIT Press.

[17] C. S. Leslie and R. Kuang. Fast kernels for inexact string matching. In
Conference on Learning Theory and Kernel Workshop (COLT03), pages
114–128, 2003.

© 2009 by Taylor and Francis Group, LLC

24 Analysis of Text Patterns Using Kernel Methods

[18] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. R. Muller. Fisher
discriminant analysis with kernels. In Proceedings of IEEE Neural Net-
works for Signal Processing Workshop 1999, pages 41–48, 1999.

[19] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Anal-
ysis and an algorithm. In Advances in Neural Information Processing
Systems 14 (NIPS01), pages 849–856, 2002.

[20] United Nations General Assembly resolution 217 A (III). Univer-
sal declaration of human rights. http://www.unhchr.ch/udhr/navigate/
alpha.htm, December 1948.

[21] F. Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):386–
408, 1958.

[22] N. Saitou and M. Nei. The neighbor joining method: A new method
for recostructing phylogenetic trees. Molecular Biology and Evolution,
1987, (4):406–425, 1987.

[23] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic
indexing. Commun. ACM, 18(11):613–620, 1975.

[24] B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cam-
bridge, MA, 2002.

[25] B. Schölkopf, A. Smola, and K. R. Müller. Nonlinear component analy-
sis as a kernel eigenvalue problem. Neural Computation, 10:1299–1319,
1998.

[26] C. E. Shannon. Prediction and entropy of printed English. Bell Systems
Technical Journal, (30):50–64, 1951.

[27] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analy-
sis. Cambridge University Press, Cambridge, U.K., 2004.

[28] A. J. Studier and K. J. Keppler. A note on the neighbor joining algorithm
of saitou and nei. Molecular Biology and Evolution, (5):729–731, 1988.

[29] D. M. J. Tax and R. P. W. Duin. Support vector domain description.
Pattern Recognition Letters, 20(11-13):1191–1199, 1999.

[30] K. Tsuda, M. Kawanabe, G. Ratsch, S. Sonnenburg, and K. R. Mller.
A new discriminative kernel from probabilistic models. Neural Compu-
tation, 14(10):2397–2414, 2002.

[31] V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, New
York, 2nd edition, 1999.

[32] J. P. Vert and M. Kanehisa. Graph-driven features extraction from
microarray data using diffusion kernels and kernel CCA. In Advances in

© 2009 by Taylor and Francis Group, LLC

http://www.unhchr.ch
http://www.unhchr.ch

Analysis of Text Patterns Using Kernel Methods 25

Neural Information Processing Systems 15 (NIPS02), pages 1425–1432,
2003.

[33] A. Vinokourov, J. Shawe-Taylor, and N. Cristianini. Inferring a seman-
tic representation of text via cross-language correlation analysis. In Ad-
vances in Neural Information Processing Systems 15, pages 1473–1480.
MIT Press, 2002.

© 2009 by Taylor and Francis Group, LLC

Chapter 2

Detection of Bias in Media Outlets
with Statistical Learning Methods

Blaz Fortuna, Carolina Galleguillos, and Nello Cristianini

2.1 Introduction . 27
2.2 Overview of the Experiments . 29
2.3 Data Collection and Preparation . 30
2.4 News Outlet Identification . 35
2.5 Topic-Wise Comparison of Term Bias . 38
2.6 News Outlets Map . 40
2.7 Related Work . 44
2.8 Conclusion . 45
2.9 Appendix A: Support Vector Machines . 48
2.10 Appendix B: Bag of Words and Vector Space Models 48
2.11 Appendix C: Kernel Canonical Correlation Analysis 49
2.12 Appendix D: Multidimensional Scaling . 50

2.1 Introduction

The international media system plays a crucial role both in reflecting pub-
lic opinion and events, and in shaping them. Understanding the workings of
this complex system is of crucial importance for society, business and democ-
racy, and is one of the research foci of media analysts, anthropologists, and
increasingly also of computer scientists.

The traditional way in which the contents of the media system are analyzed
has been by human analysts reading each news item, filling a pre-designed
questionnaire in the process. This phase of the analysis is termed ‘coding.’
The questions addressed often have some subjective component, such as the
detection of opinions, emphasis, or perspectives. Great care is paid in the
design phase of the questionnaire, to make the coding phase as objective as
possible. One key limitation of this approach, of course, is that it is very labor
intensive, and hence it cannot be scaled up to a global / constant monitoring
of the entire system. Indeed, the systems perspective of this analysis cannot
be pursued, as long as only small portions of the system can be analyzed at
each given time.

27
© 2009 by Taylor and Francis Group, LLC

28 Detection of Bias in Media Outlets with Statistical Learning Methods

Recently, significant attention has been paid to various aspects of text anal-
ysis that have relevance to the task of automating media content analysis.
Opinion analysis, sentiment analysis, topic categorization, have all reached a
reliable level of performance, and most of the main outlets have now a free
digital version available over the internet. This creates the opportunity to
automatize large part of the media-content analysis process.

From the technical point of view, coding by using a questionnaire is akin
to what machine learning researchers call “pattern matching”: the detection
of a pre-fixed property or pattern in a set of data. This is often done by
matching keywords in certain positions, in the context of classical content
analysis. What is increasingly becoming possible, however, is the transition
to “pattern discovery”: the detection of interesting properties in the data,
that do not belong to a pre-compiled list of properties. In other words, the
questionnaire used by human coders could be replaced by statistical patterns
discovered by a machine learning algorithm, if high quality annotated data is
available.

In this Chapter, we present a case study where subtle biases are detected in
the content of four online media outlets: CNN, Al Jazeera (AJ), International
Herald Tribune (IHT), Detroit News (DN). We focus on two types of bias,
corresponding to two degrees of freedom in the outlets: the choice of stories to
cover, and the choice of terms when reporting on a given story. We will show
how algorithms from statistical learning theory (and particularly kernel-based
methods, in this case) can be combined with ideas from traditional statistics,
in order to detect and validate the presence of systematic biases in the content
of news outlets.

We will ask the following questions: can we identify which outlet has writ-
ten a given news-item? If so, after correcting for topic-choice bias, we would
be able to claim that patterns in the language are responsible for this identifi-
cation. Another - orthogonal - question we will address is: which news-items
are more likely to be carried by a given outlet? Technically, we address this
question by devising a measure of statistical similarity between two outlets,
based on how much they overlap in their choice of stories to cover. Finally,
we use a technique from cross-language text analysis, to automatically de-
compose the set of topics covered in our corpus, in order to find the most
polarizing topics, that is those topics where term-choice bias is more evident.

This case study will demonstrate the application of Support Vector Ma-
chines (SVM), kernel Canonical, Correlation Analysis (kCCA), Multi Dimen-
sional Scaling (MDS), in the context of media content analysis. After report-
ing the results of our experiments, and their p-values, we will also speculate
about possible interpretations of these results. While the first aspect will con-
tain objective information, the interpretation will necessarily be subjective,
and we will alert the reader to this fact.

While the emphasis of this Chapter is to demonstrate a new use of Statistical
Learning technology, the experimental results are of interest in their own right,
and can be summarized as follows: it is possible to identify which news outlet

© 2009 by Taylor and Francis Group, LLC

Detection of Bias in Media Outlets with Statistical Learning Methods 29

carried a given news item; it is possible to decompose the space of documents
into topics, and detect the most polarizing ones; it is possible to recognize
which terms contribute the most to the bias; these quantities can also be used
to design two independent measures of similarity between news outlets, one
capturing their topic-choice bias, the other capturing their term-choice bias.
Maps of the media system could be created based on these metrics, and since
every step of this analysis has been done automatically, these could scale up
to very large sizes.

This Chapter is organized as follows: in the next section we will give an
overview of the experiments we performed; in Section 3 we will describe how
we obtained and prepared the data, including the method we used to identify
news-items covering the same story in different outlets; in Section 4 we will
describe the outlet identification experiments using SVMs; in Section 5 we will
describe the kCCA experiments to isolate the topics in which polarization is
most present; in Section 6 we will show how similarity measures between
outlets can be designed based on the previous experiments; and in Section 7
we will discuss the results, and - importantly - various recent results that are
closely related to this study, including work on detecting author’s perspective
based on the contents of a document.

2.2 Overview of the Experiments

An automatic system based on learning algorithms has been used to create a
corpus of news-items that appeared in the online versions of the 4 international
news outlets between 31st March 2005 and 14th of April 2006. We have
performed three experiments on this dataset, aimed at extracting patterns
from the news content that relate to a bias in lexical choice when reporting
the same events, or a bias in choosing the events to cover.

The first experiment, using Support Vector Machines (4) and limited to
CNN and AJ, demonstrates how it is possible to identify the outlet of a news
item based on its content, and identifies the terms that are most helpful in this
discrimination. The second experiment, using Canonical Correlation Analysis
(14), identifies topics in the CNN/AJ part of the corpus, and then identifies
words that are discriminative for the two outlets in each topic. Finally, we
have generated maps reflecting the distance separating the 4 outlets, based
both on topic-choice and on lexical-choice features.

In order to separate the two effects (choice of topics and of lexicon) we de-
veloped an algorithm to identify corresponding news-items in different outlets
(based on a combination of date and bag-of-words similarity). This means
that any patterns in lexical difference we identify are obtained by comparing
different versions of the same stories.

© 2009 by Taylor and Francis Group, LLC

30 Detection of Bias in Media Outlets with Statistical Learning Methods

For the first two experiments, we constructed a paired corpus of news-items,
much like is done in cross-language content analysis, where each pair is formed
by one item from AJ and one item from CNN, reporting on the same story.
The corpus was created by extracting the text of each story from HTML pages,
using a support vector machine, and later it was paired using an algorithm
developed for this purpose. The SVM was necessary as we described each
portion of text in the HTML page with a set of features, and we needed to
classify these feature vectors in order to identify the portion corresponding to
the actual content. Starting from 9185 news-items gathered over a period of
13 months in 2005 and 2006 from those two news outlets, 816 pairs were so
obtained, most of which turned out to be related to Middle East politics and
events.

The first task for the learning algorithm was to identify the outlet where a
given news item had appeared, based only on its content. Furthermore, it has
been possible to isolate a subset of words that are crucial in informing this
decision. These are words that are used in different ways by the two outlets.
In other words, the choice of terms is biased in the two outlets, and these
keywords are the most polarized ones. This includes a preference for terms
such as ‘insurgency,’ ‘militants,’ ‘ terrorists’ in CNN when describing the same
stories in which Al Jazeera prefers using the words ‘resistance,’ ‘fighters,’ and
‘rebels.’

For the last set of experiments, involving the generation of Maps, we have
used the full corpus. Obtained with the same techniques and for the same
time interval, it contains 21552 news items: 2142 for AJ, 6840 for CNN, 2929
for DN, and 9641 for IHT. The two news outlets with more regional focus
(AJ and DN) have the smallest set of news, as well as having the smallest
intersection, resulting in few stories being covered by all 4 newspapers. Most
stories that were covered by all four news outlets were mostly Middle East
related.

2.3 Data Collection and Preparation

The dataset used in all three experiments was gathered between March 31st
2005 and April 14th 2006 from the websites of AJ, CNN, DN, and IHT. A
subset of matching item-pairs was then identified for each pair of news outlets.
The acquisition and the matching algorithms are described below. For CNN
and Al Jazeera 816 pairs were determined to be matching, and used in the
first two experiments. Not surprisingly, these referred mostly to Middle East
events.

© 2009 by Taylor and Francis Group, LLC

Detection of Bias in Media Outlets with Statistical Learning Methods 31

2.3.1 Article Extraction from HTML Pages

We implemented a system to automatically retrieve every day news items
from different news outlets of the web. Some work was done to automatically
recognize the content within the HTML page. This was also based on the
use of SVMs, in order to create a general-purpose extractor that can work
with any outlet, but will not be described here in much detail, due to space
limitations.

By using a crawler every day for more than 1 year over the 4 outlets men-
tioned above, and extracting titles and contents from the HTML pages, we
obtained a total of more than 21000 news items, most of which are about
Middle East politics and events. For each news item its outlet, date, title,
and content are known. The table below gives a precise description of the
corpus we created. Further filtering of the news stories will be achieved at a
later stage, since the matching algorithm will discard all the news items that
cannot be paired reliably.

TABLE 2.1: Number of news items collected
from different outlets.

outlet No. of news
Al Jazeera 2142
CNN 6840
Detroit News 2929
International Herald Tribune 9641

The news collection on which we performed the first part of our analysis
consisted of just two outlets, Al Jazeera and CNN, while in the second part of
our experiments we use all four news outlets for constructing a map of outlets
based on topic similarity and a map based on vocabulary bias.

2.3.2 Data Preparation

The 21552 documents generated by the algorithm described above are
purely text files. As part of data preparation we removed stop words and
replaced the rest of the words with their appropriate stems. We used a list of
523 stop words and porter stemmer. After the initial cleaning we extracted a
list of words, bigrams, and trigrams (or terms in short) that appear at least
five times in the news collection. We used the extracted list of terms to define
the dimensions in the bag-of-words space [see Appendix B]. We also replaced
each stemmed word with the most frequent word from the news collection
with the same stem, for the purposes of visualization of results at the end of
the pipeline.

The implementations of text mining and machine learning algorithms for

© 2009 by Taylor and Francis Group, LLC

32 Detection of Bias in Media Outlets with Statistical Learning Methods

text preprocessing, Support Vector Machine, Kernel Canonical Correlation
Analysis, and Multidimensional scaling which were used in the experiments
were all taken from the Text Garden (8) software library.

2.3.3 Detection of Matching News Items

We are interested in investigating how different outlets report the same
events. To this end, the first step is to identify items from two news outlets, for
example Al Jazeera and CNN, that do refer to the same event. We call them
“mates,” and we call the problem of finding them the “matching problem.”
Here is an example of two mate articles, the first one is from CNN and the
second one is from Al Jazeera:

UK soldiers cleared in Iraqi death – Seven British soldiers

were acquitted on Thursday of charges of beating an inno-

cent Iraqi teenager to death with rifle butts. A judge at

a specially convened military court in eastern England or-

dered the adjudicating panel to return ‘not guilty’ verdicts

against the seven because he did not believe there was suf-

ficient evidence against them, the Ministry of Defence said.

. . .

British murderers in Iraq acquitted – The judge at a court-

martial on Thursday dismissed murder charges against seven

soldiers, from the 3rd Battalion, the Parachute Regiment,

who’re accused of murdering Iraqi teenager; claiming there’s

insufficient evidence to secure a conviction, The Associated

Press reported Thursday. . . .

For finding matching news items we used a method similar to what is used in
bioinformatics to detect homologous genes: the method called Best Reciprocal
Hit (BRH). Two genes are homologous (respectively, two articles are mates)
if they belong to different organisms (respectively, news outlets) and are each
other’s nearest neighbor (in some appropriate similarity metric).

We represented the documents as bags of words, and used the cosine in
the resulting vector space representation as the similarity measure. We also
relaxed the method somewhat: our algorithm operates on a list of top n
nearest-neighbors for each news item. The nearest-neighbors for a particular
news item are only selected from the opposite news outlet and within a 15
days time window around the news item. If two articles appear in each other’s
nearest-neighbors lists and if they appeared in the news with at most one day
difference then the two articles are selected as mates. This ensures that the
documents have both word similarity and date similarity (we take advantage
of the fact that each news item has an assigned date and use the date to

© 2009 by Taylor and Francis Group, LLC

Detection of Bias in Media Outlets with Statistical Learning Methods 33

reduce the search space for nearest-neighbors and to eliminate false positives
from the detected matches).

Note that by using a nearest-neighbor list with n > 1, one news article
can have multiple mates. For example: let A be an article from outlet 1 and
B and C articles from outlet 2 and let n ≥ 2. If B and C are on the A’s
nearest-neighbors list and A is on both B and C nearest-neighbor list, than
both articles A and B and articles A and C are selected as mates.

The result is a small subset of news items for each outlet for which we are
reasonably sure there is a matching item in the other news outlet. Of course,
by tuning the parameter n one can create larger subsets, at the expense of
more noise in the matching process. As expected, CNN started with more
stories and focuses on more global issues, so only a small fraction of those are
present also in Al Jazeera. In turn, Al Jazeera has a more regional focus, and
smaller set of news, so a larger fraction of its stories are found to have a mate
in CNN.

TABLE 2.2: Number of discovered news pairs and the percentage of
the articles from each news outlet that appear in at least in one pair. AJ
stands for Al Jazeera.

n 1 2 3 4 5 6 7 8 9 10
pairs 421 816 1101 1326 1506 1676 1865 2012 2169 2339
CNN 6% 9% 13% 14% 16% 17% 18% 19% 20% 21%

AJ 20% 33% 35% 39% 42% 45% 48% 51% 53% 56%

Table 2.2 shows the number of discovered pairs as a function of the param-
eter n. The last two rows are the percentage of news articles from each of the
two outlets that appear in at least one pair. To evaluate the discovered pairs
we randomly selected a subset of 100 pairs for n = 1, 2 and evaluated them
by close inspection. The precision for n = 1 was found to be 96% and the
precision for n = 2 was found to be 86%.

The number of discovered pairs increases significantly by increasing the size
of nearest-neighbor list size n. We can use estimated precision to approximate
that for n = 1 the algorithm found around 400 correct pairs and for n = 2
around 700 pairs. From this we can see that by increasing the nearest-neighbor
list size to n = 2 the precision of discovered pairs drops for 10% but at the
same time the recall increases significantly. We can not give an accurate
estimate of recall since we do not have a complete list of matchings for out
data.

By further increasing the parameter n eventually each news from CNN
would be matched with each of the news from Al Jazeera within the time
window (15 days). Since we are interested in a large while still accurate set of

© 2009 by Taylor and Francis Group, LLC

34 Detection of Bias in Media Outlets with Statistical Learning Methods

news article pairs, describing the same event, we will mostly focus on n = 2
in the following sections. However, the most important results will be given
also for the other values of n.

Another parameter influencing the accuracy of discovered mates is the time
window within which the mate search is done. Increase of the time window
size also increases the number of candidates for the nearest-neighbor list. This
in turn means that in order for two articles being selected as mates they must
pass through more strict filters.

We ran the news matching algorithm for different sizes of the time window
and the top nearest-neighbor list. The results can be seen in Figure 2.1.
From the results we can see that increasing the time window really reduces
the number of discovered pairs. Another thing that can be noted from the
graph is that the reduction is much more evident when a nearest-neighbor
list is large while the reduction hardly affects the smaller nearest-neighbor
lists. In the paper we will mostly focus on the case when n = 2 and the time
window is 15 days. From the graph we can note that further increase of time
window for the case of n = 2 hardly influences the number of mates which in
turn indicates that the selected mates are relatively accurate.

Note finally that this filtering stage is also likely to remove any potential
error introduced by the story extraction phase, since it is unlikely that the two
outlets would have highly similar text in the navigation menus or banners, that
is also time correlated. We have at this point a list of 816 item-pairs collected
over 1 year from CNN and Al Jazeera from which we are rather confident

FIGURE 2.1: The window size is on the x axis and the number of discovered
mates is on the y axis. The graph number of discovered mates for nearest-
neighbor lists of sizes n = 1, 2, 3, 5, 7, 10.

© 2009 by Taylor and Francis Group, LLC

Detection of Bias in Media Outlets with Statistical Learning Methods 35

that they represent different descriptions of the same events. We will use now
various techniques from pattern analysis to extract information about any
systematic differences found between the two outlets.

2.4 News Outlet Identification

Given this dataset of 816 pairs of news-items, we can test the hypothesis
that each outlet has its own bias in describing the events, which is reflected
in the choice of words for the article. We will use Support Vector Machines
(SVM) [see Appendix A] to learn a linear classifier capable of identifying the
outlet of a news item by just looking at its content. If this is possible in a sta-
tistically significant way, then clearly the two documents are distinguishable,
or can be modeled as having been generated from a different distribution of
probability. Differences between the distributions underlying the two news
outlets will be the focus of our investigation.

We trained a SVM with a subset of the data, and tested it on the remaining
data. The task of the classifier was to guess if a given news article came from
CNN or from Al Jazeera. We used ten-fold cross-validation to evaluate the
classifiers. The data were randomly split into 10 folds of equal size and in
each turn one fold was held out. A classifier was trained on the remaining 9
folds and then evaluated on the fold that was held out. This was repeated for
all 10 folds and the results were averaged over these 10 iterations.

The performance in the task was measured by calculating the break-even-
point (BEP) which is a hypothetical point where precision (ratio of positive
documents among retrieved ones) and recall (ratio of retrieved positive docu-
ments among all positive documents) meet when varying the threshold. Other
measures are possible, and can be justified, in this context. Our choice of BEP
has advantages when we have imbalanced negative and positive sets, which is
the case when we try to assign a news item to a large set of possible outlets,
and hence negative examples are more frequent than positive ones.

Before using the 816 pairs that we selected by the matching process, we
decided to try by using the whole set of 9185 CNN and Al Jazeera news
articles, and used ten-fold cross-validation to evaluate the linear SVM classifier
trained on the set.

We obtained 91% BEP, a very high score showing that indeed it is very
easy to separate the two outlets. This high score can be expected since CNN
and AJ cover different topics (e.g., covers the whole world while Al Jazeera
mostly focuses on the topics regarding the Middle East). This means that
the outlet of an item can be more easily identified as the result of its topic.
In order to isolate the effect of term-choice bias, we will have to restrict our
analysis only to comparable news-items: those 816 news items that have been

© 2009 by Taylor and Francis Group, LLC

36 Detection of Bias in Media Outlets with Statistical Learning Methods

matched by the algorithm described above.
The top 20 most important words for determining the outlet, when using

the full corpus, are:

Keywords for CNN: ap, insurgency, militants, national, police,

troops, china, vote, terrorists, authorities, united, united state, percent,

million, protests, suicide, years, allegations, program, day

Keywords for Al Jazeera: iraq, israel, iraqis, israeli, occupation,

americans, nuclear, aljazeera, palestinians, resistance, claim, withdraw,

attacks, guantanamo, mr, gaza stripped, war, shia, stripped, iranian

From the keywords we can see that the topics about the Middle East (‘iraq,’
‘israel,’ ‘gaza’) are more significant for Al Jazeera while business (‘percent,’
‘million,’) elections (‘vote’), and topics about other parts of the world (‘china’)
are more significant for CNN. We can also see some difference in the vocabu-
lary, for example ‘insurgency,’ ‘militants,’ and ‘terrorists’ versus ‘resistances.’

These keywords are the result of using the full corpus. As mentioned above,
we want to isolate the effect due to lexical bias to the effect due to topic bias,
by focussing only on those stories that are covered by both outlets.

For this new comparison of the two news outlets we used the set of news
pairs which we obtained automatically with the news matching algorithm.
Finding a correct news outlet for these articles is now a much harder task
since we remove any clues due to topic-choice, and we force the system to rely
solely on term-choice bias for distinguishing the two outlets. If we can train
a classifier which is better than random, then we can confidently state that
there is a significant and consistent difference in the vocabulary used by the
news outlets.

Results for ten-fold cross-validation on the news pairs are given in Table
2.3 and 2.4. We can see that the BEP slowly increases to 87% when n in-
creases and decreases to 79% when time window increases. This matches our
observations from previous section that increasing n also increases noise in
the data while increasing window size decreases noise.

TABLE 2.3: Results for outlet identification of a news item, using
different sizes of nearest-neighbor list. Time windows size is fixed to 15
days.

n 1 2 3 4 5 6 7 8 9 10
BEP 73% 81% 84% 84% 85% 85% 85% 86% 87% 87%

The high result for low values of n and large sizes of time window indicates
that there is a bias in the choice of vocabulary used by the two news outlets
when covering the same events. To assess the significance of the results from

© 2009 by Taylor and Francis Group, LLC

Detection of Bias in Media Outlets with Statistical Learning Methods 37

TABLE 2.4: Results for news outlet identification of a
news item from the set of news item pairs for different sizes
of time window. Nearest-neighbor list size is fixed to 2.

window size 5 10 15 20 30 45 60
BEP 85% 83% 81% 81% 80% 79% 79%

Table 2.3 we compared them against results obtained on randomly mixed news
article pairs (where the distinction between outlets was effectively removed).
The randomized pair sets were obtained by taking each pair of news articles
and swapping their outlets with probability 0.5. This generated a set where
each story pair was the same as before, but the ordering of the pair was
essentially random.

The permutation test was run on 300 random sets for n = 1, . . . , 10 and
it never returned a result better than the one from Table 2.3. For a sample
distribution of BEP obtained on 300 random sets for n = 2 see Figure 2.2.
Comparing outlet identification results against random runs gives us a p-value
of 0.3% and therefore it is very unlikely that the outlet identification results
would be due to chance since they need to reflect a true distinction in the
distribution of probability over words associated to each news outlet. This,
as we already argued before, indicates that there is a significant bias in the
vocabulary that Al Jazeera or CNN use to describe the same events.

To put some light on the vocabulary bias we extracted the most important
words from the linear SVM classifier for n = 2. These are the words associated
with the largest coefficient of the primal weight vector w of the SVM, and
hence the terms that mostly affect the decision made by the classifier. We
obtain the following two lists:

Keywords for CNN: insurgency, militants, troops, hussein, iran,

baghdad, united, terrorists, police, united state, suicide, program, al

qaeda, national, watching, qaeda, baghdad iraq, wounded, palestinians,

al

Keywords for Al Jazeera: iraq, attacks, army, shia, occupation,

withdraw, demanded, americans, claim, mr, nuclear, muslim, saddam,

resistance, agency, fighters, rebels, iraqis, foreign, correspondent

While the experimental findings above are significant and reproducible, we
believe it can also be useful to attempt an interpretation of these figures,
based on an inspection of the specific terms isolated by this analysis. This is
of course based on a subjective analysis of our objective results. Comparing
the lists we can notice that CNN is more inclined to use words like ‘insurgency,’
‘militants,’ ‘terrorists’ when describing Iraqis, that might be argued to have
negative connotation. On the other hand, Al Jazeera seems more likely to use
words like ‘resistance,’ ‘fighters,’ and ‘rebels ’ when describing the same events.

© 2009 by Taylor and Francis Group, LLC

38 Detection of Bias in Media Outlets with Statistical Learning Methods

FIGURE 2.2: Distribution of BEP for 300 random sets.

We can also see that CNN uses terrorist related words such as ‘al-qaeda’ or
‘suicide’ more often than Al Jazeera. Al Jazeera apparently focuses more on
‘withdraw.’ There is also an interesting observation that the word ‘Hussein’ is
more characteristic for CNN while the word ‘Saddam’ is more characteristic
for Al Jazeera. Both words refer to the same person.

2.5 Topic-Wise Comparison of Term Bias

Using a method borrowed from statistical cross-language analysis, we can
compare the data generated by the two news outlets as if it was written
in different languages. Kernel Canonical Correlation Analysis (kCCA) [see
Appendix C] (14) is a method for correlating two multidimensional random
variables, that is how our documents are modelled in the vector space ap-
proach. It has been used to analyze bilingual corpora, extracting both topics
from the corpora and semantically related pairs of words in the two languages
(15) (7). We are interested in discovering if there are specific term-choice
biases in certain topics, but we want to discover these topics automatically.

In our experiments we used the set of news pairs obtained with n = 2 as
a paired dataset for kCCA. Both news outlets use the same language so we
could use the same bag-of-words space for each view. The output of kCCA is a

© 2009 by Taylor and Francis Group, LLC

Detection of Bias in Media Outlets with Statistical Learning Methods 39

set of pairs of vectors along which the news article pairs are highly correlated.
Each pair of vectors corresponds to one of the topics from the news collection;
this can be observed by checking the most important keywords in the vectors.

For each pair of vectors we took Al Jazeera vector and subtracted it from
the CNN vector. We then sorted the words according to the weight they
had in this vector. If the word had a highly positive weight, then it was
more biased towards CNN and vice versa. Again, this is a way to compare
specific differences between the two distributions of probabilities underlying
the generation of words in CNN and Al Jazeera.

From each pair of vectors we also composed a set of outlet-independent
main keywords describing that topic. This was done by taking the union of
the top 5 keywords from each of the two vectors.

In Table 2.5 we present a list of the top 10 topics discovered by kCCA. For
each topic there is a set of keywords that describe the topic and a set of topic
related keywords specific for CNN and Al Jazeera.

The difference in vocabulary that can be seen from the Table 2.5 is similar
to the one we already discovered in the previous section, using the support
vector machine. This is of course encouraging, as it suggests we detected a
real signal in the data. An important advantage of analysis based on kCCA is
that it adds a crucial extra piece of information: namely how the lexical bias
is dependent on the topics being discussed. kCCA automatically identifies the
main topics, and for each topic the lexical bias between outlets discussing it.
Notice that the ‘topics’ identified by kCCA (or by any other factor analysis
method) do not need to correspond to topics that are meaningful in the human
sense, although they often are. Attributing a human-topic to a coherent set
of keywords found by kCCA analysis involves some amount of interpretation
of results, and so it can be considered as a subjective step. However it has to
be noticed that - while we do attempt to interpret the topics found by kCCA
- this is not necessary for any step of the analysis.

The topics common to AJ and CNN, as separated by CCA analysis, seem
to be fairly coherent and cover essentially all the key issues in the Middle
East in 2005 (although some topics are a little less focused) - [see Table 2.5]:
1) Iran’s nuclear program; 2) Iraq’s insurgency; 3) Palestinian question and
Gaza; 4) Iran’s nuclear program; 5) Iraq and Palestine; 6) Lebanon and Syria;
7) Afghanistan, Guantanamo, Pakistan; 8) Iraq and Saddam’s trial; 9) Human
right abuses; 10) Sharm el Sheik’s terror attack.

The table gives an idea of the main differences in lexicon used to report
on the same events, between AJ and CNN. A good example is perhaps Topic
3, where CNN mentions more often words like ‘militants,’ ‘missiles,’ ‘launch’
while AJ mentions more often words like ‘settlers,’ ‘barriers,’ ‘farms,’ and
‘suffer,’ suggesting a difference in focus.

© 2009 by Taylor and Francis Group, LLC

40 Detection of Bias in Media Outlets with Statistical Learning Methods

TABLE 2.5: Main topics covered by the news pairs and keywords
characteristic for CNN or Al Jazeera.

Topic Iran, nuclear, Palestinian, Israel, Gaza, EU, enrichment, IAEA
CNN EU, Iran, Rice, militant, Aceh, diplomats, monitoring, encouraging

AJ resume, Rafsanjani, research, atomic, Russian, sanctions, reference

Topic Iraq, Baghdad, Hussein, Shiite, trials, insurgents, troops
CNN insurgents, Hussein, attorney, Kember, family, British

AJ shia, Sunnis, occupation, Saddam, rebels, attack, killed, car

Topic Palestinian, Gaza, Israel, Sharon, Hamas, Abbas, militant
CNN militant, Israel, pullout, missiles, launch, Putin, Beirut, jews

AJ settlers, Hamas, barriers, Israeli, clashes, Hezbollah, farms, suffer

Topic Iran, nuclear, enrichment, IAEA, program, uranium, EU, council
CNN EU, Aceh, offered, monitoring, Iran, united, Bush, Britain, mission

AJ Tehran, resume, research, atomic, Rafsanjani, Ahmadinejad, reference

Topic Iraqi, Palestinian, Baghdad, Iran, Gaza, nuclear, shiite, Hamas
CNN militant, insurgents, terrorists, forces, cross, outlet, Hussein

AJ shia, Israeli, fighters, Sunnis, squad, farms, occupation, gunmen

Topic Lebanon, Syria, Hariri, assassination, beirut, opposition
CNN Rafik, cooperation, son, rice, Hezbollah, Syria, Hussam, form

AJ Lebanese, Rafiq, Christian, opposition, Aoun, Baath, assassination

Topic Afghanistan, London, Pakistan, Egyptian, Muslim, Guantanamo
CNN Reuters, Taliban, friends, helicopter, investigate, Quran

AJ Zarqawi, Zawahri, village, Sharm, channel, Pakistani, rocket

Topic Baghdad, Iraq, Saddam, Sunnis, Shiite, trials, Sharon, vote
CNN Hussein, insurgents, Baquba, troops, attorney, turnout, rocket

AJ shia, Mosul, marine, interior, raids, Olmert, violence, toppled

Topic prisoners, Guantanamo, detainees, Saddam, court, judge, torture
CNN Hussein, detainees, camp, Ghraib, bay, prisoners, witnessed, Quran

AJ judge, Pentagon, mr, detention, responsibility, refuses, holy

Topic bombs, attack, police, blasts, killed, Egyptian, Sharm, explosion
CNN insurgents, Aziz, suicide, Jordanian, kilometers, helicopter

AJ toll, striking, Romanian, town, fighters, hit, army, ambassador

2.6 News Outlets Map

In the second set of experiments we used all four news outlets: Al Jazeera
(AJ), CNN, Detroit News (DN), and International Herald Tribune (IHT),
gathered in the same time interval.

The goal of this experiment was to represent news outlets as points on a
map so that ‘similar’ news outlets would appear closer to each other on the
map than ‘not-so-similar’ news outlets. We wanted the distance to reflect
the bias of the news outlet, either in lexical choices or in the overall choice
of topics to cover. This led to two approaches: the first defined a distance
based on the lexical choices while the second approach was based on the topics

© 2009 by Taylor and Francis Group, LLC

Detection of Bias in Media Outlets with Statistical Learning Methods 41

covered. The definitions of these two distances will be given below. Once we
obtained the distance scores between two news outlets we used the multi-
dimensional scaling (MDS) [see Appendix D] algorithm to calculate the map
with the optimal positions of the news outlets.

Like in Section 2.4, we ran the matching algorithm on all news outlet pairs.
The time window size was 15 days and the size of the nearest-neighbor list
was 2. The following table shows the number of discovered pairs:

TABLE 2.6: Number of
discovered pairs.

AJ CNN DN IHT
AJ – 816 447 834
CNN 816 – 1103 2437
DN 447 1103 – 895
IHT 834 2437 895 –

The intersection that we find between the various outlet pairs varies consid-
erably. This can be better seen by calculating the conditional probability of a
story appearing in an outlet given that it appears in another one, reported in
the following table. For example, we can note that more AJ stories feature in
CNN than vice versa (P (AJ |CNN) = 0.1193 while P (CNN |AJ) = 0.3810),
which is perhaps explained by the regional focus of one outlet and the global
focus of the other. Similar relations apply - for example - to the relation
between DN and CNN, or IHT.

TABLE 2.7: Conditional probabilities of
a story from one news outlet appearing in
another outlet.

P (X |Y) AJ CNN DN IHT
AJ 1.0000 0.3810 0.2087 0.3894
CNN 0.1193 1.0000 0.1613 0.3563
DN 0.1526 0.3766 1.0000 0.3056
IHT 0.0865 0.2528 0.0928 1.0000

For the purpose of comparing the vocabulary of news outlets we extracted
the news events which were covered by all four news outlets. We did that by
taking all the news articles that have mates in all other news outlets. The
number of news taken from each outlet can be found in Table 2.8.

Note that the number of news articles differs slightly between news outlets
with IHT having the largest number of articles and Detroit News the lowest.

© 2009 by Taylor and Francis Group, LLC

42 Detection of Bias in Media Outlets with Statistical Learning Methods

TABLE 2.8: Number of news articles covered
by all four news outlets.

outlet No. of news
Al Jazeera 170
CNN 169
Detroit News 161
International Herald Tribune 175

.

This happens because a news article from one news outlet can have two mates
from an opposite news outlet since the size of the nearest-neighbor list was
set to two.

From the upper table we can speculate that IHT covered events with more
news articles than other news outlets or that for example Detroit News had
more ‘digestive’ news articles where one article covers more events which other
outlets covered in separate articles (this might also confuse the matching
algorithm, of course).

2.6.1 Distance Based on Lexical Choices

Our first approach for calculating the distance was based on the difference
in lexicon when reporting on the same events. In this part of the experiment
we only used the portion of news articles talking about events which were
covered by all four news outlets. For each pair of news outlets we trained and
evaluated a SVM classifier on the discovered pairs of stories and averaged the
BEP using ten-fold cross-validation (the setup used here was exactly the same
as in Section 2.3). We used the average BEP between news outlets to define
the distance.

Break-even point (BEP) reflects the separability between two classes, or
how easy it is to distinguish the news outlets based on the lexical content of
their news items. We use it as a distance measure between news outlets, so
that nearby outlets are those harder to distinguish based on lexical bias. This
allowed us to draw a map based on this distance, shown in Figure 2.3. Note
that Al Jazeera is distant from the 3 US-based outlets, and this cannot be
attributed to its regional focus. As a matter of fact, the comparison was done
only on events reported by all four outlets, so this map shows the (perhaps
not surprising) fact the AJ has a rather different perspective on those same
events than the other 3 outlets examined here.

The table below shows the distances obtained for each pair of outlets, and
the Figure 2.3 shows the same information as a map.

© 2009 by Taylor and Francis Group, LLC

Detection of Bias in Media Outlets with Statistical Learning Methods 43

TABLE 2.9: BEP metric distances.
AJ CNN DN IHT

AJ – 0.6165 0.6709 0.6852
CNN 0.6165 – 0.5682 0.5735
DN 0.6709 0.5682 – 0.4663
IHT 0.6852 0.5735 0.4663 –

FIGURE 2.3: This plot shows the relative distance between news outlets,
using the BEP metric described in the text.

2.6.2 Distance Based on Choice of Topics

The second approach for calculating the distance was based on the inter-
section of topics which were covered by each of the news outlets. To discover
these intersections we described each news outlet by a vector of binary fea-
tures where each feature corresponds to one news article from our collection.
A feature in the vector of a news outlet has value 1 if the article corresponding
to that feature originates from the news outlet or if the article is a mate of an
article from the news outlet. Otherwise the value of the feature is 0. We then
used the cosine similarity to calculate the similarity between the vectors.

The effect of such representation is that we effectively compare two news
outlets based on their choice of which events to cover. If news outlets A and
B both covered the same event then there is a news article a1 from A and b1

from B which both covered that event. If our matching algorithm discovered
that these two articles are mates, then both news outlets A and B will have
a value of 1 for the features corresponding to the a1 and b1 and therefore will
be more similar. If there is a news outlet C which also covered the event with
article c1 and our algorithm only managed to discover that c1 is a mate with
b1, then this approach will still manage to match news outlets A and C on
this event since they both have mate articles to the article b1. However, the
score of matching will be lower than between A and B or B and C. Results of

© 2009 by Taylor and Francis Group, LLC

44 Detection of Bias in Media Outlets with Statistical Learning Methods

the mapping based on this distance can be seen in Figure 2.4.

FIGURE 2.4: This plot shows the relative distance between news outlets,
using the topic similarity described in the text.

Again, here Al Jazeera is distant from the others. A possible interpretation
could be that this reflects the effect of regional focus.

2.7 Related Work

In recent years there has been significant attention to various problems of
text analysis that are related to the ones discussed here. Three papers ap-
pearing in 2006 (roughly at the same time in which the experiments reported
here were under way) are worth mentioning, as they have both significant
connections and interesting differences.

The articles (10) and (11), partly involving the same authors, focus on the
concept of ‘perspective’ from which an article is written. In the first article,
the authors use a dataset created using the “bitterlemons” website: a debate
website set up to contribute to mutual understanding between Palestinians
and Israelis by publishing two views of each topic.

In the second article, two of the same authors analyze the same ‘bitter-
lemons’ dataset as well as another dataset, formed by “transcripts of the
three Bush-Kerry presidential debates in 2004, provided by the Commission
on Presidential Debates. Each document is roughly an answer to a question
or a rebuttal.”

One elegant feature of these studies is that by construction the two datasets

© 2009 by Taylor and Francis Group, LLC

Detection of Bias in Media Outlets with Statistical Learning Methods 45

are already paired, and the two elements of each pair are definitely written
by authors adopting different perspectives. This makes the signal stronger
and the analysis very interesting. In both cases, it is found that statistical
learning algorithms (both generative models, and discriminative models) can
be used to identify the perspective from which an article has been written.

By contrast, in our study we have a somewhat opposite situation. Not only
the articles are not naturally paired, but they are also not on a specific topic
(as those in bitterlemons), or written by a specific author (as in the case of
presidential debates). Furthermore there is no obvious reason to assume that
any two news outlets should show a measurable bias in their choice of terms,
when reporting on the same events. This makes the signal much harder to
isolate, and indeed the automatic identification of topics by using kCCA is
very helpful in showing the most biased topics. From a methodological point
of view, our use of concepts from machine translation and cross-language
retrieval can provide a complementary position to the methods purely based
on text categorization that have been so far proposed.

Somewhat related to the above is also the paper (12) where the task in-
volved is to analyze the transcripts of U.S. Congressional floor debates to
determine whether the speeches represent support of or opposition to pro-
posed legislation. Rather than paired documents, here we just have labelled
documents, but the label somehow relates to the attitude of the speaker. This
is again cast as a text categorization task, where the authors use SVM classi-
fiers, again showing that statistical discrimination algorithms can capture the
subtle signals contained in the choice of words and relating opinion.

A more indirect relation to this theme can also be found within the grow-
ing literature on sentiment analysis, or opinion analysis, where the author’s
attitude towards a topic or a product is extracted. In these studies, it is typi-
cally the presence of specific key-words that is used to determine the attitude
of the writer towards a certain issue. Projecting documents onto a subspace
spanned by polarized words may be a way to simplify and direct the search
for lexical bias in news outlets.

Author identification literature is also indirectly related, as in our experi-
ments we establish the presence of a lexical or stylistic bias by identifying the
outlet (author) based on a text.

2.8 Conclusion

We have presented a fully automatic method for the analysis of term-choice
bias in media outlets, using state of the art technology in information ex-
traction and pattern analysis. Our automated analysis has uncovered the
existence of a statistically significant lexical difference between CNN and Al

© 2009 by Taylor and Francis Group, LLC

46 Detection of Bias in Media Outlets with Statistical Learning Methods

Jazeera in the way they report the same events. Although this finding is far
from surprising, the fact that it could be done in an automatic way by using
statistical learning algorithms has many implications: a large scale implemen-
tation of this system could easily be used to monitor a large number of news
outlets, and perhaps cluster them according to their similarity in topic / term
biases. This in turn could help us to identify different accounts of the same
story, that is accounts coming from news outlets that have a significantly dif-
ferent bias. Having access to different versions of the same story is of course
a valuable opportunity, as it can help us to form an opinion as independent
as possible about current events. Then we have also presented a method
to compute distances between media outlets, based on their term-choice and
topic-choice biases.

Recent related work, discussed above, points in the same direction. The
detection of different political perspectives in authors, groups, or speakers
has attracted significant attention of the NLP community, and is also partly
related to the task of opinion analysis. Its large scale application to media
analysis can truly change that field of scholarship.

Despite the small scale of this case study, we feel that modern AI technology
has an important role to play in media content analysis, as well as in the social
sciences. When scaled up to include hundreds or thousands of media outlets,
a goal easily achievable also with standard equipment, these methods can lead
to informative maps showing the relation between media outlets based on the
analysis of statistical patterns in their content.

References

[1] Aljazeera News, http://english.aljazeera.net/

[2] Brank, J., Grobelnik, M., Milic-Frayling, N., and Mladenic, D. Feature
selection using support vector machines. Proc. of the Third International
Conference on Data Mining Methods and Databases for Engineering,
Finance, and Other Fields, 2002.

[3] CNN News, http://www.cnn.com

[4] Cristianini, N. and Shawe-Taylor, J. An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods. Cambridge Uni-
versity Press, 2000.

[5] Detroit News, http://www.detroitnews.com

[6] Fortuna, B., Grobelnik, M., and Mladeni, D. Visualization of Text Doc-
ument Corpus. Informatica 29 (2005), 497–502.

© 2009 by Taylor and Francis Group, LLC

http://english.aljazeera.net
http://www.cnn.com
http://www.detroitnews.com

Detection of Bias in Media Outlets with Statistical Learning Methods 47

[7] Fortuna, B., Cristianini, N., and Shawe-Taylor, J. A Kernel Canonical
Correlation Analysis For Learning The Semantics Of Text. Kernel meth-
ods in bioengineering, communications and image processing, edited by
G. Camps-Valls, J. L. Rojo-Alvarez & M. Martinez-Ramn.

[8] Grobelnik, M. and Mladenic., D. Text Mining Recipes. Springer-Verlag,
Berlin; Heidelberg; New York (to appear), 2006 (accompanying software
available at http://www.textmining.net).

[9] International Herald Tribune, http://www.iht.com

[10] Lin, W.-H., Wilson, T., Wiebe, J., and Hauptmann, A. Which Side
are You on? Identifying Perspectives at the Document and Sentence
Levels, Proceedings of the Tenth Conference on Computational Natural
Language Learning (CoNLL-2006), 2006.

[11] Lin, W.-H. and Hauptmann, A. Are These Documents Written from
Different Perspectives? A Test of Different Perspectives Based on Sta-
tistical Distribution Divergence, Proceedings of the 21st International
Conference on Computational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics, 2006.

[12] Thomas, M., Pang, B., and Lee, L. Get out the vote: Determining sup-
port or opposition from Congressional floor-debate transcripts Proceed-
ings of EMNLP, 2006.

[13] Joachims, T. Text categorization with support vector machines: learning
with many relevant features. In Claire Nédellec & Céline Rouveirol, ed-
itors, Proceedings of ECML-98, 10th European Conference on Machine
Learning, numéro 1398 in Lecture Notes in Computer Science, pages
137–142, Chemnitz, DE, 1998. Springer Verlag, Heidelberg, DE.

[14] Shawe-Taylor, J. and Cristianini, N. Kernel Methods for Pattern Anal-
ysis. Cambridge University Press, 2004.

[15] Vinokourov, A., Shawe-Taylor, J., and Cristianini, N. Inferring a se-
mantic representation of text via cross-language correlation analysis.
Advances of Neural Information Processing Systems 15, 2002.

Acknowledgments

Part of the infrastrucure was developed with a grant from Fair Isaac Co.
and UC Davis. Blaz Fortuna was partly supported by the Slovenian Research
Agency and the IST Programme of the European Community under SEKT

© 2009 by Taylor and Francis Group, LLC

http://www.textmining.net
http://www.iht.com

48 Detection of Bias in Media Outlets with Statistical Learning Methods

Semantically Enabled Knowledge Technologies (IST-1-506826-IP) and PAS-
CAL Network of Excellence (IST-2002-506778). This publication only reflects
the authors’ views.

2.9 Appendix A: Support Vector Machines

Support vector machine is a family of algorithms that has gained a wide
recognition in the recent years as one of the state-of-the-art machine learn-
ing algorithms for tasks such as classification, regression, etc. In the basic
formulation they try to separate two sets of training examples by hyperplane
that maximizes the margin (distance between the hyperplane and the closest
points). In addition one usually permits few training examples to be misclas-
sified; this is know as the soft-margin SVM. The linear SVM is known to be
one of the best performing methods for text categorization, e.g., in (2).

The linear SVM model can also be used for feature selection. In (13), the
hyperplane’s normal vector is used for ranking the features. In this paper
we use this approach to find which features (in our case words) are the most
important for a news article being classified in to one of the two outlets.

2.10 Appendix B: Bag of Words and Vector Space Mod-
els

The classic representation of a text document in Information Retrieval is
as Bag of Words (a bag is a set where repetitions are allowed), also known
as Vector Space Model, since a bag can be represented as a (column) vector
recording the number of occurrences of each word of the dictionary in the
document at hand.

A document is represented, in the vector-space model, by a vertical vector d
indexed by all the elements of the dictionary (i-th element from the vector is
the frequency of i-th term in the document TFi). A corpus is represented by
a matrix D, whose columns are indexed by the documents and whose rows
are indexed by the terms, D = (d1, . . . ,dN). We also call the data matrix D
the term-document matrix.

Since not all terms are of the same importance for determining similarity
between the documents we introduce term weights. A term weight corre-
sponds to the importance of the term for the given corpus and each element
from the document vector is multiplied with the respective term weight. The
most widely used weighting is called TFIDF weighting.

© 2009 by Taylor and Francis Group, LLC

Detection of Bias in Media Outlets with Statistical Learning Methods 49

A IDF weight for term i from the dictionary is defined as wi = log(N/DFi)
where DFi is the number of documents from the corpora which con-
tain word i. A document’s TFIDF vector is a vector with elements:
wi = TFi log(N/DFi).

2.11 Appendix C: Kernel Canonical Correlation Analy-
sis

Canonical Correlation Analysis is a method of correlating two multidimen-
sional variables. It makes use of two different views of the same semantic
object (e.g., the same text document written in two different languages or
news event described by two different news agencies) to extract representa-
tion of the semantic.

Input to CCA is a paired dataset S = {(ui, vi); ui ∈ U, vi ∈ V }, where U and
V are two different views on the data; each pair contains two views of the same
document. The goal of CCA is to find two linear mappings into a common
semantic space W from the spaces U and V . All documents from U and V
can be mapped into W to obtain a view- or in our case language-independent
representation.

The criterion used to choose the mapping is the correlation between the
projections of the two views across the training data for each dimension in W .
This criterion leads to a generalized eigenvalue problem whose eigenvectors
give the desired mappings.

CCA can be kernelized so it can be applied to feature vectors only implicitly
available through a kernel function. There is a danger that spurious correla-
tions could be found in high dimensional spaces and so the method has to be
regularized by constraining the norms of the projection weight vectors. The
kernelized version is called Kernel Canonical Correlation Analysis (KCCA).

2.11.0.0.1 Example Let the space V be the vector-space model for En-
glish and U the vector-space model for French text documents. A paired
dataset is then a set of pairs of English documents together with their
French translation. The output of KCCA on this dataset is a semantic space
where each dimension shares similar English and French meaning. By map-
ping English or French documents into this space, a language independent-
representation is obtained. In this way standard machine learning algorithms
can be used on multi-lingual datasets.

© 2009 by Taylor and Francis Group, LLC

50 Detection of Bias in Media Outlets with Statistical Learning Methods

2.12 Appendix D: Multidimensional Scaling

Multidimensional Scaling (MDS) is a set of related statistical techniques
often used in data visualization for exploring similarities and dissimilarities
in data. An MDS algorithm starts with the matrix of item-item similarities
and then assigns a location in a low-dimensional space to each item making it
suitable for visualization. In this paper we used MDS developed for visualizing
textual data presented in (6).

© 2009 by Taylor and Francis Group, LLC

Chapter 3

Collective Classification for Text
Classification

Galileo Namata, Prithviraj Sen, Mustafa Bilgic, and Lise Getoor

3.1 Introduction . 51
3.2 Collective Classification: Notation and Problem Definition 53
3.3 Approximate Inference Algorithms for Approaches Based on Local

Conditional Classifiers . 53
3.4 Approximate Inference Algorithms for Approaches Based on Global

Formulations . 56
3.5 Learning the Classifiers . 60
3.6 Experimental Comparison . 60
3.7 Related Work . 64
3.8 Conclusion . 66
3.9 Acknowledgments . 66

3.1 Introduction

Text classification, the classification of text documents according to cate-
gories or topics, is an important component of any text processing system.
There is a large body of work which makes use of content – the words appear-
ing in the documents, the structure of the documents – and external sources
to build accurate document classifiers. In addition, there is a growing body of
literature on methods which attempt to make use of the link structure among
the documents in order to improve document classification performance.

Text documents can be connected together in a variety of ways. The most
common link structure is the citation graph: e.g., papers cite other papers
and webpages link to other webpages. But links among papers can be con-
structed from other relationships such as co-author, co-citation, appearance
at a conference venue, and others. All of these can be combined together to
create a interlinked collection of text documents.

In these cases, we are often not interested in determining the topic of just a
single document, but we have a collection of unlabeled (or partially labeled)
documents, and we want to correctly infer values for all of the missing labels.

51
© 2009 by Taylor and Francis Group, LLC

52 Collective Classification for Text Classification

W2

L1

X4

X5

Y1

X3

Y2

X6

X7
W1

L2

W1

W3

X1 X2

FIGURE 3.1: A small text classification problem. Each box denotes a
document, each directed edge between a pair of boxes denotes a hyperlink,
and each oval node denotes a random variable. Assume the smaller oval nodes
within each box represent the presence of the words, w1, w2, and w3, in the
document and the larger oval nodes the label of the document where the set
of label values is L = {L1, L2}. A shaded oval denotes an observed variable
whereas an unshaded oval node denotes an unobserved variable whose value
needs to be predicted.

This is straightforward when we consider only document content; the problem
is somewhat complicated when we consider the links among the missing labels.
In this case, we want to jointly or collectively optimize the labels, and we refer
to the problem as collective classification.

Collective classification methods range from simple local influence propa-
gation algorithms to more complex global optimization algorithms. At their
heart, they try to model the combined correlations among labels of neighbor-
ing documents. Some models assume that neighboring labels are likely to be
the same or similar (homophily, or autocorrelation), while others are capable
of learning more complex dependencies.

In this chapter, we present several of the common algorithms for collective
classification. Our collection of algorithms is not exhaustive, and we are not
presenting some of the most advanced algorithms. Instead, we try to provide
the reader with a simple tutorial introduction to the methods, with a focus
on the algorithms rather than the mathematical justification.

© 2009 by Taylor and Francis Group, LLC

Collective Classification for Text Classification 53

3.2 Collective Classification: Notation and Problem
Definition

Collective classification is a combinatorial optimization problem, in which
we are given a set of documents, or nodes, V = {V1, . . . , Vn} and a neigh-
borhood function N , where Ni ⊆ V \ {Vi}, which describes the underlying
network structure. Each node in V is a random variable that can take a value
from an appropriate domain. V is further divided into two sets of nodes: X ,
the nodes for which we know the correct values (observed variables) and Y,
the nodes whose values need to be determined. Our task is to label the nodes
Yi ∈ Y with one of a small number of labels, L = {L1, . . . , Lq}; we’ll use the
shorthand yi to denote the label of node Yi.

We explain the notation further using a document classification example
shown in Figure 3.1. In this example, we will use the words (and phrases)
contained in the documents as local attributes. Each document is indicated
by a box, the corresponding topic of the webpage is indicated by an ellipse
inside the box, and each word that appears in the document is represented
using a circle inside the box. The observed random variables X are shaded
whereas the unobserved ones Y are not. We will assume that the domain
of the unobserved label variables is L. Figure 3.1 shows a network with
two unobserved variables (Y1 and Y2), which require prediction, and seven
observed variables (X3, X4, X5, X6, X7, X8 and X9). Note that some of the
observed variables happen to be labels of webpages (X6 and X8) for which we
know the correct values.

As mentioned in the introduction, due to the large body of work done in
this area of research, we have a number of approaches for collective classifica-
tion. At a broad level of abstraction, these approaches can be divided into two
distinct types, the first where we use a collection of unnormalized local condi-
tional classifiers and the second, where we define the collective classification
problem as one global objective function to be optimized. We next describe
these two approaches and, for each approach, we describe two approximate
inference algorithms.

3.3 Approximate Inference Algorithms for Approaches
Based on Local Conditional Classifiers

Two of the most commonly used approximate inference algorithms follow-
ing this approach are the iterative classification algorithm (ICA) and Gibbs
sampling (GS), and we next describe these in turn.

© 2009 by Taylor and Francis Group, LLC

54 Collective Classification for Text Classification

Algorithm 1 Iterative classification algorithm
Iterative Classification Algorithm (ICA)

for each node Yi ∈ Y do {bootstrapping}
{c}ompute label using only observed nodes in Ni

compute �ai using only X ∩Ni

yi ← f(�ai)
repeat {iterative classification}

generate ordering O over nodes in Y
for each node Yi ∈ O do
{c}ompute new estimate of yi

compute �ai using current assignments to Ni

yi ← f(�ai)
until all class labels have stabilized or a threshold number of iterations
have elapsed

3.3.1 Iterative Classification

The basic premise behind ICA is extremely simple. Consider a node Yi ∈ Y
whose value we need to determine and suppose we know the values of all the
other nodes in its neighborhood Ni (note that Ni can contain both observed
and unobserved variables). Then, ICA assumes that we are given a local
classifier f that takes the values of Ni as arguments and returns a label value
for Yi from the class label set L. For local classifiers f that do not return
a class label but a goodness/likelihood value given a set of attribute values
and a label, we simply choose the label that corresponds to the maximum
goodness/likelihood value; in other words, we replace f with argmaxl∈Lf .
This makes the local classifier f an extremely flexible function and we can use
anything ranging from a decision tree to an SVM in its place. Unfortunately,
it is rare in practice that we know all values in Ni which is why we need
to repeat the process iteratively, in each iteration, labeling each Yi using the
current best estimates of Ni and the local classifier f , and continuing to do
so until the assignments to the labels stabilize.

Most local classifiers are defined as functions whose argument consists of
one fixed-length vector of attribute values. A common approach to circumvent
such a situation is to use an aggregation operator such as count, mode, or prop,
which measures the proportion of neighbors with a given label.

Algorithm 1 depicts the ICA algorithm as pseudo-code where we use �ai to
denote the vector encoding the values in Ni obtained after aggregation. Note
that in the first ICA iteration, all labels yi are undefined and to initialize
them we simply apply the local classifier to the observed attributes in the
neighborhood of Yi; this is referred to as “bootstrapping” in Algorithm 1.

© 2009 by Taylor and Francis Group, LLC

Collective Classification for Text Classification 55

3.3.2 Gibbs Sampling

Gibbs sampling (GS) (12) is widely regarded as one of the most accurate
approximate inference procedures. It was originally proposed in (10) in the
context of image restoration. Unfortunately, it is also very slow and one of the
common issues while implementing GS is to determine when the procedure
has converged. Even though there are tests that can help one determine
convergence, they are usually too expensive or complicated to implement.

Researchers in collective classification (29; 22; 24) have developed a version
of Gibbs sampling that is easy to implement and faster than traditional GS.
The basic idea behind this algorithm is to assume, just like in the case of
ICA, that we have access to a local classifier f that can sample for the best
label estimate for Yi given all the values for the nodes in Ni. We keep doing
this repeatedly for a fixed number of iterations (a period known as “burn-
in”). After that, not only do we sample for labels for each Yi ∈ Y but we
also maintain count statistics as to how many times we sampled label l for
node Yi. After collecting a predefined number of such samples we output the
best label assignment for node Yi by choosing the label that was assigned the
maximum number of times to Yi while collecting samples. The pseudo-code
for GS is shown in Algorithm 2. For all our experiments that we report later,
we set burn-in to 200 iterations and collected 800 samples.

3.3.3 Local Classifiers and Further Optimizations

One of the benefits of both ICA and GS is the fact that it is fairly simple to
make use of any local classifier. Some of the classifiers used included: näıve
Bayes ((7; 28)), logistic regression ((21)), decision trees (14) and weighted-
vote ((22)). There is some evidence to indicate that discriminatively trained
local classifiers such as logistic regression tend to produce higher accuracies
than others; this is consistent with results in other areas.

Other aspects of ICA that have been the subject of investigation include the
ordering strategy to determine in which order to visit the nodes to relabel in
each ICA iteration. There is some evidence to suggest that ICA is fairly robust
to a number of simple ordering strategies such as random ordering, visiting
nodes in ascending order of diversity of its neighborhood class labels and
labeling nodes in descending order of label confidences (11). However, there
is also some evidence that certain modifications to the basic ICA procedure
tend to produce improved classification accuracies. For instance, both (28)
and (24) propose a strategy where only a subset of the unobserved variables are
utilized as inputs for feature construction. More specifically, in each iteration,
they choose the top-k most confident predicted labels and use only those
unobserved variables in the following iteration’s predictions, thus ignoring
the less confident predicted labels. In each subsequent iteration they increase
the value of k so that in the last iteration all nodes are used for prediction.

© 2009 by Taylor and Francis Group, LLC

56 Collective Classification for Text Classification

Algorithm 2 Gibbs sampling algorithm
Gibbs Sampling ICA (GS)

for each node Yi ∈ Y do {bootstrapping}
{c}ompute label using only observed nodes in Ni

compute �ai using only X ∩Ni

yi ← f(�ai)
for n=1 to B do {burn-in}

generate ordering O over nodes in Y
for each node Yi ∈ O do

compute �ai using current assignments to Ni

yi ← f(�ai)
for each node Yi ∈ Y do {initialize sample counts}

for label l ∈ L do
c[i, l] = 0

for n=1 to S do {collect samples}
generate ordering O over nodes in Y
for each node Yi ∈ O do

compute �ai using current assignments to Ni

yi ← f(�ai)
c[i, yi] ← c[i, yi] + 1

for each node Yi ∈ Y do {compute final labels}
yi ← argmaxl∈Lc[i, l]

McDowell et al. report that such a “cautious” approach leads to improved
accuracies.

3.4 Approximate Inference Algorithms for Approaches
Based on Global Formulations

An alternate approach to performing collective classification is to define a
global objective function to optimize. In what follows, we will describe one
common way of defining such an objective function and this will require some
more notation.

We begin by defining a pairwise Markov random field (pairwise MRF) (34).
Let G = (V , E) denote a graph of random variables as before where V consists
of two types of random variables, the unobserved variables, Y, which need to
be assigned values from label set L, and observed variables X whose values
we know. Let Ψ denote a set of clique potentials. Ψ contains three distinct
types of functions:

• For each Yi ∈ Y, ψi ∈ Ψ is a mapping ψi : L → �≥0, where �≥0 is the
set of non-negative real numbers.

© 2009 by Taylor and Francis Group, LLC

Collective Classification for Text Classification 57

• For each (Yi, Xj) ∈ E, ψij ∈ Ψ is a mapping ψij : L → �≥0.

• For each (Yi, Yj) ∈ E, ψij ∈ Ψ is a mapping ψij : L × L → �≥0.

Let x denote the values assigned to all the observed variables in G and let
xi denote the value assigned to Xi. Similarly, let y denote any assignment
to all the unobserved variables in G and let yi denote a value assigned to Yi.
For brevity of notation we will denote by φi the clique potential obtained by
computing φi(yi) = ψi(yi)

∏
(Yi,Xj)∈E ψij(yi). We are now in a position to

define a pairwise MRF.

DEFINITION 3.1 A pairwise Markov random field (MRF) is given by a
pair 〈G, Ψ〉 where G is a graph and Ψ is a set of clique potentials with φi and
ψij as defined above. Given an assignment y to all the unobserved variables
Y, the pairwise MRF is associated with the probability distribution P (y|x) =

1
Z(x)

∏
Yi∈Y φi(yi)

∏
(Yi,Yj)∈E ψij(yi, yj) where x denotes the observed values

of X and Z(x) =
∑

y′
∏

Yi∈Y φi(y′
i)
∏

(Yi,Yj)∈E ψij(y′
i, y

′
j).

Given a pairwise MRF, it is conceptually simple to extract the best assign-
ments to each unobserved variable in the network. For instance, we may adopt
the criterion that the best label value for Yi is simply the one corresponding to
the highest marginal probability obtained by summing over all other variables
from the probability distribution associated with the pairwise MRF. Compu-
tationally, however, this is difficult to achieve since computing one marginal
probability requires summing over an exponentially large number of terms
which is why we need approximate inference algorithms.

Algorithm 3 Loopy belief propagation
Loopy Belief Propagation (LBP)

for each (Yi, Yj) ∈ E(G) s.t. Yi, Yj ∈ Y do
for each yj ∈ L do

mi→j(yj) ← 1
repeat {perform message passing}

for each (Yi, Yj) ∈ E(G) s.t. Yi, Yj ∈ Y do
for each yj ∈ L do

mi→j(yj) ← α
∑

yi
ψij(yi, yj)φi(yi)∏

Yk∈Ni∩Y\Yj
mk→i(yi)

until all mi→j(yj) stop showing any change
for each Yi ∈ Y do {compute beliefs}

for each yi ∈ L do
bi(yi) ← αφi(yi)

∏
Yj∈Ni∩Y mj→i(yi)

© 2009 by Taylor and Francis Group, LLC

58 Collective Classification for Text Classification

We describe two approximate inference algorithms in this chapter and both
of them adopt a similar approach to avoiding the computational complexity
of computing marginal probability distributions. Instead of working with the
probability distribution associated with the pairwise MRF directly (Defini-
tion 3.1) they both use a simpler “trial” distribution. The idea is to design
the trial distribution so that once we fit it to the MRF distribution then it
is easy to extract marginal probabilities from the trial distribution (as easy
as reading off the trial distribution). This is a general principle which forms
the basis of a class of approximate inference algorithms known as variational
methods (15).

We are now in a position to discuss loopy belief propagation (LBP) and
mean-field relaxation labeling (MF).

3.4.1 Loopy Belief Propagation

Loopy belief propagation (LBP) applied to pairwise MRF 〈G, Ψ〉 is a mes-
sage passing algorithm that can be concisely expressed as the following set of
equations:

mi→j(yj) = α
∑

yi∈L
ψij(yi, yj)φi(yi)

∏

Yk∈Ni∩Y\Yj

mk→i(yi), ∀yj ∈ L (3.1)

bi(yi) = αφi(yi)
∏

Yj∈Ni∩Y
mj→i(yi), ∀yi ∈ L (3.2)

where mi→j is a message sent by Yi to Yj and α denotes a normalization
constant that ensures that each message and each set of marginal probabilities
sum to 1, more precisely,

Algorithm 4 Mean-field relaxation labeling
Mean Field Relaxation Labeling (MF)

for each Yi ∈ Y do {initialize messages}
for each yi ∈ L do

bi(yi) ← 1
repeat {perform message passing}

for each Yj ∈ Y do
for each yj ∈ L do

bj(yj) ← αφj(yj)
∏

Yi∈Nj∩Y,yi∈L ψ
bi(yi)
ij (yi, yj)

until all bj(yj) stop changing

© 2009 by Taylor and Francis Group, LLC

Collective Classification for Text Classification 59

∑
yj

mi→j(yj) = 1 and
∑

yi
bi(yi) = 1. The algorithm proceeds by making

each Yi ∈ Y communicate messages with its neighbors in Ni ∩ Y until the
messages stabilize (Eq. (3.1)). After the messages stabilize, we can calculate
the marginal probability of assigning Yi with label yi by computing bi(yi)
using Eq. (3.2). The algorithm is described more precisely in Algorithm 3.

LBP has been shown to be an instance of a variational method. Let bi(yi)
denote the marginal probability associated with assigning unobserved variable
Yi the value yi and let bij(yi, yj) denote the marginal probability associated
with labeling the edge (Yi, Yj) with values (yi, yj). Then (44) showed that the
following choice of trial distribution,

b(y) =

∏
(Yi,Yj)∈E bij(yi, yj)

∏
Yi∈Y bi(yi)|Y∩Ni|−1

and subsequently minimizing the Kullback-Leibler divergence between the
trial distribution from the distribution associated with a pairwise MRF gives
us the LBP message passing algorithm with some qualifications. Note that
the trial distribution explicitly contains marginal probabilities as variables.
Thus, once we fit the distribution, extracting the marginal probabilities is as
easy as reading them off.

3.4.2 Relaxation Labeling via Mean-Field Approach

Another approximate inference algorithm that can be applied to pairwise
MRFs is mean-field relaxation labeling (MF). The basic algorithm can be
described by the following fixed point equation:

bj(yj) = αφj(yj)
∏

Yi∈Nj∩Y

∏

yi∈L
ψ

bi(yi)
ij (yi, yj), yj ∈ L

where bj(yj) denotes the marginal probability of assigning Yj ∈ Y with label yj

and α is a normalization constant that ensures
∑

yj
bj(yj) = 1. The algorithm

simply computes the fixed point equation for every node Yj and keeps doing
so until the marginal probabilities bj(yj) stabilize. When they do, we simply
return bj(yj) as the computed marginals. The pseudo-code for MF is shown
in Algorithm 4.

MF can also be justified as a variational method in almost exactly the same
way as LBP. In this case, however, we choose a simpler trial distribution:

b(y) =
∏

Yi∈Y
bi(yi)

We refer the interested reader to (40; 44) for more details.

© 2009 by Taylor and Francis Group, LLC

60 Collective Classification for Text Classification

3.5 Learning the Classifiers

One aspect of the collective classification problem that we have not dis-
cussed so far is how to learn the various classifiers described in the previous
sections. Learning refers to the problem of determining the parameter val-
ues for the local classifier, in the case of ICA and GS, and the values in the
clique potentials, in the case of LBP and MF, which can then be subsequently
used to classify unseen test data. For all our experiments, we learned the pa-
rameter values from fully labeled datasets using gradient-based optimization
approaches. Unfortunately, a full treatment of this subject is not possible
within this article and we refer the interested reader to various other works
that discuss this in more depth such as (34), (31), (32).

3.6 Experimental Comparison

In our evaluation, we compared the four collective classification algorithms
(CC) discussed in the previous sections and a content-only classifier (CO),
which does not take the link structure into account, along with two choices
of local classifiers on document classification tasks. The two local classifiers
we tried were näıve Bayes (NB) and Logistic Regression (LR). This gave us
8 different classifiers: CO with NB, CO with LR, ICA with NB, ICA with
LR, GS with NB, GS with LR, MF and LBP. The datasets we used for the
experiments included both real-world and synthetic datasets.

3.6.1 Features Used

For CO classifiers, we used the words in the documents for observed at-
tributes. In particular, we used a binary value to indicate whether or not
a word appears in the document. In ICA and GS, we used the same local
attributes (i.e., words) followed by count aggregation to count the number of
each label value in a node’s neighborhood. Finally, for LBP and MF, we used
pairwise Markov Random Fields with clique potentials defined on the edges
and unobserved nodes in the network.

3.6.2 Real-World Datasets

We experimented with three real-world datasets: Cora and CiteSeer (two
bibliographic datasets), and WebKB (a hypertext dataset). For the WebKB
experiments, we only considered documents which link to or are linked to by
at least one other webpage in the corpus. This gave us a corpus of size 877

© 2009 by Taylor and Francis Group, LLC

Collective Classification for Text Classification 61

documents divided into the four standard university splits (after discarding
the “other” split) containing webpages from Cornell, Texas, Wisconsin and
Washington. We also performed stemming and stop word removal to obtain a
vocabulary with 1703 distinct words. There are 1608 hyperlinks in the dataset
with 5 class labels. Note that webpages from one university do not link to
webpages from the other universities, which means that while performing four-
fold cross-validation using the university splits, we can only use the words in
the webpages to seed the inference process with. There are no observed labels
to bootstrap the inference. This is not the case with Cora and CiteSeer
datasets.

The Cora dataset contains a number of Machine Learning papers divided
into one of 7 classes while the CiteSeer dataset has 6 class labels. For both
datasets, we performed stemming and stop word removal besides removing
the words with document frequency less than 10. The final corpus has 2708
documents, 1433 distinct words in the vocabulary and 5429 links, in the case
of Cora, and 3312 documents, 3703 distinct words in the vocabulary and 4732
links in the case of CiteSeer.

Unlike WebKB, the Cora and CiteSeer datasets do not have natural splits
in the data for use as test and training sets. To create splits, we use two sam-
pling strategies, random sampling and snowball sampling. Random sampling
(RS) is accomplished using the traditional k-fold cross-validation methodology
where we choose nodes randomly to create splits. In snowball sampling (SS),
we sample with a bias toward placing neighboring nodes in the same split.
We construct the splits by randomly selecting an initial node and expanding
around it. We do not expand randomly. We instead select nodes based on the
class distribution of the dataset; that is, the test data is stratified. Selected
nodes are used as the test set while the rest are used in the training set. We
repeat the sampling k times to obtain k test-train pairs of splits. We note that
when using SS, unlike in RS, some objects may appear in more than one test
splits. Consequently, we need to adjust accuracy computation so that objects
appearing multiple times are not over counted. We choose a simple strategy
where we first average the accuracy for each instance and then take the av-
erages of the averages. Also, to help the reader compare the results between
SS and RS strategies, we provide accuracies averaged per instance across only
instances which appear in test sets for both SS and RS (i.e., instances in at
least one SS test split). We denote these numbers using the term matched
cross-validation (M).

For each dataset, we performed both random sampling evaluation (with 10
splits) and snowball sampling evaluation (averaged over 10 runs).

3.6.2.1 Results

The accuracy results for the real world datasets are shown in Table 3.1,
Table 3.2 and Table 3.3. The accuracies are separated by sampling method
and base classifier. The highest accuracy at each partition is in bold. We

© 2009 by Taylor and Francis Group, LLC

62 Collective Classification for Text Classification

TABLE 3.1: Accuracy results for WebKB. CC algorithms
outperformed their CO counterparts significantly, and LR versions
outperformed NB versions significantly. The differences between
ICA-NB and GS-NB, and the differences between ICA-LR and GS-LR,
are not statistically significant. Both LBP and MF outperformed
ICA-LR and GS-LR significantly.

Algorithm 4-fold
CO-NB 0.7030
ICA-NB 0.7215
GS-NB 0.7234
CO-LR 0.7734
ICA-LR 0.7956
GS-LR 0.7969
LBP 0.8446
MF 0.8446

performed t-test (paired where applicable, and Welch t-test otherwise) to test
statistical significance between results. Here are the main results:

1. Do CC algorithms improve over CO counterparts?

In all three datasets, CC algorithms outperformed their CO counter-
parts, in all evaluation strategies (SS, RS and M). The performance
differences were significant for all comparisons except for the NB (M)
results for CiteSeer.

2. Does the choice of the base classifier affect the results of the CC algo-
rithms?

We observed a similar trend for the comparison between NB and LR. LR
(and the CC algorithms that used LR as a base classifier) outperformed
NB versions in all datasets, and the difference was statistically significant
for both WebKB and Cora.

3. Is there any CC algorithm that dominates the other?

The results for comparing CC algorithms are less clear. In the NB
partition, the difference between ICA-NB and GS-NB was not significant
for WebKB, ICA-NB outperformed GS-NB significantly for Cora using
SS and M, and GS-NB outperformed ICA-NB for CiteSeer SS. Thus,
there was no clear winner between ICA-NB and GS-NB in terms of
performance. In the LR portion, again the differences between ICA-
LR and GS-LR were not significant for all datasets. As for LBP and
MF, they outperformed ICA-LR and GS-LR most of the time, but the
differences were not significant for Cora and CiteSeer.

4. How do SS results and RS results compare?

© 2009 by Taylor and Francis Group, LLC

Collective Classification for Text Classification 63

TABLE 3.2: Accuracy results for the Cora dataset. CC algorithms
outperformed their CO counterparts significantly. LR versions
significantly outperformed NB versions. ICA-NB outperformed GS-NB for
SS and M, the other differences between ICA and GS were not significant
(both NB and LR versions). Even though MF outperformed ICA-LR,
GS-LR, and LBP, the differences were not statistically significant.

Algorithm SS RS M
CO-NB 0.7285 0.7776 0.7476
ICA-NB 0.8054 0.8478 0.8271
GS-NB 0.7613 0.8404 0.8154
CO-LR 0.7356 0.7695 0.7393
ICA-LR 0.8457 0.8796 0.8589
GS-LR 0.8495 0.8810 0.8617
LBP 0.8554 0.8766 0.8575
MF 0.8555 0.8836 0.8631

Finally, we take a look at the numbers under the columns labeled M.
First, we would like to remind the reader that even though we are com-
paring the results only on instances appearing in at least one test set in
both sampling strategies (SS and RS), different training data could have
been potentially used for each test instance, thus the comparison can
be questioned. Nonetheless, we expected the matched cross-validation
results (M) to outperform SS results simply because each instance had
more labeled data around it from RS splitting. The differences were not
big (around 1% or 2%); however, they were significant. These results
tell us that the evaluation strategies can have a big impact on the final
results, and care must be taken while designing an experimental setup
for evaluating CC algorithms on network data (9).

3.6.3 Practical Issues

In this section, we discuss some of the practical issues to consider when
applying the various CC algorithms. First, although MF and LBP perform
consistently better than ICA and GS, they were also the most difficult to work
with in both learning and inference. Choosing the initial weights so that the
weights will converge during training is non-trivial. Most of the time, we had
to initialize the weights with the weights we got from ICA in order to get the
algorithms to converge. Thus, the MF and LBP had unfair advantages in the
above experiments. We also note that of the two, we had the most trouble
with MF being unable to converge, or when it did, not converging to the
global optimum. Our difficulty with MF and LBP is consistent with previous
work (39; 27; 43) and should be taken into consideration when choosing to
apply these algorithms.

Second, ICA and GS parameter initializations worked for all datasets we

© 2009 by Taylor and Francis Group, LLC

64 Collective Classification for Text Classification

TABLE 3.3: Accuracy results for the CiteSeer dataset. CC
algorithms significantly outperformed their CO counterparts except for
ICA-NB and GS-NB for matched cross-validation. CO and CC algorithms
based on LR outperformed the NB versions, but the differences were not
significant. ICA-NB outperformed GS-NB significantly for SS; but, the
rest of the differences between LR versions of ICA and GS, LBP and MF
were not significant.

Algorithm SS RS M
CO-NB 0.7427 0.7487 0.7646
ICA-NB 0.7540 0.7683 0.7752
GS-NB 0.7596 0.7680 0.7737
CO-LR 0.7334 0.7321 0.7532
ICA-LR 0.7629 0.7732 0.7812
GS-LR 0.7574 0.7699 0.7843
LBP 0.7663 0.7759 0.7843
MF 0.7657 0.7732 0.7888

used and we did not have to tune the initializations for these two algorithms.
They were the easiest to train and test among all the collective classification
algorithms evaluated.

Third, ICA and GS produced very similar results for almost all experiments.
However, ICA is a much faster algorithm than GS. In our largest dataset,
CiteSeer, for example, ICA-NB took 14 minutes to run while GS-NB took
over 3 hours. The large difference is due to the fact that ICA converges in just
a few iterations, whereas GS has to go through significantly more iterations
per run due to the initial burn-in stage (200 iterations), as well as the need
to run a large number of iterations to get a sufficiently large sampling (800
iterations).

3.7 Related Work

Even though collective classification has gained attention only in the past
five to seven years, the general problem of inference for structured data has
received attention for a considerably longer period of time from various re-
search communities including computer vision, spatial statistics and natural
language processing. In this section, we attempt to describe some of the work
that is most closely related to the work described in this article; however,
due to the widespread interest in collective classification our list is sure to be
incomplete.

One of the earliest principled approximate inference algorithms, relaxation
labeling (13), was developed by researchers in computer vision in the context of

© 2009 by Taylor and Francis Group, LLC

Collective Classification for Text Classification 65

object labeling in images. Due to its simplicity and appeal, relaxation labeling
was a topic of active research for some time and many researchers developed
different versions of the basic algorithm (20). Mean-field relaxation labeling
(39; 44), discussed in this article, is a simple instance of this general class
of algorithms. (4) also considered statistical analysis of images and proposed
a particularly simple approximate inference algorithm called iterated condi-
tional modes which is one of the earliest descriptions and a specific version
of the iterative classification algorithm presented in this article. Besides com-
puter vision, researchers working with an iterative decoding scheme known as
“Turbo Codes” (3) came up with the idea of applying Pearl’s belief propaga-
tion algorithm (30) on networks with loops. This led to the development of
the approximate inference algorithm that we, in this article, refer to as loopy
belief propagation (LBP) (also known as sum product algorithm) (17; 25; 18).

Of course, the focus of this chapter is on collective classification techniques
for document classification. (7) was one of the first to apply collective clas-
sification to a corpora of patents linked via hyperlinks and reported that
considering attributes of neighboring documents actually hurts classification
performance. (33) also considered the problem of document classification by
constructing features from neighboring documents using an Inductive Logic
Programming rule learner. (42) conducted an in-depth investigation over mul-
tiple datasets commonly used for document classification experiments and
identified different patterns. Since then, collective classification has also been
applied to various other applications such as part-of-speech tagging (19), clas-
sification of hypertext documents using hyperlinks (34), link prediction in
friend-of-a-friend networks (37), optical character recognition (36), entity reso-
lution in sensor networks (8), predicting disulphide bonds in protein molecules
(35), segmentation of 3D scan data (2) and classification of email “speech acts”
(6).

Besides the four approximate inference algorithms discussed in this article,
there are other algorithms that we did not discuss such as graph-cuts based for-
mulations (5), formulations based on linear programming relaxations (16; 38)
and expectation propagation (26). Other examples of approximate inference
algorithms include algorithms developed to extend and improve loopy belief
propagation (LBP) to remove some of its shortcomings such as alternatives
with convergence guarantees (46) and alternatives that go beyond just using
edge and node marginals to compute more accurate marginal probability es-
timates such as the cluster variational method (45), junction graph method
(1) and region graph method (44).

More recently, there have been some attempts to extend collective classifi-
cation techniques to the semi-supervised learning scenario (41; 23).

© 2009 by Taylor and Francis Group, LLC

66 Collective Classification for Text Classification

3.8 Conclusion

In this chapter, we gave a brief description of four popular collective classi-
fication algorithms. We explained the algorithms, showed how to apply them
to various applications using examples and highlighted various issues that
have been the subject of investigation in the past. Most of the inference algo-
rithms available for practical tasks relating to collective classification are ap-
proximate. We believe that a better understanding of when these algorithms
perform well will lead to more widespread application of these algorithms to
more real-world tasks and that this should be a subject of future research.

3.9 Acknowledgments

This material is based upon work supported in part by the National Science
Foundation under Grant No.0308030.

References

[1] S. M. Aji and R. J. McEliece. The generalized distributive law and free
energy minimization. In Proceedings of the 39th Allerton Conference on
Communication, Control and Computing, 2001.

[2] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz,
and A. Ng. Discriminative learning of markov random fields for seg-
mentation of 3d scan data. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2005.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit
error-correcting coding and decoding: Turbo codes. In Proceedings of
IEEE International Communications Conference, 1993.

[4] J. Besag. On the statistical analysis of dirty pictures. Journal of the
Royal Statistical Society, 1986.

[5] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy mini-
mization via graph cuts. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2001.

[6] V. Carvalho and W. W. Cohen. On the collective classification of email
speech acts. In Special Interest Group on Information Retrieval, 2005.

© 2009 by Taylor and Francis Group, LLC

Collective Classification for Text Classification 67

[7] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categoriza-
tion using hyperlinks. In International Conference on Management of
Data, 1998.

[8] L. Chen, M. Wainwright, M. Cetin, and A. Willsky. Multitarget-
multisensor data association using the tree-reweighted max-product al-
gorithm. In SPIE Aerosense conference, 2003.

[9] B. Gallagher and T. Eliassi-Rad. An evaluation of experimental method-
ology for classifiers of relational data. In Workshop on Mining Graphs
and Complex Structures, IEEE International Conference on Data Min-
ing (ICDM), 2007.

[10] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions
and the bayesian restoration of images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 1984.

[11] L. Getoor. Advanced Methods for Knowledge Discovery from Complex
Data, chapter Link-based classification. Springer, 2005.

[12] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain
Monte Carlo in Practice. Interdisciplinary Statistics. Chapman &
Hall/CRC, 1996.

[13] R. Hummel and S. Zucker. On the foundations of relaxation labeling
processes. In IEEE Transactions on Pattern Analysis and Machine In-
telligence, 1983.

[14] D. Jensen, J. Neville, and B. Gallagher. Why collective inference im-
proves relational classification. In Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2004.

[15] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An intro-
duction to variational methods for graphical models. Machine Learning,
1999.

[16] J. Kleinberg and E. Tardos. Approximation algorithms for classification
problems with pairwise relationships: Metric labeling and markov ran-
dom fields. In IEEE Symposium on Foundations of Computer Science,
1999.

[17] F. R. Kschischang and B. J. Frey. Iterative decoding of compound codes
by probability progation in graphical models. IEEE Journal on Selected
Areas in Communication, 1998.

[18] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and the
sum-product algorithm. In IEEE Transactions on Information Theory,
2001.

© 2009 by Taylor and Francis Group, LLC

68 Collective Classification for Text Classification

[19] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data.
In Proceedings of the International Conference on Machine Learning,
2001.

[20] S. Z. Li, H. Wang, and M. Petrou. Relaxation labeling of markov random
fields. In Proceedings of International Conference Pattern Recognition,
volume 94, 1994.

[21] Q. Lu and L. Getoor. Link based classification. In Proceedings of the
International Conference on Machine Learning, 2003.

[22] S. Macskassy and F. Provost. Classification in networked data: A toolkit
and a univariate case study. Journal of Machine Learning Research,
2007.

[23] S. A. Macskassy. Improving learning in networked data by combining ex-
plicit and mined links. In Proceedings of the Twenty-Second Conference
on Artificial Intelligence, 2007.

[24] L. K. McDowell, K. M. Gupta, and D. W. Aha. Cautious inference in
collective classification. In Proceedings of AAAI, 2007.

[25] R. J. McEliece, D. J. C. MacKay, and J. F. Cheng. Turbo decoding as
an instance of Pearl’s belief propagation algorithm. IEEE Journal on
Selected Areas in Communication, 1998.

[26] T. Minka. Expectation propagation for approximate bayesian inference.
In Proceedings of the Annual Conference on Uncertainty in Artificial
Intelligence, 2001.

[27] J. M. Mooij and H. J. Kappen. Validity estimates for loopy belief prop-
agation on binary real-world networks. In NIPS, 2004.

[28] J. Neville and D. Jensen. Iterative classification in relational data. In
Workshop on Statistical Relational Learning, AAAI, 2000.

[29] J. Neville and D. Jensen. Relational dependency networks. Journal of
Machine Learning Research, 2007.

[30] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-
mann, San Francisco, 1988.

[31] P. Sen and L. Getoor. Empirical comparison of approximate inference
algorithms for networked data. In ICML workshop on Open Problems
in Statistical Relational Learning (SRL2006), 2006.

[32] P. Sen and L. Getoor. Link-based classification. Technical Report CS-
TR-4858, University of Maryland, February 2007.

[33] S. Slattery and M. Craven. Combining statistical and relational meth-
ods for learning in hypertext domains. In International Conference on
Inductive Logic Programming, 1998.

© 2009 by Taylor and Francis Group, LLC

Collective Classification for Text Classification 69

[34] B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models
for relational data. In Proceedings of the Annual Conference on Uncer-
tainty in Artificial Intelligence, 2002.

[35] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning struc-
tured prediction models: A large margin approach. In Proceedings of the
International Conference on Machine Learning, 2005.

[36] B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks.
In Neural Information Processing Systems, 2003.

[37] B. Taskar, M. F. Wong, P. Abbeel, and D. Koller. Link prediction in
relational data. In Neural Information Processing Systems, 2003.

[38] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Map estimation via
agreement on (hyper)trees: Message-passing and linear-programming
approaches. In IEEE Transactions on Information Theory, 2005.

[39] Y. Weiss. Comparing the mean field method and belief propagation for
approximate inference in MRFs. In Advanced Mean Field Methods, M.
Opper and D. Saad, eds., MIT Press, 2001.

[40] Y. Weiss. Advanced Mean Field Methods, chapter Comparing the mean
field method and belief propagation for approximate inference in MRFs.
MIT Press, 2001.

[41] L. Xu, D. Wilkinson, F. Southey, and D. Schuurmans. Discriminative
unsupervised learning of structured predictors. In Proceedings of the
International Conference on Machine Learning, 2006.

[42] Y. Yang, S. Slattery, and R. Ghani. A study of approaches to hypertext
categorization. Journal of Intelligent Information Systems, 2002.

[43] C. Yanover and Y. Weiss. Approximate inference and protein-folding.
In Neural Information Processing Systems, 2002.

[44] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free-energy
approximations and generalized belief propagation algorithms. In IEEE
Transactions on Information Theory, 2005.

[45] J. S. Yedidia, W. T.Freeman, and Y. Weiss. Generalized belief propa-
gation. In Neural Information Processing Systems, 2000.

[46] A. L. Yuille. CCCP algorithms to minimize the bethe and kikuchi free
energies: Convergent alternatives to belief propagation. In Neural In-
formation Processing Systems, 2002.

© 2009 by Taylor and Francis Group, LLC

Chapter 4

Topic Models

David M. Blei and John D. Lafferty

4.1 Introduction . 71

4.2 Latent Dirichlet Allocation . 72

4.3 Posterior Inference for LDA . 76

4.4 Dynamic Topic Models and Correlated Topic Models 82

4.5 Discussion . 89

4.1 Introduction

Scientists need new tools to explore and browse large collections of scholarly
literature. Thanks to organizations such as JSTOR, which scan and index the
original bound archives of many journals, modern scientists can search digital
libraries spanning hundreds of years. A scientist, suddenly faced with access to
millions of articles in her field, is not satisfied with simple search. Effectively
using such collections requires interacting with them in a more structured
way: finding articles similar to those of interest, and exploring the collection
through the underlying topics that run through it.

The central problem is that this structure—the index of ideas contained
in the articles and which other articles are about the same kinds of ideas—
is not readily available in most modern collections, and the size and growth
rate of these collections preclude us from building it by hand. To develop the
necessary tools for exploring and browsing modern digital libraries, we require
automated methods of organizing, managing, and delivering their contents.

In this chapter, we describe topic models, probabilistic models for uncov-
ering the underlying semantic structure of a document collection based on a
hierarchical Bayesian analysis of the original texts (10; 18; 11; 20; 12). Topic
models have been applied to many kinds of documents, including email (42),
scientific abstracts (18; 10), and newspaper archives (38). By discovering pat-
terns of word use and connecting documents that exhibit similar patterns,
topic models have emerged as a powerful new technique for finding useful
structure in an otherwise unstructured collection.

71
© 2009 by Taylor and Francis Group, LLC

72 Topic Models

computer chemistry cortex orbit infection
methods synthesis stimulus dust immune
number oxidation fig jupiter aids

two reaction vision line infected
principle product neuron system viral
design organic recordings solar cells
access conditions visual gas vaccine

processing cluster stimuli atmospheric antibodies
advantage molecule recorded mars hiv
important studies motor field parasite

FIGURE 4.1: Five topics from a 50-topic LDA model fit to Science from
1980–2002.

With the statistical tools that we describe below, we can automatically
organize electronic archives to facilitate efficient browsing and exploring. As
a running example, we will analyze JSTOR’s archive of the journal Science.
Figure 4.1 illustrates five “topics” (i.e., highly probable words) that were
discovered automatically from this collection using the simplest topic model,
latent Dirichlet allocation (LDA) (10) (see Section 4.2). Further embellishing
LDA allows us to discover connected topics (Figure 4.7) and trends within
topics (Figure 4.9). We emphasize that these algorithms have no prior notion
of the existence of the illustrated themes, such as neuroscience or genetics.
The themes are automatically discovered from analyzing the original texts

This chapter is organized as follows. In Section 4.2 we discuss the LDA
model and illustrate how to use its posterior distribution as an exploratory tool
for large corpora. In Section 4.3, we describe how to effectively approximate
that posterior with mean field variational methods. In Section 4.4, we relax
two of the implicit assumptions that LDA makes to find maps of related
topics and model topics changing through time. Again, we illustrate how
these extensions facilitate understanding and exploring the latent structure of
modern corpora.

4.2 Latent Dirichlet Allocation

In this section we describe latent Dirichlet allocation (LDA), which has
served as a springboard for many other topic models. LDA is based on seminal
work in latent semantic indexing (LSI) (12) and probabilistic LSI (20). The
relationship between these techniques is clearly described in (33). Here, we
develop LDA from the principles of generative probabilistic models.

© 2009 by Taylor and Francis Group, LLC

Topic Models 73

4.2.1 Statistical Assumptions

The idea behind LDA is to model documents as arising from multiple topics,
where a topic is defined to be a distribution over a fixed vocabulary of terms.
Specifically, we assume that K topics are associated with a collection, and
that each document exhibits these topics with different proportions. This is
often a natural assumption to make because documents in a corpus tend to
be heterogeneous, combining a subset of main ideas or themes that permeate
the collection as a whole.

JSTOR’s archive of Science, for example, exhibits a variety of fields, but
each document might combine them in novel ways. One document might
be about genetics and neuroscience; another might be about genetics and
technology; a third might be about neuroscience and technology. A model
that limits each document to a single topic cannot capture the essence of
neuroscience in the same way as one which addresses that topics are only
expressed in part in each document. The challenge is that these topics are
not known in advance; our goal is to learn them from the data.

More formally, LDA casts this intuition into a hidden variable model of
documents. Hidden variable models are structured distributions in which
observed data interact with hidden random variables. With a hidden vari-
able model, the practitioner posits a hidden structure in the observed data,
and then learns that structure using posterior probabilistic inference. Hidden
variable models are prevalent in machine learning; examples include hidden
Markov models (30), Kalman filters (22), phylogenetic tree models (24), and
mixture models (25).

In LDA, the observed data are the words of each document and the hidden
variables represent the latent topical structure, i.e., the topics themselves and
how each document exhibits them. Given a collection, the posterior distri-
bution of the hidden variables given the observed documents determines a
hidden topical decomposition of the collection. Applications of topic model-
ing use posterior estimates of these hidden variables to perform tasks such as
information retrieval and document browsing.

The interaction between the observed documents and hidden topic struc-
ture is manifest in the probabilistic generative process associated with LDA,
the imaginary random process that is assumed to have produced the observed
data. Let K be a specified number of topics, V the size of the vocabulary, �α
a positive K-vector, and η a scalar. We let DirV (�α) denote a V -dimensional
Dirichlet with vector parameter �α and DirK(η) denote a K dimensional sym-
metric Dirichlet with scalar parameter η.

1. For each topic,

(a) Draw a distribution over words �βk ∼ DirV (η).

2. For each document,

(a) Draw a vector of topic proportions �θd ∼ Dir(�α).
(b) For each word,

© 2009 by Taylor and Francis Group, LLC

74 Topic Models

θd Zd,n Wd,n
N

D K
βk

α η

FIGURE 4.2: A graphical model representation of the latent Dirichlet al-
location (LDA). Nodes denote random variables; edges denote dependence
between random variables. Shaded nodes denote observed random variables;
unshaded nodes denote hidden random variables. The rectangular boxes are
“plate notation,” which denote replication.

i. Draw a topic assignment Zd,n ∼ Mult(�θd), Zd,n ∈ {1, . . . , K}.
ii. Draw a word Wd,n ∼ Mult(�βzd,n

), Wd,n ∈ {1, . . . , V }.

This is illustrated as a directed graphical model in Figure 4.2.
The hidden topical structure of a collection is represented in the hidden

random variables: the topics �β1:K , the per-document topic proportions �θ1:D,
and the per-word topic assignments z1:D,1:N . With these variables, LDA
is a type of mixed-membership model (14). These are distinguished from
classical mixture models (25; 27), where each document is limited to exhibit
one topic. This additional structure is important because, as we have noted,
documents often exhibit multiple topics; LDA can model this heterogeneity
while classical mixtures cannot. Advantages of LDA over classical mixtures
have been quantified by measuring document generalization (10).

LDA makes central use of the Dirichlet distribution, the exponential family
distribution over the simplex of positive vectors that sum to one. The Dirichlet
has density

p(θ | �α) =
Γ (
∑

i αi)∏
i Γ(αi)

∏

i

θαi−1
i . (4.1)

The parameter �α is a positive K-vector, and Γ denotes the Gamma function,
which can be thought of as a real-valued extension of the factorial function.
A symmetric Dirichlet is a Dirichlet where each component of the parameter
is equal to the same value. The Dirichlet is used as a distribution over dis-
crete distributions; each component in the random vector is the probability
of drawing the item associated with that component.

LDA contains two Dirichlet random variables: the topic proportions �θ are
distributions over topic indices {1, . . . , K}; the topics �β are distributions over
the vocabulary. In Section 4.4.2 and Section 4.4.1, we will examine some of
the properties of the Dirichlet, and replace these modeling choices with an
alternative distribution over the simplex.

© 2009 by Taylor and Francis Group, LLC

Topic Models 75

contractual employment female markets criminal
expectation industrial men earnings discretion

gain local women investors justice
promises jobs see sec civil

expectations employees sexual research process
breach relations note structure federal

enforcing unfair employer managers see
supra agreement discrimination firm officer
note economic harassment risk parole

perform case gender large inmates

FIGURE 4.3: Five topics from a 50-topic model fit to the Yale Law Journal
from 1980–2003.

4.2.2 Exploring a Corpus with the Posterior Distribution

LDA provides a joint distribution over the observed and hidden random
variables. The hidden topic decomposition of a particular corpus arises from
the corresponding posterior distribution of the hidden variables given the D
observed documents �w1:D,

p(�θ1:D, z1:D,1:N , �β1:K |w1:D,1:N , α, η) = (4.2)

p(�θ1:D, �z1:D, �β1:K | �w1:D, α, η)
∫

�β1:K

∫
�θ1:D

∑
�z p(�θ1:D, �z1:D, �β1:K | �w1:D, α, η)

.

Loosely, this posterior can be thought of as the “reversal” of the generative
process described above. Given the observed corpus, the posterior is a distri-
bution of the hidden variables which generated it.

As discussed in (10), this distribution is intractable to compute because of
the integral in the denominator. Before discussing approximation methods,
however, we illustrate how the posterior distribution gives a decomposition of
the corpus that can be used to better understand and organize its contents.

The quantities needed for exploring a corpus are the posterior expectations
of the hidden variables. These are the topic probability of a term β̂k,v =
E[βk,v |w1:D,1:N], the topic proportions of a document θ̂d,k = E[θd,k |w1:D,1:N],
and the topic assignment of a word ẑd,n,k = E[Zd,n = k |w1:D,1:N]. Note that
each of these quantities is conditioned on the observed corpus.

Visualizing a topic. Exploring a corpus through a topic model typically
begins with visualizing the posterior topics through their per-topic term prob-
abilities β̂. The simplest way to visualize a topic is to order the terms by their
probability. However, we prefer the following score,

term-scorek,v = β̂k,v log

⎛

⎜
⎝

β̂k,v
(∏K

j=1 β̂j,v

) 1
K

⎞

⎟
⎠ . (4.3)

© 2009 by Taylor and Francis Group, LLC

76 Topic Models

This is inspired by the popular TFIDF term score of vocabulary terms used in
information retrieval (3). The first expression is akin to the term frequency;
the second expression is akin to the document frequency, down-weighting
terms that have high probability under all the topics. Other methods of
determining the difference between a topic and others can be found in (34).

Visualizing a document. We use the posterior topic proportions θ̂d,k and
posterior topic assignments ẑd,n,k to visualize the underlying topic decompo-
sition of a document. Plotting the posterior topic proportions gives a sense
of which topics the document is “about.” These vectors can also be used to
group articles that exhibit certain topics with high proportions. Note that, in
contrast to traditional clustering models (16), articles contain multiple topics
and thus can belong to multiple groups. Finally, examining the most likely
topic assigned to each word gives a sense of how the topics are divided up
within the document.

Finding similar documents. We can further use the posterior topic pro-
portions to define a topic-based similarity measure between documents. These
vectors provide a low dimensional simplicial representation of each document,
reducing their representation from the (V −1)-simplex to the (K−1)-simplex.
One can use the Hellinger distance between documents as a similarity mea-
sure,

document-similarityd,f =
K∑

k=1

(√

θ̂d,k −
√

θ̂f,k

)2

. (4.4)

To illustrate the above three notions, we examined an approximation to the
posterior distribution derived from the JSTOR archive of Science from 1980–
2002. The corpus contains 21,434 documents comprising 16M words when we
use the 10,000 terms chosen by TFIDF (see Section 4.3.2). The model was
fixed to have 50 topics.

We illustrate the analysis of a single article in Figure 4.4. The figure depicts
the topic proportions, the top scoring words from the most prevalent topics,
the assignment of words to topics in the abstract of the article, and the top
ten most similar articles.

4.3 Posterior Inference for LDA

The central computational problem for topic modeling with LDA is ap-
proximating the posterior in Eq. (4.2). This distribution is the key to using
LDA for both quantitative tasks, such as prediction and document general-
ization, and the qualitative exploratory tasks that we discuss here. Several
approximation techniques have been developed for LDA, including mean field

© 2009 by Taylor and Francis Group, LLC

Topic Models 77

measured
average
range
values

different
size
three

calculated
two
low

sequence
region

pcr
identified
fragments

two
genes
three
cdna

analysis

residues
binding
domains

helix
cys

regions
structure
terminus
terminal

site

computer
methods
number

two
principle
design
access

processing
advantage
important

0
.0

0
0

.1
0

0
.2

0

Top Ten Similar Documents

Exhaustive Matching of the Entire Protein Sequence Database
How Big Is the Universe of Exons?
Counting and Discounting the Universe of Exons
Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Alignment
Ancient Conserved Regions in New Gene Sequences and the Protein Databases
A Method to Identify Protein Sequences that Fold into a Known Three- Dimensional Structure
Testing the Exon Theory of Genes: The Evidence from Protein Structure
Predicting Coiled Coils from Protein Sequences
Genome Sequence of the Nematode C. elegans: A Platform for Investigating Biology

Top words from the top topics (by term score) Expected topic proportions

Abstract with the most likely topic assignments

FIGURE 4.4 (SEE COLOR INSERT FOLLOWING PAGE 130.):
The analysis of a document from Science. Document similarity was computed
using Eq. (4.4); topic words were computed using Eq. (4.3).

© 2009 by Taylor and Francis Group, LLC

78 Topic Models

variational inference (10), collapsed variational inference (36), expectation
propagation (26), and Gibbs sampling (33). Each has advantages and disad-
vantages: choosing an approximate inference algorithm amounts to trading off
speed, complexity, accuracy, and conceptual simplicity. A thorough compari-
son of these techniques is not our goal here; we use the mean field variational
approach throughout this chapter.

4.3.1 Mean Field Variational Inference

The basic idea behind variational inference is to approximate an intractable
posterior distribution over hidden variables, such as Eq. (4.2), with a simpler
distribution containing free variational parameters. These parameters are
then fit so that the approximation is close to the true posterior.

The LDA posterior is intractable to compute exactly because the hidden
variables (i.e., the components of the hidden topic structure) are dependent
when conditioned on data. Specifically, this dependence yields difficulty in
computing the denominator in Eq. (4.2) because one must sum over all con-
figurations of the interdependent N topic assignment variables z1:N .

In contrast to the true posterior, the mean field variational distribution
for LDA is one where the variables are independent of each other, with each
governed by a different variational parameter:

q(�θ1:D, z1:D,1:N , �β1:K) =
K∏

k=1

q(�βk |�λk)
D∏

d=1

(

q(�θdd |�γd)
N∏

n=1

q(zd,n | �φd,n)

)

(4.5)
Each hidden variable is described by a distribution over its type: the topics
�β1:K are each described by a V -Dirichlet distribution �λk; the topic propor-
tions �θ1:D are each described by a K-Dirichlet distribution �γd; and the topic
assignment zd,n is described by a K-multinomial distribution �φd,n. We em-
phasize that in the variational distribution these variables are independent;
in the true posterior they are coupled through the observed documents.

With the variational distribution in hand, we fit its variational parameters
to minimize the Kullback-Leibler (KL) to the true posterior:

arg min
�γ1:D,�λ1:K ,�φ1:D,1:N

KL(q(�θ1:D, z1:D,1:N , �β1:K)||p(�θ1:D, z1:D,1:N , �β1:K |w1:D,1:N))

The objective cannot be computed exactly, but it can be computed up to a
constant that does not depend on the variational parameters. (In fact, this
constant is the log likelihood of the data under the model.)

© 2009 by Taylor and Francis Group, LLC

Topic Models 79

Specifically, the objective function is

L =
K∑

k=1

E[log p(�βk | η)] +
D∑

d=1

E[log p(�θd | �α)] +
D∑

d=1

N∑

n=1

E[log p(Zd,n | �θd)]

+
D∑

d=1

N∑

n=1

E[log p(wd,n |Zd,n, �β1:K)] + H(q),

(4.6)

where H denotes the entropy and all expectations are taken with respect to
the variational distribution in Eq. (4.5). See (10) for details on how to com-
pute this function. Optimization proceeds by coordinate ascent, iteratively
optimizing each variational parameter to increase the objective.

Mean field variational inference for LDA is discussed in detail in (10), and
good introductions to variational methods include (21) and (37). Here, we
will focus on the variational inference algorithm for the LDA model and try
to provide more intuition for how it learns topics from otherwise unstructured
text.

One iteration of the mean field variational inference algorithm performs
the coordinate ascent updates in Figure 4.5, and these updates are repeated
until the objective function converges. Each update has a close relationship
to the true posterior of each hidden random variable conditioned on the other
hidden and observed random variables.

Consider the variational Dirichlet parameter for the kth topic. The true
posterior Dirichlet parameter for a term given all of the topic assignments and
words is a Dirichlet with parameters η+nk,w, where nk,w denotes the number
of times word w is assigned to topic k. (This follows from the conjugacy of the
Dirichlet and multinomial. See (17) for a good introduction to this concept.)
The update in Eq. (4.8) is nearly this expression, but with nk,w replaced
by its expectation under the variational distribution. The independence of
the hidden variables in the variational distribution guarantees that such an
expectation will not depend on the parameter being updated. The variational
update for the topic proportions in Eq. (4.9) is analogous.

The variational update for the distribution of zd,n follows a similar formula.
Consider the true posterior of zd,n, given the other relevant hidden variables
and observed word wd,n,

p(zd,n = k | �θd, wd,n, �β1:K) ∝ exp{log θd,k + log βk,wd,n
}. (4.7)

The update in Eq. (4.10) is this distribution, with the term inside the exponent
replaced by its expectation under the variational distribution. Note that under
the variational Dirichlet distribution, E[log βk,w] = Ψ(λk,w)−Ψ(

∑
v λk,v), and

E[log θd,k] is similarly computed.
This general approach to mean-field variational methods—update each vari-

ational parameter with the parameter given by the expectation of the true

© 2009 by Taylor and Francis Group, LLC

80 Topic Models

One iteration of mean field variational inference for LDA

1. For each topic k and term v:

λ
(t+1)
k,v = η +

D∑

d=1

N∑

n=1

1(wd,n = v)φ(t)
n,k. (4.8)

2. For each document d:

(a) Update γd:
γ

(t+1)
d,k = αk +

∑N
n=1 φ

(t)
d,n,k. (4.9)

(b) For each word n, update �φd,n:

φ
(t+1)
d,n,k ∝ exp

{
Ψ(γ(t+1)

d,k) + Ψ(λ(t+1)
k,wn

) − Ψ(
∑V

v=1 λ
(t+1)
k,v)

}
, (4.10)

where Ψ is the digamma function, the first derivative of the log Γ
function.

FIGURE 4.5: One iteration of mean field variational inference for LDA.
This algorithm is repeated until the objective function in Eq. (4.6) converges.

posterior under the variational distribution—is applicable when the condi-
tional distribution of each variable is in the exponential family. This has been
described by several authors (5; 41; 7) and is the backbone of the VIBES
framework (40).

Finally, we note that the quantities needed to explore and decompose the
corpus from Section 4.2.2 are readily computed from the variational distribu-
tion. The per-term topic probabilities are

β̂k,v =
λk,v

∑V
v′=1 λk,v′

. (4.11)

The per-document topic proportions are

θ̂d,k =
γd,k

∑K
k′=1 γd,k′

. (4.12)

The per-word topic assignment expectation is

ẑd,n,k = φd,n,k. (4.13)

© 2009 by Taylor and Francis Group, LLC

Topic Models 81

4.3.2 Practical Considerations

Here, we discuss some of the practical considerations in implementing the
algorithm of Figure 4.5.

Precomputation. The computational bottleneck of the algorithm is com-
puting the Ψ function, which should be precomputed as much as possible. We
typically store E[log βk,w] and E[log θd,k], only recomputing them when their
underlying variational parameters change.

Nested computation. In practice, we infer the per-document parame-
ters until convergence for each document before updating the topic estimates.
This amounts to repeating steps 2(a) and 2(b) of the algorithm for each docu-
ment before updating the topics themselves in step 1. For each per-document
variational update, we initialize γd,k = 1/K.

Repeated updates for φ. Note that Eq. (4.10) is identical for each
occurrence of the term wn. Thus, we need not treat multiple instances of the
same word in the same document separately. The update for each instance of
the word is identical, and we need only compute it once for each unique term
in each document. The update in Eq. (4.9) can thus be written as

γ
(t+1)
d,k = αk +

∑V
v=1 nd,vφ

(t)
d,v (4.14)

where nd,v is the number of occurrences of term v in document d.
This is a computational advantage of the mean field variational inference

algorithm over other approaches, allowing us to analyze very large document
collections.

Initialization and restarts. Since this algorithm finds a local maximum
of the variational objective function, initializing the topics is important. We
find that an effective initialization technique is to randomly choose a small
number (e.g., 1–5) of “seed” documents, create a distribution over words by
smoothing their aggregated word counts over the whole vocabulary, and from
these counts compute a first value for E[log βk,w]. The inference algorithm
may be restarted multiple times, with different seed sets, to find a good local
maximum.

Choosing the vocabulary. It is often computationally expensive to use
the entire vocabulary. Choosing the top V words by TFIDF is an effective
way to prune the vocabulary. This naturally prunes out stop words and other
terms that provide little thematic content to the documents. In the Science
analysis above we chose the top 10,000 terms this way.

Choosing the number of topics. Choosing the number of topics is a
persistent problem in topic modeling and other latent variable analysis. In
some cases, the number of topics is part of the problem formulation and spec-
ified by an outside source. In other cases, a natural approach is to use cross

© 2009 by Taylor and Francis Group, LLC

82 Topic Models

validation on the error of the task at hand (e.g., information retrieval, text
classification). When the goal is qualitative, such as corpus exploration, one
can use cross validation on predictive likelihood, essentially choosing the num-
ber of topics that provides the best language model. An alternative is to take
a nonparametric Bayesian approach. Hierarchical Dirichlet processes can be
used to develop a topic model in which the number of topics is automatically
selected and may grow as new data is observed (35).

4.4 Dynamic Topic Models and Correlated Topic Models

In this section, we will describe two extensions to LDA: the correlated topic
model and the dynamic topic model. Each embellishes LDA to relax one of
its implicit assumptions. In addition to describing topic models that are more
powerful than LDA, our goal is give the reader an idea of the practice of topic
modeling. Deciding on an appropriate model of a corpus depends both on
what kind of structure is hidden in the data and what kind of structure the
practitioner cares to examine. While LDA may be appropriate for learning a
fixed set of topics, other applications of topic modeling may call for discovering
the connections between topics or modeling topics as changing through time.

4.4.1 The Correlated Topic Model

One limitation of LDA is that it fails to directly model correlation between
the occurrence of topics. In many—indeed most—text corpora, it is natural
to expect that the occurrences of the underlying latent topics will be highly
correlated. In the Science corpus, for example, an article about genetics may
be likely to also be about health and disease, but unlikely to also be about
x-ray astronomy.

In LDA, this modeling limitation stems from the independence assump-
tions implicit in the Dirichlet distribution of the topic proportions. Specifi-
cally, under a Dirichlet, the components of the proportions vector are nearly
independent, which leads to the strong assumption that the presence of one
topic is not correlated with the presence of another. (We say “nearly inde-
pendent” because the components exhibit slight negative correlation because
of the constraint that they have to sum to one.)

In the correlated topic model (CTM), we model the topic proportions with
an alternative, more flexible distribution that allows for covariance structure
among the components (9). This gives a more realistic model of latent topic
structure where the presence of one latent topic may be correlated with the
presence of another. The CTM better fits the data, and provides a rich way
of visualizing and exploring text collections.

© 2009 by Taylor and Francis Group, LLC

Topic Models 83

The key to the CTM is the logistic normal distribution (2). The logistic
normal is a distribution on the simplex that allows for a general pattern of
variability between the components. It achieves this by mapping a multivari-
ate random variable from Rd to the d-simplex.

In particular, the logistic normal distribution takes a draw from a multivari-
ate Gaussian, exponentiates it, and maps it to the simplex via normalization.
The covariance of the Gaussian leads to correlations between components of
the resulting simplicial random variable. The logistic normal was originally
studied in the context of analyzing observed data such as the proportions
of minerals in geological samples. In the CTM, it is used in a hierarchical
model where it describes the hidden composition of topics associated with
each document.

Let {μ, Σ} be a K-dimensional mean and covariance matrix, and let top-
ics β1:K be K multinomials over a fixed word vocabulary, as above. The
CTM assumes that an N -word document arises from the following generative
process:

1. Draw η | {μ, Σ} ∼ N (μ, Σ).

2. For n ∈ {1, . . . , N}:

(a) Draw topic assignment Zn | η from Mult(f(η)).
(b) Draw word Wn | {zn, β1:K} from Mult(βzn).

The function that maps the real-vector η to the simplex is

f(ηi) =
exp{ηi}∑
j exp{ηj}

. (4.15)

Note that this process is identical to the generative process of LDA from
Section 4.2 except that the topic proportions are drawn from a logistic normal
rather than a Dirichlet. The model is shown as a directed graphical model in
Figure 4.6.

The CTM is more expressive than LDA because the strong independence
assumption imposed by the Dirichlet in LDA is not realistic when analyzing
real document collections. Quantitative results illustrate that the CTM better
fits held out data than LDA (9). Moreover, this higher order structure given
by the covariance can be used as an exploratory tool for better understanding
and navigating a large corpus. Figure 4.7 illustrates the topics and their con-
nections found by analyzing the same Science corpus as for Figure 4.1. This
gives a richer way of visualizing and browsing the latent semantic structure
inherent in the corpus.

However, the added flexibility of the CTM comes at a computational cost.
Mean field variational inference for the CTM is not as fast or straightforward
as the algorithm in Figure 4.5. In particular, the update for the variational
distribution of the topic proportions must be fit by gradient-based optimiza-
tion. See (9) for details.

© 2009 by Taylor and Francis Group, LLC

84 Topic Models

Zd↪n Wd↪n

N
D

K

Σ

μ

ηd

βk

FIGURE 4.6: The graphical model for the correlated topic model in Sec-
tion 4.4.1.

4.4.2 The Dynamic Topic Model

LDA and the CTM assume that words are exchangeable within each docu-
ment, i.e., their order does not affect their probability under the model. This
assumption is a simplification that it is consistent with the goal of identifying
the semantic themes within each document.

But LDA and the CTM further assume that documents are exchangeable
within the corpus, and, for many corpora, this assumption is inappropri-
ate. Scholarly journals, email, news articles, and search query logs all reflect
evolving content. For example, the Science articles “The Brain of Professor
Laborde” and “Reshaping the Cortical Motor Map by Unmasking Latent In-
tracortical Connections” may both concern aspects of neuroscience, but the
field of neuroscience looked much different in 1903 than it did in 1991. The
topics of a document collection evolve over time. In this section, we describe
how to explicitly model and uncover the dynamics of the underlying topics.

The dynamic topic model (DTM) captures the evolution of topics in a se-
quentially organized corpus of documents. In the DTM, we divide the data
by time slice, e.g., by year. We model the documents of each slice with a K-
component topic model, where the topics associated with slice t evolve from
the topics associated with slice t − 1.

Again, we avail ourselves of the logistic normal distribution, this time using
it to capture uncertainty about the time-series topics. We model sequences of
simplicial random variables by chaining Gaussian distributions in a dynamic
model and mapping the emitted values to the simplex. This is an extension
of the logistic normal to time-series simplex data (39).

For a K-component model with V terms, let �πt,k denote a multivariate
Gaussian random variable for topic k in slice t. For each topic, we chain
{�π1,k, . . . , �πT,k} in a state space model that evolves with Gaussian noise:

�πt,k |�πt−1,k ∼ N (�πt−1,k, σ2I) . (4.16)

When drawing words from these topics, we map the natural parameters back
to the simplex with the function f from Eq. (4.15). Note that the time-series

© 2009 by Taylor and Francis Group, LLC

Topic Models 85

wild type
mutant

mutations
mutants
mutation

plants
plant
gene
genes

arabidopsis

p53
cell cycle
activity
cyclin

regulation

amino acids
cdna

sequence
isolated
protein

gene
disease

mutations
families
mutation

rna
dna

rna polymerase
cleavage

site

cells
cell

expression
cell lines

bone marrow

united states
women

universities
students

education

science
scientists

says
research
people

research
funding
support

nih
program

surface
tip

image
sample
device

laser
optical
light

electrons
quantum

materials
organic
polymer
polymers
molecules

volcanic
deposits
magma
eruption

volcanism

mantle
crust

upper mantle
meteorites

ratios

earthquake
earthquakes

fault
images

data

ancient
found
impact

million years ago
africa

climate
ocean

ice
changes

climate change

cells
proteins

researchers
protein
found

patients
disease

treatment
drugs
clinical

genetic
population
populations
differences
variation

fossil record
birds

fossils
dinosaurs

fossil

sequence
sequences

genome
dna

sequencing

bacteria
bacterial

host
resistance
parasite

development
embryos

drosophila
genes

expression

species
forest
forests

populations
ecosystems

synapses
ltp

glutamate
synaptic
neurons

neurons
stimulus
motor
visual

cortical

ozone
atmospheric

measurements
stratosphere

concentrations

sun
solar wind

earth
planets
planet

co2
carbon

carbon dioxide
methane

water

receptor
receptors

ligand
ligands

apoptosis

proteins
protein
binding
domain
domains

activated
tyrosine phosphorylation

activation
phosphorylation

kinase

magnetic
magnetic field

spin
superconductivity
superconducting

physicists
particles
physics
particle

experiment
surface
liquid

surfaces
fluid

model reaction
reactions
molecule
molecules

transition state

enzyme
enzymes

iron
active site
reduction

pressure
high pressure

pressures
core

inner core

brain
memory
subjects

left
task

computer
problem

information
computers
problems

stars
astronomers

universe
galaxies
galaxy

virus
hiv

aids
infection
viruses

mice
antigen
t cells

antigens
immune response

FIGURE 4.7: A portion of the topic graph learned from the 16,351 OCR ar-
ticles from Science (1990-1999). Each topic node is labeled with its five most
probable phrases and has font proportional to its popularity in the corpus.
(Phrases are found by permutation test.) The full model can be browsed with
pointers to the original articles at http://www.cs.cmu.edu/ lemur/science/
and on STATLIB. (The algorithm for constructing this graph from the co-
variance matrix of the logistic normal is given in (9).)

© 2009 by Taylor and Francis Group, LLC

http://www.cs.cmu.edu

86 Topic Models

D

θd

Zd,n

Wd,n

N

K

α

D

θd

Zd,n

Wd,n

N

α

D

θd

Zd,n

Wd,n

N

α

βk,1 βk,2 βk,T

. . .

FIGURE 4.8: A graphical model representation of a dynamic topic model
(for three time slices). Each topic’s parameters βt,k evolve over time.

topics use a diagonal covariance matrix. Modeling the full V × V covariance
matrix is a computational expense that is not necessary for our goals.

By chaining each topic to its predecessor and successor, we have sequen-
tially tied a collection of topic models. The generative process for slice t of a
sequential corpus is

1. Draw topics �πt |�πt−1 ∼ N (�πt−1, σ
2I)

2. For each document:

(a) Draw θd ∼ Dir(�α)

(b) For each word:

i. Draw Z ∼ Mult(θd)
ii. Draw Wt,d,n ∼ Mult(f(�πt,z)).

This is illustrated as a graphical model in Figure 4.8. Notice that each time
slice is a separate LDA model, where the kth topic at slice t has smoothly
evolved from the kth topic at slice t − 1.

Again, we can approximate the posterior over the topic decomposition with
variational methods (see (8) for details). Here, we focus on the new views of

© 2009 by Taylor and Francis Group, LLC

Topic Models 87

the collection that the hidden structure of the DTM gives.
At the topic level, each topic is now a sequence of distributions over terms.

Thus, for each topic and year, we can score the terms with Eq. (4.3) and
visualize the topic as a whole with its top words over time. This gives a
global sense of how the important words of a topic have changed through the
span of the collection. For individual terms of interest, we can examine their
score over time within each topic. We can also examine the overall popularity
of each topic from year to year by computing the expected number of words
that were assigned to it.

As an example, we used the DTM model to analyze the entire archive of
Science from 1880–2002. This corpus comprises 140,000 documents. We used
a vocabulary of 28,637 terms chosen by taking the union of the top 1000
terms by TFIDF for each year. Figure 4.9 illustrates the top words of two of
the topics taken every ten years, the scores of several of the most prevalent
words taken every year, the relative popularity of the two topics, and selected
articles that contain that topic. For sequential corpora such as Science, the
DTM provides much richer exploratory tools than LDA or the CTM.

Finally, we note that the document similarity metric in Eq. (4.4) has inter-
esting properties in the context of the DTM. The metric is defined in terms
of the topic proportions for each document. For two documents in different
years, these proportions refer to two different slices of the K topics, but the
two sets of topics are linked together by the sequential model. Consequently,
the metric provides a time corrected notion of document similarity. Two ar-
ticles about biology might be deemed similar even if one uses the vocabulary
of 1910 and the other of 2002.

Figure 4.10 illustrates the top ten most similar articles to the 1994 Sci-
ence article “Automatic Analysis, Theme Generation, and Summarization of
Machine-Readable Texts.” This article is about ways of summarizing and
organizing large archives to manage the modern information explosion. As
expected, among the top ten most similar documents are articles from the
same era about many of the same topics. Other articles, however, such as
“Simple and Rapid Method for the Coding of Punched Cards,” (1962) are
also about organizing document information on punch cards. This uses a dif-
ferent language from the query article, but is arguably similar in that it is
about storing and organizing documents with the precursor to modern com-
puters. Even more striking among the top ten is “The Storing of Pamphlets”
(1899). This article addresses the information explosion problem—now con-
sidered quaint—at the turn of the century.

© 2009 by Taylor and Francis Group, LLC

88 Topic Models

 1880
energy

molecules
atoms

molecular
matter

 1890
molecules

energy
atoms

molecular
matter

 1900
energy

molecules
atoms
matter
atomic

 1910
energy
theory
atoms
atom

molecules

 1920
atom
atoms
energy

electrons
electron

 1930
energy

electrons
atoms
atom

electron

 1940
energy

rays
electron
atomic
atoms

 1950
energy

particles
nuclear
electron
atomic

 1960
energy
electron
particles
electrons
nuclear

 1970
energy
electron
particles
electrons

state

 1980
energy
electron
particles

ion
electrons

 1990
energy
electron

state
atoms
states

 2000
energy
state

quantum
electron
states

1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

P
ro

p
rt

io
n

 o
f

S
ci

en
ce

To
p

ic
 s

co
re

 "Mass and Energy" (1907)

 "The Wave Properties
of Electrons" (1930) "The Z Boson" (1990)

 "Quantum Criticality:
Competing Ground States
in Low Dimensions" (2000)

 "Structure of the
Proton" (1974)

 "Alchemy" (1891)

 "Nuclear Fission" (1940)

quantum
molecular

atomic

 1880
french
france

england
country
europe

 1890
england
france
states

country
europe

 1900
states
united

germany
country
france

 1910
states
united
country

germany
countries

 1920
war

states
united
france
british

 1930
international

states
united

countries
american

 1940
war

states
united

american
international

 1950
international

united
war

atomic
states

 1960
united
soviet
states

nuclear
international

 1970
nuclear
military
soviet
united
states

 1980
nuclear
soviet

weapons
states
united

 1990
soviet

nuclear
united
states
japan

 2000
european

united
nuclear
states

countries

1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

war

european

nuclear

P
ro

p
rt

io
n

 o
f

S
ci

en
ce

To
p

ic
 s

co
re

"Speed of Railway Trains
in Europe" (1889)

"Farming and Food Supplies
in Time of War" (1915)

"The Atom and Humanity" (1945)

"Science in the USSR" (1957)

"The Costs of the Soviet
Empire" (1985)

"Post-Cold War Nuclear
Dangers" (1995)

FIGURE 4.9: Two topics from a dynamic topic model fit to the Science
archive (1880–2002).

© 2009 by Taylor and Francis Group, LLC

Topic Models 89

Query Automatic Analysis, Theme Generation, and Summarization
of Machine-Readable Texts (1994)

1 Global Text Matching for Information Retrieval (1991)
2 Automatic Text Analysis (1970)
3 Language-Independent Categorization of Text (1995)
4 Developments in Automatic Text Retrieval (1991)
5 Simple and Rapid Method for the Coding of Punched Cards (1962)
6 Data Processing by Optical Coincidence (1961)
7 Pattern-Analyzing Memory (1976)
8 The Storing of Pamphlets (1899)
9 A Punched-Card Technique for Computing Means (1946)
10 Database Systems (1982)

FIGURE 4.10: The top ten most similar articles to the query in Science
(1880–2002), scored by Eq. (4.4) using the posterior distribution from the
dynamic topic model.

4.5 Discussion

We have described and discussed latent Dirichlet allocation and its applica-
tion to decomposing and exploring a large collection of documents. We have
also described two extensions: one allowing correlated occurrence of topics
and one allowing topics to evolve through time. We have seen how topic
modeling can provide a useful view of a large collection in terms of the collec-
tion as a whole, the individual documents, and the relationships between the
documents.

There are several advantages of the generative probabilistic approach to
topic modeling, as opposed to a non-probabilistic method like LSI (12) or
non-negative matrix factorization (23). First, generative models are easily
applied to new data. This is essential for applications to tasks like information
retrieval or classification. Second, generative models are modular ; they can
easily be used as a component in more complicated topic models. For example,
LDA has been used in models of authorship (42), syntax (19), and meeting
discourse (29). Finally, generative models are general in the sense that the
observation emission probabilities need not be discrete. Instead of words,
LDA-like models have been used to analyze images (15; 32; 6; 4), population
genetics data (28), survey data (13), and social networks data (1).

We conclude with a word of caution. The topics and topical decomposition
found with LDA and other topic models are not “definitive.” Fitting a topic
model to a collection will yield patterns within the corpus whether or not they
are “naturally” there. (And starting the procedure from a different place will
yield different patterns!)

© 2009 by Taylor and Francis Group, LLC

90 Topic Models

Rather, topic models are a useful exploratory tool. The topics provide a
summary of the corpus that is impossible to obtain by hand; the per-document
decomposition and similarity metrics provide a lens through which to browse
and understand the documents. A topic model analysis may yield connections
between and within documents that are not obvious to the naked eye, and
find co-occurrences of terms that one would not expect a priori.

References

[1] E. Airoldi, D. Blei, S. Fienberg, and E. Xing. Combining stochastic block
models and mixed membership for statistical network analysis. In Sta-
tistical Network Analysis: Models, Issues and New Directions, Lecture
Notes in Computer Science, pages 57–74. Springer-Verlag, 2007.

[2] J. Aitchison. The statistical analysis of compositional data. Journal of
the Royal Statistical Society, Series B, 44(2):139–177, 1982.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
ACM Press, New York, 1999.

[4] K. Barnard, P. Duygulu, N. de Freitas, D. Forsyth, D. Blei, and M. Jor-
dan. Matching words and pictures. Journal of Machine Learning Re-
search, 3:1107–1135, 2003.

[5] M Beal. Variational algorithms for approximate Bayesian inference.
PhD thesis, Gatsby Computational Neuroscience Unit, University Col-
lege London, 2003.

[6] D. Blei and M. Jordan. Modeling annotated data. In Proceedings of
the 26th annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 127–134. ACM Press, 2003.

[7] D. Blei and M. Jordan. Variational inference for Dirichlet process mix-
tures. Journal of Bayesian Analysis, 1(1):121–144, 2005.

[8] D. Blei and J. Lafferty. Dynamic topic models. In Proceedings of the 23rd
International Conference on Machine Learning, pages 113–120, 2006.

[9] D. Blei and J. Lafferty. A correlated topic model of Science. Annals of
Applied Statistics, 1(1):17–35, 2007.

[10] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022, January 2003.

[11] W. Buntine and A. Jakulin. Applying discrete PCA in data analysis. In
Proceedings of the 20th Conference on Uncertainty in Artificial Intelli-
gence, pages 59–66. AUAI Press, 2004.

© 2009 by Taylor and Francis Group, LLC

Topic Models 91

[12] S. Deerwester, S. Dumais, T. Landauer, G. Furnas, and R. Harshman.
Indexing by latent semantic analysis. Journal of the American Society
of Information Science, 41(6):391–407, 1990.

[13] E. Erosheva, S. Fienberg, and C. Joutard. Describing disability through
individual-level mixture models for multivariate binary data. Annals of
Applied Statistics, 2007.

[14] E. Erosheva, S. Fienberg, and J. Lafferty. Mixed-membership models of
scientific publications. Proceedings of the National Academy of Science,
97(22):11885–11892, 2004.

[15] L. Fei-Fei and P. Perona. A Bayesian hierarchical model for learning nat-
ural scene categories. IEEE Computer Vision and Pattern Recognition,
pages 524–531, 2005.

[16] C. Fraley and A. Raftery. Model-based clustering, discriminant analysis,
and density estimation. Journal of the American Statistical Association,
97(458):611–631, 2002.

[17] A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis.
Chapman & Hall, London, 1995.

[18] T. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of
the National Academy of Science, 2004.

[19] T. Griffiths, M. Steyvers, D. Blei, and J. Tenenbaum. Integrating topics
and syntax. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors,
Advances in Neural Information Processing Systems 17, pages 537–544,
Cambridge, MA, 2005. MIT Press.

[20] T. Hofmann. Probabilistic latent semantic indexing. Research and De-
velopment in Information Retrieval, pages 50–57, 1999.

[21] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. Introduction to
variational methods for graphical models. Machine Learning, 37:183–
233, 1999.

[22] R. Kalman. A new approach to linear filtering and prediction problems:
a new approach to linear filtering and prediction problems. Transaction
of the AMSE: Journal of Basic Engineering, 82:35–45, 1960.

[23] D. Lee and H. Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755):788–791, October 1999.

[24] B. Mau, M. Newton, and B. Larget. Bayesian phylogenies via Markov
Chain Monte Carlo methods. Biometrics, 55:1–12, 1999.

[25] G. McLachlan and D. Peel. Finite mixture models. Wiley-Interscience,
2000.

© 2009 by Taylor and Francis Group, LLC

92 Topic Models

[26] T. Minka and J. Lafferty. Expectation-propagation for the generative
aspect model. In Uncertainty in Artificial Intelligence (UAI), 2002.

[27] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification
from labeled and unlabeled documents using EM. Machine Learning,
39(2/3):103–134, 2000.

[28] J. Pritchard, M. Stephens, and P. Donnelly. Inference of population
structure using multilocus genotype data. Genetics, 155:945–959, June
2000.

[29] M. Purver, K. Kording, T. Griffiths, and J. Tenenbaum. Unsupervised
topic modelling for multi-party spoken discourse. In ACL, 2006.

[30] L. R. Rabiner. A tutorial on hidden Markov models and selected ap-
plications in speech recognition. Proceedings of the IEEE, 77:257–286,
1989.

[31] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smith. The author-topic
model for authors and documents. In Proceedings of the 20th Conference
on Uncertainty in Artificial Intelligence, pages 487–494. AUAI Press,
2004.

[32] B. Russell, A. Efros, J. Sivic, W. Freeman, and A. Zisserman. Us-
ing multiple segmentations to discover objects and their extent in im-
age collections. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1605–1614, 2006.

[33] M. Steyvers and T. Griffiths. Probabilistic topic models. In T. Landauer,
D. McNamara, S. Dennis, and W. Kintsch, editors, Latent Semantic
Analysis: A Road to Meaning. Laurence Erlbaum, 2006.

[34] Z. Tang and J. MacLennan. Data Mining with SQL Server 2005. Wiley,
2005.

[35] Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical Dirichlet pro-
cesses. Journal of the American Statistical Association, 101(476):1566–
1581, 2007.

[36] Y. Teh, D. Newman, and M. Welling. A collapsed variational Bayesian
inference algorithm for latent Dirichlet allocation. In Neural Information
Processing Systems, 2006.

[37] M. Wainwright and M. Jordan. A variational principle for graphical
models. In New Directions in Statistical Signal Processing, chapter 11.
MIT Press, 2005.

[38] X. Wei and B. Croft. LDA-based document models for ad-hoc retrieval.
In SIGIR, 2006.

[39] M. West and J. Harrison. Bayesian Forecasting and Dynamic Models.
Springer, 1997.

© 2009 by Taylor and Francis Group, LLC

Topic Models 93

[40] J. Winn and C. Bishop. Variational message passing. Journal of Machine
Learning Research, 6:661–694, 2005.

[41] E. Xing, M. Jordan, and S. Russell. A generalized mean field algorithm
for variational inference in exponential families. In Proceedings of the
19th Conference on Uncertainty in Artificial Intelligence, 2003.

[42] A. McCallum, X. Wang, and A. Corrada-Emmanuel. Topic and role
discovery in social networks. Journals of Artificial Intelligence, 30:249–
272.

© 2009 by Taylor and Francis Group, LLC

Chapter 5

Nonnegative Matrix and Tensor
Factorization for Discussion Tracking

Brett W. Bader, Michael W. Berry, and Amy N. Langville

5.1 Introduction . 95
5.2 Notation . 97
5.3 Tensor Decompositions and Algorithms . 98
5.4 Enron Subset . 102
5.5 Observations and Results . 105
5.6 Visualizing Results of the NMF Clustering . 111
5.7 Future Work . 116

5.1 Introduction

After the filing for Chapter 11 bankruptcy by Enron in December of 2001,
an unprecedented amount of information (over 1.5 million electronic mail mes-
sages, phone tapes, internal documents) was released into the public domain.
Such information served the needs of the Federal Energy Regulatory Commis-
sion (FERC) in its investigation against Enron. The emails originally posted
on the FERC web site (18) had various integrity problems which required some
cleaning as well as the removal of sensitive (private) and irrelevant informa-
tion. Dr. William Cohen and his research group at Carnegie Mellon University
have addressed many of these problems in their release of the Enron Email
Sets. The version of the Enron Email Sets1 dated March 2, 2004 contains
517, 431 email messages of 150 Enron email accounts covering a period from
December 1979 through February 2004 with the majority of messages span-
ning the three years: 1999, 2000, and 2001.

The emails in this corpus reflect the day-to-day activities of what was the
seventh largest company in the United States at that time. There were,
however, certain topics of discussion uniquely linked to Enron activities (5).
Enron’s development of the Dabhol Power Company (DPC) in the Indian

1http://www-2.cs.cmu.edu/~enron

95
© 2009 by Taylor and Francis Group, LLC

1http://www-2.cs.cmu.edu

96 Nonnegative Matrix and Tensor Factorization for Discussion Tracking

state of Maharashtra (involving years of logistical and political problems) was
one such topic. The deregulation of the California energy market and the
subsequent rolling blackouts during the summer of 2000 was another topic.
The infamous practices of greed, overspeculation, and deceptive accounting,
which led to the collapse of Enron in the fourth quarter of 2001, are also doc-
umented in the emails. The corpus not only facilitates the study of employee
communications within a sizeable network, but it also offers a more detailed
view of how large multinational corporations operate on a daily basis.

5.1.1 Extracting Discussions

The goal of this study is to extract meaningful threads of discussion from
subsets of the Enron Email Set. The underlying idea is as follows. Suppose we
extract a collection of q emails from n authors over a period of p days (or other
unit of time). In aggregate, there are a collection of m terms parsed from the q
emails. From this data, suppose we create an m×n×p term-author-day array2

X. We then decompose X using a nonnegative tensor factorization based on
PARAFAC to track discussions over time. With some effort, the three-way
term-author-day array can be expanded to a four-way term-author-recipient-
day array Y whereby the recipients of the emails (which may or may not be
from the list n authors) are also identified. A subsequent nonnegative tensor
factorization of Y would facilitate the tracking of topics through time among
different social groups.

In the next section, we provide background information (and related work)
on tensor decompositions. Section 5.2 explains the notations used to define
these decompositions and algorithms that are given in Section 5.3. Details of
the specific Enron subset used in this study are provided in Section 5.4, fol-
lowed by observations and results obtained from the application of PARAFAC
to the subset in Section 9.6. Section 5.6 discusses a visualization approach for
identifying clusters in the nonnegative factorizations, which is applied here to
the nonnegative matrix factorization. We conclude with a brief discussion of
future work in the use of nonnegative tensor factorization for topic/discussion
tracking in Section 5.7.

5.1.2 Related Work

For the past forty years, tensor decompositions (38; 19; 11) have been used
extensively in a variety of domains, from chemometrics (35) to signal pro-
cessing (34). PARAFAC is a three-way decomposition that was proposed
by Harshman (19) using the name PARAllel FACtors or PARAFAC, while

2Note that the array X is generally sparse due to the word distribution used by each author
over time.

© 2009 by Taylor and Francis Group, LLC

Nonnegative Matrix and Tensor Factorization for Discussion Tracking 97

Carroll and Chang (11) published the same mathematical model under the
name Canonical Decomposition or CANDECOMP. A comprehensive review
by Kolda and Bader (22) summarizes these tensor decompositions and pro-
vides references for a wide variety of applications using them.

In the context of text analysis and mining, Acar et al. (1) used various tensor
decompositions of (user × key word × time) data to separate different streams
of conversation in chatroom data. Several web search applications involving
tensors relied on query terms or anchor text to provide a third dimension.
Sun et al. (36) have used a three-way Tucker decomposition (38) to analyze
(user × query term × web page) data for personalized web search. Kolda et
al. (23) and Kolda and Bader (21) have used PARAFAC on a (web page ×
web page × anchor text) sparse, three-way tensor representing the web graph
with anchor-text-labeled edges to get hub/authority rankings of pages related
to (identified) topics.

Regarding use of nonnegative PARAFAC, Mørup et al. (27) have studied
its use for EEG-related applications. They used the associated multiplica-
tive update rule for a least squares and Kulbach-Leibler (KL) divergence im-
plementation of nonnegative PARAFAC, which they called NMWF-LS and
NMWF-KL, respectively. FitzGerald et al. (15) and Mørup et al. (26) both
used nonnegative PARAFAC for sound source separation and automatic music
transcription of stereo signals.

Bader, Berry, and Browne (5) described the first use of a nonnegative
PARAFAC algorithm to extract and detect meaningful discussions from email
messages. They encoded one year of messages from the Enron Email Set into
a sparse term-author-month array and found that the nonnegative decomposi-
tion was more easily interpretable through its preservation of data nonnegativ-
ity in the results. They showed that Gantt-like charts can be constructed/used
to assess the duration, order, and dependencies of focused discussions against
the progression of time. This study expands upon that work and demon-
strates the first application of a four-way term-author-recipient-day array for
the tracking of targeted threads of discussion through time.

5.2 Notation

Three-way and higher multidimensional arrays or tensors are denoted by
boldface Euler script letters, e.g., X. An element is denoted by the requisite
number of subscripts. For example, element (i, j, k, l) of a fourth-order tensor
X is denoted by xijkl .

© 2009 by Taylor and Francis Group, LLC

98 Nonnegative Matrix and Tensor Factorization for Discussion Tracking

The symbol ◦ denotes the tensor outer product,

A1 ◦ B1 =

⎛

⎜
⎝

A11B11 · · · A11Bm1

...
. . .

...
Am1B11 · · · Am1Bm1

⎞

⎟
⎠ .

The symbol ∗ denotes the Hadamard (i.e., elementwise) matrix product,

A ∗ B =

⎛

⎜
⎝

A11B11 · · · A1nB1n

...
. . .

...
Am1Bm1 · · · AmnBmn

⎞

⎟
⎠ .

And the symbol � denotes the Khatri-Rao product (columnwise Kronecker)
(35),

A � B =
(
A1 ⊗ B1 · · · An ⊗ Bn

)
,

where the symbol ⊗ denotes the Kronecker product.
The concept of matricizing or unfolding is simply a rearrangement of the

entries of X into a matrix. We will follow the notation used in (35), but
alternate notations exist. For a four-way array X of size m × n × p × q, the
notation X(m×npq) represents a matrix of size m × npq in which the n-index
runs the fastest over the columns and p the slowest. Many other permutations,
such as X(q×mnp), are possible by changing the row index and the fastest-to-
slowest column indices.

The norm of a tensor, ‖X ‖, is the square root of the sum of squares of all
its elements, which is the same as the Frobenius norm of any of the various
matricized arrays.

5.3 Tensor Decompositions and Algorithms

While the original PARAFAC algorithm was presented for three-way arrays,
it generalizes to higher-order arrays (22). Earlier text analysis work using
PARAFAC in (5) focused on the three-way case, but here we present the
four-way case because our application also pertains to four-way data.

Suppose we are given a tensor X of size m × n × p × q and a desired
approximation rank r. The goal is to decompose X as a sum of vector outer
products as shown in Figure 5.1 for the three-way case. It is convenient to
group all r vectors together in factor matrices A, B, C, and D, each having r
columns. The following mathematical expressions of this model use different

© 2009 by Taylor and Francis Group, LLC

Nonnegative Matrix and Tensor Factorization for Discussion Tracking 99

≈

FIGURE 5.1: PARAFAC provides a three-way decomposition with some
similarity to the singular value decomposition.

notations but are equivalent:

xijkl ≈
r∑

t=1

AitBjtCktDlt,

X ≈
r∑

t=1

At ◦ Bt ◦ Ct ◦ Dt, (5.1)

X(m×npq) ≈ A(D � C � B)T .

Without loss of generality, we typically normalize all columns of the factor
matrices to have unit length and store the accumulated weight (i.e., like a
singular value) in a vector λ:

X ≈
r∑

t=1

λt(At ◦ Bt ◦ Ct ◦ Dt).

It is common practice to order the final solution so that λ1 ≥ λ2 ≥ · · · ≥ λr.
In the discussion that follows, we describe a general algorithm for a four-way
model without λ because this normalization can be performed in a post-
processing step.

Our goal is to find the best fitting matrices A, B, C, and D in the minimiza-
tion problem:

min
A,B,C,D

∥
∥
∥
∥
∥

X −
r∑

t=1

At ◦ Bt ◦ Ct ◦ Dt

∥
∥
∥
∥
∥

2

. (5.2)

The factor matrices are not required to be orthogonal and, in fact, are usu-
ally not in most practical applications. Under mild conditions, PARAFAC
provides a unique solution that is invariant to factor rotation (19).

Given a value r > 0 (loosely corresponding to the number of distinct
topics or conversations in our data), PARAFAC finds matrices A ∈ R

m×r,
B ∈ R

n×r, C ∈ R
p×r, and D ∈ R

q×r to yield Equation (5.1). Each group
{Aj , Bj , Cj , Dj}, for j = 1, . . . , r, defines scores for a set of terms, authors,
recipients, and time for a particular conversation in our email collection; the
value λr after normalization defines the weight of the conversation. (Without
loss of generality, we assume the columns of our matrices are normalized to

© 2009 by Taylor and Francis Group, LLC

100 Nonnegative Matrix and Tensor Factorization for Discussion Tracking

have unit length.) The scales in D indicate the activity of each conversation
topic over time.

5.3.1 PARAFAC-ALS

A common approach to solving Equation (5.2) is an alternating least squares
(ALS) algorithm (19; 13; 37), due to its simplicity and ability to handle
constraints. At each inner iteration, we compute an entire factor matrix while
holding all the others fixed.

Starting with random initializations for A, B, C, and D, we update these
quantities in an alternating fashion using the method of normal equations.
The minimization problem involving A in Equation (5.2) can be rewritten in
matrix form as a least squares problem (13):

min
A

∥
∥
∥X(m×npq) − AZ

∥
∥
∥

2

, (5.3)

where Z = (D � C � B)T .
The least squares solution for Equation (5.3) involves the pseudo-inverse of

Z:
A = X(m×npq)Z†.

Conveniently, the pseudo-inverse of Z may be computed in a special way
that avoids computing ZT Z with an explicit Z (35), so the solution to Equa-
tion (5.3) is given by:

A = X(m×np)(D � C � B)(BT B ∗ CT C ∗ DT D)−1.

Furthermore, if X is sparse, then the product X(m×npq)(D � C � B) may be
computed efficiently (3) without explicitly forming D � C � B. Thus, com-
puting A essentially reduces to several matrix inner products, sparse tensor-
matrix multiplication of B, C, and D into X, and inverting an R×R matrix.

Analogous least-squares steps may be used to update B, C, and D.

5.3.2 Nonnegative Tensor Factorization

When analyzing nonnegative data, such as scaled term frequencies, it is
desirable for the decompositions to retain the nonnegative characteristics of
the original data and thereby facilitate easier interpretation (24). Just as
with matrix factorization, it is possible to impose nonnegativity constraints
on tensor factorizations.

Several authors have considered nonnegative tensor factorizations (NTF),
and the resulting methods can be categorized into four classes of algorithms:

1. Least squares updates where all negative values are truncated to zero
(10),

2. Nonnegative least squares (10; 16),

© 2009 by Taylor and Francis Group, LLC

Nonnegative Matrix and Tensor Factorization for Discussion Tracking 101

3. Paatero’s penalty function approach (29; 28), and

4. Lee-and-Seung-style (24) multiplicative updates (39; 32; 20).

The first class is not recommended because one does not obtain least squares
estimates, meaning that the residual error may increase. Hence, when employ-
ing such a technique in an iterative, multi-way algorithm such as PARAFAC-
ALS, the algorithm may actually diverge (10). The three remaining classes of
algorithms have better convergence properties, and nonnegative least-squares
approaches solve a bound-constrained linear least squares problem. Paatero’s
PMF3 algorithm (28) uses a logarithmic penalty function and solves for all
modes simultaneously using a Gauss-Newton approach, which enjoys fast con-
vergence but is slower on larger problems. The multiplicative update is ap-
pealing because it is simple and fast to program, scales well with very large
datasets, but it can be slow to converge.

With the exception of Paatero’s PMF3, each approach harkens back to
PARAFAC-ALS except that the factor matrices are updated differently. Each
method generally relies on the fact that the residual norm of the various matrix
formulations of the PARAFAC model are equal:

||X(m×npq) − A(D � C � B)T ||F =
||X(n×pqm) − B(A � D � C)T ||F =
||X(p×qmn) − C(B � A � D)T ||F =
||X(q×mnp) − D(C � B � A)T ||F .

Each of these matrix systems may be treated as a separate nonnegative
factorization problem using the techniques mentioned previously and solved
in an alternating fashion.

For example, Friedlander and Hatz (16) solve each subproblem as a bound
constrained linear least-squares problem. They impose sparseness constraints
by regularizing the nonnegative tensor factorization with an l1-norm penalty
function. While this function is nondifferentiable, it effectively removes small
values yet keeps large entries. While the solution of the standard problem is
unbounded (due to the indeterminacy of scale), regularizing the problem has
the added benefit of keeping the solution bounded.

Alternatively, Welling and Weber (39), and subsequently others (32; 20;
15; 27), update A using the multiplicative update introduced in (24) while

© 2009 by Taylor and Francis Group, LLC

102 Nonnegative Matrix and Tensor Factorization for Discussion Tracking

holding B, C, and D fixed, and so on:

Aiρ ← Aiρ
(X(m×npq)Z)iρ

(AZT Z)iρ + ε
, Z = (D � C � B)

Bjρ ← Bjρ
(X(n×pqm)Z)jρ

(BZT Z)jρ + ε
, Z = (A � D � C)

Ckρ ← Ckρ
(X(p×qmn)Z)kρ

(CZT Z)kρ + ε
, Z = (B � A � D)

Dlρ ← Dlρ
(X(q×mnp)Z)lρ

(CZT Z)lρ + ε
, Z = (C � B � A).

Here ε is a small number like 10−9 that adds stability to the calculation
and guards against introducing a negative number from numerical underflow.
Because our data is large, this is the approach that we use.

As was mentioned previously, X is sparse, which facilitates a simpler com-
putation in the procedure above. The matrix Z from each step should not
be formed explicitly because it would be a large, dense matrix. Instead, the
product of a matricized X with Z should be computed specially, exploiting the
inherent Kronecker product structure in Z so that only the required elements
in Z need to be computed and multiplied with the nonzero elements of X.
See (3) for details.

5.4 Enron Subset

The original collection of Enron emails used in this study (and in the NTF
discussed in (5)) is available online (12). Although this collection comprises
517,431 emails extracted from 150 different mail directories, we use the Enron
email subset (or graph) prepared by Priebe et al. (30) that consists of messages
among 184 Enron email addresses plus thirteen more that have been identified
in (6) as interesting. We considered messages only in 2001, which resulted in
a total of 53, 733 messages over 12 months (messages were sent on a total of
357 days).

As discussed in (5), the lack of information on the former Enron employees
has hampered the performance evaluation of any model of the Enron Email
Set. Having access to a corporate directory or organizational chart of Enron
at the time of these emails (at least for the year 2001) would greatly help test
the validity of results (via PARAFAC or any other model). Other researchers
using the Enron Email Set have had this same problem. Hopefully, in time,
more historical information will be available. Illustrations of the true/false

© 2009 by Taylor and Francis Group, LLC

Nonnegative Matrix and Tensor Factorization for Discussion Tracking 103

positive rates of NTF-based classification on a different dataset are discussed
in (5).

The Priebe dataset (30) provided partial information on the 184 employees
of the small Enron network, which appears to be based largely on information
collected by Shetty and Adibi (33). Most of the employees’ position and
business unit data is provided. Additional employee information was collected
from the email messages themselves and from relevant information posted on
the FERC website (14). To further help our assessment of results, we searched
for corroborating information of the preexisting data or for new identification
information, such as title, business unit, or manager. Table 5.1 lists eleven of
the most notable authors (and their titles) whose emails have been tracked
(5).

TABLE 5.1: Eleven of the 197 email authors represented in the
term-author-time array X.

Email Account
Name (@enron.com) Title
Richard Sanders b..sanders VP Enron Wholesale Services
Greg Whalley greg.whalley President
Jeff Dasovich jeff.dasovich Employee Government Relationship

Executive
Jeffery Skilling jeff.skilling CEO
Steven Kean j..kean VP and Chief of Staff
John Lavorato john.lavorato CEO Enron America
Kenneth Lay kenneth.lay CEO
Louise Kitchen louise.kitchen President Enron Online
Mark Haedicke mark.haedicke Managing Director Legal Department
Richard Shapiro richard.shapiro VP Regulatory Affairs
Vince Kaminski vince.kaminski Manager Risk Management Head,

Enron Energy Services

Aliasing of email addresses was used by some of the 197 authors in the year
2001), namely different email accounts of the form employee id@enron.com
were used by the same employee. For example, sample aliases of Vince Kamin-
ski, one of the eleven notable authors in Table 5.1, include j.kaminski,
j..kaminski, and vince.kaminski.

5.4.1 Term Weighting Techniques

In this study, we considered two datasets: three-way term-author-day and
four-way term-author-recipient-day data. The three-way data correspond to
a sparse array X of size 69157 × 197 × 357 with 1, 770, 233 nonzeros. The

© 2009 by Taylor and Francis Group, LLC

mailto:(@enron.com
mailto:id@enron.com

104 Nonnegative Matrix and Tensor Factorization for Discussion Tracking

69, 157 terms were parsed from the 53, 733 messages using a master dictio-
nary of 121, 393 terms created by the General Text Parser (GTP) software
environment (in C++) maintained at the University of Tennessee (17). This
larger set of terms was previously obtained when GTP was used to parse
289, 695 of the 517, 431 emails defining the Cohen distribution at CMU (see
Section 7.1). To be accepted into the dictionary, a term had to occur in more
than one email and more than 10 times among the 289, 695 emails.

The four-way data correspond to a sparse array Y of size 39573 × 197 ×
197 × 357 with 639, 179 nonzeros. The 39, 573 terms were parsed from the
email messages in the same manner as for the three-way data. There are fewer
terms because we are restricting the set of messages to be only those between
the same 197 individuals. In the three-way set, there are more messages
because many are sent to individuals outside of the set of 197.

We scaled the nonzero entries of X and Y according to a weighted frequency:

xijk = wijkgiaj ,

yijkl = wijklgiajrk,

where wijkl is the local weight for term i sent to recipient k by author j in day
l, gi is the global weight for term i, aj is an author normalization factor, and
rk is a recipient normalization factor. While some scaling and normalization
are necessary to properly balance the arrays, many schemes are possible.

For the three-way data, we used the scaling from a previous study in (5)
for consistency. Let fijk be the number of times term i is written by author j

in day k, and define hij =
P

k fijkP
jk fijk

. The specific components of each nonzero
are listed below:

Log local weight wijk = log(1 + fijk)

Entropy global weight gi = 1 +
n∑

j=1

hij log hij

log n

Author normalization aj = 1v
u
u
u
t

∑

i,k

(wijkgi)

For the four-way data, we followed a different scheme. Let fijkl be the
number of times term i is sent to recipient k by author j in day l. Define the
entropy of term i by

ei = −
∑

j,k,l

fijkl log fijkl.

The specific components of each nonzero are listed below:

© 2009 by Taylor and Francis Group, LLC

Nonnegative Matrix and Tensor Factorization for Discussion Tracking 105

Log local weight wijkl = log(1 + fijkl)

Entropy global weight gi = 1 − ei

maxi ei

Author normalization aj = 1v
u
u
u
t

∑

i,k

(wijklgi)2

Recipient normalization rk = 1v
u
u
u
t

∑

i,k

(wijklgiaj)2

These weights are adapted from the well-known log-entropy weighting
scheme (8) used on term-by-document matrices. The log local weight scales
the raw term frequencies to diminish the importance of high frequency terms.
The entropy global weight attempts to emulate an entropy calculation of the
terms over all messages in the collection to help discriminate important terms
from frequent, less important terms. The author and recipient normalizations
help to correct imbalances in the number of messages sent from and received
by each individual. Without some type of normalization, discussions involving
prolific authors and/or popular recipients would tend to dominate the results.

Scaling in different ways can influence the analysis. Our scaling of the four-
way data in Y does a decent job of balancing authors, recipients, and time.
We find single spikes and some multiple spike groups, plus multiple authors
communicating with multiple recipients in several cases. Other schemes may
be used to focus more on single authors, recipients, or days.

5.5 Observations and Results

In this section, we summarize our findings of applying NTF on the three-
and four-way versions of the Enron email collection. Our algorithms were
written in MATLAB, using sparse extensions of the Tensor Toolbox (2; 3; 4).
All tests were performed on a dual 3GHz Pentium Xeon desktop computer
with 2GB of RAM.

5.5.1 Nonnegative Tensor Decomposition

We computed a 25-component (r = 25) nonnegative decomposition of the
term-author-day array X. One iteration took about 26 seconds, and the av-
erage run required about 17 iterations to satisfy a tolerance of 10−4 in the
relative change of fit. We chose the smallest minimizer from among ten runs
from random starting points, and the relative norm of the difference was
0.9561.

© 2009 by Taylor and Francis Group, LLC

106 Nonnegative Matrix and Tensor Factorization for Discussion Tracking

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.2

0.4

0.6

0.8

1

Month

C
on

ve
rs

at
io

n
Le

ve
l

California Energy
India
Downfall Newsfeeds
Education (Kaminski)
Fastow Companies

FIGURE 5.2 (SEE COLOR INSERT FOLLOWING PAGE 130.):
Five discussion topics identified in the three-way analysis over months.

We also computed a 25-component (r = 25) nonnegative decomposition of
the term-author-recipient-day array Y. One iteration required just under 16
seconds, and between 8 and 12 iterations would satisfy a tolerance of 10−4 in
the relative change of fit. We chose the smallest minimizer from among ten
runs from random starting points, and the relative norm of the difference was
0.9716.

5.5.2 Analysis of Three-Way Tensor

PARAFAC can be used to identify and track discussions over time in each
triad {Aj, Bj , Cj}, for j = 1, . . . , r. A discussion or thread is associated with
the topic and primary participants identified in the columns of A and B, re-
spectively, and the corresponding column of C provides a profile over time,
showing the relative activity of that discussion over 12 months or over 357
days.3 As demonstrated in (5), discussions can be visualized as a histogram
(or Gantt chart) of the monthly activity for each discussion identified by the
classical and nonnegative PARAFAC models, respectively. Here, we com-
ment on both the monthly and daily discussions that were uncovered by both
models.

Qualitatively, the results of the nonnegative decomposition and the stan-
dard three-way PARAFAC were very similar. The major difference lies in
the ability to interpret the results. In the 25 discussion groups tracked by
PARAFAC, only six of the groups had any discernible meaning based on
known Enron activities (25). In comparison, the nonnegative PARAFAC
model revealed eight group discussions that could be interpreted. Figure 5.2
shows the temporal activity of some of these discussions.

The topics generated by the nonnegative PARAFAC model certainly re-
flected known events of the year 2001. In the first quarter of that year, Enron
was still dealing with the fallout of the 2000 California energy crisis. Discus-
sions about the Federal and California state governments’ investigation of the
California situation were observed as well as Enron’s attempted development

3Eight days of the year 2001 involved no discussions for the 197 author subset used.

© 2009 by Taylor and Francis Group, LLC

Nonnegative Matrix and Tensor Factorization for Discussion Tracking 107

of the Dabhol Power Company (DPC) in the Indian State of Maharashtra.
Whereas the company’s efforts in India had been ongoing for several years,
emails of the first six months of 2001 reflected several of the day-to-day deal-
ings with that situation.

By October of 2001, Enron was in serious financial trouble. A merger
with the Dynegy energy company fell through and forced Enron to file for
Chapter 11 bankruptcy. Many of the emails in the months of October and
November were newsfeeds from various organizations that were being routed
through the company. As it was reported that Chief Financial Officer Andy
Fastow was heavily involved with the deceptive accounting practices,4 it is not
surprising that a topic we labelled Fastow companies emerged. Predictably, a
college Football topic emerged in late fall as well. One of the surprise topics
uncovered was an education-related topic due in large part to the interests
and responsibilities of Vince Kaminski, head of research. Kaminski taught a
class at Rice University in Houston in the Spring of 2001, and was the focal
point of emails about internships, class assignments, and resume evaluation
(5).

Since only eight of the 25 topics had any discernible meaning, it would seem
apparent that a significant amount of noise or undefined content can still per-
meate a term-author-month array. In some instances, there are indicators of
a possible thread of some kind (not necessarily directly related to Enron), but
a closer inspection of those emails reveals no identifiable topic of discussion.

The daily results reported in (5) provided a similar interpretation as the
monthly results but at a finer resolution. In general, one observed four dif-
ferent types of discussions: (i) discussions centered largely on one or a few
days, (ii) continual activity, represented as multiple weekly spikes in activity
throughout the year, (iii) continual activity with lulls, where a period of calm
separates bursts of discussion, and (iv) a series of weekly spikes of activity
usually spanning three or more months.

Of the 25 discussion groups mined with the PARAFAC model, roughly half
were of the first type. Examples include a flood of emails about the possible
Dynegy/Enron merger (November 11 and 12th), a topic on January 7th in
which Enron employees (Kean, Hughes, and Ambler) were discussing India
based on an article published by Reuters and another media report, and a
discussion centered on the August 27 U.S. Court of Appeals ruling on section
126 of an Environment Protection Agency code.

The nonnegative PARAFAC model identified temporal patterns similar to
those of PARAFAC with a majority being a series of weekly activity spikes
spanning three or more months. Roughly one third were single spikes pat-
terns, and just two discussions are somewhat bimodal with a lull. A few of
the more interesting (single spike) discussion groups extracted by the nonneg-
ative model included a flurry of emails on August 22 in response to an email

4Setting up bogus companies to improve Enron’s bottom line, for example.

© 2009 by Taylor and Francis Group, LLC

108 Nonnegative Matrix and Tensor Factorization for Discussion Tracking

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.2
0.4
0.6
0.8

Month

C
on

ve
rs

at
io

n
Le

ve
l

Aug. 22 (California Campaign Closeout)

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.2
0.4
0.6
0.8

Month

C
on

ve
rs

at
io

n
Le

ve
l

Nov. 19 (College Football/Nebraska/Sooners)

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.2
0.4
0.6
0.8

Month

C
on

ve
rs

at
io

n
Le

ve
l

Oct. 25 (Enron implodes/news wires)

FIGURE 5.3: Three discussion topics identified in the three-way analysis
over days.

with subject line California Campaign Closeout. In essence, Richard Shapiro
praised a subset of employees who worked on California-related projects and
many responded to his acknowledgement. A second discussion group iden-
tified by terms such as college football, Nebraska, Sooners, bowl, Cougars,
and Tennessee was initiated by M. Motley on November 20. Finally, a third
group (involving many news wire stories) described Enron’s pending implo-
sion around October 25 and 26. PARAFAC also found this topic but two days
earlier—we speculate that the difference is due to the random initialization of
both the PARAFAC and nonnegative PARAFAC models. Figure 5.3 shows
the temporal activity of these discussions.

5.5.3 Analysis of Four-Way Tensor

When analyzing the four-way term-author-recipient-day array Y, we ob-
served four types of profiles over time: (i) discussions centered largely on one
or a few days, resulting in a single spike, (ii) continual activity, represented
as multiple weekly spikes throughout the year, (iii) continual activity with
lulls, where a period of calm separates bursts of discussion, and (iv) a series
of weekly spikes usually spanning three or more months.

In the analysis of the three-way X data, NTF identified temporal patterns
that include these four cases. Roughly one third are single spikes patterns,
and just two discussions are of the bimodal type with a lull. Of the 25 groups
found in the four-way analysis of Y, roughly half were single spikes. Four were
double spikes in time, and nine had sustained activity over many weeks.

Previous research in (5) showed results containing a single spike in time

© 2009 by Taylor and Francis Group, LLC

Nonnegative Matrix and Tensor Factorization for Discussion Tracking 109

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.2

0.4

0.6

0.8

1

Weekly pro & college football
betting pool at Enron

C
on

ve
rs

at
io

n
Le

ve
l

3−way Results

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.5

1

From the list of 197 recipients
3 individuals appeared one week

Month

C
on

ve
rs

at
io

n
Le

ve
l 4−way Results

FIGURE 5.4: Weekly betting pool identified in the three-way (top) and
four-way (bottom) analyses.

but not any examples that spanned some number of days. Here we present
several examples of the latter type and also show what is gained in going from
a three-way to four-way analysis.

Figure 5.4 shows a series of email messages announcing the results of a
weekly betting pool based on the number of winning teams chosen correctly
out of all pro and college football games for the week. Most of the top terms
were names, but after a dozen terms more interesting terms, such as games,
score, picked, and prize, start to appear. Each email lists all of the names
entered in that week’s pool and their record, which explains why the names
appear high in the list of terms for the group.

The unusual feature of this group is that the time profile is so regular. This
is because the discussion took place weekly for one day. Results of the betting
pool were sent out after the conclusion of all games in the pro and college
football schedules.

The four-way analysis identified this discussion but only found a single
spike in time. The group showed that the organizer only sent this message
to four recipients (out of 197 email addresses) in this case. Presumably the
four recipients did not participate in other weeks, and none of the remaining
193 addresses participated in other weeks. If the recipient list were expanded
to include others in the betting pool, then the four-way analysis might have
picked up other days and recipients as well.

As a second example, Figure 5.5 shows the temporal activity for a discussion
involving FERC and its rulings on RTOs. From one of the newsfeeds from
issuealert@scientech.com on May 4, 2001 there was this description:

“For background, an RTO is a regional entity that is designed to
consolidate control and delivery of electricity across various types
of transmission systems within a particular region. The origins
of FERC’s RTO policy dates back to its December 1999 Order
2000, in which it strongly encouraged all transmission-owning util-

© 2009 by Taylor and Francis Group, LLC

mailto:issuealert@scientech.com

110 Nonnegative Matrix and Tensor Factorization for Discussion Tracking

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.2

0.4

0.6

0.8 Conversation about FERC and Regional
Transmission Organizations (RTOs)

C
on

ve
rs

at
io

n
Le

ve
l 3−way Results

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.5

1

Subconversation between J. Steffes and
3 other VPs on the same topic

Month

C
on

ve
rs

at
io

n
Le

ve
l 4−way Results

FIGURE 5.5: Long running discussion on FERC’s various rulings of RTOs.

ities to submit plans for joining or forming an RTO by Oct. 15,
2000, with actual membership established by December of this
year. FERC is now sorting through the applications that it has
received, and its approvals or rejections illuminate certain prefer-
ences that some members of the commission hold. Over the last
year or two, FERC has engaged in an ongoing debate between its
preference for transco (for-profit) models for RTOs, as opposed to
independent system operators (non-profit). Chairman Curt Hea-
cutebert has been the most vocal supporter of the transco model,
while other commissioners such as William Massey have supported
ISOs. However, moving forward, it is becoming increasingly clear
that FERC also seems to have other set agendas for how it wants
the network of RTOs to operate, including the limit of one entity
per region.”

S. Novosel sent email with subjects like “Subject: FERC Orders on CA and
RTO West.” A lot of the discussion in this group is reactions and opinions to
FERC rulings. The four-way analysis identified this large conversation with
many of the same terms, such as RTO, FERC, market, as well as many of
the same names. What distinguishes the four-way analysis from the three-
way analysis group is that it is a thread of the larger conversation involving
primarily the VP’s of government affairs, regulatory affairs, chief of staff and
Enron wholesale services. As such the time profile of this subconversation
nests within the larger conversation identified in the three-way analysis. What
is gained from this four-way analysis is the direction of discussion and the
recipients in this social network.

The third example in Figure 5.6 is a group identified in the four-way anal-
ysis that was not previously identified in any three-way analysis. This email
exchange involves the forwarding of the Texas A&M school fight song wav file
from E. Bass to four others in the list of 197 recipients. It is reasonable to
suggest that perhaps these folks were A&M alumni. Alternatively, the sender

© 2009 by Taylor and Francis Group, LLC

Nonnegative Matrix and Tensor Factorization for Discussion Tracking 111

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.5

1

Forwarding of the Texas A&M Aggies fight song

from E. Bass to 4 other possible alumni

Month

C
on

ve
rs

at
io

n
Le

ve
l

4−way Results

FIGURE 5.6: Forwarding of Texas A&M school fight song.

may be an alum and the four recipients went to a football game and asked
“what is everyone singing?” Exposing that type of social interaction is an ad-
vantage for four-way analysis over the three-way analysis without recipients.

5.6 Visualizing Results of the NMF Clustering

The previous sections demonstrate the value of three-way and four-way
tensor decompositions. Yet it is either very cumbersome or often impossible
to visualize these higher-dimensional tensors. Figures 5.4–5.6 are attempts at
visualizing the information provided by the tensors, yet they are somewhat
limited in scope. As an alternative, in this section, we resort to the standard
two-way (or matrix) decomposition to help us visualize some of the patterns
uncovered by the three-way and higher decompositions. In general, one can
always easily visualize any two dimensions of an n-way tensor decomposition
by considering the matrix associated with those dimensions as created by the
tensor decomposition. In this spirit, we discuss a tool for visualizing clusters
in two-way factors.

It is well known (9) that the nonnegative matrix factorization (NMF) can
be used to cluster items in a collection. For instance, if the data matrix
is a term-by-document matrix X , which has been factored with the NMF as
X = AB, then the rows of A

¯
can be used to cluster terms, while the columns of

B
¯

can be used to cluster documents. As a result, terms and documents are, in
some sense, clustered independently. There are two main types of clustering:
hard clustering and soft clustering. Hard clustering means that items (in
this case, terms and documents) can belong to only one cluster, whereas in
soft clustering items are allowed to belong to multiple clusters, perhaps with
varying weights for these multiple assignments. If hard clustering is employed,
then cluster assignment is easy. Term i belongs to cluster j if A(i, j) is the
maximum element in the ith row of A. Similarly, document k belongs to
cluster l if B(l, k) is the maximum element in the kth column of B.

Once cluster assignments are available (by either hard or soft clustering), a

© 2009 by Taylor and Francis Group, LLC

112 Nonnegative Matrix and Tensor Factorization for Discussion Tracking

FIGURE 5.7 (SEE COLOR INSERT FOLLOWING PAGE 130.):
Pixel plot of the raw Enron term-by-email matrix.

very useful next step is to display the clustering results visually. We demon-
strate the value of this by considering once again the Enron email dataset
described in Section 5.4. The raw term-by-email matrix for this dataset ap-
pears to have no structure, as shown in the pixel plot of Figure 5.7. Each
nonzero entry in the raw matrix is represented by a pixel, and the magnitude
of the entry is captured by the intensity of the pixel.

© 2009 by Taylor and Francis Group, LLC

Nonnegative Matrix and Tensor Factorization for Discussion Tracking 113

FIGURE 5.8 (SEE COLOR INSERT FOLLOWING PAGE 130.):
Pixel plot of the reordered Enron term-by-email matrix.

Figure 5.8 is simply a reordered version of the raw Enron term-by-email
matrix using r = 50 (the number of columns of A and rows of B). Both
the terms and the documents were reordered according to the hard cluster
assignments produced by the NMF. The nice block structure of the reordered
matrix reveals the hidden clusters. For instance, a dense block means that a
set of documents frequently used the same set of terms. Contrasting Figure
5.7 with Figure 5.8 reveals just how much structure was hidden in the dataset.

While the visualization of Figure 5.8, which was created with the NMF, is
valuable to practitioners, an even more valuable tool allows the practitioner
to more deeply examine clusters of interest and perhaps attach a meaning to
the cluster. This is possible with the help of the vismatrix tool5 created by
David Gleich.

5http://www.stanford.edu/~dgleich/programs/vismatrix

© 2009 by Taylor and Francis Group, LLC

http://www.stanford.edu

114 Nonnegative Matrix and Tensor Factorization for Discussion Tracking

This tool has a mouseover feature that enables a user to hold the mouse
over any pixel in the matrix (reordered or otherwise) and determine which
term and which document the pixel corresponds to. Figure 5.9 is a screenshot
from the vismatrix tool.

FIGURE 5.9 (SEE COLOR INSERT FOLLOWING PAGE 130.):
Pixel plot of the reordered Enron term-by-document matrix with term and
document labels.

Notice the upper lefthand corner contains the word touchdown, which
represents the term (term ID#6635) being pointed to, and the identifier
dean-cinfo84, which represents the document ID. This document, document
3819, was email message #84 saved by an Enron employee named Dean in
his cinfo folder. Scrolling over pixels in a dense block causes the term and
document labels to change in this area of the vismatrix tool. The human brain
can quickly process many terms at once. As a result, the user can attach a

© 2009 by Taylor and Francis Group, LLC

Nonnegative Matrix and Tensor Factorization for Discussion Tracking 115

judgment to the quality of the clustering and can often attach a label as well.
For instance, the cluster over which the yellow crosshairs of Figure 5.9 lie
also contains the terms (among others) football, longhorn, Texas, quarterback,
score, redshirt, freshmen, punt, and tackle, prompting a user to potentially
label this cluster Texas Longhorn Football.

The vismatrix tool also allows a user to quickly scan document labels as
well. Thus, hidden patterns that pertain to the documents can be found.
For instance, this Enron dataset contains one small cluster of 12 documents
using 447 terms. Figure 5.10 is a close-up6 of this part of the reordered Enron
term-by-email matrix.

FIGURE 5.10 (SEE COLOR INSERT FOLLOWING PAGE 130.):
Close-up of one section of pixel plot of the reordered Enron term-by-document
matrix.

6The vismatrix tool also contains zoom in and zoom out features.

© 2009 by Taylor and Francis Group, LLC

116 Nonnegative Matrix and Tensor Factorization for Discussion Tracking

Using the mouse to scroll over this small dense block reveals that the fol-
lowing terms (among others) are assigned to this small cluster: fortune, ceo,
coo, top, women, and powerful. These terms and abbreviations, in fact, refer
to Louise Kitchen (a top-ranking Enron employee responsible for energy trad-
ing and Enron Online) who was named one of the 50 most powerful women
in business by Fortune Magazine in 2001. Mousing over this same small but
dense block, but focusing on the document labels this time reveals that all
12 of these emails have the label kitchen-l-americaspress#, meaning that
they were all saved in Louise Kitchen’s own private l-americaspress folder.
So what appeared to be a small possibly interesting cluster, after further in-
spection thanks to the vismatrix tool, is an “ego cluster,” and thus perhaps
of only marginal interest.

5.7 Future Work

As demonstrated by this study, nonnegative tensor factorization (imple-
mented by PARAFAC) can be used to extract meaningful discussions from
email communications. The ability to assess term-to-author (or term-to-
email) associations both semantically and temporally via three-way and four-
way decompositions is an important advancement in email surveillance re-
search. Previously reported clusters of Enron emails using nonnegative matrix
factorization (i.e., two-way decompositions) (7; 9; 31) were unable to extract
discussions such as the Education thread mentioned in Section 5.5.1 or se-
quence the discussion of the company’s downfall by source (newfeeds versus
employee-generated). The optimal segmentation of time as a third (or fourth)
dimension for email clustering may be problematic. Grouping or clustering
emails by month may not be sufficient for tracking event-driven activities and
so more research in the cost-benefit tradeoffs of finer time segmentation (e.g.,
grouping by weeks, days, or even minutes) is certainly needed. Determining
the optimal tensor rank r for models such as PARAFAC is certainly another
important research topic. Determining an optimal term weighting scheme for
multi-way arrays is also an important task that could greatly influence the
quality of results—more research on this topic is especially needed. Finally,
the visualization of multi-way arrays (tensors) certainly constitutes an im-
portant area of software development that could greatly facilitate both the
identification and interpretation of communications.

© 2009 by Taylor and Francis Group, LLC

Nonnegative Matrix and Tensor Factorization for Discussion Tracking 117

Acknowledgments

This research was sponsored by the United States Department of Energy
and by Sandia National Laboratory, a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy under contract DE–AC04–94AL85000. The authors
would like to thank the anonymous referees for their helpful comments and
suggestions on improving the original version.

References

[1] E. Acar, S. A. Çamtepe, M. S. Krishnamoorthy, and Bülent Yener. Mod-
eling and multiway analysis of chatroom tensors. In ISI 2005: IEEE In-
ternational Conference on Intelligence and Security Informatics, volume
3495 of Lecture Notes in Computer Science, pages 256–268. Springer-
Verlag, 2005.

[2] B. W. Bader and T. G. Kolda. Algorithm 862: MATLAB tensor classes
for fast algorithm prototyping. ACM Transactions on Mathematical
Software, 32(4):635–653, December 2006.

[3] B. W. Bader and T. G. Kolda. Efficient MATLAB computations with
sparse and factored tensors. SIAM Journal on Scientific Computing,
July 2007. Accepted.

[4] B. W. Bader and T. G. Kolda. Matlab tensor toolbox, version 2.2. http:
//csmr.ca.sandia.gov/~tgkolda/TensorToolbox/, January 2007.

[5] B. W. Bader, M. W. Berry, and M. Browne. Discussion Tracking in
Enron Email Using PARAFAC. In M.W. Berry and M. Castellanos, ed-
itors, Survey of Text Mining II: Clustering, Classification, and Retrieval,
pages 147–163. Springer-Verlag, London, 2008.

[6] M. W. Berry and M. Browne. Email surveillance using nonnegative
matrix factorization. In Workshop on Link Analysis, Counterterrorism
and Security, SIAM Conf. on Data Mining, Newport Beach, CA, 2005.

[7] M. W. Berry and M. Browne. Email surveillance using nonnegative ma-
trix factorization. Computational & Mathematical Organization Theory,
11:249–264, 2005.

[8] M. W. Berry and M. Browne. Understanding Search Engines: Mathe-
matical Modeling and Text Retrieval. SIAM, Philadelphia, PA, second
edition, 2005.

© 2009 by Taylor and Francis Group, LLC

http://csmr.ca.sandia.gov
http://csmr.ca.sandia.gov

118 Nonnegative Matrix and Tensor Factorization for Discussion Tracking

[9] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plem-
mons. Algorithms and applications for approximate nonnegative matrix
factorization. Computational Statistics & Data Analysis, 52(1):155–173,
2007.

[10] R. Bro and S. De Jong. A fast non-negativity-constrained least squares
algorithm. J. Chemometr., 11(5):393–401, 1997.

[11] J. D. Carroll and J. J. Chang. Analysis of individual differences in
multidimensional scaling via an N-way generalization of ‘Eckart-Young’
decomposition. Psychometrika, 35:283–319, 1970.

[12] W. W. Cohen. Enron email dataset. Webpage. http://www.cs.cmu.
edu/~enron/.

[13] N. (Klaas) M. Faber, R. Bro, and P. K. Hopke. Recent developments in
CANDECOMP/PARAFAC algorithms: a critical review. Chemometr.
Intell. Lab. Syst., 65(1):119–137, January 2003.

[14] Federal Energy Regulatory Commision. Ferc: Information released
in Enron investigation. http://www.ferc.gov/industries/electric/
indus-act/wec/enron/info-release.asp.

[15] D. FitzGerald, M. Cranitch, and E. Coyle. Non-negative tensor factori-
sation for sound source separation. In ISSC 2005: Proceedings of the
Irish Signals and Systems Conference, 2005.

[16] M. P. Friedlander and K. Hatz. Computing nonnegative tensor factoriza-
tions. Technical Report TR-2006-21, Department of Computer Science,
University of British Columbia, October 2006.

[17] J. T. Giles, L. Wo, and M. W. Berry. GTP (General Text Parser) Soft-
ware for Text Mining. In H. Bozdogan, editor, Statistical Data Mining
and Knowledge Discovery, pages 455–471. CRC Press, Boca Raton, FL,
2003.

[18] T. Grieve. The Decline and Fall of the Enron Empire. Slate, October
14 2003. http://www.salon.com/news/feature/2003/10/14/enron/
index_np.html.

[19] R. A. Harshman. Foundations of the PARAFAC procedure: mod-
els and conditions for an “explanatory” multi-modal factor analysis.
UCLA working papers in phonetics, 16:1–84, 1970. Available at http:
//publish.uwo.ca/~harshman/wpppfac0.pdf.

[20] T. Hazan, S. Polak, and A. Shashua. Sparse image coding using a 3D
non-negative tensor factorization. In ICCV 2005: 10th IEEE Interna-
tional Conference on Computer Vision, volume 1, pages 50–57. IEEE
Computer Society, 2005.

© 2009 by Taylor and Francis Group, LLC

http://www.cs.cmu.edu
http://www.ferc.gov
http://www.salon.com
http://www.cs.cmu.edu
http://www.ferc.gov
http://www.salon.com
http://publish.uwo.ca
http://publish.uwo.ca

Nonnegative Matrix and Tensor Factorization for Discussion Tracking 119

[21] T. G. Kolda and B. W. Bader. The TOPHITS model for higher-order
web link analysis. In Workshop on Link Analysis, Counterterrorism and
Security, 2006.

[22] T. G. Kolda and B. W. Bader. Tensor decompositions and applications.
SIAM Review, 2008. to appear.

[23] T. G. Kolda, B. W. Bader, and J. P. Kenny. Higher-order web link
analysis using multilinear algebra. In ICDM 2005: Proceedings of the 5th
IEEE International Conference on Data Mining, pages 242–249. IEEE
Computer Society, 2005.

[24] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401:788–791, 21 October 1999.

[25] B. Mclean and P. Elkind. The Smartest Guys in the Room: The Amazing
Rise and Scandalous Fall of Enron. Portfolio, 2003.

[26] M. Mørup, M. N. Schmidt, and L. K. Hansen. Shift invariant sparse
coding of image and music data. Technical report, Technical University
of Denmark, 2007.

[27] M. Mørup, L. Hansen, J. Parnas, and S. M. Arnfred. Decomposing
the time-frequency representation of EEG using nonnegative matrix and
multi-way factorization. Available at http://www2.imm.dtu.dk/pubdb/
views/edoc_download.php/4144/pdf/imm4144.pdf, 2006.

[28] P. Paatero. A weighted non-negative least squares algorithm for
three-way “PARAFAC” factor analysis. Chemometr. Intell. Lab. Syst.,
38(2):223–242, October 1997.

[29] P. Paatero and U. Tapper. Positive matrix factorization: A non-negative
factor model with optimal utilization of error estimates of data values.
Environmetrics, 5(2):111–126, 1994.

[30] C. E. Priebe, J. M. Conroy, D. J. Marchette, and Y. Park. Enron data
set. Webpage, February 2006. http://cis.jhu.edu/~parky/Enron/
enron.html.

[31] F. Shahnaz, M. W. Berry, V. P. Pauca, and R. J. Plemmons. Doc-
ument clustering using nonnegative matrix factorization. Information
Processing & Management, 42(2):373–386, 2006.

[32] A. Shashua and T. Hazan. Non-negative tensor factorization with ap-
plications to statistics and computer vision. In ICML 2005: Machine
Learning, Proceedings of the Twenty-second International Conference,
2005.

[33] J. Shetty and J. Adibi. Ex employee status report. Online, 2005. http:
www.isi.edu/~adibi/Enron/Enron_Employee_Status.xls.

© 2009 by Taylor and Francis Group, LLC

http://www2.imm.dtu.dk
http://cis.jhu.edu
http://www.isi.edu
http://www2.imm.dtu.dk
http://cis.jhu.edu
http://www.isi.edu

120 Nonnegative Matrix and Tensor Factorization for Discussion Tracking

[34] N. D. Sidiropoulos, G. B. Giannakis, and R. Bro. Blind PARAFAC re-
ceivers for DS-CDMA systems. IEEE Transactions on Signal Processing,
48(3):810–823, 2000.

[35] A. Smilde, R. Bro, and P. Geladi. Multi-Way Analysis: Applications in
the Chemical Sciences. Wiley, West Sussex, England, 2004.

[36] J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen. CubeSVD: a novel
approach to personalized Web search. In WWW 2005: Proceedings of
the 14th international conference on World Wide Web, pages 382–390.
ACM Press, New York, 2005.

[37] G. Tomasi and R. Bro. PARAFAC and missing values. Chemometr.
Intell. Lab. Syst., 75(2):163–180, February 2005.

[38] L. R. Tucker. Some mathematical notes on three-mode factor analysis.
Psychometrika, 31:279–311, 1966.

[39] M. Welling and M. Weber. Positive tensor factorization. Pattern Recogn.
Lett., 22(12):1255–1261, 2001.

© 2009 by Taylor and Francis Group, LLC

Chapter 6

Text Clustering with Mixture of von
Mises-Fisher Distributions

Arindam Banerjee, Inderjit Dhillon, Joydeep Ghosh, and Suvrit Sra

6.1 Introduction . 121
6.2 Related Work . 123
6.3 Preliminaries . 124
6.4 EM on a Mixture of vMFs (moVMF) . 126
6.5 Handling High-Dimensional Text Datasets . 127
6.6 Algorithms . 132
6.7 Experimental Results . 134
6.8 Discussion . 146
6.9 Conclusions and Future Work . 148

6.1 Introduction

There is a long-standing folklore in the information retrieval community
that a vector space representation of text data has directional properties, i.e.,
the direction of the vector is much more important than its magnitude. This
belief has led to practices such as using the cosine between two vectors for
measuring similarity between the corresponding text documents, and to the
scaling of vectors to unit L2 norm (41; 40; 20).

In this chapter, we describe a probabilistic generative model (44; 25) based
on directional distributions (30) for modeling text data.1 Specifically, we sug-
gest that a set of text documents that form multiple topics can be well modeled
by a mixture of von Mises-Fisher (vMF) distributions, with each component
corresponding to a topic. Generative models often provide greater insights into
the anatomy of the data as compared to discriminative approaches. Moreover,
domain knowledge can be easily incorporated into generative models; for ex-
ample, in this chapter the directional nature of the data is reflected in our
choice of vMF distributions as the mixture components.

1This chapter treats L2 normalized data and directional data as synonymous.

121
© 2009 by Taylor and Francis Group, LLC

122 Text Clustering with Mixture of von Mises-Fisher Distributions

We derive two clustering algorithms based on Expectation Maximization
(EM) for estimating the parameters of the mixture model from first princi-
ples. Our algorithms involve estimating a concentration parameter, κ, for
each component of the mixture model. The ability to adapt κ on a per-
component basis leads to substantial performance improvements over existing
generative approaches to modeling directional data. We show a connection
between the proposed methods and a class of existing algorithms for cluster-
ing high-dimensional directional data. In particular, our generative model has
the same relation to spherical kmeans (spkmeans) (20) as a model based on
a mixture of identity covariance Gaussians has to classical kmeans that uses
squared Euclidean distances (9). We also present detailed experimental com-
parisons of the proposed algorithms with spkmeans and one of its variants.
Our formulation uncovers the theoretical justification behind the use of the
cosine similarity measure that has largely been ad hoc, i.e., based on empirical
or intuitive justification, so far.

While this chapter focuses on text analysis, we note that many other im-
portant domains such as bioinformatics and collaborative filtering involve di-
rectional data as well. Thus, the scope and applications of the approaches
taken in this chapter are much broader and not limited to text alone.

The remainder of the chapter is organized as follows. In Section 6.2, we dis-
cuss related work on mixture models, text clustering, and vMF distributions.
We review the multivariate vMF distribution in Section 6.3. In Section 6.4
we introduce a generative model using a mixture of vMF distributions. We
then derive the maximum likelihood parameter estimates of this model by
employing an EM framework. Section 6.5 highlights our new method of ap-
proximating κ and also presents a mathematical analysis of hard assignments.
Sections 6.4 and 6.5 form the basis for two clustering algorithms using soft
and hard-assignments, respectively, and these algorithms are described in Sec-
tion 6.6. Detailed experimental results and comparisons with other algorithms
are offered in Section 6.7. A discussion on the behavior of our algorithms and
a connection with simulated annealing follows in Section 6.8, and we conclude
in Section 6.9.
Notation. Bold faced variables, e.g., x, μ represent vectors; the norm ‖ · ‖
denotes the L2 norm; sets are represented by script-style upper-case letters,
e.g., X , Z. The set of reals is denoted by R, while S

d−1 denotes the (d −
1)-dimensional sphere embedded in R

d. Probability density functions are
denoted by lower case letters such as f , p, q, and the probability of a set of
events is denoted by P .

© 2009 by Taylor and Francis Group, LLC

Text Clustering with Mixture of von Mises-Fisher Distributions 123

6.2 Related Work

There has been an enormous amount of work on clustering a wide vari-
ety of datasets across multiple disciplines over the past fifty years (26). The
methods presented in this chapter are tailored for high-dimensional data with
directional characteristics, rather than for arbitrary datasets. In the learn-
ing community, perhaps the most widely studied high-dimensional directional
data stem from text documents represented by vector space models. Much
of the work in this domain uses discriminative approaches (48; 54). For ex-
ample, hierarchical agglomerative methods based on cosine, Jaccard or Dice
coefficients were dominant for text clustering till the mid-1990s (39). Over
the past few years several new approaches, ranging from spectral partitioning
(27; 54), to the use of generative models from the exponential family, e.g.,
mixture of multinomials or Bernoulli distributions (35) etc., have emerged. A
fairly extensive list of references on generative approaches to text clustering
can be found in (55).

Of particular relevance to this work is the spkmeans algorithm (20), which
adapts the kmeans algorithm to normalized data by using the cosine simi-
larity for cluster allocation, and also by re-normalizing the cluster means to
unit length. The spkmeans algorithm is superior to regular kmeans for high-
dimensional text data, and competitive or superior in both performance and
speed to a wide range of other existing alternatives for text clustering (49).
It also provides better characterization of clusters in terms of their top repre-
sentative or discriminative terms.

The vMF distribution is known in the literature on directional statistics
(30), and the maximum likelihood estimates (MLE) of the parameters have
been given for a single distribution. Recently Piater (37) obtained parameter
estimates for a mixture for circular, i.e., 2-dimensional vMFs. In an Appendix
to his thesis, Piater starts on an EM formulation for 2-D vMFs but cites the
difficulty of parameter estimation (especially κ) and eventually avoids doing
EM in favor of another numerical gradient descent based scheme. Mooney et
al. (33) use a mixture of two circular von Mises distributions to estimate the
parameters using a quasi-Newton procedure. Wallace and Dowe (51) perform
mixture modeling for circular von Mises distributions and have produced a
software called Snob that implements their ideas. McLachlan and Peel (31)
discuss mixture analysis of directional data and mention the possibility of us-
ing Fisher distributions (3-dimensional vMFs), but instead use 3-dimensional
Kent distributions (30). They also mention work related to the clustering of
directional data, but all the efforts included by them are restricted to 2-D or
3-D vMFs. Indeed, (31) also draws attention to the difficulty of parameter
estimation even for 3-D vMFs.

The connection between a generative model involving vMF distributions
with constant κ and the spkmeans algorithm was first observed by (6). A

© 2009 by Taylor and Francis Group, LLC

124 Text Clustering with Mixture of von Mises-Fisher Distributions

variant that could adapt in an on-line fashion leading to balanced cluster-
ing solutions was developed by (7). Balancing was encouraged by taking
a frequency-sensitive competitive learning approach in which the concentra-
tion of a mixture component was made inversely proportional to the number
of data points already allocated to it. Another online competitive learning
scheme using vMF distributions for minimizing a KL-divergence based distor-
tion was proposed by (43). Note that the full EM solution was not obtained
or employed in either of these works. Recently a detailed empirical study of
several generative models for document clustering, including a simple movMF
model that constrains the concentration κ to be the same for all mixture com-
ponents during any iteration, was presented by (56). Even with this restric-
tion, this model was superior to both hard and soft versions of multivariate
Bernoulli and multinomial models. In recent years, the movMF model has
been successfully applied to text mining and anomaly detection applications
for the NASA Aviation Safety Reporting System (ASRS) (47; 46).

Recently, (10) discussed the modeling of high dimensional directional data
using mixtures of Watson distributions, mainly to handle axial symmetries in
the data. The authors of (10) followed the parameter estimation techniques
developed in this chapter to obtain numerical estimates for the concentration
parameter κ for Watson distributions. Additionally, alternate parameter esti-
mates along with a connection of mixture of Watson based models to diametric
clustering (19) were developed in (45). For text data, mixtures of Watson dis-
tributions usually perform inferior to moVMF based models, though for gene
expression data they could be potentially better.

6.3 Preliminaries

In this section, we review the von Mises-Fisher distribution and maximum
likelihood estimation of its parameters from independent samples.

6.3.1 The von Mises-Fisher (vMF) Distribution

A d-dimensional unit random vector x (i.e., x ∈ R
d and ‖x‖ = 1, or equiva-

lently x ∈ S
d−1) is said to have d-variate von Mises-Fisher (vMF) distribution

if its probability density function is given by

f(x|μ, κ) = cd(κ)eκμT x , (6.1)

where ‖μ‖ = 1, κ ≥ 0 and d ≥ 2. The normalizing constant cd(κ) is given by

cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
, (6.2)

© 2009 by Taylor and Francis Group, LLC

Text Clustering with Mixture of von Mises-Fisher Distributions 125

where Ip(·) represents the modified Bessel function of the first kind and order
p, and is defined as (1)

Ip(κ) =
∑

k≥0

1
Γ(p + k + 1)k!

(κ

2

)2k+p

,

where Γ(·) is the well-known Gamma function.
The density f(x|μ, κ) is parameterized by the mean direction μ, and the

concentration parameter κ, so-called because it characterizes how strongly the
unit vectors drawn according to f(x|μ, κ) are concentrated about the mean
direction μ. Larger values of κ imply stronger concentration about the mean
direction. In particular when κ = 0, f(x|μ, κ) reduces to the uniform density
on S

d−1, and as κ → ∞, f(x|μ, κ) tends to a point density. The interested
reader is referred to (30), (24), or (21) for details on vMF distributions.

The vMF distribution is one of the simplest parametric distributions for
directional data, and has properties analogous to those of the multivariate
Gaussian distribution for data in R

d. For example, the maximum entropy
density on S

d−1 subject to the constraint that E[x] is fixed is a vMF density
(see (38, pp. 172–174) and (29) for details).

6.3.2 Maximum Likelihood Estimates

In this section we look briefly at maximum likelihood estimates for the
parameters of a single vMF distribution. The detailed derivations can be
found in (5). Let X be a finite set of sample unit vectors drawn independently
following f(x|μ, κ) (6.1), i.e.,

X = {xi ∈ S
d−1 | xi drawn following f(x|μ, κ) for 1 ≤ i ≤ n}.

Given X we want to find maximum likelihood estimates for the parameters μ
and κ of the distribution f(x|μ, κ). Assuming the xi to be independent and
identically distributed, we can write the log-likelihood of X as

ln P (X|μ, κ) = n ln cd(κ) + κμT r, (6.3)

where r =
∑

i xi. To obtain the maximum likelihood estimates of μ and κ,
we have to maximize (6.3) subject to the constraints μT μ = 1 and κ ≥ 0. A
simple calculation (5) shows that the MLE solutions μ̂ and κ̂ may be obtained
from the following equations:

μ̂ =
r
‖r‖ =

∑n
i=1 xi

‖
∑n

i=1 xi‖
, (6.4)

and
Id/2(κ̂)

Id/2−1(κ̂)
=

‖r‖
n

= r̄. (6.5)

Since computing κ̂ involves an implicit equation (6.5) that is a ratio of Bessel
functions, it is not possible to obtain an analytic solution, and we have to

© 2009 by Taylor and Francis Group, LLC

126 Text Clustering with Mixture of von Mises-Fisher Distributions

resort to numerical or asymptotic methods to obtain an approximation (see
Section 6.5).

6.4 EM on a Mixture of vMFs (moVMF)

We now consider a mixture of k vMF (moVMF) distributions that serves
as a generative model for directional data, and obtain the update equations
for estimating the mixture-density parameters from a given dataset using
the Expectation Maximization (EM) framework. Let fh(x|θh) denote a vMF
distribution with parameters θh = (μh, κh) for 1 ≤ h ≤ k. Then a mixture of
these k vMF distributions has a density given by

f(x|Θ) =
k∑

h=1

αhfh(x|θh), (6.6)

where Θ = {α1, · · · , αk, θ1, · · · , θk} and the αh are non-negative and sum to
one. To sample a point from this mixture density we choose the h-th vMF
randomly with probability αh, and then sample a point (on S

d−1) following
fh(x|θh). Let X = {x1, · · · ,xn} be a dataset of n independently sampled
points that follow (6.6). Let Z = {z1, · · · , zn} be the corresponding set of
hidden random variables that indicate the particular vMF distribution from
which the points are sampled. In particular, zi = h if xi is sampled from
fh(x|θh). Assuming that the values in the set Z are known, the log-likelihood
of the observed data is given by

ln P (X ,Z|Θ) =
n∑

i=1

ln (αzifzi(xi|θzi)) . (6.7)

Obtaining maximum likelihood estimates for the parameters would have been
easy were the zi truly known. Unfortunately that is not the case, and (6.7)
is really a random variable dependent on the distribution of Z—this random
variable is usually called the complete data log-likelihood. For a given (X , Θ), it
is possible to estimate the most likely conditional distribution of Z|(X , Θ), and
this estimation forms the E-step in an EM framework. Using an EM approach
for maximizing the expectation of (6.7) with the constraints μT

h μh = 1 and

© 2009 by Taylor and Francis Group, LLC

Text Clustering with Mixture of von Mises-Fisher Distributions 127

κh ≥ 0, we obtain

αh =
1
n

n∑

i=1

p(h|xi, Θ), (6.8)

rh =
n∑

i=1

xip(h|xi, Θ), (6.9)

μ̂h =
rh

‖rh‖
, (6.10)

Id/2(κ̂h)
Id/2−1(κ̂h)

=
‖rh‖∑n

i=1 p(h|xi, Θ)
. (6.11)

Observe that (6.10) and (6.11) are intuitive generalizations of (6.4) and (6.5)
respectively, and they correspond to an M-step in an EM framework. Given
these parameter updates, we now look at schemes for updating the distribu-
tions of Z|(X , Θ) (i.e., an E-step) to maximize the likelihood of the data given
the parameters estimates above.

From the standard EM framework, the distribution of the hidden variables
(34; 11) is given by

p(h|xi, Θ) =
αh fh(xi|Θ)

∑k
l=1 αl fl(xi|Θ)

. (6.12)

It can be shown (15) that the incomplete data log-likelihood, ln p(X|Θ), is
non-decreasing at each iteration of the parameter and distribution updates.
Iteration over these two updates provides the foundation for our soft-moVMF
algorithm given in Section 6.6.

Our second update scheme is based on the widely used hard-assignment
heuristic for unsupervised learning. In this case, the distribution of the hidden
variables is given by

q(h|xi, Θ) =

⎧
⎨

⎩

1, if h = argmax
h′

p(h′|xi, Θ),

0, otherwise.
(6.13)

It can be shown (5) that the above hard-assignment rule actually maximizes a
non-trivial lower bound on the incomplete data log-likelihood. Iteration over
the M-step and the hard-assignment rule leads to the hard-moVMF algorithm
given in Section 6.6.

6.5 Handling High-Dimensional Text Datasets

Although the mixture model outlined in Section 6.4 appears to be straight-
forward, there is one critical issue that needs to be addressed before one can

© 2009 by Taylor and Francis Group, LLC

128 Text Clustering with Mixture of von Mises-Fisher Distributions

apply the model to real life text datasets: How to efficiently and accurately
compute κh, h = 1, . . . , k from (6.11) for high-dimensional data? The problem
of estimating κh is analyzed in Section 6.5.1 and experimentally studied in
Section 6.5.2.

6.5.1 Approximating κ

Recall that due to the lack of an analytical solution, it is not possible to
directly estimate the κ values (see (6.5) and (6.11)). One may employ a non-
linear root-finder for estimating κ, but for high dimensional data, problems of
overflows and numerical instabilities plague such root-finders. Therefore, an
asymptotic approximation of κ is the best choice for estimating κ. Such ap-
proaches also have the benefit of taking constant computation time as opposed
to any iterative method.

Mardia and Jupp (30) provide approximations for estimating κ for a single
component (6.5) for two limiting cases (Approximations (10.3.7) and (10.3.10)
of (30, pp. 198)):

κ̂ ≈ d − 1
2(1 − r̄)

valid for large r̄, (6.14)

κ̂ ≈ dr̄

(

1 +
d

d + 2
r̄2 +

d2(d + 8)
(d + 2)2(d + 4)

r̄4

)

valid for small r̄, (6.15)

where r̄ is given by (6.5).
These approximations assume that κ � d, which is typically not valid for

high dimensional data (see the discussion in Section 6.8 for an intuition).
Furthermore, the r̄ values corresponding to the text datasets considered in
this chapter are in the mid-range rather than in the two extreme ranges of r̄
that are catered to by the above approximations. We obtain a more accurate
approximation for κ as described below. With Ad(κ) = Id/2(κ)

Id/2−1(κ) , observe
that Ad(κ) is a ratio of Bessel functions that differ in their order by just one.
Fortunately there exists a continued fraction representation of Ad(κ) (52)
given by

Ad(κ) =
Id/2(κ)

Id/2−1(κ)
=

1

d
κ +

1
d+2

κ + · · ·

. (6.16)

Letting Ad(κ) = r̄, we can write (6.16) approximately as

1
r̄
≈ d

κ
+ r̄ ,

which yields

κ ≈ dr̄

1 − r̄2
.

© 2009 by Taylor and Francis Group, LLC

Text Clustering with Mixture of von Mises-Fisher Distributions 129

We empirically found (see Section 6.5.2 below) that the quality of the above
approximation can be improved by adding a correction term of −r̄3/(1 − r̄2)
to it. Thus, we finally get

κ̂ =
r̄d − r̄3

1 − r̄2
. (6.17)

Recently Tanabe et al. (50) used some inequalities regarding the Bessel func-
tion ratio Ad(κ) (3) to bound the solution to Ad(κ) = r̄ as

r̄(d − 2)
1 − r̄2

≤ κ̂ ≤ r̄d

1 − r̄2
.

Our solution (6.17) lies within these bounds, thus leading to a better theoret-
ical justification in retrospect.

The approximation in (6.17) could perhaps be made even more accurate
by adding other correction terms that are functions of r̄ and d. However, we
remark that if one wants a more accurate approximation, it is easier to use
(6.17) as a starting point and then perform Newton-Raphson iterations for
solving Ad(κ̂) − r̄ = 0, since it is easy to evaluate A′

d(κ) = 1 − Ad(κ)2 −
d−1

κ Ad(κ). However, for high-dimensional data, accurately computing Ad(κ)
can be quite slow compared to efficiently approximating κ̂ using (6.17), and
a very high accuracy for κ is not that critical. For other approximations of κ
and some related issues, the reader is referred to (21; 5).

We now show some numerical results to assess the quality of our approxima-
tion in comparison to (6.14) and (6.15). First note that a particular value of r̄
may correspond to many different combinations of κ and d values. Then, one
needs to evaluate the accuracy of the approximations over the parts of the d-κ
plane that are expected to be encountered in the target application domains.
Section 6.5.2 below provides such an assessment by comparing performances
over different slices of the d-κ plane and over a range of r̄ values. Below we
simply compare the accuracies at a set of points on this plane via Table 6.1
which shows the actual numerical values of κ that the three approximations
(6.14), (6.15), and (6.17) yielded at these points. The r̄ values shown in the
table were computed using (6.5).

TABLE 6.1: Approximations κ̂ for a sampling of κ and d
values.

(d, r̄, κ) κ̂ in (6.14) κ̂ in (6.15) κ̂ in (6.17)
(10, 0.633668, 10) 12.3 9.4 10.2
(100, 0.46945, 60) 93.3 59.4 60.1
(500, 0.46859, 300) 469.5 296.8 300.1

(1000, 0.554386, 800) 1120.9 776.8 800.1

© 2009 by Taylor and Francis Group, LLC

130 Text Clustering with Mixture of von Mises-Fisher Distributions

6.5.2 Experimental Study of the Approximation

In this section we provide a brief experimental study to assess the qual-
ity of our approximation of the concentration parameter κ. Recall that our
approximation (6.17) attempts to solve the implicit non-linear equation

Id/2(κ)
Id/2−1(κ)

= r̄. (6.18)

We note that for large values of r̄ (r̄ close to 1), approximation (6.14) is
reasonable; for small values of r̄ (usually for r̄ < 0.2) estimate (6.15) is quite
good; whereas (6.17) yields good approximations for most values of r̄.

Since a particular value of r̄ may correspond to many different combinations
of κ and d values, to assess the quality of various approximations, we need
to evaluate their performance across the (κ, d) plane. However, such an as-
sessment is difficult to illustrate through 2-dimensional plots. To supplement
Table 6.1, which showed how the three approximations behave on a sampling
of points from the (κ, d) plane, in this section we present experimental results
on some slices of this plane, where we either keep d fixed and vary κ, or we
keep κ fixed and vary d. For all our evaluations, the r̄ values were computed
using (6.18).

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

Kappa (κ)

E
st

im
at

ed
 κ

Comparison of various kappa approximations (d = 1000)

True κ
(1.14)
(1.15)
(1.17)

FIGURE 6.1: Comparison of true and approximated κ values, with d =
1000.

© 2009 by Taylor and Francis Group, LLC

measured
average
range
values

different
size
three

calculated
two
low

sequence
region

pcr
identified
fragments

two
genes
three
cdna

analysis

residues
binding
domains

helix
cys

regions
structure
terminus
terminal

site

computer
methods
number

two
principle
design
access

processing
advantage
important

0
.0

0
0

.1
0

0
.2

0

Top Ten Similar Documents

Exhaustive Matching of the Entire Protein Sequence Database
How Big Is the Universe of Exons?
Counting and Discounting the Universe of Exons
Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Alignment
Ancient Conserved Regions in New Gene Sequences and the Protein Databases
A Method to Identify Protein Sequences that Fold into a Known Three- Dimensional Structure
Testing the Exon Theory of Genes: The Evidence from Protein Structure
Predicting Coiled Coils from Protein Sequences
Genome Sequence of the Nematode C. elegans: A Platform for Investigating Biology

Top words from the top topics (by term score) Expected topic proportions

Abstract with the most likely topic assignments

FIGURE 4.4: The analysis of a document from Science. Document sim-
ilarity was computed using Eq. 4.4; topic words were computed using Eq.
4.3.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.2

0.4

0.6

0.8

1

Month

C
on

ve
rs

at
io

n
Le

ve
l

California Energy
India
Downfall Newsfeeds
Education (Kaminski)
Fastow Companies

FIGURE 5.2: Five discussion topics identified in the three-way analysis over
months.

© 2009 by Taylor and Francis Group, LLC

FIGURE 5.7: Pixel plot of the raw Enron term-by-email matrix.

© 2009 by Taylor and Francis Group, LLC

FIGURE 5.8: Pixel plot of the reordered Enron term-by-email matrix.

© 2009 by Taylor and Francis Group, LLC

FIGURE 5.9: Pixel plot of the reordered Enron term-by-document matrix
with term and document labels.

© 2009 by Taylor and Francis Group, LLC

FIGURE 5.10: Close-up of one section of pixel plot of the reordered Enron
term-by-document matrix.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 Mixed
Cluster1
Cluster2

(a) (b)
The small-mix dataset. A clustering of small-mix.

FIGURE 6.4: Small-mix dataset and its clustering by soft-moVMF.

© 2009 by Taylor and Francis Group, LLC

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of iterations

E
nt

ro
py

 o
f h

id
de

n
va

ria
bl

es

Entropy over Iterations for soft−movMF

news20−same3
small−news20−same3
news20−diff3
small−news20−diff3

FIGURE 6.8: Variation of entropy of hidden variables with number of iter-
ations (soft-movMF).

4

Born in New York in 1934 , Sagan was
a noted astronomer whose lifelong passion
was searching for intelligent life in the cosmos.

person

scientist

physicist

astronomer

entity

region

city

district

state

hasDigit isDDDD

Where was Sagan born?
type=region NEAR “Sagan”

Name a physicist who searched
for intelligent life in the cosmos

type=physicist NEAR “cosmos”…

When was Sagan born?
type=time

pattern=isDDDD NEAR
“Sagan” “born”

abstraction

time

year

is-a

FIGURE 10.1: Document as a linear sequence of tokens, some connected
to a type hierarchy. Some sample queries and their approximate translation
to a semi-structured form are shown.

© 2009 by Taylor and Francis Group, LLC

Atype: subset

Text corpus

Corpus annotated with
links to lexical network

Annotators

Named entity
recognizer

Lexical network
(atype) connector

Atypes: full

Forward In
de

xe
r

P
as

s1

Queries from query logs Atype workloadProximity scoring
function learner

Answer tokens in context
Rank SVM

Log-linear

Smooth log-linear

Smoothed atype
distribution

queryProb(atype)

Workload-driven
atype subset

chooserRegistered atype subset

P
as

s2

Q
ue

ry
 p

ro
ce

ss
or

S
co

rin
g

fu
nc

tio
n

corpusCount(atype) stats

Reachability

Stems

Train Test

C
an

di
da

te

at
yp

e
di

st
rib

ut
io

n

C
ro

ss
-

va
lid

at
io

n

T
yp

ed
 p

ro
xi

m
ity

 q
ue

ry

In
fo

rm
er

 a
nd

 a
ty

pe
an

al
yz

er
Q

ue
st

io
n

Topk response
snippets

FIGURE 10.2: The IR4QA system that we describe in this paper.

© 2009 by Taylor and Francis Group, LLC

Candidate position to scoreSelectors

Closest
stem

“invent”

te
le

vi
si

on

w
as

in
ve

nt
ed in

19
25

.

In
ve

nt
or

Jo
hn

 B
ai

rd

w
as

bo
rn

E
ne

rg
y

Second-closest
stem “invent”

person

is-a

0−6 −5 −4 −3 −2 +1−1 +2

FIGURE 10.13: Setting up the proximity scoring problem.

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1.E+10

1.E+12

1.E+14

0.0E+0 5.0E+8 1.0E+9 1.5E+9 2.0E+9
Estimated Index Size

E
st

im
at

ed
 M

ax
im

um
 B

lo
at

1.00E-15 1.00E-06 1.00E-03 1.00E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0.0E+0 5.0E+8 1.0E+9 1.5E+9 2.0E+9
Estimated Index Size

R
ob

us
t A

ve
ra

ge
 B

lo
at

FIGURE 10.28: Estimated space-time tradeoffs produced by Atype-
SubsetChooser. The y-axis uses a log scale. Note that the curve for
� = 10−3 (suggested by Figure 10.19) has the lowest average bloat.

© 2009 by Taylor and Francis Group, LLC

Text Clustering with Mixture of von Mises-Fisher Distributions 131

0 500 1000 1500
0

200

400

600

800

1000

1200

Dimension d

E
st

im
at

ed
 v

al
ue

 o
f κ

Comparisions of approximations for κ=500, d varying

κ=500
(1.14)
(1.15)
(1.17)

FIGURE 6.2: Comparison of approximations for varying d, κ = 500.

We begin by holding d fixed at 1000, and allow κ to vary from 10 to 5010.
Figure 6.1 shows the values of computed κ̂ (estimation of κ) using the three
approximations. From this figure one can see that (6.14) overestimates the
true κ, while (6.15) underestimates it. However, our approximation (6.17) is
very close to the true κ values.

Next we illustrate the quality of approximation when κ is held fixed and d is
allowed to vary. Figure 6.2 illustrates how the various approximations behave
as the dimensionality d is varied from d = 4 till d = 1454. The concentration
parameter κ was set at 500 for this experiment. We see that (6.15) catches up
with the true value of κ after approximately d ≥ 2κ (because the associated
r̄ values become small), whereas (6.17) remains accurate throughout.

Since all the approximations depend on r̄ (which implicitly depends on κ
and d), it is illustrative to also plot the approximation errors as r̄ is allowed
to vary. Figure 6.3 shows how the three approximations perform as r̄ ranges
from 0.05 to 0.95. Let f(d, r̄), g(d, r̄), and h(d, r̄) represent the approxima-
tions to κ using (6.14), (6.15), and (6.17), respectively. Figure 6.3 displays
|Ad(f(d, r̄)) − r̄|, |Ad(g(d, r̄)) − r̄|, and |Ad(h(d, r̄)) − r̄| for the varying r̄
values. Note that the y-axis is on a log-scale to appreciate the differences
between the three approximations. We see that up to r̄ ≈ 0.18 (dashed line
on the plot), the approximation yielded by (6.15) has lower error. Thereafter,
approximation (6.17) becomes better.

© 2009 by Taylor and Francis Group, LLC

132 Text Clustering with Mixture of von Mises-Fisher Distributions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Approximation error comparison for (1.14), (1.15) and (1.17)

Average resultant parameter "r"

Lo
g

of
 |A

d(κ
 a

pp
ro

xi
m

at
io

n)
 −

 r
|

(1.14)
(1.15)
(1.17)

FIGURE 6.3: Comparison of approximations for varying r̄ (with d = 1000).

6.6 Algorithms

Mixture models based on vMF distributions naturally lead to two algo-
rithms for clustering directional data. The algorithms are centered on soft
and hard-assignment schemes and are titled soft-moVMF and hard-moVMF
respectively. The soft-moVMF algorithm (Algorithm 5) estimates the param-
eters of the mixture model exactly following the derivations in Section 6.4
using EM. Hence, it assigns soft (or probabilistic) labels to each point that
are given by the posterior probabilities of the components of the mixture con-
ditioned on the point. On termination, the algorithm gives the parameters
Θ = {αh, μh, κh}k

h=1 of the k vMF distributions that model the dataset X , as
well as the soft-clustering, i.e., the posterior probabilities p(h|xi, Θ), for all h
and i.

The hard-moVMF algorithm (Algorithm 6) estimates the parameters of the
mixture model using a hard assignment, or, winner takes all strategy. In
other words, we do the assignment of the points based on a derived posterior
distribution given by (6.13). After the hard assignments in every iteration,
each point belongs to a single cluster. As before, the updates of the component
parameters are done using the posteriors of the components, given the points.
The crucial difference in this case is that the posterior probabilities are allowed
to take only binary (0/1) values. Upon termination, Algorithm 6 yields a hard

© 2009 by Taylor and Francis Group, LLC

Text Clustering with Mixture of von Mises-Fisher Distributions 133

Algorithm 5 soft-moVMF

Require: Set X of data points on S
d−1

Ensure: A soft clustering of X over a mixture of k vMF distributions
Initialize all αh, μh, κh, h = 1, · · · , k
repeat
{The E (Expectation) step of EM}
for i = 1 to n do

for h = 1 to k do
fh(xi|θh) ← cd(κh)eκhμT

h xi

for h = 1 to k do

p(h|xi, Θ) ← αhfh(xi|θh)
∑k

l=1 αlfl(xi|θl)
{The M (Maximization) step of EM}
for h = 1 to k do

αh ← 1
n

∑n
i=1 p(h|xi, Θ)

μh ←
∑n

i=1 xip(h|xi, Θ)
r̄ ← ‖μh‖/(nαh)
μh ← μh/‖μh‖
κh ← r̄d−r̄3

1−r̄2

until convergence

clustering of the data and the parameters Θ = {αh, μh, κh}k
h=1 of the k vMFs

that model the input dataset X .
Finally, we show that by enforcing certain restrictive assumptions on the

generative model, the spkmeans algorithm (Algorithm 7) can be viewed as a
special case of both the soft-moVMF and hard-moVMF algorithms. In a mixture
of vMF model, assume that the priors of all the components are equal, i.e.,
αh = 1/k,∀h, and that all the components have (equal) infinite concentration
parameters, i.e., κh = κ → ∞, ∀h. Under these assumptions the E-step in the
soft-moVMF algorithm reduces to assigning a point to its nearest cluster, where
nearness is computed as a cosine similarity between the point and the cluster
representative, i.e., a point xi will be assigned to cluster h∗ = argmaxh xT

i μh,
since

p(h∗|xi, Θ) = lim
κ→∞

eκ xT
i μh∗

∑k
h=1 eκ xT

i μh

= 1,

and p(h|xi, Θ) → 0, as κ → ∞ for all h �= h∗.
To show that spkmeans can also be seen as a special case of the hard-moVMF,

in addition to assuming the priors of the components to be equal, we further
assume that the concentration parameters of all the components are equal,
i.e., κh = κ for all h. With these assumptions on the model, the estimation
of the common concentration parameter becomes unessential since the hard
assignment will depend only on the value of the cosine similarity xT

i μh, and
hard-moVMF reduces to spkmeans.

© 2009 by Taylor and Francis Group, LLC

134 Text Clustering with Mixture of von Mises-Fisher Distributions

Algorithm 6 hard-moVMF

Require: Set X of data points on S
d−1

Ensure: A disjoint k-partitioning of X
Initialize all αh, μh, κh, h = 1, · · · , k
repeat
{The Hardened E (Expectation) step of EM}
for i = 1 to n do

for h = 1 to k do
fh(xi|θh) ← cd(κh)eκhμT

h xi

q(h|xi, Θ) ←

⎧
⎨

⎩

1, if h = argmax
h′

αh′ fh′(xi|θh′)

0, otherwise.
{The M (Maximization) step of EM}
for h = 1 to k do

αh ← 1
n

∑n
i=1 q(h|xi, Θ)

μh ←
∑n

i=1 xiq(h|xi, Θ)
r̄ ← ‖μh‖/(nαh)
μh ← μh/‖μh‖
κh ← r̄d−r̄3

1−r̄2

until convergence.

In addition to the above mentioned algorithms, we report experimental
results on another algorithm fskmeans (6) that belongs to the same class in
the sense that, like spkmeans, it can be derived from the mixture of vMF
models with some restrictive assumptions. In fskmeans, the centroids of
the mixture components are estimated as in hard-movMF. The κ value for
a component is explicitly set to be inversely proportional to the number of
points in the cluster corresponding to that component. This explicit choice
simulates a frequency sensitive competitive learning that implicitly prevents
the formation of null clusters, a well-known problem in regular kmeans (14).

6.7 Experimental Results

We now offer some experimental validation to assess the quality of clustering
results achieved by our algorithms. We compare the following four algorithms
on several datasets.

1. Spherical KMeans (20)—spkmeans.

2. Frequency Sensitive Spherical KMeans (6)—fskmeans.

3. moVMF based clustering using hard assignments—hard-moVMF.

© 2009 by Taylor and Francis Group, LLC

Text Clustering with Mixture of von Mises-Fisher Distributions 135

Algorithm 7 spkmeans

Require: Set X of data points on S
d−1

Ensure: A disjoint k-partitioning {Xh}k
h=1 of X

Initialize μh, h = 1, · · · , k
repeat
{The E (Expectation) step of EM}
Set Xh ← ∅, h = 1, · · · , k
for i = 1 to n do
Xh ← Xh ∪ {xi} where h = argmax

h′
xT

i μh′

{The M (Maximization) step of EM}
for h = 1 to k do

μh ←
∑

x∈Xh
x

‖
∑

x∈Xh
x‖

until convergence.

4. moVMF based clustering using soft assignments—soft-moVMF.

It has already been established that kmeans using Euclidean distance per-
forms much worse than spkmeans for text data (49), so we do not consider
it here. Generative model based algorithms that use mixtures of Bernoulli
or multinomial distributions, which have been shown to perform well for text
datasets, have also not been included in the experiments. This exclusion is
done as a recent empirical study over 15 text datasets showed that simple ver-
sions of vMF mixture models (with κ constant for all clusters) outperform the
multinomial model except for only one dataset (Classic3), and the Bernoulli
model was inferior for all datasets (56). Further, for certain datasets, we
compare clustering performance with latent Dirichlet allocation (LDA) (12)
and exponential family approximation of Dirichlet compounded multinomial
(EDCM) models (23).

6.7.1 Datasets

The datasets that we used for empirical validation and comparison of our
algorithms were carefully selected to represent some typical clustering prob-
lems. We also created various subsets of some of the datasets for gaining
greater insight into the nature of clusters discovered or to model some partic-
ular clustering scenario (e.g., balanced clusters, skewed clusters, overlapping
clusters, etc.). We drew our data from five sources: Simulated, Classic3, Ya-
hoo News, 20 Newsgroups, and Slashdot. For all the text document datasets,
the toolkit MC (17) was used for creating a high-dimensional vector space
model that each of the four algorithms utilized. Matlab code was used to
render the input as a vector space for the simulated datasets.

© 2009 by Taylor and Francis Group, LLC

136 Text Clustering with Mixture of von Mises-Fisher Distributions

• Simulated. We use simulated data to verify that the discrepancy be-
tween computed values of the parameters and their true values is small.
Our simulated data serves the principal purpose of validating the “cor-
rectness” of our implementations. We used a slight modification of the
algorithm given by (53) to generate a set of data points following a
given vMF distribution. We describe herein two synthetic datasets. The
first dataset small-mix is 2-dimensional and is used to illustrate soft-
clustering. The second dataset big-mix is a high-dimensional dataset
that could serve as a model for real world text datasets. Let the triple
(n, d, k) denote the number of sample points, the dimensionality of a
sample point, and the number of clusters respectively.

1. small-mix: This data has (n, d, k) = (50, 2, 2). The mean direc-
tion of each component is a random unit vector. Each component
has κ = 4.

2. big-mix: data has (n, d, k) = (5000, 1000, 4). The mean direction
of each component is a random unit vector, and the κ values of the
components are 650.98, 266.83, 267.83, and 612.88. The mixing
weights for each component are 0.251, 0.238, 0.252, and 0.259.

• Classic3. This is a well known collection of documents. It is an easy
dataset to cluster since it contains documents from three well-separated
sources. Moreover, the intrinsic clusters are largely balanced.

1. Classic3 is a corpus containining 3893 documents, among which
1400 Cranfield documents are from aeronautical system papers,
1033 Medline documents are from medical journals, and 1460 Cisi

documents are from information retrieval papers. The particular
vector space model used had a total of 4666 features (words). Thus
each document, after normalization, is represented as a unit vector
in a 4666-dimensional space.

2. Classic300 is a subset of the Classic3 collection and has 300 doc-
uments. From each category of Classic3, we picked 100 documents
at random to form this particular dataset. The dimensionality of
the data was 5471.2

3. Classic400 is a subset of Classic3 that has 400 documents. This
dataset has 100 randomly chosen documents from the Medline

and Cisi categories and 200 randomly chosen documents from the
Cranfield category. This dataset is specifically designed to create
unbalanced clusters in an otherwise easily separable and balanced
dataset. The dimensionality of the data was 6205.

2Note that the dimensionality in Classic300 is larger than that of Classic3. Although the
same options were used in the MC toolkit for word pruning, due to very different word
distributions, fewer words got pruned for Classic300 in the ‘too common’ or ‘too rare’
categories.

© 2009 by Taylor and Francis Group, LLC

Text Clustering with Mixture of von Mises-Fisher Distributions 137

• Yahoo News (K-series). This compilation has 2340 Yahoo news arti-
cles from 20 different categories. The underlying clusters in this dataset
are highly skewed in terms of the number of documents per cluster, with
sizes ranging from 9 to 494. The skewness presents additional challenges
to clustering algorithms.

• 20 Newsgroup. The 20 Newsgroup dataset is a widely used com-
pilation of documents (28). We tested our algorithms on not only the
original dataset, but on a variety of subsets with differing characteristics
to explore and understand the behavior of our algorithms.

1. News20 is a standard dataset that comprises 19,997 messages,
gathered from 20 different USENET newsgroups. One thousand
messages are drawn from the first 19 newsgroups, and 997 from
the twentieth. The headers for each of the messages are then re-
moved to avoid biasing the results. The particular vector space
model used had 25924 words. News20 embodies the features char-
acteristic of a typical text dataset—high-dimensionality, sparsity,
and significantly overlapping clusters.

2. Small-news20 is formed by selecting 2000 messages from the orig-
inal News20 dataset. We randomly selected 100 messages from each
category in the original dataset. Hence this dataset has balanced
classes (though there may be overlap). The dimensionality of the
data was 13406.

3. Same-100/1000 is a collection of 100/1000 messages from 3
very similar newsgroups: comp.graphics, comp.os.ms-windows,
comp.windows.x.

4. Similar-100/1000 is a collection of 100/1000 messages from 3
somewhat similar newsgroups: talk.politics.{guns,mideast,misc}.

5. Different-100/1000 is a collection of 100/1000 messages from
3 very different newsgroups: alt.atheism, rec.sport.baseball,
sci.space.

• Slash-dot. We harvested news articles from the Slashdot website and
created 2 datasets. For each category in these datasets, we collected
1000 articles primarily tagged with the category label, and then removed
articles that were posted to multiple categories.

1. Slash-7 contains 6714 news articles posted to 7 Slashdot cate-
gories: Business, Education, Entertainment, Games, Music, Sci-
ence, and Internet.

2. Slash-6 contains 5182 articles posted to the 6 categories: Biotech,
Microsoft, Privacy, Google, Security, Space.

© 2009 by Taylor and Francis Group, LLC

138 Text Clustering with Mixture of von Mises-Fisher Distributions

6.7.2 Methodology

Performance of the algorithms on all the datasets has been analyzed using
mutual information (MI) between the cluster and class labels. MI quantifies
the amount of statistical similarity between the cluster and class labels (16).
If X is a random variable for the cluster assignments and Y is a random
variable for the pre-existing labels on the same data, then their MI is given
by I(X ; Y) = E[ln p(X,Y)

p(X)p(Y)] where the expectation is computed over the joint
distribution of (X, Y) estimated from a particular clustering of the dataset
under consideration. To facilitate computing MI, for soft-moVMFwe “harden”
the clustering produced by labeling a point with the cluster label for which it
has the highest value of posterior probability (ties broken arbitrarily). Note
that variants of MI have been used to evaluate clustering algorithms by several
researchers. The authors of (32) used a related concept called variation of
information to compare clusterings. An MDL-based formulation that uses
the MI between cluster assignments and class labels was proposed by (22).

All results reported herein have been averaged over 10 runs. All algorithms
were started with the same random initialization to ensure fairness of compar-
ison. Each run was started with a different random initialization. However,
no algorithm was restarted within a given run and all of them were allowed to
run to completion. Since the standard deviations of MI were reasonably small
for all algorithms, to reduce clutter, we have chosen to omit a display of error
bars in our plots. Also, for practical reasons, the estimate of κ was upper
bounded by a large number (104, in this case) in order to prevent numeric
overflows. For example, during the iterations, if a cluster has only one point,
the estimate of κ will be infinity (a divide by zero error). Upper bounding
the estimate of κ is similar in flavor to ensuring the non-singularity of the
estimated covariance of a multivariate Gaussian in a mixture of Gaussians.

6.7.3 Simulated Datasets

First, to build some intuition and confidence in the working of our vMF
based algorithms we exhibit relevant details of soft-moVMF’s behavior on the
small-mix dataset shown in Figure 6.4(a).

The clustering produced by our soft cluster assignment algorithm is shown
in Figure 6.4(b). The four points (taken clockwise) marked with solid circles
have cluster labels (0.15, 0.85), (0.77, 0.23), (.82, .18), and (.11, .89), where a
cluster label (p, 1 − p) for a point means that the point has probability p of
belonging to Cluster 1 and probability 1 − p of belonging to Cluster 2. All
other points are categorized to belong to a single cluster by ignoring small
(less than 0.10) probability values.

The confusion matrix, obtained by “hardening” the clustering produced

by soft-moVMF for the small-mix dataset, is
[
26 1
0 23

]

. As is evident from

this confusion matrix, the clustering performed by soft-moVMF is excellent,

© 2009 by Taylor and Francis Group, LLC

Text Clustering with Mixture of von Mises-Fisher Distributions 139

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 Mixed
Cluster1
Cluster2

(a) (b)
The small-mix dataset. A clustering of small-mix.

FIGURE 6.4 (SEE COLOR INSERT FOLLOWING PAGE 130.):
Small-mix dataset and its clustering by soft-moVMF.

though not surprising, since small-mix is a dataset with well-separated clus-
ters. Further testimony to soft-moVMF’s performance is served by Table 6.2,
which shows the discrepancy between true and estimated parameters for the
small-mix collection.

TABLE 6.2: True and estimated parameters for small-mix
using soft-moVMF.

Cluster μ μ̂ κ κ̂ α α̂
1 (-0.251, -0.968) (-0.279, -0.960) 4 3.78 0.48 0.46
2 (0.399, 0.917) (0.370, 0.929) 4 3.53 0.52 0.54

In the table μ, κ, α represent the true parameters and μ̂,κ̂, α̂ represent the
estimated parameters. We can see that even in the presence of a limited
number of data points in the small-mix dataset (50 points), the estimated
parameters approximate the true parameters quite well.

Before moving onto real datasets let us briefly look at the behavior of the
algorithms on the larger dataset big-mix. On calculating MI as described
previously we found that all the algorithms performed similarly with MI values
close to one. We attribute this good performance of all the algorithms to the
availability of a sufficient number of data points and similar sized clusters.
For reference Table 6.3 offers numerical evidence about the performance of
soft-moVMF on the big-mix dataset.

© 2009 by Taylor and Francis Group, LLC

140 Text Clustering with Mixture of von Mises-Fisher Distributions

TABLE 6.3: Performance of soft-moVMF on big-mix dataset.

min μT μ̂ avg μT μ̂ max |κ−bκ|
|κ| avg |κ−bκ|

|κ| max |α−bα|
|α| avg |α−bα|

|α|
0.994 0.998 0.006 0.004 0.002 0.001

6.7.4 Classic3 Family of Datasets

Table 6.4 shows typical confusion matrices obtained for the full Classic3
dataset. We observe that the performance of all the algorithms is quite sim-
ilar and there is no added advantage yielded by using the general moVMF
model as compared to the other algorithms. This observation can be ex-
plained by noting that the clusters of Classic3 are well separated and have
a sufficient number of documents. For this clustering hard-moVMF yielded
κ values of (732.13, 809.53, 1000.04), while soft-moVMF reported κ values of
(731.55, 808.21, 1002.95).

TABLE 6.4: Comparative confusion matrices for 3 clusters of Classic3
(rows represent clusters).

fskmeans spkmeans hard-moVMF soft-moVMF

med cisi cran med cisi cran med cisi cran med cisi cran
1019 0 0 1019 0 0 1018 0 0 1019 0 1

1 6 1386 1 6 1386 2 6 1387 1 4 1384
13 1454 12 13 1454 12 13 1454 11 13 1456 13

Table 6.5 shows the confusion matrices obtained for the Classic300 dataset.
Even though Classic300 is well separated, the small number of documents per
cluster makes the problem somewhat difficult for fskmeans and spkmeans,
while hard-moVMF has a much better performance due to its model flexibility.
The soft-moVMF algorithm performs appreciably better than the other three
algorithms.

It seems that the low number of documents does not pose a problem for
soft-moVMF and it ends up getting an almost perfect clustering for this
dataset. Thus in this case, despite the low number of points per clus-
ter, the superior modeling power of our moVMF based algorithms prevents
them from getting trapped in inferior local-minima as compared to the other
algorithms—resulting in a better clustering.

The confusion matrices obtained for the Classic400 dataset are displayed in
Table 6.6. The behavior of the algorithms for this dataset is quite interesting.
As before, due to the small number of documents per cluster, fskmeans and
spkmeans give a rather mixed confusion matrix. The hard-moVMF algorithm
gets a significant part of the bigger cluster correctly and achieves some amount
of separation between the two smaller clusters. The soft-moVMF algorithm
exhibits a somewhat intriguing behavior. It splits the bigger cluster into two,

© 2009 by Taylor and Francis Group, LLC

Text Clustering with Mixture of von Mises-Fisher Distributions 141

TABLE 6.5: Comparative confusion matrices for 3 clusters of
Classic300.

fskmeans spkmeans hard-moVMF soft-moVMF
med cisi cran med cisi cran med cisi cran med cisi cran
29 38 22 29 38 22 3 72 1 0 98 0
31 27 38 31 27 38 62 28 17 99 2 0
40 35 40 40 35 40 35 0 82 1 0 100

TABLE 6.6: Comparative confusion matrices for 3 clusters of
Classic400.

fskmeans spkmeans hard-moVMF soft-moVMF
med cisi cran med cisi cran med cisi cran med cisi cran
27 16 55 27 17 54 56 28 20 0 0 91
51 83 12 51 82 12 44 72 14 82 99 2
23 1 132 23 1 133 1 0 165 19 1 106

relatively pure segments, and merges the smaller two into one cluster. When
4 clusters are requested from soft-moVMF, it returns 4 very pure clusters (not
shown in the confusion matrices), two of which are almost equal sized segments
of the bigger cluster.

An insight into the working of the algorithms is provided by considering
their clustering performance when they are requested to produce greater than
the “natural” number of clusters. In Table 6.7 we show the confusion matrices
resulting from 5 clusters of the Classic3 corpus. The matrices suggest that
the moVMF algorithms have a tendency of trying to maintain larger clusters
intact as long as possible, and breaking them into reasonably pure and com-
parably sized parts when they absolutely must. This behavior of our moVMF
algorithms coupled with the observations in Table 6.6 suggest a clustering
method in which one could generate a slightly higher number of clusters than
required, and then agglomerate them appropriately.

TABLE 6.7: Comparative confusion matrices for 5 clusters of Classic3.
fskmeans spkmeans hard-moVMF soft-moVMF

med cisi cran med cisi cran med cisi cran med cisi cran
2 4 312 2 4 323 3 5 292 0 1 1107
8 520 10 8 512 9 511 1 0 5 1455 14
5 936 6 5 944 6 514 1 0 526 2 1

1018 0 1 1018 0 1 0 2 1093 501 0 0
0 0 1069 0 0 1059 5 1451 13 1 2 276

The MI plots for the various Classic3 datasets are given in Figures 6.5(a)-(c).
For the full Classic3 dataset (Figure 6.5(a)), all the algorithms perform almost

© 2009 by Taylor and Francis Group, LLC

142 Text Clustering with Mixture of von Mises-Fisher Distributions

2 3 4 5 6 7 8 9 10 11
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Number of clusters, k

M
ut

ua
l I

nf
or

m
at

io
n

va
lu

e

MI values on Classic3

fskmeans
spkmeans
hard−movMF
soft−movMF

2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of clusters, k

M
ut

ua
l I

nf
or

m
at

io
n

va
lu

e

MI values on Classic300

fskmeans
spkmeans
hard−movMF
soft−movMF

(a) MI values for Classic3. (b) MI values for Classic300.

2 3 4 5 6 7 8 9 10 11
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of clusters, k

M
ut

ua
l I

nf
or

m
at

io
n

va
lu

e

MI values on Classic400

fskmeans
spkmeans
hard−movMF
soft−movMF

0 5 10 15 20 25 30 35
0.5

0.6

0.7

0.8

0.9

1

Number of clusters, k

M
ut

ua
l I

nf
or

m
at

io
n

va
lu

e

MI values on yahoo

fskmeans
spkmeans
hard−movMF
soft−movMF

(c) MI values for Classic400. (d) MI values for Yahoo News.

FIGURE 6.5: Comparison of the algorithms for the Classic3 datasets and
the Yahoo News dataset.

© 2009 by Taylor and Francis Group, LLC

Text Clustering with Mixture of von Mises-Fisher Distributions 143

similarly at the true number of clusters. However, as the number of clusters
increases, soft-moVMF seems to outperform the others by a significant margin.
For Classic300 (Figure 6.5(b)) and Classic400 (Figure 6.5(c)), soft-moVMF
seems to significantly outperform the other algorithms. In fact, for these two
datasets, soft-moVMF performs substantially better than the other three, even
at the correct number of clusters. Among the other three, hard-moVMF seems
to perform better than spkmeans and fskmeans across the range of clusters.

6.7.5 Yahoo News Dataset

The Yahoo News dataset is a relatively difficult dataset for clustering since
it has a fair amount of overlap among its clusters and the number of points
per cluster is low. In addition, the clusters are highly skewed in terms of their
comparative sizes.

Results for the different algorithms can be seen in Figure 6.5(d). Over the
entire range, soft-moVMF consistently performs better than the other algo-
rithms. Even at the correct number of clusters k = 20, it performs signifi-
cantly better than the other algorithms.

6.7.6 20 Newsgroup Family of Datasets

Now we discuss clustering performance of the four algorithms on the 20
Newsgroup datasets. Figure 6.6(a) shows the MI plots for the full News20
dataset. All the algorithms perform similarly until the true number of clusters
after which soft-moVMF and spkmeans perform better than the others. We do
not notice any interesting differences between the four algorithms from this
Figure.

Figure 6.6(b) shows MI plots for the Small-News20 dataset and the results
are of course different. Since the number of documents per cluster is small
(100), as before spkmeans and fskmeans do not perform that well, even at
the true number of clusters, whereas soft-moVMF performs considerably bet-
ter than the others over the entire range. Again, hard-moVMF exhibits good
MI values until the true number of clusters, after which it falls sharply. On
the other hand, for the datasets that have a reasonably large number of doc-
uments per cluster, another kind of behavior is usually observed. All the
algorithms perform quite similarly until the true number of clusters, after
which soft-moVMF performs significantly better than the other three. This
behavior can be observed in Figures 6.6(d), 6.6(f), and 6.7(b). We note that
the other three algorithms perform quite similarly over the entire range of
clusters. We also observe that for an easy dataset like Different-1000, the MI
values peak at the true number of clusters, whereas for a more difficult dataset
such as Similar-1000 the MI values increase as the clusters get further refined.
This behavior is expected since the clusters in Similar-1000 have much greater
overlap than those in Different-1000.

© 2009 by Taylor and Francis Group, LLC

144 Text Clustering with Mixture of von Mises-Fisher Distributions

0 5 10 15 20 25 30 35 40
0.5

1

1.5

2

Number of clusters, k

M
ut

ua
l I

nf
or

m
at

io
n

va
lu

e

MI values with no normalization on cmu−newsgroup−clean−1000

fskmeans
spkmeans
hard−movMF
soft−movMF

0 5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

Number of clusters, k

M
ut

ua
l I

nf
or

m
at

io
n

va
lu

e

MI values on small−news20

fskmeans
spkmeans
hard−movMF
soft−movMF

(a) MI values for News20. (b) MI values for Small-news20.

2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of clusters, k

M
ut

ua
l I

nf
or

m
at

io
n

va
lu

e

MI values on small−news20−diff3

fskmeans
spkmeans
hard−movMF
soft−movMF

2 3 4 5 6 7 8 9 10 11
0.4

0.6

0.8

1

Number of clusters, k

M
ut

ua
l I

nf
or

m
at

io
n

va
lu

e

MI values on news20−diff3

fskmeans
spkmeans
hard−movMF
soft−movMF

(c) MI values for Different-100. (d) MI values for Different-1000.

2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

Number of clusters, k

M
ut

ua
l I

nf
or

m
at

io
n

va
lu

e

MI values with no normalization on similar−100

fskmeans
spkmeans
hard−movMF
soft−movMF

2 3 4 5 6 7 8 9 10 11
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of clusters, k

M
ut

ua
l I

nf
or

m
at

io
n

va
lu

e

MI values with no normalization on similar−1000

fskmeans
spkmeans
hard−movMF
soft−movMF

(e) MI values for Similar-100. (f) MI values for Similar-1000.

FIGURE 6.6: Comparison of the algorithms for the 20 Newsgroup and some
subsets.

© 2009 by Taylor and Francis Group, LLC

Text Clustering with Mixture of von Mises-Fisher Distributions 145

2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of clusters, k

M
ut

ua
l I

nf
or

m
at

io
n

va
lu

e

MI values on small−news20−sim3

fskmeans
spkmeans
hard−movMF
soft−movMF

2 3 4 5 6 7 8 9 10 11
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of clusters, k

M
ut

ua
l I

nf
or

m
at

io
n

va
lu

e

MI values on news20−sim3

fskmeans
spkmeans
hard−movMF
soft−movMF

(a) MI values for Same-100. (b) MI values for Same-1000.

FIGURE 6.7: Comparison of the algorithms for more subsets of 20 News-
group data.

6.7.7 Slashdot Datasets

The Slashdot dataset was created to test the performance of the moVMF
model on a typical web application. To gain a better understanding of the
relative performance of the model compared to other state-of-the-art models
for text clustering and topic modeling, moVMF was compared with latent
Dirichlet allocation (LDA) (12) and the exponential family approximation
of the Dirichlet compounded multinomial (EDCM) model (23). Table 6.8
shows the comparative performance in terms of cluster quality measured by
normalized mutual information (NMI), and in terms of running time. Overall,
moVMF gives significantly better clustering results, while the running time is
an order of magnitude less compared to the other algorithms. Similar results
on other benchmark datasets have been reported by (4).

TABLE 6.8: Performance comparison of algorithms
averaged over 5 runs.

NMI Run Time (sec)
Dataset moVMF EDCM LDA vMF EDCM LDA
slash-7 0.39 0.22 0.31 15 40 47
slash-6 0.65 0.36 0.46 6 26 36

Table 6.9 shows the qualitative performance of moVMF model on the Slash-
7 dataset in terms of the top keywords associated with five of the clusters.
The “topics” associated with each cluster is of comparable quality to that

© 2009 by Taylor and Francis Group, LLC

146 Text Clustering with Mixture of von Mises-Fisher Distributions

generated by Bayesian topic models such as LDA (4).

TABLE 6.9: Five of the topics obtained by running
batch vMF on slash-7.

music web scientists internet games
apple google nasa broadband gaming
itunes search space domain game
riaa yahoo researchers net nintendo
ipod site science network sony

wikipedia online years verisign xbox
digital sites earth bittorrent gamers
napster ebay found icann wii

file amazon brain service console
drm engine university access video

6.8 Discussion

The mixture of vMF distributions gives a parametric model-based gener-
alization of the widely used cosine similarity measure. As discussed in Sec-
tion 6.6, the spherical kmeans algorithm that uses cosine similarity arises as a
special case of EM on mixture of vMFs when, among other things, the concen-
tration κ of all the distributions is held constant. Interestingly, an alternative
and more formal connection can be made from an information geometry view-
point (2). More precisely, consider a dataset that has been sampled following a
vMF distribution with a given κ, say κ = 1. Assuming the Fisher-Information
matrix is identity, the Fisher kernel similarity (25) corresponding to the vMF
distribution is given by

K(xi,xj) = (∇μ ln f(xi|μ))T (∇μ ln f(xj |μ)) (see (6.1))

= (∇μ(μTxi))T (∇μ(μT xj)) = xT
i xj ,

which is exactly the cosine similarity. This provides a theoretical justification
for a long-practiced approach in the information retrieval community.

In terms of performance, the magnitude of improvement shown by the
soft-movMF algorithm for the difficult clustering tasks was surprising, espe-
cially since for low-dimensional non-directional data, the improvements using
a soft, EM-based kmeans or fuzzy kmeans over the standard hard-assignment
based versions are often quite minimal. In particular, a couple of issues ap-
pear intriguing: (i) why is soft-movMF performing substantially better than

© 2009 by Taylor and Francis Group, LLC

Text Clustering with Mixture of von Mises-Fisher Distributions 147

hard-movMF, even though the final probability values obtained by soft-movMF
are actually very close to 0 and 1; and (ii) why is soft-movMF, which needs
to estimate more parameters, doing better even when there are insufficient
number of points relative to the dimensionality of the space.

It turns out that both these issues can be understood by taking a closer look
at how soft-moVMF converges. In all our experiments, we initialized κ to 10,
and the initial centroids to small random perturbations of the global centroid.
Hence, for soft-movMF, the initial posterior membership distributions of the
data points are almost uniform and the Shannon entropy of the hidden random
variables is very high. The change of this entropy over iterations for the
News20 subsets is presented in Figure 6.8. The behavior is similar for all the
other datasets that we studied. Unlike kmeans-based algorithms where most
of the relocation happens in the first two or three iterations with only minor
adjustments later on, in soft-movMF the data points are non-committal in
the first few iterations, and the entropy remains very high (the maximum
possible entropy for 3 clusters can be log2 3 = 1.585). The cluster patterns
are discovered only after several iterations, and the entropy drops drastically
within a small number of iterations after that. When the algorithm converges,
the entropy is practically zero and all points are effectively hard-assigned
to their respective clusters. Note that this behavior is strikingly similar to
(locally adaptive) annealing approaches where κ can be considered as the
inverse of the temperature parameter. The drastic drop in entropy after a few
iterations is the typical critical temperature behavior observed in annealing.

As text data has only non-negative features values, all the data points lie in
the first orthant of the d-dimensional hypersphere and, hence, are naturally
very concentrated. Thus, the final κ values on convergence are very high,
reflecting the concentration in the data, and implying a low final tempera-
ture from the annealing perspective. Then, initializing κ to a low value, or
equivalently a high temperature, is a good idea because in that case when
soft-movMF is running, the κ values will keep on increasing over successive
iterations to get to its final large values, giving the effect of a decreasing tem-
perature in the process, without any explicit deterministic annealing strat-
egy. Also different mixture components can take different values of κ, as
automatically determined by the EM updates, and need not be controlled
by any external heuristic. The cost of the added flexibility in soft-moVMF
over spkmeans is the extra computation in estimating the κ values. Thus the
soft-movMF algorithm provides a trade-off between modeling power and com-
putational demands, but one that, judging from the empirical results, seems
quite worthwhile. The hard-movMF algorithm, instead of using the more gen-
eral vMF model, suffers because of hard-assignments from the very beginning.
The fskmeans and spkmeans do not do well for difficult datasets due to their
hard assignment scheme as well as their significantly less modeling capabili-
ties.

Finally, a word on model selection, since choosing the number of clusters
remains one of the widely debated topics in clustering (31). A new objec-

© 2009 by Taylor and Francis Group, LLC

148 Text Clustering with Mixture of von Mises-Fisher Distributions

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of iterations

E
nt

ro
py

 o
f h

id
de

n
va

ria
bl

es

Entropy over Iterations for soft−movMF

news20−same3
small−news20−same3
news20−diff3
small−news20−diff3

FIGURE 6.8 (SEE COLOR INSERT FOLLOWING PAGE 130.):
Variation of entropy of hidden variables with number of iterations
(soft-movMF).

tive criterion for evaluation and model-selection for clustering algorithms was
proposed in (8): how well does the clustering algorithm perform as a pre-
diction algorithm. The prediction accuracy of the clustering is measured by
the PAC-MDL bound (13; 8) that upper-bounds the error-rate of predictions
on the test-set. The way to use it for model-selection is quite straightfor-
ward: among a range of number of clusters, choose the one that achieves
the minimum bound on the test-set error-rate. Experiments on model selec-
tion applied to several clustering algorithms were reported by (8). Interest-
ingly, the movMF-based algorithms almost always obtained the ‘right number
of clusters’—in this case, the underlying labels in the dataset were actually
known and the number of labels were considered to be the right number of
clusters. It is important to note that this form of model-selection only works
in a semi-supervised setting where a little amount of labeled data is available
for model selection.

6.9 Conclusions and Future Work

From the experimental results, it seems that high-dimensional text data
have properties that match well with the modeling assumptions of the vMF
mixture model. This motivates further study of such models. For example,

© 2009 by Taylor and Francis Group, LLC

Text Clustering with Mixture of von Mises-Fisher Distributions 149

one can consider a hybrid algorithm that employs soft-moVMF for the first
few (more important) iterations, and then switches to hard-moVMF for speed,
and measure the speed-quality tradeoff that this hybrid approach provides.
Another possible extension would be to consider an online version of the EM-
based algorithms as discussed in this paper, developed along the lines of (34).
Online algorithms are particularly attractive for dealing with streaming data
when memory is limited, and for modeling mildly non-stationary data sources.
We could also adapt a local search strategy such as the one in (18), for incre-
mental EM to yield better local minima for both hard and soft-assignments.

The vMF distribution that we considered in the proposed techniques is one
of the simplest parametric distributions for directional data. The iso-density
lines of the vMF distribution are circles on the hypersphere, i.e., all points on
the surface of the hypersphere at a constant angle from the mean direction.
In some applications, more general iso-density contours may be desirable.
There are more general models on the unit sphere, such as the Bingham dis-
tribution, the Kent distribution, the Watson distribution (already discussed
in the previous section), the Fisher-Bingham distribution, the Pearson type
VII distributions (42; 30), etc., that can potentially be more applicable in the
general setting. For example, the Fisher-Bingham distributions have added
modeling power since there are O(d2) parameters for each distribution. How-
ever, the parameter estimation problem, especially in high-dimensions, can
be significantly more difficult for such models, as more parameters need to
be estimated from the data. One definitely needs substantially more data to
get reliable estimates of the parameters. Further, for some cases, e.g., the
Kent distribution, it can be difficult to solve the estimation problem in more
than 3-dimensions (36). Hence these more complex models may not be vi-
able for many high-dimensional problems. Nevertheless, the tradeoff between
model complexity (in terms of the number of parameters and their estimation)
and sample complexity needs to be studied in more detail in the context of
directional data.

Acknowledgments

The authors would like to thank Sugato Basu and Jiye Yu for experiments
with the Slashdot datasets. This research was supported in part by the Digital
Technology Center Data Mining Consortium (DDMC) at the University of
Minnesota, Twin Cities.

© 2009 by Taylor and Francis Group, LLC

150 Text Clustering with Mixture of von Mises-Fisher Distributions

References

[1] M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical
Functions. Dover Publ. Inc., New York, 1974.

[2] S. I. Amari. Information geometry of the EM and em algorithms for
neural networks. Neural Networks, 8(9):1379–1408, 1995.

[3] D. E. Amos. Computation of modified Bessel functions and their ratios.
Mathematics of Computation, 28(125):235–251, 1974.

[4] A. Banerjee and S. Basu. Topic models over text streams: A study of
batch and online unsupervised learning. In Proceedings of the 7th SIAM
International Conference on Data Mining, 2007.

[5] A. Banerjee, I. Dhillon, J. Ghosh, and S. Sra. Clustering on the unit
hypersphere using von Mises-Fisher distributions. Journal of Machine
Learning Research, 6:1345–1382, 2005.

[6] A. Banerjee and J. Ghosh. Frequency sensitive competitive learning
for clustering on high-dimensional hyperspheres. In Proceedings Inter-
national Joint Conference on Neural Networks, pages 1590–1595, May
2002.

[7] A. Banerjee and J. Ghosh. Frequency Sensitive Competitive Learning for
Scalable Balanced Clustering on High-dimensional Hyperspheres. IEEE
Transactions on Neural Networks, 15(3):702–719, May 2004.

[8] A. Banerjee and J. Langford. An objective evaluation criterion for clus-
tering. In Proc. 10th International Conference on Knowledge Discovery
and Data Mining (KDD), pages 515–520, 2004.

[9] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh. Clustering with Breg-
man divergences. Journal of Machine Learning Research, 6:1705–1749,
2005.

[10] A. Bijral, M. Breitenbach, and G. Z. Grudic. Mixture of Watson Dis-
tributions: A Generative Model for Hyperspherical Embeddings. In
AISTATS, 2007.

[11] J. Bilmes. A Gentle Tutorial on the EM Algorithm and its Applica-
tion to Parameter Estimation for Gaussian Mixture and Hidden Markov
Models. Technical Report ICSI-TR-97-021, University of Berkeley, 1997.

[12] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022, 2003.

[13] A. Blum and J. Langford. PAC-MDL bounds. In Proc. 16th Annual
Conference on Learning Theory (COLT), 2003.

© 2009 by Taylor and Francis Group, LLC

Text Clustering with Mixture of von Mises-Fisher Distributions 151

[14] P. S. Bradley, K. P. Bennett, and A. Demiriz. Constrained k-means
clustering. Technical report, Microsoft Research, May 2000.

[15] M. Collins. The EM algorithm. In fulfillment of Written Preliminary
Exam II requirement, September 1997.

[16] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-
Interscience, 1991.

[17] I. S. Dhillon, J. Fan, and Y. Guan. Efficient clustering of very large doc-
ument collections. In V. Kumar R. Grossman, C. Kamath and R. Nam-
buru, editors, Data Mining for Scientific and Engineering Applications.
Kluwer Academic Publishers, 2001.

[18] I. S. Dhillon, Y. Guan, and J. Kogan. Iterative clustering of high di-
mensional text data augmented by local search. In Proceedings of The
2002 IEEE International Conference on Data Mining, 2002.

[19] I. S. Dhillon, E. M. Marcotte, and U. Roshan. Diametrical clustering for
identifying anti-correlated gene clusters. Bioinformatics, 19(13):1612–
1619, 2003.

[20] I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse
text data using clustering. Machine Learning, 42(1):143–175, 2001.

[21] I. S. Dhillon and S. Sra. Modeling data using directional distributions.
Technical Report TR-03-06, Department of Computer Sciences, Univer-
sity of Texas at Austin, Austin, TX, 2003.

[22] B. E. Dom. An information-theoretic external cluster-validity measure.
Technical Report RJ 10219, IBM Research Report, 2001.

[23] C. Elkan. Clustering documents with an exponential-family approxima-
tion of the Dirichlet compund multinomial distribution. In Proceedings
of the 23rd International Conference on Machine Learning, 2006.

[24] N. I. Fisher. Statistical Analysis of Circular Data. Cambridge University
Press, 1996.

[25] T. Jaakkola and D. Haussler. Exploiting generative models in discrimi-
native classifiers. In M. S. Kearns, S. A. Solla, and D. D. Cohn, editors,
Advances in Neural Information Processing Systems, volume 11, pages
487–493. MIT Press, 1999.

[26] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice
Hall, New Jersey, 1988.

[27] R. Kannan, S. Vempala, and A. Vetta. On clusterings—good, bad and
spectral. In 41st Annual IEEE Symposium Foundations of Computer
Science, pages 367–377, 2000.

© 2009 by Taylor and Francis Group, LLC

152 Text Clustering with Mixture of von Mises-Fisher Distributions

[28] K Lang. News Weeder: Learning to filter netnews. In Proceedings
12th International Conference on Machine Learning, pages 331–339, San
Francisco, 1995.

[29] K. V. Mardia. Statistical Distributions in Scientific Work, volume 3,
chapter “Characteristics of directional distributions,” pages 365–385.
Reidel, Dordrecht, 1975.

[30] K. V. Mardia and P. Jupp. Directional Statistics. John Wiley and Sons
Ltd., 2nd edition, 2000.

[31] G. J. McLachlan and D. Peel. Finite Mixture Models. Wiley series
in Probability and Mathematical Statistics: Applied Probability and
Statistics Section. John Wiley & Sons, 2000.

[32] M. Meilă. Comparing clusterings by the variation of information. In
Proceedings of the 16th Annual Conference on Learning Theory, 2003.

[33] J. A. Mooney, P. J. Helms, and I. T. Jolliffe. Fitting mixtures of von
Mises distributions: a case study involving sudden infant death syn-
drome. Computational Statistics & Data Analysis, 41:505–513, 2003.

[34] R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies
incremental, sparse, and other variants. In M. I. Jordan, editor, Learning
in Graphical Models, pages 355–368. MIT Press, 1998.

[35] K. Nigam, A. K. Mccallum, S. Thrun, and T. Mitchell. Text classifica-
tion from labeled and unlabeled documents using EM. Machine Learn-
ing, 39(2/3):103–134, 2000.

[36] D. Peel, W. J. Whiten, and G. J. McLachlan. Fitting mixtures of Kent
distributions to aid in joint set identification. Journal of American Sta-
tistical Association, 96:56–63, 2001.

[37] J. H. Piater. Visual Feature Learning. PhD thesis, University of Mas-
sachussets, June 2001.

[38] C. R. Rao. Linear Statistical Inference and its Applications. Wiley, New
York, 2nd edition, 1973.

[39] E. Rasmussen. Clustering algorithms. In W. Frakes and R. Baeza-Yates,
editors, Information Retrieval: Data Structures and Algorithms, pages
419–442. Prentice Hall, New Jersey, 1992.

[40] G. Salton and C. Buckley. Term-weighting approaches in automatic text
retrieval. Information Processing & Management, 4(5):513–523, 1988.

[41] G. Salton and M. J. McGill. Introduction to Modern Retrieval. McGraw-
Hill Book Company, 1983.

[42] K. Shimizu and K. Iida. Pearson type VII distributions on spheres.
Communications in Statistics: Theory & Methods, 31(4):513–526, 2002.

© 2009 by Taylor and Francis Group, LLC

Text Clustering with Mixture of von Mises-Fisher Distributions 153

[43] J. Sinkkonen and S. Kaski. Clustering based on conditional distributions
in an auxiliary space. Neural Computation, 14:217–239, 2001.

[44] P. Smyth. Clustering sequences with hidden Markov models. In M. C.
Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Infor-
mation Processing, volume 9, pages 648–654. MIT Press, 1997.

[45] S. Sra. Matrix Nearness Problems in Data Mining. PhD thesis, The
University of Texas at Austin, August 2007.

[46] A. N. Srivastava and R. Akella. Enabling the discovery of recurring
anomalies in aerospace system problem reports using high-dimensional
clustering techniques. In Proceedings of the IEEE Aerospace Conference,
2006.

[47] A. N. Srivastava and B. Zane-Ulman. Discovering hidden anomalies
in text reports regarding complex space systems. In IEEE Aerospace
Conference, 2005.

[48] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document
clustering techniques. In KDD Workshop on Text Mining, 2000.

[49] A. Strehl, J. Ghosh, and R. Mooney. Impact of similarity measures on
web-page clustering. In Proc 7th Natl Conf on Artificial Intelligence :
Workshop of AI for Web Search (AAAI 2000), pages 58–64. AAAI, July
2000.

[50] A. Tanabe, K. Fukumizu, S. Oba, T. Takenouchi, and S. Ishii. Parameter
estimation for von Mises-Fisher distributions. Computational Statistics,
22(1):145–157, 2007.

[51] C. S. Wallace and D. L. Dowe. MML clustering of multi-state, Poisson,
von Mises circular and Gaussian distributions. Statistics and Computing,
10(1):73–83, January 2000.

[52] G. N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge
University Press, 2nd edition, 1995.

[53] A. T. A. Wood. Simulation of the von-Mises Distribution. Communica-
tions of Statistics, Simulation and Computation, 23:157–164, 1994.

[54] Y. Zhao and G. Karypis. Empirical and theoretical comparisons of se-
lected criterion functions for document clustering. Machine Learning,
55(3):311–331, June 2004.

[55] S. Zhong and J. Ghosh. A unified framework for model-based clustering.
Journal of Machine Learning Research, 4:1001–1037, November 2003.

[56] S. Zhong and J. Ghosh. A comparative study of generative models
for document clustering. In Workshop on Clustering High Dimensional
Data: Third SIAM Conference on Data Mining, April 2003.

© 2009 by Taylor and Francis Group, LLC

Chapter 7

Constrained Partitional Clustering
of Text Data: An Overview

Sugato Basu and Ian Davidson

7.1 Introduction . 155
7.2 Uses of Constraints . 157
7.3 Text Clustering . 159
7.4 Partitional Clustering with Constraints . 163
7.5 Learning Distance Function with Constraints . 168
7.6 Satisfying Constraints and Learning Distance Functions 170
7.7 Experiments . 174
7.8 Conclusions . 180

7.1 Introduction

Clustering is ubiquitously used in data mining as a method of discovering
novel and actionable subsets within a set of data. Given a set of data X ,
the typical aim of partitional clustering is to form a k-block set partition Πk

of the data. The process of clustering is important since, being completely
unsupervised, it allows the addition of structure to previously unstructured
items such as free-form text documents. For example, Cohn et al. (12) discuss
a problem faced by Yahoo!, namely that one is given very large corpora of text
documents/papers/articles and asked to create a useful taxonomy so that sim-
ilar documents are closer in the taxonomy. Once the taxonomy is formed, the
documents can be efficiently browsed and accessed. Unconstrained clustering
is ideal for this initial situation, since in this case little domain expertise ex-
ists to begin with. However, as data mining progresses into more demanding
areas, the chance of finding actionable patterns consistent with background
knowledge and expectation is limited.

Clustering with constraints or semi-supervised clustering is an emerging
area of great importance to data mining that allows the incorporation of
background domain expertise. Work so far has incorporated this knowledge
into clustering in the form of instance level constraints. The two types of

155
© 2009 by Taylor and Francis Group, LLC

156 Constrained Partitional Clustering of Text Data: An Overview

constraints introduced by Wagstaff (46) are must-link denoted by c=(x, y)
and cannot-link denoted by c 	=(x, y), meaning that two instance x and y must
be in the same cluster or cannot be in the same cluster respectively. Must-
link and cannot-link constraints, though apparently simple, share interesting
properties. Must-link constraints are an example of an equivalence relation
and hence are symmetrical, reflexive and transitive; this means that c=(x, y)
and c=(y, z) ⇒ c=(x, z) such that x, y, z form a connected component, i.e.,
each is connected to the other via an explicit or implied must-link constraint.
Similarly, multiple connected components of must-link constraints can give
rise to entailed cannot-link constraints, between pairs of instances in different
components.

Though apparently simple, must-link and cannot-link constraints are pow-
erful. In sufficient numbers they can shatter the training set X and specify
any set partition of X . These constraints can be used to improve clustering
in different ways, which are outlined in the next section. Let us consider some
real-world examples where constraints are useful in text clustering.

Content Management: In content-management tasks (routinely per-
formed by companies like Google, Interwoven or Verity), the goal is to au-
tomatically categorize large amounts (often in the order of millions) of text
documents into groups or clusters. In this case, constraints can be obtained
from multiple auxiliary sources, e.g., the co-occurrence of two documents in a
directory can be used to infer a must-link constraint between the documents,
two documents in different categories of the Open Directory Project1 hier-
archy can be considered as cannot-linked, etc. Using these constraints from
the auxiliary data sources, one can customize the clustering output for the
particular task, e.g., make a document hierarchy that is close to the input
directory structure in which the documents are placed.

Web mining: Constrained clustering is quite useful in post processing
search results, as performed by companies like Vivisimo.2 Here, the goal is
to automatically cluster the results of ambiguous search-engine queries like
“jaguar” into clusters of URLs that refer to concepts like “Jaguar cars,”
“Jaguar animal” or “Jaguar Mac OS”. In this case, constraints can be mined
from query sessions in web logs – one can get valuable information regarding
which websites are visited together, by analyzing co-occurrence of url’s within
the same user session. Clustering using this auxiliary data can help in biasing
the search result clustering towards the preferences of the user.

1www.dmoz.org
2www.vivisimo.com

© 2009 by Taylor and Francis Group, LLC

http://www.dmoz.org
http://www.vivisimo.com

Constrained Partitional Clustering of Text Data: An Overview 157

7.2 Uses of Constraints

The typical supervised learning situations involves having a label associ-
ated with each instance. The semi-supervised learning situation is when only
a small subset of instances have labels. If the available labeled data repre-
sent all the relevant categories, then semi-supervised classification algorithms
can be readily used for data categorization. For details see the various algo-
rithms in the surveys (42; 49). However in many domains, knowledge of the
relevant categories is incomplete. Moreover, pairwise constraints are often a
more naturally available form of supervision than labels in certain cluster-
ing tasks. Moreover, in an interactive learning setting, a user who is not a
domain expert can sometimes provide feedback in the form of must-link and
cannot-link constraints (12; 14) more easily than class labels, since providing
constraints does not require the user to have significant prior knowledge about
the categories in the dataset.

Constraints have typically been used in clustering algorithms in two ways.
Constraints can be used to modify the cluster assignment stage of the cluster
algorithm, to enforce satisfaction of the constraints as much as possible. Alter-
natively, the distance function of the clustering algorithm can also be trained
either before or after the clustering actually occurs using the constraints. In
all of these cases, constraints can also be used in the initialization phase,
where the initial clusters are formed such that must-linked instances are in
the same clusters and cannot-linked instances are in different clusters. Based
on this categorization, existing methods for constrained clustering can be put
into two general approaches that we call constraint-based and distance-based
methods.

7.2.1 Constraint-Based Methods

In constraint-based approaches, the clustering algorithm itself is modified
so that the available labels or constraints are used to bias the search for an
appropriate clustering of the data. The pairwise constraints specify whether
two instances should be in the same cluster (must-link) or in different clus-
ters (cannot-link). Constraint-based clustering has been done using several
techniques:

• modifying the clustering objective function so that it includes a term
for satisfying specified constraints (17)

• clustering using side-information from conditional distributions in an
auxiliary space (44)

• enforcing constraints to be satisfied during the cluster assignment in the
clustering process (47)

© 2009 by Taylor and Francis Group, LLC

158 Constrained Partitional Clustering of Text Data: An Overview

• initializing clusters and inferring clustering constraints based on neigh-
borhoods derived from labeled examples (5).

Constraint-based clustering techniques have been an active topic of re-
search, where recent techniques include variational techniques (28) or sam-
pling methods (36) for constrained clustering using a graphical model, and fea-
sibility studies for clustering under different types of constraints (16). There
have typically been two types of constraint-based approaches: (1) ones with
strict enforcement, which find the best feasible clustering respecting all the
given constraints (47; 15), and (2) ones with partial enforcement, which find
the best clustering while maximally respecting constraints (6; 43; 16; 28).
Figure 7.2 shows an example of a clustering which respects all the given con-
straints in Figure 7.1. Details of these algorithms are outlined in later sections.

FIGURE 7.1: Input instances and constraints.

7.2.2 Distance-Based Methods

In distance-based approaches, an existing clustering algorithm that uses
a distance measure is employed. However, rather than use a given distance
metric, the distance measure is first trained to “satisfy” the given constraints.
In this context, satisfying the constraints means that must-linked (similar)
instances are close together and cannot-linked (different) instances are far
apart in the learned distance space. Several distance measures have been
used for distance-based constrained clustering:

• string-edit distance trained using EM (8),

• Jensen-Shannon divergence trained using gradient descent (12),

© 2009 by Taylor and Francis Group, LLC

Constrained Partitional Clustering of Text Data: An Overview 159

FIGURE 7.2: Constraint-based clustering.

• Euclidean distance modified by a shortest-path algorithm (31) and

• Mahalanobis distances trained using convex optimization (4; 48)

Several clustering algorithms using trained distance measures have been
employed for constrained clustering, including single-link (8) and complete-
link (31) agglomerative clustering, EM (12; 4), and KMeans (4; 48). Recent
techniques in distance-metric learning for clustering include learning a margin-
based clustering distance measure using boosting (27), and learning a distance
metric transformation that is globally non-linear but locally linear (11). Fig-
ure 7.4 shows an example of learning a distance function from the constraints
given in Figure 7.3 and then clustering. Notice that in Figure 7.4 the input
data space has been stretched in the horizontal dimension and compressed
in the vertical dimension, to draw the must-linked instances closer and put
the cannot-linked instances farther apart. Section 7.5 outlines methods of
learning distance functions from constraints.

There have been some algorithms that try to both enforce constraints and
learn distance functions from constraints — details of these algorithms will
be presented in Section 7.6.

7.3 Text Clustering

In this section, we outline some of the specific steps of pre-processing and
distance function selection that are necessary for both unsupervised and con-
strained text clustering.

© 2009 by Taylor and Francis Group, LLC

160 Constrained Partitional Clustering of Text Data: An Overview

FIGURE 7.3: Input instances and constraints.

FIGURE 7.4: Distance-based clustering.

© 2009 by Taylor and Francis Group, LLC

Constrained Partitional Clustering of Text Data: An Overview 161

7.3.1 Pre-Processing

Most of the clustering algorithms discussed in this chapter use the standard
vector space model for text, where a text document is represented as a sparse
high-dimensional vector of weighted term counts (41). The creation of the
vector space model can be divided into two stages. At first, the content-
bearing terms (which are typically words or short phrases) are extracted from
the document text and the weight of each term in the document vector is set
to the count of the corresponding term in the document. In the second stage,
the terms are suitably weighted according to information retrieval principles
to increase the weights of important terms.

Some terms in a document do not describe any important content, e.g.,
common words like “the,” “is” – these words are called stop-words. While
processing a document to count the number of occurrences of each term and
create the term count vector in the first phase, these stop-words are usually
filtered from the document and not included in the vector. Note that this
vector is often more than 99% sparse, since the dimensionality of the vector
is equal to the number of terms in the whole document collection and most
documents just have a small subset of these terms.

In the second phase, the term-frequencies or counts of the terms are multi-
plied by the inverse document frequency of a term in the document collection.
This is done so that terms that are common to most documents in a document
collection (e.g., “god” is a common term in a collection of articles posted to
newsgroups like alt.atheism or soc.religion.christian) are given lesser
weight, since they are not very content-bearing in the context of the collection.
This method of term weighting, called “Term Frequency and Inverse Docu-
ment Frequency” (TFIDF), is a popular method of pre-processing documents
in the information retrieval community (1).

The TFIDF weighting procedure we use is as follows. If fij is the frequency
of the ith term in the jth document, then the corresponding term frequency
(TF) tf ij is fij (sometimes normalized) across the entire document corpus:

tf ij = fij

The inverse document frequency (IDF) idfi of the ith term is defined as:

idfi = log2(N/dfi)

where N is the total number of documents in the corpus and dfi is the total
number of documents containing the ith term. The overall TFIDF score wij

of the ith term in the jth document is therefore:

wij = tf ijidfi = fij log2(N/dfi)

After TFIDF processing, terms which have a very low (occurring in less
than 5 documents) and very high frequency (occurring in more than 95% of
the documents) are sometimes removed from the documents (19) in further

© 2009 by Taylor and Francis Group, LLC

162 Constrained Partitional Clustering of Text Data: An Overview

filtering steps. Some other specific pre-processing steps are also occasion-
ally performed based on the types of the documents, e.g., headers and email
signatures are removed for newsgroup articles, HTML tags are removed for
webpages, etc.

7.3.2 Distance Measures

High dimensional spaces like text have good directional properties, which
has made directional distance measures like cosine distance (1 - cosine simi-
larity) between the vector representations of text data a popular measure of
distance in the information retrieval community (1). Other distance measures,
e.g., probabilistic document overlap (26), have also been used successfully for
text clustering. Some practitioners use SquaredEuclidean distance for text
clustering, after all data instance vectors have been normalized to have unit
length according to the L2 norm. This normalization makes the SquaredEu-
clidean distance between two instances proportional to the cosine distance
between them, as illustrated by the following relation:

SquaredEuclideanDist(x1, x2) = ‖x1 − x2‖2 = ‖x1‖2 + ‖x2‖2 − 2‖x1‖‖x2‖
= 2(1 − xT

1 x2) = 2 × CosineDist(x1, x2),

since ‖xi‖ = 1∀i. This prior normalization of the instances is crucial so
that subsequent clustering algorithms can group text documents based on
their content words and get good quality, since otherwise clustering text using
SquaredEuclidean distance can result in poor quality(25).

Spherical KMeans (SP-KMeans) is a version of KMeans (outlined in the
next section) that uses cosine distance as its underlying distance metric. In
the SP-KMeans algorithm, standard Euclidean KMeans is applied to data
vectors {xi}n

i=1 that have been normalized to have unit L2 norm, so that the
data instances lie on a unit sphere (21). Note that there is one additional
step in SP-KMeans — in the cluster re-estimation step the centroid vectors
{μj}k

j=1 are also constrained to lie on the unit sphere. This is the main differ-
ence between SP-KMeans and Euclidean KMeans on L2 normalized document
vectors. The SP-KMeans clustering problem can be equivalently formulated
as that of maximizing the objective function:

Jsp-kmeans =
k∑

j=1

∑

xi∈Xj

xT
i μj , (7.1)

where the centroid μj of the jth cluster is the mean of all the instances in that
cluster, normalized to have unit L2 norm. The SP-KMeans algorithm gives a
local maximum of this objective function.

In all the algorithms in this chapter that use SquaredEuclidean distance,
the data have been pre-normalized to have unit L2 norm. In practice, KMeans
and SP-KMeans clustering involving the text vectors are performed efficiently
by using sparse representations of document vectors.

© 2009 by Taylor and Francis Group, LLC

Constrained Partitional Clustering of Text Data: An Overview 163

7.4 Partitional Clustering with Constraints

Some of the very first algorithms that made use of constraints were varia-
tions of the popular KMeans iterative algorithm. The purpose of the KMeans
algorithm is to (locally) minimize the vector quantization error (also known
as the distortion) shown in Equation 7.2.

VQE =
k∑

j=1

VQE j (7.2)

VQE j =
1
2

∑

xi∈πj

D(μj , xi)2 (7.3)

where j indexes over the clusters, and k is the number of clusters (specified
as an input parameter), and D is the distance function.

The KMeans algorithm is an iterative algorithm which in every step at-
tempts to further minimize the distortion. Given a set of cluster centroids,
the algorithm assigns instances to their nearest centroid which of course min-
imizes the distortion. This is step 1 of the algorithm. Step 2 is to recalculate
the cluster centroids so as to minimize the distortion. This can be achieved
by taking the first order derivative of the error (Equation 7.3) with respect to
the jth centroid and setting it to zero and solving. A solution to the resulting
equation gives us the KMeans centroid update rule as shown in Equation 7.5.

d(VQE j)
d(μj)

=
d(
∑

xi∈πj
D(μj , xi)2)

d(μj)
= 0 (7.4)

⇒ μj =
∑

xi∈πj

xi/|πj | (7.5)

Recall that πj is the set of instances closest to the centroid of the jth cluster.
These two steps are used in the standard KMeans algorithm shown in Figure
7.4.

7.4.1 COP-KMeans

The COP-KMeans algorithm shown in Figure 7.4.1 can be seen to be a
two part variation of the KMeans algorithm that incorporates conjunctions
of constraints. Firstly, the transitive closure over the must-linked instances
is computed, so that c=(x, y) and c=(y, z) ⇒ c=(x, z) and x, y, z form a con-
nected component. The resultant connected components are replaced by a

© 2009 by Taylor and Francis Group, LLC

164 Constrained Partitional Clustering of Text Data: An Overview

Input: A dataset X = {x1, . . . , xn} to cluster, k: the number of clusters to
find.
Output: A partition of X, Πk = {π1, . . . , πk} into k clusters that is a local
optima of the VQE (Equation 7.2).

1. Randomly generate cluster centroids μ1,. . . ,μk.

2. loop until convergence do

(a) for i = 1 to |X | do

(a.1) Assign xi to the nearest cluster πj , where nearness is
measured in terms of distance from xi to centroid μj .

(b) Recalculate centroids μ1, . . . , μk according to Equation 7.5

3. Return the final partitions.

FIGURE 7.5: Clustering using KMeans.

super-instance, whose co-ordinates are the average of the connected compo-
nent’s and whose weight is equal to the number of instances within it (lines 1
and 2). Secondly, rather than performing a nearest centroid assignment (step
2a.1) in Figure 7.4), a nearest feasible centroid assignment is performed (lines
4a.1), where an assignment is feasible if it does not violate any cannot-link
constraints. When performing the nearest feasible centroid assignment step
the previous set partition is forgotten and the new partition built up incre-
mentally. Therefore, the first instance assigned to a cluster can never violate
any constraints, even if it is involved in many. Similarly if there is only one
constraint, c 	=(x, y), if x is assigned first then y is assigned to its closest feasi-
ble centroid and the assignment of x is not revisited. In this way, we can view
this algorithm as greedily trying to attempt constructing a feasible clustering
with no backtracking of previous instance assignments.

Natural variations of trying to satisfy all constraints are: a) attempting to
satisfy as many constraints as possible while ignoring noisy or inappropriate
constraints and b) having degrees of belief/importance associated with each
constraint. Both can be viewed as frameworks that allow trading of satisfying
the lesser important constraints.

7.4.2 Algorithms with Penalties – PKM, CVQE

The COP-KMeans algorithm can (see Section 7.4.1) improve the accuracy
at predicting an extrinsic label and also shape clusters into desirable forms.
However, when constraints are generated from labeled data there is the pos-
sibility of class label noise, thereby generating incorrect cannot-link or must-

© 2009 by Taylor and Francis Group, LLC

Constrained Partitional Clustering of Text Data: An Overview 165

Input: X : A set of data instances to cluster, C=: set of pairwise must-link
constraints, C	=: set of pairwise cannot-link constraints, k: the number of
clusters to find. Initially, the weight of each instance is 1.
Output: A partition of X, Πk = {π1, . . . , πk} into k clusters that is a local
optima of the VQE (Equation 7.2). and all constraints in C = C= ∪ C	= are
satisfied.

1. Compute the transitive closure of the set C= to obtain the connected
components CC1, . . . , CCr .

2. For each i, 1 ≤ i ≤ r, replace all the data instances in CCi by a single
instance with weight |CCi|; the instance’s coordinates are obtained by
averaging the coordinates of the instances in CCi.

3. Randomly generate cluster centroids μ1,. . . ,μk.

4. loop until convergence do

(a) for i = 1 to |X | do

(a.1) Assign xi to the nearest feasible cluster πj , where near-
ness is measured in terms of distance from xi to centroid μj .
(a.2) If assignment of xi to any cluster always violates a con-

straint, then exit with failure.

(b) Recalculate centroids μ1, . . . , μk taking into account the weight
of the instances in X using Equation 7.5

5. Return final partitions.

FIGURE 7.6: Clustering under constraints using COP-KMeans.

link constraint between instances. Similarly, if constraints are generated by
domain experts, some constraints may be ill-specified or even contradictory.
The two algorithms in this subsection attempt to ignore noisy or inappropriate
constraints by allowing constraints to be left unsatisfied but with a penalty.
This involves a trade-off between finding the best clustering and satisfying as
many constraints as possible. To achieve this, the penalty of ignoring a con-
straint must be in the same units as the measure for how good the clustering
of the data is. The CVQE algorithm uses distance as the fundamental unit
and the PKM uses probability. We now discuss these two algorithms.

7.4.2.1 CVQE

The core idea behind the CVQE algorithm is to penalize constraint viola-
tions using distance. If a must-link constraint is violated then the penalty

© 2009 by Taylor and Francis Group, LLC

166 Constrained Partitional Clustering of Text Data: An Overview

is the distance between the two centroids of the clusters containing the two
instances that should be together. If a cannot-link constraint is violated then
the penalty is the distance between the cluster centroid the two instances are
assigned to and its (the centroid’s) distance to the nearest cluster centroid.
These two penalty types give rise to a new objective function which is termed
the Constrained Vector Quantization Error (CVQE) shown in Equation 7.6
where g(x) returns the cluster index that instance x belongs to.

CVQE j =
1
2

∑

xi∈μj

D(μj , xi)2 + (7.6)

1
2

∑

xi∈μj ,(xi,xa)∈C=,g(xi) 	=g(xa)

D(μj , μg(xa))2

1
2

∑

xi∈μj ,(xi,xa)∈C �=,g(xi)=g(xa)

D(μj , μh(g(xa)))2

These penalties were found by experimentation to be useful and others (39)
(see next section) have improved upon these.

The first step of the constrained KMeans algorithm must minimize the new
constrained vector quantization error. This is achieved by assigning instances
so as to minimize the new error term. For instances that are not part of
constraints, this involves performing a nearest cluster centroid calculation as
before in regular KMeans. For pairs of instances in a constraint, for each
possible combination of cluster assignments, the CVQE is calculated and the
instances are assigned to the clusters that minimally increases the CVQE .
This is shown in Equation 7.7 and requires at most O(k2) calculations per
assignment where δ is the Kronecker Delta function.

∀xi /∈ C= ∪ C	= : argminjD(xi, μj)2 (7.7)
∀(xa, xb) ∈ C= : argmini,jD(xa, μi)2 + D(xb, μj)2 + ¬δ(a, b) ∗ D(μj , μi)2

∀(xa, xb) ∈ C	= : argmini,jD(xa, μi)2 + D(xb, μj)2 + δ(a, b) ∗ D(μj , μh(μj
))2

The second step is to update the cluster centroids so as to minimize the
constrained vector quantization error. To achieve this we take the first order
derivative of the error, set to zero, and solve. By setting the appropriate
values of ml we can derive the update rules for the must-link and cannot-
link constraint violations. Solving for μj , we get the update rule shown in
Equation 7.8.

μj =
∑

xi∈πj
xi+

∑
(xi,xa)∈C=,g(xi) 	=g(xa) μg(xa)+

∑
(xi,xa)∈C �=,g(xi)=g(xa) μh(g(xa))

|μj |+
∑

xi∈μj ,(xi,xa)∈C=,g(xi) 	=g(xa) 1+
∑

si∈πj,(xi,xa)∈C �=,g(xi) 	=g(xa) 1

(7.8)

© 2009 by Taylor and Francis Group, LLC

Constrained Partitional Clustering of Text Data: An Overview 167

The intuitive interpretation of the centroid update rule is that if a must-link
constraint is violated, the cluster centroid is moved towards the other cluster
containing the other instance. Similarly, the interpretation of the update
rule for a cannot-link constraint violation is that cluster centroid containing
both constrained instances should be moved to the nearest cluster centroid so
that one of the instances eventually gets assigned to it, thereby satisfying the
constraint.

7.4.3 LCVQE: An Extension to CVQE

Pelleg and Baras (39) create a variation of the assignment and update rules
for CVQE that they term LCVQE. Though their algorithm was not derived to
minimize a particular objective function, it was shown to improve performance
on several standard datasets both in terms of accuracy and run-time. The two
main extensions made by this algorithm over CVQE are: a) not computing
all possible k2 assignments but only a subset of reasonable assignments and
b) Changing the penalty for a cannot-link constraint to be the distance from
the most outlying (with respect to the cluster centroid) instance in the CL
constraint to the cluster centroid nearest it.

The assignment step shown in Equation 7.9 and the centroid update rule
are shown in Equation 7.10.

∀xi /∈ C= ∪ C	= : argminjD(xi, μj)2 (7.9)
∀(xa, xb) ∈ C= : argmin[i=g(xa),j=g(xb)],[i=g(xa),j=i,[i=j,j=g(xb)]

D(xa, μi)2 + D(xb, μj)2 + ¬δ(a, b) ∗ D(μj , μi)2

∀(xa, xb) ∈ C	= : argmin[i=g(xa),j=g(xb)],[i=g(xa),j=i.D(xa,g(xa))<D(xb,g(xb))]

D(xa, μi)2 + D(xb, μj)2 + δ(a, b) ∗ D(μj , μg(xb
))2

μj = (7.10)
∑

xi∈πj
[xi +

∑
(xi,xa)∈C=,

g(xi)�=g(xa)
μg(xa) +

∑
(xi,xa)∈C�=,

g(xi)=g(xa),D(xi)<D(xa)

μg(xa)]

|μj | +
∑

si∈μj ,(si,sx)∈C=,g(si) 	=g(sx) 1 +
∑

si∈μj ,(si,sx)∈C �=,g(si) 	=g(sx) 1

7.4.4 Probabilistic Penalty – PKM

The PKM algorithm allows constraints to be violated during clustering, but
enforces a probabilistic penalty of constraint violation. It is a special case of
the HMRF-KMeans algorithm, which is described in detail in Section 7.6 —
PKM is an ablation of HMRF-KMeans, doing constraint enforcement but not
performing distance learning.

© 2009 by Taylor and Francis Group, LLC

168 Constrained Partitional Clustering of Text Data: An Overview

7.5 Learning Distance Function with Constraints

In this section, we will discuss two different approaches of using constraints
for distance metric learning in constrained clustering, both of which can clus-
ter text data using Euclidean distance on L2-normalized text data.

7.5.1 Generalized Mahalanobis Distance Learning

Xing et al. (48) proposed a formulation for learning a parameterized Maha-
lanobis metric of the form d(x1, x2) =

√
(x1 − x2)T A(x1 − x2) from must-link

and cannot-link constraints. They proposed the following semi-definite pro-
gram (SDP) for the problem:

min
A

∑

(xi,xj)∈ML

||xi − xj ||2A = min
A

∑

(xi,xj)∈ML

(xi − xj)T A(xi − xj) (7.11)

s.t.,
∑

(xi,xj)∈CL

||xi − xj ||A ≥ 1, A � 0

Equation 7.11 learns A such that the must-link instances are brought closer
together, while ensuring that the cannot-link instances are kept apart (SDP
constraint on CL set) and the underlying metric still satisfies the triangle
inequality (SDP constraint on A). Xing et al. (48) proposed an equivalent
formulation of Equation 7.11:

max
A

g(A) =
∑

(xi,xj)∈CL

||xi, xj ||A (7.12)

s.t., f(A) =
∑

(xi,xj)∈ML

||xi, xj ||2AA ≤ 1 → C1 (7.13)

A � 0 → C2

Xing et al. (48) optimized Equation 7.12 using an alternate maximization
algorithm, that had 2 steps: (1) gradient ascent – to optimize the objective;
(2) iterated projection algorithm – to satisfy the inequality constraints. De
Bie et al. (7) used a variant of Linear Discriminant Analysis (LDA) to find
the Mahalanobis metric from constraints more efficiently than using an SDP.
Experiments in both these papers showed that doing clustering with a distance
metric learned from constraints gave improved performance over clustering
without distance metric learning.

© 2009 by Taylor and Francis Group, LLC

Constrained Partitional Clustering of Text Data: An Overview 169

FIGURE 7.7: DistBoost algorithm.

7.5.2 Kernel Distance Functions Using AdaBoost

Hertz et al. (27) proposed a method for distance metric learning by using
boosting in the product space of the input data space X . They posed the con-
strained metric learning problem as learning a function that took as input the
instances in the product space X×X , and output binary labels corresponding
to must-link (1) and cannot-link constraints (0). They used boosting on the
product space to learn this function, where boosting is a standard machine
learning tool that combines the strength of an ensemble of “weak” learners
(with low prediction accuracy) to create a “strong” learner (with high pre-
diction accuracy) (24). The overall flow of the DistBoost algorithm of Hertz
et al. (27) is outlined in Figure 7.7. In the first step, a constrained weighted
EM algorithm is run on the dataset and constraints, to fit a Gaussian Mixture
Model (GMM) over weighted unlabeled data and the given constraints. The
key difference of constrained EM from ordinary EM is the E-step, which sums
the assignment probabilities only over assignments that comply with the con-
straints. The output of the GMM is treated as a “weak” learner and is used
to learn a “weak” distance function, where the distance h(x1, x2) between two
instances x1 and x2 is computed from their MAP assignment in the GMM as
follows:

© 2009 by Taylor and Francis Group, LLC

170 Constrained Partitional Clustering of Text Data: An Overview

h(x1, x2) = max
i

p(y(x1) = i|Θ) · max
j

p(y(x2) = j|Θ), (7.14)

where yi is the label assignment for point xi.
The DistBoost algorithm computes the weights of the “weak” distance func-

tions using Boosting, and updates the weights on pairs of instances, which are
translated to weights on individual data instances. This is again passed back
to the input of the GMM-EM algorithm, and the process is repeated for mul-
tiple steps.

7.6 Satisfying Constraints and Learning Distance Func-
tions

As mentioned in Section 7.2, there have been some algorithms that try to
both enforce constraints and learn distance functions from constraints for par-
titional clustering algorithms, e.g., KMeans. In this section we will outline one
such algorithm, which uses the framework of a generative probabilistic model,
the Hidden Markov Random Field (HMRF) (6). It can cluster text docu-
ments using either cosine distance or Euclidean distance on L2-normalized
input data, doing both constraint satisfaction and distance learning in the
process.

7.6.1 Hidden Markov Random Field (HMRF) Model

The Hidden Markov Random Field (HMRF) is a probabilistic generative
model for semi-supervised constrained clustering, consisting of the following
components: (1) an observable set X = (x1, . . . , xn) of random variables,
corresponding to the given data instances X ; (2) an unobservable (hidden)
set Y = (y1, . . . , yn) of random variables, corresponding to cluster assign-
ments of instances in X , yi ∈ (1, . . . , K); (3) an unobservable (hidden) set of
generative model parameters Θ, which consists of distance measure param-
eters A (typically a matrix or vector of weights) and cluster representatives
M = (μ1, . . . , μK): Θ = {A, M}; (4) an observable set of constraint variables
C = (c12, c13, . . . , cn−1,n). Each cij is a tertiary variable taking on a value
from the set (−1, 0, 1), where cij = 1 indicates that (xi, xj) ∈ CML, cij = −1
indicates that (xi, xj) ∈ CCL, and cij = 0 corresponds to pairs (xi, xj) that
are not constrained. The constraints are accompanied by associated violation
costs W , where wij represents the cost of violating the constraint between in-
stances xi and xj if such a constraint exists. Fig. 7.8 shows a simple example
of an HMRF having five data instances partitioned into three clusters, while
maximally respecting three pairwise constraints.

The joint probability of X , Y , and Θ, given C, in the described HMRF

© 2009 by Taylor and Francis Group, LLC

Constrained Partitional Clustering of Text Data: An Overview 171

Hidden MRF

Observed data

Cannot−link

x3

x2x1

x5

y2 = 1

y4 = 1

y5 = 3

y3 = 2

x4

Must-link (c14 = 1)

Must-link (c12 = 1)

y1 = 1

(c23 = −1)

FIGURE 7.8: A hidden Markov random field.

XY

C Θ

FIGURE 7.9: Graphical plate model of variable dependence.

model can be factorized as follows:

P(X, Y, Θ|C) = P(Θ|C) P(Y |Θ, C) P(X |Y, Θ, C) (7.15)

The graphical plate model (10) of the dependence between the random
variables in the HMRF is shown in Figure 7.9. The prior probability of Θ is
assumed to be independent of C, so that P(Θ|C) = P(Θ). The probability of
observing the label configuration Y depends on the constraints C and current
generative model parameters Θ. Observed data instances corresponding to
variables X are generated using the model parameters Θ based on cluster
labels Y , independent of the constraints C. The variables X are assumed to
be mutually independent: each xi is generated individually from a conditional
probability distribution P(xi|yi, Θ).

Basu et al. (6) show that the joint probability on the HMRF is equivalent
to maximizing:

P(X, Y, Θ|C) = P(Θ)
(

1
Z

exp
(
−
∑

cij∈C

v(i, j)
)
)(n∏

i=1

p(xi|yi, Θ)
)

(7.16)

They chose the following Gibbs potential for P(Y |Θ, C):

© 2009 by Taylor and Francis Group, LLC

172 Constrained Partitional Clustering of Text Data: An Overview

P(Y |Θ, C) =
1
Z

exp(−
∑

i,j

v(i, j)) (7.17)

where each constraint potential function v(i, j) has the following form inspired
by the generalized Potts model (32) where fML and fCL are the distances
between the constrained points:

v(i, j) =

⎧
⎨

⎩

wijfML(i, j) if cij = 1 and yi �= yj

wijfCL(i, j) if cij = −1 and yi = yj

0 otherwise
(7.18)

The joint probability formulation in Equation 7.16 provides a general frame-
work for incorporating various distance measures in clustering by choosing a
particular form of p(xi|yi, Θ), the probability density that generates the i-th
instance xi from cluster yi. Basu et al. (6) restrict their attention to proba-
bility densities from the exponential family, where the conditional density for
observed data can be represented as follows:

p(xi|yi, Θ) =
1

ZΘ
exp

(
−D(xi, μyi)

)
(7.19)

where D(xi, μyi) is the Bregman divergence between xi and μyi , corresponding
to the exponential density p, and ZΘ is the normalizer (3). Different clustering
models fall into this exponential form:

• If xi and μyi are vectors in Euclidean space, and D is the square of the
L2 distance parameterized by a positive semidefinite weight matrix A,
D(xi, μyi) = ‖xi − μyi‖

2
A, then the cluster conditional probability is a

d-dimensional multivariate normal density with covariance matrix A−1:
p(xi|yi, Θ) = 1

(2π)d/2|A|−1/2 exp(− 1
2 (‖xi − μyi‖

2
A) (30);

• If xi and μyi are probability distributions, and D is KL-divergence
(D(xi, μyi) =

∑d
m=1 xim log xim

μyim
), then the cluster conditional prob-

ability is a multinomial distribution (20).

The relation in Equation 7.19 holds even if D is not a Bregman divergence
but a directional distance measure such as cosine distance, which is useful in
text clustering. Then, if xi and μyi are vectors of unit length and D is one

minus the dot-product of the vectors
(
D(xi, μyi) = 1 −

Pd
m=1 ximμyim

‖xi‖‖μyi‖
)
, then

the cluster conditional probability is a von-Mises Fisher (vMF) distribution
with unit concentration parameter (2), which is the spherical analog of a
Gaussian.

Putting Equation 7.19 into Equation 7.16 and taking logarithms gives the
following cluster objective function, minimizing which is equivalent to maxi-
mizing the joint probability over the HMRF in Equation 7.16:

© 2009 by Taylor and Francis Group, LLC

Constrained Partitional Clustering of Text Data: An Overview 173

Jobj =
∑

xi∈X

D(xi, μyi) +
∑

cij∈C

v(i, j) − log P(Θ) + log Z + n log ZΘ (7.20)

Basu et al. (6) used Rayleigh priors for P(Θ), and they ignored the nor-
malizer terms. An optimal clustering is obtained by minimizing Jobj over
the hidden variables Y and parameters Θ, which are comprised of cluster
centroids M and distance measure parameters A (note that given the cluster
assignments Y , the means M = {μi}K

i=1 are uniquely determined).

7.6.2 EM Algorithm

As discussed in Section 7.6.1, Basu et al. (6) minimize Jobj using a K-Means-
type iterative algorithm HMRF-KMeans. The outline of the algorithm is
presented in Figure 7.10. The basic idea of HMRF-KMeans is as follows:
the constraints are used to obtain a good initialization of the clustering. Then
in the E-step, given the current cluster representatives, every data instance is
re-assigned to the cluster that minimizes its contribution to Jobj. The E-step
of HMRF-KMeans uses an Iterated Conditional Modes (ICM) approach,
which is a greedy strategy to sequentially update the cluster assignment of
each instance, keeping the assignments for the other instances fixed. In the
M-step, the cluster representatives M = (μ1, . . . , μK) are re-estimated from
the cluster assignments to minimize Jobj for the current assignment. The
clustering distance measure is subsequently updated in the M-step to reduce
the objective function by modifying the parameters of the distance measure.

Note that this corresponds to the generalized EM algorithm (38; 18), where
the objective function is reduced but not necessarily minimized in the M-step.
Effectively, the E-step minimizes Jobj over cluster assignments Y , the M-step
(A) minimizes Jobj over cluster representatives M , and the M-step (B) reduces
Jobj over the parameters of the distance measure. The E-step and the M-step
are repeated till a specified convergence criterion is reached. Basu et al. (6)
show that HMRF-KMeans converges to a local optimum of Jobj.

7.6.3 Improvements to HMRF-KMeans

There have been multiple improvements to the initial HMRF-based prob-
abilistic generative constrained clustering framework. Lange et al. (34) in-
corporated prior knowledge from both labels on the input data instances as
well as constraints into their clustering model. They inferred the constraint
potentials in the HMRF model from a Maximum Entropy solution of P (Y)
under constraints encoded in the label and constraint set, and replaced the
ICM-based greedy assignment scheme in the E-step of HMRF-KMeans by
mean-field approximation. Lu et al. (35) proposed probabilistic EM-style
assignments instead of winner-take-all KMeans-type assignments, and used
Gibbs sampling in the E-step of their constrained EM algorithm.

© 2009 by Taylor and Francis Group, LLC

174 Constrained Partitional Clustering of Text Data: An Overview

Algorithm: HMRF-KMeans

Input: Set of data points X = {xi}n
i=1, number of clusters K,

set of must-link constraints CML = {(xi, xj)},
set of cannot-link constraints CCL = {(xi, xj)},
distortion measures {Dh}K

h=1, constraint violation costs W .
Output: Disjoint K-partitioning {Xh}K

h=1 of X such that
objective function Jobj is (locally) minimized.

Method:
1. Initialize the K clusters centroids {μ(0)

h }K
h=1, set t ← 0

2. Repeat until convergence
2a. E-step: Given {μ(t)

h }K
h=1, re-assign cluster labels

{y(t+1)
i }n

i=1 on the points {xi}n
i=1 to minimize Jobj.

2b. M-step(A): Given cluster labels {y(t+1)
i }n

i=1, re-calculate
cluster centroids {μ(t+1)

h }K
h=1 to minimize Jobj.

2c. M-step(B): Re-estimate distortion measures {Dh}K
h=1 to reduce Jobj.

2d. t ← t+1

FIGURE 7.10: HMRF-KMeans algorithm.

7.7 Experiments

This section describes the experiments that were performed to demonstrate
the effectiveness of various types of constrained clustering algorithms on text
data. We have taken one type of algorithm described earlier: constrained
based, distance based, and both. We use the work of Basu and collaborators
(6) that includes one algorithm of each type but retains the same underlying
implementations. This means the insights we shall find when comparing the
different algorithms are due to how the constraints are used rather than dif-
ferent initialization schemes for example. Experiments were run using both
Euclidean distance and cosine distance, since different algorithms outlined in
this chapter used different distance measures.

7.7.1 Datasets

We considered 3 text datasets that have the characteristics of being sparse,
high-dimensional, and having a small number of instances compared to the
dimensionality of the space. This is done for two reasons: (1) When cluster-
ing sparse high-dimensional data, e.g., text documents represented using the
vector space model, it is particularly difficult to cluster small datasets, as ob-
served by (20). The purpose of performing experiments on these subsets is to
scale down the sizes of the datasets for computational reasons but at the same

© 2009 by Taylor and Francis Group, LLC

Constrained Partitional Clustering of Text Data: An Overview 175

time not scale down the difficulty of the tasks. (2) Clustering small number of
sparse high-dimensional data instances is a likely scenario in realistic applica-
tions. For example, when clustering the search results in a web-search engine
like Viv́ısimo, typically the number of webpages that are being clustered is in
the order of hundreds. However the dimensionality of the feature space, cor-
responding to the number of unique words in all the webpages, is in the order
of thousands. Moreover, each webpage is sparse, since it contains only a small
number of all the possible words. On such datasets, clustering algorithms can
easily get stuck in local optima: in such cases it has been observed that there
is little reassignments of documents between clusters for most initializations,
which leads to poor clustering quality after convergence of the algorithm (20).
Supervision in the form of pairwise constraints is most beneficial in such cases
and may significantly improve clustering quality.

Three datasets were derived from the 20-Newsgroups collection.3 This col-
lection has messages harvested from 20 different Usenet newsgroups, 1000
messages from each newsgroup. From the original dataset, a reduced dataset
was created by taking a random subsample of 100 documents from each of the
20 newsgroups. Three datasets were created by selecting 3 categories from
the reduced collection. News-Similar-3 consists of 3 newsgroups on similar
topics (comp.graphics, comp.os.ms-windows, comp.windows.x) with signif-
icant overlap between clusters due to cross-posting. News-Related-3 consists of
3 newsgroups on related topics (talk.politics.misc, talk.politics.guns,
and talk.politics.mideast). News-Different-3 consists of articles posted in
3 newsgroups that cover different topics (alt.atheism, rec.sport.baseball,
sci.space) with well-separated clusters. All the text datasets were pre-
processed using the techniques outlined in Section 7.3.1.

Table 7.1 summarizes the properties of these datasets.

TABLE 7.1: Text datasets used in experimental evaluation
News-Different-3 News-Related-3 News-Similar-3

Instances 300 300 300
Dimensions 3251 3225 1864
Classes 3 3 3

7.7.2 Clustering Evaluation

Normalized mutual information (NMI) was used as the clustering evaluation
measure. NMI is an external clustering validation metric that estimates the
quality of the clustering with respect to a given underlying class labeling of

3http://www.ai.mit.edu/people/jrennie/20Newsgroups

© 2009 by Taylor and Francis Group, LLC

http://www.ai.mit.edu

176 Constrained Partitional Clustering of Text Data: An Overview

the data: it measures how closely the clustering algorithm could reconstruct
the underlying label distribution in the data (45). Therefore, the higher the
NMI the better. If Ŷ is the random variable denoting the cluster assignments
of the instances and Y is the random variable denoting the underlying class
labels on the instances, then the NMI measure is defined as:

NMI =
I(Y ; Ŷ)

(H(Y) + H(Ŷ))/2
(7.21)

where I(X ; Y) = H(X) − H(X |Y) is the mutual information between the
random variables X and Y , H(X) is the Shannon entropy of X , and H(X |Y)
is the conditional entropy of X given Y (13). NMI effectively measures the
amount of statistical information shared by the random variables representing
the cluster assignments and the user-labeled class assignments of the data
instances. Though various clustering evaluation measures have been used
in the literature, NMI and its variants have become popular lately among
clustering practitioners (22; 23; 37).

7.7.3 Methodology

Learning curves were generated using two-fold cross-validation performed
over 20 runs on each dataset. In every trial, 50% of the dataset was set
aside as the training fold. Every point on the learning curve corresponds to
the number of constraints on pairs of data instances from the training fold.
These constraints are obtained by randomly selecting pairs of instances from
the training fold and creating must-link or cannot-link constraints depending
on whether the underlying classes of the two instances are same or different.
Unit constraint costs W were used for all constraints (original and inferred),
since the datasets did not provide individual weights for the constraints. The
clustering algorithm was run on the whole dataset, but NMI was calculated
using instances in the test fold.

7.7.4 Comparison of Distance Functions

Figure 7.11 shows the results of running constrained PKM clustering on
News-Same-3 and News-Different-3, using both Euclidean and cosine dis-
tances. As shown in the figure, there is an improvement in the performance of
the algorithm with cosine distance over Euclidean distance, which is consistent
with previous research (40). Euclidean distance can be used if necessary for
constrained text clustering (e.g., for the algorithms outlined in Section 7.4),
with pre-normalization of the text documents. However, using cosine distance
is recommended by practitioners for constrained clustering of text datasets in
most domains, in which case algorithms like HMRF-KMeans are more use-
ful.

© 2009 by Taylor and Francis Group, LLC

Constrained Partitional Clustering of Text Data: An Overview 177

7.7.5 Experimental Results

We performed experiments on text datasets with HMRF-KMeans, a com-
bined constraint-based and distance-based algorithm, to study the effective-
ness of each component of the algorithm. HMRF-KMeans was compared
with three ablations, as well as with unsupervised KMeans clustering. The
following variants were compared:

• KMeans-C-D-R is the complete HMRF-KMeans algorithm that in-
corporates constraints in cluster assignments (C), includes distance
learning (D), and also performs weight regularization (R) using a Rayleigh
prior;

• KMeans-C-D is the first ablation of HMRF-KMeans that includes all
components except for regularization of distance measure parameters;

• KMeans-C is an ablation of HMRF-KMeans that uses pairwise super-
vision for initialization and cluster assignments, but does not perform
distance measure learning. This is equivalent to the PKM algorithm
mentioned in Section 7.4.

• KMeans is the unsupervised K-Means algorithm.

The goal of these experiments was to evaluate the utility of each component
of the HMRF framework and identify settings in which particular components
are beneficial. Figures 7.12, 7.13, and 7.14 present the results for the ablation
experiments where weighted cosine distance was used as the distance measure.

As the results demonstrate, the full HMRF-KMeans algorithm with reg-
ularization (KMeans-C-D-R) outperforms the unsupervised K-Means base-
line as well as the ablated versions of the algorithm. As can be seen from
results for zero pairwise constraints in the figures, distance measure learning
is beneficial even in the absence of any pairwise constraints, since it allows cap-
turing the relative importance of the different attributes in the unsupervised
data. In the absence of supervised data or when no constraints are violated,
distance learning attempts to minimize the objective function by adjusting
the weights given the distortion between the unsupervised data instances and
their corresponding cluster representatives.

For these datasets, regularization is clearly beneficial to performance, as can
be seen from the improved performance of KMeans-C-D-R over KMeans-

C-D on all datasets. This can be explained by the fact that the number
of distance measure parameters is large for high-dimensional datasets, and
therefore algorithm-based estimates of parameters tend to be unreliable unless
they incorporate a prior.

Overall, these results show that the HMRF-KMeans algorithm effectively
incorporates constraints for doing both distance learning and constraint satis-
faction, each of which improves the quality of clustering for the text datasets
considered in the experiments.

© 2009 by Taylor and Francis Group, LLC

178 Constrained Partitional Clustering of Text Data: An Overview

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000

N
M

I

Number of Constraints

Euclid-Different100
Cosine-Different100

Euclid-Same100
Cosine-Same100

FIGURE 7.11: Comparison of cosine and Euclidean distance.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

N
M

I

Number of Constraints

KMeans-C-D-R
KMeans-C-D

KMeans-C
KMeans

FIGURE 7.12: Results on News-Different-3.

© 2009 by Taylor and Francis Group, LLC

Constrained Partitional Clustering of Text Data: An Overview 179

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 100 200 300 400 500

N
M

I

Number of Constraints

KMeans-C-D-R
KMeans-C-D

KMeans-C
KMeans

FIGURE 7.13: Results on News-Related-3.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 100 200 300 400 500

N
M

I

Number of Constraints

KMeans-C-D-R
KMeans-C-D

KMeans-C
KMeans

FIGURE 7.14: Results on News-Similar-3.

© 2009 by Taylor and Francis Group, LLC

180 Constrained Partitional Clustering of Text Data: An Overview

7.8 Conclusions

In this book chapter, we gave an overview of different types of constrained
partitional clustering algorithms and how they can be used for improved text
clustering. We mainly focused on pairwise constraints and partitional clus-
tering algorithms that use these constraints in different ways (e.g., constraint
enforcement during inference, distance metric learning) for different distance
measures (e.g., cosine distance, Euclidean distance). There are other types of
constraints (e.g., size constraints on clusters (9)) and other categories of con-
strained clustering algorithms (e.g., hierarchical clustering (15), graph clus-
tering (29; 33)), which we could not cover in this chapter. Experiment results
on text datasets demonstrate that using constraints during clustering can sig-
nificantly improve the quality of the results, and also indicate that using the
cosine distance function is recommended for constrained clustering in the text
domain.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
ACM Press, New York, 1999.

[2] A. Banerjee, I. Dhillon, J. Ghosh, and S. Sra. Clustering on the unit
hypersphere using von Mises-Fisher distributions. Journal of Machine
Learning Research, 6:1345–1382, 2005.

[3] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh. Clustering with Breg-
man divergences. Journal of Machine Learning Research, 6:1705–1749,
2005.

[4] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning distance
functions using equivalence relations. In Proceedings of ICML, pages 11–
18, Washington, DC, 2003.

[5] S. Basu, A. Banerjee, and R. J. Mooney. Semi-supervised clustering by
seeding. In Proceedings of ICML, pages 19–26, 2002.

[6] S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for
semi-supervised clustering. In Proceedings of ACM SIGKDD, pages 59–
68, Seattle, WA, 2004.

[7] T. De Bie, M. Momma, and N. Cristianini. Efficiently learning the metric
using side-information. In Proc. of the 14th International Conference on

© 2009 by Taylor and Francis Group, LLC

Constrained Partitional Clustering of Text Data: An Overview 181

Algorithmic Learning Theory (ALT2003), volume 2842 of Lecture Notes
in Artificial Intelligence, pages 175–189. Springer, 2003.

[8] M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learn-
able string similarity measures. In Proceedings of ACM SIGKDD, pages
39–48, Washington, DC, 2003.

[9] P. S. Bradley, K. P. Bennett, and A. Demiriz. Constrained K-means clus-
tering. Technical Report MSR-TR-2000-65, Microsoft Research, May
2000.

[10] W. L. Buntine. Operations for learning with graphical models. Journal
of Artificial Intelligence Research, 2:159–225, 1994.

[11] H. Chang and D.-Y. Yeung. Locally linear metric adaptation for semi-
supervised clustering. In Proceedings of 21st International Conference
on Machine Learning (ICML-2004), 2004.

[12] D. Cohn, R. Caruana, and A. McCallum. Semi-supervised clustering
with user feedback. Technical Report TR2003-1892, Cornell University,
2003.

[13] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-
Interscience, 1991.

[14] I. Davidson, M. Ester, and S. S. Ravi. Efficient incremental clustering
with constraints. In Proceedings of the Thirteen ACM Conference on
Data Mining and Knowledge Discovery, 2007.

[15] I. Davidson and S. S. Ravi. Hierarchical clustering with constraints:
Theory and practice. In Proceedings of the Nineth European Principles
and Practice of KDD (PKDD), pages 59–70, 2005.

[16] I. Davidson and S. S. Ravi. Clustering with constraints: Feasibility
issues and the k-means algorithm. In Proceedings of the 2005 SIAM
International Conference on Data Mining (SDM-05), 2005.

[17] A. Demiriz, K. P. Bennett, and M. J. Embrechts. Semi-supervised clus-
tering using genetic algorithms. In Proceedings of ANNIE, pages 809–
814, 1999.

[18] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. JRSSB, 39:1–38, 1977.

[19] I. S. Dhillon, J. Fan, and Y. Guan. Efficient clustering of very large
document collections. In Data Mining for Scientific and Engineering
Applications. Kluwer Academic Publishers, 2001.

[20] I. S. Dhillon and Y. Guan. Information theoretic clustering of sparse
co-occurrence data. In Proceedings of ICDM, pages 517–521, 2003.

© 2009 by Taylor and Francis Group, LLC

182 Constrained Partitional Clustering of Text Data: An Overview

[21] I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse
text data using clustering. Machine Learning, 42:143–175, 2001.

[22] B. E. Dom. An information-theoretic external cluster-validity measure.
Research Report RJ 10219, IBM, 2001.

[23] X. Fern and C. Brodley. Random projection for high dimensional data
clustering: A cluster ensemble approach. In Proceedings of 20th Inter-
national Conference on Machine Learning (ICML-2003), 2003.

[24] Y. Freund and R. E. Schapire. Experiments with a new boosting algo-
rithm. In Lorenza Saitta, editor, Proceedings of the Thirteenth Inter-
national Conference on Machine Learning (ICML-96), pages 148–156.
Morgan Kaufmann, July 1996.

[25] J. Ghosh and A. Strehl. Grouping Multidimensional Data: Recent Ad-
vances in Clustering, chapter Similarity-based Text Clustering: A Com-
paritive Study. Springer Berlin Heidelberg, 2006.

[26] M. Goldszmidt and M. Sahami. A probabilistic approach to full-text
document clustering. Technical Report ITAD-433-MS-98-044, SRI In-
ternational, 1998.

[27] T. Hertz, A. Bar-Hillel, and D. Weinshall. Boosting margin based dis-
tance functions for clustering. In Proceedings of 21st International Con-
ference on Machine Learning (ICML-2004), 2004.

[28] M. Hiu, C. Law, A. Topchy, and A. K. Jain. Model-based clustering with
probabilistic constraints. In Proceedings of the 2005 SIAM International
Conference on Data Mining (SDM-05), 2005.

[29] S. D. Kamvar, D. Klein, and C. D. Manning. Spectral learning. In Pro-
ceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI-2003), pages 561–566, Acapulco, Mexico, 2003.

[30] M. Kearns, Y. Mansour, and A. Y. Ng. An information-theoretic analysis
of hard and soft assignment methods for clustering. In Proceedings of
UAI, pages 282–293, 1997.

[31] D. Klein, S. D. Kamvar, and C. Manning. From instance-level con-
straints to space-level constraints: Making the most of prior knowledge
in data clustering. In Proceedings of ICML, pages 307–314, Sydney,
Australia, 2002.

[32] J. Kleinberg and E. Tardos. Approximation algorithms for classifica-
tion problems with pairwise relationships: Metric labeling and Markov
random fields. In Proceedings of FOCS, pages 14–23, 1999.

[33] B. Kulis, S. Basu, I. Dhillon, and R. J. Mooney. Semi-supervised graph
clustering: A kernel approach. Proceedings of 22nd International Con-
ference on Machine Learning (ICML-2005), 2005.

© 2009 by Taylor and Francis Group, LLC

Constrained Partitional Clustering of Text Data: An Overview 183

[34] T. Lange, M. H. C. Law, A. K. Jain, and J. M. Buhmann. Learning with
constrained and unlabeled data. In CVPR, pages 731–738. San Diego,
CA, 2005.

[35] Z. Lu and T. Leen. Semi-supervised learning with penalized probabilistic
clustering. In Advances in Neural Information Processing Systems, 2005.

[36] Z. Lu and T. K. Leen. Semi-supervised learning with penalized prob-
abilistic clustering. In Advances in Neural Information Processing Sys-
tems 17, 2005.

[37] M. Meila. Comparing clusterings by the variation of information. In
Proceedings of the 16th Annual Conference on Computational Learning
Theory, pages 173–187, 2003.

[38] R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies
incremental, sparse, and other variants. In Michael I. Jordan, editor,
Learning in Graphical Models, pages 355–368. MIT Press, 1998.

[39] D. Pelleg and D. Baras. K-means with large and noisy constraint sets.
In ECML, 2007.

[40] M. Sahami. Personal communication, September 2007.

[41] G. Salton and M. J. McGill. Introduction to Modern Information Re-
trieval. McGraw-Hill, New York, 1983.

[42] M. Seeger. Learning with labeled and unlabeled data, 2000.

[43] E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from
protein interaction and gene expression data. Bioinformatics, 19:i264–
i272, July 2003.

[44] J. Sinkkonen and S. Kaski. Semisupervised clustering based on condi-
tional distributions in an auxiliary space. Technical Report A60, Helsinki
University of Technology, 2000.

[45] A. Strehl, J. Ghosh, and R. Mooney. Impact of similarity measures
on web-page clustering. In Workshop on Artificial Intelligence for Web
Search (AAAI 2000), pages 58–64, July 2000.

[46] K. Wagstaff and C. Cardie. Clustering with instance-level constraints.
In Proceedings of the Seventeenth International Conference on Machine
Learning, pages 1103–1110, Palo Alto, CA, 2000. Morgan Kaufmann.

[47] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained K-
Means clustering with background knowledge. In Proceedings of ICML,
pages 577–584, 2001.

[48] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric
learning, with application to clustering with side-information. In NIPS
15, 2003.

© 2009 by Taylor and Francis Group, LLC

184 Constrained Partitional Clustering of Text Data: An Overview

[49] X. Zhu. Semi-supervised learning literature survey. Technical Re-
port 1530, Computer Sciences, University of Wisconsin-Madison, 2005.
http://www.cs.wisc.edu/∼jerryzhu/pub/ssl survey.pdf.

© 2009 by Taylor and Francis Group, LLC

http://www.cs.wisc.edu

Chapter 8

Adaptive Information Filtering

Yi Zhang

8.1 Introduction . 185
8.2 Standard Evaluation Measures . 188
8.3 Standard Retrieval Models and Filtering Approaches 190
8.4 Collaborative Adaptive Filtering . 194
8.5 Novelty and Redundancy Detection . 196
8.6 Other Adaptive Filtering Topics . 201
8.7 Acknowledgments . 204

8.1 Introduction

A financial analyst wants to be alerted of any information that may af-
fect the price of the stock he is tracking; an agent working in the Homeland
Security Department wants to be alerted of any information related to po-
tential terror attacks; a customer call center representative wants to answer
customer calls about problems that he can handle; and a student wants to
be alerted of fellowship or financial aid opportunities appropriate for her/his
circumstances.

In these examples, the user preferences are comparatively stable and rep-
resent a long term information need, the information source is dynamic, in-
formation arrives sequentially over time, and the information needs to be
delivered to the user as soon as possible. Traditional ad hoc search engines,
which are designed to help the users to pull out information from a compar-
atively static information source, are inadequate to fulfill the requirements of
these tasks. Instead, a filtering system can better serve the user. A filtering
system is an autonomous agent that delivers good information to the user in
a dynamic environment. As opposed to forming a ranked list, it estimates
whether a piece of information matches the user needs as soon as the infor-
mation arrives and pushes the information to the user if the answer is “yes,”
so a user can be alerted of any important information on time.

A typical information filtering system is shown in Figure 8.1. In this fig-
ure, a piece of information is a document. A user’s information needs are

185
© 2009 by Taylor and Francis Group, LLC

186 Adaptive Information Filtering

FIGURE 8.1: A typical filtering system. A filtering system can serve many
users, although only one user is shown in the figure. Information can be
documents, images, or videos. Without loss of generality, we focus on text
documents in this chapter.

represented in a user profile. The profile contains one or more classes, such
as “stock” or “music,” and each class corresponds to one information need.
When a user has a new information need, he/she sends to the system an initial
request, such as a query or an example of what he/she wants. The system
then initializes and creates a new online classifier in the user’s profile to serve
this information need. As future documents arrive, the system delivers docu-
ments the classifier considered relevant to the user. The user may then read
the delivered documents and provide explicit feedback, such as identifying a
document as “good” or “bad.” The user also provides some implicit feedback,
such as deleting a document without reading it or saving a document. The
filtering system uses the user feedback accumulated over time to update the
user profile.

Adaptive filtering vs. retrieval: Standard ad hoc retrieval systems,
such as search engines, let users use short queries to pull information out of
a repository. These systems treat all users the same given the same query.
Most IR systems return back documents that match a user query. They
assume that a user knows what he/she wants, and what words to use to
describe it whenever he/she has an information need. However, a user often

© 2009 by Taylor and Francis Group, LLC

Adaptive Information Filtering 187

does not know these or thinks he/she needs to know one thing but actually
needs something else. For example, a financial analyst may search for news
in order to check whether the earnings of a company matches the projected
earnings. However, also relevant to this task is the large number of customer
complaints about the company’s product in the blog space. Another example
is a research scientist often wants to keep up-to-date with what is happening
within a research field, but not looking for a specific answer.

If the information need of a user is more or less stable over a long period
of time, a filtering system is a good environment to learn user profiles (also
called user models) from a fair amount of user feedback that can be accu-
mulated over time. In other words, the adaptive filtering system can serve
the user better by learning user profiles while interacting with the user, thus
information delivered to the user can be personalized to an individual user’s
information needs automatically. Even if the user’s interest drifts or changes,
the adaptive filtering system can still adapt to the user’s new interest by
constantly updating the user profile from training data, creating new classes
automatically, or letting the user create/delete classes.

Adaptive filtering vs. collaborative filtering: Collaborative filter-
ing is an alternative approach used by push system to provide personalized
recommendations to users. Adaptive filtering, which is also called content
based filtering, assumes what a user will like is similar to what the user liked
before, and thus make recommendations for one user based on the user’s feed-
back about past documents. Collaborative filtering assumes users have similar
tastes on some items may also have similar preferences on other items, and
thus make recommendations for one user based on the feedback from other
users that are similar to this user. Memory-based heuristics and model based
approaches have been used in collaborative filtering task (29) (22) (10). This
chapter does not intend to compare adaptive filtering with collaborative fil-
tering or claim which one is better. We think each complements the other.
Adaptive filtering is extremely useful for handling new documents/items with
little or no user feedback, while collaborative filtering leverages information
from other users with similar tastes and preferences in the past. Researchers
have found that a recommendation system will be more effective when both
techniques are combined. However, this is beyond the scope of this chapter
and thus not discussed here.

Adaptive filtering vs. Topic Detection and Tracking: The super-
vised tracking task at the Topic Detection and Tracking (TDT) Workshops
is a forum closely related to information filtering (1). TDT research focuses
on discovering topically related material in streams of data. TDT is different
from adaptive filtering in several aspects. In TDT, a topic is user independent
and defined as an event or activity, along with all directly related events and
activities. In adaptive filtering, an information need is user specific and has a
broader definition. A user information needs may be a topic about a specific
subject, such as “2004 presidential election,” or not, such as “weird stories.”
However, TDT-style topic tracking and TREC-style adaptive filtering have

© 2009 by Taylor and Francis Group, LLC

188 Adaptive Information Filtering

TABLE 8.1: The values assigned to
relevant and non-relevant documents that the
filtering system did and did not deliver. R−,
R+, N+, and N− correspond to the number
of documents that fall into the corresponding
category. AR, AN , BR, and BN correspond to
the credit/penalty for each element in the
category.

Relevant Non-Relevant
Delivered R+, AR N+, AN

Not Delivered R−, BR N−, BN

much in common, especially if we treat a topic as a form of user information
need. Since a separate chapter in this book is devoted to TDT, we refer the
readers to that chapter for research on TDT.

This chapter is organized as follows. Section 8.2 introduces the standard
evaluation measures used in the TREC adaptive filtering task. Section 8.3
introduces commonly used retrieval models and adaptive filtering approaches.
Section 8.4 describes how to solve the “cold start” problem for new users using
Bayesian prior learned from other users. Section 8.5 introduces techniques to
avoid redundant information while filtering. This chapter ends with discussion
and references to other important topics not covered in details in this book.

8.2 Standard Evaluation Measures

In the information retrieval community, the performance of an ad hoc re-
trieval system is typically evaluated using relevance-based recall and precision
at a certain cut-off of the ranked result. Taking a 20-document cut-off as an
example:

precision =
the number of relevant documents among the top 20

20
(8.1)

recall =
the number of relevant documents in the top 20

all relevant documents in the corpus
(8.2)

What is a good cut off number is unknown. In order to compare different
algorithms without a specific cut off, the mean of the precision scores after
each relevant document is retrieved, which is called Mean Average Precision
(MAP), is often used.

However, the above evaluation measures are not appropriate for filtering.
Instead of a ranking list, a filtering system makes an explicit binary decision

© 2009 by Taylor and Francis Group, LLC

Adaptive Information Filtering 189

of whether to accept or reject a document for each profile. A utility function
is usually used to model user satisfaction and evaluate a system. A general
form of the linear utility function used in the recent Text REtrieval Conference
(TREC) Filtering Track (46) is shown below.

U = AR · R+ + AN · N+ + BR · R− + BN · N− (8.3)

This model corresponds to assigning a positive or negative value to each el-
ement in the categories of Table 8.1, where R−, R+, N+, and N− corre-
spond to the number of documents that fall into the corresponding category,
AR, AN , BR, and BN correspond to the credit/penalty for each element in
the category. Usually, AR is positive, and AN is negative. In the TREC-9,
TREC-10, and TREC-11 Filtering Tracks, the following utility function was
used:

T 11U = T 10U = T 9U = 2R+ − N+ (8.4)

If we use the T11U utility measure directly and get the final result by
averaging across user profiles, profiles with many delivered documents will
dominate the final result. So a normalized version T11SU was also used in
TREC-11:

T 11SU =
max(T11U

MaxU , MinNU) − MinNU

1 − MinNU
(8.5)

where MaxU = 2∗ (R+ +R−) is the maximum possible utility,1 and MinNU
was set to −0.5 in TREC-11. If the score is below MinNU , the MinNU is
used, which simulates the scenario that the users stop using the system when
the performance is too poor.2

Notice that in a real scenario, we could define user-specific utility functions
to model user satisfaction and evaluate filtering systems. A better choice of
AR, AN , BR, and BN would depend on the user, the task, and the context.
For example, when a user is reading news with a wireless phone, he may
have less tolerance for non-relevant documents delivered and prefer higher
precision, and thus use a utility function with larger penalty for non-relevant
documents delivered, such as Uwireless = R+ − 3N+. When a user is doing
research about a certain topic, he may have a high tolerance for non-relevant
documents delivered and prefer high recall, and thus use a utility function with
less penalty for non-relevant documents delivered, such as Uresearch = R+ −
0.5N+. When monitoring potential terrorist activities, missing information
might be crucial and BR may be a big non-zero negative value.

In addition to the linear utility measure, other measures such as F-beta (46)
defined by van Rijsbergen and DET curves (37) are also used in the research

1Notice the normalized version does take into consideration undelivered relevant documents.
Therefore, it also provides some information about the recall of the system implicitly.
2This is not exactly the same, since in TREC the system is evaluated at the very end of
the filtering process.

© 2009 by Taylor and Francis Group, LLC

190 Adaptive Information Filtering

community. Measures that consider novelty or properties of a document have
also been proposed by researchers (65).

8.3 Standard Retrieval Models and Filtering Approaches

In this section, we first review some existing information retrieval models
since most of them have been adapted, or can be adapted, for the information
filtering task. Then we review three common filtering approaches for learning
user profiles from explicit user feedback.

We introduce these existing approaches and their drawbacks here, so that
the readers can get a better understanding of the common practices in adap-
tive filtering. This section also provides the context and motivation of the
research work described in the following sections. As there is a large amount
of literature about standard retrieval models and filtering approaches, we will
only review them concisely. For more detail about these models, the readers
are referred to other papers or books.

8.3.1 Existing Retrieval Models

Information filtering has a long history dating back to the 1970s. It was
created as a subfield of the more general information retrieval field, which
was originally established to solve the ad hoc retrieval task.3 For this reason,
early work tended to view filtering and retrieval as “two sides of the same
coin” (9). The duality argument is based on the assumptions that documents
and queries are interchangeable. This dual view has been questioned (49) (12)
by challenging the interchangeability of documents and queries due to their
asymmetries of representation, ranking, evaluation, iteration, history, and
statistics. However, the influence of retrieval models on filtering is still large,
because the retrieval models were comparatively well studied and the two tasks
share many common issues, such as how to handle words and tokens, how to
represent a document, how to represent a user query, how to understand
relevance, and how to use relevance feedback. So it is worthwhile to look at
various models used in IR and how relevance feedback is used in these models.

In the last several decades, many different retrieval models have been de-
veloped to solve the ad hoc retrieval task. In general, there are three major
classes of IR models:

3Historically, information retrieval was first used to refer to the ad hoc retrieval task, and
then was expanded to refer to the broader information seeking scenario that includes filter-
ing, text classification, question answering, and more.

© 2009 by Taylor and Francis Group, LLC

Adaptive Information Filtering 191

8.3.1.1 Boolean models

The Boolean model is the simplest retrieval model based on Boolean algebra
and set theory. The concept is very simple and intuitive. The drawbacks
of the Boolean model are in two aspects: 1) The users may have difficulty
to express their information needs using Boolean expressions; and 2) The
retrieval system can hardly rank documents since a document is predicted to
be either relevant or non-relevant without any notion of degree of relevance.
Nevertheless, the Boolean model is widely used in commercial search engines
because of its simplicity and efficiency. How to use relevance feedback from
the user to refine a Boolean query is not straightforward, so the Boolean model
was extended for this purposes (34).

8.3.1.2 Vector space models

The vector model is a widely implemented IR model, most famously built
in the SMART system (52). It represents documents and user queries in a
high dimensional space indexed by “indexing terms,” and assumes that the
relevance of a document can be measured by the similarity between it and
the query in the high dimensional space (51). In the vector space framework,
relevance feedback is used to reformulate a query vector so that it is closer to
the relevant documents, or for query expansion so that additional terms from
the relevant documents are added to the original query. The most famous
algorithm is the Rocchio algorithm (50), which represents a user query using
a linear combination of the original query vector, the relevant documents
centroid, and the non-relevant documents centroid.

A major criticism for the vector space model is that its performance depends
highly on the representation, while the choice of representation is heuristic
because the vector space model itself does not provide a theoretical framework
on how to select key terms and how to set weights of terms.

8.3.1.3 Probabilistic models

Probabilistic models, such as the Binary Independence Model (BIM) ((44)),
provide direct guidance on term weighting and term selection based on proba-
bility theory. In these probabilistic models, the probability of a document d is
relevant to a user query q is modelled explicitly (43) (44) (23). Using relevance
feedback to improve parameter estimation in probabilistic models is straight-
forward according to the definition of the models, because they presuppose
relevance information.

In recent decades many researchers proposed IR models that are more gen-
eral, while also explaining already existing IR models. For example, Inference
networks have been successfully implemented in the well known INQUERY
retrieval system (57). Bayesian networks extend the view of inference net-
works. Both models represent documents and queries using acyclic graphs.
Unfortunately, both models do not provide a sound theoretical framework to

© 2009 by Taylor and Francis Group, LLC

192 Adaptive Information Filtering

learn the structure of the graph or to estimate the conditional probabilities de-
fined on the graphs, and thus the model structure and parameter estimations
are rather ad hoc (24). Another example is the language modeling approach,
which is a statistical approach that models the document generation process.
This approach is a very active research area in the IR community since the
late 90’s (20).

8.3.2 Existing Adaptive Filtering Approaches

The key component of an adaptive filtering system is the user profile used by
the system to make the decision of whether to deliver a document to the user
or not. In the early research work as well as some recent commercial filtering
systems, a user profile is represented as Boolean logic (25). With the growing
computation power and the advance of research in the information retrieval
community in the last 20 years, filtering systems have gone beyond simple
Boolean queries and represent a user profile as either a vector, a statistical
distribution of words, or something else. Much of the research on adaptive
filtering is focused on learning a user profile from explicit user feedback on
whether the user likes a document or not while interacting with the user. In
general, there are two major approaches.

8.3.2.1 Filtering as retrieval + thresholding

A typical retrieval system has a static information source, and the task is
to return a ranking of documents in response to a short-term user request.
Because of the influence of the retrieval models, some existing filtering systems
use “retrieval scoring+thresholding” approach for filtering and build adaptive
filtering based on algorithms originally designed for the retrieval task. A
filtering system uses a retrieval algorithm to score each incoming document
and delivers the document to the user if and only if the score is above a
dissemination threshold. Some examples of retrieval models that have been
applied to the adaptive filtering task are: Rocchio, language models, Okapi,
and pseudo relevance feedback (3) (12) (35) (5) (19) (54).

A threshold is not needed in a retrieval task, because the system only needs
to return a ranked list of documents. A major research topic in the adaptive
filtering community is on how to set dissemination thresholds (48) (7) (63)
(6) (72) (68). The criteria of thresholds are often expressed in an easy to
understand way, such as the utility function described in Section 8.2. At
each time point, the system learns a threshold from the relevance judgements
collected so far. For example, one direct utility optimization technique is
to compute the utility on the training data for each candidate threshold, and
choose the threshold that gives the maximum utility. Score distribution based
approach assumes generative models of scores for relevant documents and
non-relevant documents. For example, one can assume the scores of relevant
documents follow a Gaussian distribution, and the scores for non-relevant

© 2009 by Taylor and Francis Group, LLC

Adaptive Information Filtering 193

documents follow an exponential distribution. Training data can be used to
estimate the model parameters, and the threshold can be found by optimizing
the expected utility under the estimated model (7). However, an adaptive
filtering system only receives feedback for documents delivered/rated by the
user; thus model estimation techniques based on random sampling assumption
usually lead to biased estimation and should be avoided (72).

8.3.2.2 Filtering as text classification

Text classification is another well studied area. A typical classification
system learns a classifier from a labeled training dataset, and then classifies
unlabeled testing documents into different classes. A popular approach is to
treat filtering as a text classification task by defining two classes: relevant
vs. non-relevant. The filtering system learns a user profile as a classifier
and delivers a document to the user if the classifier thinks it is relevant or
the probability of relevance is high. The state of the art text classification
algorithms, such as support vector machines (SVM), K nearest neighbors (K-
NN), neural networks, logistic regression, and Winnow, have been used to
solve this binary classification task (32) (13) (46) (64) (71)(54) (38) (61) (30)
(55).

Instead of minimizing classification error, an adaptive filtering system needs
to optimize the standard evaluation measure, such as a user utility. For ex-
ample, in order to optimize the utility measure T 11U = 2R+−N+ (Equation
8.4), a filtering system usually delivers a document to the user if the prob-
ability of relevance is above 67% (45). Some machine learning approaches,
such as logistic regression or neural networks, estimate the probability of rel-
evance directly, which makes it easier to make the binary decision of whether
to deliver a document.

Many standard text classification algorithms do not work well for a new
user, which usually means no or few training data points. Some new ap-
proaches have been developed for initialization. For example, researchers have
found that retrieval techniques, such as Rocchio, work well at the early stage
of filtering when the system has very few training data. Statistical text classi-
fication techniques, such as logistic regression, work well at the later stage of
filtering when the system has accumulated enough training data. Techniques
have been developed to combine different algorithms, and their results are
promising (71). Yet another example discussed in the following section is to
initialize the profile of a new user based on training data from existing users.

It is worth mentioning that when adapting a text classification technique
to the adaptive filtering task, one needs to pay attention that the classes are
extremely unbalanced, because most documents are not relevant. The fact
that the training data are not sampled randomly is also a problem that has
not been well studied.

© 2009 by Taylor and Francis Group, LLC

194 Adaptive Information Filtering

8.4 Collaborative Adaptive Filtering

One major challenge of building a recommendation or personalization sys-
tem is that the profile learned for a particular user is usually of low quality
when the amount of data from that particular user is small. This is known as
the “cold start” problem. This means that any new user must endure poor
initial performance until sufficient feedback from that user is provided to learn
a reliable user profile.

There has been much research on improving classification accuracy when
the amount of labeled training data is small. The semi-supervised learning
approach combines unlabeled and labeled data together to achieve this goal.
Another approach is using domain knowledge. Researchers have modified
different learning algorithms, such as Näıve-Bayes (33), logistic regression
(21), and SVMs (62), to integrate domain knowledge into a text classifier.
The third approach is borrowing training data from other resources (16) (21).
The effectiveness of these different approaches is mixed, due to how well the
underlying model assumption fits the data.

This section introduces one well-received approach to improve recommen-
dation system performance for a particular user: borrowing information from
other users through a Bayesian hierarchical modeling approach. Several re-
searchers have demonstrated that this approach effectively trades off between
shared and user-specific information, thus alleviating poor initial performance
for each user (76) (67) (74).

Assume there are M users in the adaptive filtering system. The task of
the system is to deliver documents that are relevant to each user. For each
user, the system learns a user model from the user’s history. In the rest of
this section, the following notations are used to represent the variables in the
system.

m = 1, 2, ..., M : The index for each individual user. M is the total number of
users.

wm: The user model parameter associated with user m. wm is a K dimen-
sional vector.

j = 1, 2, ..., Jm: The index for a set of data for user m. Jm is the number of
training data for user m.

Dm = {(xm,j , ym,j)}: A set of data associated with user m. xm,j is a K di-
mensional vector that represents the mth user’s jth training document.4

ym,j is a scalar that represents the label of document xm,j .

k = 1, 2, ..., K: The dimensional index of input variable x.

4The first dimension of x is a dummy variable that always equals to 1.

© 2009 by Taylor and Francis Group, LLC

Adaptive Information Filtering 195

FIGURE 8.2: Illustration of dependencies of variables in the hierarchical
model. The rating, y, for a document, x, is conditioned on the document
and the user model, wm, associated with the user m. Users share information
about their models through the prior, Φ = (μ, Σ).

The Bayesian hierarchical modeling approach has been widely used in real-
world information retrieval applications. Generalized Bayesian hierarchical
linear models, a simple set of Bayesian hierarchical models, are commonly
used and have achieved good performance on collaborative filtering (67) and
content-based adaptive filtering (76) (74) tasks. Figure 8.2 shows the graph-
ical representation of a Bayesian hierarchical model. In this graph, each user
model is represented by a random vector wm. Assume a user model is sam-
pled randomly from a prior distribution P (w|Φ). The system can predict the
user label y of a document x given an estimation of wm (or wm’s distribution)
using a function y = f(x, w). The model is called generalized Bayesian hier-
archical linear model when y = f(wT x) is any generalized linear model such
as logistic regression, SVM, and linear regression. To reliably estimate the
user model wm, the system can borrow information from other users through
the prior Φ = (μ, Σ).

Now we look at one commonly used model where y = wT x + ε, where
ε ∼ N(0, σ2

ε) is a random noise (67) (76). Assume that each user model
wm is an independent draw from a population distribution P (w|Φ), which is
governed by some unknown hyperparameter Φ. Let the prior distribution of
user model w be a Gaussian distribution with parameter Φ = (μ, Σ), which
is the commonly used prior for linear models. μ = (μ1, μ2, ..., μK) is a K
dimensional vector that represents the mean of the Gaussian distribution, and
Σ is the covariance matrix of the Gaussian. Usually, a Normal distribution
N(0, aI) and an Inverse Wishart distribution P (Σ) ∝ |Σ|− 1

2 b exp(− 1
2ctr(Σ−1))

are used as hyperprior to model the prior distribution of μ and Σ respectively.

© 2009 by Taylor and Francis Group, LLC

196 Adaptive Information Filtering

I is the K dimensional identity matrix, and a, b, and c are real numbers.
With these settings, we have the following model for the system:

1. μ and Σ are sampled from N(0, aI) and IWν(aI), respectively.

2. For each user m, wm is sampled randomly from a Normal distribution:
wm ∼ N(μ, Σ2)

3. For each item xm,j , ym,j is sampled randomly from a Normal distribu-
tion: ym,j ∼ N(wT

mxm,j , σ
2
ε).

Let θ = (Φ, w1, w2, ..., wM) represent the parameters of this system that
needs to be estimated. The joint likelihood for all the variables in the proba-
bilistic model, which includes the data and the parameters, is:

P (D, θ) = P (Φ)
∏

m

P (wm|Φ)
∏

j

P (ym,j|xm,j , wm) (8.6)

For simplicity, we assume a, b, c, and σε are provided to the system.
Researchers have shown that the Bayesian hierarchical modeling approach

has a statistical significant improvement over the regularized linear regression
model on several real world datasets. They observed a negative correlation
between the number of training data for a user and the improvement the
system gets. This suggests that the borrowing information from other users
has more significant improvements for users with less training data, which is as
expected. However, the strength of the correlation differs over data sets, and
the amount of training data is not the only characteristic that will influence
the final performance.

One major concern about the hierarchical Bayesian modeling approach is
the computation complexity. This problem has been addressed by exploiting
the sparsity of the data space. A fast learning algorithm has been developed
and tested on a real world dataset (480,189 users, 159,836 features, and 100
million ratings). All the user models can be learned in about 4 hours using
a single CPU PC(2GB memory, P4 3GHz), and the learned models perform
much better than regularized linear regression models. This demonstrates
that the hierarchical Bayesian modeling technique can efficiently handle a
large number of users and is used in a large-scale commercial system. More
details of the fast learning algorithm is beyond the scope of this chapter, and
we refer the reader to Zhang and Koren 2007 (74) for more information.

8.5 Novelty and Redundancy Detection

Although there is an extensive body of research on adaptive information
filtering, most of it is focused on identifying relevant documents. A common

© 2009 by Taylor and Francis Group, LLC

Adaptive Information Filtering 197

complaint about information filtering systems is that they do not distinguish
between documents that contain new relevant information and documents
that contain information that is relevant but already known. This is a serious
problem, since a practical filtering system usually handles multiple document
sources with significant amounts of redundant information. For example, a
financial analyst only wants news stories that may affect the stock market, a
market research analyst only wants new complaints about the product, and
a newspaper subscriber does not have time to read hundreds of similar news
stories from different agencies about the same topic. In all these scenarios,
topical relevancy is not enough because the users want new information. An
information filtering system would provide better service to its users if it can
filter out relevant documents that do not contain any new information.

The decision about whether a document contains new information depends
on whether the relevant information in a document is covered by information
in documents delivered previously. This complicates the filtering problem.
The relevance of a document is traditionally a stateless Boolean value. A
document either is or is not relevant, without regard as to where the document
appears in the stream of documents. Decisions about redundancy and novelty
depend very much on where in the stream a document appears.

Relevance and redundancy are significantly different concepts that require
different solutions. A system that delivers documents that are novel and rele-
vant must identify documents that are similar to previously delivered relevant
documents in the sense of having a same topic, but also dissimilar to the pre-
viously delivered documents in the sense of containing new information. If the
task is to deliver relevant documents, the learning algorithm will try to recog-
nize documents similar to the delivered relevant documents (training data).
Indeed, traditional evaluation of filtering systems (e.g., the TREC Adaptive
Filtering track (47) (46)) actually rewards systems for delivering redundant
documents. If the task is to deliver only documents containing novel informa-
tion, the learning algorithm must avoid documents that are similar to those
already delivered. These two goals are in some sense contradictory, and it
may be unrealistic to expect a single component to satisfy them both.

This suggests the redundancy problem needs a solution that’s very different
from the traditional adaptive information filtering models. We discuss some
possible solutions in this section. We use the following notation throughout
this section. All notation is defined with respect to a particular user profile.

• A, B: sets of documents

• dt: a document that arrives at time t and that is being evaluated for
redundancy.

• Dt: the set of all documents delivered for the profile by the time dt

arrives, not including dt.

• dj : usually refers to a relevant document that was delivered before
dt arrived.

© 2009 by Taylor and Francis Group, LLC

198 Adaptive Information Filtering

When acquiring redundancy judgements and developing algorithms, we as-
sume the redundancy of a new document dt depends on the documents the
user saw before dt arrived. We also assume the documents the user saw before
dt arrived are the set of all documents delivered to the user profile by the time
dt arrives. We use R(dt) = R(dt|Dt) to measure the redundancy of dt.

One approach to novelty/redundancy detection is to cluster all previously
delivered documents Dt, and then to measure the redundancy of the current
document dt by its distance to each cluster. This approach would be similar
to solutions for the TDT First Story Detection problem (2). This approach
is sensitive to clustering accuracy, and is based on strong assumptions about
the nature of redundancy.

Another approach is to measure redundancy based on the distance be-
tween the new document and each previously delivered document (document-
document distance). This approach was developed by some researchers who
argue that it may be more robust than clustering, and may be a better match
to how users view redundancy. Because they found that it is easiest for a user
to identify a new document as being redundant with a single previously seen
document, and harder to identify it as being redundant with a set of previ-
ously seen documents. The calculation of R(dt|Dt) is simplified by setting it
equal to the value of the maximally similar value in all R(dt|dj).

R(dt|Dt) = maxdj∈DtR(dt|dj)

In the extreme case when dt and dj are exact duplicates (dt = dj), it is
obvious that R(dt|dj) should have a high value since a duplicate document is
maximally redundant. One natural way to measure R(dt|dj) is using measures
of similarity/distance/difference between dt and dj .

One practical concern of redundancy estimation is the size of Dt could be
very large. To reduce the computation cost during redundancy decisions, Dt

can be truncated to the most recent documents delivered for a profile.
One possibly subtle problem characteristic is that redundancy is not a sym-

metric metric. dj may cause dk to be viewed as redundant, but if the presen-
tation order is reversed, dk and dj may both be viewed as containing novel
information. A simple example is a document dk that is a subset (e.g., a
paragraph) of a longer document dj . This problem characteristic motivates
exploration of asymmetric forms of traditional similarity/distance/difference
measures.

Several different approaches to redundancy detection have been proposed
and evaluated (73)(4). The simple set distance measure is designed for
Boolean, set based document models. The geometric distance (cosine sim-
ilarity) measure is a simple metric designed for vector space document mod-
els. Several variations of KL divergence and related smoothing algorithms are
more complex metrics designed to measure differences in probabilistic docu-
ment models.

© 2009 by Taylor and Francis Group, LLC

Adaptive Information Filtering 199

8.5.1 Set Difference

If each document is represented as a set of words, the set difference measure
can be used to measure the redundancy of a new document. The novelty of a
new document dt is measured by the number of new words in the smoothed
set representation of dt. If a word wk occurred frequently in document dt but
less frequently in an old document dj , it is likely that new information not
covered by dj is covered by dt.

Thus we can have the following measure for the novelty of the current
document dt with respect to an old document dj .

R(dt|dj) = ‖dt

⋂
dj‖ (8.7)

We are not using the true difference between two sets

‖dt

⋂
dj‖ + ‖dt

⋂
dj‖

here because the words in

‖dt

⋂
dj‖

shouldn’t contribute to the novelty of dt.
Different variations of the set representation of a document have been pro-

posed. The simplest approach is to include a word in a set dj if and only
if the document contains the word. An alternative approach is to include
a word in a set representation if and only if the number of times the word
occurs in a document is larger than a threshold. However, some words are
expected to be frequent in a new document because they tend to be frequent
in the corpus, or because they tend to be frequent in all relevant documents.
Stop words such as “the,” “a,” and “and” are examples of words that tend
to be frequent in a corpus. There may also be topic-related stopwords, which
are words that behave like stopwords in relevant documents, even if they are
not stopwords in the corpus as a whole. To compensate for stop words, a
third approach is to smooth a new document’s word frequencies with word
counts from all previously seen documents and word counts from all delivered
(presumed relevant) documents (73).

8.5.2 Geometric Distance

If each document is represented as a vector, several different geometric
distance measures, such as Manhattan distance and Cosine distance (31), can
be used to measure the redundancy of a new document.

For example, prior research show that cosine distance, a symmetric mea-
sure related to the angle between two vectors (26), works reasonably well for
redundancy detection. Represent d as a vector d = (w1(d), w2(d), .., wK(d))T ,

© 2009 by Taylor and Francis Group, LLC

200 Adaptive Information Filtering

then:

R(dt|dj) = cosine(dt, dj) (8.8)

=
dt • dj

� dt �� dj �
(8.9)

=
∑K

k=1 wk,twk,j
√∑K

k=1 w2
k,t

√∑K
k=1 w2

k,j

(8.10)

If we use tf ∗ idf score as the weight of each dimension of the document
vector, we have wk,j = tfwk,dj ∗ idfwk

,
Where:

• idfwk
=

log(C+0.5
dfwk

)

log(C+1.0)

• tfwk,dj : the number of times word wk occurs in document dj

• dfwk
: the number of times word wk occurs in documents the system

processed

• C : the total number of documents the system processed

8.5.3 Distributional Similarity

If each document is represented as a probabilistic document model, distri-
bution similarity can be used to measure the redundancy of a new document.
Probabilistic language models, which are widely used in speech recognition,
have been very popular in the information retrieval community over the last
10 years (e.g., (20)). The strong theoretical foundation of language models
enables a variety of new capabilities, including redundancy detection. In the
language model approach, a document is represented by a word distribution.
Kullback-Leibler divergence, a distributional similarity measure, is a natural
way to measure the redundancy of one document given another.

Representing document d as a unigram language model θd

R(dt|dj) = −KL(θdt, θdj) (8.11)

= −
∑

wk

P (wk|θdt)log(
P (wk|θdj)
P (wk|θdt)

(8.12)

where θd is the language model for document d, and is a multinomial distri-
bution.

θd can be found based on maximum likelihood estimation (MLE):

P (wk|d) =
tfwk,d∑
wk

tfwk,d

© 2009 by Taylor and Francis Group, LLC

Adaptive Information Filtering 201

The problem with using MLE is that if a word never occurs in document d,
it will get a zero probability (P (wk|d) = 0). Thus a word in dt but not in dj

will make KL(θdt, θdj) = ∞.
Smoothing techniques are necessary to adjust the maximum likelihood es-

timation so that the KL-based measure is more appropriate. Research shows
that retrieval and filtering performance is highly sensitive to smoothing pa-
rameters when using language models. Several smoothing methods have been
applied to ad hoc information retrieval, text classification problems, and nov-
elty detection (69)(73).

8.5.4 Summary of Novelty Detection

The work described above is focused on the redundancy measure, and it is
somewhat user independent in the sense that our redundancy measures only
calculate a score indicating the degree of redundancy in a document given a
history of delivered documents. They do not actually make a decision as to
whether a document is considered redundant or novel.

A redundancy threshold is needed in order to classify a document as
redundant or novel. When human assessors are asked to make redundancy
decisions given the same topics and document streams, they sometimes dis-
agreed. In some cases the disagreement was based on differences in the as-
sessors’ internal definition of redundancy. However, more often one assessor
might feel that a document dt should be considered redundant if a previously
seen document dj covered 80% of dt; the other assessor might not consider
it redundant unless the coverage was more than 95%. A person’s tolerance
for redundancy can be modeled with a user-dependent threshold that con-
verts a redundancy score into a redundancy decision. User feedback about
which documents are redundant can serve as training data. Over time the
system can learn to estimate the probability that a new document with a
given redundancy score would be considered redundant. This probability can
be expressed as P (user j thinks dt is redundant|R(dt|Dt)).

8.6 Other Adaptive Filtering Topics

While learning user profiles is an advantage of a filtering system, it is also a
major research challenge in the adaptive filtering research community. Com-
mon learning algorithms require a significant amount of training data. How-
ever, a real-world filtering system must work as soon as the user uses the sys-

© 2009 by Taylor and Francis Group, LLC

202 Adaptive Information Filtering

tem, when the amount of training is extremely small or zero.5 How should a
good filtering system learn user profiles efficiently and effectively with limited
user supervision while filtering? In order to solve this problem, researchers
working on adaptive filtering have tried to develop a robust learning algorithm
that can work reasonably well when the amount of training data is small and
more effective with more training data (66) (71). Some filtering systems ex-
plore what the user likes while satisfying a user immediate information need
and trade off exploration and exploitation (75) (15). Some filtering systems
consider many aspects of a document besides relevance, such as novelty, read-
ability, and authority (70) (65). Some filtering systems use multiple forms
of evidence, such as user context and implicit feedback from the user, while
interacting with a user (70) (41).

This chapter does not cover all adaptive filtering topics in detail due to
the space limit and also because they are less “text” oriented. To finish this
section, some missed important topics are listed as follows, and the readers
are referred to the papers cited for more details

8.6.1 Beyond Bag of Words

Most of the existing adaptive filtering approaches are focused on identify-
ing relevant documents using distance measures defined in a document space
indexed by text features such as keywords. This is a very simple and limited
view of user modeling, without considering user context or other property of a
document, such as whether a document is authoritative or whether it is novel
to the user. However, even this simplest filtering task is still very hard, and
existing filtering systems do not work effectively. Bayesian graphical model-
ing, a complex data driven user modeling approach, has been used to learn
from implicit and explicit user feedback and to satisfy complex user criteria
(70).

8.6.2 Using Implicit Feedback

For most of adaptive filtering work described in this section, we assume the
system learns from explicit user feedback on whether a document delivered
is relevant or not. There is much related work on using implicit feedback in
the information retrieval community and the user modeling community. The
work in these areas can be categorized according to the behavior category
and minimum scope and have been reviewed recently (27). There are many
possible behaviors (view, listen, scroll, find, query, print, copy, paste, quote,
mark up, type, and edit) on different scope (segment, object, and class) for
system designers to choose from. Implicit feedback has also been explored

5It is possible the system needs to begin working given a short user query and no positive
instance.

© 2009 by Taylor and Francis Group, LLC

Adaptive Information Filtering 203

for the task of filtering (40) (11) (39) (42) (70). (40) suggested a list of
potential implicit feedbacks. (11) built a personal news agent that used time-
coded feedback from the user to learn a user profile. (39) investigated implicit
feedback for filtering newsgroup articles.

8.6.3 Exploration and Exploitation Trade Off

Most of the filtering systems deliver a document if and only if the expected
immediate utility of delivering it is greater than the expected utility of not
delivering it. However, delivering a document to the user has two effects: 1)
it satisfies the user’s information need immediately, and 2) it helps the system
better satisfy the user in the future by learning from the relevance feedback
about this document provided by the user. An adaptive information filtering
approach is not optimal if it fails to recognize and model this second effect.
Some researchers have followed this direction. (15) considers exploration ben-
efit while filtering and carries out exploration and exploitation trade-off. (75)
studies the second aspect and models the long term benefit of delivering a
document as expected utility improvement as a result of improved model.
However, exploration and exploitation trade off is a problem far from being
solved.

8.6.4 Evaluation beyond Topical Relevance

Utility is an approximation of the user’s criteria of a good document. Given
a utility measure, a system can achieve the objective of maximizing the user’s
satisfaction through utility maximization using mathematical or statistical
techniques. A good utility measure is critical, because no system can do well
with an inappropriate objective. In the IR community, utility is usually de-
fined over relevance. Relevance was meant to represent a document’s ability
to satisfy the needs of a user. However, this concept is very abstract and hard
to model, thus usually reduced to a narrow definition of “topical relevance”
or “related to the matter at hand (aboutness)” (45) (59). On the other hand,
“presenting the documents in order of estimated relevance” without consid-
ering the incremental value of a piece of information is not appropriate (58).
Researchers have studied criteria such as information-novelty for retrieval (17),
summarization (14), filtering (73), and topic detection and tracking (4). Prior
research on what is a user’s perception/criteria has found that a wide range
of factors (such as personal knowledge, topicality, quality, novelty, recency,
authority, and author qualitatively) affect human judgments of relevance (8)
(36) (56) (60) (53). We also discussed how to estimate novelty in this chap-
ter, which is just an example of many of the important criteria for the user
besides relevance, such as readability (18) and authority (28). How to build
and evaluate a filtering system to optimize a more complex user criteria that
goes beyond “topical relevance” or “aboutness” is still a challenging research
problem for the adaptive filtering community.

© 2009 by Taylor and Francis Group, LLC

204 Adaptive Information Filtering

8.7 Acknowledgments

The author would like to thank Jamie Callan, Thomas Minka, Yiming Yang,
Wei Xu, Stephen Robertson, Chengxiang Zhai, James Allan, Sarah Tyler,
Philip Zigoris, and Jonathan Koren for their contributions to the work re-
ported in this chapter. This research was supported in part by National Sci-
ence Foundation IIS-0713111, AFOSR/AFRL, an IBM Fellowship, and the
industry sponsors of the Information Retrieval and Knowledge Management
Lab at University of California Santa Cruz. Any opinions, findings, conclu-
sions, or recommendations expressed in this paper are the author’s, and do
not necessarily reflect those of the sponsors.

References

[1] J. Allan, J. Carbonell, G. Doddington, J. Yamron, and Y. Yang. Topic
detection and tracking pilot study. In Topic Detection and Tracking
Workshop Report. 2001.

[2] J. Allan, V. Lavrenko, and H. Jin. First story detection in tdt is hard.
In Proceedings of the 9th International Conference on Information and
Knowledge Management, pages 374–381, 2000.

[3] J. Allan, R. Papka, and V. Lavrenko. On-line new event detection and
tracking. In Proceedings of 21st Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, 1998.

[4] J. Allan, C. Wade, and A. Bolivar. Retrieval and novelty detection
at the sentence level. In Proceedings of the 26th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, July 2003.

[5] A. Anghelescu, E. Boros, D. Lewis, V. Menkov, D. Neu, and P. Kantor.
Rutgers filtering work at trec 2002: Adaptive and batch. In Proceedings
of the Eleventh Text REtrieval Conference (TREC-11), 2002.

[6] A. Arampatzis. Adaptive and Temporally-Dependent Document Filter-
ing. PhD thesis, Katholieke Universiteit Nijmegen, Nijmegen, Nether-
land, 2001.

[7] A. Arampatzis and A. Hameren. The score-distribution threshold op-
timization for adaptive binary classification task. In Proceedings of the
24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 285–293, 2001.

© 2009 by Taylor and Francis Group, LLC

Adaptive Information Filtering 205

[8] C. L. Barry. User-defined relevance criteria: An exploratory study. In
Journal of the American Society for Information Science, 45(3), 1994.

[9] N. Belkin and B. Croft. Information filtering and information retrieval:
two sides of the same coin? In Communications of the ACM, 1992.

[10] R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multi-
ple scales to improve accuracy of large recommender systems. In KDD
’07: Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 95–104, New York, NY,
USA, 2007. ACM Press.

[11] D. Billsus and M. J. Pazzani. A personal news agent that talks, learns
and explains. In AGENTS ’99: Proceedings of the Third Annual Con-
ference on Autonomous Agents, pages 268–275. ACM Press, 1999.

[12] J. Callan. Document filtering with inference networks. In Proceedings
of the Nineteenth Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pages 262–269, 1996.

[13] N. Cancedda, N. Cesa-Bianchi, A. Conconi, C. Gentile, C. Goutte, T.
Graepel, Y. Li, J. M. Renders, J. S. Taylor, and A. Vinokourov. Kernel
method for document filtering. In The Eleventh Text REtrieval Confer-
ence (TREC11). National Institute of Standards and Technology, special
publication 500-249, 2003.

[14] J. Carbonell and J. Goldstein. Automatic text summarization of mul-
tiple documents. In Proceedings of the 21th Annual International ACM
SIGIR Conference on Research and Development in Information Re-
trieval, 1998.

[15] K. M. A. Chai, H. L. Chieu, and H. T. Ng. Bayesian online classifiers
for text classification and filtering. In Proceedings of 25th Annual In-
ternational ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 2002.

[16] C. Chelba and A. Acero. Adaptation of maximum entropy capitalizer:
Little data can help a lot. In D. Lin and D. Wu, editors, Proceedings of
EMNLP 2004, pages 285–292, Barcelona, Spain, July 2004. Association
for Computational Linguistics.

[17] H. Chen and D. R. Karger. Less is more: probabilistic models for re-
trieving fewer relevant documents. In SIGIR ’06: Proceedings of the 29th
Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 429–436, New York, NY, USA,
2006. ACM Press.

[18] K. Collins-Thompson and J. Callan. Predicting reading difficulty with
statistical language models. Journal of the American Society for Infor-
mation Science and Technology, 56(13), 2005.

© 2009 by Taylor and Francis Group, LLC

206 Adaptive Information Filtering

[19] K. Collins-Thompson, P. Ogilvie, Y. Zhang, and J. Callan. Information
filtering, novelty detection, and named-page finding. In Proceedings of
the Eleventh Text REtrieval Conference (TREC-11), 2002.

[20] B. Croft and J. Lafferty, editors. Language Modeling for Information
Retrieval. Kluwer, 2002.

[21] A. Dayanik, D. D. Lewis, D. Madigan, V. Menkov, and A. Genkin.
Constructing informative prior distributions from domain knowledge in
text classification. In SIGIR ’06: Proceedings of the 29th Annual In-
ternational ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 493–500, New York, NY, USA, 2006. ACM
Press.

[22] J. Delgado and N. Ishii. Memory-based weighted majority prediction for
recommender systems. In ACM SIGIR’99 Workshop on Recommender
Systems, 1999.

[23] N. Fuhr. Probabilistic models in information retrieval. In The Computer
Journal, volume 35(3), pages 243–255, 1992.

[24] R. Fung and B. D. Favero. Applying bayesian networks to information
retrieval. Communications of the ACM, 38(3):42–ff., 1995.

[25] E. M Housman. Selective dissemination of information. In Carlos, A.
Cuandra, editor, Annual Review of Information Science and Technology.
Vol. 8. American Society for Information Science, 1973.

[26] W. P. Jones and G. W. Furnas. Pictures of relevance. Journal of the
American Society for Information Science, 1987.

[27] D. Kelly and J. Teevan. Implicit feedback for inferring user preference:
a bibliography. SIGIR Forum, 37(2):18–28, 2003.

[28] J. Kleinberg. Authoritative sources in a hyperlinked environment. In
Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998.

[29] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon,
and J. Riedl. GroupLens: Applying collaborative filtering to Usenet
news. Communications of the ACM, 40(3):77–87, 1997.

[30] K.-S. Lee, K. Kageura, and A. Aizawa. TREC 11 experiments at NII:
The effects of virtual relevant documents in batch filtering. In Proceeding
of the Eleventh Text REtrieval Conference (TREC-11), 2002.

[31] L. Lee. Measures of distributional similarity. In Proceedings of the 37th
ACL, 1999.

[32] D. Lewis. Applying support vector machines to the TREC-2001 batch
filtering and routing tasks. In Proceedings of the Eleventh Text REtrieval
Conference (TREC-11), 2002.

© 2009 by Taylor and Francis Group, LLC

Adaptive Information Filtering 207

[33] B. Liu, X. Li, W. S. Lee, and P. Yu. Text classification by labeling
words. In Proceedings of The Nineteenth National Conference on Arti-
ficial Intelligence (AAAI-2004), July 25-29, 2004.

[34] R. M. Losee and A. Bookstein. Integrating boolean queries in conjunc-
tive normal form with probabilistic retrieval models. In Information
Processing and Management, 1988.

[35] L. Ma, Q. Chen, S. Ma, M. Zhang, and L. Cai. Incremental learning
for profile training in adaptive document filtering. In Proceedings of the
Eleventh Text REtrieval Conference (TREC-11), 2002.

[36] K. L. Maglaughlin and D. H. Sonnenwald. User perspectives on rel-
evance criteria: A comparison among relevant, partially relevant, and
not-relevant judgments. In Journal of the American Society for Infor-
mation Science and Technology, 2003.

[37] A. Martin, G. Doddington, T. Kamm, and M. Ordowski. The DET
curve in assessment of detection task performance. In Proceedings of
EuroSpeech, 1997.

[38] P. McNamee, C. Piatko, and J. Mayfield. JHU/APL at TREC 2002: Ex-
periments in filtering and arabic retrieval. In Proceedings of the Eleventh
Text REtrieval Conference (TREC-11), 2002.

[39] M. Morita and Y. Shinoda. Information filtering based on user behavior
analysis and best match text retrieval. In Proceedings of the 17th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 272–281. Springer-Verlag New York, Inc.,
1994.

[40] D. M. Nichols. Implicit rating and filtering. In Proceedings of the Fifth
DELOS Workshop on Filtering and Collaborative Filtering, 1997.

[41] D. Oard and J. K. Contact. User modeling for information access based
on implicit feedback, Tech Reports in Computer Science and Engineer-
ing, HCIL-TR-2000-11, University of Maryland, College Park, 2000.

[42] D. W. Oard and J. Kim. Modeling information content using observable
behavior. In ASIST 2001 Annual Meeting.

[43] V. Rijbergen and J. C. A theoretical basis for the use of co-occurrence
data in information retrieval. In Journal of Documentation, pages 106–
119, 1976.

[44] S. Robertson and K. S. Jones. Relevance weighting of search terms. In
Journal of the American Society for Information Science, volume 27,
pages 129–146, 1976.

[45] S. Robertson and I. Soboroff. The TREC-10 Filtering track final re-
port. In Proceedings of the Tenth Text REtrieval Conference (TREC-10),

© 2009 by Taylor and Francis Group, LLC

208 Adaptive Information Filtering

pages 26–37. National Institute of Standards and Technology, special
publication 500-250, 2002.

[46] S. Robertson and I. Soboroff. The TREC 2002 filtering track report.
In Proceedings of the Eleventh Text REtrieval Conference (TREC-11),
2002.

[47] S. Robertson and S. Walker. Microsoft Cambridge at TREC-9: Filtering
track. In Proceedings of the Ninth Text REtrieval Conference (TREC-9),
pages 361–368. National Institute of Standards and Technology, special
publication 500-249, 2001.

[48] S. Robertson and S. Walker. Threshold setting in adaptive filtering.
Journal of Documentation, pages 312–331, 2000.

[49] S. Robertson. On theoretical argument in information retrieval. Salton
Award Lecture given at SIGIR 2000, July 2000.

[50] J. J. Rocchio. Relevance feedback in information retrieval. In The
SMART Retrieval System– Experiments in Automatic Document Pro-
cessing, pages 313–323. Prentice Hall, 1971.

[51] G. Salton and C. Buckley. Term-weighting approaches in automatic text
retrieval, Information Processing and Management: an International
Journal, 24(5), 1988.

[52] G. Salton and M. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

[53] L. Schamber and J. Bateman. User criteria in relevance evaluation:
Toward development of a measurement scale. In ASIS 1996 Annual
Conference Proceedings, October 1996.

[54] M. Srikanth, X. Wu, and R. Srihari. UB at TREC 11: Batch and adap-
tive filtering. In Proceedings of the Eleventh Text REtrieval Conference
(TREC-11), 2002.

[55] M. Stricker, F. Vichot, G. Dreyfus, and F. Wolinski. Training context-
sensitive neural networks with few relevant examples for the TREC-9
routing. In The Ninth Text REtrieval Conference (TREC9). National In-
stitute of Standards and Technology, special publication 500-249, 2000.

[56] A. Tombros, I. Ruthven, and J. M. Jose. How users assess web pages
for information seeking. J. Am. Soc. Inf. Sci. Technol., 56(4):327–344,
2005.

[57] H. R. Turtle. Inference Networks for Document Retrieval. PhD thesis,
University of Massachusetts, October 1990.

[58] H. R. Varian. Economics and search (invited talk at SIGIR 1999), 1999.

© 2009 by Taylor and Francis Group, LLC

Adaptive Information Filtering 209

[59] E. M. Voorhees and L. P. Buckland, editors. NIST Special Publication
500-251: The Eleventh Text REtrieval Conference (TREC 2002). De-
partment of Commerce, National Institute of Standards and Technology,
2002.

[60] P. Wang. A cognitive model of document selection of real users of IR
Systems. PhD thesis, University of Maryland, 1994.

[61] L. Wu, X. Huang, J. Niu, Y. Xia, Z. Feng, and Y. Zhou. FDU at
TREC 2002: Filtering, Q&A, web and video tasks. In Proceedings of
the Eleventh Text REtrieval Conference (TREC-11), 2002.

[62] X. Wu and R. K. Srihari. Incorporating prior knowledge with weighted
margin support vector machines. In Proc. ACM Knowledge Discovery
Data Mining Conf.(ACM SIGKDD 2004), Aug. 2004.

[63] Y. Yang and B. Kisiel. Margin-based local regression of adaptive filter-
ing. In Proceedings of the Twelveth International Conference on Infor-
mation Knowledge Management (CIKM 2003). ACM Press, 2003.

[64] Y. Yang, S. Yoo, J. Zhang, and B. Kisiel. Robustness of adaptive filter-
ing methods in a cross-benchmark evaluation. In Proceedings of the 28th
Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, 2005.

[65] Y. Yang, A. Lad, Ni Lao, A. Harpale, B. Kisiel, and M. Rogati. Utility-
based information distillation over temporally sequenced documents.
In SIGIR ’07: Proceedings of the 30th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
pages 31–38, New York, NY, USA, 2007. ACM Press.

[66] Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning gaussian pro-
cesses from multiple tasks. In ICML ’05: Proceedings of the 22nd Inter-
national Conference on Machine Learning, pages 1012–1019, New York,
NY, USA, 2005. ACM Press.

[67] K. Yu, V. Tresp, and S. Yu. A nonparametric hierarchical bayesian
framework for information filtering. In SIGIR ’04: Proceedings of the
27th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 353–360. ACM Press, 2004.

[68] C. Zhai, P. Jansen, and E. Stoica. Threshold calibration in CLARIT
adaptive filtering. In Proceedings of Seventh Text REtrieval Conference
(TREC-7), pages 149–157. National Institute of Standards and Technol-
ogy, special publication 500-242, 1999.

[69] C. Zhai and J. Lafferty. A study of smoothing methods for language
models applied to ad hoc information retrieval. In Proceedings of the
24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 334–342, September 2001.

© 2009 by Taylor and Francis Group, LLC

210 Adaptive Information Filtering

[70] Y. Zhang and J. Callan. Combine multiple forms of evidence while
filtering. In Proceedings of Human Language Technology Conference
and Conference on Empirical Methods in Natural Language Processing,
2005.

[71] Y. Zhang. Using Bayesian priors to combine classifiers for adaptive filter-
ing. In Proceedings of the 27th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, 2004.

[72] Y. Zhang and J. Callan. Maximum likelihood estimation for filtering
thresholds. In Proceedings of the 24th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
pages 294–302, 2001.

[73] Y. Zhang, J. Callan, and T. Minka. Novelty and redundancy detection
in adaptive filtering. In Proceedings of the 25th ACM SIGIR Conference,
2002.

[74] Y. Zhang and J. Koren. Efficient bayesian hierarchical user modeling
for recommendation systems. In Proceedings of the 30st Annual In-
ternational ACM SIGIR Conference on Research and Development in
Information Retrieval, 2007.

[75] Y. Zhang, W. Xu, and J. Callan. Exploration and exploitation in adap-
tive filtering based on bayesian active learning. In Proceedings of the
International Conference on Machine Learing (ICML 2003), 2003.

[76] P. Zigoris and Y. Zhang. Bayesian adaptive user profiling with explicit &
implicit feedback. In Conference on Information and Knowledge Man-
agement 2006, 2006.

© 2009 by Taylor and Francis Group, LLC

Adaptive Information Filtering 211

Symbol Description

�x a TF-IDF vector, repre-
sentating a passage

y the class label of a pas-
sage, indicating its rele-
vance (yes or no) to a
query

�w∗ a vector of regression coef-
ficients, serving as a query
profile or “class model”

fRL the solution of regularized
logistic regression, the
mapping function from
any passage to the
estimated conditional
probability for the passage
to be relevant to a query

�hi a TF-IDF vector, repre-
senting a historical pas-
sage

H(t) the user history at time t,
defined over a sequence of
historical passages

fND(�x) the novelty scoring func-
tion applied to an input
passage

fAR(�x) the anti-redundancy scor-
ing function

DCG(n) the Discounted Cumu-
lated Gain of a ranked list
of n passages

DCU(n) the Discounted Cumu-
lated Utility of a ranked
list of n passages

NDCU the Normalized DCU
PNDCU the Penalized NDCU
G(di, q) the gain for reading doc-

ument di with respect to
query q

U(pi, q) the utility for reading pas-
sage pi with respect to
query q

C(pi) the set of nuggets con-
tained in passage pi

β the dampening factor that
penalizes re-occurrences of
a nugget in ranked pas-
sages

λ the weight balancing
the NDCU term with
the penalty on ranked-
list length in utility
assessment

© 2009 by Taylor and Francis Group, LLC

Chapter 9

Utility-Based Information
Distillation

Yiming Yang and Abhimanyu Lad

9.1 Introduction . 213
9.2 A Sample Task . 216
9.3 Technical Cores . 218
9.4 Evaluation Methodology . 221
9.5 Data . 225
9.6 Experiments and Results . 226
9.7 Concluding Remarks . 229
9.8 Acknowledgments . 229

9.1 Introduction

Utility-based information distillation is a new challenge in information
retrieval, focusing on effective ways to combine technologies from adaptive
filtering (AF), novelty detection, anti-redundant passage ranking and flexible
user feedback. The ultimate goal is to improve the true utility of the system,
as well as to support effective and efficient user feedback. To see why utility-
based distillation is a practically important problem and an open challenge for
research, let us briefly outline the related work in Adaptive filtering and Topic
Detection and Tracking, and visit some limitations of the current solutions.

9.1.1 Related Work in Adaptive Filtering (AF)

Adaptive filtering is the task of online prediction of the relevance of each new
document in a temporally ordered sequence, with respect to a pre-specified
topic or query. Here we use the terms “topic” and “query” interchangeably
as synonyms. Based on the initial query words or topic description, and a few
positive examples of on-topic documents, the system maintains a profile for
each topic. The profile is incrementally updated whenever relevance feedback
is received from the user. The learning nature of AF systems makes them
more powerful than standard search engines without adaptation. A variety

213
© 2009 by Taylor and Francis Group, LLC

214 Utility-Based Information Distillation

of supervised learning algorithms (e.g., Rocchio-style classifiers, Exponential-
Gaussian models, local regression and logistic regression approaches) have
been studied in adaptive settings with explicit and implicit relevance feedback,
and on benchmark datasets from TREC (Text Retrieval Conferences) and the
TDT (Topic Detection and Tracking) evaluation forum (1; 5; 8; 18; 25; 31;
29). Regularized logistic regression (26), for example, is one of the strong-
performing methods in terms of both effectiveness and efficiency, and is easy
to scale for frequent adaptations over large datasets such as the TREC-10
corpus with over 800,000 documents and 84 topics.

9.1.2 Related Work in Topic Detection and Tracking (TDT)

Topic Detection and Tracking (TDT) research focuses on automated
detection and tracking of news events from multiple sources of temporally
ordered stories (2). TDT has two primary tasks: topic tracking and novelty
detection. The topic tracking task, although defined independently, is almost
identical to the adaptive filtering task except that user feedback is assumed
to be not available, although pseudo-relevance feedback (PRF) by the system
is allowed. PRF means that the system takes the top-ranking documents in
a retrieved list for a topic as truly relevant in its profile adaptation for that
topic. PRF may be useful when training examples are sparse and when true
relevance feedback is not sufficient (26).

Novelty detection (ND), the other primary task in TDT, aims to detect the
first report of each new event from temporally ordered news stories. The task
is also called First-Story Detection (FSD) or New Event Detection (NED).
There has been a significant body of work for addressing ND problems.
Yang et al. (23) examined incremental clustering for grouping documents
into events, and used the cosine similarity in combination with some time-
decaying function to measure the novelty of new documents with respect to
historical events. Zhang et al. (30) developed a Bayesian statistic framework
for modeling the growing number of events over time in a non-parametric
Dirichlet process. Yang et al. (24) studied effective use of Named Entities
in the modeling of novelty of documents conditioned on events and higher-
level topics. Zhang et al. (32) compared alternative measures for sentence-
level novelty detection conditioned on perfect knowledge of document-level
relevance; cosine similarity worked the best in their experiments. Allan et al.
(3) argued for the importance of comparing novelty measures under a more
realistic assumption, i.e., under the condition that sentence-level relevance
is not available but predicted by a system. Kuo et al. (12) developed a
indexing-tree strategy for speedy computation and investigated the use of
Named Entities.

© 2009 by Taylor and Francis Group, LLC

Utility-Based Information Distillation 215

9.1.3 Limitations of Current Solutions

Despite the substantial accomplishments in both AF and TDT, significant
problems remain unsolved regarding how to optimize utility of the system in
terms of the relevance and novelty of returned documents for users attention,
and how to make user feedback most effective and least costly. The following
issues, specifically, might seriously limit the true utility of an AF or ND system
in real-world applications:

• Users have a ‘passive’ role. That is, he or she reacts to the system only
if the system makes a ‘yes’ decision on a document, by confirming or
rejecting the system decision. A more active alternative would be to
allow the user to review a ranked list of system-selected candidates each
time, making human judgments more effective in discriminating hard
cases between true positives and false alarms for profile adaptation. To
support this, modeling the uncertainty of a ranked document being read
by the user becomes an issue (for which little research has been done in
AF and ND) because we can no longer assume a deterministic process
for user relevance feedback.

• The unit for receiving user relevance judgments has been restricted
to a document in conventional AF and ND. However, a real user
may be willing to provide more informative, fine-grained feedback via
highlighting some smaller pieces of text as relevant and/or novel. To
support such interaction, the system may provide passage ranking based
on relevance where passage length may vary (as documents, paragraphs,
sentences or n-consecutive word windows), depending on applications,
datasets and user preferences. Further, the system needs to learn from
labeled pieces of text of arbitrary span instead of just allowing labeled
documents. How to train, optimize and evaluate such a system is an
open challenge.

• System-selected documents are often highly redundant. A major news
event, for example, would be reported by multiple sources repeatedly
for a while, making most of the information content in those articles
redundant with each other. A relevance-driven AF system would select
all these redundant documents for user feedback, wasting the user’s
time while offering little gain. Clearly, novelty detection (ND) and anti-
redundancy ranking of documents or passages would help in principle.
However, how to leverage both relevance and novelty assessments for
unified utility optimization and for effective user interactions with the
system is a main challenge in information distillation.

In the rest of the chapter, we present our recent work in utility-based
information distillation, addressing the above limitations and challenges (27).
Specifically, with a new distillation system called CAFÉ, CMU Adaptive
Filtering Engine, we define a task-oriented distillation process, analyze

© 2009 by Taylor and Francis Group, LLC

216 Utility-Based Information Distillation

issues and propose new solutions for utility optimization and utility-based
evaluation. Section 9.2 outlines the information distillation process with
a concrete example. Section 9.3 describes CAFÉ with the core components
of adaptive filtering, novelty detection, anti-redundant passage ranking and
the support to fine-grained user feedback. Section 9.4 discusses issues with
respect to evaluation methodology and proposes our new solutions. Section
9.5 describes our extension of the TDT4 benchmark corpus with manually
annotated “answer keys” (Section 9.4) which are necessary for evaluating
systems that procedure flexible-length passages. Section 9.6 presents our
experiments and results. Section 9.7 concludes the study and gives future
perspectives.

9.2 A Sample Task

Consider a news event – the escape of seven convicts from a Texas prison
in December 2000 and their capture a month later. Assuming a user were
interested in this event since its early stage, the information need could
be: ‘Find information about the escape of convicts from Texas prison, and
information related to their recapture.’ The associated lower-level questions
could be:

• How many prisoners escaped?

• Where and when were they sighted?

• Who are their known contacts inside and outside the prison?

• How are they armed?

• Do they have any vehicles?

• What steps have been taken so far?

We call such an information need a task and the associated questions as
the queries in this task. A distillation system is supposed to monitor the
incoming documents, process them chunk by chunk in a temporal order, select
potentially relevant and novel passages from each chunk with respect to each
query and present a ranked list of passages to the user. Passage ranking here
is based on how relevant a passage is with respect to the current query, how
novel it is with respect to the current user history (of his or her interactions
with the system) and how redundant it is compared to other passages with a
higher rank in the list.

The user may provide feedback via a highlighting interface – he or she may
highlight arbitrary spans of text and label them as ‘Relevant,’ ‘Not Relevant,’

© 2009 by Taylor and Francis Group, LLC

Utility-Based Information Distillation 217

or ‘Already Seen.’ Only the highlighted pieces are used by the system to
update its model (“profile”) of the current query. Depending on the type of
user feedback, the system takes one of the following actions:

• If the feedback type is ‘Relevant,’ use the highlighted piece of text as a
positive example in the adaptation of the query profile, and also add it
to the user’s history.

• If the feedback type is ‘Not-relevant,’ use the highlighted piece of text
as a negative example in the adaptation of the query profile, and also
add it to the user’s history.

• If the feedback type is ‘Already Seen,’ do not use the text for positive
or negative feedback; just add it to the user history.

As soon as the query profile is updated, the system re-issues a search and
returns another ranked list of passages where the previously seen passages are
either removed or ranked low, based on user preference. For example, if the
user highlights ‘...officials have posted a $100,000 reward for their capture...’
as relevant answer to the query “What steps have been taken so far?”, then
the highlighted piece is used as an additional positive training example in
the adaptation of the query profile. This piece of feedback is also added to
the user history as a seen example, so that the system will be unlikely to
place another passage mentioning ‘$100,000 reward’ in the future at the top
of the ranked list. However, an article mentioning ‘...officials have doubled the
reward money to $200,000...’ might be ranked high since it is both relevant
to the (updated) query profile and novel with respect to the (updated) user
history. The user may modify the original queries or add a new query during
the process; the query profiles will be changed accordingly. Clearly, novelty
detection is very important for the utility of such a system because of the
iterative search. Without novelty detection, the old relevant passages would
be shown to the user repeatedly in each ranked list.

Through the above example, we can see the main properties of our new
framework for utility-based information distillation over temporally ordered
documents. Our framework combines and extends the power of adaptive
filtering (AF), ad hoc retrieval (IR) and novelty detection (ND). Compared
to standard IR, our approach has the power of incrementally learning long-
term information needs and modeling a sequence of queries within a task.
Compared to conventional AF, it enables a more active role of the user in
refining his or her information needs and requesting new results by allowing
relevance and novelty feedback via highlighting of arbitrary spans of text in
passages returned by the system.

Compared to past work, this is the first evaluation of ND in a utility-
based framework, integrated with adaptive filtering for sequenced queries that
allows flexible user feedback over ranked passages. The combination of AF,
IR and ND with the new extensions raises an important research question

© 2009 by Taylor and Francis Group, LLC

218 Utility-Based Information Distillation

regarding evaluation methodology: how can we measure the utility of such
an information distillation system? Existing metrics in standard IR, AF and
ND are insufficient, and new solutions must be explored, as we will discuss in
Section 9.4. First, we describe the technical cores of our system.

9.3 Technical Cores

Our system consists of the AF component for incremental learning of query
profiles, the passage retrieval component for estimating the relevance of each
passage with respect to a query profile, the novelty detection component for
assessing the novelty of each passage with respect to the user history, and the
anti-redundancy component for minimizing redundancy among the ranked
passages.

9.3.1 Adaptive Filtering Component

We use a state-of-the-art algorithm in the field – the regularized logistic
regression method which had the best results on several benchmark evaluation
corpora for AF (26). Logistic regression (LR) is a supervised learning
algorithm for statistical classification. Based on a training set of labeled
instances, it learns a class model which can then by used to predict the labels
of unseen instances. Its performance as well as efficiency in terms of training
time makes it a good candidate when frequent updates are required to the
class model, as is the case in adaptive filtering, where the system must learn
from each new feedback provided by the user. Regularized logistic regression
has the optimization criteria as follows:

�wmap = argmin
�w

{
n∑

i=1

s(i) log(1 + e−yi �wxi) + λ||�w||2
}

The first term in the objective function is for reducing training-set errors,
where s(i) takes three different values (pre-specified constants) for query,
positive and negative documents respectively. This is similar Rocchio where
different weights are given to the three kinds of training examples: topic
descriptions (queries), on-topic documents and off-topic documents. The
second term in the objective function is for regularization, equivalent to
adding a Gaussian prior to the regression coefficients with a zero mean and
covariance variance matrix 1

2λI where I is the identity matrix. Tuning
λ(≤ 0) is theoretically justified for reducing model complexity (the effective
degree of freedom) and avoiding over-fitting on training data. The solution of
the modified objective function is called the Maximum A Posteriori (MAP)
estimate, which reduces to the maximum likelihood solution for standard LR

© 2009 by Taylor and Francis Group, LLC

Utility-Based Information Distillation 219

if λ = 0. (See (26) and (29) for computational complexity, parameter tuning
and implementation issues.)

In adaptive filtering, each query is considered as a class, and the class
model – a set of regression coefficients corresponding to individual terms –
is the query profile as viewed by the system. As for the training set, we use
the query itself as the initial positive training example of the class, and the
user-highlighted pieces of text (marked as Relevant or Not-relevant) during
feedback as additional training examples. To address the cold start issue
in the early stage before any user feedback is obtained, the system uses a
small sample from a retrospective corpus as the initial negative examples in
the training set. The details of using logistic regression for adaptive filtering
(assigning different weights to positive and negative training instances, and
regularizing the objective function to prevent overfitting on training data) are
presented in (26).

The class model �w∗ learned by Logistic Regression, or the query profile, is
a vector whose dimensions are individual terms and whose elements are the
regression coefficients, indicating how influential each term is in the query
profile. The query profile is updated whenever a new piece of user feedback
is received. A temporally decaying weight can be applied to each training
example, as an option, to emphasize the most recent user feedback.

9.3.2 Passage Retrieval Component

We use standard IR techniques in this part of our system. Incoming
documents are processed in chunks, where each chunk can be defined as a fixed
span of time or as a fixed number of documents, as preferred by the user. For
each incoming document, corpus statistics like the IDF (Inverted Document
Frequency) of each term are updated. We use a state-of-the-art named entity
identifier and tracker (9; 15) to identify person and location names, and merge
them with co-referent named entities seen in the past. Then the documents
are segmented into passages, which can be a whole document, a paragraph,
a sentence, or any other continuous span of text, as preferred. Each passage
is represented using a vector of TF-IDF (Term Frequency–Inverse Document
Frequency) weights, where term can be a word or a named entity.

Given a query (represented using its profile as described in Section 9.3.1),
the system computes a relevance score (the posterior probability of belonging
to class ‘+1’) for each passage �x using the logistic regression solution �w∗:

fRL(�x) ≡ P (y = 1|�x, �w∗) =
1

(1 + e−�w∗·�x)
(9.1)

Passages are ordered by these relevance scores and the ones with scores
above a relevance threshold (tuned on a training set) comprise the relevance
list that is passed on to the next step – novelty detection.

© 2009 by Taylor and Francis Group, LLC

220 Utility-Based Information Distillation

9.3.3 Novelty Detection Component

To avoid showing information that the user has already seen, the system
maintains a user history H(t), which contains all the spans of text hi that the
user highlighted (as feedback) during their past interactions with the system,
up to the current time t. Each passage in the relevance list (Section 9.3.2) is
compared to the user history for novelty assessment.

Denoting the history as

H(t) =
{
�h1,�h2, ...,�ht

}
, (9.2)

the novelty score of a new candidate passage �x is computed as:

fND(�x) = 1 − max
i∈1..t

{
cos(�x,�hi)

}
(9.3)

where both candidate passage x and highlighted spans of text hi are
represented as TF-IDF vectors.

The novelty score of each passage is compared to a pre-specified threshold
(also tuned on a training set), and any passage with a score below this
threshold is removed from the relevance list.

9.3.4 Anti-Redundant Ranking Component

Although the novelty detection component ensures that only novel
(previously unseen) information remains in the relevance list, this list might
still contain the same novel information at multiple positions of the ranked
list. Suppose, for example, that the user has already read about a $100,000
reward for information about the escaped convicts. A new piece of news that
the award has been increased to $200,000 is novel since the user hasn’t read
about it yet. However, multiple news sources would report this information
and we might end up showing (redundant) articles from all these sources
in a ranked list. Hence, a ranked list should also be made non-redundant
with respect to its own contents. We use a simplified version of the Maximal
Marginal Relevance method, originally developed for combining relevance and
novelty in text retrieval and summarization (6). Our procedure starts with
the current list of passages sorted by relevance (Section 9.3.2) and filtered
by Novelty Detection component (Section 9.3.3), and generates a new non-
redundant list as follows:

1. Take the top passage in the current list as the top one in the new list.

2. Add the next passage �x in the current list to the new list only if

fAR(�x) > t

where
fAR(�x) = 1 − max

pi∈Lnew

{cos(�x, pi)}

and Lnew is the set of passages already selected in the new list.

© 2009 by Taylor and Francis Group, LLC

Utility-Based Information Distillation 221

3. Repeat step 2 until all the passages in the current list have been
examined.

After applying the abovementioned algorithm, each passage in the new list is
sufficiently dissimilar to others, thus favoring diversity rather than redundancy
in the new ranked list. The anti-redundancy threshold t is tuned on a training
set.

9.4 Evaluation Methodology

The approach we proposed above for information distillation raises
important issues regarding evaluation methodology. Firstly, since our system
allow the output to be passages at different leves of granularity (e.g., k-
sentence windows where k may vary) instead of a fixed level, it is not possible
to have pre-annotated relevance judgments at all such granularity levels.
Secondly, since we wish to measure the utility of the system output as a
combination of both relevance and novelty, traditional relevance-only based
measures must be replaced by measures that penalize the repetition of the
same information in the system output across time. Thirdly, since the output
of the system is ranked lists, we must reward those systems that present useful
information (both relevant and previously unseen) using shorter ranked lists,
and penalize those that present the same information using longer ranked lists.
None of the existing measures in ad hoc retrieval, adaptive filtering, novelty
detection or other related areas (text summarization and question answering)
have desirable properties in all the three aspects. Therefore, we must develop
a new one.

9.4.1 Answer Keys

To enable the evaluation of a system whose output consists of passages of
arbitrary length, we borrow the concept of answer keys from the Question
Answering (QA) community, where systems are allowed to produce arbitrary
spans of text as answers. Answer keys define what should be present in
a system response to receive credit, and are comprised of a collection of
information nuggets, i.e., factoid units about which human assessors can make
binary decisions of whether or not a system response contains them.

Defining answer keys and the associated binary decisions is a conceptual
task that requires semantic mapping (22), since a system can present the
same piece of information in many different ways. Hence, QA evaluations
have relied on human assessors, making them costly, time consuming and
not scalable to large query sets, document collections and extensive system
evaluations with various parameter settings.

© 2009 by Taylor and Francis Group, LLC

222 Utility-Based Information Distillation

9.4.1.1 Automating evaluations based on answer keys

Automatic evaluation methods would allow for faster system building and
tuning, as well as provide an objective and affordable way of comparing various
systems. Recently, such methods have been proposed, more or less, based on
the idea of n-gram co-occurrences. Pourpre (13) assigns a fractional recall
score to a system response based on its unigram overlap with a given nugget’s
description. For example, a system response ‘A B C’ has recall 3/4 with
respect to a nugget with description ‘A B C D.’ However, such an approach
is unfair to systems that present the same information but using words other
than A, B, C and D. Another open issue is how to weight individual words
in measuring the closeness of a match. For example, consider the question
“How many prisoners escaped?” In the nugget ‘Seven prisoners escaped from
a Texas prison,’ there is no indication that ‘seven’ is the keyword, and that
it must be matched to get any relevance credit. Using IDF values does not
help, since ‘seven’ will generally not have a higher IDF than words like ‘texas’
and ‘prison’ – an observation of ours supported by the results reported by
the authors of Pourpre. Also, redefining the nugget as just ‘seven’ does not
solve the problem since now it might spuriously match any mention of ‘seven’
out of context. Nuggeteer (16) works on similar principles but makes binary
decisions about whether a nugget is present in a given system response by
tuning a threshold. However, it is also plagued by ‘spurious relevance’ since
not all words of the nugget description (or known correct responses) are central
to the nugget.

9.4.1.2 Nugget-matching rules

We propose a reliable automatic method for determining whether a snippet
of text contains a given nugget, based on nugget-matching rules, which are
generated using a semi-automatic procedure explained below. These rules are
essentially boolean queries that will only match against snippets that contain
the nugget. For instance, a candidate rule for matching answers to “How many
prisoners escaped?” is (Texas AND seven AND escape AND (convicts OR
prisoners)), possibly with other synonyms and variants in the rule. For
a corpus of news articles, which usually follow a typical formal prose, it is
surprisingly easy to write such simple rules to match expected answers, if
assisted by an appropriate tool.

We propose a two-stage approach, inspired by Autoslog (17), that combines
the strength of humans in identifying semantically equivalent expressions and
the strength of the system in gathering statistical evidence from a human-
annotated corpus of documents. In the first stage, human subjects annotated
(using a highlighting tool) portions of on-topic documents that contained
answers to each nugget.1 In the second stage, subjects used our rule generation

1LDC (21) already provides relevance judgments for 100 topics on the TDT4 corpus. We

© 2009 by Taylor and Francis Group, LLC

Utility-Based Information Distillation 223

tool to create rules that would match the annotations for each nugget. The
tool allows users to enter a boolean rule as a disjunction of conjunctions (e.g.,
((a AND b) OR (a AND c AND d) OR (e))). Given a candidate rule, our
tool uses it as a boolean query over the entire set of on-topic documents and
calculates its recall and precision with respect to the annotations that it is
expected to match. Hence, the subjects can start with a simple rule and
iteratively refine it until they are satisfied with its recall and precision. We
observed that it was very easy for humans to improve the precision of a rule
by tweaking its existing conjunctions (adding more ANDs), and improving the
recall by adding more conjunctions to the disjunction (adding more ORs).

Note that the annotations generated in the first stage cannot themselves
be used reliably for automatic evaluations. System generated passages might
partially overlap with such annotations, making it non-trivial to automatically
determine whether the system response actually contains the corresponding
nugget. This problem is alleviated by the rule creation stage which succinctly
captures various ways of answering a question, while avoiding matching
incorrect (and out of context) responses. Human involvement in the rule
creation ensures high quality generic rules which can then be used to evaluate
arbitrary system responses reliably.

As an example, let’s try to create a rule for the nugget which says that
seven prisoners escaped from the Texas prison. We start with a simple rule
– (seven). When we input this into the rule generation tool, we realize that
this rule matches many spurious occurrences of seven (e.g. ‘...seven states...’)
and thus gets a low precision score. We can further qualify our rule – Texas
AND seven AND convicts. Next, by looking at the ‘missed annotations,’ we
realize that some news articles mentioned “...seven prisoners escaped....” We
then replace convicts with the disjunction (convicts OR prisoners). We
continue tweaking the rule in this manner until we achieve a sufficiently high
recall and precision – i.e., the (small number of) misses and false alarms can
be safely ignored.

9.4.2 Evaluating the Utility of a Sequence of Ranked Lists

Once we have a reliable way to determine the presence of nuggets in a given
span of text, we can assign a relevance score to each system-produced passage.
However, each such passage will now get a graded score since it can contain
multiple nuggets. Moreover, a user perceives lesser utility when presented with
the same nugget repeatedly. We first describe a recently proposed measure
for evaluating a ranked list of documents in terms of their relevance to the
query, and extend it to evaluate the utility of a sequence of ranked lists of
passages produced by our system.

Discounted Cumulated Gain (DCG) (11) is an intuitive measure of the total

further ensured that these judgments are exhaustive on the entire corpus using pooling.

© 2009 by Taylor and Francis Group, LLC

224 Utility-Based Information Distillation

gain obtained by a user by going through a ranked list, from the top, up to a
given position. It allows for graded relevance, and discounts the gain received
at lower ranks to favor systems that place highly relevant documents near the
top of the ranked list. The DCG score at rank n is calculated as follows:

DCG(n) =
n∑

i=1

G(di, q)/ logb(i + b − 1) (9.4)

where di is the i-th document in the ranked list, G(di, q) is the graded relevance
of document di with respect to the query q and parameter b is a pre-specified
constant to control the discount rates with respect to the position of each
document in the ranked list. The DCG score is normalized with respect to
the ideal (best possible) DCG to get the Normalized Discounted Cumulated
Gain (NDCG). To obtain a single score for the system’s performance on a
query, the NDCG scores at all ranks are averaged. Given a test set of queries,
the per-query NDCG scores are further averaged to produce a global score.

In our evaluation scheme, we make two changes to the standard NDCG
metric, which we will describe in detail:

1. Replace graded document relevance G(di, q) with graded passage utility
U(pi, q) that takes both nugget-based relevance and novelty into
account.

2. Penalize longer ranked lists to account for the effort spent by the user
in going through the system output.

9.4.2.1 Graded passage utility

To account for the presence of nuggets as well as whether the nuggets have
been seen by the user in the past, we calculate the gain received from each
passage in terms of utility U(pi, q), instead of relevance G(di, q). Thus, we
define Discounted Cumulated Utility (DCU) as:

DCU(n) =
n∑

i=1

U(pi, q)/ logb(i + b − 1) (9.5)

which is normalized with respect to the ideal DCU to get the Normalized
Discounted Cumulated Utility (NDCU). U(pi, q) is calculated as:

U(pi, q) =
∑

j∈C(pi)

wj (9.6)

where C(pi) is the set of nuggets contained in passage pi, determined using
the rules as described in 9.4.1.2. Each nugget Nj has an associated weight
wj , which determines the utility derived by seeing that nugget in a system-
produced passage. These weights are initially set to be equal, but could also

© 2009 by Taylor and Francis Group, LLC

Utility-Based Information Distillation 225

be initialized based on the pyramid approach (14) to assign different levels of
importance to nuggets.

Since the repeated occurrences of the same piece of information are less
useful (or not useful at all) to the user, we dampen the weight wj of
each nugget Nj whenever it occurs in a system-produced passage, so that
subsequent occurrences receive lower utility. That is, for each nugget Nj, its
weight is updated as wj = wj ∗ β, where p is a preset dampening factor.
When β = 1, no utility dampening occurs and each occurrence of the same
nugget is given equal score, as with traditional relevance based methods.
At the other extreme, β = 0 causes only the first occurrence of a nugget
to be scored, ignoring all its subsequent occurrences. As a middle ground,
a small non-zero dampening factor can be used if the user prefers to see
some redundancy, perhaps as an indicator of importance or reliability of the
presented information.

These nugget weights are preserved between evaluation of successive ranked
lists produced by the system, since the users are expected to remember what
the system showed them in the past. Hence, systems that show novel items
(i.e., items not seen in the past) and also produce non-redundant ranked lists
(i.e., do not display very similar passages at multiple positions in the same
ranked list) are favored by such an evaluation scheme.

9.4.2.2 Ranked list length penalty

Each passage selected by the system for the user’s attention has an
associated cost in terms of user time and effort to review it. Therefore, an
adaptive filtering system must learn to limit the length of its ranked list to
balance this cost against the gain, as measured by NDCU. However, NDCU as
such is a recall oriented measure giving no incentive to a system to limit the
ranked list length, since each additional passage in the list can only increase
the utility score. Hence, we assign a penalty to longer ranked lists, and
calculate Penalized Normalized Discounted Utility (PNDCU) as follows:

PNDCU = λ · NDCU + (1 − λ) · (1 − logm(l + 1)) (9.7)

where l is the length of the system-produced ranked list, and m is the
maximum ranked list length allowed. λ controls the trade-off between the
gain and cost of going through the system’s output.

9.5 Data

TDT4 was the evaluation benchmark corpus in TDT2002 and TDT2003.
The corpus consists of over 90, 000 news articles from multiple sources (AP,
NYT, CNN, ABC, NBC, MSNBC, Xinhua, Zaobao, Voice of America, PRI

© 2009 by Taylor and Francis Group, LLC

226 Utility-Based Information Distillation

the World, etc.) published between October 2000 and January 2001, in three
languages – Arabic, English and Mandarin. Speech-recognized and machine-
translated versions of the non-English articles were provided as well.

LDC (21) has annotated the corpus with 100 topics, that correspond
to various news events in this time period. Out of these, we selected
a subset of 12 actionable events, and defined corresponding tasks for
them.2 For the Texas prison break event, for example, we defined a hypo-
thetical task – ‘Find information about the escape of convicts from
Texas prison, and information related to their recapture’. For each
task, we manually defined a profile consisting of an initial set of (5 to 10)
queries (e.g. ‘number of escaped convicts,’ ‘their last known locations,’
‘actions taken by police so far,’ etc.), a free-text description of the user
history, i.e., what the user already knows about this event that should not be
repeated by the system, and a list of known on-topic and off-topic documents
(if available) as training examples.

For each query, we generated answer keys and corresponding nugget
matching rules using the procedure described in Section 9.4.1.2. Thus we
had a total of 120 queries, with an average of 7 nuggets per query.

9.6 Experiments and Results

9.6.1 Baselines

We used Indri (20), a popular language-model based retrieval engine, as
a baseline for comparison with our system. Indri supports standard search
engine functionality, including pseudo-relevance feedback (PRF) (4; 7), and
is representative of a typical query-based retrieval system. Indri does not
support any kind of novelty detection.

We compare Indri (System A) with PRF turned on and off, against our
system (system B) with user feedback, novelty detection and anti-redundant
ranking turned on and off.

9.6.2 Experimental Setup

We divided the TDT4 corpus spanning 4 months into 10 chunks, each
defined as a period of 12 consecutive days. At any given point of time in
the distillation process, each system accesses the past data up to the current
point, and produces a ranked list of up 50 passages per query.

The 12 tasks defined on the corpus were divided into a training and test

2URL: http://nyc.lti.cs.cmu.edu/downloads

© 2009 by Taylor and Francis Group, LLC

http://nyc.lti.cs.cmu.edu

Utility-Based Information Distillation 227

Systems

P
N

D
C

U

0.
0

0.
1

0.
2

0.
3

0.
4

0.
19

0.
28

0.
19

0.
29

0.
22 0.

24

0.
23

0.
35

0.
24

0.
35

0.
24

0.
36

0.
24

0.
36

p=0.0 p=0.1

Indri
[Base]

Indri
[PRF]

CAFE
[Base]

CAFE
[F]

CAFE
[F+N]

CAFE
[F+A]

CAFE
[F+N+A]

FIGURE 9.1: PNDCU Scores of Indri and CAFÉ for two dampening
factors (p), and various settings (PRF: Pseudo Relevance Feedback,
F: Feedback, N: Novelty Detection, A: Anti-Redundant Ranking).

set containing 6 tasks each. Each system was allowed to use the training set
to tune its parameters for optimizing PNDCU (equation 9.7), including the
ranked list length for both Indri and our own system, and the novelty and
anti-redundancy thresholds for our system.

The PNDCU for each system run is calculated automatically. User feedback
was also simulated: relevance judgments for each system-produced passage (as
determined by the nugget matching rules described in section 9.4.1.2) were
used as user feedback in the adaptation of query profiles and user histories.

9.6.3 Results

In Figure 9.1, we show the PNDCU scores of the two systems under various
settings. These scores are averaged over all chunks of the six tasks in the
test set, and are calculated with two dampening factors (see Section 9.4.2.1):
β = 0 and 0.1, to simulate no tolerance and small tolerance for redundancy,
respectively.

Allowing user feedback in our system improves the utility substantially
when the user is willing to allow some redundancy (β = 0.1), whereas the
improvement is smaller when no redundancy is allowed (β = 0). This is not
surprising – when the user gives positive feedback on an item, the system
favors that item in its query model and tends to show it repeatedly in the
future. It is informative to evaluate such systems using our utility measure
(with p = 0) which accounts for novelty and thus gives a more realistic picture

© 2009 by Taylor and Francis Group, LLC

228 Utility-Based Information Distillation

FIGURE 9.2: Performance of CAFÉ and Indri across chunks.

of how well a system can generalize from user feedback, rather than using
traditional IR measures like recall and precision which give an incomplete
picture of improvement when using feedback.

Since documents were processed chunk by chunk, it would be interesting
to see how the performance of systems improves over time. Figures 9.2
shows the performance trends for both the systems across chunks. While the
performance with and without feedback on the first few chunks is expected
to be close, for subsequent chunks, the performance curve with feedback
enabled rises above the one with the no-feedback setting. The performance
trends are not consistent across all chunks because on-topic documents are
not uniformly distributed over all the chunks, making some queries ‘easier’
than others in certain chunks. Moreover, since Indri uses pseudo-relevance
feedback while our system uses feedback based on actual relevance judgments,
the improvement in case of Indri is less dramatic than that of our system.

When PNDCU is measured with β = 0 (no redundancy allowed),
enabling novelty detection and anti-redundant ranking with feedback shows
an improvement of 4.3% compared to when only feedback is enabled. Of
course, a smaller improvement (2.8%) is natural when using β = 0.1 since the
user now prefers to see repetition in the ranked passages.

In a realistic setting, users may sometimes want to see the same information
from multiple sources, as an indicator of its importance or reliability. In such
a case, they might choose to turn off novelty detection and anti-redundant

© 2009 by Taylor and Francis Group, LLC

Utility-Based Information Distillation 229

ranking, or ask the system to reveal the documents that were suppressed by
the system due to their redundancy to the current document they are viewing.

9.7 Concluding Remarks

In this chapter we presented the first investigation on utility-based
information distillation with a system that learns long-lasting information
needs from fine-grained user feedback over a sequence of ranked lists.
We focused on how to combine adaptive filtering, novelty detection, anti-
redundancy ranking and fine-grained feedback in a unified framework for
utility optimization. We developed a new scheme for automated evaluation
of such a system with simulated user feedback, which consists of 1) a semi-
automatic procedure for acquiring rules that allow automatically matching
nuggets against system responses, and 2) a modified NDCG metric for
assessing the utility of ranked passages as a weighted combination of relevance
and novelty. The importance of utility-based information dislillation is that
it combines relevance with novelty in a user-centric adaptive system.

Open challenges we have not included here but plan to address in future
work include: 1) modeling user’s behavior (with uncertainty) in browsing
ranked lists as an extension of our current utility optimzation framework,
and 2) dynamic thresholding on system-produced ranked lists for utility
optimization over iterative user-system interactions.

Evaluation of utility-based information distillation with true users is
another important subject we did not include due to the space limitation.
Some work on distillation evaluation with real users is reported in a separate
paper (10).

9.8 Acknowledgments

Contributers to the presented work include Ni Lao, Abhay Harpale,
Bryan Kisiel, Monica Rogati, Jian Zhang and Jaime Carbonell at the
Carnegie Mellon University who participated in the method design, system
implementation and/or automated evaluations of the CAFÉ system, and Peter
Brusilowsky, Daqing He, Rosta Farzan, Jonathan Grady, Jaewook Ahn, and
Yefei Peng at the University of Pittsburgh who colloborated in generating
the extended TDT4 annotations and conducted user studies with CAFÉ. This
work is supported in parts by Defense Advanced Research Project Agency
(DARPA) under contracts NBCHD030010 and W0550432, and the National

© 2009 by Taylor and Francis Group, LLC

230 Utility-Based Information Distillation

Science Foundation (NSF) under grants IIS-0434035, IIS-0704689 and IIS-
0704628. Any opinions, findings, conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the
views of the sponsors.

References

[1] J. Allan. Incremental relevance feedback for information filtering.
Proceedings of the 19th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 270–278,
1996.

[2] J. Allan, J. Carbibekkm G. Doddington, J. Yamron, and Y. Yang. Topic
detection and tracking pilot studyL Final Report. In DARPA Broadcast
News Transcription and Understanding Workshop, pages 194–218, 1998.

[3] J. Allan, C. Wade, and A. Bolivar. Retrieval and novelty detection at the
sentence level. Proceedings of the ACM SIGIR conference on Research
and Development in Information Retrieval, 2003.

[4] C. Buckley, G. Salton, and J. Allan. Automatic retrieval with locality
information using SMART. NIST special publication, (500207):59–72,
1993.

[5] J. Callan. Learning while filtering documents. Proceedings of the
21st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 224–231, 1998.

[6] J. Carbonell and J. Goldstein. The use of MMR, diversity-
based reranking for reordering documents and producing summaries.
Proceedings of the 21st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 335–336,
1998.

[7] E. Efthimiadis. Query Expansion. Annual Review of Information
Science and Technology (ARIST), 31:p121–87, 1996.

[8] J. Fiscus and G. Duddington. Topic detection and tracking overview.
Topic Detection and Tracking: Event-based Information Organization,
pages 17–31.

[9] R. Florian, H. Hassan, A. Ittycheriah, H. Jing, N. Kambhatla, X. Luo,
N. Nicolov, and S. Roukos. A statistical model for multilingual entity
detection and tracking. NAACL/HLT, 2004.

[10] D. He, P. Brusilovsky, J. Ahn, J. Grady, R. Farzan, Y. Peng, Y. Yang,
and M. Rogati. An evaluation of adaptive filtering in the context of

© 2009 by Taylor and Francis Group, LLC

Utility-Based Information Distillation 231

realistic task-based information exploration. In Information Processing
and Management, 2007.

[11] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of
IR techniques. ACM Transactions on Information Systems (TOIS),
20(4):422–446, 2002.

[12] J. Kuo, L. Zi, and W. Gang. New event detection based on indexing-
tree and named entities. In Proceedings of the ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 215–222,
2007.

[13] J. Lin and D. Demner-Fushman. Automatically evaluating answers
to definition questions. Proceedings of the 2005 Human Language
Technology Conference and Conference on Empirical Methods in Natural
Language Processing (HLT/EMNLP 2005), 2005.

[14] J. Lin and D. Demner-Fushman. Will pyramids built of nuggets topple
over. Proceedings of HLT-NAACL, 2006.

[15] X. Luo, A. Ittycheriah, H. Jing, N. Kambhatla, and S. Roukos. A
mention-synchronous coreference resolution algorithm based on the bell
tree. Proc. of ACL, 4:136–143, 2004.

[16] G. Marton. Nuggeteer: Automatic nugget-based evaluation using
descriptions and judgements. HLT/NAACL, 2006.

[17] E. Riloff. Automatically constructing a dictionary for information
extraction tasks. Proceedings of the Eleventh National Conference on
Artificial Intelligence, pages 811–816, 1993.

[18] S. Robertson and S. Walker. Microsoft Cambridge at TREC-9: Filtering
track. The Ninth Text REtrieval Conference (TREC–9), pages 361–368.

[19] R. Schapire, Y. Singer, and A. Singhal. Boosting and Rocchio applied to
text filtering. Proceedings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval,
pages 215–223, 1998.

[20] T. Strohman, D. Metzler, H. Turtle, and W. Croft. Indri: A language
model-based serach engine for complex queries. Proceedings of the
International Conference on Intelligence Analysis, 2004.

[21] The Linguistic Data Consortium. http://www.ldc.upenn.edu/.

[22] E. Voorhees. Overview of the TREC 2003 Question Answering Track.
Proceedings of the Twelfth Text REtrieval Conference (TREC 2003),
2003.

[23] Y. Yang, T. Pierce, and J. Carbonell. A study on retrospective and
online event detection. In Proceedings of the 21st Annual International

© 2009 by Taylor and Francis Group, LLC

http://www.ldc.upenn.edu

232 Utility-Based Information Distillation

ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 28–36, 1998.

[24] Y. Yang, J. Zhang, J. Carbonell, and C. Jin. Topic-conditioned novelty
detection. In Proceedings of the 8th ACM SIGKDD International
Conference, pages 688–693, 2002.

[25] Y. Yang and B. Kisiel. Margin-based local regression for adaptive
filtering. Proceedings of the Twelfth International Conference on
Information and Knowledge Management, pages 191–198, 2003.

[26] Y. Yang, S. Yoo, J. Zhang, and B. Kisiel. Robustness of adaptive
filtering methods in a cross-benchmark evaluation. Proceedings of the
28th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 98–105, 2005.

[27] Y. Yang, A. Lad, N. Lao, A. Harpale, B. Kisiel, M. Rogati, J. Zhang,
J. Carbonell, P. Brusilovsky, and D. He. Utility-based information
distillation over temporally sequenced documents. In Proceedings of the
ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 31–38, 2007.

[28] C. Zhai, W. Cohen, and J. Lafferty. Beyond independent relevance:
methods and evaluation metrics for subtopic retrieval. Proceedings of
the 26th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 10–17, 2003.

[29] J. Zhang and Y. Yang. Robustness of regularized linear classification
methods in text categorization. Proceedings of the 26th Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 190–197, 2003.

[30] J. Zhang, Z. Ghahramani and Y. Yang. A probabilistic model for online
document clustering with application to novelty detection Advances in
Neural Information Processing Systems (NIPS), 2004.

[31] Y. Zhang. Using bayesian priors to combine classifiers for adaptive
filtering. Proceedings of the 27th Annual International Conference on
Research and Development in Information Retrieval, pages 345–352,
2004.

[32] Y. Zhang, J. Callan, and T. Minka. Novelty and redundancy detection
in adaptive filtering. Proceedings of the 25th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2002.

© 2009 by Taylor and Francis Group, LLC

Chapter 10

Text Search-Enhanced with
Types and Entities

Soumen Chakrabarti, Sujatha Das, Vijay Krishnan, and Kriti
Puniyani

10.1 Entity-Aware Search Architecture . 233
10.2 Understanding the Question . 236
10.3 Scoring Potential Answer Snippets . 251
10.4 Indexing and Query Processing . 260
10.5 Conclusion . 272

10.1 Entity-Aware Search Architecture

Until recently, large-scale text and Web search systems regarded a document
as a sequence of string tokens. Queries were also comprised of string tokens,
and the search engine’s job was to assign a score to each document based on
the extent of matches between query and document tokens, the rarity of the
query tokens in the corpus, and, more recently, the “prestige” of the Web
document in the social network of hyperlinks.

Several parallel and interrelated developments have changed this state
of affairs in the last few years. Some smaller scale search applications
were already more heavily invested in computational linguistics and natural
language processing (NLP), and those technologies are being imported into
and scaled up to benefit large-scale search. Machine learning techniques
for tagging entities mentioned in unstructured text have become quite
sophisticated, scalable and robust. XML is often used to represent typed
entity-relationship graphs, and query engines for XML already support graph
idioms that are common in entity extraction and NLP.

Gradually, Web search engines have turned to quite a bit of interpretation
of string tokens against the backdrop of our physical world. A five-digit
number is interpreted as a zipcode in some contexts. Many named entities
are recognized and exploited:

• Recognizing that a query is a person name triggers a “diversity”

233
© 2009 by Taylor and Francis Group, LLC

234 Text Search-Enhanced with Types and Entities

objective that makes sure the first page lists different persons sharing
the name.

• Recognizing that the query is a disease name triggers a canned response
from structured records about causes, symptoms and cures.

• A navigational query that matches businesses in certain broad sectors
triggers a purpose-differentiated first response, e.g., with links for
downloading software, booking tickets, contacting service staff, etc.

Entities and relations form complex networks in our mind, and yet, search
engines seem limited to the paradigms of entering the information need into
a small text box, and getting the response in the form of a ranked list of
URLs with snippets. Many research systems have tried to get past this
simplistic interface, but its simplicity and convenience frequently trump a
more thoughtful design. It appears that any enhancement to the query input
interface must be evolutionary, and allow a fallback to the rudimentary text-
box whenever desired.

However, even the smallest hint of type information in the query helps
immensely. Informal study of Web search query logs reveals many sessions
of 3–8 queries where some words remain fixed, such as Nikon Coolpix, while
others come and go, such as weight, light, heavy, gm, oz, etc. Clearly, the
user wishes to determine the weight of a given camera, and is trying hard to
express this information need through a “telegraphic” Web query. We have
built a prototype metasearch tool where there are two query boxes. In one,
the user enters the type of the answer desired, such as city. In the other, the
user enters ordinary words to be matched, such as India, Australia, cricket.
This is an approximate representation of the question “In which cities are
cricket matches being played between India and Australia?” Informally, we
have found improvements to response quality if the user takes the trouble of
separating the uninstantiated answer type from words to be matched. For
one thing, responses are not page URLs, but instances of type city.

10.1.1 Guessing Answer Types

In the area of question answering (QA), queries are expected to be relatively
coherent questions already, such as “What is the height of Mount Everest?” A
large-scale search engine would largely, if not completely, ignore the valuable
prepositions and articles that give away the type (here, height) of the desired
answer. In the first part of this article (Section 10.2), we will present a
technique to extract the answer type (also called atype for short) from a
well-formed question. The atypes are provided to the system as a directed
acyclic graph (DAG) of types, edges representing transitive “is-a” relations,
e.g., Einstein is-a physicist is-a scientist.

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 235

10.1.2 Scoring Snippets

The second challenge is in making use of the atype to define a scoring
strategy. In traditional Information Retrieval (IR), documents and queries are
represented as vectors, and cosine similarity (or tweaks to it) define ranking.
Most later IR systems reward a document with a better score if the query
words appear close to each other. We continue to model the corpus as a
linear sequence of tokens, but some tokens are now attached to nodes in our
atype DAG (see Figure 10.1). Apart from general concepts, there may be
surface patterns (such as a token having exactly four digits, or beginning
with an uppercase letter) that are strong indicators of the type of the entity
mentioned in a token.

4

Born in New York in 1934 , Sagan was
a noted astronomer whose lifelong passion
was searching for intelligent life in the cosmos.

person

scientist

physicist

astronomer

entity

region

city

district

state

hasDigit isDDDD

Where was Sagan born?
type=region NEAR “Sagan”

Name a physicist who searched
for intelligent life in the cosmos

type=physicist NEAR “cosmos”…

When was Sagan born?
type=time

pattern=isDDDD NEAR
“Sagan” “born”

abstraction

time

year

is-a

FIGURE 10.1 (SEE COLOR INSERT FOLLOWING PAGE 130.):
Document as a linear sequence of tokens, some connected to a type hierarchy.
Some sample queries and their approximate translation to a semi-structured
form are shown.

In Figure 10.1, one or more nodes a in the atype DAG has/have been
designated as desired atypes for the given query. Some candidate tokens in
the corpus are descendants of a. We have to score and rank these candidates.
The merit of a candidate is decided by its proximity (defined as the number
of intervening tokens) to other tokens that match the non-atype part of the
query. In Section 10.3 we present a machine learning approach to design a
proximity scoring function of this form. We show that this has higher accuracy
than using a standard IR system to score fixed text windows against the query.

© 2009 by Taylor and Francis Group, LLC

236 Text Search-Enhanced with Types and Entities

10.1.3 Efficient Indexing and Query Processing

Having decided on a ranking function, the third problem is to build indexes
and design a query-processing algorithm. The scoring paradigm indicated
above leads to an interesting performance trade-off. We can expand the query
atype to all ground instantiations, but this will be very expensive, especially
for very broad atypes. Or we can index all atype ancestors of each token, but
that will lead to unacceptable bloating of the index. Can we hit a practical
middle ground? That is the topic of Section 10.4.

Figure 10.2 shows our overall system. The modules with heavy dotted
outlines are described at length here.

10.1.4 Comparison with Prior Work

Related work exists in several areas: question answering (QA), information
retrieval (IR) and databases (DB). The key difference from standard QA
systems is that we are not after a black-box solution; instead, we wish
to approximately “translate” well-formed questions into a semi-structured
form, and then give precise semantics for executing this form of semi-
structured queries. The notion of an atype appears often in the QA literature.
Meanwhile, many projects in the IR and DB communities deal with fast top-
k queries over feature vectors or tuples, but they do not consider lexical
proximity. XML search systems need to support path reachability queries,
but we know of no system that integrates reachability with lexical proximity
and supports a graceful trade-off between index space and query time.

10.2 Understanding the Question

Well-formed questions that seek a single entity or attribute of a given
type can be a great help to the search engine, as compared to 2–3 word
“telegraphic” queries.

Most successful QA systems first map the question to one or few
likely atype. This step is called “question classification” or “answer type
identification.” The answer type is usually picked from a hand-built taxonomy
having dozens to hundreds of answer types (17; 18; 25; 41; 13).

There are two major approaches to question classification. Earlier, rule-
based classification was used. A manually-constructed set of rules mapped
the question to a type. The rules exploited clues such as the wh-word (who,
where, when, how many) and the head of noun phrases associated with the
main verb (what is the tallest mountain in . . .). Rule-based systems are
difficult to maintain and can be brittle.

More recently, question classification, following other prominent tasks in

© 2009 by Taylor and Francis Group, LLC

T
ext

Search-E
nhanced

w
ith

T
ypes

and
E
ntities

237

Atype: subset

Text corpus

Corpus annotated with
links to lexical network

Annotators

Named entity
recognizer

Lexical network
(atype) connector

Atypes: full

Forward In
de

xe
r

P
as

s1

Queries from query logs Atype workloadProximity scoring
function learner

Answer tokens in context
Rank SVM

Log-linear

Smooth log-linear

Smoothed atype
distribution

queryProb(atype)

Workload-driven
atype subset

chooserRegistered atype subset

P
as

s2

Q
ue

ry
 p

ro
ce

ss
or

S
co

rin
g

fu
nc

tio
n

corpusCount(atype) stats

Reachability

Stems

Train Test

C
an

di
da

te

at
yp

e
di

st
rib

ut
io

n

C
ro

ss
-

va
lid

at
io

n

T
yp

ed
 p

ro
xi

m
ity

 q
ue

ry

In
fo

rm
er

 a
nd

 a
ty

pe
an

al
yz

er
Q

ue
st

io
n

Topk response
snippets

FIGURE 10.2 (SEE COLOR INSERT FOLLOWING PAGE 130.): The IR4QA system that
we describe in this paper.

© 2009 by Taylor and Francis Group, LLC

238 Text Search-Enhanced with Types and Entities

NLP (such as part-of-speech tagging and sentence parsing), is increasingly
being achieved through machine learning. Li and Roth (27), Hacioglu and
Ward (16) and Zhang and Lee (40) have used supervised learning for question
classification.

The use of machine learning has enabled the above systems to handle larger
datasets and more complex type systems. A benchmark available from UIUC1

is now standard. It has 6 coarse and 50 fine answer types in a two-level
taxonomy, together with 5500 training and 500 test questions. Webclopedia
(18) has also published its taxonomy with over 140 types.

Compared to other areas of text mining, question classification has benefited
from machine learning somewhat less than one might expect.

Li and Roth (27) used question features like tokens, parts of speech (POS),
chunks (non-overlapping phrases) and named entity (NE) tags. Some of
these features, such as part-of-speech, may themselves be generated from
sophisticated inference methods. Li and Roth achieved 78.8% accuracy for
50 classes. On using a hand-built dictionary of “semantically related words”
(unpublished, to our knowledge) the accuracy improved to 84.2%. It seems
desirable to use only off-the-shelf knowledge bases and labeled training data
consisting of questions and their atypes. Designing and maintaining the
dictionary may be comparable in effort to maintaining a rule base.

Support Vector Machines (SVMs) (38) have been widely successful in many
other learning tasks. SVMs were applied to question classification shortly
after the work of Li and Roth. Hacioglu and Ward (16) used linear support
vector machines with a very simple set of features: question word 2-grams.
E.g., the question “What is the tallest mountain in Africa?” leads to features
what is, is the, the tallest, . . . , etc., which can be collected in a bag of 2-
grams. (It may help to mark the beginning 2-gram in some special way.) They
did not use any named-entity tags or related word dictionary. Early SVM
formulations and implementations usually handled two classes. Hacioglu and
Ward used a technique by Dietterich and Bakiri (12) to adapt two-class SVMs
to the multiclass setting in question classification. The high-level idea is to
represent class labels with carefully chosen numbers, represent the numbers in
the binary system and have one SVM predict each bit position. This is called
the “error-correcting output code” (ECOC) approach. The overall accuracy
was 80.2–82%, slightly higher than Li and Roth’s baseline.

Zhang and Lee (40) used linear SVMs with all possible question word q-
grams, i.e., the above question now leads to features what, what is, what is
the, . . . , is, is the, is the tallest, . . . , etc. They obtained an accuracy of
79.2% without using ECOC, slightly higher than the Li and Roth baseline
but somewhat lower than Hacioglu and Ward. Zhang and Lee went on to
design an ingenious kernel on question parse trees, which yielded visible gains
for the 6 coarse labels in the UIUC classification system. The accuracy gain

1http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/

© 2009 by Taylor and Francis Group, LLC

http://l2r.cs.uiuc.edu

Text Search-Enhanced with Types and Entities 239

for the 50 fine-grained classes was surprisingly small. The authors explain
this in the following terms: “the syntactic tree does not normally contain the
information required to distinguish between the various fine categories within
a coarse category.”

10.2.1 Answer Type Clues in Questions

We contend that the above methods for generating features from the
question overload the learner with too many features too far from the critical
question tokens that reveal the richest clues to the atype.

In fact, our experiments show that a very short (typically 1–3 word)
subsequence of question tokens are adequate clues for question classification,
at least by humans. We call these segments informer spans. This is certainly
true of the most trivial atypes (Who wrote Hamlet? or How many dogs pull a
sled at Iditarod?) but is also true of more subtle clues (How much does a rhino
weigh?). Informal experiments revealed the surprising property that only one
segment is enough. In the above question, a human does not even need the
how much clue (which hints at only a generic quantity) once the word weigh is
available. In fact, “How much does a rhino cost?” has an identical syntax but
an atype that is a completely different subtype of “quantity,” not revealed by
how much alone. The only exceptions to the single-span hypothesis are multi-
function questions like “What is the name and age of . . .,” which should be
assigned to multiple answer types. In this paper we consider questions where
one type suffices.

Consider another question with multiple clues: Who is the CEO of IBM?
In isolation, the clue who merely tells us that the answer might be a person or
country or perhaps an organization, while CEO is perfectly precise, rendering
who unnecessary. All of the above applies a forteriori to what and which
clues, which are essentially uninformative on their own, as in “What is the
distance between Pisa and Rome?”

The informer span is very sensitive to the structure of clauses, phrases
and possessives in the question, as is clear from these examples (informers
italicized): “What is Bill Clinton’s wife’s profession,” and “What country’s
president was shot at Ford’s Theater.” Depending on sentence structure, the
informer can be near to or far from question triggers like what, which and
how.

The choice of informer spans also depends on the target classification
system. Initially we wished to handle definition questions separately, and
marked no informer tokens in “What is digitalis.” However, what is is an
excellent informer for the UIUC question class marked “definition” DESC:def.

Before we get into the job of annotating the question with the informer
segment, we summarize the accuracy obtained by some of the approaches
reviewed earlier, as well as by a linear SVM that was provided with suitable
features generated from the informer segment (details in Section 10.2.3). If
“perfect” informer spans are labeled by hand, and features generated only

© 2009 by Taylor and Francis Group, LLC

240 Text Search-Enhanced with Types and Entities

Algorithm 6-class 50-class
Li and Roth (1) 78.8(2)

Hacioglu et al., SVM+ECOC – 80.2–82
Zhang & Lee, LinearSVMq 87.4 79.2
Zhang & Lee, TreeSVM 90 –
SVM, “perfect” informer 94.2 88
SVM, CRF-informer 93.4 86.2

FIGURE 10.3: Summary of % accuracy for UIUC data. (1) SNoW accuracy
without the related word dictionary was not reported. With the related-word
dictionary, it achieved 91%. (2) SNoW with a related-word dictionary achieved
84.2% but the other algorithms did not use it. Our results are summarized in
the last two rows; see text for details.

from these spans, a simple linear SVM beats all earlier approaches. This
confirms our suspicion that the earlier approaches suffered because they
generated spurious features from low-signal portions of the question.

10.2.2 Sequential Labeling of Type Clue Spans

In a real system, the atype informer span needs to be marked automatically
in the question. This turns out to be a more difficult problem. Syntactic
pattern-matching and heuristics widely used in QA systems are not very good
at capturing informer spans, as we shall see in Section 10.2.4.

We will model the generation of the question token sequence as a Markov
chain. An automaton makes probabilistic transitions between hidden states
y, one of which is an “informer generating state,” and emits tokens x. We
observe the tokens and have to guess which were produced from the “informer
generating state.” Recent work has shown that conditional random fields
(CRFs) (26; 35) have a consistent advantage over traditional HMMs in the
face of many redundant features. We refer the reader to the above references
for a detailed treatment of CRFs.

Two common HMMs are used for text annotation and information
extraction. The first is the “in/out” model with two states. One (“in”)
state generates tokens that should be annotated as the informer span. The
other (“out”) state generates the remaining tokens. All transitions between
the two states must be allowed, which means that multiple “in” or informer
spans are possible in the output, which goes against our intuition above. The
second HMM is the 3-state “begin/in/out” (BIO) model, also widely used in
information extraction. The initial state cannot be “2” in the 3-state model;
all states can be final. These transitions allow at most one informer span.
The two state machines are shown in Figure 10.4.

The BIO model is better than the in/out model for much the same
reasons as in information extraction, but we give some specific examples for

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 241

0 1 0 1 2

What kind of an animal is Winnie the Pooh

What, kind,
of, an, is,

Winnie, the,
Pooh

animal

What, kind,
of, an

is, Winnie,
the, Pooh

animal

start start

FIGURE 10.4: 2- and 3-state transition models.

completeness. Consider these question pairs:

1a What country is the largest producer of wheat?

1b Who is the largest producer of wheat?

2a Which president was the winner of the tenth election?

2b Name the winner of the tenth election

In 1b and 2b, for want of better informers, we would want producer and winner
to be flagged as informers, but in 1a and 2a, country and president would be
more useful informers.

The i±1 context of producer is identical in 1a and 1b, as is the i±1 context
of winner in 2a and 2b. Any 2-state model that depends on positions i ± 1
to define features will fail to distinguish between 1a and 1b, or 2a and 2b,
and might mark both country and producer in 1a, and president and winner.
From Figure 10.3, we see that generating features from parts of the question
that are not informer tokens can reduce accuracy. Therefore, we would like to
identify the single most likely informer span. By design, the BIO model will
never annotate more than one contiguous segment.

The tree kernels used by Zhang et al. exploited the property that questions
with similar parse trees are likely to have the informer span over similar token
positions. We will therefore use the parse tree of the question to generate
features that will be used in a conditional HMM. Unlike Zhang et al., we will
pay attention only to selected parts of the parse tree.

10.2.2.1 Parse tree and multiresolution feature table

Figure 10.5 shows a sample parse tree output by the Stanford Lexicalized
Parser (23). The tree has been organized in levels. The non-terminal symbols
of the tree follow the Penn Treebank tag convention (see http://www.cis.
upenn.edu/~treebank/ for details).

To employ max-margin methods for labeling (40), a suitable kernel has to
be defined between two such trees. In case of a general CRF, we would be

© 2009 by Taylor and Francis Group, LLC

http://www.cis.upenn.edu
http://www.cis.upenn.edu

242 Text Search-Enhanced with Types and Entities

What is the capital city of Japan

WP VBZ DT NN NN IN NNP

NP NP

PP

NP

VP

SQ

SBARQ

WHNP

0

1

2

3

4

5

6

Le
ve

l

FIGURE 10.5: Stanford Parser output example.

i 1 2 3 4 5 6 7
yi 0 0 0 1 1 2 2
xi What is the capital city of Japan
� ↓ Features for xis
1 WP,1 VBZ,1 DT,1 NN,1 NN,1 IN,1 NNP,1
2 WHNP,1 VP,1 NP,1 NP,1 NP,1 Null,1 NP,2
3 Null,1 Null,1 Null,1 Null,1 Null,1 PP,1 PP,1
4 Null,1 Null,1 NP,1 NP,1 NP,1 NP,1 NP,1
5 Null,1 SQ,1 SQ,1 SQ,1 SQ,1 SQ,1 SQ,1
6 SBARQ SBARQSBARQSBARQSBARQSBARQSBARQ

FIGURE 10.6: A multi-resolution tabular view of the question parse
showing tag and num attributes in each cell. capital city is the informer
span with y = 1.

interested in associating a binary label (informer token or not) with the leaf
nodes of the parse tree. It is tempting to cast this as a structured prediction
problem where the graph is the parse tree itself, and the edges of the parse
tree express Markov dependencies. A straightforward implementation of this
approach may limit the exploitation of long-range features observable from
the parse tree. For example, we may observe from training data that informer
spans occur more often near the beginning of the question, but are rarely the
first word. In other words, there is a distribution over token positions where
the informer span occurs. Also consider the information latent in the parse
tree at multiple levels of resolution. For example, in Figure 10.5, to label city
as part of the informer span, it may help us more to know that the next chunk
of Japan has POS “PP” at level 3, than to know that the next token of has
POS “IN” at level 1.

To exploit these valuable clues, we will first express the question parse tree

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 243

as a table, then generate CRF features from the table. The table for the parse
tree in Figure 10.5 is shown in Figure 10.6.

10.2.2.2 Cells and attributes

A labeled question comprises the token sequence xi; i = 1, . . . and the label
sequence yi, i = 1, Each xi leads to a column vector of observations.
Therefore we use matrix notation to write down x: A table cell is addressed
as x[i, �] where i is the token position (column index) and � is the level or row
index, 1–6 in this example. (Although the parse tree can be arbitrarily deep,
we found that using features from up to level � = 2 was adequate.)

Intuitively, much of the information required for spotting an informer
can be obtained from the part of speech of the tokens and phrase/clause
attachment information. Conversely, specific word information is generally
sparse and potentially misleading; the same word may or may not be an
informer depending on its position, e.g., “What birds eat snakes?” and “What
snakes eat birds?” have the same words but different informers. Accordingly,
we observe two properties at each cell:

tag: The syntactic class assigned to the cell by the parser, e.g., x[4, 2].tag =
NP. It is well known that POS and chunk information are major clues to
informer-tagging, specifically, informers are often nouns or noun phrases.

num: Many heuristics exploit the fact that the first NP is known to have a
higher chance of containing informers than subsequent NPs. To capture this
positional information, we define num of a cell at [i, �] as one plus the number
of distinct contiguous chunks to the left of [i, �] with tags equal to x[4, 2].tag.
E.g., at level 2 in the table above, the capital city forms the first NP, while
Japan forms the second NP. Therefore x[7, 2].num = 2.

In conditional models, it is notationally convenient to express features as
functions on (xi, yi). To one unfamiliar with CRFs, it may seem strange that
yi is passed as an argument to features. At training time, yi is indeed known,
and at testing time, the CRF algorithm efficiently finds the most probable
sequence of yis using a Viterbi search. True labels are not revealed to the
CRF at testing time.

Cell features IsTag and IsNum: E.g., the observation “y4 = 1 and
x[4, 2].tag = NP” is captured by the statement that “position 4 fires the
feature IsTag1,NP,2” (which has a boolean value). There is an IsTagy,t,� feature
for each (y, t, �) triplet, where y is the state, t is the POS, and � is the level.
Similarly, for every possible state y, every possible num value n (up to some
maximum horizon) and every level �, we define boolean features IsNumy,n,�.
E.g., position 7 fires the feature IsNum2,2,2 in the 3-state model, capturing the
statement “x[7, 2].num = 2 and y7 = 2”.

© 2009 by Taylor and Francis Group, LLC

244 Text Search-Enhanced with Types and Entities

Adjacent cell features IsPrevTag and IsNextTag: Context can be
exploited by a CRF by coupling the state at position i with observations
at positions adjacent to position i (extending to larger windows did not help).
To capture this, we use more boolean features: position 4 fires the feature
IsPrevTag1,DT,1 because x[3, 1].tag = DT and y4 = 1. Position 4 also fires
IsPrevTag1,NP,2 because x[3, 2].tag = NP and y4 = 1. Similarly we define a
IsNextTagy,t,� feature for each possible (y, t, �) triple.

State transition features IsEdge: Position i fires feature IsEdgeu,v if
yi−1 = u and yi = v. There is one such feature for each state-pair (u, v)
allowed by the transition graph. In addition we have sentinel features
IsBeginu and IsEndu marking the beginning and end of the token sequence.

Handling compound words: At first we collapsed compounds like
New_York_City (if found in WordNet) into a single token. Initial experiments
showed that compound detection is generally useful, but hurts accuracy when
it is wrong. (This is almost universal of front-end token processors.) We then
enhanced our code to detect a compound alert feature, but not collapse the
tokens. Instead, for every position i and state pair y1, y2, we fired a special
feature (i.e., set the value to 1) if the compound detector claimed that xi−1

and xi were parts of the same compound. This gave the CRF a robust bias
toward labeling a compound with a common state, without making this hard
policy, and boosted our accuracy slightly.

10.2.2.3 Heuristic informer annotation

Even if one concedes that informers provide valuable features, one may
question whether the elaborate mechanism using parse trees and CRFs is
necessary. In the literature, much simpler heuristics are often used to directly
extract the atype from a question. Singhal et al. (36) pick the head of the first
noun phrase detected by a shallow parser. Ramakrishnan et al. (32) use the
head of the noun phrase adjoining the main verb. The LASSO (31), FALCON
(17) and Webclopedia (18) systems use dozens to hundreds of (unpublished to
our knowledge) hand-built pattern-matching rules on the output of a full-scale
parser.

We would like to play off our CRF-based informer annotator against such
a heuristic annotator. We know of no readily available public code that
implements the latter class, so we implemented the following rules:

How: For questions starting with how, we use the bigram starting with how
unless the next word is a verb.

Wh: If the wh-word is not how, what or which, use the wh-word in the
question as a separate feature.

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 245

WHNP: For questions having what and which, use the WHNP if it encloses
a noun. WHNP is the Noun Phrase corresponding to the Wh-word,
given by the Stanford parser.

NP1: Otherwise, for what and which questions, the first (leftmost) noun
phrase is added to yet another feature.

We name apart the features in the cases above, so that there is no ambiguity
regarding the rule that fired to create a feature.

10.2.3 From Type Clue Spans to Answer Types

We will generate features from the whole question as well as the segment
designated as the informer span, but these features will be “named apart”
so that the learner downstream can distinguish between these features.
Figure 10.7 shows the arrangement, an instance of stacked or meta
learning (8). The first-level learner is a CRF, and the second-level learner
is a linear SVM.

question CRF Informer
span tagger

Word and qgram
feature extractor

Informer
feature extractor

Combined feature vector

class

S
V

M

M
et

a
Le

ar
ne

r

FIGURE 10.7: The meta-learning approach.

During training, there are two broad options:

1. For each training question, obtain both the true informer span and
the question class as supervised data. Train the question classifier by
generating features from the known informer span. Independently, train
a CRF as in Section 10.2.2 to identify the informer span. Collecting
training data for this option is tedious because the trainer has to identify
not only the atype but also the informer span for every question.

2. For a relatively small number of questions, provide hand-annotated
informer spans to train the CRF. For a much larger number of questions,
provide only the question class but not the informer span. The trained
CRF is used to choose an informer span which could be potentially
incorrect.

Not only is the second approach less work for the trainer, but it can also give
more robust accuracy when deployed. If the CRF makes systematic mistakes

© 2009 by Taylor and Francis Group, LLC

246 Text Search-Enhanced with Types and Entities

in tagging, the SVM is given a chance to correlate these mistakes to the true
label. In contrast, in the first approach, the SVM may see test data that
is distributionally different from the training data, and training data is of
higher quality because the informer spans are human-generated. For these
reasons, we implemented the second option. We have anecdotal evidence that
the accuracy of the second approach is somewhat higher, because we subject
the SVM to the limitations of the CRF output uniformly during both training
and testing.

The SVM used is a linear multi-class one-vs-one SVM2, as in the Zhang
and Lee (40) baseline. We do not use ECOC (16) because the reported gain is
less than 1%. Through tuning, we found that the SVM “C” parameter (used
to trade between training data fit and model complexity) must be set to 300
to achieve published baseline numbers.

10.2.3.1 Informer q-gram features

Our main modification to earlier SVM-based approaches is in generating
features from informers. In earlier work, word features were generated from
word q-grams. We can apply the same method to the informer span, e.g.,
for the question “What is the height of Mount Everest?” where height is the
informer span, we generate a feature corresponding to height. (We will also
generate regular word features; therefore we have to tag the features so that
‘height’ occurring inside the informer span generates a distinct feature from
‘height’ occurring outside the informer span.)

As in regular text classification, the goal is to reveal to the learner
important correlations between informer features and question classes, e.g.,
the UIUC label system has a class called NUMBER:distance. We would expect
informers like length or height to be strongly correlated with the class label
NUMBER:distance.

10.2.3.2 Informer hypernym features

Another set of features generated from informer tokens proves to be
valuable. The class label NUMBER:distance is correlated with a number of
potential informer q-grams, such as height, how far, how long, how many
miles, etc. In an ideal setting, given very large amounts of labeled data, all
such correlations can be learnt automatically. In real life, training data is
limited. As a second example, the UIUC label system has a single coarse-
grained class called HUMAN:individual, whereas questions may use diverse
atype informer tokens like author, cricketer or CEO.

There are prebuilt databases such as WordNet (30) where explicit
hypernym-hyponym (x is a kind of y) relations are cataloged as a directed
acyclic graph of types. For example, author, cricketer, CEO would all connect

2http://www.csie.ntu.edu.tw/~cjlin/libsvm/

© 2009 by Taylor and Francis Group, LLC

http://www.csie.ntu.edu.tw

Text Search-Enhanced with Types and Entities 247

to a common ancestor node called person (strictly speaking, person#n#1, the
first noun sense of the string person).

In the above example, if we walked up the WordNet hierarchy and included
all hypernyms (generalizations) of informer tokens in our bag of features,
we would get a much stronger correlation between the informer hypernym
feature person#n#1 and the question class label HUMAN:individual. In our
implementation we look up an informer token and walk up to more general
types, and include all of them in the bag of features. For example, if
the informer token is CEO, we would include in the feature bag all these
features: corporate_executive#n#1, executive#n#1, administrator#n#1,
head#n#4, leader#n#1, person#n#1, organism#n#1, living_thing#n#1,
object#n#1, physical_entity#n#1, causal_agent#n#1, entity#n#1. Some
features, such as beyond person#n#1 above, are too general, and they will
be found to have poor correlation with the class label HUMAN:individual,
enabling the SVM to ignore them. For informer spans having more than
one token, we look up WordNet not only for individual informer tokens but
also informer q-grams, because some tokens may be part of compounds, as
in “Which breed of hunting dog . . . ,” “Which European prime minister . . . ,”
“What is the conversion rate . . . ” and “Which mountain range”

10.2.3.3 Supplementary word features

If informer extraction were perfect, extracting other features from the rest of
the question would appear unnecessary. As we have discussed before, because
the informer span annotator is a learning program, it will make mistakes.
Moreover, we use no word sense disambiguation (WSD) while processing
informer tokens. How long . . . may refer to both time and space, and Which
bank . . . may be about rivers or financial institutions. When we connect
informer tokens to WordNet and expand to ancestors, we may amplify the
ambiguities.

For the above reasons, it is a good idea to include additional features from
regular question words. The word feature extractor selects unigrams and q-
grams from the question. In our experiments, q = 1 or q = 2 worked best;
but, if unspecified, all possible qgrams were used. As with informers, we can
also use hypernyms of regular words as SVM features.

10.2.4 Experiments

To keep our performance numbers directly comparable to earlier work, we
used the dataset from UIUC3 (27) that is now somewhat standard in question
classification work. It has 6 coarse and 50 fine answer types in a two-level
taxonomy, together with 5500 training and 500 test questions. We had two
volunteers independently tag the 6000 UIUC questions with informer spans.

3http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/

© 2009 by Taylor and Francis Group, LLC

3http://l2r.cs.uiuc.edu

248 Text Search-Enhanced with Types and Entities

Agreement between the volunteers was almost perfect. We will call these
designated informer spans “perfect” informers.

10.2.4.1 Informer span tagging accuracy

Each question has a known set Ik of informer tokens, and gets a set
of tokens Ic flagged as informers by the CRF. For each question, we can
grant ourselves a reward of 1 if Ic = Ik, and 0 otherwise. This strict
equality check can be harsh, because the second-level SVM classifier may
well classify correctly despite small perturbations in the feature bag derived
from informers. In Section 10.2.3.1, informer-based features were placed in a
separate bag. Therefore, the overlap between Ic and Ik would be a reasonable
predictor of question classification accuracy. We use the Jaccard similarity
|Ik ∩ Ic|/|Ik ∪ Ic|.

Fraction Jaccard
Features used Ic = Ik overlap
IsTag 0.368 0.396
+IsNum 0.474 0.542
+IsPrevTag+IsNextTag 0.692 0.751
+IsEdge+IsBegin+IsEnd 0.848 0.867

FIGURE 10.8: Effect of feature choices.

Feature ablation study: Figure 10.8 shows the effect of using diverse
feature sets on the accuracy of the SVM, measured both ways. We make
the following observations:

• By themselves, IsTag features are quite inadequate at producing
acceptable accuracy.

• IsNum features improve accuracy 10–20%.

• IsPrevTag and IsNextTag (“+Prev +Next”) add over 20% of accuracy.

• IsEdge transition features help exploit Markovian dependencies and add
another 10–15% accuracy, showing that sequential models are indeed
required.

Benefits from non-local chunk features: We have commented before on
the potential benefits from our feature design procedure in Section 10.2.2.1.
To test if such an elaborate procedure is actually beneficial, we limited the
number of levels from Figure 10.5 that were converted into CRF features.
Figure 10.9 shows the results. “1” corresponds to features generated from

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 249

only the leaf level of the parse tree. Clearly adding non-local features from
higher levels in the tree helps, at least up to level two (but the degradation
thereafter from excess features is small). In fact, Figure 10.9 gives us the
hope that a full parse of the question may not be needed; a parser that can
recover chunk information up to level two, even from grammatically ill-formed
questions, will do fine.

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0 1 2 3 4 5 #Levels

A
cc

ur
ac

y

Fraction

Jaccard

FIGURE 10.9: A significant boost in question classification accuracy is seen
when two levels of non-local features are provided to the SVM, compared to
just the POS features at the leaf of the parse tree.

Effect of number of CRF states: The last two columns of Figure 10.10
show that the 3-state CRF performs much better than the 2-state CRF. The
gain comes mainly from difficult questions that start with what and which.
In such questions, what and which are not useful in themselves, and the real
clues are surrounded by other important word clues, e.g., “What is the name
of Saturn’s largest moon?” vs. “What mammal lays eggs?” etc. Deciphering
these patterns benefits most from the three-state CRF.

Comparison with heuristic rules: Figure 10.10 also compares the
Jaccard accuracy of informers found by the CRF vs. informers found by
the heuristics described in Section 10.2.2.3. Again we see a clear superiority
of the CRF approach.

Unlike the heuristic approach, the CRF approach is relatively robust to
the parser emitting a somewhat incorrect parse tree, which is not uncommon.
The heuristic approach picks the “easy” informer, who, over the better one,
CEO, in “Who is the CEO of IBM.” Its bias toward the NP-head can also be
a problem, as in “What country’s president”

© 2009 by Taylor and Francis Group, LLC

250 Text Search-Enhanced with Types and Entities

Type #Quest. Heuristic 2-state 3-state
Informers CRF CRF

what 349 57.3 68.2 83.4
which 11 77.3 83.3 77.2
when 28 75.0 98.8 100.0
where 27 84.3 100.0 96.3
who 47 55.0 47.2 96.8
how * 32 90.6 88.5 93.8
rest 6 66.7 66.7 77.8
Total 500 62.4 71.2 86.7

FIGURE 10.10: Effect of number of CRF states, and comparison with the
heuristic baseline (Jaccard accuracy expressed as %).

10.2.4.2 Question classification accuracy

Because our classification system is two-level (CRF followed by SVM), our
evaluation will also be in two stages. First, we will evaluate the accuracy
of the SVM assuming “perfect” (i.e., human-generated) informer spans are
available during both training and testing. Second, we will evaluate the more
realistic setting with the CRF providing the informer span.

Benefits from “perfect” informers: Figure 10.11 shows that the baseline
word unigram SVM is already quite competitive with the best previous
numbers, and exploiting perfect informer spans beats all known numbers.
It is clear that both informer q-grams and informer hypernyms are very
valuable features for question classification. The fact that no improvement
was obtained with question bigrams over using question hypernyms highlights
the importance of not using all question tokens uniformly, but recognizing
that some of them have a special role to play in predicting the atype.

Figure 10.12 is the final summary of this section. Column (a) shows the
performance of an SVM question classifier that does not use informers, but
uses only word bigrams and their hypernyms. Columns (b), (c) and (d) show
the accuracies obtained with only informer-based features. Column (b) uses
manually tagged “perfect” informers. Column (c) uses heuristic informers,
which often perform worse, especially for what and which questions. Informer
spans tagged by the CRF perform somewhere between perfect informers
and heuristic informers. However, columns (e), (f) and (g) show the best-
performing settings where informer features are used in conjunction with the
baseline features from all question bigrams and their hypernyms. Again, CRF-
tagged informers are somewhere between perfect and heuristic informers, but
closer to perfect informers on average.

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 251

Features Coarse Fine
Question trigrams 91.2 77.6
All question qgrams 87.2 71.8
All question unigrams 88.4 78.2
Question bigrams 91.6 79.4
+informer q-grams 94.0 82.4
+informer hypernyms 94.2 88.0
Question unigrams + all informer 93.4 88.0
Only informer 92.2 85.0
Question bigrams + hypernyms 91.6 79.4

FIGURE 10.11: Percent accuracy with linear SVMs, “perfect” informer
spans and various feature encodings. The ‘Coarse’ column is for the 6 top-
level UIUC classes and the ‘fine’ column is for the 50 second-level classes.

10.3 Scoring Potential Answer Snippets

In Section 10.2 we established that atypes can be inferred from a natural
language question with high accuracy. The atype extraction step is an
important part of question preprocessing, because it lets us partition question
tokens into

• Tokens that express the user’s information need as a type to be
instantiated, but which need not literally appear in a correct response
document or snippet, and

• Tokens that the user expects to literally match correct response
documents or snippets—we call these selector tokens.

For example, the question “What is the distance between Paris and Rome?”
gets partitioned into

• Atype NUMBER:distance (UIUC system) or distance#n#3 (WordNet
system)

• Selectors Paris and Rome that can be used to shortlist documents and
snippets that qualify to be scored

In this section we set up a machine learning framework to assign scores to
snippets that potentially answer the question.

In traditional Information Retrieval, the extent of match between the query
q and a candidate document d is often measured as the cosine of the angle
between q and d represented as vectors in the Vector Space Model (33). Each
word in the lexicon is represented by an axis in the vector space. Words

© 2009 by Taylor and Francis Group, LLC

252
T
ext

Search-E
nhanced

w
ith

T
ypes

and
E
ntities

6 coarse classes
B Only Informers B+ B+ B+

Type #Quest. (Bigrams) Perf.Inf H.Inf CRF.Inf Perf.Inf H.Inf CRF.Inf
what 349 88.8 89.4 69.6 79.3 91.7 87.4 91.4
which 11 72.7 100.0 45.4 81.8 100.0 63.6 81.8
when 28 100.0 100.0 100.0 100.0 100.0 100.0 100.0
where 27 100.0 96.3 100.0 96.3 100.0 100.0 100.0
who 47 100.0 100.0 100.0 100.0 100.0 100.0 100.0
how * 32 100.0 96.9 100.0 100.0 100.0 100.0 100.0
rest 6 100.0 100.0 100.0 66.7 100.0 66.7 66.7
Total 500 91.6 92.2 77.2 84.6 94.2 90.0 93.4

50 fine classes
what 349 73.6 82.2 61.9 78.0 85.1 79.1 83.1
which 11 81.8 90.9 45.4 73.1 90.9 54.5 81.8
when 28 100.0 100.0 100.0 100.0 100.0 100.0 100.0
where 27 92.6 85.2 92.6 88.9 88.9 92.5 88.9
who 47 97.9 93.6 93.6 93.6 100.0 100.0 97.9
how * 32 87.5 84.3 81.2 78.1 87.5 90.6 90.6
rest 6 66.7 66.7 66.7 66.7 100.0 66.7 66.7
Total 500 79.4 85.0 69.6 78.0 88.0 82.6 86.2

a b c d e f g

FIGURE 10.12: Summary of % accuracy broken down by broad syntactic question types. a: question bigrams, b: perfect
informers only, c: heuristic informers only, d: CRF informers only, e–g: bigrams plus perfect, heuristic and CRF informers.

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 253

are given different weights based on their rareness in the corpus (rare words
get a larger weight), and some query words are eliminated because they are
stopwords like the and an, but otherwise all query words are treated equally
while computing the similarity between q and d. Such a scoring scheme does
not work for us, because the atype or informer tokens are fundamentally
different from the selector tokens in their purpose, and have to be treated
very differently by the scoring function. Second, vector-space scoring evolved
over more than a decade, and the scoring choices are backed by probabilistic
arguments (37). But for scoring snippets, no such guiding principles are
available.

In this section, we will first set up a parametric scoring model based on the
lexical proximity between occurrences of instances of the question atype and
occurrences of question selectors in short snippets in the corpus. We will then
set up a learning problem to estimate the parameters of the scoring function
from training data. Finally, we will describe our experiences with some TREC
question answering benchmarks.

10.3.1 A Proximity Model

Consider the query “Who invented television?” which translates to atype
person#n#1 and (after stemming) selectors television and invent* (meaning
any suffix of invent is to be matched). Figure 10.13 shows a sample snippet
that contains the answer at (relative) token offset 0.

The answer token is a descendant of the node person#n#1 in WordNet.
John Baird may not be explicitly coded into the WordNet database as a
person, but a great deal of work on information extraction and named entity
tagging (35) has produced reliable automated annotators that can connect
the segment John Baird to the type node person#n#1 in WordNet.

If the candidate (compound) token w = John Baird is assigned relative
offset 0, the selector stems are at token offsets −6, −4 and −1 in Figure 10.13.
We will take an activation spreading approach to scoring token position 0.
Each occurrence of a selector s gets an infusion of energy, energy(s) and
radiates it out along the linear token sequence, in both directions. The gap
between candidate position w and a selector occurrence is denoted gap(w, s).
The selector occurrence s transfers

energy(s) decay(gap(w, s))

to the candidate token. The gap between a candidate token w and a matched
selector s, called gap(w, s), is one plus the number of intervening tokens.
decay(g) is a suitable function of the gap g.

10.3.1.1 energy and decay

Each matched selector s has an associated positive number called its
energy, denoted energy(s). A common notion of energy is the inverse

© 2009 by Taylor and Francis Group, LLC

254 Text Search-Enhanced with Types and Entities

Candidate position to scoreSelectors

Closest
stem

“invent”

te
le

vi
si

on

w
as

in
ve

nt
ed in

19
25

.

In
ve

nt
or

Jo
hn

 B
ai

rd

w
as

bo
rn

E
ne

rg
y

Second-closest
stem “invent”

person

is-a

0−6 −5 −4 −3 −2 +1−1 +2

FIGURE 10.13 (SEE COLOR INSERT FOLLOWING PAGE 130.):
Setting up the proximity scoring problem.

document frequency or IDF standard in IR: the number N of documents
in the corpus divided by the number Ns of documents containing the selector
token s. This is a linear form of IDF. We implemented the more commonly
used logarithmic form log(1 + N/Ns).

In many graph-based scoring systems such as ObjectRank (3), XRank
(15) or TeXQuery (1) it is common to use a monotone decreasing parametric
form decay(g) = δg, where 0 < δ < 1 is a magic decay factor. In Figure 10.13,
decay(g) is shown as a strictly decreasing function. However, as we shall see,
other shapes of decay(·) may match data more closely.

10.3.1.2 Aggregating over many selectors

Next we need to decide how to aggregate the activation from more than
one distinct selector or more than one occurrence of a selector. A selector s
can appear multiple times near a candidate; we call this set {si}. If a is the
candidate, our generic scoring function looks like

score(a) = ⊕
s
"
i
energy(s) decay(gap(si, a)), (10.1)

where " aggregates over multiple occurrences of s and ⊕ aggregates over
different selectors. If " distributes over multiplication, we can write

score(a) = ⊕
s

energy(s)
(

"
i
decay(gap(si, a))

)

. (10.2)

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 255

In standard IR, other things being equal, if a query term occurs more
frequently in document d1 than d2, d1 gets a somewhat larger score than
d2. In our setting, it is unclear if multiple occurrences of a selector should
activate the candidate position any more than a single occurrence. In our
experiments, we simply ignored all but the nearest occurrence of each selector,
in effect, setting " to max. Sum (Σ) behaves poorly as " because even a
low-IDF selector can boost the score of a non-answer candidate token if it
appears a few times near the candidate. Apart from max and Σ, it might
be worthwhile experimenting with very slow-growing functions of the selector
multiplicity. For ⊕, sum performs quite well, i.e., we add the activation from
different selectors. Here, too, some extent on non-linearity may be worthwhile
exploring.

10.3.2 Learning the Proximity Scoring Function

For simplicity, we will limit our attention to the W tokens to the left and
right of the candidate position numbered 0 in Figure 10.13. If the word/term
at offset o is to, we can rewrite (10.2) as

score(a) =
W∑

o=−W

energy(to)nearest?(to, o, a)
︸ ︷︷ ︸

=xo

βo = β�x (10.3)

where nearest?(t, o, a) is 1 if the nearest occurrence of word t to candidate
a is at offset o, and 0 otherwise. Ties are broken arbitrarily. In the final
dot-product form, x, β ∈ R

2W+1.
In our implementation we made a few further simplifications. First, we

prevented the candidate token from endorsing itself, even if it was also a
selector. Consider the question “Which person designed the Panama Canal?”
with atype person#n#1. We are certainly not interested in an answer token
person. Therefore, o = 0 is excluded from the sum above. Second, we ignore
the distinction between tokens to the left and right of a, i.e., constrain β−o =
βo, and add up x−o and xo suitably. This means, in our implementation,
x, β ∈ R

W .
Suppose x+ is the feature vector corresponding to a snippet where position

a is indeed an answer to the query. Let x− be a feature vector representing
a snippet that does not contain an answer. Then we want our scoring model
β to satisfy β�x+ > β�x−. Suppose relevance feedback is available in the
form of a set of preference pairs i ≺ j, meaning that the candidate position i
should appear lower in the ranked list than position j. This is now similar to
Joachim’s RankSVM setting (21), and we can use his SVM formulation:

min
s≥�0,β

1
2β�β + C

∑

i≺j

sij s.t. ∀i ≺ v : β�xi + 1 < β�xj + sij (10.4)

As with support vector classifiers, C is a tuned parameter that trades off the
model complexity ‖β‖ against violations of the snippet ordering requirements.

© 2009 by Taylor and Francis Group, LLC

256 Text Search-Enhanced with Types and Entities

In our snippet search application, a query may have a handful of positive
response snippets and the vast expanses of token segments elsewhere in the
corpus are negative examples. Intuitively, to train a good scoring function,
it is useless to pick obviously irrelevant snippets. In our experiments, we
picked negative snippets that contained at least one selector, and heuristically
preferred negative snippets that were most similar to positive ones. This
drastically cut down the number of negative snippets. However, the product
of the number of positive and negative snippets, which is the size of ≺ above,
was still very large (see Section 10.3.3). With only 169662 snippets and
several million preference pairs, RankSVM executed millions of iterations
with hundreds of millions of kernel evaluations, and failed to terminate in a
day on a 3GHz CPU.

Optimization (10.4) can be written as

min
β

1
2β�β + C

∑

i≺j

max{0, 1 − (β�xj − β�xi)}

which, because e−t ≥ max{0, 1 − t}, can be bounded by

min
β

1
2β�β + C

∑

i≺j

exp(β�xj − β�xi) (10.5)

We call this formulation RankExp. A somewhat better approximation to the
hinge loss max{0, 1 − t} is log(1 + e1−t), leading to the optimization

min
β

1
2β�β + C

∑

i≺j

log(1 + exp(β�xj − β�xi)),

but we did not see practical differences in the accuracy of the learnt scoring
function. RankExp may be potentially less accurate than RankSVM, but
allows us to use simpler optimizers such as L-BFGS (28). Moreover, only
sequential scans are involved over the training data, which can therefore reside
on disk.

By modifying the model roughness penalty from ‖β‖2
2 to something else,

we can encourage β to have some desirable properties. For example, because
elements of β correspond to token offsets, we may believe that adjacent
elements of β should not differ drastically. This leads us to the modified
locally smooth formulation

min
β

W∑

j=1

(βj − βj+1)2 + C
∑

i≺j

exp(β�xj − β�xi) (10.6)

where we can arbitrarily set βW+1 = 0, because any fixed offset to all βj leaves
the score unchanged.

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 257

10.3.3 Experiments

A few thousand questions are available from the TREC 2000 Question
Answering Track, annotated with atypes (24). We identified 261 questions for
which the answer tokens prescribed by TREC included at least one instance
or subtype of the atype of the question. Some other questions had types like
reason (“Why is the sky blue?”) and recipe (“How to bake banana bread?”)
that we cannot handle, or did not have any usable positive answer instances
because WordNet does not have a known is-a connection between the atype
and the answer token, e.g., WordNet does not know about the vast majority
of politicians or quantum physicists living today. For each question, we need
positive (answer) and negative (candidate but not answer) tokens, and, to
learn their distinction well, we should collect negative tokens that are “closest”
to the positive ones, i.e., strongly activated by selectors.

10.3.3.1 Data collection and preparation

Full atype index: We first indexed the corpus. Apart from a regular
Lucene (2) inverted index on stems, we prepared a full atype index on the
corpus, as follows. Each document is a sequence of tokens. Tokens can
be compound, such as New_York. An annotator module (see Figure 10.2)
connects some tokens to nodes in the atype taxonomy, e.g., the string token
Einstein might be connected to both senses Einstein#n#1 (the specific
Physicist) and Einstein#n#2 (genius). (Disambiguation can be integrated
into the annotator module, but is an extensive research area in NLP (29) and
is outside our scope.)

We overrode Lucene’s token scanner to look up WordNet once a token was
connected to one or more synsets, and walk up is-a (hypernym) links in the
WordNet type hierarchy. All synsets encountered as ancestors are regarded
as having occurred at the same token offset in the document as the original
token. In our running example, given the original token is Einstein, we would
regard physicist#n#1, intellectual#n#1, scientist#n#1, person#n#1,
organism#n#1, living_thing#n#1, object#n#1, causal_agent#n#1,
entity#n#1 as having occurred at the same token offset, and index all of these
as a separate field in Lucene. (This consumes a large amount of temporary
space, but we drastically reduce the space requirement in a second pass, see
Section 10.4.)

Collecting labeled data for RankExp: We used the full atype index to
locate all candidate tokens, and made a generous estimate of the activation
from (the nearest occurrence of) each selector. This generous estimate used
the log IDF as energy and no decay , i.e., energy was accrued unattenuated at
the candidate position. For each query, we retained all positive answer tokens
and the 300 negative tokens with top scores. Overall, we finished with 169662
positive and negative contexts. 5-fold cross-validation (i.e., 80% training, 20%

© 2009 by Taylor and Francis Group, LLC

258 Text Search-Enhanced with Types and Entities

testing in each fold) was used.
The next job was to turn contexts into feature vectors. Recall that there

must be at least one selector match within W tokens of the candidate a. We
set up this window with 2W + 1 tokens centered at a, and retained only one
instance of each selector, the one closest to a. Left-right ties were broken
arbitrarily. Obviously, we can also aggregate over multiple occurrences of a
selector if " warrants.

10.3.3.2 RankExp performance scaling

On identical datasets, for C ∈ [0.01, 0.3] in (10.4) and (10.5), the fraction
of orderings satisfied by RankSVM and RankExp, as well as the MRRs were
typically within 3% of each other, while RankExp took 14–40 iterations or
10–20 minutes to train and RankSVM took between 2 and 24 hours. A more
detailed evaluation is shown in Figure 10.14.

0

200000

400000

600000

800000

1000000

0 0.1 0.2 0.3FractionTrainingSize

R
el

at
iv

eC
P

U
T

im
e

Exp,C=0.3 Exp,C=3 SVM

FIGURE 10.14: Relative CPU times needed by RankSVM and RankExp
as a function of the number of ordering constraints.

10.3.3.3 Fitting the decay profile

The scatter of dots in Figure 10.15 shows a typical β vector obtained from
optimizaton (10.5), where βj gives the relative importance of a selector match
at gap j. On smoothing using the optimization in (10.6) instead, we get the
values shown as a continuous line. With a suitably cross-validated choice of
C, the smooth version of β gave lower test error than the rough version.

We did not expect the clearly non-monotonic behavior near j = 0, and
only in hindsight found that this is a property of language (perhaps already
appreciated by linguists): selectors are often named entities, and are often
connected to the answer token via prepositions and articles that creates a
gap. This goes against conventional wisdom that spreading activation should
monotonically decay with distance.

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 259

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50Gap j

be
ta

(j)

Rough
Smooth

FIGURE 10.15: βj shows a noisy unimodal pattern.

10.3.3.4 Accuracy using the fitted decay

Finally, we plug in the smooth β in place of decay and make an end-to-end
evaluation of the snippet ranking system. In a standard IR system (39), the
score of a snippet would be decided by a vector space model using selectors
alone. We gave the standard score the additional benefit of considering only
those snippets centered at an atype candidate, and considering each matched
selector only once (i.e., use only IDF and not TF). Even so, a basic IR scoring
approach was significantly worse than the result of plugging in β, as shown in
Figure 10.16. “R300” is the fraction of truly relevant snippets recovered within
the first 300 positions. The “reciprocal rank” for a fixed question is one divided
by the first rank at which an answer snippet was found. Mean reciprocal rank
or MRR is the above averaged over queries. Both recall and MRR over held-
out test data improve substantially compared to the IR baseline.

β from Train Test R300 MRR
IR-IDF - 2000 211 0.16
RankExp 1999 2000 231 0.27
RankExp 2000 2000 235 0.31
RankExp 2001 2000 235 0.29

FIGURE 10.16: End-to-end accuracy using RankExp β is significantly
better than IR-style ranking. Train and test years are from 1999, 2000, 2001.
R300 is recall at k = 300 out of 261 test questions. C = 0.1, C = 1 and
C = 10 gave almost identical results.

Observe that we used three years of TREC data (1999, 2000, 2001) for
training and one year (2000) for testing. The accuracy listed for training year
2000 is meant only for sanity-checking because the training set is the same as

© 2009 by Taylor and Francis Group, LLC

260 Text Search-Enhanced with Types and Entities

the test set. However, the other rows for training years 1999 and 2001, while
showing slightly lower accuracy than year 2000, are still far above the IR
baseline. We should also note that TREC 1999, 2000 and 2001 questions vary
quite a bit in their style and distribution of atypes and words, so Figure 10.16
is also indicative of the robustness of our system.

10.4 Indexing and Query Processing

At this stage we have solved two problems.

• We presented an algorithm for analyzing the question syntax to identify
the target answer type from a large type hierarchy.

• We designed a machine learning technique to fit a scoring function that
rewards proximity between instances of the desired answer type and
syntactic matches between other question words and the snippet around
the mentions of the instances.

In this section we address two remaining issues related to system
performance.

• We propose a workload-guided system for preparing additional indexes
to be used in type-cognizant proximity search.

• We outline the query execution algorithm that exploits the new indexes.

(These are actually interdependent. Index preparation is optimized for the
query execution algorithm and query execution is dependent on what indexes
are available.)

In Sections 10.2.3.2 and 10.3.3.1, on encountering a token, we pretended
that all hypernym ancestors of (all senses of) the token appear at the same
token position. In Section 10.3.3.1 we then indexed these together with the
original token. Naturally this increases the size of the inverted index; the
deeper the type hierarchy, the larger the bloat in index size.

Limited-domain semantic search applications need to index a handful of
named entities such as person, place and time. For these applications, the cost
of indexing type tags along with tokens is not prohibitive. However, large and
deep type hierarchies are essential to support open-domain semantic search.
Consequently, the index space required for the type annotations becomes
very large compared to the standard inverted index (see Figure 10.17). The
overhead appears especially large because standard inverted indexes can be
compressed significantly (39).

For a reader who is familiar with large skew in the frequency of words
in query logs, the natural questions at this point are whether similar skew

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 261

Corpus/index Size (GB)
Original corpus 5.72
Gzipped corpus 1.33
Stem index 0.91
Full atype index 4.30

FIGURE 10.17: Relative sizes of the corpus and various indexes for
TREC 2000.

exists in the frequency of atypes, and whether we can exploit said skew to
avoid indexing a large fraction of types that appear in the type hierarchy.
In our earlier example of token CEO appearing in a document, we may
choose to index only a few of its hypernym ancestors, say, executive#n#1,
administrator#n#1 and person#n#1, because the query log has few or
no occurrences of atype causal_agent#n#1. The frequency counts in
Figure 10.18 seem to corroborate that there is, indeed, a great deal of skew
in query atypes.

Freq Query atype
100 integer#n#1
78 location#n#1
77 person#n#1
20 city#n#1
10 name#n#1
7 author#n#1
7 company#n#1
6 actor#n#1
6 date#n#1
6 number#n#1
6 state#n#2
5 monarch#n#1
5 movie#n#1

Freq Query atype
5 president#n#2
5 inventor#n#1
4 astronaut#n#1
4 creator#n#2
4 food#n#1
4 mountain#n#1
4 musical_instrument#n#1
4 newspaper#n#1
4 sweetener#n#1
4 time_period#n#1
4 word#n#1
3 state#n#1
3 university#n#1

FIGURE 10.18: Highly skewed atype frequencies in TREC query logs.

However, as is well appreciated in the information retrieval, language
modeling and Web search communities, the distribution of query atype
frequencies is actually heavy-tailed, meaning that a substantial probability
mass is occupied by rare atypes (unlike, say, in an exponential tail). This
means that, even if we “train” our system over large query logs, we will always
be surprised in subsequent deployment by atypes we never saw in the training
set, and this will happen often enough to damage our aggregate performance.

© 2009 by Taylor and Francis Group, LLC

262 Text Search-Enhanced with Types and Entities

Therefore, our first task, in Section 10.4.1, will be to turn raw atype
frequencies from the query log into a smoother distribution over atypes.
Second, in Section 10.4.2 we will formalize our strategy of indexing only a
suitably-chosen subset of atypes; in particular, how to adapt to missing atypes
at query time. Having fixed the query execution template, we will engage in
two modeling tasks: estimating the space saved by indexing only a subset
of atypes (Section 10.4.3) and estimating the query time blow-up because
all atypes were not indexed (Section 10.4.4). Armed with these models, in
Section 10.4.5, we will propose a simple but effective algorithm to choose the
atype subset to index. Finally, we will describe experimental performance in
Section 10.4.6.

10.4.1 Probability of a Query Atype

The atype subset selection algorithm we propose uses an estimate of the
probability of seeing an atype a in a new query, queryProb(a). For WordNet
alone, a can have over 18,000 (non-leaf) values, and the skew makes it difficult
to estimate the probabilities of rare atypes.

This is a standard issue in language modeling (29). The solution is to reserve
and distribute a tiny bit of probability over all atypes not seen in training data.
We use the well-known Lidstone smoothing formula to implement this:

queryProb(a) =
queryCount(a) + �

∑
a′ queryCount(a′) + �

(10.7)

where 0 < � ≤ 1 is a parameter to be set via cross-validation. Several times, we
randomly split the workload into halves W1 and W2, estimate queryProb(a)
using W1 and estimate the probability of W2 as

∑

a∈W2

queryCountW2
(a) log

(
queryProbW1

(a)
)

Results are shown in Figure 10.19; it is fairly easy to pick off a prominently
best � for a given dataset. We shall see later in Section 10.4.6 that � has quite
a strong effect on the quality of our index and the query performance.

10.4.2 Pre-Generalize and Post-Filter

Let the full set of atypes be A and imagine that some subset R ⊆ A is
registered. During indexing, tokens are attached to the type taxonomy
(see Section 10.3.3.1) and we walk up is-a links, only registered atypes are
included in the index. For example, in Figure 10.20, the heavily-shaded nodes
entity#n#1 and living_thing#n#1 are in R, but the lightly-shaded nodes
are not.

Now suppose we are given an atype index for only the atypes in R, and get a
query with atype a �∈ R. For example, corresponding to the natural language

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 263

-4500

-4000

-3500

-3000

-2500

-2000

1.E-16 1.E-13 1.E-10 1.E-07 1.E-04 1.E-01
Lidstone

Lo
g

Li
ke

lih
oo

d

FIGURE 10.19: Log likelihood of validation data against the Lidstone
smoothing parameter �.

scientist

person
causal agent

living thing

entity

…dolphins and whales were studied by Cousteau…

a

g

scientist

person
causal agent

living thing

entity

…dolphins and whales were studied by Cousteau…

a

g

�
?

FIGURE 10.20: Pre-generalization and post-filtering.

question “Which scientist studied dolphins,” we frame a query in our system
of the form type=scientist#n#1 NEAR studied dolphins. Here is how we
would execute the query.

1. Find the best (defined later) registered generalization g in the taxonomy.
In the running example, we may prefer g = living thing#n#1 over
g = entity#n#1 because the former, being less general, is presumably
rarer in the corpus (but also see commments below).

2. Perform a proximity search using g and the selectors in the query, which
ensures recall, but generally lowers precision. Therefore, we must inflate
k in the top-k search to some k′ > k (more about this later).

3. Use a forward index, described in Section 10.4.2.1, to get the actual
instance token i of g in each high-scoring response. In our running
example, the qualifying snippet may bring forth two candidate tokens,
Cousteau and whales, because both are instances of living_thing#n#1.

© 2009 by Taylor and Francis Group, LLC

264 Text Search-Enhanced with Types and Entities

4. Retain response i if probing a reachability index, described in 10.4.2.2,
certifies that i is-a a. This consumes some more time and eliminates a
fraction of responses. We realize that whales are not scientists (as far
as WordNet is concerned) and discard it.

5. In case fewer than k results survive, repeat with a larger k′. This is very
expensive and is best avoided.

The central issue is how to choose the registered subset R. Another issue is
the choice of k′. We address these issues in the rest of this section.

(While selecting R, we pretend all roots of A are included in R as sentinels,
but we can avoid actually indexing these. While processing a query, in case no
g can be found, we can pretend every word is a potential candidate, a situation
that will essentially never arise given a reasonable algorithm for selecting R.)

In addition to the registered atype index, we need to build two other indices,
which we discuss at this point.

10.4.2.1 Forward index

The task of the forward index is to store the corpus in a highly compact
format on disk, and, given a document ID and a token offset (or range of
offsets), quickly return the tokens or token IDs at those offsets in the specified
document, using very few disk seeks. The forward index should occupy no
more space on disk than, say, a compressed (using gzip, say) version of the
original corpus. We cannot just use the original corpus as-is, because it is too
large, and ordinary compression inhibits random access.

In a first pass, we build the corpus lexicon, and count the frequency of each
token. Next we assign a byte-aligned code to each token. The most frequent
254 tokens get a 1-byte code, the next most frequent 65534 tokens get a 2-byte
code, etc. We use codes of sizes that are multiples of 8 bits because decoding
variable-length codes that are not byte-aligned, with random access, would
be messy. Our codes are suitably escaped so that we can read one byte and
decide if we need to read more bytes to complete the code.

The forward index is used for two purposes: to set up the context required
for scoring the candidate token, and to report a snippet with every hit in a
typical search engine. For these applications, we typically need to access short
contiguous token segments. We partition each document into segments of W
(configurable at indexing time) tokens.

In the second pass, we dump token codes linearly to a random-access file
without regard to their variable lengths. Then we build a persistent map
from (document ID, segment number) to begin and end offsets of code bytes
in the random access file. If W is configured suitably, 1–2 seeks are enough
to retrieve a token segment.

In case of ad hoc additions of documents to the corpus, long codes can be
assigned to new tokens starting from the end of the allocated range, and once
the counts of new tokens get fairly large, codes can be reassigned and the

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 265

forward index rebuilt.

10.4.2.2 Reachability index

The task of the reachability index is to preprocess A with all its is-a
(hypernym) links and all corpus tokens and prepare a small index to be able to
quickly answer queries of the form “is type t1 a generalization or specialization
of type t2” or “is some sense of the string token w an instance of type t.” If the
index is very small we can store it in RAM, and we prefer to do so. Otherwise
it must be on disk.

Reachability indexing is a well-explored area (10; 34). The extreme points
of the storage/time trade-off are 1. doing nothing at indexing time and
initiating a shortest-path search at query time, and 2. precomputing and
storing reachability for all node pairs and answering queries by a table lookup.
If the is-a graph on the whole atype set A is a tree, a suitable prefix numbering
of nodes (15) enables O(1)-time query processing with O(1) storage overhead
per node. In case of general DAGs the problem is more difficult, with non-
trivial lower bounds (10).

The WordNet noun hierarchy is “almost” a tree. For our prototype we
just replicated nodes and numbered them multiple times to effectively make
the graph a tree. The blowup of storage was negligible. Figure 10.17 shows
the space taken by the forward and reachability index in comparison to the
corpus and a regular inverted index. Our overheads are very reasonable. The
forward index would be needed anyway by any text search system to be able
to provide snippets with query responses.

Corpus/index Size (GB)
Original corpus 5.72
Gzipped corpus 1.33
Stem index 0.91
Reachability index 0.005
Forward index 1.16

FIGURE 10.21: Sizes of the additional indices needed for pre-generalize and
post-filter query processing, compared to the usual indices for TREC 2000.

10.4.3 Atype Subset Index Space Model

In Section 10.4.5 we will propose a greedy cost-benefit style atype
registration approach that will trade off between the extra index space
required if an atype r is included in R, against the average query time saved
if it is included. In this section we tackle the space cost; in Section 10.4.4 we

© 2009 by Taylor and Francis Group, LLC

266 Text Search-Enhanced with Types and Entities

will consider the benefit of query time saved.
An exact estimate of inverted index size is difficult in the face of index

compression techniques (39). The posting list for an atype a (or a token in
general) has corpusCount(a) entries in it, so as a first approximation, it takes
space proportional to corpusCount(a). Therefore, if subset R is indexed, the
space needed can be approximated as

∑
a∈R corpusCount(a). (10.8)

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

0.0E+00 5.0E+08 1.0E+09 1.5E+09 2.0E+09 2.5E+09

Estimated Index Size

O
bs

er
ve

d
In

de
x

S
iz

e

FIGURE 10.22:
∑

a∈R corpusCount(a) is a very good predictor of the size
of the atype subset index. (Root atypes are not indexed.)

Figure 10.22 shows that this crude approximation is surprisingly accurate.
This is probably because, averaged over many atypes, index compression
affects disk space by a fairly stable and uniform factor.

10.4.4 Query Time Bloat Model

Next we turn to the considerably more difficult task of estimating the factor
by which query execution slows down because only R, not A, the set of all
atypes, has been indexed. This is difficult because, in general, the estimate
will depend on co-occurrence statistics between all possible atypes and all
possible words. In traditional relational database query optimization, where
the number of tables and attributes is modest, estimating multidimensional
“selectivity” of select and join predicates is a challenging problem (20).
Our testbed has over a million distinct tokens and some 18000 atypes
in A. Therefore, capturing correlations with any degree of thoroughness is
impossible, and simplifying assumptions must be made.

Query bloat happens in two stages: first, scanning the inverted index
posting lists takes longer because the posting list of the more general atype
g ∈ R is longer than the posting list of the query atype a; and second,

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 267

because we are now obliged to screen the results using expensive forward
index accesses.

For the first part, we assume that the time spent scanning posting of the
atype a and intersecting them with selector postings takes time proportional
to corpusCount(a), independent of what the specific selectors are. This is
confirmed by Figure 10.23.

Histogram of Multimerge Access Time

0

20

40

60

80

0 0.05 0.1 0.15 0.2 0.25
Average Time (msec)

N
o

O
f D

oc
s

Histogram of Forward Index Access Time

0

15

30

45

60

0 2 4 6 8
Average Time (msec)

N
o

O
f D

oc
s

FIGURE 10.23: tscan is sufficiently concentrated that replacing the
distribution by a constant number is not grossly inaccurate.

The second part depends on the average time tforward it takes to probe the
forward index for one document and do the reachability test, and on k′, the
number of results sought from the pre-generalized query. Like tscan, tforward is
also sufficiently peaked and centered to use a point estimate (Figure 10.24).

The overall query bloat factor is therefore

tscan corpusCount(g) + k′tforward

tscan corpusCount(a)

Now we come to the question of what k′ should be. If we make the crude

© 2009 by Taylor and Francis Group, LLC

268 Text Search-Enhanced with Types and Entities

Histogram of Multimerge Access Time

0

20

40

60

80

0 0.05 0.1 0.15 0.2 0.25
Average Time (msec)

N
o

O
f D

oc
s

Histogram of Forward Index Access Time

0

15

30

45

60

0 2 4 6 8
Average Time (msec)

N
o

O
f D

oc
s

FIGURE 10.24: Like tscan, tforward is concentrated and can be reasonably
replaced by a point estimate.

assumption that the selectors occur independently of the candidates, we see

k′ = k
corpusCount(g)
corpusCount(a)

(10.9)

as a natural and simple choice, using which we can write the query bloat
factor as

corpusCount(g)
corpusCount(a)

+ k
tforward

tscan

corpusCount(g)
corpusCount(a)2

.

We call this queryBloat(a, g), the bloat because a had to be generalized to a
given g. For a given R, we can now write

queryBloat(a, R) =

{
1, if a ∈ R

min
g∈R,a IsA g

queryBloat(a, g), otherwise (10.10)

Note that at query execution time the choice of g from a given R is simple,
but choosing a good R ahead of time is non-trivial.

Figure 10.25 shows a study of estimated bloat compared to observed bloat.
The fit is not nearly as good as with the other half of our model in Figure 10.22,

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 269

0

100

200

300

400

500

0 5 10 15 20 25

Estimated Bloat
O

bs
er

ve
d

B
lo

at

FIGURE 10.25: Scatter of observed against estimated query bloat.

because 1. IO wait times are non-deterministic because of file-system buffering
and RAID, and 2. To remain practical, our model ignores the effect of
selectors. Similar variability is seen in the Bindings Engine (4, Figure 3,
page 447) as well. In the relational query optimizer literature, join size
estimates (and therefore CPU/IO cost estimates) are often relatively crude
(20) but nevertheless lead to reasonable query plans (14).

Ratio ≤ Count % Ratio ≤ Count %
.5–1 16 11.6 10–20 110 79.7
1–2 78 56.5 20–50 123 89.1
2–5 93 67.3 50–100 128 92.8
6–10 104 75.3 100–200 138 100

FIGURE 10.26: Histogram of observed-to-estimated bloat ratio for
individual queries with a specific R occupying an estimated 145MB of atype
index.

For a specific R picked by AtypeSubsetChooser (described next, in
Section 10.4.5) and 138 sample queries where g �= a given R, Figure 10.26
shows the cumulative distribution of the ratio of the observed to estimated
bloat. As can be seen, 68% of the queries have observed bloats less than five
times the estimated bloats, and 75% are within 10×. The fit of observed
to estimated bloats is reasonable for most queries, with only a few queries
exhibiting a large difference between the two.

10.4.5 Choosing an Atype Subset

We thus have a bi-criteria optimization problem: given the corpus,
query workload W and atype set A, choose R ⊆ A so as to minimize∑

r∈R corpusCount(r) and also minimize the expected query bloat
∑

a∈A

queryProb W (a) queryBloat(a, R) (10.11)

© 2009 by Taylor and Francis Group, LLC

270 Text Search-Enhanced with Types and Entities

This optimization problem can be shown to be NP hard via a reduction from
the knapsack problem, even when the type hierarchy is a tree. Therefore we
look for practical heuristics. We adopt a greedy approach of starting R with
only the roots of A4 and progressively adding the locally “most profitable”
atype c. Here “profit” depends inversely on the additional space δS that
will be required by the posting list of c, and directly on the reduction δB of
expected bloat that will result from including c in R. We use the ratio δB/δS
to pick the best c at every step.

AtypeSubsetChooser(A, W)
1: R ← {roots of A}, candidates C ← A \ R
2: initial estimated space S ←

∑
r∈R corpusCount(r)

3: using equations (10.7) and (10.10), expected bloat
B ←

∑
a∈R∪C queryProbW (a) queryBloat(a, R)

4: UpdateBloatsAndScores(∀c ∈ C, commit=false)
5: while R is small and/or B is large do
6: choose c ∈ C with the largest score(c)
7: UpdateBloatsAndScores(c, commit=true)

UpdateBloatsAndScores(a, commitFlag)
1: B′ ← B, S′ ← S + corpusCount(a)
2: “cousins” of a to be patched U ← ∅

3: for each h �∈ R, h ∈ C, h IsA a do
4: b = queryBloat(h, R), b′ = queryBloat(h, R ∪ a)
5: if b′ < b (bloat reduces) then
6: B′ ← (b′ − b) queryProbW (h)
7: if commitFlag then
8: U ← U ∪ {g : g ∈ C, g �= a, h IsA g}
9: score(a) ← (B − B′)/(S′ − S)

10: if commitFlag then
11: move a from C to R
12: S ← S′, B ← B′

13: UpdateBloatsAndScores(∀u ∈ U, commit=false)

FIGURE 10.27: The inputs are atype set A and workload W . The output is
a series of trade-offs between index size of R and average query bloat over W .

The pseudocode is shown in Figure 10.27. Once c is included, each

4Including the roots is only notional. Root types are so frequent in a typical corpus that
if generalization takes us to a root type it basically means we must scan the corpus end to
end. Therefore, any reasonable R will prevent this event.

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 271

descendant h might see a reduction in bloat. If h’s bloat decreases, all
ancestors u of h must update their δB/δS scores.

There is a subtle asymmetry in how the code is set up. Here we begin
with R = ∅ and grow R. We cannot, for instance, begin with R = A
and discard unworthy atypes with the smallest δB/δS. Initially, all specific
atypes will be in R, and more general atypes will appear completely valueless.
AtypeSubsetChooser will steadily discard any atype that is not directly
in the query log. Eventually, when the log is completely processed, we will
be cornered into choosing a subset of atypes that directly appear in the log.
Therefore, we will not be able to get any benefit out of choosing generalizations
that are nearby confluences of many atypes in the log.

10.4.6 Experiments

10.4.6.1 Estimated space-time tradeoff

Figure 10.28 (upper chart) shows the reduction in estimated maximum
bloat over all queries as AtypeSubsetChooser grows R. Each curve is for a
different Lidstone parameter �. The estimated average bloat over all queries
would be overly influenced by a few outliers (see Figure 10.26). Therefore we
discard the lowest and highest 2% of bloats and show a robust average over
the rest (lower chart).

The curves in Figure 10.28 show a prominent knee: by the time the
(estimated) index size is allowed to grow to 145MB, the robust average bloat
is 7, and it drops to 2 with an estimated index size of only 300MB (� = 10−3).

Very low � results in low queryProb for atypes not seen in the training set,
leading to an excessively aggressive discarding of atypes and consequently high
test-set bloats. As � is increased, queryProb increases, forcing AtypeSubset-
Chooser to conservatively include more atypes not seen in the training set.

It is comforting to see in Figure 10.29 that the best trade-off happens
for roughly the same value of � that provided the largest cross-validated
log-likelihood in Figure 10.19. This need not have happened: maximizing
workload likelihood is not the same as reducing query bloat.

10.4.6.2 Observed space-time trade-off

Next we ran multiple queries with various Rs having different index sizes
to find actual running times and, hence, actual bloats (Figure 10.30). The
average observed bloat curve follows the estimated bloat curve in Figure 10.28
quite closely. In fact, averaged over many queries, our simple bloat prediction
model does even better than at a per-query level (see Figure 10.25). With a
modest 515MB atype subset index, the average bloat is brought down to only
1.85.

© 2009 by Taylor and Francis Group, LLC

272 Text Search-Enhanced with Types and Entities

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1.E+10

1.E+12

1.E+14

0.0E+0 5.0E+8 1.0E+9 1.5E+9 2.0E+9
Estimated Index Size

E
st

im
at

ed
 M

ax
im

um
 B

lo
at

1.00E-15 1.00E-06 1.00E-03 1.00E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0.0E+0 5.0E+8 1.0E+9 1.5E+9 2.0E+9
Estimated Index Size

R
ob

us
t A

ve
ra

ge
 B

lo
at

FIGURE 10.28 (SEE COLOR INSERT FOLLOWING PAGE 130.):
Estimated space-time tradeoffs produced by AtypeSubsetChooser. The
y-axis uses a log scale. Note that the curve for � = 10−3 (suggested by
Figure 10.19) has the lowest average bloat.

10.4.6.3 Query execution dynamics

Figure 10.31 shows the average time taken per query, for various Rs with
increasing index sizes, broken down into Lucene scan+merge time taken if
R = A (“FineTime”), Lucene scan+merge time using a generalized g if R ⊂
A (“PreTime”) and the post-filtering time (“PostTime”). As can be seen,
there are regimes where scan time dominates and others where filtering time
dominates. This highlights why the choice of a good R is a tricky operation:
we cannot assume cost estimates that are any simpler.

10.5 Conclusion

10.5.1 Summary

In this article we have described the IR4QA (Information Retrieval for
Question Answering) project. Our starting point was to recognize that

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 273

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1.E+10

1.E+12

1.E-20 1.E-16 1.E-12 1.E-08 1.E-04 1.E+00
Lidstone

E
st

im
at

ed
 B

lo
at

AverageBloat MaximumBloat

FIGURE 10.29: Estimated bloat for various values of � for a specific
estimated index size of 145MB. The y-axis uses a log scale.

questions with one target type and one or more keywords to match represent
a very common class of information need. In Section 10.2 we described the
subsystem that interprets a natural language query into a semistructured
form, comprising one target answer type and a set of keywords to match. In
Section 10.3 we described a machine learning approach to learning a scoring
function that rewards proximity between instances of the target type and
keyword matches. In Section 10.4 we described those modules of IR4QA that
are responsible for index management and query execution. IR4QA is public-
domain code that is available for non-profit use.5

10.5.2 Ongoing and Future Work

Since 2004, when we proposed (5) and began initial work on the project
reported here, significant advances have been made by several groups at
building systems for entity search. The RADAR project at CMU6, the
Haystack project at MIT7 and desktop search offerings from several companies
represent entities and relations in personal data (people, places, files, emails,
addresses) in a relational or graphical format and enable type-oriented entity
searches. There are even whole workshops (11; 22; 19) dedicated to ranking
in databases and novel IR systems.

The EntityRank project at UIUC (9) is a recent development that is
especially noteworthy. EntityRank allows multiple atypes in a query, which
are to be collectively bound to form a record-like structure. For example, to
find the customer service phone number of Amazon.com, one may use the
query ow(amazon customer service #phone), where #phone is the atype
and ow enforces that the selector tokens appear to the left of the mention of the

5To get code access send email to soumen@cse.iitb.ac.in
6http://www.radar.cs.cmu.edu/
7http://groups.csail.mit.edu/haystack/

© 2009 by Taylor and Francis Group, LLC

mailto:soumen@cse.iitb.ac.in
http://www.radar.cs.cmu.edu
7http://groups.csail.mit.edu

274 Text Search-Enhanced with Types and Entities

1

6

11

16

21

0.0E+0 5.0E+8 1.0E+9 1.5E+9 2.0E+9 2.5E+9 3.0E+9

Observed Index Size

A
ve

ra
ge

 B
lo

at

Observed Estimated

1

501

1001

1501

2001

0.0E+0 5.0E+8 1.0E+9 1.5E+9 2.0E+9 2.5E+9 3.0E+9

Observed Index Size

M
ax

im
um

 B
lo

at

FIGURE 10.30: Estimated and observed space-time tradeoffs produced by
AtypeSubsetChooser.

phone number. As another example, the query (#professor #university
#research=database) compiles, from unordered annotations, a table of
professors, their affiliations and their research interests, provided the last
contains the word database. While extending to multiple atypes and ordered
and unordered windows is straightforward in our system, EntityRank’s main
contribution is a novel ranking function that combines uncertainty in type
annotations and redundancy of information across multiple mention sites.

The first generation of entity search systems is all focused on the “is an
instance of” relation. EntityRank regards textual juxtaposition as evidence
of (unknown) relationship, but relations other than “is-a” are neither tagged
nor directly searched. Our system described here cannot search over other
relations yet. “Is an attribute of” seems like the most important relation
that we would like to address after “is-a.” In a research prototype (6)
for Searching Personal Information Networks (SPIN), we have explored the
“activated twigs” paradigm for searching graph-structured textual databases.
For example, one may look for a twig “person a works in Microsoft, sent me
an email, and also wrote paper p” where the instantiated entities a and p
are strongly activated by words XML and indexing. Being able to express
such small structures, ranked by generic keyword proximity, may be the next

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 275

0

2000

4000

6000

8000

10000

12000

14000

0.0E+0 5.0E+8 1.0E+9 1.5E+9 2.0E+9
Estimated Index Size

A
ve

ra
ge

 T
im

e
(m

se
c)

PreTime PostTime FineTime

FIGURE 10.31: Average time per query (with and without generalization)
for various estimated index sizes.

important step forward in entity and relation search engines.

References

[1] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. TeXQuery: A
full-text search extension to XQuery. In WWW Conference, pages 583–
594, New York, 2004.

[2] Apache Software Group. Jakarta Lucene text search engine. GPL
Library, 2002.

[3] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Authority-based
keyword queries in databases using ObjectRank. Toronto, 2004.

[4] M. J Cafarella and O. Etzioni. A search engine for natural language
applications. In WWW Conference, pages 442–452, 2005.

[5] S. Chakrabarti. Breaking through the syntax barrier: Searching with
entities and relations. In ECML/PKDD, pages 9–16, 2004. Invited talk.

[6] S. Chakrabarti, J. Mirchandani, and A. Nandi. SPIN: Searching personal
information networks. pages 674–674, 2005.

[7] S. Chakrabarti, K. Puniyani, and S. Das. Optimizing scoring functions
and indexes for proximity search in type-annotated corpora. Edinburgh,
May 2006.

[8] P. K. Chan and S. J. Stolfo. Experiments in multistrategy learning by
meta-learning. In CIKM, pages 314–323, Washington, DC, 1993.

[9] T. Cheng, X. Yan, and K. C. C. Chang. EntityRank: Searching entities
directly and holistically. September 2007.

© 2009 by Taylor and Francis Group, LLC

276 Text Search-Enhanced with Types and Entities

[10] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability
and distance queries via 2-hop labels. SIAM Journal of Computing,
32(5):1338–1355, 2003.

[11] G. Das and I. F. Ilyas, editors. Ranking in Databases, Istanbul, 2007.

[12] T. G. Dietterich and G. Bakiri. Error correcting output codes: A
general method for improving multiclass inductive learning programs.
In National Conference on Artificial Intelligence, pages 572–577. AAAI
Press, 2002.

[13] S. Dumais, M. Banko, E. Brill, J. Lin, and A. Ng. Web question
answering: Is more always better? In SIGIR, pages 291–298, 2002.

[14] G. Graefe. Query evaluation techniques for large databases. ACM
Computing Survey, 25(2):73–170, 1993.

[15] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK:
Ranked keyword search over XML documents. In SIGMOD Conference,
pages 16–27, 2003.

[16] K. Hacioglu and W. Ward. Question classification with support vector
machines and error correcting codes. In HLT, pages 28–30, 2003.

[17] S. Harabagiu, D. Moldovan, M. Pasca, R. Mihalcea, M. Surdeanu,
R. Bunescu, R. Girju, V. Rus, and P. Morarescu. FALCON: Boosting
knowledge for answer engines. In TREC 9, pages 479–488. NIST, 2000.

[18] E. Hovy, L. Gerber, U. Hermjakob, M. Junk, and C.-Y. Lin. Question
answering in Webclopedia. In TREC 9. NIST, 2001.

[19] V. Hristidis and I. F. Ilyas, editors. Ranking in Databases, Cancun, 2008.

[20] Y. E. Ioannidis and S. Christodoulakis. On the propagation of errors in
the size of join results. In SIGMOD Conference, pages 268–277, 1991.

[21] T. Joachims. Optimizing search engines using clickthrough data. ACM,
2002.

[22] T. Joachims, H. Li, T.-Y. Liu, and C. X. Zhai, editors. Learning to Rank
for Information Retrieval, Amsterdam, 2007.

[23] D. Klein and C. D. Manning. Accurate unlexicalized parsing. In ACL,
volume 41, pages 423–430, 2003.

[24] V. Krishnan, S. Das, and S. Chakrabarti. Enhanced answer type
inference from questions using sequential models. In EMNLP/HLT,
pages 315–322, 2005.

[25] C. Kwok, O. Etzioni, and D. S Weld. Scaling question answering to
the Web. In WWW Conference, volume 10, pages 150–161, Hong Kong,
2001.

© 2009 by Taylor and Francis Group, LLC

Text Search-Enhanced with Types and Entities 277

[26] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In
ICML, 2001.

[27] X. Li and D. Roth. Learning question classifiers. In COLING, pages
556–562, 2002.

[28] D. C. Liu and J. Nocedal. On the limited memory BFGS method for
large scale optimization. Math. Programming, 45(3, (Ser. B)):503–528,
1989.

[29] C. D. Manning and H. Schütze. Foundations of Statistical Natural
Language Processing. MIT Press, Cambridge, MA, 1999.

[30] G. Miller, R. Beckwith, C. FellBaum, D. Gross, K. Miller, and R. Tengi.
Five papers on WordNet. Princeton University, August 1993.

[31] D. Moldovan, S. Harabagiu, M. Pasca, R. Mihalcea, R. Goodrum, R. Irji,
and V. Rus. LASSO: A tool for surfing the answer net. In TREC 8,
1999.

[32] G. Ramakrishnan, S. Chakrabarti, D. A. Paranjpe, and P. Bhat-
tacharyya. Is question answering an acquired skill? In WWW
Conference, pages 111–120, New York, 2004.

[33] G. Salton and M. J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

[34] R. Schenkel, A. Theobald, and G. Weikum. HOPI: An efficient
connection index for complex xml document collections. In EDBT
Conference, pages 237–255, Heraklion, Crete, Greece, 2004.

[35] F. Sha and F. Pereira. Shallow parsing with conditional random fields.
In HLT-NAACL, pages 134–141, 2003.

[36] A. Singhal, S. Abney, M. Bacchiani, M. Collins, D. Hindle, and Fernando
Pereira. AT&T at TREC-8. In TREC 8, pages 317–330. NIST, 2000.

[37] K. S. Jones, S. Walker, and S. E. Robertson. A probabilistic model
of information retrieval: Development and comparative experiments.
Information Processing and Management, 36(1–2):1:779–808 and 2:809–
840, 2000.

[38] V. Vapnik, S. Golowich, and A. J. Smola. Support vector method for
function approximation, regression estimation, and signal processing. In
Advances in Neural Information Processing Systems. MIT Press, 1996.

[39] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan-Kaufmann,
May 1999.

© 2009 by Taylor and Francis Group, LLC

278 Text Search-Enhanced with Types and Entities

[40] D. Zhang and W. Lee. Question classification using support vector
machines. In SIGIR, pages 26–32, 2003.

[41] Z. Zheng. AnswerBus question answering system. In HLT, 2002.

© 2009 by Taylor and Francis Group, LLC

	Cover Page

	Title Page

	Text Mining: Classification, Clustering, and Applications
	Contents
	List of Figures
	List of Tables
	Introduction
	About the Editors
	Contributor List

	Chapter 1: Analysis of Text Patterns Using Kernel Methods

	Chapter 1: Analysis of Text Patterns Using Kernel Methods
	1.1 Introduction
	1.2 General Overview on Kernel Methods
	1.2.1 Finding Patterns in Feature Space
	1.2.2 Formal Properties of Kernel Functions
	1.2.3 Operations on Kernel Functions

	1.3 Kernels for Text
	1.3.1 Vector Space Model
	1.3.1.1 Vector Space Kernel

	1.3.2 Semantic Kernels
	1.3.2.1 Designing the Proximity Matrix

	1.3.3 String Kernels

	1.4 Example
	1.5 Conclusion and Further Reading
	Acknowledgment
	References

	Chapter 2: Detection of Bias in Media Outlets with Statistical Learning Methods

	Chapter 2: Detection of Bias in Media Outlets with Statistical Learning Methods
	2.1 Introduction
	2.2 Overview of the Experiments
	2.3 Data Collection and Preparation
	2.3.1 Article Extraction from HTML Pages
	2.3.2 Data Preparation
	2.3.3 Detection of Matching News Items

	2.4 News Outlet Identification
	2.5 Topic-Wise Comparison of Term Bias
	2.6 News Outlets Map
	2.6.1 Distance Based on Lexical Choices
	2.6.2 Distance Based on Choice of Topics

	2.7 Related Work
	2.8 Conclusion
	References
	Acknowledgments
	2.9 Appendix A: Support Vector Machines
	2.10 Appendix B: Bag of Words and Vector Space Models
	2.11 Appendix C: Kernel Canonical Correlation Analysis
	2.12 Appendix D: Multidimensional Scaling

	Chapter 3: Collective Classification for Text Classification

	Chapter 3: Collective Classification for Text Classification
	3.1 Introduction
	3.2 Collective Classification: Notation and Problem Definition
	3.3 Approximate Inference Algorithms for Approaches Based on Local Conditional Classifiers
	3.3.1 Iterative Classification
	3.3.2 Gibbs Sampling
	3.3.3 Local Classifiers and Further Optimizations

	3.4 Approximate Inference Algorithms for Approaches Based on Global Formulations
	3.4.1 Loopy Belief Propagation
	3.4.2 Relaxation Labeling via Mean-Field Approach

	3.5 Learning the Classifiers
	3.6 Experimental Comparison
	3.6.1 Features Used
	3.6.2 Real-World Datasets
	3.6.2.1 Results

	3.6.3 Practical Issues

	3.7 Related Work
	3.8 Conclusion
	3.9 Acknowledgments
	References

	Chapter 4: Topic Models

	Chapter 4: Topic Models
	4.1 Introduction
	4.2 Latent Dirichlet Allocation
	4.2.1 Statistical Assumptions
	4.2.2 Exploring a Corpus with the Posterior Distribution

	4.3 Posterior Inference for LDA
	4.3.1 Mean Field Variational Inference
	4.3.2 Practical Considerations

	4.4 Dynamic Topic Models and Correlated Topic Models
	4.4.1 The Correlated Topic Model
	4.4.2 The Dynamic Topic Model

	4.5 Discussion
	References

	Chapter 5: Nonnegative Matrix and Tensor Factorization for Discussion Tracking

	Chapter 5: Nonnegative Matrix and Tensor Factorization for Discussion Tracking
	5.1 Introduction
	5.1.1 Extracting Discussions
	5.1.2 Related Work

	5.2 Notation
	5.3 Tensor Decompositions and Algorithms
	5.3.1 PARAFAC-ALS
	5.3.2 Nonnegative Tensor Factorization

	5.4 Enron Subset
	5.4.1 Term Weighting Techniques

	5.5 Observations and Results
	5.5.1 Nonnegative Tensor Decomposition
	5.5.2 Analysis of Three-Way Tensor
	5.5.3 Analysis of Four-Way Tensor

	5.6 Visualizing Results of the NMF Clustering
	5.7 Future Work
	Acknowledgments
	References

	Chapter 6: Text Clustering with Mixture of von Mises-Fisher Distributions

	Chapter 6: Text Clustering with Mixture of von Mises-Fisher Distributions
	6.1 Introduction
	6.2 Related Work
	6.3 Preliminaries
	6.3.1 The von Mises-Fisher (vMF) Distribution
	6.3.2 Maximum Likelihood Estimates

	6.4 EM on a Mixture of vMFs (moVMF)
	6.5 Handling High-Dimensional Text Datasets
	6.5.1 Approximating k
	6.5.2 Experimental Study of the Approximation

	6.6 Algorithms
	6.7 Experimental Results
	6.7.1 Datasets
	6.7.2 Methodology
	6.7.3 Simulated Datasets
	6.7.4 Classic3 Family of Datasets
	6.7.5 Yahoo News Dataset
	6.7.6 20 Newsgroup Family of Datasets
	6.7.7 Slashdot Datasets

	6.8 Discussion
	6.9 Conclusions and Future Work
	Acknowledgments
	References

	Chapter 7: Constrained Partitional Clustering of Text Data: An Overview

	Chapter 7: Constrained Partitional Clustering of Text Data: An Overview
	7.1 Introduction
	7.2 Uses of Constraints
	7.2.1 Constraint-Based Methods
	7.2.2 Distance-Based Methods

	7.3 Text Clustering
	7.3.1 Pre-Processing
	7.3.2 Distance Measures

	7.4 Partitional Clustering with Constraints
	7.4.1 COP-KMeans
	7.4.2 Algorithms with Penalties – PKM, CVQE
	7.4.2.1 CVQE

	7.4.3 LCVQE: An Extension to CVQE
	7.4.4 Probabilistic Penalty – PKM

	7.5 Learning Distance Function with Constraints
	7.5.1 Generalized Mahalanobis Distance Learning
	7.5.2 Kernel Distance Functions Using AdaBoost

	7.6 Satisfying Constraints and Learning Distance Functions
	7.6.1 Hidden Markov Random Field (HMRF) Model
	7.6.2 EM Algorithm
	7.6.3 Improvements to HMRF-KMeans

	7.7 Experiments
	7.7.1 Datasets
	7.7.2 Clustering Evaluation
	7.7.3 Methodology
	7.7.4 Comparison of Distance Functions
	7.7.5 Experimental Results

	7.8 Conclusions
	References

	Chapter 8: Adaptive Information Filtering

	Chapter 8: Adaptive Information Filtering
	8.1 Introduction
	8.2 Standard Evaluation Measures
	8.3 Standard Retrieval Models and Filtering Approaches
	8.3.1 Existing Retrieval Models
	8.3.1.1 Boolean models
	8.3.1.2 Vector space models
	8.3.1.3 Probabilistic models

	8.3.2 Existing Adaptive Filtering Approaches
	8.3.2.1 Filtering as retrieval + thresholding
	8.3.2.2 Filtering as text classification

	8.4 Collaborative Adaptive Filtering
	8.5 Novelty and Redundancy Detection
	8.5.1 Set Difference
	8.5.2 Geometric Distance
	8.5.3 Distributional Similarity
	8.5.4 Summary of Novelty Detection

	8.6 Other Adaptive Filtering Topics
	8.6.1 Beyond Bag of Words
	8.6.2 Using Implicit Feedback
	8.6.3 Exploration and Exploitation Trade Off
	8.6.4 Evaluation beyond Topical Relevance

	8.7 Acknowledgments
	References
	Symbol Description

	Chapter 9: Utility-Based Information Distillation

	Chapter 9: Utility-Based Information Distillation
	9.1 Introduction
	9.1.1 Related Work in Adaptive Filtering (AF)
	9.1.2 Related Work in Topic Detection and Tracking (TDT)
	9.1.3 Limitations of Current Solutions

	9.2 A Sample Task
	9.3 Technical Cores
	9.3.1 Adaptive Filtering Component
	9.3.2 Passage Retrieval Component
	9.3.3 Novelty Detection Component
	9.3.4 Anti-Redundant Ranking Component

	9.4 Evaluation Methodology
	9.4.1 Answer Keys
	9.4.1.1 Automating evaluations based on answer keys
	9.4.1.2 Nugget-matching rules

	9.4.2 Evaluating the Utility of a Sequence of Ranked Lists
	9.4.2.1 Graded passage utility
	9.4.2.2 Ranked list length penalty

	9.5 Data
	9.6 Experiments and Results
	9.6.1 Baselines
	9.6.2 Experimental Setup
	9.6.3 Results

	9.7 Concluding Remarks
	9.8 Acknowledgments
	References

	Chapter 10: Text Search-Enhanced with Types and Entities

	Chapter 10: Text Search-Enhanced with Types and Entities
	10.1 Entity-Aware Search Architecture
	10.1.1 Guessing Answer Types
	10.1.2 Scoring Snippets
	10.1.3 Effcient Indexing and Query Processing
	10.1.4 Comparison with Prior Work

	10.2 Understanding the Question
	10.2.1 Answer Type Clues in Questions
	10.2.2 Sequential Labeling of Type Clue Spans
	10.2.2.1 Parse tree and multiresolution feature table
	10.2.2.2 Cells and attributes
	10.2.2.3 Heuristic informer annotation

	10.2.3 From Type Clue Spans to Answer Types
	10.2.3.1 Informer q-gram features
	10.2.3.2 Informer hypernym features
	10.2.3.3 Supplementary word features

	10.2.4 Experiments
	10.2.4.1 Informer span tagging accuracy
	10.2.4.2 Question classification accuracy

	10.3 Scoring Potential Answer Snippets
	10.3.1 A Proximity Model
	10.3.1.1 energy and decay
	10.3.1.2 Aggregating over many selectors

	10.3.2 Learning the Proximity Scoring Function
	10.3.3 Experiments
	10.3.3.1 Data collection and preparation
	10.3.3.2 RankExp performance scaling
	10.3.3.3 Fitting the decay profile
	10.3.3.4 Accuracy using the fitted decay

	10.4 Indexing and Query Processing
	10.4.1 Probability of a Query Atype
	10.4.2 Pre-Generalize and Post-Filter
	10.4.2.1 Forward index
	10.4.2.2 Reachability index

	10.4.3 Atype Subset Index Space Model
	10.4.4 Query Time Bloat Model
	10.4.5 Choosing an Atype Subset
	10.4.6 Experiments
	10.4.6.1 Estimated space-time tradeoff
	10.4.6.2 Observed space-time trade-off
	10.4.6.3 Query execution dynamics

	10.5 Conclusion
	10.5.1 Summary
	10.5.2 Ongoing and Future Work

	References

