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Abstract. This article introduces a method of hiding transaction

amounts in the strongly decentralized anonymous cryptocurrency

Monero. Similar to Bitcoin, Monero is a cryptocurrency which is

distributed through a proof of work “mining” process. The orig-

inal Monero protocol was based on CryptoNote, which uses ring

signatures and one-time keys to hide the destination and origin

of transactions. Recently the technique of using a commitment

scheme to hide the amount of a transaction has been discussed

and implemented by Bitcoin Core Developer Gregory Maxwell. In

this article, a new type of ring signature, A Multi-layered Linkable

Spontaneous Anonymous Group signature is described which al-

lows for hidden amounts, origins and destinations of transactions

with reasonable efficiency and verifiable, trustless coin generation.

The author would like to note that early drafts of this were pub-

licized in the Monero Community and on the bitcoin research irc

channel. Blockchain hashed drafts are available in [Noe15].
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1. Introduction

1.1. Spontaneous (Ad Hoc) Ring Signatures in CryptoCurren-

cies. Recall that in Bitcoin each transaction is signed by the owner of
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the coins being sent and these signatures verify that the owner is al-

lowed to send the coins. This is entirely analogous to the signing of a

check from your bank.

CryptoNote [vS13] and Ring Coin [Bac13] advanced this idea by

using “ring signatures” which were originally described in [RST01] as

a “digital signature that specifies a group of possible signers such that

the verifier can’t tell which member actually produced the signature.”

The idea therefore is to have the origin pubkey of a transaction hidden

in a group of pubkeys all of which contain the same amount of coins,

so that no one can tell which user actually sent the coins.

The original CryptoNote protocol as described in [vS13] implements

a slight modification of this to prevent double spends. Namely in [vS13]

a “traceable ring signature,” which is a slight modification of those

described in [FS07] is employed. This type of ring signature has the

benefit of not allowing the owner of a coin to sign two different ring sig-

natures with the same pubkey without being noticed on the blockchain.

The obvious reason for this is to prevent “double-spending” which, in

Bitcoin, refers to spending a coin twice. Ring coin [Bac13, Bac15] uses

a more efficient linkable ring signature which is a slight modification of

the Linkable Spontaneous Anonymous Group signatures described in

[LWW04].

One benefit of using the above types of ring signatures over other

anonymizing techniques, such as CoinJoin [Max13] or using coin mixing

services, is that they allow for “spontaneous” mixing. With CoinJoin

or coin mixers, it is similarly possible to hide the originator of a given
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transaction, however these techniques in practice need some sort of

centralized group manager, such as a centralized CoinJoin server, where

transactions are combined by a trusted party. In the case that the

trusted party is compromised, the anonymity of the transaction is also

compromised.

Some coins such as Dashcoin [DH14], attempt to negate this by using

a larger number of trusted mixers (in this case masternodes) but this

number is still much smaller than the users of the coin. In contrast,

with a spontaneous ring signature, transactions can be created by the

owner of a given pubkey (this is the spontaneous, or “ad-hoc” property)

without relying on any trusted server, and thus providing for safer

anonymity.

One possible attack against the original CryptoNote or ring-coin pro-

tocol [vS13, Bac13] is blockchain analysis based on the amounts sent in

a given transaction. For example, if an adversary knows that .9 coins

have been sent at a certain time, then they may be able to narrow down

the possibilities of the sender by looking for transactions containing .9

coins. This is somewhat negated by the use of the one-time keys used

in [vS13] since the sender can include a number of change addresses in

a transaction, thus obfuscating the amount which has been sent with

a type of “knapsack mixing.” However this technique has the down-

side that it can create a large amount of “dust” transactions on the

blockchain, i.e. transactions of small amounts that take up proportion-

ately more space than their importance. Additionally, the receiver of

the coins may have to “sweep” all this dust when they want to send it,
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possibly allowing for a smart adversary to keep track of which keys go

together in some manner. Furthermore, it is easy to establish an upper

and lower bound on the amounts sent.

Another downside to the original CryptoNote set-up is that it re-

quires a given pair of (P,A) of pubkey P and amount A to be used

in a ring signature with other pubkeys having the same amount. For

less common amounts, this means there may be a smaller number of

potential pairs (P ′, A′) available on the blockchain with A′ = A to ring

signature with. Thus, in the original CryptoNote protocol, the poten-

tial anonymity set is perhaps smaller than may be desired. Analysis of

the above weaknesses is covered in [AMT15].

1.2. Ring CT for Monero. An obvious way to negate the downsides

of the CryptNote protocol, as described in the previous section, would

be to implement hidden amounts for any transaction. In this paper, I

describe a modification to the Monero protocol, a proof-of-work cryp-

tocurrency extending the original CryptoNote protocol, which allows

the amounts sent in a transaction to be hidden. This modification is

based on the Confidential Transactions [Max15] which are used on the

lightning side-chain in Bitcoin, except it allows for their use in ring

signatures. Therefore, the modification is given the obvious name of

Ring Confidential Transactions for Monero.

In order to preserve the property that coins cannot be double spent,

a generalization of the LSAG’s of [LWW04] is described, a Multilay-

ered Linkable Spontaneous Anonymous Group Signature (MLSAG)
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which allows for combining Confidential Transactions with a ring sig-

nature in such a way that using multiple inputs and outputs is possible,

anonymity is preserved, and double-spending is prevented.

1.3. Strongly Decentralized Anonymous Payment Schemes. The

Ring CT protocol allows hidden amounts, origins, and destinations for

transactions which is somewhat similar to Zerocash [BSCG+14]. One

possible differentiator is that the use of proof of work for coin gener-

ation is possible with Ring CT as opposed to in ZeroCash, where it

seems all coins must be pregenerated by a trusted group.

Note that one of the biggest innovations in Bitcoin [Nak08], was the

decentralized distribution model allowing anyone willing to put their

computing power to work to participate in the generation of the cur-

rency. Some of the benefits of this type of proof-of-work include trust-

less incentives for securing the network and stronger decentralization

(for example, to protect against poison-pill type attacks).

One final obvious benefit of the proof-of-work coin generation is it

makes Ring CT immune to a powerful actor somehow acquiring all the

pieces of the master key used in coin generation. Since there is an

obvious large incentive (the ability to generate free money 1) to acquire

all pieces of the trusted generation key, this is fairly important.

1.4. Acknowledgements. I would like to thank Monero team for lots

of help and discussion in the creation of this paper and the Monero

and Bitcoin Community for support and discussion. With respect to

1The author previously had assumed this would allow the unmasking of transactions
as well, but the newer ZeroCash paper claims this is not possible.
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disclosure, the author received several donations totalling between 2

and 3 bitcoins from the Monero community in gratitude for his work

on this research.

2. Multilayered Linkable Spontaneous Ad-Hoc Group

Signatures

In this section, I define the Multilayered Linkable Spontaneous Anony-

mous Group signatures (MLSAG) used by the the Ring CT protocol.

Note that I define these as a general signature, and not necessarily in

their use case for Ring Confidential Transactions. An MLSAG is es-

sentially similar to the LSAG’s described in [LWW04], but rather than

having a ring signature on a set of n keys, instead, an MLSAG is a ring

signature on a set of n key-vectors.

Definition 1. A key-vector is just a collection y = (y1, ..., yr) of

public keys with corresponding private keys x = (x1, ..., xr).

2.1. LWW signatures vs FS signatures. The ring signatures used

in Monero and the original CryptoNote protocol are derived from the

traceable ring signatures of [FS07]. The CryptoNote [vS13] ring sig-

natures come with a “key-image” which means that a signer can only

sign one ring on the block-chain with a given public and private key

pair or else their transaction will be marked as invalid. Because of this,

one-time keys are used in CryptoNote, which further helps anonymity.

In [Bac15], Adam Back noticed that the Linkable Spontaneous Anony-

mous Group (LSAG) signatures of [LWW04] can be modified to give a

more efficient linkable ring signature producing the same effect as the
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[FS07] ring signatures. This modification reduces the storage cost on

the blockchain essentially in half.

First I recall almost verbatim the modification given in [Bac15]:

Keygen: Find a number of public keys Pi, i = 0, 1, ..., n and a secret

index j such that xG = Pj where G is the ed25519 base-point and x is

the signers spend key. Let I = xHp (Pj) where Hp is a hash function

returning a point 2 Let m be a given message.

SIGN: Let α, si, i 6= j, i ∈ {1, ..., n} be random values in Zq (the

ed25519 base field).

Compute

Lj = αG

Rj = αHp (Pj)

cj+1 = h (m, Lj, Rj)

where h is a hash function returning a value in Zq. Now, working

successively in j modulo n, define

Lj+1 = sj+1G+ cj+1Pj+1

Rj+1 = sj+1Hp (Pj+1) + cj+1 · I

cj+2 = h (m, Lj+1, Rj+1)

· · ·

Lj−1 = sj−1G+ cj−1Pj−1

2In practice Hp(P ) = Keccak(P ) · G where G is the ed25519 basepoint, although
note that for the commitment scheme I will use toPoint(Keccak(P )), hashing suc-
cessively until Keccak(P ) returns a multiple of the basepoint.
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Rj−1 = sj−1Hp (Pj−1) + cj−1 · I

cj = h (m, Lj−1, Rj−1)

so that c1, ..., cn are defined.

Let sj = α − cj · xj mod l, (l being the ed25519 curve order) hence

α = sj + cjxj mod l so that

Lj = αG = sjG+ cjxjG = sjG+ cjPj

Rj = αHp (Pj) = sjHp (Pj) + cjI

and

cj+1 = h (m, Lj, Rj)

and thus, given a single ci value, the Pj values, the key image I, and all

the sj values, all the other ck, k 6= i can be recovered by an observer.

The signature therefore becomes:

σ = (I, c1, s1, ..., sn)

which represents a space savings over [vS13, 4.4] where the ring signa-

ture would instead look like:

σ = (I, c1, ..., cn, s1, ..., sn)

Verification proceeds as follows. An observer computes Li, Ri, and ci

for all i and checks that cn+1 = c1. Then the verifier checks that

ci+1 = h (m, Li, Ri)
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for all i mod n

LINK: Signatures with duplicate key images I are rejected.

Note that proofs of unforgeability, anonymity, and linkability hold

for the above protocol which are only insignificant modifications to the

proofs given in [LWW04]. I will give a more generalized version of these

proofs for the MLSAG’s.

2.2. MLSAG Description. For the Ring CT protocol, which will

be described in section 4, I require a generalization of the Back LSAG

signatures described in the previous section which allows for key-vectors

(Definition 1) rather than just keys.

Suppose that each signer of a (generalized) ring containing n mem-

bers has exactly m keys
{
P j
i

}i=1,...,n

j=1,...,m
. The intent of the MLSAG ring

signature is the following:

• To prove that one of the n signers knows the secret keys to their

entire key vector.

• To enforce that if the signer uses any one of theirm signing keys

in another MLSAG signature, then the two rings are linked,

and the second such MLSAG signature (ordered by the Monero

block chain) is discarded.

The algorithm proceeds as follows: Let m be a given message. Let

π be a secret index corresponding to the signer of the generalized ring.

For j = 1, ...,m, let Ij = xjH (P j
π), and for j = 1, ...,m, i = 1, ..., π̂, ...n
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(where π̂ means omit the index π) let sji be some random scalars (ele-

ments of Zq). Now, in a manner analogous to subsection 2.1, define

Ljπ = αjG

Rj
π = αjH

(
P j
π

)
for random scalars αj and j = 1, ...,m. Now, again analogously to

section 2.1, set:

cπ+1 = H
(
m, L1

π, R
1
π, ..., L

m
π , R

m
π

)
.

Ljπ+1 = sjπ+1G+ cπ+1P
j
π+1

Rj
π+1 = sjπ+1H

(
P j
π+1

)
+ cπ+1Ij

and repeat this, incrementing i modulo n until we arrive at

Ljπ−1 = sji−1G+ ci−1P
j
i−1

Rj
π−1 = sji−1H

(
P j
i−1
)

+ ci−1 · Ij

cπ = H
(
m, L1

π−1, R
1
π−1, ..., L

m
π−1, R

m
π−1
)
.

Finally, solve for each sjπ using αj = sjπ + cπxj mod `. The signature

is then given as (I1, ..., Im, c1, s
1
1, ..., s

m
1 , s

1
2, ..., s

m
2 , ..., s

1
n, ..., s

m
n ), so the

complexity is O (m (n+ 1)) . Verification proceeds by regenerating all

the Lji , R
j
i starting from i = 1 as in section 2.1 (which is the special case

that m = 1) and verifying the hash cn+1 = c1. If these are being used

in a blockchain setting such as Monero, signatures with key images Ij
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which have already appeared are then rejected. One can easily show,

in a manner similar to [LWW04]:

• The probability of a signer generating a valid signature without

knowing all “m” private keys belonging to their key vector for

index π is negligible.

• The probability of a signer not signing for any key of index π

is negligible. (In other words, the key images in the signature

necessarily all come from index π.)

• If a signer signs two rings using at least one of the same public

keys, then the two rings are linked.

I expand on these points below with security proofs.

2.3. MLSAG Security Model. An MLSAG will satisfy the following

three properties of Unforgeability, Linkability, and Signer Ambiguity

which are very similar to the definitions given in [LWW04].

Definition 2. (Unforgeability) An MLSAG signature scheme is un-

forgeable if for any probabilistic polynomial time (PPT) algorithm A

with signing oracle SO producing valid signatures, given a list of n

public key vectors chosen by A, then A can only with negligible prob-

ability produce a valid signature when A does not know one of the

corresponding private key vectors.

Remark 3. In the following definition, note that I include rejecting

duplicate key images as part of the verification criteria for the MLSAG,

which gives a slightly different Linkability definition than the one in

[LWW04].
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Definition 4. (Linkability) Let L be the set of all public keys in a given

setting (e.g. in a given blockchain). An MLSAG signature scheme on

L is key-image linked if the probability of a PPT adversary A creating

two signatures σ, σ′ signed with respect to key-vectors y and y′ each

containing the same public key yi = y′i in L and each verifying without

being marked duplicate, is negligible.

Definition 5. (Signer Ambiguity ) An MLSAG signature scheme is

said to be signer ambiguous if given any verifying signature σ on key-

vectors (y1, ..., yn) and any set of t private keys, none of the same index,

nor of the secret index, then the probability of guessing the secret key

is less than 1
n−t + 1

Q(k)

2.4. MLSAGUnforgeability. This follows similarly to [LWW04, The-

orem 1]. Let H1 and H2 random oracles, and SO be a signing oracle

which returns valid MLSAG signatures. Assume there is a probabilis-

tic polynomial time (PPT) adversary A with the ability to forge an

MLSAG from a list of key vectors L with non-negligible probability

Pr (A (L)→ (m,σ) : V er (L,m, σ) = True) >
1

Q1 (k)

where Q1 is a polynomial inputting a security parameter k and where

(m,σ) is not one of the signatures returned by SO. Assume that A

makes no more than qH +nqS (with n the number of keys in L) queries

to the signing oracles H1, H2 and SO respectively. The oracles H1

and H2 are assumed independent and random and are consistent given

duplicate queries. The signing oracle SO is also allowed to query H1
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and H2. Given A, I will show it is possible to create a PPT adversary

M which uses A to find the discrete logarithm of one of the keys in L.

If L is a set of key vectors {y1, ..., yn} each of size r, (i.e. yi =

(yi1, ..., y
i
r) with y1, ..., yr public keys) then a forged signature

σ = (c1, s1, ..., sn, y0)

produced by A must satisfy

ci+1 = H
(
m, L1

i , R
1
i , ..., L

m
i , R

m
i

)
where the i are taken mod n, and the Lji , R

j
i are defined as in section

2.2. The new adversaryM may call A to forge signatures a polynomial

number of times and will record each Turing script T whether or not

the forgery is successful.

Lemma 6. [LWW04, Lemma 1] Let M invoke A to obtain a tran-

script T . If T is successful, then M rewinds T to a header H and

re-simulates A to obtain transcript T ′ . If Pr (T succeeds) = ε , then

Pr (T ′ succeeds) = ε.

Proof. Follows easily from the cited Theorem. �

Theorem 7. The probability that an adversary A forges a verifying

MLSAG signature is negligible under the discrete logarithm assumption.

Proof. I follow the notation introduced above. Similarly to [LWW04,

Theorem 1], since the probability of guessing the output of a random

oracle is negligible, therefore, for each successful forgery A completes
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with transcript T , there are mT queries to H1 matching the n queries

used to verify the signature. Thus let Xi1 , ..., Xim denote these queries

used in verification for the ith such forgery and let π be the index

corresponding to the last such verification query for a given forgery

Xim = H1

(
m,L1

π−1, R
1
π−1, ..., L

mT
π−1, R

mT
π−1
)
.

(Intuitively, π corresponds to what would be the secret index of the

forged signature, since it corresponds to the last call to the random

oracle for the given signature).

An attempted forgery σ produced by A is an (`, π)-forgery if i1 = `

and π is as above (so this forgery corresponds to queries ` through

`+π). By assumption, there exists a pair (`, π) such that the probability

that the corresponding transcript T gives a successful forgery, ε`,π (T ),

satisfies

ε`,π ≥
1

mT (qH +mT qS)
· 1

Q1 (k)
≥ 1

n (qH + nqS)
· 1

Q1 (k)
.

Now, rewinding T to just before the `th query, and again attempting

a forgery on the same set of keys, (and letting H1 compute new coin

flips for all of it’s succeeding queries) then by Lemma 6, it follows that

the probability that T ′ is also a successful forgery satisfies

ε`,π (T ′) ≥ 1

n (qH + nqS)
· 1

Q1 (k)
.
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Therefore, the probability that both T and T ′ correspond to verifying

forgeries σ and σ′ is non-negligible:

εl,π (T and T ′) ≥ (εl,π (T ))2 .

As new coin-flips have been computed for the random oracle outputs

of H1, it follows that with overwhelming probability there is j such that

sjπ 6= s′jπ and cπ 6= cπ+1. Thus we can solve for the private key of index

π:

xjπ =
s′jπ − sjπ
cπ − c′π

mod q

which contradicts the discrete logarithm assumption. �

2.5. MLSAG Linkability.

Theorem 8. (Key-Image Linkability) The probability that a PPT ad-

versary A can create two verifying (and unlinked in the given setting)

signatures σ, σ′ signed with respect to key vectors y and y′respectively

such that there exists a public key y in both y and y′ is negligible.

Proof. Suppose to the contrary that A has created two verifying sig-

natures σ and σ′ both signed with respect to key vectors y and y′

respectively such that there exists a public key y in both y and y′. Let

y appear as element j of y, and as element j′ element of y′. By Theorem

7, it holds with overwhelming probability that there exists indices π

and π′ for the public keys in σ and σ′ respectively such that

Ljπ = sjπG+ cπy
j
π

Rj
π = sjπH

(
yjπ
)

+ cπIj
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and

Lj′π′ = sj
′

π′G+ cπ′yj
′

π′

Rj′

π′ = sj
′

π′H
(
yj

′

π′

)
+ cπ′Ij′

with

logGL
j
π = logH(yjπ)R

j
π

and

logGL
j′

π′ = log
H
(
yj

′
π′

)Rj′

π′

Letting x denote the private key of y, y = xG, then after solving the

above for Ij and Ij′ it follows that Ij = xH (yjπ) = xH (y) and similarly

Ij′ = xH (y) . Thus the two signatures include Ij = Ij′ , and therefore,

since duplicate key images are rejected, one of them must not verify. �

2.6. MLSAG Anonymity. To prove the anonymity of the above pro-

tocol in the random oracle model, let H1, H2 be random oracles model-

ing discrete hash functions. LetA be an adversary against anonymity. I

construct an adversaryM against the Decisional Diffie Helman (DDH)

assumption as follows. The DDH asumption says that given a tuple

(G, aG, bG, γG), the probability of determining whether γG = abG is

negligible.

Theorem 9. Ring CT protocol is signer-ambiguous under the Deci-

sional Diffie-Helman assumption.

Proof. (Similar proof to [LWW04, Theorem 2]) Assume that the Deci-

sional Diffie-Helman problem is hard in the cyclic group generated by
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G and suppose there exists a PPT adversary A against signer ambigu-

ity. Thus given a list L of n public key-vectors of length m, a set of

t private keys Dt = {x1, ..., xt}, a valid signature σ on L signed by a

user with respect to a key-vector y such that the corresponding private

key-vector x = (xπ1 , ..., x
π
m) satisfies xπj /∈ Dt, then A can decide π with

probability

Pr (A → π) >
1

n− t
+

1

Q (k)

for some polynomial Q (k). I construct a PPT adversary M which

takes as inputs a tuple (G, aG, bG, ciG) where i ∈ {0, 1} is randomly

chosen (and not a priori known to M), c1 = ab, and c0 is a random

scalar, and outputs i with probability

Pr (M (G, aG, bG, ciG)→ i) ≥ 1

2
+

1

Q2 (k)

for some polynomial Q2 (k).

Consider an algorithm SIMNIZKP (similar to the one defined in

[FS07]) which takes as input scalars a, c , a private key vector x, a set

of public key-vectors yi, i = 1, ...,m, an index π, and a message m and

acts on these as follows:

1. Generate random scalars s1, ..., sm and, a random scalar cπ ← H.

2. For j indexing x, set

L1
π = aG

R1
π = cG

and for all other j

Ljπ = sjπG+ cπy
j
π
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Rj
π = sjπH

(
yjπ
)

+ cπx
jH
(
yjπ
)

3. Compute a random output from the random oracle

cπ+1 ← H
(
m, L1

π, R
1
π, ..., L

m
π , R

m
π

)
.

4. For each i, working mod m, compute

Lji = sjiG+ ciy
j
π

Rj
i = sjiH

(
yji
)

+ cix
jH
(
yji
)

ci+1 ← H
(
m, L1

i , R
1
i , ..., L

m
i +Rm

i

)
.

and note that at the last step when i = π − 1, then ci+1 is already

determined, to maintain consistency with the random oracle output.

Note that regardless of whether x is the actual private key corre-

sponding to y, due to the fact that consistency is maintained by the

random oracles in subsequent calls, the above signature verifies. If x is

actually the private key-vector of y , then there is no difference between

SIMNIZKP and an actual signature.

Finally, given a tuple (G, aG, bG, ciG) where a, b are randomly se-

lected scalars, with c1 = ab, c0 a random element, i ∈ {0, 1},M takes

the following steps to solve the Decisional Diffie Helman Problem with

non-negligible probability. M grabs a random γ ← H from the ran-

dom oracle and takes a private / public key-vector pair (x, y), and then

computes s such that a = s + γx. NowM performs SIMNIZKP with

arbitrarily selected key-vectors {yi}i=1,...,n such that y = yπ, a → a,

ci → c some message m, and x→ x.
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If it is the case that i = 1, then c = ab, then

logGaG = logbGcG = a

and due to the fact that A is assumed to be able to find π with non-

negligible probability, then there is a non-negligible probability over 1
2

that A returns 1 (upon whichM returns 1). If i = 0, then A returns

1 only with probability 1
2
, and so for some non-negligible probability

over 1
2
,M returns the same value as A, and thus solves the Decisional

Diffie-Helman problem for randomly chosen scalars with non-negligible

probability over 1
2
, which is a contradiction. �

3. Background on Confidential Transactions

3.1. Confidential Transactions in Bitcoin. In [Max15], Greg Maxwell

describes Confidential Transactions which are a way to send Bitcoin

transactions with the amounts hidden. The basic idea is to use a Ped-

ersen Commitment and the method is well described in the cited source.

In this paper I make a slight modification the the Confidential Trans-

actions machinery in that rather than taking the commitments to sum

to zero, I instead sign for the commitment, to prove I know a private

key. This is described in more detail in the next section.

3.2. Modification for Ring Signatures. LetG be the ed25519 base-

point. Let3

H = toPoint (cn_fast_hash (G))

3H = MiniNero.getHForCT () in terms of the code at [Noe15]
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Note that not every hash gives a point in the group of the basepoint (i.e.

H = ψG for some unknown ψ) (which is contrary to what happens in

secp256k1, the curve used by Bitcoin). However, it seems that choos-

ing the basepoint itself works (I previously used H(123456G) which

seemed more secure to me, but the basepoint is certainly a more nat-

ural choice). Choosing H = γG for some unknown γ is necessary so

that all the usual elliptic curve math holds.

Under the discrete logarithm assumption on ed25519, the probability

of an adversary discovering γ is negligible. Define C (a, x) = xG+ aH,

the commitment to the value a with mask x. Note that as long as

logGH is unknown, and if a 6= 0, then logGC (a, x) is unknown. On the

other hand, if a = 0, then logGC (a, x) = x, so it is possible to sign

with sk-pk keypair (x,C (0, x)) .

In [Max15], there are input commitments, output commitments, and

the network checks that

∑
Inputs =

∑
Outputs.

However, this does not suffice in Monero: Since a given transaction

contains multiple possible inputs Pi, i = 1, ..., n, only one of which

belong to the sender, (see [vS13, 4.4]), then if we are able to check

the above equality, it must be possible for the network to see which Pi

belongs to the sender of the transaction. This is undesirable, since it

removes the anonymity provided by the ring signatures. Thus instead,

commitments for the inputs and outputs are created as follows (suppose

first that there is only one input)
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Cin = xcG+ aH

Cout−1 = y1G+ b1H

Cout−2 = y2G+ b2H

such that xc = y1 + y2 + z, xc − y1 − y2 = z, yi are mask values, z > 0

and a = b1+b2. Here xc is a special private key the “amount key” known

only to the sender, and to the person who sent them their coins, and

must be different than their usual private key. In this case,

Cin −
2∑
i=1

Cout−i

= xcG+ aH − y1G− b1H − y2G− b2H

= zG.

Thus, the above summation becomes a commitment to 0, with sk =

z, and pk = zG, rather than an actual equation summing to zero.

Note that z is not computable to the originator of xc’s coins, unless

they know both of the y1, y2, but even this can be simply mitigated

by including an additional change address (the usual case is that the

second commitment, with y2 as mask, is sent to yourself as change).

Since it is undesirable to show which input belongs to the sender, a

ring signature consisting of all the input commitments Ci, i = 1, ..., s, ..., n

(where s is the secret index of the commitment of the sender), adding

the corresponding pubkey (so commitments and pubkeys are paired

(Ci, Pi) only being allowed to be spent together) and subtracting
∑
Cout
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is created:{
P1 + C1,in −

∑
j

Cj,out, ..., Ps + Cs,in −
∑
j

Cj,out, ..., Pn + Cn,in −
∑
j

Cj,out

}
.

This is a ring signature which can be signed since we know one of the

private keys (namely z + x′ with z as above and x′G = Ps). In fact,

since we know, for each i, both the private key for Pi and the private

key for Pi +Ci,in −
∑

j Cj,out, we can perform a signature as in section

2.2. This precise details are described in Definition 10.

As noted in [Max15], it is important to prove that the output amounts4

b1, ...bn all lie in a range of positive values, e.g. (0, 216). This can be

accomplished essentially the same way as in [Max15] and is described

in more detail in section 5.

Finally, note that in the above, I have not made any mention of

the tag-linkability property which is used in Monero and Cryptonote

to prevent double-spends. The tag-linkability property here will result

from combining the above discussion with the MLSAG signatures as

described in Definition 10.

4. Ring CT For Monero Protocol

4.1. Protocol Description.

Definition 10. (Tag-Linkable Ring-CT with Multiple Inputs and One-

time Keys)

4Since input commitments could potentially be just inherited from the previous
transaction, it suffices to consider the output amounts.
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• Let {(P 1
π , C

1
π) , ..., (Pm

π , C
m
π )} be a collection of addresses / com-

mitments with corresponding secret keys xj, j = 1, ...,m.

• Find q + 1 collections {(P 1
i , C

1
i ) , ..., (Pm

i , C
m
i )} , i = 1, ..., q + 1

which are not already tag linked in the sense of [FS07, page 6].

• Decide on a set of output addresses (Qi, Ci,out) such that
∑m

j=1C
j
π−∑

iCi,out is a commitment to zero.

• Let

R :=

{{(
P 1
1 , C

1
1

)
, ..., (Pm

1 , C
m
1 ) ,

(∑
j

P j
1 +

m∑
j=1

Cj
1 −

∑
i

Ci,out

)}
,

...,{(
P 1
q+1, C

1
q+1

)
, ...,

(
Pm
q+1, C

m
q+1

)
,

(∑
j

P j
q+1 +

m∑
j=1

Cj
q+1 −

∑
i

Ci,out

)}}
.

be the generalized ring which we wish to sign. Note that the

last column is a Ring-CT ring in the sense of section 4.

• Compute the MLSAG signature Σ on R.

In this case, by Theorem 7, P j
π , j = 1, ...,m cannot be the signer of

any additional non-linked Ring Signatures in the given superset P of

all such pairs P = {(P,C)} after signing Σ.

Remark 11. Space complexity of the above protocol. Note that the

size of the signature Σ on R according to definition 10 is actually

smaller, for m > 1, than a current CryptoNote [vS13] ring signature

based transaction which includes multiple inputs. This is because of

the size improvements, given by [LWW04], to each column. Note also,
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it is probably not necessary to include the key-image of the commit-

ment entry of the above signature. Further size optimizations are likely

possible.

4.2. Conversion from Visible Denominations to Commitments.

AsMonero currently uses Blockchain visible scalars to represent amounts,

it is important that there is a way to convert from visible amounts to

commitments while preserving anonymity. In fact, this is not difficult.

Given a pair (P, a) where P is a public key and a represents an amount,

this may be used as the input to a transaction as (P, aH), and it must

be checked by the verifier that the input amount a multiplied by the

masking point H, indeed gives aH. Thus at the first step, the input

amounts will not be hidden, but the outputs of this transaction can be

hidden, and all the necessary relations outlined in section 4 hold. Note

that a range proof is not necessary for such an input.

Remark 12. The obvious benefit of this method of converting from

visible amounts to commitments is that the amount of coins generated

by the mining process is trustlessly verifiable. This is an advantage of

the Ring CT protocol over payment schemes such as [BSCG+14] which

rely on a trusted setup phase.

4.3. Transaction Fees. AsMonero is strongly decentralized (i.e. proof

of work) it is necessary to pay miners a transaction fee for each trans-

action. This helps with the network security to prevent blockchain

bloat. These fees must be paid "unmasked" i.e. just as bH, rather

than xG+ bH, and for some standardized amount b so that the miner
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can verify that b · H = bH and thus there is enough money for the

transaction fee while still having the equations in terms of H so the

necessary relations of section 4 hold.

5. Aggregate Schnorr Range Proofs

In [Max15], the confidential transactions without ring signatures uses

a type of ring signature based on [AOS02] called a Borromean ring

signature, which helps to prove a committed value lies within a certain

range. In this article, I will outline an alternative method, inspired

by [Her05], which has the same space savings, but perhaps simpler

security proofs. The motivation for this is as follows: Suppose that a

given transaction has input commitments

Cin = ainG+ 10H

and output commitments

Cout,1 = aout,1G+ 5H, Cout,2 = aout,2G+ 5H

this scenario is valid as it is possible to sign for

Cin − Cout,1 − Cout,2 = (ain − aout,1 − aout,2)G

However, note that (without range proofs) it would be possible to al-

ternatively set output commitments

Cout,1 = aout,1G−H, Cout,2 = aout,2G+ 11H
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as −1 is a very large number modulo the curve group order, free money

has been created. It is therefore necessary to prove that the Cout,i are

commitments to values which are positive and lie in a restricted range

[0, 2n] for some n. To do this, one decomposes each output value into

binary:

b = b02
0 + b12

1 + b22
2 + · · ·+ bn2n

and computes commitments Cj
out,i to bj · 2j and such that

C1
out,i + C2

out,i + · · ·+ Cn
out,i = Cout,i

Finally, using secret key bj, one computes a ring signature on

(Cj
out,i, C

j
out,i − 2jH)

for all j and provides the Cj
out,i to the verifying parties (in this case,

the miners).

For space savings, one can either use a Borromean ring signature (as

in [Max15]) to combine all of these simple ring signatures, or a type of

aggregate ring signature defined as follows:

5.0.1. Aggregate Schnorr Non-linkable Ring Signature (ASNL) Gener-

ation. Let (xji , P
j
1 , P

j
2 ) be a set of keys, j = 1, ..., n with xji the secret

key of P j
i

• For each j, let i′ := i + 1 mod 2, set αj a random scalar, and

compute Lji = αjG.



RING CONFIDENTIAL TRANSACTIONS 28

• Set cji′ = Hs(L
j
i ), where Hs is a cryptographic hash function

returning a scalar, and after choosing sji′ random, compute

Lji′ = si′G+ ci′H.

• Set ci = Hs(L
j
i′) and compute

sji = α− cjixi mod `

• Return (Lj1, s
j
2) for all j and s =

∑
j s

j
1.

5.0.2. Aggregate Schnorr Non-linkable Ring Signature (ASNL) Verifi-

cation. Start with (P j
1 , P

j
2 , L

j
1, s

j
2) for j = 1, ..., n and s.

• For all j, compute cj2 = Hs(L
j
1), L

j
2 = sj2G + cj2H, and cj1 =

Hs(L
j
2).

• If
∑n

j=1 L
j
1 = sG + (cj1 + · · · + cjn)H then return 0 for a valid

signature. Otherwise return −1.

Theorem 13. The Aggregate Schnorr Non-linkable ring signature is

unforgeable under the discrete logarithm assumption.

Proof. I sketch a proof in the case n = 2. The general case is similar.

Suppose that an adversary A is able to forge an ASNL signature on

{
(x1i , P

1
1 , P

1
2 ), (x2i , P

2
1 , P

2
2 )
}

with non-negligible probability while knowing at most one of the xji

(suppose without loss of generality that A knows x1i ). For any given

such forgery:

{s, (P j
1 , P

j
2 , L

j
1, s

j
2)}, j = 1, 2,
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I solve the discrete logarithm of P 2
1 with non-negligible probability.

Following the verification algorithm, let cj1 = Hs

(
sj2G+Hs(L

j
1)H

)
. It

must then be true that

L1
1 + L2

1 = sG+
(
c11P

1
1 + c21P

2
1

)
.

Supposing that L1
1 = aG and L2

1 = bG with a, b known to A, then

aG+ bG− sG− c11P 1
1 = c21P

2
1

so, as c21 is determined by the verification protocol, it must be the case

that A knows the private key of P 2
1 ,

x21 :=
a+ b− s− c11x11

c21
mod `

This contradicts the discrete logarithm assumption for the given group.

�

5.1. Representing Amounts. Amounts in the Ring CT protocol be

represented in essentially the same manner as in [Max15].

5.1.1. Passing Amounts to Receiver. Now, given any output amount,

b = b02
0 + b12

1 + · · · bn2n, a sender computes a new private /public key

pair and corresponding shared ECDH secret ss and makes the following

information available in their transaction:

• Cj = ajG + (bj2
j)H where ai are some random numbers for

j = 0, ..., n.

• The data
{

(Li1, s
j
2), s

}
.

• ECDH public key and a+ ss mod ` where a = a0 + · · ·+ an.
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The receiver then:

• Computes their shared secret ss and computes a from a +

ss mod `.

• Computes C =
∑
Ci, computes C − aG = bH, and finds b

by comparing to all bH in the given range [0, 2n]. (In practice

this will be a quick 500 kilobyte lookup with n = 14 as in the

previous section. If on the other hand 232 were to be chosen as

the upper limit value, as in [Max15], the search would become

computationally intensive).

6. Ring CT Demo Code

In the repository at [Noe15] I have created a simple demonstration

of the Ring Confidential Transactions protocol utilizing the MLSAG

signatures of section 2 and the ASNL signatures of section 5:

H_ct = RingCT.getHForCT()

print("H", H_ct)

sr, Pr = PaperWallet.skpkGen() #receivers private/ public

se, pe, ss = ecdh.ecdhgen(Pr) #compute shared secret ss

digits = 14 #in practice it will be 14

print("inputs")

Cia, L1a, s2a, sa, ska = RingCT.genRangeProof(10000, digits)

print("outputs")

Cib, L1b, s2b, sb, skb = RingCT.genRangeProof(7000, digits)

Cic, L1c, s2c, sc, skc = RingCT.genRangeProof(3000, digits)

print("verifying range proofs of outputs")
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RingCT.verRangeProof(Cib, L1b, s2b, sb)

RingCT.verRangeProof(Cic, L1c, s2c, sc)

x, P1 = PaperWallet.skpkGen()

P2 = PaperWallet.pkGen()

C2 = PaperWallet.pkGen()

#some random commitment grabbed from the blockchain

ind = 0

Ca = RingCT.sumCi(Cia)

Cb = RingCT.sumCi(Cib)

Cc = RingCT.sumCi(Cic)

sk = [x, MiniNero.sc_sub_keys(ska, MiniNero.sc_add_keys(skb, skc))]

pk = [[P1, P2], [MiniNero.subKeys(Ca, MiniNero.addKeys(Cb, Cc)), \

MiniNero.subKeys(C2, MiniNero.addKeys(Cb, Cc)) ] ]

II, cc, ssVal = MLSAG.MLSAG_Sign(pk, sk, ind)

print("Sig verified?", MLSAG.MLSAG_Ver(pk, II, cc, ssVal) )

print("Finding received amount corresponding to Cib")

RingCT.ComputeReceivedAmount(pe, sr, MiniNero.addScalars(ss, skb), Cib)

print("Finding received amount corresponding to Cic")

RingCT.ComputeReceivedAmount(pe, sr, MiniNero.addScalars(ss, skc), Cic)

Here is an example transaction with input 10, 000 and outputs 3, 000

and 7, 000.

(’H’, ’61fe7f0f5a607a33427d01dd1fded5ffa03fae2e9df9ebccf2e0a2f5bd77a204’)

inputs

(’b, b in binary’, 10000, [0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1])
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Generating Aggregate Schnorr Non-linkable Ring Signature

outputs

(’b, b in binary’, 7000, [0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0])

Generating Aggregate Schnorr Non-linkable Ring Signature

(’b, b in binary’, 3000, [0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0])

Generating Aggregate Schnorr Non-linkable Ring Signature

verifying range proofs of outputs

Verifying Aggregate Schnorr Non-linkable Ring Signature

Verified

Verifying Aggregate Schnorr Non-linkable Ring Signature

Verified

(’Generating MLSAG sig of dimensions ’, 2, ’x ’, 2)

(’verifying MLSAG sig of dimensions ’, 2, ’x ’, 2)

(’c’,

[’80a3cfd06dd2862307cd75c2a1566f20cd743dbb0b9feb22d79dcbecb9023f42’,

’a9b7342ba7bf2f102505ca19dab734fde638916c0a29f5b30e49833ab51393ea’,

’80a3cfd06dd2862307cd75c2a1566f20cd743dbb0b9feb22d79dcbecb9023f42’])

(’sig verifies?’, True)

(’Sig verified?’, True)

Finding received amount corresponding to Cib

(’received ’, 7000,

’a488ec68732fb551841c2c6dcc7ffac895d98ec7e9378275ed20ea12805fc18e’)

Finding received amount corresponding to Cic

(’received ’,3000,

’1b46626858e130a0f3884c74c9fdeabc4d812c519103ea16a35a3f82a3d0ed6d’)
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7. Conclusion

The Ring Confidential Transactions protocol provides a strongly de-

centralized cryptocurrency (i.e. there is no privileged party) which has

provable security estimates regarding the hiding of amounts, origins

and destinations. In addition, coin generation in the Ring Confiden-

tial Transactions protocol is trustless and verifiably secure. These five

factors are a necessity of a cash-like crypto-currency such as Monero.
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