
PDL — Scientific Programming in Perl

Karl Glazebrook Christian Söller Tuomas J. Lukka
Marc Lehmann Jarle Brinchmann Doug Hunt
John Cerney Robin Williams Tim Pickering

October 16, 2001

Contents

0 PDL — Year Zero 5

0.1 Who this book is for. 6

0.2 The case for a high-level approach. 7

0.3 The case for a free Data Language. 8

0.4 So why Perl? . 9

0.5 What this book is about. 11

0.6 What this book is NOT about. 11

0.7 Conventions used in this book . 12

1 A Whirlwind tour through PDL 13

1.1 Alright let’s do something. 13

1.2 Whirling through the Whirlpool 16

1.2.1 Measuring the brightness of M51 20

1.2.2 Twinkle, twinkle, little star. 21

1.2.3 Getting Complex with M51 28

1.3 Roundoff . 29

2 The Basics of PDL 31

2.1 Basic manipulations of piddles 31

2.1.1 What is a piddle? . 31

2.1.2 Creating piddles . 32

2.1.3 Elementary arithmetic. 33

2.1.4 In-place arithmetic . 34

2.1.5 Using = and .= . 34

2.2 Piddles are NOT Perl ‘arrays’ . 35

1

CONTENTS 2

2.2.1 The benefits of piddles. 37

2.2.2 Lists and Hashes of piddles 37

2.3 PDL Datatypes . 38

2.3.1 Type conversion and creation 39

2.3.2 Complex types . 39

2.4 PDL projection operators . 40

2.4.1 What about projecting along other dimensions? 41

2.5 ‘Threading’ over extra dimensions. 41

2.6 Example Problem . 43

3 Slicing, Dicing and Threading with PDL dimensions 44

3.1 Finding piddle dimensions. 45

3.2 The slice function — regular subsets along axes 45

3.2.1 The basic slicing specification. 45

3.2.2 Modifying slices. 46

3.2.3 Does a slice consume memory? 47

3.2.4 Advanced slice syntax . 48

3.2.5 PDL’s Method notation 48

3.3 The dice and dice_axis functions — irregular subsets along axes 49

3.4 Using mv, xchg and reorder — transposing dimensions 50

3.5 Combining dimensions with clump 50

3.6 Adding dimensions with dummy 52

3.7 Completely general subsets of data with index, which and where 53

3.8 Example Problem . 55

3.9 PDL threading and signatures . 55

3.9.1 Threading . 56

3.9.2 A simple example . 56

3.9.3 Why bother . 58

3.9.4 More examples . 58

3.9.5 Why threading and why call it threading? 60

3.9.6 The general case: PDL functions and their signature . . . 63

3.9.7 You can write your own threading routines 67

3.9.8 Matching threading dimensions 68

3.9.9 Promotion: When a piddle has less dimensions than required 72

CONTENTS 3

3.9.10 Calling conventions and tight loops 72

3.9.11 Manipulating indices — generalised slicing 72

3.9.12 Memory and speed implications — Vaffines 72

3.9.13 writing your own threading aware function — at the perl
level! . 72

3.9.14 A worked example . 72

3.9.15 explicit threading for complex cases 73

4 Graphics with PDL 74

4.1 Introduction . 74

4.2 2-dimensional graphics using PGPLOT 75

4.3 Introducing PDL::Graphics::PGPLOT 75

4.4 An overview of 2D plotting commands 78

4.4.1 Options in plot commands 78

4.4.2 Hard-copies and plot options 83

4.4.3 Setting default values for options 84

4.4.4 Setting up the plot area 84

4.4.5 Drawing lines and plotting points 86

4.4.6 Displaying images . 88

4.4.7 Contour plots and vector fields 90

4.4.8 Drawing simple shapes . 94

4.4.9 Text and legends . 96

4.5 Using colour . 100

4.6 Threading in PDL::Graphics::PGPLOT 101

4.7 Recording and playing back plot commands 102

4.8 The object oriented approach . 106

4.8.1 Why use the OO interface 107

4.8.2 Usage of the OO interface 107

4.9 Using PGPLOT commands directly 110

4.10 3D Graphics with OpenGL . 112

4.10.1 Introduction . 112

4.10.2 Parametric Graphics . 113

4.10.3 Types of 3D Graphical Objects 115

4.10.4 More than one Image . 117

CONTENTS 4

4.10.5 Animation . 119

4.10.6 Putting it all together — cool hacks 119

4.10.7 The VRML backend . 121

4.11 Pixel manipulations using the Gimp 122

4.11.1 The components of Gimp 122

4.11.2 Direct pixel access . 122

4.11.3 Gimp Plug-Ins . 122

4.11.4 More Information . 123

6 Advanced Examples of Using PDL 124

6.1 A PDL weather map . 124

6.1.1 Drawing the map . 124

6.1.2 Getting the weather data 125

6.1.3 Plotting the contour map 126

6.1.4 What happened? . 127

6.2 Objects using PDL - defining your own data types 129

6.2.1 Implementing derived classes: The Complex module . . . 130

6.3 Numerical simulations in PDL . 136

6.3.1 The wave equation . 136

6.3.2 Multiple dimensions and higher order 140

6.3.3 Gas dynamics . 146

6.3.4 Ordinary Differential Equations 146

Chapter 0

PDL — Year Zero

”Why is it that we entertain the belief that for every purpose
odd numbers are the most effectual?” - Pliny the Elder.

The PDL project began in February 1996, when I decided to experiment with
writing my own ‘Data Language’. I am an astronomer. My day job involves a lot
of analysis of digital data accumualated on many nights observing on telescopes
around the world. Such data might for example be images containing millions of
pixels and thousands of images of distant stars and galaxies. Or more abstrusely,
many hundreds of digital spectral revealing the secrets of the composition and
propertues of these distant objects.

Obviously many astronomers before have dealt with these problems, and a large
amount of software has been constructed to facilitate their analysis. However,
like many of my colleagues, I was constantly frustrated by the lack of generality
and flexibility of these programs and the difficulty of doing anything out of the
ordinary quickly and easily. What I wanted had a name: ‘Data Language’, i.e.
a language which allowed the manipulation of large amounts of data with simple
arithmetic expressions. In fact some commericial software worked like this, and
I was impressed with the capabilities but not with the price tag. And I thought
I could do better.

As a fairly computer literate astronomer (read ‘nerd’ or ‘geek’ according to
your local argot) I was very familiar with ‘Perl’, a computer language which
now seems to fill the shelves of many bookstores around the world. I was
impressed by it’s power and flexibility, and especially it’s ease of use. I had even
explored the depths of it’s internals and written an interface to allow graphics
(the PGPLOT module1). The ease with which I could then create charts and
graphs, for my papers, was refreshing.

1The PGPLOT module for perl is an interface to the pgplot graphics library (written in
C and Fortran) created by Tim Pearson of Caltech. More information about this library can
be obtained from: http://astro.caltech.edu/˜tjp/pgplot/

5

CHAPTER 0. PDL — YEAR ZERO 6

Version 5 of Perl had just been released, and I was fascinated by the new fea-
tures available. Especially the support of arbitrary data structures (or ‘objects’
in modern parlance) and the ability to ‘overload’ operators — i.e. make math-
ematical symbols like +-*/ do whatever you felt like. It seemed to me it ought
to be possible to write an extension to Perl where I could play with my data in
a general way: for example using the maths operators manipulate whole images
at once.

Well one slow night at an observatory I just thought I would try a little exper-
iment. In a bored moment I fired up a text editor and started to create a file
called ‘PDL.xs’ — a Perl extension module to manipulate data vectors. A few
hours later I actually had something half decent working, where I could add
two images in the Perl language, fast! This was something I could not let rest,
and it probably cost me one or two scientific papers worth of productivity. A
few weeks later the Perl Data Language version 1.0 was born. It was a pretty
bare infant: very little was there apart from the basic arithmetic operators. But
encouraged I made it available on the Internet to see what people thought.

Well people were fairly critical — among the most vocal were Tuomas Lukka and
Christian Soeller. Unfortunately for them they were both Perl enthusiasts too
and soon found themselves improving my code to implement all the features
they thought PDL ought to have and I had heinously neglected. PDL is a
prime example of that modern phenomenon of authoring large free software
packages via the Internet. Large numbers of people, most of whom have never
met, have made contributions ranging for core functionality to large modules
to the smallest of bug patches. PDL version 2.0 is now here (though it should
perhaps have been called version 10 to reflect the amount of growth in size and
functionality) and the phenomenon continues.

I firmly believe that PDL is a great tool for tackling general problems of data
analysis. It is powerful, fast, easy to add too and freely available to anyone. I
wish I had had it when I was a graduate student! I hope you too will find it
of immense value, I hope it will save you from heaps of time and frustration in
solving complex problems. Of course it can’t do everything, but it provides the
framework, the hammers and the nails for building solutions without having to
reinvent wheels or levers.

- Karl Glazebrook, Sydney, Australia. 4/March/1999

0.1 Who this book is for.

This book is for anybody who has to work on large volumes of data, for mathe-
matical analysis or visualisation. You could be a scientist or an engineer working
or research or design problems, a businessman trying to make sense of vast num-
bers of stock indices, a statistician crunching numbers and trying to figure out
trends or a web site manager monitoring page accesses.

CHAPTER 0. PDL — YEAR ZERO 7

You know the benefits of being able to work in a very high-level language such
as Perl (or TCL or Python), you can see how much easier it would be if you
could take the same approach to your data analysis rather than griping around
in low-level C or FORTRAN. You may have had experience with the high-level
approach in commercial packages and wish for something similar which is free,
public domain and Open Source so you can share your code with colleagues.

We are not assuming that you are a Perl expert, rather we hope you will pick up
enough of a smattering of Perl in the early chapters to try out (and hopefully
be impressed by!) the tutorials and examples. We hope this will inspire you to
go out and learn more about Perl if you don’t know it already. (We mention
some books below).

If you are a Perl aficionado and you work on these types of problems, then PDL
is definitely for you! Read on...

0.2 The case for a high-level approach.

We’ve all been there. You know how you want to analyse your data. You need
to Fourier transform it, take the square root, multiply by a high-pass filter and
sum up all the high frequence modes. But it’s two in the morning and you
are staring at the guts of your C or FORTRAN program trying to figure out
why your program keeps crashing with array overflow errors. You know these
problems have been solved individually innumerable times in the past, carefully
written subroutines are available to do it. Why should it be so difficult?

The reason is though subroutines are available low-level languages still force a
lot of complexity on you. You must manage memory yourself, declare variables
however trivial, call subroutines with a whole bunch of arguments in case just
one of them is needed, etc. And you must be able to pull together seperate
subroutine libraries to do file input/output, user interaction, data processing
and graphics.

Whereas all you really want to do is tell the computer things like ‘read this’,
‘Fourier transform that’, and ‘Plot this’, and have it be smart enough to do the
right thing. What you are wishing for is in effect a high-level language, in this
case it is called ‘English’.

While natural language understanding is still quite a long way off, high-level
computer languages are currently proliferating. Examples include Perl, TCL,
JAVAscriptm, Visual Basic, Python, and many more. Such systems have also
been developed for data processing. Worthy of note are commericial soft-
ware such as IDL r© (‘Image Data Language’ from Research Systems Inc.2),
MATLAB r© (from The Mathworks, Inc.3) and the public domain program
Octave4. These implement special-purpose high-level languages where data is

2www.rsinc.com
3www.mathworks.com
4www.octave.org

CHAPTER 0. PDL — YEAR ZERO 8

handled in large chunks, via ‘vector operations’.

What does this mean in practice? It means if you say:

C = A+B

then the operation is performed even if A and B are large arrays containing
many millions of numbers. Further you can say something like:

D = FFT (C)

(to apply a Fast Fourier Transform) and get what you want. No messing about.
These data analysis languages also implement nice graphics layers, as well as a
large suite of mathematical algorithms.

Having used these systems ourselves the authors of PDL can attest to the su-
periority of that approach in terms of plain getting things done. We of course
believe that PDL is now better than all those systems, for quite a few reasons,
and that your life will be easier if you get it and use it.

0.3 The case for a free Data Language.

The free software community has taken off to an extraordinary extent in the
few years. This has been most vivid in the success of the Linux, a free UNIX-
like Operating System. Sometimes this movement is also described as ‘Open
Source’ rather than ‘free,’ and the term ‘free’ is often used to mean freedom
of use rather than freedom from price. Athough much of the code is indeed
free/public domain money is made out of the sale of packaged distributions,
support, books, etc. Nevertheless the software is usually available at minimal
cost.

One key point is that the source code is available, so that however the software
is obtained one has the ability to take it and in principle be able to change it
to do whatever is required with it.

How is this relevant to data languages? The authors of PDL are all scientists.
We write, obviously, as scientists but believe our ideas are directly relevant to
all users of PDL. The scientific community has for hundreds of years believed
in the free exchange of ideas. It has been traditional to publish full details
about how research is done openly in journals. This is very close in spirit to the
ideas behind the free software. These days much of what scientists do involves
software, in fact large software packages to facilitate certain kinds of analysis
are often the subject of major papers themselves with the software being freely
available on the Internet. Such software is commonly written in C or FORTRAN
to allow general use.

Why aren’t they working at a higher level? As we explained above this would
allow faster creation and make the software more portable and more easily

CHAPTER 0. PDL — YEAR ZERO 9

customisable. Well in our view one of the reasons this has not happened is
because of the lack of a suitable free high-level data-centric language, with
powerful enough facilities.

This is not just a minor point, it is critical. Even if software is not published
and is for internal use among a team of researchers, in the modern world the
team is often distributed among dozens of individuals across many instititutes
and nations. The only way to ensure that all will be able to use software is
if it is freely available. All the PDL authors have had direct experience with
this problem in the past. We have often been hindered in sharing our code by
collaborators having lack of access to software.

Moreover scientific work often involves extensive innovations and modifications
to old ways of doing things. For software as well as being freely available it is
critical to have access to the source code to permit easy customisation.

Finally there is also the issue of cost. Equivalent commercial packages cost
several thousand dollars per workstation. We are not anti-commericial, these
packages are very powerful and useful. However we certainly think there should
be something like PDL that anybody can use and develop for free. Science is a
worldwide activity and we like to think that anybody with a PC could use PDL
to do research and analysis.

In our view PDL — a free, public domain, Open Source, data language — meets
a great need. Today it is openly developed by a group of several dozen people
collaborating via the Internet. Anybody with time, expertise or dedication can
contribute to improving PDL.

0.4 So why Perl?

So we chose Perl as our implementation language. Our basic data language
extensions could have been built around quite a few high-level languages so why
did we choose Perl? 5

1. We need a high-level language which looks after messy details for the user.
This of course is why we don’t want to use C or FORTRAN.

2. The language should be a commonly used and widely available on many
platforms and with a good chance that you already use it for something
else. Like the reader, the authors get tired of constantly have to learn new
languages.

3. For the system to be fast and interactive the language should be able to run
in an interpreted mode, i.e. commands typed can be instantly executed
without having to mess around with compiling and linking. Most high-
level languages offer this.

5Of course the real reason we chose Perl was because we were using it already and liked it
a lot. These ‘reasons’ are really ‘compelling rationalisations’ !

CHAPTER 0. PDL — YEAR ZERO 10

4. The language must be Open Source (i.e. free, in the public domain and
with the source code freely available and redistributable) as we wish our
data language to be Open Source too. Why? So people can use it without
restrictions, share their code, make improvements to the core language as
well as extensions.

5. The language must offer a full suite of modern features. Users of PDL
don’t just need access to numerical and graphics features. They also want
quick and convenient access to databases, network connectivity,, the World
Wide Web, Object-Oriented and modular programming, graphical user
interfaces, multi-process and multi-processor interactions, text handling,
the list could go on for several more sentences. In fact none of the data
languages mentioned above have all these features, in particular the com-
mercial systems are hampered in their access to these features by their
propritary nature and specialist syntax. We think it is easier to add nu-
merical features to a robust language which has all these other features
than to do it the other way around.

6. The language must have a clean and well-documented way of incorporating
new subroutines, in low-level languages such as C and Fortran, in to the
core. First this lets us implement PDL, secondly it allows diverse groups
of people to create their own PDL modules and include compiled code
with their own specialist subroutines.

7. The language must be very easy to use, with a reasonably familiar syn-
tax to new users. To some extent this item and the previous one are
contradictory. For example the Python language, which is admirable for
it’s sophisticated and clean Object-Oriented model, meets all the above
requirements. Indeed their is already a numerical extension — NumPy6.
However in our view the syntax is a bit too strange for new users. We
prefer a language where simple code can still achieve useful results and
which grows with the user. We recognise of course that much of this is
just a matter of preference. To us NumPy looks really good, if you are
into Python this is what you probably want to use.

8. Finally, and perhaps the most importantly, the language must be reason-
ably wide-spread and well-known, so people will have other reasons to want
to use it apart from PDL. This is why we are not interested in specialist
systems, even if they are free, such as Octave or RLAB7 fine though they
may be. Implementation in a true-general purpose full-featured language
gives access to a wealth of useful features.

Perl, of course, fills all these constraints most admirably. Perhaps the runner-up
would be TCL, though the lack of a consistent object-oriented framework is a
problem for TCL. Of course we just said Python was too object-oriented, this

6www.pfdubois.com/numpy/
7rlab.sourceforge.net

CHAPTER 0. PDL — YEAR ZERO 11

is not a contradiction — in our view Perl gets it just right! Perl also has the
singular advantage of being widespeadly used and having a huge collection of
well organised modules, publically distributed worldwide on the CPAN network
of Internet sites. As scientists who already used Perl a lot for day-to-day pro-
gramming tasks PDL means we can do just about everything in Perl. Such
integration is extremely productive.

0.5 What this book is about.

OK enough advocacy, you are still reading to let us get on with the task in
hand. So what can the reader expect to get from this book?

This book is intended to be a complete introduction to PDL. We believe the
best way to learn something useful is to learn by doing. So we kickstart the
book with some examples of real use of PDL to rapidly show the reader what
is is all about.

Then we go through the features of PDL systematically, showing how to use us
and drawing on example problems from a range of scientific disciplines to give a
sense of how real problems can be solved with PDL. We look at PDL graphics
capabilties and how they can be used to visualise problems.

The further in you go the more technical the book will become and we will look
at the feature set and the internals and show how to use advanced features such
as modules, dataflow and Object-Oriented Programming.

Finally the book concludes with a demonstration of the power of PDL: we show
how clever use of PDL can achieve amazing results in only a few lines of code.
Deconstructing these is used as a tool to show how better use can be made of
PDL.

0.6 What this book is NOT about.

This book is not about teaching Perl, although we hope that even if you don’t
know anything you will learn pidgin Perl as you read through the first few
chapters. Perl is a pretty good ‘learn as you go along’ language. For a more
formal introduction to Perl the following books are recommened:

‘Learning Perl’, by Randal Schwartz & Tom Phoenix. Published by
O’Reilly and Associates, 2001.

For more advanced usage of Perl we recommend:

‘Programming Perl’, by Larry Wall, Tom Christiansen & Jon Or-
want. Published by O’Reilly and Associates, 2000.

CHAPTER 0. PDL — YEAR ZERO 12

This book is not about building Graphical User Interfaces using widgets, though
Perl is quite adept at this and we will show at least one example of combining
PDL and a GUI done in perl/gTk. For widgets perhaps a book to try is:

‘Learning Perl/Tk’, by Nancy Walsh. Published by O’Reilly and
Associates, 1999.

This book is not about algorithms for analysing data, though PDL is full of
them. For a deep mathematical discussion of fitting, Fourier transforming,
sorting, inverting and innumerable other useful and hideous things to do to
your data the eternal best book is:

‘Numerical Recipes in C : The Art of Scientific Computing’ (and
similarly ‘Numerical Recipes in FORTRAN : The Art of Scientific
Computing’), by William H. Press, Saul A. Teukolsky, William T.
Vetterling, Brian P. Flannery. Published by Cambridge University
Press, 1993.

This book is not about Perl advocacy. You have got some of that here in the
introduction! For the rest we will let the language speak for itself.

0.7 Conventions used in this book

This book assumes at least the following versions of software:

1. PDL version 2.2.2

2. perl version 5.6.0

The following typographic conventions are used in this book:

Fixed width font
Code examples.

Italic font
Is used for filenames. Also URLs and electronic mail addresses.

Chapter 1

A Whirlwind tour through
PDL

Or ’PDL for the Impatient’...

”Maybe there are a few civilizations out there that have decided
to stay home, piddle around and send out some radio waves once in
a while.”

Annette Foglino, Space: Is Anyone Out There? Most astronomers
say yes, Life, 1 Jul 1989.

It can be very frustrating to read an introductory book which takes a long
time teaching you the very basis of a topic, in a ‘Janet and John’ style. While
you wish to learn, you are anxious to see something a bit more exciting and
interesting to see what the language can do.

Fortunately our task in this book on PDL is made very much easier by the
high-level of the language. We can take a tour through PDL, looking at the
advanced features it offers without getting involved in complexity.

The aim of this chapter is to cover a breadth of PDL features rather than any in
depth, to give the reader a flavour of what he or she can do using the language
and a useful reference for getting started doing real work. Later chapters will
focus on looking at the features introduced here, in more depth.

1.1 Alright let’s do something.

We’ll assume PDL is correctly installed and set up on your computer system
(see Appendix A for details of obtaining and installing PDL).

13

CHAPTER 1. A WHIRLWIND TOUR THROUGH PDL 14

For interactive use PDL comes with a program called perldl. This allows you
to type raw PDL (and perl) commands and see the result right away. It also
allows command line recall and editting (via the arrow keys) on most systems.
So we begin by running the perldl program from the system command line.
On a Mac/UNIX/Linux system we would simply type perldl in a ‘terminal
window’. On a Windows system we would type perldl in a command prompt
window. If PDL is installed correctly this is all that is required to bring up
perldl.

myhost% perldl
perlDL shell v1.30
PDL comes with ABSOLUTELY NO WARRANTY. For details, see the file
’COPYING’ in the PDL distribution. This is free software and you
are welcome to redistribute it under certain conditions, see
the same file for details.
ReadLines enabled
Reading /home/kgb/.perldlrc...
Found docs database /usr/lib/perl5/site_perl/5.6.0/i386-linux/PDL/pdldoc.db
Type ’help’ for online help
Type ’demo’ for online demos
Loaded PDL v2.2.1
Reading local.perldlrc ...
perldl>

We get a whole bunch of informational messages about what it is loading for
startup and the help system. Note; the startup is completely configurable, an
advanced user can completely customize which PDL modules are loaded. We
are left with the perldl> prompt at which we can type commands. This kind
of interactive program is called a ‘shell’.

Let’s create something, and display it:

perldl> use PDL::Graphics::PGPLOT
perldl> imag (sin(rvals(200,200)+1))
Displaying 200 x 200 image from -1 to 0.999999940395355 ...

The result should look like Fig. 1.1 — a two dimensional sin function. rvals()
is a handy PDL function for creating an image whose pixel values are the radial
distance from the central pixel of the image. With these arguments it creates a
200 by 200 ‘radial’ image.1 sin() is the mathematical sine function, this already
exists in perl but in the case of PDL is applied to all 40000 pixels at once, a topic
we will come back to. The imag() function displays the image. You will see the
syntax of perl/PDL is algebraic — by which we mean it is very similar to C and
FORTRAN in how expressions are constructed. (In fact much more like C than
FORTRAN). It is interesting to reflect on how much C code would be required to

1Try ‘imag(rvals(200,200))’ and you will see better what we mean!

CHAPTER 1. A WHIRLWIND TOUR THROUGH PDL 15

Figure 1.1: A two dimensional sin function

generate the same display, even given the existence of some convenient graphics
library.

That’s all fine. But what if we wanted to achieve the same results in a standalone
perl script? Well it is pretty simple:

use PDL;
imag (sin(rvals(200,200)+1));

That’s it. This is a complete perl/PDL program. One could run it by typing
perl filename.2

Two comments:

1. The statements are all terminated by the ‘;’ character. Perl is like C in
this regard. When entering code at the perldl command line the final
‘;’ may be omitted if you wish, note you can also use it to put multiple
statements on one line. In our examples from now on we’ll often omit the
perldl> prompt for clarity.

2. The directive use PDL tells Perl to load the PDL module, which makes
available all the standard PDL extensions. (Advanced users will be inter-

2In fact there are many ways of running it, most systems allows it to be setup so you can
just type filename. See your local Perl documentation — the the perlrun manual page.

CHAPTER 1. A WHIRLWIND TOUR THROUGH PDL 16

ested in knowing there are other ways of starting PDL which allows one
to select which bits of it you want).

1.2 Whirling through the Whirlpool

Enough about the mechanics of using PDL, let’s look at some real data! To work
through these examples exactly you should have access to the PDL Book example
data set available on the Internet at the locations mentioned in Appendix A.

For much of this chapter we’ll be playing with an image of the famous spiral
galaxy discovered by Charles Messier, known to astronomrs as M51 and com-
monly as the Whirlpool Galaxy. This is a ‘nearby’ galaxy, a mere 25 million
light years from Earth. The image file is stored in the ‘FITS’ format, a common
astronomical format, which is one of the many formats standard PDL can read.
(FITS stores more shades of grey than GIF or JPEG, PDL can also read these
formats).

$a = rfits("m51_raw.fits");

This looks pretty simple. As you can probably guess by now rfits is the PDL
function to read a FITS file. This is stored in the perl variable $a.

This is an important PDL concept: PDL stores it’s data arrays in
simple perl variables ($a, $x, $y, $MyData, etc.) PDL data arrays are special
arrays which use a more efficient, compact storage than standard perl arrays
(@a, @x, ...) and are much faster to access for numerical computations. To
avoid confusion it is convenient to introduce a special name for them, we call
them piddles (short for ‘PDL variables’) to distinguish them from ordinary Perl
‘arrays’, which are in fact really lists. We’ll say more about this later.

Before we start seriously playing around with M51 it is worth noting that we
can also say:

$a = rfits "m51_raw.fits";

Note we have now left off the brackets on the rfits function. Perl is rather
simpler than C and allows one to omit the brackets on a function all together.
It assumes all the items in a list are function arguments and can be pretty
convenient. If you are calling more than one function it is however better to
use some brackets so the meaning is clear. For the rules on this ‘list operator’
syntax see the Perl syntax documentation. From now on we’ll mostly use the
list operator syntax for conciseness

Let’s look at M51:

imag $a;

CHAPTER 1. A WHIRLWIND TOUR THROUGH PDL 17

Figure 1.2: The raw image m51_raw.fits from the PDL Book example data set
shown with progressively greater contrast using the imag command.

CHAPTER 1. A WHIRLWIND TOUR THROUGH PDL 18

An image like Figure 1.2(a) should be seen. A couple of bright spots but where
is the galaxy? It’s the faint blob in the middle: by default the display range is
autoscaled linearly from the faintest to the brightest pixel, and only the bright
star slightly to the bottom right of the center can be seen without contrast
enhancement. We can easily change that by specifying the black/white data
values (Note: # starts a Perl comment and can be ignored — i.e. no need to
type the stuff after it!):

imag $a,0,1000; # More contrast
imag $a,0,300; # Even more contrast

You can see that imag takes additional arguments to specify the display range.
In fact imag takes quite a few arguments, many of them optional. By typing
‘help imag’ at the perldl prompt we can find out all about the function.

Anyway the results of this exercise are shown in Figures 1.2(b) and 1.2(c). Well.
It is certainly a spiral galaxy with a few foreground stars thrown in for good
measure. But what is that horrible stripey pattern running from bottom right
to top left? That certainly is not part of the galaxy? Well no. What we
have here is the uneven senistivity of the detector used to record the image, a
common artifact in digital imaging. (Though it is rarely as bad as this! 3) We
can correct for this using an image of a uniformly illuminated screen, what is
commonly known as a ‘flatfield’.

$flat = rfits "m51_flatfield.fits";
imag $flat;

This is shown in Fig. 1.3. Because the image is of a uniform field, the actual
image reflects the detector sensitivity. To correct our M51 image, we merely
have to divide the image by the flatfield:

$gal = $a / $flat;
imag $gal,0,300;
wfits $gal, ’fixed_gal.fits’; # Save our work as a FITS file

Well that’s a lot better (Fig. 1.4). But think what we have just done. Both $a
and $flat are images, with 512 pixels by 512 pixels. The divide operator
‘/’ has been applied over all 262144 data values in the piddles $a and
$flat. And it was pretty fast too — these are what are known as vectorised
operations. In PDL each of these is implemented by heavily optimised C code,
which is what makes PDL very efficient for procession of large chunks of data.
If you did the same operation using normal perl arrays rather than piddles it
would be about ten to twenty times slower (and use ten times more memory).
In fact we can do whatever arithmetic operations we like on image piddles:

3Alright. KGB confesses: he faked this up.

CHAPTER 1. A WHIRLWIND TOUR THROUGH PDL 19

Figure 1.3: The ‘flatfield’ image showing the detector sensitivity of the raw data

Figure 1.4: The M51 image corrected for the flatfield

CHAPTER 1. A WHIRLWIND TOUR THROUGH PDL 20

$funny = log(($gal/300)**2 - $gal/100 + 4);
imag $funny; # Surprise!

Or on 1-D line piddles. On on 3-D cubic piddles. In fact piddles can support
an infinite number of dimensions (though your computers memory won’t).

This the key to PDL: the ability to process large chunks of data at
once.

1.2.1 Measuring the brightness of M51

How might we extract some useful scientific information out of this image? A
simple quanitity an astronomer might want to know is how the brightness of
the the ‘disk’ of the galaxy (the outer region which contains the spiral arms)
compares with the ‘bulge’ (the compact inner nucleus). Well let’s find out the
total sum of all the light in the image:

perldl> print sum($gal);
17916010

sum just sums up all the data values in all the pixels in the image — in this
case the answer is 17916010. If the image is linear (which it is) and if it was
calibrated (i.e. we knew the relation between data numbers and brightness
units) we could work out the total brightness. Let’s turn it round — we know
that M51 has a luminosity of about 1036 Watts, so we can work out what one
data value corresponds to in physical units:

perldl> p 10**36/sum($gal)
5.58159992096455e+28

This is also about 200 solar luminosities, (Note we have switched to using ’p’ as
a shorthand for ’print’ — this only works in the perldl’ shell.) which gives 4
billion solar luminosities for the whole galaxy.

OK we do not need PDL for this simple arithmetic, let’s get back to computa-
tions that involbe the whole image. How can we get the sum of a piece of an
image, e.g. near the centre? Well in PDL there is more than one way to do it
(Perl aficionados call this phenomenon TIMTOWTDI). In this case, because we
really want the brightness in a circular aperture, we’ll use the rvals function:

$r = rvals $gal;
imag $r;

Remember rvals? It replaces all the pixels in an image with it’s distance from
the centre (Figure 1.5(a)). We can turn this into a mask with a simple operation
like:

CHAPTER 1. A WHIRLWIND TOUR THROUGH PDL 21

$mask = $r<50;
imag $mask;

The Perl less than operator is applied to all pixels in the image. You can see the
result (Figure 1.5(b)) is an image which is 0 on the outskirts and 1 in the area
of the nucleus. We can then simply use the mask image to isolate in a simple
way the bulge and disk components (Figures 1.5(c) and 1.5(d)): it very easy to
find the brightness of both pieces of the M51 galaxy:

perldl> $bulge = $mask * $gal
perldl> imag $bulge,0,300
Displaying 512 x 512 image from 0 to 300 ...
perldl> print sum $bulge;
3011125

perldl> $disk = $gal * (1-$mask)
perldl> imag $disk,0,300
Displaying 512 x 512 image from 0 to 300 ...
perldl> print sum $disk
14904884

You can see that the disk is about 5 times brighter than the bulge in total,
despite it’s more diffuse appearance. This is typical for spiral galaxies. We
might ask a different question: how does the average surface brightness, the
brightness per unit area on the sky, compare between bulge and disk? This is
again quite straight forward:

print sum($bulge)/sum($mask);
print sum($disk)/sum(1-$mask);

We work out the area by simply summing up the 0,1 pixels in the mask image.
The answer is the bulge has about 7 times the surface brightness than the disk
— something we might have guessed from looking at Figure 1.4 — which tells
astronomers it’s stellar density is much higher.

Of course PDL being so powerful, we could have figured this out in one line:

perldl> print average($gal->where(rvals($gal)<50))
/ average($gal->where(rvals($gal)>=50))

6.56590509414673

We’ll say more about where() and it’s friends in Chapter 3.

1.2.2 Twinkle, twinkle, little star.

Let’s look at something else, we’ll zoom in on a small piece of the image:

CHAPTER 1. A WHIRLWIND TOUR THROUGH PDL 22

Figure 1.5: Using rvals to generate a mask image to isolate the galaxy bulge
and disk

CHAPTER 1. A WHIRLWIND TOUR THROUGH PDL 23

$section = $gal(337:357,178:198);
imag $section; # It’s the bright star

Here we are introducing something new - we can see that PDL supports ex-
tensions to the Perl syntax. We can say $var(a:b,c:d...) to specify mul-
tidimensional slices. In this case we have produced a sub-image ranging from
pixel 327 to 367 along the first dimension, and 168 through 208 along the sec-
ond. We’ll talk some more about slicing and dicing in Chapter 3. This
sub-image happens to contain a bright star.

At this point you will probably be able to work out for yourself the amount of
light coming from this star, compared to the whole galaxy.4 But let’s look at
something more involved: the radial profile of the star. Since stars are a long
way away they are almost point sources, but our camera will blur them out into
little disks, and for our analysis we might want an exact figure for this blurring.

We want to plot all the brightness of all the pixels in this section, against the
distance from the centre. (We’ve chosen the section to be conveniently centred
on the star, you could think if you want about how you might determine the
centroid automatically using the xvals and yvals functiona). Well it is simple
enough to get the distance from the centre:

$r = rvals $section;

But to produce a one-dimensional plot of one against the other we need to reduce
the 2D data arrays to one dimension. (i.e our 21 by 21 image section becomes
a 441 element vector). This can be done using the PDL clump function, which
‘clumps’ together an arbitrary number of dimensions:

$rr = clump($r,2); # Clump first two dimensions
$sec = clump($section,2);

points $rr, $sec; # Radial plot

You should see a nice graph with points like those in Figure 1.6 showing the
drop-off from the bright centre of the star. The blurring is usually measured
by the ‘Full Width Half Maximum’ (FWHM) — or in plain terms how fat the
profile is across when it drops by half. Looking at Figure 1.6 it looks like this
is about 2−3 pixels — pretty compact!

Well we don’t just want a guess — let’s fit the profile with a function. These
blurring functions are usually represented by the ‘Gaussian’ function. PDL
comes with a whole variety of general purpose and special purpose fitting func-
tions which people have written for their own purposes (and so will you we
hope!). Fitting Gaussians is something that happens rather a lot and there
is surpisingly enough a special function for this very purpose. (One could use

4Answer: about 2%

CHAPTER 1. A WHIRLWIND TOUR THROUGH PDL 24

Figure 1.6: Radial light profile of the bright star with fitted curve

more general fitting packages like PDL::Fit::LM or PDL::Opt::Simplex but
that would require more care).

use PDL::Fit::Gaussian;

This loads in the module to do this. PDL, like Perl, is modular. We don’t load
all the available modules by default just a convenient subset. How can we find
useful PDL functions and modules? Well help tells us more about what we
already know, to find out about what we don’t know use apropos:

perldl> apropos gaussian
PDL::Fit::Gaussian ...

Module: routines for fitting gaussians
PDL::Gaussian Module: Gaussian distributions.
fitgauss1d Fit 1D Gassian to data piddle
fitgauss1dr Fit 1D Gassian to radial data piddle
gefa Factor a matrix using Gaussian elimination.
grandom Constructor which returns piddle of Gaussian random numbers
ndtri The value for which the area under the Gaussian probability density function (integrated from minus

infinity) is equal to the argument (cf erfi). Works inplace.

This tells us a whole lot about various functions and modules to do with Gaus-
sians. Note that we can abbreviate help and apropos with ? and ?? when
using the perldl shell.

Let’s fit a Gaussian:

($peak, $fwhm, $background) = fitgauss1dr($rr, $sec);
print $peak, $fwhm, $background;

CHAPTER 1. A WHIRLWIND TOUR THROUGH PDL 25

fitgauss1dr is a function in the module PDL::Fit::Gaussian which fits a Gaus-
sian constrained to be radial (i.e. whose peak is at the origin). You can see
that, unlike C and FORTRAN, Perl functions can return more than one result
value. This is pretty convenient. You can see the FWHM is more like 2.75
pixels. Let’s generate a fitted curve with this functional form.

$rrr = sequence(2000)/100 # Generate radial values 0,0.01,0,02..20

Generate gaussian with given FWHM

$fit = $peak * exp(-2.772 * ($rrr/$fwhm)**2) + $background;

Note the use of a new function, sequence(N), which generates a new piddle
with values ranging 0..N. We are simply using this to generate the horizontal
axis values for the plot. Now let’s overlay it on the previous plot.

hold; # This command stops new plots starting new pages
line $rrr, $fit, {Colour=>2} ; # Line plot

The last line command shows the PDL syntax for optional function arguments.
This is based on the Perl’s built in hash syntax. We’ll say more about this later
in Chapter 4. The result should look a lot like Figure 1.6 — except unlike this
book you should have some colour on your screen!. Not too bad. We could
perhaps do a bit better by exactly centroiding the image but it will do for now.

Let’s make a simulation of the 2D stellar image. This is equally easy:

$fit2d = $peak * exp(-2.772 * ($r/$fwhm)**2);
release; # Back to new page for new plots;
imag $fit2d;
wfits $fit2d, ’fake_star.fits’; # Save our work

But that plot (Figure 1.7(a)) is a bit boring. So far we have been using simple
2D graphics from the PDL::Graphics::PGPLOT library. In fact PDL has more
than one graphics library (some see this as a flaw, some as a feature!). Using
the PDL::Graphics::TriD library which does OpenGL graphics we can look at
our simulated star in 3D (Figure 1.7(b)):

use PDL::Graphics::TriD; # Load the 3D graphics module
imag3d [$fit2d];

If you do this on your computer you should be able to look at the graphic from
different sides by simply dragging in the plot window with the mouse! You can
also zoom in and out with the right mouse button. Note that imag3d has it’s
a rather different syntax for processing it’s arguments — for very good reasons
— we’ll explore 3D graphics further in Chapter 4.

CHAPTER 1. A WHIRLWIND TOUR THROUGH PDL 26

Figure 1.7: Two different views of the 2D simulated Point Spread Function

CHAPTER 1. A WHIRLWIND TOUR THROUGH PDL 27

Finally here’s something interesting. Let’s take our fake star and place it else-
where on the galaxy image.

$newsection = $gal(50:70,70:90);
$newsection += $fit2d;
imag $gal,0,300;

We have a bright new star where none existed before! The C-style += increment
operator is worth noting — it actually modifies the contents of $newsection
in-place. And because $newsection is a slice of $gal the change also affects
$gal. This is an important property of slices — any change to the slice affects
the parent. This kind of parent/child relationship is a powerful property of
many PDL functions, not just slicing. What’s more in many cases it leads to
memory efficiency, when this kind of linear slice is stored we only store the
start/stop/step and not a new copy of the actual data.

Of course sometimes we DO want a new copy of the actual data, for example
if we plan to do something evil to it. To do this we could use the alternative
form:

$newsection = $newsection + $fit2d

Now a new version of $newsection is created which has nothing to do with the
original $gal. In fact there is more than one way to do this as we will see in
later chapters.

Just to amuse ourselves, lets write a short script to cover M51 with dozens of
fake stars of random brightnesses:

use PDL;
use PDL::Graphics::PGPLOT;

srand(42); # Set the random number seed

$gal = rfits "fixed_gal.fits";
$star = rfits "fake_star.fits";

sub addstar {
($x,$y) = @_;
$xx = $x+20; $yy = $y+20;
Note use of slice on the LHS!
$gal($x:$xx,$y:$yy) += $star * rand(2);

}

for (1..100) {
$x1 = int(rand(470)+10);

CHAPTER 1. A WHIRLWIND TOUR THROUGH PDL 28

Figure 1.8: M51 covered in fake stars

$y1 = int(rand(470)+10);
addstar($x1,$y1);

}

imag $gal,0,1000;

This ought to give the casual reader some flavour of the Perl syntax — quite
simple and quite like C except that the entities being manipulated here are
entire arrays of data, not single numbers. The result is shown, for amusement,
in Fig. 1.8 and takes virtually no time to compute.

1.2.3 Getting Complex with M51

To conclude this frantic whirl through the possibilities of PDL, let’s look at
a moderately complex (sic) example. We’ll take M51 and try to enhance it
to reveal the large-scale structure, and then subtract this to reveal small-scale
structure.

Just to show off we’ll use a method based on the Fourier transform — don’t
worry if you don’t know much about these, all you need to know is that the
Fourier transform turns the image into an ‘inverse’ image, with complex num-
bers, where each pixel represents the strength of wavelengths of different scales
in the image. Let’s do it:

CHAPTER 1. A WHIRLWIND TOUR THROUGH PDL 29

use PDL::FFT; # Load Fast Fourier Transform package

$gal = rfits "fixed_gal.fits";

Now $gal contains real values, to do the Fourier transform it has to have com-
plex values. We create a variable $imag to hold the imaginary component and
set to zero.5

$imag = $gal * 0; # Create imaginary component, equal to zero

fftnd $gal, $imag; # Perform Fourier transform

fftnd performs a Fast Fourier Transform, in-place, on arbitrary-dimensioned
data (i.e. it is ‘N-dimensional’). You can display $gal after the FFT but you
won’t see much. If at this point we ran ifftnd to invert it we would get the
original $gal back.

If we want to enhance the large-scale structure we want to make a filter to only
let through low-frequencies:

$tmp = rvals($gal)<10; # Radially-symmetric filter function
$filter = kernctr $tmp, $tmp; # Shift origin to 0,0
imag $filter;

You can see from the image that $filter is zero everywhere except near the
origin (0,0) (and the 3 reflected corners). As a result it only let’s through low-
frequency wavelengths. So we multiply by the filter and FFT back to see the
result:

($gal2, $imag2) = cmul $gal, $imag, $filter, 0; # Complex multiplication
ifftnd $gal2, $imag2;
imag $gal2,0,300;

Well that looks quite a bit different! (Figure 1.9(a)). Just about all the high-
frequency information has vanished. To see the high-frequency information we
can just subtract our filtered image from the original (Figure 1.9(b) — double
yuk!):

$orig = rfits "fixed_gal.fits";
imag $orig-$gal2,0,100;

1.3 Roundoff

Well that is probably enough abuse of Messier 51. We have demonstrated the
ease of simple and complex data processing with PDL and how PDL fit’s neatly

5For reasons of efficiency complex numbers are represented in PDL by seperate real and
imaginary arrays — more about this in Chapter 2.

CHAPTER 1. A WHIRLWIND TOUR THROUGH PDL 30

Figure 1.9: Fourier filtered smoothed image and contrast enhanced image with
the smoothed image subtracted.

in to the Perl syntax as well as extending it. You have come across basic
arithmetical operations and a scattering of useful functions — and learned how
to find more. You certainly ought now to have a good feel of what PDL is all
about. In the next chapter we’ll take a more comprehensive look at the basic
parts of PDL that all keen PDL users should know.

Chapter 2

The Basics of PDL

In Chapter 1 we had a whirlwind tour of the sort of things you can do with PDL.
If you are still reading this you must now be convinced that PDL is worth using
and learning in more depth. We will now focus on a more measured introduction
to the basic concepts and features of the language.

2.1 Basic manipulations of piddles

Perhaps the best place to start with PDL is how the data arrays are represented
to Perl. We use Perl objects, which makes it extremely powerful, but we will
need to explain how piddles relate to everyday Perl variables.

2.1.1 What is a piddle?

PDL uses Perl ‘objects’ to hold piddle data. An ‘object’ is like a user-defined
data-type and is a very powerful feature of Perl, PDL creates it’s own class of
‘PDL’ objects to store piddles. These look like ordinary Perl variables such as
$x, $Foo, $MyData, etc.

Most of the time you can forget about the fact that piddles are objects and treat
them like ordinary variables:

$x = rfits ’file.fits’;
$y = rvals($x);
$z = $x/$y;
print sqrt($x+$y+$z);

The only time the distinction becomes important is when creating piddles and
using the ‘=’ operator.

31

CHAPTER 2. THE BASICS OF PDL 32

2.1.2 Creating piddles

Creation of new piddles has to be done via a PDL function. Otherwise Perl
doesn’t know the variable has PDL magic.

The simplest method for small piddles is to use the pdl function which can
accept numbers and lists of numbers, as well as other piddles:

$a = pdl (1,2,3,4,5); # Create 1D piddle
$a = pdl ([1,2,3,4,5], [2,3,4,5,6]); # Create 2D piddle
$a = pdl 42; # Create 0D (scalar) piddle

The numbers are specified using Perl’s ‘[]’ list reference syntax. See the help
on pdl for more details. It is not normally necessary to worry about converting
single numbers (Perl ’scalars’) to piddles — all PDL functions will do this on-
the-fly. So you can say:

$a = pdl (1,2,3,4,5);
$b = $a + 2;

without having to care whether ‘2’ is a piddle or not. The result, $b, is a piddle
of course.

Of course if you are a heavy-duty PDL user your piddles will be BIG. Thus
you will need to use a PDL I/O function to read your data from a file in some
format. For example in Chapter 1 we used rfits:

$a = rfits "fixed_gal.fits";

rfits is a PDL function which reads the data and returns it as a piddle. Another
useful function is rcols which reads columns of data from a text file:

($a, $b) = rcols ’text.dat’;

It is actually surprisingly easy to write these I/O functions — most of the code
for rfits is straight forward Perl. PDL comes with a plethora of I/O func-
tions for reading free-formatted data, raw binary formats and specially defined
formats like FITS and GIFs.

Another way of creating BIG piddles is using functions such as zeroes, This
creates piddles, filled with zeroes, of whatever dimensions you specify:

$a = zeroes 10; # 10 element 1D piddle
$a = zeroes 100,100; # 100x100 2D piddle
$a = zeroes 3,4,5,6 # 3x4x5x6 4D piddle

Or you can use another piddle as a template for the dimensionaligy:

$a = zeroes $b;

CHAPTER 2. THE BASICS OF PDL 33

Other creation functions like random and rvals work in this way. Table ???
lists the Top Ten ways of creating piddles.

Table???.

2.1.3 Elementary arithmetic.

The following binary perl operators act on piddles:

+ * - / ** > < <= >= == != << >> | & ^ ! % <=>

these behave identically to their ordinary Perl equivalents, except they act
element-by-element on the whole piddle. e.g.:

perldl> $a = pdl (3,2,1,0,-1,-2,-3);
perldl> $b= $a * 2; print $b;
[6 4 2 0 -2 -4 -6]

perldl> print $b % 3;
[0 1 2 0 -2 -1 0]

perldl> print !$b;
[0 0 0 1 0 0 0]

perldl> print $a <=> $b;
[-1 -1 -1 0 1 1 1]

Additionally the following perl operators, which normally modify the variables
in-place (like C), also act in-place on piddles:

++ -- += -= *= /= |= &= ^= %=

perldl> $a = pdl (3,2,1,0,-1,-2,-3);

perldl> $a++; print $a;
[4 3 2 1 0 -1 -2]

perldl> $a *= 3; print $a
[12 9 6 3 0 -3 -6]

perldl> $a |= 3; print $a
[15 11 7 3 3 -1 -5]

The operators:

~ x .=

CHAPTER 2. THE BASICS OF PDL 34

have been redefined in PDL to be more useful. The ‘~’ operator produces an
matrix transpose in PDL (more useful than the perl XOR meaning, which can be
produced other ways). ‘x’ — also usually a string operator — implements matrix
multiplication. The ‘.=’ operator is used for the PDL assignment operator. (See
below)

The standard Perl mathematical functions:

sqrt sin cos atan2 abs log exp

also act element-by-element on piddles.

perldl> print sin pdl (3,2,1,0,-1,-2,-3);
[0.14112001 0.90929743 0.84147098 0 -0.84147098 -0.90929743 -0.14112001]

PDL does of course come with a whole grab-bag of mathematical functions and
algorithms which go far beyond what is available in vanilla Perl. You’ll come
across some more of these later in this book, and there is a big list in Appendix
??.

2.1.4 In-place arithmetic

It is pretty handy in PDL to be able to say $a++ instead of $b = $a+1, the
latter generates a second piddle and lots of memory will be consumed if $a is
large. $a++ in PDL is known as an operation. The operators such as ‘+=’, ‘*=’,
‘/=’, etc. allow in-place versions of all the standard arithmetic operations to be
performed.

But what about functions like sin, sqrt, etc. which we would also like to do
in-place? Well as well as saying:

$b = sin($a);

with piddles it is also possible to say:

sin(inplace($a));

The inplace function sets a special flag on the piddle that the next operation is
to be done in-place, if the operation supports it. All the standard mathematical
functions defined by Perl (Section???) can be done in-place.

2.1.5 Using = and .=

Piddles are pretty convenient to use. But one thing to beware of:

$a is a piddle

CHAPTER 2. THE BASICS OF PDL 35

$b = $a; # Does NOT copy the piddle data
$b++; # Changes $a !!!

This is because piddles are represented by Perl objects, $a just holds a reference
to the piddle data (kind of like a pointer in C). Saying $b = $a just copies the
reference.

A similar effect happens in a subroutine call:

$a = pdl (1,2,3);
foo($a);
print $a; # Answer: [2,3,4]

sub foo {
my $x = shift;
$x++;

}

The subroutine argument is passed by reference — any changes to $x change
$a. This behaviour is actually a good thing for PDL: because we expect piddles
to be LARGE we do not want a lot of unnecessary copying.

So how do we get a real copy? The recommended way is to use the pdl function:1

$b = pdl($a);

Once we have element-by-element arithmetic it turns out that as well as simple
copying we need a special assignment operator and ‘.=’ plays this role. Since
PDL does not use strings we have hijacked this to provide a convenient assigment
operator. For example:

perldl> $b = pdl (1,2,3);
perldl> $b .= 2
perldl> print $b
[2 2 2]

The assignment operates element-by element — just like the arithmetic oper-
ators. You can see that this is the same as $b *= 0; $b += 2; — only more
succinctly and much faster. The assignment operator, like the arithemetic and
other operators, also partakes in sophisticated PDL features such as threading
and dataflow which we will talk about in Chapter XXX.

2.2 Piddles are NOT Perl ‘arrays’

It is now time to answer a question which has probably been nagging at the
back of your mind for a while.

1Object methods such as $a->copy are also available, more on this later

CHAPTER 2. THE BASICS OF PDL 36

Why bother with piddles? Why not just use normal Perl ‘arrays’?

By Perl ‘arrays’ we of couse mean entities like @x and @Data z which one would
normally create and manipulate like this:

@x = (1,2,3);
push @x, 42;
$y = pop @x;

So why don’t we just use Perl ‘arrays’? Several very good reasons:

1. It is impossible to manipulate Perl ‘arrays’ arithmetically as one would
like. i.e.:

@y = @x * 2; # Wrong!

can not be made to operate element by element.

2. Perl ‘arrays’ are really what are known in computer science as ‘lists’ (and
are represented internally by a list data structure). In fact if the PDL-
Porters had their evil way they would ban the term ‘array’ from all of the
standard Perl documentation and books. This is why the term ‘piddle’
was invented for use in PDL for what we think really are ‘true arrays’.

3. Perl lists are intrinsically one-dimensional. You can have ‘lists of lists’ but
this is not the same thing as true multi-dimensional arrays. Honest.

4. Perl lists consume a lot of memory. At least 20 bytes per number, of which
only a few are for the actual value. This is because Perl lists are flexible,
and can contains text strings as well as numbers. This flexibility requires
an internal complex data structure which contains extra information such
as a place holder for the number, a place holder for the text and pointers
forward and back along the list.

5. Perl lists are scattered about memory. The list data structure means
consecutive numbers are not stored in a neat block of consecutive memory
addresses as C and FORTRAN programmers are used to. This makes
it difficult to pass the arrays to low-level C and FORTRAN routines for
processing — the numbers must be collected together -a process known
as ‘packing’ — processed and unpacked back into lists. If you have ‘lists
of lists’ then it get’s even worse.

6. Perl lists do not support the range of datatypes that piddles do (byte
arrays, integer arrays, single precision, double precision, etc.)

That is why PDL does not use Perl lists. Just to be clear from now on we’ll
always refer to PDL numeric data arrays as ‘piddles’ and Perl-style number/text
arrays as ‘lists’.

CHAPTER 2. THE BASICS OF PDL 37

2.2.1 The benefits of piddles.

So what we have done is essentially implemented a new kind of data structure,
the piddle, in Perl to hold large chunks of numerical data which we can process
all at once.

The piddle data is held in a large chunk of consecutive memory addresses,
which means it can be passed easily to C or FORTRAN code as if it was a C
or FORTRAN array.

We have written a lot of C code to do all the obvious stuff, such as element-by-
element arithmetic, for multiple datatypes, and this is all built into PDL. Thus
when you say:

$a,$b and $c are piddles

$b = $a+1;
$a++;
$c = 1+$a**2/($b-2);

you have it done on all elements, even if $a, $b, $c contain millions of them.
Furthermore this arithmetic proceeds at C/FORTRAN speed.2 $b=$a+1 gets
interpreted one, but might get executed millions of times in a compiled C loop.
In short PDL is a vectorised language.

2.2.2 Lists and Hashes of piddles

Of course all this is not to say that Perl lists do not have tbeir uses. Since
piddles are singular objects we can make lists of them:

@mylist = (rfits("my.fits"), zeroes(3,3), pdl(32));

This can be very convenient for many kinds of processing. For example one
common PDL idiom is instead of:

($x,$y,$z) = rcols ’datafile’; # Read columns of data

one can say:

@x = rcols ’datafile’; # Read columns of data

Then one can manipulate the individual piddles as $x[0], $x[1] etc. (Each of
which can have completely different dimensions).

2This is about 7 million numbers per second on Karl’s state-of-the-art laptop. Which by
the time you are reading this is probably a rather daggy laptop.

CHAPTER 2. THE BASICS OF PDL 38

The other major data struture in standard Perl is the hash (also known as an
associative array . These can also contain many piddles, this time indexed by a
text string rather than position in a list. For example a face recognition program
might want to store it’s images this way:

%face = ();
$face{"Jim"} = rpic(’jim.jpg’);
$face{"Fred"} = rpic(’fred.jpg’);
$face("Default"} = zeroes(256,256);

So you can see that the combination of piddles, lists and hashes can be quite
useful, albeit a tad confusing at times!

2.3 PDL Datatypes

Standard Perl only offers long integers and double-precision floating point as
datatypes. This is insufficient for efficient numerical processing — both speed
and memory consumption usually requires a number representation be only as
accurate as required to represent the data an no more. For example if you are
dealing with standard image formats like GIF or JPEG you might want only an
8-bit representation for each colour — in this case you then want to represent
each number with a single byte.

For this reason PDL provides a whole bunch of datatypes. We can have piddles
containing any of these:

Datatype PDL function Bytes/ Numerical range
element

Byte byte() 1 0–255
unsigned short integer ushort() 2 0–65535
short integer short() 2 -32768 – 32767
long integer long() 4 -2147483648 – 2147483647
IEEE single-precision float() 4 XXXX
floating point
IEEE double-precision double() 8 XXXX
floating point

Each of these corresponds to a C primitive datatype used in the low-level PDL
code. The philosophy in PDL is that the types are machine independent —
this means that a long integer is always 4 bytes in PDL across all types of
computer/OS. Definitions are set up apporopriately at the C level to handle
this.

CHAPTER 2. THE BASICS OF PDL 39

2.3.1 Type conversion and creation

The functions listed in Table ??? provide type conversion:

If $a is any piddle

$b = float $a; # $b is a ’float’ piddle
$b = byte $a; # $b is a ’byte’ piddle

and piddle creation with a specified type:

$b = ushort (1,2,3); # $b is a 1-D ’ushort’ piddle
$b = double ([1,2,3],[4,5,6]); # $b is a 2-D ’double’ piddle
$b = long 42; # $b is a 0-D (scalar) ’long’ piddle

These use the same ‘[]’ list-reference syntax as the pdl function. (Note that
the pdl function defaults to double-precision just like Perl.)

Finally the type functions also function without arguments as tokens when cre-
ating arbitrary size piddles. For example to create a 512x512x512 byte data
cube filled with zeroes:

$a = zeroes(byte, 512,512,512); # Note the "," after "byte"!

This array consumes 128Mb of memory on Karl’s laptop. If the byte token was
omitted PDL would try to create the piddle as double precision — being 8 times
bigger this would be far too much for the laptop’s memory! 3

2.3.2 Complex types

For a time a long debate reigned over where PDL should support types of
complex numbers as well. One issue was that standard C, on which PDL is built,
does not have a primitive complex number type. Because of this C routines in
numerical libraries which handle complex arrays take the real and imaginary
components as seperate arguments. As PDL needs to use these routines and
work efficiently we take the same approach — PDL functions which deal with
complex numbers use seperate real and imaginary arrays.

A good example of this is the PDL::FFT module for dealing with Fourier Trans-
forms. One says:

fft $real, $imag;

where the arguments are piddles. The PDL::FFT module also provides cmul
and cdiv functions for complex arithmetic.

PDL::Complex module ??? XXXX
3PDL has the power to make your computer go all weak at the knees, with minimal typing.

But if you really need to have everything in memory you can memory map your hard disk
directly with mapfraw in PDL::Io::FastRaw.

CHAPTER 2. THE BASICS OF PDL 40

2.4 PDL projection operators

We’ve now encountered the basics of PDL — element by element arithmetic.
It is time to look at more advanced features which involve combining elements
together inside a piddle. Perhaps the next most common class of operations
after arithmetic are those known as projection operations which involve combing
elements along axes.

One example of such an operator is summation. The sumover function imple-
ments this. To sum along rows:

perldl> $a = sequence (2,3);
perldl> print $a;

[
[0 1]
[2 3]
[4 5]

]

perldl> $b = sumover $a; # $b is now summed along axis 0
perldl> print $b;
[1 5 9]

sumover is paired with the related sum function which sums over all elements
to form a scalar:

perldl> print sum $a
15
perldl> print sum $b # Should be the same of course!
15

The rest of the projection operators follow this basic pattern, for example
maximum and max:

perldl> print maximum $a
[1 3 5]
perldl> print max $a
5

One can think of this as maximum projecting from N to N-1 dimensions and max
projecting from N to 0 dimensions Here is a complete Table of those in standard
PDL (of course you are free to define your own):

CHAPTER 2. THE BASICS OF PDL 41

Operation Dimensions Projection
N → N − 1 N → 0

Pixel sum sumover sum
Pixel average average avg
Pixel minimum minimum min
Pixel maximum maximum max
Pixel median medover median
Pixel ‘odd median’ oddmedover oddmedian

2.4.1 What about projecting along other dimensions?

You might now be asking yourself: what about summing along columns as well
as rows? Or more generally projecting along a different axis to the first? Are
there special functions for this or are there special options to the projection
functions?

The answer is NO. It works much more elegantly than that!

PDL comes with special dimensions manipulation functions. We simply use
sumover (or whatever) with a dimension operation which brings the required
dimension to the front. For example to sum along columns:

$a = random(10,3);
$b = sumover(mv($a,1,0)); # $b has dims 10.

This uses the mv function to transform $a from 10 by 3 to a 3 by 10 piddle.
This is done ‘virtually’ — i.e. no more memory is used. This is an extremely
powerful feature of PDL — functions like sumover only need to be written to
handle the dimensions they care about, PDL with it’s dimension operators can
handle the rest.

2.5 ‘Threading’ over extra dimensions.

The projection operators are written in PDL as functions of 1-D vectors — they
project along the vector.

You will notice:

$a = sumover random(10); # $a is 0-D: 1 element
$a = sumover random(10,9); # $a is 1-D: 9 elements
$a = sumover random(10,9,8); # $a is 2-D: 9x8 elements
$a = sumover random(10,9,8,7); # $a is 3-D: 9x8x7 elements

i.e. even though sumover is written to handle 1-D piddles if supplied with
extra dimensions sumover will automatically loop over the extras. Moreover
this iteration happens at the compiled C level, so it is extremely very fast.

CHAPTER 2. THE BASICS OF PDL 42

This feature of implicit looping over extra dimensions is known as ‘threading
over the dimensions’4. Here is another example:

$a = random (10,20,30);
$b = random (10,20);

$c = $a + $b; # $c is 10x20x30

Yes the ‘+’ function is threaded . This means you can do incredibly useful things
like add images to datacubes and have the operation repeat for each image slice
in the cube. With no special syntax.

You have of course seen before:

$a = random (10);
$b = $a + 2;

But perhaps you now realise this is again a case of threading. Here the 0-D
piddle ‘2’ is threaded over the 1-D vector $a. The previous example is just a
higher-dimensional analogy.

We will look in more detail at the rules regarding threading in Chapter 4. For
now we note that implicit threading works pretty much as you might expect:

1. Extra dimensions of size one are implicitly added on the end of all piddles
to match the piddle with the biggest number of dimensions.

2. Each dimension threaded over must either be of size one or of a size match-
ing the biggest piddle.

3. Dimensions of size one are continuously repeated during the thread loop.

Thus in:

sequence(10,20,3) + sequence(10) + sequence(10,20);

This becomes:

sequence(10,20,3) + sequence(10,1,1) + sequence(10,20,1);

and the result is as if the data was repeated along the unit dimensions, i.e. like:

sequence(10,20,3) + sequence(10,20,3) + sequence(10,20,3);
4No one to one relation to threads of execution on parallel computers though some versions

of PDL will actually implement threading this way!

CHAPTER 2. THE BASICS OF PDL 43

We’ll restate those rules more formally in Chapter XXX — and also look at a
way to make your own rules called explicit threading . But the easiest way to
find out how threading works is to experiment.

Before we get too deeply involved in threading and how to write threaded func-
tions we should look in more detail at the other half of the game: the variety
of operations available in PDL for manipluating piddle dimensions. Chapter 3
will go into this in detail.

2.6 Example Problem

WHAT???

Chapter 3

Slicing, Dicing and
Threading with PDL
dimensions

Fundamental to any vectorised data language such as PDL is the ability to
manipulate subsets of data in convenient ways. PDL provides the facilities
to change the size and dimensionality of data, to take contiguous and non-
contiguous subsections of data along dimensions and to take completely arbi-
trary subsets of data meeting arbitrary criteria.

A key powerful feature is the ability to manipulate these subsets of data, and
if desired to propagate these changes back to the original data automatically .
This includes passing data to user-written subroutines, which may call standard
external C code, which do not know or care about whether the data is a subset
or not.

That sounds pretty abstract — but here is a concrete example: with PDL one
could for example select all the pixels in an image greater than a certain value
or meeting some other condition. This might serve to isolate a bright star or
galaxy. One could then pass the pixel values and their locations to a photometry
subroutine (which is just written to work on data arrays not caring whether it
is a subset or not) which would fit the pixels with some model and replace them
in the array. These changed pixels would then be automatically changed in the
original image.

This sort of abstraction is extremely powerful as it allows for very concise and
clear code. We’ll start by looking at the simplest operations to extract simple
slices of piddles, and look at increasingly more complex kinds of slices.

44

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS45

3.1 Finding piddle dimensions.

As we mentioned in Chapter 2 PDL data arrays can take arbitrary sizes and
dimensions. Finding the current dimensions is straight-forward with the dims
function which returns a list:

$data = zeroes(100,20,3);
print dims($data);

($nx, $ny, $nz) = dims($data);

The number of elements in a piddle is equally easy:

print nelem($data);

3.2 The slice function — regular subsets along
axes

We saw back in Chapter 1 how to extract a rectangular subset of a piddle:

$section = slice $gal, "337:357,178:198";

The piddle $gal was a 2D image, we used the slice function to extract a
contiguous subset ranging from pixel 327 to 367 along the first dimension, and
168 through 208 along the second.

slice is probably the most frequently used PDL function so we will explore
it in some detail. But first we notice that slice is implemented via a named
function, there is no special syntax like some languages have. This is because
there is no extra room in Perl for extra special purpose syntax (though there
may be in future versions). But we do turn this to our advantage: in PDL we
use other named functions to extract other kinds of slices. And if the user is
unhappy with the syntax of slice they are able to write their own — slice
is not special. We do lose something in conciseness but gain quite a bit in
generaility.

3.2.1 The basic slicing specification.

The second argument to slice is just a list of ranges, the simplest if of the form
A:B to specify the start and end pixels. This generalises to arbitrary dimensions;

$data = zeroes(1000);
$sec = slice $data, ’0:20’;

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS46

$data = zeroes(100,100,20);
$sec = slice $data, ’0:20,40:60,1:3’;

Note that PDL, just like Perl and C, uses ZERO OFFSET arrays. i.e. the
first element is numbered 0, not 1. Just like Perl you can use -N to refer to the
last elements:

$data = zeroes(1000);
$sec = slice $data, ’-10:-1’; # Elements 990 to 999 (last)

One can also specify a step in the slice using the form A:B:C where C is the step.
Here is an example:

perldl> $x = sequence(100); # Create a piddle of increasing value
perldl> print $x
[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99]

perldl> print slice $x,’40:80:2’
[40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80]

Quite often one wants all the elements along many of the dimensions, one can
just use ‘:’ or just omit the specifier altogether:

perldl> $a = zeroes (10,20,3)
perldl> print dims slice $a,’:,5:10,:’
10 6 3
perldl> print dims slice $a,’,5:10,’
10 6 3

Omitting the range allows spefication of just one index along the dimension:

$z = zeroes 100,200;
$col = slice $z, "42,:"; # Column 42 (Dims = 1x200)
$row = slice $z, ":,42"; # Row 42 (Dims = 100x1)

Since the second argument to slice is just a Perl character string it is easy to
manipulate:

$x1 = 2; $x2 = 42;
$sec = slice $data,"$x1:$x2";

3.2.2 Modifying slices.

Here’s the biggy:

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS47

perldl> $x = sequence(25);
perldl> print $x;
[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]

perldl> $slice = slice($x,’4:20:2’);
perldl> print $slice;
[4 6 8 10 12 14 16 18 20]

All very well. But now we modify the slice using the assignment operator.

perldl> $slice .= 0;
perldl> print $slice;
[0 0 0 0 0 0 0 0 0]
perldl> print $x;
[0 1 2 3 0 5 0 7 0 9 0 11 0 13 0 15 0 17 0 19 0 21 22 23 24]

Modifying the slice automatically modfies the original data! However it is done
($slice++ etc. work just as well).

All the PDL slicing and dicing functions work this way, from the simplest rect-
angular slices to the most complex conditional slices. This is because they use
a fundamental PDL feature known as dataflow , which we will explore further
in Chapter XXX. From now on we’ll describe anything with this property

One thing we can’t (yet) do though is this:

slice($x,’40:80:2’) .= 42; # Syntax error!

We have to use a temporary piddle to hold the slice before we can change it:

$tmp = slice($x,’40:80:2’); $tmp .= 42;

This is due to a current Perl syntax limitation, which is expected to be removed
in the near future.

3.2.3 Does a slice consume memory?

What if we have a big array and make a slice of most of it:

$x = zeroes (2000,2000);
$slice = slice $x, "10:1990,10:1990";
$slice++;

If you monitor the memory consumed by the PDL process on your computer
(UNIX/Linux users can try the top command) you will see that the amount of
memory consumed does not go up — even when the slice is modified . This is
because the way PDL is written allows many of the simple operations on slices

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS48

to be optimised — i.e. a temporary internal copy of the slice need not be made.
Of course sometimes — for example when passing to an external subroutine
— this optimisation is not possible. But the book-keeping of propagating the
changes back to the original piddle is handled automatically.

3.2.4 Advanced slice syntax

slice has some advanced syntactical features which allow dimensions to be
inserted or removed (this comes in quite useful when passing 2D arrays to func-
tions expecting 1D arguments and visa-versa, this comes in extremely useful
when using PDL’s advanced threading features (see PDL threading and the sig-
nature later in this chapter.

If a dimension is of size unity it can be removed using ‘()’:

$z = zeroes 100,30;
$col = slice $z, "42,:"; # Column 42 - 2D (Dims = 1x200)
$col = slice $z, "(42),:"; # Column 42 - 1D (Dims = 200)

And then one can put them back again using ‘*’:

$col2 = slice $col, "*,:,*"; # Dims now = 1x200x1

This can even be used to insert more than one element along the dimension:

$t = slice $z,":,*3,:"; # Dims now 100x3x30

This sort of thing is very useful for advanced threading trickery (see PDL thread-
ing and the signature).

3.2.5 PDL’s Method notation

At this point we would like to introduce a new notation for calling slice and
it’s friends. This is bevause it will be commonly seen in PDL code and is very
handy. While at first unfamilar to C and FORTRAN users it is not rocket
science, PDL users will quickly become used to it.

As we mentioned in Chapter 2 piddles are implemented as Perl objects. Objects
can have their own personal functions, known as methods. The difference be-
tween a method and a function is that a method can only be used on the class
of object it belongs too. And methods have a new notation for calling them.
This means names (which can get in short suppply) can be re-used for different
objects.

Many of PDL’s functions are available as methods too, in fact once you started
using the more advanced features you will find that many of them are only

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS49

available as methods. (PDL by default defines a lot of functions, which while
useful do clutter Perl’s namespace, at some point we had to stop!).

For example here are 3 different ways of calling slice:

$t = slice($z,":,*3,:"); # Function call
$t = slice $z,":,*3,:"; # Function call

$t = $z->slice(":,*3,:"); # Method call

The method $z->slice(..) notation is very common for slices, as it makes
more visual sense to have the slice specifier after the variable.

3.3 The dice and dice_axis functions — irregu-
lar subsets along axes

As well as take regular slices along axes via the slice function, another common
requirement is to take irregular slices, by which we mean a list of arbitrary
coordinates. This operation is referred to in PDL as dicing a piddle.

The dice_axis function performs a dice along a specified axis:

$a = sequence(10,20);
$b = dice_axis $a, 0, [3,7,9]; # Dice along axis 0
$b .= 42; # Alters columns [4,7,9];
print $b;

For a 2D piddle dicing along axis 0 selects columns, dicing along axis 1 selects
rows. In general in N-dimensions dicing along a given axis reduces the number of elements
along that axis, but the number of dimensions remains unchanged.

The dice function allows all axes to be specified at once:

$z = zeroes 10,20,50;
print dims dice $z,[2,3,5],[10,11,12],[30..35,39,40];

The list of axes in the dice can be specified using Perl’s ‘[]’ list reference notation
or using a 1D piddle:

$z = sequence 10,20;
$dice = long(random(10)*10); # Select random columns
$sel = $z->dice_axis(0,$dice);

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS50

3.4 Using mv, xchg and reorder — transposing
dimensions

We saw earlier how arguments to slice can be used to add and remove dimen-
sions. More sophisticated tricks can be performed with a whole suite of PDL
methods.

xchg simply swaps two dimensions:

$z = zeroes(3,4);
$t = $z->xchg(0,1); # Axes 0 and 1 swapped, dims now = 4,3

This is a simple matrix transpose. The method $z->transpose and the equiv-
alent operator <˜$z> also do this, though they also make a copy (i.e. return
a new piddle) not a slice and can operate on 1D piddles (i.e. convert a row
vector into a column vector). Somethimes this is what you want. xchg) works
like C<slice and dice — changes affect the original. Also xchg generalises
to N-dimensions:

$z = zeroes(3,4,5,6,7);
$t = $z->xchg(1,3); # Dims now 3,6,5,4,7

A different way of switching dimensions around is provided by $z->mv(A,B)
which justs moves the axis A to posiition B:

$z = zeroes(3,4,5,6,7);
$t = $z->mv(1,3); # Dims now 3,5,6,4,7

Finally one can completely re-order dimensions:

$z = zeroes(3,4,5,6,7);
$t = $z->reorder(4,3,0,2,1); # Dims now 7,6,3,5,4

Note reorder is our first example of a pure PDL method — it does not exist
as a function and can only be called using the $z->reorder(...) syntax.

3.5 Combining dimensions with clump

We’ve now seen a whole slew of functions for changing the ordering of dimen-
sions. It is now time to look at some more complicated operations.

The first of these is something we have already seen in Chapter 1. This is
the clump function for combining dimensions together. Suppose we have a 3-D
datacube piddle:

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS51

perldl> $a = xvals(5,3,2);
perldl> print $a;

[
[
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]

]
[
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]

]
]

We have seen before we can apply a 1-D function like sumover to the rows —
and using dimension manipulating functions to any of the axes.

But say we wanted to sum over the first TWO dimensions? i.e. replace our
datacube with a 1-D vector containing the sums of each plane.

What we need to do is to ‘clump’ the first two dimensions together to make one
dimension, and then use sumover. Surprisingly enough this is what clump does:

perldl> $b = $a->clump(2); # Clump first two dimensions together
perldl> print $b;

[
[0 1 2 3 4 0 1 2 3 4 0 1 2 3 4]
[0 1 2 3 4 0 1 2 3 4 0 1 2 3 4]
]

perldl> $c = sumover $b; print $c;
[30 30]

Now we know about mv it is also easy to sum over the last two dimensions:

perldl> print sumover $a->mv(0,2)->clump(2)
[0 6 12 18 24]

It is also possible using the special form clump(-1) to clump all the dimensions
together:

perldl> $x = sequence(10,20,30,40);
perldl> print dims $x->clump(-1);

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS52

240000
perldl> print sumover $x->clump(-1); # Same as sum($x)
28799880000

Uncannily this is almost exactly how the sum function is implemented in PDL.

3.6 Adding dimensions with dummy

After our first look at threading in Chapter 2 we know how to add a vector to
rows of an image:

perldl> print $a = pdl([1,0,0],[1,1,0],[1,1,1]);
[
[1 0 0]
[1 1 0]
[1 1 1]
]

perldl> print $b = pdl(1,2,3);
[1 2 3]
perldl> print $a+$b;
[
[2 2 3]
[2 3 3]
[2 3 4]
]

But say we wanted to add the vector to the columns. You might think to
transpose $a:

perldl> print $a->xchg(0,1)+$b;
[
[2 3 4]
[1 3 4]
[1 2 4]

]

But the result is the transpose of the desired result. We could of course just
transpose the result but a cleaner method is to use dummy to change the dimen-
sions of $b:

perldl> print $b->dummy(0); # Result has dims 1x3
[
[1]

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS53

[2]
[3]
]

dummy just inserts a ‘dummy dimension’1 of size unity at the specified place.
dummy(0) put’s it at position 0 — i.e. the first dimension. The result is a
column vector. Then we easily get what we want:

perldl> print $a + $b->dummy(0);
[
[2 1 1]
[3 3 2]
[4 4 4]
]

Because of the threading rules the unit dimension makes $b implicitly repeat
along axis 0. i.e. it is as if $b->dummy(0) looked like:

[
[1 1 1]
[2 2 2]
[3 3 3]
]

dummy can also be used to insert a dimension of size >1 with the data explicitly
repeating:

perldl> print dims $b->dummy(0,10);
10 3
perldl> print $b->dummy(0,10);

[
[1 1 1 1 1 1 1 1 1 1]
[2 2 2 2 2 2 2 2 2 2]
[3 3 3 3 3 3 3 3 3 3]
]

3.7 Completely general subsets of data with index,
which and where

Our look at advanced slicing concludes with a look at completely general subsets,
specified using arbitrary conditions.

Let’s make a piddle of real numbers from 0 to 1:
1No relation to the Dungeon Dimensions in Terry Pratchett’s ‘Discworld’ !

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS54

perldl> print $a = sequence(100)/100;
[0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31
0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47
0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63
0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79
0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95
0.96 0.97 0.98 0.99]

We can make a conditional array whose values are 1 where a condition is true
using standard PDL operators. For example for numbers below 0.2 and above
0.9:

perldl> print $a<0.2 | $a>0.9;
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1]

We’ll use this as an example of an arbitrary condtion. Using which we can return
a piddle containing the positions of the elements which match the condition:

perldl> $idx = which($a<0.2 | $a>0.9); print $idx;
[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 91 92 93 94 95 96 97 98 99]

i.e. elements 0..19 and 91..99 in the original piddle are the ones we want. We
can select these using the index function:

perldl> print $a->index($idx);
[0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
0.16 0.17 0.18 0.19 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99]

So here we have an arbitrary, non-contiguous slice. However thanks to the magic
of PDL we can still modify this as if it was still a more boring kind of slice and
have our results affect the original:

perldl> $tmp = $a->index($idx);
perldl> $tmp .= 0; # Set indexed values to zero
perldl> print $a;

[0 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27
0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43
0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75
0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0 0 0
0 0 0 0 0 0]

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS55

In fact PDL posesses a convenience function called where which actually lets
you combine these steps at once:

$a = sequence(100)/100;
$tmp = $a->where($a<0.2 | $a>0.9);
$tmp .= 0;
print $a; # Same result as above

i.e. we make a subset of values where a certain condition is true.

You can of course use index with explicit values:

Increment first and last values
$a = sequence(10);
$tmp = $a->index(pdl(0,9));
$tmp++;

What if you had a 2-D array? index is obviously one-dimensional. What
happens is an implicit clump(-1) (i.e. the whole array is viewed as 1-D):

perldl> $a = sequence(10,2);
perldl> $tmp = $a->index(pdl(0,9));
perldl> $tmp .= 999;
perldl> print $a;
[
[999 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 999]

]

You can of course use where too for any number of dimensions:

e.g. make a cube with a sphere of 1’s in the middle:

$cube = rvals(100,100,100);
$tmp = $cube->where($cube<20);
$cube .= 0;
$tmp .= 1;

3.8 Example Problem

WHAT???

3.9 PDL threading and signatures

Slicing and indexing arbritary subsets of data is certainly a fundamental as-
pect of any array processing language and PDL is no exeption (as you can tell

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS56

from the preceding examples). In PDL those functions might be even more
important since they are absolutely vital in using PDL threading, the fast (and
automagic) vectorised iteration of ”elementary operations” over arbitrary slices
of multidimensional data. First we have to explain what we mean by threading
in the context of PDL, especially since the term threading already has a distinct
meaning in computer science that only partly agrees with its usage within PDL.

In the following we will explain the general use of PDL threading and highlight
the close interplay with those slicing and dicing routines that you have just
become familiar with (slice, xchg, mv, etc). But first things first: what is PDL
threading?

3.9.1 Threading

Threading already has been working under the hood in many examples we have
encountered in previous sections. It allows for fast processing of large amounts
of data in a scripting language (such as perl). And just to be sure, PDL
Threading ist not quite the same as threading in the computer science sense.
Both concepts are related but more about that later.

3.9.2 A simple example

As a starting point, we look at one of the PDL projection operators (they make
N-1 dimensional piddles from N dim input piddles). So we need some data to
try our code on. This time, we use the image of a tiny fluorescent bead that
was recorded with a fluorescent microscope:

use PDL::IO::Pic;
$im = rpic ’bead.tif’; # image stored in the TIFF format

The following code snippet calculates the maxima of all rows of this image $im:

$max = $im->maximum;

We rewrite this example slightly so that we can see the dimensions of the piddles
involved using a little helper routine (see box) to print out the shape of piddles
in the course of computations:

($max = $im->pdim(’Input’)->maximum)->pdim(’Result’);

that generates the following output

Input Byte D [256,256]
Result Byte D [256]

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS57

Since is important to keep track of the dimensions of piddles when using (and
especially when introducing) PDL threading we quickly define a shorthand com-
mand (a method) that lets us print the dimensions of piddles nicely formatted
as needed:

{ package PDL;
sub pdim { # pretty print type+dimensions and

allow for optional string arg
my ($this) = @_;
print (($#_ > 0 ? "$_[1]\t": "").

$this->info("%T %D\n")); # use info to print type and dims
return $this;

}}

Two observations: note how we temporarily switched into the package PDL so
that pdim can be used as a method on piddlesa (see also Chapter XX on object
oriented programming with PDL):

$a->pdim("Dims");

and we made the function return the piddle argument so that it can be seam-
lessly integrated into method invocation chains:

$->pdim("Dims")->maximum;

aIf you want to know more about the info method check Appendix XX or try help info

from within the perldl shell

Box 3.9.1: A small utility routine

So let’s dissect what has happened. If you look at the documentation of
maximum2 it says

This function reduces the dimensionality of a
piddle by one by taking the maximum along the
1st dimension.

In this respect maximum behaves quite differently from max. max will always
return a scalar with a value equal to that of the largest element of a (possibly
multidimensional) piddle. maximum, however, is by definition an operation that
takes the maximum only over a one-dimensional vector. If the input piddle is
of higher dimension this elementary operation is automatically iterated over all
one-dimensional subslices of the input piddle3. And, most imporatantly, this

2remember, quickest way: at the perldl shell prompt type ? maximum
3An N-dimensional piddle can be viewed as an (N-1)-dimensional array of one-dimensional

subslices.

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS58

automatic iteration (we call it the threadloop) is implemented as fast optimized
C loops.

As a convention, these subslices are by default taken along the first dimensions
of the input piddle. In our current example the subslices are one-dimensional
and therefore taken along the first dimension. All results are placed in an
appropriately sized output piddle of N-1 dimensions, one value for each subslice
on which the operation was performed. Now it should be no surprise that

$im3d = sequence short, 5,10,3; # a 3D image (volume)
$max = $im3d->pdim(’Input’)->maximum;
print $max->pdim(’Result’)."\n";

generates

Input Short D [5,10,3]
Result Short D [10,3]

[
[4 9 14 19 24 29 34 39 44 49]
[54 59 64 69 74 79 84 89 94 99]
[104 109 114 119 124 129 134 139 144 149]
]

As expected the above command sequence creates a 2D piddle (size [10,3]) of
maxima of all rows of the original volume data.

3.9.3 Why bother

Why should we go through this at length? Quickly you will realize that many
more complicated operations can be assembled from the iteration of an elemen-
tary operation (that is if you keep reading this chapter ;). Those elementary
operations that ship with the basic PDL distribution make the building blocks
for your more complicated “real world” applications; threading just makes sure
it will all happen quickly enough and without too much syntactical effort from
your side (you still will have to get your head round the idea). So let’s expand
our example a little further and postpone the why and how for a small while.

3.9.4 More examples

Now suppose we do not want to calculate the maxima along the first dimension
but rather along the second (the column maxima). However, we just heard that
maximum works by definition on the first dimension. How can we make it do the
same thing on the second dimension? Here is where the dimension manipulation
routines come in handy: we use a to make a piddle in which the original second

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS59

dimension has been moved to first place. Guess how that is done: yes, using
xchg we get what we want4:

print $im3d->pdim(’Step 1’)->xchg(1,0)->pdim(’Step 2’)
->maximum->pdim(’Step 3’);

results in

Step 1 Short D [5,10,3]
Step 2 Short D [10,5,3]
Step 3 Short D [5,3]

[
[45 46 47 48 49]
[95 96 97 98 99]
[145 146 147 148 149]
]

If you check pdim’s output you see how the originally second dimension of size
10 has been moved to the first dimension (step 1-¿2) and, accordingly, maximum
now does its work on all the columns of the original input piddle $im3d (step
3).

Again PDL has automatically iterated the elementary functionality of maximum
(calculate the maximum of a one-dimensional vector) over all subslices of the
data and created an appropriately sized piddle (here of shape [5,3]) to hold the
resulting elements.

This general scheme works for most PDL functions. For example, let’s say you
have a stack of images (represented by a 3D piddle) and you want to convolve
each image with the same kernel. That’s easy. Make sure the image dimensions
(x and y) are the leading dimension in your piddle:

$convolved = $stack->conv2d($kernel);

And if your image stack is organized differently, e.g. the leading dimension is
the z dimension, say in a [8,256,256] shaped piddle just use mv to obtain the
desired result:

$convolved = $stack->mv(0,2)->conv2d($kernel);

These (admittedly simple) examples show the general principle: an elementary
operation is iterated over subslices of one or several multidimensional piddles.
Sometimes the dimensions of the input piddles involved need to be manipulated
so that iteration happens as desired (e.g. over the intended subslices) and the

4mv would have been another possible choice: $im3d->mv(1,0)->maximum

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS60

result has the intended dimensionality. Formulating your problem at hand in a
way that makes use of threading rather than resorting to nested for-loops at
the perl level can make the difference between a script that is executed faster
than you can type and one that is crawling along and giving you plenty of time
to have your long overdue lunch break.

3.9.5 Why threading and why call it threading?

So what are the advantages of relying on threading to perform things you can
achieve in perl also with explicit for loops and the slice command? There are
several (very good) reasons. The more you use PDL for your daily work the
quicker you will appreciate this.

Before we get into the details of the why and how let’s admit: PDL is by no
means the first data language that supports this type of automatical implicit
looping facility: the authors have in fact been inspired by several previous data
language implementations, most notably Yorick5. Similar concepts are also
implemented in APL and J6. What we think distinguishes PDL from these
previous languages is the consistent support of threading throughout PDL, the
tight integration with the PLD preprocessor (dealt with in a separate chapter)
and the conceptual interplay with the dimension manipulation routines.

The first and most important reason to use PDL threading is simply speed . The
alternative to threading are loops at the perl level. That is certainly a viable
alternative, however, if we rewrite our maximum routine along these lines a
quick benchmark test will prove our point. First of all, here is the code that
does the equivalent of maximum on 2D input without using threading

sub mymax {
we only cover the case of 2D input
my ($pdl) = @_;
die "can only deal with 2D input" unless $pdl->getndims == 2;
$result = PDL->zeroes($pdl->type,$pdl->getdim(1));
my $tmp;
for (my $i=0;$i<$pdl->getdim(1);$i++) {

($tmp = $result->slice("($i)")) .= $pdl->slice(",($i)")->max;
}
return $result;

}

We have written it so that mymax can just deal with 2D input piddles. A routine
for the general n-dimensional case would have been more involved7. Note that

5Yorick referenceXXX
6XXXrefs for both, although well hidden by a wealth of terminology and notation very

different from that of most other conventional computer languages
7maybe you would like to write such a routine as an exercise to entertain yourself, well,

maybe not

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS61

we explicitly have to create an output piddle of the desired type and size. By
comparison, the corresponding threading routine is much more concise:

sub mythreadmax {
my ($pdl) = @_;
return $pdl->maximum;

}

In fact, we only wrapped maximum in another subroutine to have the same calling
overhead as mymax. We are trying to be fair (even though we are biased). So
let’s compare the performance of mymax versus mythreadmax. How? Remember
that we are using perl, after all, and that there is (almost) always a module that
does just what you need. Here and now Benchmark8 supplies us with just the
functionality we need. Our benchmarking script looks like this

use Benchmark;
use PDL;

$a = sequence(10,300);
timethese(0, { # run each for at least 3 CPU secs

’Perl loops’ => ’$pl = mymax $a;’,
’PDL thread’ => ’$pt = mythreadmax $a;’,

});

If we run this script it generates9

Benchmark: running PDL thread, Perl loops,
each for at least 3 CPU seconds...

PDL thread: 3 wallclock secs (3.16 usr + 0.02 sys = 3.18 CPU)
@ 1788.36/s (n=5687)

Perl loops: 6 wallclock secs (5.09 usr + 0.13 sys = 5.22 CPU)
@ 2.49/s (n=13)

That proofs our point: while the example using threading is executed at a rate
of nearly 1800 per second using explicit loops has brought down the speed to
less than 3/s, a very significant difference. Obviously, the difference between
threading and explicit looping depends somewhat on the nature of the elemen-
tary operation and the piddles in question. The difference becomes most striking
the more elementary operations are involved and the faster an individual ele-
mentary operation can be performed. The advantage of threading will level off
as the time for performing the elementary operation becomes comparable or
even greater than that required to execute the explicit looping code.

Another distinct advantage becomes apparent when comparing the code re-
quired to implement the equivalent of the maximum functionality explicitly in

8for more details see perldoc Benchmark
9exact numbers obviously depend on the actual computer used

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS62

perl code. We have to write extra code to create the right size ouput piddle,
explicitly handle dimension sizes, etc. All in all the code is much less concise
and also less general10. With the requirement to deal with all dimensions, loop
limits, etc yourself you increase the probability of introducing errors into your
code. When using threading, PDL checks all dimensions for you, makes sure it
loops over the correct indices internally and keeps you from having to do the
bookkeeping: after all, that is what computers are good at.

Even though PDL threading makes your life much easier in one respect by taking
care of some of the ”messy” details it leaves you with another task: you have
to find the places in your algorithm/problem where threading can effectively
be used and help to make for speedy execution even when using an (almost
inevitably slower) scripting language. But finding such places and making use
of these vectorised features is the key to using an array-oriented high level
language like PDL successfully. This is what the programmer new to PDL and
used to low-level programming has to learn: avoid explicit loops where possible
and try to use automatically performed thread loops instead.

There is yet another benefit that comes with the threading approach. By looking
at places where threading can be efficiently used you are also rethinking your
problem in a way so that it can be very effectively parallelized! The keen
reader has probably already observed that those internal automatic loops of
elementary operations over subslices do not have to be performed sequentially.
On a machine with several CPUs multithreading can be used to run several
iterations concurrently. In general, when using threading, interdependencies
between the iterations of the thread loop are minimal making for very efficient
parallel execution (ref XXXXXmultithreadingXXX ref). This revelation also
explains the name PDL threading being thereby related but not identical to the
use of the terms thread and multithreading in computer science.

The use of multithreading in PDL thread loops is not only a theoretical possi-
bility. PDL v2 has some support for multithreaded execution of such loops11.
However, the interface is currently somewhat crude and mainly intended to be
a proof of principle. Let’s illustrate this by performing our above example yet
again but this time ask PDL to benchmark a multithreaded thread loop versus
singlethreaded execution12:

use Benchmark;
use PDL;

$a = sequence(10,300);
timethese(0, { # run each for at least 3 CPU secs

’PDL mulithreaded’ => ’$pl = maximum $a;’,
’PDL singlethreaded’ => ’$a->add_threading_magic(1,10);

10mymax only deals with 2D input
11using the POSIX pthread software interface. See XXX
12multithreading will only be used if your hardware platform supports this and PDL is set

up accordingly, check Appendix XX

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS63

$pt = maximum $a;’,
});

The command

$a->add_threading_magic(1,10);

explicitly tells PDL to use 10 (possibly concurrently run depending on your
computer hardware) threads when performing the threadloop over dimension 1.
For example, on an SGI workstation with 4 R10000 CPUs this script yields the
following output:

XXXX fill in

3.9.6 The general case: PDL functions and their signature

Having made the case for PDL threading let’s study its own messy details. PDL
threading is a powerful tool. And as usual you have to pay a price for power:
complexity. The general rules for PDL threading can be confusing at first. But
there is hope: you can first study the more simple cases and work up to more
difficult examples as you go. So let’s continue our tour of threading.

The first question arises naturally: how can one find out about the dimension
of subslices in a elementary operation of a function in PDL? We know from
the preceding examples that some PDL functions work on a one-dimensional
subvector of the data and generate a zero-dimensional result (a scalar) from each
of the processed subslices, for example: maximum, minimum, sumover, prodover,
etc. Two-dimensional convolution (conv2d), on the other hand, consumes a 2D
subslice in an elementary operation. But how do we get this information in
general for any given function? It is easy: you just have to check the function’s
signature!

The signature is a string that contains this information in concise symbolic form:
it names the parameters of a function and the dimensions of these parameters in
an elementary operation. Additionally, it specifies which of these parameters are
input parameters and which are output parameters. Finally, for some functions
it contains information about special type conversions that are to be performed
at run-time.

Generally, you can find the signature of a function using the perldl online help
system. Just type sig <funcname> at the command prompt, e.g.:

perldl> sig maximum
Signature: maximum(a(n); [o]c())

The interesting part is the formal argument list in parentheses that follows the
function name:

a(n); [o]c()

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS64

This signature states that maximum is a function with two arguments named a
and c. Wait a minute: above it seemed that maximum only takes one argument
and returns a result! The apparent contradiction is resolved by noting that the
formal argument c is flagged with the [o] option identifying c is an output
argument. This seems to suggest that we could maximum also call as

maximum($im, $result);

This is in fact possible and an intended feature of PDL that is useful in tight
loops where it helps to avoid unneccesary reallocation of variables (see below).
In general, however, we will call functions in the usual way that can be written
symbolically as

output_arg_list = function(input_arg_list)

or equivalently, using the method notation

output_arg_list = input_piddle_1->function(rest_of_arg_list)

The other important information supplied by the signature is the dimensionality
of each of these arguments in an elementary operation. Each formal parame-
ter carries this information in a list of formal dimension identifiers enclosed in
parentheses. So indeed a(n) marks a as a one-dimensional argument. Addi-
tionally, each dimension has a named size in a signature, in this example n. c()
has an empty list of dimension sizes: it is declared to be zero-dimensional (a
scalar).

If piddles that are supplied as runtime arguments to a function have more di-
mensions than specified for their respective formal arguments in the signature
then these dimensions are treated by PDL as extra dimensions and lead to the
operation being threaded over the appropriate subslices, just what we have seen
in the simple examples above.

As mentioned before a higher dimensional piddle can be viewed as an array
(again not in the perl array sense) of lower dimensional subslices. Anybody
who has ever worked with matrix algebra will be familiar with the concept. For
some of the following examples it will be useful to illustrate this concept in
somewhat more detail. Let’s make a piddle first, a simple 3D piddle:

$pdl = sequence(3,4,5);

A boring piddle, you say? Yes, boring, but simple enough to clearly see what
is going on in the following. First we look at it as a 3D array of 0D subslices.
Since we know the syntax of the slice method already we can write down all
0D subslices, no problem:

$pdl->slice("($i),($j),($k)");

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS65

Well, obviously we have not written down all 3∗4∗5 = 60 subslices literally but
rather in a more concise way. It is understood that $i can have any value
between 0 and 2, $j between 0 and 3 and $k between 0 and 4. To emphasize
this we sometimes write

$pdl->slice("($i),($j),($k)") $i=0..2; $j=0..3; $k=0..4

With the meaning as above (and ’..’ not meaning the perl list operator). In
that way we enumerate all the sublices. Quite analogously, when dealing with
an elementary operation that consumes 1D slices we want to view $pdl as an
[4,5] array of 1D subslices:

$pdl->slice(":,($i),($j)") $i=0..3; $j=0..4

An similarly, as a [5] array of 2D subslices

$pdl->slice(":,:,($i)") $i=0..4

You see how we just insert a ’:’ for each complete dimension we include in the
subslice. In fig. XXX the situation is illustrated graphically for a 2D piddle.

Depending on the dimensions involved in an elementary operation we therefore
often group the dimensions (what we call the shape) of a piddle in a form
that suggests the interpretation as an array of subslices. For example, given
our 3D piddle above that has a shape [3,4,5] we have the following different
interpretations:

()[3,4,5] a 3,4,5-array of 0D slices
(3)[4,5] a 4,5-array of 1D slices (of shape [3])
(3,4)[5] a 5-array of 2D slices (of shape [3,4])
(3,4,5)[] a 0D array of 3D slices (of shape [3,4,5])

The dimensions in parentheses suggest that these are used in the elementary
operation (mimicking the signature syntax); in the context of threading we call
these the elementary dimensions. The following group of dimensions in rectan-
gular brackets are the extra dimensions. Conversely, given the elementary/extra
dims notation we can easily obtain the shape of the underlying piddle by ap-
pending the extradims to the elementary dims. For example, a [3,6,1] array of
2D subslices (3,4)

(3,4)[3,6,1]

identifies our piddle’s shape as [3,4,3,6,1]. Nearly too simple to go on about
much longer.

Alright, the principles are simple. But nothing is better than a few exam-
ples. Again a typical imaging processing task is our starting point. We want

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS66

to convert a colour image to greyscale. The input image is represented as a
two-dimensional array of triples of RGB colour coordinates, or in other words, a
piddle of shape [3,n,m]. Without delving too deeply into the details of digital
colour representation it suffices to note that commonly a grey value i corre-
sponding to a colour represented by a triple of red, green and blue intensities
(r,g,b) is obtained as a weighted sum:

@deq i = \frac{77}{256} r + \frac{150}{256} g + \frac{29}{256} b

A straight forward way to compute this weighted sum in PDL uses the inner
function. This function implements the well-known inner product between two
vectors. In a elementary operation inner computes the sum of the element-by-
element product of two one-dimensional subslices (vectors) of equal length:

@deq c = \sum {i=0}ˆ{n-1} a i b i

Now you should already be able to guess inner’s signature:

perldl> sig inner
Signature: inner(a(n); b(n); [o]c();)

a(n); b(n); [o]c();: two one-dimensional input parameters a(n) and b(n)
and a scalar output parameter c(). Since a and b both have the same named
dimension size n the corresponding dimension sizes of the actual arguments will
have to match at runtime (which will be checked by PDL!). We demonstrate the
computation starting with a colour triple that produces a sort of yellow/orange
on an RGB display:

$yel = byte [255, 214, 0]; # a yellowish pixel
$conv = float([77,150,29])/256; # conversion factor
$i = inner($yel,$conv)->byte; # compute and convert to byte
print "$i\n";

202

Now threading makes extending this example to a whole RGB image very
straightforward:

use PDL::IO::Pic; # IO for popular image formats
$im = rpic ’PDL.jpg’; # a colour image from the book dataset
$grey = inner($im->pdim(’COLOR’),$conv);

threaded inner product over all pixels
$gb = $grey->byte; # back to byte type

COLOR Byte D [3,500,300]

The code needs no modification! Let us analyze what is going on. We know
that $conv has just the required number of dimensions (namely one of size

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS67

3). So this argument doesn’t require PDL to perform threading. However, the
first argument $im has two extra dimensions (shape [500,300]). In this case
threading works (as you would probably expect) by iterating the inner product
over the combination of all 1D subslices of $im with the one and only subslice
of $conv creating a resulting piddle (the greyscale image) that is made up of all
results of these elementary operations: a 500x300 array of scalars, or in other
words, a 2D piddle of shape [500,300].

We can more concisely express what we have said in words above in our new
way to split piddle arguments in elementary dimensions and extra dimensions.
At the top we write inner’s signature and at the bottom the slice expressions
that show the subslices involved in each elementary operation:

Piddles $im $conv $grey

Signature a(n); b(n); [o]c()
Dims (3)[500,300] (3)[] ()[500,300]
Slices ":,($i),($j)" ":" "($i)($j)"

Remember that the slice notation at the bottom does not mean that you have
to generate all these slices yourself. It rather tells you which subslices are used
in a elementary operation. It is a way to keep track what is going on behind
the scenes when PDL threading is at work.

Threading makes it possible that we can call the greyscale conversion with
piddles representing just one RGB pixel (shape [3]), a line of RGB pixels (shape
[3,n]), RGB images (shape [3,m,n]), volumes of RGB data (shape [3,m,n,o]),
etc. All we have to do is wrap the code above into a small subroutine that also
does some type conversion to complete it:

sub rgbtogr {
my ($im) = @_;
my $conv = float([77,150,29])/256; # conversion factor
my $grey = inner $im, $conv;
return $grey->convert($im->type); # convert to original type

}

3.9.7 You can write your own threading routines

Did you notice? By writing this little routine we have created a new func-
tion with its own signature that will thread as appropriate. It has inherited
the ability to thread from inner. So what is the signature of rgbtogr? It
is nowhere written explicitly and we can’t use the sig function to find out
about it@startfoot sig will only know about functions that were created using
PDL::PP or if we explicitly specified the signature in the PDL documentation
(@@chap advsci)@endfoot but from the properties of inner and the definition

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS68

of rgbtogr we can work it out. As input it takes piddles with a size of the
first dimension of 3 and returns for each of the 1D subslices a 0D result (the
greyvalue). In other words, the signature is

a(tri = 3); [o] b()

There is some new syntax in this signature that we haven’t seen before: writ-
ing tri = 3 signifies that in a elementary operation rgbtogr will work on 1D
subslices (we have encountered this before); additionally, the size of the first
dimension (named suggestively tri) must be three. You get the idea.

What we have just seen is worth keeping in mind! By using PDL functions in
our own subroutines we can make new functions with the ability to thread over
subslices. Obviously, this is useful. We will come back to this feature when we
talk about other ways of defining threading functions using PDL::PP below.

3.9.8 Matching threading dimensions

After this small digression, back to the subject at hand: what happens when
both piddle arguments have extra dimensions? Well, the extra dimensions have
to match. Otherwise we wouldn’t know how to sensibly pair the subslices, right?
So when do extra dimensions match? It is quite simple: corresponding extra
dimensions have to have the same size in both piddle arguments. Corresponding
extra dimensions are those that occur in both piddles. However, one piddle
can have more extra dimensions than the other without causing a mismatch.
That sounds strange? Ok, here is an example. We use one of the fundamental
arithmetic operations in PDL, addition implemented by the ’+’ operator. You
know already that in an array-oriented language like PDL addition is performed
element-by-element on scalars. So the signature of ’+’ comes as no surprise

a(); b(); [o] c()

two scalars are summed to yield a scalar result. And when we use higher di-
mensional piddles in an addition this elementary operation is performed over
all 0D subslices, as before. So let’s go through a few cases. First make some
simple piddles

$a = pdl [1,2,3];
$b = pdl [1,1,1];
$c = ones 3,2;
$d = pdl [3,4];

print $a + $b,"\n";

No big deal. Extradims for both piddles have shape [3] obviously matching,
resulting in

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS69

[2 3 4]

Next,

print $a + $c;

[
[2 3 4]
[2 3 4]

]

Alright, this probably is exactly what you expected but let us go through our
new terminology and check that we can formally agree with what we intuitively
expected anyway.

$a’s extradim(s) has shape [3], those of $c shape [3 2]. The corresponding
extradim(s) in this case is just the first one for the piddles involved. It is equal
to 3 in both input piddles, so clearly matches.

$a $c
a(); b(); [o] c()
()[3] ()[3,2] ?????

Now, here is something we have not explicitly discussed yet: what is the shape
of the automatically created output piddle given the shape of the extradims of
the input piddles involved? Well, the result is created so that it has as many
extradims as that input piddle(s) with the most extradims. Additionally, the
shape will match that of the input piddles. In our current example that leaves
us with a result with extradim shape [3,2]:

[o] c()
()[3,2]

Remembering that we obtain the shape of the output piddle by appending the
shapes of the extradims to that of the elementary dimensions (here a scalar, i.e.
0D) that leaves us with a result piddle of shape [3,2].

In the next example we want to multiply $c with $d so that each row of $c is
multiplied by the corresponding element of $d or expressed in slices

$result->slice("($i),($j)") = $c->slice("($i),($j)") *
$d->slice("($j)") $i=0..2, $j=0..1

How do we achieve that by threading?

$result = $c*$d

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS70

is not the right way. Why? Well, the extradims don’t match, [3,2] does not
match [2] since 2 is not equal to 3. Just to see how PDL checks this let us
actually execute the command. The slightly obscure error message is something
like this

PDL barfed: PDL: overloaded operator: Parameter ’b’:
Mismatched Implicit thread dimension 0: should be 3, is 2
at [...]

This is PDL’s way to tell you that the extra dimensions don’t match.

So how do we do it? We use one of the dimension manipulation methods again.
This time dummy comes in handy. We want to multiply each element in the nth
row of $c with the nth element of $d. So we have to repeat each element of $d
as many times as there are elements in each row of $c. This is exactly what
we can achieve by inserting a dummy dimension of size C<$c-¿getdim(0)> as
dimension 0 of $d:

print $d->dummy(0,$c->getdim(0))->pdim("New dims");

Using this trick we have a our threaded multiplication do what we want. And
now the extra dimensions match(!):

$result = $c * $d->dummy(0,$c->getdim(0));
print $result;

Using our symbolic way of writing down the slices that are paired in a elementary
operation we can see that we achieve what we wanted

$c $d->dummy(0,$c->getdim(0)) $result
"($i),(j)" "($i),($j)" "($i),($j)"

But hang on, we want to verify (somewhat formally) that the right subslices of
the original $d are used in each elementary operation. That is easily achieved by
noting that the slice ”($i),($j)” of the dummied $d is equivalent to the subslice
”($j)” of the original 1D piddle $d. So we finally arrive at

$c $d $result
"($i),(j)" "($j)" "($i),($j)"

While this kind of analysis seems probably not justified when dealing with such a
simple example it comes in very handy when looking at more complex threaded
code.

But before we try our understanding on such an example we look once again at
the way extra dims have to match in a thread loop. In the previous example,
we had to find out about the size of $c’s first dimension (using getdim(0))

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS71

to make a dummy dimension that would fit $c’s extradims in the threaded
multiplication. Since similar situations occur very often when writing threaded
PDL code the matching rules for extra dimensions allow a dimension size of 1 to
match any other dimension size: it is the elastic dimension size in a sense that
it grows in a thread loop as required. As in the thread loop the corresponding
extra dimension is marched through all its positions (e.g. slice(":,($i)")
$i=0..n-1) the elastic dimension just uses its one and only position 0 repeatedly
(slice(":,(0)") $i=0..n-1). Therefore, an equivalent and more concise way
to write the threaded multiplications makes use of this and the fact that a
dummy dimension of size 1 is created by default if the second argument is
omitted (see help dummy)

print $c->pdim(’c’) * $d->dummy(0)->pdim(’dd’);

$A [l,m] $B [n,l] $AB [n,m]

$AB = inner $A->dummy(1), $B->xchg(0,1)

$A->dummy(1) $B->xchg(0,1) $AB
(l)[1,m] (l)[n] ()[n,m]
":,(0),($j)" ":,($i)" "($i)($j)"

Going back to the original piddles $A and $B we see that the slice expressions
change to

$A $B $AB
":,($j)" "($i),:" "($i),($j)"

and that means

$AB->slice("($i),($j)") = inner $A->slice(":,($j)"),
$B->slice("($i),:") $i=0..n-1, $j=0..m-1

and that is exactly the definition of the matrix product as we explained above!
Our bit of formalism has sort of ”proved” it. You see that the slice and dimen-
sion matching formalism we developed can really be helpful when you try to
verify that your complicated threading expression does what you want it to do.
However, as you get more experience with threading we strongly suspect that
you don’t need this any more; you will rather develop a much better ”feeling”
how to write down the right combination of dimension manipulations to achieve
the desired result in a thread loop.

end current text

1 -- elastic dim size
centroid example
matmult

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS72

output args -> creation rules otherwise as any other argument in threadloop

vector transformation (matrix x vector)

matrix multiplication

fwhm spread

3.9.9 Promotion: When a piddle has less dimensions than
required

Promotion: why and how

3.9.10 Calling conventions and tight loops

3.9.11 Manipulating indices — generalised slicing

determine a shift between 2 images ->lags->lags->inner2d

s$a�����HHH
HH

slice

lags

s$b
$a->slice(’0:5’)

s$c $a->lags(0,2,3)

3.9.12 Memory and speed implications — Vaffines

Implementation matters

3.9.13 writing your own threading aware function — at
the perl level!

maybe in advsci chapter on own modules

3.9.14 A worked example

code to generate surface

code to show surface and normals

calculate smooth normals

CHAPTER 3. SLICING, DICING AND THREADING WITH PDL DIMENSIONS73

sub smoothn {
my ($this,$p) = @_;
coords of parallel sides (left and right via ’lags’)
my $trip = $p->lags(1,1,2)->slice(’:,:,:,1:-1’) -

$p->lags(1,1,2)->slice(’:,:,:,0:-2’);
coords of diagonals with dim 2 having original and reflected diags
my $tmp;
my $trid = ($p->slice(’:,0:-2,1:-1’)-$p->slice(’:,1:-1,0:-2’))

->dummy(2,2);
$ortho is a (3D,x-1,left/right triangle,y-1) array that enumerates
all triangles
my $ortho = $trip->crossp($trid);
$ortho->norm($ortho); # normalise inplace

now add to vertices to smooth
my $aver = ref($p)->zeroes($p->dims);
step 1, upper right tri0, upper left tri1
($tmp=$aver->lags(1,1,2)->slice(’:,:,:,1:-1’)) += $ortho;
step 2, lower right tri0, lower left tri1
($tmp=$aver->lags(1,1,2)->slice(’:,:,:,0:-2’)) += $ortho;
step 3, upper left tri0
($tmp=$aver->slice(’:,0:-2,1:-1’)) += $ortho->slice(’:,:,(0)’);
step 4, lower right tri1
($tmp=$aver->slice(’:,1:-1,0:-2’)) += $ortho->slice(’:,:,(1)’);
$aver->norm($aver);
return $aver;

}

code to show smoothed surface

3.9.15 explicit threading for complex cases

Chapter 4

Graphics with PDL

4.1 Introduction

Some words of wisdom here

74

CHAPTER 4. GRAPHICS WITH PDL 75

4.2 2-dimensional graphics using PGPLOT

A central requirement of any data analysis package is the possibility of visual-
isation of data. PDL deals with this in a slightly different manner than some
other packages in that no built-in graphics library is used, instead it uses other
freely available external packages. In this chapter we will focus on the main 2D
plotting package, PGPLOT. The 3D interface is detailed in the next chapter.

Here we will cover the use of the PDL::Graphics::PGPLOT package which uses
the freely available PGPLOT subroutine package written by Tim Pearson1. This
is a very powerful package and PDL::Graphics::PGPLOT does not provide easy
access to everything in the PGPLOT package, although it hopefully does most
of what you will need.

For advanced use you might have to use some PGPLOT commands directly, see
section 4.9 for a discussion of this. But even if you don’t you are recommended
to at least keep a copy of the PGPLOT documentation lying around. It is
available from http://www.astro.caltech.edu/~tjp/pgplot.

The goals of the chapter is to familiarise the reader with the PDL interface to
PGPLOT and show how complicated datasets can be easily manipulated and
displayed. The focus will be on interactive use to facilitate learning, but at the
end we will turn to an object-oriented interface that might be more suited for
scripts.

To use PDL::Graphics::PGPLOT it is necessary to have the PGPLOT pack-
age installed, and in addition have the Perl PGPLOT module (written by Karl
Glazebrook and available through CPAN) installed and working. In the follow-
ing we will assume that you have this all set up.

4.3 Introducing PDL::Graphics::PGPLOT

2-dimensional graphics in PDL is normally performed by the PDL::Graphics::PGPLOT
module. The PDL::Graphics::PGPLOT package must be use’ed to give access
to the commands. This introduction will be based on interactivity and use of
perldl (see also The Whirlwind tour in chapter 1):

perldl> use PDL::Graphics::PGPLOT;

That is what you need to get running. We will now play around with a couple
of commands before we turn to a systematic overview in the next two sections.
We will concentrate on the line and points commands which draws continuous
lines and individual plotting symbols respectively. The final result should look
similar to Figure 4.1.

The first step is to start perldl and use the PDL::Graphics::PGPLOT package
(some output is suppressed)

1PGPLOT can be obtained from http://www.astro.caltech.edu/~tjp/pgplot/

CHAPTER 4. GRAPHICS WITH PDL 76

Figure 4.1: Our first try at using PDL::Graphics::PGPLOT.

> perldl
Type ’help’ for online help
Type ’demo’ for online demos
Loaded PDL v2.1
perldl> use PDL::Graphics::PGPLOT

Now we need to open a graphics device — there are quite a few that are sup-
ported by PGPLOT, here we will use a normal plot window that can be re-used

perldl> dev(’/xs’)

You should now have a large plot window on your screen, if you had some
problems try to do dev(’?’) which will give you a list of available devices and
allow you to choose one.

We first need to define a variable to have something to plot. The first plan is
to simply plot a parabola and a Gaussian (bell) function as in the left panel in
Figure 4.1, so we need an x-variable that is both positive and negative.

perldl> $x=zeroes(100)->xlinvals(-5, 5)

This creates a 100 element piddle starting at −5 and ending at 5. We can then
very easily draw a parabola

perldl> line $x, $x*$x/12.5, {LINESTYLE=>’DASHED’, Colour=>red}

which should draw a nice parabola with a dashed red line. As should be clear the
line command draws a line and takes the x and y coordinates of the points on
the line as arguments and options to the command are given as an anonymous
hash.

CHAPTER 4. GRAPHICS WITH PDL 77

We now want to plot a Gaussian on top of this, but if we were just to issue
another plot command it would by default erase the screen, so instead we call
the hold function to stop that from happening

perldl> hold

We can then continue plotting, now using symbols instead of a line

perldl> points $x, exp(-$x*$x/2), {Symbol => ’Plus’};

Again, note that the function points function plots symbols instead of lines.
PGPLOT has a large array of symbols, normally accessed using numbers, but
the most common have text aliases defined.

The only thing left for us now is to ensure that the next plot will start afresh.
Since we issued the hold command all subsequent plots will overplot the existing
ones and since we do not want that anymore, we therefore have to release the
device to the next set of plot commands:

perldl> release;

As a second example we will show how you can create plots with error bars. We
will just carry on so the previous plot will be erased (enjoy it while you can).
We first have to define some variables for the plot, so we need the x&y variables
and the error on y.

perldl> $x = pdl(0.88, 0.223, 0.815, 0.606, 0.188, 0.360)
perldl> $y = pdl(24.52, 22.24, 25.43, 23.54, 22.63, 23.59)
perldl> $dy = pdl(0.57, 0.07, 0.84, 0.27, 0.12, 0.28)

In the previous example we let PGPLOT decide on the plotting ranges we were
going to use, but now we want some more control over it. To do so we set it up
using the env command

perldl> env(0, 1, 22, 26)

which sets the X-axis to go from 0 to 1 and the Y-axis from 22 to 26.

That is really all that is needed before plotting the error bars:

perldl> errb $x, $v, $dv, Symbol => ’Square’;

Voilá. It almost looks like science. Of course in real life error-bars might not be
symmetric (although you often wish they were), and we will explain how to do
this later when we discuss errb in more detail below.

CHAPTER 4. GRAPHICS WITH PDL 78

4.4 An overview of 2D plotting commands

Before we proceed to an overview of all commands in PDL::Graphics::PGPLOT
it is necessary to define a couple of terms: The first is the concept of device
— this is what the plotting commands work on, often this will be a screen
device which shows resulting output on the screen in a window, but it can also
be output to a file in some sort of format. Then inside each device there is a
plotting area within which plotting commands gives a noticeable result.

Another important concept is holding of plots. When a plot is held, any subse-
quent plot commands will plot on top of the existing plot. To explicitly hold a
plot you issue the command hold and to release it again you use release.

Finally most commands described in the following take a set of options. These
are values that can be set to modify the default behaviour of the plotting routine
and are very useful so we will first discuss the standard options and how options
are specified.

4.4.1 Options in plot commands

As mentioned above and seen in the brief introduction to the PGPLOT interface
earlier, we use options to modify the behaviour of plot commands. Below we
will often see examples of specific options, those that are only recognised by a
particular plot command. However in addition there are general options that
are recognised by many or all plot commands. These are normally the options
you use most so it is important to know these.

But first, how do you specify an option? If you read through the walk-through
above you have probably already realised that they are set as keys in a hash:

line $x, $y, {Colour => 3}

However due to the way they are implemented in the code (using the PDL::Options
package) the hash is more flexible than normal Perl hashes. Firstly the options
are case-insensitive and secondly some have synonyms defined so that for in-
stance Color and Colour are both accepted to avoid bad feelings on one side of
the Atlantic. Finally most, if not all, options can be shortened so that Lines
will be interpreted as LineStyle. This is mostly useful when working on the
perldl command line however as it is error-prone in scripts (imagine that some-
one later implemented a Lines option which did something totally different, like
draw 10 parallell lines, yeah, quite likely).

The following listing of standard options is based on the on-line documentation
which you can access yourself inside perldl as

perldl> help PDL::Graphics::PGPLOT::Window

or on a command line using the pdldoc command

CHAPTER 4. GRAPHICS WITH PDL 79

odin> pdldoc PDL::Graphics::PGPLOT::Window

It is not envisaged that the standard option set will be significantly expanded
from that listed here, but the on-line documentation should reflect any changes
if they take place.

Arrow This options allows you to set the arrow shape, and optionally size for
arrows for the vect routine. The arrow shape is specified as a hash with
the key FS to set fill style, Angle to set the opening angle of the arrow
head, Vent to set how much of the arrow head is cut out and Size to set
the arrowsize.

The following

perldl> $opt = {Arrow => {FS=>1, Angle=>60, Vent=>0.3, Size=>5}};

will set up an options hash for a broad arrow of five times the normal size.

Alternatively the arrow can be specified as a set of numbers corresponding
to an extention to the syntax for the PGPLOT command pgsah. The
equivalent to the above is

perldl> $opt = {Arrow => pdl([1, 60, 0.3, 5])};

For the latter the arguments must be in the given order, and if any are
not given the default values of 1, 45, 0.3 and 1.0 respectively will be used.

Arrowsize The arrowsize can be specified separately using this option to the
options hash. It is useful if an arrowstyle has been set up and one wants to
plot the same arrow with several sizes. Please note that it is not possible
to set arrowsize and character size in the same call to a plotting function.
This should not be a problem in most cases.

perldl> $opt = {ARROWSIZE => 2.5};

Axis Set the axis type (see the env command below in section 4.4.4) It can
either be specified as a number, or by a name as in the following table

CHAPTER 4. GRAPHICS WITH PDL 80

Name Numerical Explanation
Empty -2 draw no box, axes or labels
Box -1 draw box only
Normal 0 draw box and label it with coordinates
Axes 1 same as Normal, but also draw (X =

0,Y = 0) axes
Grid 2 same as Axes, but also draw grid lines
LogX 10 draw box and label X-axis logarithmi-

cally
LogY 20 draw box and label Y-axis logarithmi-

cally
LogXY 30 draw box and label both axes logarith-

mically

The reason why this command is accepted by most commands is that
when a command is called before a plot area is set up it will implicitly
call env which interprets this option.

AxisColour Set the axis colour using the same syntax as for the Colour option
below.

Border Normally the plot limits are chosen so that the plotted points just fit
inside the plot area; with this option you can increase (or decrease) the
limits by either a relative (ie a fraction of the original axis width) or an
absolute amount. Either specify a hash array, where the keys are Type
(set to ’Relative’ or ’Absolute’) and Value (the amount to change the
limits by), or set to 1, which is equivalent to

Border => { Type => ’Rel’, Value => 0.05 }

Charsize Set the character/symbol size as a multiple of the standard size.

$opt = {Charsize => 1.5}

Colour Set the colour to be used for the subsequent plotting — it has color as
a synonym.. This can be specified as a number, and the most used colours
can also be specified with name, according to the following table:

0 White 1 Black 2 Red 3 Green 4 Blue
5 Cyan 6 Magenta 7 Yellow 8 Orange 14 Darkgray

16 Lightgray

However there is a much more flexible mechanism to deal with colour. The
colour can be set as a 3 or 4 element anonymous array (or piddle) which
gives the RGB colours. If the array has four elements the first element
is taken to be the colour index to change. For normal work you might

CHAPTER 4. GRAPHICS WITH PDL 81

want to simply use a 3 element array with R, G and B values and let the
package deal with the details. The R,G and B values go from 0 to 1.

In addition the package will also try to interpret non-recognised colour
names using the default X11 lookup table, normally using the rgb.txt
that came with PGPLOT.

For more details on the handling of colour it is best that the user consults
the PGPLOT documentation. Further details on the handling of colour
can be found in the documentation for the internal routine set colour.

Filltype Set the fill type to be used by poly, circle, ellipse and rectangle.
The fill can either be specified using numbers or name, according to the
following table, where the recognised name is shown in capitals - it is
case-insensitive, but the whole name must be specified.

1 Solid 2 Outline 3 Hatched 4 CrossHatched

$opt = {Filltype => ’Solid’};

(see below for an example of hatched fill)

Font Set the character font. This can either be specified as a number following
the PGPLOT numbering or name as follows (name in capitals):

1 Normal 2 Roman 3 Italic 4 Script

Note that in a string, the font can be changed using the escape sequences
\fn, \fr, \fi and \fs respectively. See the documentation in section 4.4.9
for more information regarding escape sequences.

$opt = {Font => ’Roman’};

gives the same result as

$opt = {Font => 2};

Hatching Set the hatching to be used if either fillstyle 3 or 4 is selected (see
above) The specification is similar to the one for specifying arrows. The
arguments for the hatching is either given using a hash with the key
Angle to set the angle that the hatch lines will make with the hor-
izontal, Separation to set the spacing of the hatch lines in units of
1% of min(height,width) of the view surface, and Phase to set the off-
set the hatching. Alternatively this can be specified as a 1x3 piddle
$hatch=pdl[$angle, $sep, $phase].

CHAPTER 4. GRAPHICS WITH PDL 82

$opt = {Filltype => ’Hatched’,
Hatching => {Angle=>30, Separation=>4}};

Can also be specified as

$opt = {Fill=> ’Hatched’, Hatch => pdl [30,4,0.0]};

For another example of hatching, see the command poly in section 4.4.5
below.

Justify A boolean value which, if true, causes both axes to drawn to the same
scale. If you want more information about this option you are advised to
consule the PGPLOT documenation for the pgenv command.

Linestyle Set the line style. This can either be specified as a number following
the PGPLOT numbering or as a name as shown in the following table.

1 Solid 2 Dashed
3 Dot-Dash 4 Dotted
5 Dash-Dot-Dot

Thus the following two specifications both specify the line to be dotted:

$opt = {Linestyle => 4};
$varopt = {Linestyle => ’Dotted’};

The names are not case sensitive, but the full name is required.

Linewidth Set the line width. It is specified as a integer multiple of 0.13 mm.

$opt = {Linewidth => 10}; # A rather fat line

PlotPosition The position of the plot on the page relative to the view surface
in normalised coordinates as an anonymous array. The array should con-
tain the lower and upper X-limits and then the lower and upper Y-limits.
To place two plots above each other with no space between them you could
do

$win->env(0, 1, 0, 1, {PlotPosition => [0.1, 0.5, 0.1, 0.5]});
$win->env(5, 9, 0, 8, {PlotPosition => [0.1, 0.5, 0.5, 0.9]});

CHAPTER 4. GRAPHICS WITH PDL 83

Symbol The plot symbol to use, with the default being 17 which gives a small
filled circle. This is an option for points and errb at the moment, but
could be used for others too. It is either given a piddle with the same
number of elements as the plot variable, a name (or number) specifying
the symbol to use according to the following (recognised name in capital
letters):

0 Square 1 Dot 2 Plus 3 Asterisk
4 Circle 5 Cross 7 Triangle 8 Earth
9 Sun 11 Diamond 12 Star 17 Default

PGPLOT has support for a much larger number of symbols. The reader
is advised to consult the PGPLOT documentation for further information
or write a short program that loops through all symbols. Note however
that there are a lot. For instance symbol 2830 is a cyrillic character —
the system used is the Hershey system for symbols. In addition you draw
regular polygons with n-sides by setting the symbol to −n although −1
and −2 draws a dot with the diameter set to the current linewidth.

Title The title on top of the plot box.

XTitle The title for the X-axis of the plot.

YTitle The title along the Y-axis.

4.4.2 Hard-copies and plot options

The default options for screen display are not ideal for hard-copies (typically
PostScript). Thus there is a separate set of options for certain properties when
the output device is a hard-copy one. Here we will quickly summarize these

HardLW The line width used on hard-copy devices. The default is 4.

HardCH The character size used on hard-copy devices. The default is 1.4.

HardFont The default font used on hard-copy devices. It defaults to 2.

HardAxisColour The default colour to draw the axis with on a hard-copy
device. This is particularly important since light green (default screen
colour) is not very visible on paper. The default is 1 (black). The setting
of colours work as with Colour

HardColour The default plot colour on hard-copy devices, it defaults to 1
(black).

These options should be set either in the call to dev (see section 4.4.4 below) or
redefined using the method outlined in the next section.

CHAPTER 4. GRAPHICS WITH PDL 84

4.4.3 Setting default values for options

You might not be happy with the default settings for the various options and
want to set a different value permanently instead of specifying it with every call
to dev, env or some other command. There is some support for this, but it is
limited in that it is not case-insensitive nor does it have synonyms (except for
colour/color) so the options must be written as above. (You will be notified if
you did something wrong).

That said it is fairly easy to use. You would normally set this in your .perldlrc
file (see XXXX). The relevant function is set pgplot options which takes a
hash as argument with the options and their values, as in the following example:

use PDL::Graphics::PGPLOTOptions (’set_pgplot_options’);
set_pgplot_options(’Device’ => ’/xs’, ’LineWidth’ => 10);

Note that some settings might affect more than you like. In particular the
LineWidth and LineStyle options will also affect the axis and axis labels drawn.
Unless you are after the blurred, completely unreadable look that is not what
you want. Trust me. However character size, device default plot symbol, border
and other options can be conveniently be specified in this way.

4.4.4 Setting up the plot area

The first step for the budding plot maker is to set up the drawing area. This
involves selecting what device you want to create the plots on and then setting
the region you want to plot in2.

The destination for your plot commands is set with the dev command, and with
different arguments to dev you can send plots to various output devices such as

GIF files — dev(’giffile.gif/gif’)

Postscript files — dev(’filename.ps/ps’)

X-windows plotting windows — dev(’/xs’)

If you wish to have several plotting panels per page you can specify the number
in the x and y directions as further arguments to dev so that to get four panels
you would write dev(’/xs’, 2, 2).

For more detailed control over the created device, you can specify various op-
tions. The main four options you might use are

Aspect The aspect ratio of a newly created output device. If your device is
a graphics window under a window system, this might or might not be

2Note that it is actually not necessary to do this manually as PDL::Graphics::PGPLOT
will do this automatically for you as in the previous section, but very often you would want
to modify this.

CHAPTER 4. GRAPHICS WITH PDL 85

applied when the window is created, but it should be updated as soon as
you plot to it. The default value is 0.618, ie. the golden ratio.

WindowWidth The width of the created output window. The width is specified
in units of inches, which is reasonably easy to deal with when printing out,
but if your device is a graphics window it is all a bit more unclear since
different setups might have different ideas of what an inch corresponds to
in pixels.

WindowXSize The X-size of the plot window, specified as WindowWidth and
combined with Aspect if WindowYSize is not set.

WindowYSize As above but for the Y-size.

NX and NY These two options set the number of panels in the X and Y direc-
tion respectively and are alternatives to specifying the numbers of panels
directly in the call to dev as dev(<device>, <nx>, <ny>).

The options are specified in an anonymous hash so that

perldl> dev(’/xs’, {NX => 4, NY => 2})

will create a plot window with four panels in the X-direction and 2 in the Y-
direction, with a default aspect ration and size. Alternatively the same window
could have a specified width and aspect ratio by specifying those options as

perldl> dev(’/xs’, {NX => 4, NY => 2, Aspect => 1, WindowWidth => 5})

However dev does not actually draw anything for you, it merely selects the
output device. To set up a plot you either call a plot command directly, or if
you want more control over the axis ranges you use the command env. This
useful command takes the upper and lower limits in X and Y as input

env(0, 1, 0, 1);

sets up a plotting area with both axes going from 0 to 1. If a logarithmic axis
is desired this can be achieved by passing an option to the env command, we
can also use this to set the axis labels

CHAPTER 4. GRAPHICS WITH PDL 86

env(1, 1000, 0, 1, {Axis => ’LOGX’,

Xtitle => ’X-axis’, Ytitle => ’Y-axis’})

further info on the Axis option can be found in section 4.4.1.

It is important to realise that when you call env explicitly it automatically holds
the plot for you, so subsequent plot commands will plot on top of the plotting
area, and if you want to make a new plot you need either to call env again or
call release explicitly.

4.4.5 Drawing lines and plotting points

The most important commands in the graphics package are probably the line
drawing and point plotting commands line and points. The most basic com-
mand is points which plots particular symbols at given x&y values:

perldl> $x = sequence(10)
perldl> $y = $x*$x + 1
perldl> points $x, $y

The action of the points command can be modified by adding options. The
most important is Symbol which changes the plot symbol and Charsize which
changes the size of plot symbols; in addition the Plotline option is a toggle
which if set causes a line to be drawn through the plots:

perldl> points $x, $y, {Symbol => ’Triangle’,

Plotline => 1, Charsize => 5}

The string Triangle is equivalent to symbol number 7 and in general sym-
bols will have to be accessed using the numerical system, but there are textual
equivalents for many commonly used symbols (see section 4.4.1). The points
command does also accept a piddle as the symbol value, in which case it should
have the same length as $x and $y and each point will be plotted with the
corresponding symbol value.

CHAPTER 4. GRAPHICS WITH PDL 87

Plotting error-bars Closely related to points is the routine for plotting
symbols with error-bars, errb. This can be called in a variety of ways to allow
for various ways of giving errorbars and whether horisontal or vertical errorbars
are required. A typical call is

perldl> env(0, 5, -2, 30)

perldl> $x=sequence(10)/2.0; $y=$x*$x

perldl> $dy = sqrt($x+1);

perldl> errb $x, $y, $dy,

{Symbol => ’Square’}

which plots squares with symmetrical vertical error-bars. To get error bars in
the horisontal direction one give these before the y-errors. Likewise it is possible
to get asymmetric error-bars by giving the upper and lower limits of the error
bars separately for the X and Y variables as in the following example

perldl> $x2 = pdl(1.5, 2.3, 4.7)

perldl> $y2 = pdl(10, 22, 0)

perldl> $dx = $x2->zeroes(); # No X-errors

perldl> $y_u= pdl(12,29,1)-$y2

perldl> $y_l= $y2 - pdl(7, 20, -2)

perldl> errb $x2, $y2, $dx, $dx,

$y_l, $y_u, {Symbol => ’Triangle’}

Drawing lines We saw above that we could draw lines between points by
setting the PlotLine option to points, however there are much better ways to
draw lines. The basic line-drawing command is line which draws a straight
line between each point.

perldl> $x = zeroes(10)->xlinvals(-3, 3)

perldl> line $x, sin($x)

The style, width and colour of the line can be changed with the options LineStyle,
LineWidth and Colour/Color respectively as outlined in section 4.4.1 above.

Plotting histograms A very similar command is bin which is useful for
plotting histograms. This command draws horisontal lines between xi and xi+1

with the value yi.

CHAPTER 4. GRAPHICS WITH PDL 88

perldl> $x = zeroes(10)->xlinvals(-3, 3)

perldl> bin $x, sin($x)

By default the routine assumes that the X-values are the start points of the bin,
if instead your values are for the centers of the bins, you need to set the option
Centre/Center to a true value. In addition the appearance of the lines can be
modified using the same options as for the line command.

Drawing polygons Finally the poly command is like line but fills the poly-
gon defined by $x and $y with the chosen fillstyle (defaults to solid fill). If
you display this you should consider putting FillStyle => ’Outline’ in your
.perldlrc file as explained in section 4.4.3, or you can set it explicitly as in the
following example:

perldl> $x=zeroes(20)->xlinvals(-2,2);

perldl> $y=exp(-$x*$x);

perldl> $xpoly = append($x->where($x <= 0),

pdl(0));

perldl> $ypoly = append($y->where($x <= 0),

pdl(0));

perldl> poly $xpoly, $ypoly, {FillType => ’Hatched’};

In this example it is worth noting the added complications to ensure that the
polygon is closed. In addition we have used the option FillType to change the
style of fill used. This can be finely adjusted if necessary, for further examples
see the PDL::Graphics::PGPLOT help file and the discussion of FillType in
section 4.4.1.

4.4.6 Displaying images

PGPLOT was originally designed for astronomy and as such it has good support
for the display of 2D-data. In PDL this support has been simplified and there
is now only one command for image display, imag, which internally chooses
between different PGPLOT display commands. The simplest use of imag is to
let it act on a 2D piddle so

CHAPTER 4. GRAPHICS WITH PDL 89

perldl> $a = rvals(50,50,

{Center => [25, 25]});
perldl> imag $a;

should produce a symmetric shape in your graphics window.

However, most likely you will find that the shape is not circularly symmetric
because the aspect ratio of your graphics window is different from 1. How
then can we correct this? The easiest solution is probably to make sure that
your graphics device has aspect ratio 1 by giving the Aspect option to the dev
command (see 4.4.4).

That isn’t always an option though, and an alternative approach is to use the
option Pix to the imag command. This lets you adjust the aspect ratio of the
image pixels. You can in addition specify the number of image pixels per screen
unit with the option Pitch so that to display the previous image with square
pixels and 2 image pixels per screen pixel you use

perldl> imag $a, { Pix => 1, Pitch => 2 }

You can also use Unit to specify the unit used for scaling and Scale for the
reciprocal of Pitch, see the PDL::Graphics::PGPLOT documentation for de-
tails. The Pix option does only adjust the coordinate ranges and this might not
always be what you require. In such situations a solution might be to create a
square plot window directly as mentioned earlier.

In addition you might want to specify a stretch of the gray-scale of the image.
This can be obtained first by specifying the max and min values of the displayed
image (everything above is set to the max value and everything below to the
min value). This is set with the Min and Max options. Additionally it is possible
to adjust the image transfer function using the option ITF. Allowed values are
Linear, Log and Sqrt.

You can also add a colour bar (colour wedge in PGPLOT parlour) to the image
display. This is accomplished either using the draw wedge (see below) command
directly or by setting the DrawWedge option to true in your call to imag. If you
want to pass options to the draw wedge command, you can do that with the
Wedge option. See below for further details.

Transforms Finally a very useful feature of PGPLOT that is relevant both
to images and also the contour plots (see below) is the concept of a transform
“matrix”. This is a 6 element vector, Ti which maps input pixels into display

CHAPTER 4. GRAPHICS WITH PDL 90

pixels so that pixel i, j is mapped to

Xij = T0 + T1i+ T2j (4.1)
Yij = T3 + T4i+ T5j. (4.2)

It is always simplest to refer to this equation the first few times one sets up a
transform vector.You use this whenever your pixel positions in the real world
were different from that represented by your input image array.

We have put all this together in Example 4.4.6. Here we show the use of the ITF
and and Transform options. Note that using Transform in conjunction with
Pix is going to lead to unwanted results!

Colour bar/wedge It is often desireable to annotate an image with a colour
wedge showing the range of values in the image. This is accomplished with the
draw wedge function in PDL::Graphics::PGPLOT (but you can avoid calling
this directly by setting the DrawWedge option in your call to imag, see above).
This function should normally give a decent result without the user setting any
options except the Label option which sets the annotation, but occasionally it
is necessary to change its behaviour and that is done by setting the following
options:

Side What side the wedge will appear on, the default is the right side and it
is specified as a single character, ’B’ for bottom, ’L’, ’T’ and ’R’ for left,
top and right respectively.

Displacement The distance away from the axis. Default=2.

Width The width of the wedge. Default=3

Foreground The value to set the foreground colour to. This can be referred to
as Fg as well. The default is the max value used by imag when drawing
the image.

Background The value to set the background colour to. This can be referred
to as Bg as well. The default is the min value used by imag when drawing
the image.

Label The label used to annotate the wedge.

Note that you will sometimes need to directly set the plot size to avoid clipping
in the display. A full example that shows the use of draw wedge can be seen in
Figure 4.3 where we display a galaxy and display a look-up table next too it.

4.4.7 Contour plots and vector fields

Contour plots are very similar to image displays and display lines at particular
levels of the image. The function to create contour plots is cont which at the

CHAPTER 4. GRAPHICS WITH PDL 91

use PDL;

use PDL::Graphics::PGPLOT;

Create two plot areas in the X-directions

dev(’/xs’, 2, 1);

Create a Gaussian around the center of the image

$a=rvals(101, 101, {Center => [50, 50]});
$y = exp(-$a*$a/50.);

Display with a linear transfer function

imag $y;

This transform vector maps the extreme points to ± 10
my $tr = pdl(-10, 1.0/5.0, 0, -10, 0, 1.0/5.0);

Finally display the image with the transform and

a logarithmic transfer function.

imag $y, {Transform => $tr, ITF => ’Log’};

Figure 4.2: Contrasting two different ways of displaying the same image. On
the left is the default display of a Gaussian, whereas on this right is the result
when mapping the pixels to a range from −10 to 10 with a logarithmic transfer
function.

CHAPTER 4. GRAPHICS WITH PDL 92

dev ’/xs’, {WindowWidth => 6, Aspect => 1};
$im = rfits(’Frei/n4013_lJ.fits’);

$im += abs(min($im)-1);

$im = log10($im);

imag($im, {PlotPosition => [0.1, 0.85, 0.175, 0.925],

Min => 2.6, Max => 2.0 });
draw_wedge({Wedge => {Width => 4, Label => ’Log Counts’,

Displacement => 1}});

Figure 4.3: An example of the use of the draw wedge command.

CHAPTER 4. GRAPHICS WITH PDL 93

simplest level only takes a 2D array as its argument.

$a = sequence(100,100); cont $a;

That might be all you need, but most likely you would like to specify contour
levels, label contours and maybe draw them in different colours.

You use the option Contours to give the wanted contour levels as a piddle and
Labels to give an anonymous array of strings for labels as shown in the example
below

use PDL;

use PDL::Graphics::PGPLOT;

dev(’/xs’);

$y = ylinvals(zeroes(100,100), -5, 5);

$x = xlinvals(zeroes(100,100), -5, 5);

$z = cos($x**2)+sin($y*2);

cont $z, {Contours => pdl(-1, 0, 1),

Labels => [’-1’, ’0’, ’1’]};

In addition it is possible to colour the labels differently from the contour lines
(LabelColour), to specify the number of contours instead of their values (NContours)
and to draw negative contours as dashed lines and positive as solid lines by set-
ting the option Follow to a value > 0.

Overlaying a contour plot on top of an image is as easy as displaying the image,
call hold and display the contour plot. The reader might want to try a colour
version of the example above ($z as in the example):

perldl> ctab(’Fire’);
perldl> imag $z; hold;
perldl> cont $z, {Contours => pdl(-1,0,1)};

The final 2D plot command we will deal with here is the command for plotting
a vector field, vect. This command takes two arrays as arguments. The first
gives the horisontal component and the second the vertical component of the
vector field. The length of the vectors can be set using the SCALE option and
the position relative to the pixel centers with the option POS.

What is important to note with a command like vect is that you can use the

CHAPTER 4. GRAPHICS WITH PDL 94

Transform option to map a smaller vector array to a larger image. This is often
useful because a vector field with 256 × 256 arrows on top of a similarly sized
image will quickly be unreadable. The result of using this technique is shown
in Figure 4.4 together with the code that produced the plot.

4.4.8 Drawing simple shapes

In addition to the simple commands described above, there are a few convenient
commands for drawing simple shapes such as circles, ellipses and rectangles.
These are fairly straightforward commands with similar options and invocations
so I will go through them fairly quickly. A common issue with these commands
as with the poly command is that they draw filled shapes, if you want outlined
shapes to be drawn you have to set the Filltype option to Outline.

The circle command is probably the simplest, it draws a circle (which may or
may not look like a circle depending on the aspect ratio of your display — see
section 4.4.4 above). The user specifies the radius and the X&Y position of the
centre

perldl> dev ’/xs’, {Aspect => 1, WindowWidth => 5}
perldl> env 0, 10, 0, 10

perldl> $radius=2; ($x, $y) = (4, 4)

perldl> circle $x, $y, $radius, {LineWidth => 3}

The radius and position of the centre can also be specified using the Radius,
XCenter and YCenter options instead of as arguments — use whichever seems
more natural.

The ellipse function is like the circle function but it requires the user to
specify the minor and major axis and the angle between the major axis and the
horisontal. For ease of use it is probably better to specify these as options, but
if you remember the order you can also give them directly as arguments to the
function (x-position, y-position, major axis, minor axis, angle)

CHAPTER 4. GRAPHICS WITH PDL 95

perldl> $x = xlinvals(zeroes(100,100), -5, 5)
perldl> $y = ylinvals(zeroes(100,100), -5, 5)
perldl> $z = sin($x*$y/2)
perldl> imag $z; hold;
Show the partial derivatives wrt. x & y as vectors

perldl> $xcomp = $x*cos($x*$y/2)/2
perldl> $ycomp = $y*cos($x*$y/2)/2
We want to show only every sixth vector for clarity

perldl> $s = ’0:-1:10,0:-1:10’;
Finally we need to map the final 10x10 array to the 100x100 image

perldl> $tr = pdl(0,10,0,0,0,10)
perldl> vect $xcomp->slice($s), $ycomp->slice($s), {Transform=>$tr}

Figure 4.4: An example of the vect command

CHAPTER 4. GRAPHICS WITH PDL 96

perldl> dev ’/xs’, {Aspect => 1, WindowWidth => 5}
perldl> env 0, 10, 0, 10

perldl> ellipse 4, 4, {MajorAxis => 2,

MinorAxis => 1, Theta => atan2(1,1)}

And finally the rectangle command draws rectangles where you can give the
position of the centre, the length of the sides and the angle with the horisontal.
The operation is very similar to the ellipse command with the length of the
sides of the rectangle taking place of the major and minor axis.

perldl> dev ’/xs’, {Aspect => 1, WindowWidth => 5}
perldl> env 0, 10, 0, 10

perldl> rectangle 4, 4, {XSide => 2,

YSide => 1, Angle => atan2(1,1)}

Note that Angle and Theta are synonyms.

In addition you can set the sides to be similar by setting the Side option to the
length you require. The lengths are all specified in data-coordinates (which is
why you should do a plot or call env before using any of these commands).

For other shapes or when these are not sufficiently flexible you should use the
poly command which is called by both rectangle and ellipse.

4.4.9 Text and legends

The main command for drawing text on the plotting surface is the text com-
mand which at its basic level just draws a string from the given x&y position:

CHAPTER 4. GRAPHICS WITH PDL 97

perldl> dev ’/xs’

perldl> env 0,10,0,10, {Axis => ’GRID’}
perldl> text ’Left justified’, 4, 1

perldl> text ’Centered’, 4, 2,

{Justification => 0.5}
perldl> text ’Right justfied’, 4, 3,

{Justification => 1.0}

Here I have included grid-lines to show the effect of the different justifications.
Note that Justify is a synonym for Justification, and that you need to give
numerical values for the position. Normally the text background is transpar-
ent as shown here, but you can also set an opaque background by setting the
BackgroundColour option to a colour name or value (see also the next section).

In addition to the justification option one can also change the angle of the text
using the Angle option and specify the text and/or x&y as options (the best
advice is to either do all or none).

perldl> text {XPos => 1, YPos=> 4, Angle => 25, Text => ’Tilted’}

Non-alphanumeric symbols PGPLOT has extensive support for non-alpha-
numeric characters in text strings and also offers reasonable control over the
display of superscripts, subscripts etc. This is all achieved using escape se-
quences. In PGPLOT these are all signaled by the character \. Thus \u starts
a superscript or ends a subscript — it signals a shift “up”. Likewise \d starts
a subscript or ends a superscript. See the example for legend in Figure 4.5 for
an example. Here is an incomplete list of the most useful ones, but there are
many more. Consult the PGPLOT documentation for a full list.

\u Go up \d Go down
\x × \. ·
\A Å \ga α
\gb β \gg γ
\mn Graph marker n \(nnnn) Hershey character nnnn
\(0562) L \(0683) ∂
\(2281) � \(0766) ∞
\(2233) ± \(2266) ∇

The only additional text-related function in the PDL::Graphics::PGPLOT in-
terface is the legend command which draws a legend in the plot window. This
is a more complex routine which can be a time-saver as soon as you have learned
how to use it. It takes the same arguments as the text command with the ex-
ception that the text argument is an anonymous array of labels for the legend,
and that a fourth argument is accepted which specifies the width of the box

CHAPTER 4. GRAPHICS WITH PDL 98

in which the legend will be drawn. If this is not set or it is set to the string
Automatic it will be adjusted to contain the legend with the default font-size
(or that set by the user via the CharSize option).

perldl> $x = sequence(10); $y1 = sqrt($x); $y2 = $x**2;
perldl> line $x, $y1, {LineStyle => ’Dashed’, Colour => ’Red’}
perldl> line $x, $y2, {LineWidth => 3, Colour => ’Blue’}
perldl> legend [’sqrt(x)’, ’x\u2’], 0.5, 10,

{LineStyle => [’Dashed’, undef],
LineWidth => [undef, 3],
Colour => [’Red’, ’Blue’], Width => 1.0}

Figure 4.5: An example of the legend command

The idea of the legend command is that you give the line-styles, line-widths,
colours or symbols you want to illustrate as anonymous arrays to the LineStyle,
LineWidth, Colour and Symbol options. Not very clear? Well, maybe an
example will help.

Figure 4.5 shows an example of legend in use. Two lines are drawn, a red
dashed line and a blue thick line. To annotate this plot using legend you give
the text annotations as an (anonymous) array of strings, the X&Y position of the
legend box and an anonymous hash containing information about the legends
to draw as shown in the example. The options used to specify a particular draw

CHAPTER 4. GRAPHICS WITH PDL 99

style are the same as the ones used in the call to line and will undergo the
same translations — note however that you can specify a value of undef which
requests that the current default for the linestyle/linewidth/colour etc. is used.
The Width option is used to set the width of the legend box and is given in data
coordinates. The idea is that you will create the plot, see where you want the
legends to go and then set the X&Y and width to the appropriate settings and
redoing the plot, possibly using the replay mechanism (see section 4.7).

The legend command has several options the main of which are illustrated in
Figure 4.5. The remaining options are useful for tweaking the appearance, and
a full list is as follows

Text The text, this is an alternative to specifying it as the first argument to
the function.

XPos The X-position of the text, again as an alternative to specifying it as the
second argument.

YPos The Y-position of the text, again as an alternative to specifying it as the
third argument.

Width The width of the (invisible) box the legend is drawn inside. This can
also be specified as the fourth argument to the legend command. If this
is set to the string Automatic the width is calculated from the character
size used.

Height This can be used as an alternative constraint on size, giving the height
of the legend box. If both Width and Height are specified the smallest
size is used (characters are not compressed or stretched to fit).

TextFraction The fraction of the box set aside for text. The default is 0.5
which usually is ok. Note that this option used to be called Fraction,
which still is available as a synonym.

TextShift This option allows for fine control of the spacing between the text
and the start of the line/symbol. It is given in fractions of the total width
of thelegend box. The default value is 0.1.

VertSpace By default the text lines are separated by one character height
(in the sense that if the separation were 0 then they would lie on top of
each other). The VertSpace option allows you to increase (or decrease)
this gap in units of the character height; a value of 0.5 would add half a
character height to the gap between lines, and -0.5 would remove the same
distance. The default value is 0. This option has VSpace as a synonym
(more natural for the TeX-heads out there).

CHAPTER 4. GRAPHICS WITH PDL 100

4.5 Using colour

PGPLOT has a two disjoint sets of colours. One set determines the colour table
used when displaying images and is initialised to a grayscale, and the other is
a set of 15 colours used to colour all other plotting objects. The latter set is
accessible through the Colour option described in section 4.4.1 above. Here we
will concentrate on accessing the lookup-table for image display.

The command used to change the colour table is ctab, which in its generic form
takes six arguments specifying the intensity levels, red, green and blue colour
components, contrast and brightness levels. The contrast and brightness are
optional so that we can say

perldl> $int = pdl([0, 0.33, 0.66, 1.0])

perldl> $r = pdl([0.5, 0, 0.5, 1])

perldl> $b = pdl([0.0, 0.5, 1.0, 0.5])

perldl> $g = pdl([1.0, 0.5, 0.0, 0.5])

perldl> ctab($int, $r, $g, $b);

perldl> $a = rvals(100, 100)

perldl> imag $a

which

should display a circularly symmetric figure with green in the centre, going
through blue to red-ish where $a is at a maximum.

It is however normally sufficient to use the colour tables made available by
PDL::Graphics::LUT. This package makes available a large number of standard
colour tables which can be accessed using the following commands

lut names This returns a perl list of the available colour tables.

lut ramps As above, but returns a list of the names of the available intensity
ramps.

lut data And finally the data in the tables can be accessed with this function
which takes as arguments the name of the colour table, and optionally a
scalar determining if the colour table is to be reversed and the name of an
intensity ramp (default is a linear intensity ramp). The function returns
four piddles with intensity and RGB values which can immediately be
passed to ctab.

Note that these commands do not set the colour table for you, you will still
need to call ctab to do that.

Thus to set one of the colour tables in the PDL::Graphics::LUT package, you
do

perldl> use PDL::Graphics::LUT;

perldl> print "Available tables: ".join(’, ’, lut_names());

Available tables: aips0, backgr, bgyrw, blue, blulut, color,

CHAPTER 4. GRAPHICS WITH PDL 101

<.. Output deleted ..>

perldl> imag rvals(100,100);

perldl> ctab(lut_data(’rainbow1’));

which should give you a colour table that goes from black through green, blue
and yellow to red.

4.6 Threading in PDL::Graphics::PGPLOT

The plot commands do not always lend themselves to easy threading (see chap-
ter 3 for a detailed discussion about threading) because it can sometimes be
difficult to know what the user intends to do when (say) an array of images is
passed to the imag command. Are they to be displayed in several plot panels,
are they to be plotted on top of each other, seamlessly plotted next to each
other? But even more complex is the question of treatment of options and how
to deal with these if there are less options than for instance, lines to draw (a
common occurence if you wanted to draw a lot of lines).

That said the PDL::Graphics::PGPLOT interface does have limited support for
threading in the line and points functions. These call the tline and tpoints
internally, and work just like line and points except that they expect the input
y-piddle to be 2D, with each line in the array plotted against the x-piddle.

The way the options are treated is the most interesting. To set options for
a set of lines, give an anonymous array as argument to that option with a
value for each line. If you give more options than there are lines, the surplus
is ignored. However if you give less, the options are repeated from the start.
Although possibly a bit confusing this is very powerful because you can get a
large number of combinations of colour and linestyle. For instance if you give 4
colours and 5 linestyles, you get a total of 20 distinct combinations and should
you give 3 linewidths as well you will suddenly have 80 different styles to work
with with very little typing. Note however that you need to make sure that
the numbers you give are relatively prime — otherwise you will get much less
possibility, just think of the situation where you have 4 linestyles and 4 colours,
they will just loop in harmony and result in only 4 combinations.

Anyway, let us see how it all works in practice by creating a plot of sine curves
with different frequencies. This is a simple example where we want to colour all
even frequencies with red and all odd with blue and vary the line-styles as well.

CHAPTER 4. GRAPHICS WITH PDL 102

perldl> $pi=4*atan2(1,1);

perldl> $x=zeroes(50)->xlinvals(0, $pi)

perldl> $freq = sequence(10)

perldl> $y = sin($freq*transpose($x))

perldl> line $x, $y,

{Colour => [’Red’, ’Blue’],

Linestyle=>[0,1,2,3,4,5]}

Small problem: If no options are given, the plot
is not properly plotted

4.7 Recording and playing back plot commands

Have you ever created a good-looking plot on the command line of an interactive
data program, be it PDL, IDL, Matlab, Octave or any other package, and wished
that you could make a quick Postscript copy of it only to find that you need to
redo all the commands? I certainly have.

In the newer versions of PDL this is thankfully not the case anymore. These
have a recording facility built in. However this is not enabled by default (for
reasons described later in this section), you need to turn it on yourself. The
way to do this is to set the $PDL::Graphics::PGPLOT::RECORDING variable to
a true value.

perldl> $PDL::Graphics::PGPLOT::RECORDING = 1

You can turn this on automatically in the perldl shell if you put this command
in your /.perldlrc file. Alternatively you can turn on recording for each plot
device independently by setting the Recording option to true when starting a
device:

perldl> dev ’/xs’, {Recording => 1}

Note that if you set the variable it must be set after you have use’d the
PDL::Graphics::PGPLOT because this package sets the variable when it ini-
tialises to its default value of zero.

In the following I will focus my attention on using the recording and playback
functions in the perldl shell as I envisage that it will be most useful there.
There are a couple of potential uses in scripts as well which I will get back to
below, but this is not well thought through yet.

Before we continue it should also be added that the recording facility is some-
what experimental. In particular it doesn’t deal very well with multi-panel

CHAPTER 4. GRAPHICS WITH PDL 103

plotting where you jump back and forth between panels. If you want to do
that, make sure you specify the Panel option for every call.

It is very easy to use the recording facilities with a few less obvious aspects. An
example should go a long way to get you to understand the basics. First we set
up a simple plot using the commands we learned above:

perldl> use PDL::Graphics::PGPLOT
perldl> $PDL::Graphics::PGPLOT::RECORDING = 1
perldl> $x = sequence(10)
perldl> $y = random(10)
perldl> dev ’/xs’
perldl> env(-1, 11, -0.5, 1.5, {Xtitle => ’Number’})
perldl> points $x, $y, {Symbol => ’Plus’}

which should give you a scatter plot on screen. Now after constructing this
fantastic piece of scientific illumination you decided to make a Postscript version
of it, but you are loathe to use the up key to execute the commands again so
you decide to use the recording facilities.

perldl> $s = retrieve state()
perldl> dev ’replay ex.ps/ps’
perldl> replay $s

That is all. These commands should now have created a file called replay ex.ps
in the present directory.

The retrieve state commands retrieves the current state of the plot device
and returns a variable to hold this in. This state contains references to the data
plotted and plot commands executed and can be replayed, or re-executed, at a
later stage using the replay command. You can also turn on and off recording
temporarily with the turn off recording and turn on recording commands.

This suffices for most situations and should work for any complexity of plot
constructed. There are however a few rules that needs to be observed and
possible pitfalls.

• If you turn on recording globally using $PDL::Graphics::PGPLOT::RECORDING,
you must set the variable before opening a plot device because the value of
the variable is only checked then. If you forget, you can of course always
turn it on with the turn on recording function.

• The state is cleared whenever the plot window is erased, or if the user ex-
ecutes the clear state command. In particular this occurs when you
change plotting device (although if you use several windows they will
each have their own state; see also the following section), so use the
retrieve state command before you change device!

CHAPTER 4. GRAPHICS WITH PDL 104

• The state contains references to the data plotted. This does not use mem-
ory (at least not appreciably!), but it does mean that an extra reference
to the data is kept and the memory to the data might not be freed when
you expect it to. This can be problematic if you make a lot of image
displays. The best ways to avoid this problem in the perlld shell is to
call the clear on the state:

perldl> $s->clear()

or to re-use the variable next time you call retrieve state. Note that
this should only be a problem if you explicitly call retrieve state.

• Finally since only references to the data are held, make sure you do not
modify them before calling replay or you might end up with a rather
different looking plot!

What we covered now is the basic use of the recording facility, which hopefully
will come in handy rather often (which is why I recommend enabling it perma-
nently in the perldl shell as outlined above). However there are slightly less
common uses of the facility that might come in handy:

Redoing a plot with slightly different data The fact that the recording
state contains references to the data enables a somewhat tricky but potentially
very useful trick to be executed: Redoing the plot with adjusted data. Some-
times you make a complex plot only to discover that you had made an error
with your data and you need to redo it. This is where you can use the recording
functions: Retrieve the state, make adjustments to the data making sure not to
break the link (see chapter XXXX) and run replay.

However, although this sounds quite easy it has a few subtleties that can give
surprising results at times. It might therefore be a good idea to look at a few,
very similar and very basic, examples and compare their effects. So let us first
of all open a plot device:

perldl> dev ’/xs’, {Recording => 1}

NOTE: What I describe here is not well tested and is probably buggy.
This needs to be sorted out before finishing — at least I have had a
few weird results when tryin this out.

We are going to use our age-old example of plotting a parabola, and replaying
it with various parameter sets. Let us therefore define a couple of variables and
plot this, first letting PDL decide on the plot limits:

perldl> $x = sequence(10); $y = $x*$x
perldl> line $x, $y;
perldl> $s = retrieve_state()

CHAPTER 4. GRAPHICS WITH PDL 105

The whole point of this problem is to change the variables, so let us add 3 to
the x-values and replay the command:

perldl> $x += 3
perldl> replay $s

This should give you a part of a parabola from x = 3 to x = 12, but now defined
by the equation y = (x − 3)2. Also the limits of the plot window should have
adjusted themselves to the new x values. Note that the y values are unchanged.
This may or maynot be what you expect but it is the correct behaviour at the
moment — see XXXX about dataflows.

In the previous example the limits in the plot window adjusted to the new values
for x & y because the line command sets the plot limits if the plot is not held
(such as with an explicit call to env). But what happens if we redo the example
with our own chosen limits?

perldl> $x = sequence(10); $y = $x*$x
perldl> env (0, 9, 0, 81)
perldl> line $x, $y;
perldl> $s = retrieve_state()
perldl> $x += 3; replay $s

The result now should be as shown in Figure xxx which has the same plot limits
as before, but a shifted parabola. This is because the state now remembers the
explicit env statement that you had made and uses that to set the limits.

Finally you must remember that the reference is not to a variable name, but
to a piddle which exists separately from the variable. Thus you cannot change
your data at a whim, so the following change will change the data back to where
we started

perldl> $x -= 3; replay $s

But the following will not plot a parabola starting at x = 5:

perldl> $x = sequence(10)+5.0; replay $s

The reason for this is that the reference kept in the state object is to the actual
data in the previous x-object and not to the variable name.

However sometimes you want to give a entirely new dataset to the plot. Say
you wanted to plot a sine curve instead of a parabola. Is there any way to do
that? The answer is yes, but it looks rather ugly, so you might want to consider
whether this is something you want to do

perldl> $x = sequence(10); $y = $x*$x
perldl> line $x, $y; $s=retrieve_state()

CHAPTER 4. GRAPHICS WITH PDL 106

Now let us transfor this to a sine plot

perldl> $y -= $y; $y += sin($x)
perldl> replay $s

And voilá! a sine curve does step forth. Not exactly elegant, but this trick
allows you to replace any variable used in a complex plot with a totally different
content.

Using recording in scripts In general the recording facility is of rather
limited use in scripts because you can just as easily encapsulate your plot com-
mands in a subroutine and just call the subroutine when need be. At present
the only saving is probably in typing, but if the facility is extended to saving
and restoring plot commands the situation would change.

4.8 The object oriented approach

Assume for once that you are developing a simulation. When you are testing
the code (all written in PDL of course) you have to keep track of how some
data changes at every time-step, but at the same time you want to look at time-
averages. If you were to use what we discussed above you would probably want
to display the time-steps in one panel and the time-averages in another panel
in a plot window. The problem with this is of course that one panel is updated
a lot more often than the other so you have to waste a lot of time re-plotting
the time-average.

Clearly there are two possible ways to improve this: a) have a method which
allows you to plot to a given panel when you want and b) have to plot windows.
It is possible to use the first approach by giving the Panel option to the plot
commands:

dev(’/xs’);
for (my $i=0; $i<$n; $i++)

$integrand = func($x, $i);
points $x, $integrand, {Panel => 2};
$sum += $integrand;

points $x, $sum/$n, {Panel => 1};

So that this hypothetical code-bit would keep plotting in panel 2, updating the
plot there until the loop is over at which point panel 1 is updated.

This can be practical, but it is rather limited given the requirement of giving the
panel number every time. Instead an alternative approach would be to create
several plot windows, and for this you really ought to use an object oriented

CHAPTER 4. GRAPHICS WITH PDL 107

approach3. In this approach every plot device is a separate object and you call
every plot command via this object. So the previous example would be

my $opt = {Device => ’/xs’, WindowWidth => 7, Aspect => 1};
my $integrand_window = PDL::Graphics::PGPLOT::Window->new($opt);

my $integral_window = PDL::Graphics::PGPLOT::Window->new($opt);

for (my $i=0; $i<$n; $i++)

$integrand = func($x, $i);

$integrand_window->points($x, $integrand);

$sum += $integrand;

$integral_window->points($x, $sum/$n);

4.8.1 Why use the OO interface

So, you may say, what is the point with the OO interface except appeasing the
OO fanatics around? It seems to require more typing and I can see no significant
advantage.

In many situations these are valid arguments, if you are just plotting data
on the command line in perldl, for instance, or do not need multiple plot
windows. And at some level the OO interface is primarily a convenience for
the programmer, and it is in fact how the PDL::Graphics::PGPLOT package is
implemented. That said though there are some (possibly strong) arguments for
using the OO interface:

• You do not pollute your namespace, which means that you are free to
define routines that are called line, points and so on. This is the main
reason why I use this interface personally when doing simple plots in
programs.

• It is a lot easier to deal with multiple plot windows when using the OO
interface, in fact I would personally discourage people from having multiple
plot windows without using the OO interface.

Eventually an argument in favour of the OO interface will hopefully be that it
would enable an easier mix of different plotting packages so that they can all be
accessed in a similar way, but we are not there yet.

4.8.2 Usage of the OO interface

To use the OO interface one needs to create a new plot object and then call
the plot routines through this object. If you want several windows, you just

3It is possible to have several plot windows without using the OO approach, although more
cumbersome, see the on-line documentation for details.

CHAPTER 4. GRAPHICS WITH PDL 108

create more objects and switching between these should be straightforward as
you should be able to see in the following examples.

Note that since the OO interface is less suited to use on the command line,
I have opted to show the examples as small code-bits but they should all be
possible to execute from the perldl command line. In addition this section will
merely give several examples of use of the OO interface and no discuss (again)
the different commands since they are the same as we went through above, it is
just a different way of calling them.

Opening a plot object and plotting a simple plot To create a plot
object we first need to use the PDL::Graphics2D package — this is merely a
shortcut for the true PDL::Graphics::PGPLOT::Window package, but why type
more when it doesn’t gain you anything? Then we create the object using the
standard Perl notation PDL::Graphics2D->new():

use PDL;

Note that we could also access this as
PDL::Graphics::PGPLOT::Window, but since this is
shorter I advocate its use.
use PDL::Graphics2D;

Now create a plot window

my $winopt = {Device => ’/xs’, WindowWidth => 7, Aspect => 1};
my $w = PDL::Graphics2D->new($winopt);

Create a simple plot

$x = sequence(10);
$w->points($x, $x*$x, {Symbol => ’Triangle’};

Note how we use the window object ($w) when calling the points routine —
since we didn’t use the pgpkg package there isn’t any function called points in
our namespace and we use the window object to get hold of it. The structure is
of course very similar to what we did in section 4.4.5 above and there really is
little practical difference between the two interfaces when plotting to only one
window.

Therefore let us up the stakes somewhat and try a more practical example. In
many situations you might have one plot where each point in the plot has many
values associated to it (ie. your plot is a slice in a multidimensional space).
When you examine such data you often would like to click on a point on your
plot and bring up associated data for that point in a different display — this is
an obvious situation for the OO interface.

The logic for this project is easy: We first create two windows

use PDL;

CHAPTER 4. GRAPHICS WITH PDL 109

use PDL::Graphics2D;

Create two identical windows

my $winopt = {Device => ’/xs’, WindowWidth => 7, Aspect => 1};
my $data = PDL::Graphics2D->new($winopt);
my $associated = PDL::Graphics2D->new($winopt);

Note that it is a good idea to name your variables containing the window objects
with sensible names for later use.

The next step is to plot data (well, in this example I will merely create them):

my $x = sequence(10);
my $y = $x**2;
Plot points using standard symbol

$data->points($x, $y);

which should draw a nice parabola on your screen. Now the user (that is you,
reader) has to click on (or near) a point to select it — we will then use the
X-value of that point to set the period of sine curve. (No not at all an artificial
example . . . But hang in there, it will get better).

print "Dear user, please click on (or close to) a point

n";

my ($xin, $yin) = $data->cursor();

closest will now contain the index of the point closest to

where the user clicked.

my $closest = minimum_ind(abs($x-$xin) + abs($y-$yin));

my $y_associated = sin($x->at($closest)*$x);

$associated->line($x, $y_associated);

That should now give you a sine wave in the second window with a frequency
dependent on where along the X-axis you clicked. Of course it would be a lot
easier to use $xin, but that wasn’t what we tried to do after all.

This is of course a very simplified example, but it does provide a framework for
a more comprehensive data explorer. From astronomy a typical example would
be to plot scatter-plots for two variables and bringing up images of the objects
by clicking at their data in the plot window. In other situations the data might
be financial data for a set of companies and clicking on the points would bring
up a comprehensive summary of that company. But this is of course where your
imagination is supposed to run amok.

The bottom line is that whatever your requirements are, the OO approach is
probably better when you need more than one plot window, but when you only
use one window, and particularly on the perldl command line.

CHAPTER 4. GRAPHICS WITH PDL 110

4.9 Using PGPLOT commands directly

The Perl module PGPLOT4 contains interfaces to all PGPLOT functions. The
majority of these functions have alternative interfaces in the PDL package, but
there might be situations when you need to use these functions directly. And
in addition if you are used to using PGPLOT from before you might prefer the
interface, although it is rather inconvenient when dealing with PDL.

Full documentation for the PGPLOT functions can be found at Tim Pearson’s
WWW page: http://astro.caltech.edu/~tjp/pgplot/. This is not the place
to discuss the details of PGPLOT, but it is interesting to learn how to access
these routines from PDL with piddles as arguments.

Typical PGPLOT drawing functions take as arguments the number of points
and references to perl arrays to give x&y coordinates, thus

@x = (1,2,3); @y = (3,-1,7);
pgpoint(3, \@x, \@y, 4);

will plot three points with the x&y values indicates and using plotting symbol
4 (circle).

The complication for PDL users is that piddles are not perl arrays and hence
have to be converted to array references before they can be passed to a PGPLOT
function. This is achieved with the get dataref command which returns a
reference to the data in a piddle. Thus the example above would be written

$x = pdl(1,2,3); $y = pdl(3,-1,7);
pgpoint($x->nelem, $x->get_dataref, $y->get_dataref, 4);

in PDL.

In general you should use the provided wrapper routines for readability, but
feel free to combine the two if you prefer. You should be able to pick’n’mix
functions from the PDL interface and from PGPLOT directly, although a few
subtle bugs might creep in (in particular the handling of several plot windows).

There are several situations where direct access to PGPLOT might be necessary.
Although hopefully they are not very common, it can be useful to look at a few
to see what the PDL::Graphics::PGPLOT module doesn’t do. Since it is possible
to mix PGPLOT commands with the PDL::Graphics::PGPLOT commands this
is not a major problem though, although it might require you to learn some
PGPLOT. So to turn to some examples, I have decided to list a few simple
problems:

• Drawing several plot boxes on top of each other to get differently shaded
grids. This is done in one of the demonstration programs that come with

4Written and maintained by Karl Glazebrook, and can be downloaded at any CPAN mirror
(it is a prerequisite for the PDL package).

CHAPTER 4. GRAPHICS WITH PDL 111

PGPLOT and can’t be easily done in PDL::Graphics::PGPLOT without
some playing around with the PlotPosition option. It is a lot easier to
call pgbox directly.

• Complex contour plots — in particular non-rectangular. At present there
is no support for non-rectangular contour plots in PDL::Graphics::PGPLOT,
and neither is any support planned for the near future. You are advised
to read the PGPLOT documentation for pgconx and have a look at demo
#3 in the PGPLOT distribution for an example.

The bottom line is that as your plots get more and more complex you might
end up in a situation where you need the finer control offered by the PGPLOT
package, but for day-to-day use it is hoped that PDL::Graphics::PGPLOT will
address most people’s needs. And if doesn’t we should be told!

CHAPTER 4. GRAPHICS WITH PDL 112

Figure 4.6: A 3D surface graph plotted using gnuplot, using the commands
set isosamples 30; splot [0:7] [0:7] sin(x)*sin(y).

Figure 4.7: The same 3D surface, plotted using the PDL::TriD module. The two
different images were obtained literally by grabbing the image in the window
opened by PDL and dragging it with the mouse to rotate.

4.10 3D Graphics with OpenGL

4.10.1 Introduction

There are lots of programs that let you plot so-called 3D surface graphs, such
as the one shown in Fig.4.6. However, from the beginning, PDL’s 3D graphics
have had something different that we feel is really useful: motion, or as we call
it “twiddling”. Dragging the 3D image with the mouse rotates the image, at the
speed allowed by your display hardware. This turned out to be quite useful for
displaying functions: the human eye is able to grasp the presented 3D surface
much better when it moves, especially in response to the mouse.

Let’s start with plotting the surface we showed using gnuplot in the beginning:

use PDL::Graphics::TriD;
$x = xlinvals(zeroes(30), 0, 7);
imag3d [sin($x) * sin($x->dummy(0))];

This should produce a new window with the image seen in Fig.4.7. Notice
that your console window is now frozen: it is waiting for you to twiddle in the
graphics window using the mouse and to press q in that window once you’re
done.

If the above commands produce an error instead of a new window, it might be
that your PDL wasn’t compiled with the option to include the 3D library —
tough luck (XXX).

That above expression is a bit more difficult than the gnuplot version, and
there’s a simple reason for that: gnuplot is primarily meant for plotting func-
tions; PDL is meant for handling and plotting numerical data. So to plot a
function, we have to create the data for the function first which is a bit more
difficult.

Now let’s go through that part by part. The first line simply tells Perl to load
the PDL::Graphics::TriD module. The name comes from the fact that you
can’t have parts of module names starting with numbers, unfortunately. The
second line

$x = xlinvals(zeroes(30), 0, 7);

CHAPTER 4. GRAPHICS WITH PDL 113

creates a one-dimensional piddle with 30 elements that has linear values from 0
to 7:

perldl> p $x
[0 0.24137931 0.48275862 0.72413793 0.96551724.....

The xlinvals and the corresponding ylinvals and zlinvals are useful for
exactly this purpose: creating piddles of equally spaced values. The final line,

imag3d [sin($x) * sin($x->dummy(0))];

is what draws the actual image. The expression inside, uses the variable $x
for both the X and Y coordinates, via a clever use of the dummy operation.
(XXX explanation?) This results in a 2-dimensional piddle with the values
for the Z coordinate. So far you’ve already seen all this. And the final part,
imag3d [vals] is the call that creates the 3D plot and opens the new window
for it. The brackets around the parameter may be slightly surprising: the 2-D
commands work well without those but there is a good reason for this, as you’ll
learn later on: otherwise there would be a bad ambiguity.

4.10.2 Parametric Graphics

We alluded in the introduction that allowing

imag3d $piddle;

could be ambiguous and should be written

imag3d [$piddle];

if $piddle is intended to be the Z axis values of a rectangular 2D plot. Now is
the time to find out why. The simple truth is that

imag3d $piddle;

is in fact legal code - iff the first dimension of $piddle has exactly three ele-
ments. As you probably have already guessed, these three elements are X, Y
and Z. So what you can do is pass $piddle with dimensions (3, t, u) which is the
same as a 2-dimensional (t, u) lattice with a 3-vector at each point. This piddle
will then be interpreted parametrically: the mesh will be drawn as a function
of t and u. (XXX Complicated)

Let’s have an example: a curve that is not possible to plot with just Z axis
values, say the surface of a torus, with colors coming from somewhere. First,
set up the piddles and the parameter variables:

CHAPTER 4. GRAPHICS WITH PDL 114

use PDL::Graphics::TriD;
$torus = zeroes(3, 60, 20);
$x = $torus->slice("(0)");
$y = $torus->slice("(1)");
$z = $torus->slice("(2)");
$t = xlinvals $x, 0, 6.28;
$u = ylinvals $x, 0, 6.28;

Note that the coordinate separation can be done in just one line:

($x, $y, $z) = map {$torus->slice("($_)")} 0..2;

Next, we color the torus. Let’s put stripes on it:

$r = (1+sin(2*$t + $u))/2;
$g = (1+cos(2*$t + 2*$u))/2;
$b = (1+sin(2*$t + 3*$u))/2;

Then, we choose the outer and inner radii and put the coordinates into the
slices. We’ll let the torus lie in the XY plane so the parametric coordinates can
be easily derived. (XXX diagram?)

$r_o = 3;
$r_i = 1;
$x .= ($r_o + $r_i * sin($u)) * sin($t) ;
$y .= ($r_o + $r_i * sin($u)) * cos($t);
$z .= $r_i * cos($u);
imag3d_ns $torus, [$r, $g, $b];

And there’s our colorful torus! It looks a bit more like a barrel because TriD
automatically scales the axes but there it is. Note how we use imag3d ns to get
the colors instead of the shaded version.

Now, there is more than one way to do it. If your data is not by default in the
three-vector format (as ours wasn’t above), it is probably easier to do

imag3d [$x, $y, $z], [$r, $g, $b];

which will produce the same results. Also, we could concatenate the RGB
piddles to form

Now, since PDL does its best to make dimensions usable anywhere, we can
easily plot several parametrics of the same parameters at once, if we pack all
the surfaces into a piddle of dimensions (3, nt, nu, ...) where the three periods in
the end indicate the beginning of the extra parameters.

For example, we can plot a family of shrinking toruses by adding an extra
dimension into $torus:

CHAPTER 4. GRAPHICS WITH PDL 115

$cone = $torus->dummy(3, 4)->copy();
$fac = axisvals($cone, 3);
$cone *= $fac + 2;
($tmp = $cone->slice("2")) += 4 * $fac;
imag3d $cone;

And further, if we want to distort them, it’s perfectly possible:

$x = $cone->slice("0");
($tmp = $cone->slice("2")) += 0.1 * $x ** 2;
imag3d $cone;

Any other kind of mutilation is also possible but we leave you to discovering
the interesting things that are possible by yourself, because we have to move
to something else that’s important to cover: coordinate systems. So far, all the
examples you’ve seen have happened in the Euclidean coordinate system where
the coordinates are specified as measures X, Y and Z on three orthogonal axes.

Or actually this is not true: in fact, we have used two kinds of coordinates, the
explicit X, Y and Z given in this section but in the preceding sections, only Z
has been given and X and Y have been assumed by the system from the context.

Of course, since PDL tries to follow “simple things simple, complicated things
possible”, it is possible to override the default context.

4.10.3 Types of 3D Graphical Objects

So far, we’ve only been toying with surfaces. However, PDL can do much more.
We can plot points; here’s a picture of two samples from different (overlapping)
probability distributions, plotted with different colors:

use PDL::Graphics::TriD;
$i = zeroes(8000);
$which = random($i) < 0.5;
$x = grandom($i) * (1 + $which);
$y = grandom($i) * (0.5 + $which);
$z = grandom($i) * (2 - $which);
$x += $which * $y; $y += $which * $z; # Make it oblique
points3d [$x, $y, $z], [$which, 0.5*(1-$which), 1-$which];

A lot of fun things can be done with points but we’ll go into that later.

Then, there are — of course — lines. As a fun demo of lines, let’s plot a
number of flowlines moving in the Lorenz attractor. As you may know, the
Lorenz attractor is described by

dx

dt
= σ(y − x) (4.3)

CHAPTER 4. GRAPHICS WITH PDL 116

dy

dt
= (r − z)x− y (4.4)

dz

dt
= (y − b)z (4.5)

where σ = 10, r = 28 and b = 8/3. Because we’re just doing this as a simple
demo, we’ll use the extremely unstable d = ∆ method integration. We’ll plot
six trajectories that start close to each other.

use PDL::Graphics::TriD;
$n = 500;
$nstart = 0;
$nc = 6;
$delta = 0.015;
$x = pdl(1, 1, 1, 1, 1);
$y = pdl(1, 1, 1, 1, 1);
$z = pdl(1, 1.01, 1.02, 1.03, 1.04);
$xs = zeroes($n, $nc);
$ys = zeroes($n, $nc);
$zs = zeroes($n, $nc);
$x = -23 * ones($nc);
$y = -2 * ones($nc);
$z = 20 * ones($nc) + 0.02 * xvals($nc);
$sigma = 10; $r = 28; $b = 8.0/3.0;
for(-$nstart..$n-1) {
if($_ >= 0) {

($t = $xs->slice("($_)")) .= $x;
($t = $ys->slice("($_)")) .= $y;
($t = $zs->slice("($_)")) .= $z;
}

$dx = $sigma * ($y - $x);
$dy = ($r - $z)*$x - $y;
$dz = $x*$y - $b * $z;
$x += $delta * $dx;
$y += $delta * $dy;
$z += $delta * $dz;

}
$col = yvals(1, $nc) / ($nc-1);
$tim = xvals($n) / ($n-1);
line3d [$xs, $ys, $zs], [$col, $tim , 1-$col];

Unfortunately, this plot has too much stuff going on so it’s difficult to see where
the functions diverge even though they have different colors at different times.
This is an excellent time to change variables: let’s get rid of X and plot the time
step instead:

line3d [$tim, $ys, $zs], [$col, $tim , 1-$col];

CHAPTER 4. GRAPHICS WITH PDL 117

This yields a much clearer plot of the chaotic behaviour when the lines diverge
with time (Fig.XXX).

In the latest versions of PDL it is possible to adjust the line width as well:

line3d [$tim, $ys, $zs], [$col, $tim , 1-$col], {LineWidth => 10}

gives the same plot but with much thicker lines.

The basic rectangular surface you already saw in the preceding sections. It also
has an option to turn off the lines. XXX?

There is also a command mesh3d similar to the surface which just draws the
surface as a wire mesh instead of a solid surface. On slow machines this can be
of great help.

Finally, there are two commands for quickly painting strictly rectangular true-
color images: imagrgb and imagrgb3d. This can be demonstrated by Tuomas
J. Lukka’s 4-liner:

use PDL; use PDL::Graphics::TriD;$a=zeroes 300,300;$r=$a->xlinvals(-1.5,
0.5);$i=$a->ylinvals(-1,1);$t=$r;$u=$i;for(1..30){$q=$r**2-$i**2+$t;$h=2
ri+$u;$d=$r**2+$i**2;$a=lclip($a,$_*($d>2.0)*($a==0));($r,$i)=map{$_
->clip(-5,5)}($q,$h);}imagrgb[$a/30];

This, as odd as it may sound, plots a grayscale Mandelbrot. If you work your
way through the code, you’ll see that it simply iterates the standard Mandelbrot
iteration formula

z ← z2 + C

where C is the original point. Then it uses lclip to keep the numbers in a
reasonable range and colors the points according to the iteration when the point
crossed the distance

√
2 from the origin. The piddle $a is two-dimensional so

just like for coordinates, it is enclosed in an array ref. It is also possible to use

imag3gb [$r, $g, $b];
imag3gb $colors;

where the RGB piddles are two-dimensional and $colors has three dimensions,
the first of which is of length three.

The command imagrgb3d does the same but allows the user to place the rect-
angle anywhere in 3-space. This is useful e.g. for putting an image underneath
a plotted surface of the same function, as we shall see in the next section.

4.10.4 More than one Image

If you have used the PDL PGPLOT interface for plotting multiple graphs then
TriD is not going to surprise you: the commands hold3d and release3d work

CHAPTER 4. GRAPHICS WITH PDL 118

just like their PGPLOT counterparts. Before going further, however, let me
remind you that for many plots, it is not necessary to explicitly plot several
points, lines, surfaces or whatever: it can be easier just to use extra dimensions,
like we used for the torus cone in the first section.

However, if you want to put objects of more than one type, or objects of more
than one resolution on the same graph, then you do need to do so explicitly. As
an example we’ll use some fractal mountain code by Tuomas J. Lukka from the
3D Gallery. Unlike with the mandelbrot that has a well-known algorithm, this
code we’d just better format clearly from the start (the parameters have also
been slightly modified and the code has been modified to plot all the iterations
on top of each other).

XXX FIX - LOOKS BAD.
use PDL;
use PDL::Image2D;
use PDL::Graphics::TriD;
$k=ones(3,3) / 9;
$a=20;
$b=$a*(random(2,2)-0.5);
hold3d();
Set the coordinate system: XXX hack!!! FIX TriD
line3d pdl([[0, 0, 0,], [0, 0, 10]]);
for(0..4) {

if($_ != 0) {
$c=$b->dummy(0,2)->clump(2)->xchg(0,1)->

dummy(0,2)->clump(2)->xchg(0,1)->copy;
$c+=$a*($c->random-0.5);
$a/=1.5;
$b=conv2d($c,$k);
}
imag3d[xlinvals($b, 0, 1), ylinvals($b, 0, 1),
$b + 2.0*$_],{Lines => 0};

}
release3d();

Even laid out bare, this code is a mouthful with that big double dummy-clump-xchg
thing in the middle. But in fact the function is really simple: the dummy-clump-xchg
thing simply doubles the length of each dimension, copying each value to two
consecutive locations. After doubling the resolution, we add some noise from
the random function (the magnitude of the noise is diminished each time). Fi-
nally, we pull in PDL::Image2D for the conv2d routine that does 2-dimensional
convolutions (optimized for small kernels like ours). We use a 5 × 5 kernel to
smooth our data at each step by convolution.

That’s the numerical part, now for the graphics part:

CHAPTER 4. GRAPHICS WITH PDL 119

4.10.5 Animation

4.10.6 Putting it all together — cool hacks

Here’s one where the original idea is by Robin Williams, done for the 3D Gallery.
This gallery is available in the PDL distribution in the file Demos/TriDGallery.pm.
The idea is to put interesting scripts that do a lot using just 4 lines of 72 char-
acters. The crux of the idea is to use OpenGL points to perform volume-like
rendering. Now, if you are really into volume rendering, we recommend taking
a look at Karma, discussed in XXX: this is just a quick hack. However, the
principles are interesting enough that we thought you might enjoy them.

Let’s start with a function of three variables, whose zeroes are a sphere and an
ellipsoid inside the sphere, with the Y axis slightly distorted to form a parabola
with the Z axis:

sub f {
my($x, $y, $z) = @_;
$y = $y + 0.04 * $z**2;
return (($x**2 + $y**2 + $z**2) - 100) *

((2*$x**2 + 4*$y**2 + 4*$z**2) - 100);
}

Note here that we can’t use the += operator for $y since below we use the same
piddle for the three coordinates (with a simple dummy transformation).

Now, we want to picture approximately where the function crosses zero, but
since there are two separate zero surfaces we can’t just use an algorithm that
finds a zero and creates an isosurface. Besides, an isosurface renderer wouldn’t
be able to show both the sphere and the ellipsoid simultaneously. So rather,
let’s first calculate the sign of the function in a 50× 50× 50 lattice. The radius
of the sphere is

√
100 = 10 so we make the coordinate system slightly larger.

use PDL::Graphics::TriD;
$x = xlinvals(zeroes(float,50), -11, 11);
$f = f($x, $x->dummy(0), $x->dummy(0)->dummy(0));
$sign = byte($f>0);

Now that we have the sign, why don’t we simply find the set of points where
the sign has changed. It is simplest to do this over just one dimension:

$df = ($sign->slice("0:-2") != $sign->slice("1:-1"))
points3d [whichND($df)]

And indeed, we get a rotatable set of points in 3-space that are in the shape
of a sphere with an ellipsoid inside, slightly distorted, just as ordered. This is
not yet a good picture: there is a hole in the point set where the surface is

CHAPTER 4. GRAPHICS WITH PDL 120

parallel to the X axis, naturally, since there there is no difference between the
sigh between the points next to each other on X axis.

To do a more complete job, we need to compare the signs not only along X but
other dimensions as well. This is possible due to the wonderful invention by
Robin Williams:

$a = $sign;
foreach(1,2,4) {

$t=($a->slice("0:-2")<<$_);
$t+=$a->slice("1:-1");
$a=$t->mv(0,2);

}
points3d [whichND(($a != 0) & ($a != 255))];

It’s a bit cryptic but truly beautiful so bear with us while we go through it.
The loop is executed thrice, once for each dimension. In the beginning, we
know that all the values in $a are either 0 or 1. The first line of the loop takes
a slice from $a, leaving the last element of dimension one out and shifts if by
the loop index $. The second line takes another slice, this time leaving out the
first element and adds it to the first. Finally, the dimensions are rotated for the
next invocation.

Choosing the shifts to be 1, 2, 4 is the key: this way after the first round, the
piddle contains values 0, 1, 2, 3, after the second it contains 0...15 and after the
third, 0..255. None of the shifts shift anything on top of each other so the plus
operation could be replaced with a bitwise or.

So after the loop, we have a three-dimensional piddle with one index less in each
dimension, and each value in that piddle contains in its 8 bits the 8 corners of a
small cube. Finally, to find whether the function crosses zero at that cube, we
simply check whether all the bits are equal, i.e. whether the number is 255 or 0
and if it isn’t we know the function changes sign.

The image quality can be slightly improved by removing the Moire effect through
randomization:

points3d [map {$_+$_->float->random} whichND(($a != 0) & ($a != 255))]

note how the map is necessary: the whole point is that whichND returns a list of
piddles.

Now, to further improve image quality we could add different-color pixels but
that would require alpha blending to the OpenGL parameters and this would
get into complications we don’t necessarily want here. So now we’re going to
KISS5 this topic away and move to the next one.

5Keep It Simple, Stupid

CHAPTER 4. GRAPHICS WITH PDL 121

4.10.7 The VRML backend

CHAPTER 4. GRAPHICS WITH PDL 122

4.11 Pixel manipulations using the Gimp

Ever wondered how some algorithm would look if applied to a picture? Sure,
you could load an image, apply your function and display the result, but there
is a much more exciting way: the Gimp.

GIMP is an acronym for ”GNU Image Manipulation Program”.6 As it’s name
implies, it’s main purpose is manipulating and creating images of any kind – be
it a photo of your niece, a gif animation or a computer-generated image. Since
it is directed at end-users it is mainly used as an interactive application.

Of course(!) there is also a perl-interface, usually called gimp-perl.7 Using that
interface, you can write so-called plug-ins, programs that can add menu entries
and functions to the gimp, allowing users to apply effects to their images.

While most perl extensions to gimp concentrate on combining built-in-functionality
and other plug-ins to create effects, it is of course possible to directly manipulate
raw pixel data. The ideal way to cope with large amounts of data (and images
are large) in perl is PDL – and that’s why PDL is used to represent any kind
of raw data in gimp-perl.

4.11.1 The components of Gimp

A simple plug-in

4.11.2 Direct pixel access

Most of the complexity in dealing with the gimp is in getting and storing pixel
data – once you have a piddle you can do anything with it.

There are two principal ways to access pixels. The first way is similar to other
graphics libraries: You can get or set pixels, rows, columns or rectangles of pixel
data. The second way is iterating over a region.

Pixel regions

The pixel iterator

4.11.3 Gimp Plug-Ins

The following perl program is a short but full-featured gimp-plug-in, complete
with a dialog to ask for input parameters. You can use it for your own experi-

6The official GIMP webpage is http://www.gimp.org/
7The ”official” and only homepage for gimp perl can be found at http://gimp.pages.de/

CHAPTER 4. GRAPHICS WITH PDL 123

ments.

4.11.4 More Information

It is far beyond the scope of this book to dive deeper into gimp programming.

Chapter 6

Advanced Examples of
Using PDL

This chapter presents three interesting case studies in which more complex PDL
constructs are used. Starting out will be an example of PDL’s use in plotting a
weather map. Next is an in-depth discussion of object-oriented PDL in which
complex numbers are added as a data type. A numerical simulation example
rounds out this tour of hairy PDL examples.

[or some such intro paragraph]

6.1 A PDL weather map

The object of this example is to produce a contour plot of global temperatures
overlaid upon a linear projection of a world map. Let’s take a look at the
finished product in fig. 6.1.

6.1.1 Drawing the map

The first difficulty is to draw the world map. This is actually quite a trick, as
map databases are large and complex. A good mapping facility is generally an
add-on costing hundreds of dollars in packages such as MATLAB. Fortunately,
there exists a perl module which is an interface to the popular GMT 1 map
plotting package. This perl extension, PDL::Graphics::PGPLOT::Map, uses
PGPLOT to plot maps extracted from the GMT coastline database.

1GMT (Generic Mapping Tools), is a suite of UNIX tools for drawing maps and plotting
data on them. Included is a scrupulously assembled set of world coastline databases at various
resolutions. GMT was created by Paul Wessel and Walter H. F. Smith.

124

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 125

Figure 6.1: A contour plot of global temperatures, overlaying a world map.

worldmap ({WEST => $minlon, EAST => 180, SOUTH => -90, NORTH => 90,
PROJECTION => ’LINEAR’});

The above command sets the boundaries of the map and requests a simple linear
projection. A linear projection is convenient for plotting contours.

6.1.2 Getting the weather data

Next we will find something to plot. In this case, we choose National Center
for Environmental Prediction ’AVN’ model data2. The AVN model data con-
sist of various atmospheric parameters (temperature, humidity, etc.) stored on
latitude/longitude grid points and pressure levels (1000 millibars, 850 millibars,
etc.) for the entire world. These data files are generated by complex weather
models initialized using input data from weather balloons, airplane measure-
ments, satellite measurements and other sources. They are stored in netCDF
(network Common Data Format), a binary format used to store gridded data
of all types in a system-independent, easy-to-access fashion. Here we open up
an example file and grab a global surface temperature grid:

2These data are generally available in a compact yet obtuse binary format
called ’GRIB’ which is distributed via the Internet Data Distribution system (see
http://www.unidata.ucar.edu /projects/idd/index.html) and then converted to the nicer
netCDF format (see http://www.unidata.ucar.edu /packages/netcdf/index.html) via the
Unidata Decoders (info at http://www.unidata.ucar.edu /packages/decoders/index.html).

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 126

my $infile = "avn_97.032.00_cdf";
my $nc = PDL::NetCDF->new($infile);
my $tsfc = $nc->get("T");
$tsfc = $tsfc->slice(":,:,(0),(0)");

We open this file using an extension to PDL called PDL::NetCDF which allows
one to easily read and write PDL data objects to/from netCDF files. Then
we grab a four dimensional grid of temperature data (longitude by latitude by
pressure level by time) and slice out the surface data for a single time step into
$tsfc.

6.1.3 Plotting the contour map

We must now determine how the gridded data we just read is oriented on the
globe. Fortunately these netCDF data files have several variables included along
with the actual weather data which tell where the grid starts and ends and how
widely spaced the data are. These values are used:

• $la1 — The latitude of the (0,0) point on the grid. The example grid
starts at -90 latitude.

• $lo1 — The longitude of the (0,0) point. This grid starts at -30 (30
degrees west) longitude.

• $di — The longitude increment, 1.25 degrees in this example.

• $di — The latitude increment, 1.25 degrees in this example.

Once these variables are read in, we rotate the surface temperature grid so that
it starts at 180 degrees west longitude (the edge of the map), instead of 30
degrees west:

$tsfc = $tsfc->rotate(int(($lo1 - $minlon)/$di));

In the final lines of the script, we generate contour labels for the graph and plot
the temperature contours:

my $ncont = 8;
my $range = $tsfc->max - $tsfc->min;
my $interval = int($range/$ncont);
my $contours = (sequence ($ncont) * $interval) + int($tsfc->min) + 1;
my @labels = list $contours;

cont ($tsfc, {LABELS => \@labels,
LABELCOLOR => 3,

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 127

CHARSIZE => 0.7,
LINEWIDTH => 1,
CONTOURS => $contours,
COLOR => 2,
TRANSFORM => pdl ([$minlon, $di, 0, $la1, 0, $dj])});

The contour labels are determined dynamically from the data in the temperature
field. Only the number of contour levels (12) is hard-coded. A linear transform
based on the grid specification variables read in earlier is used to line up the
contour map with the coastlines. See perldl> help cont and the PGPLOT
library documentation3 for more information.

The entire script is shown in figure 6.2.

6.1.4 What happened?

This example used a convenient PDL interface to the popular GMT mapping
package. It also used the PDL extension PDL::NetCDF to read in a large
global grid of temperature data. Finally, some of the more advanced features
of PDL::Graphics::PGPLOT were used to overlay a contour map of the data.
All the software used in this example is freely available and open source. As
is typical in the open source world, half the battle can be installing all the
necessary software. Here is a list of necessary packages to get this example to
work:

• PDL itself (of course)

• The pretty good plotting package (pgplot), available at http://astro.caltech.edu
/ ˜ tjp/pgplot/install.html. The example uses a patch to pgplot which
allows output in the popular (and unpatented) PNG format. These patches
are available from http://hea-www.harvard.edu / ˜ rpete/pgplot-png/.

• The netCDF data format library, available at http://www.unidata.ucar.edu
/packages/netcdf/index.html.

• The PDL::NetCDF PDL extension, available on CPAN under modules
/by-module /PDL/DHUNT.

• The PDL::Graphics::PGPLOT::Map package, also available on CPAN un-
der modules /by-module /PDL/DHUNT.

3on the web at http://astro.caltech.edu /~tjp/pgplot/subroutines.html#PGCONT

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 128

#!/usr/bin/perl −w

#
Create a weather map using PDL
#

use PDL;
use PDL::NetCDF;
use PDL::Graphics::PGPLOT;
use PDL::Graphics::PGPLOT::Map;

Local path information for pgplot
$ENV{PGPLOT_FONT} = " /usr/lib/pgplot/grfont.dat";

Plot to a postscript file
new_window " pdlmap.ps/VCPS";

Plot a world map
my $minlon = −180;
worldmap ({WEST => $minlon, EAST => 180, SOUTH => −90, NORTH => 90,

 PROJECTION => ’ LINEAR’});

Input NetCDF file of ’AVN’ model data.
my $infile = " avn_97.032.00_cdf";

Open up this file using the PDL::NetCDF module
my $nc = PDL::NetCDF−>new($infile);

Read in global temperature fields (including all upper air levels)
my $tsfc = $nc−>get(" T");

Slice out the surface data (get rid of the upper air levels)
$tsfc = $tsfc−>slice(" :,:,(0),(0)"); # get rid of dummy 3rd dimension

Read in grid orientation information from the netCDF file
This is done to match up the plotted contour data to the map.
my $la1= $nc−>get(’ La1’)−>at(0); # Latitude of first point (0,0)
my $lo1= $nc−>get(’ Lo1’)−>at(0); # Longitude of first point
my $di = $nc−>get(’ Di’)−>at(0); # Longitude increment
my $dj = $nc−>get(’ Dj’)−>at(0); # Latitude increment

Rotate tsfc so it starts at minlon = −180
(it currently starts at lon = $lo1, −30)
$tsfc = $tsfc−>rotate(int(($lo1 − $minlon)/$di));

Determine countour levels/labels
my $ncont = 8;
my $range = $tsfc−>max − $tsfc−>min;
my $interval = int($range/$ncont);
my $contours = (sequence ($ncont) * $interval) + int($tsfc−>min) + 1;
my @labels = list ($contours);

Plot a contour map of the global surface temperatures.
cont ($tsfc, {LABELS => \@labels,

 LABELCOLOR => 3,
 CHARSIZE => 0.7,
 LINEWIDTH => 1,
 CONTOURS => $contours,
 COLOR => 2,
 TRANSFORM => pdl ([$minlon, $di, 0, $la1, 0, $dj])});

release;

Figure 6.2: Source code for the contour map

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 129

6.2 Objects using PDL - defining your own data
types

PDL provides a very powerful datatype: Vectors and matrices4 can be used to
represent almost any real-world problem. However, often one wants to extend
the information stored in a piddle or even the functionality that PDL provide.

Extending PDL is easy, you just have to put your new method into the PDL
package and it can then be used just like any other PDL method:

sub PDL::ring_modulate {
my $carrier = shift;
my $signal = shift;

$carrier * $signal;
}

Now ring modulate can be used just like any other pdl method:

$car->ring_modulate($sig)->clip(-1,1);

Attaching data is also very easy, as every piddle has an attached attribute or
header hash5 that you can fill with any data you like. The PDL::Audio-module
for example attaches information like sampling rate and filetype to a piddle:

sub raudio {
my $audio = <... read some audio stream into a piddle ...>

my %hdr = (
rate => $samplingrate,
filetype => $filetype,
channels => $audiochannels,

);

attach the header (actaully a reference to it)
$audio->sethdr(\%hdr);

$audio;
}

This information can then be queried or changed by anybody who is interested:
4Of course, PDL objects can have any number of dimensions.
5Actually it can be any type, but if you expect to work well with others you should use a

hash.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 130

$srate = $audio->gethdr->{rate};
$audio->gethdr->{filetype} = FILE_AIFF;

If you want to attach this information not only to the piddle itself but also to
all copies of it, you can set the headercopy flag, using hdrcpy:

enable header-copying
$piddle->hdrcpy(1);

$otherpiddle = $piddle + 1;
now both $piddle and $otherpiddle share the same header hash.

This is not as useful as it sounds, however, since all piddles created that way
share the same hash, so one must be careful when changing parts the header as
this change will be effective in many piddles.

Both methods of extending PDL have drawbacks: Putting another function
into the already crowded PDL namespace can be difficult6, and using verbose
method names (e.g. audio phaseshift instead of simply shift) is counter-
productive: After all, we already know that our piddle represents some audio
signal, and so should perl.

Similarly, attaching extra data to a piddle doesn’t change its nature: All oper-
ations still treat it as a regular piddle.

Neither of the above methods lets us create piddles that ”know” that they are
audio files, or ”know” that they should be multiplied like complex numbers
instead as of vectors.

6.2.1 Implementing derived classes: The Complex module

While we are at complex numbers... I once needed complex arithmetic for PDL
myself, but couldn’t find good support for it, so I sat down and tried to write
a module implementing complex numbers using regular piddles. This was not
only a very useful way to learn more about PDL, after experimenting and a
lot of help from others it also became quite natural to use, even more than I
initially expected. As it turned out, subclassing PDL is not difficult, but it is
not always obvious how to do it.

The most natural representation for complex numbers in PDL is a vector with
two elements. I decided to put the real part into the first element and the
imaginary part into the second, so 5− 3i becomes the piddle [5 -3].

The first thing we need is a way to create complex numbers. Instead of pro-
viding a specialised constructor as one would like for other objects7, I opted for
typecasts:

6”Hopefully nobody else called her function shift... Oops.”
7e.g. for objects not representing numbers, like an audio signal or an image.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 131

package PDL::Complex;

cast from PDL to PDL::Complex
sub cplx($) {

bless $_[0]->slice(’’);
}

*PDL::cplx = \&cplx;

cast back
sub real($) {

bless $_[0], PDL::;
}

provide ’i’
$i = cplx pdl 0, 1;
sub i() { $i->copy }

What’s going on here? The cplx function expects a piddle (it doesn’t really
matter wether it’s already a complex number of type PDL::Complex or a regular
piddle (type PDL)) and re-blesses it into the PDL::Complex namespace. This
has the effect of changing it into a complex number.

The unusual slice(’’) creates a new piddle object that references the same
data as the original one. It is this operation that really makes it a cast. Without
it, the original piddle would be changed, and using copy would destroy the
dataflow a PDL-user expects.

The line

*PDL::cplx = \&cplx;

is a bit tricky: It puts a copy of the cplx function into the PDL namespace,
so that regular piddles can be converted to complex numbers. I decided that
it makes sense to call cplx on complex numbers as well, as it is a no-op then
and can be used safely to ensure that a pdl is of complex type, much like the
standard pdl constructor also accepts a piddle as argument.

The same could be said about real, but since this is less often used on nirmal
piddles it makes sense to provide only a version that works on complex numbers.

The next line of code contains the first call to cplx: It creates the complex
constant i (= 0 + 1i) and puts it into the global variable $i. To make matters
even easier a function with the same name is created. This allows users to write
code like the following:

5+3*i
pdl(1,2,3) + pdl(3,4,5)*i
$somepiddle *= 1-2*i;

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 132

Which looks very natural and makes the casting operators less neccessary.

Constructing derived piddle objects

Apart from implementations for the complex arithmetic operators, there is an-
other detail one must know when subclassing PDL: PDL functions need a way to
create result values of the right type. While PDL knows how to create an object
of type PDL, it has no idea how to create an Icky::Yicky::Data. Instead, it calls
the initialize method of the class, e.g. Icky::Yicky::Data->initialize.

All standard PDL functions always generate a result with the same type as their
first argument (as if they were method calls, which, in some sense they all are).

If the new datatype can be implemented using a plain PDL, you do not have
to supply an initialize method; PDL’s default initialize will return an empty
piddle blessed into the correct class. This is adequate for simple classes like
PDL::Complex.

For more complex cases you can use a special feature of PDL: When PDL sees
that the object it got passed is not a piddle, but a hash, it tries to find the real
piddle in $object->{PDL}, that is, you can create a fairly standard perl object
which still acts as a PDL by writing a constructor like the following:

sub initialize {
bless {

mydata => ...,
PDL => PDL->null,
datax => ...,

}, __PACKAGE__;
}

Overloading standard functions

Unless the derived objects act just like plain piddles8, you also need to override
the perl operators for the new type.

The first step is to implement these new operators as normal functions. Here
are two examples, that implement Csub (addition)9. and Csin (the complex
sine):10

pp_def ’Csub’,
8which makes sense in a lot of cases where the derived class just adds new data or new

methods but does not alter semantics.
9Of course Csub is the same as the normal subtraction operator. However, for reasons that

will be explained shortly, the subtraction operator must be overloaded, so it doesn’t hurt to
implement it for completeness or symmetry, or whatever. Csub might also be slightly faster
in case the compiler doesn’t do loop unrolling

10If you are not interested in PP code you can safely skip this example

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 133

Pars => ’a(m=2); b(m=2); [o]c(m=2)’,
Code => q^

$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
$GENERIC() br = $b(m=>0), bi = $b(m=>1);
$c(m=>0) = ar + br;
$c(m=>1) = ai + bi;

^
;

pp_def ’Csin’,
Pars => ’a(m=2); [o]c(m=2)’,
Code => q^

$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
double s, c;
SINCOS (ar, s, c);
$c(m=>0) = s * cosh (ai);
$c(m=>1) = c * sinh (ai);

^
;

The obvious (but, as usual, imperfect) way to make ’-’ act like ’Csub’ is to use
the overload pragma:

use overload
’-’ => sub {

my ($a, $b, $swapped) = @_;
$b = r2C $b unless UNIVERSAL::isa $_[1], PDL::Complex::;
return $swapped ? Csub ($b, $a) : Csub ($a, $b);

};
’sin’ => \&Csin,

Now you can see why I used Csub for this example and not Cadd: subtraction
is not symmetric, so the implementation must take care to swap the operands
when neccessary11. To support cases like 5 - $complex and $regularpiddle
- $complex, where one of the operands is a plain number or a regular piddle
consisting of all real numbers, the operator also tries to convert the operand
to the complex domain first (r2C maps each number r to the vector/complex
number [r 0]).

This is also the reason why even operators like Cadd and Csub have to be over-
loaded – although their mathematical behaviour is identical to the standard ’+’
and ’-’ operators, the type of the result differs.

Fortunately, the sine function is much simpler, it is nothing more than a direct
call to Csin.

11The manpage to the overload pragma explains this in greater detail.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 134

Perl’s idea of overloading

If the world were perfect we would be finished. But of course it is not: while
the overloaded definitions seem to work in most cases12, perl sometimes ignores
our definitions and uses the regular PDL-operator. For example, when the first
operand is a regular piddle, perl chooses the standard operation13. Sometimes,
for example in 5*i+pdl(6), perl calls the standard operator for no obvious
reason.

Fortunately, this can be fixed in the same generic way for each extension module,
so there is hope that PDL will take care for this problem in the future. Until
then, however, you also have to replace all binary operators in PDL, which is a
bit tricky. Here is how it’s done for addition:

{
package PDL; # place definitions in the PDL namespace
no warnings; # perl might complain about redefinitions

sub cp($;@) {
my $method;
if (ref $_[1]

&& (ref $_[1] ne ’PDL’)
&& defined ($method = overload::Method($_[1], ’+’)))
{ &$method($_[1], $_[0], !$_[2])}

else { PDL::plus (@_)}
}

use overload
’+’ => \&cp,

;
}

For subtraction, multiplication and division you have to replace the ’+’ by
the corresponding operator name and the call to PDL::plus by a call the
PDL::minus, PDL::mult or PDL::divide. Just look at the source of the Com-
plex module14 for appropriate definitions.

However, once all this is in place, everything should work smoothly:

perldl> use PDL::Complex;
perldl> p 1 + i * r2C pdl 1,7
[
[1 1]
12The Complex module was already used for some projects when Christian Sller pointed

out that something must be badly broken somewhere.
13One could argue that this is not very helpful, but at least it sounds consistent.
14e.g. by perldoc -m Complex

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 135

[1 7]
]

perldl> p sin 5 * i ** 0.5
[-6.5908487 -15.829068]

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 136

6.3 Numerical simulations in PDL

The majority of this book has described the capabilities of PDL as a fast, flexible
language for data analysis. In the present section, I will describe some facilities
and methods for data generation.

Low level languages such as Fortran or C are often used for numerical analysis,
mainly for speed and because of the availability of numerical libraries. As data
sets become larger, the speed advantage of a compiled program becomes less
important — so long as array handling is done in a low-level fashion, as in
PDL, there is little advantage in using a compiled language for the high-level
part of the algorithm.

Using PDL has significant advantages over a traditional compiled language. The
interpreted shell allows for an adaptable toolkit approach to the development
of algorithms and for close integration between numerical algorithms and a
flexible graphics front-end. The slicing methods intrinsic to PDL can also make
the structure of the high-level algorithm clearer in the implementation.

My aim here is to introduce the use of PDL in numerical simulations — tech-
niques specific to PDL, and methods available in the PDL distribution — rather
than to provide a tutorial in numerical methods. As a result, the examples are
chosen for clarity. Better algorithms for some problems are included in the PDL
distribution, while the methods illustrated are easily extended using improved
algorithms from elsewhere (e.g. [xxx]).

6.3.1 The wave equation

We now discuss a simple example, the numerical integration of a one-dimensional
wave equation,

∂2φ

∂t2
= −c2 ∂

2φ

∂x2
, (6.1)

or for our present purpose as two separate differential equations

∂φ

∂t
= c

∂ρ

∂x
, (6.2)

∂ρ

∂t
= −c∂φ

∂x
. (6.3)

The general solution to these equations consists of two waveforms with constant
shape, one progressing to the left at speed c, the other to the right at the same
speed. In the example below, we have placed the gas in a finite ‘box’, so the
waves reflect off the ends repeatedly: the equation, in this case, models the
behaviour of the air in a flute or the string on a guitar, when subject to a small
initial impulse.

The code implements the first-order Lax method, a simple algorithm for this
time-dependent problem. In effect, the code assumes that the gas within each

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 137

numerical grid cell is of uniform density. This leads to quite high numerical
diffusion, which is added to further to maintain stability. More complex al-
gorithms which approximate the data within the cells as linear, quadratic or
higher power-laws maintain waves for longer without damping. However, the
Lax method illustrates well the way in which these more complex algorithms
can be coded in PDL.

The guiding principle is to avoid the generation of temporary arrays within the
simulation loop. This means that some obscure preparatory work is needed be-
fore the loop is reached. Having got past this, the algorithm is clearly displayed
once the simulation loop is reached.

In this code, I have used separate arrays for primitive data (the values used
to calculate the fluxes) and conserved data (the values to which the fluxes are
added). This distinction is not really necessary in the present example, but
makes it easier to generalize the code to more complex systems.

The first statements in the code allocate all the array space which will be needed:
the data array (allowing ghost cells for the implementation of boundary condi-
tions), the flux array (which stores rate of transfer of material across the edges
of the cells), and an array to accumulate the change in the data over a time step
before it is added back to the data.

Next, various slices of these arrays are prepared. By retaining these slice PDLs,
no calls of ‘slice’ need to be made within the loop. The names of these slices
are chosen to reflect their contents: $eleftp contains the values of the data to
the left of the current edge, $crghtp to the right of the current cell.

Various constants characterizing the simulation are then set up: the boundary
conditions, the maximum wave speed (which limits the allowed timestep of the
algorithm). The initial contents of the simulation grid are set in the primitive
(or physical) array $p, and transferred to the conserved variable array $u by
the subroutine ptou(). Here this is a rather pointless direct copy – the relation
between primitive and conserved variables is less trivial in many more interesting
examples.

Having laid out this ground work, we now reach the simulation loop. First, the
primitive variables at the start of the timestep and the allowed size of this step
are calculated. The timestep is a constant for this simple example, but often it
will depend on the contents of the simulation grid. One common limiting factor
for the timestep is the so-called ‘Courant condition’. This stability limit may
be interpreted as meaning that, in the physical problem, the waves carrying
perturbations from any cell will not have propagated beyond its immediate
neighbours within the timestep. Methods for determining the limits which apply
to any specific problem are described in most textbooks on numerical analysis.

Next, the values in the ‘ghost’ cells beyond the edge of the simulation are set.
The numerical algorithm uses data values on either side of each interface to
calculate the flux across the interface, so to calculate the fluxes at the edge of
the grid, extra data has to be ‘made up’ for fictitious cells outside it. Here, I

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 138

1D wave equation using Lax method

use PDL;
use PDL::Graphics::PGPLOT;

*plus = \&PDL::plus;
*minus = \&PDL::minus;

$ncell = 500;
$cour = 0.3;
$nq = 2;

$pb = zeroes($nq,$ncell+2)->float; # Primitive data with boundary cells
$u = zeroes($nq,$ncell)->float; # Conserved data
$f = zeroes($nq,$ncell+1)->float; # Array for fluxes
$df = zeroes($nq,$ncell)->float; # Array for flux differences

$p = $pb->slice(",1:-2"); # Primitive data in active grid
$leftb = $pb->slice(",0:0"); # Left boundary cell
$rghtb = $pb->slice(",-1:-1"); # Right boundary cell
$lefti = $p->slice(",0:0"); # Left inside cell
$rghti = $p->slice(",-1:-1"); # Right inside cell

$eleftp = $pb->slice(",0:-2"); # Edge left values
$erghtp = $pb->slice(",1:-1"); # Edge right values

$leftf = $f->slice(",0:-2"); # Left flux
$rghtf = $f->slice(",1:-1"); # Right flux

$bc = pdl (1,-1); # utility constant for boundary
$cwave = 1;

set density
($t = $p->slice("(0)")) .= 1;
and rate of change
($t = $p->slice("(1)")) .= 0;
and initial perturbation
($t = $p->slice("(0),0:".($ncell/2-1))) .= 2;
ptou($p,$u);

$t = 0.;
$i = 0;

Table 6.1: Example numerical simulation: the one dimensional wave equation,
using the Lax method. Part one: definitions.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 139

General first-order algorithm
while (1) {
utop($u,$p);
$dt = $cour/maxv($p);
$leftb .= $bc*$lefti; # Set boundary cells
$rghtb .= $bc*$rghti;
Calculate fluxes
flux($eleftp,$erghtp,$f);
minus($leftf,$rghtf,$df,0);
Update array to new timestep
$df *= dt;
$u += $df;
$t += $dt;
$i++;
if (!($i % 10)) {
line $p->slice("(0)");
print "Step $i Time $t step $dt total ",sum($p->slice("(0)")),"\n";

}
}

Problem-specific functions

Lax method flux for wave equation.
sub flux {
my ($lp,$rp,$f) = @_;
plus($lp,$rp,$f->slice("1:0"),0);
$f *= 0.5;
Add artificial viscosity
$f += $lp; $f -= $rp;

}

sub utop { my ($u, $p) = @_; $p .= $u; }
sub ptou { my ($p, $u) = @_; $u .= $p; }
sub maxv { 1.; }

Table 6.2: Example numerical simulation: the one dimensional wave equation,
using the Lax method. Part two: the algorithm.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 140

have set the cells beyond the grid to have the same value of φ, but the opposite
value of ρ: the effect of this is that waves are relected from the ends of the grid.

Then, the flux subroutine is called, using two different ‘views’ of the grid data:
$eleftp, the data value in the cell at the left side of each interface, and $erghtp,
the data at the right side. The flux function ‘injects’ the values of the flux into
a pre-existing pdl, $f. In the present example, the flux is a simple function of
the data and so we have coded the flux function in perl: often it will be far more
efficient to do this using PP.

The reason for ‘injecting’ the flux data into $f is made clear in the subse-
quent lines. We could have let the flux function automatically generate a fresh
PDL with the flux values. However, we have already prepared two different
views of the original flux array at the beginning of the routine: $leftf, the
flux through the left edge of each cell, and rghtf, the flux through the right
edge. The difference between these fluxes is then calculated using minus: both
$df = $leftf-$rghtf and $df .= $leftf-$rghtf would allocate a new array
at each timestep, the second as an intermediate array which would then have
to be copied into $df.

The flux difference is then multiplied by the timestep and added to the conserved
value PDL to update the contents for the new tiemstep; the timestep and step
counter are incremented to correspond to this evolved state. Finally, a plot of
the data is made every 10 timesteps, to illustrate how the grid data is evolving.

Studying the development of the solution in this example, you will see that the
total amount of gas within the grid remains constant to high accuracy. The
algorithm was designed to achieve this, which is satisfying. The waves which
move apart also have reasonably constant amplitude, which is good. However,
the initially sharp shape of the solution rapidly decays to something rather
smoother, where in the equations we are modelling the waveforms should remain
sharp. All numerical algorithms of the form we have discussed have some of this
broadening, called numerical diffusion: somewhat more complex higher order
algorithms can nevertheless improve this performance dramatically.

6.3.2 Multiple dimensions and higher order

The simple algorithm defined in the previous subsection can be improved signif-
icantly by changing the algorithm to assume that there is a gradient of density
of the conserved variables within the grid. The effect of this is to maintain sharp
features in the grid data with far less artificial diffusion.

The version I will now show has also been generalized to two spatial dimensions –
the further extension of this to even higher dimensional spaces is fairly simple,
although the computational time requirements increase so rapidly that even
going as far as three dimensions will slow things down dramatically.

I should emphasise again that the algorithm used here is not really of a quality
to be used in practise. In addition, there are various parts of the algorithm

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 141

presented here which might better be transferred into PP for ‘production’ runs.

I have tried to keep the method as similar as possible to the first example. In
Table 6.3, the first part is shown, in which various data arrays are defined:
the dimensions of the computational grid are set in the array @d, a flag vari-
able $second says whether the code should run with second order accuracy (in
space and time). An additional conserved value is required to treat the two-
dimensional wave equation. Additional arrays are used to save partial sums of
fluxes and gradient values. The boundary constant becomes an array, with an
element for each dimension.

In Table 6.4, many slices of the data piddles are defined. In particular, one slice
is defined for each dimension of interest, so we can treat the several dimensions
of the physical problem by looping over the elements in these arrays. Most
if the slices are fairly obviously related to those used in the one-dimensional
algorithm. I move the dimension of interest to be the first spatial dimension in
the first line so that algorithm looks the same in each dimension: this move is
unwound in the definition of the flux arrays @leftf and $rghtf, so the correct
components of the conserved values are updated.

Numerous extra slices are also defined to help in the calculation of the gradient
arrays for the second-order algorithm. The components of $ga contain the
differences between physical values between cells neighbouring a given edge of
the grid. The values on opposite edges of each grid cell are then combined in
the elements of $gb to give an average gradient within the grid cell.

In Table 6.5, we show the hub of the algorithm. The first part is just the
same as the first-order algorithm, iterated over dimensions to turn it into a
multidimensional code. The is all that happens if $second is not set.

If $second is set, however, the first-order result is just used to update the
physical values to provisional half time-step values, so a leapfrog scheme can then
update the results with a correction which is second-order in time. The second
order step is similar to the first order one, except that in the flux calculation, the
primitive variables on either side of the grid edge are corrected for the gradient
calculated within the grid cell.

The gradient is calculated from those at each edge of the grid cell using an
averaging function. This could just be the arithmetic mean (in which case the
gradient within the cell would just be a centred difference between the primitive
values in the neighbours of the cell). A somewhat different, ‘limited’, value is
actually defined in the function av (see Table 6.6: such limited averages have
better properties in the presence of sharp discontinuities in the solution, prevent-
ing ringing by decreasing the order of the simulation just in the neighbourhood
of the discontinuity.

In Table 6.6, gives a few additional functions for this algorithm. While utop(),
ptou() and maxv() are unchanged, flux() has had to be altered to take an
extra argument, the direction of the current sweep of integration, and to cater
for the extra conserved variable. The awkwardness of this function and the new

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 142

2D wave equation using Lax method extended to second order

use PDL;
use PDL::Graphics::PGPLOT;

*plus = \&PDL::plus;
*minus = \&PDL::minus;

@d = (50,50);
$nd = $#d+1;
$cour = 0.2;
$second = 1;
$nq = 3;
my ($inside) = ",1:-1" x $#d;
my ($inside2) = ",1:-2" x $#d;

$pb = zeroes($nq,map($_+2,@d[0..$#d]))->float;
Primitive data with boundary

$p = $pb->slice(",1:-2"x$nd); # Primitive data in active grid
$u = zeroes($p); # Conserved data
$f = zeroes($pb->slice(",1:-1"x$nd)); # Fluxes
$df = zeroes($p); # Flux differences
$dft = zeroes($p); # Flux differences
$ga = zeroes($f); # Difference array for grad
$gb = zeroes($pb); # Array of gradients

utility constant for boundary
if ($nq == 2) {
@bc = (pdl (1,-1));

} else {
@bc = (pdl (1,-1,1),pdl(1,1,-1));

}

$cwave = 1;

set density
($t = $p->slice("(0)")) .= 1;
and rate of change
($t = $p->slice("1:-1")) .= 0;
and initial perturbation
($t = $p->slice("(0),0:".($d[0]/2-1).",0:".($d[1]/2-1))) .= 2;
ptou($p,$u);

$t = 0.;
$i = 0;

Table 6.3: The two dimensional wave equation, using the Lax method extended
to second-order. Part One: defining constants and allocating array space.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 143

Ensure slice arrays are empty
$#leftb = $#rghtb = $#lefti = $#rghti = $#eleftp = $#erghtp =
$#ft = $#leftf= $#rghtf = -1;

if ($second) {
$#ga = $#leftga = $#rghtga = $#gt = $#gg = $#leftgbf = $#rghtgbf =
$#leftgbb = $#rghtgbb = $#leftgbi = $#rghtgbi = -1;

}

foreach (1..$nd) {
my ($tt) = $pb->mv($_,1)->slice(",$inside2");
unshift @leftb, $tt->slice(",0:0"); # Left boundary cell
unshift @rghtb, $tt->slice(",-1:-1"); # Right boundary cell
unshift @lefti, $tt->slice(",1:1"); # Left inside cell
unshift @rghti, $tt->slice(",-2:-2"); # Right inside cell
unshift @eleftp, $tt->slice(",0:-2"); # Edge left values
unshift @erghtp, $tt->slice(",1:-1"); # Edge right values

$tt = $f->mv($_,1)->slice(",$inside");
unshift @ft, $tt;
unshift @leftf, $tt->slice(",0:-2")->mv(1,$_); # Left flux
unshift @rghtf, $tt->slice(",1:-1")->mv(1,$_); # Right flux

if ($second) {
Gradient slices for second order
$tt = $ga->mv($_,1)->slice(",$inside");
unshift @ga, $tt;
unshift @leftga, $tt->slice(",0:-2");
unshift @rghtga, $tt->slice(",1:-1");
$tt = $gb->mv($_,1)->slice(",$inside2");
unshift @gt, $tt;
unshift @gg, $tt->slice(",1:-2");
unshift @leftgbf, $tt->slice(",0:-2");
unshift @rghtgbf, $tt->slice(",1:-1");
unshift @leftgbb, $tt->slice(",(0)");
unshift @rghtgbb, $tt->slice(",(-1)");
unshift @leftgbi, $tt->slice(",(1)");
unshift @rghtgbi, $tt->slice(",(-2)");

}
}

Table 6.4: The two dimensional wave equation, using the Lax method extended
to second-order. Part Two: sliced arrays.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 144

Second-order algorithm
while (1) {
utop($u,$p);
$dt = $cour/maxv($p);

First order stage to generate half-timestep values
foreach (0..$#d) {
$leftb[$_] .= $bc[$_]*$lefti[$_]; # Set boundary cells
$rghtb[$_] .= $bc[$_]*$rghti[$_];
Calculate fluxes
flux(1+$_,$eleftp[$_],$erghtp[$_],$ft[$_]);
if ($_) {
minus($leftf[$_],$rghtf[$_],$dft,0);
$df += $dft;

} else {
minus($leftf[$_],$rghtf[$_],$df,0);

}
}

if ($second) {
Second order stage
Generate half-timestep values
$df *= 0.5*$dt;
$df += $u;
utop($df,$p);
foreach (0..$#d) {
$leftb[$_] .= $bc[$_]*$lefti[$_]; # Set boundary cells
$rghtb[$_] .= $bc[$_]*$rghti[$_];
$ga[$_] .= $erghtp[$_];
$ga[$_] -= $eleftp[$_];
av($leftga[$_],$rghtga[$_],$gg[$_]);
$leftgbb[$_] .= $bc[$_]*$leftgbi[$_];
$rghtgbb[$_] .= $bc[$_]*$rghtgbi[$_];
flux(1+$_,$eleftp[$_]+0.5*$leftgbf[$_],$erghtp[$_]-0.5*$rghtgbf[$_],

$ft[$_]);
if ($_) {
minus($leftf[$_],$rghtf[$_],$dft,0);
$df += $dft;

} else {
minus($leftf[$_],$rghtf[$_],$df,0);

}
}

}

$df *= $dt;
$u += $df;
$t += $dt;
$i++;
if ($i % 10) {
if ($#d == 0) {
line $p->slice("(0)," . ((",(10)") x $#d));

} else {
imag $p->slice("(0)");

}
print "Step $i Time $t step $dt total ",sum($p->slice("(0)")),"\n";

}
}

Table 6.5: The two dimensional wave equation, using the Lax method extended
to second-order. Part Three: the algorithm.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 145

Problem-specific functions
sub flux {
my ($dirn,$lp,$rp,$f) = @_;
Lax method flux for wave equation.

plus($lp->slice("0"),$rp->slice("0"),$f->slice("$dirn"),0);
plus($lp->slice("$dirn"),$rp->slice("$dirn"),$f->slice("0"),0);
my ($t) = $f->slice(3-$dirn); $t .= 0;
$f *= 0.5;
Add artificial viscosity
($t = $f->slice("0")) += $lp->slice("0"); $t -= $rp->slice("0");
($t = $f->slice("$dirn")) += $lp->slice("$dirn"); $t -= $rp->slice("$dirn");

}
sub utop { my ($u, $p) = @_; $p .= $u; }
sub ptou { my ($p, $u) = @_; $u .= $p; }
sub maxv { 1.; }

sub av {
my ($a, $b, $ret) = @_;
$a = $a->clump(-1); $b=$b->clump(-1); $ret=$ret->clump(-1);
my ($prod) = $a*$b;
$ret .= 0;
my ($ta,$tb,$tret,$tprod) = where ($a,$b,$ret,$prod,$prod>0);
$tret .= ($tprod*($ta+$tb)/($ta*$ta+$tb*$tb));

}

Table 6.6: The two dimensional wave equation, using the Lax method extended
to second-order. Part Four: auxiliary functions

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 146

function av() (not to mention their slowness in practise!), indicate that they
would best be implemented in PP.

6.3.3 Gas dynamics

The dynamics of a perfect gas is treated in the PDL::Hydro package in the PDL
distribution. By putting use PDL::Hydro; at the head of the evolution codes
above, I can load the flux(), utop(), ptou(), maxv() and av() routines pro-
vided by this package — the versions provided for the wave equation must be re-
moved. The value of $nq needs to be increased (to provide space for density, ve-
locity and pressure variables), and $bc must be changed to an appropriate value.
Finally, it is better to change the initial conditions to having a step in pressure
rather than density (($t =$p->slice("(2),0:".($ncell/2-1))) .= 2;) —
otherwise, the initial grid contains are an equilibrium, and the values in the grid
will just remain constant!

The flux() routine treats the interaction between neighbouring cells as a shock
tube problem between uniform states, and calculates the flux across the interface
between the cells by an exact method. This approach, based on a method
introduced by Godunov, is used in many widely used gas- and hydrodynamics
algorithms. By default, PDL::Hydro assumes the gas being studied is adiabatic,
with a adiabatic constant of 5/3 appropriate for monatomic gas. A value of 7/5
is perhaps more typical for air, for instance, and this may be set by including
setadc(1.4) at the start of the routine.

In a typical one-dimensional simulation (Figure XXX), the high pressure to
the left of the grid drives a sharp shock to the right, and a rarefaction moves
to the left (this rarefaction is smooth in the full solution). In between there
remains a contact discontinuity between hot and cool gas. In reality, this contact
discontinuity should remain sharp: its smooth form is again the result of the
numerical viscosity introduced by this low order scheme.

6.3.4 Ordinary Differential Equations

– initial value problems by RK

– boundary value problems, via PDL::Func

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 147

A – Getting PDL

NAME

Getting/Downloading PDL

Description

The following is an overview of the ways to download PDL and get it up and
running. Much information is available on the PDL web-site (pdl.perl.org),
and in various other places. Where possible, we will provide pointers to the
information, but not repeat the information here.

Download Options

There are primarily two methods to Download/Install the PDL package; In-
stalling from pre-built executable files, or building from the source code. In-
stalling from pre-built executables is usually faster and more convenient for
most users. Building from source is more complicated, but gets you the great-
est configuration flexibility (Add on packages, graphics options, etc)

Pre-Built Binary Formats

• RPM (Redhat Package Manager) File. This is a pre-built executable for-
mat that is very convenient for Linux Platforms.

• DEB (Debian) format for the Debian operating system.

• PPM (Perl Package Manager) File. This is a pre-build executable for
Win32 Platforms. Note: The Win32 port is considered experimental at
the time of this writing.

Other pre-built executables are being added all the time (BSD, Solaris, etc.)
Check the download page at pdl.perl.org for the latest list.

Building from source.

Try one of the pre-built binaries first, if you can. You will get going quicker.
Building from source is an option for those who want a custom configuration,
or who want to examine the workings of the source code.

For most all Unix flavors, building from source is a matter of following the
standard Perl package build procedure:

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 148

1.) perl Makefile.PL

2.) make

3.) make test

4.) make install

The INSTALL file in the source distribution describes the installation procedure
in detail, along with some common problems and solutions.

For Win32 platforms, building from source is possible, but not recommended
at the time of this writing. Again, using one of the pre-built executables is the
way to go for this platform.

Download Locations:

The download page of the PDL Web-site (pdl.perl.org) contains the complete
list of places you can get PDL. Additionally, CPAN (the Comprehensive Perl
Archive Network, at http://www.perl.com/CPAN-local/modules/by-module/PDL/
) contains the official release of the source code.

PDL Add-Ons and Dependencies

PDL can be configured to use external analysis and graphical libraries. Some of
the more popular examples are PGPLOT (for 2D Plotting), OpenGL (for 3-D
Plotting), Slatec (Fortran Analysis Library). The DEPENDENCIES file in the
source distribution contains a complete list of possible add-ons for PDL.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 149

Appendix B - PDL modules and functions
index

List of PDL modules

PDL Core Routines

PDL::Basic
Basic utility functions for PDL

PDL::Core
fundamental PDL functionality

PDL::Math
extended mathematical operations and special functions

PDL::Primitive
primitive operations for pdl

PDL::Slices
Stupid index tricks

PDL I/O functions

PDL::IO::FastRaw
A simple, fast and convenient io format for PerlDL.

PDL::IO::FlexRaw
A flexible binary i/o format for PerlDL.

PDL::IO::Misc
misc IO routines for PDL

PDL::IO::NDF
PDL Module for reading and writing Starlink

PDL::IO::Pic
image I/O for PDL

PDL::IO::Pnm
pnm format I/O for PDL

PDL Graphics functions

PDL::Graphics::IIS
Display PDL images on IIS devices (saoimage/ximtool)

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 150

PDL::Graphics::Karma
interface to Karma visualisation applications

PDL::Graphics::LUT
provides access to a number of look-up tables

PDL::Graphics::OpenGLQ
quick routines to plot lots of stuff from piddles.

PDL::Graphics::PGPLOT
PGPLOT enhanced interface for PDL

PDL::Graphics::TriD
PDL 3D interface

PDL::Graphics::TriD::Rout
Helper routines for Three-dimensional graphics

PDL::Graphics::TriD::Tk
A Tk widget interface to the PDL::Graphics::TriD.

PDL Library functions

PDL::FFT
FFTs for PDL

PDL::FFTW
PDL interface to the Fastest Fourier Transform in the West v2.x

PDL::Fit::Gaussian
routines for fitting gaussians

PDL::Fit::LM
Levenber-Marquardt fitting routine for PDL

PDL::Image2D
Miscellaneous 2D image processing functions

PDL::ImageND
useful image processing routines which work in N-dimensions

PDL::ImageRGB
some utility functions for RGB image data handling

PDL::Slatec
PDL interface to the slatec numerical programming library

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 151

PDL development related routines

PDL::Dbg
functions to support debugging of PDL scripts

PDL::Doc::Perldl
commands for accessing PDL doc database from ’perldl’ shell

PDL routines of derived classes

PDL::Char
PDL subclass which allows reading and writing of fixed-length character
strings as byte PDLs

PDL::Complex
handle complex numbers

PDL::Func
useful functions

List of functions by category

PDL Core Routines

PDL::Basic
allaxisvals, axisvals, hist, rvals, sequence, transpose, xlinvals, xvals, ylin-
vals, yvals, zlinvals, zvals

PDL::Core
at, barf, byte, cat, convert, copy, Datatype conversions, diagonal, dims,
doflow, dog, double, dummy, float, flows, get datatype, getdim, gethdr,
getndims, hdrcpy, howbig, info, inplace, isempty, list, listindices, long,
make physical, mslice, nelem, new, new from specification, null, null-
create, ones, pdl, reshape, set, sethdr, short, thread, thread1, thread2,
thread3, thread define, threadids, topdl, type, unwind, ushort, zeroes

PDL::Math
acos, acosh, asin, asinh, atan, atanh, badmask, bessj0, bessj1, bessjn,
bessy0, bessy1, bessyn, ceil, cosh, eigens, erf, erfc, erfi, floor, lgamma,
ndtri, pow, rint, simq, sinh, squaretotri, svd, tan, tanh

PDL::Primitive
all, and, andover, any, append, assgn, average, avg, axisvalues, band, ban-
dover, bor, borover, clip, crossp, cumuprodover, cumusumover, fibonacci,
grandom, hclip, histogram, histogram2d, indadd, inner, inner2, inner2d,
inner2t, innerwt, interpol, interpolate, intover, lclip, matmult, max, maxi-
mum, maximum ind, maximum n ind, median, medover, min, minimum,

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 152

minimum ind, minimum n ind, minmax, minmaximum, norm, oddme-
dian, oddmedover, one2nd, or, orover, outer, prodover, qsort, qsorti, ran-
dom, randsym, stats, sum, sumover, vsearch, where, which, which both,
whichND, whistogram, whistogram2d, wtstat, zcheck, zcover

PDL::Slices
clump, diagonalI, dice, dice axis, identvaff, index, index2d, lags, mv, ones-
lice, reorder, rld, rle, rotate, slice, splitdim, unthread, using, xchg

PDL I/O functions

PDL::IO::FastRaw
mapfraw, maptextfraw, readfraw, writefraw

PDL::IO::FlexRaw
mapflex, readflex, writeflex

PDL::IO::Misc
bswap2, bswap4, bswap8, isbigendian, rasc, rcols, rcube, rdsa, rfits, rgrep,
wcols, wfits

PDL::IO::NDF
propndfx, rndf, wndf

PDL::IO::Pic
rpic, rpiccan, rpiccan, wmpeg, wpic

PDL::IO::Pnm
pnminascii, pnminraw, pnmout, rpnm, wpnm

PDL Graphics functions

PDL::Graphics::IIS
iis, iiscirc, iiscur, saoimage, ximtool

PDL::Graphics::Karma
kcur, kim, koords, koverlay, kpvslice, krenzo, krgb, kshell, kslice 3d, kstarted,
kview, xray

PDL::Graphics::LUT
lut data, lut names, lut ramps

PDL::Graphics::OpenGLQ

PDL::Graphics::PGPLOT
bin, cont, ctab, dev, env, errb, hi2d, imag, imag1, line, points, poly, vect

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 153

PDL::Graphics::TriD
attract, buttonmotion, combcoords, contour segments, GLinit, grabpic3d,
hold3d, hold3d, imag3d, imagrgb, imagrgb3d, keeptwiddling3d, keeptwid-
dling3d, lattice3d, line3d, mesh3d, points3d, Populate, refresh, repulse,
twiddle3d, vrmlcoordsvert

PDL::Graphics::TriD::Rout
attract, combcoords, contour segments, repulse, vrmlcoordsvert

PDL::Graphics::TriD::Tk
buttonmotion, GLinit, Populate, refresh

PDL Library functions

PDL::FFT
Carg, Cbconj, Cbexp, Cbmul, Cbscale, Cconj, Cdiv, cdiv, Cexp, Cmod,
Cmod2, Cmul, cmul, convmath, Cscale, fft, fftconvolve, fftnd, fftw, fftwconv,
ifft, ifftnd, ifftw, infftw, inrfftw, irfftw, kernctr, load wisdom, nfftw, nrfftw,
realfft, realifft, rfftw, rfftwconv

PDL::FFTW
Carg, Cbconj, Cbexp, Cbmul, Cbscale, Cconj, Cdiv, Cexp, Cmod, Cmod2,
Cmul, Cscale, fftw, fftwconv, ifftw, infftw, inrfftw, irfftw, load wisdom,
nfftw, nrfftw, rfftw, rfftwconv

PDL::Fit::Gaussian
fitgauss1d, fitgauss1dr

PDL::Fit::LM
lmfit, tlmfit

PDL::Image2D
bilin2d, cc8compt, centroid2d, conv2d, max2d ind, med2d, patch2d, poly-
fill, polyfillv, rescale2d, rot2d

PDL::ImageND
circ mean, circ mean p, convolve, ninterpol, rebin

PDL::ImageRGB
bytescl, cquant, interlrgb, rgbtogr

PDL::Slatec
chcm, chfd, chfe, chia, chic, chid, chim, chsp, eigsys, ezfftb, ezfftf, ezffti,
geco, gedi, gefa, gesl, matinv, pcoef, poco, podi, polfit, polycoef, polyfit,
polyvalue, pvalue, rs, svdc

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 154

PDL development related routines

PDL::Dbg
px, vars

PDL::Doc::Perldl
apropos, help, sig, usage

PDL routines of derived classes

PDL::Char
atstr, new, setstr, string

PDL::Complex
Cabs, Cabs2, Cacos, Cacosh, Casin, Casinh, Catan, Catanh, Ccmp, Ccos,
Ccosh, Clog, Cp2r, cplx, Cpow, Cproj, Cr2p, Croots, Csin, Csinh, Csqrt,
Ctan, Ctanh, i2C, r2C, rCpolynomial, re, re, real

PDL::Func
attributes, get, gradient, init, integrate, interpolate, routine, scheme, set,
status

Alphabetical Listing of PDL Functions

abs Module: PDL::Ops

Signature: (a(); [o]b())

elementwise absolut value

$b = abs $a;
$a->inplace->abs; # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the unary abs operator/function.

acos
Module: PDL::Math

Signature: (a(); [o]b())

The usual trigonometric function.

acosh
Module: PDL::Math

Signature: (a(); [o]b())

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 155

The standard hyperbolic function.

all Module: PDL::Primitive

Return true if all elements in piddle set

Useful in conditional expressions:

if (all $a>15) { print "all values are greater than 15\n" }

allaxisvals
Module: PDL::Basic

Generates a piddle with index values

$z = allaxisvals ($piddle);

allaxisvals produces an array with axis values along each dimension,
adding an extra dimension at the start.

C<allaxisvals($piddle)-¿slice(”($nth)”)> will produce the same result as
axisvals($piddle,$nth) (although with extra work and not inplace).

It’s useful when all the values will be required, as in the example given of
a generalized the rvals entry in the rvals| manpage.

and Module: PDL::Primitive

Return the logical and of all elements in a piddle

$x = and($data);

and2
Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

binary and of two piddles

$c = and2 $a, $b, 0; # explicit call with trailing 0
$c = $a & $b; # overloaded call
$a->inplace->and2($b,0); # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary & operator. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

andover
Module: PDL::Primitive

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 156

Signature: (a(n); int+ [o]b())

Project via and to N-1 dimensions

This function reduces the dimensionality of a piddle by one by taking the
and along the 1st dimension.

By using the xchg entry in the xchg|PDL::Slices manpage etc. it is possible
to use any dimension.

$a = andover($b);

$spectrum = andover $image->xchg(0,1)

any Module: PDL::Primitive

Return true if any element in piddle set

Useful in conditional expressions:

if (any $a>15) { print "some values are greater than 15\n" }

append
Module: PDL::Primitive

Signature: (a(n); b(m); [o] c(mn))

append two piddles by concantening along their respective first dimensions

$a = ones(2,4,7);
$b = sequence 5;
$c = $a->append($b); # size of $c is now (7,4,7) (a jumbo-piddle ;)

append appends two piddles along their first dims. Rest of the dimensions
must be compatible in the threading sense. Resulting size of first dim is
sum of sizes of the two argument piddles’ first dims.

apropos
Module: PDL::Doc::Perldl

Regex search PDL documentation database

apropos ’text’

perldl> apropos ’pic’
rpic Read images in many formats with automatic format detection.
rpiccan Test which image formats can be read/written
wmpeg Write an image sequence ((x,y,n) piddle) as an MPEG animation.
wpic Write images in many formats with automatic format selection.
wpiccan Test which image formats can be read/written

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 157

To find all the manuals that come with PDL, try

apropos ’manual:’

and to get quick info about PDL modules say

apropos ’module:’

You get more detailed info about a PDL function/module/manual with
the help function

asin
Module: PDL::Math

Signature: (a(); [o]b())

The usual trigonometric function.

asinh
Module: PDL::Math

Signature: (a(); [o]b())

The standard hyperbolic function.

assgn
Module: PDL::Primitive

Signature: (a(); [o]b())

Plain numerical assignment. This is used to implement the ”.=” operator

at Module: PDL::Core

Returns a single value inside a piddle as perl scalar.

$z = at($piddle, @position); $z=$piddle->at(@position);

@position is a coordinate list, of size equal to the number of dimensions
in the piddle. Occasionally useful in a general context, quite useful too
inside PDL internals.

perldl> $x = sequence 3,4
perldl> p $x->at(1,2)
7

atan
Module: PDL::Math

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 158

Signature: (a(); [o]b())

The usual trigonometric function.

atan2
Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

elementwise atan2 of two piddles

$c = $a->atan2($b,0); # explicit function call
$c = atan2 $a, $b; # overloaded use
$a->inplace->atan2($b,0); # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary atan2 function. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

atanh
Module: PDL::Math

Signature: (a(); [o]b())

The standard hyperbolic function.

atstr
Module: PDL::Char

Function to fetch one string value from a PDL::Char type PDL, given a
position within the PDL. The input position of the string, not a character
in the string. The length of the input string is the implied first dimension.

$char = PDL::Char->new([[’abc’, ’def’, ’ghi’], [’jkl’, ’mno’, ’pqr’]]);
print $char->atstr(0,1);
Prints:
jkl

attract
Module: PDL::Graphics::TriD::Rout

Signature: (coords(nc,np);
int from(nl);
int to(nl);
strength(nl);
[o]vecs(nc,np);;
double m;
double ms;

)

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 159

Attractive potential for molecule-like constructs.

attract is used to calculate an attractive force for many objects, of which
some attract each other (in a way like molecular bonds). For use by the
module the PDL::Graphics::TriD::MathGraph|PDL::Graphics::TriD::MathGraph
manpage. For definition of the potential, see the actual function.

attributes
Module: PDL::Func

$obj->attributes;
PDL::Func->attributes;

Print out the flags for the attributes of a PDL::Func object.

Useful in case the documentation is just too opaque!

PDL::Func->attributes;
Flags Attribute
SGR x
SGR y
G err

average
Module: PDL::Primitive

Signature: (a(n); int+ [o]b())

Project via average to N-1 dimensions

This function reduces the dimensionality of a piddle by one by taking the
average along the 1st dimension.

By using the xchg entry in the xchg|PDL::Slices manpage etc. it is possible
to use any dimension.

$a = average($b);

$spectrum = average $image->xchg(0,1)

avg Module: PDL::Primitive

Return the average of all elements in a piddle

$x = avg($data);

axisvals
Module: PDL::Basic

Fills a piddle with index values on Nth dimension

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 160

$z = axisvals ($piddle, $nth);

This is the routine, for which the xvals entry in the xvals| manpage, the
yvals entry in the yvals| manpage etc are mere shorthands. axisvals
can be used to fill along any dimension.

Note the ’from specification’ style (see the zeroes entry in the zeroes|PDL::Core
manpage) is not available here, for obvious reasons.

axisvalues
Module: PDL::Primitive

Signature: ([o,nc]a(n))

Internal routine

axisvalues is the internal primitive that implements the axisvals entry
in the axisvals|PDL::Basic manpage and alters its argument.

badmask
Module: PDL::Math

Signature: (a(); b(); [o]c())

Clears all infs and nans in $a to the corresponding value in $b

band
Module: PDL::Primitive

Return the bitwise and of all elements in a piddle

$x = band($data);

bandover
Module: PDL::Primitive

Signature: (a(n); int+ [o]b())

Project via bitwise and to N-1 dimensions

This function reduces the dimensionality of a piddle by one by taking the
bitwise and along the 1st dimension.

By using the xchg entry in the xchg|PDL::Slices manpage etc. it is possible
to use any dimension.

$a = bandover($b);

$spectrum = bandover $image->xchg(0,1)

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 161

barf
Module: PDL::Core

Standard error reporting routine for PDL.

barf() is the routine PDL modules should call to report errors. This is
because barf() will report the error as coming from the correct line in
the module user’s script rather than in the PDL module.

It does this magic by unwinding the stack frames until it reaches a package
NOT beginning with "PDL::". If you DO want it to report errors in some
module PDL::Foo (e.g. when debugging PDL::Foo) then set the variable
$PDL::Foo::Debugging=1.

Additionally if you set the variable $PDL::Debugging=1 you will get a
COMPLETE stack trace back up to the top level package.

Finally barf() will try and report usage information from the PDL doc-
umentation database if the error message is of the form ’Usage: func’.

Remember barf() is your friend. ∗Use∗ it!

At the perl level:

barf("User has too low an IQ!");

In C or XS code:

barf("You have made %d errors", count);

Note: this is one of the few functions ALWAYS exported by PDL::Core

bessj0
Module: PDL::Math

Signature: (a(); [o]b())

The standard Bessel Functions

bessj1
Module: PDL::Math

Signature: (a(); [o]b())

The standard Bessel Functions

bessjn
Module: PDL::Math

Signature: (a(); int n(); [o]b())

The standard Bessel Functions

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 162

bessy0
Module: PDL::Math

Signature: (a(); [o]b())

The standard Bessel Functions

bessy1
Module: PDL::Math

Signature: (a(); [o]b())

The standard Bessel Functions

bessyn
Module: PDL::Math

Signature: (a(); int n(); [o]b())

The standard Bessel Functions

bilin2d
Module: PDL::Image2D

Signature: (I(n,m); O(q,p))

Bilineary maps the first piddle in the second. The interpolated values are
actually added to the second piddle which is supposed to be larger than
the first one.

bin Module: PDL::Graphics::PGPLOT

Plot vector as histogram (e.g. bin(hist($data)))

Usage: bin ([$x,] $data)

Options recognised:

CENTRE - if true, the x values denote the centre of the bin
otherwise they give the lower-edge (in x) of the bin

CENTER - as CENTRE

The following standard options influence this command:

AXIS, BORDER, COLOUR, JUSTIFY, LINESTYLE, LINEWIDTH

bitnot
Module: PDL::Ops

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 163

Signature: (a(); [o]b())

unary bit negation

$b = ~ $a;
$a->inplace->bitnot; # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the unary ~ operator/function.

bor Module: PDL::Primitive

Return the bitwise or of all elements in a piddle

$x = bor($data);

borover
Module: PDL::Primitive

Signature: (a(n); int+ [o]b())

Project via bitwise or to N-1 dimensions

This function reduces the dimensionality of a piddle by one by taking the
bitwise or along the 1st dimension.

By using the xchg entry in the xchg|PDL::Slices manpage etc. it is possible
to use any dimension.

$a = borover($b);

$spectrum = borover $image->xchg(0,1)

browse
Module: PDL::IO::Browser

Signature: (a(n,m))

browse
Module: PDL::IO::Browser

browse a 2D array using terminal cursor keys

browse $data

This uses the CURSES library to allow one to scroll around a PDL array
using the cursor keys.

bswap2
Module: PDL::IO::Misc

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 164

Signature: (x();)

Swaps pairs of bytes in argument x()

bswap4
Module: PDL::IO::Misc

Signature: (x();)

Swaps quads of bytes in argument x()

bswap8
Module: PDL::IO::Misc

Signature: (x();)

Swaps octets of bytes in argument x()

buttonmotion
Module: PDL::Graphics::TriD::Tk

Default bindings for mousemotion with buttons 1 and 3

byte
Module: PDL::Core

Convert to byte datatype — see ’Datatype conversions’

bytescl
Module: PDL::ImageRGB

Scales a pdl into a specified data range (default 0−255)

$scale = $im->bytescl([$top])

By default $top=255, otherwise you have to give the desired top value as
an argument to bytescl. Normally bytescl doesn’t rescale data that fits
already in the bounds 0..$top (it only does the type conversion if required).
If you want to force it to rescale so that the max of the output is at $top
and the min at 0 you give a negative $top value to indicate this.

Cabs
Module: PDL::Complex

Signature: (a(m=2); [o]c())

complex abs() (also known as modulus)

Cabs2
Module: PDL::Complex

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 165

Signature: (a(m=2); [o]c())

complex squared abs() (also known squared modulus)

Cacos
Module: PDL::Complex

Signature: (a(m=2); [o]c(m=2))

Cacosh
Module: PDL::Complex

Signature: (a(m=2); [o]c(m=2))

callext
Module: PDL::CallExt

Call a function in an external library using Perl dynamic loading

callext(’file.so’, ’foofunc’, $x, $y); # pass piddles to foofunc()

The file must be compiled with dynamic loading options (see callext_cc).
See the module docs PDL::Callext for a description of the API.

callext cc
Module: PDL::CallExt

Compile external C code for dynamic loading

Usage:

% perl -MPDL::CallExt -e callext_cc file.c -o file.so

This works portably because when Perl has built in knowledge of how
to do dynamic loading on the system on which it was installed. See the
module docs PDL::Callext for a description of the API.

Carg
Module: PDL::FFTW

Signature: (a(n); [o]c())

argument of a complex number.

$out_pdl_real = Carg($a_pdl_cplx);

Casin
Module: PDL::Complex

Signature: (a(m=2); [o]c(m=2))

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 166

Casinh
Module: PDL::Complex

Signature: (a(m=2); [o]c(m=2))

cat Module: PDL::Core

concatentate piddles to N+1 dimensional piddle

Takes a list of N piddles of same shape as argument, returns a single piddle
of dimension N+1

perldl> $x = cat ones(3,3),zeroes(3,3),rvals(3,3); p $x
[
[
[1 1 1]
[1 1 1]
[1 1 1]
]
[
[0 0 0]
[0 0 0]
[0 0 0]
]
[
[1 1 1]
[1 0 1]
[1 1 1]
]
]

Catanh
Module: PDL::Complex

Signature: (a(m=2); [o]c(m=2))

Cbconj
Module: PDL::FFTW

Signature: (a(n))

Complex inplace conjugate.

Cbconj($a_pdl_cplx);

Cbexp
Module: PDL::FFTW

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 167

Signature: (a(n))

Complex inplace exponentation.

$out_pdl_cplx = Cexp($a_pdl_cplx);

Cbmul
Module: PDL::FFTW

Signature: (a(n); b(n))

Complex inplace multiplication.

Cbmul($a_pdl_cplx,$b_pdl_cplx);

Cbscale
Module: PDL::FFTW

Signature: (a(n); b())

Complex inplace multiplaction by real.

Cbscale($a_pdl_cplx,$b_pdl_real);

cc8compt
Module: PDL::Image2D

Signature: (a(m,n); [o]b(m,n))

Connected 8-component labeling of a binary image.

Connected 8-component labeling of 0,1 image — i.e. find seperate seg-
mented objects and fill object pixels with object number

$segmented = cc8compt($image > $threshold);

Ccmp
Module: PDL::Complex

Signature: (a(m=2); b(m=2); [o]c())

Complex comparison oeprator (spaceship). It orders by real first, then by
imaginary.

Cconj
Module: PDL::FFTW

Signature: (a(n); [o]c(n))

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 168

Complex conjugate.

$out_pdl_cplx = Cconj($a_pdl_cplx);

Ccos
Module: PDL::Complex

Signature: (a(m=2); [o]c(m=2))

cos (a) = 1/2 * (exp (a*i) + exp (-a*i))

Ccosh
Module: PDL::Complex

Signature: (a(m=2); [o]c(m=2))

cosh (a) = (exp (a) + exp (-a)) / 2

Cdiv
Module: PDL::FFTW

Signature: (a(n); b(n); [o]c(n))

Complex division.

$out_pdl_cplx = Cdiv($a_pdl_cplx,$b_pdl_cplx);

cdiv
Module: PDL::FFT

Signature: (ar(); ai(); br(); bi(); [o]cr(); [o]ci())

Complex division

ceil
Module: PDL::Math

Signature: (a(); [o]b())

Round to integral values in floating-point format

centroid2d
Module: PDL::Image2D

Signature: (im(m,n); x(); y(); box(); [o]xcen(); [o]ycen())

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 169

Refine a list of object positions in 2D image by centroiding in a box

$box is the full-width of the box, i.e. the window is +/- $box/2.

Cexp
Module: PDL::FFTW

Signature: (a(n); [o]c(n))

Complex exponentation.

$out_pdl_cplx = Cexp($a_pdl_cplx);

chcm
Module: PDL::Slatec

Signature: (x(n);f(n);d(n);int check();int [o]ismon(n);int [o]ierr())

Check the given piecewise cubic Hermite function for monotonicity.

The outout piddle $ismon indicates over which intervals the function is
monotonic. Set check to 0 to skip checks on the input data.

For the data interval [x(i),x(i+1)], the values of ismon(i) can be:

• -3 if function is probably decreasing

• -1 if function is strictly decreasing

• 0 if function is constant

• 1 if function is strictly increasing

• 2 if function is non-monotonic

• 3 if function is probably increasing

If abs(ismon(i)) == 3, the derivative values are near the boundary of
the monotonicity region. A small increase produces non-monotonicity,
whereas a decrease produces strict monotonicity.

The above applies to i = 0 .. nelem($x)-1. The last element of $ismon
indicates whether the entire function is monotonic over $x.

Error status returned by $ierr:

• 0 if successful.

• -1 if n < 2.

• -3 if $x is not strictly increasing.

chfd
Module: PDL::Slatec

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 170

Signature: (x(n);f(n);d(n);int check();xe(ne);[o]fe(ne);[o]de(ne);int [o]ierr())

Interpolate function and derivative values.

Given a piecewise cubic Hermite function — such as from the chim entry
in the chim| manpage — evaluate the function ($fe) and derivative ($de)
at a set of points ($xe). If function values alone are required, use the chfe
entry in the chfe| manpage. Set check to 0 to skip checks on the input
data.

Error status returned by $ierr:

• 0 if successful.

• ¿0 if extrapolation was performed at ierr points (data still valid).

• -1 if C<nelem($x) ¡ 2>

• -3 if $x is not strictly increasing.

• -4 if C<nelem($xe) ¡ 1>.

• -5 if an error has occurred in a lower-level routine, which should never
happen.

chfe
Module: PDL::Slatec

Signature: (x(n);f(n);d(n);int check();xe(ne);[o]fe(ne);int [o]ierr())

Interpolate function values.

Given a piecewise cubic Hermite function — such as from the chim entry
in the chim| manpage — evaluate the function ($fe) at a set of points
($xe). If derivative values are also required, use the chfd entry in the
chfd| manpage. Set check to 0 to skip checks on the input data.

Error status returned by $ierr:

• 0 if successful.

• ¿0 if extrapolation was performed at ierr points (data still valid).

• -1 if C<nelem($x) ¡ 2>

• -3 if $x is not strictly increasing.

• -4 if C<nelem($xe) ¡ 1>.

chia
Module: PDL::Slatec

Signature: (x(n);f(n);d(n);int check();a();b();[o]ans();int [o]ierr())

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 171

Integrate (x,f (x)) over arbitrary limits.

Evaluate the definite integral of a a piecewise cubic Hermite function over
an arbitrary interval, given by [$a,$b]. See the chid entry in the chid|
manpage if the integration limits are data points. Set check to 0 to skip
checks on the input data.

The values of $a and $b do not have to lie within $x, although the resulting
integral value will be highly suspect if they are not.

Error status returned by $ierr:

• 0 if successful.

• 1 if $a lies outside $x.

• 2 if $b lies outside $x.

• 3 if both 1 and 2 are true.

• -1 if C<nelem($x) ¡ 2>

• -3 if $x is not strictly increasing.

• -4 if an error has occurred in a lower-level routine, which should never
happen.

chic
Module: PDL::Slatec

Signature: (int ic(two=2);vc(two=2);mflag();x(n);f(n);[o]d(n);wk(nwk);int [o]ierr())

Calculate the derivatives of (x,f (x)) using cubic Hermite interpolation.

Calculate the derivatives at the given points ($x,$f, where $x is strictly
increasing). Control over the boundary conditions is given by the $ic
and $vc piddles, and the value of $mflag determines the treatment of
points where monotoncity switches direction. A simpler, more restricted,
interface is available using the chim entry in the chim| manpage.

The first and second elements of $ic determine the boundary conditions
at the start and end of the data respectively. If the value is 0, then the
default condition, as used by the chim entry in the chim| manpage, is
adopted. If greater than zero, no adjustment for monotonicity is made,
otherwise if less than zero the derivative will be adjusted. The allowed
magnitudes for ic(0) are:

• 1 if first derivative at x(0) is given in vc(0).

• 2 if second derivative at x(0) is given in vc(0).

• 3 to use the 3-point difference formula for d(0). (Reverts to the
default b.c. if n < 3)

• 4 to use the 4-point difference formula for d(0). (Reverts to the
default b.c. if n < 4)

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 172

• 5 to set d(0) so that the second derivative is continuous at x(1).
(Reverts to the default b.c. if n < 4)

The values for ic(1) are the same as above, except that the first-derivative
value is stored in vc(1) for cases 1 and 2. The values of $vc need only be
set if options 1 or 2 are chosen for $ic.

Set $mflag = 0 if interpolant is required to be monotonic in each interval,
regardless of the data. This causes $d to be set to 0 at all switch points. Set
$mflag to be non-zero to use a formula based on the 3-point difference
formula at switch points. If $mflag > 0, then the interpolant at swich
points is forced to not deviate from the data by more than $mflag*dfloc,
where dfloc is the maximum of the change of $f on this interval and
its two immediate neighbours. If $mflag < 0, no such control is to be
imposed.

The piddle $wk is only needed for work space. However, I could not get it
to work as a temporary variable, so you must supply it; it is a 1D piddle
with 2*n elements.

Error status returned by $ierr:

• 0 if successful.
• 1 if C<ic(0) ¡ 0> and d(0) had to be adjusted for monotonicity.
• 2 if C<ic(1) ¡ 0> and d(n-1) had to be adjusted for monotonicity.
• 3 if both 1 and 2 are true.
• -1 if n < 2.
• -3 if $x is not strictly increasing.
• -4 if C<abs(ic(0)) ¿ 5>.
• -5 if C<abs(ic(1)) ¿ 5>.
• -6 if both −4 and −5 are true.
• -7 if nwk < 2*(n-1).

chid
Module: PDL::Slatec

Signature: (x(n);f(n);d(n);int check();int ia();int ib();[o]ans();int [o]ierr())

Integrate (x,f (x)) between data points.

Evaluate the definite integral of a a piecewise cubic Hermite function be-
tween x($ia) and x($ib).

See the chia entry in the chia| manpage for integration between arbitrary
limits.

Although using a fortran routine, the values of $ia and $ib are zero offset.
Set check to 0 to skip checks on the input data.

Error status returned by $ierr:

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 173

• 0 if successful.

• -1 if C<nelem($x) ¡ 2>.

• -3 if $x is not strictly increasing.

• -4 if $ia or $ib is out of range.

chim
Module: PDL::Slatec

Signature: (x(n);f(n);[o]d(n);int [o]ierr())

Calculate the derivatives of (x,f (x)) using cubic Hermite interpolation.

Calculate the derivatives at the given set of points ($x,$f, where $x is
strictly increasing). The resulting set of points — $x,$f,$d, referred to as
the cubic Hermite representation — can then be used in other functions,
such as the chfe entry in the chfe| manpage, the chfd entry in the chfd|
manpage, and the chia entry in the chia| manpage.

The boundary conditions are compatible with monotonicity, and if the
data are only piecewise monotonic, the interpolant will have an extremum
at the switch points; for more control over these issues use the chic entry
in the chic| manpage.

Error status returned by $ierr:

• 0 if successful.

• ¿ 0 if there were ierr switches in the direction of monotonicity (data
still valid).

• -1 if C<nelem($x) ¡ 2>.

• -3 if $x is not strictly increasing.

chsp
Module: PDL::Slatec

Signature: (int ic(two=2);vc(two=2);x(n);f(n);[o]d(n);wk(nwk);int [o]ierr())

Calculate the derivatives of (x,f (x)) using cubic spline interpolation.

Calculate the derivatives, using cubic spline interpolation, at the given
points ($x,$f), with the specified boundary conditions. Control over the
boundary conditions is given by the $ic and $vc piddles. The resulting
values — $x,$f,$d - can be used in all the functions which expect a cubic
Hermite function.

The first and second elements of $ic determine the boundary conditions
at the start and end of the data respectively. The allowed values for ic(0)
are:

• 0 to set d(0) so that the third derivative is continuous at x(1).

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 174

• 1 if first derivative at x(0) is given in vc(0).

• 2 if second derivative at x(0) is given in vc(0).

• 3 to use the 3-point difference formula for d(0). (Reverts to the
default b.c. if n < 3.)

• 4 to use the 4-point difference formula for d(0). (Reverts to the
default b.c. if n < 4.)

The values for ic(1) are the same as above, except that the first-derivative
value is stored in vc(1) for cases 1 and 2. The values of $vc need only be
set if options 1 or 2 are chosen for $ic.

The piddle $wk is only needed for work space. However, I could not get it
to work as a temporary variable, so you must supply it; it is a 1D piddle
with 2*n elements.

Error status returned by $ierr:

• 0 if successful.

• -1 if C<nelem($x) ¡ 2>.

• -3 if $x is not strictly increasing.

• -4 if C<ic(0) ¡ 0> or C<ic(0) ¿ 4>.

• -5 if C<ic(1) ¡ 0> or C<ic(1) ¿ 4>.

• -6 if both of the above are true.

• -7 if nwk < 2*n.

• -8 in case of trouble solving the linear system for the interior deriva-
tive values.

circ mean
Module: PDL::ImageND

Smooths an image by applying circular mean. Optionally takes the center
to be used.

circ_mean($im);
circ_mean($im,{Center => [10,10]});

circ mean p
Module: PDL::ImageND

Calculates the circular mean of an n-dim image and returns the projection.
Optionally takes the center to be used.

$cmean=circ_mean_p($im);
$cmean=circ_mean_p($im,{Center => [10,10]});

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 175

clip
Module: PDL::Primitive

Clip a piddle by (optional) upper or lower bounds.

$b = $a->clip(0,3);
$c = $a->clip(undef, $x);

Clog
Module: PDL::Complex

Signature: (a(m=2); [o]c(m=2))

log (a) = log (cabs (a)) + i ∗ carg (a)

clump
Module: PDL::Slices

Signature: (P(); C(); int n)

”clumps” the first n dimensions into one large dimension

If, for example, $a has dimensions (5,3,4) then after

$b = $a->clump(2); # Clump 2 first dimensions

the variable $b will have dimensions (15,4) and the element $b->at(7,3)
refers to the element $a->at(1,2,3).

Cmod
Module: PDL::FFTW

Signature: (a(n); [o]c())

modulus of a complex piddle.

$out_pdl_real = Cmod($a_pdl_cplx);

Cmod2
Module: PDL::FFTW

Signature: (a(n); [o]c())

Returns squared modulus of a complex number.

$out_pdl_real = Cmod2($a_pdl_cplx);

Cmul
Module: PDL::FFTW

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 176

Signature: (a(n); b(n); [o]c(n))

Complex multiplication

$out_pdl_cplx = Cmul($a_pdl_cplx,$b_pdl_cplx);

cmul
Module: PDL::FFT

Signature: (ar(); ai(); br(); bi(); [o]cr(); [o]ci())

Complex multiplication

combcoords
Module: PDL::Graphics::TriD::Rout

Signature: (x(); y(); z();
float [o]coords(tri=3);)

Combine three coordinates into a single piddle.

Combine x, y and z to a single piddle the first dimension of which is 3.
This routine does dataflow automatically.

cont
Module: PDL::Graphics::PGPLOT

Display image as contour map

Usage: cont ($image, [$contours, $transform, $misval], [$opt])

Notes: $transform for image/cont etc. is used in the same way as the
TR() array in the underlying PGPLOT FORTRAN routine but is, fortu-
nately, zero-offset.

Options recognised:

CONTOURS - A piddle with the contour levels
FOLLOW - Follow the contour lines around (uses pgcont rather than

pgcons) If this is set >0 the chosen linestyle will be
ignored and solid line used for the positive contours
and dashed line for the negative contours.

LABELS - An array of strings with labels for each contour
LABELCOLOUR - The colour of labels if different from the draw colour

This will not interfere with the setting of draw colour
using the colour keyword.

MISSING - The value to ignore for contouring
NCONTOURS - The number of contours wanted for automatical creation,

overridden by CONTOURS
TRANSFORM - The pixel-to-world coordinate transform vector

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 177

The following standard options influence this command:

AXIS, BORDER, COLOUR, JUSTIFY, LINESTYLE, LINEWIDTH

$x=sequence(10,10);
$ncont = 4;
$labels= [’COLD’, ’COLDER’, ’FREEZING’, ’NORWAY’]
This will give four blue contour lines labelled in red.
cont $x, {NCONT => $ncont, LABELS => $labels, LABELCOLOR => RED,

COLOR => BLUE}

contour segments
Module: PDL::Graphics::TriD::Rout

This is the interface for the pp routine contour segments internal — it
takes 3 piddles as input

$c is a contour value (or a list of contour values)

$data is an [m,n] array of values at each point

$points is a list of [3,m,n] points, it should be a grid monotonically
increasing with m and n.

contour segments returns a reference to a Perl array of line segments as-
sociated with each value of $c. It does not (yet) handle missing data
values.

Algorthym
The data array represents samples of some field observed on the sur-
face described by points. For each contour value we look for inter-
sections on the line segments joining points of the data. When an
intersection is found we look to the adjoining line segments for the
other end(s) of the line segment(s). So suppose we find an inter-
section on an x-segment. We first look down to the left y-segment,
then to the right y-segment and finally across to the next x-segment.
Once we find one in a box (two on a point) we can quit because there
can only be one. After we are done with a given x-segment, we look
to the leftover possibilities for the adjoining y-segment. Thus the
contours are built as a collection of line segments rather than a set
of closed polygons.

conv2d
Module: PDL::Image2D

Signature: (a(m,n); kern(p,q); [o]b(m,n); int opt)

2D convolution of an array with a kernel (smoothing)

For large kernels, using a FFT routine, such as the fftconvolve entry in
the PDL::FFT::fftconvolve()|PDL::FFT manpage, will be quicker.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 178

$new = conv2d $old, $kernel, {OPTIONS}

$smoothed = conv2d $image, ones(3,3), {Boundary => Reflect}

Boundary - controls what values are assumed for the image when kernel
crosses its edge:
=> Default - periodic boundary conditions

(i.e. wrap around axis)
=> Reflect - reflect at boundary
=> Truncate - truncate at boundary

convert
Module: PDL::Core

Generic datatype conversion function

$y = convert($x, $newtype);

$y = convert $x, long
$y = convert $x, ushort

$newtype is a type number, for convenience they are returned by long()
etc when called without arguments.

convmath
Module: PDL::FFT

Signature: ([o,nc]a(m); [o,nc]b(m))

Internal routine doing maths for convolution

convolve
Module: PDL::ImageND

Signature: (a(m); b(n); int adims(p); int bdims(q); [o]c(m))

convolve
Module: PDL::ImageND

N-dimensional convolution algorithm.

$new = convolve $a, $kernel

Convolve an array with a kernel, both of which are N-dimensional.

Note because of the algorithm used (writing N-dim routines is not easy
on the brain!) the boundary conditions are a bit strange. They wrap, but
up to the NEXT row/column/cube-slice/etc. If this is a problem consider
using zero-padding or something.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 179

copy
Module: PDL::Core

Make a physical copy of a piddle

$new = $old->copy;

Since $new = $old just makes a new reference, the copy method is pro-
vided to allow real independent copies to be made.

cos Module: PDL::Ops

Signature: (a(); [o]b())

the cos function

$b = cos $a;
$a->inplace->cos; # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the unary cos operator/function.

cosh
Module: PDL::Math

Signature: (a(); [o]b())

The standard hyperbolic function.

Cp2r
Module: PDL::Complex

Signature: (r(m=2); [o]p(m=2))

convert complex numbers in polar (mod,arg) form to rectangular form

Cpow
Module: PDL::Complex

Signature: (a(m=2); b(m=2); [o]c(m=2))

complex pow() (**-operator)

Cproj
Module: PDL::Complex

Signature: (a(m=2); [o]c(m=2))

compute the projection of a complex number to the riemann sphere

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 180

cquant
Module: PDL::ImageRGB

quantize and reduce colours in 8-bit images

($out, $lut) = cquant($image [,$ncols]);

This function does color reduction for ¡=8bit displays and accepts 8bit
RGB and 8bit palette images. It does this through an interface to the
ppm quant routine from the pbmplus package that implements the median
cut routine which intellegently selects the ’best’ colors to represent your
image on a ¡= 8bit display (based on the median cut algorithm). Optional
args: $ncols sets the maximum nunmber of colours used for the output
image (defaults to 256). There are images where a different color reduction
scheme gives better results (it seems this is true for images containing large
areas with very smoothly changing colours).

Returns a list containing the new palette image (type PDL Byte) and the
RGB colormap.

Cr2p
Module: PDL::Complex

Signature: (r(m=2); float+ [o]p(m=2))

convert complex numbers in rectangular form to polar (mod,arg) form

Croots
Module: PDL::Complex

Signature: (a(m=2); [o]c(m=2,n); int n => n)

Compute the n roots of a. n must be a positive integer. The result will
always be a complex type!

crossp
Module: PDL::Primitive

Signature: (a(tri=3); b(tri); [o] c(tri))

Cross product of two 3D vectors

After

$c = crossp $a, $b

the inner product $c*$a and $c*$b will be zero, i.e. $c is orthogonal to
$a and $b

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 181

Cscale
Module: PDL::FFTW

Signature: (a(n); b(); [o]c(n))

Complex by real multiplation.

Cscale($a_pdl_cplx,$b_pdl_real);

Csin
Module: PDL::Complex

Signature: (a(m=2); [o]c(m=2))

sin (a) = 1/(2*i) * (exp (a*i) - exp (-a*i))

Csinh
Module: PDL::Complex

Signature: (a(m=2); [o]c(m=2))

sinh (a) = (exp (a) - exp (-a)) / 2

Csqrt
Module: PDL::Complex

Signature: (a(m=2); [o]c(m=2))

ctab
Module: PDL::Graphics::PGPLOT

Load an image colour table.

Usage:

ctab ($name, [$contrast, $brightness]) # Builtin col table
ctab ($ctab, [$contrast, $brightness]) # $ctab is Nx4 array
ctab ($levels, $red, $green, $blue, [$contrast, $brightness])
ctab (’’, $contrast, $brightness) # use last color table

Note: See the PDL::Graphics::LUT|PDL::Graphics::LUT manpage for ac-
cess to a large number of colour tables.

Ctanh
Module: PDL::Complex

Signature: (a(m=2); [o]c(m=2))

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 182

cumuprodover
Module: PDL::Primitive

Signature: (a(n); int+ [o]b(n))

Cumulative product

This function calculates the cumulative product along the 1st dimension.

By using the xchg entry in the xchg|PDL::Slices manpage etc. it is possible
to use any dimension.

The sum is started so that the first element in the cumulative product is
the first element of the parameter.

$a = cumuprodover($b);

$spectrum = cumuprodover $image->xchg(0,1)

cumusumover
Module: PDL::Primitive

Signature: (a(n); int+ [o]b(n))

Cumulative sum

This function calculates the cumulative sum along the 1st dimension.

By using the xchg entry in the xchg|PDL::Slices manpage etc. it is possible
to use any dimension.

The sum is started so that the first element in the cumulative sum is the
first element of the parameter.

$a = cumusumover($b);

$spectrum = cumusumover $image->xchg(0,1)

Datatype conversions
Module: PDL::Core

byte|short|ushort|long|float|double convert shorthands

$y = double $x; $y = ushort [1..10];
all of byte|short|ushort|long|float|double behave similarly

When called with a piddle argument, they convert to the specific datatype.

When called with a numeric or list / listref argument they construct a
new piddle. This is a convenience to avoid having to be long-winded and
say $x = long(pdl(42))

Thus one can say:

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 183

$a = float(1,2,3,4); # 1D
$a = float([1,2,3],[4,5,6]); # 2D
$a = float([[1,2,3],[4,5,6]]); # 2D

Note the last two are equivalent — a list is automatically converted to a
list reference for syntactic convenience. i.e. you can omit the outer []

When called with no arguments return a special type token. This allows
syntactical sugar like:

$x = ones byte, 1000,1000;

This example creates a large piddle directly as byte datatype in order to
save memory.

In order to control how undefs are handled in converting from perl lists to
PDLs, one can set the variable $PDL::undefval; see the function the pdl
entry in the pdl()| manpage for more details.

perldl> p $x=sqrt float [1..10]
[1 1.41421 1.73205 2 2.23607 2.44949 2.64575 2.82843 3 3.16228]
perldl> p byte $x
[1 1 1 2 2 2 2 2 3 3]

dev Module: PDL::Graphics::PGPLOT

Open PGPLOT graphics device

Usage: dev $device, [$nx,$ny];

$device is a PGPLOT graphics device such as ”/xserve” or ”/ps”, if
omitted defaults to last used device (or value of env var PGPLOT_DEV if
first time). $nx, $ny specify sub-panelling.

diagonal
Module: PDL::Core

Returns the multidimensional diagonal over the specified dimensions.

$d = $x->diagonal(dim1, dim2,...)

perldl> $a = zeroes(3,3,3);
perldl> ($b = $a->diagonal(0,1))++;
perldl> p $a
[
[
[1 0 0]
[0 1 0]
[0 0 1]

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 184

]
[
[1 0 0]
[0 1 0]
[0 0 1]
]
[
[1 0 0]
[0 1 0]
[0 0 1]
]
]

diagonalI
Module: PDL::Slices

Signature: (P(); C(); SV *list)

Returns the multidimensional diagonal over the specified dimensions.

The diagonal is placed at the first (by number) dimension that is diag-
onalized. The other diagonalized dimensions are removed. So if $a has
dimensions (5,3,5,4,6,5) then after

$b = $a->diagonal(0,2,5);

the piddle $b has dimensions (5,3,4,6) and $b->at(2,1,0,1) refers to
$a->at(2,1,2,0,1,2).

NOTE: diagonal doesn’t handle threadids correctly. XXX FIX

dice
Module: PDL::Slices

Dice rows/columns/planes out of a PDL using indexes for each dimension.

This function can be used to extract irregular subsets along many dimen-
sion of a PDL, e.g. only certain rows in an image, or planes in a cube.
This can of course be done with the usual dimension tricks but this saves
having to figure it out each time!

This method is similar in functionality to the the slice entry in the slice|
manpage method, but the slice entry in the slice| manpage requires that
contiguous ranges or ranges with constant offset be extracted. (i.e. the
slice entry in the slice| manpage requires ranges of the form 1,2,3,4,5
or 2,4,6,8,10). Because of this restriction, the slice entry in the slice|
manpage is more memory efficient and slightly faster than dice

$slice = $data->dice([0,2,6],[2,1,6]); # Dicing a 2-D array

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 185

The arguments to dice are arrays (or 1D PDLs) for each dimension in the
PDL. These arrays are used as indexes to which rows/columns/cubes,etc
to dice-out (or extract) from the $data PDL.

perldl> $a = sequence(10,4)
perldl> p $a
[
[0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]
[20 21 22 23 24 25 26 27 28 29]
[30 31 32 33 34 35 36 37 38 39]
]
perldl> p $a->dice([1,2],[0,3]) # Select columns 1,2 and rows 0,3
[
[1 2]
[31 32]
]

As this is an index function, any modifications to the slice change the
parent.

dice axis
Module: PDL::Slices

Dice rows/columns/planes from a single PDL axis (dimension) using index
along a specified axis

This function can be used to extract irregular subsets along any dimension,
e.g. only certain rows in an image, or planes in a cube. This can of course
be done with the usual dimension tricks but this saves having to figure it
out each time!

$slice = $data->dice_axis($axis,$index);

perldl> $a = sequence(10,4)
perldl> $idx = pdl(1,2)
perldl> p $a->dice_axis(0,$idx) # Select columns
[
[1 2]
[11 12]
[21 22]
[31 32]
]
perldl> $t = $a->dice_axis(1,$idx) # Select rows
perldl> $t.=0
perldl> p $a
[
[0 1 2 3 4 5 6 7 8 9]

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 186

[0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0]
[30 31 32 33 34 35 36 37 38 39]
]

The trick to using this is that the index selects elements along the di-
mensions specified, so if you have a 2D image axis=0 will select certain X
values — i.e. extract columns

As this is an index function, any modifications to the slice change the
parent.

dims
Module: PDL::Core

Return piddle dimensions as a perl list

@dims = $piddle->dims; @dims = dims($piddle);

perldl> p @tmp = dims zeroes 10,3,22
10 3 22

divide
Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

divide two piddles

$c = divide $a, $b, 0; # explicit call with trailing 0
$c = $a / $b; # overloaded call
$a->inplace->divide($b,0); # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary / operator. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

doflow
Module: PDL::Core

Turn on/off dataflow

$x->doflow; doflow($x);

dog Module: PDL::Core

Opposite of ’cat’ :). Split N dim piddle to list of N-1 dim piddles

Takes a single N-dimensional piddle and splits it into a list of N-1 dimen-
sional piddles. The breakup is done along the last dimension. Note the
dataflown connection is still preserved by default, e.g.:

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 187

perldl> $p = ones 3,3,3
perldl> ($a,$b,$c) = dog $p
perldl> $b++; p $p
[
[
[1 1 1]
[1 1 1]
[1 1 1]
]
[
[2 2 2]
[2 2 2]
[2 2 2]
]
[
[1 1 1]
[1 1 1]
[1 1 1]
]
]

Break => 1 Break dataflow connection (new copy)

double
Module: PDL::Core

Convert to double datatype — see ’Datatype conversions’

dummy
Module: PDL::Core

Insert a ’dummy dimension’ of given length (defaults to 1)

No relation to the ’Dungeon Dimensions’ in Discworld! Negative positions
specify relative to last dimension, i.e. dummy(-1) appends one dimension
at end, dummy(-2) inserts a dummy dimension in front of the last dim,
etc.

$y = $x->dummy($position[,$dimsize]);

perldl> p sequence(3)->dummy(0,3)
[
[0 0 0]
[1 1 1]
[2 2 2]
]

eigens
Module: PDL::Math

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 188

Signature: ([phys]a(m); [o,phys]ev(n,n); [o,phys]e(n))

Eigenvalues and -vectors of a symmetric square matrix. If passed an asym-
metric matrix, the routine will warn and symmetrize it.

($e, $ev) = eigens($a);

eigsys
Module: PDL::Slatec

Eigenvalues and eigenvectors of a real positive definite symmetric matrix.

($eigvals,$eigvecs) = eigsys($mat)

Note: this function should be extended to calculate only eigenvalues if
called in scalar context!

env Module: PDL::Graphics::PGPLOT

Define a plot window, and put graphics on ’hold’

Usage: env $xmin, $xmax, $ymin, $ymax, [$justify, $axis];
env $xmin, $xmax, $ymin, $ymax, [$options];

$xmin, $xmax, $ymin, $ymax are the plot boundaries. $justify is a
boolean value (default is 0); if true the axes scales will be the same (see
the justify entry elsewhere in this document). $axis describes how the
axes should be drawn (see the axis entry elsewhere in this document) and
defaults to 0.

If the second form is used, $justify and $axis can be set in the options
hash, for example:

env 0, 100, 0, 50, {JUSTIFY => 1, AXIS => ’GRID’, CHARSIZE => 0.7};

eq Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

binary equal to operation (==)

$c = eq $a, $b, 0; # explicit call with trailing 0
$c = $a == $b; # overloaded call
$a->inplace->eq($b,0); # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary == operator. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 189

erf Module: PDL::Math

Signature: (a(); [o]b())

The error function

erfc
Module: PDL::Math

Signature: (a(); [o]b())

The complement of the error function

erfi
Module: PDL::Math

Signature: (a(); [o]b())

The inverse of the error function

errb
Module: PDL::Graphics::PGPLOT

Plot error bars (using pgerrb())

Usage:

errb ($y, $yerrors, [$opt])
errb ($x, $y, $yerrors, [$opt])
errb ($x, $y, $xerrors, $yerrors, [$opt])
errb ($x, $y, $xloerr, $xhierr, $yloerr, $yhierr, [$opt])

Options recognised:

TERM - Length of terminals in multiples of the default length
SYMBOL - Plot the datapoints using the symbol value given, either

as name or number - see documentation for ’points’

The following standard options influence this command:

AXIS, BORDER, CHARSIZE, COLOUR, JUSTIFY, LINESTYLE, LINEWIDTH

$y = sequence(10)**2+random(10);
$sigma=0.5*sqrt($y);
errb $y, $sigma, {COLOUR => RED, SYMBOL => 18};

exp Module: PDL::Ops

Signature: (a(); [o]b())

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 190

the exponential function

$b = exp $a;
$a->inplace->exp; # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the unary exp operator/function.

ezfftb
Module: PDL::Slatec

Signature: ([o]r(n);azero();a(n);b(n);wsave(foo))

ezfftf
Module: PDL::Slatec

Signature: (r(n);[o]azero();[o]a(n);[o]b(n);wsave(foo))

ezffti
Module: PDL::Slatec

Signature: (int n();[o]wsave(foo))

Subroutine ezffti initializes the work array wsave() which is used in both
the ezfftf entry in the ezfftf| manpage and the ezfftb entry in the ezfftb|
manpage. The prime factorization of n together with a tabulation of the
trigonometric functions are computed and stored in wsave().

fft Module: PDL::FFT

Signature: ([o,nc]real(n); [o,nc]imag(n))

Complex FFT of the ”real” and ”imag” arrays [inplace]

fftconvolve
Module: PDL::FFT

N-dimensional convolution

$kernel = kernctr($image,$smallk);
fftconvolve($image,$kernel);

fftconvolve works inplace, and returns an error array in kernel as an accu-
racy check — all the values in it should be negligible.

The sizes of the image and the kernel must be the same. the kernctr entry
in the kernctr| manpage centres a small kernel to emulate the behaviour
of the direct convolution routines.

The speed cross-over between using straight convolution (the conv2d entry
in the PDL::Image2D::conv2d()|PDL::Image2D manpage) and these fft
routines is for kernel sizes roughly 7x7.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 191

fftnd
Module: PDL::FFT

N-dimensional FFT (inplace)

fftnd($real,$imag);

fftw
Module: PDL::FFTW

calculate the complex FFT of a real piddle (complex input, complex out-
put)

$pdl_cplx = fftw $pdl_cplx;

fftwconv
Module: PDL::FFTW

ND convolution using complex ffts from the FFTW library

Assumes real input!

$conv = fftwconv $im, kernctr $k;

fibonacci
Module: PDL::Primitive

Signature: ([o]x(n))

Constructor — a vector with Fibonacci’s sequence

fitgauss1d
Module: PDL::Fit::Gaussian

Fit 1D Gassian to data piddle

($cen, $pk, $fwhm2, $back, $err, $fit) = fitgauss1d($x, $data);

($cen, $pk, $fwhm2, $back, $err, $fit) = fitgauss1d($x, $data);

xval(n); data(n); [o]xcentre();[o]peak ht(); [o]fwhm(); [o]background();int
[o]err(); [o]datafit(n); [t]sig(n); [t]xtmp(n); [t]ytmp(n); [t]yytmp(n);
[t]rtmp(n);

Fit’s a 1D Gaussian robustly free parameters are the centre, peak height,
FWHM. The background is NOT fit, because I find this is generally un-
reliable, rather a median is determined in the ’outer’ 10% of pixels (i.e.
those at the start/end of the data piddle). The initial estimate of the
FWHM is the length of the piddle/3, so it might fail if the piddle is too
long. (This is non-robust anyway). Most data does just fine and this is a
good default gaussian fitter.

SEE ALSO: fitgauss1dr() for fitting radial gaussians

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 192

fitgauss1dr
Module: PDL::Fit::Gaussian

Fit 1D Gassian to radial data piddle

($pk, $fwhm2, $back, $err, $fit) = fitgauss1dr($r, $data);

($pk, $fwhm2, $back, $err, $fit) = fitgauss1dr($r, $data);

xval(n); data(n); [o]peak ht(); [o]fwhm(); [o]background();int [o]err();
[o]datafit(n); [t]sig(n); [t]xtmp(n); [t]ytmp(n); [t]yytmp(n); [t]rtmp(n);

Fit’s a 1D radial Gaussian robustly free parameters are the peak height,
FWHM. Centre is assumed to be X=0 (i.e. start of piddle). The back-
ground is NOT fit, because I find this is generally unreliable, rather a
median is determined in the ’outer’ 10% of pixels (i.e. those at the end
of the data piddle). The initial estimate of the FWHM is the length of
the piddle/3, so it might fail if the piddle is too long. (This is non-robust
anyway). Most data does just fine and this is a good default gaussian
fitter.

SEE ALSO: fitgauss1d() to fit centre as well.

fitpoly1d
Module: PDL::Fit::Polynomial

Fit 1D polynomials to data using min chî 2 (least squares)

Usage: ($yfit, [$coeffs]) = fitpoly1d [$xdata], $data, $order, [Options...]

Signature: (x (n); y(n); [o]yfit(n); [o]coeffs(order))

Uses a standard matrix inversion method to do a least squares/min chî 2
polynomial fit to data. Order=2 is a linear fit (two parameters).

Returns the fitted data and optionally the coefficients.

One can thread over extra dimensions to do multiple fits (except the order
can not be threaded over — i.e. it must be one fixed scalar number like
”4”).

The data is normalised internally to avoid overflows (using the mean of the
abs value) which are common in large polynomial series but the returned
fit, coeffs are in unnormalised units.

$yfit = fitpoly1d $data,2; # Least-squares line fit
($yfit, $coeffs) = fitpoly1d $x, $y, 4; # Fit a cubic

$fitimage = fitpoly1d $image,2 # Fit a quadratic to each row of an image

$myfit = fitpoly1d $line, 2, {Weights => $w}; # Weighted fit

Options:
Weights Weights to use in fit, e.g. 1/$sigma**2 (default=1)

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 193

float
Module: PDL::Core

Convert to float datatype — see ’Datatype conversions’

floor
Module: PDL::Math

Signature: (a(); [o]b())

Round to integral values in floating-point format

flows
Module: PDL::Core

Whether or not a piddle is indulging in dataflow

something if $x->flows; $hmm = flows($x);

ge Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

the binary ¿= (greater equal) operation

$c = ge $a, $b, 0; # explicit call with trailing 0
$c = $a >= $b; # overloaded call
$a->inplace->ge($b,0); # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary >= operator. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

geco
Module: PDL::Slatec

Signature: (a(n,n);int [o]ipvt(n);[o]rcond();[o]z(n))

Factor a matrix using Gaussian elimination and estimate the condition
number of the matrix.

gedi
Module: PDL::Slatec

Signature: (a(n,n);int [o]ipvt(n);[o]det(two=2);[o]work(n);int job())

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 194

Compute the determinant and inverse of a matrix using the factors com-
puted by the geco entry in the geco| manpage or the gefa entry in the
gefa| manpage.

gefa
Module: PDL::Slatec

Signature: (a(n,n);int [o]ipvt(n);int [o]info())

Factor a matrix using Gaussian elimination.

gesl
Module: PDL::Slatec

Signature: (a(lda,n);int ipvt(n);b(n);int job())

Solve the real system A*X=B or TRANS(A)*X=B using the factors computed
by the geco entry in the geco| manpage or the gefa entry in the gefa|
manpage.

get Module: PDL::Func

my $x = $obj->get(x);
my ($x, $y) = $obj->get(qw(x y));

Get attributes from a PDL::Func object.

Given a list of attribute names, return a list of their values; in scalar mode
return a scalar value. If the supplied list contains an unknown attribute,
get returns a value of undef for that attribute.

get datatype
Module: PDL::Core

Internal: Return the numeric value identifying the piddle datatype

$x = $piddle->get_datatype;

Mainly used for internal routines.

NOTE: get datatype returns ’just a number’ not any special type object.

getdim
Module: PDL::Core

Returns the size of the given dimension.

$dim0 = $piddle->getdim(0);

perldl> p zeroes(10,3,22)->getdim(1)
3

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 195

gethdr
Module: PDL::Core

Retrieve header information from a piddle

$pdl=rfits(’file.fits’);
$h=$pdl->gethdr;
print "Number of pixels in the X-direction=$$h{NAXIS1}\n";

The gethdr function retrieves whatever header information is contained
within a piddle. The header can be set with the sethdr entry in the sethdr|
manpage and is always a hash reference and has to be dereferenced for
access to the value.

It is important to realise that you are free to insert whatever hash reference
you want in the header, so you can use it to record important informa-
tion about your piddle, and that it is not automatically copied when you
copy the piddle. See the hdrcpy entry in the hdrcpy| manpage to enable
automatic header copying.

For instance a wrapper around rcols that allows your piddle to remember
the file it was read from and the columns could be easily written (here
assuming that no regexp is needed, extensions are left as an exercise for
the reader)

sub ext_rcols {
my ($file, @columns)=@_;
my $header={};
$$header{File}=$file;
$$header{Columns}=\@columns;

@piddles=rcols $file, @columns;
foreach (@piddles) { $_->sethdr($header); }
return @piddles;

}

getndims
Module: PDL::Core

Returns the number of dimensions in a piddle

$ndims = $piddle->getndims;

perldl> p zeroes(10,3,22)->getndims
3

GLinit
Module: PDL::Graphics::TriD::Tk

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 196

GLinit is called internally by a Configure callback in Populate. This in-
sures that the required Tk::Frame is initialized before the TriD::GL win-
dow that will go inside.

grabpic3d
Module: PDL::Graphics::TriD

Grab a 3D image from the screen.

$pic = grabpic3d();

The returned piddle has dimensions (3,$x,$y) and is of type float (cur-
rently). XXX This should be altered later.

gradient
Module: PDL::Func

my $gi = $obj->gradient($xi);
my ($yi, $gi) = $obj->gradient($xi);

Returns the derivative and, optionally, the interpolated function for the
Hermite scheme (PDL::Func).

grandom
Module: PDL::Primitive

Constructor which returns piddle of Gaussian random numbers

$a = grandom([type], $nx, $ny, $nz,...);
$a = grandom $b;

etc (see the zeroes entry in the zeroes|PDL::Core manpage).

This is generated using the math library routine ndtri.

Mean = 0, Stddev = 1

gt Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

the binary ¿ (greater than) operation

$c = gt $a, $b, 0; # explicit call with trailing 0
$c = $a > $b; # overloaded call
$a->inplace->gt($b,0); # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary > operator. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 197

hclip
Module: PDL::Primitive

Signature: (a(); b(); [o] c())

clip $a by $b ($b is upper bound)

hdrcpy
Module: PDL::Core

switch on/off/examine automatic header copying

print "hdrs will be copied" if $a->hdrcpy;
$a->hdrcpy(1); # switch on hdr copying
$b = $a->sumover; # and $b will inherit $a’s hdr
$a->hdrcpy(0); # and now make $a non-infectious again

Normally, the optional header of a piddle is not copied automatically in
pdl operations. Switching on the hdrcpy flag using the hdrcpy method
will enable automatic hdr copying. Note that copying is by reference for
efficiency reasons. hdrcpy without an argument just returns the current
setting of the flag.

help
Module: PDL::Doc::Perldl

print documentation about a PDL function or module or show a PDL
manual

Usage: help ’func’

perldl> help ’PDL::Slices’ # show the docs in the PDL::Slices module
perldl> help ’PDL::Intro’ # show the PDL::Intro manual
perldl> help ’slice’ # show docs on the ’slice’ function

hi2d
Module: PDL::Graphics::PGPLOT

Plot image as 2d histogram (not very good IMHO...)

Usage: hi2d ($image, [$x, $ioff, $bias], [$opt])

Options recognised:

IOFFSET - The offset for each array slice. >0 slants to the right
<0 to the left.

BIAS - The bias to shift each array slice up by.

The following standard options influence this command:

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 198

AXIS, BORDER, JUSTIFY

Note that meddling with the ioffset and bias often will require you to
change the default plot range somewhat. It is also worth noting that if
you have TriD working you will probably be better off using the mesh3d
entry in the mesh3d|PDL::Graphics::TriD manpage or a similar command
— see the PDL::Graphics::TriD manpage.

$r=sequence(100)/50-1.0;
$y=exp(-$r**2)*transpose(exp(-$r**2))
hi2d $y, {IOFF => 1.5, BIAS => 0.07};

hist
Module: PDL::Basic

Create histogram of a piddle

$hist = hist($data,[$min,$max,$step]);
($xvals,$hist) = hist($data,[$min,$max,$step]);

If requested, $xvals gives the computed bin centres

A nice idiom (with the PDL::Graphics::PGPLOT|PDL::Graphics::PGPLOT
manpage) is

bin hist $data; # Plot histogram

perldl> p $y
[13 10 13 10 9 13 9 12 11 10 10 13 7 6 8 10 11 7 12 9 11 11 12 6 12 7]
perldl> $h = hist $y,0,20,1; # hist with step 1, min 0 and 20 bins
perldl> p $h
[0 0 0 0 0 0 2 3 1 3 5 4 4 4 0 0 0 0 0 0]

histogram
Module: PDL::Primitive

Signature: (in(n); int+[o] hist(m); double step; double min; int msize => m)

Calculates a histogram for given stepsize and minimum.

$h = histogram($data, $step, $min, $numbins);
$hist = zeroes $numbins; # Put histogram in existing piddle.
histogram($data, $hist, $step, $min, $numbins);

The histogram will contain $numbins bins starting from $min, each $step
wide. The value in each bin is the number of values in $data that lie
within the bin limits.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 199

Data below the lower limit is put in the first bin, and data above the upper
limit is put in the last bin.

The output is reset in a different threadloop so that you can take a his-
togram of $a(10,12) into $b(15) and get the result you want.

Use the hist entry in the hist|PDL::Basic manpage instead for a high-level
interface.

perldl> p histogram(pdl(1,1,2),1,0,3)
[0 2 1]

histogram2d
Module: PDL::Primitive

Signature: (ina(n); inb(n); int+[o] hist(ma,mb); double stepa; double mina; int masize => ma;
double stepb; double minb; int mbsize => mb;)

Calculates a 2d histogram.

$h = histogram2d($datax, $datay,
$stepx, $minx, $nbinx, $stepy, $miny, $nbiny);

$hist = zeroes $nbinx, $nbiny; # Put histogram in existing piddle.
histogram2d($datax, $datay, $hist,

$stepx, $minx, $nbinx, $stepy, $miny, $nbiny);

The histogram will contain $nbinx x $nbiny bins, with the lower limits
of the first one at ($minx, $miny), and with bin size ($stepx, $stepy).
The value in each bin is the number of values in $datax and $datay that
lie within the bin limits.

Data below the lower limit is put in the first bin, and data above the upper
limit is put in the last bin.

perldl> p histogram2d(pdl(1,1,1,2,2),pdl(2,1,1,1,1),1,0,3,1,0,3)
[
[0 0 0]
[0 2 2]
[0 1 0]
]

howbig
Module: PDL::Core

Returns the size of a piddle datatype in bytes.

$size = howbig($piddle->get_datatype);

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 200

Mainly used for internal routines.

NOTE: NOT a method! This is because get datatype returns ’just a
number’ not any special object.

perldl> p howbig(ushort([1..10])->get_datatype)
2

i2C Module: PDL::Complex

Signature: (r(); [o]c(m=2))

convert imaginary to complex, assuming a real part of zero

identvaff
Module: PDL::Slices

Signature: (P(); C())

A vaffine identity transformation (includes thread id copying).

Mainly for internal use.

ifft
Module: PDL::FFT

Signature: ([o,nc]real(n); [o,nc]imag(n))

Complex Inverse FFT of the ”real” and ”imag” arrays [inplace]

ifftnd
Module: PDL::FFT

N-dimensional inverse FFT

ifftnd($real,$imag);

ifftw
Module: PDL::FFTW

Complex inverse FFT (complex input, complex output).

$pdl_cplx = ifftw $pdl_cplx;

iis Module: PDL::Graphics::IIS

Displays an image on a IIS device (e.g. SAOimage/Ximtool)

iis $image, [{ MIN => $min, MAX => $max,
TITLE => ’pretty picture’,
FRAME => 2 }]

iis $image, [$min,$max]

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 201

(image(m,n),[\%options]) or (image(m,n),[min(),max()])

Displays image on a IIS device. If min() or max() are omitted they are
autoscaled. A good demonstration of PDL threading can be had by giving
iis() a data ∗cube∗ — iis() will be repeatedly called for each plane of
the cube resulting in a poor man’s movie!

If supplied, TITLE is used to label the frame, if no title is supplied, either
the OBJECT value stored in the image header or a default string is used
(the title is restricted to a maximum length of 32 characters).

To specify which frame to draw to, either use the package variable $iisframe,
or the FRAME option.

iiscirc
Module: PDL::Graphics::IIS

Draws a circle on a IIS device (e.g. SAOimage/Ximtool)

(x(),y(),radius(),colour())

iiscirc $x, $y, [$radius, $colour]

Draws circles on the IIS device with specied points and colours. Because
this module uses the PDL::PP|PDL::PP manpage threading you can sup-
ply lists of points via 1D arrays, etc.

An amusing PDL idiom is:

perldl> iiscirc iiscur

Note the colours are the same as IRAF, viz:

201 = cursor color (white)
202 = black
203 = white
204 = red
205 = green
206 = blue
207 = yellow
208 = cyan
209 = magenta
210 = coral
211 = maroon
212 = orange
213 = khaki
214 = orchid
215 = turquoise
216 = violet
217 = wheat

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 202

iiscur
Module: PDL::Graphics::IIS

Return cursor position from an IIS device (e.g. SAOimage/Ximtool)

($x,$y) = iiscur($ch)

This function puts up an interactive cursor on the IIS device and returns
the ($x,$y) position and the character typed ($ch) by the user.

imag
Module: PDL::Graphics::PGPLOT

Display an image (uses pgimag()/pggray() as appropriate)

Usage: imag ($image, [$min, $max, $transform], [$opt])

Notes: $transform for image/cont etc. is used in the same way as the
TR() array in the underlying PGPLOT FORTRAN routine but is, fortu-
nately, zero-offset.

There are several options related to scaling. By default, the image is
scaled to fit the PGPLOT default viewport on the screen. Scaling, as-
pect ratio preservation, and 1:1 pixel mapping are available. (1:1 pixel
mapping GREATLY increases the speed of pgimag, and is useful for, eg,
movie display; but it’s not recommended for final output as it’s not device-
independent.)

Options recognised:

ITF - the image transfer function applied to the pixel values. It
may be one of ’LINEAR’, ’LOG’, ’SQRT’ (lower case is
acceptable). It defaults to ’LINEAR’.

MIN - Sets the minimum value to be used for calculation of the
display stretch

MAX - Sets the maximum value for the same
TRANSFORM - The transform ’matrix’ as a 6x1 vector for display

PIX - Sets the image pixel aspect ratio. By default, imag
stretches the image pixels so that the final image aspect
ratio fits the viewport exactly. Setting PIX=>1 causes
the image aspect ratio to be preserved. (the image is
scaled to avoid cropping, unless you specify scaling
manually). Larger numbers yield "landscape mode" pixels.

PITCH - Sets the number of image pixels per screen unit, in the Y
direction. The X direction is determined by PIX, which
defaults to 1 if PITCH is specified and PIX is not. PITCH
causes UNIT to default to "inches" so that it’s easy to say
100dpi by specifying {PITCH=>100}. Larger numbers yield
higher resolution (hence smaller appearing) images.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 203

UNIT - Sets the screen unit used for scaling. Must be one of the
PGPLOT supported units (inch, mm, pixel, normalized). You
can refer to them by name or by number. Defaults to pixels
if not specified.

SCALE - Syntactic sugar for the reciprocal of PITCH. Makes the
UNIT default to "pixels" so you can say "{SCALE=>1}"
to see your image in device pixels. Larger SCALEs lead
to larger appearing images.

The following standard options influence this command:

AXIS, BORDER, JUSTIFY

To see an image with maximum size in the current window, but square
pixels, say:

imag $a,{PIX=>1}
An alternative approach is to try:

imag $a,{JUSTIFY=>1}
To see the same image, scaled 1:1 with device pixels, say:

imag $a,{SCALE=>1}
To see an image made on a device with 1:2 pixel aspect ratio, with
X pixels the same as original image pixels, say

imag $a,{PIX=>0.5,SCALE=>2}
To display an image at 100 dpi on any device, say:

imag $a,{PITCH=>100}
To display an image with 100 micron pixels, say:

imag $a,{PITCH=>10,UNIT=>’mm’}

imag1
Module: PDL::Graphics::PGPLOT

Display an image with correct aspect ratio

Usage: imag1 ($image, [$min, $max, $transform], [$opt])

Notes: This is syntactic sugar for imag({PIX=¿1}).

imag3d
Module: PDL::Graphics::TriD

3D rendered image plot, defined by a variety of contexts

imag3d piddle(3,x,y), {OPTIONS}
imag3d [piddle,...], {OPTIONS}

Example:

perldl> imag3d [sqrt(rvals(zeroes(50,50))/2)], {{Lines=>0};

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 204

- Rendered image of surface

See module documentation for more information on contexts and options

imagrgb
Module: PDL::Graphics::TriD

2D TrueColor Image plot

imagrgb piddle(3,x,y), {OPTIONS}
imagrgb [piddle,...], {OPTIONS}

This would be used to plot an image, specifying red, green and blue values
at each point. Note: contexts are very useful here as there are many ways
one might want to do this.

e.g.

perldl> $a=sqrt(rvals(zeroes(50,50))/2)
perldl> imagrgb [0.5*sin(8*$a)+0.5,0.5*cos(8*$a)+0.5,0.5*cos(4*$a)+0.5]

imagrgb3d
Module: PDL::Graphics::TriD

2D TrueColor Image plot as an object inside a 3D space

imagrdb3d piddle(3,x,y), {OPTIONS}
imagrdb3d [piddle,...], {OPTIONS}

The piddle gives the colors. The option allowed is Points, which should
give 4 3D coordinates for the corners of the polygon, either as a piddle or
as array ref. The default is [[0,0,0],[1,0,0],[1,1,0],[0,1,0]].

e.g.

perldl> imagrgb3d $colors, {Points => [[0,0,0],[1,0,0],[1,0,1],[0,0,1]]};
- plot on XZ plane instead of XY.

indadd
Module: PDL::Primitive

Signature: (a(); int ind(); [o] sum(m))

Threaded Index Add: Add a to the ind element of sum, i.e:

sum(ind) += a

Simple Example:

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 205

$a = 2;
$ind = 3;
$sum = zeroes(10);
indadd($a,$ind, $sum);
print $sum
#Result: (2 added to element 3 of $sum)
[0 0 0 2 0 0 0 0 0 0]

Threaded Example:

$a = pdl(1,2,3);
$ind = pdl(1,4,6);
$sum = zeroes(10);
indadd($a,$ind, $sum);
print $sum."\n";
#Result: (1, 2, and 3 added to elements 1,4,6 $sum)
[0 1 0 0 2 0 3 0 0 0]

index
Module: PDL::Slices

Signature: (a(n); int ind(); [oca] c())

These functions provide rudimentary index indirection.

$c = a(ind());
$c = a(ind1(),ind2());

It would be useful to have a more complete function for this at some point,
or at least a perl wrapper, that allows

$c = $a->islice("1:2",$ind1,"3:4",$ind2");

with many dimensions.

This function is two-way, i.e. after

$c = $a->index(pdl[0,5,8]);
$c .= pdl [0,2,4];

the changes in $c will flow back to $a.

index2d
Module: PDL::Slices

Signature: (a(na,nb); int inda(); int indb(); [oca] c())

These functions provide rudimentary index indirection.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 206

$c = a(ind());
$c = a(ind1(),ind2());

It would be useful to have a more complete function for this at some point,
or at least a perl wrapper, that allows

$c = $a->islice("1:2",$ind1,"3:4",$ind2");

with many dimensions.

This function is two-way, i.e. after

$c = $a->index(pdl[0,5,8]);
$c .= pdl [0,2,4];

the changes in $c will flow back to $a.

infftw
Module: PDL::FFTW

Complex inplace inverse FFT (complex input, complex output).

$pdl_cplx = infftw $pdl_cplx;

info
Module: PDL::Core

Return formatted information about a piddle.

$x->info($format_string);

print $x->info("Type: %T Dim: %-15D State: %S");

Returns a string with info about a piddle. Takes an optional argument to
specify the format of information a la sprintf. Format specifiers are in the
form %<width><letter> where the width is optional and the letter is one
of

T Type

D Formatted Dimensions

F Dataflow status

S Some internal flags (P=physical,V=Vaffine,C=changed)

C Class of this piddle, i.e. ref $pdl

A Address of the piddle struct as a unique identifier

M Calculated memory consumption of this piddle’s data area

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 207

init
Module: PDL::Func

$obj = init PDL::Func(Interpolate => "Hermite", x => $x, y => $y);
$obj = init PDL::Func({ x => $x, y => $y });

Create a PDL::Func object, which can interpolate, and possibly integrate
and calculate gradients of a dataset.

If not specified, the value of Interpolate is taken to be Linear, which
means the interpolation is performed by the interpolate entry in the
PDL::Primitive::interpolate|PDL::Primitive manpage. A value of Hermite
uses piecewise cubic Hermite functions, which also allows the integral and
gradient of the data to be estimated.

inner
Module: PDL::Primitive

Signature: (a(n); b(n); [o]c();)

Inner product over one dimension

c = sum_i a_i * b_i

inner2
Module: PDL::Primitive

Signature: (a(n); b(n,m); c(m); [o]d())

Inner product of two vectors and a matrix

d = sum_ij a(i) b(i,j) c(j)

Note that you should probably not thread over a and c since that would
be very wasteful. Instead, you should use a temporary for b*c.

inner2d
Module: PDL::Primitive

Signature: (a(n,m); b(n,m); [o]c())

Inner product over 2 dimensions.

Equivalent to

$c = inner($a->clump(2), $b->clump(2))

inner2t
Module: PDL::Primitive

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 208

Signature: (a(j,n); b(n,m); c(m,k); [t]tmp(n,k); [o]d(j,k)))

Efficient Triple matrix product a*b*c

Efficiency comes from by using the temporary tmp. This operation only
scales as N**3 whereas threading using the inner2 entry in the inner2|
manpage would scale as N**4.

The reason for having this routine is that you do not need to have the
same thread-dimensions for tmp as for the other arguments, which in case
of large numbers of matrices makes this much more memory-efficient.

It is hoped that things like this could be taken care of as a kind of closures
at some point.

innerwt
Module: PDL::Primitive

Signature: (a(n); b(n); c(n); [o]d();)

Weighted (i.e. triple) inner product

d = sum_i a(i) b(i) c(i)

inplace
Module: PDL::Core

Flag a piddle so that the next operation is done ’in place’

somefunc($x->inplace); somefunc(inplace $x);

In most cases one likes to use the syntax $y = f($x), however in many
case the operation f() can be done correctly ’in place’, i.e. without making
a new copy of the data for output. To make it easy to use this, we write
f() in such a way that it operates in-place, and use inplace to hint that
a new copy should be disabled. This also makes for clear syntax.

Obviously this will not work for all functions, and if in doubt see the
function’s documentation. However one can assume this is true for all
elemental functions (i.e. those which just operate array element by array
element like log10).

perldl> $x = xvals zeroes 10;
perldl> log10(inplace $x)
perldl> p $x
[-Inf 0 0.30103 0.47712125 0.60205999 0.69897
0.77815125 0.84509804 0.90308999 0.95424251]

inrfftw
Module: PDL::FFTW

Real inplace inverse FFT. Have a look at nrfftw to understand the format.
USE ONLY an even first dimension size! (complex input, real output)

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 209

$pdl_real = infftw $pdl_cplx;

integrate
Module: PDL::Func

my $ans = $obj->integrate(index => pdl(2, 5));
my $ans = $obj->integrate(x => pdl(2.3, 4.5));

Integrate the function stored in the PDL::Func object, if the scheme is
Hermite.

The integration can either be between points of the original x array (index),
or arbitrary x values (x). For both cases, a two element piddle should be
given, to specify the start and end points of the integration.

index
The values given refer to the indices of the points in the x array.

x The array contains the actual values to integrate between.

If the status method returns a value of −1, then one or both of the
integration limits did not lie inside the x array. Caveat emptor with the
result in such a case.

interlrgb
Module: PDL::ImageRGB

Make an RGB image from a palette image and its lookup table.

$rgb = $palette_im->interlrgb($lut)

Input should be of an integer type and the lookup table (3,x,...). Will
perform the lookup for any N-dimensional input pdl (i.e. 0D, 1D, 2D, ...).
Uses the index command but will not dataflow by default. If you want it
to dataflow the dataflow forward flag must be set in the $lut piddle (you
can do that by saying $lut-¿set dataflow f (1)).

interpol
Module: PDL::Primitive

Signature: (xi(); x(n); y(n); [o] yi())

routine for 1D linear interpolation

$yi = interpol($xi, $x, $y)

interpol uses the same search method as the interpolate entry in the
interpolate| manpage, hence $x must be strictly ordered (either increasing
or decreasing). The difference occurs in the handling of out-of-bounds
values; here an error message is printed.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 210

interpolate
Module: PDL::Primitive

Signature: (xi(); x(n); y(n); [o] yi(); int [o] err())

routine for 1D linear interpolation

($yi, $err) = interpolate($xi, $x, $y)

Given a set of points ($x,$y), use linear interpolation to find the values
$yi at a set of points $xi.

interpolate uses a binary search to find the suspects, er..., interpolation
indices and therefore abscissas (ie $x) have to be strictly ordered (increas-
ing or decreasing). For interpolation at lots of closely spaced abscissas an
approach that uses the last index found as a start for the next search can
be faster (compare Numerical Recipes hunt routine). Feel free to imple-
ment that on top of the binary search if you like. For out of bounds values
it just does a linear extrapolation and sets the corresponding element of
$err to 1, which is otherwise 0.

See also the interpol entry in the interpol| manpage, which uses the same
routine, differing only in the handling of extrapolation — an error message
is printed rather than returning an error piddle.

interpolate
Module: PDL::Func

my $yi = $obj->interpolate($xi);

Returns the interpolated function at a given set of points (PDL::Func).

A status value of −1, as returned by the status method, means that some
of the $xi points lay outside the range of the data. The values for these
points were calculated by extrapolation (the details depend on the scheme
being used).

intover
Module: PDL::Primitive

Signature: (a(n); int+ [o]b())

Project via integral to N-1 dimensions

This function reduces the dimensionality of a piddle by one by taking the
integral along the 1st dimension.

By using the xchg entry in the xchg|PDL::Slices manpage etc. it is possible
to use any dimension.

$a = intover($b);

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 211

$spectrum = intover $image->xchg(0,1)

Notes:

For n > 3, these are all O(h^4) (like Simpson’s rule), but are integrals
between the end points assuming the pdl gives values just at these centres:
for such ‘functions’, sumover is correct to O(h), but is the natural (and
correct) choice for binned data, of course.

irfftw
Module: PDL::FFTW

Real inverse FFT. Have a look at rfftw to understand the format. USE
ONLY an even n1! (complex input, real output)

$pdl_real = ifftw $pdl_cplx;

isbigendian
Module: PDL::IO::Misc

Determine endianness of machine — returns 0 or 1 accordingly

isempty
Module: PDL::Core

Test whether a piddle is empty

print "The piddle has zero dimension\n" if $pdl->isempty;

This function returns 1 if the piddle has zero elements. This is useful
in particular when using the indexing function which. In the case of no
match to a specified criterion, the returned piddle has zero dimension.

perldl> $a=sequence(10)
perldl> $i=which($a < -1)
perldl> print "I found no matches!\n" if ($a->isempty);

Note that having zero elements is rather different from the concept of
being a null piddle, see the the PDL::FAQ|PDL::FAQ manpage and the
PDL::Indexing|PDL::Indexing manpage manpages for discussions of this.

kcur
Module: PDL::Graphics::Karma

Return cursor position from a Karma application (e.g. kview/xray)

($x,$y) = kcur($ch, {App=>’karma-app’,Coords=>"World|Pixel"})

This function connects to a Karma application and returns the ($x,$y)
position and the character typed ($ch) by the user. By default world
coordinates are returned.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 212

print kcur {App=>"kview", Coords=>"World"}

kernctr
Module: PDL::FFT

‘centre’ a kernel (auxiliary routine to fftconvolve)

$kernel = kernctr($image,$smallk);
fftconvolve($image,$kernel);

kernctr centres a small kernel to emulate the behaviour of the direct con-
volution routines.

kim Module: PDL::Graphics::Karma

Sends piddle data array to an external Karma application for viewing

kim($pdl, [$karma-app, $lut])

Sends $pdl data to Karma application viewer. Remembers the last one
used [default: kview].

koords
Module: PDL::Graphics::Karma

Starts external Karma application koords

koords([OPTIONS])

perldl> kview (-num_col => 42)
perldl> xray

koverlay
Module: PDL::Graphics::Karma

Signature: (x(); y(); r(); ell(); PA(); fill(); int id(); char* karma_app; char* colour; int coordtype; int dotext)

koverlay
Module: PDL::Graphics::Karma

Overlay graphics markers on a Karma application (e.g. kview)

koverlay $x, $y, {Options...}
Currently the only markers supported are ellipses. The default is a circle
of radius 10 units,

$x = 10∗xvals(10); koverlay $x, sqrt($x), {Radius=¿$x/3, Colour=¿’green’,
App=¿’kpolar’}

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 213

Radius - [piddle] specify radius of ellipses (major axis if ellipse). Default = 10 units.
Ellip - [piddle] specify ellipticity of ellipses. Default = 0 i.e. circle.
PA - [piddle] specify principle axis (degrees rotation anticlockwise

from the Y axis). Default.
ID - [piddle] Numeric integer id labels to apply.
Colour - [string] Colour name for overlay (e.g. ’red’). Default = ’blue’
App - [string] name of Karma app to send too
Fill - [piddle] whether outlines are filled (0 or 1). (Note filled,

ellipses are not yet available in Karma).
Coords - [string] "World" or "Pixel" - type of coordinates for x/y/r.

Note pixel implementation rounds to nearest pixel due
to Karma overlays not supporting proper IMAGE_PIXEL
coordinates.

kpvslice
Module: PDL::Graphics::Karma

Starts external Karma application kpvslice

kpvslice([OPTIONS])

perldl> kview (-num_col => 42)
perldl> xray

krenzo
Module: PDL::Graphics::Karma

Starts external Karma application krenzo

krenzo([OPTIONS])

perldl> kview (-num_col => 42)
perldl> xray

krgb
Module: PDL::Graphics::Karma

krgb($lut, [$karma-app])

Sends RGB image to an external Karma application for viewing

Does not change current default viewer.

kshell
Module: PDL::Graphics::Karma

Starts external Karma application kshell

kshell([OPTIONS])

perldl> kview (-num_col => 42)
perldl> xray

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 214

kslice 3d
Module: PDL::Graphics::Karma

Starts external Karma application kslice 3d

kslice 3d([OPTIONS])

perldl> kview (-num_col => 42)
perldl> xray

kstarted
Module: PDL::Graphics::Karma

kstarted([$karma-app])

Tests if a Karma application is running.

It tries to connect to the karma application, returns 1 on success, 0 oth-
erwise

Can be used to check if a karma application has already been started, e.g.

xray unless kstarted ’xray’;

kview
Module: PDL::Graphics::Karma

Starts external Karma application kview

kview([OPTIONS])

perldl> kview (-num_col => 42)
perldl> xray

lags
Module: PDL::Slices

Signature: (P(); C(); int nthdim; int step; int n)

Returns a piddle of lags to parent.

I.e. if $a contains

[0,1,2,3,4,5,6,7]

then

$b = $a->lags(0,2,2);

is a (5,2) matrix

[2,3,4,5,6,7]
[0,1,2,3,4,5]

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 215

This order of returned indices is kept because the function is called ”lags”
i.e. the nth lag is n steps behind the original.

lattice3d
Module: PDL::Graphics::TriD

alias for mesh3d

lclip
Module: PDL::Primitive

Signature: (a(); b(); [o] c())

clip $a by $b ($b is lower bound)

le Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

the binary ¡= (less equal) operation

$c = le $a, $b, 0; # explicit call with trailing 0
$c = $a <= $b; # overloaded call
$a->inplace->le($b,0); # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary <= operator. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

lgamma
Module: PDL::Math

Signature: (a(); [o]b(); int[o]s())

log gamma function

This returns 2 piddles — the first set gives the log(gamma) values, while
the second set, of integer values, gives the sign of the gamma function.
This is useful for determining factorials, amongst other things.

line
Module: PDL::Graphics::PGPLOT

Plot vector as connected points

If the ’MISSING’ option is specified, those points in the $y vector which
are equal to the MISSING value are not plotted, but are skipped over.
This allows one to quickly draw multiple lines with one call to line, for
example to draw coastlines for maps.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 216

Usage: line ([$x,] $y, [$opt])

The following standard options influence this command:

AXIS, BORDER, COLO(U)R, JUSTIFY, LINESTYLE, LINEWIDTH, MISSING

$x = sequence(10)/10.;
$y = sin($x)**2;
Draw a red dot-dashed line
line $x, $y, {COLOR => ’RED’, LINESTYLE=>3};

line3d
Module: PDL::Graphics::TriD

3D line plot, defined by a variety of contexts.

line3d piddle(3,x), {OPTIONS}
line3d [CONTEXT], {OPTIONS}

Example:

perldl> line3d [sqrt(rvals(zeroes(50,50))/2)]
- Lines on surface
perldl> line3d [$x,$y,$z]
- Lines over X, Y, Z
perldl> line3d $coords
- Lines over the 3D coordinates in $coords.

Note: line plots differ from mesh plots in that lines only go in one direction.
If this is unclear try both!

See module documentation for more information on contexts and options

list
Module: PDL::Core

Convert piddle to perl list

@tmp = list $x;

Obviously this is grossly inefficient for the large datasets PDL is designed
to handle. This was provided as a get out while PDL matured. It should
now be mostly superseded by superior constructs, such as PP/threading.
However it is still occasionally useful and is provied for backwards com-
patibility.

for (list $x) {
Do something on each value...

}

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 217

listindices
Module: PDL::Core

Convert piddle indices to perl list

@tmp = listindices $x;

@tmp now contains the values 0..nelem($x).

Obviously this is grossly inefficient for the large datasets PDL is designed
to handle. This was provided as a get out while PDL matured. It should
now be mostly superseded by superior constructs, such as PP/threading.
However it is still occasionally useful and is provied for backwards com-
patibility.

for $i (listindices $x) {
Do something on each value...

}

lmfit
Module: PDL::Fit::LM

Levenberg-Marquardt fitting of a user supplied model function

($ym,$a,$covar,$iters) =
lmfit $x, $y, $sig, \&expfunc, $a, {Maxiter => 300, Eps => 1e-3};

Options:

Maxiter: maximum number of iterations before giving up
Eps: convergence citerium for fit; success when normalized change

in chisquare smaller than Eps

The user supplied sub routine reference should accept 4 arguments

• a vector of independent values $x

• a vector of fitting parameters

• a vector of dependent variables that will be assigned upon return

• a matrix of partial derivatives with respect to the fitting parameters
that will be assigned upon return

As an example take this definition of a single exponential with 3 parame-
ters (width, amplitude, offset):

sub expdec {
my ($x,$par,$ym,$dyda) = @_;
my ($a,$b,$c) = map {$par->slice("($_)")} (0..2);
my $arg = $x/$a;

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 218

my $ex = exp($arg);
$ym .= $b*$ex+$c;
my (@dy) = map {$dyda->slice(",($_)")} (0..2);
$dy[0] .= -$b*$ex*$arg/$a;
$dy[1] .= $ex;
$dy[2] .= 1;

}

Note usage of the .= operator for assignment

In scalar context returns a vector of the fitted dependent variable. In list
context returns fitted y-values, vector of fitted parameters, an estimate of
the covariance matrix (as an indicator of goodness of fit) and number of
iterations performed.

load wisdom
Module: PDL::FFTW

Loads the wisdom from a file for better FFTW performance.

The wisdom is automatically saved when the program ends. It will be
automagically called when the variable $PDL::FFT::wisdom is set to a file
name. For example, the following is a useful idiom to have in your .perldlrc
file:

$PDL::FFT::wisdom = "$ENV{HOME}/.fftwisdom"; # save fftw wisdom in this file

Explicit usage:

load_wisdom($fname);

log

Module: PDL::Ops

Signature: (a(); [o]b())

the natural logarithm

$b = log $a;
$a->inplace->log; # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the unary log operator/function.

long
Module: PDL::Core

Convert to long datatype — see ’Datatype conversions’

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 219

lt

Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

the binary ¡ (less than) operation

$c = lt $a, $b, 0; # explicit call with trailing 0
$c = $a < $b; # overloaded call
$a->inplace->lt($b,0); # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary < operator. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

lut data
Module: PDL::Graphics::LUT

Load in the requested colour table and intensity ramp.

($l, $r, $g, $b) = lut_data($table, [$reverse, [$ramp]]);

Returns the levels and r, g, b components of the colour table $table.
If $reverse is 1 (defaults to 0 if not supplied), then the r, g, and b
components are reversed before being returned. If not supplied, $ramp
defaults to ”ramp” (this is a linear intensity ramp).

The returned values are piddles containing values in the range 0 to 1
inclusive, and are floats.

lut names
Module: PDL::Graphics::LUT

Return, as a list, the names of the available colour tables.

@tables = lut_names();

lut ramps
Module: PDL::Graphics::LUT

Return, as a list, the names of the available intensity ramps.

@ramps = lut_names();

make physical
Module: PDL::Core

Make sure the data portion of a piddle can be accessed from XS code.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 220

$a->make_physical;
$a->call_my_xs_method;

Ensures that a piddle gets its own allocated copy of data. This obviously
implies that there are certain piddles which do not have their own data.
These are so called virtual piddles that make use of the vaffine optimisa-
tion (see the PDL::Indexing|PDL::Indexing manpage). They do not have
their own copy of data but instead store only access information to some
(or all) of another piddle’s data.

Note: this function should not be used unless absolutely neccessary since
otherwise memory requirements might be severly increased. Instead of
writing your own XS code with the need to call make_physical you might
want to consider using the PDL preprocessor (see the PDL::PP|PDL::PP
manpage) which can be used to transparently access virtual piddles with-
out the need to physicalise them (though there are exceptions).

mapflex
Module: PDL::IO::FlexRaw

Memory map a binary file with flexible format specification

($x,$y,...) = mapflex("filename" [, $hdr] [, $opts])

mapfraw
Module: PDL::IO::FastRaw

Memory map a raw format binary file (see the module docs also)

$pdl3 = mapfraw("fname2",{ReadOnly => 1});

The mapfraw command supports the following options (not all combina-
tions make sense):

Dims, Datatype
If creating a new file or if you want to specify your own header data
for the file, you can give an array reference and a scalar, respectively.

Creat
Create the file. Also writes out a header for the file.

Trunc
Set the file size. Automatically enabled with Creat. NOTE: This
also clears the file to all zeroes.

ReadOnly
Disallow writing to the file.

maptextfraw
Module: PDL::IO::FastRaw

Memory map a text file (see the module docs also).

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 221

Note that this function maps the raw format so if you are using an operat-
ing system which does strange things to e.g. line delimiters upon reading
a text file, you get the raw (binary) representation.

The file doesn’t really need to be text but it is just mapped as one large
binary chunk.

This function is just a convenience wrapper which firsts stats the file and
sets the dimensions and datatype.

$pdl4 = maptextfraw("fname", {options}

The options other than Dims, Datatype of mapfraw are supported.

matinv
Module: PDL::Slatec

Inverse of a square matrix

($inv) = matinv($mat)

matmult
Module: PDL::Primitive

Signature: (a(x,y),b(y,z),[o]c(x,z))

Matrix multiplication

We peruse the inner product to define matrix multiplication via a threaded
inner product

max Module: PDL::Primitive

Return the maximum of all elements in a piddle

$x = max($data);

max2d ind
Module: PDL::Image2D

Signature: (a(m,n); [o]val(); int [o]x(); int[o]y())

Return value/position of maximum value in 2D image

Contributed by Tim Jeness

maximum
Module: PDL::Primitive

Signature: (a(n); [o]c())

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 222

Project via maximum to N-1 dimensions

This function reduces the dimensionality of a piddle by one by taking the
maximum along the 1st dimension.

By using the xchg entry in the xchg|PDL::Slices manpage etc. it is possible
to use any dimension.

$a = maximum($b);

$spectrum = maximum $image->xchg(0,1)

maximum ind
Module: PDL::Primitive

Signature: (a(n); int[o]c())

Like maximum but returns the index rather than the value

maximum n ind
Module: PDL::Primitive

Signature: (a(n); int[o]c(m))

Returns the index of m maximum elements

Find minimum and maximum and their indices for a given piddle;

perldl> $a=pdl [[-2,3,4],[1,0,3]]
perldl> ($min, $max, $min_ind, $max_ind)=minmaximum($a)
perldl> p $min, $max, $min_ind, $max_ind
[-2 0] [4 3] [0 1] [2 2]

See also the minmax entry in the minmax| manpage, which clumps the
piddle together.

med2d
Module: PDL::Image2D

Signature: (a(m,n); kern(p,q); [o]b(m,n); int opt)

2D median-convolution of an array with a kernel (smoothing)

Note: only points in the kernel ¿0 are included in the median, other points
are weighted by the kernel value (medianing lots of zeroes is rather point-
less)

$new = med2d $old, $kernel, {OPTIONS}

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 223

$smoothed = med2d $image, ones(3,3), {Boundary => Reflect}

Boundary - controls what values are assumed for the image when kernel
crosses its edge:
=> Default - periodic boundary conditions (i.e. wrap around axis)
=> Reflect - reflect at boundary
=> Truncate - truncate at boundary

median
Module: PDL::Primitive

Return the median of all elements in a piddle

$x = median($data);

medover
Module: PDL::Primitive

Signature: (a(n); [o]b(); [t]tmp(n))

Project via median to N-1 dimensions

This function reduces the dimensionality of a piddle by one by taking the
median along the 1st dimension.

By using the xchg entry in the xchg|PDL::Slices manpage etc. it is possible
to use any dimension.

$a = medover($b);

$spectrum = medover $image->xchg(0,1)

mesh3d
Module: PDL::Graphics::TriD

3D mesh plot, defined by a variety of contexts

mesh3d piddle(3,x,y), {OPTIONS}
mesh3d [piddle,...], {OPTIONS}

Example:

perldl> mesh3d [sqrt(rvals(zeroes(50,50))/2)]

- mesh of surface

Note: a mesh is defined by two sets of lines at right-angles (i.e. this is
how is differs from line3d).

See module documentation for more information on contexts and options

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 224

min Module: PDL::Primitive

Return the minimum of all elements in a piddle

$x = min($data);

minimum
Module: PDL::Primitive

Signature: (a(n); [o]c())

Project via minimum to N-1 dimensions

This function reduces the dimensionality of a piddle by one by taking the
minimum along the 1st dimension.

By using the xchg entry in the xchg|PDL::Slices manpage etc. it is possible
to use any dimension.

$a = minimum($b);

$spectrum = minimum $image->xchg(0,1)

minimum ind
Module: PDL::Primitive

Signature: (a(n); int[o]c())

Like minimum but returns the index rather than the value

minimum n ind
Module: PDL::Primitive

Signature: (a(n); int[o]c(m))

Returns the index of m minimum elements

minmax
Module: PDL::Primitive

Returns an array with minimum, maximum of a piddle.

($mn, $mx) = minmax($pdl);

Return $mn as minimum, $mx as maximum, $mn_ind as the index of min-
imum and $mx_ind as the index of the maximum.

perldl> $x = pdl [1,-2,3,5,0]
perldl> ($min, $max) = minmax($x);
perldl> p "$min $max\n";
-2 5

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 225

minmaximum
Module: PDL::Primitive

Signature: (a(n); [o]cmin(); [o] cmax(); int [o]cmin_ind(); int [o]cmax_ind())

info not available

minus
Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

subtract two piddles

$c = minus $a, $b, 0; # explicit call with trailing 0
$c = $a - $b; # overloaded call
$a->inplace->minus($b,0); # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary - operator. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

modulo
Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

elementwise modulo operation

$c = $a->modulo($b,0); # explicit function call
$c = $a % $b; # overloaded use
$a->inplace->modulo($b,0); # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary op% function. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

mslice
Module: PDL::Core

Convenience interface to the section on PDL::Slice/slice in the slice| man-
page, allowing easier inclusion of dimensions in perl code.

$a = $x->mslice(...);

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 226

below is the same as $x->slice("5:7,:,3:4:2")
$a = $x->mslice([5,7],X,[3,4,2]);

mult
Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

multiply two piddles

$c = mult $a, $b, 0; # explicit call with trailing 0
$c = $a * $b; # overloaded call
$a->inplace->mult($b,0); # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary * operator. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

mv Module: PDL::Slices

Signature: (P(); C(); int n1; int n2)

move a dimension to another position

The command

$b = $a->mv(4,1);

creates $b to be like $a except that the dimension 4 is moved to the place
1, so:

$b->at(1,2,3,4,5,6) == $a->at(1,5,2,3,4,6);

The other dimensions are moved accordingly. Negative dimension indices
count from the end.

ndtri
Module: PDL::Math

Signature: (a(); [o]b())

The value for which the area under the Gaussian probability density func-
tion (integrated from minus infinity) is equal to the argument (cf the erfi
entry in the erfi| manpage)

ne Module: PDL::Ops

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 227

Signature: (a(); b(); [o]c(); int swap)

binary not equal to operation (!=)

$c = ne $a, $b, 0; # explicit call with trailing 0
$c = $a != $b; # overloaded call
$a->inplace->ne($b,0); # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary != operator. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

nelem
Module: PDL::Core

Return the number of elements in a piddle

$n = nelem($piddle); $n = $piddle->nelem;

$mean = sum($data)/nelem($data);

new Module: PDL::Char

Function to create a byte PDL from a string, list of strings, list of list of
strings, etc.

create a new PDL::Char from a perl array of strings
$strpdl = PDL::Char->new([’abc’, ’def’, ’ghij’]);

Convert a PDL of type ’byte’ to a PDL::Char
$strpdl1 = PDL::Char->new (sequence (byte, 4, 5)+99);

$pdlchar3d = PDL::Char->new([[’abc’,’def’,’ghi’],[’jkl’, ’mno’, ’pqr’]]);

new Module: PDL::Core

new piddle constructor method

$x = PDL->new(SCALAR|ARRAY|ARRAY REF);

$x = PDL->new(42);
$y = new PDL [1..10];

Constructs piddle from perl numbers and lists.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 228

new from specification
Module: PDL::Core

Internal method: create piddle by specification

This is the argument processing method called by the zeroes entry in the
zeroes| manpage and some other functions which constructs piddles from
argument listss of the form:

[type], $nx, $ny, $nz,...

nfftw
Module: PDL::FFTW

Complex inplace FFT (complex input, complex output).

$pdl_cplx = nfftw $pdl_cplx;

ninterpol
Module: PDL::ImageND

N-dimensional interpolation routine

Signature: ninterpol(point(),data(n),[o]value())

$value = ninterpol($point, $data);

ninterpol uses interpol to find a linearly interpolated value in N di-
mensions, assuming the data is spread on a uniform grid. To use an arbi-
trary grid distribution, need to find the grid-space point from the indexing
scheme, then call ninterpol — this is far from trivial (and ill-defined in
general).

norm
Module: PDL::Primitive

Signature: (vec(n); [o] norm(n))

Normalises a vector to unit Euclidean length

not Module: PDL::Ops

Signature: (a(); [o]b())

the elementwise not operation

$b = ! $a;
$a->inplace->not; # modify $a inplace

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 229

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the unary ! operator/function.

nrfftw
Module: PDL::FFTW

Real inplace FFT. If you want a transformation on a piddle with dimen-
sions [n1,n2,....] you MUST pass in a piddle with dimensions [2∗(n1/2+1),n2,...]
(real input, complex output).

Use with care due to dimension restrictions mentioned below. For details
check the html docs that come with the fftw library.

$pdl_cplx = nrfftw $pdl_real;

null
Module: PDL::Core

Returns a ’null’ piddle.

$x = null;

null() has a special meaning to the section on in the PDL::PP|PDL::PP
manpage. It is used to flag a special kind of empty piddle, which can grow
to appropriate dimensions to store a result (as opposed to storing a result
in an existing piddle).

perldl> sumover sequence(10,10), $ans=null;p $ans
[45 145 245 345 445 545 645 745 845 945]

nullcreate
Module: PDL::Core

Returns a ’null’ piddle.

$x = PDL->nullcreate($arg)

This is an routine used by many of the threading primitives (i.e. the
sumover entry in the sumover|PDL::Primitive manpage, the minimum en-
try in the minimum|PDL::Primitive manpage, etc.) to generate a null
piddle for the function’s output that will behave properly for derived (or
subclassed) PDL objects.

For the above usage: If $arg is a PDL, or a derived PDL, then $arg->null
is returned. If $arg is a scalar (i.e. a zero-dimensional PDL) then
$PDL->null is returned.

PDL::Derived->nullcreate(10)
returns PDL::Derived->null.

PDL->nullcreate($pdlderived)
returns $pdlderived->null.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 230

oddmedian
Module: PDL::Primitive

Return the oddmedian of all elements in a piddle

$x = oddmedian($data);

oddmedover
Module: PDL::Primitive

Signature: (a(n); [o]b(); [t]tmp(n))

Project via oddmedian to N-1 dimensions

This function reduces the dimensionality of a piddle by one by taking the
oddmedian along the 1st dimension.

By using the xchg entry in the xchg|PDL::Slices manpage etc. it is possible
to use any dimension.

$a = oddmedover($b);

$spectrum = oddmedover $image->xchg(0,1)

The median is sometimes not a good choice as if the array has an even
number of elements it lies half-way between the two middle values — thus
it does not always correspond to a data value. The lower-odd median is
just the lower of these two values and so it ALWAYS sits on an actual
data value which is useful in some circumstances.

one2nd
Module: PDL::Primitive

Converts a one dimensional index piddle to a set of ND coordinates

@coords=one2nd($a, $indices)

returns an array of piddles containing the ND indexes corresponding to
the one dimensional list indices. The indices are assumed to correspond to
array $a clumped using clump(-1). This routine is used in the whichND
entry in the whichND| manpage, but is useful on its own occasionally.

perldl> $a=pdl [[[1,2],[-1,1]], [[0,-3],[3,2]]]; $c=$a->clump(-1)
perldl> $maxind=maximum_ind($c); p $maxind;
6
perldl> print one2nd($a, maximum_ind($c))
0 1 1
perldl> p $a->at(0,1,1)
3

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 231

ones
Module: PDL::Core

construct a one filled piddle

$a = ones([type], $nx, $ny, $nz,...);
etc. (see ’zeroes’)

see zeroes() and add one

oneslice
Module: PDL::Slices

Signature: (P(); C(); int nth; int from; int step; int nsteps)

experimental function — not for public use

$a = oneslice();

This is not for public use currently. See the source if you have to. This
function can be used to accomplish run-time changing of transformations
i.e. changing the size of some piddle at run-time.

However, the mechanism is not yet finalized and this is just a demonstra-
tion.

or Module: PDL::Primitive

Return the logical or of all elements in a piddle

$x = or($data);

or2 Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

binary or of two piddles

$c = or2 $a, $b, 0; # explicit call with trailing 0
$c = $a | $b; # overloaded call
$a->inplace->or2($b,0); # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary | operator. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 232

orover
Module: PDL::Primitive

Signature: (a(n); int+ [o]b())

Project via or to N-1 dimensions

This function reduces the dimensionality of a piddle by one by taking the
or along the 1st dimension.

By using the xchg entry in the xchg|PDL::Slices manpage etc. it is possible
to use any dimension.

$a = orover($b);

$spectrum = orover $image->xchg(0,1)

outer
Module: PDL::Primitive

Signature: (a(n); b(m); [o]c(n,m);)

outer product over one dimension

Naturally, it is possible to achieve the effects of outer product simply by
threading over the ”*” operator but this function is provided for conve-
nience.

patch2d
Module: PDL::Image2D

Signature: (a(m,n); int bad(m,n); [o]b(m,n))

patch bad pixels out of 2D images,

$patched = patch2d $data, $bad;

$bad is a 2D mask array where 1=bad pixel 0=good pixel. Pixels are
replaced by the average of their non-bad neighbours.

pcoef
Module: PDL::Slatec

Signature: (int l();c();[o]tc(bar);a(foo))

Convert the polfit coefficients to Taylor series form. c and a() must be
of the same type.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 233

pdl Module: PDL::Core

piddle constructor — creates new piddle from perl scalars/arrays

$a = pdl(SCALAR|ARRAY REFERENCE|ARRAY);

$a = pdl [1..10]; # 1D array
$a = pdl ([1..10]); # 1D array
$a = pdl (1,2,3,4); # Ditto
$b = pdl [[1,2,3],[4,5,6]]; # 2D 3x2 array
$b = pdl 42 # 0-dimensional scalar
$c = pdl $a; # Make a new copy
$a = pdl([1,2,3],[4,5,6]); # 2D
$a = pdl([[1,2,3],[4,5,6]]); # 2D

Note the last two are equivalent — a list is automatically converted to a
list reference for syntactic convenience. i.e. you can omit the outer []

pdl() is a functional synonym for the ’new’ constructor, e.g.:

$x = new PDL [1..10];

In order to control how undefs are handled in converting from perl lists to
PDLs, one can set the variable $PDL::undefval. For example:

$foo = [[1,2,undef],[undef,3,4]];
$PDL::undefval = -999;
$f = pdl $foo;
print $f
[
[1 2 -999]
[-999 3 4]
]

$PDL::undefval defaults to zero.

plus
Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

add two piddles

$c = plus $a, $b, 0; # explicit call with trailing 0
$c = $a + $b; # overloaded call
$a->inplace->plus($b,0); # modify $a inplace

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 234

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary + operator. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

pnminascii
Module: PDL::IO::Pnm

Signature: (type(); byte+ [o] im(m,n); int ms => m; int ns => n;
int format; char* fd)

Read in an ascii pnm file.

pnminraw
Module: PDL::IO::Pnm

Signature: (type(); byte+ [o] im(m,n); int ms => m; int ns => n;
int isbin; char* fd)

Read in a raw pnm file.

read a raw pnm file. The type argument is only there to determine the
type of the operation when creating im or trigger the appropriate type
conversion (maybe we want a byte+ here so that im follows strictly the
type of type).

pnmout
Module: PDL::IO::Pnm

Signature: (a(m); int israw; int isbin; char *fd)

Write a line of pnm data.

This function is implemented this way so that threading works naturally.

poco
Module: PDL::Slatec

Signature: (a(n,n);rcond();[o]z(n);int [o]info())

Factor a real symmetric positive definite matrix and estimate the condition
number of the matrix.

podi
Module: PDL::Slatec

Signature: (a(n,n);[o]det(two=2);int job())

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 235

Compute the determinant and inverse of a certain real symmetric positive
definite matrix using the factors computed by the poco entry in the poco|
manpage.

points
Module: PDL::Graphics::PGPLOT

Plot vector as points

Usage: points ([$x,] $y, [$symbol(s)], [$opt])

Options recognised:

SYMBOL - Either a piddle with the same dimensions as $x, containing
the symbol associated to each point or a number specifying
the symbol to use for every point, or a name specifying the
symbol to use according to the following (recognised name in
capital letters):
0 - SQUARE 1 - DOT 2 - PLUS 3 - ASTERISK
4 - CIRCLE 5 - CROSS 7 - TRIANGLE 8 - EARTH
9 - SUN 11 - DIAMOND 12- STAR

PLOTLINE - If this is >0 a line will be drawn through the points.

The following standard options influence this command:

AXIS, BORDER, CHARSIZE, COLOUR, JUSTIFY, LINESTYLE, LINEWIDTH

$y = sequence(10)**2+random(10);
Plot blue stars with a solid line through:
points $y, {PLOTLINE => 1, COLOUR => BLUE, SYMBOL => STAR};

points3d
Module: PDL::Graphics::TriD

3D points plot, defined by a variety of contexts

points3d piddle(3), {OPTIONS}
points3d [piddle,...], {OPTIONS}

Example:

perldl> points3d [sqrt(rvals(zeroes(50,50))/2)];
- points on surface

See module documentation for more information on contexts and options

polfit
Module: PDL::Slatec

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 236

Signature: (x(n);y(n);w(n);int maxdeg();int [o]ndeg();[o]eps();[o]r(n);int [o]ierr();[o]a(foo))

Fit discrete data in a least squares sense by polynomials in one variable.
x(), y() and w() must be of the same type.

poly
Module: PDL::Graphics::PGPLOT

Draw a polygon

Usage: poly ($x, $y)

Options recognised:

The following standard options influence this command:

AXIS, BORDER, COLOUR, FILLTYPE, HATCHING, JUSTIFY, LINESTYLE,
LINEWIDTH

Fill with hatching in two different colours
$x=sequence(10)/10;
First fill with cyan hatching
poly $x, $x**2, {COLOR=>5, FILL=>3};
hold;
Then do it over again with the hatching offset in phase:
poly $x, $x**2, {COLOR=>6, FILL=>3, HATCH=>{PHASE=>0.5}};
release;

polycoef
Module: PDL::Slatec

Convenience wrapper routine around the pcoef slatec function. Sepa-
rates supplied arguments and return values.

Convert the polyfit/polfit coefficients to Taylor series form.

$tc = polycoef($l, $c, $a);

polyfill
Module: PDL::Image2D

Signature: (int [o,nc] im(m,n); float ps(two=2,np); int col())

fill the area inside the given polygon with a given colour

This function works inplace, i.e. modifies im.

polyfillv
Module: PDL::Image2D

return the (dataflown) area of an image within a polygon

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 237

increment intensity in area bounded by $poly
$im->polyfillv($pol)++; # legal in perl >= 5.6
compute average intensity within area bounded by $poly
$av = $im->polyfillv($poly)->avg;

polyfit
Module: PDL::Slatec

Convenience wrapper routine about the polfit slatec function. Sepa-
rates supplied arguments and return values.

Fit discrete data in a least squares sense by polynomials in one variable.

($ndeg, $r, $ierr, $a) = polyfit($x, $y, $w, $maxdeg, $eps);

eps is modified to contain the rms error of the fit.

polyvalue
Module: PDL::Slatec

Convenience wrapper routine around the pvalue slatec function. Sepa-
rates supplied arguments and return values.

For multiple input x positions, a corresponding y position is calculated.

The derivatives PDL is one dimensional (of size nder) if a single x position
is supplied, two dimensional if more than one x position is supplied.

Use the coefficients generated by polyfit (or polfit) to evaluate the
polynomial fit of degree l, along with the first nder of its derivatives, at
a specified point.

($yfit, $yp) = polyvalue($l, $nder, $x, $a);

Populate
Module: PDL::Graphics::TriD::Tk

Used for widget initialization by Tk, this function should never be called
directly

pow Module: PDL::Math

Signature: (a(); b(); [o]c())

Synonym for ‘∗∗’

power
Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

raise piddle $a to the power b

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 238

$c = $a->power($b,0); # explicit function call
$c = $a ** $b; # overloaded use
$a->inplace->power($b,0); # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary op** function. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

prodover
Module: PDL::Primitive

Signature: (a(n); int+ [o]b())

Project via product to N-1 dimensions

This function reduces the dimensionality of a piddle by one by taking the
product along the 1st dimension.

By using the xchg entry in the xchg|PDL::Slices manpage etc. it is possible
to use any dimension.

$a = prodover($b);

$spectrum = prodover $image->xchg(0,1)

propndfx
Module: PDL::IO::NDF

Routine to write a PDL to an NDF by copying the extension information
from an existing NDF and writing DATA,VARIANCE, QUALITY and
AXIS info from a PDL (if they exist).

Extensions, labels and history are propogated from the old NDF. No new
extension information is written.

This command has been superseded by the wndf() entry in the wndf()|
manpage.

pvalue
Module: PDL::Slatec

Signature: (int l();x();[o]yfit();[o]yp(nder);a(foo))

Use the coefficients generated by polfit to evaluate the polynomial fit of
degree l, along with the first nder of its derivatives, at a specified point.
x and a must be of the same type.

px Module: PDL::Dbg

Print info about a piddle (or all known piddles)

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 239

perldl> PDL->px
perldl> $b += $a->clump(2)->px(’clumptest’)->sumover
perldl> $a->px(’%C (%A) Type: %T’)

This function prints some information about piddles. It can be invoked as
a class method (e.g. PDL->px) or as an instance method (e.g. C<$pdl-
¿px ($arg)>). If

invoked as a class method
it prints info about all piddles found in the current package (excluding
my variables). This comes in quite handy when you are not quite sure
which pdls you have already defined, what data they hold , etc. px
is supposed to support inheritance and prints info about all symbols
for which an isa($class) is true. An optional string argument is
interpreted as the package name for which to print symbols:

perldl> PDL->px(’PDL::Mypack’)

The default package is that of the caller.

invoked as an instance method
it prints info about that particular piddle if $PDL::debug is true and
returns the pdl object upon completion. It accepts an optional string
argument that is simply prepended to the default info if it doesn’t
contain a % character. If, however, the argument contains a % then
the string is passed to the info method to control the format of the
printed information. This can be used to achieve customized output
from px. See the documentation of PDL::info for further details.

The output of px will be determined by the default formatting string that
is passed to the info method (unless you pass a string containing % to
px when invoking as an instance method, see above). This default string
is stored in $PDL::Dbg::Infostr and the default output format can be
accordingly changed by setting this variable. If you do this you should
also change the default title string that the class method branch prints at
the top of the listing to match your new format string. The default title
is stored in the variable $PDL::Dbg::Title.

For historical reasons vars is an alias for px.

qsort
Module: PDL::Primitive

Signature: (a(n); [o]b(n))

Quicksort a vector into ascending order.

print qsort random(10);

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 240

qsorti
Module: PDL::Primitive

Signature: (a(n); int [o]indx(n))

Quicksort a vector and return index of elements in ascending order.

$ix = qsorti $a;
print $a->index($ix); # Sorted list

r2C Module: PDL::Complex

Signature: (r(); [o]c(m=2))

convert real to complex, assuming an imaginary part of zero

random
Module: PDL::Primitive

Constructor which returns piddle of random numbers

$a = random([type], $nx, $ny, $nz,...);
$a = random $b;

etc (see the zeroes entry in the zeroes|PDL::Core manpage).

This is the uniform distribution between 0 and 1 (assumedly excluding
1 itself). The arguments are the same as zeroes (q.v.) — i.e. one can
specify dimensions, types or give a template.

randsym
Module: PDL::Primitive

Constructor which returns piddle of random numbers

$a = randsym([type], $nx, $ny, $nz,...);
$a = randsym $b;

etc (see the zeroes entry in the zeroes|PDL::Core manpage).

This is the uniform distribution between 0 and 1 (excluding both 0 and
1, cf the random entry in the random| manpage). The arguments are the
same as zeroes (q.v.) — i.e. one can specify dimensions, types or give a
template.

rasc
Module: PDL::IO::Misc

Simple function to slurp in ASCII numbers quite quickly, although error
handling is marginal (to nonexistent).

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 241

$pdl->rasc("filename" [,$noElements]);
Where:
filename is the name of the ASCII file to read
$noElements is the optional number of elements in the file to read.

(If not present, all of the file will be read to fill up $pdl)

(test.num is an ascii file with 20 numbers. One number per line.)
$in = PDL->null;
$num = 20;
$in->rasc(’test.num’,20);
$imm = zeroes(float,20,2);
$imm->rasc(’test.num’);

rcols
Module: PDL::IO::Misc

Read ASCII whitespaced cols from a file into piddles and perl arrays (also
see the rgrep() entry elsewhere in this document).

There are two calling conventions — the old version, where a pattern can
be specified after the filename/handle, and the new version where options
are given as as hash reference. This reference can be given as either the
second or last argument.

The default behaviour is to ignore lines beginning with a # character and
lines that only consist of whitespace. Options exist to only read from lines
that match, or do not match, supplied patterns, and to set the types of
the created piddles.

Can take file name or ∗HANDLE, and if no columns are specified, all are
assumed. For the allowed types, see the section on Datatype conversions
in the PDL::Core manpage.

Options:

EXCLUDE or IGNORE — ignore lines matching this pattern (default
’/ˆ#/’).

INCLUDE or KEEP — only use lines which match this pattern (default
”).

LINES — which line numbers to use. Line numbers start at 0 and the
syntax is ’a:b:c’ to use every c’th matching line between a and b (default
”).

DEFTYPE — default data type for stored data (if not specified, use the
type stored in $PDL::IO::Misc::deftype, which starts off as double).

TYPES — reference to an array of data types, one element for each column
to be read in. Any missing columns use the DEFTYPE value (default []).

PERLCOLS — an array of column numbers which are to be read into perl
arrays rather than piddles. References to these arrays are returned after
the requested piddles (default undef).

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 242

Usage:
($x,$y,...) = rcols(*HANDLE|"filename", { EXCLUDE => ’/^!/’ },

$col1, $col2, ...)
($x,$y,...) = rcols(*HANDLE|"filename", $col1, $col2, ...,

{ EXCLUDE => ’/^!/’ })
($x,$y,...) = rcols(*HANDLE|"filename", "/foo/", $col1, $col2, ...)

e.g.,

$x = PDL->rcols ’file1’;
($x,$y) = rcols *STDOUT;

read in lines containing the string foo, where the first
example also ignores lines that with a # character.
($x,$y,$z) = rcols ’file2’, 0,4,5, { INCLUDE => ’/foo/’ };
($x,$y,$z) = rcols ’file2’, 0,4,5,

{ INCLUDE => ’/foo/’, EXCLUDE => ’’ };

ignore the first 27 lines of the file, reading in as ushort’s
($x,$y) = rcols ’file3’, { LINES => ’27:-1’, DEFTYPE => ushort };
($x,$y) = rcols ’file3’,

{ LINES => ’27:’, TYPES => [ushort, ushort] };

read in the first column as a perl array and the next two as piddles
($x,$y,$name) = rcols ’file4’, 1, 2, { PERLCOLS => [0] };
printf "Number of names read in = %d\n", 1 + $#$name;

Notes:

1. Quotes are required on patterns.

2. Columns are separated by whitespace by default, use $PDL::IO::Misc::colsep
to specify an alternate separator.

3. For PDL-2.003, the meaning of the ’c’ value in the LINES option has
changed: it now only counts matching lines rather than all lines as in
previous versions of PDL.

4. LINES =¿ ’−1:0:3’ may not work as you expect, since lines are skipped
when read in, then the whole array reversed.

rCpolynomial
Module: PDL::Complex

Signature: (coeffs(n); x(c=2,m); [o]out(c=2,m))

evaluate the polynomial with (real) coefficients coeffs at the (complex)
position(s) x. coeffs[0] is the constant term.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 243

rcube
Module: PDL::IO::Misc

Read list of files directly into a large data cube (for efficiency)

$cube = rcube \&reader_function, @files;

$cube = rcube \&rfits, glob("*.fits");

This IO function allows direct reading of files into a large data cube,
Obviously one could use cat() but this is more memory efficient.

The reading function (e.g. rfits, readfraw) (passed as a reference) and files
are the arguments.

The cube is created as the same X,Y dims and datatype as the first image
specified. The Z dim is simply the number of images.

rdsa
Module: PDL::IO::Misc

Read a FIGARO/NDF format file.

Requires non-PDL DSA module. Contact Frossie (frossie@jach.hawaii.edu)
Usage:

([$xaxis],$data) = rdsa($file)

$a = rdsa ’file.sdf’

Not yet tested with PDL-1.9X versions

readflex
Module: PDL::IO::FlexRaw

Read a binary file with flexible format specification

($x,$y,...) = readflex("filename" [, $hdr])

readfraw
Module: PDL::IO::FastRaw

Read a raw format binary file

$pdl2 = readfraw("fname");
$pdl2 = PDL->readfraw("fname");

realfft
Module: PDL::FFT

One-dimensional FFT of real function [inplace].

The real part of the transform ends up in the first half of the array and the
imaginary part of the transform ends up in the second half of the array.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 244

realfft($real);

realifft
Module: PDL::FFT

Inverse of one-dimensional realfft routine [inplace].

realifft($real);

rebin
Module: PDL::ImageND

Signature: (a(m); [o]b(n); int ns => n)

rebin
Module: PDL::ImageND

N-dimensional rebinning algorithm

$new = rebin $a, $dim1, $dim2,..;. $new = rebin $a, $template; $new =
rebin $a, $template, {Norm =¿ 1};
Rebin an N-dimensional array to newly specified dimensions. Specifying
‘Norm’ keeps the sum constant, otherwise the intensities are kept con-
stant. If more template dimensions are given than for the input pdl, these
dimensions are created; if less, the final dimensions are maintained as they
were.

So if $a is a 10 x 10 pdl, then rebin($a,15) is a 15 x 10 pdl, while
rebin($a,15,16,17) is a 15 x 16 x 17 pdl (where the values along the
final dimension are all identical).

refresh
Module: PDL::Graphics::TriD::Tk

refresh() causes a display event to be put at the top of the TriD work que.
This should be called at the end of each user defined TriD::Tk callback.

reorder
Module: PDL::Slices

Re-orders the dimensions of a PDL based on the supplied list.

Similar to the the xchg entry in the xchg| manpage method, this method
re-orders the dimensions of a PDL. While the the xchg entry in the
xchg| manpage method swaps the position of two dimensions, the reorder
method can change the positions of many dimensions at once.

Completely reverse the dimension order of a 6-Dim array.
$reOrderedPDL = $pdl->reorder(5,4,3,2,1,0);

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 245

The argument to reorder is an array representing where the current di-
mensions should go in the new array. In the above usage, the argument to
reorder (5,4,3,2,1,0) indicates that the old dimensions ($pdl’s dims)
should be re-arranged to make the new pdl ($reOrderPDL) according to
the following:

Old Position New Position
------------ ------------
5 0
4 1
3 2
2 3
1 4
0 5

Example:

perldl> $a = sequence(5,3,2); # Create a 3-d Array
perldl> p $a
[
[
[0 1 2 3 4]
[5 6 7 8 9]
[10 11 12 13 14]
]
[
[15 16 17 18 19]
[20 21 22 23 24]
[25 26 27 28 29]
]
]
perldl> p $a->reorder(2,1,0); # Reverse the order of the 3-D PDL
[
[
[0 15]
[5 20]
[10 25]
]
[
[1 16]
[6 21]
[11 26]
]
[
[2 17]
[7 22]

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 246

[12 27]
]
[
[3 18]
[8 23]
[13 28]
]
[
[4 19]
[9 24]
[14 29]
]
]

The above is a simple example that could be duplicated by calling $a->xchg(0,2),
but it demonstrates the basic functionality of reorder.

As this is an index function, any modifications to the result PDL will
change the parent.

repulse
Module: PDL::Graphics::TriD::Rout

Signature: (coords(nc,np);
[o]vecs(nc,np);
int [t]links(np);;
double boxsize;
int dmult;
double a;
double b;
double c;
double d;

)

Repulsive potential for molecule-like constructs.

repulse uses a hash table of cubes to quickly calculate a repulsive force
that vanishes at infinity for many objects. For use by the module the
PDL::Graphics::TriD::MathGraph|PDL::Graphics::TriD::MathGraph man-
page. For definition of the potential, see the actual function.

rescale2d
Module: PDL::Image2D

Signature: (I(n,m); O(q,p))

The first piddle is rescaled to the dimensions of the second (expandind or
meaning values as needed) and then added to it.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 247

reshape
Module: PDL::Core

Change the shape (i.e. dimensions) of a piddle, preserving contents.

$x->reshape(NEWDIMS); reshape($x, NEWDIMS);

The data elements are preserved, obviously they will wrap differently and
get truncated if the new array is shorter. If the new array is longer it will
be zero-padded.

Note: an explicit copy is forced — this is the only way (for now) of stopping
a crash if $x is a slice.

perldl> $x = sequence(10)
perldl> reshape $x,3,4; p $x
[
[0 1 2]
[3 4 5]
[6 7 8]
[9 0 0]
]
perldl> reshape $x,5; p $x
[0 1 2 3 4]

rfftw
Module: PDL::FFTW

Real FFT. For an input piddle of dimensions [n1,n2,...] the output is
[2,(n1/2)+1,n2,...] (real input, complex output).

$pdl_cplx = fftw $pdl_real;

rfftwconv
Module: PDL::FFTW

ND convolution using real ffts from the FFTW library

$conv = rfftwconv $im, kernctr $k;

rfits
Module: PDL::IO::Misc

Simple piddle FITS reader.

$pdl = rfits(’file.fits’);

Suffix magic:

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 248

Automatically uncompress via gunzip pipe
$pdl = rfits(’file.fits.gz’);
Automatically uncompress via uncompress pipe
$pdl = rfits(’file.fits.Z’);

FITS Headers stored in piddle and can be retrived with $a-¿gethdr.

This header is a reference to a hash where the hash keys are the keywords
in the FITS header. It is important to note that for strings, the sur-
rounding quotes are kept to ensure that strings that look like numbers are
kept as strings. This is also of importance if you create your own header
information and you want the value to be printed out as a string.

Comments in headers are stored as $$h{COMMENT}{¡Keyword¿} where
$h is the header retrieved with $a-¿gethdr. History entries in the header
are stored as $$h{HISTORY}, which is an anonymous array for each HIS-
TORY entry in the header.

rgbtogr
Module: PDL::ImageRGB

Converts an RGB image to a grey scale using standard transform

$gr = $rgb->rgbtogr

Performs a conversion of an RGB input image (3,x,....) to a greyscale
image (x,.....) using standard formula:

Grey = 0.301 R + 0.586 G + 0.113 B

rgrep
Module: PDL::IO::Misc

Read columns into piddles using full regexp pattern matching.

Usage

($x,$y,...) = rgrep(sub, *HANDLE|"filename")

e.g.

($a,$b) = rgrep {/Foo (.*) Bar (.*) Mumble/} $file;

i.e. the vectors $a and $b get the progressive values of $1, $2 etc.

rint
Module: PDL::Math

Signature: (a(); [o]b())

Round to integral values in floating-point format

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 249

rld Module: PDL::Slices

Signature: (int a(n); b(n); [o]c(m))

Run-length decode a vector

Given a vector $a of the numbers of instances of values $b, run-length
decode to $c.

rld($a,$b,$c=null);

rle Module: PDL::Slices

Signature: (c(n); int [o]a(n); [o]b(n))

Run-length encode a vector

Given vector $c, generate a vector $a with the number of each element,
and a vector $b of the unique values. Only the elements up to the first
instance of ‘0’ in $a should be considered.

rle($c,$a=null,$b=null);

rndf
Module: PDL::IO::NDF

Reads a piddle from a NDF format data file.

$pdl = rndf(’file.sdf’);
$pdl = rndf(’file.sdf’,1);

The ’.sdf’ suffix is optional. The optional second argument turns off au-
tomatic quality masking and returns a quality array as well.

Header information and NDF Extensions are stored in the piddle as a
hash which can be retreived with the $pdl->gethdr command. Array
extensions are stored in the header as follows:

$a - the base DATA_ARRAY

If $hdr = $a->gethdr;

then:

%{$hdr} contains all the FITS headers plus:
$$hdr{Error} contains the Error/Variance PDL
$$hdr{Quality} The quality byte array (if reqeusted)
@{$$hdr{Axis}} Is an array of piddles containing the information

for axis 0, 1, etc.
$$hdr{NDF_EXT} Contains all the NDF extensions
$$hdr{Hist} Contains the history information
$$hdr{NDF_EXT}{_TYPES} - Data types for non-PDL NDF extensions so that

wndf can reconstruct a NDF.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 250

All extension information is stored in the header hash array. Extension
structures are preserved in hashes, so that the PROJ PARS component of
the IRAS.ASTROMETRY extension is stored in $$hdr{NDF EXT}{IRAS}{ASTROMETRY}{’PROJ PARS’}.
All array structures are stored as arrays in the Hdr: numeric arrays are
stored as PDLs, logical and character arrays are stored as plain Perl ar-
rays. FITS arrays are a special case and are expanded as scalars into the
header.

rot2d
Module: PDL::Image2D

Signature: (im(m,n); float angle(); bg(); int aa(); [o] om(p,q))

rotate an image by given angle

rotate by 10.5 degrees with antialiasing, set missing values to 7
$rot = $im->rot2d(10.5,7,1);

This function rotates an image through an angle between −90 and + 90
degrees. Uses/doesn’t use antialiasing depending on the aa flag. Pixels
outside the rotated image are set to bg.

Code modified from pnmrotate (Copyright Jef Poskanzer) with an algo-
rithm based on ”A Fast Algorithm for General Raster Rotation” by Alan
Paeth, Graphics Interface ’86, pp. 77−81.

Use the rotnewsz function to find out about the dimension of the newly
created image

($newcols,$newrows) = rotnewsz $oldn, $oldm, $angle;

rotate
Module: PDL::Slices

Signature: (x(n); int shift(); [oca]y(n))

Shift vector elements along with wrap. Flows data back&forth.

routine
Module: PDL::Func

my $name = $obj->routine;

Returns the name of the last routine called by a PDL::Func object.

This is mainly useful for decoding the value stored in the err attribute.

rpic
Module: PDL::IO::Pic

Read images in many formats with automatic format detection.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 251

$im = rpic $file;
$im = PDL->rpic ’PDL.jpg’ if PDL->rpiccan(’JPEG’);

Options

FORMAT => ’JPEG’ # explicitly read this format
XTRAFLAGS => ’-nolut’ # additional flags for converter

Reads image files in most of the formats supported by netpbm. You
can explicitly specify a supported format by additionally passing a hash
containing the FORMAT key as in

$im = rpic ($file, {FORMAT => ’GIF’});

This is especially useful if the particular format isn’t identified by a magic
number and doesn’t have the ’typical’ extension or you want to avoid the
check of the magic number if your data comes in from a pipe. The function
returns a pdl of the appropriate type upon completion. Option parsing
uses the the PDL::Options manpage module and therefore supports min-
imal options matching.

You can also read directly into an existing pdl that has to have the right
size(!). This can come in handy when you want to read a sequence of
images into a datacube, e.g.

$stack = zeroes(byte,3,500,300,4);
rpic $stack->slice(’:,:,:,(0)’),"PDL.jpg";

reads an rgb image (that had better be of size (500,300)) into the first
plane of a 3D RGB datacube (=4D pdl datacube). You can also do trans-
pose/inversion upon read that way.

rpnm
Module: PDL::IO::Pnm

Read a pnm (portable bitmap/pixmap, pbm/ppm) file into a piddle.

Reads a file in pnm format (ascii or raw) into a pdl (magic numbers P1-P6).
Based on the input format it returns pdls with arrays of size (width,height)
if binary or grey value data (pbm and pgm) or (3,width,height) if rgb
data (ppm). This also means for a palette image that the distinction
between an image and its lookup table is lost which can be a problem in
cases (but can hardly be avoided when using netpbm/pbmplus). Datatype
is dependent on the maximum grey/color-component value (for raw and
binary formats always PDL B). rpnm tries to read chopped files by zero
padding the missing data (well it currently doesn’t, it barfs; I’ll probably
fix it when it becomes a problem for me ;). You can also read directly into
an existing pdl that has to have the right size(!). This can come in handy
when you want to read a sequence of images into a datacube.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 252

For details about the formats see appropriate manpages that come with
the netpbm/pbmplus packages.

$im = rpnm $file;

$stack = zeroes(byte,3,500,300,4);
rpnm $stack->slice(’:,:,:,(0)’),"PDL.ppm";

reads an rgb image (that had better be of size (500,300)) into the first
plane of a 3D RGB datacube (=4D pdl datacube). You can also do inplace
transpose/inversion that way.

rs Module: PDL::Slatec

Signature: (a(n,n);[o]w(n);int matz();[o]z(n,n);[t]fvone(n);[t]fvtwo(n);int [o]ierr())

This subroutine calls the recommended sequence of subroutines from the
eigensystem subroutine package (EISPACK) to find the eigenvalues and
eigenvectors (if desired) of a REAL SYMMETRIC matrix.

rvals
Module: PDL::Basic

Fills a piddle with radial distance values from some centre.

$r = rvals $piddle,{OPTIONS};
$r = rvals [OPTIONAL TYPE],$nx,$ny,...{OPTIONS};

Options:

Centre => [$x,$y,$z...] # Specify centre
Center => [$x,$y.$z...] # synonym.

perldl> print rvals long,7,7,{Centre=>[2,2]}
[
[2 2 2 2 2 3 4]
[2 1 1 1 2 3 4]
[2 1 0 1 2 3 4]
[2 1 1 1 2 3 4]
[2 2 2 2 2 3 4]
[3 3 3 3 3 4 5]
[4 4 4 4 4 5 5]
]

For a more general metric, one can define, e.g.,

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 253

sub distance {
my ($a,$centre,$f) = @_;
my ($r) = $a->allaxisvals-$centre;
$f->($r);

}
sub l1 { sumover(abs($_[0])); }
sub euclid { use PDL::Math ’pow’; pow(sumover(pow($_[0],2)),0.5); }
sub linfty { maximum(abs($_[0])); }

so now

distance($a, $centre, \&euclid);

will emulate rvals, while \&l1 and \&linfty will generate other well-
known norms.

saoimage
Module: PDL::Graphics::IIS

Starts the SAOimage external program

saoimage[(command line options)]

Starts up the SAOimage external program. Default FIFO devices are
chosen so as to be compatible with other IIS module functions. If no
suitable FIFOs are found it will offer to create them.

e.g.:

perldl> saoimage
perldl> saoimage(-geometry => ’800x800’)

scheme
Module: PDL::Func

my $scheme = $obj->scheme;

Return the type of interpolation of a PDL::Func object.

Returns either Linear or Hermite.

sequence
Module: PDL::Basic

Create array filled with a sequence of values

$a = sequence($b); $a = sequence [OPTIONAL TYPE], @dims;

etc. see the zeroes entry in the zeroes|PDL::Core manpage.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 254

perldl> p sequence(10)
[0 1 2 3 4 5 6 7 8 9]
perldl> p sequence(3,4)
[
[0 1 2]
[3 4 5]
[6 7 8]
[9 10 11]
]

set Module: PDL::Func

my $nset = $obj->set(x = $newx, $y => $newy);
my $nset = $obj->set({ x = $newx, $y => $newy });

Set attributes for a PDL::Func object.

The return value gives the number of the supplied attributes which were
actually set.

set Module: PDL::Core

Set a single value inside a piddle

set $piddle, @position, $value

@position is a coordinate list, of size equal to the number of dimensions
in the piddle. Occasionally useful, mainly provided for backwards com-
patibility as superseded by use of the slice entry in the slice|PDL::Slices
manpage and assigment operator .=.

perldl> $x = sequence 3,4
perldl> set $x, 2,1,99
perldl> p $x
[
[0 1 2]
[3 4 99]
[6 7 8]
[9 10 11]
]

sethdr
Module: PDL::Core

Set header information of a piddle

$pdl=rfits(’file.fits’);
$h=$pdl->gethdr;
add a FILENAME field to the header
$$h{FILENAME} = ’file.fits’;
$pdl->sethdr($h);

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 255

The sethdr function sets the header information for a piddle. Normally
you would get the current header information with the gethdr entry in
the gethdr| manpage, add/change/remove fields, then apply those changes
with sethdr.

The sethdr function must be given a hash reference. For further infor-
mation on the header, see the gethdr entry in the gethdr| manpage and
the hdrcpy entry in the hdrcpy| manpage.

setstr
Module: PDL::Char

Function to set one string value in a character PDL. The input position is
the position of the string, not a character in the string. The first dimension
is assumed to be the length of the string.

The input string will be null-padded if the string is shorter than the first
dimension of the PDL. It will be truncated if it is longer.

$char = PDL::Char->new([[’abc’, ’def’, ’ghi’], [’jkl’, ’mno’, ’pqr’]]);
$char->setstr(0,1, ’foobar’);
print $char; # ’string’ bound to "", perl stringify function
Prints:
[
[’abc’ ’def’ ’ghi’]
[’foo’ ’mno’ ’pqr’]
]
$char->setstr(2,1, ’f’);
print $char; # ’string’ bound to "", perl stringify function
Prints:
[
[’abc’ ’def’ ’ghi’]
[’foo’ ’mno’ ’f’] -> note that this ’f’ is stored "f\0\0"
]

shiftleft
Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

leftshift a$ by $b

$c = shiftleft $a, $b, 0; # explicit call with trailing 0
$c = $a << $b; # overloaded call
$a->inplace->shiftleft($b,0); # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary << operator. Note that when calling

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 256

this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

shiftright
Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

leftshift a$ by $b

$c = shiftright $a, $b, 0; # explicit call with trailing 0
$c = $a >> $b; # overloaded call
$a->inplace->shiftright($b,0); # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary >> operator. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

short
Module: PDL::Core

Convert to short datatype — see ’Datatype conversions’

sig Module: PDL::Doc::Perldl

prints signature of PDL function

sig ’func’

The signature is the normal dimensionality of the functions arguments.
Calling with different dimensions causes ’threading’ — see PDL::PP for
more details.

perldl> sig ’outer’
Signature: outer(a(n); b(m); [o]c(n,m);)

simplex
Module: PDL::Opt::Simplex

Simplex optimization routine

($optimum,$ssize) = simplex($init,$initsize,$minsize,
$maxiter,
sub {evaluate_func_at($_[0])},
sub {display_simplex($_[0])}
);

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 257

See module PDL::Opt::Simplex for more information.

simq
Module: PDL::Math

Signature: ([phys]a(n,n); [phys]b(n); [o,phys]x(n); int [o,phys]ips(n); int flag)

Solution of simultaneous linear equations, a x = b.

$a is an n x n matrix (i.e., a vector of length n*n), stored row-wise: that
is, a(i,j) = a[ij], where ij = i*n + j. While this is the transpose
of the normal column-wise storage, this corresponds to normal PDL us-
age. The contents of matrix a may be altered (but may be required for
subsequent calls with flag = −1).

$b, $x, $ips are vectors of length n.

Set flag=0 to solve. Set flag=-1 to do a new back substitution for dif-
ferent $b vector using the same a matrix previously reduced when flag=0
(the $ips vector generated in the previous solution is also required).

sin Module: PDL::Ops

Signature: (a(); [o]b())

the sin function

$b = sin $a;
$a->inplace->sin; # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the unary sin operator/function.

sinh
Module: PDL::Math

Signature: (a(); [o]b())

The standard hyperbolic function.

slice
Module: PDL::Slices

Signature: (P(); C(); char* str)

Returns a rectangular slice of the original piddle

$a->slice(’1:3’); # return the second to fourth elements of $a
$a->slice(’3:1’); # reverse the above
$a->slice(’-2:1’); # return last-but-one to second elements of $a

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 258

The argument string is a comma-separated list of what to do for each
dimension. The current formats include the following, where a, b and c
are integers and can take legal array index values (including −1 etc):

: takes the whole dimension intact.

” (nothing) is a synonym for ”:” (This means that $a->slice(’:,3’) is
equal to $a->slice(’,3’)).

a slices only this value out of the corresponding dimension.

(a) means the same as ”a” by itself except that the resulting dimension of
length one is deleted (so if $a has dims (3,4,5) then $a->slice(’:,(2),:’)
has dimensions (3,5) whereas $a->slice(’:,2,:’) has dimensions
(3,1,5)).

a:b slices the range a to b inclusive out of the dimension.

a:b:c
slices the range a to b, with step c (i.e. 3:7:2 gives the indices
(3,5,7)). This may be confusing to Matlab users but several other
packages already use this syntax.

’∗’
inserts an extra dimension of width 1 and

’∗a’
inserts an extra (dummy) dimension of width a.

An extension is planned for a later stage allowing C<$a-¿slice(’(=1),(=1|5:8),3:6 (=1),4:6’)>
to express a multidimensional diagonal of $a.

spaceship
Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

binary <=> operation

$c = $a->spaceship($b,0); # explicit function call
$c = $a <=> $b; # overloaded use
$a->inplace->spaceship($b,0); # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary op<=> function. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

splitdim
Module: PDL::Slices

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 259

Signature: (P(); C(); int nthdim; int nsp)

Splits a dimension in the parent piddle (opposite of the clump entry in
the clump| manpage)

After

$b = $a->splitdim(2,3);

the expression

$b->at(6,4,x,y,3,6) == $a->at(6,4,x+3*y)

is always true (x has to be less than 3).

sqrt
Module: PDL::Ops

Signature: (a(); [o]b())

elementwise square root

$b = sqrt $a;
$a->inplace->sqrt; # modify $a inplace

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the unary sqrt operator/function.

squaretotri
Module: PDL::Math

Signature: (a(n,n); b(m))

Convert a symmetric square matrix to triangular vector storage

stats
Module: PDL::Primitive

Calculates useful statistics on a piddle

($mean,$rms,$median,$min,$max) = stats($piddle,[$weights]);

This utility calculates all the most useful quantities in one call.

Note: The RMS value that this function returns in the RMS deviation
from the mean, also known as the population standard- deviation.

status
Module: PDL::Func

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 260

my $status = $obj->status;

Returns the status of a PDL::Func object.

This method provides a high-level indication of the success of the last
method called (except for get which is ignored). Returns 1 if everything
is okay, 0 if there has been a serious error, and -1 if there was a prob-
lem which was not serious. In the latter case, C<$obj-¿get(”err”)> may
provide more information, depending on the particular scheme in use.

string
Module: PDL::Char

Function to print a character PDL (created by ’char’) in a pretty format.

$char = PDL::Char->new([[’abc’, ’def’, ’ghi’], [’jkl’, ’mno’, ’pqr’]]);
print $char; # ’string’ bound to "", perl stringify function
Prints:
[
[’abc’ ’def’ ’ghi’]
[’jkl’ ’mno’ ’pqr’]
]

’string’ is overloaded to the "" operator, so:
print $char;
should have the same effect.

sum Module: PDL::Primitive

Return the sum of all elements in a piddle

$x = sum($data);

sumover
Module: PDL::Primitive

Signature: (a(n); int+ [o]b())

Project via sum to N-1 dimensions

This function reduces the dimensionality of a piddle by one by taking the
sum along the 1st dimension.

By using the xchg entry in the xchg|PDL::Slices manpage etc. it is possible
to use any dimension.

$a = sumover($b);

$spectrum = sumover $image->xchg(0,1)

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 261

svd Module: PDL::Math

Signature: (a(n,m); [o]u(n,m); [o,phys]z(n); [o]v(n,n))

Singular value decomposition of array.

($u, $s, $v) = svd($a);

svdc
Module: PDL::Slatec

Signature: (x(n,p);[o]s(p);[o]e(p);[o]u(n,p);[o]v(p,p);[o]work(n);int job();int [o]info())

singular value decomposition of a matrix

tan Module: PDL::Math

Signature: (a(); [o]b())

The usual trigonometric function.

tanh
Module: PDL::Math

Signature: (a(); [o]b())

The standard hyperbolic function.

thread
Module: PDL::Core

Use explicit threading over specified dimensions (see also the PDL::Indexing
manpage)

$b = $a->thread($dim,[$dim1,...])

$a = zeroes 3,4,5;
$b = $a->thread(2,0);

Same as the PDL::thread1 entry in the PDL::thread1| manpage, i.e. uses
thread id 1.

thread1
Module: PDL::Core

Explicit threading over specified dims using thread id 1.

$xx = $x->thread1(3,1)

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 262

Wibble

Convenience function interfacing to the threadI entry in the PDL::Slices::threadI|PDL::Slices
manpage.

thread2
Module: PDL::Core

Explicit threading over specified dims using thread id 2.

$xx = $x->thread2(3,1)

Wibble

Convenience function interfacing to the threadI entry in the PDL::Slices::threadI|PDL::Slices
manpage.

thread3
Module: PDL::Core

Explicit threading over specified dims using thread id 3.

$xx = $x->thread3(3,1)

Wibble

Convenience function interfacing to the threadI entry in the PDL::Slices::threadI|PDL::Slices
manpage.

thread define
Module: PDL::Core

define functions that support threading at the perl level

thread_define ’tline(a(n);b(n))’, over {
line $_[0], $_[1]; # make line compliant with threading
};

thread_define provides some support for threading (see the PDL::Indexing
manpage) at the perl level. It allows you to do things for which you
normally would have resorted to PDL::PP (see the PDL::PP manpage);
however, it is most useful to wrap existing perl functions so that the new
routine supports PDL threading.

thread_define is used to define new threading aware functions. Its first
argument is a symbolic repesentation of the new function to be defined.
The string is composed of the name of the new function followed by its
signature (see the PDL::Indexing manpage and the PDL::PP manpage)
in parentheses. The second argument is a subroutine that will be called

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 263

with the slices of the actual runtime arguments as specified by its signa-
ture. Correct dimension sizes and minimal number of dimensions for all
arguments will be checked (assuming the rules of PDL threading, see the
PDL::Indexing manpage).

The actual work is done by the signature class which parses the signature
string, does runtime dimension checks and the routine threadover that
generates the loop over all appropriate slices of pdl arguments and creates
pdls as needed.

Similar to pp_def and its OtherPars option it is possible to define the
new function so that it accepts normal perl args as well as piddles. You
do this by using the NOtherPars parameter in the signature. The number
of NOtherPars specified will be passed unaltered into the subroutine given
as the second argument of thread_define. Let’s illustrate this with an
example:

PDL::thread_define ’triangles(inda();indb();indc()), NOtherPars => 2’,
PDL::over {
${$_[3]} .= $_[4].join(’,’,map {$_->at} @_[0..2]).",-1,\n";

};

This defines a function triangles that takes 3 piddles as input plus 2
arguments which are passed into the routine unaltered. This routine is
used to collect lists of indices into a perl scalar that is passed by reference.
Each line is preceded by a prefix passed as $_[4]. Here is typical usage:

$txt = ’’;
triangles(pdl(1,2,3),pdl(1),pdl(0),\$txt," "x10);
print $txt;

resulting in the following output

1,1,0,-1,
2,1,0,-1,
3,1,0,-1,

which is used in the PDL::Graphics::TriD::VRML|PDL::Graphics::TriD::VRML
manpage to generate VRML output.

Currently, this is probably not much more than a POP (proof of principle)
but is hoped to be useful enough for some real life work.

Check the PDL::PP|PDL::PP manpage for the format of the signature.
Currently, the [t] qualifier and all type qualifiers are ignored.

threadids
Module: PDL::Core

Returns the piddle thread IDs as a perl list

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 264

@ids = threadids $piddle;

tlmfit
Module: PDL::Fit::LM

threaded version of Levenberg-Marquardt fitting routine mfit

tlmfit $x, $y, float(1)->dummy(0), $na, float(200), float(1e-4),
$ym=null, $afit=null, \&expdec;

Signature:

tlmfit(x(n);y(n);sig(n);a(m);iter();eps();[o] ym(n);[o] ao(m);
OtherPar => subref)

a threaded version of lmfit by using perl threading. Direct threading
in lmfit seemed difficult since we have an if condition in the iteration.
In principle that can be worked around by using where but Send a
threaded lmfit version if you work it out!

Since we are using perl threading here speed is not really great but it is just
convenient to have a threaded version for many applications (no explicit
for-loops required, etc). Suffers from some of the current limitations of
perl level threading.

topdl
Module: PDL::Core

alternate piddle constructor — ensures arg is a piddle

$a = topdl(SCALAR|ARRAY REFERENCE|ARRAY);

The difference between the pdl entry in the pdl()| manpage and topdl()
is that the latter will just ’fall through’ if the argument is already a piddle.
It will return a reference and NOT a new copy.

This is particulary useful if you are writing a function which is doing some
fiddling with internals and assumes a piddle argument (e.g. for method
calls). Using topdl() will ensure nothing breaks if passed with ’2’.

$a = topdl 43; # $a is piddle with value ’43’
$b = topdl $piddle; # fall through
$a = topdl (1,2,3,4); # Convert 1D array

transpose
Module: PDL::Basic

transpose rows and columns.

$b = transpose($a); $b = ~$a;

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 265

Also bound to the ~ unary operator.

perldl> $a = sequence(3,2)
perldl> p $a
[
[0 1 2]
[3 4 5]
]
perldl> p transpose($a)
[
[0 3]
[1 4]
[2 5]
]

twiddle3d
Module: PDL::Graphics::TriD

Wait for the user to rotate the image in 3D space.

Let the user rotate the image in 3D space, either for one step or until
(s)he presses ’q’, depending on the ’keeptwiddling3d’ setting. If ’keeptwid-
dling3d’ is not set the routine returns immediately and indicates that a ’q’
event was received by returning 1. If the only events received were mouse
events, returns 0.

type
Module: PDL::Core

return the type of a piddle as a blessed type object

A convenience function for use with the piddle constructors, e.g.

$b = PDL->zeroes($a->type,$a->dims,3);

unthread
Module: PDL::Slices

Signature: (P(); C(); int atind)

All threaded dimensions are made real again.

See [TBD Doc] for details and examples.

unwind
Module: PDL::Core

Return a piddle which is the same as the argument except that all threa-
dids have been removed.

$y = $x->unwind;

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 266

usage
Module: PDL::Doc::Perldl

Prints usage information for a PDL function

Usage: usage ’func’

perldl> usage ’inner’

inner inner prodcuct over one dimension
(Module PDL::Primitive)

Signature: inner(a(n); b(n); [o]c();)

ushort
Module: PDL::Core

Convert to ushort datatype — see ’Datatype conversions’

using
Module: PDL::Slices

Returns array of column numbers requested

line $pdl->using(1,2);

Plot, as a line, column 1 of $pdl vs. column 2

perldl> $pdl = rcols("file");
perldl> line $pdl->using(1,2);

vars
Module: PDL::Dbg

Alias for px

vect
Module: PDL::Graphics::PGPLOT

Display 2 images as a vector field

Usage: vect ($a, $b, [$scale, $pos, $transform, $misval])

Notes: $transform for image/cont etc. is used in the same way as the
TR() array in the underlying PGPLOT FORTRAN routine but is, fortu-
nately, zero-offset.

This routine will plot a vector field. $a is the horizontal component and
$b the vertical component.

Options recognised:

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 267

SCALE - Set the scale factor for vector lengths.
POS - Set the position of vectors.

<0 - vector head at coordinate
>0 - vector base at coordinate
=0 - vector centered on the coordinate

TRANSFORM - The pixel-to-world coordinate transform vector
MISSING - Elements with this value are ignored.

The following standard options influence this command:

ARROW, ARROWSIZE, AXIS, BORDER, CHARSIZE, COLOUR, JUSTIFY,
LINESTYLE, LINEWIDTH

$a=rvals(11,11,{Centre=>[5,5]});
$b=rvals(11,11,{Centre=>[0,0]});
vect $a, $b, {COLOR=>YELLOW, ARROWSIZE=>0.5, LINESTYLE=>dashed};

vrmlcoordsvert
Module: PDL::Graphics::TriD::Rout

Signature: (vertices(n=3); char* space; char* fd)

info not available

vsearch
Module: PDL::Primitive

Signature: (i(); x(n); int [o]ip())

routine for searching 1D values i.e. step-function interpolation.

$inds = vsearch($vals, $xs);

Returns for each value of $val the index of the least larger member of
$xs (which need to be in increasing order). If the value is larger than any
member of $xs, the index to the last element of $xs is returned.

This function is useful e.g. when you have a list of probabilities for events
and want to generate indices to events:

$a = pdl(.01,.86,.93,1); # Barnsley IFS probabilities cumulatively
$b = random 20;
$c = vsearch($b, $a); # Now, $c will have the appropriate distr.

It is possible to use the the cumusumover entry in the cumusumover| man-
page function to obtain cumulative probabilities from absolute probabili-
ties.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 268

wcols
Module: PDL::IO::Misc

Write ASCII whitespaced cols into file from piddles efficiently.

If no columns are specified all are assumed. Will optionally only process
lines matching a pattern. Can take file name or ∗HANDLE, and if no
file/filehandle is given defaults to STDOUT.

Options:

HEADER — prints this string before the data. If the string is not termi-
nated by a newline, one is added (default ”).

Usage: wcols $piddle1, $piddle2,..., *HANDLE|"outfile", [\%options];

e.g.,

wcols $x, $y+2, ’foo.dat’;
wcols $x, $y+2, *STDERR;
wcols $x, $y+2, ’|wc’;
wcols $a,$b,$c; # Orthogonal version of ’print $a,$b,$c’ :-)

wcols "%10.3f", $a,$b; # Formatted
wcols "%10.3f %10.5g", $a,$b; # Individual column formatting

wcols $a,$b, { HEADER => "# a b" };

Note: columns are separated by whitespace by default, use $PDL::IO::Misc::colsep
to specify an alternate separator.

wfits
Module: PDL::IO::Misc

Simple piddle FITS writer

wfits $pdl, ’filename.fits’, [$BITPIX];
$pdl->wfits(’foo.fits’,-32);

Suffix magic:

Automatically compress through pipe to gzip
wfits $pdl, ’filename.fits.gz’;
Automatically compress through pipe to compress
wfits $pdl, ’filename.fits.Z’;

$BITPIX is optional and coerces the output format.

where
Module: PDL::Primitive

Returns indices to non-zero values or those values from another piddle.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 269

$i = $x->where($x+5 > 0); # $i contains elements of $x
where mask ($x+5 > 0) is 1

Note: $i is always 1-D, even if $x is ¿1-D. The first argument (the values)
and the second argument (the mask) currently have to have the same
initial dimensions (or horrible things happen).

It is also possible to use the same mask for several piddles with the same
call:

($i,$j,$k) = where($x,$y,$z, $x+5>0);

There is also the following syntax, retained only for compatibility with
PDL versions ¡ 1.99. This use is deprecated, and will be removed in the
future. Use the which entry in the which| manpage instead.

$i = where($x > 0); # indices to $x, equivalent to ’which()’

Note: the mask has to be 1-D. See the documentation for the which entry
in the which| manpage

which
Module: PDL::Primitive

Signature: (mask(n); int [o] inds(m))

Returns piddle of indices of non-zero values.

$i = which($mask);

returns a pdl with indices for all those elements that are nonzero in the
mask. Note that mask really has to be 1-D (use clump(-1) if you need to
work with ND-images)

If you want to return both the indices of non-zero values and the com-
plement, use the function the section on which both in the which both|
manpage.

perldl> $x = sequence(10); p $x
[0 1 2 3 4 5 6 7 8 9]
perldl> $indx = which($x>6); p $indx
[7 8 9]

which both
Module: PDL::Primitive

Signature: (mask(n); int [o] inds(m); int [o]notinds(q))

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 270

Returns piddle of indices of non-zero values and their complement

($i, $c_i) = which_both($mask);

This works just as which, but the complement of $i will be in $c_i.

perldl> $x = sequence(10); p $x
[0 1 2 3 4 5 6 7 8 9]
perldl> ($small, $big) = which_both ($x >= 5); p "$small\n $big"
[5 6 7 8 9]
[0 1 2 3 4]

whichND
Module: PDL::Primitive

Returns the coordinates for non-zero values

@coords=whichND($mask);

returns an array of piddles containing the coordinates of the elements that
are non-zero in $mask.

perldl> $a=sequence(10,10,3,4)
perldl> ($x, $y, $z, $w)=whichND($a == 203); p $x, $y, $z, $w
[3] [0] [2] [0]
perldl> print $a->at(list(cat($x,$y,$z,$w)))
203

whistogram
Module: PDL::Primitive

Signature: (in(n); float+ wt(n);float+[o] hist(m); double step; double min; int msize => m)

Calculates a histogram from weighted data for given stepsize and mini-
mum.

$h = whistogram($data, $weights, $step, $min, $numbins);
$hist = zeroes $numbins; # Put histogram in existing piddle.
whistogram($data, $weights, $hist, $step, $min, $numbins);

The histogram will contain $numbins bins starting from $min, each $step
wide. The value in each bin is the sum of the values in $weights that
correspond to values in $data that lie within the bin limits.

Data below the lower limit is put in the first bin, and data above the upper
limit is put in the last bin.

The output is reset in a different threadloop so that you can take a his-
togram of $a(10,12) into $b(15) and get the result you want.

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 271

perldl> p whistogram(pdl(1,1,2), pdl(0.1,0.1,0.5), 1, 0, 4)
[0 0.2 0.5 0]

whistogram2d
Module: PDL::Primitive

Signature: (ina(n); inb(n); float+ wt(n);float+[o] hist(ma,mb); double stepa; double mina; int masize => ma;
double stepb; double minb; int mbsize => mb;)

Calculates a 2d histogram from weighted data.

$h = whistogram2d($datax, $datay, $weights,
$stepx, $minx, $nbinx, $stepy, $miny, $nbiny);

$hist = zeroes $nbinx, $nbiny; # Put histogram in existing piddle.
whistogram2d($datax, $datay, $weights, $hist,

$stepx, $minx, $nbinx, $stepy, $miny, $nbiny);

The histogram will contain $nbinx x $nbiny bins, with the lower limits
of the first one at ($minx, $miny), and with bin size ($stepx, $stepy).
The value in each bin is the sum of the values in $weights that correspond
to values in $datax and $datay that lie within the bin limits.

Data below the lower limit is put in the first bin, and data above the upper
limit is put in the last bin.

perldl> p whistogram2d(pdl(1,1,1,2,2),pdl(2,1,1,1,1),pdl(0.1,0.2,0.3,0.4,0.5),1,0,3,1,0,3)
[
[0 0 0]
[0 0.5 0.9]
[0 0.1 0]
]

wmpeg
Module: PDL::IO::Pic

Write an image sequence ((x,y,n) piddle) as an MPEG animation.

$anim->wmpeg("GreatAnimation.mpg");

Writes a stack of rgb images as an mpeg movie. Expects a 4-D pdl of
type byte as input. First dim has to be 3 since it is interpreted as inter-
laced RGB. Some of the input data restrictions will have to be relaxed
in the future but routine serves as a proof of principle at the moment.
It uses the program mpeg encode from the Berkeley multimedia package
(see also text at the top of this package). Mpeg parameters written by
this routines haven’t been tweaked in any way yet (in other words, lots
of room for improvement). For an example how to use the routine see
appropriate test that comes with this package. Currently, wmpeg doesn’t

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 272

allow modification of the parameters written through its calling interface.
This will change in the future as needed.

In the future it might be much nicer to implement a movie perl object that
supplies methods for manipulating the image stack (insert, cut, append
commands) and a final movie-¿make() call would invoke mpeg encode
on the picture stack (which will only be held on disk). This should get
around the problem of having to hold a huge amount of data in memory
to be passed into wmpeg (when you are, e.g. writing a large animation
from PDL3D rendered fly-throughs). Having said that, the actual storage
requirements might not be so big in the future any more if you could pass
’virtual’ transform pdls into wmpeg that will only be actually calculated
when accessed by the wpic routines, you know what I mean...

wndf
Module: PDL::IO::NDF

Writes a piddle to a NDF format file:

$pdl->wndf($file);
wndf($pdl,$file);

wndf can be used for writing PDLs to NDF files. The ’.sdf’ suffix is
optional. All the extensions created by rndf are supported by wndf. This
means that error, axis and quality arrays will be written if they exist.
Extensions are also reconstructed by using their name (ie FIGARO.TEST
would be expanded as a FIGARO extension and a TEST component).
Hdr keywords Label, Title and Units are treated as special cases and are
written to the label, title and units fields of the NDF.

Header information is written to corresponding NDF extensions. NDF
extensions can also be created in the {NDF} hash by using a key con-
taining ’.’, ie {NDF}{’IRAS.DATA’} would write the information to an
IRAS.DATA extension in the NDF. rndf stores this as $$hdr{NDF}{IRAS}{DATA}
and the two systems are interchangeable.

rndf stores type information in {NDF}{’ TYPES’} and below so that wndf
can reconstruct the data type of non-PDL extensions. If no entry exists in
TYPES, wndf chooses between characters, integer and double on a best

guess basis. Any perl arrays are written as CHAR array extensions (on
the assumption that numeric arrays will exist as PDLs).

wpic
Module: PDL::IO::Pic

Write images in many formats with automatic format selection.

Usage: wpic($pdl,$filename[,{ options... }])

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 273

wpic $pdl, $file;
$im->wpic(’web.gif’,{LUT => $lut});
for (@images) {
$_->wpic($name[0],{CONVERTER => ’ppmtogif’})

}

Write out an image file. Function will try to guess correct image format
from the filename extension, e.g.

$pdl->wpic("image.gif")

will write a gif file. The data written out will be scaled to byte if input is of
type float/double. Input data that is of a signed integer type and contains
negative numbers will be rejected (assuming the user should have the
desired conversion to an unsigned type already). A number of options can
be specified (as a hash reference) to get more direct control of the image
format that is being written. Valid options are (key =¿ example value):

CONVERTER => ’ppmtogif’, # explicitly specify pbm converter
FLAGS => ’-interlaced -transparent 0’, # flags for converter
IFORM => ’PGM’, # explicitly specify intermediate format
XTRAFLAGS => ’-imagename iris’, # additional flags to defaultflags
FORMAT => ’PCX’, # explicitly specify output image format
COLOR => ’bw’, # specify color conversion
LUT => $lut, # use color table information

Option parsing uses the the PDL::Options manpage module and therefore
supports minimal options matching. A detailed explanation of supported
options follows.

CONVERTER
directly specify the converter, you had better know what you are
doing, e.g.

CONVERTER => ’ppmtogif’,

FLAGS
flags to use with the converter; ignored if !defined($$hints{CONVERTER}),
e.g. with the gif format

FLAGS => ’-interlaced -transparent 0’,

IFORM
intermediate PNM/PPM/PGM/PBM format to use; you can ap-
pend the strings ’RAW’ or ’ASCII’ to enforce those modes, eg IFOR-
MAT=¿’PGMRAW’ or

IFORM => ’PGM’,

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 274

XTRAFLAGS
additional flags to use with an automatically chosen converter, this
example works when you write SGI files (but will give an error oth-
erwise)

XTRAFLAGS => ’-imagename iris’,

FORMAT
explicitly select the format you want to use. Required if wpic cannot
figure out the desired format from the file name extension. Supported
types are currently TIFF,GIF,SGI,PNM,JPEG,PS,RAST(Sun Raster),IFF,PCX,
e.g.

FORMAT => ’PCX’,

COLOR
you want black and white (value bw), other possible value is bwdither
which will write a dithered black&white image from the input data,
data conversion will be done appropriately, e.g.

COLOR => ’bw’,

LUT This is a palette image and the value of this key should be a pdl
containg an RGB lookup table (3,x), e.g.

LUT => $lut,

Using the CONVERTER hint you can also build a pipe and perform sev-
eral netpbm operations to get the special result you like. Using it this
way the first converter/filecommand in the pipe should be specified with
the CONVERTER hint and subsequent converters + flags in the FLAGS
hint. This is because wpic tries to figure out the required format to be
written by wpnm based on the first converter. Be careful when using the
PBMBIN var as it will only be prepended to the converter. If more con-
verters are in the FLAGS part specify the full path unless they are in your
PATH anyway.

Example:

$im->wpic(’test.ps’,{CONVERTER => ’pgmtopbm’,
FLAGS => "-dither8 | pnmtops" })

Some of the options may appear silly at the moment and probably are.
The situation will hopefully improve as people use the code and the need
for different/modified options becomes clear. The general idea is to make
the function perl compliant: easy things should be easy, complicated tasks
possible.

wpnm
Module: PDL::IO::Pnm

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 275

Write a pnm (portable bitmap/pixmap, pbm/ppm) file into a file.

Writes data in a pdl into pnm format (ascii or raw) (magic numbers P1-
P6). The $format is required (normally produced by wpic) and routine
just checks if data is compatible with that format. All conversions should
already have been done. If possible, usage of wpic is preferred. Currently
RAW format is chosen if compliant with range of input data. Explicit
control of ASCII/RAW is possible through the optional $raw argument.
If RAW is set to zero it will enforce ASCII mode. Enforcing RAW is
somewhat meaningless as the routine will always try to write RAW format
if the data range allows (but maybe it should reduce to a RAW supported
type when RAW == ’RAW’?). For details about the formats consult
appropriate manpages that come with the netpbm/pbmplus packages.

$im = wpnm $pdl, $file, $format[, $raw];

writeflex
Module: PDL::IO::FlexRaw

Write a binary file with flexible format specification

$hdr = writeflex($file, $pdl1, $pdl2,...)

writefraw
Module: PDL::IO::FastRaw

Write a raw format binary file

writefraw($pdl,"fname");

wtstat
Module: PDL::Primitive

Signature: (a(n); wt(n); avg(); [o]b(); int deg)

Weighted statistical moment of given degree

This calculates a weighted statistic over the vector a. The formula is

b() = (sum_i wt_i * (a_i ** degree - avg)) / (sum_i wt_i)

xchg
Module: PDL::Slices

Signature: (P(); C(); int n1; int n2)

exchange two dimensions

Negative dimension indices count from the end.

The command

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 276

$b = $a->xchg(2,3);

creates $b to be like $a except that the dimensions 2 and 3 are exchanged
with each other i.e.

$b->at(5,3,2,8) == $a->at(5,3,8,2)

ximtool
Module: PDL::Graphics::IIS

Starts the Ximtool external program

ximtool[(command line options)]

Starts up the Ximtool external program. Default FIFO devices are chosen
so as to be compatible with other IIS module functions. If no suitable
FIFOs are found it will offer to create them.

e.g.

perldl> ximtool
perldl> ximtool (-maxColors => 64)

xlinvals
Module: PDL::Basic

X axis values between endpoints (see the xvals entry in the xvals| man-
page).

$a = zeroes(100,100);
$x = $a->xlinvals(0.5,1.5);
$y = $a->ylinvals(-2,-1);
calculate Z for X between 0.5 and 1.5 and
Y between -2 and -1.
$z = f($x,$y);

xlinvals, ylinvals and zlinvals return a piddle with the same shape
as their first argument and linearly scaled values between the two other
arguments along the given axis.

xor Module: PDL::Ops

Signature: (a(); b(); [o]c(); int swap)

binary exclusive or of two piddles

$c = xor $a, $b, 0; # explicit call with trailing 0
$c = $a ^ $b; # overloaded call
$a->inplace->xor($b,0); # modify $a inplace

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 277

It can be made to work inplace with the $a->inplace syntax. This func-
tion is used to overload the binary ^ operator. Note that when calling
this function explicitly you need to supply a third argument that should
generally be zero (see first example). This restriction is expected to go
away in future releases.

xray
Module: PDL::Graphics::Karma

Starts external Karma application xray

xray([OPTIONS])

perldl> kview (-num_col => 42)
perldl> xray

xvals
Module: PDL::Basic

Fills a piddle with X index values

$x = xvals($somearray);
$x = xvals([OPTIONAL TYPE],$nx,$ny,$nz...);

etc. see the zeroes entry in the zeroes|PDL::Core manpage.

perldl> print xvals zeroes(5,10)
[
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
[0 1 2 3 4]
]

ylinvals
Module: PDL::Basic

Y axis values between endpoints (see the yvals entry in the yvals| man-
page).

See the xlinvals entry in the xlinvals| manpage for more information.

yvals
Module: PDL::Basic

Fills a piddle with Y index values

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 278

$x = yvals($somearray); yvals(inplace($somearray));
$x = yvals([OPTIONAL TYPE],$nx,$ny,$nz...);

etc. see the zeroes entry in the zeroes|PDL::Core manpage.

perldl> print yvals zeroes(5,10)
[
[0 0 0 0 0]
[1 1 1 1 1]
[2 2 2 2 2]
[3 3 3 3 3]
[4 4 4 4 4]
[5 5 5 5 5]
[6 6 6 6 6]
[7 7 7 7 7]
[8 8 8 8 8]
[9 9 9 9 9]
]

zcheck
Module: PDL::Primitive

Return the check for zero of all elements in a piddle

$x = zcheck($data);

zcover
Module: PDL::Primitive

Signature: (a(n); int+ [o]b())

Project via != 0 to N-1 dimensions

This function reduces the dimensionality of a piddle by one by taking the
!= 0 along the 1st dimension.

By using the xchg entry in the xchg|PDL::Slices manpage etc. it is possible
to use any dimension.

$a = zcover($b);

$spectrum = zcover $image->xchg(0,1)

zeroes
Module: PDL::Core

construct a zero filled piddle from dimension list or template piddle.

Various forms of usage,

(i) by specification or (ii) by template piddle:

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 279

usage type (i):
$a = zeroes([type], $nx, $ny, $nz,...);
$a = PDL->zeroes([type], $nx, $ny, $nz,...);
$a = $pdl->zeroes([type], $nx, $ny, $nz,...);
usage type (ii):
$a = zeroes $b;
$a = $b->zeroes
zeroes inplace $a; # Equivalent to $a .= 0;
$a->inplace->zeroes; # ""

perldl> $z = zeroes 4,3
perldl> p $z
[
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
]
perldl> $z = zeroes ushort, 3,2 # Create ushort array
[ushort() etc. with no arg returns a PDL::Types token]

zlinvals
Module: PDL::Basic

Z axis values between endpoints (see the zvals entry in the zvals| man-
page).

See the xlinvals entry in the xlinvals| manpage for more information.

zvals
Module: PDL::Basic

Fills a piddle with Z index values

$x = zvals($somearray); zvals(inplace($somearray));
$x = zvals([OPTIONAL TYPE],$nx,$ny,$nz...);

etc. see the zeroes entry in the zeroes|PDL::Core manpage.

perldl> print zvals zeroes(3,4,2)
[
[
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
]
[
[1 1 1]

CHAPTER 6. ADVANCED EXAMPLES OF USING PDL 280

[1 1 1]
[1 1 1]
[1 1 1]
]
]

