
P
?
= NP

Scott Aaronson∗

Abstract

In 1955, John Nash sent a remarkable letter to the National Security Agency, in which—
seeking to build theoretical foundations for cryptography—he all but formulated what today

we call the P
?
= NP problem, considered one of the great open problems of science. Here I

survey the status of this problem in 2017, for a broad audience of mathematicians, scientists,
and engineers. I offer a personal perspective on what it’s about, why it’s important, why it’s
reasonable to conjecture that P ̸= NP is both true and provable, why proving it is so hard,
the landscape of related problems, and crucially, what progress has been made in the last half-
century toward solving those problems. The discussion of progress includes diagonalization
and circuit lower bounds; the relativization, algebrization, and natural proofs barriers; and the
recent works of Ryan Williams and Ketan Mulmuley, which (in different ways) hint at a duality
between impossibility proofs and algorithms.

Contents

1 Introduction 3
1.1 The Importance of P

?
= NP . 4

1.2 Objections to P
?
= NP . 6

1.2.1 The Asymptotic Objection . 6
1.2.2 The Polynomial-Time Objection . 7
1.2.3 The Kitchen-Sink Objection . 7
1.2.4 The Mathematical Snobbery Objection . 8
1.2.5 The Sour Grapes Objection . 8
1.2.6 The Obviousness Objection . 9
1.2.7 The Constructivity Objection . 9

1.3 Further Reading . 10

2 Formalizing P
?
= NP and Central Related Concepts 10

2.1 NP-Completeness . 12
2.2 Other Core Concepts . 16

2.2.1 Search, Decision, and Optimization . 16
2.2.2 The Twilight Zone: Between P and NP-complete 17
2.2.3 coNP and the Polynomial Hierarchy . 17

∗University of Texas at Austin. Email: aaronson@cs.utexas.edu. Supported by a Vannevar Bush / NSSEFF
Fellowship from the US Department of Defense. Much of this work was done while the author was supported by an
NSF Alan T. Waterman award.

1

2.2.4 Factoring and Graph Isomorphism . 19
2.2.5 Space Complexity . 20
2.2.6 Counting Complexity . 20
2.2.7 Beyond Polynomial Resources . 21

3 Beliefs About P
?
= NP 23

3.1 Independent of Set Theory? . 25

4 Why Is Proving P ̸= NP Difficult? 27

5 Strengthenings of the P ̸= NP Conjecture 29
5.1 Different Running Times . 30
5.2 Nonuniform Algorithms and Circuits . 31
5.3 Average-Case Complexity . 33

5.3.1 Cryptography and One-Way Functions . 34
5.4 Randomized Algorithms . 35

5.4.1 BPP and Derandomization . 36
5.5 Quantum Algorithms . 37

6 Progress 39
6.1 Logical Techniques . 41

6.1.1 Circuit Lower Bounds Based on Counting . 42
6.1.2 The Relativization Barrier . 44

6.2 Combinatorial Lower Bounds . 46
6.2.1 Proof Complexity . 46
6.2.2 Monotone Circuit Lower Bounds . 47
6.2.3 Small-Depth Circuits and the Random Restriction Method 48
6.2.4 Small-Depth Circuits and the Polynomial Method 51
6.2.5 The Natural Proofs Barrier . 52

6.3 Arithmetization . 55
6.3.1 IP = PSPACE . 56
6.3.2 Hybrid Circuit Lower Bounds . 58
6.3.3 The Algebrization Barrier . 60

6.4 Ironic Complexity Theory . 62
6.4.1 Time-Space Tradeoffs . 63
6.4.2 NEXP ̸⊂ ACC . 66

6.5 Arithmetic Complexity Theory . 70
6.5.1 Permanent Versus Determinant . 71
6.5.2 Arithmetic Circuit Lower Bounds . 74
6.5.3 Arithmetic Natural Proofs? . 78

6.6 Geometric Complexity Theory . 81
6.6.1 From Complexity to Algebraic Geometry . 83
6.6.2 Characterization by Symmetries . 84
6.6.3 The Quest for Obstructions . 86

6.6.4 GCT and P
?
= NP . 88

6.6.5 Reports from the Trenches . 89

2

6.6.6 The Lessons of GCT . 92
6.6.7 The Only Way? . 94

7 Conclusions 96

8 Acknowledgments 99

9 Appendix: Glossary of Complexity Classes 115

1 Introduction

“Now my general conjecture is as follows: for almost all sufficiently complex types of
enciphering, especially where the instructions given by different portions of the key
interact complexly with each other in the determination of their ultimate effects on the
enciphering, the mean key computation length increases exponentially with the length
of the key, or in other words, the information content of the key ... The nature of this
conjecture is such that I cannot prove it, even for a special type of ciphers. Nor do I
expect it to be proven.” —John Nash, 1955 [190]

In 1900, David Hilbert challenged mathematicians to design a “purely mechanical procedure”
to determine the truth or falsehood of any mathematical statement. That goal turned out to
be impossible. But the question—does such a procedure exist, and why or why not?—helped
launch two related revolutions that shaped the twentieth century: one in science and philosophy,
as the results of Gödel, Church, Turing, and Post made the limits of reasoning itself a subject of
mathematical analysis; and the other in technology, as the electronic computer achieved, not all of
Hilbert’s dream, but enough of it to change the daily experience of most people on earth.

Although there’s no “purely mechanical procedure” to determine if a mathematical statement
S is true or false, there is a mechanical procedure to determine if S has a proof of some bounded
length n: simply enumerate over all proofs of length at most n, and check if any of them prove S.

This method, however, takes exponential time. The P
?
= NP problem asks whether there’s a fast

algorithm to find such a proof (or to report that no proof of length at most n exists), for a suitable

meaning of the word “fast.” One can think of P
?
= NP as a modern refinement of Hilbert’s 1900

question. The problem was explicitly posed in the early 1970s in the works of Cook and Levin,
though versions were stated earlier—including by Gödel in 1956, and as we see above, by John
Nash in 1955.

Think of a large jigsaw puzzle with (say) 101000 possible ways of arranging the pieces, or an
encrypted message with a similarly huge number of possible decrypts, or an airline with astronom-
ically many ways of scheduling its flights, or a neural network with millions of weights that can be
set independently. All of these examples share two key features:

(1) a finite but exponentially-large space of possible solutions; and

(2) a fast, mechanical way to check whether any claimed solution is “valid.” (For example, do
the puzzle pieces now fit together in a rectangle? Does the proposed airline schedule achieve
the desired profit? Does the neural network correctly classify the images in a test suite?)

3

We’re asking whether, under the above conditions, there’s a general method to find a valid
solution whenever one exists, and which is enormously faster than just trying all the possibilities
one by one, from now till the end of the universe, like in Jorge Luis Borges’ Library of Babel.

Notice that Hilbert’s goal has been amended in two ways. On the one hand, the new task is
“easier” because we’ve restricted ourselves to questions with only finitely many possible answers,
each of which is easy to verify or rule out. On the other hand, the task is “harder” because we now
insist on a fast procedure: one that avoids the exponential explosion inherent in the brute-force
approach.

Of course, to discuss such things mathematically, we need to pin down the meanings of “fast”

and “mechanical” and “easily checked.” As we’ll see, the P
?
= NP question corresponds to one

natural choice for how to define these concepts, albeit not the only imaginable choice. For the
impatient, P stands for “Polynomial Time,” and is the class of all decision problems (that is, infinite
sets of yes-or-no questions) solvable by a standard digital computer—or for concreteness, a Turing
machine—using a polynomial amount of time. By “polynomial time,” we mean that the machine
uses a number of steps that’s upper-bounded by the length of the input question (i.e., the number of
bits needed to write it down) raised to some fixed power, as opposed (say) to growing exponentially
with the length. Meanwhile, NP stands for “Nondeterministic Polynomial Time,” and is the class
of all decision problems for which, if the answer is “yes,” then there’s a polynomial-size proof that
a Turing machine can verify in polynomial time. It’s immediate that P ⊆ NP, so the question is
whether this containment is proper (and hence P ̸= NP), or whether NP ⊆ P (and hence P = NP).

1.1 The Importance of P
?
= NP

Before getting formal, it seems appropriate to say something about the significance of the P
?
= NP

question. P
?
= NP, we might say, shares with Hilbert’s original question the character of a

“math problem that’s more than a math problem”: a question that reaches inward to ask about
mathematical reasoning itself, and also outward to everything from philosophy to natural science
to practical computation.

To start with the obvious, essentially all the cryptography that we currently use on the Internet—
for example, for sending credit card numbers—would be broken if P = NP (and if, moreover, the
algorithm were efficient in practice, a caveat we’ll return to later). Though he was writing 16 years

before P
?
= NP was explicitly posed, this is the point Nash was making in the passage with which

we began.
The reason is that, in most cryptography, the problem of finding the decryption key is an NP

search problem: that is, we know mathematically how to check whether a valid key has been found.
The only exceptions are cryptosystems like the one-time pad and quantum key distribution, which
don’t rely on any computational assumptions (but have other disadvantages, such as the need for
huge pre-shared keys or for special communication hardware).

The metamathematical import of P
?
= NP was also recognized early. It was articulated, for

example, in Kurt Gödel’s now-famous 1956 letter to John von Neumann, which sets out what we

now call the P
?
= NP question. Gödel wrote:

If there actually were a machine with [running time] ∼ Kn (or even only with ∼ Kn2)
[for some constant K independent of n], this would have consequences of the greatest
magnitude. That is to say, it would clearly indicate that, despite the unsolvability of

4

the Entscheidungsproblem [Hilbert’s problem of giving a complete decision procedure
for mathematical statements], the mental effort of the mathematician in the case of yes-
or-no questions could be completely [added in a footnote: apart from the postulation
of axioms] replaced by machines. One would indeed have to simply select an n so large
that, if the machine yields no result, there would then also be no reason to think further
about the problem.

Expanding on Gödel’s observation, some modern commentators have explained the importance

of P
?
= NP as follows. It’s well-known that P

?
= NP is one of the seven Clay Millennium Problems

(alongside the Riemann Hypothesis, the Yang-Mills mass gap, etc.), for which a solution commands

a million-dollar prize [72]. But even among those problems, P
?
= NP has a special status. For

if someone discovered that P = NP, and if moreover the algorithm was efficient in practice, that
person could solve not merely one Millennium Problem but all seven of them—for she’d simply
need to program her computer to search for formal proofs of the other six conjectures.1 Of course,
if (as most computer scientists believe) P ̸= NP, a proof of that would have no such world-changing
implications, but even the fact that such a proof could rule out those implications underscores the
enormity of what we’re asking.

I should be honest about the caveats. While theoretical computer scientists (including me!)

have not always been above poetic flourish, P
?
= NP is not quite equivalent to the questions of

“whether human creativity can be automated,” or “whether anyone who can appreciate a symphony
is Mozart, anyone who can recognize a great novel is Jane Austen.” Apart from the obvious point
that no purely mathematical question could fully capture these imponderables, there are also more
specific issues.

For one thing, while P
?
= NP has tremendous relevance to artificial intelligence, it says nothing

about the differences, or lack thereof, between humans and machines. Indeed, P ̸= NP would
represent a limitation on all classical digital computation, one that might plausibly apply to human
brains just as well as to electronic computers. Nor does P ̸= NP rule out the possibility of robots
taking over the world. To defeat humanity, presumably the robots wouldn’t need to solve arbitrary
NP problems in polynomial time: they’d merely need to be smarter than us, and to have imperfect
heuristics better than the imperfect heuristics that we picked up from a billion years of evolution!
Conversely, while a proof of P = NP might hasten a robot uprising, it wouldn’t guarantee one. For

again, what P
?
= NP asks is not whether all creativity can be automated, but only creativity whose

fruits can be quickly verified by computer programs.
To illustrate, suppose we wanted to program a computer to create new Mozart-quality sym-

phonies and Shakespeare-quality plays. If P = NP via a practical algorithm, then these feats would
reduce to the seemingly easier problem of writing a computer program to recognize great works
of art. And interestingly, P = NP might also help with the recognition problem: for example,
by letting us train a neural network that reverse-engineered the expressed artistic preferences of
hundreds of human experts. But how well that neural network would perform is an empirical

1Here we’re using the observation that, once we fix a formal system (say, first-order logic plus the axioms of ZF
set theory), deciding whether a given statement has a proof at most n symbols long in that system is an NP problem,
which can therefore be solved in time polynomial in n assuming P = NP. We’re also assuming that the other six
Clay conjectures have ZF proofs that are not too enormous: say, 1012 symbols or fewer, depending on the exact
running time of the assumed algorithm. In the case of the Poincaré Conjecture, this can almost be taken to be a
fact, modulo the translation of Perelman’s proof [198] into the language of ZF.

5

question outside the scope of mathematics.

1.2 Objections to P
?
= NP

After modest exposure to the P
?
= NP problem, many people come up with what they consider an

irrefutable objection to its phrasing or importance. Since the same objections tend to recur, in
this section I’ll collect the most frequent ones and make some comments about them.

1.2.1 The Asymptotic Objection

Objection: P
?
= NP talks only about asymptotics—i.e., whether the running time of an algorithm

grows polynomially or exponentially with the size n of the question that was asked, as n goes to
infinity. It says nothing about the number of steps needed for concrete values of n (say, a thousand
or a million), which is all anyone would ever care about in practice.

Response: It was realized early in the history of computer science that “number of steps”
is not a robust measure of hardness, because it varies too wildly from one machine model to the
next (from Macs to PCs and so forth), and also depends heavily on low-level details of how the
problem is encoded. The asymptotic complexity of a problem could be seen as that contribution
to its hardness that is clean and mathematical, and that survives the vicissitudes of technology.
Of course, real-world software design requires thinking about many non-asymptotic contributions
to a program’s efficiency, from compiler overhead to the layout of the cache (as well as many
considerations that have nothing to do with efficiency at all). But any good programmer knows
that asymptotics matter as well.

More specifically, many people object to theoretical computer science’s identification of “poly-
nomial” with “efficient” and “exponential” with “inefficient,” given that for any practical value of
n, an algorithm that takes 1.0000001n steps is clearly preferable to an algorithm that takes n1000

steps. This would be a strong objection, if such algorithms were everyday phenomena. Empir-
ically, however, computer scientists found that there is a strong correlation between “solvable in
polynomial time” and “solvable efficiently in practice,” with most (but not all) problems in P that
they care about solvable in linear or quadratic or cubic time, and most (but not all) problems
outside P that they care about requiring cn time via any known algorithm, for some c significantly
larger than 1. Furthermore, even when the first polynomial-time algorithm discovered for some
problem takes (say) n6 or n10 time, it often happens that later advances lower the exponent, or
that the algorithm runs much faster in practice than it can be guaranteed to run in theory. This
is what happened, for example, with linear programming, primality testing, and Markov Chain
Monte Carlo algorithms.

Having said that, of course the goal is not just to answer some specific question like P
?
= NP,

but to learn the truth about efficient computation, whatever it might be. If practically-important
NP problems turn out to be solvable in n1000 time but not in n999 time, or in 1.0000001n time,

then so be it. From this perspective, one could argue that P
?
= NP simply serves as a marker of

ignorance: in effect we’re saying, “if we can’t even answer this, then surely we can’t answer the
more refined questions either.”

6

1.2.2 The Polynomial-Time Objection

Objection: But why should we draw the border of efficiency at the polynomial functions, as
opposed to any other class of functions—for example, functions upper-bounded by n2, or functions
of the form nlogc n (called quasipolynomial functions)?

Response: There’s a good theoretical answer to this: it’s because polynomials are the smallest
class of functions that contain the linear functions, and that are closed under basic operations like
addition, multiplication, and composition. For this reason, they’re the smallest class that ensures
that we can compose “efficient algorithms” a constant number of times, and still get an algorithm
that’s efficient overall. For the same reason, polynomials are also the smallest class that ensures
that our “set of efficiently solvable problems” is independent of the low-level details of the machine
model.

Having said that, much of algorithms research is about lowering the order of the polynomial,
for problems already known to be in P, and theoretical computer scientists do use looser notions
like quasipolynomial time whenever they’re needed.

1.2.3 The Kitchen-Sink Objection

Objection: P
?
= NP is limited, because it talks only about discrete, deterministic algorithms

that find exact solutions in the worst case—and also, because it ignores the possibility of natural
processes that might exceed the limits of Turing machines, such as analog computers, biological
computers, or quantum computers.

Response: For every assumption mentioned above, there’s now a major branch of theoretical
computer science that studies what happens when one relaxes the assumption: for example, ran-
domized algorithms, approximation algorithms, average-case complexity, and quantum computing.
I’ll discuss some of these branches in Section 5. Briefly, though, there are deep reasons why many

of these ideas are thought to leave the original P
?
= NP problem in place. For example, according

to the P = BPP conjecture (see Section 5.4.1), randomized algorithms yield no more power than P,
while careful analyses of noise, energy expenditure, and the like suggest that the same is true for
analog computers (see [3]). Meanwhile, the famous PCP Theorem and its offshoots (see Section
3) have shown that, for many NP problems, there can’t even be a polynomial-time algorithm to
approximate the answer to within a reasonable factor, unless P = NP.

In other cases, new ideas have led to major, substantive strengthenings of the P ̸= NP conjecture
(see Section 5): for example, that there exist NP problems that are hard even on random inputs, or
hard even for a quantum computer. Obviously, proving P ̸= NP itself is a prerequisite to proving
any of these strengthened versions.

There’s one part of this objection that’s so common that it requires some separate comments.
Namely, people say that even if P ̸= NP, in practice we can almost always find good enough
solutions to the problems we care about, for example by using heuristics like simulated annealing
or genetic algorithms, or by using special structure or symmetries in real-life problem instances.

Certainly there are cases where this assumption is true. But there are also cases where it’s false:
indeed, the entire field of cryptography is about making the assumption false! In addition, I believe
our practical experience is biased by the fact that we don’t even try to solve search problems that
we “know” are hopeless—yet that wouldn’t be hopeless in a world where P = NP (and where the
algorithm was efficient in practice). For example, presumably no one would try using brute-force
search to look for a formal proof of the Riemann Hypothesis one billion lines long or shorter, or a

7

10-megabyte program that reproduced most of the content of Wikipedia within a reasonable time
(possibly needing to encode many of the principles of human intelligence in order to do so). Yet
both of these are “merely” NP search problems, and things one could seriously contemplate in a
world where P = NP.

1.2.4 The Mathematical Snobbery Objection

Objection: P
?
= NP is not a “real” math problem, because it talks about Turing machines, which

are arbitrary human creations, rather than about “natural” mathematical objects like integers or
manifolds.

Response: The simplest reply is that P
?
= NP is not about Turing machines at all, but about

algorithms, which seem every bit as central to mathematics as integers or manifolds. Turing
machines are just one particular formalism for expressing algorithms, as the Arabic numerals are
one formalism for integers. And just like the Riemann Hypothesis is still the Riemann Hypothesis
in base-17 arithmetic, so essentially every formalism for deterministic digital computation ever
proposed gives rise to the same complexity classes P and NP, and the same question about whether
they’re equal. (This observation is known as the Extended Church-Turing Thesis.)

This objection might also reflect lack of familiarity with recent progress in complexity theory,
which has drawn on Fourier analysis, arithmetic combinatorics, representation theory, algebraic ge-
ometry, and dozens of other subjects about which yellow books2 are written. Furthermore, in Sec-
tion 6.6, we’ll see Geometric Complexity Theory (GCT): a staggeringly ambitious program for prov-
ing P ̸= NP that throws almost the entire arsenal of modern mathematics at the problem, including
geometric invariant theory, plethysms, quantum groups, and Langlands-type correspondences—and

that relates P
?
= NP, at least conjecturally, to other questions that mathematicians have been try-

ing to answer for a century. Even if GCT’s specific conjectures don’t pan out, they illustrate how
progress toward proving P ̸= NP could involve deep insights from many parts of mathematics.

1.2.5 The Sour Grapes Objection

Objection: P
?
= NP is so hard that it’s impossible to make anything resembling progress on it, at

least at this stage in human history—and for that reason, it’s unworthy of serious effort or attention.
Indeed, we might as well treat such questions as if their answers were formally independent of set
theory, as for all we know they are (a possibility discussed further in Section 3.1).

Response: One of the main purposes of this survey is to explain what we know now, relevant

to the P
?
= NP problem, that we didn’t know 10 or 20 or 30 years ago. It’s true that, if “progress”

entails having a solution already in sight, or being able to estimate the time to a solution, I know of
no progress of that kind! But by the same standard, one would have to say there was no “progress”
toward Fermat’s Last Theorem in 1900—even as mathematicians, partly motivated by Fermat’s
problem, were laying foundations of algebraic number theory that did eventually lead to Wiles’s
proof. In this survey, I’ll try to convey how, over the last few decades, insights about circuit lower
bounds, relativization and arithmetization, pseudorandomness and natural proofs, the “duality”
between lower bounds and algorithms, the permanent and determinant manifolds, and more have
transformed our understanding of what a P ̸= NP proof could look like.

2Because I was asked: “yellow books” are the Springer mathematics books that line many mathematicians’ offices.

8

I should point out that, even supposing P
?
= NP is never solved, it’s already been remarkably

fruitful as an “aspirational” or “flagship” question, helping to shape research in algorithms, cryp-
tography, learning theory, derandomization, quantum computing, and other areas that theoretical
computer scientists work on. Furthermore, later we’ll see examples of how progress in some of
those other areas unexpectedly ended up tying back to the quest to prove P ̸= NP.

1.2.6 The Obviousness Objection

Objection: It’s intuitively obvious that P ̸= NP. For that reason, a proof of P ̸= NP—confirming
that indeed, we can’t do something that no reasonable person would ever have imagined we could
do—gives almost no useful information.

Response: This objection is perhaps less common among mathematicians than others, since
were it upheld, it would generalize to almost all of mathematics! Like with most famous unsolved
math problems, the quest to prove P ̸= NP is “less about the destination than the journey”: there
might or might not be surprises in the answer itself, but there will certainly be huge surprises
(indeed, there have already been huge surprises) along the way. More concretely: to make a
sweeping statement like P ̸= NP, about what polynomial-time algorithms can’t do, will require an
unprecedented understanding of what they can do. This will almost certainly entail the discovery of
many new polynomial-time algorithms, some of which could have practical relevance. In Section 6,
we’ll see much more subtle examples of the “duality” between algorithms and impossibility proofs,
with progress on each informing the other.

Of course, to whatever extent you regard P = NP as a live possibility, the Obviousness Objection
isn’t open to you.

1.2.7 The Constructivity Objection

Objection: Even if P = NP, the proof could be nonconstructive—in which case it wouldn’t have
any of the amazing implications discussed in Section 1.1, because we wouldn’t know the algorithm.

Response: A nonconstructive proof that an algorithm exists is indeed a theoretical possibility,
though one that’s reared its head only a few times in the history of computer science.3 Even then,
however, once we knew that an algorithm existed, we’d have a massive inducement to try to find
it. The same is true if, for example, the first proof of P = NP only gave an n1000 algorithm, but
we suspected that an n2 algorithm existed.4

3The most celebrated examples of nonconstructive proofs that algorithms exist all come from the Robertson-
Seymour graph minors theory, one of the great achievements of 20th-century combinatorics (for an accessible intro-
duction, see for example Fellows [82]). The Robertson-Seymour theory typically deals with parameterized problems:
for example, “given a graph G, decide whether G can be embedded on a sphere with k handles.” In those cases,
typically a fast algorithm Ak can be abstractly shown to exist for every value of k. The central problem is that each
Ak requires hard-coded data—in the above example, a finite list of obstructions to the desired embedding—that no
one knows how to find given k, and whose size might also grow astronomically as a function of k. On the other hand,
once the finite obstruction set for a given k was known, one could then use it to solve the problem for any graph G
in time O

(
|G|3

)
, where the constant hidden by the big-O depended on k.

Robertson-Seymour theory also provides a few examples of non-parameterized problems that are abstractly proved
to be in P but with no bound on the exponent, or abstractly proved to be O

(
n3

)
or O

(
n2

)
but with no bound on

the constant. Thus, one can’t rule out the possibility that the same would happen with an NP-complete problem,
and Donald Knuth [145] has explicitly speculated that P = NP will be proven in that way. To me, however, it’s
unclear whether he speculates this because there’s a positive reason for thinking it true, or just because it would be
cool and interesting if it were true.

4As an amusing side note, there’s a trick called Levin’s universal search [158], in which one “dovetails” over all

9

1.3 Further Reading

There were at least four previous major survey articles about P
?
= NP: Michael Sipser’s 1992

“The History and Status of the P versus NP Question” [228]; Stephen Cook’s 2000 “The P versus
NP Problem” [72], which was written for the announcement of the Clay Millennium Prize; Avi
Wigderson’s 2006 “P, NP, and Mathematics—A Computational Complexity Perspective” [255];
and Eric Allender’s 2009 “A Status Report on the P versus NP Question” [22]. All four are
excellent, so it’s only with trepidation that I add another entry to the crowded arena. I hope
that, if nothing else, this survey shows how much has continued to occur through 2017. I cover
several major topics that either didn’t exist a decade ago, or existed only in much more rudimentary
form: for example, the algebrization barrier, “ironic complexity theory” (including Ryan Williams’s
NEXP ̸⊂ ACC result), the “chasm at depth three” for the permanent, and the Mulmuley-Sohoni
Geometric Complexity Theory program.

The seminal papers that set up the intellectual framework for P
?
= NP, posed it, and demon-

strated its importance include those of Edmonds [81], Rabin [200], Cobham [71], Cook [73], Karp
[135], and Levin [158]. See also Trakhtenbrot [245] for a survey of Soviet thought about perebor,
as brute-force search was referred to in Russian in the 1950s and 60s.

The classic text that introduced the wider world to P, NP, and NP-completeness, and that gave
a canonical (and still-useful) list of hundreds of NP-complete problems, is Garey and Johnson [96].
Some recommended computational complexity theory textbooks—in rough order from earliest to
most recent, in the material they cover—are Sipser [229], Papadimitriou [194], Schöning [220],
Moore and Mertens [173], and Arora and Barak [28]. Surveys on particular aspects of complexity
theory will be recommended where relevant throughout the survey.

Those seeking a nontechnical introduction to P
?
= NP might enjoy Lance Fortnow’s charming

book The Golden Ticket [88], or his 2009 popular article for Communications of the ACM [87]. My
own Quantum Computing Since Democritus [6] gives something between a popular and a technical
treatment.

2 Formalizing P
?
= NP and Central Related Concepts

The P
?
= NP problem is normally phrased in terms of Turing machines: a theoretical model of

computation proposed by Alan Turing in 1936, which involves a one-dimensional tape divided into
discrete squares, and a finite control that moves back and forth on the tape, reading and writing
symbols. For a formal definition, see, e.g., Sipser [229] or Cook [72].

In this survey, I won’t define Turing machines, for the simple reason that if you know any pro-
gramming language—C, Java, Python, etc.—then you already know something that’s equivalent to
Turing machines for our purposes. More precisely, the Church-Turing Thesis holds that virtually
any model of computation one can define will be equivalent to Turing machines, in the sense that
Turing machines can simulate that model and vice versa. A modern refinement, the Extended

Turing machines M1,M2, . . . (that is, for all t, runs M1, . . . ,Mt for t steps each), halting when and if any Mi outputs
a valid solution to one’s NP search problem. If we know P = NP, then we know this particular algorithm will find a
valid solution, whenever one exists, in polynomial time—because clearly some Mi does so, and all the machines other
than Mi increase the total running time by “only” a polynomial factor! With more work, one can even decrease this
to a constant factor. Admittedly, however, the polynomial or constant factor will be so enormous as to negate this
algorithm’s practical use.

10

Church-Turing Thesis, says that moreover, these simulations will incur at most a polynomial over-
head in time and memory. Nowadays, most computer scientists and physicists conjecture that
quantum computation provides a counterexample to the Extended Church-Turing Thesis—possibly
the only counterexample that can be physically realized. In Section 5.5, I’ll say a bit about how this
changes the story. It’s also conceivable that access to a true random-number generator would let
us violate the Extended Church-Turing Thesis, although most computer scientists conjecture that
it doesn’t, for reasons that I’ll explain in Section 5.4.1. On the other hand, as long as we’re talk-
ing only about classical, digital, deterministic computation, the Extended Church-Turing Thesis
remains on extremely solid ground.

If we accept this, then there’s a well-defined notion of “solvable in polynomial time,” which is
independent of the low-level details of the computer’s architecture: the instruction set, the specific
rules for accessing memory, etc. This licenses us to ignore those details. The main caveat here is
that there must be no a-priori limit on how much memory the computer can address, even though
any program that runs for finite time will only address a finite amount of memory.5,6

We can now define P and NP, in terms of Turing machines for concreteness—but, because of
the Extended Church-Turing Thesis, the reader is free to substitute other computing formalisms
such as Lisp programs, λ-calculus, stylized assembly language, or cellular automata.

A language—the term is historical, coming from when theoretical computer science was closely
connected to linguistics—just means a set of binary strings, L ⊆ {0, 1}∗, where {0, 1}∗ is the set of
all binary strings of all (finite) lengths. Of course a language can be infinite, even though every
string in the language is finite. One example is the language consisting of all palindromes: for
instance, 00, 11, 0110, 11011, etc., but not 001 or 1100. A more interesting example is the language
consisting of all binary encodings of prime numbers: for instance, 10, 11, 101, and 111, but not
100.

A binary string x ∈ {0, 1}∗, for which we want to know whether x ∈ L, is called an instance of
the general problem of deciding membership in L. Given a Turing machine M and an instance x,
we let M (x) denote M run on input x (say, on a tape initialized to · · · 0#x#0 · · · , or x surrounded
by delimiters and blank or 0 symbols). We say that M (x) accepts if it eventually halts and enters
an “accept” state, and we say that M decides the language L if for all x ∈ {0, 1}∗,

x ∈ L ⇐⇒ M (x) accepts.

The machine M may also contain a “reject” state, which M enters to signify that it has halted
without accepting. Let |x| be the length of x (i.e., the number of bits). Then we say M is
polynomial-time if there exists a polynomial p such that M (x) halts, either accepting or rejecting,
after at most p (|x|) steps, for all x ∈ {0, 1}∗.

Now P, or Polynomial-Time, is the class of all languages L for which there exists a Turing
machine M that decides L in polynomial time. Also, NP, or Nondeterministic Polynomial-Time,

5The reason for this caveat is that, if a programming language were inherently limited to (say) 64K of memory,
there would be only finitely many possible program behaviors, so in principle we could just cache everything in a
giant lookup table. Many programming languages do impose a finite upper bound on the addressable memory, but
they could easily be generalized to remove this restriction (or one could consider programs that store information on
external I/O devices).

6I should stress that, once we specify which computational models we have in mind—Turing machines, Intel
machine code, etc.—the polynomial-time equivalence of those models is typically a theorem, though a rather tedious
one. The “thesis” of the Extended Church-Turing Thesis, the part not susceptible to proof, is that all other
“reasonable” models of digital computation will also be equivalent to those models.

11

is the class of languages L for which there exists a polynomial-time Turing machine M , and a
polynomial p, such that for all x ∈ {0, 1}∗,

x ∈ L ⇐⇒ ∃w ∈ {0, 1}p(|x|) M (x,w) accepts.

In other words, NP is the class of languages L for which, whenever x ∈ L, there exists a polynomial-
size “witness string” w, which enables a polynomial-time “verifier” M to recognize that indeed
x ∈ L. Conversely, whenever x ̸∈ L, there must be no w that causes M (x,w) to accept.

There’s an earlier definition of NP, which explains its ungainly name. Namely, we can define a
nondeterministic Turing machine as a Turing machine that “when it sees a fork in the road, takes
it”: that is, that’s allowed to transition from a single state at time t to multiple possible states at
time t + 1. We say that a machine “accepts” its input x, if there exists a list of valid transitions
between states, s1 → s2 → s3 → · · · , that the machine could make on input x that terminates in
an accepting state sAccept. The machine “rejects” if there’s no such accepting path. The “running
time” of such a machine is the maximum number of steps taken along any path, until the machine
either accepts or rejects. We can then define NP as the class of all languages L for which there
exists a nondeterministic Turing machine that decides L in polynomial time. It’s clear that NP, so
defined, is equivalent to the more intuitive verifier definition that we gave earlier. In one direction,
if we have a polynomial-time verifier M , then a nondeterministic Turing machine can create paths
corresponding to all possible witness strings w, and accept if and only if there exists a w such that
M (x,w) accepts. In the other direction, if we have a nondeterministic Turing machine M ′, then
a verifier can take as its witness string w a description of a claimed path that causes M ′ (x) to
accept, then check that the path indeed does so.

Clearly P ⊆ NP, since an NP verifier M can just ignore its witness w, and try to decide in
polynomial time whether x ∈ L itself. The central conjecture is that this containment is strict.

Conjecture 1 P ̸= NP.

2.1 NP-Completeness

A further concept, not part of the statement of P
?
= NP but central to any discussion of it, is

NP-completeness. To explain this requires a few more definitions. An oracle Turing machine is
a Turing machine that, at any time, can submit an instance x to an “oracle”: a device that, in a
single time step, returns a bit indicating whether x belongs to some given language L. Though it
sounds fanciful, this notion is what lets us relate different computational problems to each other,
and as such is one of the central concepts in computer science. An oracle that answers all queries
consistently with L is called an L-oracle, and we write ML to denote the (oracle) Turing machine
M with L-oracle. We can then define PL, or P relative to L, as the class of all languages L′ for
which there exists an oracle machine M such that ML decides L′ in polynomial time. If L′ ∈ PL,
then we also write L′ ≤T

P L, which means “L′ is polynomial-time Turing-reducible to L.” Note
that polynomial-time Turing-reducibility is indeed a partial order relation (i.e., it’s transitive and
reflexive).

A language L is NP-hard (technically, NP-hard under Turing reductions7) if NP ⊆ PL. Infor-
mally, NP-hard means “at least as hard as any NP problem, under partial ordering by reductions.”

7In practice, often one only needs a special kind of Turing reduction called a many-one reduction or Karp reduction,
which is a polynomial-time algorithm that maps every yes-instance of L′ to a yes-instance of L, and every no-instance
of L′ to a no-instance of L. The additional power of Turing reductions—to make multiple queries to the L-oracle (with

12

Figure 1: P, NP, NP-hard, and NP-complete

That is, if we had a black box for an NP-hard problem, we could use it to solve all NP problems in
polynomial time. Also, L is NP-complete if L is NP-hard and L ∈ NP. Informally, NP-complete
problems are the hardest problems in NP, in the sense that an efficient algorithm for any of them
would yield efficient algorithms for all NP problems. (See Figure 2.1.)

A priori, it’s not completely obvious that NP-hard or NP-complete problems even exist. The
great discovery of theoretical computer science in the 1970s was that hundreds of problems of
practical importance fall into these classes—giving order to what had previously looked like a
random assortment of incomparable hard problems. Indeed, among the real-world NP problems
that aren’t known to be in P, the great majority (though not all of them) are known to be NP-
complete.

More concretely, consider the following languages:

• 3Sat is the language consisting of all Boolean formulas φ over n variables, which consist of
ANDs of “3-clauses” (i.e., ORs of up to 3 variables or their negations), such that there exists
at least one assignment that satisfies φ. (Or strictly speaking, all encodings of such formulas
as binary strings, under some fixed encoding scheme whose details don’t normally matter.)
Here’s an example, for which one can check that there’s no satisfying assignment:

(x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (x ∨ y) ∧ (y ∨ z) ∧ (y ∨ z)

This translates to: at least one of x, y, z is true, at least one of x, y, z is false, x = y, and
y = z.

• HamiltonCycle is the language consisting of all undirected graphs, for which there exists a
cycle that visits each vertex exactly once: that is, a Hamilton cycle. (Again, here we mean

later queries depending on the outcomes of earlier ones), post-process the results of those queries, etc.—is needed
only in a minority of cases. For that reason, most sources define NP-hardness in terms of many-one reductions.
Nevertheless, for conceptual simplicity, throughout this survey I’ll talk in terms of Turing reductions.

13

all encodings of graphs as bit strings, under some fixed encoding scheme. For a string to
belong to HamiltonCycle, it must be a valid encoding of some graph, and that graph must
contain a Hamilton cycle.)

• TSP (Traveling Salesperson Problem) is the language consisting of all encodings of ordered
pairs ⟨G, k⟩, such that G is a graph with positive integer weights, k is a positive integer, and
G has a Hamilton cycle of total weight at most k.

• Clique is the language consisting of all encodings of ordered pairs ⟨G, k⟩, such that G is an
undirected graph, k is a positive integer, and G contains a clique (i.e., a subset of vertices all
connected to each other) with at least k vertices.

• SubsetSum is the language consisting of all encodings of positive integer tuples ⟨a1, . . . , ak, b⟩,
for which there exists a subset of the ai’s that sums to b.

• 3Col is the language consisting of all encodings of undirected graphs G that are 3-colorable
(that is, the vertices of G can be colored red, green, or blue, so that no two adjacent vertices
are colored the same).

All of these languages are easily seen to be in NP: for example, 3Sat is in NP because we
can simply give a satisfying assignment to φ as a yes-witness, HamiltonCycle is in NP because
we can give the Hamilton cycle, etc. The famous Cook-Levin Theorem says that one of these
problems—3Sat—is also NP-hard, and hence NP-complete.

Theorem 2 (Cook-Levin Theorem [73, 158]) 3Sat is NP-complete.

A proof of Theorem 2 can be found in any theory of computing textbook (for example, [229]).
Here I’ll confine myself to saying that Theorem 2 can be proved in three steps, each of them routine
from today’s standpoint:

(1) One constructs an artificial language that’s “NP-complete essentially by definition”: for ex-
ample,

L =
{(

⟨M⟩ , x, 0s, 0t
)
: ∃w ∈ {0, 1}s such that M (x,w) accepts in ≤ t steps

}
,

where ⟨M⟩ is a description of the Turing machine M . (Here s and t are encoded in so-called
“unary notation,” to prevent a polynomial-size input from corresponding to an exponentially-
large witness string or exponential amount of time, and thereby keep L in NP.)

(2) One then reduces L to the CircuitSat problem, where we’re given as input a description
of a Boolean circuit C built of AND, OR, and NOT gates, and asked whether there exists
an assignment x ∈ {0, 1}n for the input bits such that C (x) = 1. To give this reduction, in
turn, is more like electrical engineering than mathematics: given a Turing machine M , one
simply builds up a Boolean logic circuit that simulates the action of M on the input (x,w)
for t time steps, whose size is polynomial in the parameters |⟨M⟩|, |x|, s, and t, and which
outputs 1 if and only if M ever enters its accept state.

14

(3) Finally, one reduces CircuitSat to 3Sat, by creating a new variable for each gate in the
Boolean circuit C, and then creating clauses to enforce that the variable for each gate G
equals the AND, OR, or NOT (as appropriate) of the variables for G’s inputs. For example,
one can express the constraint a ∧ b = c by

(a ∨ c) ∧ (b ∨ c) ∧
(
a ∨ b ∨ c

)
.

One then constrains the variable for the final output gate to be 1, yielding a 3Sat instance
φ that is satisfiable if and only if the CircuitSat instance was (i.e., iff there existed an x
such that C (x) = 1).

Note that the algorithms to reduce L to CircuitSat and CircuitSat to 3Sat—i.e., to convert
M to C and C to φ—run in polynomial time (actually linear time), so we indeed preserve NP-
hardness. Also, the reason for the 3 in 3Sat is simply that an AND or OR gate has one output
bit and two input bits, so it relates three bits in total. The analogous 2Sat problem turns out to
be in P.

Once one knows that 3Sat is NP-complete, “the floodgates are open.” One can then prove
that countless other NP problems are NP-complete by reducing 3Sat to them, and then reducing
those problems to others, and so on. The first indication of how pervasive NP-completeness really
was came from Karp [135] in 1972. He showed, among many other results:

Theorem 3 (Karp [135]) HamiltonCycle, TSP, Clique, SubsetSum, and 3Col are all
NP-complete.

Today, so many combinatorial search problems have been proven NP-complete that, whenever
one encounters a new such problem, a useful rule of thumb is that it’s “NP-complete unless it has
a good reason not to be!”

Note that, if any NP-complete problem is in P, then all of them are, and P = NP (since every
NP problem can first be reduced to the NP-complete one, and then solved in polynomial time).
Conversely, if any NP-complete problem is not in P, then none of them are, and P ̸= NP.

One application of NP-completeness is to reduce the number of logical quantifiers needed to
state the P ̸= NP conjecture, and thereby make it intuitively easier to grasp. A Σk-sentence is a
sentence with k quantifiers over integers (or objects that can be encoded as integers), beginning
with an existential (∃) quantifier; a Πk-sentence also has k quantifiers, but begins with a universal
(∀) quantifier. Let PT be the set of all polynomial-time Turing machines, and given a language
L, let L (x) be the characteristic function of L: that is, L (x) = 1 if x ∈ L and L (x) = 0 otherwise.
Then a “näıve” statement of P ̸= NP would be as a Σ3-sentence:

∃L ∈ NP ∀M ∈ PT ∃x M (x) ̸= L (x) .

(Here, by quantifying over all languages in NP, we really mean quantifying over all verification
algorithms that define such languages.) But once we know that 3Sat (for example) is NP-complete,
we can state P ̸= NP as just a Π2-sentence:

∀M ∈ PT ∃x M (x) ̸= 3Sat (x) .

In words, we can pick any NP-complete problem we like; then P ̸= NP is equivalent to the statement
that that problem is not in P.

15

2.2 Other Core Concepts

A few more concepts give a fuller picture of the P
?
= NP question, and will be referred to later

in the survey. In this section, I’ll restrict myself to concepts that were explored in the 1970s,

around the same time as P
?
= NP itself was formulated, and that are covered alongside P

?
= NP

in undergraduate textbooks. Other important concepts, such as nonuniformity, randomness, and
one-way functions, will be explained as needed in Section 5.

2.2.1 Search, Decision, and Optimization

For technical convenience, P and NP are defined in terms of languages or “decision problems,”
which have a single yes-or-no bit as the desired output (i.e., given an input x, is x ∈ L?). To
put practical problems into this decision format, typically we ask something like: does there exist
a solution that satisfies the following list of constraints? But of course, in real life we don’t merely
want to know whether a solution exists; we want to find a solution whenever there is one! And
given the many examples in mathematics where explicitly finding an object is harder than proving
its existence, one might worry that this would also occur here. Fortunately, though, shifting our

focus from decision problems to search problems doesn’t change the P
?
= NP question at all, because

of the following classic observation.

Proposition 4 If P = NP, then for every language L ∈ NP (defined by a verifier M), there’s a

polynomial-time algorithm that actually finds a witness w ∈ {0, 1}p(n) such that M (x,w) accepts,
for all x ∈ L.

Proof. The idea is to learn the bits of an accepting witness w = w1 · · ·wp(n) one by one, by asking
a series of NP decision questions. For example:

• Does there exist a w such that M (x,w) accepts and w1 = 0?

If the answer is “yes,” then next ask:

• Does there exist a w such that M (x,w) accepts, w1 = 0, and w2 = 0?

Otherwise, next ask:

• Does there exist a w such that M (x,w) accepts, w1 = 1, and w2 = 0?

Continue in this manner until all p (n) bits of w have been set. (This can also be seen as a
binary search on the set of 2p(n) possible witnesses.)

Note that there are problems for which finding a solution is believed to be much harder than
deciding whether one exists. A classic example, as it happens, is the problem of finding a Nash
equilibrium of a matrix game. Here Nash’s theorem guarantees that an equilibrium always exists,
but an important 2006 result of Daskalakis et al. [78] gave evidence that there’s no polynomial-time
algorithm to find an equilibrium.8 The upshot of Proposition 4 is just that search and decision
are equivalent for the NP-complete problems.

8Technically, Daskalakis et al. showed that the search problem of finding a Nash equilibrium is complete for a
complexity class called PPAD. This could be loosely interpreted as saying that the problem is “as close to NP-hard
as it could possibly be, subject to Nash’s theorem showing why the decision version is trivial.”

16

In practice, perhaps even more common than search problems are optimization problems, where
we have some efficiently-computable cost function, say C : {0, 1}n →

{
0, 1, . . . , 2p(n)

}
, and the

goal is to find a solution x ∈ {0, 1}n that minimizes C (x). Fortunately, we can always reduce
optimization problems to search and decision problems, by simply asking to find a solution x such
that C (x) ≤ K, and doing a binary search to find the smallest K for which such an x still exists.
So again, if P = NP then all NP optimization problems are solvable in polynomial time. On the
other hand, it’s important to remember that, while “is there an x such that C (x) ≤ K?” is an NP
question, “does minxC (x) = K?” and “does x∗ minimize C (x)?” are presumably not NP questions
in general, because no single x is a witness to a yes-answer.

More generally, the fact that decision, search, and optimization all hinge on the same P
?
= NP

question has meant that many people, including experts, freely abuse language by referring to
search and optimization problems as “NP-complete.” Strictly they should call such problems NP-
hard—we defined NP-hardness for languages, but the concept can be generalized to search and
optimization problems—while reserving “NP-complete” for suitable associated decision problems.

2.2.2 The Twilight Zone: Between P and NP-complete

We say a language L is NP-intermediate if L ∈ NP, but L is neither in P nor NP-complete. Based
on experience, one might hope not only that P ̸= NP, but that there’d be a dichotomy, with all
NP problems either in P or else NP-complete. However, a classic result by Ladner [150] rules that
possibility out.

Theorem 5 (Ladner [150]) If P ̸= NP, then there exist NP-intermediate languages.

While Theorem 5 is theoretically important, the NP-intermediate problems that it yields are
extremely artificial (requiring diagonalization to construct). On the other hand, as we’ll see, there
are also problems of real-world importance—particularly in cryptography, algebra, and number
theory—that are believed to be NP-intermediate, and a proof of P ̸= NP could leave the status of
those problems open. (Of course, a proof of P = NP would mean there were no NP-intermediate
problems, since every NP problem would then be both NP-complete and in P.)

2.2.3 coNP and the Polynomial Hierarchy

Let L = {0, 1}∗\L be the complement of L: that is, the set of strings not in L. Then the complexity
class

coNP :=
{
L : L ∈ NP

}
consists of the complements of all languages in NP. Note that this is not the same as NP, the set of
all non-NP languages! Rather, L ∈ coNP means that whenever x /∈ L, there’s a short proof of non-
membership that can be efficiently verified. If L ∈ NP, then L ∈ coNP and vice versa. Likewise, if
L is NP-complete, then L is coNP-complete (that is, in coNP and NP-hard) and vice versa. So for
example, along with the NP-complete satisfiability we have the coNP-complete unsatisfiability, along
with the NP-complete HamiltonCycle we have the coNP-complete HamiltonCycle (consisting
of all encodings of graphs that lack a Hamilton cycle), etc.

A natural question is whether NP is closed under complement : that is, whether NP = coNP.
If P = NP, then certainly P = coNP, and hence NP = coNP also. On the other hand, we could
imagine a world where NP = coNP even though P ̸= NP. In that world, there would always be

17

short proofs of unsatisfiability (or of the nonexistence of cliques, Hamilton cycles, etc.), but those
proofs could be intractable to find. A generalization of the P ̸= NP conjecture says that this
doesn’t happen:

Conjecture 6 NP ̸= coNP.

A further generalization of P, NP, and coNP is the polynomial hierarchy PH. Defined by
analogy with the arithmetic hierarchy in computability theory, PH is an infinite sequence of classes
whose zeroth level equals P, and whose kth level (for k ≥ 1) consists of all problems that are in PL

or NPL or coNPL, for some language L in the (k − 1)st level. More succinctly, we write ΣP
0 = P,

and
∆P

k = PΣP
k−1 , ΣP

k = NPΣP
k−1 , ΠP

k = coNPΣP
k−1

for all k ≥ 1.9 A more intuitive definition of PH is as the class of languages that are definable
using a polynomial-time predicate with a constant number of alternating universal and existential
quantifiers: for example, L ∈ ΠP

2 if and only if there exists a polynomial-time machine M and
polynomial p such that for all x,

x ∈ L ⇐⇒ ∀w ∈ {0, 1}p(|x|) ∃z ∈ {0, 1}p(|x|) M (x,w, z) accepts.

NP is then the special case with just one existential quantifier, over witness strings w.
If P = NP, then the entire PH “recursively unwinds” down to P: for example,

ΣP
2 = NPNP = NPP = NP = P.

Moreover, one can show that if ΣP
k = ΠP

k or ΣP
k = ΣP

k+1 for any k, then all the levels above the kth

come “crashing down” to ΣP
k = ΠP

k . So for example, if NP = coNP, then PH = NP = coNP as
well. On the other hand, a collapse at the kth level isn’t known to imply a collapse at any lower
level. Thus, we get an infinite sequence of stronger and stronger conjectures: first P ̸= NP, then
NP ̸= coNP, then ΣP

2 ̸= ΠP
2 , and so on. In the limit, we can conjecture the following:

Conjecture 7 All the levels of PH are distinct—i.e., the infinite hierarchy is strict.

This is a generalization of P ̸= NP that many computer scientists believe—an intuition being
that it would seem strange for the hierarchy to collapse at, say, the 17th level, without collapsing
all the way down to P or NP. Conjecture 7 has many important consequences that aren’t known
to follow from P ̸= NP itself.

It’s also interesting to consider NP ∩ coNP, which is the class of languages that admit short,
easily-checkable proofs for both membership and non-membership. Here’s yet another strength-
ening of the P ̸= NP conjecture:

Conjecture 8 P ̸= NP ∩ coNP.

Of course, if NP = coNP, then the P
?
= NP ∩ coNP question becomes equivalent to the original

P
?
= NP question. But it’s conceivable that P = NP ∩ coNP even if NP ̸= coNP.

9In defining the kth level of the hierarchy, we could also have given oracles for ΠP
k−1 rather than ΣP

k−1: it doesn’t
matter. Note also that “an oracle for complexity class C” should be read as “an oracle for any C-complete language
L.”

18

Figure 2: The polynomial hierarchy

2.2.4 Factoring and Graph Isomorphism

As an application of these concepts, let’s consider two languages that are suspected to be NP-
intermediate. First, Fac—a language variant of the factoring problem—consists of all ordered pairs
of positive integers ⟨N, k⟩ such that N has a nontrivial divisor at most k. Clearly a polynomial-
time algorithm for Fac can be converted into a polynomial-time algorithm to output the prime
factorization (by repeatedly doing binary search to peel off N ’s smallest divisor), and vice versa.
Second, GraphIso—that is, graph isomorphism—consists of all encodings of pairs of undirected
graphs ⟨G,H⟩, such that G ∼= H. It’s easy to see to see that Fac and GraphIso are both in NP.

More interestingly, Fac is actually in NP ∩ coNP. For one can prove that ⟨N, k⟩ /∈Fac by
exhibiting the unique prime factorization ofN , and showing that it only involves primes greater than
k.10 But this has the striking consequence that factoring can’t be NP-complete unless NP = coNP.
The reason is the following.

Proposition 9 If any NP ∩ coNP language is NP-complete, then NP = coNP, and hence PH
collapses to NP.

Proof. Suppose L ∈ NP∩ coNP. Then PL ⊆ NP∩ coNP, since one can prove the validity of every
answer to every query to the L-oracle (whether the answer is ‘yes’ or ‘no’). So if NP ⊆ PL, then
NP ⊆ NP ∩ coNP and hence NP = coNP.

GraphIso is not quite known to be in NP ∩ coNP. However, it’s been proven to be in
NP∩ coNP under a plausible assumption about pseudorandom generators [144]—and even with no
assumptions, Boppana, H̊astad, Zachos [53] proved the following.

Theorem 10 ([53]) If GraphIso is NP-complete, then PH collapses to ΣP
2 .

As this survey was being written, Babai [33] announced the following breakthrough result.

Theorem 11 (Babai [33]) GraphIso is solvable in subexponential time: specifically 22
Õ(

√
logn)

,
where the Õ hides a factor polynomial in log log n.11

10This requires one nontrivial result, that every prime number has a succinct certificate—or in other words, that
primality testing is in NP [199]. Since 2002, it is even known that primality testing is in P [15].

11Originally, Babai had claimed a GraphIso algorithm running in quasipolynomial time (nk(logn)c). On January
4, 2017, however, he posted an announcement scaling back the running time claim to subexponential.

19

The best previously-known bound, due to Babai and Luks [34] from 1983, had been 2O(
√
n logn).

Of course, Theorem 11 gives even more dramatic evidence that GraphIso is not NP-complete: if it
was, then all NP problems would be solvable in subexponential time as well. Based on experience—
namely, that known algorithms can solve GraphIso extremely quickly for almost any graphs we
can generate in practice—many computer scientists have conjectured for decades that GraphIso
is in P, and certainly Theorem 11 is consistent with that conviction, but there remain significant
obstacles to proving it.12

2.2.5 Space Complexity

PSPACE is the class of languages L decidable by a Turing machine that uses a polynomial number of
bits of space or memory, with no restriction on the number of time steps. Certainly P ⊆ PSPACE,
since in t time steps, a serial algorithm can access at most t memory cells. More generally, it’s
not hard to see that P ⊆ NP ⊆ PH ⊆ PSPACE, since in an expression like ∀x∃y φ (x, y), a PSPACE
machine can loop over all possible values for x and y, using exponential time but reusing the same
memory for each x, y pair. However, none of these containments have been proved to be strict.

The following conjecture—asserting that polynomial space is strictly stronger than polynomial
time—is perhaps second only to P ̸= NP itself in notoriety.

Conjecture 12 P ̸= PSPACE.

If P ̸= NP, then certainly P ̸= PSPACE as well, but the converse isn’t known.
One can also define a nondeterministic variant of PSPACE, called NPSPACE. But a 1970 result

called Savitch’s Theorem [218] shows that actually PSPACE = NPSPACE.13 The reasons for this
are extremely specific to space, and don’t seem to suggest any avenue to proving P = NP, the
analogous statement for time.

2.2.6 Counting Complexity

Given an NP search problem, besides asking whether a solution exists, it’s also natural to ask how
many solutions there are. To capture this, in 1979 Valiant [248] defined the class #P (pronounced
“sharp-P”, not “hashtag-P”!) of combinatorial counting problems. Formally, a function f :
{0, 1}∗ → N is in #P if and only if there’s a polynomial-time Turing machine M , and a polynomial
p, such that for all x ∈ {0, 1}∗,

f (x) =
∣∣∣{w ∈ {0, 1}p(|x|) : M (x,w) accepts

}∣∣∣ .
Note that, unlike P, NP, and so on, #P is not a class of languages (i.e., decision problems). However,
there are two ways we can compare #P to language classes.

The first is by considering P#P: that is, P with a #P oracle. We then have NP ⊆ P#P ⊆
PSPACE, as well as the following highly non-obvious inclusion, called Toda’s Theorem.

12In particular, group isomorphism—that is, the problem of deciding whether two groups of order n, given by their
multiplication tables, are isomorphic—is clearly solvable in ∼ nlogn time and clearly reducible to GraphIso, but no
algorithm for it better than ∼ nlogn is known.

13A further surprising result from 1987, called the Immerman-Szelepcsényi Theorem [122, 240], says that the
class of languages decidable by a nondeterministic machine in f (n) space is closed under complement, for every
“reasonable” memory bound f (n). (By contrast, Savitch’s Theorem produces a quadratic blowup when simulating
nondeterministic space by deterministic space, and it remains open whether that blowup can be removed.) This
further illustrates how space complexity behaves differently than we expect time complexity to behave.

20

Theorem 13 (Toda [244]) PH ⊆ P#P.

The second way is by considering a complexity class called PP (Probabilistic Polynomial-Time).
PP can be defined as the class of languages L ⊆ {0, 1}∗ for which there exist #P functions f and
g such that for all inputs x ∈ {0, 1}∗,

x ∈ L ⇐⇒ f (x) ≥ g (x) .

Equivalently, PP is the class of languages L for which there exists a probabilistic polynomial-time
algorithm that merely needs to guess whether x ∈ L, for each input x, with some probability
greater than 1/2. It’s not hard to see that NP ⊆ PP ⊆ P#P. More interestingly, one can use
binary search to show that PPP = P#P, so in that sense PP is “almost as strong as #P.”

In practice, for any known NP-complete problem (3Sat, Clique, SubsetSum, etc.), the count-
ing version of that problem (denoted #3Sat, #Clique, #SubsetSum, etc.) is #P-complete.
Indeed, it’s open whether there’s any NP-complete problem that violates this rule. However, the
converse statement is false. For example, the problem of deciding whether a graph has a perfect
matching—that is, a set of edges that touches each vertex exactly once—is in P, but Valiant [248]
showed that counting the number of perfect matchings is #P-complete.

The #P-complete problems are believed to be “genuinely much harder” than the NP-complete
problems, in the sense that—in contrast to the situation with PH—even if P = NP we’d still have
no idea how to prove P = P#P. On the other hand, we do have the following nontrivial result.

Theorem 14 (Stockmeyer [233]) Suppose P = NP. Then in polynomial time, we could ap-
proximate any #P function to within a factor of 1± 1

p(n) , for any polynomial p.

2.2.7 Beyond Polynomial Resources

Of course, we can consider many other time and space bounds besides polynomial. Before entering
into this, I should offer a brief digression on the use of asymptotic notation in theoretical computer
science, since such notation will also be used later in the survey.

• f (n) is O (g (n)) if there exist nonnegative constants A,B such that f (n) ≤ Ag (n) + B for
all n (i.e., g is an asymptotic upper bound on f).

• f (n) is Ω (g (n)) if g (n) is O (f (n)) (i.e., g is an asymptotic lower bound on f).

• f (n) is Θ (g (n)) if f (n) is O (g (n)) and g (n) is O (f (n)) (i.e., f and g grow at the same
asymptotic rate).

• f (n) is o (g (n)) if for all positive A, there exists a B such that f (n) ≤ Ag (n) + B for all n
(i.e., g is a strict asymptotic upper bound on f).14

Now let TIME (f (n)) be the class of languages decidable in O (f (n)) time, let NTIME (f (n))
be the class decidable in nondeterministic O (f (n)) time—that is, with a witness of size O (f (n))

14If f (n) is O (g (n)) but not Θ (g (n)), that does not necessarily mean that f (n) is o (g (n)): for example, consider
f (n) = 2n (n/2− ⌊n/2⌋) and g (n) = n. Of course, such examples don’t arise often in practice.

21

that’s verified in O (f (n)) time—and let SPACE (f (n)) be the class decidable in O (f (n)) space.15

We can then write P =
∪

k TIME
(
nk

)
and NP =

∪
k NTIME

(
nk

)
and PSPACE =

∪
k SPACE

(
nk

)
.

It’s also interesting to study the exponential versions of these classes:

EXP =
∪
k

TIME
(
2n

k
)
,

NEXP =
∪
k

NTIME
(
2n

k
)
,

EXPSPACE =
∪
k

SPACE
(
2n

k
)
.

Note that by “exponential,” here we mean not just 2O(n), but 2p(n) for any polynomial p.
Just like we have P ⊆ NP ⊆ NPNP ⊆ · · · ⊆ PSPACE, so we also have

EXP ⊆ NEXP ⊆ NEXPNP ⊆ · · · ⊆ EXPSPACE.

Along with P ⊆ PSPACE (Section 2.2.5), there’s another fundamental relation between time
and space classes:

Proposition 15 PSPACE ⊆ EXP.

Proof. Consider a deterministic machine whose state can be fully described by p (n) bits of
information (e.g., the contents of a polynomial-size Turing machine tape, plus a few extra bits for
the location and internal state of tape head). Clearly such a machine has at most 2p(n) possible
states. Thus, after 2p(n) steps, either the machine has halted, or else it’s entered an infinite loop
and will never accept. So to decide whether the machine accepts, it suffices to simulate it for 2p(n)

steps.
More generally, we get an infinite interleaved hierarchy of deterministic, nondeterministic, and

space classes:
P ⊆ NP ⊆ PH ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE ⊆ · · ·

There’s also a “higher-up” variant of the P ̸= NP conjecture, which not surprisingly is also open:

Conjecture 16 EXP ̸= NEXP.

We can at least prove a close relationship between the P
?
= NP and EXP

?
= NEXP questions, via

a trick called padding or upward translation:

Proposition 17 If P = NP, then EXP = NEXP.

Proof. Let L ∈ NEXP, and let its verifier run in 2p(n) time for some polynomial p. Then consider
the language

L′ =
{
x02

p(|x|)
: x ∈ L

}
,

15Unlike P or PSPACE, classes like TIME
(
n2

)
and SPACE

(
n3

)
can be sensitive to whether we’re using Turing

machines, RAM machines, or some other model of computation. Thus, I’ll specify which I’m talking about whenever
it’s relevant.

22

which consists of the inputs in L, but “padded out with an exponential number of trailing zeroes.”
Then L′ ∈ NP, since verifying that x ∈ {0, 1}n is in L takes 2p(n) time, which is linear in n+ 2p(n)

(the length of x02
p(|x|)

). So by assumption, L′ ∈ P as well. But this means that L ∈ EXP, since
given x ∈ {0, 1}n (an input for L), we can simply pad x out with 2p(n) trailing zeroes ourselves,
then run the algorithm for L′ that takes time polynomial in n+ 2p(n).

For the same reason, if P = PSPACE, then EXP = EXPSPACE. On the other hand, padding only
works in one direction: as far as anyone knows today, we could have P ̸= NP even if EXP = NEXP.

To summarize, P
?
= NP is just the tip of an iceberg; there seems to be an extremely rich structure

both below and above the NP-complete problems. Until we can prove P ̸= NP, however, most of
that structure will remain conjectural.

3 Beliefs About P
?
= NP

Just as Hilbert’s question turned out to have a negative answer, so too in this case, most computer
scientists conjecture that P ̸= NP: that there exist rapidly checkable problems that aren’t rapidly
solvable, and for which brute-force search is close to the best we can do. This is not a unanimous
opinion. At least one famous computer scientist, Donald Knuth [145], has professed a belief
that P = NP, while another, Richard Lipton [165], professes agnosticism. Also, in a poll of
mathematicians and theoretical computer scientists conducted by William Gasarch [97] in 2002,
there were 61 respondents who said P ̸= NP, but also 9 who said P = NP. (In a followup poll that
Gasarch [98] conducted in 2012, there were 126 respondents who said P ̸= NP, and again 9 who
said P = NP.) Admittedly, it can be hard to tell whether declarations that P = NP are meant
seriously, or are merely attempts to be contrarian. However, we can surely agree with Knuth and
Lipton that we’re far from understanding the limits of efficient computation, and that there are
further surprises in store.

In this section, I’d like to explain why, despite our limited understanding, many of us feel roughly
as confident about P ̸= NP as we do about (say) the Riemann Hypothesis, or other conjectures in
math—not to mention empirical sciences—that most experts believe without proof.16

The first point is that, when we ask whether P = NP, we’re not asking whether heuristic
optimization methods (such as Sat-solvers) can sometimes do well in practice, or whether there
are sometimes clever ways to avoid exponential search. If you believe, for example, that there’s
any cryptographic one-way function—that is, any transformation of inputs x → f (x) that’s easy
to compute but hard to invert (see Section 5.3.1)—then that’s enough for P ̸= NP. Such an f
need not have any “nice” mathematical structure; it could simply be, say, the evolution function
of some arbitrary cellular automaton.

It’s sometimes claimed that, when we consider P
?
= NP, there’s a “symmetry of ignorance”: yes,

we have no idea how to solve NP-complete problems in polynomial time, but we also have no idea
how to prove that impossible, and therefore anyone’s free to believe whatever they like. In my
opinion, what breaks the symmetry is the immense, well-known difficulty of proving lower bounds.
Simply put: even if we suppose P ̸= NP, I don’t believe there’s any great mystery about why a

16I like to joke that, if computer scientists had been physicists, we’d simply have declared P ̸= NP to be an observed
law of Nature, analogous to the laws of thermodynamics. A Nobel Prize would even be given for the discovery of
that law. (And in the unlikely event that someone later proved P = NP, a second Nobel Prize would be awarded for
the law’s overthrow.)

23

proof has remained elusive. A rigorous impossibility proof is often a tall order, and many times
in history—e.g., with Fermat’s Last Theorem, the Kepler Conjecture, or the problem of squaring
the circle—such a proof was requested centuries before mathematical understanding had advanced
to the point where it became a realistic possibility. And as we’ll see in Section 6, today we know
something about the difficulty of proving even “baby” versions of P ̸= NP; about the barriers that
have been overcome and the others that remain.

By contrast, if P = NP, then there’s at least a puzzle about why the entire software industry,
over half a century, has failed to uncover any promising leads for, say, a fast algorithm to invert
arbitrary one-way functions (just the algorithm itself, not necessarily a proof of correctness). The
puzzle is heightened when we realize that, in many real-world cases—such as linear programming,
primality testing, and network routing—fast methods to handle a problem in practice did come
decades before a full theoretical understanding of why the methods worked.

Another reason to believe P ̸= NP comes from the hierarchy theorems, which we’ll meet in
Section 6.1. Roughly speaking, these theorems imply that “most” pairs of complexity classes are
unequal; the trouble, in most cases, is merely that we can’t prove this for specific pairs! For
example, in the chain of complexity classes P ⊆ NP ⊆ PSPACE ⊆ EXP, we know that P ̸= EXP,
which implies that at least one of P ̸= NP, NP ̸= PSPACE, and PSPACE ̸= EXP must hold. So we
might say: given the provable reality of a rich lattice of unequal complexity classes, one needs to
offer a special argument if one thinks two classes collapse, but not necessarily if one thinks they’re
different.

To my mind, however, the strongest argument for P ̸= NP involves the thousands of problems
that have been shown to be NP-complete, and the thousands of other problems that have been
shown to be in P. If just one of these problems had turned out to be both NP-complete and in
P, that would’ve immediately implied P = NP. Thus, we could argue, the P ̸= NP hypothesis has
had thousands of chances to be “falsified by observation.” Yet somehow, in every case, the NP-
completeness reductions and the polynomial-time algorithms “miraculously” avoid meeting each
other—a phenomenon that I once described as the “invisible fence” [7].

This phenomenon becomes particularly striking when we consider approximation algorithms for
NP-hard problems, which return not necessarily an optimal solution but a solution within some
factor of optimal. To illustrate, there’s a simple polynomial-time algorithm that, given a 3Sat
instance φ, finds an assignment that satisfies at least a 7/8 fraction of the clauses.17 Conversely,
in 1997 Johan H̊astad [116] proved the following striking result.

Theorem 18 (H̊astad [116]) Suppose there’s a polynomial-time algorithm that, given as input a
satisfiable 3Sat instance φ, outputs an assignment that satisfies at least a 7/8 + ε fraction of the
clauses, where ε > 0 is any constant. Then P = NP.

Theorem 18 is one (strong) version of the PCP Theorem [30, 31], which is considered one of
the crowning achievements of theoretical computer science. The PCP Theorem yields many other
examples of “sharp NP-completeness thresholds,” where as we numerically adjust the required

17Strictly speaking, this is for the variant of 3Sat in which every clause must have exactly 3 literals, rather than
at most 3.

Also note that, if we allow the use of randomness, then we can satisfy a 7/8 fraction of the clauses in expectation by
just setting each of the n variables uniformly at random! This is because a clause with 3 literals has 23 − 1 = 7 ways
to be satisfied, and only one way to be unsatisfied. A deterministic polynomial-time algorithm that’s guaranteed to
satisfy at least 7/8 of the clauses requires only a little more work.

24

solution quality, an optimization problem undergoes a sudden “phase transition” from being in P
to being NP-complete. Other times there’s a gap between the region of parameter space known to
be in P and the region known to be NP-complete. One of the major aims of contemporary research
is to close those gaps, for example by proving the so-called Unique Games Conjecture [141].

We see a similar “invisible fence” phenomenon in Leslie Valiant’s program of “accidental algo-
rithms” [249]. The latter are polynomial-time algorithms, often for planar graph problems, that
exist for certain parameter values but not for others, for reasons that are utterly opaque if one
doesn’t understand the strange cancellations that the algorithms exploit. A prototypical result is
the following:

Theorem 19 (Valiant [249]) Let Planar3Sat be the special case of 3Sat in which the bipartite
graph of clauses and variables (with an edge between a variable and a clause whenever one occurs
in the other) is planar. Now consider the following problem: given an instance of Planar3Sat
which is monotone (i.e., has no negations), and in which each variable occurs in exactly two clauses,
count the number of satisfying assignments mod k. This problem is in P for k = 7, but is NP-hard
under randomized reductions for k = 2.18

Needless to say (because otherwise you would’ve heard!), in not one of these examples have
the “P region” and the “NP-complete region” of parameter space been discovered to overlap. For
example, in Theorem 19, the NP-hardness proof just happens to break down if we ask about the
number of solutions mod 7, the case where an algorithm is known. If P = NP then this is, at the
least, an unexplained coincidence. If P ̸= NP, on the other hand, then it makes perfect sense.

3.1 Independent of Set Theory?

Since the 1970s, there’s been speculation that P ̸= NP might be independent (that is, neither
provable nor disprovable) from the standard axiom systems for mathematics, such as Zermelo-
Fraenkel set theory. To be clear, this would mean that either

(1) a polynomial-time algorithm for NP-complete problems doesn’t exist, but we can never prove
it (at least not in our usual formal systems), or else

(2) a polynomial-time algorithm for NP-complete problems does exist, but either we can never
prove that it works, or we can never prove that it halts in polynomial time.

Since P ̸= NP is an arithmetical statement (a Π2-sentence), we can’t simply excise it from math-
ematics, as some would do with questions in transfinite set theory, like the Continuum Hypothesis
(CH) or the Axiom of Choice (AC). At the end of the day, a polynomial-time algorithm for 3Sat
either exists or it doesn’t! But that doesn’t imply that we can prove which.

In 2003, I wrote a survey article [1] about whether P
?
= NP is formally independent, which

somehow never got around to offering any opinion about the likelihood of that eventuality! So
for the record: I regard the independence of P = NP as a farfetched possibility, just as I do
for the Riemann hypothesis, Goldbach’s conjecture, and other unsolved problems of “ordinary”

18Indeed, a natural conjecture would be that the problem is NP-hard for all k ̸= 7, but this remains open (Valiant,
personal communication). Note also that a problem A being “NP-hard under randomized reductions” means that
all of NP is decidable by a polynomial-time randomized algorithm with an oracle for A.

25

mathematics. At the least, I’d say that the independence of P
?
= NP has the status right now of a

“free-floating speculation” with little or no support from past mathematical experience.
There have been celebrated independence results over the past century, but as far as I know

they all fall into four classes, none of which would encompass the independence of P
?
= NP from ZF

set theory:

(1) Independence of statements that are themselves about formal systems: for example, that
assert their own unprovability in a given system, or the system’s consistency. This is the
class produced by Gödel’s incompleteness theorems.

(2) Independence of statements in transfinite set theory, such as CH and AC. Unlike “ordinary”
mathematical statements—P ̸= NP, the Riemann hypothesis, etc.—the set-theoretic ones
can’t be rephrased in the language of elementary arithmetic; only questions about their
provability from various axiom systems are arithmetical. For that reason, one can question
whether CH, AC, and so on need to have definite truth-values at all, independent of the axiom
system. In any case, the independence of set-theoretic principles seems different in kind, and
less “threatening,” than the independence of arithmetical statements.19

(3) Independence from “weak” systems, which don’t encompass all accepted mathematical rea-
soning. Goodstein’s Theorem [102], and the non-losability of the Kirby-Paris hydra game
[143], are two examples of interesting arithmetical statements that can be proved using small
amounts of set theory (or ordinal induction), but not within Peano arithmetic.

(4) Independence from ZF set theory of strange combinatorial statements, which (alas) would
never have been studied if not for their independence. Harvey Friedman [93] has produced
striking examples of such statements.

Of course, it’s possible that P ̸= NP is unprovable, but that that fact itself is unprovable from
the axioms of set theory, and so on ad infinitum! But we can at least say that, if P ̸= NP (or for
that matter, the Riemann hypothesis, Goldbach’s conjecture, etc.) were proven independent of ZF,
it would be an unprecedented development: probably history’s first example of an independence
result that didn’t fall into one of the four classes above.20

The proof of independence would also have to be unlike any known independence proof. Ben-
David and Halevi [41] noticed that the techniques used to prove statements such as Goodstein’s
Theorem independent of Peano arithmetic, actually prove independence from the stronger theory
PA+Π1: that is, Peano arithmetic plus the set of all true arithmetical Π1-sentences (sentences with
a single universal quantifier and no existential quantifiers). However, if P ̸= NP could be proven
independent of PA+Π1, that would mean that no Π1-sentence of PA implying P ̸= NP could hold.
And thus, for example, NP-complete problems would have to be solvable in nlog log log logn time, and

19Note also that, by the Shoenfield absoluteness theorem [223], one’s beliefs about the Axiom of Choice, the
Continuum Hypothesis, or other statements proven independent of ZF via forcing can have no effect on the provability
of arithmetical statements such as P ̸= NP.

20If a Π1-sentence like the Goldbach Conjecture or the Riemann Hypothesis were known to be independent of ZF,
then it would also be known to be true, since any counterexample would have a trivial finite proof! On the other
hand, we could also imagine, say, the Goldbach Conjecture being proven equivalent to the consistency of ZF, in which
case we could say only that either ZF is consistent and Goldbach is true but ZF doesn’t prove either, or else ZF
proves anything. In any case, none of this directly applies to P ̸= NP, which is a Π2-sentence.

26

even in nα(n) time, where α (n) is the inverse Ackermann function.21 In that sense, we would
“almost” have P = NP.

As Section 6 will discuss, there are various formal barriers—including the relativization, al-
gebrization, and natural proofs barriers—that explain why certain existing techniques can’t be
powerful enough to prove P ̸= NP. These barriers can be interpreted as proofs that P ̸= NP is
unprovable from certain systems of axioms: namely, axioms that capture the power of the tech-
niques in question (relativizing, algebrizing, or naturalizing techniques) [29, 124, 210].22 In all
these cases, however, the axiom systems are known not to capture all techniques in complexity
theory: there are existing results that go beyond them. Thus, these barriers indicate gaps in our
current techniques, rather than in the foundations of mathematics.

4 Why Is Proving P ̸= NP Difficult?

Let’s suppose that P ̸= NP. Then given the disarming simplicity of the statement, why is proving it
so hard? As mentioned above, complexity theorists have identified three technical barriers, called
relativization [36], natural proofs [211], and algebrization [10], that any proof of P ̸= NP will need
to overcome. They’ve also shown that it’s possible to surmount each of these barriers, though
there are few results that surmount all of them simultaneously. The barriers will be discussed
alongside progress toward proving P ̸= NP in Section 6.

However, we can also say something more conceptual, and possibly more illuminating, about
the meta-question of why it’s so hard to prove hardness. In my view, the central reason why
proving P ̸= NP is hard is simply that, in case after case, there are amazingly clever ways to avoid
brute-force search, and the diversity of those ways rivals the diversity of mathematics itself. And
even if, as I said in Section 3, there seems to be an “invisible fence” separating the NP-complete
problems from the slight variants of those problems that are in P—still, almost any argument we
can imagine for why the NP-complete problems are hard would, if it worked, also apply to the
variants in P.

To illustrate, we saw in Section 2.1 that 3Sat is NP-complete. We also saw that 2Sat, which
is like 3Sat except with two variables per clause rather than three, is in P: indeed, 2Sat is solvable
in linear time. Other variants of satisfiability that are in P include HornSat (where each clause is

21The Ackermann function, A (n), can be defined as f (n, n), where f (n, k) = f (n− 1, f (n, k − 1)) with boundary
conditions f (n, 0) = f (n− 1, 1) and f (0, k) = k + 1. This is one of the fastest-growing functions encountered
in mathematics. Meanwhile, the inverse Ackermann function, α (n), is a monotone nondecreasing function with
α (A (n)) = n: hence, one of the slowest-growing functions one encounters.

More generally, Ben-David and Halevi [41] showed that if P ̸= NP is unprovable in PA+Π1, then NP-complete

problems are solvable in nf−1(n) time, where f (n) is any function in the “Wainer hierarchy”: a hierarchy of fast-
growing functions, containing the Ackermann function, that can be proved to be total in PA.

By contrast, in 1969 McCreight and Meyer [169] proved a theorem one of whose striking corollaries is the following:
there exists a single computable time bound g (for which they give the algorithm), such that P = NP if and only
if 3Sat is solvable in g (n) time. Their bound g (n) is “just barely” superpolynomial, and is constructed via a
diagonalization procedure.

The McCreight-Meyer Theorem explains, in particular, why Ben-David and Halevi’s result doesn’t show that
if P ̸= NP is unprovable in PA+Π1, then NP-complete problems are solvable in nβ(n) time for every unbounded

computable function β. Namely, if it showed that, then it would actually show that PA+Π1 decides the P
?
= NP

problem.
22This is literally true for the relativization and algebrization barriers. For natural proofs, one can use the barrier

to argue that P ̸= NP is unprovable from certain axioms of “bounded arithmetic,” but as far as I know there’s no
known axiom set that precisely captures the power of natural proofs.

27

an OR of arbitrarily many non-negated variables and at most one negated variable), and XorSat
(where each clause is a linear equation mod 2, such as x2 ⊕ x7 ⊕ x9 ≡ 1 (mod 2)).

Likewise, even though it’s NP-complete to decide whether a given graph is 3-colorable, we can
decide in linear time whether a graph is 2-colorable. Also, even though SubsetSum is NP-complete,
we can easily decide whether there’s a subset of a1, . . . , ak summing to b in time that’s nearly linear
in a1 + · · ·+ ak. In other words, if each ai is required to be encoded in “unary” notation (that is,
as a list of ai ones) rather than in binary, then SubsetSum is in P.

As a more interesting example, finding the maximum clique in a graph is NP-complete, as are
finding the minimum vertex cover, the chromatic number, and so on. Yet in the 1960s, Edmonds
[81] famously showed the following.

Theorem 20 (Edmonds [81]) Given an undirected graph G, there’s a polynomial-time algorithm
to find a maximum matching: that is, a largest possible set of edges no two of which share a vertex.

To a casual observer, matching doesn’t look terribly different from the other graph optimization
problems, but it is different.

Or consider linear, semidefinite, and convex programming. These techniques yield hundreds of
optimization problems that seem similar to known NP-complete problems, and yet are solvable in
P. A few examples are finding maximum flows, finding equilibria of two-player zero-sum games,
training linear classifiers, and optimizing over quantum states and unitary transformations.23

We can also give examples of “shocking” algorithms for problems that are clearly in P. Most
famously, the problem of multiplying two n×n matrices, C = AB, seems like it should “obviously”
require ∼ n3 steps: ∼ n steps for each of the n2 entries of the product matrix C. But in 1968,
Strassen [236] discovered an algorithm that takes only O

(
nlog2 7

)
steps. There’s since been a long

sequence of further improvements, culminating in an O
(
n2.376

)
algorithm by Coppersmith and

Winograd [76], and its recent improvements to O
(
n2.374

)
by Stothers [235] and to O

(
n2.373

)
by

Vassilevska Williams [252], with a minuscule further improvement by Le Gall [95]. Thus, letting ω
be the matrix multiplication exponent (i.e., the least ω such that n× n matrices can be multiplied
in nω+o(1) time), we know today that ω ∈ [2, 2.373]. Some computer scientists conjecture that

23I won’t have much to say about linear programming (LP) or semidefinite programming (SDP) in this survey, so
perhaps this is as good a place as any to mention that today, we know a great deal about the impossibility of solving
NP-complete problems in polynomial time by formulating them as “natural” LPs. This story starts in 1987, with a
preprint by Swart [239] that claimed to prove P = NP by reducing the Traveling Salesperson Problem to an LP with
O
(
n8

)
variables and constraints. Swart’s preprint inspired a landmark paper by Yannakakis [269] (making it possibly

the most productive failed P = NP proof in history!), in which Yannakakis showed that there is no “symmetric” LP
with no(n) variables and constraints that has the “Traveling Salesperson Polytope” as its projection onto a subset
of the variables. This ruled out Swart’s approach. Yannakakis also showed that the polytope corresponding to
the maximum matching problem has no symmetric LP of subexponential size, but the polytope for the minimum
spanning tree problem does have a polynomial-size LP. In general, expressibility by such an LP is sufficient for a
problem to be in P, but not necessary.

Later, in 2012, Fiorini et al. [83] substantially improved Yannakakis’s result, getting rid of the symmetry re-
quirement. There have since been other major results in this direction: in 2014, Rothvoß [214] showed that the
perfect matching polytope requires exponentially-large LPs (again with no symmetry requirement), while in 2015,
Lee, Raghavendra, and Steurer [157] extended many of these lower bounds from linear to semidefinite programs.

Collectively, these results rule out one “natural” approach to proving P = NP: namely, to start from famous NP-
hard optimization problems like TSP, and then find a polynomial-size LP or SDP that projects onto the polytope
whose extreme points are the valid solutions. Of course, we can’t yet rule out the possibility that LPs or SDPs could
help prove P = NP in some more indirect way (or via some NP-hard problem other than the specific ones that were
studied); ruling that out seems essentially tantamount to proving P ̸= NP itself.

28

ω = 2; but in any case, just like with attempts to prove P ̸= NP, an obvious obstruction to proving
ω > 2 is that the proof had better not yield ω = 3, or even a “natural-looking” bound like ω ≥ 2.5.

The scope of polynomial-time algorithms might seem like a trite observation, incommensurate
with the challenge of explaining why it’s so hard to prove P ̸= NP. Yet we have evidence to the
contrary. Over the decades, there have been hundreds of flawed proofs announced for P ̸= NP.
The attempt that received the most attention thus far, including coverage in The New York Times
and other major media outlets, was that of Deolalikar [80] in 2010. But in every such case that
I’m aware of, the proof could ultimately be rejected on the ground that, if it worked, then it would
also yield superpolynomial lower bounds for problems known to be in P.

With some flawed P ̸= NP proofs, this is easy to see: for example, perhaps the author proves
that 3Sat must take exponential time, by some argument that’s fearsome in technical details,
but ultimately boils down to “there are 2n possible assignments to the variables, and clearly any
algorithm must spend at least one step rejecting each of them.” A general-purpose refutation of such
arguments is simply that, if they worked, then they’d work equally well for 2Sat. Alternatively,
one could point out that, as we’ll see in Section 5.1, it’s known how to solve 3Sat in (4/3)n time.
So a P ̸= NP proof had better not imply a Ω (2n) lower bound for 3Sat.

In the case of Deolalikar’s P ̸= NP attempt [80], the details were more complicated, but the
bottom line ended up being similar. Deolalikar appealed to certain statistical properties of the set
of satisfying assignments of a random 3Sat instance. The claim was that, for reasons having to
do with logical definability, those statistical properties precluded 3Sat from having a polynomial-
time algorithm. During an intense online discussion, however, skeptics pointed out that random
XorSat—which we previously mentioned as a satisfiability variant in P—gives rise to solution sets
indistinguishable from those of random 3Sat, with respect to the properties Deolalikar was using:
see for example [251]. This implied that there must be one or more bugs in the proof, though it
still left the task of finding them (which was done later).

None of this means that proving P ̸= NP is impossible. A priori, it might also have been hard to
imagine a proof of the unsolvability of the halting problem, but of course we know that such a proof
exists. As we’ll see in Section 6.1, a central difference between the two cases is that methods from
logic—namely, diagonalization and self-reference—worked to prove the unsolvability of the halting
problem, but there’s a precise sense in which these methods can’t work (at least not by themselves)
to prove P ̸= NP. A related difference comes from the quantitative character of P ̸= NP: somehow,
any proof will need to explain why polynomial-time algorithm for 3Sat is impossible, even though
a (4/3)n algorithm actually exists. In some sense, this need to make quantitative distinctions—to
say that, yes, brute-force search can be beaten, but only by this much for this problem and by that
much for that one—puts a lower bound on the sophistication of any P ̸= NP proof.

5 Strengthenings of the P ̸= NP Conjecture

I’ll now survey various strengthenings of the P ̸= NP conjecture, which are often needed for ap-
plications to cryptography, quantum computing, fine-grained complexity, and elsewhere. Some of
these strengthenings will play a role when, in Section 6, we discuss the main approaches to proving
P ̸= NP that have been tried.

29

5.1 Different Running Times

There’s been a great deal of progress on beating brute-force search for many NP-complete problems,
even if the resulting algorithms still take exponential time. For example, Schöning proved the
following in 1999.

Theorem 21 (Schöning [219]) There’s a randomized algorithm that solves 3Sat in O((4/3)n)
time.

For many NP-complete problems like HamiltonCycle, for which the obvious brute-force al-
gorithm takes ∼ n! time, it’s also possible to reduce the running time to O (2n), or sometimes even
to O (cn) for c < 2, through clever tricks such as dynamic programming (discussed in Cormen et
al. [77], or any other algorithms textbook).

How far can these algorithms be pushed? For example, is it possible that 3Sat could be

solved in 2O(
√
n) time, as various NP-intermediate problems like Factoring are known to be? An

important conjecture called the Exponential Time Hypothesis, or ETH, asserts that the answer is
no:

Conjecture 22 (Exponential Time Hypothesis) Any deterministic algorithm for 3Sat takes
Ω(cn) steps, for some constant c > 1.

ETH is an ambitious strengthening of P ̸= NP. Even assuming P ̸= NP, there’s by no
means a consensus in the field that ETH is true—let alone still further strengthenings, like the
Strong Exponential Time Hypothesis or SETH, which asserts that any algorithm for kSat requires
Ω ((2− ε)n) time, for some ε that goes to zero as k → ∞. SETH, of course, goes even further out
on a limb than ETH does, and some algorithms researchers have been actively working to disprove
SETH (see [267] for example).

One thing we do know, however, is that if ETH or SETH hold, there are numerous implications
that are not known to follow from P ̸= NP alone. One example concerns the problem of approx-
imating the value of a “two-prover free game”: here Impagliazzo, Moshkovitz, and I [9] gave an
nO(logn)-time algorithm, but we also proved that any f (n)-time algorithm would imply a nearly

f
(
2
√
n
)
-time algorithm for 3Sat. Thus, assuming ETH, our quasipolynomial-time algorithm is

essentially optimal, and our reduction from 3Sat to free games is also essentially optimal.
A second example comes from recent work of Backurs and Indyk [35], who studied the problem of

EditDistance: that is, given two strings, computing the minimum number of insertions, deletions,
and replacements needed to transform one string to the other. Here an O

(
n2

)
algorithm has long

been known [254]. In a 2015 breakthrough, Backurs and Indyk [35] showed that algorithm to be
essentially optimal, assuming SETH.

Even more recently, Abboud et al. [11] have shown that edit distance requires nearly quadratic
time under a “safer” conjecture:

Theorem 23 (Abboud et al. [11]) Suppose that the circuit satisfiability problem, for circuits of
depth o (n), can’t be solved in (2− ε)n time for any ε > 0. Then EditDistance requires n2−o(1)

time.

In any case, we currently have no idea how to make similarly “fine-grained” statements about
running times assuming only P ̸= NP.

30

5.2 Nonuniform Algorithms and Circuits

P
?
= NP asks whether there’s a single algorithm that, for every input size n, solves an NP-complete

problem like 3Sat in time polynomial in n. But we could also allow a different algorithm for each
input size. For example, it often happens in practice that a näıve algorithm works the fastest for
inputs up to a certain size (say n = 100), then a slightly clever algorithm starts doing better, then
at n ≥ 1000 a very clever algorithm starts to outperform the slightly clever algorithm, and so on.
In such a case, we might not even know whether the sequence terminates with a “maximally clever
algorithm,” or whether it goes on forever.24

To capture these situations, let P/poly be the class of languages L for which there exists a
polynomial-time Turing machine M , as well as an infinite set of “advice strings” a1, a2, . . ., where
an is p (n) bits long for some polynomial p, such that for all n and all x ∈ {0, 1}n, we have

M (x, an) accepts ⇐⇒ x ∈ L.

An equivalent way to define P/poly is as the class of languages recognized by a family of polynomial-
size circuits, one for each input size n. In theoretical computer science, a circuit just means a
directed acyclic25 graph Cn of Boolean logic gates (such as AND, OR, NOT), with the input bits
x1, . . . , xn at the bottom, and an output bit determining whether x ∈ L at the top. The size of a
circuit is the number of gates in it. The fanin of a circuit is the maximum number of input wires
that can enter a gate g, while the fanout is the maximum number of output wires that can emerge
from g (that is, the number of other gates that can depend directly on g’s output). For now, we’re
considering circuits with a fanin of 2 and unlimited fanout.

We call P/poly the nonuniform generalization of P, where ‘nonuniform’ just means that the cir-
cuit Cn could have a different structure for each n (i.e., there need not be an efficient algorithm that
outputs a description of Cn given n as input). Certainly P ⊂ P/poly, but there’s no containment
in the other direction.26

Now, the nonuniform version of the P ̸= NP conjecture is the following.

Conjecture 24 NP ̸⊂ P/poly.

If P = NP, then certainly NP ⊂ P/poly, but the converse need not hold. About the closest we
have to a converse is the Karp-Lipton Theorem [136]:

Theorem 25 If NP ⊂ P/poly, then PH collapses to ΣP
2 .

24The so-called Blum speedup theorem [50] shows that we can artificially construct problems for which the sequence
continues forever, there being no single fastest algorithm. No “natural” problem is known to have this behavior,
though it’s possible that some do. There are some natural problems, such as NP∩ coNP and #P-complete problems,
that are known not to have this behavior. The reason is that we can give an explicit algorithm for these problems
that must be nearly asymptotically optimal, and that succeeds for all but finitely many input lengths n: namely,
an algorithm that simulates the lexicographically-first log n Turing machines until one of them supplies a proof or
interactive proof for the correct answer.

25Despite the term “circuit,” which comes from electrical engineering, circuits in theoretical computer science are
ironically free of cycles; they proceed from the inputs to the output via layers of logic gates.

26This is a rare instance where non-containment can actually be proved. For example, any unary language (i.e.,
language of the form {0n : n ∈ S}) is clearly in P/poly, since the nth circuit can just hardwire whether n ∈ S. But
there’s an uncountable infinity of unary languages, whereas P is countable, so almost all unary languages are outside
P. Alternatively, we can observe that the unary language

{
0n : the nth Turing machine halts

}
can’t be in P, since

it’s simply a version of the halting problem.

31

Proof. Consider a problem in ΠP
2 : say, “for all x ∈ {0, 1}p(n), does there exist a y ∈ {0, 1}p(n)

such that A (x, y) accepts?”, for some polynomial p and polynomial-time algorithm A. Assuming
NP ⊂ P/poly, we can solve that problem in ΣP

2 as follows:

• “Does there exist a circuit C such that for all x, the algorithm A (x,C (x)) accepts?”

For if NP ⊂ P/poly and ∀x∃yA (x, y) is true, then clearly there exists a polynomial-size circuit
C that takes x as input, and outputs a y such that A (x, y) accepts. So we can simply use the
existential quantifier in our ΣP

2 algorithm to guess a description of that circuit.
We conclude that, if NP ⊂ P/poly, then ΠP

2 ⊆ ΣP
2 (and by symmetry, ΣP

2 ⊆ ΠP
2). But this is

known to cause a collapse of the entire polynomial hierarchy to ΣP
2 .

In summary, while most complexity theorists conjecture that NP ̸⊂ P/poly, as far as we know
it’s a stronger conjecture than P ̸= NP. Indeed, it’s even plausible that future techniques could
prove P ̸= NP without proving NP ̸⊂ P/poly: for example, as we’ll discuss in Section 6.1, we
can currently prove P ̸= EXP, but can’t currently prove EXP ̸⊂ P/poly, or even NEXP ̸⊂ P/poly.
Despite this, as we’ll see in Section 6, most techniques that have been explored for proving P ̸= NP,
would actually yield the stronger result NP ̸⊂ P/poly if they worked. For that reason, P/poly plays

a central role in work on the P
?
= NP question.

There’s one other aspect of circuit complexity that will play a role later in this survey: depth.
The depth of a circuit simply means the length of the longest path from an input bit to the output
bit—or, if we think of the logic gates as organized into layers, then the number of layers. There’s
a subclass of P/poly called NC1 (the NC stands for “Nick’s Class,” after Nick Pippenger), which
consists of all languages that are decided by a family of circuits that have polynomial size and also
depth O (log n).27 One can also think of NC1 as the class of problems solvable in logarithmic time
(nonuniformly) using a polynomial number of parallel processors. It’s conjectured that P ̸⊂ NC1

(that is, not all efficient algorithms can be parallelized), but alas, even showing NEXP ̸⊂ NC1

remains open at present.
Another way to define NC1 is as the class of languages decidable by a family of polynomial-size

Boolean formulas. In theoretical computer science, a formula just means a circuit where every gate
has fanout 1 (that is, where a gate cannot have its output fed as input to multiple other gates).
To see the equivalence: in one direction, by replicating subcircuits wherever necessary, clearly any
circuit of depth d and size s can be “unraveled” into a formula of depth d and size at most 2ds,
which is still polynomial in n if d = O (log n) and s = nO(1). In the other direction, there’s an
extremely useful fact proved by Brent [56], called “depth reduction.”

Proposition 26 (Brent [56]) Given any Boolean formula of size S, there is an equivalent formula
of size SO(1) and depth O (logS).28

Because of Proposition 26, the minimum depth D of any formula for a Boolean function f is
simply Θ (logS), where S is the minimum size of any formula for f . For circuits, by contrast, size
and depth are two independent variables, which might in general be related only by D ≤ S ≤ 2D.

27If each logic gate depends on at most 2 inputs, then log2 n is the smallest depth that allows the output to depend
on all n input bits.

28Bshouty, Cleve, and Eberly [57] showed that the size of the depth-reduced formula can even be taken to be
O
(
S1+ε

)
, for any constant ε > 0.

32

5.3 Average-Case Complexity

If P ̸= NP, that means that there are NP problems for which no Turing machine succeeds at solving
all instances in polynomial time. But often, especially in cryptography, we need more than that.
It would be laughable to advertise a cryptosystem on the grounds that there exist messages that
are hard to decode! So it’s natural to ask whether there are NP problems that are hard “in the
average case” or “on random instances,” rather than merely in the worst case. More pointedly,
does the existence of such problems follow from P ̸= NP, or is it a different, stronger assumption?

The first step is to clarify what we mean by a “random instance.” For some NP-complete
problems, it makes sense to ask about a uniform random instance: for example, we can consider
3Sat with n variables and m = αn uniformly-random clauses (for some constant α), or 3Coloring
on an Erdös-Rényi random graph.29 In those cases, the difficulty tends to vary wildly with the
problem and the precise distribution. With 3Sat, for example, if the clause/variable ratio α
is too small, then random instances are trivially satisfiable, while if α is too large, then they’re
trivially unsatisfiable. But there’s a “sweet spot,” α ≈ 4.25, where random 3Sat undergoes
a phase transition from satisfiable to unsatisfiable, and where the difficulty seems to blow up
accordingly. Even at the threshold, however, random 3Sat might still be much easier than worst-
case 3Sat: the breakthrough survey propagation algorithm [54] can solve random 3Sat quickly,
even for α extremely close to the threshold.30 More generally, there’s been a great deal of work
on understanding particular distributions over instances, often using tools from statistical physics:
for an accessible introduction, see for example Moore and Mertens [173]. Unfortunately, there
are almost no known reductions among these sorts of distributional problems, which would let us
say that if one of them is hard then so is another. The reason is that almost any imaginable
reduction from problem A to problem B will map a random instance of A to an extremely special,
non-random instance of B.

This means that, if we want to pick random instances of NP-complete problems and be confident
they’re hard, then we might need carefully-tailored distributions. Levin [159], and Li and Vitányi
[160], observed that there exists a “universal distribution”D—independent of the specific problem—
with the remarkable property that any algorithm that fails on any instance, will also fail with high
probability with respect to instances drawn from D. Briefly, one constructs D by giving each string
x ∈ {0, 1}∗ a probability proportional to 2−K(x), where K (x) is the Kolmogorov complexity of x:
that is, the number of bits in the shortest computer program whose output is x. One then argues
that, given any algorithm A, one can design a short computer program that brute-force searches
for the first instances on which A fails—and for that reason, if there are any such instances, then
D will assign them a high probability!

In this construction, the catch is that there’s no feasible way actually to sample instances from
the magical distribution D. Thus, given a family of distributions D = {Dn}n≥1, where Dn is over

{0, 1}p(n) (for some polynomial p), call D efficiently samplable if there exists a Turing machine that

takes as input a positive integer n and a uniformly random string r ∈ {0, 1}q(n) (for some polynomial
q), and that outputs a sample from Dn in time polynomial in n. Then the real question, we might
say, is whether there exist NP-complete problems that are hard on average with respect to efficiently
samplable distributions. More formally, does the following conjecture hold?

29That is, a graph where every two vertices are connected by an edge with independent probability p.
30But making matters more complicated still, survey propagation fails badly on random 4Sat.

33

Conjecture 27 (NP Hard on Average) There exists a language L ∈ NP, as well as an effi-
ciently samplable family of distributions D = {Dn}n≥1, such that for all polynomial-time algorithms
A, there exists an n such that

Pr
x∼Dn

[A (x) = L (x)] < 0.51.

Here L (x) ∈ {0, 1} denotes the characteristic function of L.

Note that, if Conjecture 27 holds, then for every NP-hard language L′, there exists an efficiently
samplable family of distributions D′ such that L′ is hard on average with respect to instances drawn
from D′. We can obtain this D′ by simply starting with a sample from D, and then applying the
reduction from L to L′.

It’s a longstanding open problem whether P ̸= NP implies Conjecture 27. There are NP-
intermediate problems—one famous example being the discrete logarithm problem—that are known
to have the remarkable property of worst-case/average-case equivalence. That is, any polynomial-
time algorithm for these problems that works on (say) 10% of instances implies a polynomial-time
algorithm for all instances; and conversely, if the problem is hard at all then it’s hard on average.
However, despite decades of work, no one has been able to show worst-case/average-case equivalence
for any NP-complete problem (with respect to any efficiently samplable distribution), and there
are known obstacles to such a result. For details, see for example the survey by Bogdanov and
Trevisan [51].

5.3.1 Cryptography and One-Way Functions

One might hope that, even if we can’t base secure cryptography solely on the assumption that P ̸=
NP, at least we could base it on Conjecture 27. But there’s one more obstacle. In cryptography,
we don’t merely need NP problems for which it’s easy to generate hard instances: rather, we need
NP problems for which it’s easy to generate hard instances, along with secret solutions to those
instances. This motivates the definition of a one-way function (OWF), perhaps the central concept

of modern cryptography. Let f = {fn}n≥1 be a family of functions, with fn : {0, 1}n → {0, 1}p(n)
for some polynomial p. Then we call f a one-way function family if

(1) fn is computable in time polynomial in n, but

(2) fn is hard to invert: that is, for all polynomial-time algorithms A and polynomials q, we have

Pr
x∼{0,1}n

[fn (A (fn (x))) = fn (x)] <
1

q (n)

for all sufficiently large n.

We then make the following conjecture.

Conjecture 28 There exists a one-way function family.

Conjecture 28 is stronger than Conjecture 27, which in turn is stronger than P ̸= NP. Indeed,
it’s not hard to show the following.

34

Proposition 29 Conjecture 28 holds if and only if there exists a fast way to generate hard random
3Sat instances with “planted solutions”: that is, an efficiently samplable family of distributions
D = {Dn}n over (φ, x) pairs, where φ is a satisfiable 3Sat instance and x is a satisfying assignment
to φ, such that for all polynomial-time algorithms A and all polynomials q,

Pr
φ∼Dn

[A (φ) finds a satisfying assignment to φ] <
1

q (n)

for all sufficiently large n.

Proof. Given a one-way function family f , we can generate a hard random 3Sat instance with a
planted solution by choosing x ∈ {0, 1}n uniformly at random, computing fn (x), and then using
the Cook-Levin Theorem (Theorem 2) to construct a 3Sat instance that encodes the problem of
finding a preimage of fn (x). Conversely, given a polynomial-time algorithm that takes as input

a positive integer n and a random string r ∈ {0, 1}p(n) (for some polynomial p), and that outputs
a hard 3Sat instance φr together with a planted solution xr to φr, the function fn (r) := φr will
necessarily be one-way, since inverting fn would let us find a satisfying assignment to φr.

Conjecture 28 turns out to suffice for building most of the ingredients of private-key cryptogra-
phy, notably including pseudorandom generators [117] and pseudorandom functions [99]. Further-
more, while Conjecture 28 is formally stronger than P ̸= NP, Proposition 29 suggests that the two
conjectures are conceptually similar: “all we’re asking for” is a hard NP problem, together with a
fast way to generate hard solved instances of it!

This contrasts with the situation for public-key cryptography—i.e., the kind of cryptography
that doesn’t require any secrets to be shared in advance, and which is used for sending credit-
card numbers over the web. To create a secure public-key cryptosystem, we need something
even stronger than Conjecture 28: for example, a trapdoor OWF,31 which is an OWF with the
additional property that it becomes easy to invert if we’re given a secret “trapdoor” string generated
along with the function. We do, of course, have candidates for secure public-key cryptosystems,
which are based on problems such as factoring, discrete logarithms (over both multiplicative groups
and elliptic curves), and finding planted short nonzero vectors in lattices. To date, however,
all public-key cryptosystems require “sticking our necks out,” and conjecturing the hardness of
some specific NP-intermediate problem, something with much more structure than any known
NP-complete problem.

In other words, for public-key cryptography, today one has to make conjectures that go fun-
damentally beyond P ̸= NP, or even the existence of OWFs. Even if someone proved P ̸= NP or
Conjecture 28, reasonable doubt could still remain about the security of known public-key cryp-
tosystems.

5.4 Randomized Algorithms

Even assuming P ̸= NP, we can still ask whether NP-complete problems can be solved in polynomial
time with help from random bits. This is a different question than whether NP is hard on average:
whereas before we were asking about algorithms that solve most instances (with respect to some
distribution), now we’re asking about algorithms that solve all instances, for most choices of some
auxiliary random numbers.

31There are closely-related objects, such as “lossy” trapdoor OWFs (see [197]), that also suffice for building public-
key cryptosystems.

35

Historically, algorithm designers have often resorted to randomness, to deal with situations
where most choices that an algorithm could make are fine, but any specific choice will lead to
terrible behavior on certain inputs. For example, in Monte Carlo simulation, used throughout
science and engineering, we estimate the volume of a high-dimensional object by just sampling
random points, and then checking what fraction of them lie inside. Another example concerns
primality testing : that is, deciding the language

Primes = {N : N is a binary encoding of a prime number} .

In modern cryptosystems such as RSA, generating a key requires choosing large random primes, so
it’s just as important that primality testing be easy as that the related factoring problem be hard!
In the 1970s, Rabin [201] and Solovay and Strassen [231] showed how to decide Primes in time
polynomial in logN (i.e., the number of digits of N). The catch was that their algorithms were
randomized: in addition to N , they required a second input r; and for each N , the algorithms were
guaranteed to succeed for most r’s but not all of them. Miller [172] also proposed a deterministic
polynomial-time algorithm for Primes, but could only prove the algorithm correct assuming the
Extended Riemann Hypothesis. Finally, after decades of work on the problem, in 2002 Agrawal,
Kayal, and Saxena [15] gave an unconditional proof that Primes is in P. In other words, if we
only care about testing primality in polynomial time, and not about the degree of the polynomial,
then randomness was never needed after all.

A third example of the power of randomness comes from the polynomial identity testing (PIT)
problem. Here we’re given as input a circuit or formula, composed of addition and multiplication
gates, that computes a polynomial p : F → F over a finite field F. The question is whether p is the
identically-zero polynomial—that is, whether the identity p (x) = 0 holds. If deg (p) ≪ |F|, then al-
gebra immediately suggests a way to solve this problem: simply pick an x ∈ F uniformly at random
and check whether p (x) = 0. Since a nonzero polynomial p can vanish on at most deg (p) points,
the probability that we’ll “get unlucky” and choose one of those points is at most deg (p) / |F|. To
this day, no one knows of any deterministic approach that achieves similar performance.32 Deran-
domizing PIT—that is, replacing the randomized algorithm by a comparably-efficient deterministic
one—is considered one of the frontier problems of theoretical computer science. For details, see
for example the survey of Shpilka and Yehudayoff [226].

5.4.1 BPP and Derandomization

What’s the power of randomness more generally? Can every randomized algorithm be derandom-
ized, as ultimately happened with Primes? To explore these issues, complexity theorists study
several randomized generalizations of the class P. We’ll consider just one of them: Bounded-Error
Probabilistic Polynomial-Time, or BPP, is the class of languages L ⊆ {0, 1}∗ for which there exists a
polynomial-time Turing machine M , as well as a polynomial p, such that for all inputs x ∈ {0, 1}n,

Pr
r∈{0,1}p(n)

[M (x, r) = L (x)] ≥ 2

3
.

In other words, for every x, the machine M must correctly decide whether x ∈ L “most of the
time” (that is, for most choices of r). Crucially, here we can easily replace the constant 2/3 by any

32At least, not for arbitrary polynomials computed by small formulas or circuits. A great deal of progress has been
made derandomizing PIT for restricted classes of polynomials. In fact, the deterministic primality test of Agrawal,
Kayal, and Saxena [15] was based on a derandomization of one extremely special case of PIT.

36

other number between 1/2 and 1, or even by a function like 1− 2−n. So for example, if we wanted
to know x ∈ L with 0.999999 confidence, then we’d simply run M several times, with different
independent values of r, and then output the majority vote among the results.

It’s clear that P ⊆ BPP ⊆ PSPACE. More interestingly, Sipser [227] and Lautemann [156]
proved that BPP is contained in ΣP

2 ∩ ΠP
2 (that is, the second level of PH). The Rabin-Miller and

Solovay-Strassen algorithms imply that Primes ∈ BPP.
Today, most complexity theorists conjecture that what happened to Primes can happen to all

of BPP:

Conjecture 30 P = BPP.

The reason for this conjecture is that it follows from the existence of good enough pseudoran-
dom generators, which we could use to replace the random string r in any BPP algorithm M by
deterministic strings that “look random, as far as M can tell.” Furthermore, work in the 1990s
showed that, if we grant certain plausible lower bounds on circuit size, then these pseudorandom
generators exist. Perhaps the most striking result along these lines is that of Impagliazzo and
Wigderson [127]:

Theorem 31 (Impagliazzo-Wigderson [127]) Suppose there exists a language decidable in 2n

time, which requires nonuniform circuits of size 2Ω(n). Then P = BPP.

Of course, if P = BPP, then the question of whether randomized algorithms can efficiently solve

NP-complete problems is just the original P
?
= NP question in a different guise. Ironically, however,

the “obvious” approach to proving P = BPP is to prove a strong circuit lower bound—and if we
knew how to do that, perhaps we could prove P ̸= NP as well!

Even if we don’t assume P = BPP, it’s easy to show that deterministic nonuniform algorithms
(see Section 5.2) can simulate randomized algorithms:

Proposition 32 (Adleman [12]) BPP ⊂ P/poly.

Proof. Let the language L be decided by a BPP algorithm that uses p (n) random bits. Then
by using q (n) = O (n · p (n)) random bits, running the algorithm O (n) times with independent
random bits each time, and outputting the majority answer, we can push the probability of error
on any given input x ∈ {0, 1}n from 1/3 down to (say) 2−2n. Thus, the probability that there
exists an x ∈ {0, 1}n on which the algorithm errs is at most 2n

(
2−2n

)
= 2−n. This means, in

particular, that there must be a fixed choice for the random string r ∈ {0, 1}q(n) that causes the
algorithm to succeed on all x ∈ {0, 1}n. So to decide L in P/poly, we simply “hardwire” that r as
the advice.

By combining Theorem 25 with Proposition 32, we immediately obtain that if NP ⊆ BPP, then
the polynomial hierarchy collapses to the second level. So the bottom line is that the NP ⊆ BPP

question is likely identical to the P
?
= NP question, but is extremely tightly related even if not.

5.5 Quantum Algorithms

The class BPP might not exhaust what the physical world lets us efficiently compute, with quantum
computing an obvious contender for going further. In 1993, Bernstein and Vazirani [45] defined

37

the complexity class BQP, or Bounded-Error Quantum Polynomial-Time, as a quantum-mechanical
generalization of BPP. (Details of quantum computing and BQP are beyond the scope of this
survey, but see [191, 6].) Bernstein and Vazirani, along with Adleman, DeMarrais, and Huang
[13], also showed some basic containments:

P ⊆ BPP ⊆ BQP ⊆ PP ⊆ P#P ⊆ PSPACE.

In 1994, Shor [224] famously showed that the factoring and discrete logarithm problems are in
BQP—and hence, that a scalable quantum computer, if built, could break almost all currently-
used public-key cryptography. To design his quantum algorithms, Shor had to exploit extremely
special properties of factoring and discrete logarithm, which aren’t known to hold for NP-complete
problems.

The quantum analogue of the P
?
= NP question is the question of whether NP ⊆ BQP: that

is, can quantum computers solve NP-complete problems in polynomial time? 33 Most quantum
computing researchers conjecture that the answer is no:

Conjecture 33 NP ̸⊂ BQP.

Naturally, there’s little hope of proving Conjecture 33 at present, since any proof would imply
P ̸= NP! We don’t even know today how to prove conditional statements (analogous to what we
have for BPP and P/poly): for example, that if NP ⊆ BQP then PH collapses. On the other hand,
it is known that, if a fast quantum algorithm for NP-complete problems exists, then in some sense
it will have to be extremely different from Shor’s or any other known quantum algorithm. For
example, Bennett et al. [43] showed that, if we ignore the structure of NP-complete problems, and
just consider the abstract task of searching an unordered list, then quantum computers can provide
at most a square-root speedup over the classical running time. As Bennett et al. [43] noted, this
implies that there exists an oracle A such that NPA ̸⊂ BQPA. Note that the square-root speedup
is actually achievable, using Grover’s algorithm [108]. For most NP-complete problems, however,
the fastest known quantum algorithm will be obtained by simply layering Grover’s algorithm on
top of the fastest known classical algorithm, yielding a quadratic speedup but no more.34 So for
example, as far as anyone knows today, even a quantum computer would need 2Ω(n) time to solve
3Sat.

33One can also consider the QMA-complete problems, which are a quantum generalization of the NP-complete
problems themselves (see [52]), but we won’t pursue that here.

34One can artificially design an NP-complete problem with a superpolynomial quantum speedup over the best
known classical algorithm by, for example, taking the language

L =
{
0φ0 · · · 0 | φ is a satisfiable 3Sat instance of size n0.01}∪

{1x | x is a binary encoding of a positive integer with an odd number of distinct prime factors} .

Clearly L is NP-complete, and a quantum algorithm can decide L in O
(
cn

0.01
)

time for some c, whereas the best

known classical algorithm will take ∼ exp
(
n1/3

)
time.

Conversely, there are also NP-complete problems with no significant quantum speedup known—say, because the
best known classical algorithm is based on dynamic programming, and it’s unknown how to combine that with
Grover’s algorithm. A candidate example is the Traveling Salesperson Problem, which is solvable in O (2n poly (n))
time using the Held-Karp dynamic programming algorithm [119], whereas Grover’s algorithm seems to yield only the
worse bound O(

√
n!).

38

Of course, one can also wonder whether the physical world might provide computational re-
sources even beyond quantum computing (based on black holes? closed timelike curves? modifica-
tions to quantum mechanics?), and if so, whether those resources might enable the polynomial-time
solution of NP-complete problems. Such speculations are beyond the scope of this article, but see
for example [3].

6 Progress

One common view among mathematicians is that questions like P
?
= NP, while undoubtedly im-

portant, are just too hard to make progress on in the present state of mathematics. It’s true that
we seem to be nowhere close to a solution, but in this section, I’ll build a case that the extreme
pessimistic view is unwarranted. I’ll explain what genuine knowledge I think we have, relevant to
proving P ̸= NP, that we didn’t have thirty years ago or in many cases ten years ago. One could
argue that, if P ̸= NP is a distant peak, then all the progress has remained in the foothills. On
the other hand, scaling the foothills has already been nontrivial, so anyone aiming for the summit
had better get acquainted with what’s been done.

More concretely, I’ll tell a story of the interaction between lower bounds and barriers: on the
one hand, actual successes in proving superpolynomial or exponential lower bounds in interesting
models of computation; but on the other, explanations for why the techniques used to achieve those
successes don’t extend to prove P ̸= NP. We’ll see how the barriers influence the next generation
of lower bound techniques, which are sometimes specifically designed to evade the barriers, or
evaluated on their potential to do so.

With a single exception—namely, the Mulmuley-Sohoni Geometric Complexity Theory program—
I’ll restrict my narrative to ideas that have already had definite successes in proving new limits
on computation. The drawback of this choice is that in many cases, the ideas that are concrete
enough to have worked for something, are also concrete enough that we understand why they can’t
work for P ̸= NP! My defense is that this section would be unmanageably long, if it had to cover
every idea about how P ̸= NP might someday be proved.

I should, however, at least mention some important approaches to lower bounds that will be
missing from my subsequent narrative. The first is descriptive complexity theory ; see for example
the book of Immerman [123] for a good introduction. Descriptive complexity characterizes many
complexity classes in terms of their logical expressive power: for example, P corresponds to sentences
expressible in first-order logic with linear order and a least fixed point; NP to sentences expressible in
existential second-order logic; PSPACE to sentences expressible in second-order logic with transitive
closure; and EXP to sentences expressible in second-order logic with a least fixed point. The hope
is that characterizing complexity classes in this way, with no explicit mention of resource bounds,
will make it easier to see which are equal and which different. There’s one major piece of evidence
for this hope: namely, descriptive complexity played an important role in the proof by Immerman
[122] that nondeterministic space is closed under complement (though the independent proof by
Szelepcsényi [240] of the same result didn’t use these ideas). Descriptive complexity theory hasn’t
yet led to new separations between complexity classes.

The second approach is lower bounds via communication complexity. Given a Boolean function
f : {0, 1}n → {0, 1}, consider the following communication game: Alice receives an n-bit input
x = x1 · · ·xn such that f (x) = 0, Bob receives an input y such that f (y) = 1, and their goal is to
agree on an index i ∈ {1, . . . , n} such that xi ̸= yi. Let Cf be the communication complexity of

39

this game: that is, the minimum number of bits that Alice and Bob need to exchange to win the
game, if they use an optimal protocol (and where the communication cost is maximized over all x, y
pairs). Then in 1990, Karchmer and Wigderson [134] showed the following remarkable connection.

Theorem 34 (Karchmer-Wigderson [134]) For any f , the minimum depth of any Boolean
circuit for f is equal to Cf .

Combined with Proposition 26 (depth-reduction for formulas), Theorem 34 implies that every
Boolean function f requires formulas of size at least 2Cf : in other words, communication lower
bounds imply formula-size lower bounds. Now, communication complexity is a well-established
area of theoretical computer science with many strong lower bounds; see for example the book by
Kushilevitz and Nisan [149]. Thus, we might hope that lower-bounding the communication cost
of the “Karchmer-Wigderson game,” say for an NP-complete problem like HamiltonCycle, could
be a viable approach to proving NP ̸⊂ NC1, which in turn would be a huge step toward P ̸= NP.

See Section 6.2.2 for Karchmer and Wigderson’s applications of a similar connection to mono-
tone formula-size lower bounds. Also see Aaronson and Wigderson [10] for further connections
between communication complexity and computational complexity, including even a “communica-
tion complexity lower bound” that if true would imply P ̸= NP. Of course, the question is whether
these translations merely shift the difficulty of complexity class separations to a superficially dif-
ferent setting, or whether they set the stage for genuinely new insights.

The third approach is lower bounds via derandomization. In Section 5.4.1, we discussed the
discovery in the 1990s that, if sufficiently strong circuit lower bounds hold, then P = BPP: that is,
every randomized algorithm can be made deterministic with only a polynomial slowdown. In the
early 2000s, it was discovered that converse statements often hold as well: that is, derandomizations
of randomized algorithms imply circuit lower bounds. Probably the best-known result along these
lines is that of Kabanets and Impagliazzo [131]:

Theorem 35 ([131]) Suppose the polynomial identity testing problem from Section 5.4 is in P.
Then either NEXP ̸⊂ P/poly, or else the permanent function has no polynomial-size arithmetic
circuits (see Section 6.5.1).

As usual, the issue is that it’s not clear whether we should interpret this result as giving a
plausible path toward proving circuit lower bounds (namely, by derandomizing PIT), or simply as
explaining why derandomizing PIT will be hard (namely, because doing so will imply circuit lower
bounds)! In any case, Sections 6.3.2 and 6.4.2 will give further examples where derandomization
results would imply new circuit lower bounds.

The fourth approach could be called lower bounds via “innocent-looking” combinatorics prob-
lems. Here’s an example: given an n× n matrix A, say over the finite field F2, call A rigid if not
only does A have rank Ω (n), but any matrix obtained by changing O

(
n1/10

)
entries in each row

of A also has rank Ω (n). It’s easy to show, via a counting argument, that almost all matrices
A ∈ Fn×n

2 are rigid. On the other hand, Valiant [246] made the following striking observation
in 1977: if we manage to find any explicit example of a rigid matrix, then we also get an explicit
example of a Boolean function that can’t be computed by any circuit of linear size and logarithmic
depth.

For another connection in the same spirit, given a 3-dimensional tensor A ∈ Fn×n×n
2 , let the

rank of A be the smallest r such that A can be written as the sum of r rank-one tensors (that is,

40

tensors of the form tijk = xiyjzk). Then it’s easy to show, via a counting argument, that almost all
tensors A ∈ Fn×n×n

2 have rank Ω
(
n2

)
. On the other hand, Strassen [237] observed in 1973 that,

if we find any explicit example of a 3-dimensional tensor with rank r, then we also get an explicit
example of a Boolean function with circuit complexity Ω (r).35 Alas, proving that any explicit
matrix is rigid, or that any explicit tensor has superlinear rank, have turned out to be staggeringly
hard problems—as perhaps shouldn’t surprise us, given the implications for circuit lower bounds!

The rest of the section is organized as follows:

• Section 6.1 covers logical techniques, which typically fall prey to the relativization barrier.

• Section 6.2 covers combinatorial techniques, which typically fall prey to the natural proofs
barrier.

• Section 6.3 covers “hybrid” techniques (logic plus arithmetization), many of which fall prey
to the algebrization barrier.

• Sections 6.4 covers “ironic complexity theory” (as exemplified by the recent work of Ryan
Williams), or the use of nontrivial algorithms to prove circuit lower bounds.

• Section 6.5 covers arithmetic circuit lower bounds, which probably fall prey to arithmetic
variants of the natural proofs barrier (though this remains disputed).

• Section 6.6 covers Mulmuley and Sohoni’s Geometric Complexity Theory (GCT), an auda-

cious program to tackle P
?
= NP and related problems by reducing them to questions in

algebraic geometry and representation theory (and which is also an example of “ironic com-
plexity theory”).

Note that, for the approaches covered in Sections 6.4 and 6.6, no formal barriers are yet known.

6.1 Logical Techniques

In the 1960s, Hartmanis and Stearns [113] realized that, by simply “scaling down” Turing’s diago-
nalization proof of the undecidability of the halting problem, we can at least prove some separations
between complexity classes. In particular, we can generally show that more of the same resource
(time, memory, etc.) lets us decide more languages than less of that resource. Here’s a special
case of their so-called Time Hierarchy Theorem.

Theorem 36 (Hartmanis-Stearns [113]) P is strictly contained in EXP.

Proof. Let
L = {(⟨M⟩ , x, 0n) : M (x) halts in at most 2n steps} .

35Going even further, Raz [204] proved in 2010 that, if we manage to show that any explicit d-dimensional tensor
A : [n]d → F has rank at least nd(1−o(1)), then we’ve also shown that the n×n permanent function has no polynomial-
size arithmetic formulas. It’s easy to construct explicit d-dimensional tensors with rank n⌊d/2⌋, but the current record
is an explicit d-dimensional tensor with rank at least 2n⌊d/2⌋ + n−O (d logn) [19].

Note that, if we could show that the permanent had no nO(logn)-size arithmetic formulas, that would imply Valiant’s
famous Conjecture 70: that the permanent has no polynomial-size arithmetic circuits. However, Raz’s technique
seems incapable of proving formula-size lower bounds better than nΩ(log logn).

41

Clearly L ∈ EXP. On the other hand, suppose by contradiction that L ∈ P. Then there’s some
polynomial-time Turing machine A such that A (z) accepts if and only if z ∈ L. Let A run in
p (n+ |⟨M⟩|+ |x|) time. Then using A, we can easily produce another machine B that does the
following:

• Takes input (⟨M⟩ , 0n).

• Runs forever if M (⟨M⟩ , 0n) halts in at most 2n steps; otherwise halts.

Note that, if B halts at all, then it halts after only p (2n+ 2 |⟨M⟩|) = nO(1) steps.
Now consider what happens when B is run on input (⟨B⟩ , 0n). If B (⟨B⟩ , 0n) runs forever,

then B (⟨B⟩ , 0n) halts. Conversely, if B (⟨B⟩ , 0n) halts, then for all sufficiently large n, it halts in
fewer than 2n steps, but that means that B (⟨B⟩ , 0n) runs forever. So we conclude that B, and
hence A, can’t have existed.

More broadly, the same argument shows that there are languages decidable in O
(
n2

)
time but

not in O (n) time, in O
(
n100

)
time but not in O

(
n99

)
time, and so on for almost every natural

pair of runtime bounds. (Technically, we have TIME (f (n)) ̸= TIME (g (n)) for every f, g that are
time-constructible—that is, there exist Turing machines that run for f (n) and g (n) steps given
n as input—and that are separated by more than a log n multiplicative factor.) Likewise, the
Space Hierarchy Theorem shows that there are languages decidable in O (f (n)) space but not in
O (g (n)) space, for all natural f (n) ≫ g (n). Cook [74] also proved a hierarchy theorem for the
nondeterministic time classes, which will play an important role in Section 6.4:

Theorem 37 (Nondeterministic Time Hierarchy Theorem [74]) For all time-constructible
f, g such that f (n+ 1) = o (g (n)), we have that NTIME (f (n)) is strictly contained in NTIME (g (n)).

One amusing consequence of the hierarchy theorems is that we can prove, for example, that
P ̸= SPACE (n), even though we can’t prove either that P ̸⊂ SPACE (n) or that SPACE (n) ̸⊂ P!
For suppose by contradiction that P = SPACE (n). Then by a padding argument (cf. Proposition
17), P would also contain SPACE

(
n2

)
, and therefore equal SPACE

(
n2

)
. But then we’d have

SPACE (n) = SPACE
(
n2

)
, violating the Space Hierarchy Theorem. Most computer scientists

conjecture both that P ̸⊂ SPACE (n) and that SPACE (n) ̸⊂ P, but proving either statement by
itself is a much harder problem.

In summary, there really is a rich, infinite hierarchy of harder and harder computable problems.
Complexity classes don’t collapse in the most extreme ways imaginable, with (say) everything
solvable in linear time.

6.1.1 Circuit Lower Bounds Based on Counting

A related idea—not exactly “diagonalization,” but counting arguments made explicit—can also be
used to show that certain problems can’t be solved by polynomial-size circuits. This story starts
with Claude Shannon [222], who made the following fundamental observation in 1949.

Proposition 38 (Shannon [222]) There exists a Boolean function f : {0, 1}n → {0, 1}, on n
variables, such that any circuit to compute f requires at least Ω (2n/n) logic gates. Indeed, almost
all Boolean functions on n variables (that is, a 1− o (1) fraction of them) have this property.36

36With some effort, Shannon’s lower bound can be shown to be tight: that is, every n-variable Boolean function
can be represented by a circuit of size O (2n/n). (The obvious upper bound is O (n2n).)

42

Proof. There are 22
n
different Boolean functions f on n variables, but only

T∑
t=1

(
n

2

)(
n+ 1

2

)
· · ·

(
n+ t− 1

2

)
< (n+ T)2T

different Boolean circuits with n inputs and at most T NAND gates. Since each circuit only
represents one function, and since (n+ T)2T = o

(
22

n)
when T = o (2n/n), it follows by a counting

argument (i.e., the pigeonhole principle) that some f must require a circuit with T = Ω(2n/n)
NAND gates—and indeed, that almost all of the 22

n
possible f ’s must have this property. The

number of AND, OR, and NOT gates required is related to the number of NAND gates by a
constant factor, so is also Ω (2n/n).

Famously, Proposition 38 shows that there exist Boolean functions that require exponentially
large circuits—in fact, that almost all of them do—yet it fails to produce a single example of such
a function! It tells us nothing whatsoever about 3Sat or Clique or any other particular function
that might interest us. In that respect, it’s similar to Shannon’s celebrated proof that almost all
codes are good error-correcting codes, which also fails to produce a single example of such a code.
Just like, in the decades after Shannon, the central research agenda of coding theory was to “make
Shannon’s argument explicit” by finding specific good error-correcting codes, so too the agenda of
circuit complexity has been to “make Proposition 38 explicit” by finding specific functions that
provably require large circuits.

In some cases, the mere fact that we know, from Proposition 38, that hard functions exist lets
us “bootstrap” to show that particular complexity classes must contain hard functions. Here’s an
example of this.

Theorem 39 EXPSPACE ̸⊂ P/poly.

Proof. Let n be sufficiently large. Then by Proposition 38, there exist functions f : {0, 1}n →
{0, 1} with circuit complexity at least c2n/n, for some constant c > 0. Thus, if we list all the 22

n

functions in lexicographic order by their truth tables, there must be a first function in the list, call
it fn, with circuit complexity at least c2n/n. We now define

L :=
∪
n≥1

{x ∈ {0, 1}n : fn (x) = 1} .

Then by construction, L /∈ P/poly. On the other hand, enumerating all n-variable Boolean
functions, calculating the circuit complexity of each, and finding the first one with circuit complexity
at least c2n/n can all be done in exponential space. Hence L ∈ EXPSPACE.

There’s also a “scaled-down version” of Theorem 39, proved in the same way:

Theorem 40 For every fixed k, there is a language in PSPACE that does not have circuits of size
nk.37

By being a bit more clever, Kannan [133] lowered the complexity class in Theorem 39 from
EXPSPACE to NEXPNP.

37Crucially, this will be a different language for each k; otherwise we’d get PSPACE ̸⊂ P/poly, which is far beyond
our current ability to prove.

43

Theorem 41 (Kannan [133]) NEXPNP ̸⊂ P/poly.

Proof. First, we claim that EXPNPNP
̸⊂ P/poly. The reason is simply a more careful version of the

proof of Theorem 39: in EXPNPNP
, we can do an explicit binary search for the lexicographically first

Boolean function fn : {0, 1}n → {0, 1} such that every circuit of size at most (say) c2n/n disagrees
with fn on some input x. (Such an fn must exist by a counting argument.)

Next, suppose by contradiction that NEXPNP ⊂ P/poly. Then certainly NP ⊂ P/poly. By the

Karp-Lipton Theorem (Theorem 25), this implies that PH = ΣP
2 , so in particular PNPNP

= NPNP.

By upward translation (as in Proposition 17), this in turn means that EXPNPNP
= NEXPNP. But

we already know that EXPNPNP
doesn’t have polynomial-size circuits, and therefore neither does

NEXPNP.
Amusingly, if we work out the best possible lower bound that we can get from Theorem 41

on the circuit complexity of a language in NEXPNP, it turns out to be half-exponential : that is, a
function f such that f (f (n)) grows exponentially. Such functions exist, but have no closed-form
expressions.

Directly analogous to Theorem 40, a “scaled-down” version of the proof of Theorem 41 shows
that, for every fixed k, there’s a language in ΣP

2 = NPNP that doesn’t have circuits of size nk.
In Section 6.3, we’ll discuss slight improvements to these results that can be achieved with

algebraic methods. Nevertheless, it (sadly) remains open even to show that NEXP ̸⊂ P/poly, or
that there’s a language in NP that doesn’t have linear-sized circuits.

6.1.2 The Relativization Barrier

The magic of diagonalization, self-reference, and counting arguments is how abstract and general
they are: they never require us to “get our hands dirty” by understanding the inner workings of
algorithms or circuits. But as was recognized early in the history of complexity theory, the price
of generality is that the logical techniques are extremely limited in scope.

Often the best way to understand the limits of a proposed approach for proving a statement
S, is to examine what else besides S the approach would prove if it worked—i.e., which stronger
statements S′ the approach “fails to differentiate” from S. If any of the stronger statements are
false, then the approach can’t prove S either.

That is exactly what Baker, Gill, and Solovay [36] did for diagonalization in 1975, when they
articulated the relativization barrier. Their central insight was that almost all the techniques we
have for proving statements in complexity theory—such as C ⊆ D or C ̸⊂ D, where C and D are
two complexity classes—are so general that, if they work at all, then they actually prove CA ⊆ DA

or CA ̸⊂ DA for all possible oracles A. In other words: if all the machines that appear in the proof
are enhanced in the same way, by being given access to the same oracle, the proof is completely
oblivious to that change, and goes through just as before. A proof with this property is said to
“relativize,” or to hold “in all possible relativized worlds” or “relative to any oracle.”

Why do so many proofs relativize? Intuitively, because the proofs only do things like using
one Turing machine M1 to simulate a second Turing machine M2 step-by-step, without examining
either machine’s internal structure. In that case, if M2 is given access to an oracle A, then M1 can
still simulate M2 just fine, provided that M1 is also given access to A, in order to simulate M2’s
oracle calls.

To illustrate, you might want to check that the proofs of Theorems 36, 39, and 41 can be
straightforwardly modified to show that, more generally:

44

• PA ̸= EXPA for all oracles A.

• EXPSPACEA ̸⊂ PA/poly for all oracles A.

• NEXPNPA

̸⊂ PA/poly for all oracles A.

Alas, Baker, Gill, and Solovay then observed that no relativizing technique can possibly resolve

the P
?
= NP question. For, unlike (say) P

?
= EXP or the unsolvability of the halting problem,

P
?
= NP admits “contradictory relativizations”: there are some oracle worlds where P = NP, and

others where P ̸= NP. For that reason, any proof of P ̸= NP will need to “notice,” at some point,
that there are no oracles in “our” world: it will have to use techniques that fail relative to certain
oracles.

Theorem 42 (Baker-Gill-Solovay [36]) There exists an oracle A such that PA = NPA, and
another oracle B such that PB ̸= NPB.

Proof Sketch. To make PA = NPA, we can just let A be any PSPACE-complete language. Then
it’s not hard to see that PA = NPA = PSPACE.

To make PB ̸= NPB, we can (for example) let B be a random oracle, as observed by Bennett
and Gill [44]. We can then, for example, define

L = {0n : the first 2n bits of B contain a run of n consecutive 1’s} .

Clearly L ∈ NPB. By contrast, one can easily show that L /∈ PB with probability 1 over B: in
this case, there really is nothing for a deterministic Turing machine to do but brute-force search,
requiring exponentially many queries to the B oracle.

We also have the following somewhat harder result.

Theorem 43 (Wilson [268]) There exists an oracle A such that NEXPA ⊂ PA/poly, and such
that every language in NPA has linear-sized circuits with A-oracle gates (that is, gates that query
A).

In other words, any proof even of NEXP ̸⊂ P/poly—that is, of a circuit lower bound just
“slightly” beyond those that have already been proven—will require non-relativizing techniques.
One can likewise show that non-relativizing techniques will be needed to make real progress on
many of the other open problems of complexity theory (such as proving P = BPP).

If relativization seems too banal, the way to appreciate it is to try to invent techniques, for
proving inclusions or separations among complexity classes, that fail to relativize. It’s harder
than it sounds! A partial explanation for this was given by Arora, Impagliazzo, and Vazirani [29],
who reinterpreted the relativization barrier in logical terms. From their perspective, a relativizing
proof is simply any proof that “knows” about complexity classes, only through axioms that assert
the classes’ closure properties, as well as languages that the classes do contain. (For example, P
contains the empty language; if L1 and L2 are both in P, then so are Boolean combinations like
L1 and L1 ∩ L2.) These axioms can be shown to imply statements such as P ̸= EXP. But other
statements, like P ̸= NP, can be shown to be independent of the axioms, by constructing models
of the axioms where those statements are false. One constructs those models by using oracles to
“force in” additional languages—such as PSPACE-complete languages, if one wants a world where

45

P = NP—which the axioms might not require to be contained in complexity classes like P and NP,
but which they don’t prohibit from being contained, either. The conclusion is that any proof of
P ̸= NP will need to appeal to deeper properties of the classes P and NP, properties that don’t
follow from these closure axioms.

6.2 Combinatorial Lower Bounds

Partly because of the relativization barrier, in the 1980s attention shifted to combinatorial ap-
proaches: that is, approaches where one tries to prove superpolynomial lower bounds on the num-
ber of operations of some kind needed to do something, by actually “rolling up one’s sleeves” and
delving into the messy details of what the operations do (rather than making abstract diagonal-
ization arguments). These combinatorial approaches enjoyed some spectacular successes, some of
which seemed at the time like they were within striking distance of proving P ̸= NP. Let’s see
some examples.

6.2.1 Proof Complexity

Suppose we’re given a 3Sat formula φ, and we want to prove that φ has no satisfying assignments.
One natural approach to this is called resolution: we repeatedly pick two clauses of φ, and then
“resolve” the clauses (or “smash them together”) to derive a new clause that logically follows from
the first two. This is most useful when one of the clauses contains a non-negated literal x, and
the other contains the corresponding negated literal x. For example, from the clauses (x ∨ y) and
(x ∨ z), it’s easy to see that we can derive (y ∨ z). The new derived clause can then be added to
the list of clauses, and used as an input to future resolution steps.

Now, if we ever derive the empty clause ()—say, by smashing together (x) and (x)—then we
can conclude that our original 3Sat formula φ must have been unsatisfiable. For in that case, φ
entails a clause that’s not satisfied by any setting of variables. Another way to say this is that
resolution is a sound proof system. By doing induction on the number of variables in φ, it’s not
hard to show that resolution is also complete:

Proposition 44 Resolution is a complete proof system for the unsatisfiability of kSat. In other
words, given any unsatisfiable kSat formula φ, there exists some sequence of resolution steps that
produces the empty clause.

So the key question about resolution is just how many resolution steps are needed to derive the
empty clause, starting from an unsatisfiable formula φ. If that number could be upper-bounded
by a polynomial in the size of φ, it would follow that NP = coNP. If, moreover, an appropriate
sequence of resolutions could actually be found in polynomial time, it would follow that P = NP.

On the other hand, when we prove completeness by induction on the number of variables n,
the only upper bound we get on the number of resolution steps is 2n. And indeed, in 1985, Haken
proved the following celebrated result.

Theorem 45 (Haken [112]) There exist kSat formulas, involving nO(1) variables and clauses,
for which any resolution proof of unsatisfiability requires at least 2Ω(n) resolution steps. An example
is a kSat formula that explicitly encodes the “nth Pigeonhole Principle”: that is, the statement that
there’s no way to assign n + 1 pigeons to n holes, without assigning two or more pigeons to the
same hole.

46

Haken’s proof formalized the intuition that any resolution proof of the Pigeonhole Principle will
ultimately be stuck “reasoning locally”: “let’s see, if I put this pigeon there, and that one there ...
darn, it still doesn’t work!” Such a proof has no ability to engage in higher-level reasoning about
the total number of pigeons.38

Since Haken’s breakthrough, there have been many other exponential lower bounds on the sizes
of unsatisfiability proofs, typically for proof systems that generalize resolution in some way (see
Beame and Pitassi [38] for a good survey). These, in turn, often let us prove exponential lower
bounds on the running times of certain kinds of algorithms. For example, there’s a widely-used
class of kSat algorithms called DPLL (Davis-Putnam-Logemann-Loveland) algorithms [79], which
are based on pruning the search tree of possible satisfying assignments. DPLL algorithms have the
property that, if one looks at the search tree of their execution on an unsatisfiable kSat formula φ,
one can read off a resolution proof that φ is unsatisfiable. From that fact, together with Theorem
45, it follows that there exist kSat formulas (for example, the Pigeonhole Principle formulas) for
which any DPLL algorithm requires exponential time.

In principle, if one could prove superpolynomial lower bounds for arbitrary proof systems (con-
strained only by the proofs being checkable in polynomial time), one would get P ̸= NP, and even
NP ̸= coNP! However, perhaps this motivates turning our attention to lower bounds on circuit size,
which tend to be somewhat easier than the analogous proof complexity lower bounds, and which—if
generalized to arbitrary Boolean circuits—would “merely” imply P ̸= NP and NP ̸⊂ P/poly, rather
than NP ̸= coNP.

6.2.2 Monotone Circuit Lower Bounds

Recall, from Section 5.2, that if we could merely prove that any family of Boolean circuits to solve
some NP problem required a superpolynomial number of AND, OR, and NOT gates, then that
would imply P ̸= NP, and even the stronger result NP ̸⊂ P/poly (that is, NP-complete problems
are not efficiently solvable by nonuniform algorithms).

Now, some NP-complete languages L have the interesting property of being monotone: that is,
changing an input bit from 0 to 1 can change the answer from x /∈ L to x ∈ L, but never from x ∈ L
to x /∈ L. An example is the Clique language: say, the set of all encodings of n-vertex graphs
G, as adjacency matrices of 0s and 1s, such that G contains a clique on at least

√
n vertices. It’s

not hard to see that we can decide any such language using a monotone circuit : that is, a Boolean
circuit of AND and OR gates only, no NOT gates. For the Clique language, for example, a
circuit could simply consist of an OR of

(
n√
n

)
ANDs, one for each possible clique. It thus becomes

interesting to ask what are the smallest monotone circuits for monotone NP-complete languages.
In 1985, Alexander Razborov, then a graduate student, astonished the complexity theory world

with the following result.

Theorem 46 (Razborov [207]) Any monotone circuit for Clique requires at least nΩ(logn) gates.

Subsequently, Alon and Boppana [26] improved this, to show that any monotone circuit to

detect a clique of size ∼ (n/ log n)2/3 must have size exp
(
Ω
(
(n/ log n)1/3

))
. I won’t go into the

38Haken’s proof has since been substantially simplified. Readers interested in a “modern” version should consult
Ben-Sasson and Wigderson [42], who split the argument into two easy steps: first, “short proofs are narrow”—that is,
any short resolution proof can be converted into another such proof that only contains clauses with few literals—and
second, any resolution refutation of a kSat instance encoding (for example) the pigeonhole principle must be “wide,”
because of the instance’s graph-expansion properties.

47

proof of Theorem 46 here, but it uses beautiful combinatorial techniques, including (in modern
versions) the Erdös-Rado sunflower lemma.

The significance of Theorem 46 is this: if we could now merely prove that any circuit for a
monotone language can be made into a monotone circuit without much increasing its size, then
we’d immediately get P ̸= NP and even NP ̸⊂ P/poly. Indeed, this was considered a potentially-
viable approach to proving P ̸= NP for some months. Alas, the approach turned out to be a dead
end, because of a result first shown by Razborov himself (and then improved by Tardos):

Theorem 47 (Razborov [208], Tardos [242]) There are monotone languages in P that require
exponentially-large monotone circuits. An example is the Matching language, consisting of all
adjacency-matrix encodings of n-vertex graphs that admit a matching on at least ∼ (n/ log n)2/3

vertices. This language requires monotone circuits of size exp
(
Ω
(
(n/ log n)1/3

))
.

Thus, while Theorem 46 stands as a striking example of the power of combinatorics to prove
circuit lower bounds, ultimately it tells us not about the hardness of NP-complete problems, but
only about the weakness of monotone circuits. Theorem 47 implies that, even if we’re trying
to compute a monotone Boolean function (such as the Matching function), allowing ourselves
the non-monotone NOT gate can yield an exponential reduction in circuit size. But Razborov’s
techniques break down completely as soon as a few NOT gates are available.39

I should also mention lower bounds on monotone depth. In the stCon (s, t-connectivity)
problem, we’re given as input the adjacency matrix of an undirected graph, and asked whether or
not there’s a path between two designated vertices s and t. By using their connection between
circuit depth and communication complexity (see Section 6), Karchmer and Wigderson [134] were
able to prove that any monotone circuit for stCon requires Ω

(
log2 n

)
depth—and as a consequence,

that any monotone formula for stCon requires nΩ(logn) size. Since stCon is known to have
monotone circuits of polynomial size, this implies in particular that monotone formula size and
monotone circuit size are not polynomially related.

6.2.3 Small-Depth Circuits and the Random Restriction Method

Besides restricting the allowed gates (say, to AND and OR only), there’s a second natural way
to “hobble” a circuit, and thereby potentially make it easier to prove lower bounds on circuit
size. Namely, we can restrict the circuit’s depth, the number of layers of gates between input and
output. If the allowed gates all have a fanin of 1 or 2 (that is, they all take only 1 or 2 input
bits), then clearly any circuit that depends nontrivially on all n of the input bits must have depth
at least log2 n. On the other hand, if we allow gates of unbounded fanin—for example, ANDs or
XORs or MAJORITYs on unlimited numbers of inputs—then it makes sense to ask what can be
computed even by circuits of constant depth. Constant-depth circuits are very closely related to
neural networks, which also consist of a small number of layers of “logic gates” (i.e., the neurons),
with each neuron allowed to have very large “fanin”—i.e., to accept input from many or all of the
neurons in the previous layer.

39Note that, if we encode the input string using the so-called dual-rail representation—in which every 0 is repre-
sented by the 2-bit string 01, and every 1 by 10—then the monotone circuit complexities of Clique, Matching, and
so on do become essentially equivalent to their non-monotone circuit complexities, since we can push all the NOT
gates to the bottom layer of the circuit using de Morgan’s laws, and then eliminate the NOT gates using the dual-rail
encoding. Unfortunately, Razborov’s lower bound techniques also break down under dual-rail encoding.

48

If we don’t also restrict the number of gates or neurons, then it turns out that every function
can be computed in small depth:

Proposition 48 Every Boolean function f : {0, 1}n → {0, 1} can be computed by an unbounded-
fanin, depth-3 circuit of size O (n2n): namely, by an OR of ANDs of input bits and their negations.

Proof. We simply need to check whether the input, x ∈ {0, 1}n, is one of the z’s such that
f (z) = 1:

f (x) =
∨

z=z1···zn : f(z)=1

 ∧
i∈{1,...,n} : zi=1

xi

 ∧

 ∧
i∈{1,...,n} : zi=0

xi

 .

Similarly, in typical neural network models, every Boolean function can be computed by a
network with ∼ 2n neurons arranged into just 2 layers.

So the interesting question is what happens if we restrict both the depth and the number of
gates or neurons. More formally, let AC0 be the class of languages L ⊆ {0, 1}∗ for which there
exists a family of circuits {Cn}n≥1, one for each input size n, such that:

(1) Cn (x) outputs 1 if x ∈ L and 0 if x /∈ L, for all n and x ∈ {0, 1}n.

(2) Each Cn consists of unbounded-fanin AND and OR gates, as well as NOT gates.

(3) There is a polynomial p such that each Cn has at most p (n) gates.

(4) There is a constant d such that each Cn has depth at most d.

Clearly AC0 is a subclass of P/poly; indeed we recover P/poly by omitting condition (4). Now,
one of the major triumphs of complexity theory in the 1980s was to understand AC0, as we still
only dream of understanding P/poly. It’s not just that we know NP ̸⊂ AC0; rather, it’s that we
know in detail which problems are and aren’t in AC0 (even problems within P), and exactly how
many gates are needed for each given depth d. As the most famous example, let Parity be the
language consisting of all strings with an odd number of ‘1’ bits. Then:

Theorem 49 (Ajtai [17], Furst-Saxe-Sipser [94]) Parity is not in AC0.

While the original lower bounds on the size of AC0 circuits for Parity were only slightly
superpolynomial, Theorem 49 was subsequently improved by Yao [270] and then by H̊astad [114],
the latter of whom gave an essentially optimal result: namely, any AC0 circuit for Parity of depth

d requires at least 2Ω(n
1/(d−1)) gates.

The first proofs of Theorem 49 used what’s called the method of random restrictions. In this
method, we assume by contradiction that we have a size-s, depth-d, unbounded-fanin circuit C for
our Boolean function—say, the Parity function. We then randomly fix most of the input bits to 0
or 1, while leaving a few input bits unfixed. What we hope to find is that the random restriction
“kills off” an entire layer of gates—because any AND gate that takes even one constant 0 bit as
input can be replaced by the constant 0 function, and likewise, any OR gate that takes even one 1
bit as input can be replaced by the constant 1 function. Thus, any AND or OR gate with a large

49

fanin is extremely likely to be killed off; gates with small fanin might not be killed off, but can be
left around to be dealt with later. We then repeat this procedure, randomly restricting most of
the remaining unfixed bits, in order to kill off the next higher layer of AND and OR gates, and so
on through all d layers. By the time we’re done, we’ve reduced C to a shadow of its former self:
specifically, to a circuit that depends on only a constant number of input bits. Meanwhile, even
though only a tiny fraction of the input bits (say, n1/d of them) remain unfixed, we still have a
nontrivial Boolean function on those bits: indeed, it’s easy to see that any restriction of the Parity
function to a subset S of bits will either be Parity itself, or else NOT(Parity). But a circuit of
constant size clearly can’t compute a Boolean function that depends on ∼ n1/d input bits. This
yields our desired contradiction.

At a high level, there were three ingredients needed for the random restriction method to work.
First, the circuit needed to built out of AND and OR gates, which are likely to get killed off by
random restrictions. The method wouldn’t have worked if the circuit contained unbounded-fanin
MAJORITY gates (as a neural network does), or even unbounded-fanin XOR gates. Second, it
was crucial that the circuit depth d was small, since we needed to shrink the number of unfixed
input variables by a large factor d times, and then still have unfixed variables left over. It turns out

that random restriction arguments can yield some lower bound whenever d = o
(

logn
log logn

)
, but not

beyond that. Third, we needed to consider a function, such as Parity, that remains nontrivial
even after the overwhelming majority of input bits are randomly fixed to 0 or 1. The method
wouldn’t have worked, for example, for the n-bit AND function (which is unsurprising, since the
AND function does have a depth-1 circuit, consisting of a single AND gate!).

The original proofs for Parity /∈ AC0 have been generalized and improved on in many ways.
For example, Linial, Mansour, and Nisan [161] examined the weakness of AC0 circuits from a
different angle: “turning lemons into lemonade,” they gave a quasipolynomial-time algorithm to
learn arbitrary AC0 circuits with respect to the uniform distribution over inputs.40 Also, proving
a conjecture put forward by Linial and Nisan [162] (and independently Babai), Braverman [55]
showed that AC0 circuits can’t distinguish the outputs of a wide range of pseudorandom generators
from truly random strings.

Meanwhile, H̊astad [114] showed that for every d, there are functions computable by AC0 circuits
of depth d that require exponentially many gates for AC0 circuits of depth d−1. This implies that
there exists an oracle relative to which PH is infinite (that is, all its levels are distinct). Improving
that result, Rossman, Servedio, and Tan [213] very recently showed that the same functions H̊astad
had considered require exponentially many gates even to approximate using AC0 circuits of depth
d−1. This implies that PH is infinite relative to a random oracle with probability 1, which resolved
a thirty-year-old open problem.

The random restriction method has also had other applications in complexity theory, besides
to AC0. Most notably, it’s been used to prove polynomial lower bounds on formula size. The
story of formula-size lower bounds starts in 1961 with Subbotovskaya [238], who used random
restrictions to show that the n-bit Parity function requires formulas of size Ω

(
n1.5

)
. Later

Khrapchenko [142] improved this to Ω
(
n2

)
, which is tight.41 Next, in 1987, Andreev [27] con-

40By a “learning algorithm,” here we mean an algorithm that takes as input uniformly-random samples x1, . . . , xk ∈
{0, 1}n, as well as f (x1) , . . . , f (xk), where f is some unknown function in AC0, and that with high probability over
the choice of x1, . . . , xk, outputs a hypothesis h such that Prx∈{0,1}n [h (x) = f (x)] is close to 1.

41Assume for simplicity that n is a power of 2. Then x1⊕· · ·⊕xn can be written as y⊕z, where y := x1⊕· · ·⊕xn/2

and z := xn/2+1 ⊕ · · · ⊕ xn. This in turn can be written as (y ∧ z) ∨ (y ∧ z). Expanding recursively now yields a

50

structed a different Boolean function in P that could be shown, again using random restrictions,
to require formulas of size n2.5−o(1). This was subsequently improved to n2.55−o(1) by Impagliazzo
and Nisan [126], to n2.63−o(1) by Paterson and Zwick [195], and finally to n3−o(1) by H̊astad [115]

and to Ω
(

n3

(logn)2(log logn)3

)
by Tal [241]. Unfortunately, the random restriction method seems

fundamentally incapable of going beyond Ω
(
n3

)
. On the other hand, for Boolean circuits rather

than formulas, we still have no lower bound better than linear for any function in P (or for that
matter, in NP)!

6.2.4 Small-Depth Circuits and the Polynomial Method

For our purposes, the most important extension of Theorem 49 was achieved by Smolensky [230]
and Razborov [209] in 1987. Let AC0 [m] be the class of languages decidable by a family of constant-
depth, polynomial-size, unbounded-fanin circuits with AND, OR, NOT, and MOD-m gates (which
output 1 if their number of ‘1’ input bits is divisible by m, and 0 otherwise). Adding in MOD-m
gates seems like a natural extension of AC0: for example, if m = 2, then we’re just adding Parity,
one of the most basic functions not in AC0.

However, Smolensky and Razborov extended the class of circuits for which lower bounds can
be proven from AC0 to AC0 [p], whenever p is prime.

Theorem 50 (Smolensky [230], Razborov [209]) Let p and q be distinct primes. Then Modq,
the set of all strings with Hamming weight divisible by q, is not in AC0 [p]. Indeed, any AC0 [p]

circuit for Modq of depth d requires 2Ω(n
1/2d) gates. As a corollary, the Majority function is

also not in AC0 [p], and also requires 2Ω(n
1/2d) gates to compute using AC0 [p] circuits of depth d.

It’s not hard to show that AC0 [p] = AC0
[
pk
]
for any k ≥ 1, and thus, one also gets lower

bounds against AC0 [m], whenever m is a prime power.
The proof of Theorem 50 uses the so-called polynomial method. Here one argues that, if a

function f can be computed by a constant-depth circuit with AND, OR, NOT, and MOD-p gates,
then f can also be approximated by a low-degree polynomial over the finite field Fp. One then
shows that a function of interest, such as the Modq function (for q ̸= p), can’t be approximated by
any such low-degree polynomial. This provides the desired contradiction.

The polynomial method is famously specific in scope: it’s still not known how to prove results
like Theorem 50 even for AC0 [m] circuits, where m is not a prime power.42 The reason why it
breaks down there is simply that there are no finite fields of non-prime-power order. And thus, to
be concrete, it’s still open whether the n-bit Majority function has a constant-depth, polynomial-
size, unbounded-fanin circuit consisting of AND, OR, NOT, and MOD-6 gates, or even entirely of
MOD-6 gates!

Stepping back, it’s interesting to ask whether the constant-depth circuit lower bounds evade
the relativization barrier explained in Section 6.1.2. There’s some disagreement about whether
it’s even sensible to feed oracles to tiny complexity classes such as AC0 (see Allender and Gore [23]
for example). However, to whatever extent it is sensible, the answer is that these lower bounds

size-n2 formula for Parity, made of AND, OR, and NOT gates.
42Williams’s NEXP ̸⊂ ACC breakthrough [266], to be discussed in Section 6.4.2, could be seen as the first successful

use of the “polynomial method” to prove a lower bound against AC0 [m] circuits—though in that case, the lower
bound applies only to NEXP-complete problems, and polynomials are only one ingredient in the proof among many.

51

do evade relativization. For example, if by
(
AC0

)A
, we mean AC0 extended by “oracle gates” that

query A, then it’s easy to construct an A such that
(
AC0

)A
= PA: for example, any A that is

P-complete under AC0-reductions will work. On the other hand, we know from Theorem 49 that
AC0 ̸= P in the “real,” unrelativized world.

6.2.5 The Natural Proofs Barrier

Despite the weakness of AC0 and AC0 [p] circuits, the progress on lower bounds for them suggested
what seemed to many researchers like a plausible path to proving NP ̸⊂ P/poly, and hence P ̸= NP.
That path is simply to generalize the random restriction and polynomial methods further and
further, to get lower bounds for more and more powerful classes of circuits. The first step, of
course, would be to generalize the polynomial method to handle AC0 [m] circuits, where m is not
a prime power. Then one could handle what are called TC0 circuits: that is, constant-depth,
polynomial-size, unbounded-fanin circuits with MAJORITY gates (or, as in a neural network,
threshold gates, which output 1 if a certain weighted affine combination of the input bits exceeds 0,
and 0 otherwise). Next, one could aim for polynomial-size circuits of logarithmic depth: that is,
the class NC1. Finally, one could push all the way to polynomial-depth circuits: that is, the class
P/poly.

Unfortunately, we now know that this path hits a profound barrier at TC0, if not earlier—a
barrier that explains why the random restriction and polynomial methods haven’t taken us further
toward a proof of P ̸= NP. Apparently this barrier was known to Michael Sipser (and perhaps a
few others) in the 1980s, but it was first articulated in print in 1993 by Razborov and Rudich [211],
who called it the natural proofs barrier.

The basic insight is that combinatorial techniques, such as the method of random restrictions,
do more than advertised: in some sense, they do too much for their own good. In particular,
not only do they let us show that certain specific functions, like Parity, are hard for AC0; they
even let us certify that a random function is hard for AC0. Indeed, such techniques give rise to
an algorithm, which takes as input the truth table of a Boolean function f : {0, 1}n → {0, 1}, and
which has the following two properties.

(1) “Constructivity.” The algorithm runs in time polynomial in the size of f ’s truth table
(that is, polynomial in 2n).

(2) “Largeness.” If f is chosen uniformly at random, then with probability at least 1/nO(1)

over f , the algorithm certifies that f is hard (i.e., that f is not in some circuit class C, such
as AC0 in the case of the random restriction method).

If a lower bound proof gives rise to an algorithm satisfying (1) and (2), then Razborov and
Rudich call it a natural proof. In many cases, it’s not entirely obvious that a lower bound proof
is natural, but with some work one can show that it is. To illustrate, in the case of the random
restriction method, the algorithm could check that f has a large fraction of its Fourier mass on
high-degree Fourier coefficients, or that f has high “average sensitivity” (that is, if x and y are
random inputs that differ only in a single bit, then with high probability f (x) ̸= f (y)). These
tests have the following three properties:

• They’re easy to perform, in time polynomial in the truth table size 2n.

52

• A random function f will pass these tests with overwhelming probability (that is, such an f
will “look like Parity” in the relevant respects).

• The results of Linial, Mansour, and Nisan [161] show that any f that passes these tests
remains nontrivial under most random restrictions, and for that reason, can’t be in AC0.

But now, twisting the knife, Razborov and Rudich point out that any natural lower bound proof
against a powerful enough complexity class would be self-defeating, in that it would yield an efficient
algorithm to solve some of the same problems that we’d set out to prove were hard. More concretely,
suppose we have a natural lower bound proof against the circuit class C. Then by definition, we
also have an efficient algorithm A that, given a random Boolean function f : {0, 1}n → {0, 1},
certifies that f /∈ C with at least 1/nO(1) probability over f . But this means that C cannot contain
very strong families of pseudorandom functions: namely, functions f : {0, 1}n → {0, 1} that are
indistinguishable from “truly” random functions, even by algorithms that can examine their entire
truth tables and use time polynomial in 2n.

Why not? Because A can never certify f /∈ C if f is a pseudorandom function, computable
in C. But A certifies f /∈ C with 1/nO(1) probability over a truly random f . Thus, A serves
to distinguish random from pseudorandom functions with non-negligible43 bias—so the latter were
never really pseudorandom at all.

To recap, we’ve shown that, if there’s any natural proof that any function is not in C, then
all Boolean functions computable in C can be distinguished from random functions by 2O(n)-time
algorithms. That might not sound so impressive, since 2O(n) is a lot of time. But a key observation
is that, for most of the circuit classes C that we care about, there are families of pseudorandom
functions {fs}s on n bits that are conjectured to require 2p(n) time to distinguish from truly random
functions, where p (n) is as large a polynomial as we like (related to the length of the random “seed”
s). It follows from results of Naor and Reingold [188] that in TC0 (constant-depth, polynomial-size
threshold circuits), there are functions that can’t be distinguished from random functions in 2O(n)

time, unless the factoring and discrete logarithm problems are solvable in O
(
2n

ε)
time for every

ε > 0. (For comparison, the best known algorithms for these problems take roughly 2n
1/3

time.)
Likewise, Banerjee et al. [37] showed that in TC0, there are functions that can’t be distinguished
from random in 2O(n) time, unless noisy systems of linear equations can be solved in O

(
2n

ε)
time

for every ε > 0.
It’s worth pausing to let the irony sink in. Razborov and Rudich are pointing out that, as we

showed certain problems (factoring and discrete logarithm) to be harder and harder via a natural
proof, we’d simultaneously show those same problems to be easier and easier! Indeed, any natural
proof showing that these problems took at least t (n) time, would also show that they took at most
roughly 2t

−1(n) time. As a result, no natural proof could possibly show these problems take more
than half-exponential time: that is, time t (n) such that t (t (n)) grows exponentially.

Here, perhaps, we’re finally face-to-face with a central conceptual difficulty of the P
?
= NP

question: namely, we’re trying to prove that certain functions are hard, but the problem of deciding
whether a function is hard is itself hard, according to the very sorts of conjectures that we’re trying
to prove.44

43In theoretical computer science, the term non-negligible means lower-bounded by 1/nO(1).
44Technically, the problem of distinguishing random from pseudorandom functions is equivalent to the problem of

inverting one-way functions, which is not quite as strong as solving NP-complete problems in polynomial time—only
solving average-case NP-complete problems with planted solutions. For more see Section 5.3.

53

Of course, the natural proofs barrier didn’t prevent complexity theorists from proving strong
lower bounds against AC0. But the result of Linial, Mansour, and Nisan [161] can be interpreted
as saying that this is because AC0 is not yet powerful enough to express pseudorandom functions.
When we move just slightly higher, to TC0 (constant-depth threshold circuits), we do have pseudo-
random functions under plausible hardness assumptions, and—not at all coincidentally, according
to Razborov and Rudich—we no longer have strong circuit lower bounds. In that sense, natural
proofs explains almost precisely why the progress toward proving P ̸= NP via circuit complexity
stalled where it did. The one complication in the story is the AC0 [m] classes, for which we don’t
yet have strong lower bounds (though see Section 6.4), but also don’t have pseudorandom function
candidates. For those classes, it’s still possible that natural proofs could succeed.

As Razborov and Rudich themselves stressed, the take-home message is not that we should
give up on proving P ̸= NP. In fact, since the beginning of complexity theory, we’ve had at least
one technique that easily evades the natural proofs barrier: namely, diagonalization (the technique
used to prove P ̸= EXP; see Section 6.1)! The reason why diagonalization evades the barrier is
that it zeroes in on a specific property of the function f being lower-bounded—namely, the fact
that f is EXP-complete, and thus able to simulate all P machines—and thereby avoids the trap
of arguing that “f is hard because it looks like a random function.” Of course, diagonalization is
subject to the relativization barrier (see Section 6.1.2), so the question still stands of how to evade
relativization and natural proofs simultaneously; we’ll return to that question in Section 6.3.

More broadly, there are many cases in mathematics where we can prove that some object O
of interest to us has a property P , even though we have no hope of finding a general polynomial-
time algorithm to decide whether any given object has property P , or even to certify a large
fraction of objects as having property P . In such cases, often we prove that O has property P by
exploiting special symmetries in O—symmetries that have little to do with why O has property P ,
but everything to do with why we can prove it has the property. As an example, a random graph
is an expander graph (that is, a graph on which a random walk mixes rapidly) with overwhelming
probability. But since the general problem of deciding whether a graph is an expander is NP-hard,
if we want a specific graph G that’s provably an expander, typically we need to construct G with
a large amount of symmetry: for example, by taking it to be the Cayley graph of a finite group.
Similarly, even though we expect that there’s no general efficient algorithm to decide if a Boolean
function f is hard,45 given as input f ’s truth table, we might be able to prove that certain specific
f ’s (for example, NP- or #P-complete ones) are hard by exploiting their symmetries. Geometric
Complexity Theory (see Section 6.6) is the best-known development of that particular hope for
escaping the natural proofs barrier.

But GCT is not the only way to use symmetry to evade natural proofs. As a vastly smaller
example, I [2, Appendix 10] proved an exponential lower bound on the so-called manifestly orthog-
onal formula size of a function f : {0, 1}n → {0, 1} that outputs 1 if the input x is a codeword of

45The problem, given as input the truth table of a Boolean function f : {0, 1}n → {0, 1}, of computing or
approximating the circuit complexity of f is called the Minimum Circuit Size Problem (MCSP). It’s a longstanding
open problem whether or not MCSP is NP-hard; at any rate, there are major obstructions to proving it NP-hard
with existing techniques (see Kabanets and Cai [130] and Murray and Williams [187]). On the other hand, MCSP
can’t be in P (or BPP) unless there are no cryptographically-secure pseudorandom generators. At any rate, what’s
relevant to natural proofs is just whether there’s an efficient algorithm to certify a large fraction of Boolean functions
as being hard: that is, to output “f is hard” for a 1/poly (n) fraction of Boolean functions f : {0, 1}n → {0, 1}
that require large circuits, and for no Boolean functions that have small circuits. This is a weaker requirement than
solving MCSP.

54

a linear error-correcting code, and 0 otherwise. Here a manifestly orthogonal formula is a formula
over x1, . . . , xn, x1, . . . , xn consisting of OR and AND gates, where every OR must be of two sub-
formulas over the same set of variables, and every AND must be of two subformulas over disjoint
sets of variables. My lower bound wasn’t especially difficult, but what’s notable about it is that
it took crucial advantage of a symmetry of linear error-correcting codes: namely, the fact that any
such code can be recursively decomposed as a disjoint union of Cartesian products of smaller linear
error-correcting codes. My proof thus gives no apparent insight into how to certify that a random
Boolean function has manifestly orthogonal formula size exp (n), and possibly evades the natural
proofs barrier (if there is such a barrier in the first place for manifestly orthogonal formulas).

Another proposal for how to evade the natural proofs barrier comes from a beautiful 2010
paper by Allender and Koucký [25] (see also Allender’s survey [21]). These authors show that,
if one wanted to prove that certain specific NC1 problems were not in TC0, thereby establishing
the breakthrough separation TC0 ̸= NC1, it would suffice to show that those problems had no TC0

circuits of size n1+ε, for any constant ε > 0. To achieve this striking “bootstrap,” from an n1+ε

lower bound to a superpolynomial one, Allender and Koucký exploit the self-reducibility of the
NC1 problems in question: the fact that they can be reduced to smaller instances of themselves.
Crucially, this self-reducibility would not hold for a random function. For this reason, the proposed
lower bound method has at least the potential to evade the natural proofs barrier. Indeed, it’s
not even totally implausible that a natural proof could yield an n1+ε lower bound for TC0 circuits,
with the known bootstrapping from n1+ε to superpolynomial the only non-natural part of the
argument.46

I can’t resist mentioning a final idea about how to evade natural proofs. In a 2014 paper,
Chapman and Williams [70] suggested proving circuit lower bounds for NP-complete problems like
3Sat, via arguments that would work only for circuits that are self-certifying : that is, that output
satisfying assignments whenever they exist, which we know that a circuit solving NP-complete
problems can always do by Proposition 4. Strikingly, they then showed that if NP ̸⊂ P/poly is
true at all, then it has a proof that’s “natural” in their modified sense: that is, a proof that yields
an efficient algorithm to certify that a 1/nO(1) fraction of all Boolean functions f : {0, 1}n → {0, 1}
either don’t have polynomial-size circuits or else aren’t self-certifying. Thus, if we could just figure
out how to exploit NP-complete problems’ property of self-certification, that would already be
enough to evade natural proofs.

6.3 Arithmetization

In the previous sections, we saw that there are logic-based techniques (like diagonalization) that
suffice to prove P ̸= EXP and NEXPNP ̸⊂ P/poly, and that evade the natural proofs barrier, but that
are blocked from proving P ̸= NP by the relativization barrier. Meanwhile, there are combinatorial
techniques (like random restrictions) that suffice to prove circuit lower bounds against AC0 and
AC0 [p], and that evade the relativization barrier, but that are blocked from proving lower bounds
against P/poly (and hence, from proving P ̸= NP) by the natural proofs barrier.

46Allender and Koucký’s paper partly builds on 2003 work by Srinivasan [232], who showed that, to prove P ̸= NP,
one would “merely” need to show that any algorithm to compute weak approximations for the MaxClique problem
takes Ω

(
n1+ε

)
time, for some constant ε > 0. The way Srinivasan proved this striking statement was, again, by

using a sort of self-reduciblity: he showed that, if there’s a polynomial-time algorithm for MaxClique, then by
running that algorithm on smaller graphs sampled from the original graph, one can solve approximate versions of
MaxClique in n1+o(1) time.

55

This raises a question: couldn’t we simply combine techniques that evade relativization but not
natural proofs, with techniques that evade natural proofs but not relativization, in order to evade
both? As it turns out, we can.

6.3.1 IP = PSPACE

The story starts with a dramatic development in complexity theory around 1990, though not
one that obviously bore on P ̸= NP or circuit lower bounds. In the 1980s, theoretical cryp-
tographers became interested in so-called interactive proof systems, which are protocols where a
computationally-unbounded but untrustworthy prover (traditionally named Merlin) tries to con-
vince a skeptical polynomial-time verifier (traditionally named Arthur) that some mathematical
statement is true, via a two-way conversation, in which Arthur can randomly generate challenges
and then evaluate Merlin’s answers to them.

More formally, let IP (Interactive Proof) be the class of all languages L ⊆ {0, 1}∗ for which there
exists a probabilistic polynomial-time algorithm for Arthur with the following properties. Arthur
receives an input string x ∈ {0, 1}n (which Merlin also knows), and then generates up to nO(1)

challenges to send to Merlin. Each challenge is a string of up to nO(1) bits, and each can depend
on x, on Arthur’s internal random bits, and on Merlin’s responses to the previous challenges. (We
also allow Arthur, if he likes, to keep some random bits hidden, without sending them to Merlin—
though surprisingly, this turns out not to make any difference [101].) We think of Merlin as trying
his best to persuade Arthur that x ∈ L; at the end, Arthur decides whether to accept or reject
Merlin’s claim. We require that for all inputs x:

• If x ∈ L, then there’s some strategy for Merlin (i.e., some function determining which message
to send next, given x and the sequence of challenges so far47) that causes Arthur to accept
with probability at least 2/3 over his internal randomness.

• If x /∈ L, then regardless of what strategy Merlin uses, Arthur rejects with probability at least
2/3 over his internal randomness.

Clearly IP generalizes NP: indeed, we recover NP if we get rid of the interaction and randomness
aspects, and just allow a single message from Merlin, which Arthur either accepts or rejects. In
the other direction, it’s not hard to show that IP ⊆ PSPACE.48

The question asked in the 1980s was: does interaction help? In other words, how much bigger
is IP than NP? It was observed that IP contains at least a few languages that aren’t known to
be in NP, such as graph non-isomorphism. This is so because of a simple, famous, and elegant
protocol [100]: given two n-vertex graphs G and H, Arthur can pick one of the two uniformly at
random, randomly permute its vertices, then send the result to Merlin. He then challenges Merlin:
which graph did I start from, G or H? If G ≇ H, then Merlin, being computationally unbounded,
can easily answer this challenge by solving graph isomorphism. If, on the other hand, G ∼= H,

47We can assume without loss of generality that Merlin’s strategy is deterministic, since Merlin is computationally
unbounded, and any convex combination of strategies must contain a deterministic strategy that causes Arthur to
accept with at least as great a probability as the convex combination does.

48This is so because a polynomial-space Turing machine can treat the entire interaction between Merlin and Arthur
as a game, in which Merlin is trying to get Arthur to accept with the largest possible probability. The machine can
then evaluate the exponentially large game tree using depth-first recursion.

56

then Merlin sees the same distribution over graphs regardless of whether Arthur started from G or
H, so he must guess wrongly with probability 1/2.

Despite such protocols, the feeling in the late 1980s was that IP should be only a “slight”
extension of NP. This feeling was buttressed by a result of Fortnow and Sipser [91], which said
that there exists an oracle A such that coNPA ̸⊂ IPA, and hence, any interactive protocol even for
coNP (e.g., for proving Boolean formulas unsatisfiable) would require non-relativizing techniques.

Yet in the teeth of that oracle result, Lund, Fortnow, Karloff, and Nisan [168] showed never-
theless that coNP ⊆ IP “in the real world”—and not only that, but P#P ⊆ IP. This was quickly
improved by Shamir [221] to the following striking statement:

Theorem 51 ([168, 221]) IP = PSPACE.

Theorem 51 means, for example, that if a computationally-unbounded alien came to Earth, it
could not merely beat us in games of strategy like chess: rather, the alien could mathematically
prove to us, via a short conversation and to statistical certainty, that it knew how to play perfect
chess.49 Theorem 51 has been hugely influential in complexity theory for several reasons, but one
reason was that it illustrated, dramatically and indisputably, that the relativization barrier need
not inhibit progress.

So how was this amazing result achieved, and why does the proof fail relative to certain oracles?
The trick is what we now call arithmetization. This means that we take a Boolean formula or
circuit—involving, for example, AND, OR, and NOT gates—and then reinterpret the Boolean gates
as arithmetic operations over some larger finite field Fp. More concretely, the Boolean AND (x∧y)
becomes multiplication (xy), the Boolean NOT becomes the function 1 − x, and the Boolean OR
(x ∨ y) becomes x + y − xy. Note that if x, y ∈ {0, 1}, then we recover the original Boolean
operations. But the new operations make sense even if x, y /∈ {0, 1}, and they have the effect
of lifting our Boolean formula or circuit to a multivariate polynomial over Fp. Furthermore, the
degree of the polynomial can be upper-bounded in terms of the size of the formula or circuit.

The advantage of this lifting is that polynomials, at least over large finite fields, have powerful
error-correcting properties that are unavailable in the Boolean case. These properties ultimately
derive from a basic fact of algebra: a nonzero, degree-d univariate polynomial has at most d roots.
As a consequence, if q, q′ : Fp → Fp are two degree-d polynomials that are unequal (and d ≪ p),
then with high probability, their inequality can be seen by querying them at a random point:

Pr
x∈Fp

[
q (x) = q′ (x)

]
≤ d

p
.

Let me now give a brief impression of how one proves Theorem 51, or at least the simpler result
coNP ⊆ IP. Let φ (x1, . . . , xn) be, say, a 3Sat formula that Merlin wants to convince Arthur is
unsatisfiable. Then Arthur first lifts φ to a multivariate polynomial q : Fn

p → Fp, of degree d ≤ |φ|
(where |φ| is the size of φ), over the finite field Fp, for some p ≫ 2n. Merlin’s task is equivalent to
convincing Arthur of the following equation:∑

x1,...,xn∈{0,1}

q (x1, . . . , xn) = 0.

49This assumes that we restrict attention to chess games that end after a “reasonable” number of moves, as would
be normal in tournament play because of the time limits. Formally, if we consider a generalization of chess to n× n
boards, then deciding the win from a given board position is in PSPACE (and in fact PSPACE-complete [234]), and
hence in IP, provided we declare a game a draw if it’s gone on for p (n) moves, for some polynomial p. Without the
restriction to nO(1) moves, chess is EXP-complete [92].

57

To achieve this, Merlin first sends Arthur the coefficients of a univariate polynomial q1 : Fp → Fp.
Merlin claims that q1 satisfies

q1 (x1) =
∑

x2,...,xn∈{0,1}

q (x1, x2, . . . , xn) , (1)

and also satisfies q1 (0) + q1 (1) = 0. Arthur can easily check the latter equation for himself. To
check equation (1), Arthur picks a random value r1 ∈ Fp for x1 and sends it to Merlin. Then
Merlin replies with a univariate polynomial q2, for which he claims that

q2 (x2) =
∑

x3,...,xn∈{0,1}

q (r1, x2, x3, . . . , xn) .

Arthur checks that q2 (0)+q2 (1) = q1 (r1), then picks a random value r2 ∈ Fp for x2 and sends it to
Merlin, and so on. Finally, Arthur checks that qn is indeed the univariate polynomial obtained by
starting from the arithmetization of φ, then fixing x1, . . . , xn−1 to r1, . . . , rn−1 respectively. The
bounded number of roots ensures that, if Merlin lied at any point in the protocol, then with high
probability at least one of Arthur’s checks will fail.

Now, to return to the question that interests us: why does this protocol escape the relativization
barrier? The short answer is: because if the Boolean formula φ involved oracle gates, then we
wouldn’t have been able to arithmetize φ. By arithmetizing φ, we did something “deeper” with
it, more dependent on its structure, than simply evaluating φ on various Boolean inputs (which
would have continued to work fine had an oracle been involved).

Arithmetization made sense because φ was built out of AND and OR and NOT gates, which
we were able to reinterpret arithmetically. But how would we arithmetically reinterpret an oracle
gate?

6.3.2 Hybrid Circuit Lower Bounds

To recap, PSPACE ⊆ IP is a non-relativizing inclusion of complexity classes. But can we leverage
that achievement to prove non-relativizing separations between complexity classes, with an eye
toward P ̸= NP? Certainly, by combining IP = PSPACE with the Space Hierarchy Theorem (which
implies SPACE

(
nk

)
̸= PSPACE for every fixed k), we get that IP ̸⊂ SPACE

(
nk

)
for every fixed k.

Likewise, by combining IP = PSPACE with Theorem 40 (that PSPACE does not have circuits of size
nk for fixed k), we get that IP doesn’t have circuits of size nk either. Furthermore, both of these
separations can be shown to be non-relativizing, using techniques from [60]. But can we get more
interesting separations?

The key to doing so turns out to be a beautiful corollary of the IP = PSPACE theorem. To
state the corollary, we need one more complexity class: MA (Merlin-Arthur) is a probabilistic
generalization of NP. It’s defined as the class of languages L ⊆ {0, 1}∗ for which there exists a
probabilistic polynomial-time verifier M , and a polynomial p, such that for all inputs x ∈ {0, 1}∗:

• If x ∈ L then there exists a witness string w ∈ {0, 1}p(|x|) such that M (x,w) accepts with
probability at least 2/3 over its internal randomness.

• If x /∈ L, then M (x,w) rejects with probability at least 2/3 over its internal randomness, for
all w.

58

Clearly MA contains NP and BPP. It can also be shown that MA ⊆ ΣP
2 ∩ΠP

2 and that MA ⊆ PP,
where PP is the counting class from Section 2.2.6. Now, here’s the corollary of Theorem 51:

Corollary 52 If PSPACE ⊂ P/poly, then PSPACE = MA.

Proof. Suppose PSPACE ⊂ P/poly, let L ∈ PSPACE, and let x be an input in L. Then as an MA
witness proving that x ∈ L, Merlin simply sends Arthur a description of a polynomial-size circuit
C that simulates the PSPACE prover, in an interactive protocol that convinces Arthur that x ∈ L.
(Here we use one additional fact about Theorem 51, beyond the mere fact that IP = PSPACE: that,
in the protocol, Merlin can run a PSPACE algorithm to decide which message to send next.) Then
Arthur simulates the protocol, using C to compute Merlin’s responses to his random challenges,
and accepts if and only if the protocol does. Hence L ∈ MA.

Likewise:

Corollary 53 If P#P ⊂ P/poly, then P#P = MA.

(Again, here we use the observation that, in the protocol proving that P#P ⊆ IP, Merlin can
run a P#P algorithm to decide which message to send next.)

Let’s now see how we can use these corollaries of IP = PSPACE to prove new circuit lower
bounds. Let MAEXP be “the exponential-time version of MA,” with a 2p(n)-size witness that can
be probabilistically verified in 2p(n) time: in other words, the class that is to MA as NEXP is to NP.
Then:

Theorem 54 (Buhrman-Fortnow-Thierauf [60]) MAEXP ̸⊂ P/poly.

Proof. Suppose by contradiction that MAEXP ⊂ P/poly. Then certainly PSPACE ⊂ P/poly, which
means that PSPACE = MA by Corollary 52. By a padding argument (see Proposition 17), this
means that EXPSPACE = MAEXP. But we already saw in Theorem 39 that EXPSPACE ̸⊂ P/poly,
and therefore MAEXP ̸⊂ P/poly as well.

Note in particular that if we could prove MA = NP, then we’d also have MAEXP = NEXP
by padding, and hence NEXP ̸⊂ P/poly by Theorem 54. This provides another example of how
derandomization can lead to circuit lower bounds, a theme mentioned in Section 6.

A second example involves the class PP.

Theorem 55 (Vinodchandran [253]) For every fixed k, there is a language in PP that does not
have circuits of size nk.

Proof. Fix k, and suppose by contradiction that PP has circuits of size nk. Then in particular,
PP ⊂ P/poly, so PPP = P#P ⊂ P/poly, so P#P = PP = MA by Corollary 53. But we noted in
Section 6.1 that ΣP

2 does not have circuits of size nk. And ΣP
2 ⊆ P#P by Toda’s Theorem (Theorem

13), so P#P doesn’t have circuits of size nk either. Therefore neither does PP.50

As a final example, Santhanam [215] showed the following (we omit the proof).

50Actually, for this proof one does not really need either Toda’s Theorem, or the slightly-nontrivial result that ΣP
2

does not have circuits of size nk. Instead, one can just argue directly that at any rate, P#P does not have circuits
of size nk, using a slightly more careful version of the argument of Theorem 39. For details see Aaronson [4].

59

Theorem 56 (Santhanam [215]) For every fixed k, there is an MA “promise problem”51 that
does not have circuits of size nk.

The above results clearly evade the natural proofs barrier, because they give lower bounds
against strong circuit classes such as P/poly, or the set of all size-nk circuits for fixed k. This is
not so surprising when we observe that the proofs build on the simpler results from Section 6.1,
which already used diagonalization to evade the natural proofs barrier.

What’s more interesting is that these results also evade the relativization barrier. Of course,
one might guess as much, after noticing that the proofs use the non-relativizing IP = PSPACE
theorem. But to show rigorously that the circuit lower bounds themselves fail to relativize, one
needs to construct oracles relative to which the circuit lower bounds are false. This is done by the
following results, whose somewhat elaborate proofs we omit:

Theorem 57 (Buhrman-Fortnow-Thierauf [60]) There exists an oracle A such that MAA
EXP ⊂

PA/poly.

Theorem 58 (Aaronson [4]) There exists an oracle A relative to which all languages in PP have
linear-sized circuits.

The proofs of both of these results also easily imply that there exists an oracle relative to which
all MA promise problems have linear-sized circuits.

The bottom line is that, by combining non-relativizing results like IP = PSPACE with non-
naturalizing results like EXPSPACE ̸⊂ P/poly, we can prove interesting circuit lower bounds that
neither relativize nor naturalize. So then why couldn’t we keep going, and use similar techniques to
prove NEXP ̸⊂ P/poly, or even P ̸= NP? Is there a third barrier, to which even the arithmetization-
based lower bounds are subject?

6.3.3 The Algebrization Barrier

In 2008, Avi Wigderson and I [10] showed that, alas, there’s a third barrier. In particular, while the
arithmetic techniques used to prove IP = PSPACE do evade relativization, they crash up against
a modified version of relativization that’s “wise” to those techniques. We called this modified
barrier the algebraic relativization or algebrization barrier. We then showed that, in order to prove
P ̸= NP—or for that matter, even to prove NEXP ̸⊂ P/poly, or otherwise go even slightly beyond
the results of Section 6.3.2—we’d need techniques that evade the algebrization barrier (and also,
of course, evade natural proofs).

In more detail, we can think of an oracle as just an infinite collection of Boolean functions,
fn : {0, 1}n → {0, 1} for each n. Now, by an algebraic oracle, we mean an oracle that provides

access not only to fn for each n, but also to a low-degree extension f̃n : Fn → F of fn over some
large finite field F. This extension must have the property that f̃n (x) = fn (x) for all x ∈ {0, 1}n,

51In complexity theory, a promise problem is a pair of subsets ΠYES,ΠNO ⊆ {0, 1}∗ with ΠYES ∩ ΠNO = ∅. An
algorithm solves the problem if it accepts all inputs in ΠYES and rejects all inputs in ΠNO. Its behavior on inputs
neither in ΠYES nor ΠNO (i.e., inputs that “violate the promise”) can be arbitrary. A typical example of a promise
problem is: given a Boolean circuit C, decide whether C accepts at least 2/3 of all inputs x ∈ {0, 1}n or at most 1/3
of them, promised that one of those is true. This problem is in BPP (or technically, PromiseBPP). The role of the
promise here is to get rid of those inputs for which random sampling would accept with probability between 1/3 and
2/3, violating the definition of BPP.

60

and it must be a polynomial of low degree—say, at most 2n. But such extensions always exist,52

and querying them outside the Boolean cube {0, 1}n might help even for learning about the Boolean
part fn.

The point of algebraic oracles is that they capture what we could do if we had a formula or
circuit for fn, and were willing to evaluate it not only on Boolean inputs, but on non-Boolean ones
as well, in the manner of IP = PSPACE. In particular, we saw in Section 6.3.1 that, given (say) a
3Sat formula φ, we can “lift” φ to a low-degree polynomial φ̃ over a finite field F by reinterpreting
the AND, OR, and NOT gates in terms of field addition and multiplication. So if we’re trying
to capture the power of arithmetization relative to an oracle function fn, then it stands to reason
that we should also be allowed to lift fn.

Once we do so, we find that the non-relativizing results based on arithmetization, such as
IP = PSPACE, relativize with respect to algebraic oracles (or “algebrize”). That is:

Theorem 59 IPÃ = PSPACEÃ for all algebraic oracles Ã. Likewise, PSPACEÃ ⊂ PÃ/poly implies

PSPACEÃ = MAÃ for all algebraic oracles Ã, and so on for all the interactive proof results.

The intuitive reason is that, any time (say) Arthur needs to arithmetize a formula φ containing
A-oracle gates in an interactive protocol, he can handle non-Boolean inputs to the A-oracle gates
by calling Ã.

As a consequence of Theorem 59, the circuit lower bounds of Section 6.3.2 are algebrizing as

well: for example, for all algebraic oracles Ã, we have MAÃ
EXP ̸⊂ PÃ/poly, and PPÃ does not have

size-nk circuits with Ã-oracle gates.
Admittedly, the original paper of Aaronson and Wigderson [10] only managed to prove a weaker

version of Theorem 59. It showed, for example, that for all algebraic oracles Ã, we have PSPACEA ⊆
IPÃ, and MAÃ

EXP ̸⊂ PA/poly. As a result, it had to define algebrization in a convoluted way, where
some complexity classes received the algebraic oracle Ã while others received only the “original”
oracle A, and which class received which depended on what kind of result one was talking about
(e.g., an inclusion or a separation). Shortly afterward, Impagliazzo, Kabanets, and Kolokolova
[124] fixed this defect of algebrization, proving Theorem 59 even when all classes receive the same
algebraic oracle Ã, but only at the cost of jettisoning Aaronson and Wigderson’s conclusion that
any proof of NEXP ̸⊂ P/poly will require non-algebrizing techniques. Very recently, Aydınlıoğlu
and Bach [193] showed how to get the best of both worlds, with a uniform definition of algebrization
and the conclusion about NEXP vs. P/poly.

In any case, the main point of [10] was that to prove P ̸= NP, or otherwise go further than the
circuit lower bounds of Section 6.3.2, we’ll need non-algebrizing techniques: techniques that fail to
relativize in a “deeper” way than IP = PSPACE fails to relativize. Let’s see why this is true for
P ̸= NP.

Theorem 60 (Aaronson-Wigderson [10]) There exists an algebraic oracle Ã such that PÃ =

NPÃ. As a consequence, any proof of P ̸= NP will require non-algebrizing techniques.

Proof. We can just let A be any PSPACE-complete language, and then let Ã be its unique extension
to a collection of multilinear polynomials over F (that is, polynomials in which no variable is ever

52Indeed, every fn has an extension to a degree-n polynomial, namely a multilinear one (in which no variable is
raised to a higher power than 1): for example, OR (x, y) = x+ y − xy.

61

raised to a higher power than 1). The key observation is that the multilinear extensions are
themselves computable in PSPACE. So we get a PSPACE-complete oracle Ã, which collapses P and
NP for the same reason as in the original argument of Baker, Gill, and Solovay [36] (see Theorem
42).

Likewise, Aaronson and Wigderson [10] showed that any proof of P = NP, or even P = BPP,
would need non-algebrizing techniques. They also proved the following somewhat harder result,
whose proof we omit.

Theorem 61 ([10]) There exists an algebraic oracle Ã such that NEXPÃ ⊂ PÃ/poly. As a
consequence, any proof of NEXP ̸⊂ P/poly will require non-algebrizing techniques.

Note that this explains almost exactly why progress stopped where it did: MAEXP ̸⊂ P/poly can
be proved with algebrizing techniques, but NEXP ̸⊂ P/poly can’t be.

I should mention that Impagliazzo, Kabanets, and Kolokolova [124] gave a logical interpretation
of algebrization, extending the logical interpretation of relativization given by Arora, Impagliazzo,
and Vazirani [29]. Impagliazzo et al. show that the algebrizing statements can be seen as all those
statements that follow from “algebrizing axioms for computation,” which include basic closure
properties, and also the ability to lift any Boolean computation to a larger finite field. Statements
like P ̸= NP are then provably independent of the algebrizing axioms.

6.4 Ironic Complexity Theory

There’s one technique that’s had some striking recent successes in proving circuit lower bounds, and
that bypasses the natural proofs, relativization, and algebrization barriers. This technique might
be called “ironic complexity theory.” It uses the existence of surprising algorithms in one setting
to show the nonexistence of algorithms in another setting. It thus reveals a “duality” between
upper and lower bounds, and reduces the problem of proving impossibility theorems to the much
better-understood task of designing efficient algorithms.53

At a conceptual level, it’s not hard to see how algorithms can lead to lower bounds. For
example, suppose someone discovered a way to verify arbitrary exponential-time computations
efficiently, thereby proving NP = EXP. Then as an immediate consequence of the Time Hierarchy
Theorem (P ̸= EXP), we’d get P ̸= NP. Or suppose someone discovered that every language in
P had linear-size circuits. Then P = NP would imply that every language in PH had linear-size
circuits—but since we know that’s not the case (see Section 6.1), we could again conclude that
P ̸= NP. Conversely, if someone proved P = NP, that wouldn’t be a total disaster for lower

bounds research: at least it would immediately imply EXP ̸⊂ P/poly (via EXP = EXPNPNP
), and

the existence of languages in P and NP that don’t have linear-size circuits!
Examples like this can be multiplied, but there’s an obvious problem with them: they each

show a separation, but only assuming a collapse that’s considered extremely unlikely to happen.
However, recently researchers have managed to use surprising algorithms that do exist, and collapses
that do happen, to achieve new lower bounds. In this section I’ll give two examples.

53Indeed, the hybrid circuit lower bounds of Section 6.3.2 could already be considered examples of ironic complexity
theory. In this section, we discuss other examples.

62

6.4.1 Time-Space Tradeoffs

At the moment, no one can prove that solving 3Sat requires more than linear time (let alone
exponential time!), on realistic models of computation like random-access machines.54 Nor can
anyone prove that solving 3Sat requires more than O (log n) bits of memory. But the situation
isn’t completely hopeless: at least we can prove there’s no algorithm for 3Sat that uses both linear
time and logarithmic memory! Indeed, we can do better than that.

A bit of background: just as one can scale PSPACE up to EXPSPACE and so on, one can also
scale PSPACE down to LOGSPACE, which is the class of languages L decidable by a Turing machine
that uses only O (log n) bits of read/write memory, in addition to a read-only memory that stores
the n-bit input itself. We have LOGSPACE ⊆ P, for the same simple reason why PSPACE ⊆ EXP
(see Proposition 15). We also have LOGSPACE ̸= PSPACE by the Space Hierarchy Theorem. On
the other hand, no one has proven even that LOGSPACE ̸= NP.

Now, a “time-space tradeoff theorem” shows that any algorithm to solve some problem must
use either more than T time or else more than S space. The first such theorem for 3Sat was
proved by Fortnow [86], who showed that no random-access machine can solve 3Sat simultaneously
in n1+o(1) time and n1−ε space, for any ε > 0. Later, Lipton and Viglas [166] gave a different
tradeoff involving a striking exponent; I’ll use their result as my running example in this section:

Theorem 62 (Lipton-Viglas [166]) No random-access machine can solve 3Sat simultaneously

in n
√
2−ε time and no(1) space, for any ε > 0.

Here, a “random-access machine” means a machine that can access an arbitrary memory location
in O (1) time, as usual in practical programming. This makes Theorem 62 stronger than one might
have assumed: it holds not merely for unrealistically weak models such as Turing machines, but for
“realistic” models as well.55 Also, again, “no(1) space” means that we get the n-bit 3Sat instance
itself in a read-only memory, and also get no(1) bits of auxiliary read/write memory.

While Theorem 62 is obviously a far cry from P ̸= NP, it does rely essentially on 3Sat being
NP-complete: we don’t yet know how to prove analogous results for matching, linear programming,
or other natural problems in P.56 This makes Theorem 62 fundamentally different from (say) the
Parity /∈ AC0 result of Section 6.2.3.

Let DTISP (T, S) be the class of languages decidable by an algorithm, running on a RAM
machine, that uses O (T) time and O (S) space. Then Theorem 62 can be stated more succinctly

54On unrealistic models such as one-tape Turing machines, one can prove up to Ω
(
n2

)
lower bounds for 3Sat and

many other problems (even recognizing palindromes), but only by exploiting the fact that the tape head needs to
waste a lot of time moving back and forth across the input.

55Some might argue that Turing machines are more realistic than RAM machines, since Turing machines take into
account that signals can propagate only at a finite speed, whereas RAM machines don’t! However, RAM machines
are closer to what’s assumed in practical algorithm development, whenever memory latency is small enough to be
treated as a constant.

56On the other hand, by proving size-depth tradeoffs for so-called branching programs, researchers have been able
to obtain time-space tradeoffs for certain special problems in P. Unlike the 3Sat tradeoffs, the branching program
tradeoffs involve only slightly superlinear time bounds; on the other hand, they really do represent a fundamentally
different way to prove time-space tradeoffs, one that makes no appeal to NP-completeness, diagonalization, or hier-
archy theorems. As one example, in 2000 Beame et al. [39], building on earlier work by Ajtai [18], used branching
programs to prove the following: there exists a problem in P, based on binary quadratic forms, for which any RAM

algorithm (even a nonuniform one) that uses n1−Ω(1) space must also use Ω
(
n ·

√
logn/ log log n

)
time.

63

as
3Sat /∈ DTISP

(
n
√
2−ε, no(1)

)
for all ε > 0.

At a high level, Theorem 62 is proved by assuming the opposite, and then deriving stranger
and stranger consequences until we ultimately get a contradiction with the Nondeterministic Time
Hierarchy Theorem (Theorem 37). There are three main ideas that go into this. The first idea is
a tight version of the Cook-Levin Theorem (Theorem 2). In particular, one can show, not merely
that 3Sat is NP-complete, but that 3Sat is complete for NTIME (n) (that is, nondeterministic
linear-time on a RAM machine) under nearly linear-time reductions—and moreover, that each
individual bit of the 3Sat instance is computable quickly, say in logO(1) n time. This means that,
to prove Theorem 62, it suffices to prove a non-containment of complexity classes:

NTIME (n) ̸⊂ DTISP
(
n
√
2−ε, no(1)

)
for all ε > 0.

The second idea is called “trading time for alternations.” Consider a deterministic computation
that runs for T steps and uses S bits of memory. Then we can “chop the computation up” into
k blocks, B1, . . . , Bk, of T/k steps each. The statement that the computation accepts is then
equivalent to the statement that there exist S-bit strings x0, . . . , xk, such that

(i) x0 is the computation’s initial state,

(ii) for all i ∈ {1, . . . , k}, the result of starting in state xi−1 and then running for T/k steps is
xi, and

(iii) xk is an accepting state.

We can summarize this as

DTISP (T, S) ⊆ Σ2TIME

(
Sk +

T

k

)
,

where the Σ2 means that we have two alternating quantifiers: an existential quantifier over x1, . . . , xk,
followed by a universal quantifier over i. Choosing k :=

√
T/S to optimize the bound then gives

us

DTISP (T, S) ⊆ Σ2TIME
(√

TS
)
.

So in particular,

DTISP
(
nc, no(1)

)
⊆ Σ2TIME

(
nc/2+o(1)

)
.

The third idea is called “trading alternations for time.” If we assume by way of contradiction
that

NTIME (n) ⊆ DTISP
(
nc, no(1)

)
⊆ TIME (nc) ,

then in particular, for all b ≥ 1, we can add an existential quantifier to get

Σ2TIME
(
nb
)
⊆ NTIME

(
nbc

)
.

64

So putting everything together, if we consider a constant c > 1, and use padding (as in Proposi-
tion 17) to talk about NTIME

(
n2

)
rather than NTIME (n), then the starting assumption that 3Sat

is solvable in nc−ε time and no(1) space implies that

NTIME
(
n2

)
⊆ DTISP

(
n2c, no(1)

)
⊆ Σ2TIME

(
nc+o(1)

)
⊆ NTIME

(
nc2+o(1)

)
.

But if c2 < 2, then this contradicts the Nondeterministic Time Hierarchy Theorem (Theorem 37).
This completes the proof of Theorem 62. Notice that the starting hypothesis about 3Sat was
applied not once but twice, which was how the final running time became nc2 .

A proof of this general form, making a sequence of trades between running time and nonde-
terminism, is called an alternating-trading proof. Later, using a more involved alternating-trading
proof, Fortnow and van Melkebeek [89] improved Theorem 62, to show that 3Sat can’t be solved

by a RAM machine using nϕ−ε time and no(1) space, where ϕ = 1+
√
5

2 ≈ 1.618 is the golden ratio.

Subsequently Williams [257] improved the time bound still further to n
√
3−ε, and then [259] to

n2 cosπ/7−ε. In 2012, however, Buss and Williams [67] showed that no alternation-trading proof
can possibly improve that exponent beyond the peculiar constant 2 cosπ/7 ≈ 1.801. There have
been many related time-space tradeoff results, including for #P-complete and PSPACE-complete
problems, but I won’t cover them here (see van Melkebeek [170] for a survey).

Alternation-trading has had applications in complexity theory other than to time-space trade-
offs. In particular, it played a key role in a celebrated 1983 result of Paul, Pippenger, Szemeredi,
and Trotter [196], whose statement is tantalizingly similar to P ̸= NP.

Theorem 63 (Paul et al. [196]) TIME (n) ̸= NTIME (n), if we define these classes using multiple-
tape Turing machines.

In this case, the key step was to show, via a clever combinatorial argument involving “peb-
ble games,” that for multi-tape Turing machines, deterministic linear time can be simulated in
Σ4TIME (f (n)), for some f that’s slightly sublinear. This, combined with the assumption TIME (n) =
NTIME (n), is then enough to produce a contradiction with a time hierarchy theorem.

What can we say about barriers? All the results mentioned above clearly evade the natural
proofs barrier, because they ultimately rely on diagonalization, and (more to the point) because

classes like TIME (n) and DTISP
(
n
√
2, no(1)

)
contain plausible pseudorandom function candidates.

Whether they evade the relativization barrier (let alone algebrization) is a trickier question; it
depends on subtle details of the oracle access mechanism. There are some definitions of the classes
TIME (n)A, DTISP (T, S)A, and so on under which these results relativize, and others under which
they don’t: for details, see for example Moran [174].

On the definitions that cause these results not to relativize, the explanation for how is that the
proofs “look inside” the operations of a RAM machine or a multi-tape Turing machine just enough
for something to break down if certain kinds of oracle calls are present. To illustrate, in the proof
of Theorem 62 above, we nondeterministically guessed the complete state of the machine at various
steps in its execution, taking advantage of the fact that the state was an no(1)-bit string. This
wouldn’t have worked had there been an n-bit query written onto an oracle tape (even if the oracle

65

tape were write-only). Likewise, in the proof of Theorem 63, the combinatorial pebble arguments
use specific properties of multi-tape Turing machines that might fail for RAM machines, let alone
for oracle machines.

Because their reasons for failing to relativize have nothing to do with lifting to large finite
fields, I conjecture that, with some oracle access mechanisms, Theorems 62 and 63 would also be
non-algebrizing. But this remains to be shown.

6.4.2 NEXP ̸⊂ ACC

In Section 6.2.4, we saw how Smolensky [230] and Razborov [209] proved strong lower bounds
against the class AC0 [p], or constant-depth, polynomial-size circuits of AND, OR, NOT, and MOD
p gates, where p is prime. This left the frontier of circuit lower bounds as AC0 [m], where m is
composite.

Meanwhile, we saw in Section 6.3 how Buhrman, Fortnow, and Thierauf [60] proved that
MAEXP ̸⊂ P/poly, but how this can’t be extended even to NEXP ̸⊂ P/poly using algebrizing tech-
niques. Indeed, it remains open even to prove NEXP ̸⊂ TC0.

This state of affairs—and its continuation for decades—helps to explain why many theoretical
computer scientists were electrified when Ryan Williams proved the following in 2011.

Theorem 64 (Williams [266]) NEXP ̸⊂ ACC (and indeed NTIME (2n) ̸⊂ ACC), where ACC is
the union of AC0 [m] over all constants m.57

If we compare it against the ultimate goal of proving NP ̸⊂ P/poly, Theorem 64 looks laughably
weak: it shows only that Nondeterministic Exponential Time, a class vastly larger than NP, is
not in ACC, a circuit class vastly smaller than P/poly. But a better comparison is against where
we were before. The proof of Theorem 64 was noteworthy not only because it defeats all the
known barriers (relativization, algebrization, and natural proofs), but also because it brings to-
gether almost all known techniques in Boolean circuit lower bounds, including diagonalization, the
polynomial method, interactive proof results, and ironic complexity theory. So it’s worth at least
sketching the elaborate proof, so we can see how a lower bound at the current frontier operates.
(For further details, I recommend two excellent expository articles by Williams himself [260, 264].)

At a stratospherically high level, the proof of Theorem 64 is built around the Nondeterministic
Time Hierarchy Theorem, following a program that Williams had previously laid out in [262].
More concretely, we assume that NTIME (2n) ⊂ ACC. We then use that assumption to show that
NTIME (2n) = NTIME

(
2n/nk

)
for some positive k: a slight speedup of nondeterministic machines,

but enough to achieve a contradiction with Theorem 37.
How do we use the assumption NTIME (2n) ⊂ ACC to violate the Nondeterministic Time Hier-

archy Theorem? The key to this—and this is where “ironic complexity theory” enters the story—is
a faster-than-brute-force algorithm for a problem called ACCSat. Here we’re given as input a
description of ACC circuit C, and want to decide whether there exists an input x ∈ {0, 1}n such
that C (x) = 1. The core of Williams’s proof is the following straightforwardly algorithmic result.

Lemma 65 (Williams [266]) There’s a deterministic algorithm that solves ACCSat, for ACC

circuits of depth d with n inputs, in 2n−Ω(nδ) time, for some constant δ > 0 that depends on d.

57We can also allow MOD-m1 gates, MOD-m2 gates, etc. in the same circuit; this is equivalent to
AC0 [gcd (m1,m2, . . .)]. On the other hand, if we allow MOD-m gates for non-constant m (and in particular,
for m growing polynomially with n), then we jump up to TC0.

66

The proof of Lemma 65 is itself a combination of several ideas. First, one appeals to a powerful
structural result of Yao [271], Beigel-Tarui [40], and Allender-Gore [24] from the 1990s, which shows
that functions in ACC are representable in terms of low-degree polynomials.

Lemma 66 ([271, 40, 24]) Let f : {0, 1}n → {0, 1} be computable by an AC0 [m] circuit of size
s and depth d. Then f (x) can be expressed as g (p (x)), where p : {0, 1}n → N is a polynomial of

degree logO(1) s that’s a sum of exp
(
logO(1) s

)
monomials with coefficients of 1, and g : N → {0, 1}

is some efficiently computable function. Moreover, this conversion can be done in exp
(
logO(1) s

)
time. (Here the constant in the big-O depends on both d and m.)

The proof of Lemma 66 uses some elementary number theory, and is closely related to the
polynomial method from Section 6.2.4, by which one shows that any AC0 [p] function can be ap-
proximated by a low-degree polynomial over the finite field Fp.

58

Next, one devises a faster-than-brute-force algorithm that, given a function g (p (x)) as above,
decides whether there exists an x ∈ {0, 1}n such that g (p (x)) = 1. The first step is to give
an algorithm that constructs a table of all 2n values of p (x), for all the 2n possible values of x,
in

(
2n + sO(1)

)
nO(1) time, rather than the O (2ns) time that one would need näıvely. (In other

words, this algorithm uses only nO(1) time on average per entry in the table, rather than O (s)
time—an improvement if s is superpolynomial.) Here there are several ways to go: one can use
a fast rectangular matrix multiplication algorithm due to Coppersmith [75], but one can also just
use a dynamic programming algorithm reminiscent of the Fast Fourier Transform.

Now, by combining this table-constructing algorithm with Lemma 66, we can immediately solve
ACCSat, for an ACC circuit of size s = 2n

δ
, in 2nnO(1) time, which is better than the O (2ns) time

that we would need näıvely. But this still isn’t good enough to prove Lemma 65, which demands

a 2n−Ω(nδ) algorithm. So there’s a further trick: given an ACC circuit C of size nO(1), we first
“shave off” nδ of the n variables, building a new ACC circuit C ′ that takes as input the n − nδ

remaining variables, and that computes the OR of C over all 2n
δ
possible assignments to the nδ

shaved variables.59 The new circuit C ′ has size 2O(n
δ), so we can construct the table, and thereby

solve ACCSat for C ′ (and hence for C), in time 2n−Ω(nδ).
Given Lemma 65, as well as the starting assumption NTIME (2n) ⊂ ACC, there’s still a lot of

work to do to prove that NTIME (2n) = NTIME
(
2n/nk

)
. Let me summarize the four main steps:

(1) We first use a careful, quantitative version of the Cook-Levin Theorem (Theorem 2), to reduce
the problem of simulating an NTIME (2n) machine to a problem called Succinct3Sat. In
that problem, we’re given a circuit C whose truth table encodes an exponentially large 3Sat
instance φ, and the problem is to decide whether or not φ is satisfiable. Indeed, we prove
something stronger: the circuit C can be taken to be an AC0 circuit.60

58Interestingly, both the polynomial method and the proof of Lemma 66 are also closely related to the proof of
Toda’s Theorem (Theorem 13), that PH ⊆ P#P.

59Curiously, this step can only be applied to the ACC circuits themselves, which of course allow OR gates. It can’t
be applied to the Boolean functions of low-degree polynomials that one derives from the ACC circuits.

60In Williams’s original paper [266], this step required invoking the NEXP ⊂ ACC assumption (and only yielded an
ACC circuit). But subsequent improvements have made this step unconditional: see for example, Jahanjou, Miles,
and Viola [128].

67

(2) We next appeal to a result of Impagliazzo, Kabanets, and Wigderson [125], which says that if
NEXP ⊂ P/poly, then the satisfying assignments for satisfiable Succinct3Sat instances can
themselves be constructed by polynomial-size circuits.

(3) We massage the result (2) to get a conclusion about ACC: roughly speaking, if NEXP ⊂ ACC,
then a satisfying assignment for an AC0 Succinct3Sat instance Φ can itself be constructed
by an ACC circuit W . Furthermore, the problem of verifying that W does indeed encode a
satisfying assignment for Φ can be solved in slightly less than 2n time nondeterministically,

if we use the fact (Lemma 65) that ACCSat is solvable in 2n−Ω(nδ) time.

(4) Putting everything together, we get that NTIME (2n) machines can be reduced to AC0 Suc-
cinct3Sat instances, which can then (assuming NEXP ⊂ ACC, and using the ACCSat al-
gorithm) be decided in NTIME

(
2n/nk

)
for some positive k. But that contradicts the Non-

deterministic Time Hierarchy Theorem (Theorem 37).

Let me mention some improvements and variants of Theorem 64. Already in his original paper
[266], Williams noted that the proof actually yields a stronger result, that NTIME (2n) has no ACC
circuits of “third-exponential” size: that is, size f (n) where f (f (f (n))) grows exponentially. He
also gave a second result, that TIME (2n)NP—that is, deterministic exponential time with an NP

oracle—has no ACC circuits of size 2n
o(1)

. More recently, Williams has extended Theorem 64 to
show that NTIME (2n) /1 ∩ coNTIME (2n) /1 (where the /1 denotes 1 bit of nonuniform advice)
doesn’t have ACC circuits of size nlogn [263], and also to show that even ACC circuits of size nlogn

with threshold gates at the bottom layer can’t compute all languages in NEXP [265].
At this point, I should step back and make some general remarks about the proof of Theorem

64 and the prospects for pushing it further. First of all, why did this proof only yield lower bounds
for functions in the huge complexity class NEXP, rather than EXP or NP or even P? The short
answer is that, in order to prove that a class C is not in ACC via this approach, we need to use the
assumption C ⊂ ACC to violate a hierarchy theorem for C-like classes. But there’s a bootstrapping
problem: the mere fact that C has small ACC circuits doesn’t imply that we can find those circuits
in a C-like class, in order to obtain the desired contradiction. When C = NEXP, we can use the
nondeterministic guessing power of the NTIME classes simply to guess the small ACC circuits for
NEXP, but even when C = EXP this approach seems to break down.

A second question is: what in Williams’s proof was specific to ACC? Here the answer is that
the proof used special properties of ACC in one place only: namely, in the improved algorithm for
ACCSat (Lemma 65). This immediately suggests a possible program to prove NEXP ̸⊂ C for
larger and larger circuit classes C. For example, let TC0Sat be the problem where we’re given
as input a TC0 circuit C (that is, a neural network, or constant-depth circuit of threshold gates),
and we want to decide whether there exists an x ∈ {0, 1}n such that C (x) = 1. Then if we could
solve TC0Sat even slightly faster than brute force—say, in O

(
2n/nk

)
time for some positive k—

Williams’s results would immediately imply NEXP ̸⊂ TC0.61 Likewise, recall from Section 2.1 that

61Very recently, Kane and Williams [132] managed to give an explicit Boolean function that requires depth-2

threshold circuits with Ω
(
n3/2/ log3 n

)
gates. However, their argument doesn’t proceed via a better-than-brute-

force algorithm for depth-2 TC0Sat. Even more recently, Chen, Santhanam, and Srinivasan [69] gave the first
nontrivial algorithm for TC0Sat with a slightly-superlinear number of wires. This wasn’t enough for a new lower
bound, but Chen et al. also used related ideas to show that Parity can’t be computed even by polynomial-size AC0

circuits with no(1) threshold gates.

68

CircuitSat is the satisfiability problem for arbitrary Boolean circuits. If we had an O
(
2n/nk

)
algorithm for CircuitSat, then Williams’s results would imply the long-sought NEXP ̸⊂ P/poly.

Admittedly, one might be skeptical that faster-than-brute-force algorithms should even exist for
problems like TC0Sat and CircuitSat. But Williams and others have addressed that particular
worry, by showing that circuit lower bounds for NEXP would follow even from faster-than-brute-
force derandomization algorithms: that is, deterministic algorithms to find satisfying assignments
under the assumption that a constant fraction of all assignments are satisfying. Obviously there’s
a fast randomized algorithm R under that assumption: namely, keep picking random assignments
until you find one that works! Thus, to prove a circuit lower bound, “all we’d need to do” is give
a nontrivial deterministic simulation of R—something that would necessarily exist under standard
derandomization hypotheses (see Section 5.4.1). More precisely:

Theorem 67 (Williams [262], Santhanam-Williams [216]) Suppose there’s a deterministic
algorithm, running in 2n/f (n) time for any superpolynomial function f , to decide whether a
polynomial-size Boolean circuit C : {0, 1}n → {0, 1} has no satisfying assignments or at least
2n−2 satisfying assignments, promised that one of those is the case. Then NEXP ̸⊂ P/poly.62

Likewise, if such an algorithm exists for TC0 circuits, then NEXP ̸⊂ TC0.

Theorem 67 means that, besides viewing Williams’s program as “ironic complexity theory,” we
can also view it as an instance of circuit lower bounds through derandomization, an idea discussed
in Section 6.

In addition to derandomization, one could use faster algorithms for certain classic computa-
tional problems to prove circuit lower bounds. These algorithms might or might not exist, but it’s
at least plausible that they do. Thus, recall Theorem 23, which said that if CircuitSAT for cir-
cuits of depth o (n) requires (2− o (1))n time, then EditDistance requires nearly quadratic time.
In Section 5.1, we interpreted this to mean that there’s a plausible hardness conjecture—albeit,
one much stronger than P ̸= NP—implying that the classic O

(
n2

)
algorithm for EditDistance

is nearly optimal. But there’s a different way to interpret the same connection: namely, if Ed-
itDistance were solvable in less than ∼ n2 time, then various satisfiability problems would be
solvable in less than ∼ 2n time, and we’ve already seen that the latter would lead to new circuit
lower bounds! Putting all this together, Abboud et al. [11] recently proved the following striking
theorem, which they describe in slogan form as “a polylog shaved is a lower bound made”:

Theorem 68 (Abboud et al. [11]) Suppose that EditDistance is solvable in O
(
n2/ logc n

)
time, for every constant c. Then NEXP ̸⊂ NC1.

A third question is: how does the proof of Theorem 64 evade the known barriers? Because
of the way the algorithm for ACCSat exploits the structure of ACC circuits, we shouldn’t be
surprised if the proof evades the relativization and algebrization barriers. And indeed, using the
techniques of Wilson [268] and of Aaronson and Wigderson [10], one can easily construct an oracle

A such that NEXPA ⊂ ACCA, and even an algebraic oracle Ã such that NEXPÃ ⊂ ACCÃ, thereby
showing that NEXP ̸⊂ ACC is non-relativizing and non-algebrizing. Meanwhile, because it uses
diagonalization (in the form of the Nondeterministic Time Hierarchy Theorem), we might say that
the proof of Theorem 64 has the “capacity” to evade natural proofs. On the other hand, as I alluded

62This strengthens a previous result of Impagliazzo, Kabanets, and Wigderson [125], who showed that, if such a

deterministic algorithm exists that runs in 2n
o(1)

time, then NEXP ̸⊂ P/poly.

69

to in Section 6.2.5, it’s not yet clear whether ACC is powerful enough to compute pseudorandom
functions—and thus, whether it even has a natural proofs barrier to evade! The most we can say
is that if ACC has a natural proofs barrier, then Theorem 64 evades it.

Given everything we saw in the previous sections, a final question arises: is there some fourth
barrier, beyond relativization, algebrization, and natural proofs, which will inherently prevent even
Williams’s techniques from proving P ̸= NP, or even (say) NEXP ̸⊂ TC0? One reasonable answer
is that this question is premature: in order to identify the barriers to a given set of techniques, we
first need to know formally what the techniques are—i.e., what properties all the theorems using
those techniques have in common—but we can’t know that until the techniques have had a decade
or more to solidify, and there are at least three or four successful examples of their use. Of course,
one obvious “barrier” is that, while Theorem 67 shows that we could get much further just from
plausible derandomization assumptions, eventually we might find ourselves asking for faster-than-
brute-force algorithms that simply don’t exist—in which case, ironic complexity theory would’ve
run out of the irony that it needs as fuel.

Stepping back, I see Theorem 64 as having contributed something important to the quest to
prove P ̸= NP, by demonstrating just how much nontrivial work can get done, and how many
barriers can be overcome, along the way to applying a 1960s-style hierarchy theorem. Williams’s
result makes it possible to imagine that, in the far future, P ̸= NP might be proved by assuming
the opposite, then deriving stranger and stranger consequences using thousands of pages of math-
ematics barely comprehensible to anyone alive today—and yet still, the coup de grâce will be a
diagonalization, barely different from what Turing did in 1936.

6.5 Arithmetic Complexity Theory

Besides Turing machines and Boolean circuits acting on bits, there’s another kind of computation
that has enormous relevance to the attempt to prove P ̸= NP. Namely, we can consider computer
programs that operate directly on elements of a field, such as the reals or complex numbers. Perhaps
the easiest way to do this is via arithmetic circuits, which take as input a collection of elements
x1, . . . , xn of a field F,63 and whose operations consist of adding or multiplying any two previous
elements—or any previous element and any scalar from F—to produce a new F-element. We then
consider the minimum number of operations needed to compute some polynomial g : Fn → F, as a
function of n. For concreteness, we can think of F as the reals R, although we’re most interested
in algorithms that work over any F. Note that, if we work over a finite field Fm, then we need to
specify whether we want to compute g as a formal polynomial, or merely as a function over Fm.64

At first glance, arithmetic circuits seem more powerful than Boolean circuits, because they have
no limit of finite precision: for example, an arithmetic circuit could multiply π and e in a single
time step. From another angle, however, arithmetic circuits are weaker, because they have no
facility (for example) to extract individual bits from the binary representations of the F elements:
they can only manipulate them as F elements. In general, the most we can say is that, if an input
has helpfully been encoded using the elements 0, 1 ∈ F only, then an arithmetic circuit can simulate
a Boolean one, by using x → 1−x to simulate NOT, multiplication to simulate Boolean AND, and
so on. But for arbitrary inputs, such a simulation might be impossible.

Thus, arithmetic circuits represent a different kind of computation: or rather, a generalization

63I’ll restrict to fields here for simplicity, but one can also consider (e.g.) rings.
64To illustrate, 0 and 2x are equal as functions over the finite field F2, but not equal as formal polynomials.

70

of the usual kind, since we can recover ordinary Boolean computation by setting F = F2. A major
reason to focus on arithmetic circuits is that it often seems easier—or better, less absurdly hard!—
to understand circuit size in the arithmetic setting than in the Boolean one. The usual explanation
given for this is the so-called “yellow books argument”: arithmetic complexity brings us closer to
continuous mathematics, about which we have centuries’ worth of deep knowledge (e.g., algebraic
geometry and representation theory) that’s harder to apply in the Boolean case.

One remark: in the rest of the section, I’ll talk exclusively about arithmetic circuit complexity:
that is, about nonuniform arithmetic computations, and the arithmetic analogues of questions such
as NP versus P/poly (see Section 5.2). But it’s also possible to develop a theory of arithmetic
Turing machines, which (roughly speaking) are like arithmetic circuits except that they’re uniform,
and therefore need loops, conditionals, memory registers, and so on. See the book of Blum, Cucker,
Shub, and Smale (BCSS) [49] for a beautiful exposition of this theory. In the BCSS framework,

one can ask precise analogues of the P
?
= NP question for Turing machines over arbitrary fields F,

such as R or C, recovering the “ordinary, Boolean” P
?
= NP question precisely when F is finite.

At present, no implications are known among the P
?
= NP, the PR

?
= NPR, and the PC

?
= NPC

questions, although it’s known that PC ̸= NPC implies NP ̸⊂ P/poly (see for example Bürgisser [61,
Chapter 8]).65

The problems of proving PR ̸= NPR and PC ̸= NPC are known to be closely related to the
problem of proving arithmetic circuit lower bounds, which we’ll discuss in the following sections. I
can’t resist giving one example of a connection, due to BCSS [49]. Given a positive integer n, let
τ (n) be the number of operations in the smallest arithmetic circuit that takes the constant 1 as its
sole input, and that computes n using additions, subtractions, and multiplications. For example,
we have

• τ (2) = 1 via 1 + 1,

• τ (3) = 2 via 1 + 1 + 1,

• τ (4) = 2 via (1 + 1)2, ...

Also, let τ∗ (n) be the minimum of τ (kn) over all positive integers k.

Theorem 69 (BCSS [49]) Suppose τ∗ (n!) grows faster than (log n)O(1). Then PC ̸= NPC.
66

6.5.1 Permanent Versus Determinant

Just as P
?
= NP is the “flagship problem” of Boolean complexity theory, so the central, flagship

problem of arithmetic complexity is that of permanent versus determinant. This problem concerns

65The central difference between the PR
?
= NPR and PC

?
= NPC questions is simply that, because R is an ordered

field, one defines Turing machines over R to allow comparisons (<,≤) and branching on their results.
66In later work, Bürgisser [63] showed that the same conjecture about τ∗ (n!) (called the τ -conjecture) would also

imply Valiant’s Conjecture 70, that the permanent has no polynomial-size arithmetic circuits.

71

the following two functions of an n× n matrix X ∈ Fn×n:

Per (X) =
∑
σ∈Sn

n∏
i=1

xi,σ(i),

Det (X) =
∑
σ∈Sn

(−1)sgn(σ)
n∏

i=1

xi,σ(i).

Despite the similarity of their definitions—they’re identical apart from the (−1)sgn(σ)—the perma-
nent and determinant have dramatic differences. The determinant is computable in polynomial
time, for example by using Gaussian elimination. (Indeed, the determinant is computable in O (nω)
time, where ω ∈ [2, 2.373] is the matrix multiplication exponent; see Section 4.) The determinant
has many other interpretations—for example, the product of X’s eigenvalues, and the volume of the
parallelepiped spanned by its row vectors—giving it a central role in linear algebra and geometry.

By contrast, Valiant [248] proved in 1979 that the permanent is #P-complete. Thus, a
polynomial-time algorithm for the permanent would imply even more than P = NP: it would
yield an efficient algorithm not merely to solve NP-complete problems, but to count how many
solutions they have. In some sense, the #P-completeness of the permanent helps to explain why
Per, unlike Det, has no simple geometric or linear-algebraic interpretations: if such interpretations
existed, then they might imply P = P#P.

In the arithmetic model, there exist circuits of size O
(
n3

)
, and even size O (nω), that compute

Det (X) as a formal polynomial in the entries of X, and that work over an arbitrary field F. By
contrast, Valiant conjectured the following.

Conjecture 70 (Valiant’s Conjecture) Any arithmetic circuit for Per (X) requires size super-
polynomial in n, over any field of characteristic other than 2.67,68

Bürgisser [62] showed that, if Conjecture 70 fails over any field of positive characteristic, or if
it fails over any field of characteristic zero and the Generalized Riemann Hypothesis holds, then
P#P ⊂ P/poly, and hence NP ⊂ P/poly.69 (The main difficulty in proving this result is just that
an arithmetic circuit might have very large constants hardwired into it.) On the other hand, no
converses to this result are currently known. It’s conceivable, for example, that we could have
P = P#P for some “inherently Boolean” reason, even if the permanent required arithmetic circuits
of exponential size. To put it another way, Conjecture 70 could serve as an “arithmetic warmup”—
some would even say an “arithmetic prerequisite”—to Boolean separations such as P#P ̸⊂ P/poly
and P ̸= NP.

Better yet, Conjecture 70 turns out to be implied by (and nearly equivalent to) an appealing
mathematical conjecture, which makes no direct reference to computation or circuits. Let’s say
that the n × n permanent linearly embeds into the m ×m determinant, if it’s possible to express
Per (X) (for an n× n matrix X ∈ Fn×n) as Det (L (X)), where L (X) is an m×m matrix each of

67Fields of characteristic 2, such as F2, are a special case: there, the permanent and determinant are equivalent, so
in particular Per (X) has polynomial-size arithmetic circuits.

68In the literature, Conjecture 70 is often called the VP ̸= VNP conjecture, with VP and VNP being arithmetic
analogues of P and NP respectively. I won’t use that terminology in this survey, for several reasons: (1) VP is arguably
more analogous to NC than to P, (2) VNP is arguably more analogous to #P than to NP, and (3) Conjecture 70 is
almost always studied as a nonuniform conjecture, more analogous to NP ̸⊂ P/poly than to P ̸= NP.

69Indeed, #P would even have polynomial-size circuits of depth logO(1) n.

72

whose entries is an affine combination of the entries of X. Then let D (n) be the smallest m such
that the n× n permanent linearly embeds into the m×m determinant.

Grenet [103] proved the following:

Theorem 71 (Grenet [103]) D (n) ≤ 2n − 1.

To illustrate, when n = 2 we have

Per

(
a b
c d

)
= Det

(
a −b
c d

)
(in this case, as we see, Theorem 71 is not tight), while when n = 3 we have

Per

 a b c
d e f
g h i

 = Det

0 a d g 0 0 0
0 1 0 0 i f 0
0 0 1 0 0 c i
0 0 0 1 c 0 f
e 0 0 0 1 0 0
h 0 0 0 0 1 0
b 0 0 0 0 0 1

.

By contrast, the best current lower bound on D (n) is quadratic, and was proved by Mignon
and Ressayre [171] in 2004, following a long sequence of linear lower bounds:

Theorem 72 (Mignon and Ressayre [171]) D (n) ≥ n2/2.

(Actually, Mignon and Ressayre proved Theorem 72 only for fields of characteristic 0. Their
result was then extended to all fields of characteristic other than 2 by Cai, Chen, and Li [68] in
2008.)

The basic idea of the proof of Theorem 72 is to consider the Hessian matrix of a polynomial
p : FN → F, or the matrix of second partial derivatives, evaluated at some particular pointX0 ∈ FN :

Hp (X0) :=

∂2p
∂x2

1
(X0) · · · ∂2p

∂x1∂xN
(X0)

...
. . .

...
∂2p

∂xN∂x1
(X0) · · · ∂2p

∂x2
N
(X0)

 .

Here we mean the “formal” partial derivatives of p: even if F is a finite field, we can still symboli-
cally differentiate a polynomial over F, to produce new polynomials over smaller sets of variables.
In general, when we’re trying to lower-bound the difficulty of computing a polynomial p, a com-

mon technique in arithmetic complexity is to look at various partial derivatives ∂kp
∂xi1

···∂xik
—and in

particular, at the dimensions of vector spaces spanned by those partial derivatives, or the ranks of
matrices formed from them—and then argue that, if p had a small circuit (or formula, or whatever),
then those dimensions or ranks couldn’t possibly be as high as they are.

In the case of Theorem 72, we prove the following two statements:

(1) If p is the permanent, of an n×n matrix of N = n2 indeterminates, then there exists a point
X0 ∈ FN such that rank (Hp (X0)) = N .

73

(2) If p is the determinant of an m×m matrix of affine functions in the N indeterminates, then
rank (Hp (X)) ≤ 2m for every X.

Combining these, we get m ≥ n2/2, if p is both the n×n permanent and an m×m determinant.
So to summarize, the “blowup” D (n) in embedding the permanent into the determinant is

known to be at least quadratic and at most exponential. The huge gap here becomes a bit less
surprising, once we know that D (n) is tightly connected to the arithmetic circuit complexity of the
permanent. In particular, recall that a formula is just a circuit in which every gate has a fanout
of 1. Then Valiant [247] showed the following:

Theorem 73 (Valiant [247]) D (n) ≤ F (n)+1, where F (n) is the size of the smallest arithmetic
formula for the n× n permanent.

Thus, if we could prove that D (n) grew faster than any polynomial, we’d have shown that
the permanent has no polynomial-size formulas. But heightening the interest still further, Valiant
et al. [250] showed that in the arithmetic world, there’s a surprisingly tight connection between
formulas and circuits:

Theorem 74 (Valiant et al. [250]) If a degree-d polynomial has an arithmetic circuit of size s,

then it also has an arithmetic formula of size (sd)O(log d).

Theorem 74 implies that D (n) ≤ C (n)O(logn), where C (n) is the size of the smallest arithmetic
circuit for the n× n permanent. This means that, if we could prove that D (n) grew not only su-
perpolynomially but faster than nO(logn), we’d also have shown that C (n) grew superpolynomially,
thereby establishing Valiant’s Conjecture 70.

But lower-bounding D (n) is not merely sufficient for proving Valiant’s Conjecture; it’s also
necessary! For recall that the n×n determinant has an arithmetic circuit of size O

(
n3

)
, and even

O (nω). So we get the following chain of implications:

D (n) > nO(logn) =⇒ F (n) > nO(logn) (by Theorem 73)

=⇒ C (n) > nO(1) (by Theorem 74; this is Valiant’s Conjecture 70)

=⇒ D (n) > nO(1) (by the nO(1) arithmetic circuit for determinant)

=⇒ F (n) > nO(1) (by Theorem 73).

Today, a large fraction of the research aimed at proving P ̸= NP is aimed, more immediately, at
proving Valiant’s Conjecture 70 (see Agrawal [14] for a survey focusing on that goal). The hope is
that, on the one hand, powerful tools from algebraic geometry and other fields can be brought to
bear on Valiant’s problem, but on the other, that solving it could provide insight about the original

P
?
= NP problem.

6.5.2 Arithmetic Circuit Lower Bounds

I won’t do justice in this survey to the now-impressive body of work motivated by Conjecture
70; in particular, I’ll say little about proof techniques. Readers who want to learn more about
arithmetic circuit lower bounds should consult Shpilka and Yehudayoff [226, Chapter 3] for an
excellent survey circa 2010, or Saraf [217] for a 2014 update. Briefly, though, computer scientists

74

have tried to approach Conjecture 70 much as they’ve approached NP ̸⊂ P/poly, by proving lower
bounds against more and more powerful arithmetic circuit classes. In that quest, they’ve had
some notable successes (paralleling the Boolean successes), but have also run up against some
major differences from the Boolean case.

For starters, just as Razborov [207] and others considered monotone Boolean circuits, one can
also consider monotone arithmetic circuits (over fields such as R or Q), in which all coefficients need
to be positive. Since the determinant involves −1 coefficients, it doesn’t make sense to ask about
monotone circuits for Det (X), but one can certainly ask about the monotone circuit complexity of
Per (X). And already in 1982, Jerrum and Snir [129] proved the following arithmetic counterpart
of Razborov’s Theorem 46:

Theorem 75 (Jerrum and Snir [129]) Any monotone circuit for Per (X) requires size 2Ω(n).

As another example, just as computer scientists considered constant-depth Boolean circuits
(the classes AC0, ACC, TC0, and so on), so we can also consider constant-depth arithmetic circuits,
which are conventionally denoted ΣΠ, ΣΠΣ, etc. to indicate whether they represent a multivariate
polynomial as a sum of products, a sum of product of sums, etc. It’s trivial to prove exponential
lower bounds on the sizes of depth-two (ΣΠ) circuits: that just amounts to lower-bounding the
number of monomials in a polynomial. More interesting is the following result:

Theorem 76 (Grigoriev and Karpinski [104], Grigoriev and Razborov [105]) Over a fi-
nite field, any ΣΠΣ circuit for Det (X) requires size 2Ω(n). (Indeed, this is true even for circuits
representing Det (X) as a function.)

Curiously, over infinite fields, the best lower bound that we have for the determinant is still a
much weaker one, due to Shpilka and Wigderson [225]:

Theorem 77 (Shpilka and Wigderson [225]) Over infinite fields, any ΣΠΣ circuit for Det (X)
requires size Ω

(
n4/ log n

)
.70

Theorems 76 and 77 are stated for the determinant, although they have analogues for the
permanent. In any case, these results certainly don’t succeed in showing that the permanent is
harder than the determinant.

The situation is better when we restrict the fanin of the multiplication gates. In particular, by
a ΣΠ[a]ΣΠ[b] circuit, let’s mean a depth-4 circuit where every inner multiplication gate has fanin
at most a, and every bottom multiplication gate has fanin at most b. Then in 2013, Gupta et al.
[110] proved the following.

Theorem 78 (Gupta, Kamath, Kayal, and Saptharishi [110]) Any ΣΠ[O(
√
n)]ΣΠ[

√
n] circuit

for Per (X) or Det (X) requires size 2Ω(
√
n).

70As this survey was being written, Kayal, Saha, and Tavenas [140] announced a proof that a certain explicit
polynomial, albeit not the permanent or determinant, requires ΣΠΣ circuits of size Ω

(
n3/ log2 n

)
, over any field F.

By comparison, as a function of the number of input variables (n2), Shpilka and Wigderson’s Ω
(
n4/ logn

)
lower

bound for the determinant [225] is “only” quadratic.

75

Subsequently, Kayal, Saha, and Saptharishi [139] proved a size lower bound of nΩ(
√
n) for such

circuits, though not for the permanent or determinant but for a different explicit polynomial.
The situation is also better when we restrict to homogeneous arithmetic circuits. These are

circuits where every gate is required to compute a homogeneous polynomial: that is, one where all
the monomials have the same degree. Here Nisan and Wigderson [192] established the following
in 1997.

Theorem 79 (Nisan and Wigderson [192]) Over any field, any homogeneous ΣΠΣ circuit for
Det (X) requires size 2Ω(n).

Going further, in 2014 Kayal, Limaye, Saha, and Srinivasan [138] gave an explicit polynomial in

n variables for which any homogeneous ΣΠΣΠ circuit requires size nΩ(
√
n) (compared to Theorem

79’s 2Ω(
√
n), as a function of the number of input variables).

It’s natural to wonder: why are we stuck talking about depth-3 and depth-4 arithmetic circuits?
Why couldn’t we show that the permanent and determinant have no constant-depth arithmetic
circuits of subexponential size, just like Theorem 49 and its successors showed that Parity has
no constant-depth Boolean circuits of subexponential size? After all, wasn’t the whole point of
arithmetic complexity that it was supposed to be easier than Boolean complexity?

In 2008, Agrawal and Vinay [16] gave a striking answer to these questions; they called their
answer “the chasm at depth four.” In particular, building on the earlier work of Valiant et al. [250]
(Theorem 74), Agrawal and Vinay showed that, if we managed to prove strong enough lower bounds
for depth-4 arithmetic circuits, then we’d also get superpolynomial lower bounds for arbitrary
arithmetic circuits! Here’s one special case of their result:

Theorem 80 (Agrawal and Vinay [16]) Suppose that Per (X) requires depth-4 arithmetic cir-
cuits (even homogeneous ones) of size 2Ω(n). Then Per (X) requires arithmetic circuits of super-
polynomial size, and Valiant’s Conjecture 70 holds.

Subsequently, Koiran [148] and Tavenas [243] showed that Valiant’s Conjecture would follow, not
merely from a 2Ω(n) size lower bound for homogeneous depth-4 circuits computing the permanent,

but from any size lower bound better than nΩ(
√
n). In an even more exciting development, Gupta

et al. [109] reduced the depth from four to three (though only for fields of characteristic 0, and no
longer allowing homogeneity):

Theorem 81 (Gupta, Kamath, Kayal, and Saptharishi [109]) Suppose that Per (X) requires

depth-3 arithmetic circuits of size more than nΩ(
√
n), over fields of characteristic 0. Then Per (X)

requires arithmetic circuits of superpolynomial size, and Valiant’s Conjecture 70 holds.

These results can be considered extreme versions of the depth reduction of Brent [56] (see
Proposition 26). I should mention that all of these results hold, not just for the permanent, but for
any homogeneous polynomial of degree nO(1). In particular, by applying their depth reduction “in
the opposite direction” for the determinant, Gupta et al. [109] were able to show that there exist

depth-3 arithmetic circuits of size nO(
√
n) for Det (X). This provides an interesting counterpoint

to the result of Nisan and Wigderson [192] (Theorem 79), which showed that 2Ω(n) gates are needed
for the determinant if we restrict to depth-3 homogeneous circuits.

76

There are yet other results in this vein, which give yet other tradeoffs. But perhaps we should
step back from the flurry of theorems and try to summarize. After decades of research in arithmetic

circuit complexity, we now have lower bounds of the form nΩ(
√
n) on the sizes of depth-3 and depth-

4 arithmetic circuits computing explicit polynomials (subject to various technical restrictions). On
the other hand, we also have a deep explanation for why the progress has stopped at the specific

bound nΩ(
√
n): because any lower bound even slightly better than that would already prove Valiant’s

Conjecture, that the permanent is superpolynomially harder than the determinant! It’s as if, in
arithmetic complexity, we reach a terrifying precipice—beyond which we can no longer walk but
need to fly—sooner than we do in the Boolean case. And around 2014, we learned exactly where
that precipice is and walked right up to it, but we still haven’t jumped.71,72

In this connection, it’s worth pointing out that, with the exception of Theorem 72 by Mignon
and Ressayre [171], none of the results in this section actually differentiate the permanent from
the determinant: that is, none of them prove a lower bound for Per (X) better than the analogous
lower bound known for Det (X). Eventually, of course, any proof of Valiant’s Conjecture will need
to explain why the permanent is harder than the determinant, which is one of the main motivations
for the Mulmuley-Sohoni program (see Section 6.6).

Let me end this section by discussing two striking results of Ran Raz, and one of Pascal Koiran,
that didn’t quite fit into the narrative above. The first result is a superpolynomial lower bound
on the sizes of multilinear formulas. An arithmetic formula is called multilinear if the polynomial
computed by each gate is a multilinear polynomial (that is, no variable is raised to a higher power
than 1). Notice that the permanent and determinant are both multilinear polynomials. For that
reason, they can be computed by multilinear formulas, and it makes sense to ask about the size of
the smallest such formulas.

In a 2004 breakthrough, Raz [202] proved the following.

Theorem 82 (Raz [202]) Any multilinear formula for Per (X) or Det (X) requires size nΩ(logn).73

What made Theorem 82 striking was that there was no restriction on the formula’s depth.
The proof was via the random restriction method from Section 6.2.3, combined with the idea
(common in arithmetic complexity) of using matrix rank as a progress measure. In more detail, let
p : {0, 1}n → R be a polynomial computed by a small multilinear formula: for simplicity, we’ll take
p’s inputs to be Boolean. Then basically, we randomly partition p’s input variables into two small
sets X = {x1, . . . , xk} and Y = {y1, . . . , yk}, and a large set Z of size n − 2k. (Here we should
imagine, say, k = n1/3.) We then randomly fix the variables in Z to 0’s or 1’s, while leaving the

variables in X and Y unfixed. Next, we define a matrix M ∈ R2k×2k , whose rows are indexed by
the 2k possible assignments to X, whose columns are indexed by the 2k possible assignments to Y ,
and whose (X,Y) entry equals p (X,Y, Z). Finally, we prove the following two statements:

• With high probability, M has rank much smaller than 2k. This is the hard part of the proof:
we use the assumption that p has a small multilinear formula, and then argue by induction
on the formula.

71Or perhaps, we’ve jumped many times, but each time hit the bottom rather than flew!
72As this survey was being written, Forbes, Kumar, and Saptharishi [84] gave yet another interesting result sharp-

ening the contours of the “chasm at depth four”: namely, they showed that lower bounds on homogeneous depth-4
arithmetic circuits to compute Boolean functions (rather than formal polynomials), and which are only “slightly”
stronger than lower bounds that have already been shown, would imply a separation between #P and ACC.

73An immediate corollary is that any multilinear circuit for Per (X) or Det (X) requires depth Ω
(
log2 n

)
.

77

• If p represents the function f of interest to us (say, the permanent or determinant), then
rank (M) = 2k with certainty.

Together, these yield the desired contradiction, showing that f can’t have had a small multilinear
formula after all.

It seems likely that the lower bound in Theorem 82 could be improved from nΩ(logn) all the way
up to 2Ω(n), but this remains open. Raz and Yehudayoff [205] did manage to prove an exponential
lower bound for constant-depth multilinear formulas computing the permanent or determinant;
and in a separate work [206], they also proved a 2Ω(n) lower bound for “non-cancelling” multilinear
formulas computing an explicit polynomial f (not the permanent or determinant). Here “non-
cancelling”—a notion that I defined in [2]—basically means that nowhere in the formula are we
allowed to add two polynomials that “almost perfectly” cancel each other out, leaving only a tiny
residue.

Of course, just like with the arithmetic circuit lower bounds discussed earlier, so far all the
known multilinear formula lower bounds fail to distinguish the permanent from the determinant.

The second result of Raz’s concerns so-called elusive functions. Given a polynomial curve
f : C → Cn, Raz calls f elusive if f is not contained in the image of any polynomial mapping
g : Cn−1 → Cn of degree 2. He then proves the following beautiful theorem.

Theorem 83 (Raz [203]) Suppose there exists an elusive function whose coefficients can be com-
puted in polynomial time. Then Per (X) requires arithmetic circuits of superpolynomial size, and
Valiant’s Conjecture 70 holds.

Arguably, this makes Valiant’s Conjecture look even more like a question of pure algebraic
geometry than it did before! As evidence that the “elusive function” approach to circuit lower
bounds is viable, Raz then constructs an explicit f that’s elusive in a weak sense, which is already
enough to imply the following new lower bound:

Theorem 84 (Raz [203]) For every r, there is an explicit polynomial p with n variables and
degree O (r), such that any depth-r arithmetic circuit for p (over any field) requires size n1+Ω(1/r).

Now for the result of Koiran.

Theorem 85 (Koiran [147]) Suppose that any univariate real polynomial, of the form

p (x) =
ℓ∑

i=1

m∏
j=1

n∑
k=1

aijkx
eijk ,

has at most (ℓmn)O(1) real zeroes. Then Per (X) requires arithmetic formulas of superpolynomial
size (and indeed, D (n) > nO(1)).

In fact it would suffice to upper-bound the number of integer zeroes of such a polynomial by
(ℓmn)O(1). Note that, if we had asked about complex zeroes, then Theorem 85 would badly fail,
because of counterexamples such as x2

n−1. But with real zeroes, no counterexample is known, and
Theorem 85 once again raises the tantalizing possibility that tools from analysis could be brought
to bear on the permanent versus determinant problem.

78

6.5.3 Arithmetic Natural Proofs?

In Section 6.5.2, we saw arithmetic circuit lower bounds that, again and again, seem to go “right
up to the brink” of proving Valiant’s Conjecture, but then stop short. Given this, it’s natural to
wonder what the barriers are to further progress in arithmetic complexity, and how they relate to
the barriers in the Boolean case.

We’ve already discussed one obvious barrier, which is that eventually we need techniques that
work for the permanent but fail for the determinant. It might also be interesting to define an
arithmetic analogue of the relativization barrier (Section 6.1.2). To my knowledge, this hasn’t
been done, but my guess is that in the arithmetic setting, the natural choices for oracles would look
a lot like the algebraic oracles studied by Aaronson and Wigderson [10] (see Section 6.3.3). With
a notion of “oracle” in hand, one could probably show that most arithmetic circuit lower bounds
require arithmetically non-relativizing techniques. On the other hand, this wouldn’t be much of an
obstruction, since even the results discussed in Section 6.5.2 should already evade the relativization
barrier, for the same reason as those of Sections 6.2.3 and 6.2.4.

In the rest of this section, I’d like to discuss the contentious question of whether or not arithmetic
circuit complexity faces a natural proofs barrier, in the sense of Razborov and Rudich [211]. Recall
from Section 6.2.5 that a circuit lower bound proof is called natural if, besides proving that the
specific function f of interest to us is not in a circuit class C, the proof also provides a polynomial-
time algorithm A that takes as input a function’s truth table, and that certifies a 1/nO(1) fraction
of all functions as not belonging to C. Such an A can be used to distinguish functions in C from
random functions with non-negligible bias. Meanwhile, the class C has a natural proofs barrier if C
contains pseudorandom function families, which can’t be so distinguished from random functions,
and whose existence is therefore incompatible with the existence of A.

In the arithmetic setting, presumably we’d call a proof natural if it yields a polynomial-time
algorithm74 that takes as input, say, the complete output table of a homogeneous degree-d polyno-
mial p : Fn → F over a finite field F, and that certifies a 1/nO(1) fraction of all such polynomials
as not belonging to the arithmetic circuit class C. Also, we’d say that C has a natural proofs
barrier if C contains pseudorandom polynomial families. By this, we mean families of homoge-
neous degree-d polynomials, ps : Fn → F, that no |F|O(n)-time algorithm can distinguish from
uniformly-random homogeneous degree-d polynomials with non-negligible bias. (We can no longer
talk about uniformly-random functions, since an algorithm can easily ascertain, for example, that
ps is a degree-d polynomial.) By exactly the same logic as in the Boolean case, if C is powerful
enough to compute pseudorandom polynomials, then no natural proof can show that a polynomial
isn’t in C.

Now, one point that’s not disputed is that all the arithmetic circuit lower bounds discussed in
Section 6.5.2 are natural in the above sense. I didn’t say much about how the lower bounds are
proved, but as mentioned in Section 6.5.1, arithmetic circuit lower bounds generally proceed by
finding some parameter α (p) associated with a polynomial p—say, the rank of its Hessian matrix, or
the dimension of a vector space spanned by p’s partial derivatives—to use as a “progress measure.”
The proof then argues that

(1) α (p) is large for the specific polynomial p of interest to us (say, the permanent or determinant),
but

74For simplicity, here I’ll assume that we mean an “ordinary” (Boolean) polynomial-time algorithm, though one
could also require polynomial-time algorithms in the arithmetic model.

79

(2) every gate added to our circuit or formula can only increase α (p) by so much,

thereby implying that p requires many gates. Furthermore, virtually any progress measure α that’s
a plausible choice for such an argument—and certainly the ones used in the existing results—will
be computable in |F|O(n) time, and will be maximized by a random polynomial p of the appropriate
degree. Alas, this implies that the argument is natural! If the circuit class C has a natural proofs
barrier, then no such argument can possibly prove p /∈ C.

The part that’s controversial is whether arithmetic circuit classes do have a natural proofs
barrier. To show that they did, we’d need plausible candidates for pseudorandom polynomials—
say, homogeneous degree-d polynomials p : Fn → F that actually have small arithmetic circuits,
but that look to any efficient test just like random homogeneous polynomials of degree d. The
trouble is that, while cryptographers know a great deal about how to construct pseudorandom
functions, the accepted constructions are all “inherently Boolean”; they don’t work in the setting
of low-degree polynomials over a finite field.

Thus, to take one example, the work of Goldreich, Goldwasser, and Micali (GGM) [99], combined
with that of H̊astad et al. [117], shows how to build a pseudorandom function family starting from
any one-way function (see Section 5.3.1). And indeed, Razborov and Rudich [211] used a variant of
the GGM construction in their original paper on natural proofs. However, if we try to implement
the GGM construction using arithmetic circuits—say, using multiplication for the AND gates, 1−x
for the NOT gates, etc.—we’ll find that we’ve produced an arithmetic circuit of nO(1) depth, which
computes a polynomial of exp

(
nO(1)

)
degree: far too large.

As I mentioned in Section 6.2.5, if we’re willing to assume the hardness of specific cryptographic
problems, then there are also much more direct constructions of pseudorandom functions, which
produce circuits of much lower depth. In particular, there’s the construction of Naor and Reingold
[188], which is based on factoring and discrete logarithm; and that of Banerjee et al. [37], which
is based on noisy systems of linear equations. Unfortunately, examination of these constructions
reveals that they, too, require treating the input as a string of bits rather than of finite field elements.
So for example, the Naor-Reingold construction involves modular exponentiation, which of course
goes outside the arithmetic circuit model, where only addition and multiplication are allowed.

At this point I can’t resist stating my own opinion, which is that the issue here is partly technical
but also partly social. Simply put: Naor-Reingold and Banerjee et al. are taken to be relevant to
natural proofs, because factoring, discrete logarithm, and solving noisy systems of linear equations
have become accepted by the community of cryptographers as plausibly hard problems. Since real
computers use Boolean circuits, and since in practice one normally needs pseudorandom functions
rather than polynomials, cryptographers have had extremely little reason to study pseudorandom
low-degree polynomials that are computed by small arithmetic circuits over finite fields. If they
had studied that, though, it seems plausible that they would’ve found decent candidates for such
polynomials, and formed a social consensus that they indeed seem hard to distinguish from random
polynomials.

Motivated by that thought, in a 2008 blog post [5], I offered my own candidate for a pseudo-
random family of polynomials, ps : Fn → F, which are homogeneous of degree d = nO(1). My
candidate was simply this: motivated by Valiant’s result [247] that the determinant can express any
arithmetic formula (Theorem 73), take the random seed s to encode d2 uniformly-random linear

80

functions, Li,j : Fn → F for all i, j ∈ {1, . . . , d}. Then set

ps (x1, . . . , xn) := Det

 L1,1 (x1, . . . , xn) · · · L1,d (x1, . . . , xn)
...

. . .
...

Ld,1 (x1, . . . , xn) · · · Ld,d (x1, . . . , xn)

 .

My conjecture is that, at least when d is sufficiently large, a random ps drawn from this family
should require exp

(
dΩ(1)

)
time to distinguish from a random homogeneous polynomial of degree d,

if we’re given the polynomial p : Fn → F by a table of |F|n values. If d is a large enough polynomial

in n, then exp
(
dΩ(1)

)
is greater than |F|O(n), so the natural proofs barrier would apply.

So far there’s been little study of this conjecture. Neeraj Kayal and Joshua Grochow (per-
sonal communication) have pointed out to me that the Mignon-Ressayre Theorem (Theorem 72)
implies that ps can be efficiently distinguished from a uniformly-random degree-d homogeneous
polynomial whenever d < n/2. For Mignon and Ressayre show that the Hessian matrix, Hp (X),
satisfies rank (Hp (X)) ≤ 2d for all X if p is a d× d determinant, whereas a random p would have
rank (Hp (X)) = n for most X with overwhelming probability, so this provides a distinguisher.
However, it’s not known what happens for larger d.

Of course, if our goal is to prove P ̸= NP or NP ̸⊂ P/poly, then perhaps the whole question
of arithmetic natural proofs is ultimately beside the point. For to prove NP ̸⊂ P/poly, we’ll need
to become experts at overcoming the natural proofs barrier in any case: either in the arithmetic
world, or if not, then when we move from the arithmetic world back to the Boolean one.

6.6 Geometric Complexity Theory

I’ll end this survey with some extremely high-level remarks about Geometric Complexity Theory
(GCT): an ambitious program to prove P ̸= NP and related conjectures using algebraic geometry
and representation theory. This program has been pursued since the late 1990s; it was started by
Ketan Mulmuley, with important contributions from Milind Sohoni and others. GCT has changed
substantially since its inception: for example, as we’ll see, recent negative results by Ikenmeyer
and Panova [121] among others have decisively killed certain early hopes for the GCT program,
while still leaving many avenues to explore in GCT more broadly construed. Confusingly, the term
“GCT” can refer either to the original Mulmuley-Sohoni vision, or to the broader interplay between
complexity and algebraic geometry, which is now studied by a community of researchers, many of
whom deviate from Mulmuley and Sohoni on various points. In this section, I’ll start by explaining
the original Mulmuley-Sohoni perspective (even where some might consider it obsolete), and only
later discuss more recent developments. Also, while the questions raised by GCT have apparently
sparked quite a bit of interesting progress in pure mathematics—much of it only marginally related
to complexity theory—in this section I’ll concentrate exclusively on the quest to prove circuit lower
bounds.

I like to describe GCT as “the string theory of computer science.” Like string theory, GCT has
the aura of an intricate theoretical superstructure from the far future, impatiently being worked on
today. Both have attracted interest partly because of “miraculous coincidences” (for string theory,
these include anomaly cancellations and the prediction of gravitons; for GCT, exceptional properties
of the permanent and determinant, and surprising algorithms to compute the multiplicities of
irreps). Both have been described as deep, compelling, and even “the only game in town” (not

81

surprisingly, a claim disputed by the fans of rival ideas!). And like with string theory, there are
few parts of modern mathematics not known or believed to be relevant to GCT.

For both string theory and GCT, however, the central problem has been to say something novel
and verifiable about the real-world phenomena that motivated the theory in the first place, and
to do so in a way that depends essentially on the theory’s core tenets (rather than on inspirations
or analogies, or on small fragments of the theory). For string theory, that would mean making
confirmed predictions or (e.g.) explaining the masses and generations of the elementary particles;
for GCT, it would mean proving new circuit lower bounds. Indeed, proponents of both theories
freely admit that one might spend one’s whole career on the theory, without living to see a payoff
of that kind.75

GCT is not an easy subject, and I don’t pretend to be an expert. Part of the difficulty is
inherent, while part of it is that the primary literature on GCT is not optimized for beginners:
it contains a profusion of ideas, extended analogies, speculations, theorems, speculations given
acronyms and then referred to as if they were theorems, and advanced mathematics assumed as
background.

Mulmuley regards the beginning of GCT as a 1997 paper of his [176], which used algebraic
geometry to prove a circuit lower bound for the classic MaxFlow problem. In MaxFlow, we’re
given as input a description of an n-vertex directed graph G, with nonnegative integer weights
on the edges (called capacities), along with designated source and sink vertices s and t, and a
nonnegative integer w (the target). The problem is to decide whether w units of a liquid can be
routed from s to t, with the amount of liquid flowing along an edge e never exceeding e’s capacity.
The MaxFlow problem is famously in P,76 but the known algorithms are inherently serial, and
it remains open whether they can be parallelized. More concretely, is MaxFlow in NC1, or
some other small-depth circuit class? Note that any proof of MaxFlow /∈ NC1 would imply the
spectacular separation NC1 ̸= P. Nevertheless, Mulmuley [176] managed to prove a strong lower
bound for a restricted class of circuits, which captures almost all the MaxFlow algorithms known
in practice.

Theorem 86 (Mulmuley [176]) Consider an arithmetic circuit for MaxFlow, which takes as
input the integer capacities and the integer target w.77 The gates, which all have fanin 2, can
perform integer addition, subtraction, and multiplication (+,−,×) as well as integer comparisons
(=,≤, <). A comparison gate returns the integer 1 if it evaluates to “true” and 0 if it evaluates
to “false.” The circuit’s final output must be 1 if the answer is “yes” and 0 if the answer is “no.”
Direct access to the bit-representations of the integers is not allowed, nor (for example) are the
floor and ceiling functions.

75Furthermore, just as string theory didn’t predict what new data there has been in fundamental physics in recent
decades (e.g., the dark energy), so GCT played no role in, e.g., the proof of NEXP ̸⊂ ACC (Section 6.4.2), or the
breakthrough lower bounds for small-depth circuits computing the permanent (Section 6.5.2). In both cases, to
point this out is to hold the theory to a high and possibly unfair standard, but also ipso facto to pay the theory a
compliment.

76MaxFlow can easily be reduced to linear programming, but Ford and Fulkerson [85] also gave a much faster
and direct way to solve it, which can be found in any undergraduate algorithms textbook. There have been further
improvements since.

77We can assume, if we like, that G, s, and t are hardwired into the circuit. We can also allow constants such as
0 and 1 as inputs, but this is not necessary, as we can also generate constants ourselves using comparison gates and
arithmetic.

82

Any such circuit must have depth Ω(
√
n). Moreover, this holds even if the capacities are

restricted to be O
(
n2

)
-bit integers.

Similar to previous arithmetic complexity lower bounds, the proof of Theorem 86 proceeds by
noticing that any small-depth arithmetic circuit separates the yes-instances from the no-instances
via a small number of low-degree algebraic surfaces. It then appeals to results from algebraic geom-
etry (e.g., the Milnor-Thom Theorem) to show that, for problems of interest (such as MaxFlow),
no such separation by low-degree surfaces is possible. As Mulmuley already observed in [176], the
second part of the argument would work just as well for a random problem. Since polynomial
degree is efficiently computable, this means that we get a natural proof in the Razborov-Rudich
sense (Section 6.2.5). So the same technique can’t possibly work to prove NC1 ̸= P: it must break
down when arbitrary bit operations are allowed. Nevertheless, for Mulmuley, Theorem 86 was
strong evidence that algebraic geometry provides a route to separating complexity classes.

The foundational GCT papers by Mulmuley and his collaborators, written between 2001 and
2013, are “GCT1” through “GCT8” [185, 186, 184, 48, 183, 180, 180, 177, 178], though much of the
material in those papers has been rendered obsolete by subsequent developments. Readers seeking
a less overwhelming introduction could try Mulmuley’s overviews in Communications of the ACM
[182] or in Journal of the ACM [181]; or lecture notes and other materials on Mulmuley’s GCT
website [175]; or surveys by Regan [212] or by Landsberg [152]. Perhaps the most beginner-friendly
exposition of GCT yet written—though it covers only the early parts of the program—is contained
in Joshua Grochow’s PhD thesis [106, Chapter 3].

6.6.1 From Complexity to Algebraic Geometry

So what is GCT? It’s easiest to understand GCT as a program to prove Valiant’s Conjecture
70—that is, to show that any affine embedding of the n × n permanent over C into the m × m
determinant over C requires (say) m = 2n

Ω(1)
, and hence, that the permanent requires exponential-

size arithmetic circuits. GCT also includes an even more speculative program to prove Boolean
lower bounds, such as NP ̸⊂ P/poly and hence P ̸= NP. However, if we accept the premises of
GCT in the first place (e.g., the primacy of algebraic geometry for circuit lower bounds), then we
might as well start with the permanent versus determinant problem, since that’s where the core
ideas of GCT come through the most clearly.

The first observation Mulmuley and Sohoni make is that Valiant’s Conjecture 70 can be trans-
lated into an algebraic-geometry conjecture about orbit closures. In more detail, consider a group
G that acts on a set V : in the examples that interest us, G will be a group of complex matrices,
while V will be a high-dimensional vector space over C (e.g., the space of all homogeneous degree-n
polynomials over some set of variables). Then the orbit of a point v ∈ V , denoted Gv, is the set
{g · v : g ∈ G}. Also, the orbit closure of x, denoted Gv, is the closure of Gv in the usual complex
topology. It contains all the points that can be arbitrarily well approximated by points in Gv.

To be more concrete, let G = GLm2 (C) be the general linear group: the group of all invertible
m2 ×m2 complex matrices. Also, let V be the vector space of all homogeneous degree-m complex
polynomials over m2 variables; the variables are labeled x1,1, . . . , xm,m, and we’ll think of them as
the entries of an m ×m matrix X. (Recall that a homogeneous polynomial is one where all the
monomials have the same degree m; restricting to them lets GCT talk about linear maps rather
than affine ones.) Then G acts on V in an obvious way: for all matrices A ∈ G and polynomials
p ∈ V , we can set (A · p) (x) := p (Ax). Indeed, this action is a group representation: each A ∈ G

83

acts linearly on the coefficients of p, so we get a homomorphism from G to the linear transformations
on V .

Now, we’d like to interpret both the m × m determinant and the n × n permanent (n ≪ m)
as points in V , in order to phrase the permanent versus determinant problem in terms of orbit
closures. For the determinant, this is trivial: Detm is a degree-m homogeneous polynomial over
the xij ’s. The n × n permanent, on the other hand, is a lower-degree polynomial over a smaller
set of variables. GCT solves that problem by considering the so-called padded permanent,

Per∗m,n (X) := xm−n
m,m Pern (X|n) ,

where X|n denotes the top-left n× n submatrix of X, and xm,m is just some entry of X that’s not
in X|n. This is a homogeneous polynomial of degree m.

Let χDet,m := G ·Detm be the orbit closure of the m × m determinant, and let χPer,m,n :=
G · Per∗m,n be the orbit closure of the padded n × n permanent. I can now state the central
conjecture that GCT seeks to prove.

Conjecture 87 (Mulmuley-Sohoni Conjecture) If m = 2n
o(1)

, then for all sufficiently large n
we have Per∗m,n /∈ χDet,m, or equivalently χPer,m,n ̸⊂ χDet,m. In other words, the padded permanent
is not in the orbit closure of the determinant.

Mulmuley and Sohoni’s first observation is that a proof of Conjecture 87 (or indeed, any lower
bound on m better than nΩ(logn)) would imply a proof of Valiant’s Conjecture:

Proposition 88 ([185]) Suppose there’s an affine embedding of the n × n permanent into the
m×m determinant: i.e., D (n) ≤ m, in the notation of Section 6.5.1. Then Per∗m,n ∈ χDet,m.

Let me make two remarks about Proposition 88. First, for the proposition to hold, it’s crucial
that we’re talking about the orbit closure, not just the orbit. It’s easy to see that Per∗m,n /∈
G · Detm—for example, because every element of G · Detm is irreducible (can’t be factored into
lower-degree polynomials), whereas the padded permanent is clearly reducible. But that tells us
only that there’s no invertible linear transformation of the variables that turns the determinant into
the padded permanent, not that there’s no linear transformation at all. In GCT, linear changes
of variable play the role of reductions—so, while the orbit of f plays the role of the “f -complete
problems,” it’s the orbit closure that plays the role of the complexity class of functions reducible
to f .78

The second remark is that, despite their similarity, it’s unknown whether Conjecture 87 is equiv-
alent to Valiant’s conjecture that the permanent requires affine embeddings into the determinant

78More broadly, there are many confusing points about GCT whose resolutions require reminding ourselves that
we’re talking about orbit closures, not only about orbits. For example, it’s often said that the plan of GCT is
ultimately to show that the n×n permanent has “too little symmetry” to be embedded into the m×m determinant,
unless m is much larger than n. But in that case, what about (say) a random arithmetic formula f of size n, which
has no nontrivial symmetries, but which clearly can be embedded into the (n+ 1)×(n+ 1) determinant, by Theorem
73? Even though this f clearly isn’t characterized by its symmetries, mustn’t the embedding obstructions for f be
a strict superset of the embedding obstructions for the permanent—since f ’s symmetries are a strict subset of the
permanent’s symmetries—and doesn’t that give rise to a contradiction? The solution to the apparent paradox is
that this argument would be valid if we were talking only about orbits, but it’s not valid for orbit closures. With
orbit closures, the set of obstructions doesn’t depend in a simple way on the symmetries of the original function, so
it’s possible that an obstruction for the permanent would fail to be an obstruction for f .

84

of size D (n) > 2n
o(1)

. The reason is that there are points in the orbit closure of the determinant
that aren’t in its “endomorphism orbit” (that is, the set of polynomials that have not-necessarily-
invertible linear embeddings into the determinant). In complexity terms, these are homogeneous
degree-m polynomials that can be arbitrarily well approximated by determinants of m×m matrices
of linear functions, but not represented exactly.

See Grochow [106] for further discussion of both issues.

6.6.2 Characterization by Symmetries

So far, it seems like all we’ve done is restated Valiant’s Conjecture in a more abstract language
and slightly generalized it. But now we come to the main insight of GCT, which is that the
permanent and determinant are both special, highly symmetric functions, and it’s plausible that
we can leverage that fact to learn more about their orbit closures than we could if they were
arbitrary functions. For starters, Per (X) is symmetric under permuting X’s rows or columns,
transposing X, and multiplying the rows or columns by scalars that multiply to 1. That is, we
have

Per (X) = Per
(
XT

)
= Per (PXQ) = Per (AXB) (2)

for all permutation matrices P andQ, and all diagonal matricesA andB such that Per (A) Per (B) =
1. The determinant has an even larger symmetry group: we have

Det (X) = Det
(
XT

)
= Det (AXB) (3)

for all matrices A and B such that Det (A)Det (B) = 1.
But there’s a further point: it turns out that the permanent and determinant are both uniquely

characterized (up to a constant factor) by their symmetries, among all homogeneous polynomials
of the same degree. More precisely:

Theorem 89 Let p be any degree-m homogeneous polynomial in the entries of X ∈ Cm×m that
satisfies p (X) = p (PXQ) = p (AXB) for all permutation matrices P,Q and diagonal A,B with
Per (A) Per (B) = 1. Then p (X) = αPer (X) for some α ∈ C. Likewise, let p be any degree-m
homogeneous polynomial in the entries of X ∈ Cm×m that satisfies p (X) = p (AXB) for all A,B
with Det (A)Det (B) = 1. Then p (X) = αDet (X) for some α ∈ C.79

Theorem 89 is fairly well-known in representation theory; the determinant case dates back to
Frobenius. See Grochow [106, Propositions 3.4.3 and 3.4.5] for an elementary proof, using Gaussian
elimination for the determinant and even simpler considerations for the permanent. Notice that
we’re not merely saying that any polynomial p with the same symmetry group as the permanent
is a multiple of the permanent (and similarly for the determinant), but rather that any p whose
symmetry group contains the permanent’s is a multiple of the permanent.

In a sense, Theorem 89 is the linchpin of the GCT program. Among other things, it’s GCT’s
answer to the question of how it could overcome the natural proofs barrier. For notice that, if we
picked a degree-m homogeneous polynomial at random, it almost certainly wouldn’t be uniquely

79Note that we don’t even need to assume the symmetry p (X) = p
(
XT

)
; that comes as a free byproduct. Also,

it might seem like “cheating” that we use the permanent to state the symmetries that characterize the permanent,
and likewise for the determinant. But we’re just using the permanent and determinant as convenient ways to specify
which matrices A,B we want, and could give slightly more awkward symmetry conditions that avoided them. (This
is especially clear for the permanent, since if A is diagonal, then Per (A) is just the product of the diagonal entries.)

85

characterized by its symmetries, as the permanent and determinant are.80 Thus, if a proof that
the permanent is hard relies on symmetry-characterization, we need not fear that the same proof
would work for a random homogeneous polynomial, and thereby give us a way to break arithmetic
pseudorandom functions (Section 6.5.3). While this isn’t mentioned as often, Theorem 89 should
also let GCT overcome the relativization and algebrization barriers, since (for example) a polyno-
mial that was #PA-complete for some oracle A, rather than #P-complete like the permanent was,
wouldn’t have the same symmetries as the permanent itself.

6.6.3 The Quest for Obstructions

Because the permanent and determinant are characterized by their symmetries, and because they
satisfy another technical property called “partial stability,” Mulmuley and Sohoni observe that a
field called geometric invariant theory can be used to get a handle on their orbit closures. I won’t
explain the details of how this works (which involve something called Luna’s Étale Slice Theorem
[167]), but will just state the punchline.

Given a set S ⊆ CN , define R [S], or the coordinate ring of S, to be the vector space of all
complex polynomials q : CN → C, with two polynomials identified if they agree on all points x ∈ S.
Then we’ll be interested in RDet := R [χDet,m] and RPer := R [χPer,m,n]: the coordinate rings of the

orbit closures of the determinant and the padded permanent. In this case, N =
(
m2+m−1

m

)
is the

dimension of the vector space of homogeneous degree-m polynomials over m2 variables. So the
coordinate rings are vector spaces of polynomials over N variables: truly enormous objects.

Next, let q : CN → C be one of these “big” polynomials, whose inputs are the coefficients of a
“small” polynomial p (such as the permanent or determinant). Then we can define an action of the
general linear group, G = GLm2 (C), on q, via (A · q) (p (x)) := q (p (Ax)) for all A ∈ G. In other
words, we take the action of G on the “small” polynomials p that we previously defined, and use it
to induce an action on the “big” polynomials q. Notice that this action fixes the coordinate rings
RDet and RPer (i.e., just shifts their points around), simply because the action of G fixes the orbit
closures χDet,m and χPer,m,n themselves. As a consequence, the actions on G on RDet and RPer

give us two representations of the group G: that is, homomorphisms that map the elements of G to
linear transformations on the vector spaces RDet and RPer respectively. Call these representations
ρDet and ρPer respectively.

Like most representations, ρDet and ρPer can be decomposed uniquely into direct sums of isotypic
components; each isotypic component, in turn, consists of an irreducible representation, or “irrep”
(which can’t be further decomposed) that occurs with some nonnegative integer multiplicity.81 In
particular, let ρ : G → Ck×k be any irrep of G. Then ρ occurs with some multiplicity, call it
λDet (ρ), in ρDet, and with some possibly different multiplicity, call it λPer (ρ), in ρPer. We’re now
ready for the theorem that sets the stage for the rest of GCT.

Theorem 90 (Mulmuley-Sohoni [185]) Suppose there exists an irrep ρ such that λPer (ρ) >
λDet (ρ). Then Per∗m,n /∈ χDet,m: that is, the padded permanent is not in the orbit closure of the
determinant.

Note that Theorem 90 is not an “if and only if”: even if Per∗m,n /∈ χDet,m, there’s no result
saying that the reason must be representation-theoretic. In GCT2 [186], Mulmuley and Sohoni

80See Grochow [106, Proposition 3.4.9] for a simple proof of this, via a dimension argument.
81An isotypic component might be decomposable into irreps in many ways, but one always gets the same number

of irreps of the same type.

86

conjecture that the algebraic geometry of χDet,m is in some sense completely determined by its
representation theory, but if true, that would have to be for reasons specific to χDet,m (or other
“complexity-theoretic” orbit closures).

If λPer (ρ) > λDet (ρ), then Mulmuley and Sohoni call ρ a multiplicity obstruction to embedding
the permanent into the determinant. Any obstruction would be a witness to the permanent’s
hardness: in crude terms, it would prove that the m × m determinant has “the wrong kinds of
symmetries” to express the padded n× n permanent, unless m is much larger than n. From this
point forward, GCT—at least in Mulmuley and Sohoni’s vision—is focused entirely on the hunt for
a multiplicity obstruction.

A priori, one could imagine proving nonconstructively that an obstruction ρ must exist, without
actually finding it. However, Mulmuley and Sohoni emphatically reject that approach. They want
not merely any proof of Conjecture 87, but an “explicit” proof: that is, one that yields an algorithm
that actually finds an obstruction ρ witnessing Per∗m,n /∈ χDet,m, in time polynomial in m and n.
Alas, as you might have gathered, the representations ρDet and ρPer are fearsomely complicated
objects—so even if we accept for argument’s sake that obstructions exist, we seem a very long way
from algorithms to find them in less than astronomical time.82

For now, therefore, Mulmuley and Sohoni argue that the best way to make progress toward
Conjecture 87 is to work on more and more efficient algorithms to compute the multiplicities of
irreps in complicated representations like ρDet and ρPer. The hope is that, in order to design those
algorithms, we’ll be forced to acquire such a deep understanding that we’ll then know exactly where
to look for a ρ such that λPer (ρ) > λDet (ρ). So that’s the program that’s been pursued for the
last decade; I’ll have more to say later about where that program currently stands.

The central idea here—that the path to proving P ̸= NP will go through discovering new
algorithms, rather than through ruling them out—is GCT’s version of “ironic complexity theory,”
discussed in Section 6.4. What I’ve been calling “irony” in this survey, Mulmuley calls “The Flip”
[179]: that is, flipping lower-bound problems into upper-bound problems, which we have a much
better chance of solving.

Stepping back from the specifics of GCT, Mulmuley’s view is that, before we prove (say) NP ̸⊂
P/poly, a natural intermediate goal is to find an algorithm A that takes a positive integer n as
input, runs for nO(1) time (or even exp

(
nO(1)

)
time), and then outputs a proof that 3Sat instances

of size n have no circuits of size m, for some superpolynomial function m. Such an algorithm
wouldn’t immediately prove NP ̸⊂ P/poly, because we might still not know how to prove that A
succeeded for every n. Even so, it would clearly be a titanic step forward, since we could run A
and check that it did succeed for every n we chose, perhaps even for n’s in the billions. At that
point, we could say either that NP ̸⊂ P/poly, or else that NP ⊂ P/poly only “kicks in” at such large
values of n as to have few or no practical consequences. Furthermore, Mulmuley argues, we’d then
be in a much better position to prove NP ̸⊂ P/poly outright, since we’d “merely” have to analyze
A, whose very existence would obviously encode enormous insight about the problem, and prove
that it worked for all n.83

82In principle, ρDet and ρPer are infinite-dimensional representations, so an algorithm could search them forever for
obstructions without halting. On the other hand, if we impose some upper bound on the degrees of the polynomials
in the coordinate ring, we get an algorithm that takes “merely” doubly- or triply-exponential time.

83A very loose analogy: well before Andrew Wiles proved Fermat’s Last Theorem [256], that xn + yn = zn has
no nontrivial integer solutions for any n ≥ 3, number theorists knew a reasonably efficient algorithm that took an
exponent n as input, and that (in practice, in all the cases that were tried) proved FLT for that n. Using that
algorithm, in 1993—just before Wiles announced his proof—Buhler et al. [59] proved FLT for all n up to 4 million.

87

There has indeed been progress in finding efficient algorithms to compute the multiplicities
of irreps, though the state-of-the-art is still extremely far from what GCT would need. To give
an example, a Littlewood-Richardson coefficient is the multiplicity of a given irrep in a tensor
product of two irreps of the general linear group GLn (C). In GCT3 [184], Mulmuley et al.
observed that a result of Knutson and Tao [146] implies that one can use linear programming, not
necessarily to compute Littlewood-Richardson coefficients in polynomial time, but at least to decide
whether they’re positive or zero.84 Bürgisser and Ikenmeyer [64] later gave a faster polynomial-time
algorithm for the same problem; theirs was purely combinatorial and based on maximum flow.

Note that, even if we only had efficient algorithms for positivity, those would still be useful
for finding so-called occurrence obstructions : that is, irreps ρ such that λPer (ρ) > 0 even though
λDet (ρ) = 0. Thus, the “best-case scenario” for GCT would be for the permanent’s hardness to be
witnessed not just by any obstructions, but by occurrence obstructions. As we’ll see, in a recent
breakthrough, this “best-case scenario” has been ruled out [121, 66].

In many cases, we don’t even know yet how to represent the multiplicity of an irrep as a
#P function: at best, we can represent it as a difference between two #P functions. In those
cases, research effort in GCT has sought to give “positive formulas” for the multiplicities: in other
words, to represent them as sums of exponentially many nonnegative terms, and thereby place
their computation in #P itself. The hope is that a #P formula could be a first step toward a
polynomial-time algorithm to decide positivity. To illustrate, Blasiak et al. gave a #P formula for
“two-row Kronecker coefficients” in GCT4 [48], while Ikenmeyer, Mulmuley, and Walter [120] did
so for a different subclass of Kronecker coefficients.

6.6.4 GCT and P
?
= NP

Suppose—let’s dream—that everything above worked out perfectly. That is, suppose GCT led to
the discovery of explicit obstructions for embedding the padded permanent into the determinant,
and thence to a proof of Valiant’s Conjecture 70. How would GCT go even further, to prove
P ̸= NP?

The short answer is that Mulmuley and Sohoni [185] defined an NP function called E, as well
as a P-complete85 function called H, and showed them to be characterized by symmetries in only
a slightly weaker sense than the permanent and determinant are. The E and H functions aren’t
nearly as natural as the permanent and determinant, but they suffice to show that P ̸= NP could
in principle be proven by finding explicit representation-theoretic obstructions, which in this case
would be representations associated with the orbit of E but not with the orbit of H. Alas, because
E and H are functions over a finite field Fq rather than over C, the relevant algebraic geometry and
representation theory would all be over finite fields as well. This leads to mathematical questions
even less well-understood (!) than the ones discussed earlier, providing some additional support for
the intuition that proving P ̸= NP should be “even harder” than proving Valiant’s Conjecture.

For illustration, let me now define Mulmuley and Sohoni’s E function. Let X0 and X1 be two
n × n matrices over the finite field Fq. Also, given a binary string s = s1 · · · sn, let Xs be the
n × n matrix obtained by choosing the ith column from X0 if si = 0 or from X1 if si = 1 for all

84As pointed out in Section 2.2.6, there are other cases in complexity theory where deciding positivity is much
easier than counting: for example, deciding whether a graph has at least one perfect matching (counting the number
of perfect matchings is #P-complete).

85A language L is called P-complete if (1) L ∈ P, and (2) every L′ ∈ P can be reduced to L by some form of
reduction weaker than arbitrary polynomial-time ones (LOGSPACE reductions are often used for this purpose).

88

i ∈ {1, . . . , n}. We then set

F (X0, X1) :=
∏

s∈{0,1}n
Det (Xs) ,

and finally set
E (X0, X1) := 1− F (X0, X1)

q

to obtain a function in {0, 1}. Testing whether E (X0, X1) = 1 is clearly an NP problem, since an
NP witness is a single s such that Det (Xs) = 0. Furthermore, Gurvits [111] showed that, at least
over Z, testing whether F (X0, X1) = 0 is NP-complete. Interestingly, it’s not known whether E
itself is NP-complete—though of course, to prove P ̸= NP, it would suffice to put any NP problem
outside P, not necessarily an NP-complete one.

The main result about E (or rather F) is the following:

Theorem 91 (see Grochow [106, Proposition 3.4.6]) Let p : F2n2

q → Fq be any homogeneous,
degree-n2n polynomial in the entries of X0 and X1 that’s divisible by Det (X0)Det (X1), and suppose
every linear symmetry of F is also a linear symmetry of p. Then p (X0, X1) = αF (X0, X1) for
some α ∈ Fq.

The proof of Theorem 91 involves some basic algebraic geometry. Even setting aside GCT, it
would be interesting to know whether the existence of a plausibly-hard NP problem that’s charac-
terized by its symmetries had direct complexity-theoretic applications.

One last remark: for some complexity classes, such as BQP, we currently lack candidate prob-
lems characterized by their symmetries, so even by the speculative standards of this section, it’s
unclear how GCT could be used to prove (say) P ̸= BQP or NP ̸⊂ BQP.

6.6.5 Reports from the Trenches

In the past few years, there’s been a surprising amount of progress on resolving the truth or
falsehood of some of GCT’s main hypotheses, and on relating GCT to mainstream complexity
theory. This section relays some highlights from the rapidly-evolving story.

Alas, the news has been sharply negative for the “simplest” way GCT could have worked:
namely, by finding occurrence obstructions. In a 2016 breakthrough, Bürgisser, Ikenmeyer, and
Panova [66], building on slightly earlier work by Ikenmeyer and Panova [121], showed that one can’t
use occurrence obstructions to separate χPer,m,n from χDet,m, for m superpolynomially larger than
n. That is, any irrep that occurs at least once in the padded permanent representation ρPer, also
occurs at least once in the determinant representation ρDet.

Particularly noteworthy is one aspect of the proof of this result. The authors assume by
contradiction that an occurrence obstruction exists, to separate χPer,m,n from χDet,m for some fixed n
andm. They then show inductively that there would also be obstructions proving χPer,m,n ̸⊂ χDet,m

for larger and larger m—until finally, one would have a contradiction with (for example) Theorem
71, the result of Grenet [103] showing that χPer,2n−1,n ⊆ χDet,2n−1. This underscores one of the
central worries about GCT since the beginning: namely, how is this approach sensitive to the
quantitative nature of the permanent versus determinant problem? What is it that would break
down, if one tried to use GCT to prove lower bounds so aggressive that they were actually false?
In the case of occurrence obstructions, the answer turns out to be that nothing would break down.

On the positive side, Ikenmeyer, Mulmuley, and Walter [120] showed that there are super-
polynomially many Kronecker coefficients that do vanish, thereby raising hope that occurrence

89

obstructions might exist after all, if not for permanent versus determinant then perhaps for other
problems. Notably, they proved this result by first giving a #P formula for the relevant class of
Kronecker coefficients, thereby illustrating the GCT strategy of first looking for algorithms and
only later looking for the obstructions themselves.

Also on the positive side, Landsberg and Ressayre [155] recently showed that Theorem 71—
the embedding of n× n permanents into (2n − 1)× (2n − 1) determinants due to Grenet [103]—is
exactly optimal among all embeddings that respect left-multiplication by permutation and diagonal
matrices (thus, roughly half the symmetry group of the n× n permanent), as Grenet’s embedding
turns out to do.

We also now know that the central property of the permanent and determinant that GCT
seeks to exploit—namely, their characterization by symmetries—does indeed have complexity-
theoretic applications. In particular, Mulmuley [179] observed that one can use the symmetry-
characterization of the permanent to give a different, and in some ways nicer, proof of the classic
result of Lipton [163] that the permanent is self-testable: that is, given a circuit C that’s alleged to
compute Per (X), in randomized polynomial time one can either verify that C (X) = Per (X) for
most matrices X, or else find a counterexample where C (X) ̸= Per (X).86 Subsequently, Kayal
[137] took Mulmuley’s observation further to prove the following.

Theorem 92 (Kayal [137]) Let n = d2, and suppose we’re given black-box access to a degree-
d polynomial p : Fn → F, for some field F. Suppose also that we’re promised that p (X) =
Per (L (X)), where L is a d × d matrix of affine forms in the variables X = (x1, . . . , xn), and the
mapping X → L (X) is invertible (that is, has rank n). Then there’s a randomized algorithm,
running in nO(1) time, that actually finds an L such that p (X) = Per (L (X)). The same holds if
p (X) = Det (L (X)).

In the same paper [137], Kayal showed that if q is an arbitrary polynomial, then deciding
whether there exist A and b such that p (x) = q (Ax+ b) is NP-hard. So what is it about the
permanent and determinant that made the problem so much easier? The answer turns out to
be their symmetry-characterization, along with more specific properties of the Lie algebras of the
stabilizer groups of Per and Det.

For more about the algorithmic consequences of symmetry-characterization, see for example
Grochow [106, Chapter 4], who also partially derandomized Kayal’s algorithm and applied it to
other problems such as matrix multiplication. In my view, an exciting challenge is to use the
symmetry-characterization of the permanent, or perhaps of the E function from Section 6.6.4, to
prove other new complexity results—not necessarily circuit lower bounds—that hopefully evade
the relativization and algebrization barriers.

We also now know that nontrivial circuit lower bounds—albeit, not state-of-the-art ones—can
indeed be proved by finding representation-theoretic obstructions, as GCT proposed. Recall from
Section 6 that the rank of a 3-dimensional tensor A ∈ Fn×n×n is the smallest r such that A can be
written as the sum of r rank-one tensors, tijk = xiyjzk. If F is a continuous field like C, then we can
also define the border rank of A to be the smallest r such that A can be written as the limit of rank-r
tensors. It’s known that border rank can be strictly less than rank.87 Border rank was introduced

86This result of Lipton’s provided the germ of the proof that IP = PSPACE; see Section 6.3.1.
Mulmuley’s test improves over Lipton’s by, for example, requiring only nonadaptive queries to C rather than

adaptive ones.
87A standard example is the 2 × 2 × 2 tensor whose (2, 1, 1), (1, 2, 1), and (1, 1, 2) entries are all 1, and whose 5

remaining entries are all 0. One can check that this tensor has a rank of 3 but border rank of 2.

90

in 1980 by Bini, Lotti, and Romani [47] to study matrix multiplication algorithms: indeed, one
could call that the first appearance of orbit closures in computational complexity, decades before
GCT.

More concretely, the n × n matrix multiplication tensor, say over C, is defined to be the 3-
dimensional tensor Mn ∈ Cn2×n2×n2

whose (i, j) , (j, k) , (i, k) entries are all 1, and whose remaining
n6 − n3 entries are all 0. In 1973, Strassen [237] proved a key result connecting the rank of Mn to
the complexity of matrix multiplication:

Theorem 93 (Strassen [237]) The rank of Mn equals the minimum number of nonscalar multi-
plications in any arithmetic circuit that multiplies two n× n matrices.

As an immediate corollary, the border rank of Mn lower-bounds the arithmetic circuit com-
plexity of n× n matrix multiplication. Bini [46] showed, moreover, that the exponent ω of matrix
multiplication is the same if calculated using rank or border rank—so in that sense, the two are
asymptotically equal.

In a tour-de-force, in 2004 Landsberg [151] proved that the border rank of M2 is 7, using
differential geometry methods. A corollary was that any procedure to multiply two 2× 2 matrices
requires at least 7 nonscalar multiplications, precisely matching the upper bound discovered by
Strassen [236] in 1969. (The trivial upper bound is 8 multiplications.) More recently, Hauenstein,
Ikenmeyer, and Landsberg [118] reproved the “border rank is 7” result, using methods that are
more explicit and closer to GCT (but that still don’t yield multiplicity obstructions).

Then, in 2013, Bürgisser and Ikenmeyer [65] proved a border rank lower bound that did yield
representation-theoretic embedding obstructions.

Theorem 94 (Bürgisser and Ikenmeyer [65]) There are representation-theoretic (GCT) oc-
currence obstructions that witness that the border rank of Mn is at least 3

2n
2 − 2.88

By comparison, the state-of-the-art lower bound on the border rank of matrix multiplication—
but without multiplicity or occurrence obstructions—is the following.

Theorem 95 (Landsberg and Ottaviani [154]) The border rank of Mn is at least 2n2 − n.89

Since both lower bounds are still quadratic, neither of them shows that matrix multiplication
requires more than ∼ n2 time, but it’s interesting to see what bound one can currently achieve
when one insists on GCT obstructions, compared to when one doesn’t insist on them.90

Meanwhile, in a 2014 paper, Grochow [107] has convincingly argued that most known circuit
lower bounds (though not all of them) can be put into a “broadly GCT-like” format. In particular,
the AC0 and AC0 [p] lower bounds of Sections 6.2.3 and 6.2.4, the embedding lower bound of Mignon
and Ressayre (Theorem 72), the lower bounds for small-depth arithmetic circuits and multilinear

88On the other hand, Bürgisser and Ikenmeyer [65] also showed that this is essentially the best lower bound
achievable using their techniques.

89Recently, Landsberg and Michalek [153] improved this slightly, to 2n2 − ⌈log2 n⌉ − 1.
90Of course, this situation raises the possibility that even if representation-theoretic obstructions do exist, proving

their existence could be even harder than proving complexity class separations in some more direct way. One
possible “failure mode” for GCT is that, after decades of struggle, mathematicians and computer scientists finally
prove Valiant’s Conjecture and P ̸= NP—and then, after further decades of struggle, it’s shown that GCT could’ve
proven these results as well (albeit with quantitatively weaker bounds).

91

formulas of Section 6.5.2, and many other results can each be seen as constructing a separating
module: that is, a “big polynomial” that takes as input the coefficients of an input polynomial, that
vanishes for all polynomials in some complexity class C, but that doesn’t vanish for a polynomial
q for which we’re proving that q /∈ C.

It’s important to understand that Grochow didn’t show that the known circuit lower bounds
yield representation-theoretic obstructions, only that they yield separating modules. Thus, he
showed that these results fit into the “GCT program” under a very broad definition, but not under
a narrower definition.

Interestingly, the lower bounds that don’t fit into the separating module format—such as
MAEXP ̸⊂ P/poly (Theorem 54) and NEXP ̸⊂ ACC (Theorem 64)—essentially all use diagonal-
ization as a key ingredient. From the beginning, this was understood to be a major limitation
of the GCT framework: that it seems unable to capture diagonalization. A related point is that
GCT, as it stands, has no way to take advantage of uniformity : for example, no way to prove
P ̸= NP, without also proving the stronger result NP ̸⊂ P/poly. However, given that we can prove
P ̸= EXP but can’t even prove NEXP ̸⊂ TC0 (where TC0 means the nonuniform class), it seems
conceivable that uniformity could help in proving P ̸= NP.

6.6.6 The Lessons of GCT

Expert opinion is divided about GCT’s prospects. Some feel that GCT does little more than
take complicated questions and make them even more complicated—and are emboldened in their
skepticism by the recent no-go results [121, 66]. Others feel that GCT is a natural and reasonable
approach, and that the complication is an inevitable byproduct of finally grappling with the real
issues. Of course, one can also “cheer GCT from the sidelines” without feeling prepared to work on
it oneself, particularly given the unclear prospects for any computer-science payoff in the foreseeable
future. (Mulmuley once told me he thought it would take a hundred years until GCT led to major
complexity class separations, and he’s the optimist !)

Personally, I’d call myself a qualified fan of GCT, in much the same way and for the same reasons
that I’m a qualified fan of string theory. I think all complexity theorists should learn something
about GCT—for one thing, because it has general lessons for the quest to prove P ̸= NP, even if
it ends up not succeeding, or evolving still further away from the original Mulmuley-Sohoni vision.
This section is devoted to what I believe those lessons are.

A first lesson is that we can in principle evade the relativization, algebrization, and natural
proofs barriers by using the existence of complete problems with special properties: as a beautiful
example, the property of being “characterized by symmetries,” which the permanent and determi-
nant both enjoy. A second lesson is that “ironic complexity theory” has even further reach than
one might have thought: one could use the existence of surprisingly fast algorithms, not merely
to show that certain complexity collapses would violate hierarchy theorems, but also to help find
certificates that problems are hard. A third lesson is that there’s at least one route by which
a circuit lower bound proof would need to know about huge swathes of “traditional, continuous”
mathematics, as many computer scientists have long suspected (or feared!).

But none of those lessons really gets to the core of the matter. One of the most striking features
of GCT is that, even as the approach stands today, it “knows” about various nontrivial problems
in P, such as maximum flow and linear programming (because they’re involved in deciding whether
the multiplicities of irreps are nonzero). We knew, of course, that any proof of P ̸= NP would need
to “know” that linear programming, matching, and so on are in P and are therefore different from

92

3Sat. (Indeed, that’s one way to express the main difficulty of the P
?
= NP problem.) So the fact

that GCT knows about all these polynomial-time algorithms seems reassuring. But what’s strange
is that GCT seems to know the upper bounds, not the lower bounds—the power of the algorithms,
but not their limitations! In other words, consider a hypothetical proof of P ̸= NP using GCT. If
we ignore the details, and look from a distance of a thousand miles, the proof seems to be telling
us not: “You see how weak P is? You see all these problems it can’t solve?” but rather, “You see
how strong P is? You see all these amazing, nontrivial problems it can solve?” The proof would
seem to building up an impressive case for the wrong side of the argument!

One response would be to point out that this is math, not a courtroom debate, and leave it
at that. But perhaps one can do better. Let A be a hypothetical problem, like matching or
linear programming, that’s in P for a nontrivial reason, and that’s also definable purely in terms
of its symmetries, as the permanent and determinant are. Then we can define an orbit closure
χA, which captures all problems reducible to A. By assumption, χA must be contained in χP, the
orbit closure corresponding to a P-complete problem, such as Mulmuley and Sohoni’s H function
(see Section 6.6.4). And hence, there must not be any representation-theoretic obstruction to
such a containment. In other words, if we were to compute the multiplicities m1,m2, . . . of all
the irreps in the representation associated with χA, as well as the multiplicities n1, n2, . . . of the
irreps associated with χP, we’d necessarily find that mi ≤ ni for all i. Furthermore, by the general
philosophy of GCT, once we had our long-sought explicit formulas for these multiplicities, we might
well be able to use those formulas to prove the above inequalities.

Now let’s further conjecture—following GCT2 [186]—that the orbit closures χA and χP are
completely captured by their representation-theoretic data. In that case, by showing that there’s
no representation-theoretic obstruction to χA ⊆ χP, we would have proved, nonconstructively, that
there exists a polynomial-time algorithm for A! And for that reason, we shouldn’t be surprised if
the algorithmic techniques that are used to solve A (matching, linear programming, or whatever)
have already implicitly appeared in getting to this point. Indeed, we should be worried if they
didn’t appear.91

More broadly, people sometimes stress that P ̸= NP is a “universal mathematical statement”:
it says there’s no polynomial-time algorithm for 3Sat, no matter which area of math we use to
construct such an algorithm. And thus, the argument goes, we shouldn’t be shocked if nearly
every area of math ends up playing some role in the proof.

It will immediately be objected that there are other “universal mathematical statements”—for
example, Gödel’s Incompleteness Theorem, or the unsolvability of the halting problem—that are
nevertheless easy to prove, that don’t require anything close to every area of math. But we might
make the analogy that proving the unsolvability of the halting problem is like proving that the
first player has a forced win in the game of Hex, which Piet Hein invented in 1942 and John Nash
independently invented in 1947 [189].92 In both cases, there’s a clever gambit—diagonalization in

91It would be interesting to find a function in P, more natural than the P-complete H function, that’s completely
characterized by its symmetries, and then try to understand explicitly why there’s no representation-theoretic ob-
struction to that function’s orbit closure being contained in χP—something we already know must be true.

92The game of Hex involves two players who take turns placing white and black stones respectively on a lattice of
hexagons. White (which moves first) wins if it manages to connect the left and right sides of the lattice by a path
of white stones, while Black wins if it connects the top and bottom by a path of black stones. (Note that one of the
two must happen.)

As John Nash observed, there’s a breathtakingly easy proof that White has a forced win in this game. Namely,
suppose by contradiction that Black had the win. Then White could place a stone arbitrarily on its first move, and

93

the one case, “strategy-stealing” in the other—that lets us cut through what looks at first like a
terrifyingly complex problem, and reason about it in a clean, abstract way. By contrast, proving
P ̸= NP seems more like proving that White has the win in chess. Here the opening gambit fails, so
(to switch metaphors) we’re thrown immediately into the deep end of the pool, into considering this
way Black could win, and that one, and that one; or into considering an immense list of possible
polynomial-time algorithms for 3Sat.

Now, a natural reaction to this observation would be, not awe at the profundity of P
?
= NP,

but rather despair. Since math is infinite, and since the possible “ideas for polynomial-time

algorithms” are presumably unbounded, why doesn’t the “universality” of P
?
= NP mean that the

task of proving could go on forever? At what point can we ever say “enough! we’ve discovered
enough polynomial-time algorithms; now we’re ready to flip things around and proceed to proving
P ̸= NP”?

The earlier considerations about χA and χP suggest one possible answer to this question.
Namely, we’re ready to stop when we’ve discovered nontrivial polynomial-time algorithms, not
for all problems in P, but for all problems in P that are characterized by their symmetries. For
let B be a problem in P that isn’t characterized by symmetries. Then the orbit closure χB is
contained in χP, and if we could prove that χB ⊆ χP, then we would’ve nonconstructively shown
the existence of a polynomial-time algorithm for B. But our hypothetical P ̸= NP proof doesn’t
need to know about that. For since B isn’t characterized by symmetries, the GCT arguments
aren’t going to be able to prove χB ⊆ χP anyway.

The above would seem to motivate an investigation of which functions in P (or NC1, etc.) can
be characterized by their symmetries. If GCT can work at all, then the set of such functions,
while presumably infinite, ought to be classifiable into a finite number of families. The speculation
suggests itself that these families might roughly correspond to the different algorithmic techniques:
Gaussian elimination, matching, linear programming, etc., and of course whatever other techniques
haven’t yet been discovered. As a concrete first step toward these lofty visions, it would be
interesting to find some example of a function in P that’s characterized by its symmetries, like
the determinant is, and that’s in P only because of the existence of nontrivial polynomial-time
algorithms for (say) matching or linear programming.

6.6.7 The Only Way?

In recent years, Mulmuley has advanced the following argument [179, 182, 181]: even if GCT isn’t

literally the only way forward on P
?
= NP, still, the choice of GCT to go after explicit obstructions

is in some sense provably unavoidable—and furthermore, GCT is the “simplest” approach to finding
the explicit obstructions, so Occam’s Razor all but forces us to try GCT first. I agree that GCT
represents a natural attack plan. But I disagree with the claim that we have any theorem telling
us that GCT’s choices are inevitable, or “basically” inevitable. In this section, I’ll explain why.

We can identify at least four major successive decisions that GCT makes:

(1) To prove P ̸= NP, we should start by proving Valiant’s Conjecture 70.

thereafter simulate Black’s winning strategy. The key observation is that the stone White placed in its first move
will never actually hurt it: if Black’s stolen strategy calls for White to place a second stone there, then White can
simply place a stone anywhere else instead.

94

(2) To prove Valiant’s Conjecture, the natural approach is to prove Conjecture 87, about orbit
closures.

(3) To prove Conjecture 87, the natural approach is to find explicit representation-theoretic
embedding obstructions.

(4) To find those obstructions, we should start by finding faster algorithms (or algorithms in
lower complexity classes) to learn about the multiplicities of irreps.

All four decisions are defensible, but not one is obvious. And of course, even if every proposition
in a list had good probability individually (or good probability conditioned on its predecessors),
their conjunction could have probability close to zero!

As we saw in Section 6.5, decision (1) predates GCT by decades, so there’s no need to revisit
it here. Meanwhile, decision (2) seems to involve only a small strengthening of what needs to be
proved, in return for a large gain in elegance. But there’s plenty to question about decisions (3)
and (4).

Regarding (3): we saw, in Section 6.6.5, that even if a given embedding of orbit closures is
impossible, the reason might simply not be reflected in representation theory—and even if it is,
it might be harder to prove that there’s a representation-theoretic obstruction than that there’s
some other obstruction, and one might get only a weaker lower bound that way. At least, that’s
what seems to be true so far with the border rank of the matrix multiplication tensor. This is
an especially acute concern because of the recent work of Bürgisser, Ikenmeyer, and Panova [66],
discussed earlier, which destroys the hope of finding occurrence obstructions (rather than the more
general multiplicity obstructions) to separate the permanent from the determinant.

But let me concentrate on (4). Is it clear that we must, in Mulmuley’s words, “go for explic-
itness”: that is, look for an efficient algorithm that takes a specific n and m as input, and tries to
find a witness that it’s impossible to embed the padded n× n permanent into the m×m determi-
nant? Why not just look directly for a proof, which (if we found it) would work for arbitrary n
and m = nO(1)?

Mulmuley’s argument for explicitness rests on what he calls the “flip theorems” [179]. These
theorems, in his interpretation, assert that any successful approach to circuit lower bounds (not just
GCT) will yield explicit obstructions as a byproduct. And thus, all GCT is doing is bringing into
the open what any proof of Valiant’s Conjecture or NP ̸⊂ P/poly will eventually need to confront
anyway.

Let me now state some of the flip theorems. First, building on a 1996 learning algorithm of
Bshouty et al. [58], in 2003 Fortnow, Pavan, and Sengupta showed that, if NP-complete problems
are hard at all, then there must be short lists of instances that cause all small circuits to fail.

Theorem 96 (Fortnow, Pavan, and Sengupta [90]) Suppose NP ̸⊂ P/poly. Then for every
n and k, there’s a list of 3Sat instances φ1, . . . , φℓ, of length at most ℓ = nO(1), such that every
circuit C of size at most nk fails to decide at least one φi in the list. Furthermore, such a list can
be found in the class BPPNP: that is, by a probabilistic polynomial-time Turing machine with an
NP oracle.93

93In fact, the list can be found in the class ZPPNP, where ZPP stands for Zero-Error Probabilistic Polynomial-Time.
This means that, whenever the randomized algorithm succeeds in constructing the list, it’s certain that it’s done so.
(Note that referring to BPPNP and ZPPNP here is strictly an abuse of notation, since these are classes of decision
problems—but theoretical computer scientists will typically perpetrate such abuses when there’s no risk of confusion.)

95

Atserias [32] showed that, in the statement of Theorem 96, we can also swap the NP oracle for
the circuit C itself: in other words, the list φ1, . . . , φℓ can also be found in BPPC , in probabilistic
polynomial time with a C-oracle.

Likewise, if the permanent is hard, then there must be short lists of matrices that cause all
small arithmetic circuits to fail—and here the lists are much easier to find than they are in the
Boolean case.

Theorem 97 (Mulmuley [179, 181]) Suppose Valiant’s Conjecture 70 holds (i.e., the perma-
nent has no polynomial-size arithmetic circuits, over finite fields F with |F| ≫ n). Then for every
n and k, there’s a list of matrices A1, . . . , Aℓ ∈ Fn×n, of length at most ℓ = nO(1), such that for ev-
ery arithmetic circuit C of size at most nk, there exists an i such that C (Ai) ̸= Per (Ai). Indeed, a
random list A1, . . . , Aℓ will have that property with 1−o (1) probability. Furthermore, if polynomial
identity testing has a black-box derandomization,94 then such a list can be found in deterministic
nO(1) time.

While not hard to prove, Theorems 96 and 97 are conceptually interesting: they show that
the entire hardness of 3Sat and of the permanent can be “concentrated” into a small number
of instances. My difficulty is that this sort of “explicit obstruction” to computing 3Sat or the
permanent, seems barely related to the sorts of explicit obstructions that GCT is seeking. The
obstructions of Theorems 96 and 97 aren’t representation-theoretic; they’re simply lists of hard
instances. Furthermore, a list like φ1, . . . , φℓ or A1, . . . , Aℓ is not an easy-to-verify witness that
3Sat or the permanent is hard, because we’d still need to check that the list worked against all
of the exponentially many nO(1)-sized circuits. Having such a list reduces a two-quantifier (ΠP

2)
problem to a one-quantifier (NP) problem, but it still doesn’t put the problem in P—and we have
no result saying that if, for example, the permanent is hard, then there must be obstructions that
can be verified in nO(1) time. Perhaps the best we can say is that, if we proved the permanent
was hard, then we’d immediately get, for every n, an “obstruction” that could be both found and
verified in 0 time steps! But for all we know, the complexity of finding provable obstructions could
jump from exp

(
nO(1)

)
to 0 as our understanding improved, without ever passing through nO(1).

Thus, I find, GCT’s suggestion to look for faster obstruction-finding (or obstruction-recognizing)
algorithms is a useful guide, a heuristic, a way to organize our thoughts about how we’re going to
find, say, an irrep ρ whose multiplicity blocks the embedding of the permanent into the determinant.
But this is not the only path that should be considered.

7 Conclusions

Some will say that this survey’s very length, the bewildering zoo of approaches and variations and

results and barriers that it covered, is a sign that no one has any real clue about the P
?
= NP

problem—or at least, that I don’t. Among those who think that, perhaps someone will write a
shorter survey that points unambiguously to the right way forward!

But it’s also possible that this business, of proving brute-force search unavoidable, seems com-
plicated because it is complicated. I confess to limited sympathy for the idea that someone will

94The polynomial identity testing problem was defined in Section 5.4. Also, by a “black-box derandomization,”
we mean a deterministic polynomial-time algorithm that outputs a hitting set : that is, a list of points x1, . . . , xℓ such
that, for all small arithmetic circuits C that don’t compute the identically-zero polynomial, there exists an i such
that C (xi) ̸= 0. What makes the derandomization “black-box” is that the choice of x1, . . . , xℓ doesn’t depend on C.

96

just set aside everything that’s already known, think hard about the structural properties of the
sets of languages accepted by deterministic and nondeterministic polynomial-time Turing machines,
and find a property that holds for one set but not the other, thereby proving P ̸= NP. For I keep
coming back to the question: if a hands-off, aprioristic approach sufficed for P ̸= NP, then why did
it apparently not suffice for all the weaker separations that we’ve surveyed here?

At the same time, I hope our tour of the progress in lower bounds has made the case that there’s

no reason (yet!) to elevate P
?
= NP to some plane of metaphysical unanswerability, or assume it to

be independent of the axioms of set theory, or anything like that. The experience of complexity
theory, including the superpolynomial lower bounds that people did prove after struggle and effort,

is consistent with P
?
= NP being “merely a math problem”—albeit, a math problem that happens

to be well beyond the current abilities of civilization, much like the solvability of the quintic in the
1500s, or Fermat’s Last Theorem in the 1700s. When we’re faced with such a problem, a natural
response is to want to deepen our understanding of the entire subject (in this case, algorithms
and computation) surrounding the problem—not merely because that’s a prerequisite to someday
capturing the famous beast, but because regardless, the new knowledge gained along the way will
hopefully find uses elsewhere. In our case, modern cryptography, quantum computing, and parts

of machine learning could all be seen as flowers that bloomed in the garden of P
?
= NP.

Obviously I don’t know how P ̸= NP will ultimately be proved—if I did, this would be a
different survey! It seems plausible that a successful approach might yield the stronger result
NP ̸⊂ P/poly (i.e., that it wouldn’t take advantage of uniformity); that it might start by proving
Valiant’s Conjecture (i.e., that the algebraic case would precede the Boolean one); and that it
might draw on many areas of mathematics, but none of these things are even close to certain.

Half-jokingly, I once remarked that those who still think seriously about P
?
= NP now seem to be

divided into “Team Yellow Books” (those hoping to use algebraic geometry, representation theory,
and other sophisticated mathematics) and “Team Caffeinated Alien Reductions” (those hoping to
use elementary yet convoluted and alien chains of logic, as in Williams’s proof of NEXP ̸⊂ ACC)—
and that as far as I can tell, the two teams seem right now to be about evenly matched.

It also seems plausible that a proof of P ̸= NP would be a beginning rather than an end—i.e.,
that the proof would require new insights about computation that then could be applied to many

other problems besides P
?
= NP. But given how far we are from the proof, it’s obviously premature

to speculate about the fallout.
The one prediction I feel confident in making is that the idea of “ironic complexity theory”—i.e.,

of a profound duality between upper and lower bounds, where the way to prove that there’s no
fast algorithm for problem A is to discover fast algorithms for problems B, C, and D—is here to
stay. As we saw, ironic complexity theory is at the core of Mulmuley’s view, but it’s also at the
core of Williams’s proof of NEXP ̸⊂ ACC, which in other respects is about as far from GCT as
possible. The natural proofs barrier also provides a contrapositive version of ironic complexity,
showing how the nonexistence of efficient algorithms is often what prevents us from proving lower
bounds. If 3Sat is ever placed outside P, it seems like a good bet that the proof will place many
other problems inside P—or at any rate, in smaller complexity classes than was previously known.

So, if we take an optimistic attitude (optimistic about proving intractability!), then which
breakthroughs should we seek next? What’s on the current horizon? There are hundreds of
possible answers to that question—we’ve already encountered some in this survey—but if I had to
highlight a few:

97

• Prove lower bounds against nonuniform TC0—for example, by finding a better-than-brute-
force deterministic algorithm to estimate the probability that a neural network accepts a
random input (cf. Theorem 67).95

• Prove a lower bound better than n⌊d/2⌋ on the rank of an explicit d-dimensional tensor, or
construct one of the many other algebraic or combinatorial objects—rigid matrices, elusive
functions, etc.—that are known to imply new circuit lower bounds (see Section 6).

• Advance proof complexity to the point where we could, for example, prove a superpolynomial
lower bound on the number of steps needed to convert some n-input, polynomial-size Boolean
circuit C into some equivalent circuit C ′, via moves that each swap out a size-O (1) subcircuit
for a different size-O (1) subcircuit with identical input/output behavior.96

• Prove a superlinear or superpolynomial lower bound on the number of 2-qubit quantum gates
needed to implement some explicit n-qubit unitary transformation U , to within exponential
precision. (Remarkably, as far as anyone knows today, one could succeed at this without
needing to prove any new classical circuit lower bound. On the other hand, it’s plausible
that one would need to overcome a unitary version of the natural proofs barrier.)

• Clarify whether ACC has a natural proofs barrier, and prove ACC lower bounds for problems
in EXP or below.

• Clarify whether there’s an arithmetic natural proofs barrier, or something else preventing us
from crossing the “chasm at depth three” (see Sections 6.5.2 and 6.5.3).

• Prove any lower bound on D (n), the determinantal complexity of the n×n permanent, better
than Mignon and Ressayre’s n2/2 (Theorem 72).

• Derandomize polynomial identity testing—or failing that, prove some derandomization the-
orem that implies a strong new circuit lower bound.

• Discover a new class of polynomial-time algorithms, especially but not only for computing
multiplicities of irreps.

• Prove any interesting new lower bound by finding a representation-theoretic obstruction to
an embedding of orbit closures.

• Pinpoint additional special properties of 3Sat or the permanent that could be used to
evade the natural proofs barrier, besides the few that are already known, such as symmetry-
characterization, self-reducibility, and the ability to simulate machines in a hierarchy theorem.

95In 1999, Allender [20] showed that the permanent, and various other natural #P-complete problems, can’t be
solved by LOGTIME-uniform TC0 circuits: in other words, constant-depth threshold circuits for which there’s an
O (log n)-time algorithm to output the ith bit of their description, for any i. Indeed, these problems can’t be solved
by LOGTIME-uniform TC0 circuits of size f (n), where f is any function that can yield an exponential when iterated a
constant number of times. The proof uses a hierarchy theorem; it would be interesting to know whether it relativizes.

96Examples are deleting two successive NOT gates, or applying de Morgan’s laws. By the completeness of Boolean
algebra, one can give local transformation rules that suffice to convert any n-input Boolean circuit into any equivalent
circuit using at most exp (n) moves.

From talking to experts, this problem seems closely related to the problem of proving superpolynomial lower bounds
for so-called Frege proofs, but is possibly easier.

98

• Perhaps my favorite challenge: find new, semantically-interesting ways to “hobble” the classes
of polynomial-time algorithms and polynomial-size circuits, besides the ways that have al-
ready been studied, such as restricted memory, restricted circuit depth, monotone gates only,
arithmetic operations only, and restricted families of algorithms (such as DPLL and certain
linear and semidefinite programming relaxations). Any such restriction that one discovers is
effectively a new slope that one can try to ascend up the P ̸= NP mountain.

Going even further on a limb, I’ve long wondered whether massive computer search could give
any insight into complexity lower bound questions, beyond the relatively minor ways it’s been used
for this purpose already (see, e.g., [261, 258]). For example, could we feasibly discover the smallest
arithmetic circuits to compute the permanents of 4× 4 and 5× 5 and 6× 6 matrices? And if we
did, would examination of those circuits yield any clues about what to prove for general n? The
conventional wisdom has always been “no” to both questions. For firstly, as far as anyone knows
today, the computational complexity of such a search will grow not merely exponentially but doubly
exponentially with n (assuming the optimal circuits that we’re trying to find grow exponentially
themselves), and examination of the constants suggests that n = 4 might already be out of reach.
And secondly, even if we knew the optimal circuits, they’d tell us nothing about the existence or
nonexistence of clever algorithms that start to win only at much larger values of n. After all, many
of the theoretically efficient algorithms that we know today only overtake the näıve algorithms for
n’s in the thousands or millions.97

These arguments have force. Even so, I think we should be open to the possibility that someday,
advances in raw computer power, and especially theoretical advances that decrease the effective size
of the search space, might change the calculus and open up the field of “experimental complexity
theory.” One way that could happen would be if breakthroughs in GCT, or some other approach,
brought the quest for “explicit obstructions” (say, to the 1000 × 1000 permanent having size-1020

circuits) within the range of computer search, if still not within the range of the human mind.
Or of course, the next great advance might come from some direction that I didn’t even mention

here, whether because no one grasps its importance yet or simply because I don’t. But regardless
of what happens, the best fate this survey could possibly enjoy would be to contribute, in some
tiny way, to making itself obsolete.

8 Acknowledgments

I thank Andy Drucker, William Gasarch, Daniel Grier, Joshua Grochow, Christian Ikenmeyer,
Adam Klivans, Pascal Koiran, JM Landsberg, Ashley Montanaro, Mateus Oliveira, Bruce Smith,
Noah Stephens-Davidowitz, Leslie Valiant, Avi Wigderson, Ryan Williams, and Jon Yard for helpful
observations and for answering questions. I especially thank Michail Rassias for his exponential
patience with my delays completing this article.

97There are even what Richard Lipton has termed “galactic algorithms” [164], which beat their asymptotically-
worse competitors, but only for values of n that likely exceed the information storage capacity of the galaxy or the
observable universe. The currently-fastest matrix multiplication algorithms might fall into this category, although
the constants don’t seem to be known in enough detail to say for sure.

99

References

[1] S. Aaronson. Is P versus NP formally independent? Bulletin of the EATCS, (81), October
2003.

[2] S. Aaronson. Multilinear formulas and skepticism of quantum comput-
ing. In Proc. ACM STOC, pages 118–127, 2004. quant-ph/0311039,
www.scottaaronson.com/papers/mlinsiam.pdf.

[3] S. Aaronson. NP-complete problems and physical reality. SIGACT News, March 2005. quant-
ph/0502072.

[4] S. Aaronson. Oracles are subtle but not malicious. In Proc. Conference on Computational
Complexity, pages 340–354, 2006. ECCC TR05-040.

[5] S. Aaronson. Arithmetic natural proofs theory is sought, 2008.
www.scottaaronson.com/blog/?p=336.

[6] S. Aaronson. Quantum Computing Since Democritus. Cambridge University Press, 2013.

[7] S. Aaronson. The scientific case for P ̸= NP , 2014. www.scottaaronson.com/blog/?p=1720.

[8] S. Aaronson et al. The Complexity Zoo. www.complexityzoo.com.

[9] S. Aaronson, R. Impagliazzo, and D. Moshkovitz. AM with multiple Merlins. In Proc.
Conference on Computational Complexity, pages 44–55, 2014. arXiv:1401.6848.

[10] S. Aaronson and A. Wigderson. Algebrization: a new barrier in complexity theory. ACM
Trans. on Computation Theory, 1(1), 2009. Earlier version in Proc. ACM STOC’2008.

[11] A. Abboud, T. D. Hansen, V. Vassilevska Williams, and R. Williams. Simulating branch-
ing programs with edit distance and friends or: a polylog shaved is a lower bound made.
arXiv:1511.06022, 2015.

[12] L. Adleman. Two theorems on random polynomial time. In Proc. IEEE FOCS, pages 75–83,
1978.

[13] L. Adleman, J. DeMarrais, and M.-D. Huang. Quantum computability. SIAM J. Comput.,
26(5):1524–1540, 1997.

[14] M. Agrawal. Determinant versus permanent. In Proceedings of the International Congress of
Mathematicians, 2006.

[15] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathematics, 160(2):781–
793, 2004. Preprint released in 2002.

[16] M. Agrawal and V. Vinay. Arithmetic circuits: a chasm at depth four. In Proc. IEEE FOCS,
pages 67–75, 2008.

[17] M. Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–48,

1983.

100

[18] M. Ajtai. A non-linear time lower bound for Boolean branching programs. Theory of Com-
puting, 1(1):149–176, 2005. Earlier version in Proc. IEEE FOCS’1999, pp. 60-70.

[19] B. Alexeev, M. A. Forbes, and J. Tsimerman. Tensor rank: some lower and upper bounds.
In Proc. Conference on Computational Complexity, pages 283–291, 2011.

[20] E. Allender. The permanent requires large uniform threshold circuits. Chicago Journal of
Theoretical Computer Science, 7:19, 1999.

[21] E. Allender. Cracks in the defenses: scouting out approaches on circuit lower bounds. In
Computer Science in Russia, pages 3–10, 2008.

[22] E. Allender. A status report on the P versus NP question. Advances in Computers, 77:117–
147, 2009.

[23] E. Allender and V. Gore. On strong separations from AC0. In Fundamentals of Computation
Theory, pages 1–15. Springer Berlin Heidelberg, 1991.

[24] E. Allender and V. Gore. A uniform circuit lower bound for the permanent. SIAM J. Comput.,
23(5):1026–1049, 1994.

[25] E. Allender and M. Koucký. Amplifying lower bounds by means of self-reducibility. J. of the
ACM, 57(3):1–36, 2010. Earlier version in Proc. IEEE Complexity’2008, pp. 31-40.

[26] N. Alon and R. B. Boppana. The monotone circuit complexity of Boolean functions. Com-
binatorica, 7(1):1–22, 1987.

[27] A. E. Andreev. On a method for obtaining more than quadratic effective lower bounds for
the complexity of π-schemes. Moscow Univ. Math. Bull., 42:63–66, 1987. In Russian.

[28] S. Arora and B. Barak. Complexity Theory: A Modern Approach. Cambridge University
Press, 2009. Online draft at www.cs.princeton.edu/theory/complexity/.

[29] S. Arora, R. Impagliazzo, and U. Vazirani. Relativizing versus nonrelativizing techniques:
the role of local checkability. Manuscript, 1992.

[30] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems. J. of the ACM, 45(3):501–555, 1998. Earlier version in
Proc. IEEE FOCS’1992, pp. 14-23.

[31] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP. J. of
the ACM, 45(1):70–122, 1998. Earlier version in Proc. IEEE FOCS’1992, pp. 2-13.

[32] A. Atserias. Distinguishing SAT from polynomial-size circuits, through black-box queries. In
Proc. Conference on Computational Complexity, pages 88–95, 2006.

[33] L. Babai. Graph isomorphism in quasipolynomial time. arXiv:1512.03547, 2015.

[34] L. Babai and E. M. Luks. Canonical labeling of graphs. In Proc. ACM STOC, pages 171–183,
1983.

101

[35] A. Backurs and P. Indyk. Edit distance cannot be computed in strongly subquadratic time
(unless SETH is false). In Proc. ACM STOC, pages 51–58, 2015.

[36] T. Baker, J. Gill, and R. Solovay. Relativizations of the P=?NP question. SIAM J. Comput.,
4:431–442, 1975.

[37] A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In Proc. of
EUROCRYPT, pages 719–737, 2012.

[38] P. Beame and T. Pitassi. Propositional proof complexity: past, present, and future. Current
Trends in Theoretical Computer Science, pages 42–70, 2001.

[39] P. Beame, M. E. Saks, X. Sun, and E. Vee. Time-space trade-off lower bounds for randomized
computation of decision problems. J. of the ACM, 50(2):154–195, 2003. Earlier version in
Proc. IEEE FOCS’2000, pp. 169-179.

[40] R. Beigel and J. Tarui. On ACC. Computational Complexity, 4:350–366, 1994. Earlier version
in Proc. IEEE FOCS’1991, pp. 783-792.

[41] S. Ben-David and S. Halevi. On the independence of P versus NP. Technical Report TR714,
Technion, 1992.

[42] E. Ben-Sasson and A. Wigderson. Short proofs are narrow - resolution made simple. J. of
the ACM, 48(2):149–169, 2001. Earlier version in Proc. IEEE Complexity’1999.

[43] C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of quantum
computing. SIAM J. Comput., 26(5):1510–1523, 1997. quant-ph/9701001.

[44] C. H. Bennett and J. Gill. Relative to a random oracle A, PA ̸= NPA ̸= coNPA with
probability 1. SIAM J. Comput., 10(1):96–113, 1981.

[45] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Comput., 26(5):1411–
1473, 1997. Earlier version in Proc. ACM STOC’1993.

[46] D. Bini. Relations between exact and approximate bilinear algorithms. applications. Calcolo,
17(1):87–97, 1980.

[47] D. Bini, G. Lotti, and F. Romani. Approximate solutions for the bilinear form computational
problem. SIAM J. Comput., 9(4):692–697, 1980.

[48] J. Blasiak, K. Mulmuley, and M. Sohoni. Geometric complexity theory IV: nonstandard quan-
tum group for the Kronecker problem, volume 235 of Memoirs of the American Mathematical
Society. 2015. arXiv:cs.CC/0703110.

[49] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-
Verlag, 1997.

[50] M. Blum. A machine-independent theory of the complexity of recursive functions. J. of the
ACM, 14(2):322–336, 1967.

[51] A. Bogdanov and L. Trevisan. Average-case complexity. Foundations and Trends in Theo-
retical Computer Science, 2(1), 2006. ECCC TR06-073.

102

[52] A. D. Bookatz. QMA-complete problems. Quantum Information and Computation, 14(5-
6):361–383, 2014. arXiv:1212.6312.

[53] R. B. Boppana, J. H̊astad, and S. Zachos. Does co-NP have short interactive proofs? Inform.
Proc. Lett., 25:127–132, 1987.

[54] A. Braunstein, M. Mézard, and R. Zecchina. Survey propagation: An algorithm for satisfia-
bility. Random Structures and Algorithms, 27(2):201–226, 2005.

[55] M. Braverman. Poly-logarithmic independence fools AC0 circuits. In Proc. Conference on
Computational Complexity, pages 3–8, 2009. ECCC TR09-011.

[56] R. P. Brent. The parallel evaluation of general arithmetic expressions. J. of the ACM,
21:201–206, 1974.

[57] N. H. Bshouty, R. Cleve, and W. Eberly. Size-depth tradeoffs for algebraic formulae. SIAM
J. Comput., 24(4):682–705, 1995. Earlier version in Proc. IEEE FOCS’1991, pp. 334-341.

[58] N. H. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. Oracles and queries that
are sufficient for exact learning. J. Comput. Sys. Sci., 52(3):421–433, 1996.

[59] J. Buhler, R. Crandall, R. Ernvall, and T. Metsänkylä. Irregular primes and cyclotomic
invariants to four million. Mathematics of Computation, 61(203):151–153, 1993.

[60] H. Buhrman, L. Fortnow, and T. Thierauf. Nonrelativizing separations. In Proc. Conference
on Computational Complexity, pages 8–12, 1998.

[61] P. Bürgisser. Completeness and reduction in algebraic complexity theory. 2000. Available at
math-www.uni-paderborn.de/agpb/work/habil.ps.

[62] P. Bürgisser. Cook’s versus Valiant’s hypothesis. Theoretical Comput. Sci., 235(1):71–88,
2000.

[63] P. Bürgisser. On defining integers and proving arithmetic circuit lower bounds. Computational
Complexity, 18(1):81–103, 2009. Earlier version in Proc. STACS’2007, pp. 133-144.

[64] P. Bürgisser and C. Ikenmeyer. Deciding positivity of Littlewood-Richardson coefficients.
SIAM J. Discrete Math., 27(4):1639–1681, 2013.

[65] P. Bürgisser and C. Ikenmeyer. Explicit lower bounds via geometric complexity theory. In
Proc. ACM STOC, pages 141–150, 2013. arXiv:1210.8368.

[66] P. Bürgisser, C. Ikenmeyer, and G. Panova. No occurrence obstructions in geometric com-
plexity theory. arXiv:1604.06431, 2016.

[67] S. R. Buss and R. Williams. Limits on alternation trading proofs for time-space lower bounds.
Computational Complexity, 24(3):533–600, 2015. Earlier version in Proc. IEEE Complex-
ity’2012, pp. 181-191.

[68] J.-Y. Cai, X. Chen, and D. Li. Quadratic lower bound for permanent vs. determinant in any
characteristic. 19(1):37–56, 2010. Earlier version in Proc. ACM STOC’2008, pp. 491-498.

103

[69] R. Chen, R. Santhanam, and S. Srinivasan. Average-case lower bounds and satisfiability
algorithms for small threshold circuits. ECCC TR15-191, 2015.

[70] X. Chen and X. Deng. The circuit-input game, natural proofs, and testing circuits with data.
In Proc. Innovations in Theoretical Computer Science (ITCS), pages 263–270, 2015.

[71] A. Cobham. The intrinsic computational difficulty of functions. In Proceedings of Logic,
Methodology, and Philosophy of Science II. North Holland, 1965.

[72] S. Cook. The P versus NP problem, 2000. Clay Math Institute official problem description.
At www.claymath.org/sites/default/files/pvsnp.pdf.

[73] S. A. Cook. The complexity of theorem-proving procedures. In Proc. ACM STOC, pages
151–158, 1971.

[74] S. A. Cook. A hierarchy for nondeterministic time complexity. In Proc. ACM STOC, pages
187–192, 1972.

[75] D. Coppersmith. Rapid multiplication of rectangular matrices. SIAM J. Comput., 11(3):467–
471, 1982.

[76] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal
of Symbolic Computation, 9(3):251–280, 1990. Earlier version in Proc. ACM STOC’1987.

[77] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (2nd
edition). MIT Press, 2001.

[78] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing a
Nash equilibrium. Commun. of the ACM, 52(2):89–97, 2009. Earlier version in Proc. ACM
STOC’2006.

[79] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Commun.
of the ACM, 5(7):394–397, 1962.

[80] V. Deolalikar. P ̸= NP . Archived version available at www.win.tue.nl/˜gwoegi/P-versus-
NP/Deolalikar.pdf, 2010.

[81] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17(3):449–467,
1965.

[82] M. R. Fellows. The Robertson-Seymour theorems: a survey of applications. Contemporary
Mathematics, 89:1–18, 1989.

[83] S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. de Wolf. Exponential lower bounds
for polytopes in combinatorial optimization. J. of the ACM, 62(2):17, 2015. Earlier version
in Proc. ACM STOC’2012, pp. 95-106.

[84] M. Forbes, M. Kumar, and R. Saptharishi. Functional lower bounds for arithmetic circuits
and connections to boolean circuit complexity. ECCC TR16-045, 2016.

[85] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton, 1962.

104

[86] L. Fortnow. Time-space tradeoffs for satisfiability. J. Comput. Sys. Sci., 60(2):337–353, 2000.
Earlier version in Proc. IEEE Complexity’1997, pp. 52-60.

[87] L. Fortnow. The status of the P versus NP problem. Commun. of the ACM, 52(9):78–86,
2009.

[88] L. Fortnow. The Golden Ticket: P, NP, and the Search for the Impossible. Princeton Uni-
versity Press, 2009.

[89] L. Fortnow and D. van Melkebeek. Time-space tradeoffs for nondeterministic computation.
In Proc. Conference on Computational Complexity, pages 2–13, 2000.

[90] L. Fortnow, A. Pavan, and S. Sengupta. Proving SAT does not have small circuits with an
application to the two queries problem. J. Comput. Sys. Sci., 74(3):358–363, 2008. Earlier
version in Proc. IEEE Complexity’2003, pp. 347-350.

[91] L. Fortnow and M. Sipser. Are there interactive protocols for co-NP languages? Inform.
Proc. Lett., 28:249–251, 1988.

[92] A. Fraenkel and D. Lichtenstein. Computing a perfect strategy for nxn chess requires time
exponential in n. Journal of Combinatorial Theory A, 31:199–214, 1981.

[93] H. M. Friedman. Mathematically natural concrete incompleteness. At
u.osu.edu/friedman.8/files/2014/01/Putnam062115pdf-15ku867.pdf, 2015.

[94] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial time hierarchy. Math.
Systems Theory, 17:13–27, 1984. Earlier version in Proc. IEEE FOCS’1981, pp. 260-270.

[95] F. Le Gall. Powers of tensors and fast matrix multiplication. pages 296–303, 2014.
arXiv:1401.7714.

[96] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[97] W. Gasarch. The P=?NP poll. SIGACT News, 33(2):34–47, June 2002.

[98] W. Gasarch. The second P=?NP poll. SIGACT News, 43(2):53–77, June 2012.

[99] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J. of the
ACM, 33(4):792–807, 1986. Earlier version in Proc. IEEE FOCS’1984, pp. 464-479.

[100] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity or all
languages in NP have zero-knowledge proof systems. J. of the ACM, 38(1):691–729, 1991.

[101] S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof systems.
In Randomness and Computation, volume 5 of Advances in Computing Research. JAI Press,
1989.

[102] R. Goodstein. On the restricted ordinal theorem. J. Symbolic Logic, 9:33–41, 1944.

[103] B. Grenet. An upper bound for the permanent versus determinant problem.
www.lirmm.fr/˜grenet/publis/Gre11.pdf, 2011.

105

[104] D. Grigoriev and M. Karpinski. An exponential lower bound for depth 3 arithmetic circuits.
In Proc. ACM STOC, pages 577–582, 1998.

[105] D. Grigoriev and A. A. Razborov. Exponential lower bounds for depth 3 arithmetic circuits in
algebras of functions over finite fields. Appl. Algebra Eng. Commun. Comput., 10(6):465–487,
2000. Earlier version in Proc. IEEE FOCS’1998, pp. 269-278.

[106] J. A. Grochow. Symmetry and equivalence relations in classical and geometric complexity
theory. PhD thesis, 2012.

[107] J. A. Grochow. Unifying known lower bounds via Geometric Complexity Theory. Computa-
tional Complexity, 24(2):393–475, 2015. Earlier version in Proc. IEEE Complexity’2014, pp.
274-285.

[108] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proc. ACM
STOC, pages 212–219, 1996. quant-ph/9605043.

[109] A. Gupta, P. Kamath, N. Kayal, and R. Saptharishi. Arithmetic circuits: a chasm at depth
three. In Proc. IEEE FOCS, pages 578–587, 2013.

[110] A. Gupta, P. Kamath, N. Kayal, and R. Saptharishi. Approaching the chasm at depth four.
J. of the ACM, 61(6):1–16, 2014. Earlier version in Proc. IEEE Complexity’2013, pp. 65-73.

[111] L. Gurvits. On the complexity of mixed discriminants and related problems. In Mathematical
Foundations of Computer Science, pages 447–458, 2005.

[112] A. Haken. The intractability of resolution. Theoretical Comput. Sci., 39:297–308, 1985.

[113] J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. Transactions
of the American Mathematical Society, 117:285–306, 1965.

[114] J. H̊astad. Computational Limitations for Small Depth Circuits. MIT Press, 1987.

[115] J. H̊astad. The shrinkage exponent of De Morgan formulas is 2. SIAM J. Comput., 27(1):48–
64, 1998. Earlier version in Proc. IEEE FOCS’1993, pp. 114-123.

[116] J. H̊astad. Some optimal inapproximability results. J. of the ACM, 48:798–859, 2001. Earlier
version in Proc. ACM STOC’1997, pp. 1-10.

[117] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[118] J. D. Hauenstein, C. Ikenmeyer, and J. M. Landsberg. Equations for lower bounds on border
rank. Experimental Mathematics, 22(4):372–383, 2013. arXiv:1305.0779.

[119] M. Held and R. M. Karp. A dynamic programming approach to sequencing problems. Journal
of the Society for Industrial and Applied Mathematics, 10(1):196–210, 1962.

[120] C. Ikenmeyer, K. Mulmuley, and M. Walter. On vanishing of Kronecker coefficients.
arXiv:1507.02955, 2015.

106

[121] C. Ikenmeyer and G. Panova. Rectangular Kronecker coefficients and plethysms in geometric
complexity theory. arXiv:1512.03798, 2015.

[122] N. Immerman. Nondeterministic space is closed under complementation. SIAM J. Comput.,
17(5):935–938, 1988. Earlier version in Proc. IEEE Structure in Complexity Theory, 1988.

[123] N. Immerman. Descriptive Complexity. Springer, 1998.

[124] R. Impagliazzo, V. Kabanets, and A. Kolokolova. An axiomatic approach to algebrization.
In Proc. ACM STOC, pages 695–704, 2009.

[125] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: exponential
time vs. probabilistic polynomial time. J. Comput. Sys. Sci., 65(4):672–694, 2002. Earlier
version in Proc. IEEE Complexity’2001, pp. 2-12.

[126] R. Impagliazzo and N. Nisan. The effect of random restrictions on formula size. Random
Structures and Algorithms, 4(2):121–134, 1993.

[127] R. Impagliazzo and A. Wigderson. P=BPP unless E has subexponential circuits: derandom-
izing the XOR Lemma. In Proc. ACM STOC, pages 220–229, 1997.

[128] H. Jahanjou, E. Miles, and E. Viola. Local reductions. In Proc. Intl. Colloquium on Automata,
Languages, and Programming (ICALP), pages 749–760, 2015. arXiv:1311.3171.

[129] M. Jerrum and M. Snir. Some exact complexity results for straight-line computations over
semirings. J. of the ACM, 29(3):874–897, 1982.

[130] V. Kabanets and J.-Y. Cai. Circuit minimization problem. In Proc. ACM STOC, pages
73–79, 2000. TR99-045.

[131] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity testing means proving
circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. Earlier version in Proc.
ACM STOC’2003. ECCC TR02-055.

[132] D. M. Kane and R. Williams. Super-linear gate and super-quadratic wire lower bounds for
depth-two and depth-three threshold circuits. arXiv:1511.07860, 2015.

[133] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and
Control, 55:40–56, 1982. Earlier version in Proc. IEEE FOCS’1981, pp. 304-309.

[134] M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-logarithmic
depth. SIAM J. Comput., 3:255–265, 1990. Earlier version in Proc. ACM STOC’1988, pp.
539-550.

[135] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,
editors, Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[136] R. M. Karp and R. J. Lipton. Turing machines that take advice. Enseign. Math., 28:191–201,
1982. Earlier version in Proc. ACM STOC’1980, pp. 302-309.

[137] N. Kayal. Affine projections of polynomials: extended abstract. In Proc. ACM STOC, pages
643–662, 2012.

107

[138] N. Kayal, N. Limaye, C. Saha, and S. Srinivasan. An exponential lower bound for homoge-
neous depth four arithmetic formulas. In Proc. IEEE FOCS, pages 61–70, 2014.

[139] N. Kayal, C. Saha, and R. Saptharishi. A super-polynomial lower bound for regular arithmetic
formulas. In Proc. ACM STOC, pages 146–153, 2014.

[140] N. Kayal, C. Saha, and S. Tavenas. An almost cubic lower bound for depth three arithmetic
circuits. ECCC TR16-006, 2016.

[141] S. Khot. On the Unique Games Conjecture. In Proc. Conference on Computational Com-
plexity, pages 99–121, 2010.

[142] V. M. Khrapchenko. A method of determining lower bounds for the complexity of π schemes.
Matematischi Zametki, 10:83–92, 1971. In Russian.

[143] L. Kirby and J. Paris. Accessible independence results for Peano arithmetic. Bulletin of the
London Mathematical Society, 14:285–293, 1982.

[144] A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size proofs un-
less the polynomial-time hierarchy collapses. SIAM J. Comput., 31:1501–1526, 2002. Earlier
version in Proc. ACM STOC’1999.

[145] D. E. Knuth and E. G. Daylight. Algorithmic Barriers Falling: P=NP? Lonely Scholar,
2014.

[146] A. Knutson and T. Tao. The honeycomb model of GLn(C) tensor products I: proof of the
saturation conjecture. J. Amer. Math. Soc., 12(4):1055–1090, 1999.

[147] P. Koiran. Shallow circuits with high-powered inputs. In Proc. Innovations in Theoretical
Computer Science (ITCS), pages 309–320, 2011.

[148] P. Koiran. Arithmetic circuits: the chasm at depth four gets wider. Theor. Comput. Sci.,
448:56–65, 2012.

[149] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge, 1997.

[150] R. E. Ladner. On the structure of polynomial time reducibility. J. of the ACM, 22:155–171,
1975.

[151] J. M. Landsberg. The border rank of the multiplication of two by two matrices is seven. J.
Amer. Math. Soc., 19(2):447–459, 2006. arXiv:math/0407224.

[152] J. M. Landsberg. Geometric complexity theory: an introduction for geometers. Annali
dell’Universita di Ferrara, 61(1):65–117, 2015. arXiv:1305.7387.

[153] J. M. Landsberg and M. Michalek. A 2n2 − log(n) − 1 lower bound for the border rank of
matrix multiplication. 2016. arXiv:1608.07486.

[154] J. M. Landsberg and G. Ottaviani. New lower bounds for the border rank of matrix multi-
plication. Theory of Computing, 11:285–298, 2015. arXiv:1112.6007.

108

[155] J. M. Landsberg and N. Ressayre. Permanent v. determinant: an exponential lower bound
assuming symmetry and a potential path towards Valiant’s conjecture. arXiv:1508.05788,
2015.

[156] C. Lautemann. BPP and the polynomial hierarchy. Inform. Proc. Lett., 17:215–217, 1983.

[157] J. R. Lee, P. Raghavendra, and D. Steurer. Lower bounds on the size of semidefinite pro-
gramming relaxations. In Proc. ACM STOC, pages 567–576, 2015.

[158] L. A. Levin. Universal sequential search problems. Problems of Information Transmission,
9(3):115–116, 1973.

[159] L. A. Levin. Laws of information conservation (non-growth) and aspects of the foundations
of probability theory. Problems of Information Transmission, 10(3):206–210, 1974.

[160] M. Li and P. M. B. Vitányi. Average case complexity under the universal distribution equals
worst-case complexity. Inform. Proc. Lett., 42(3):145–149, 1992.

[161] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform, and learn-
ability. J. of the ACM, 40(3):607–620, 1993. Earlier version in Proc. IEEE FOCS’1989, pp.
574-579.

[162] N. Linial and N. Nisan. Approximate inclusion-exclusion. Combinatorica, 10(4):349–365,
1990. Earlier version in Proc. ACM STOC’1990.

[163] R. J. Lipton. New directions in testing. In Distributed Computing and Cryptography, pages
191–202. AMS, 1991.

[164] R. J. Lipton. Galactic algorithms, 2010. rjlipton.wordpress.com/2010/10/23/galactic-
algorithms/.

[165] R. J. Lipton and K. W. Regan. Practically P=NP?, 2014.
rjlipton.wordpress.com/2014/02/28/practically-pnp/.

[166] R. J. Lipton and A. Viglas. On the complexity of SAT. In Proc. IEEE FOCS, pages 459–464,
1999.

[167] D. Luna. Slices étales. Mémoires de la Société Mathématique de France, 33:81–105, 1973.

[168] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. J. of the ACM, 39:859–868, 1992. Earlier version in Proc. IEEE FOCS’1990, pp.
2-10.

[169] E. M. McCreight and A. R. Meyer. Classes of computable functions defined by bounds on
computation: preliminary report. In Proc. ACM STOC, pages 79–88, 1969.

[170] D. van Melkebeek. A survey of lower bounds for satisfiability and related problems. Founda-
tions and Trends in Theoretical Computer Science, 2:197–303, 2007. ECCC TR07-099.

[171] T. Mignon and N. Ressayre. A quadratic bound for the determinant and permanent problem.
International Mathematics Research Notices, (79):4241–4253, 2004.

109

[172] G. L. Miller. Riemann’s hypothesis and tests for primality. J. Comput. Sys. Sci., 13:300–317,
1976. Earlier version in Proc. ACM STOC’1975.

[173] C. Moore and S. Mertens. The Nature of Computation. Oxford University Press, 2011.

[174] S. Moran. Some results on relativized deterministic and nondeterministic time hierarchies.
J. Comput. Sys. Sci., 22(1):1–8, 1981.

[175] K. Mulmuley. GCT publications web page. ramakrishnadas.cs.uchicago.edu.

[176] K. Mulmuley. Lower bounds in a parallel model without bit operations. SIAM J. Comput.,
28(4):1460–1509, 1999.

[177] K. Mulmuley. Geometric complexity theory VII: nonstandard quantum group for the plethysm
problem. Technical Report TR-2007-14, University of Chicago, 2007. arXiv:0709.0749.

[178] K. Mulmuley. Geometric complexity theory VIII: on canonical bases for the non-
standard quantum groups. Technical Report TR-2007-15, University of Chicago, 2007.
arXiv:0709.0751.

[179] K. Mulmuley. Explicit proofs and the flip. arXiv:1009.0246, 2010.

[180] K. Mulmuley. Geometric complexity theory VI: the flip via positivity. Technical report,
University of Chicago, 2011. arXiv:0704.0229.

[181] K. Mulmuley. On P vs. NP and geometric complexity theory: dedicated to Sri Ramakrishna.
J. of the ACM, 58(2):5, 2011.

[182] K. Mulmuley. The GCT program toward the P vs. NP problem. Commun. of the ACM,
55(6):98–107, June 2012.

[183] K. Mulmuley. Geometric complexity theory V: equivalence between blackbox derandomiza-
tion of polynomial identity testing and derandomization of Noether’s Normalization Lemma.
In Proc. IEEE FOCS, pages 629–638, 2012. Full version available at arXiv:1209.5993.

[184] K. Mulmuley, H. Narayanan, and M. Sohoni. Geometric complexity theory III: on deciding
nonvanishing of a Littlewood-Richardson coefficient. Journal of Algebraic Combinatorics,
36(1):103–110, 2012.

[185] K. Mulmuley and M. Sohoni. Geometric complexity theory I: An approach to the P vs. NP
and related problems. SIAM J. Comput., 31(2):496–526, 2001.

[186] K. Mulmuley and M. Sohoni. Geometric complexity theory II: Towards explicit obstructions
for embeddings among class varieties. SIAM J. Comput., 38(3):1175–1206, 2008.

[187] C. D. Murray and R. R. Williams. On the (non) NP-hardness of computing circuit complexity.
In Proc. Conference on Computational Complexity, pages 365–380, 2015.

[188] J. Naor and M. Naor. Number-theoretic constructions of efficient pseudo-random functions.
J. of the ACM, 51(2):231–262, 2004. Earlier version in Proc. IEEE FOCS’1997.

110

[189] J. Nash. Some games and machines for playing them. Technical Report D-1164, Rand Corp.,
1952.

[190] J. Nash. Letter to the United States National Security Agency, 1955. Available at
www.nsa.gov/public info/ files/nash letters/nash letters1.pdf.

[191] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, 2000.

[192] N. Nisan and A. Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Computational Complexity, 6(3):217–234, 1997. Earlier version in Proc. IEEE FOCS’1995,
pp. 16-25.

[193] B. Aydınlıoğlu and E. Bach. Affine relativization: unifying the algebrization and relativization
barriers. 2016.

[194] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[195] M. Paterson and U. Zwick. Shrinkage of De Morgan formulae under restriction. Random
Structures and Algorithms, 4(2):135–150, 1993.

[196] W. J. Paul, N. Pippenger, E. Szemerédi, and W. T. Trotter. On determinism versus non-
determinism and related problems. In Proc. IEEE FOCS, pages 429–438, 1983.

[197] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. SIAM J. Comput.,
40(6):1803–1844, 2011. Earlier version in Proc. ACM STOC’2008.

[198] G. Perelman. The entropy formula for the Ricci flow and its geometric applications.
arXiv:math/0211159, 2002.

[199] V. R. Pratt. Every prime has a succinct certificate. SIAM J. Comput., 4(3):214–220, 1975.

[200] M. O. Rabin. Mathematical theory of automata. In Proc. Sympos. Appl. Math, volume 19,
pages 153–175, 1967.

[201] M. O. Rabin. Probabilistic algorithm for testing primality. J. Number Theory, 12(1):128–138,
1980.

[202] R. Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size.
J. of the ACM, 56(2):8, 2009. Earlier version in Proc. ACM STOC’2004, pp. 633-641. ECCC
TR03-067.

[203] R. Raz. Elusive functions and lower bounds for arithmetic circuits. Theory of Computing,
6:135–177, 2010. Earlier version in Proc. ACM STOC’2008.

[204] R. Raz. Tensor-rank and lower bounds for arithmetic formulas. J. of the ACM, 60(6):40,
2013. Earlier version in Proc. ACM STOC’2010, pp. 659-666.

[205] R. Raz and A. Yehudayoff. Lower bounds and separations for constant depth multilinear
circuits. Computational Complexity, 18(2):171–207, 2009. Earlier version in Proc. IEEE
Complexity’2008, pp. 128-139.

111

[206] R. Raz and A. Yehudayoff. Multilinear formulas, maximal-partition discrepancy and mixed-
sources extractors. J. Comput. Sys. Sci., 77(1):167–190, 2011. Earlier version in Proc. IEEE
FOCS’2008, pp. 273-282.

[207] A. A. Razborov. Lower bounds for the monotone complexity of some Boolean functions.
Doklady Akademii Nauk SSSR, 281(4):798–801, 1985. English translation in Soviet Math.
Doklady 31:354-357, 1985.

[208] A. A. Razborov. Lower bounds on monotone complexity of the logical permanent. Mathe-
matical Notes, 37(6):485–493, 1985. Original Russian version in Matematischi Zametki.

[209] A. A. Razborov. Lower bounds for the size of circuits of bounded depth with basis {&,⊕}.
Mathematicheskie Zametki, 41(4):598–607, 1987. English translation in Math. Notes. Acad.
Sci. USSR 41(4):333–338, 1987.

[210] A. A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of bounded
arithmetic. Izvestiya Math., 59(1):205–227, 1995.

[211] A. A. Razborov and S. Rudich. Natural proofs. J. Comput. Sys. Sci., 55(1):24–35, 1997.
Earlier version in Proc. ACM STOC’1994, pp. 204-213.

[212] K. W. Regan. Understanding the Mulmuley-Sohoni approach to P vs. NP. Bulletin of the
EATCS, 78:86–99, 2002.

[213] B. Rossman, R. A. Servedio, and L.-Y. Tan. An average-case depth hierarchy theorem for
Boolean circuits. In Proc. IEEE FOCS, pages 1030–1048, 2015. ECCC TR15-065.

[214] T. Rothvoß. The matching polytope has exponential extension complexity. In Proc. ACM
STOC, pages 263–272, 2014.

[215] R. Santhanam. Circuit lower bounds for Merlin-Arthur classes. In Proc. ACM STOC, pages
275–283, 2007.

[216] R. Santhanam and R. Williams. On uniformity and circuit lower bounds. Computational
Complexity, 23(2):177–205, 2014. Earlier version in Proc. IEEE Complexity’2013, pp. 15-23.

[217] S. Saraf. Recent progress on lower bounds for arithmetic circuits. In Proc. Conference on
Computational Complexity, pages 155–160, 2014.

[218] W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
J. Comput. Sys. Sci., 4(2):177–192, 1970.

[219] U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In
Proc. IEEE FOCS, pages 410–414, 1999.

[220] U. Schöning and R. J. Pruim. Gems of Theoretical Computer Science. Springer, 1998.

[221] A. Shamir. IP=PSPACE. J. of the ACM, 39(4):869–877, 1992. Earlier version in Proc. IEEE
FOCS’1990, pp. 11-15.

[222] C. Shannon. The synthesis of two-terminal switching circuits. Bell System Technical Journal,
28(1):59–98, 1949.

112

[223] J. Shoenfield. The problem of predicativity. In Y. Bar-Hillel et al., editor, Essays on the
Foundations of Mathematics, pages 132–142. Hebrew University Magnes Press, 1961.

[224] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997. Earlier version in Proc. IEEE
FOCS’1994. quant-ph/9508027.

[225] A. Shpilka and A. Wigderson. Depth-3 arithmetic circuits over fields of characteristic zero.
Computational Complexity, 10(1):1–27, 2001. Earlier version in Proc. IEEE Complexity’1999.

[226] A. Shpilka and A. Yehudayoff. Arithmetic circuits: a survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

[227] M. Sipser. A complexity theoretic approach to randomness. In Proc. ACM STOC, pages
330–335, 1983.

[228] M. Sipser. The history and status of the P versus NP question. In Proc. ACM STOC, pages
603–618, 1992.

[229] M. Sipser. Introduction to the Theory of Computation (Second Edition). Course Technology,
2005.

[230] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit complexity.
In Proc. ACM STOC, pages 77–82, 1987.

[231] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM J. Comput.,
6(1):84–85, 1977.

[232] A. Srinivasan. On the approximability of clique and related maximization problems. J.
Comput. Sys. Sci., 67(3):633–651, 2003. Earlier version in Proc. ACM STOC’2000, pp. 144-
152.

[233] L. J. Stockmeyer. The complexity of approximate counting. In Proc. ACM STOC, pages
118–126, 1983.

[234] J. A. Storer. On the complexity of chess. J. Comput. Sys. Sci., 27(1):77–100, 1983.

[235] A. J. Stothers. On the complexity of matrix multiplication. PhD thesis, 2010.

[236] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 14(13):354–356,
1969.

[237] V. Strassen. Vermeidung von divisionen. Journal für die Reine und Angewandte Mathematik,
264:182–202, 1973.

[238] B. A. Subbotovskaya. Realizations of linear functions by formulas using +,×,−. Doklady
Akademii Nauk SSSR, 136(3):553–555, 1961. In Russian.

[239] E. R. Swart. P = NP. Technical report, University of Guelph, 1986. Revision in 1987.

[240] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta
Informatica, 26(3):279–284, 1988.

113

[241] A. Tal. Shrinkage of De Morgan formulae by spectral techniques. In Proc. IEEE FOCS, pages
551–560, 2014. ECCC TR14-048.

[242] É. Tardos. The gap between monotone and non-monotone circuit complexity is exponential.
Combinatorica, 8(1):141–142, 1988.

[243] S. Tavenas. Improved bounds for reduction to depth 4 and depth 3. Inf. Comput., 240:2–11,
2015. Earlier version in Proc. MFCS’2013, pp. 813-824.

[244] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877,
1991. Earlier version in Proc. IEEE FOCS’1989, pp. 514-519.

[245] B. A. Trakhtenbrot. A survey of Russian approaches to perebor (brute-force search) algo-
rithms. Annals of the History of Computing, 6(4):384–400, 1984.

[246] L. G. Valiant. Graph-theoretic arguments in low-level complexity. In Mathematical Founda-
tions of Computer Science, pages 162–176, 1977.

[247] L. G. Valiant. Completeness classes in algebra. In Proc. ACM STOC, pages 249–261, 1979.

[248] L. G. Valiant. The complexity of computing the permanent. Theoretical Comput. Sci.,
8(2):189–201, 1979.

[249] L. G. Valiant. Accidental algorithms. In Proc. IEEE FOCS, pages 509–517, 2006.

[250] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation of polyno-
mials using few processors. SIAM J. Comput., 12(4):641–644, 1983.

[251] Various authors. Deolalikar P vs NP paper (wiki page). Last modified 30 September 2011.
michaelnielsen.org/polymath1/index.php?title=Deolalikar P vs NP paper.

[252] V. Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In Proc.
ACM STOC, pages 887–898, 2012.

[253] N. V. Vinodchandran. A note on the circuit complexity of PP. Theor. Comput. Sci., 347:415–
418, 2005. ECCC TR04-056.

[254] R. Wagner and M. Fischer. The string-to-string correction problem. J. of the ACM, 21:168–
178, 1974. See en.wikipedia.org/wiki/Wagner-Fischer algorithm for independent discoveries
of the same algorithm.

[255] A. Wigderson. P, NP and mathematics - a computational complex-
ity perspective. In Proceedings of the International Congress of Math-
ematicians 2006 (Madrid), pages 665–712. EMS Publishing House, 2007.
www.math.ias.edu/˜avi/PUBLICATIONS/MYPAPERS/W06/w06.pdf.

[256] A. Wiles. Modular elliptic curves and Fermat’s Last Theorem. Annals of Mathematics,
141(3):443–551, 1995.

[257] R. Williams. Better time-space lower bounds for SAT and related problems. In Proc. Con-
ference on Computational Complexity, pages 40–49, 2005.

114

[258] R. Williams. Applying practice to theory. ACM SIGACT News, 39(4):37–52, 2008.

[259] R. Williams. Time-space tradeoffs for counting NP solutions modulo integers. Computational
Complexity, 17(2):179–219, 2008. Earlier version in Proc. IEEE Complexity’2007, pp. 70-82.

[260] R. Williams. Guest column: a casual tour around a circuit complexity bound. ACM SIGACT
News, 42(3):54–76, 2011.

[261] R. Williams. Alternation-trading proofs, linear programming, and lower bounds. ACM Trans.
on Computation Theory, 5(2):6, 2013. Earlier version in Proc. STACS’2010, pp. 669-680.

[262] R. Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM J.
Comput., 42(3):1218–1244, 2013. Earlier version in Proc. ACM STOC’2010.

[263] R. Williams. Natural proofs versus derandomization. In Proc. ACM STOC, pages 21–30,
2013.

[264] R. Williams. Algorithms for circuits and circuits for algorithms: connecting the tractable
and intractable. In Proceedings of the International Congress of Mathematicians, 2014.

[265] R. Williams. New algorithms and lower bounds for circuits with linear threshold gates. In
Proc. ACM STOC, pages 194–202, 2014.

[266] R. Williams. Nonuniform ACC circuit lower bounds. J. of the ACM, 61(1):1–32, 2014. Earlier
version in Proc. IEEE Complexity’2011.

[267] R. Williams. Strong ETH breaks with Merlin and Arthur: short non-interactive proofs of
batch evaluation. ECCC TR16-002, 2016.

[268] C. B. Wilson. Relativized circuit complexity. J. Comput. Sys. Sci., 31(2):169–181, 1985.

[269] M. Yannakakis. Expressing combinatorial optimization problems by linear programs. J.
Comput. Sys. Sci., 43(3):441–466, 1991. Earlier version in Proc. ACM STOC’1988, pp. 223-
228.

[270] A. C-C. Yao. Separating the polynomial-time hierarchy by oracles (preliminary version). In
Proc. IEEE FOCS, pages 1–10, 1985.

[271] A. C-C. Yao. On ACC and threshold circuits. In Proc. IEEE FOCS, pages 619–627, 1990.

9 Appendix: Glossary of Complexity Classes

To help you remember all the supporting characters in the ongoing soap opera of which P and NP
are the stars, this appendix contains short definitions of the complexity classes that appear in this
survey, with references to the sections where the classes are discussed in more detail. For a fuller
list, containing over 500 classes, see for example my Complexity Zoo [8]. All the classes below are
classes of decision problems—that is, languages L ⊆ {0, 1}∗. The known inclusion relations among
many of the classes are also depicted in Figure 3.

ΠP
2 : coNPNP, the second level of the polynomial hierarchy (with universal quantifier in front).

See Section 2.2.3.

115

Figure 3: Known inclusion relations among 21 of the complexity classes that appear in this survey

116

ΣP
2 : NPNP, the second level of the polynomial hierarchy (with existential quantifier in front).

See Section 2.2.3.
AC0: The class decidable by a nonuniform family of polynomial-size, constant-depth, unbounded-

fanin circuits of AND, OR, and NOT gates. See Section 6.2.3.
AC0 [m]: AC0 enhanced by MOD m gates, for some specific value of m (the case of m a prime

power versus a non-prime-power are dramatically different). See Section 6.2.4.
ACC: AC0 enhanced by MOD m gates, for every m simultaneously. See Section 6.4.2.
BPP: Bounded-Error Probabilistic Polynomial-Time. The class decidable by a polynomial-time

randomized algorithm that errs with probability at most 1/3 on each input. See Section 5.4.1.
BQP: Bounded-Error Quantum Polynomial-Time. The same as BPP except that we now allow

quantum algorithms. See Section 5.5.
coNP: The class consisting of the complements of all languages in NP. Complete problems

include unsatisfiability, graph non-3-colorability, etc. See Section 2.2.3.
DTISP (f (n) , g (n)): See Section 6.4.1.

EXP: Exponential-Time, or
∪

k TIME
(
2n

k
)
. Note the permissive definition of “exponential,”

which allows any polynomial in the exponent. See Section 2.2.7.

EXPSPACE: Exponential-Space, or
∪

k SPACE
(
2n

k
)
. See Section 2.2.7.

IP: Interactive Proofs, the class for which a “yes” answer can be proven (to statistical certainty)
via an interactive protocol in which a polynomial-time verifier Arthur exchanges a polynomial
number of bits with a computationally-unbounded prover Merlin. Turns out to equal PSPACE
[221]. See Section 6.3.1.

LOGSPACE: Logarithmic-Space, or SPACE (log n). Note that only read/write memory is re-
stricted to O (log n) bits; the n-bit input itself is stored in a read-only memory. See Section
6.4.1.

MA: Merlin-Arthur, the class for which a “yes” answer can be proven to statistical certainty via
a polynomial-size message from a prover (“Merlin”), which the verifier (“Arthur”) then verifies in
probabilistic polynomial time. Same as NP except that the verification can be probabilistic. See
Section 6.3.2.

MAEXP: The exponential-time analogue of MA, where now Merlin’s proof can be 2n
O(1)

bits
long, and Arthur’s probabilistic verification can also take 2n

O(1)
time. See Section 6.3.2.

NC1: The class decidable by a nonuniform family of polynomial-size Boolean formulas—or
equivalently, polynomial-size Boolean circuits of fanin 2 and depth O (log n). The subclass of
P/poly that is “highly parallelizable.” See Section 5.2.

NEXP: Nondeterministic Exponential-Time, or
∪

k NTIME
(
2n

k
)
. The exponential-time ana-

logue of NP. See Section 2.2.7.
NP: Nondeterministic Polynomial-Time, or

∪
k NTIME

(
nk

)
. The class for which a “yes” answer

can be proven via a polynomial-size witness, which is verified by a deterministic polynomial-time
algorithm. See Section 2.

NTIME (f (n)): Nondeterministic f (n)-Time. The class for which a “yes” answer can be
proven via an O (f (n))-bit witness, which is verified by a deterministic O (f (n))-time algorithm.
Equivalently, the class solvable by a nondeterministic O (f (n))-time algorithm. See Section 2.2.7.

P: Polynomial-Time, or
∪

k TIME
(
nk

)
. The class solvable by a deterministic polynomial-time

algorithm. See Section 2.

117

P#P: P with an oracle for #P problems (i.e., for counting the exact number of accepting
witnesses for any problem in NP). See Section 2.2.6.

P/poly: P enhanced by polynomial-size “advice strings” {an}n, which depend only on the input
size n but can otherwise be chosen to help the algorithm as much as possible. Equivalently, the
class solvable by a nonuniform family of polynomial-size Boolean circuits (i.e., a different circuit is
allowed for each input size n). See Section 5.2.

PH: The Polynomial Hierarchy. The class expressible via a polynomial-time predicate with a
constant number of alternating universal and existential quantifiers over polynomial-size strings.
Equivalently, the union of ΣP

1 = NP, ΠP
1 = coNP, ΣP

2 = NPNP, ΠP
2 = coNPNP, and so on. See

Section 2.2.3.
PP: Probabilistic Polynomial-Time. The class decidable by a polynomial-time randomized

algorithm that, for each input x, guesses the correct answer with probability greater than 1/2.
Like BPP but without the bounded-error (1/3 versus 2/3) requirement, and accordingly believed
to be much more powerful. See Section 2.2.6.

PSPACE: Polynomial-Space, or
∪

k SPACE
(
nk

)
. See Section 2.2.5.

SPACE (f (n)): The class decidable by a serial, deterministic algorithm that uses O (f (n)) bits
of memory (and possibly up to 2O(f(n)) time). See Section 2.2.7.

TC0: AC0 enhanced by MAJORITY gates. Also corresponds to “neural networks” (polynomial-
size, constant-depth circuits of threshold gates). See Section 6.2.5.

TIME (f (n)): The class decidable by a serial, deterministic algorithm that uses O (f (n)) time
steps (and therefore, O (f (n)) bits of memory). See Section 2.2.7.

118

	Introduction
	The Importance of P0mu mumu ==on=?NP
	Objections to P0mu mumu ==on=?NP
	The Asymptotic Objection
	The Polynomial-Time Objection
	The Kitchen-Sink Objection
	The Mathematical Snobbery Objection
	The Sour Grapes Objection
	The Obviousness Objection
	The Constructivity Objection

	Further Reading

	Formalizing P0mu mumu ==on=?NP and Central Related Concepts
	NP-Completeness
	Other Core Concepts
	Search, Decision, and Optimization
	The Twilight Zone: Between P and NP-complete
	coNP and the Polynomial Hierarchy
	Factoring and Graph Isomorphism
	Space Complexity
	Counting Complexity
	Beyond Polynomial Resources

	Beliefs About P0mu mumu ==on=?NP
	Independent of Set Theory?

	Why Is Proving P=NP Difficult?
	Strengthenings of the P=NP Conjecture
	Different Running Times
	Nonuniform Algorithms and Circuits
	Average-Case Complexity
	Cryptography and One-Way Functions

	Randomized Algorithms
	BPP and Derandomization

	Quantum Algorithms

	Progress
	Logical Techniques
	Circuit Lower Bounds Based on Counting
	The Relativization Barrier

	Combinatorial Lower Bounds
	Proof Complexity
	Monotone Circuit Lower Bounds
	Small-Depth Circuits and the Random Restriction Method
	Small-Depth Circuits and the Polynomial Method
	The Natural Proofs Barrier

	Arithmetization
	IP=PSPACE
	Hybrid Circuit Lower Bounds
	The Algebrization Barrier

	Ironic Complexity Theory
	Time-Space Tradeoffs
	NEXPACC

	Arithmetic Complexity Theory
	Permanent Versus Determinant
	Arithmetic Circuit Lower Bounds
	Arithmetic Natural Proofs?

	Geometric Complexity Theory
	From Complexity to Algebraic Geometry
	Characterization by Symmetries
	The Quest for Obstructions
	GCT and P0mu mumu ==on=?NP
	Reports from the Trenches
	The Lessons of GCT
	The Only Way?

	Conclusions
	Acknowledgments
	Appendix: Glossary of Complexity Classes

