Modern Perl

Modern Perl

chromatic

Modern Perl

Copyright ©2010 chromatic

Editor: Shane Warden
Logo design:Devin Muldoon
Cover design:Allison Randal and chromatic

ISBN-10: 0-9779201-5-1
ISBN-13:978-0-9779201-5-0

Published by Onyx Neon Presg;tp://www.onyxneon.com/. The Onyx Neon logo is a trademark of Onyx Neon, Inc.

This book was typeset on Ubuntu GNU/Linux using PerP&q : : PseudoPod: : LaTeX, and LaTeX. Many thanks to the free
software contributors who make these and other projectsifples

Please report any errorskattp: //github. com/chromatic/modern_perl_book/.
First Edition October 2010

Please share this book!

We give this book away in the hope that it is useful. We enogeisgou to share this unmodified PDF with others,
for free. If you do find this book useful, please 8&&p://onyxneon.com/books/modern_perl/#why_free/

to help us produce more such books in the future.

Thanks for reading!

http://www.onyxneon.com/
http://github.com/chromatic/modern_perl_book/
http://onyxneon.com/books/modern_perl/#why_free/

Contents

Preface
Running Modern Perl
Perl 5 and Perl 6
Credits

The Perl Philosophy
Perldoc

Expressivity

Context

Implicit Ideas

Perl and Its Community
Community Sites

Development Sites

EVENtS . . . e e e e e e e

10
10
10

Modern Perl

Operators
Operator Characteristi

Operator Types . . .

Functions
Declaring Functions .
Invoking Functions .

Function Parameters .

CS e e e e e e e e e e e e e e e e e e

Functions and Namespaces o o e e e e e

Reporting Errors . . .

Advanced Functions .

Pitfalls and Misfeatures e e e e e

Scope

Anonymous FUNCLIONS o o e e

Closures

State versus Closures

State versus Psuedo-State e e e

Attributes
AUTOLOAD

Regular Expressions and
Literals
The qgr// Operator and
Quantifiers.
Greediness
Regex Anchors . . .
Metacharacters . . .
Character Classes .

Capturing

Matching

Regex Combinations e e e

Grouping and Alternation L e e e

Other EScape SEqUENCES e e e

Assertions
Regex Modifiers . . .

Smart Matching . . .

Objects

59
59
60

63

63
63
64
66
67
68
71
72
75
79
82
83
83
85

89
89
89
90
91
92
92
93
93
95
96
96
97
98

Preface

Reflection e e e 113
Advanced OO Perl e 115
Style and Efficacy 117
Writing Maintainable Perl. L e e 117
Writing Idiomatic Perl e e 118
Writing Effective Perl e 118
EXCEPtioNS e e 119
Pragmas e e 121
Managing Real Programs 123
TeStiNg o e e 123
Handling Warnings 126
Files . . . e e e 129
ModUIES 134
Distributions L e e 137
The UNIVERSAL Package o s e e e e e e s e e e s e 139
Code Generation e e e e 141
Overloading e e e 145
TaiNt . . e e e 146
Perl Beyond Syntax 148
IdIOMS . . . e 148
Global Variables 153
What to Avoid 156
Barewords e e e 156
IndireCt ODJECES e e e e 158
Prototypes e e 159
Method-Function Equivalence e e 162
TiE . o e 163
What's Missing 166
Missing Defaults e e 166

Preface

Perl turns 23 years old later this year. The language hasfgomea simple tool for system administration somewhere betw
shell scripting and C programming (Perl 1) to a powerful,eyahpurpose language steeped in a rich heritage (Perldbaan
consistent, coherent, rethinking of programming in gelnatanded to last for another 25 years (Perl 6).

Even so, most Perl 5 programs in the world take far too littheamtage of the language. Yoaanwrite Perl 5 programs as if
they were Perl 4 programs (or Perl 3 or 2 or 1), but programgemrio take advantage of everything amazing the worldwide
Perl 5 community has invented, polished, and discoveredtaoger, faster, more powerful, and easier to maintain thain
alternatives.

Modern Perlis a loose description of how experienced and effective Pprogrammers work. They use language idioms. They
take advantage of the CPAN. They're recognizably Perlist they show good taste and craftsmanship and a full undelis
of Perl.

You can learn this too.

Running Modern Perl

The Modern::Perl module is available from the CPAN. Instajburself or replace it with:
use 5.010;

use strict;

use warnings;

With these lines in every example program, Perl will warn ydwubious constructs and typos and will enable
new features of Perl 5.10 through theature pragma (see Pragmas, page 121). For now, assume theseréines a
always present. You will understand them soon.

Unless otherwise mentioned, code snippets always assunasic skeleton of a program:

#!/usr/bin/perl
use Modern::Perl;

example code here

Other code snippets use testing functions suckkd3, 1ike (), andis () (see Testing, page 123). That skeleton program is:

#!/usr/bin/perl

use Modern::Perl;
use Test::More;

example code here

d"one_testing();

Preface

The examples in this book work best with Perl 5.10.0 or nevwdeally at least Perl 5.10.1. Many examples will work on olde
versions of Perl 5 with modest changes, but you will have ndliffeculty with anything older than 5.10.0. This book also
describes (but does naquirethe use of) features found in Perl 5.12.

You can often install a new version of Perl yourself. Windassrs, download Strawberry Perl frarotp: //wuw . strawberryperl.
com/. Users of other operating systems with Perl 5 already ilestddnd a C compiler and the other development tools), start
by installing the CPAN modulépp: : perlbrew?.

perlbrew allows you to install and to manage multiple versions of BerBy default, it installs them to your own home
directory. Not only can you have multiple versions of PemStalled without affecting the system Perl but you can aistail
any module you like into these directories without askingry®ystem administrator for specific permission.

Perl 5 and Perl 6

Should you learn Perl 5 or Perl 6? They share philosophy anthagyand libraries and community; they fill different niche
Learn Perl 5 if:

 You have existing Perl 5 code to maintain
* You need to take advantage of CPAN modules
« Your deployment strategy requires rigorous stability

Learn Perl 6 if:

* You're comfortable managing frequent upgrades

 You can afford to experiment with new syntax and features

* You need new features only available in Perl 6

¢ You can contribute to its development (whether patcheg reports, documentation, sponsorship, or other resources

In general, Perl 5 development is conservative with regarthé¢ core language. For good or for ill, change occurs slowly
Perl 6 is more experimental, as it considers finding the pessible design more important than keeping old code wgrkin
Fortunately, you can learn and use both languages (andriteypperate to an ever-improving degree).

This book discusses Perl 5. To learn more about Perl Gysge: //perl6.org/, try Rakudo hittp: //www.rakudo.org/),
and refer to the booklsing Perl § also published by Onyx Neon Press.

Credits

This book would not have been possible in its current formhauit questions, comments, suggestions, advice, wisdoth, an
encouragement from many, many people. In particular, thigoaand editor would like to thank:

John SJ Anderson, Peter Aronoff, Lee Aylward, Alex BalhatciEvar Arnfjord Bjarmason, Matthias Bloch, John Bokma,
Vasily Chekalkin, Dmitry Chestnykh, E. Choroba, Paulo ©dst, Felipe, Shlomi Fish, Jeremiah Foster, Mark FowlehnJo
Gabriele, Andrew Grangaard, Bruce Gray, Ask Bjgrn Hansém, Fleaney, Robert Hicks, Michael Hind, Mark Hindess,
Yary Hluchan, Mike Huffman, Curtis Jewell, Mohammed Arakdamaal, James E Keenan, Yuval Kogman, Jan Krynicky,
Jeff Lavallee, Moritz Lenz, Jean-Baptiste Mazon, Josh MaAd, Gareth McCaughan, John McNamara, Shawn M Moore,
Alex Muntada, Carl Masak, Chris Niswander, Nelo Onyiah, £l@awens, ww from PerlMonks, Jess Robinson, Dave Rolsky,
Gabrielle Roth, Andrew Savige, Lorne Schachter, Dan Sétexander Scott-Johns, Phillip Smith, Christopher E.FStlark

A. Stratman, Bryan Summersett, Audrey Tang, Scott ThomBen, Tilly, Sam Vilain, Larry Wall, Colin Wetherbee, Frank
Wiegand, Doug Wilson, Sawyer X, David Yingling, Marko Zagoz harleypig, hbm, and sunnavy.

Any errors are the fault of the author’s own stubbornness.

1Seenttp://search.cpan.org/perldoc?App: : perlbrew for installation instructions.

http://www.strawberryperl.com/
http://www.strawberryperl.com/
http://perl6.org/
http://www.rakudo.org/
http://search.cpan.org/perldoc?App::perlbrew

The Perl Philosophy

Perl is a language for getting things done. It's flexiblergfeing, and malleable. In the hands of a capable programiner
can accomplish almost any task, from one-liner calculatiand automations to multi-programmer, multi-year prajeid
everything in between.

Perl is powerful, and modern Perl—Perl which takes advarwtgee best knowledge, deepest experience, and reusatieddi
of the global Perl community—is maintainable, fast, and g¢asyse. Perhaps most importantly, it can help you do what you
need to do with little frustration and no ceremony.

Perl is a pragmatic language. You, the programmer, are irgeh®ather than manipulating your mind and your problentig to
how the language designer thinks you should write progr&ed,allows you to solve your problems as you see fit.

Perl is a language which can grow with you. You can write uggfograms with the knowledge that you can learn in an hour
of reading this book. Yet if you take the time to understarel thilosophies behind the syntax, semantics, and desidreof t
language, you can be far more productive.

First, you need to know how to learn more.

Perldoc

One of Perl's most useful and least appreciated featurbsjsstr1doc utility. This program is part of every complete Perl 5 in-
stallatior?. It displays the documentation of every Perl module insthtin the system—whether a core module or one installed
from the Comprehensive Perl Archive Network (CPAN)—as weltteousands of pages of Perl’s copious core documentation.

If you prefer an online versiorhttp://perldoc.perl.org/ hosts recent versions of the Perl documentation.
http://search.cpan.org/ displays the documentation of every module on the CPAN. dvgdusers, both
ActivePerl and Strawberry Perl provide a link in your Stagmua to the documentation.

The default behavior oferldoc is to display the documentation for a named module or a Spesgttion of the core docu-
mentation:

$ perldoc List:Util
$ perldoc perltoc
$ perldoc Moose::Manual

The first example extracts documentation written forthet: :Util module and displays it in a form appropriate for your
screen. Community standards for CPAN modules (see The Cpabk 10) suggest that additional libraries use the same
documentation format and form as core modules, so therelstioction between reading the documentation for a coraty
such adata: :Dumper or one installed from the CPAN. The standard documentagamptate includes a description of the
module, demonstrates sample uses, and then contains ledietgdlanation of the module and its interface. While the @mho

of documentation varies by author, the form of the docuntamtas remarkably consistent.

The second example displays a pure documentation filejsrcese the table of contents of the core documentatioth. itld@k
file describes each individual piece of the core documantabrowse it for a good understanding of Perl’s breadth.

2You may have to install an additional package on a free GNWi iistribution or another Unix-like system; on Debian andibltol this isper1-doc.

1

http://perldoc.perl.org/
http://search.cpan.org/

Modern Perl

The third example resembles the secdfitise : : Manual is part of the Moose CPAN distribution (see Moose, page 10%).
also purely documentation; it contains no code.

Similarly, perldoc perlfaq will display the table of contents for Frequently Asked Qigss about Perl 5
Skimming these questions is invaluable.

Theperldoc utility has many more abilities (se@rldoc perldoc). Two of the most useful are they and the-£ flags. The
-q flag takes a keyword or keywords and searches only the P&l Bisplaying all results. Thuserldoc -q sort returns
three questionddow do | sort an array by (anything)How do | sort a hash (optionally by value instead of ke@fdHow
can | always keep my hash sorted?

The-£ flag displays the core documentation for a builtin Perl tior¢. perldoc -f sort explains the behavior of theort
operator. If you don't know the name of the function you warsgperldoc perlfunc to see a list of functions.

perldoc perlop andperldoc perlsyn document Perl’'s symbolic operators and syntactic constrperldoc
perldiag explains the meanings of Perl's warning messages.

Perl 5’s documentation system 0D, or Plain Old Documentationperldoc perlpod describes how POD works. The
perldoc utility will display the POD in any Perl module you create andtall for your project, and other POD tools such as
podchecker, which validates the form of your POD, aRdd: :Webserver, which displays local POD as HTML through a
minimal web server, will handle valid POD correctly.

perldoc has other uses. With tha command-line flag, it displays theathto the documentation file rather than the contents
of the documentatioh With the-m flag, it displays the entireontentsof the module, code and all, without processing any POD
instructions.

Expressivity

Before Larry Wall created Perl, he studied linguistics anchhn languages. His experiences continue to influencésiéesign.
There are many ways to write a Perl program depending on yajeqi’'s style, the available time to create the prograra, th
expected maintenance burden, or even your own persona sérexpression. You may write in a straightforward, top-to-
bottom style. You may write many small and independent fonst You may model your problem with classes and objects.
You may eschew or embrace advanced features.

Perl hackers have a slogan for thiSMTOWTDI pronounced “Tim Toady”, or “There’s more than one way tottlo i

Where this expressivity can provide a large palette with Whiwaster craftsman can create amazing and powerful edifices
unwise conglomerations of various techniques can impedetaiaability and comprehensibility. You can write goocdecor
you can make a mess. The choice is yBurs

Where other languages might suggest that one enforced wayit® any operation is the right solution, Perl allows you
to optimize for your most important criteria. Within the h@aof your own problems, you can choose from several good
approaches—but be mindful of readability and future maivathility.

As a novice to Perl, you may find certain constructs diffi¢calunderstand. The greater Perl community has discovergd an
promoted several idioms (see Idioms, page 148) which offegitgpower. Don't expect to understand them immediatelyné&o
of Perl’s features interact in subtle ways.

Another design goal of Perl is to surprise experienced Jipeolgrammers very little. For example, adding two scalagether
with a numeric operato$first_num + $second_num) is obviously a numeric operation; the operator must trett bcalars

3Be aware that a module may have a sepagadfile in addition to its.pmfile.

4...but be kind to other people, if you must make a mess.

The Perl Philosophy

Learning Perl is like learning a second or third spoken laiggu You'll learn a few words, then string together
some sentences, and eventually will be able to have smalbsiconversations. Mastery comes with practice, Qoth
reading and writing. You don't have to understand all of tie¢éads of this chapter immediately to be productive
with Perl. Keep these principles in mind as you read the retsi® book.

as numeric values to produce a numeric result. No matter thbatontents off irst_num and$second_num, Perl will coerce
them to numeric values (see Numeric Coercion, page 47) wittemuiring the user or programmer to specify this coneersi
manually. You've expressed your intent to treat them as rarmby choosing a numeric operator (see Numeric Opera@age, p
60), so Perl happily handles the rest.

In general, Perl programmers can expect Perl to do what yannihis is the notion oDWIM—do what | meanYou may
also see this mentioned as thenciple of least astonishmen®&iven a cursory understanding of Perl (especially contee
Context, page 3), it should be possible to read a single uh&rRerl expression and understand its intent.

If you're new to Perl, you will develop this skill over timehe flip side of Perl’s expressivity is that Perl novices caitewuseful

programs before they learn all of Perl’s powerful featuiidee Perl community often refers to thislaaby Perl Though it may
sound dismissive, please don't take offense; everyone @&/&@ once. Take the opportunity to learn from more expegen
programmers and ask for explanations of idioms and cortstpoz don’t yet understand.

A Perl novice might multiply a list of numbers by three by wr@:
my @tripled;

my $count = @numbers;

for (my $i = 0; $i < $count; $i++)

S$tripled[$i] = $numbers[$i] * 3

A Perl adept might write:

my @tripled;
for my $num (@numbers)

push @tripled, $num * 3;

An experienced Perl hacker might write:

my @tripled = map { $_ * 3 } @numbers;

Experience writing Perl will help you to focus on what you wemdo rather than how to do it.

Perl is a language intended to grow with your understandfingragramming. It won’t punish you for writing simple pro-
grams. It allows you to refine and expand programs for glagitpressivity, reuse, and maintainability. Take advgataf this
philosophy. It's more important to accomplish your taskvlen to write a conceptually pure and beautiful program.

The rest of this book demonstrates how to use Perl to younaaga.

Context

Spoken languages have a notiorcohtextwhere the correct usage or meaning of a word or phrase deparitdssurroundings.
You may understand this in a spoken language, where the riojipgate pluralization of “Please give me one hamburgérs!”

5The pluralization of the noun differs from the amount.

Modern Perl

sounds wrong or the incorrect gender of “la g&toiakes native speakers chuckle. Consider also the pronauri ty the noun
“sheep” which can be singular or plural depending on the ned®a of the sentence.

Context in Perl is similar; the language understands egfieas of the amount of data to provide as well as what kindaté d
to provide. Perl will happily attempt to provide exactly vilyau ask for—and you ask by choosing one operator over another

One type of context in Perl means that certain operators tifferent behavior if you want zero, one, or many results. It
possible that a specific construct in Perl will do somethiifterent if you say “Fetch me zero results; | don’t care atemy”
than if you say “Fetch me one result” or “Fetch me many results

Likewise, certain contexts make it clear that you expectraeric value, a string value, or a value that’s either trueats.

Context can be tricky if you try to write or read Perl code aseees of single expressions which stand apart from their
environments. You may find yourself slapping your forehedigr a long debugging session when you discover that your
assumptions about context were incorrect. However, if ipoabgnizant of contexts, they can make your code clearere mo
concise, and more flexible.

Void, Scalar, and List Context

One of the aspects of context govehmsv manyitems you expect. This @mount contextCompare this context to subject-verb
number agreement in English. Even if you haven't learneddiraal description of the rule, you probably understanddirer

in the sentence “Perl are a fun language”. The rule in PeHdsthe number of items you request determines how many you
get.

Suppose you have a function (see Declaring Functions, p@geaedf ind_chores () which sorts all of your chores in order
of their priority. The means by which you call this functioetdrmines what it will produce. You may have no time to do ekor

in which case calling the function is an attempt to look irtdosis. You may have enough time to do one task, or you could
have a burst of energy and a free weekend and the desire tondochsof the list as possible.

If you call the function on its own and never use its returnuealyou’ve called the function inoid context

find_chores();

Assigning the function’s return value to a single elemeaieates the function iacalar context

my $single_result = find_chores();

Assigning the results of calling the function to an arraye(éerays, page 36) or a list, or using it in a list, evaluatesftinction
in list context

my @all_results = find_chores();
my ($single_element) = find_chores();
process_list_of_results(find_chores());

The second line of the previous example may look confusimg;parentheses there give a hint to the compiler that althoug
there’s only a scalar, this assignment should occur in bsitext. It's semantically equivalent to assigning thetfitem in

the list to a scalar and assigning the rest of the list to a tearg array, and then throwing away the array—except that no
assignment to the array actually occurs:

my ($single_element, @rest) = find_chores();

Evaluating a function or expression—except for assignmentisti context can produce confusion. Lists propagate tistext
to the expressions they contain. Both call€iad_chores () occur in list context:

6The article is feminine, but the noun is masculine.

The Perl Philosophy

process_list_of_results(find_chores());

my %results =

(
cheap_operation => $cheap_operation_results,
expensive_operation => find_chores(), # OOPS!

The latter example often surprises novice programmers whecat scalar context for the calixpensive_operation occurs
is in list context, because its results are assigned to a kh assignments take a list of key/value pairs, whichesaaay
the evaluation of any expressions in that list to occur ind@text.

Use thescalar operator to impose scalar context:

my %results =

(
cheap_operation => $cheap_operation_results,
expensive_operation => scalar find_chores(),

Why does context matter? The function can examine its cattmgext and decide how much work it needs to do before
returning its results. In void contextind_chores() can do nothing. In scalar context, it can find only the mogtdntant
task. In list context, it has to sort and return the entire lis

Numeric, String, and Boolean Context

Another type of context determines how Perl understandeeepif data—nohow manypieces of data you want, but what
the data means. You've probably already noticed that Piebkible about figuring out if you have a number or a stringlan
converting between the two as you want them. Maikie contexhelps to explain how it does so. In exchange for not having
to declare (or at least track) explicitly whigfpe of data a variable contains or a function produces, Pertofpecific type
contexts that tell the compiler how to treat a given valuérdpan operation.

Suppose you want to compare the contents of two stringsedloperator tells you if the strings contain the same infororati

say "Catastrophic crypto fail"" if $alice eq $bob;

You may have had a baffling experience where konawthat the strings are different, but they still compare thaea

my $alice = ‘alice’;
say “"Catastrophic crypto fail!" if $alice == 'Bob"; # OOPS

The eq operator treats its operands as strings by enforsirigg contexion them. The== operator imposesumeric context
The example code fails because the value of both strings whated as numbers @s(see Numeric Coercion, page 47).

Boolean contexbccurs when you use a value in a conditional statement. Ipréagous examples, thef statement evaluated
the results of theq and== operators in boolean context.

Perl will do its best to coerce values to the proper type (sser€ion, page 47), depending on the operators you use. Bésur
use the proper operator for the type of context you want.

In rare circumstances, you may need to force an explicitesdn/here no appropriately typed operator exists. To force a
numeric context, add zero to a variable. To force a stringecdnconcatenate a variable with the empty string. To farce
boolean context, double the negation operator:

my $numeric_x = 0 + $x; # forces numeric context
my $stringy_x = " . $x; # forces string context
my $boolean_x = I$x; # forces boolean context

In general, type contexts are less difficult to understambsae than the amount contexts. Once you understand thaxfsty
and know which operators provide which contexts (see Opefgpes, page 60), you'll rarely make mistakes with them.

5

Modern Perl

Implicit Ideas

Like many spoken languages, Perl provides linguistic sludst Context is one such feature: both the compiler and grano-
mer reading the code can understand the expected numbesulfsrer the type of an operation from existing information
without requiring additional information to disambiguate

Other linguistic features include default variables—eta#y pronouns.

The Default Scalar Variable

The default scalar variablgalso called theopic variablg, $_, is the best example of a linguistic shortcut in Perl. It'sstno
notable in itsabsencemany of Perl’s builtin operations work on the contentsofin the absence of an explicit variable. You
can still use$_ as the variable, but it's often unnecessary.

For example, thehomp operator removes any trailing newline sequence from thengstring:
my $uncle = "Bob\n";
say "$uncle™;

chomp $uncle;
say "s$uncle™;

Without an explicit variablechomp removes the trailing newline sequence frém These two lines of code are equivalent:

chomp $_;
chomp;

$_ has the same function in Perl as the pronitun English. Read the first line ashomp it” and the second ashomp”. Perl
understands what you mean when you don’t explain what to ph&rl will always chomiit.

Similarly, thesay andprint builtins operate oi$_ in the absence of other arguments:
print; # prints $_ to the currently selected filehandle

say; # prints $_ to the currently selected filehandle
with a trailing newline

Perl’s regular expression facilities (see Regular Expoassand Matching, page 89) can also operaté oto match, substitute,
and transliterate:

$_ = 'My name is Paquito’
say if /My name is/;
s/Paquito/Paquita/;

tr/A-Z/a-z/,
say;

Many of Perl’s scalar operators (includirgr, ord, 1c, length, reverse, anduc) work on the default scalar variable if you
do not provide an alternative.

Perl’s looping directives (see Looping Directives, page&l3o sets_, such afor iterating over a list:

say "# $_" for 1 .. 10;
for (1 .. 10)

say "# $_";

...0Orwhile:

The Perl Philosophy

while (<STDIN>)
{

chomp;
say scalar reverse;

... ormap transforming a list:

my @squares = map { $_ * $_} 1 .. 10;
say for @squares;

...0orgrep filtering a list:

say 'Brunch time!" if grep { /pancake mix/ } @pantry;

If you call functions within code that us@s whether implicitly or explicitly, they may overwrite the e of $_. Similarly, if
you write a function which uses_, you may clobber a caller function’s use $f. Perl 5.10 allows you to usey to declare
$_ as a lexical variable, which prevents this clobbering beiraiBe wise.

while (<STDIN>)
{
chomp;
BAD EXAMPLE
my $munged = calculate_value($_);
say "Original: $_";
say "Munged : $munged";

In this example, ifcalculate_value() or any other function it happened to call changed it would remain changed
throughout thevhile loop. Adding amy declaration prevents that behavior:

while (my $_ = <STDIN>)
{

Of course, using a named lexical can be just as clear:

while (my $line = <STDIN>)

Use$_ as you would the word “it” in formal writing: sparingly, in saii and well-defined scopes.

The Default Array Variables

While Perl has a single implicit scalar variable, it has twalicit array variables. Perl passes arguments to functioran
array namecb_. Array manipulation operations (see Arrays, page 36) anfuahctions affect this array by default. Thus, these
two snippets of code are equivalent:

sub foo

{
my $arg = shift;

}
sub foo_explicit

{
my $arg = shift @_;

Modern Perl

Just as$_ corresponds to the pronouin @_ corresponds to the pronodineyor them Unlike $_, Perl automatically localizes
@_ for you when you call other functions. The array operatarsft andpop operate ore_ with no other operands provided.

Outside of all functions, the default array variablRGV contains the command-line arguments to the program. The aaray
operators which use@_ implicitly within functions useeARGV implicitly outside of functions. You cannot use when you
mean@ARGV.

ARGV has one special case. If you read from the null filehardlePerl will treat every element i0ARGV as thenameof a file
to open for reading. (IBARGV is empty, Perl will read from standard input.) This impliéfRGV behavior is useful for writing
short programs, such as this command-line filter whichns&its input:

while (<>)

chomp;
say scalar reverse;

Why scalar? say imposes list context on its operandeverse passes its context on to its operands, treating
them as a list in list context and a concatenated string ilascantext. This sounds confusing, because it is. Perl
5 arguably should have had different operators for thederdifit operations.

If you run it with a list of files:

$ perl reverse_lines.pl encrypted/ *.txt

... the result will be one long stream of output. Without aryuanents, you can provide your own standard input by piping i
from another program or typing directly.

Perl and Its Community

One of Larry’s main goals for Perl 5 was to encourage Perlldpyeent and evolution outside the core distribution. Pdrad
several forks, because there was no easy way to connect ietatenal database, for example. Larry wanted peopledater
and maintain their own extensions without fragmenting ¢ol thousands of incompatible pidgins.

You can add technical mechanisms for extensions, but you aisis consider community aspects as well. Extensions and
enhancements that no one shares are extensions and enbats#rat everyone has to build and test and debug and nmaintai
themselves. Yet shared extensions and libraries are wes#lifl you can't find them, or you can’t enhance them, or yoo'tdo
have permission to use them.

Fortunately, the Perl community exists. It's strong andlthgalt welcomes willing participants at all levels—and rjast
for people who produce and share code. Consider taking tayaof the knowledge and experience of countless other Perl
programmers, and sharing your abilities as well.

Community Sites

Perl's homepage aittp://www.perl.org/ hosts documentation, source code, tutorials, mailing,latd several important
community projects. If you're new to Perl, the Perl begirsnerailing list is a friendly place to ask novice questions get
accurate and helpful answers. $gep://beginners.perl.org/.

An important domain of note isttp://dev.perl.org/, a central site for core development of Perl 5, Pérlaéid even Perl
1.

Perl.com publishes several articles and tutorials abottfPegramming every month. Its archives reach back into20ih
century. Se@&ttp://www.perl.com/.

The CPAN’s (see The CPAN, page 10) central locatidttisp: //www. cpan.org/, though experienced users spend more time
onhttp://search.cpan.org/. This central software distribution hub of reusable, freel Bode is an essential part of the
Perl community.

PerIMonks, ahttp://perlmonks.org/, iS a venerable community site devoted to questions andexssand other discus-
sions about Perl programming. It celebrated its tenth amsary in December 2009, making it one of the longest- lgstieb
communities dedicated to any programming language.

Several community sites offer news and commentetyp: //blogs.perl.org/ is a community site where many well known
developers post.

Other sites aggregate the musings of Perl hackers, inguditip: //perlsphere.net/, http://planet.perl.org/, and
http://ironman.enlightenedperl.org/. The latter is part of an initiative from the EnlightenedIRenganizationfttp: //
enlightenedperl.org/) to increase the amount and improve the quality of Perl ghbig on the web.

Perl Buzz http://perlbuzz.com/) collects and republishes some of the most interesting aafiilPerl news on a regular
basis.

Development Sites

Best Practical Solutionshftp://bestpractical.com/) maintains an installation of their popular request tragksystem,
RT, for CPAN authors as well as Perl 5 and Perl 6 developmemryECPAN distribution has its own RT queue, linked from

"The main Perl 6 site isttp: //www.perl6.org/

http://www.perl.org/
http://beginners.perl.org/
http://dev.perl.org/
http://www.perl.com/
http://www.cpan.org/
http://search.cpan.org/
http://perlmonks.org/
http://blogs.perl.org/
http://perlsphere.net/
http://planet.perl.org/
http://ironman.enlightenedperl.org/
http://enlightenedperl.org/
http://enlightenedperl.org/
http://perlbuzz.com/
http://bestpractical.com/
http://www.perl6.org/

Modern Perl

search.cpan.org and available ohttp://rt.cpan.org/. Perl 5 and Perl 6 have separate RT queues availaliew //
rt.perl.org/.

The Perl 5 Porters (qu5p) mailing list is the focal point of the development of Perk&eif. Seehttp://lists.cpan.org/
showlist.cgi?name=perl5-porters.

The Perl Foundatiom¢tp: //www.perlfoundation. org/) hosts a wikifor all things Perl 5. Seetp: //www.perlfoundation.
org/perl5.

Many Perl hackers use Githubt(tp: //github. com/) to host their projects See especially Gitpam{tp://github.com/
gitpan/), which hosts Git repositories chronicling the completgdry of every distribution on the CPAN.

Events

There are plenty of events in the physical world as well. Tked Pommunity holds a lot of conferences, workshops, and
seminars. In particular, the community-run YAPC—Yet AnotRerl Conference—is a successful, local, low-cost conferen
model held on multiple continents. Seetp: //yapc.org/.

The Perl Foundation wiki lists other eventsaatp: //www.perlfoundation.org/perl5/index.cgi?perl_events.

There are also hundreds of local Perl Mongers groups whittogether frequently for technical talks and social intécm.
Seehttp://www.pm.org/.

IRC

When Perl mongers aren't at local meetings or conferencesodisivops, many collaborate and chat online through IRC, a
textual group chat system from the early days of the InteMany of the most popular and useful Perl projects have tiveir
IRC channels, such @smnooseor #catalyst

The main server for Perl communityisc://irc.perl.org/. Other notable channels incluéperl-help for general assis-
tance on Perl programming, a#gerl-qg devoted to testing and other quality issues. Be awarehkathanne#perlis not for
general help—instead, it's a general purpose room for dssegsvhatever its participants want to discuss

The CPAN

Perl 5 is a pragmatic language. It'll help you get your workieloYet the ever-pragmatic Perl community has extended that
language and made their work available to the world. If youereproblem to solve, chances are someone’s already uploade
code to the CPAN for it.

The line between a modern language and its libraries is fuszg language only syntax? Is it the core libraries? Is it the
availability of external libraries and the ease at which gan use them within your own projects?

Regardless of how you answer those questions for any othguiae, modern Perl programming makes heavy use of the CPAN
(http://www.cpan.org/). The CPAN, or Comprehensive Perl Archive Network, is aroading and mirroring system for
redistributable, reusable Perl code. It's one of—if tiete—largest archives of libraries of code in the world.

CPAN mirrorsdistributions which tend to be collections of reusable Perl code. A sidgg&ibution can contain one or more
modules or self-contained libraries of Perl code. Each distributiives in its own namespace on the CPAN and contains its
own metadata. You can build, install, test, and update eathikdition. Distributions may depend on other distribas. For
this reason, installing distributions through a CPAN disroften simpler than doing so manually.

The CPAN itself is merely a mirroring service. Authors umladistributions containing modules, and the CPAN sends them
to mirror sites, from which users and CPAN clients downloamhfigure, build, test, and install distributions. Yet tG@AN
has succeeded because of this simplicity, and because abttigbutions of thousands of volunteers who've built ois th

8...including the sources of this booktattp: //github. com/chromatic/modern_perl_book/

9...and it's not often friendly to people who ask basic progming questions.

10

http://rt.cpan.org/
http://rt.perl.org/
http://rt.perl.org/
http://lists.cpan.org/showlist.cgi?name=perl5-porters
http://lists.cpan.org/showlist.cgi?name=perl5-porters
http://www.perlfoundation.org/
http://www.perlfoundation.org/perl5
http://www.perlfoundation.org/perl5
http://github.com/
http://github.com/gitpan/
http://github.com/gitpan/
http://yapc.org/
http://www.perlfoundation.org/perl5/index.cgi?perl_events
http://www.pm.org/
irc://irc.perl.org/
http://www.cpan.org/
http://github.com/chromatic/modern_perl_book/

Perl and Its Community

The CPANaddshundreds of registered contributors and thousands of awlsodules in hundreds of distributions
every month. Those numbers do not take into account updatesinting time in October 2010, search.cpan.org
reported 8465 uploaders, 86470 modules, and 21116 distriisu

distribution system to produce something greater. In @alar, community standards have evolved to identify theébattes and
characteristics of well-formed CPAN distributions. Thasgude:

Standards for installation to work with automated CPANafists.

Standards for metadata to describe what each distributndes and any dependencies of the distribution.

Standards for documentation and licensing to describe thieadistribution does and how you may use it.
Additional CPAN services provide comprehensive autométsting and reporting of every CPAN distribution for adimee
to packaging and distribution guidelines and correctnés&ebavior on various platforms and versions of Perl. EvePAR
distribution has its own ticket queue @amtp://rt.cpan.org/ for reporting bugs and working with authors. Distributions

also have historical versions available on the CPAN, ratiagnotations for the documentation, and other usefutnmdition.
All of this is available fromhttp://search.cpan.org/.

Modern Perl installations include two clients to connegtdearch, download, build, test, and install CPAN distiims,
CPAN.pm and CPANPLUS. They behave equivalently; their ssematter of taste. This book recommends the use of CPAN.pm
solely due to its ubiquity.

If you use a recent version of CPAN.pm (as of this writing AD® is the latest stable release), CPAN.pm configuratitarggely
decision-free. For any complete installation of Perl, yaayrtart the client with:

$ cpan

To install a distribution:

$ cpan Modern::Perl

Eric Wilhelm’s tutorial on configuring CPAN.pHi includes a great troubleshooting section.

Even though the CPAN client is a core module for the Perl Sibigion, you may also have to install standard
development tools such asmake utility and possibly a C compiler to install all of the didiitions you want,
Windows users, see Strawberry Pért{p: //strawberryperl.com/) and Strawberry Perl Professional. Mac
OS X users need their developer tools installed. Unix ancdllké users, consult your local system administrator.

For your work setting up a CPAN client and an environment tibddband install distributions, you get access to libraries f
everything from database access to profiling tools to matfor almost every network device ever created to sourd an
graphics libraries and wrappers for shared libraries om ggstem.

Modern Perl without the CPAN is just another language. Modrerl with the CPAN is amazing.

CPAN Management Tools

Serious Perl developers often manage their own Perl lilgatlys or even full installations. Several projects help &kenthis
possible.

App: : cpanminus is a new CPAN client with goals of speed, simplicity, and zesofiguration. Installation is as easy as:

nttp://learnperl.scratchcomputing.com/tutorials/configuration/

11

http://rt.cpan.org/
http://search.cpan.org/
http://strawberryperl.com/
http://learnperl.scratchcomputing.com/tutorials/configuration/

Modern Perl

$ curl -LO http://xrl.us/cpanm
$ chmod +x cpanm

App: :perlbrew is a system to manage and to switch between your own insteltadbf multiple versions and configurations
of Perl. Installation is as easy as:

$ curl -LO http://xrl.us/perlbrew
$ chmod +x perlbrew

$./perlbrew install

$ perldoc App::perlbrew

Thelocal: :1ib CPAN distribution allows you to install and to manage digitions in your own user directory, rather than
for the system as a whole. This is an effective way to mainE#AN distributions without affecting other users. Institin

is somewhat more involved than the previous two distrimgidcSeerttp: //search.cpan.org/perldoc?local: :1ib for
more details.

All three distributions projects tend to assume a Unix-Bkeironment (such as a GNU/Linux distribution or even MacX)S
Windows users, see the Padre all-in-one downldady: //padre.perlide.org/download.html).

12

http://search.cpan.org/perldoc?local::lib
http://padre.perlide.org/download.html

The Perl Language

The Perl language has several smaller parts which combifeertoits syntax. Unlike spoken language, where nuance amal to
of voice and intuition allow people to communicate desditght misunderstandings and fuzzy concepts, computersamte
code require precision. You can write effective Perl coddeuit knowing every detail of every language feature, but yust
understand how they work together to write Perl code well.

Names

Names(or identifierg are everywhere in Perl programs: variables, functionsk@ges, classes, and even filehandles have
names. These names all start with a letter or an underscheg. May optionally include any combination of letters, num-
bers, and underscores. When 118 pragma (see Unicode and Strings, page 17) is in effect, yguusa any valid UTF-8
characters in identifiers. These are all valid Perl id@sist

my $name;
my @_private_names;
my %Names_to_Addresses;

sub anAwkwardName3;

with use utf8; enabled
package Ingy::Dot::Net;

These are invalid Perl identifiers:

my $invalid name;
my @3;
my %-~flags;

package a-lisp-style-name;

These rules only apply to names which appear in literal fannsaurce code; that is, if you've typed it directly likab
fetch _pie ormy $waffleiron.

Perl's dynamic nature makes it possible to refer to entitigls names generated at runtime or provided as input to aranog
These aresymbolic lookupsYou get more flexibility this way at the expense of some saf@ particular, invoking functions

or methods indirectly or looking up symbols in a namespatseyleu bypass Perl’s parser, which is the only part of Petl tha
enforces these grammatical rules. Be aware that doing sproauce confusing code; a hash (see Hashes, page 40) ad neste
data structure (see Nested Data Structures, page 55) ischézrer.

Variable Names and Sigils

Variable nameslways have a leading sigil which indicates the type of théatée’s value Scalar variablegsee Scalars, page
35) have a leading dollar sig§) characterArray variables(see Arrays, page 36) have a leading at sigyncharacterHash
variables(see Hashes, page 40) have a leading percent $jgméracter:

my $scalar;
my @array;
my %bhash;

In one sense, these sigils offer namespaces of the varjatiese it's possible (though often confusing) to have \@es of
the same name but different types:

13

Modern Perl

my ($bad_name, @bad_name, %bad_name);

Perl won't get confused, but people reading the code might.

Perl 5 usewvariant sigils where the sigil on a variable may change depending on whatlgowith it. For example, to access
an element of an array or a hash, the sigil changes to the sigile($):

my $hash_element = $hash{ $key };
my $array_element = $array[$index]

$hash{ $key } = 'value';
$array[$index] = ‘item’;

In the latter two lines, using a scalar element of an aggecgmtarivalue (the target of an assignment, on the left side ofthe
character) imposes scalar context (see Context, page Beovalue (the value assigned, on the right side of theharacter).

Similarly, accessing multiple elements of a hash or an aray operation known aslicing—uses the at symbole] as the
leading sigil and imposes list context:

my @hash_elements = @hash{ @keys };
my @array_elements = @array[@indexes 1J;

my %hash;
@hash{ @keys } = @values;

The most reliable way to determine the type of a variable—ascatray, or hash—is to look at the operations performed.on it
Scalars support all basic operations, such as string, nomaed boolean manipulations. Arrays support indexedssctteough
square brackets. Hashes support keyed access througtbrackets.

Package-Qualified Names

Occasionally you may need to refer to functions or varialniesseparate namespace. Often you will need to refer to a blas
its fully-qualified name These names are collections of package names joined byedcoions (:). That is,My: :Fine: : -
Package refers to a logical collection of variables and functions.

While the standard naming rules apply to package names, beotian user-defined packages all start with uppercaterset
The Perl core reserves lowercase package names for comgsggee Pragmas, page 121), suchtasct andwarnings.
This is a policy enforced by community guidelines insteaéefl itself.

Namespaces do not nest in Perl 5. The relationship bet®&ees: : Package and Some: :Package: :Refinement is only

a storage mechanism, with no further implications on thati@hships between parent and child or sibling packages.nwhe
Perl looks up a symbol iSome: :Package: :Refinement, it l0oks in themain:: symbol table for a symbol representing
the Some: : namespace, then in there for theckage: : namespace, and so on. It's your responsibility to makelagigal
relationships between entities obvious when you chooseaamd organize your code.

Variables

A variablein Perl is a storage location for a value (see Values, pageybs)can work with values directly, but all but the most
trivial code works with variables. A variable is a level oflirection; it's easier to explain the Pythagorean theoneeims of
the variableg, b, andc than with the side lengths of every right triangle you cangima. This may seem basic and obvious, but
to write robust, well-designed, testable, and composatolgrems, you must identify and exploit points of generigityerever
possible.

Variable Scopes

Variables also have visibility, depending on their scope (Scope, page 72). Most of the variables you will encourdee h
lexical scope (see Lexical Scope, page 72). Remember ldmttiemselves have their own lexical scopes, such thatitieage
declaration on its own does not create a new scope:

14

The Perl Language

package Store::Toy;
our $discount = 0.10;
package Store::Music;

$Store::Toy::discount still visible as $discount
say "Our current discount is $discount!";

Variable Sigils

In Perl 5, the sigil of the variable in a declaration detemsithe type of the variable, whether scalar, array, or hasisigil of

the variable used to access the variable determines theofyguess to its value. Sigils on variables vary depending/loat
you do to the variable. For example, declare an arra@vadues. Access the first element—a single value—of the array with
$values[0]. Access a list of values from the array withalues[@indices].

Anonymous Variables

Perl 5 variables do nateednames; Perl manages variables just fine without caring tahow you refer to them. Variables
created without literal names in your source code (sucteggle, @boys, jcheeseburgers) areanonymouvariables. The
only way to access anonymous variables is by reference @fegdRces, page 50).

Variables, Types, and Coercion

A variable in Perl 5 represents two things: the value (a deltdue, a list of pizza toppings, a group of guitar shops & t
phone numbers) and the container which stores that value5Baype system deals withalue typesandcontainer typesA
variable’s value type—whether a value is a string or a nunfbegxample—can change. You may store a string in a variable
in one line, append to that variable a number on the next, eambign a reference to a function (see Function Referepags,
53) on the third. A variable’'sontainer type-whether it's a scalar, an array, or a hash—cannot change.

Assigning to a variable may cause coercion (see Coercigg $d). The documented way to determine the number of entries
in an array is to evaluate that array in scalar context (se#e page 3). Because a scalar variable can only everinanta
scalar, assigning an array to a scalar imposes scalar ¢amtéte operation and produces the number of elements it a

my $count = @items;

The relationship between variable types, sigils, and caigerital to a proper understanding of Perl.

Values
Effective Perl programs depend on the accurate repregantatd manipulation of values.

Computer programs contavariables containers which holgalues Values are the actual data the programs manipulate. While
it's easy to explain what that data might be—your aunt’s nanteaaldress, the distance between your office and a golf course
on the moon, or the weight of all cookies you've eaten in th&t gaar—the rules regarding the format of that data are often
strict. Writing an effective program often means understagndhe best (simplest, fastest, most compact, or easiest)oiy
representing that data.

While the structure of a program depends heavily on the meandizth you model your data with appropriate variables, ¢hes
variables would be meaningless if they couldn’t accuratelytain the data itself—the values.

Strings

A string is a piece of textual or binary data with no particular fortimgt, no particular contents, and no other meaning to the
program. It could be your name. It could be the contents ofreage file read from your hard drive. It could be the Perl paogr
itself. A string has no meaning to the program until you givaéaning.

To represent a string in your program, you must surroundtt &pair of quoting characters. The most comrstrimg delimiters
are single and double quotes:

15

Modern Perl

my $name = 'Donner Odinson, Bringer of Despair'
my $address = "Room 539, Bilskirnir, Valhalla"

Perl strings do not have a fixed length after you declare therl allows you to manipulate and modify strings|as
necessary and will handle all relevant memory managemegbia

Characters in aingle-quoted stringepresent themselves literally, with two exceptions. Yayrembed a single quote inside a
single-quoted string by escaping the quote with a leadirjlbah:

my $reminder = 'Don \' t forget to escape the single quote!’;

You must also escape any backslash at the end of the stringitbescaping the closing delimiter and producing a synteore

my $exception = 'This string ends with a backslash, not a quot e \ %

Any other backslash appears literally in the string, buegitwo adjacent backslashes, the first will escape|the

second:
is('Modern \" Perl’, 'Modern \\ Perl,
‘'single quotes backslash escaping’);

A double-quoted strindgnas more complex (and often, more useful) behavior. For plgnyou may encode non-printable
characters in the string:

my $tab ="\t
my $newline =" \n";
my S$carriage =" \r ";
my $formfeed =" \f
my $backspace = " \b "

This demonstrates a useful principle: the syntax used t@dea string may vary. You can represent a tab within a stwiitiy
the\t escape or by typing a tab directly. As Perl runs, both strirejsgve the same way, even though the specific representatio
of the string may differ in the source code.

A string declaration may cross logical newlines, such thasé two strings are equivalent:

my $escaped = "two\nlines";

my $literal = "two

lines";

is($escaped, $literal, \n and newline are equivalent');

You canenter these characters directly in the strings, but itsroffifficult to see the visual distinction between one talvatter
and four (or two or eight) spaces.

You may alsainterpolatethe value of a scalar variable or the values of an array wighitouble-quoted string, such that the
contents of the variable become part of the string as if yaulitten a concatenation operation directly:

my $factoid = "Did you know that $name lives at $address ?";
equivalent to

my $factoid = 'Did you know that ' . $name . ' lives at ' . $addres s .

You may include a literal double-quote inside a double-gdaitring byescapingt (that is, preceding it with a leading back-
slash):

16

The Perl Language

my $quote = "\"Ouch,\", he cried. \"That hur t \™;

If you find that hideously ugly, you may use an alternqtmting operator The q operator indicates single quoting, while the
qq operator provides double quoting behavior. In each casemeay choose your own delimiter for the string. The character
immediately following the operator determines the begigrand end of the string. If the character is the opening cheraf

a balanced pair—such as opening and closing braces—thegldsamacter will be the final delimiter. Otherwise, the ctter
itself will be both the starting and ending delimiter.

my $quote = qg{ "Ouch", he said. "That hurt!" };
my $reminder = @g"Didn't need to escape the single quote! n;
my $complaint = qg{ It's too early to be awake. ;

Even though you can declare a complex string with a seriembkeded escape characters, sometimes it's easier to@aclar
multi-line string on multiple lines. Theeredocsyntax lets you assign one or more lines of a string with asffit syntax:

my $blurb =<<'END_BLURB;

He looked up. "Time is never on our side, my child. Do you see th e irony?
All they know is change. Change is the constant on which they a II can
agree. Whereas we, born out of time to remain perfect and perf ectly
self-aware, can only suffer change if we pursue it. It is agai nst our
nature. We rebel against that change. Shall we consider them greater

for it?"

END_BLURB

The<<'END_BLURB' syntax has three parts. The double angle-brackets inteohecheredoc. The quotes determine whether
the heredoc obeys single-quoted or double-quoted behaitioregard to variable and escape character interpolafibay’re
optional; the default behavior is double-quoted interfjota TheEND_BLURB itself is an arbitrary identifier which the Perl 5
parser uses as the ending delimiter.

Be careful; regardless of the indentation of the heredotadsion itself, the ending delimitenuststart at the beginning of the
line:

sub some_function {
my $ingredients =<<'END_INGREDIENTS';
Two eggs
One cup flour
Two ounces butter
One-quarter teaspoon salt
One cup milk
One drop vanilla
Season to taste
END_INGREDIENTS
}

If the identifier begins with whitespace, that same whigegpmust be present exactly in the ending delimiter.
Even if you do indent the identifier, Perl 5 willot remove equivalent whitespace from the start of each linbef
heredoc.

—

You may use a string in other contexts, such as boolean ormeirite contents will determine the resulting value (seeKCmn,
page 47).
Unicode and Strings

Unicodeis a system for representing characters in the world’s enrithnguages. While most English text uses a character set
of only 127 characters (which requires seven bits of stoeagkfits nicely into eight-bit bytes), it's naive to belietrat you
won't someday need an umlaut, for example.

Perl 5 strings can represent either of two related but diffedata types:

17

Modern Perl

Sequences of Unicode characters

The Unicode character set contains characters from thptsaf most languages, and various other symbols. Each
character has eodepointa unique number which identifies it in the Unicode chanasés.

Sequences of octets
Binary data is a sequence @ftets—8 bit numbers, each of which can represent a number betweet 25b.

Why octetand notbyte? Think of Unicode as characters without thinking of anyipatéar size of the representatian
of those characters in memory. Assuming that one charattén bne byte will cause you no end of Unicode grief.

Unicode strings and binary strings look very similar. Thaglkehave dength (), and they support standard string operations
such as concatenation, splicing, and regular expressmrepsing. Any string which is not purely binary data is tektata,
and should be a sequence of Unicode characters.

However, because of how your operating system represetaddadisk or from users or over the network—as sequences of
octets—Perl can’t know if the data you read is an image file taxa document or anything else. By default, Perl treats all
incoming data as sequences of octets. Any additional mganfithe string’s contents are your responsibility.

Character Encodings

A Unicode string is a sequence of octets which representzeseg of characters. Bnicode encodingnaps octet sequences
to characters. Some encodings, such as UTF-8, can encaofela characters in the Unicode character set. Othersseptre
a subset of Unicode characters. For example, ASCII encddés pnglish text with no accented characters and Latinfl ca
represent text in most languages which use the Latin alphabe

If you always decode to and from the appropriate encodinge&irtputs and outputs of your program, you will avoid many
problems.

Unicode in Your Filehandles

One source of Unicode input is filehandles (see Files, p2§&. If you tell Perl that a specific filehandle works withceled
text, Perl can convert the data to Unicode strings automigticlo do this, add a IO layer to the mode of thgen builtin. An
10 layer wraps around input or output and converts the data. In tisis,dhe: ut£8 layer decodes UTF-8 data:

use autodie;

open my $fh, '<:utf8', $textfile;

my $unicode_string = <$fh>;

You may also modify an existing filehandle witinmode, whether for input or output:

binmode $fh, "utf8";
my $unicode_string = <$fh>;

binmode STDOUT, "utf8';
say $unicode_string;

Without theut£8 mode, printing Unicode strings to a filehandle will resulta warning §ide character in %s), because
files contain octets, not Unicode characters.

Unicode in Your Data

The core modul&ncode provides a function namedkcode () to convert a scalar containing data in a known format to a
Unicode string. For example, if you have UTF-8 data:

my $string = decode('utf8’, $data);

18

The Perl Language

The correspondingncode () function converts from Perl’s internal encoding to the degsioutput encoding:

my $latinl = encode('iso-8859-1', $string);

Unicode in Your Programs

You may include Unicode characters in your programs in tivags. The easiest is to use tinef 8 pragma (see Pragmas, page
121), which tells the Perl parser to interpret the rest ofsiigrce code file with the UTF-8 encoding This allows you te us
Unicode characters in strings as well in identifiers:

use utf8;

sub £ to_ ¥ { ... }

my $pounds = £_to_¥('1000£");

To write this code, your text editor must understand UTF-8 and you sae the file with the appropriate encoding.
Within double-quoted strings you may also use the Unicodepssequence to represent character encodings. The §yfifax
represents a single character; place the hex form of thacteais Unicode number within the curly brackets:

my $escaped_thorn = "\x{OOFE}";

Some Unicode characters have names. Though these are moosejghey can be clearer to read than Unicode numbers. You
must use theharnames pragma to enable them. Use thie{} escape to refer to them:

use charnames “full’;
use Test:More tests => 1,

my $escaped_thorn = "\x{OOFE}";
my $named_thorn = "\N{LATIN SMALL LETTER THORN}";

is($escaped_thorn, $named_thorn, 'Thorn equivalence che ck');

You may use thgx{} and\N{} forms within regular expressions as well as anywhere elsenyay legitimately use a string
or a character.
Implicit Conversion

Most Unicode problems in Perl arise from the fact that a gtdould be either a sequence of octets or a sequence of airaract
Perl allows you to combine these types through the use ofigihpbnversions. When these conversions are wrong, they're
rarely obviouslywrong.

When Perl concatenates a sequences of octets with a seqdéstieade characters, it implicitly decodes the octet segee
using the Latin-1 encoding. The resulting string containgcdde characters. When you print Unicode characters, Reoldes
the string using UTF-8, because Latin-1 cannot represerettire set of Unicode characters.

This asymmetry can lead to Unicode strings encoded as UTF-@itput and decoded as Latin-1 when input.
Worse yet, when the text contains only English charactetis mo accents, the bug hides—because both encodings have the
same representation for every such character.

my $hello = "Hello, "
my $greeting = $hello . $name;

If $name contains an English name suchAdgce you will never notice any problem, because the Latin-1 regméation is the
same as the UTF-8 representation.

If, on the other handfname contains a name likdosé $name can contain several possible values:

¢ $name contains four Unicode characters.

19

Modern Perl

* $name contains four Latin-1 octets representing four Unicode atizrs.
e $name contains five UTF-8 octets representing four Unicode cttera.

The string literal has several possible scenarios:

e Itis an ASCII string literal and contains octets.

my $hello = "Hello, *;

e |tis a Latin-1 string literal with no explicit encoding aicdntains octets.

my $hello = "jHola, *;

The string literal contains octets.
* Itis a non-ASCII string literal with thet£8 or encoding pragma in effect and contains Unicode characters.

use utfs;
my $hello = "Kuiraba,

If both $hello and$name are Unicode strings, the concatenation will produce amdtimécode string.

If both strings are octet streams, Perl will concatenatenti@o a new octet string. If both values are octets of the same
encoding—both Latin-1, for example, the concatenationwlik correctly. If the octets do not share an encoding, timeate-
nation append UTF-8 data to Latin-1 data, producing a semuehoctets which makes sensenigitherencoding. This could
happen if the user entered a name as UTF-8 data and the greetia a Latin-1 string literal, but the program decodedhagit

If only one of the values is a Unicode string, Perl will decdbe other as Latin-1 data. If this is not the correct encoding
the resulting Unicode characters will be wrong. For examipline user input were UTF-8 data and the string literal weere
Unicode string, the name will be incorrectly decoded inte fUnicode characters to fordosA©(sic) instead ofJosébecause
the UTF-8 data means something else when decoded as Latita1 d

Seeperldoc perluniintro for a far more detailed explanation of Unicode, encodingsl, laow to manage incoming and
outgoing data in a Unicode world.

Numbers

Perl also supports numbers, both integers and floatingtpalues. You may write them in scientific notation as welbénary,
octal, and hexadecimal representations:

my S$integer = 42;

my $float = 0.007;

my $sci_float = 1.02e14;

my $hinary = 0b101010;
my $octal = 052;

my $hex = 0x20;

The emboldened characters are the numeric prefixes fonbioetal, and hex notation respectively. Be aware thateadihg
zero always indicates octal mode; this can occasionallgiyre unanticipated confusion.

Even though you can write floating-point values explicitty Perl 5 with perfect accuracy, Perl 5 stores them
internally in a binary format. Comparing floating-pointlvas is sometimes imprecise in specific ways; cons
perldoc perlnumber for more details.

You may not use commas to separate thousands in numeralditeecause the parser will interpret the commas as comma
operators. Yoanuse underscores within the number, however. The parsetreali them as invisible characters; your readers
may not. These are equivalent:

20

The Perl Language

my $billion = 1000000000;
my $billion = 1_000_000_000;
my $billion = 10_0_00_00_0_0_0;

Consider the most readable alternative, however.

Because of coercion (see Coercion, page 47), Perl progresmanely have to worry about converting text read from algsi
the program to numbers. Perl will treat anything which lobks a number as a number in numeric contexts. Even though it
almost always does so correctly, occasionally it's usefidriow if something really does look like a number. The coreluie
Scalar: :Util contains a function namelboks_like_number which returns a true value if Perl will consider the given
argument numeric.

TheRegexp: : Common module from the CPAN also provides several well-tested lergexpressions to identify valitypes
(whole number, integer, floating-point value) of numeriues.

Undef

Perl 5 has a value which represents an unassigned, undeéinddunknown valueandef. Declared but undefined scalar
variables contaimndef:

my $name = undef; # unnecessary assignment
my $rank; # also contains undef

undef evaluates to false in boolean context. Interpolatingef into a string—or evaluating it in a string context—produces
anuninitialized value warning:

my $undefined;

my $defined = $undefined and so forth;
...produces:
Use of uninitialized value $undefined in concatenation (.) or string...

Thedefined builtin returns a true value if its operand is a defined vdhmeything other thanndef):

my $status = ‘suffering from a cold’;

say defined $status;
say defined undef;

The Empty List

When used on the right-hand side of an assignment(tfwonstruct represents an empty list. When evaluated in soafaext,
this evaluates tandef. In list context, it is effectively an empty list.

When used on the left-hand side of an assignment(}heonstruct imposes list context. To count the number of eteme
returned from an expression in list context without usingragiorary variable, you use the idiom (see Idioms, page 148):

my $count = () = get_all_clown_hats();

Because of the right associativity (see Associativity,g88) of the assignment operator, Perl first evaluates ttenskassign-
ment by callingget_all_clown_hats() in list context. This produces a list.

Assignment to the empty list throws away all of the valuesheflist, but that assignment takes place in scalar contéxthw
evaluates to the number of items on the right hand side ofdbiglament. As a resulfcount contains the number of elements
in the list returned fronget_all_clown_hats ().

You don’t have to understand all of the implications of thade right now, but it does demonstrate how a few of Perl's
fundamental design features can combine to produce ititegeend useful behavior.

21

Modern Perl

Lists
A listis a comma-separated group of one or more expressions.

Lists may occur verbatim in source code as values:
my @first_fibs = (1, 1, 2, 3, 5, 8, 13, 21);
... as targets of assignments:

my ($package, $filename, $line) = caller();

...or as lists of expressions:

say name(), ' => ', age();

You do not need parenthesescteatelists; the comma operator creates lists. Where presentatieaheses in these examples
group expressions to change firecedencef those expressions (see Precedence, page 59).

You may use the range operator to create lists of literalscionapact form:

my @chars
my @count

non
[
w
N
N

...and you may use thes () operator to split a literal string on whitespace to produtistaf strings:

my @stooges = qw(Larry Curly Moe Shemp Joey Kenny);

Perl will produce a warning if gw() contains a comma or the comment charactgrifecause not only are such
characters rarely included ingr (), their presence usually indicates an oversight.

Lists can (and often do) occur as the results of expressbotishese lists do not appear literally in source code.

Lists and arrays are not interchangeable in Perl. Lists @altgeeg and arrays are containers. You may store a list in ag arnd
you may coerce an array to a list, but they are separateemntitor example, indexing into a list always occurs in ligttemt.
Indexing into an array can occur in scalar context (for alsiegement) or list context (for a slice):

enable say and other features (see preface)
use Modern::Perl;

you do not need to understand this
sub context

{

my $context = wantarray();

say defined $context
? $context
? list'
: 'scalar'
: 'void';
return 0;
}
my @list_slice = (1, 2, 3)[context()];
my @array_slice = @list_slice[context()];
my $array_index = $array_slice[context()];

say imposes list context
say context();

void context is obvious
context()

22

The Perl Language

Control Flow

Perl’'s basiccontrol flowis straightforward. Program execution starts at the beggn(the first line of the file executed) and
continues to the end:

say 'At start’;
say 'In middle’;
say 'At end

Most programs need more complex control flow. Pectsitrol flow directiveschange the order of execution—what happens
next in the program—depending on the values of arbitraripglex expressions.

Branching Directives

The if directive evaluates a conditional expression and perfahmsssociated action only when the conditional expression
evaluates to &rue value:

say 'Hello, Bob!" if $name eq 'Bob’;

This postfix form is useful for simple expressions. A blockrh groups multiple expressions into a single unit:
if ($name eq 'Bob’)
{

say 'Hello, Bob!;
found_bob();

While the block form requires parentheses around its candithe postfix form does not. The conditional expressiog aiso
be complex:
if ($name eq 'Bob' && not greeted_bob())

say 'Hello, Bob!;
found_bob();

...though in this case, adding parentheses to the postfiditonal expression may add clarity, though tieedto add paren-
theses may argue against using the postfix form.

greet_bob() if ($name eq 'Bob' && not greeted_bob());

Theunless directive is a negated form aff. Perl will evaluate the following statement when the candil expression
evaluates tdalse

say "You're no Bob!" unless $name eq 'Bob’;

Like if, unless also has a block form. Unlikef, the block form ofunless is much rarer than its postfix form:
unless (is_leap_year() and is_full_moon())

frolic();
gambol();

unless works very well for postfix conditionals, especially pareter validation in functions (see Postfix Parameter Vailg
page 152):

23

Modern Perl

sub frolic

{

return unless @_;

for my $chant (@_)
{

unless can be difficult to read with multiple conditions; this is am@son it appears rarely in its block form.

The block forms ofif andunless both work with theelse directive, which provides code to run when the conditional
expression does not evaluate to true (foy or false (forunless):

if ($name eq 'Bob’)
{

say 'Hi, Bob!;
greet_user();

}

else

{
say "l don't know you.";
shun_user();

else blocks allow you to rewritei f andunless conditionals in terms of each other:

unless ($name eq 'Bob’)

say "I don't know you.";
shun_user();

}

else

{
say 'Hi, Bob!;
greet_user();

If you read the previous example out loud, you may notice thienaard pseudocode phrasing: “Unless this name is Bob, do
this. Otherwise, do something else.” The implied doubleatigg can be confusing. Perl provides bathandunless to allow

you to phrase your conditionals in the most natural and tdadeay. Likewise, you can choose between positive and ivegat
assertions with regard to the comparison operators you use:

if ($name ne 'Bob’)

{
say "I don't know you.";
shun_user();

}

else

{
say 'Hi, Bob!;
greet_user();

The double negative implied by the presence ofdhee block argues against this particular phrasing.

One or mores1sif directives may follow arif block form and may precede any singlese. You may use as mamlsif
blocks as you like, but you may not change the order in whierblbck types appear:

if ($name eq 'Bob’)
{

say 'Hi, Bob!;
greet_user();

elsif ($name eq 'Jim')

{

24

The Perl Language

say 'Hi, Jim!;
greet_user();

}

else

{
say “"You're not my uncle.”;
shun_user();

You may also use thelsif block with anunless chain, but the resulting code may be unclear. There islr@unless.

There is neelse if construct!, so this code contains a syntax error:

if (name eq 'Rick’)
{

say 'Hi, cousin!’;

}

warning; syntax error
else if ($name eq 'Kristen’)

{
}

say 'Hi, cousin-in-law!’;

The Ternary Conditional Operator
Theternary conditionabperator offers an alternate approach to control flow. dl@ates a conditional expression and evaluates
to one of two different results:

my $time_suffix = after_noon($time) ? 'morning' : ‘afterno on';

The conditional expression precedes the question marlactear(?) and the colon character)(separates the alternatives. The
alternatives are literals or (parenthesized) expressibasbitrary complexity, including other ternary condital expressions,
though readability may suffer.

An interesting, though obscure, idiom is to use the ternanddional to select between alternativariables not

only values:
push @{ rand() > 0.5 ? \@red_team : \@blue_team },
Player->new();

Again, weigh the benefits of clarity versus the benefitsaidseness.

Short Circuiting

Perl exhibitsshort-circuitingbehavior when it encounters complex expressions—expressimmposed of multiple evaluated
expressions. If Perl can determine that a complex expmesgald succeed or fail as a whole without evaluating evebes
pression, it will not evaluate subsequent subexpressidrs.is most obvious with an example:

see preface
use Test:More 'no_plan’;

say "Both true!" if ok(1, ‘'first subexpression’)
&& ok(1, 'second subexpression');

done_testing();

This example prints:

11| arry preferselsif for aesthetic reasons, as well the prior art of the Ada progriang language.

25

Modern Perl

The return value 06k () (see Testing, page 123) is the boolean value obtained byagiray the first argument.

ok 1 - first subexpression
ok 2 - second subexpression
Both true!

When the first subexpression—the first call d&—evaluates to true, Perl must evaluate the second subexpre¥ghen
the first subexpression evaluates to false, the entireesgn cannot succeed, and there is no need to check subseque
subexpressions:

say "Both true!" if ok(0, ‘first subexpression’)
&& ok(1, 'second subexpression’);

This example prints:

not ok 1 - first subexpression

Even though the second subexpression would obviously ed¢céerl never evaluates it. The logic is similar for a comple
conditional expression where either subexpression mustibdor the conditional as a whole to succeed:

say "Either true!" if ok(1, ‘first subexpression’)
|| ok(1, 'second subexpression’);

This example prints:

ok 1 - first subexpression
Either true!

Again, with the success of the first subexpression, Perbgaid evaluating the second subexpression. If the firstgpitession
were false, the result of evaluating the second subexpressiuld dictate the result of evaluating the entire expoess

Besides allowing you to avoid potentially expensive corapiahs, short circuiting can help you to avoid errors andniveys:

if (defined $barbeque and $barbeque eq 'pork shoulder) { .. .}

Context for Conditional Directives

The conditional directives-+£, unless, and the ternary conditional operator—all evaluate an esgioe in boolean context
(see Context, page 3). As comparison operators suely,as=, ne, and!= all produce boolean results when evaluated, Perl
coerces the results of other expressions—including va$adohd values—into boolean forms. Empty hashes and arrdystva
to false.

Perl 5 has no single true value, nor a single false value. Amgber that evaluates to 0 is false. This includgs. 0, 0e0, 0x0,

and so on. The empty string () and'0' evaluate to false, but the strings.0', '0e0', and so on do not. The idioD but
true' evaluates to O in numeric context but evaluates to true inelamocontext, thanks to its string contents. Both the empty
list andundef evaluate to false. Empty arrays and hashes return the nubninescalar context, so they evaluate to false in
boolean context.

An array which contains a single element—evearief—evaluates to true in boolean context. A hash which contamys a
elements—even a key and a valuexafief—evaluates to true in boolean context.

26

The Perl Language

1

Thewant module available from the CPAN allows you to detect booleamext within your own functions. The
coreoverloading pragma (see Overloading, page 145) allows you to specify wina own data types produg
when evaluated in a boolean context.

D

Looping Directives
Perl also provides several directives for looping and fiera

The foreachstyle loop evaluates an expression which produces a lise´s a statement or block until it has consumed
that list:

foreach (1 .. 10)
{

}

say "'$ + $_="8% * $_;

This example uses the range operator to produce a list @farédrom one to ten inclusive. THereach directive loops over
them, setting the topic variablie (see The Default Scalar Variable, page 6) to each in turd.eRecutes the block for each
integer and prints the squares of the integers.

Perl treats the builtingoreach andfor interchangeably. The remainder of the syntax of the looprd@hes the
behavior of the loop. Though experienced Perl programnead to refer to the loop with automatic iteration as a
foreach loop, you can uséor safely and clearly any place you might want to tiseeach.

Like if andunless, thefor loop has a postfix form:

say '$ + $_ =" 8% + $_for 1 . 10;

Similar suggestions apply for clarity and complexity.

A for loop may use a named variable instead of the topic:

for my $i (1 .. 10)
{

say "$i + $i =", $i * $i;

In this case, Perl will not set the topic variablie) to the iterated values. As well, the scope of the varigiilés only valid
within the loop. If you have declared a lexickl in an outer scope, its value will persist outside the loop:

my $i = ‘cow’;
for my $i (1 .. 10)

say "$i o+ $i =", $i * $i;
}

is($i, 'cow', 'Lexical variable not overwritten in outer sc ope');

This localization occurs even if you do not redeclare thetten variable as a lexickt

12 butdodeclare your iteration variables as lexicals to reduce wipe.

27

Modern Perl

my $i = 'horse’;

for $i (1 .. 10)
{

}

is($i, 'horse', 'Lexical variable still not overwritten in outer scope');

say "$i + $i =", $i * $i;

Iteration and Aliasing
The for loop aliasesthe iterator variable to the values in the iteration such #mg modifications to the value of the iterator
modifies the iterated value in place:

my @nums = 1 .. 10;

$_ = = 2 for @nums;

is($nums[0], 1, '1 * 1is 1');
is($numsl1], 4, 2 * 20s 4');
is($nums[9], 100, '10 * 10 is 100");

This aliasing also works with the block stytereach loop:

for my $num (@nums)

$num = = 2;

...as well as iteration with the topic variable:

for (@nums)

$ = 2;

You cannot use aliasing to modi§pnstantvalues, however:

for (qw(Huex Dewex Louie))

$_++;
say;

...as this will throw an exception about modification ofaeanly values. There’s little point in doing so anyhow.

You may occasionally see the usefefr with a single scalar variable to aligs to the variable:

for ($user_input)

s/(\w)\\$1/g; # escape non-word characters
s/Ms *|\s$/g; # trim whitespace

Iteration and Scoping

Iterator scoping with the topic variable provides one comraource of confusion. In this casgyme_function() modifies
$_ on purpose. lsome_function() called other code which modifietl without explicitly localizing$_, the iterated value
in @values would change. Debugging this can be troublesome:

28

The Perl Language

for (@values)

some_function();

}
sub some_function

s/foo/bar/;

If you mustuse$_ rather than a named variable, make the topic variable lewith my $_:

sub some_function_called_later

{
was $_ = shift;
my $_ = shift;

s/foo/bar/;
s/baz/quux/;

return $_;

Using a named iteration variable also prevents undesiiasiiad) behavior througf_.

The C-Style For Loop

The C-stylefor loop allows the programmer to manage iteration manually:

for (my $i = 0; $i <= 10; $i += 2)
{
say "$i o+ $i =", $i * $i;

You must assign to an iteration variable manually, as trem@idefault assignment to the topic variable. Consequérghe is
no aliasing behavior either. Though the scope of any detlasecal variable is to the body of the block, a variabt# declared
explicitly in the iteration control section of this consttwvill overwrite its contents:

my $i = 'pig;
for ($i = 0; $i <= 10; $i += 2)

say "$i o+ $i =", $i * $i;
}

isnt($i, 'pig’, '$i overwritten with a number');

This loop has three subexpressions in its looping constiithet first subexpression is an initialization section.Xe@utes
once, before the first execution of the loop body. The secutxpression is the conditional comparison subexpesBierl

evaluates this subexpression before each iteration obtiebhody. When the subexpression evaluates to a true vakimdh

iteration proceeds. When the subexpression evaluates lgeaviue, the loop iteration stops. The final subexpressi@cutes
after each iteration of the loop body.

This may be more obvious with an example:
declared outside to avoid declaration in conditional
my $i;
for (

loop initialization subexpression

say 'Initializing' and $i = 0;

conditional comparison subexpression
say "lteration: $i" and $i < 10;

iteration ending subexpression

29

Modern Perl

say ‘Incrementing $i' and $i++
say "$i x $i =", $i * $i;

Note the lack of a trailing semicolon at the iteration endsadpexpression as well as the use of the low-precedendethis
syntax is surprisingly finicky. When possible, prefer thereach style loop to thefor loop.

All three subexpressions are optional. You may write amitéiloop with:
for) { ..}

While and Until

A whileloop continues until the loop conditional expression estda to a boolean false value. An infinite loop is much cleare
when written:

while (1) { ... }

The means of evaluating the end of iteration condition ith&le loop differs from aforeach loop in that the evaluation of
the expression itself does not produce any side effectsalfues has one or more elements, this code is also an infinite loop:

while (@values)

say $values[O0];
To prevent such an infinitehile loop, use alestructive updatef the @values array by modifying the array with each loop
iteration:

while (my $value = shift @values)

say $value;
The until loop reverses the sense of the test of e le loop. Iteration continues while the loop conditional exgzien
evaluates to false:

until ($finished_running)

{
}

The canonical use of thenile loop is to iterate over input from a filehandle:

use autodie;
open my $fh, '<', $file;

while (<$fh>)
{

Perl 5 interprets thishile loop as if you had written:

while (defined($_ = <$fh>))
{

30

The Perl Language

One common mistake is to forget to remove the line-endingaditars from each line; use thomp builtin to do
So.

Without the implicitdefined, any line read from the filehandle which evaluated to fatsa scalar context—a blank line or a
line which contained only the characte—would end the loop. Theeadline (<>) operator returns an undefined value only
when it has finished reading lines from the file.

Bothwhile anduntil have postfix forms. The simplest infinite loop in Perl 5 is:

1 while 1;

Any single expression is suitable for a postfixile oruntil, such as the classic “Hello, world!” example from 8-bit cartyp
ers of the early 1980s:

print "Hello, world! " while 1;

Infinite loops may seem silly, but they’re actually quiteefid. A simple event loop for a GUI program or network serverym
be:

$server->dispatch_results() until $should_shutdown;

For more complex expressions, uséosblock:

do
{

say 'What is your name?’;

my $name = <>;

chomp $name;

say "Hello, $name!" if $name;
} until (eof);

For the purposes of parsingda block is itself a single expression, though it can contairess expressions. Unlike théhile
loop’s block form, thelo block with a postfixvhile oruntil will execute its body at least once. This construct is lessroon
than the other loop forms, but no less powerful.

Loops within Loops
You may nest loops within other loops:

for my $suit (@suits)

for my $values (@card_values)

{
}

In this case, explicitly declaring named variables is eiabto maintainability. The potential for confusion as etscoping of
iterator variables is too great when using the topic vaeabl

A common mistake with nestinfpreach andwhile loops is that it is easy to exhaust a filehandle witthale loop:

use autodie;
open my $fh, '<', $some_file;

for my S$prefix (@prefixes)

31

Modern Perl

DO NOT USE; likely buggy code
while (<$fh>)
{

say $prefix, $_;

Opening the filehandle outside of ther loop leaves the file position unchanged between eachieraf thefor loop. On

its second iteration, thehile loop will have nothing to read and will not execute. To solis problem, you may re-open the
file inside thefor loop (simple to understand, but not always a good use of systsources), slurp the entire file into memory
(which may not work if the file is large), aseek the filehandle back to the beginning of the file for eachat®m (an often
overlooked option):

use autodie;

open my $fh, '<', $some_file;

for my $prefix (@prefixes)
\{Nhile (<$fh>)

say $prefix, $_;

seek $th, 0, O;

Loop Control

Sometimes you need to break out of a loop before you have stdththe iteration conditions. Perl 5’s standard control
mechanisms—exceptions angturn—work, but you may also udeop controlstatements.

The nextstatement restarts the loop at its next iteration. Use itnmai've done all you need to in the current iteration. To
loop over lines in a file but skip everything that looks like@mment, one which starts with the charagtegyou might write:

while (<$fh>)
{

next if NA#/;

The last statement ends the loop immediately. To finish processifig @nce you've seen the ending delimiter, you might
write:

while (<$fh>)
{

next if NA#/,
last if NA__END__/

Theredostatement restarts the current iteration without evatgatie conditional again. This can be useful in those fewsase
where you want to modify the line you've read in place, thertgbrocessing over from the beginning without clobbering i
with another line. For example, you could implement a silly parser that joins lines which end with a backslash with:

while (my $line = <$fh>)
{
chomp $line;

match backslash at the end of a line
if ($line =~ s{\$}{})
{

$line .= <$fth>;
redo;

32

The Perl Language

...though that's a contrived example.

Nested loops can make the use of these loop control statemeiguous. In those casedpap labelcan disambiguate:

OUTER:
while (<$fh>)
{

chomp;

INNER:
for my $prefix (@prefixes)
{

next OUTER unless $prefix;
say "$prefix: $_";

If you find yourself nesting loops such that you need labelmtainage control flow, consider simplifying your code: @gr$
extracting inner loops into functions for clarity.

Continue

Thecontinue construct behaves like the third subexpressionfafialoop; Perl executes its block for each iteration of the loop,
even when you exit an iteration wittext'2. You may use it with ashile, until, with, or for loop. Examples ofontinue

are rare, but it's useful any time you want to guarantee thatething occurs for every iteration of the loop regardlddsom
that iteration ends:

while ($i < 10)

{
next unless $i % 2,
say $i;

}

continue

{
say 'Continuing...";
Pi++;

Given/When

Thegiven construct is a feature new to Perl 5.10. It assigns the vdlaa expression to the topic variable and introduces a
block:

given ($name)

Unlike for, it does not iterate over an aggregate. It evaluates it®valscalar context, and always assigns to the topic variable

given (my $username = find_user())

is($username, $_, 'topic assignment happens automaticall Yy)

given also makes the topic variable lexical to prevent accidentalification:

13The Perl equivalent to C'sontinue iS next.

33

Modern Perl

given (‘mouse’)

say;
mouse_to_man($_);
say;

}

sub mouse_to_man

$ = shift;

s/mouse/man/;

given is most useful when combined withhen. given topicalizesa value within a block so that multiplénen statements can
match the topic against expressions usngart-matchsemantics. To write the Rock, Paper, Scissors game:

my @options = (\&rock, \&paper, \&scissors);

do
{
say "Rock, Paper, Scissors! Pick one: ";
chomp(my $user = <STDIN>);
my $computer_match = $options[rand @options J;
$computer_match->(Ic($user));
} until (eof);
sub rock
{

print "I chose rock.
given (shift)
{

when (/paper/) { say 'You win!" };

when (/rock/) { say 'We tiel'" }
when (/scissors/) { say 'l win!" }
default { say "I don't understand your move" };
}
}
sub paper

print "I chose paper. *;
given (shift)
{

when (/paper/) { say 'We tiel' };

when (/rock/) { say 'l win" }
when (/scissors/) { say 'You win!" };
default { say "I don't understand your move" };

}

sub scissors
print "I chose scissors. ";
given (shift)
{

when (/paper/) { say 'l win" }

when (/rock/) { say 'You win!" };
when (/scissors/) { say 'We tie!'" };
default { say "I don't understand your move" };

Perl executes théefault rule when none of the other conditions match.

The CPAN modulélooseX: :MultiMethods allows another technique to reduce this code further.

Thewhen construct is even more powerful; it can match (see Smartage page 98) against many other types of expressions
including scalars, aggregates, references, arbitrarypadson expressions, and even code references.

34

The Perl Language

Tailcalls

A tailcall occurs when the last expression within a function is a cadinother function—the return value of the outer function
is the return value of the inner function:

sub log_and_greet_person

{
my $name = shift;
log("Greeting $name");

return greet_person($name);

In this circumstance, returning frogreet_person() directly to the caller oflog_and_greet_person() is more efficient
than returning tdog_and_greet_person () and immediately returninfjomlog_and_greet_person(). Returning directly
from greet_person() to the caller oflog_and_greet_person() is an optimization known aisiilcall optimization

Perl 5 will not detect cases where it could apply this optatian automatically.

Heavily recursive code (see Recursion, page 69), espeniallually recursive code, can consume a lot of memory.
Tailcalls reduce the memory needed for internal bookkegpfrtontrol flow, which can make otherwise expensjve
algorithms tractable.

Scalars

Perl 5's fundamental data type is thealar, which represents a single, discrete value. That value raaydiring, an integer, a
floating point value, a filehandle, or a reference—but itlsays a single value. Scalar values and scalar context hdeea
connection; assigning to a scalar provides scalar context.

Scalars may be lexical, package, or global (see Global Masapage 153) variables. You may only declare lexical okage
variables. The names of scalar variables must conform talatd variable naming guidelines (see Names, page 13)arScal
variables always use the leading dollar-sigh<igil (see Variable Sigils, page 15).

The converse is natniversallytrue; the scalar sigil applied to an operation on an aggeegaiable—an array or
a hash—determines the amount type accessed through thatioper

Scalars and Types

Perl 5 scalars do not have static typing. A scalar variabtecoatain any type of scalar value without special convassiar
casts, and the type of value in a variable can change. Thisisddgal:

my $value;

$value = 123.456;

$value = 77,

$value = "I am Chuck's big toe.";

$value Store::IceCream->new();

Yet even though this ikegal, it can be confusing. Choose descriptive and unique name®to variables to avoid this confu-
sion.

The type context of evaluation of a scalar may cause Perldcedhe value of that scalar (see Coercion, page 47). Forpgga
you may treat the contents of a scalar as a string, even if idniteéxplicitly assign it a string:

my $zip_code = 97006;
my $city_state_zip = 'Beaverton, Oregon' . ' ' . $zip_code;

35

Modern Perl

You may also use mathematical operations on strings:

my $call_sign = 'KBMIU';
my $next_sign = $call_sign++;

also fine as
$next_sign = ++Scall_sign;

but does not work as:
$next_sign = $call_sign + 1;

This magical string increment behavior does not have a spording magical decrement behavior. You can't get
the previous string value by writinfcall _sign--.

This string increment operation turasnto b andz into aa, respecting character set and case. Whilg becomes\A0, ZZ09
becomegz10—numbers wrap around while there are more significant plaxzegxrement, as on a vehicle odometer.

Evaluating a reference (see References, page 50) in stittgxd produces a string. Evaluating a reference in nunceritext
produces a number. Neither operation modifies the refereamplace, but you cannot recreate the reference from eiitiger
string or numeric result:

my $authors = [qw(Pratchett Vinge Conway)];
my $stringy_ref = " . $authors;
my $numeric_ref = 0 + $authors;

$authors is still useful as a reference, bfétringy_ref is a string with no connection to the reference gadmeric_ref
is a number with no connection to the reference.

All of these coercions and operations are possible becagdesBcalars can contain numeric parts as well as string.part
The internal data structure which represents a scalar ih5Plesis a numeric slot and a string slot. Accessing a string in a
numeric context eventually produces a scalar with botimgtand numeric values. Thimalvar () function within the core
Scalar::Util module allows you to manipulate both values directly withisingle scalar. Similarly, the modul&@soks_-
like_number () function returns true if the scalar value provided is sorimefiPerl 5 would interpret as a number.

Scalars do not have a separate slot for boolean values. ledooontext, the empty string () and '0' are false. All other
strings are true. In boolean context, numbers which evaligatero ¢, 0.0, and0e0) are false. All other numbers are true.

Be careful that thestrings'0.0' and '0e0' are true; this is one place where Perl 5 makes a distinctibmdasn what looks
like a number and what really is a number.

One other value is always falsendef. This is the value of uninitialized variables as well as aiggh its own right.

Arrays

Perl 5arraysare data structures which store zero or more scalars. Eifingt-classdata structures, which means that Perl 5
provides a separate data type at the language level. Artgymog indexed access; that is, you can access individuadbees
of the array by integer indexes.

Thee sigil denotes an array. To declare an array:

my @items;

Array Elements

Accessingan individual element of an array in Perl 5 requires the scaffl. Perl 5 (and you) can recognize thatats [0]
refers to thedcats array even despite the change of sigil because the squankebsd 1) always identify indexed access to an
aggregate variable. In simpler terms, that means “look wgtbimg in a group of things by an integer”.

The first element of an array is at index zero:

36

The Perl Language

@cats contains a list of Cat objects
my $first_cat = $cats[0];

The last index of an array depends on the number of elemetits @rray. An array in scalar context (due to scalar assighme
string concatenation, addition, or boolean context) extalsito the number of elements contained in the array:

scalar assignment
my $num_cats = @cats;

string concatenation
say 'l have ' . @cats . ' cats!’

addition
my $num_animals = @cats + @dogs + @fish;

boolean context
say 'Yep, a cat owner!' if @cats;

If you need the specific index of the final element of an arsaptract one from the number of elements of the array (lsecau
array indexes start at 0):

my $first_index = O;
my $last_index = @cats - 1,

say 'My first cat has an index of $first_index, '
. 'and my last cat has an index of $last_index.'

You can also use the special variable form of the array to ttedlast index; replace thearray sigil with the slightly more
unwieldy $#:

my $first_index = 0;
my $last_index = $#cats;

say 'My first cat has an index of $first_index,
. '‘and my last cat has an index of $last_index.'

That may not read as nicely, however. Most of the time youtdoeed that syntax, as you can use negative offsets to aatess a
array from the end instead of the start. The last element afray is available at the indext. The second to last element of
the array is available at index, and so on. For example:

my $last_cat = S$cats[-1];
my $second_to_last_cat = $cats[-2];

You can resize an array by assigningstb If you shrink an array, Perl will discard values which do fibin the resized array.
If you expand an array, Perl will fill in the expanded valudghwindef.

Array Assignment
You can assign to individual positions in an array directpyifdex:

my @cats;

$cats[0] = 'Daisy’;
$cats[1] = 'Petunia’;
$cats[2] = 'Tuxedo’;
$cats[3] = 'Jack’;
$cats[4] = 'Brad

Perl 5 arrays are mutable. They do not have a static sizegtkigand or contract as necessary.
Assignment in multiple lines can be tedious. You can inigkn array from a list in one step:

my @cats = ('Daisy', 'Petunia’, 'Tuxedo’, '‘Jack’, 'Brad');

37

Modern Perl

You don't have to assign in order, either. If you assign toretek beyond where you've assigned before, Perl will
extend the array to account for the new size and will fill ihirlermediary slots wittundef.

Remember that the parenthesiesnotcreate a list. Without parentheses, this would asBigisy as the first and
only element of the array, due to operator precedence (ssedence, page 59).

Any expression which produces a list in list context cangassd an array:

my @cats = get_cat_list();
my @timeinfo = localtime();
my @nums =1 . 10;

Assigning to a scalar element of an array imposes scalaexpnthile assigning to the array as a whole imposes listecant

To clear an array, assign an empty list:

my @dates = (1969, 2001, 2010, 2051, 1787);

@dates = ()

As freshly-declared arrays start out empty, @items = () ; is alonger version afiy @items. Prefer the latter

Array Slices

You can also access elements of an array in list context withnatruct known as aarray slice Unlike scalar access of an
array element, this indexing operation takes a list of iagliand uses the array sigél)(

my @youngest_cats = @cats[-1, -2];
my @oldest_cats = @cats[0 .. 2];
my @selected_cats = @cats[@indexes];

You can assign to an array slice as well:

@users[@replace_indices] = @replace_users;

A slice can contain zero or more elements—including one:

single-element array slice; function call in list context
@cats[-1] = get_more_cats();

single-element array access; function call in scal ar context
$cats[-1] = get_more_cats();

The only syntactic difference between an array slice of dament and the scalar access of an array element is the ¢eadin
sigil. Thesemantidifference is greater: an array slice always imposes listecd. Any array slice evaluated in scalar context
will produce a warning:

Scalar value @cats[1] better written as $cats[1] at...

An array slice imposes list context (see Context, page 3hemxpression used as its index:

function called in list context
my @cats = @cats[get_cat_indices()];

38

The Perl Language

Array Operations

Managing array indices can be a hassle. Because Perl 5 candemp contract arrays as necessary, the language alsal@sovi
several operations to treat arrays as stacks, queues, alikieth

Thepush andpop operators add and remove elements from the tail of the aeagectively:

my @meals;

what is there to eat?
push @meals, gw(hamburgers pizza lasagna turnip);

... but the nephew hates vegetables
pop @meals;

You maypush as many elements as you like onto an array. Its second argumariist of values. You may onlgop one
argument at a timepush returns the updated number of elements in the aprgyreturns the removed element.

Similarly, unshift andshift add elements to and remove an element from the start of ay1 arra
expand our culinary horizons
unshift @meals, qw(tofu curry spanakopita taquitos);

rethink that whole soy idea
shift @meals;

unshift prepends a list of zero or more elements to the start of tlay amd returns the new number of elements in the array.
shift removes and returns the first element of the array.

Few programs use the return valuegaéh andunshift. Writing this chapter led to a patch to Perl 5 to optimize
the use obush in void context.

splice is another important—if less frequently used—array oper#ittemoves and replaces elements from an array given an
offset, a length of a list slice, and replacements. Botha@ph and removing are optional; you may omit either behraiioe
perlfunc description ofsplice demonstrates its equivalences wgthsh, pop, shift, andunshift.

Arrays often contain elements to process in a loop (see Ingdpirectives, page 27).

As of Perl 5.12, you can usexch to iterate over an array by index and value:

while (my ($index, $value) = each @bookshelf)
{

say "#$index: $value";

Arrays and Context

In list context, arrays flatten into lists. If you pass mpiii arrays to a normal Perl 5 function, they will flatten irtsingle list:
my @cats = qw(Daisy Petunia Tuxedo Brad Jack);

my @dogs = qw(Rodney Lucky);

take_pets_to_vet(@cats, @dogs);

sub take_pets_to_vet

{

do not use!
my (@cats, @dogs) = @_;

39

Modern Perl

Within the function,@_ will contain seven elements, not two. Similarly, list assigent to arrays igreedy An array will
consume as many elements from the list as possible. Afteaghiggnment@cats will contain everyargument passed to the
function.@dogs will be empty.

This flattening behavior sometimes confuses novices wigorgdt to create nested arrays in Perl 5:

creates a single array, not an array of arrays
my @array_of arrays = (1 .. 10, (11 .. 20, (21 .. 30)));

While some people may initially expect this code to producaraay where the first ten elements are the numbers one throug
ten and the eleventh element is an array containing the nisnelven through 20 and an array containing the numbergywen
one through thirty, this code instead produces an arrayagung the numbers one through 30, inclusive. Remember that
parentheses do noteatelists in these circumstances—they only group expressions.

The solution to this flattening behavior is the same for pasarrays to functions and for creating nested arrays (SeayA
References, page 51).

Array Interpolation
Arrays interpolate in double quoted strings as a list of thimgification of each item separated by the current valfithe
magic global$". The default value of this variable is a single spaceEhglish.pmmnemonic isfLIST_SEPARATOR. Thus:

my @alphabet = 'a' .. 'Z';
say "[@alphabet]";
[abcdefghijkIlmnopgrstuvwxy?Z]

Temporarily localizing and assigning another valug’tdor debugging purposes is very hantty

what's in this array again?

local $" = ")(;
say "(@sweet_treats)";

...which produces the result:

(pie)(cake)(doughnuts)(cookies)(raisin bread)

Hashes

A hashis a first-class Perl data structure which associatesgskerys with scalar values. You might have encountered them as
tables associative arraygdictionaries or mapsin other programming languages. In the same way that the w&meariable
corresponds to a storage location, a key in a hash refersale.v

A well-respected, if hoary, analogy is to think of a hash k& would a telephone book: use your friend’s name to lookerp h
number.

Hashes have two important properties. First, they storeseatar per unique key. Second, they do not provide any specif
ordering of keys. A hash is a big container full of key/valaérg.

Declaring Hashes
A hash has thé sigil. Declare a lexical hash with:

my %favorite_flavors;

14Due credit goes to Mark-Jason Dominus for demonstrating ##imple several years ago.

40

The Perl Language

A hash starts out empty, with no keys or values. In booleartesdna hash returns false if it contains no keys. Otherwise,
returns a string which evaluates to true.

You can assign and access individual elements of a hash:
my %favorite_flavors;

$favorite_flavors{Gabi} = 'Raspberry chocolate’;
$favorite_flavors{Annette} = 'French vanilla’;

Hashes use the scalar sig§ilvhen accessing individual elements and curly brdcésfor string indexing.
You may assign a list of keys and values to a hash in a singleession:

my %favorite_flavors = (
‘Gabi', 'Raspberry chocolate’,
'Annette’, 'French vanilla’,

If you assign an odd number of elements to the hash, you vadlive a warning that the results are not what you anticipated
It's often more obvious to use tHat commaoperator €>) to associate values with keys, as it makes the pairing msiiele.
Compare:

my %favorite_flavors = (
Gabi => 'Mint chocolate chip’,
Annette => 'French vanilla’,

..to:

my %favorite_flavors = (
‘Jacob’, ‘anything',
'Floyd', 'Pistachio’,

The fat comma operator acts like the regular comma, but @ edsises the Perl parser to treat the previous bareword (see
Barewords, page 156) as if it were a quoted word. heict pragma will not warn about the bareword, and if you have a
function with the same name as a hash key, the fat commaatitall the function:

sub name { 'Leonardo’ }

my %address =

(
);

name => '1123 Fib Place’,
The key of the hash will baame and notLeonardo. If you intend to call the function to get the key, make thedtion call
explicit:

my %address =

(
name() => '1123 Fib Place’,

To empty a hash, assign to it an empty*fist

%favorite_flavors = ();

15Unaryundef also works, but it's somewhat more rare.

41

Modern Perl

Hash Indexing

Because a hash is an aggregate, you can access individuaswaith an indexing operation. Use a key as an indekeyad
accesoperation) to retrieve a value from a hash:

my $address = $addresses{$name};

In this exampleg$name contains a string which is also a key of the hash. As with aingsan individual element of an array,
the hash'’s sigil has changed frdfo $ to indicate keyed access to a scalar value.

You may also use string literals as hash keys. Perl quotesvoads automatically according to the same rules as fat @snm

auto-quoted
my $address = $addresses{Victor};

needs quoting; not a valid bareword
my $address = $addresses{ ' Sue-Linn '};

function call needs disambiguation
my $address = $addresses{get_name 0%k

You might find it clearer always to quote string literal hdsys, but the autoquoting behavior is so well establishe®eir 5
culture that it's better to reserve the quotes for extrawgi circumstances, where they broadcast your intentido smmething
different.

Even Perl 5 builtins get the autoquoting treatment:

my %addresses =

(
Leonardo => '1123 Fib Place’,

Utako => 'Cantor Hotel, Room 1',
)i

sub get_address_from_name

return $addresses{ +shift};

The unary plus (see Unary Coercions, page 153) turns whativbeua barewordshift) subject to autoquoting rules into an
expression. As this implies, you can use an arbitrary expyas—not only a function call—as the key of a hash:

don't actually do this though
my $address = $addressesfreverse 'odranoel};

interpolation is fine
my $address = $addresses{"$first_name $last_name"};

so are method calls
my $address = $addresses{ $user->name() };

Anything that evaluates to a string is an acceptable hash¥egourse, hash keys can only be strings. If you use an ohgeat
hash key, you'll get the stringified version of that objetdtiead of the object itself:

for my $isbn (@isbns)
{
my $book = Book->fetch_by_isbn($isbn);

unlikely to do what you want
$books{$hook} = $book->price;

42

The Perl Language

Hash Key Existence
Theexists operator returns a boolean value to indicate whether a raghios the given key:

my %addresses =

(
Leonardo => '1123 Fib Place’,
Utako => 'Cantor Hotel, Room 1',

)i
say "Have Leonardo's address" if exists $addresses{Leonar do};

say "Have Warnie's address" if exists $addresses{Warnie};

Usingexists instead of accessing the hash key directly avoids two pnal&irst, it does not check the boolean nature of the
hashvalue a hash key may exist with a value even if that value evaluatasoolean false (includingnhdef):

my %false_key value = (0 => "),
ok(%false_key_value,
'hash containing false key & value should evaluate to a true v alue');

Secondgxists avoids autovivification (see Autovivification, page 57ithin with nested data structures.

The corresponding operator for hash valueitined. If a hash key exists, its value may tiedef. Check that withdefined:

$addresses{Leibniz} = undef;
say "Gottfried lives at $addresses{Leibniz}"

if exists $addresses{Leibniz}
&& defined $addresses{Leibniz};

Accessing Hash Keys and Values
Hashes are aggregate variables, but they behave sligffayatitly from arrays. In particular, you can iterate oves keys of a
hash, the values of a hash, or pairs of keys and valueskdjeoperator returns a list of keys of the hash:

for my $addressee (keys %addresses)

{
}

say "Found an address for $addressee!";

Thevalues operator returns a list of values of the hash:

for my $address (values %addresses)

{
}

say "Someone lives at $address";

Theeach operator returns a list of two-element lists of the key arevlue:

while (my ($addressee, $address) = each %addresses)

say "$addressee lives at $address";

}

Unlike arrays, there is no obvious ordering to the list of«eyvalues. The ordering depends on the internal implertientaf
the hash, which can depend both on the particular versioeibfyBu are using, the size of the hash, and a random factain. Wi
that caveat in mind, the order of items in a hash is the samiesfpt, values, andeach. Modifying the hash may change the
order, but you can rely on that order if the hash remains thesa

Each hash has onlysingleiterator for theeach operator. You cannot reliably iterate over a hash withh more than once; if
you begin a new iteration while another is in progress, theaér will end prematurely and the latter will begin partwhyough
the hash.

Reset a hash’s iterator with the usekefys or values in void context:

43

Modern Perl

reset hash iterator
keys %addresses;

while (my ($addressee, $address) = each %addresses)

You should also ensure that you do not call any function wiiely itself try to iterate over the hash wighch.

The single hash iterator is a well-known caveat, but it dbesme up as often as you might expect. Be cautiqus,
but useeach when you need it.

Hash Slices

As with arrays, you may access a list of elements of a hasheroperation. Ahash sliceis a list of keys or values of a hash.
The simplest explanation is initialization of multiple glents of a hash used as an unordered set:

my %cats;
@cats{qw(Jack Brad Mars Grumpy)} = (1) x 4;

This is equivalent to the initialization:

my %cats = map { $_ => 1 } qw(Jack Brad Mars Grumpy);

...except that the hash slice initialization doesnepiacethe existing contents of the hash.

You may retrieve multiple values from a hash with a slice:

my @buyer_addresses = @addresses{ @buyers }

As with array slices, the sigil of the hash changes to indidiat context. You can still tell thdtaddresses is a hash by the
use of the curly braces to indicate keyed access.

Hash slices make it easy to merge two hashes:
my %addresses = (..)
my %canada_addresses = (...);

@addresses{ keys %canada_addresses } = values %canada_add resses;

This is equivalent to looping over the contents,onada_addresses manually, but is much shorter.

The choice between the two approaches depends on your nteaitggg. What if the same key occurs in bath
hashes? The hash slice approach always overwrites exigytgalue pairs irf,addresses.

The Empty Hash

An empty hash contains no keys or values. It evaluates te fials boolean context. A hash which contains at least onedeny
pair evaluates to true in a boolean context even if all of #eslor all of the values or both would themselves evaluatalse f
in a boolean context.

44

The Perl Language

use Test::More;

my %empty;
ok(! %empty, 'empty hash should evaluate to false');

my %false_key = (0 => 'true value');
ok(%false_key, 'hash containing false key should evaluate to true');

my %false_value = ('true key' => 0);
ok(%false_value, 'hash containing false value should eval uate to true');

done_testing();

In scalar context, a hash evaluates to a string which repiesee number of hash buckets used out of the number of hash
buckets allocated. This is rarely useful, as it representiésnal details about hashes that are almost always mdassng Perl
programs. You can safely ignore it.

In list context, a hash evaluates to a list of key/value psiirslar to what you receive from theach operator. However, you
cannotiterate over this list the same way you can iterate over gtglioduced byach, as the loop will loop forever, unless
the hash is empty.

Hash Idioms

Hashes have several uses, such as finding unique elemeligtsadr arrays. Because each key exists only once in a hash,
assigning the same key to a hash multiple times stores oaljntst recent key:

my %uniq;
undef @unig{ @items };
my @uniques = keys %uniq;

The use of thendef operator with the hash slice sets the values of the hashdef. This is the cheapest way to determine if
an item exists in a set.

Hashes are also useful for counting elements, such as & IRtagldresses in a log file:

my %ip_addresses;
while (my $line = <$logfile>)
{

my ($ip, $resource) = analyze_line($line);
$ip_addresses{$ip}++;

The initial value of a hash value imdef. The postincrement operator+) treats that as zero. This in-place modification of
the value increments an existing value for that key. If nwgaxists for that key, it creates a valuwadef) and immediately
increments it to one, as the numificatiomafdef produces the value O.

A variant of this strategy works very well for caching, whgoai might want to store the result of an expensive calcutatiith
little overhead to store or fetch:

my %user_cache;
sub fetch_user
my $id = shift;

$user_cache{$id} ||= create_user($id);
return $user_cache{S$id};

45

Modern Perl

This orcish maneuveéf returns the value from the hash, if it exists. Otherwiseaitalates the value, caches it, and then returns
it. Beware that the boolean-or assignment operdtbs) operates on boolean values; if your cached value evaltafatse in
a boolean context, use the defined-or assignment opeyatey ifistead:

sub fetch_user

my $id = shift;
$user_cache{$id} /I= create_user($id);
return $user_cache{S$id};

This lazy orcish maneuver tests for the definedness of tkhbethvalue, not its boolean truth. The defined-or assignmen
operator is new in Perl 5.10.

Hashes can also collect named parameters passed to fumdfigaur function takes several arguments, you can userpysiu
hash (see Slurping, page 66) to gather key/value pairs igitogge hash:

sub make_sundae

{

my %parameters = @_;

}

make_sundae(flavor => 'Lemon Burst', topping => 'cookie bi ts');

You can even set default parameters with this approach:

sub make_sundae

{
my %parameters = @_
$parameters{flavor} /I= 'Vanilla';
$parametersf{topping} //= ‘fudge’;
$parameters{sprinkles} //= 100;

...orinclude them in the initial declaration and assignnitse|f:

sub make_sundae

{

my %parameters =

(
flavor => 'Vanilla',
topping => ‘'fudge’,
sprinkles => 100,
@_,

...as subsequent declarations of the same key with a diffeatue will overwrite the previous values.

Locking Hashes

One drawback of hashes is that their keys are barewords wffiehlittle typo protection (especially compared to theadtion
and variable name protection offered by #terict pragma). The core modulash: :Util provides mechanisms to restrict
the modification of a hash or the keys allowed in the hash.

To prevent someone from accidentally adding a hash key yboatiintend (presumably with a typo or with data from untedst
input), use th&ock_keys () function to restrict the hash to its current set of keys. Attgrapt to add a key/value pair to the
hash where the key is not in the allowed set of keys will raisexaeption.

160r-cache, if you like puns.

46

The Perl Language

Of course, anyone who needs to do so can always usenfleek_keys () function to remove the protection, so do not rely on
this as a security measure against misuse from other progeas

Similarly you can lock or unlock the existing value for a givkey in the hashlfock_value () andunlock_value()) and
make or unmake the entire hash read-only Witkhk_hash () andunlock_hash().

Coercion

Unlike other languages, where a variable can hold only aquéat type of value (a string, a floating-point number, djeat),
Perl relies on the context of operators to determine howterpmet values (see Numeric, String, and Boolean Contexgep
5). If you treat a number as a string, Perl will do its best tovast that number into a string (and vice versa). This prodes
coercion

By design, Perl attempts to do what you mEathough you must be specific about your intentions.

Boolean Coercion

Boolean coercion occurs when you test thehinessof a valué®, such as in @f or while condition. Numeric O is false. The
undefined value is false. The empty string is false, and $bdsstring'0'. Strings which may baeumericallyequal to zero
(suchas'0.0', '0e',and'0 but true') butwhich arenot '0' aretrue.

All other values are true, including the idiomatic strihg but true'. In the case of a scalar with both string and numeric
portions (see Dualvars, page 48), Perl 5 prefers to checéttimg component for boolean truth0 but true' does evaluate
to zero numerically, but is not the empty string, so it evidado true in boolean context.

String Coercion

String coercion occurs when using string operators sucloaparisons €q and cmp, for example), concatenatioaplit,
substr, and regular expressions. It also occurs when using a valaehash key. The undefined value stringifies to an empty
string, but it produces a “use of uninitialized value” wangi Numbersstringify to strings containing their values. That is, the
value 10 stringifies to the string 0, such that you casplit a number into individual digits:

my @digits = split ", 1234567890;

Numeric Coercion

Numeric coercion occurs when using numeric comparisonatpes (such as= and<=>), when performing mathematic op-
erations, and when using a value as an array or list index.uhldefined valuewumifiesto zero, though it produces a “Use
of uninitialized value” warning. Strings which do not begiuith numeric portions also numify to zero, and they produce a
“Argument isn’t numeric” warning. Strings which begin witharacters allowed in numeric literals numify to those galuthat
i, 10 leptons leaping numifies to10 the same way that.022e23 moles marauding numifies to6.022e23.

The core modulScalar: :Util contains alooks_like_number () function which uses the same parsing rules as the Perl 5
grammar to extract a number from a string.

The stringsInf andInfinity represent the infinite value and behave as numbers, in tise skat numifying then
does not produce the “Argument isn’t numeric” warning. Thiéng NaN represents the concept “not a number”.
Unless you're a mathematician, you may not care.

17CalledDWIM for do what | mearor dwimmery

18Truthiness is like truthfulness if you squint and say “Yegiat's true, but. .. "

47

Modern Perl

Reference Coercion

In certain circumstances, treating a value as a referemne that valuento a reference. This process of autovivification (see
Autovivification, page 57) can be useful for nested datacitires. It occurs when you use a dereferencing operatioca on
non-reference:

my %users;

$users{Bradley}{id} = 228;
$users{Jack}{id} = 229;

Although the hash never contained valuesBesdl ey andJack, Perl 5 helpfully created hash references for those vatbes,
assigned them each a key/value pair keyedd@n

Cached Coercions

Perl 5's internal representation of values stores bothimgstialue and a numeric valtie Stringifying a numeric value does not
replace the numeric value with a string. Insteadttiches stringified value to the value in addition to the numeriueaThe
same sort of operation happens when numifying a string value

You almost never need to know that this happens—perhaps omaéce a decade, if anecdotal evidence is admissible.

Perl 5 may prefer one form over another. If a value has a cadm@m@sentation in a form you do not expect, relying on an
implicit conversion may produce surprising results. Yom@st never need to be explicit about what you expect, but khetv
caching does occur and you may be able to diagnose an odtaitudnen it occurs.

Dualvars

The caching of string and numeric values allows for the use @fre-but-useful feature known aslaalvar, or a value that
has divergent numeric and string values. The core magttear: :Util provides a functioualvar () which allows you to
create a value which has specified and divergent numeristimg values:

use Scalar::Util 'dualvar’
my $false_name = dualvar 0, 'Sparkles & Blue’;

say 'Boolean true!" if Il $false_name;
say 'Numeric false!' unless 0 + $false_name;
say 'String true!' if " . $false_name;
Packages

A namespacén Perl is a mechanism which associates and encapsulaiesvaamed entities within a named category. It's
like your family name or a brand name, except that it impliegelationship between entities other than categorizatiiin
that name. (Such a relationship often exists, but it doetia to exist.)

A packagen Perl 5 is a collection of code in a single namespace. In aesempackage and a namespace are equivalent; the
package represents the source code and the namespacemepties entity created when Perl parses that®ode

Thepackage builtin declares a package and a namespace:

package MyCode;
our @boxes;

sub add_box { ... }

19This is a simplification, but the gory details are truly gory.

20This distinction may be subtle.

48

The Perl Language

All global variables and functions declared or referred fterathe package declaration refer to symbols within Mig€ode
namespace. With this code as written, you can refer t@bbees variable from thenain namespace only by ifslly qualified
name,@MyCode: : boxes. Similarly, you can call thedd_box () function only byMyCode: :add_box (). A fully qualified
name includes its complete package name.

The default package is thein package. If you do not declare a package explicitly, whetharone-liner on a command-line
or in a standalone Perl program or even ipafile on disk, the current package will be thein package.

Besides a package name{n or MyCode or any other allowable identifier), a package has a versiitlree implicit methods,
VERSIONQ), import () (see Importing, page 67), antlimport (). VERSION() returns the package’s version number.

The package’s version is a series of numbers contained itkagea global name@VERSION. By convention, versions tend
to be a series of integers separated by dots, as28 or 1.1.10, where each segment is an integer, but there’s little beyond
convention.

Perl 5.12 introduced a new syntax intended to simplify wersiumbers. If you can write code that does not need to run on
earlier versions of Perl 5, you can avoid a lot of unnecessamyplexity:

package MyCode 1.2.1;

In 5.10 and earlier, the simplest way to declare the versi@enpackage is:

package MyCode;

our $VERSION = 1.21;

The VERSION() method is available to every package; they inherit it fro@URIVERSAL base class. It returns the value of
$VERSION. You may override it if you wish, though there are few reasmndo so. Obtaining the version number of a package
is easiest through the use of tfiERSION () method:
my $version = Some::Plugin->VERSION();
die "Your plugin $version is too old"

unless $version > 2;

Packages and Namespaces

Everypackage declaration creates a new namespace if that namespace atadseady exist and causes the parser to put all
subsequent package global symbols (global variables amadifuns) into that namespace.

Perl hasopen namespace¥ou can add functions or variables to a namespace at any, pdimer with a new package declara-
tion:

package Pack;

sub first_sub { ... }

package main;

Pack::first_sub();

package Pack;

sub second_sub { ... }

package main;

Pack::second_sub();

...or by fully qualifying function names at the point of daction:
implicit
package main;

sub Pack::third_sub { ... }

49

Modern Perl

Perl 5 packages are so open that you can add to them at any uirimg dompilation or run time, or from separate files. Of
course, that can be confusing, so avoid it when possible.

Namespaces can have as many levels as you like for orgamabpurposes. These are not hierarchical; there’s no iadhn
relationship between packages—only a semantic relatiprisinéadersof the code.

It's common to create a top-level namespace for a busineapmject. This makes a convenient organizational tool nbt o
for reading code and discovering the relationships betweerponents but also to organizing code and packages orildisk:

e StrangeMonkey is the project name
* StrangeMonkey: : UI contains the top-level user interface code
* StrangeMonkey: : Persistence contains the top-level data management code

* StrangeMonkey: : Test contains the top-level testing code for the project

...and so on.

References

Perl usually does what you expect, even if what you expectiie. Consider what happens when you pass values to fasctio

sub reverse_greeting

{
my $name = reverse shift;
return "Hello, $name!";

}

my $name = 'Chuck’;
say reverse_greeting($name);
say $name;

You probably expect that, outside of the functi$name containsChuck, even though the value passed into the function gets
reversed intccuhC—and that's what happens. Theame outside the function is a separate scalar fromfth&ne inside the
function, and each one has a distinct copy of the string. Modj one has no effect on the other.

This is useful and desirable default behavior. If you had &ikenexplicit copies of every value before you did anythinthtm
which could possibly cause changes, you'd write lots ofagxinnecessary code to defend against well-meaning butrauto
modifications.

Other times it's useful to modify a value in place sometimgsvall. If you have a hash full of data that you want to pass to a
function to update or to delete a key/value pair, creatirgyraturning a new hash for each change could be troublesansayit
nothing of inefficient).

Perl 5 provides a mechanism by which you can refer to a valtleowi making a copy of that value. Any changes made to that
referencewill update the value in place, such ttedk references to that value will see the new value. A referemedirst-class
scalar data type in Perl 5. It's not a string, an array, or &hid’'s a scalar which refers to another first-class datatyp

Scalar References

The reference operator is the backslagh I scalar context, it creates a single reference whioérseb another value. In list
context, it creates a list of references. Thus you can takéeaance tdname from the previous example:

my $name = 'Larry’;
my $name_ref = \ $name;

To access the value to which a reference refers, you drrsferencet. Dereferencing requires you to add an extra sigil for
each level of dereferencing:

50

The Perl Language

sub reverse_in_place

{
my $name_ref = shift;
$$name_ref = reverse $$name_ref ;

}

my $name = 'Blabby";
reverse_in_place(\ $name);
say $name;

The double scalar sigil dereferences a scalar reference.

This example isn’t useful in the obvious case; why not haedinction return the modified value directly? Scalar
references are useful when procesdarge scalars; copying the contents of those scalars can use ftiwteoand
memory.

Complex references may require a curly-brace block to disgmate portions of the expression. This is optional forpen
dereferences, though it can be messy:

sub reverse_in_place

{
my $name_ref = shift;
${ $name_ref } = reverse ${ $name_ref }

If you forget to dereference a scalar reference, it wilkggify or numify. The string value will be of the forSCALAR (0x93339e8),
and the numeric value will be th®93339e8 portion. This value encodes the type of reference (in thie (2ALAR) and the
location in memory of the reference.

Perl does not offer native access to memory locations. Theead of the reference is a value used as a mostly-
unique identifier, as a reference does not necessarily daname. Unlike pointers in a language such as C, you
cannot modify the address or treat it as an address into nyemor

These addresses are omhostly unique because Perl may reuse storage locations if its garballector hag
reclaimed an unreferenced reference.

Array References
You can also create references to arraysroay referencesThis is useful for several reasons:

e To pass and return arrays from functions without flattgnin
» To create multi-dimensional data structures

« To avoid unnecessary array copying

¢ To hold anonymous data structures

To take a reference to a declared array, use the referencatope

my @cards =gw(KQJ1098765432A)
my $cards_ref =\ @cards;

Now $cards_ref contains a reference to the array. Any modifications madeutih $cards_ref will modify @cards and
vice versa.

You may access the entire array as a whole withalsigil, whether to flatten the array into a list or count thenhner of
elements it contains:

51

Modern Perl

my $card_count = @$cards_ref ;
my @card_copy = @$cards_ref ;

You may also access individual elements by using the denedarg arrow {>):

my $first_card = $cards_ref->[0] ;
my $last_card = $cards_ref->[-1]

The arrow is necessary to distinguish between a scalar ndmadis_ref and an array nameektards_ref from which you
wish to access a single element.

An alternate syntax is available, where you prepend anaitedar sigil to the array reference. It's shorter, if less
readable, to writely $first_card = $$cards_ref [0];.

Slice an array through its reference with the curly-bragef@deence grouping syntax:

my @high_cards = @{ $cards_ref } [0 .. 2, -1];
In this case, youmayomit the curly braces, but the visual grouping they (and théegpace) provide only helps readability in
this case.

You may also create anonymous arrays in place without usamged arrays. Surround a list of values or expressions with
square brackets:

my $suits_ref = [qw(Monkeys Robots Dinosaurs Cheese)];

This array reference behaves the same as named array cefgremcept that the anonymous array bracébktayscreate a
new reference, while taking a reference to a named arrayyalveders to thesamearray with regard to scoping. That is to say:

my @meals = gw(waffles sandwiches pizza);
my $sunday_ref = \@meals;
my $monday_ref = \@meals;

push @meals, ‘ice cream sundae’;

...both$sunday_ref and$monday_ref now contain a dessert, while:

my @meals = gw(waffles sandwiches pizza);
my $sunday_ref = [@meals];
my $monday_ref = [@meals];

push @meals, 'berry pie’;

...neither$sunday_ref nor $monday_ref contains a dessert. Within the square braces used to cheatgmbnymous array,
list context flattens th@meals array.

Hash References

To create dash referenceuse the reference operator on a named hash:

my %colors = (
black => 'negro’,

blue => 'azul',
gold => 'dorado’,
red => 'rojo’,

yellow => ‘amarillo’,
purple => 'morado’,

);

my $colors_ref = \%colors;

52

The Perl Language

Access the keys or values of the hash by prepending the nefexeith the hash sigil:

my @english_colors = keys %$colors_ref
my @spanish_colors = values %$colors_ref

You may access individual values of the hash (to store, eletéteck the existence of, or retrieve) by using the derebéng
arrow:

sub translate_to_spanish

{
my $color = shift;
return $colors_ref->{$color}

As with array references, you may eschew the dereferenciogveor a prepended scalar sig#$colors_-
ref{$color}, though the arrow is often much clearer.

You may also use hash slices by reference:

my @colors = qw(red blue green);
my @colores = @{ $colors_ref }{@colors}

Note the use of curly brackets to denote a hash indexing tipef@nd the use of the array sigil to denote a list operatiothe
reference.

You may create anonymous hashes in place with curly braces:

my $food_ref = {
‘birthday cake' => ‘la torta de cumpleafios’,

candy => 'dulces’,
cupcake => 'bizcochito’,
'ice cream' => 'helado’,

As with anonymous arrays, anonymous hashes create a newraoos hash on every execution.

A common novice typo is to assign an anonymous hash to a sthheah. This produces a warning about an odd
number of elements in the hash. Use parentheses for a narsie@ia curly brackets for an anonymous hash.

Function References

Perl 5 supportdirst-class functionsA function is a data type just as is an array or hash, at leastnwou usdunction
referencesThis feature enables many advanced features (see Clppages 79). As with other data types, you may create a
function reference by using the reference operator on theera a function:

sub bake_cake { say 'Baking a wonderful cake! };

my $cake_ref = \& bake_cake;

Without thefunction sigil(&), you will take a reference to the function’s return valuevalues.

You may also create anonymous functions:
my $pie_ref = sub { say 'Making a delicious pie!" }

53

Modern Perl

The use of theub builtin withouta name compiles the function as normal, but does not instalthe current namespace. The
only way to access this function is through the reference.

You may invoke the function reference with the dereferegeirmow:

$cake_ref->();
$pie_ref->();

Think of the empty parentheses as denoting an invocatiafel@ncing operation in the same way that square braclditabe
an indexed lookup and curly brackets cause a hash lookupméypass arguments to the function within the parentheses:

$bake_something_ref->(‘cupcakes');

You may also use function references as methods with oljgetsMoose, page 100); this is most useful when you've ajfread
looked up the method:

my $clean = $robot_maid->can(‘cleanup’);
$robot_maid->$clean($kitchen);

You may see an alternate invocation syntax for functionregfees which uses the function sigi) (nstead of the
dereferencing arrow. Avoid this syntax; it has implicadar implicit argument passing.

Filehandle References

Filehandles can be references as well. When yowgpse'’s (andopendir’s) lexical filehandle form, you deal with filehandle
references. Stringifying this filehandle produces sorngtiof the formGLOB (0x8bdag880).

Internally, these filehandles are objects of the cla8s:Handle. When you load that module, you can call methods on
filehandles:

use |0::Handle;
use autodie;

open my S$out_fh, >, ‘output_file.txt’;
$out_fh->say('Have some text!');

You may see old code which takes references to typeglobk,asic

my $th = do {
local *FH;
open FH, "> $file" or die "Can't write to '$file: $\n";
\ *FH,

This idiom predates lexical filehandles, introduced ag p&Perl 5.6.0 in March 2008. You may still use the reference
operator on typeglobs to take references to package-glidfa@ndles such aSTDIN, STDOUT, STDERR, or DATA—but these
represent global data anyhow. For all other filehandlesfgpiexical filehandles.

Besides the benefit of using lexical scope instead of paelagylobal scope, lexical filehandles allow you to manage th
lifespan of filehandles. This is a nice feature of how Perldnages memory and scopes.

21 . so you know how old that code is.

54

The Perl Language

Reference Counts

How does Perl know when it can safely release the memory fariabe and when it needs to keep it around? How does Perl
know when it's safe to close the file opened in this inner scop

use autodie;
use |0::Handle;

sub show_off_scope
say 'file not open’;

{
open my $fh, '>', ‘inner_scope.txt’;
$fh->say('file open here');

}

say 'file closed here’;

Perl 5 uses a memory management technique knowaf@gnce countingevery value in the program has an attached counter.
Perl increases this counter every time something take®eergfe to the value, whether implicitly or explicitly. Pddcreases
that counter every time a reference goes away. When the caeatehes zero, Perl can safely recycle that value.

Within the inner block in the example, there’'s o$eh. (Multiple lines in the source code refer to it, but therefdyoone
referenceo it; $£h itself.) $£h is only in scope in the block and does not get assigned to engytiutside of the block, so when
the block ends, its reference count reaches zero. The negyal $£h calls an implicitc1lose () method on the filehandle,
which closes the file.

You don't have to understand the details of how all of this kgorYou only need to understand that your actions in taking
references and passing them around affect how Perl managasnmyp—with one caveat (see Circular References, page 58).
References and Functions

When you use references as arguments to functions, documeningent carefully. Modifying the values of a referencenfr
within a function may surprise calling code, which expeasmodifications.

If you need to modify the contents of a reference withoutdffey the reference itself, copy its values to a new variable

my @new_array = @{ $array_ref };
my %new_hash = %({ $hash_ref };

This is only necessary in a few cases, but explicit cloningsavoid nasty surprises for the calling code. If your refiees
are more complex—if you use nested data structures—considarse of the core moduBtorable and itsdclone (deep
cloning) function.

Nested Data Structures

Perl’s aggregate data types—arrays and hashes—allow yauréosstalars indexed by integers or string keys. Perl 5’seates
(see References, page 50) allow you to access aggregatgmpigandirectly, through special scalars. Nested datetres in
Perl, such as an array of arrays or a hash of hashes, arelpdbsdugh the use of references.

Declaring Nested Data Structures

A simple declaration of an array of arrays might be:
my @famous_triplets = (
[qw(eenie miney moe)],

[qw(huey dewey louie)],
[gqw(duck duck goose)],

55

Modern Perl

...and a simple declaration of a hash of hashes might be:

my %meals = (
breakfast => { entree => 'eggs', side => 'hash browns' },
lunch => { entree => 'panini’, side => 'apple' },
dinner => { entree => 'steak’, side => 'avocado salad' },

Perl allows but does not require the trailing comma so asge adding new elements to the list.

Accessing Nested Data Structures

Accessing elements in nested data structures uses Pé&lsmee syntax. The sigil denotes the amount of data tewetrand
the dereferencing arrow indicates that the value of oneqodf the data structure is a reference:

my $last_nephew = $famous_triplets[1]->[2];
my $breaky_side = $meals{breakfast}->{side};

In the case of a nested data structure, the only way to nesaattacture is through references, thus the arrow is sujoers.
This code is equivalent and clearer:

my $last_nephew = $famous_triplets[1][2];
my $breaky_side = $meals{breakfast}{side};

You can avoid the arrow in every case except invoking a fonateference stored in a nested data structure, where
the arrow invocation syntax is the clearest mechanism afcation.

Accessing components of nested data structures as if theyfirs-class arrays or hashes requires disambiguatimrkbi

my $nephew_count = @{ $famous_triplets[1] };
my $dinner_courses = keys %f{ $meals{dinner} };

Similarly, slicing a nested data structure requires addéi punctuation:

my ($entree, $side) = @{ $meals{breakfast} Hqw(entree sid e)}

The use of whitespace helps, but it does not entirely eliteitize noise of this construct. Sometimes using temporaighias
can clarify:

my $breakfast_ref = $meals{breakfast};
my ($entree, $side) = @$breakfast_ref{qw(entree side)};

perldoc perldsc, the data structures cookbook, gives copious exampleswfthaise the various types of data structures
available in Perl.

56

The Perl Language

Autovivification

Perl’s expressivity extends to nested data structures. Wheattempt to write to a component of a nested data stryddane
will create the path through the data structure to that pifeteoes not exist:

my @aoaoaoa;
$a0aoaoa[0][0][0][0] = 'nested deeply’;

After the second line of code, this array of arrays of arrdyari@ys contains an array reference in an array refererame amray
reference in an array reference. Each array referenceinsrmae element. Similarly, treating an undefined valud asere
a hash reference in a nested data structure will createriethary hashes, keyed appropriately:

my %bhohobh;
$hohoh{Robot}{Santa}{Claus} = 'mostly harmful’;

This behavior iutovivification and it's more often useful than it isn’t. Its benefit is imteing the initialization code of nested
data structures. Its drawback is in its inability to distirgh between the honest intent to create missing elementsied data
structures and typos.

Theautovivification pragma on the CPAN (see Pragmas, page 121) lets you disablévification in a lexical scope for
specific types of operations; it's worth your time to corsithis in large projects, or projects with multiple devedop

You can also check for the existence of specific hash keyshedumber of elements in arrays before dereferenc-
ing each level of a complex data structure, but that can m®dedious, lengthy code which many programmers
prefer to avoid.

You may wonder at the contradiction between taking advantd@utovivification while enablingtrictures. The question
is one of balance. is it more convenient to catch errors wblienge the behavior of your program at the expense of dgpbli
those error checks for a few well-encapsulated symbolieresices? Is it more convenient to allow data structuresdw gr
rather than specifying their size and allowed keys?

The answer to the latter question depends on your specifiegr When initially developing, you can allow yourself the
freedom to experiment. When testing and deploying, you mayt waincrease strictness to prevent unwanted side effects.
Thanks to the lexical scoping of therict andautovivification pragmas, you can enable and disable these behaviors as
necessary.

Debugging Nested Data Structures

The complexity of Perl 5’s dereferencing syntax combinethwhe potential for confusion with multiple levels of redeces
can make debugging nested data structures difficult. Twd gptions exist for visualizing them.

The core modul®ata: : Dumper can stringify values of arbitrary complexity into Perl 5 eod

use Data::Dumper;

print Dumper($my_complex_structure);

This is useful for identifying what a data structure consaihat you should access, and what you accessed indtetatt. : -
Dumper can dump objects as well as function references (if yo$Beta: : Dumper: : Deparse to a true value).

While Data: : Dumper is a core module and prints Perl 5 code, it also produces serbotput. Some developers prefer the use
of the YAML: : XS or JSON modules for debugging. You have to learn a different forratriderstand their outputs, but their
outputs can be much clearer to read and to understand.

57

Modern Perl

Circular References

Perl 5's memory management system of reference countirgReéerence Counts, page 55) has one drawback apparent to
user code. Two references which end up pointing to each @iher a circular referencethat Perl cannot destroy on its own.
Consider a biological model, where each entity has two piatemd can have children:

my $alice = { mother => ", father => ", children => [] }
my $robert = { mother => ", father => ", children => [] };
my $cianne = { mother => $alice, father => $robert, children = >0k

push @{ $alice->{children} }, $cianne;
push @{ $robert->{children} }, $cianne;

Because botl$alice and $robert contain an array reference which conta#hsianne, and becaus@cianne is a hash
reference which contairalice and$robert, Perl can never decrease the reference count of any of thesee geople to
zero. It doesn’t recognize that these circular referengiss, @nd it can’t manage the lifespan of these entities.

You must either break the reference count manually you(bgltlearing the children cfalice and$robert or the parents

of $cianne), or take advantage of a feature calleelak reference#\ weak reference is a reference which does not increase the
reference count of its referent. Weak references are @laitarough the core moduBxalar: :Util. Export theweaken ()
function and use it on a reference to prevent the referenaetdmm increasing:

use Scalar:Util ‘weaken’;

my $alice = { mother => ", father => ", children => [};
my $robert = { mother => ", father => ", children =>] }
my $cianne = { mother => $alice, father => $robert, children = >0k

push @{ $alice->{children} }, $cianne;
push @{ $robert->{children} }, $cianne;

weaken($cianne->{mother});
weaken($cianne->{father});

With this accomplished§cianne will retain references t§alice and$robert, but those references will not by themselves
prevent Perl's garbage collector from destroying thosa gatctures. You rarely have to use weak references if ysiguae
your data structures correctly, but they're useful in a féwedions.

Alternatives to Nested Data Structures

While Perl is content to process data structures nested adyde®you can imagine, the human cost of understanding these
data structures as well as the relationship of various pieta to mention the syntax required to access variousgmsitican

be high. Beyond two or three levels of nesting, consider tdramnodeling various components of your system with claasds
objects (see Moose, page 100) will allow for a clearer rearegion of your data.

Sometimes bundling data with behaviors appropriate todatst can clarify code.

58

Operators

An accurate, if irreverent, description of Perl is an “operariented language”. The interaction of operators witkir operands
gives Perl its expressivity and power. Understanding Rejlires understanding its operators and how they behaveh&o
sake of this discussion, a working definition of a Rigpkratoris a series of one or more symbols used as part of the syntax of
a language. Each operator operates on zero or ppeeandsthis definition is circular, as an operand is a value on Wwtda
operator operates.

The most accurate definition of operators is “What'spkrlop”, but even that leaves out some operatorg
perlsyn and includes builtins. Don't get too attached to a singléndtain.

n

Operator Characteristics

Bothperldoc perlop andperldoc perlsyn provide voluminous information about the behavior of RBeoperators. Even
so, what theydon'’t explain is more important to their understanding. The dasnation assumes you have a familiarity with
several concepts in language design. These concepts miag Boposing at first, but they're straightforward to undersl.

Every operator possesses several important charaaterigtiich govern its behavior: the number of operands on which
operates, its relationship to other operators, and itssyictpossibilities.

Precedence

The precedencef an operator helps determine when Perl should evaluateait iexpression. Evaluation order proceeds from
highest to lowest precedence. For example, because thedamae of multiplication is higher than the precedence ditimah,

7 + 7 x 10 evaluates td7, not 140. You may force the evaluation of some operators before sthyeigrouping their subex-
pressions in parenthese&, + 7) * 10 doesevaluate to140, as the addition operation becomes a single unit which must
evaluate fully before multiplication can occur.

In case of a tie—where two operators have the same precedeticerfaxtors such as fixity (see Fixity, page 60) and associa
tivity (see Associativity, page 59) break the tie.

perldoc perlop contains atable of precedence. Almost no one has this tadnieamized. The best way to manage precedence
is to keep your expressions simple. The second best way setparentheses to clarify precedence in complex expressgfon
you find yourself drowning in a sea of parentheses, see tbtertile again.

Associativity

Theassociativityof an operator governs whether it evaluates from left totrigtright to left. Addition is left associative, such
that2 + 3 + 4 evaluate® + 3 first, then addst to the result. Exponentiation is right associative, su@t 2h*x 3 *x 4
evaluates *x 4 first, then raiseg to the 81st power.

Simplifying complex expressions and using parenthesegnoodstrate your intent is more important than memorizirsp-as
ciativity tables. Even so, memorizing the associativitytef mathematic operators is worthwhile.

Arity

Thearity of an operator is the number of operands on which it operAtesillary operator operates on zero operandsinary
operator operates on one operandifary operator operates on two operanddriAary operator operates on three operands.

59

Modern Perl

The coreB: :Deparse module can rewrite snippets of code to demonstrate exaotly Perl handles operatd
precedence and associativity; rperl -M0=Deparse,-p 0N a shippet of code. (Thep flag adds extra group
ing parentheses which often clarify evaluation order.) 8@athat Perl’s optimizer will simplify mathematica
operations as given as examples earlier in this sectiorvarggbles instead, as #x *x $y ** $z.

=

A listary operator operates on a list of operands.

There’s no single good rule for determining the arity of aemor, other than the fact that most operate on two, margnher
operands. The operator’'s documentation should make #s.cl

For example, the arithmetic operators are binary operaaoid are usually left associative.+ 3 - 4 evaluate® + 3 first;
addition and subtraction have the same precedence, bitthefyassociative and binary, so the proper evaluatialeoapplies
the leftmost operator to the leftmost two operandg &nd3) with the leftmost operator{, then applies the rightmost operator
(-) to the result of the first operation and the rightmost opdr@).

One common source of confusion for Perl novices is the intena of listary operators (especially function calls) witested
expressions. Using grouping parentheses to clarify ydeninyet watch out for confusion in code such as:

probably buggy code
say (1 +2+3) =* 4

...as Perl 5 happily interprets the parentheses as pastdicc (see Fixity, page 60) operators denoting the argumémt
say, hot circumfix parentheses grouping an expression to ahangcedence. In other words, the code prints the &alaed
evaluates to the return value €y multiplied by4.

Fixity
An operator'dfixity is its position relative to its operands:
Infix operators appear between their operands. Most matheinapiesators are infix operators, such as the multiplication

operator inglength * $width.

Prefix operators appear before their operators postfix operators appear after. These operators tend to be unatyasu
mathematic negation-§x), boolean negation! §y), and postfix increment++).

Circumfix operators surround their operands. Examples include theyamous hash constructof (... }) and quoting op-
erators Qql ... 1).

Postcircumfixoperators follow certain operands and surround others,itashash or array element acce$agsh{ ... }
and$array[... 1).

Operator Types

Perl’s pervasive contexts—especially value contexts (sgmeMic, String, and Boolean Context, page 5)—extend to thawse

ior of its operators. Perl operators provide value contextieir operands. Choosing the most appropriate operatar given
situation requires you to understand what type of value ymeet to receive as well as the type of values on which you wish
to operate.

Numeric Operators

The numeric operators impose numeric contexts on theiramgis: They consist of the standard arithmetic operatotts asic
addition &), subtraction £), multiplication ¢), division (/), exponentiationXx), modulo {), their in-place variants+&, -=,
x=, /=, %=, andy=), and auto-decrement{), whether postfix or prefix.

While the auto-increment operator may seem like a numericabpe it has special string behavior (see Special Opergpage
61).

60

Operators

Several comparison operators impose numeric contextsthparoperands. These are numeric equakty) (numeric inequal-
ity (!=), greater thanX), less than<), greater than or equal to£), less than or equal ta€), and the sort comparison operator
(<=>).

String Operators

The string operators impose string contexts on their oglsrafihey consist of the positive and negative regular espes
binding operators<~ and ! ~, respectively), and the concatenation operatdr (

Several comparison operators impose string contexts Uy@ndperands. These are string equakiy)(string inequality ge),
greater thangdt), less thanXt), greater than or equal tg€), less than or equal ta ¢), and the string sort comparison operator
(cmp).

Logical Operators

The logical operators treat their operands in a boolearegbrithek& andand operators test that both expressions are logically
true, while thel | andor operators test that either expression is true. All four iafi® bperators. All four exhibishort-circuiting
behavior (see Short Circuiting, page 25).

The defined-or operatoy,/, tests thedefinednes®f its operand. Unlikel | which tests the truth value of its operanty,
evaluates to a true value if its operand evaluates to a narmerd or the empty string. This is especially useful forisgtt
default parameter values:

sub name_pet

{
my $name = shift // 'Fluffy’;

The ternary conditional operatar) takes three operands. It evaluates the first in booleatexband evaluates to the second
if the first is true and the third otherwise:

my S$truthiness = $value ? ‘true’ : 'false’;

The ! andnot operators return the logical opposite of the boolean vafuleair operandsnot has a lower precedence than
These are prefix operators.

Thexor operator is an infix operator which evaluates to the exehisir of its operands.

Bitwise Operators

The bitwise operators treat their operands numericallyatiit level. These are uncommon in most Perl 5 programs. They
consist of left shift ¢€<), right shift ¢->), bitwise and &), bitwise or (), and bitwise xor), as well as their in-place variants
(<<=, >>=, &=, |=, and~=).

Special Operators

The auto-increment operator has a special case. If anyfisisgver used a variable in a numeric context (see CachediQugr
page 48), it increments the numeric value of that varialblnd variable is obviously a string (and has never been at@dlin
a numeric context), the string value increments with a ¢augh that increments t®, zz to aaa, andag to bo.

my $num = 1;

my $str = 'a’;

$num++;

$str++;

is($num, 2, 'numeric autoincrement should stay numeric');

is($str, 'b', 'string autoincrement should stay string');

no warnings 'numeric';

61

Modern Perl

$num += $str;

$str++;
is($num, 2, 'adding $str to $num should add numeric value of $ st);
is($str, 1, "... but $str should now autoincrement its numer ic part');

The repetition operatok] is an infix operator. In list context, its behavior chanfased on its first operand. When given a list,
it evaluates to that list repeated the number of times sipédify its second operand. When given a scalar, it producesg st
consisting of the string value of its first operand concated to itself the number of times specified by its secondan® In
scalar context, the operator always produces a concatesiziieg repeated appropriately.

For example:

my @scheherazade = (‘nights’) x 1001;

my $calendar = 'nights' x 1001;

is(@scheherazade, 1001, 'list repeated');

is(length $calendar, 1001 * length 'nights’, 'word repeated');

my @schenolist = 'nights' x 1001;

my $calscalar = (‘nights’) x 1001;

is(@schenolist, 1, 'no Ivalue list');
is(length $calscalar, 1001 * length 'nights’, ‘'word still repeated');

Therangeoperator (.) is an infix operator which produces a list of items in lishtext:
my @cards = (2 .. 10, 'J, 'Q, 'K, ‘A");

It can produce simple, incrementing ranges (whether imgegieautoincrementing strings), but it cannot intuit patseor more
complex ranges.

In boolean context, the range operator becomeslifhviop operator. This operator returns a false value if its leftrapd is
false, then it returns a true value while its right operartdis. Thus you could quote the body of a pedantically forethémail
with:

while (/Hello, $user/ .. /Sincerely,/)
{

}

say "> $_";

The commaoperator () is an infix operator. In scalar context it evaluates it$ tgferand then returns the value produced by
evaluating its right operand. In list context, it evaludtesh operands in left-to-right order.

The fat comma operatoe¥) behaves the same way, except that it automatically quotebareword used as its left operand
(see Hashes, page 40).

62

Functions

A function(or subrouting in Perl is a discrete, encapsulated unit of behavior. It orapay not have a name. It may or may not
consume incoming information. It may or may not produce oimg information. It represents a type of control flow, wher
the execution of the program proceeds to another point isdliece code.

Functions are a prime mechanism for abstraction, encajsuland re-use in Perl 5; many other mechanisms build ordtee
of the function.

Declaring Functions

Use thesub builtin to declare a function:

sub greet_me { ..}

Now greet_me () is available for invocation anywhere else within the progrgrovided that the symbol—the function’s
name—is visible.

You do not have talefinea function at the point you declare it. You may us®avard declarationto tell Perl that you intend
for the function to exist, then delay its definition:

sub greet_sun;

You do not have to declare Perl 5 functions before you use tbgoept in the special case where they motidyv
the parser parses them (see Attributes, page 83).

Invoking Functions

To invoke a function, mention its name and pass an optiosiabfiarguments:

greet_me('Jack’, 'Brad');
greet_me('Snowy');
greet_me();

You canoftenomit parameter-grouping parentheses if your program ronectly with thestrict pragma en-
abled, but they provide clarity to the parser and, more irgodly, human readers.

You can, of course, pass multigigesof arguments to a function:

greet_me($name);
greet_me(@authors);
greet_me(%editors);

...though Perl 5's default parameter handling sometimgsises novices.

63

Modern Perl

Function Parameters

Inside the function, all parameters exist in a single areay,If $_ corresponds to the English woitd @_ corresponds to the
word them Perlflattensall incoming parameters into a single list. The functiorelitgither must unpack all parameters into
any variables it wishes to use or operatecordirectly:

sub greet_one

{
my ($name) = @_;
say "Hello, $name!";

}
sub greet_all

say "Hello, $ " for @_ ;

@_ behaves as does any other array in Perl. You may refer toithiil’elements by index:

sub greet_one_indexed

{
my $name = $_[0] ;
say "Hello, $name!";

or, less clear
say "Hello, $_[0]';

You may alsoshift, unshift, push, pop, splice, and slice@_. Inside a function, thehift andpop operators operate on
@_ implicitly in the same way that they operate @RGV outside of any function:

sub greet_one_shift

{
my $name = shift ;
say "Hello, $name!";

While writing shift @_ may seem clearer initially, taking advantage of the impbpierand tashift is idiomatic
in Perl 5.

Take care that assigning a scalar parameter feomequiresshift, indexed access t®_, or Ivalue list context parentheses.
Otherwise, Perl 5 will happily evaluate_ in scalar context for you and assign the number of parampéssed:

sub bad_greet_one

{
my $name = @; # buggy
say "Hello, $name; you're looking quite numeric today!"

List assignment of multiple parameters is often clearen thaltiple lines ofshift. Compare:

sub calculate_value
multiple shifts
my $left_value = shift;

my $operation = shift;
my $right_value = shift;

.. to:

64

Functions

sub calculate_value

my ($left_value, $operation, $right_value) = @_;

Occasionally it's necessary to extract a few parameters &oand pass the rest to another function:

sub delegated_method

{
my $self = shift ;
say 'Calling delegated_method()'

$self->delegate->delegated_method(@_);

The dominant practice seems to be to gs&ft only when your function must access a single parameter ahddsignment
when accessing multiple parameters.

See thesignatures, Method: : Signatures, andMooseX: :Method: : Signatures modules on the CPAN for
declarative parameter handling.

Flattening

The flattening of parameters in@ happens on the caller side. Passing a hash as an argumeamtgsadist of key/value pairs:

sub show_pets

{
my %pets = @_;

while (my ($name, $type) = each %pets)
{
say "$name is a $type";

}

my %pet_names_and_types = (
Lucky => 'dog',
Rodney => 'dog',
Tuxedo => 'cat',
Petunia => 'cat',

)

show_pets(%pet_names_and_types);

Theshow_pets () function works because thpet_names_and_types hash flattens into a list. The order of the pairs within
that flattened list will vary, but pairs will always appearthat list with the key firstimmediately followed by the ual The hash
assignment inside the functiathow_pets () works essentially as the more explicit assignmerffget _names_and_types
does.

This is often useful, but you must be clear about your inte#iif you pass some arguments as scalars and others asefthtte
lists. If you wish to make ahow_pets_of_type () function, where one parameter is the type of pet to display,ust pass
that type as théirst parameter (or usgop to remove it from the end od_):

sub show_pets_by_type
my ($type, %pets) = @_
while (my ($name, $species) = each %pets)

next unless $species eq $type;
say "$name is a $species"”;

65

Modern Perl

my %pet_names_and_types = (

Lucky => 'dog,

Rodney => 'dog',

Tuxedo => ‘cat,

Petunia => 'cat’,
)i
show_pets_by_type('dog’, %pet_names_and_types);
show_pets_by_type('cat, %pet_names_and_types);
show_pets_by_type('moose’, %pet_names_and_types);

Slurping

As with any Ivalue assignment to an aggregate, assignifigdos within the functionslurpsall of the remaining values from
@_. If the $type parameter came at the end@f, Perl would attempt to assign an odd number of elements thdkh and
would produce a warning. Yocouldwork around that:

sub show_pets_by type
my $type = pop;
my %pets = @_;

}

... atthe expense of some clarity. The same principle appiieen assigning to an array as a parameter, of course. ldsemeés
(see References, page 50) to avoid flattening and slurpirenywassing aggregate parameters.

Aliasing

One useful feature a§_ can surprise the unwary: it contains aliases to the passpdrameters, until you unpaek into its
own variables. This behavior is easiest to demonstrateamtbxample:

sub modify_name

$_[0] = reverse $_[0];
my $name = 'Orange’;
modify_name($name);

say $name;

prints egnar0

If you modify an element oé_ directly, you will modify the original parameter directBe cautious.

Functions and Namespaces

Every function lives in a namespace. Functions in an undeglaamespace—that is, functions not declared after ancéxpli
package ... statement—live in theain namespace. You may specify a function’s namespace outkible ourrent package
at the point of declaration:

sub Extensions::Math:: add {

}

Any prefix on the function’s name which follows the packagemning format creates the function and inserts the functitm i
the appropriate namespace, but not the current namespecaus® Perl 5 packages are open for modification at any, yoint
may do this even if the namespace does not yet exist, or if gwa hlready declared functions in that namespace.

You may only declare one function of the same name per naroes@herwise Perl 5 will warn you about subroutine
redefinition. If you're certain you want t@placean existing function, disable this warning with warnings 'redefine’.

You may call functions in other namespaces by using theiy-iylialified names:

66

Functions

package main;

Extensions::Math::add($scalar, $vector);

Functions in namespaces afigible outside of those namespaces in the sense that you can réfientadirectly, but they are
only callable by their short names from within the namespace in which threydaclared—unless you have somehow made
them available to the current namespace through the pexesimporting and exporting (see Exporting, page 136).

Importing

When loading a module with these builtin (see Modules, page 134), Perl automatically calleethod namedmport ()
on the provided package name. Modules with proceduralfades can provide their owimport () which makes some or
all defined symbols available in the calling package’s ngmaee. Any arguments after the name of the module ingee
statement get passed to the moduigiport () method. Thus:

use strict;

... loads thestrict.pmmodule and callstrict->import () with no arguments, while:

use strict 'refs’;
use strict qw(subs vars);

... loads thestrict.pmmodule, callsstrict->import('refs'), then callsstrict->import('subs', vars').

You may call a module’smport () method directly. The previous code example is equivalent to

BEGIN
{

require strict;
strict->import(‘'refs');
strict->import(qw(subs vars));

Be aware that these builtin adds an impliciBEGIN block around these statements so thatithgort () call happensmme-
diately after the parser has compiled the entire statement. Thigemnshat any imported symbols are visible when compiling
the rest of the program. Otherwise, any functions imporntethfother modules but not declared in the current file woatkl
like undeclared barewords asdrict would complain.

Reporting Errors

Within a function, you can get information about the conteithe call with thecaller operator. If passed no arguments, it
returns a three element list containing the name of thengpfliackage, the name of the file containing the call, anditiee |
number of the package on which the call occurred:

package main;
main();

sub main

{
}

sub show_call_information

{

show_call_information();

my ($package, $file, $line) = caller();
say "Called from $package in $file at $line”;

67

Modern Perl

You may pass a single, optional integer argumentattler (). If provided, Perl will look back through the caller of thellea
of the caller that many times and provide information abbat particular call. In other words, ¢how_call_information()
usedcaller (0), it would receive information about the call framain (). If it usedcaller (1), it would receive information
about the call from the start of the program.

While providing this optional parameter lets you inspectdakers of callers, it also provides more return valuedpidiog the
name of the function and the context of the call:

sub show_call_information

{
my ($package, $file, $line , $func) = caller(0);
say "Called $func from $package in $file at $line";

The standardarp module uses this technique to great effect for reportingrerand throwing warnings in functions; its
croak () throws an exception reported from the file and line numbétsotaller. When used in place éte in library code,
croak() can throw an exception due to incorrect usage from the péins@.Carp’s carp () function reports a warning from
the file and line number of its caller (see Producing Warsjnge 127).

This behavior is most useful when validating parametersrecgnditions of a function, when you want to indicate that th
calling code is wrong somehow:

use Carp ‘croak’;

sub add_two_numbers

{

croak 'add_two_numbers() takes two and only two arguments'
unless @_ == 2;

Validating Arguments

Defensive programming often benefits from checking typebs\alues of arguments for appropriateness before furttesue
tion. By default, Perl 5 provides few built-in mechanisms d@ing so. To check that theumberof parameters passed to a
function is correct, evaluate_ in scalar context:

sub add_numbers

{

croak "Expected two numbers, but received: " . @
unless @_ == 2;

Type checking is more difficult, because of Perl’s operatiented type conversions (see Context, page 3). In caseewbu
need more strictness, consider the CPAN mo®abeams : : Validate.

Advanced Functions

Functions may seem simple, but you can do much, much moreheéth.

Context Awareness

Perl 5's builtins know whether you've invoked them in voidakar, or list context. So too can your functions know thalfing
contexts. The misnamé&dwantarray builtin returnsundef to signify void context, a false value to signify scalar @t and
a true value to signify list context.

223eeperldoc -f wantarray to verify.

68

Functions

sub context_sensitive

{

my $context = wantarray();

return qw(Called in list context) if $context;
say ‘Called in void context' unless defined $context;
return ‘Called in scalar context' unless $context;

}

context_sensitive();
say my $scalar = context_sensitive();
say context_sensitive();

This can be useful for functions which might produce expengéturn values to avoid doing so in void context. Some iditien
functions return a list in list context and an array refeeeimcscalar context (or the first element of the list). Eventgere’s no
single best recommendation for the use or avoidancentarray; sometimes it's clearer to write separate functions which
clearly indicate their expected uses and return values.

With that said, Robin Houstonant and Damian Conway'Sontextual : : Return distributions from the CPAN
offer many possibilities for writing powerful and usablédarfaces.

Recursion

Every call to a function in Perl creates a neall frame This is an internal data structure which represents thee fdathe call
itself: incoming parameters, the point to which to retumd all of the other call frames up to the current point. It alaptures
the lexical environment of the specific and current invamabf the function. This means that a function canur; it can call
itself.

Recursion is a deceptively simple concept, but it can seamti if you haven't encountered it before. Suppose youtuw@n
find an element in a sorted array. Yoould iterate through every element of the array individuallgKimg for the target, but
on average, you'll have to examine half of the elements oathay.

Another approach is to halve the array, pick the elementeatrtidpoint, compare, then repeated with either the loweppeu
half. You can write this in a loop yourself or you could let Reanage all of the state and tracking necessary with a rieeurs
function something like:

use Test:More tests => 8;

my @elements = (1, 5, 6, 19, 48, 77, 997, 1025, 7777, 8192, 9999)

ok elem_exists(1, @elements), 'found first element in arra v

ok elem_exists(9999, @elements), ‘found last element in ar ray';

ok ! elem_exists(998, @elements), 'did not find element not in array";
ok ! elem_exists(-1, @elements), ‘did not find element not i n array';
ok ! elem_exists(10000, @elements), 'did not find element n ot in array’;

ok elem_exists(77, @elements), ‘found midpoint element’;

ok elem_exists(48, @elements), ‘found end of lower half ele ment';

ok elem_exists(997, @elements), ‘found start of upper half element’;

sub elem_exists

{
my ($item, @array) = @_;

break recursion if there are no elements to search
return unless @array;

bias down, if there are an odd number of elements
my $midpoint = int((@array / 2) - 0.5);
my $miditem = $array[$midpoint];

return true if the current element is the target
return 1 if $item == $miditem;

return false if the current element is the only element
return if @array == 1;

69

Modern Perl

split the array down and recurse
return elem_exists ($item, @array[0 .. $midpoint])
if $item < $miditem;

split the array up and recurse
return elem_exists ($item, @array[$midpoint + 1 .. $#array]);

This isn’'t necessarily the best algorithm for searchingrgesdist, but it demonstrates recursion. Again, yamwrite this code
in a procedural way, but some algorithms are much clearenwiniten recursively.

Lexicals

Every new invocation of a function creates its oiwstanceof a lexical scope. In the case of the recursive example, éanmgh
the declaration oélem_exists() creates a single scope for the lexicdisem, @array, $midpoint, and$miditem, every
call to elem_exists(), even recursively, has separate storage for the value®sé tlexical variables. You can demonstrate
that by adding debugging code to the function:

use Carp 'cluck’;

sub elem_exists
my ($item, @array) = @_;
cluck "[$item] (@array)";

other code follows

The output demonstrates that not only eaem_exists () call itself safely, but the lexical variables do not integfevith each
other.

Tail Calls

Onedrawbackof recursion is that you must get your return conditions ectrror else your function will call itself an infinite
number of times. This is why thelem_exists () function has severaleturn statements.

Perl offers a helpful warning when it detects what might beamay recursiorDeep recursion on subroutine. The limit
is 100 recursive calls, which can be too few in certain cirstances but too many in others. Disable this warning with
warnings 'recursion' inthe scope of the recursive call.

Because each call to a function requires a new call frame efisaw space for the call to store its own lexical values, lgigh
recursive code can use more memory than iterative code.tAréeaalledtail call eliminationcan help.

Tail call elimination may be most obvious when writing resive code, but it can be useful in any case of a tail
call. Many programming language implementations suppddraatic tail call elimination.

A tail call is a call to a function which directly returns that functismésults. The lines:

split the array down and recurse
return elem_exists($item, @array[0 .. $midpoint])
if $item < $miditem;

split the array up and recurse
return elem_exists($item, @array[$midpoint + 1 .. $#array 1)

...which return the results of the recursiwvbem_exists() calls directly, are candidates for tail call eliminatiorhi3 elimi-
nation avoids returning to the current call and then retgo the parent call. Instead, it returns to the parent d¢adctly.

70

Functions

Perl 5 supports manual tail call elimination, but Yuval Kagms Sub: :Call: :Tail is worth exploring if you find yourself
with highly recursive code or code that could benefit froihdall elimination.Sub: :Call: :Tail is appropriate for tail calls
of non-recursive code:

use Sub:Call:Tail;

sub log_and_dispatch

my ($dispatcher, $request) = @_;
warn "Dispatching with $dispatcher\n";

return dispatch($dispatcher, $request);
}

In this example, you can replace theturn with the newtail keyword with no functional changes (yet more clarity and
improved performance):

tail dispatch($dispatcher, $request);

If you really musteliminate tail calls, use a special form of theto builtin. Unlike the form which can often lead to spaghetti
code, thegoto function form replaces the current function call with a ¢alanother function. You may use a function by name
or by reference. You must always et yourself manually, if you want to pass different arguments:

split the array down and recurse
if ($item < $miditem)

@_ = ($item, @array[0 .. $midpoint]);
goto &elem_exists;

split the array up and recurse
else

@_ = ($item, @array[$midpoint + 1 .. $#array]);
goto &elem_exists;

}

The comparative cleanliness of the CPAN versions is obvious

Pitfalls and Misfeatures

Not all features of Perl 5 functions are always helpful. Intigalar, prototypes (see Prototypes, page 159) rarely lolat wou
mean. They have their uses, but you can avoid them outsidéeof eases.

Perl 5 still supports old-style invocations of functionarried over from older versions of Perl. While you may now k&o
Perl functions by name, previous versions of Perl requii@atp invoke them with a leading ampersadl ¢haracter. Perl 1
required you to use théo builtin:

outdated style; avoid
my $result = &calculate_result(52);

Perl 1 style
my $result = do calculate_result(42);

crazy mishmash; really truly avoid
my $result = do &calculate_result(42);

While the vestigial syntax is visual clutter, the leading @nsand form has other surprising behaviors. First, it désgtrototype
checking (as if that often mattered). Second, if you do nesmaguments explicitly, implicitly passes the contents of -
unmodified. Both can lead to surprising behavior.

A final pitfall comes from leaving the parentheses off of ¢tion calls. The Perl 5 parser uses several heuristics tives
ambiguity of barewords and the number of parameters passadunction, but occasionally those heuristics guess wrong
While it's often wise to remove extraneous parentheses, acertpe readability of these two lines of code:

71

Modern Perl

ok(elem_exists(1, @elements), 'found first element in arr ay');

warning; contains a subtle bug
ok elem_exists 1, @elements, 'found first element in array'

The subtle bug in the second form is that the calklem_exists() will gobble up the test description intended as the
second argument tek (). Becauselem_exists() uses a slurpy second parameter, this may go unnoticed entipduces
warnings about comparing a non-number (the test desamiptibich it cannot convert into a number) with the elementim t
array.

This is admittedly an extreme case, but it is a case whereepnage of parentheses can clarify code and make subtle bugs
obvious to the reader.

Scope

Scopadn Perl refers to the lifespan and visibility of symbols. Bitéing with a name in Perl (a variable, a function) has a scop
Scoping helps to enforaancapsulatior-keeping related concepts together and preventing theml&aking out.

Lexical Scope

The most common form of scoping in modern Perl is lexical szppl he Perl compiler resolves this scope during comjoitati
This scope is visible as yaead a program. A block delimited by curly braces creates a neyweoahether a bare block, the
block of a loop construct, the block ofsab declaration, arval block, or any other non-quoting block:

outer lexical scope

{
package My::Class;

inner lexical scope
sub awesome_method

{
further inner lexical scope
do {
} while (@_);

sibling inner lexical scope
for (@_)
{

}

Lexical scope governs the visibility of variables declanéth my; these ardexical variables. A lexical variable declared in one
scope is visible in that scope and any scopes nested withiatits invisible to sibling or outer scopes. Thus, in theezod

outer lexical scope

{ package My::Class;
my $outer;
{sub awesome_method

my $inner;

do {
my $do_scope;

} while (@_);

sibling inner lexical scope

for (@_)
{

my $for_scope;

72

Functions

...$outer is visible in all four scopes$inner is visible in the method, th&o block, and thefor loop. $do_scope is visible
only in thedo block and$for_scope within thefor loop.

Declaring a lexical in an inner scope with the same name as@alén an outer scope hides, shadowsthe outer lexical:

my $name = 'Jacob’;

{
my $name = 'Edward’;
say $name;

}

say $name;

This program print&€dward and thenJacob?®. Even though redeclaring a lexical variable with the sanmaenand type in a
single lexical scope produces a warning message, shadanliggcal in a nested scope does not; this is a feature ofdexic
shadowing.

Lexical shadowing can happen by accident, but if you lingt$lcope of variables and limit the nesting of scopes—
as is good design anyhow—you lessen your risk.

Lexical declaration has its subtleties. For example, eclxrariable used as the iterator variable afa loop has a scope
within the loop block. It is not visible outside the block:

my $cat = 'Bradley’;
for my $cat (qw(Jack Daisy Petunia Tuxedo))

say "lterator cat is $cat";

}

say "Static cat is $cat"”;

Similarly, thegiven construct createslaxical topic(akin tomy $_) within its block:

$_ = 'outside’;
given ('inner’)
say;

$_ = 'whomped inner’;

}

say;

... despite assignment $o inside the block. You may explicitly lexicalize the topicwrself, though this is more useful when
considering dynamic scope.

Finally, lexical scoping facilitates closures (see Clesyipage 79). Beware creating closures accidentally.

23Family members and not vampires, if you must know.

73

Modern Perl

Our Scope

Within a given scope, you may declare an alias to a packadeblarwith theour builtin. Like my, our enforces lexical
scoping—of the alias. The fully-qualified name is availagerywhere, but the lexical alias is visible only withinstsope.

The best use ajur is for variables you absolutelpusthave, such a$VERSION.

Dynamic Scope

Dynamic scope resembles lexical scope in its visibilityegylbut instead of looking outward in compile-time scopesklip
happens along the current calling context. Consider thmpia

our $scope;

sub inner

{
}

sub main

{

say $scope;

say $scope;
local $scope = 'main() scope’;
middle();

}

sub middle

{
say $scope;
inner();

}

$scope = 'outer scope’;
main();
say $scope;

The program begins by declaring anr variable,$scope, as well as three functions. It ends by assigning4eope and
callingmain().

Within main (), the program print$scope’s current valueouter scope, thenlocalizes the variable. This changes the
visibility of the symbol within the current lexical scojs well asin any functions called from the current lexical scope. Thus
$scope containsmain() scope within the body of bothmiddle () and inner (). After main() returns—at the point of
exiting the block containing theocalization of $scope, Perl restores the original value of the variable. The figt prints
outer scope Once again.

While the variable isisible within all scopes, thealue of the variable changes depending arxalization and assignment.
This feature can be tricky and subtle, but it is especialgfuifor changing the values of magic variables.

This difference in visibility between package variabled &xical variables is apparent in the different storagelmaisms of
these variables within Perl 5 itself. Every scope which aot#t lexical variables has a special data structure callexical pad

or lexpadwhich can store the values for its enclosed lexical varmtiery time control flow enters one of these scopes, Perl
creates another lexpad for the values of those lexical bi@sefor that particular call. (This is how a function canl @aklf and

not clobber the values of existing variables.)

Package variables have a storage mechanism called syrbles.teach package has a single symbol table, and everygmcka
variable has an entry in this table. You can inspect and mddi§ symbol table from Perl; this is how importing worksdse
Importing, page 67). This is also why you may onlycalize global and package global variables and never lexicébies.

It's common tolocalize several magic variables. For exampbg, the input record separator, governs how much data a
readline operation will read from a filehandl&.!, the system error variable, contains the error number ofitbst recent
system call$e, the Perkval error variable, contains any error from the most reeeiafl operation$ |, the autoflush variable,
governs whether Perl will flush the currentig¢lected filehandle after every write operation.

74

Functions

These are all special global variablésicalizing them in the narrowest possible scope will avoid theoacat a distance
problem of modifying global variables used other placesaancode.

State Scope

A final type of scope is new as of Perl 5.10. This is the scopth®&tate builtin. State scope resembles lexical scope in that
it declares a lexical variable, but the value of that vagai®ts initializecbnce and then persists:

sub counter

state $count = 1;
return $count++;

}

say counter();
say counter();
say counter();

On the first call to statefcount has never been initialized, so Perl executes the assigniftemprogram prints, 2, and3. If
you changestate tomy, the program will printt, 1, and1.

You may also use an incoming parameter to set the initialkevafuhestate variable:

sub counter

{
state $count = shift;
return $count++;

say counter(2);
say counter(4);
say counter(6);

Even though a simple reading of the code may suggest thatutipeitoshould be2, 4, and6, the output is actuall, 3, and
4, The first call to the sulzounter sets thefcount variable. Subsequent calls will not change its value. Thkisavior is as
intended and documented, though its implementation cahtéesurprising results:

sub counter

{

state $count = shift;
say 'Second arg is: ', shift;
return $count++;

say counter(2, 'two');
say counter(4, 'four’);
say counter(6, 'six’);

The counter for this program prings 3, and4 as expected, but the values of the intended second argutoghtscounter ()
calls aretwo, 4, andé6—not because the integers are the second arguments passeeicéuse thehift of the first argument
only happens in the first call teounter ().

state can be useful for establishing a default value or preparicacae, but be sure to understand its initialization bemaiio
you use it.

Anonymous Functions

An anonymous functiois a function without a name. It behaves like a named funetigau can invoke it, pass arguments to it,
return values from it, copy references to it—it can do anyglamamed function can do. The difference is that it has no name
You always deal with anonymous functions by reference (seetion References, page 53).

75

Modern Perl

Declaring Anonymous Functions

You may never declare an anonymous function on its own; yost monstruct it and assign it to a variable, invoke it imme-
diately, or pass it as an argument to a function, either eitiylior implicitly. Explicit creation uses theub builtin with no
name:

my $anon_sub = sub { ... };

A common Perl 5 idiom known asdispatch tablauses hashes to associate input with behavior:

my %dispatch =
(

plus => sub { $_[0] + $ [1] },
minus => sub { $_[0] - $_[1] },
times => sub { $_[0] * $ [1] }
goesinto => sub { $_[0] / $_[1] },
raisedto => sub { $_[0] = $ [1] },

)i
sub dispatch
{
my ($left, $op, $right) = @_;

die "Unknown operation!"
unless exists $dispatch{ $op };

return $dispatch{ $op }->($left, $right);

Thedispatch () function takes arguments of the forfa, 'times', 2) and returns the result of evaluating the operation.

You may use anonymous functions in place of function refegenTo Perl, they’re equivalent. Nothingcessitatethe use of
anonymous functions, but for functions this short, thelittle drawback to writing them this way.

You may rewrit€/,dispatch as:

my %dispatch =
(
plus => \&add_two_numbers,
minus => \&subtract_two_numbers,
... and so on
)i
sub add_two_numbers {$.[0] + $_[1]}

sub subtract_two_numbers { $_[0] - $_[1] }

... but the decision to do so depends more on maintainabiitgerns, safety, and your team’s coding style than anyukage
feature.

A benefit of indirection through the dispatch table is th@rovides some protection against calling functions with-

out verifying that it's safe to call those functions. If yadispatch function blindly assumed that the string given as
the name of the operator corresponded directly to the naméumiction to call, a malicious user could conceivably

call any function in any other namespace by crafting an dpergame of' Internal: :Functions: :some_-
malicious_function'.

You may also create anonymous functions on the spot wheimpabs&m as function parameters:
sub invoke_anon_function

my $func = shift;
return $func->(@_);

76

Functions

sub named_func

{
}

invoke_anon_function(\&named_func);
invoke_anon_function(sub { say 'l am an anonymous function 1)

say 'l am a named function!’

Anonymous Function Names

There is one instance in which you can identify the diffeeebetween a reference to a named function and an anonymous
function—anonymous functions do not (hormally) have narig may sound subtle and silly and obvious, but introspecti
shows the difference:

package ShowcCaller;
use Modern::Perl;

sub show_caller

{
my ($package, $filename, $line, $sub) = caller(1);
say "Called from $sub in $package at $filename : $line";

}

sub main

{
my $anon_sub = sub { show_caller() };
show_caller();
$anon_sub->();

}

main();

The result may be surprising:

Called from ShowCaller: main in ShowCaller at anoncaller.pl : 20
Called from ShowCaller:: __ANON__in ShowcCaller at anoncaller.pl : 17

The __ANON__ in the second line of output demonstrates that the anonyifabogsion has no name that Perl can identify. Even
though this can be difficult to debug, there are ways arouischtionymity.

The CPAN moduleub: : Identify provides a handful of functions useful to inspect the nanfiésnetions, given references
to them.sub_name () is the most immediately obvious:

use Sub:ldentify 'sub_name’;

sub main

{
say sub_name(\&main);
say sub_name(sub {});

}

main();

As you might imagine, the lack of identifying informationroplicates debugging anonymous functions. The CPAN module
Sub: :Name can help. Iltssubname () function allows you to attach names to anonymous functions:

use Sub::Name;
use Sub::ldentify 'sub_name’;

my $anon = sub {};
say sub_name($anon);

my $named = subname('pseudo-anonymous’, $anon);
say sub_name($named);
say sub_name($anon);

say sub_name(sub {});

77

Modern Perl

This program produces:

__ANON__
pseudo-anonymous
pseudo-anonymous
_ ANON__

Be aware that both references refer to the same underlyiogyamous function. Callingubname () on $anon and returning
into $named modifies that function, so any other reference to this fiomctvill see the same nanp&eudo-anonymous.

Implicit Anonymous Functions

All of these anonymous function declarations have beeni@xgPerl 5 allows implicit anonymous functions througle thse
of prototypes (see Prototypes, page 159). Though thisreatusts nominally to enable programmers to write their syumtax
such as that fonap andeval, an interesting example is the usedsflayedfunctions that don't look like functions. Consider
the CPAN modul€est: :Exception:

use Test:More tests => 2;
use Test::Exception;

throws_ok { die "I croak!" }
gr/l croak/, 'die() should throw an exception’;

lives ok {1+ 1}
‘'simple addition should not’;

Bothlives_ok () andthrows_ok() take an anonymous function as their first arguments. Thig é®equivalent to:

throws_ok(sub { die "I croak!" },
qr/l croak/, 'die() should throw an exception');

lives_ok(sub { 1 + 11}
‘'simple addition should not');

... but is slightly easier to read.

Note thelack of a comma following the final curly brace of the implicit amgnous function in the implicit version.
This is occasionally a confusing wart on otherwise helpjultax, courtesy of a quirk of the Perl 5 parser.

The implementation of both functions does not care whichhraeism you use to pass function references. You can passiname
functions by reference as well:

sub croak { die 'l croak!" }
sub add {1+1}

throws_ok \&croak ,
qr/l croak/, 'die() should throw an exception’;

lives_ok \&add ,
‘'simple addition should not';

... but you maynot pass them as scalar references:

sub croak { die 'l croak! }
sub add {1+ 1}

my $croak = \&croak;
my $add = \&add;

78

Functions

throws_ok $croak ,
qr/l croak/, 'die() should throw an exception’;

lives_ok $add,
‘'simple addition should not';

... because the prototype changes the way the Perl 5 pategrigts this code. It cannot determine with 100% claritat
$croak and$add will contain when it evaluates thehrows_ok () or lives_ok() calls, so it produces an error:

Type of arg 1 to Test:Exception::ithrows_ok must be block or sub {}
(not private variable) at testex.pl line 13,
near "die() should throw an exception’;"

This feature is occasionally useful despite its drawbatks.syntactic clarity available by promoting bare blockatonymous
functions can be helpful, but use it sparingly and docuntem#tP| with care.

Closures

You've seen how functions work (see Declaring Functiongepd3). You understand how scope works (see Scope, page 72).
You know that every time control flow enters a function, thaiction gets a new environment representing that invon&ti
lexical scope. You can work with function references (seteRaces, page 50) and anonymous functions (see Anonymous
Functions, page 75).

You know everything you need to know to understand closures.

Mark Jason Dominus’sligher Order Perlis the canonical reference on first-class functions, clesuand the
amazing things you can do with them. You can read it onlirtecap: //hop.perl.plover.com/.

Creating Closures
A closureis a function that closes over an outer lexical environmémntve probably already created and used closures without
realizing it:
{
package Invisible::Closure;
my $filename = shift @ARGV;

sub get_filename

{
}

return $filename;

The behavior of this code is unsurprising. You may not hat&eead anything speciaDf coursetheget_filename () function
can see th@filename lexical. That's how scope works! Yet closures can also cty&transientlexical environments.

Suppose you want to iterate over a list of items without mamgatihe iterator yourself. You can create a function whidlimes
a function that, when invoked, will return the next item i fkeration:

sub make_iterator

{
my @items = @_;
my $count = 0O;

return sub

{
return if $count == @items;
return $items[$count++ J;

79

http://hop.perl.plover.com/

Modern Perl

}

my $cousins = make_iterator(qw(Rick Alex Kaycee Eric Corey);

say $cousins->() for 1 .. 5;

Even thoughake_iterator () has returned, the anonymous function still refers to thieggxariablestitems and$count.
Their values persist (see Reference Counts, page 55). Tdmeymmous function, stored ificousins, has closed over these
values in the specific lexical environment of the specifiedication ofnake_iterator ().

It's easy to demonstrate that the lexical environment igjpahdent between callstake_iterator():

my $cousins = make_iterator(qw(Rick Alex Kaycee Eric Corey);
my $aunts = make_iterator(qw(Carole Phyllis Wendy));

say $cousins->();
say $aunts->();
say $cousins->();
say $aunts->();

Because every invocation ebke_iterator() creates a separate lexical environment for its lexicaks atonymous sub it
creates and returns closes over a unique lexical environmen

Becausenake_iterator () does not return these lexicals by value or by reference, mer &erl code besides the closure can
access them. They're encapsulated as effectively as asy lettical encapsulation.

Multiple closures can close over the same lexical varialihés is an idiom used occasionally to provide better enalapion
of what would otherwise be a file global variable:

{

my $private_variable;

sub set_private { $private_variable = shift }
sub get_private { $private_variable }

...but be aware that you canneéstnamed functions. Named functions have package global séapelexical variables
shared between nested functions will go unshared when tiee fumction destroys its first lexical environméht

The CPAN moduléadWalker lets you violate lexical encapsulation, but anyone who itsesd breaks your cod
earns the right to fix any concomitant bugs without your help

11°

Uses of Closures

Closures can make effective iterators over fixed-sizs,listit they demonstrate greater advantages when iteratangdist of
items too expensive to refer to directly, either becausepitesents data which costs a lot to compute all at once dodt’lrge
to fit into memory directly.

Consider a function to create the Fibonacci series as yadiiteeelements. Instead of recalculating the series realysiuse a
cache and lazily create the elements you need:

sub gen_fib
my @fibs = (0, 1, 1);

return sub

{

24)f that's confusing to you, imagine the implementation.

80

Functions

my $item = shift;
if ($item >= @fibs)
{ for my $calc ((@fibs - 1) .. $item)
$fibs[$calc] = $fibs[$calc - 2] + $fibs[$calc - 1J;
}

return $fibs[$item];

Every call to the function returned lggn_£ib () takes one argument, theh element of the Fibonacci series. The function gen-
erates all preceding values in the series as necessarnngalobm, and returning the requested element. It delaygpuatation
until absolutely necessary.

If all you ever need to do is to calculate Fibonacci numbéris, &approach may seem overly complex. Consider, however,
that the functiorgen_fib() can become amazingly generic: it initializes an array ascheaexecutes some custom code to
populate arbitrary elements of the cache, and returns thelated or cached value. If you extract the behavior whadbwdates
Fibonacci values, you can use this code to provide other wittiea lazily-iterated cache.

Extract the functiorgenerate_caching_closure(), and rewritegen_£ib() in terms of that function:

sub gen_caching_closure
my ($calc_element, @cache) = @_;
return sub
my $item = shift;
$calc_element->($item, \@cache) unless $item < @cache;

return $cache[$item];

sub gen_fib
my @fibs = (0, 1, 1);

return gen_caching_closure(
sub

my ($item, $fibs) = @_;
for my $calc (@$fibs - 1) .. $item)

$fibs->[$calc] = $fibs->[$calc - 2] + $fibs->[$calc - 1];

b
@fibs

The program behaves the same way as it did before, but thef bggher order functions and closures allows the separation
the cache initialization behavior from the calculationla# hext number in the Fibonacci series in an effective wagt@uizing

the behavior of code—in this casgen_caching_closure()—by passing in a higher order function allows tremendous
flexibility and abstraction.

In one sense, you can consider the builtiag, grep, andsort higher-order functions, especially if you compare
them togen_caching_closure().

81

Modern Perl

Closures and Partial Application

Closures can do more than abstract away structural dethiés: can allow you to customize specific behaviors. In omeseg
they can alssemoveunnecessary genericity. Consider the case of a functioohwthkes several parameters:

sub make_sundae

{
my %args = @_;

my $ice_cream = get_ice_cream($args{ice_cream});
my $banana = get_banana($args{banana});
my $syrup = get_syrup($args{syrup});

All of the customization possibilities might work very wéllyour full-sized anchor store in a shopping complex, byibifi have
a little drive-through ice cream cart near the overpass &/fjeu only serve French vanilla ice cream on Cavendish banana
every time you calhake_sundae () you have to pass arguments that never change.

A technique callegbartial applicationbinds some arguments to a function such that you can fillénrdést at the point of call.
This is easy enough to emulate with closures:

my $make_cart_sundae = sub

{
return make_sundae(@_,
ice_cream => 'French Vanilla',
banana => 'Cavendish’,

Instead of callingnake_sundae () directly, you can invoke the function referencesiiake_cart_sundae and pass only the
interesting arguments, without worrying about forgetting invariants or passing them incorreétly

State versus Closures

Closures (see Closures, page 79) are an easy, effectivea@diay to make data persist between function invocatigth®wut
using global variables. If you need to share variables betwamed functions, you can introduce a new scope (see S,
72) for only those function declarations:

{
my $safety = 0;

sub enable_safety { $safety = 1 }
sub disable_safety { $safety = 0 }

sub do_something_awesome

return if $safety;

The encapsulation of functions to toggle the safety allohthigee functions to share state without exposing the Exiariable
directly to external code. This idiom works well for casesengexternal code should be able to change internal steté'sbu
clunkier when only one function needs to manage that state.

Suppose that you want to count the number of customers atig@aream parlor. Every hundredth person gets free spsnkle

{

my $cust_count = O;

25You can even usBub: : Install from the CPAN to import this function into another namespaceadly.

82

Functions

sub serve_customer

{
$cust_count++;
my $order = shift;

add_sprinkles($order) if $cust_count % 100 == 0)

This approactworks but creating a new lexical scope for a single function idtrces more accidental complexity than is
necessary. Thetate builtin allows you to declare a lexically scoped variabléhna value that persists between invocations:

sub serve_customer

{
state $cust_count = O;
$cust_count++;

my $order = shift;
add_sprinkles($order) if $cust_count % 100 == 0)

You must enable this feature explicitly by using a moduléhsagModern: : Perl, thefeature pragma, or requiring a specific
version of Perl of 5.10 or newer (witlse 5.010; oruse 5.012;, for example).

You may also usetate within anonymous functions, such as the canonical countmele:

sub make_counter
{

return sub

state $count = O;
return $count++;

...though there are few obvious benefits to this approach.

State versus Psuedo-State

Perl 5.10 deprecated a technique from previous versionsrbbl which you could effectively emulateate. Using a postfix
conditional which evaluates to false witlmg declaration avoideeinitializing a lexical variable tandef or its initialized value.
In effect, a named function can close over its previous Bbscope by abusing a quirk of implementation.

Any use of a postfix conditional expression modifying a tativariable declaration now produces a deprecation warti's
too easy to write inadvertently buggy code with this techeiqusestate instead where available, or a true closure otherwise.
Avoid this idiom, but understand it if you encounter it:

sub inadvertent_state

DEPRECATED; do not use
my $counter = 1 if 0;

Attributes

Named entities in Perl—variables and functions—can havetiaddl metadata attached to them in the formatifibutes
Attributes are names (and, often, values) which allow @etiges of metaprogramming (see Code Generation, page 141)

83

Modern Perl

Declaring attributes can be awkward, and using them effelgtis more art than science. They're relatively rare in

most programs for good reason, though thag offer compelling benefits of maintenance and clarity.

Using Attributes
In its simplest form, an attribute is a colon-preceded ifientattached to a variable or function declaration:

my $fortress :hidden

sub erupt_volcano :ScienceProject { ..}

These declarations will cause the invocation of attributediers nametlidden andScienceProject, if they exist for the
appropriate type (scalars and functions, respectiveliyhe appropriate handlers do not exist, Perl will throw a pdeitime
exception. These handlers couldawnything

Attributes may include a list of parameters; Perl treatatlas a list of constant strings, even if they may resemble otilaes,
such as numbers or variables. Thest : : Class module from the CPAN uses such parametric arguments to géext:e

sub setup_tests :Test(setup) { ... }
sub test_monkey_creation :Test(10) { ... }

sub shutdown_tests :Test(teardown) { ... }

The Test attribute identifies methods which include test assesti@nd optionally identifies the number of assertions the
method intends to run. While introspection (see Reflectimage 113) of these classes could discover the appropriste te
methods, given well-designed solid heuristics, ilest attribute makes the code and its intent unambiguous.

The setup andteardown parameters allow test classes to define their own suppdtiads without worrying about name
clashes or other conflicts due to inheritance or other dassgn concerns. Yocould enforce a design where all test classes
must override methods name@tup () andteardown() themselves, but the attribute approach gives more fletxiliif
implementation.

The Catalyst web framework also uses attributes to deterthia visibility and behavior of methods within web
applications.

Drawbacks of Attributes
Attributes do have their drawbacks:

e The canonical pragma for working with attributes (#etributes pragma) has listed its interface as experimental
for many years. Damian Conway’s core moduatecribute: :Handlers simplifies their implementation. Prefer it to
attributes whenever possible.

* Modules which declare attribute handlers minsierit from Attribute: : Handlers to make the handlers visible to all
packages which use théfnThis is due to the implementation of attributes in Perl Blits

« Attribute handlers take effect duri@ECK blocks, making them inopportune for projects which themegmanipulate
the order of parsing and compilation, such as mod_perl.

e Arguments provided to attributes are only stringstribute: : Handlers performs some data conversion, but you may
have to disable it occasionally.

26You could also store them iBNTIVERSAL, but that is global pollution and worse design.

84

Functions

The worst feature of attributes is their propensity to paaweird syntactic action at a distance. Given a snippet déco
with attributes, can you predict their effect? Good and esteudocumentation helps, but if an innocent-looking datien

on a lexical variable stores a reference to that variableesdmare, your expectations of the destruction of its costardy be
wrong, unless you read the documentation very carefullewise, a handler may wrap a function in another function and
replace it in the symbol table without your knowledge—coasid : memoize attribute which automatically invokes the core
Memoize module.

Complex features can produce compact and idiomatic codkealRevs developers to experiment with multiple designfind
the best representation for their ideas. Attributes andratldvanced Perl features can help you solve complex prablemt
they can also obfuscate the intent of code that could otlseré simple.

Most programs never need this feature.

AUTOLOAD

You do not have to defineveryfunction and method anyone will ever call. Perl provides alma@ism by which you can
intercept calls to functions and methods which do not yedteXou can use this to define only those functions you neeth o
provide interesting error messages and warnings.

Consider the program:

#! perl
use Modern::Perl;

bake_pie(filling => 'apple');

When you run it, Perl will throw an exception due to the callite tindefined functiobake_pie (). Now add a function called
AUTOLOAD():

sub AUTOLOAD {}

Nothing obvious will happen, except that there is no errdie presence of a function nam&aToLOAD () in a package tells
Perl to call that function whenever normal dispatch for fhattion or method fails. Change th8TOLOAD () to emit a message
to demonstrate this:

sub AUTOLOAD {say 'In AUTOLOAD()!' }

Basic Features of AUTOLOAD

The AUTOLOAD () function receives the arguments passed to the undefinedidann @_ directly. You may manipulate these
arguments as you like:

sub AUTOLOAD
{

pretty-print the arguments
local $" =",
say "In AUTOLOAD(@_)!"

Thenameof the undefined function is available in the pseudo-glaaalable$AUTOLOAD:

sub AUTOLOAD

{
our SAUTOLOAD;

pretty-print the arguments

local $" ="',
say "In AUTOLOAD(@_) for $AUTOLOAD!"

85

Modern Perl

Theour declaration (see Our Scope, page 74) scopes this variattie tiwdy ofAUTOLOAD (). The variable contains the fully-
qualified name of the undefined function. In this case, thecfion ismain: :bake_pie. A common idiom is to remove the
package name:

sub AUTOLOAD

{
my ($name) = our SAUTOLOAD =~ [:(\w+)$/;

pretty-print the arguments

local $" =",

say "In AUTOLOAD(@_) for $name !"
}

Finally, whateve®RUTOLOAD () returns, the original call receives:

say secret_tangent(-1);

sub AUTOLOAD { return 'mu' }
So far, these examples have merely intercepted calls tdineddunctions. You have other options.

Redispatching Methods in AUTOLOAD()

A common pattern in OO programming is delegateor proxy certain methods in one object to another, often contained in
otherwise accessible from the former. This is an intergstimd effective approach to logging:

package Proxy::Log;

sub new

{
my ($class, $proxied) = @_;
bless \$class, $proxied;

}

sub AUTOLOAD

{
my ($name) = our SAUTOLOAD =~ [:(\w+)$/;
Log::method_call($name, @_);

my $self = shift;
return $$self->$name(@_);

}

ThisAUTOLOAD () logs the method call. Its real magic is a simple pattern;riéfdrences the proxied object from a blessed scalar
reference, extracts the name of the undefined method, tivekes the method of that name on the proxied object, pasising
given arguments.

Generating Code in AUTOLOAD()

That double-dispatch trick is useful, but it is slower thac@ssary. Every method call on the proxy must fail normagatish to
end up iNnAUTOLOAD () . Pay that penalty only once by installing new methods intotoxy class as the program needs them:
sub AUTOLOAD
my ($name) = our SAUTOLOAD =~ [:(\w+)$/;
my $method = sub
{
Log::method_call($name, @_);
my $self = shift;
return $self->$name(@_);
}
no strict 'refs’;

*{ $AUTOLOAD } = $method;
return $method->(@_);

86

Functions

The body of the previousUTOLOAD () has become an anonymous function—in fact, a closure (see@ggage 79) bound
over thenameof the undefined method. Installing that closure in the apgate symbol table allows all subsequent dispatch
to that method to find the created closure (and awdiioLOAD ()). This code finally invokes the method directly and returns
the result.

Though this approach is cleaner and almost always morep@aagist than handling the behavior directlyAtTOLOAD (), the
codecalled by AUTOLOAD() may detect that dispatch has gone throwdTOLOAD(). In short,caller () will reflect the
double-dispatch of both techniques shown so far. This magrbessue; certainly you can argue that it's an encapsulation
violation to care, but it's also an encapsulation violatioret the details ohowan object provides a method to leak out into
the wider world.

Another idiom is to use a tailcall (see Tailcalls, page 35)@acethe current invocation oAUTOLOAD () from caller()’s
memory with a call to the destination method:

sub AUTOLOAD

{
my ($name) = our SAUTOLOAD =~ /:(\w+)$/;

my $method = sub { ... }

no strict 'refs';
*{ $AUTOLOAD } = $method;
goto &$method;

This has the same effect as invokifigethod directly, except thatUTOLOAD() will no longer appear in the list of calls
available fromcaller(), so it looks like the generated method was simply callecctlire

Drawbacks of AUTOLOAD

AUTOLOAD () can be a useful tool in certain circumstances, but it can Hewlt to use properly. The naive approach to
generating methods at runtime means thatdie() method will not report the right information about the caiiibs of
objects and classes. You can solve this in several ways;fdhe easiest is to predeclare all functions you plaftitb0LOAD ()
with the subs pragma:

use subs qw(red green blue ochre teal);

That technique has the advantage of documenting your ibignthe disadvantage that you have to maintain a staticflist o
functions or methods.

You can also provide your owtrn () to generate the appropriate functions:

sub can

{
my ($self, $method) = @_;

use results of parent can()
my $meth_ref = $self->SUPER::can($method);
return $meth_ref if $meth_ref;

add some filter here
return unless $self->should_generate($method);

$meth_ref = sub { ... };
no strict 'refs';
return *{ $method } = $meth_ref;

}

sub AUTOLOAD
{
my ($self) = @_;
my ($name) = our SAUTOLOAD =~ [:(\w+)$/;>

return unless my $meth_ref = $self->can($name);
goto &$meth_ref;

87

Modern Perl

Depending on the complexity of your needs, you may find itexa® maintain a data structure such as a package-scopkd has
which contains acceptable names of methods to generate.

Be aware that certain methods you do not intend to provide goaiyiroughAUTOLOAD (). A common culprit iSDESTROY (),
the destructor of objects. The simplest approach is to geo&bESTROY () method with no implementation; Perl will happily
dispatch to this and igno#&JTOLOAD () altogether:

skip AUTOLOAD()
sub DESTROY {}

The special methodsnport (), unimport (), andVERSION() never go througAUTOLOAD ().

If you mix functions and methods in a single namespace wiicérits from another package which provides its @WnoLOAD (),
you may get a strange error message:

e of inherited AUTOLOAD for non-method sl am door () is deprecated

This occurs when you try to call a function which does notteria package which inherits from a class which containsiits o
AUTOLOAD (). This is almost never what you intend. The problem compoumdsveral ways: mixing functions and methods
in a single namespace is often a design flaw, inheritancet@mOLOAD () get complex very quickly, and reasoning about code
when you don’t know what methods objects provide is difficult

88

Regular Expressions and Matching

Perl’'s powerful ability to manipulate text comes in partfrds inclusion of a computing concept knownragular expressions
A regular expression (often shortenedegexor regexp is apatternwhich describes characteristics of a string of textegular
expression enginaterprets a pattern and applies it to strings of text totifigthose which match.

Perl’s core documentation describes Perl regular exmessn copious detail; sggerldoc perlretut, perldoc perlre,
and perldoc perlreref for a tutorial, the full documentation, and a reference guiespectively. Jeffrey Friedl's book
Mastering Regular Expressiorexplains the theory and the mechanics of how regular expressvork. Even though those
references may seem daunting, regular expressions aiedike-you can do many things with only a little knowledge.

Literals

The simplest regexes are simple substring patterns:

my $name = 'Chatfield;
say "Found a hat!" if $name =~ /hat/

The match operator/¢ or, more formallym//) contains a regular expression—in this exampke;,. Even though that reads
like a word, it means “thé character, followed by the character, followed by the character, appearing anywhere in the
string.” Each character ihat is anatomin the regex: an indivisible unit of the pattern. The regexdiiig operator£~) is an
infix operator (see Fixity, page 60) which applies the ragekpression on its right to the string produced by the esgioa on
its left. When evaluated in scalar context, a match evaluatagrue value if it succeeds.

The negated form of the binding operator) evaluates to a false value if the match succeeds.

The gr// Operator and Regex Combinations

Regexes are first-class entities in modern Perl when ateith theqr// operator:

my $hat = qr/hat/
say 'Found a hat!" if $name =~ /$hat/;

The 1ike () function from Test: :More works much likeis (), except that its second argument is a regular
expression object produced hy//.

You may interpolate and combine them into larger and moreptexrpatterns:

my $hat = qgr/hat/;

my $field = gr/field/;

say 'Found a hat in a field" if $name =~ / hatfield /;
or

like($name, qr/ hatfield /, 'Found a hat in a field!");

89

Modern Perl

Quantifiers

Regular expressions are far more powerful than previouspkes have demonstrated; you can search for a literal sodpstr
within a string with theindex builtin. Using the regex engine for that is like flying yourtanomous combat helicopter to the
corner store to buy spare cheese.

Regular expressions get more powerful through the usegs#x quantifierswhich allow you to specify how often a regex
component may appear in a matching string. The simplesttijieaiis the zero or one quantifigror ?:

my $cat_or_ct = qgr/ca 21,

like('cat', $cat_or_ct, "cat' matches /ca?t/");
like('ct’, $cat_or_ct, ™ct' matches /ca?t/");

Any atom in a regular expression followed by theharacter means “match zero or one of this atom.” This regxpression
matches if there are zero or oaeharacters immediately followingacharacter and immediately preceding eharacteand
alsomatches if there is one and only oaeharacter between theandt characters.

Theone or more quantifieror +, matches only if there is at least one of the preceding atdheiappropriate place in the string
to match:

my $one_or_more_a = qrica +t/;

like('cat’, $one_or_more_a, "cat' matches /ca+t/");

like('caat’, $one_or_more_a, "caat' matches /ca+t/");

like(‘caaat’, $one_or_more_a, "caaat’ matches /ca+t/") ;
like('caaaat’, $one_or_more_a, “caaaat’ matches /ca+t/ ")

unlike('ct’, $one_or_more_a, "ct' does not match /ca+t/");

There is no theoretical limit to the number of quantifiedrasowhich can match.
Thezero or more quantifieis *; it matches if there are zero or more instances of the qued@tom in the string to match:

my $zero_or_more_a = qrica *t/;

like('cat', $zero_or_more_a, "cat' matches /ca * ");
like('caat’, $zero_or_more_a, "caat' matches /ca * ");
like('caaat, $zero_or_more_a, "caaat' matches /ca ")
like('caaaat’, $zero_or_more_a, "caaaat' matches /ca *t");
like('ct', $zero_or_more_a, "ct' matches /ca * ");

This may seem useless, but it combines nicely with otherxrégmtures to indicate that you don’t care about what may or
may not be in that particular position in the string to matehen somostregular expressions benefit from using thand+
quantifiers far more than thequantifier, as they avoid expensive backtracking and esgoyeur intent more clearly.

Finally, you can specify the number of times an atom may maitthnumeric quantifiers{n} means that a match must occur
exactlyn times.

equivalent to qr/cat/;
my $only_one_a = grica {1} t/;

like('cat’, $only_one_a, "™cat' matches /ca{l}t/");

{n,} means that a match must occur at leasines, but may occur more times:

equivalent to qr/ca+t/;
my $at_least_one_a = qgr/ca {1} t;

like(‘cat', $at_least_one_a, "cat' matches /ca{l,}t/") ;
like('caat’, $at_least_one_a, "caat' matches /ca{l}t/ ");
like('caaat, $at_least_one_a, "caaat' matches /ca{l}),
like('caaaat’, $at_least one_a, "caaaat' matches /ca{l JU);

Regular Expressions and Matching

{n,m} means that a match must occur at leasines and cannot occur more thartimes:

my $one_to_three_a = qr/ca {1,3} t/;

like(‘cat, $one_to_three_a, "cat' matches /ca{l,3}t/");
like(‘caat, $one_to_three_a, "caat' matches /ca{l,3}t I");
like(‘caaat’, $one_to_three_a, "caaat' matches /ca{l,3 A

unlike('caaaat’, $one_to_three_a, "caaaat' does not mat ch /ca{l,3{t/");
Greediness

The + and * quantifiers by themselves agreedy quantifiersthey match as much of the input string as possible. This is
particularly pernicious when matching the “zero or more-newline characters” pattern ok:

a poor regex
my $hot_meal = qr/hot. *meall;

say 'Found a hot meal!" if 'l have a hot meal' =~ $hot_meal;
say 'Found a hot meal"
if 'I did some one-shot, piecemeal work!" =~ $hot_meal;

Greedy quantifiers always try to match as much of the inpirigs possiblérst, backing off only when it's obvious that the
match will not succeed. You may not be able to fit all of theuttssinto the four boxes in 7 Down if look for “loam” witH:

my $seven_down = gr/l$letters_only *m/;

This will matchAlabama, Belgium, andBethlehem before it reache$oam. The soil might be nice there, but those words are
all too long—and the matches start in the middle of the words.

Turn a greedy quantifier into a non-greedy quantifier byeapfing the? quantifier:

my $minimal_greedy_match = gr/hot. *?meall;

When given a non-greedy quantifier, the regular expressigime will prefer theshortestpossible potential match, and will
increase the number of characters identified by.tkietoken combination only if the current number fails to maacausex
matches zero or more times, the minimal potential matchhigrtbken combination is zero characters:

say 'Found a hot meal' if ‘ilikeahotmeal' =~ /$minimal_gree dy_match/;

Use+? to match one or more items non-greedily:

my $minimal_greedy_at_least_one = qr/hot.+?meal/;
unlike(‘ilikeahotmeal’, $minimal_greedy_at_least_one);

like('i like a hot meal’, $minimal_greedy_at_least_one);

The ? quantifier modifier also applies to thee(zero or one matches) quantifier as well as the range questiin every case,
it causes the regex to match as little of the input as possible

The greedy patterns+ and . * are tempting but dangerous. If you write regular expressiith greedy matches, test them
thoroughly with a comprehensive and automated test suitie r@presentative data to lessen the possibility of unpleas
surprises.

27Assume thagletters_only is a regular expression which matches only letter chara(geesCharacter Classes, page 93).

91

Modern Perl

Regex Anchors

Regex anchorforce a match at a specific position in a string. Htart of string anchoi(\A) ensures that any match will start
at the beginning of the string:

also matches "lammed", "lawmaker", and "layman"
my $seven_down = qr\Al${letters_only}{2}m/;

Theend of line string ancho¢\ z) ensures that any match wéhdat the end of the string.

also matches "loom", which is close enough
my $seven_down = qgrA\Al${letters_only}{2}m\z/;

Theword boundary metacharactékb) matches only at the boundary between a word charagtgafd a non-word character
(\W). Thus to findloam but notBelgium, use the anchored regex:

my $seven_down = qr/\bi${letters_only}{2}m\b/;

Like Perl, there’s more than one way to write a regular exgioes Consider choosing the most expressive and
maintainable one.

Metacharacters

Regular expressions get more powerful as atoms get moreajeRer example, the character in a regular expression means
“match any character except a newline”. If you wanted tocearlist of dictionary words for every word which might match
7 Down ("Rich soil”) in a crossword puzzle, you might write:
for my $word (@words)
{

next unless length($word) == 4;

next unless $word =~ /I . m/

say "Possibility: $word";
}

Of course, if your list of potential matches were anythingestthan a list of words, this metacharacter could cause fals
positives, as it also matches punctuation charactersesgdice, numbers, and many other characters besides woadtens.
The\w metacharacter represents all alphanumeric characteasl{iicode sense—see Unicode and Strings, page 17) and the
underscore:

next unless $word =~ /I \w\w m/;

The\d metacharacter matches digits—not just 0-9 as you expecariyut/nicode digit:

not a robust phone number matcher
next unless $potential_phone_number =~ / \d {3}- \d {3}- \d {4},
say "I have your number: $potential_phone_number";

Use the\s metacharacter to match whitespace, whether a literal spatab character, a carriage return, a form-feed, or a
newline:

my $two_three_letter_words = qrAw{3} \s \w{3}/;

These metacharacters have negated forms. To match anychiaecepta word character, usgW. To match a non-digit
character, usgD. To match anything but whitespace, ug To match a non-word boundary, uge

The regex engine treats all metacharacters as atoms.

92

Regular Expressions and Matching

Character Classes
If the range of allowed characters in these four groups spécific enough, you can specify your owharacter classeby
enclosing them in square brackets:

qr/ [aeiou 1/
qgr/c${vowels}/;

my $vowels
my $maybe_cat

The curly braces around the name of the scalar varigdd@els helps disambiguate the variable name. Withput
that, the parser would interpret the variable namgwasielst, which either causes a compile-time error about an
unknown variable or interpolates the contents of an exjstirowelst into the regex.

If the characters in your character set form a contiguougeayou can use the hyphen charactgras a shortcut to express
that range. Now it's possible to define thetters_only regex:

my $letters_only = qgr/[a-zA-Z]/;

Move the hyphen character to the start or end of the classtoda it in the class:
my $interesting_punctuation = qr/[-1?)/;

...0r escape it:

my $line_characters = qr/[|=\-_]/;

Just as the word and digit class metacharactersafid\d) have negations, so too you can negate a character classhéJse
caret () as the first element of the character class to mean “anytanepthese characters”:

my $not_a_vowel = qgr/[*aeiou]/;

Use a caret anywhere but this position to make it a membeedftiaracter class. To include a hyphen in a negated
character class, place it after the caret or at the end oflélss,mr escape it.

Capturing

It's often useful to match part of a string and use it laterhp@s you want to extract an address or an American telephone
number from a string:

my $area_code = gr\(\d{3}\)/;
my $local_number = qrAd{3}-2\d{4}/;
my $phone_number = gr/$area_code\s?$local_number/;

Note the escaping of the parentheses withinea_code; this will become obvious in a moment.

93

Modern Perl

Named Captures

Given a string$contact_info, which contains contact information, you can apply $#ip@one_number regular expression
andcaptureany matches into a variable wittamed captures

if ($contact_info =~ /(?<phone>$phone_number)/)

{
}

say "Found a number $+{phone}";

The capturing construct can look like a big wad of punctugtiaut it’s fairly simple when you can recognize it as a single
chunk:

(?<capture name> ...)

The parentheses enclose the entire capture7¥heame > construct provides a name for the capture buffer and mustol
the left parenthesis. The rest of the construct within themiheses is a regular expression. If and when the regehesathis
fragment, Perl stores the captured portion of the stringémbagic variablé+: a hash where the key is the name of the capture
buffer and the value is the portion of the string which matttre buffer’s regex.

Parentheses are special to Perl 5 regular expressionsfamyltdbey exhibit the same grouping behavior as parenthésen
regular Perl code. They also enclose one or more atoms tareaphatever portion of the matched string they match. To use
literal parentheses in a regular expression, you must gegefeem with a backslash, just as in $#rea_code variable.

Numbered Captures

Named captures are new in Perl 5.10, but captures haveeiisierl for many years. You may encounteimbered captures
as well:

if ($contact_info =~ /($phone_number)/)

{
}

say "Found a number $1";

regex; $1regex; $2 The parentheses enclose the fragment to capture, but theoerégex metacharacter giving theme
of the capture. Instead, Perl stores the captured substriageries of magic variables starting with and continuing for as
many capture groups are present in the regex.firfeematching capture that Perl finds goes igtg the second int¢2, and
so on. Capture counts start at thygeningparenthesis of the capture; thus the first left parenthesigns the capture int$1,
the second int@¢2, and so on.

While the syntax for named captures is longer than for nuntbeaptures, it provides additional clarity. You do not have
to count the number of opening parentheses to figure outhehet particular capture &4 or $5, and composing regexes
from smaller regexes is much easier, as they’re less semgitichanges in position or the presence or absence of aaptar
individual atoms.

Name collisions are still possible with named capturesygiothat’s less frequent than number collisions with
numbered captures. Consider avoiding the use of capturegéx fragments; save it for top-level regexes.

Numbered captures are less frustrating when you evaluaggehrim list context:

if (my ($number) = $contact_info =~ /($phone_number)/)

say "Found a number $number";

Perl will assign to the Ivalues in order of the captures.

94

Regular Expressions and Matching

Grouping and Alternation

Previous examples have all applied quantifiers to simmenat They can also apply to more complex subpatterns as a&whol

my $pork = qr/pork/;
my $beans = qr/beans/;

like('pork and beans', qr\A$pork?. * ?$beans/,
'maybe pork, definitely beans');

If you expand the regex manually, the results may surprise yo

like('pork and beans', qr\Apork?. * ?beans/,
'maybe pork, definitely beans');

This still matches, but consider a more specific pattern:

my $pork = qr/pork/;
my $and = gr/and/;
my $beans = qr/beans/;

like('pork and beans', qr\A$pork? $and? $beans/,
'maybe pork, maybe and, definitely beans');

Some regexes need to match one thing or another. Usdtdraationmetacharacter| to do so:

my $rice = qr/rice/;
my $beans = qr/beans/;

like('rice', qr/$rice|$beans/, 'Found some rice');
like('beans’, gr/$rice|$beans/, 'Found some beans');

The alternation metacharacter indicates that either diegdragment may match. Be careful about what you interpsea
regex fragment, however:

like(‘'rice’, qr/rice|beans/, 'Found some rice');
like('beans', gr/rice|beans/, 'Found some beans');
unlike('rich', qgr/rice|beans/, 'Found some weird hybrid');

It's possible to interpret the pattetiice | beans as meaningic, followed by eithef or b, followed byeans—but alternations
always include thentirefragment to the nearest regex delimiter, whether the stara of the pattern, an enclosing parenthesis,
another alternation character, or a square bracket.

To reduce confusion, use named fragments in varial$tesce | $beans) or grouping alternation candidatesnon-capturing
groups

my $starches = qr/(?:pasta|potatoes|rice)/;

The (7:) sequence groups a series of atoms but suppresses captiengdy. In this case, it groups three alternatives.

If you print a compiled regular expression, you'll see thatstringification includes an enclosing non-capturing
group;qr/ricel|beans/ stringifies as(?-xism:rice|beans).

95

Modern Perl

Other Escape Sequences

Perl interprets several characters in regular expressgmetacharactersvhich represent something different than their literal
characters. Square brackets always denote a characteaoldparentheses group and optionally capture pattenménais.

To match dliteral instance of a metacharactescapet with a backslash\(). Thus\ (refers to a single left parenthesis and
\] refers to a single right square bracKet.refers to a literal period character instead of the "matghtang but an explicit
newline character" atom. Other useful metacharacteroftext need escaping are the pipe charadteaid the dollar sign¥).
Don't forget about the quantifiers either; +, and? also qualify.

To avoid escaping everything (and worrying about forggttim escape interpolated values), usenietacharacter disabling
characters The\Q metacharacter disables metacharacter processing urtiidhes th&E sequence. This is especially useful
when taking match text from a source you don’t control wheitimg the program:

my ($text, $literal_text) = @_;

return $text =~ NQ$literal_text\E/;

The $1iteral_text argument can contain anything—the strikg ALERT **, for example. With\Q and\E, Perl will not
interpret the zero-or-more quantifier as a quantifiertdad, it will parse the regex as* ALERT \x* and attempt to match
literal asterisk characters.

Assertions

The regex anchor$ £ and\z) are a form ofegex assertionwhich requires that a condition is present but doesn’talgtinatch
a character in the string. That is, the reggx\A/ will alwaysmatch, no matter what the string contains. The metachasacte
\b and\B are also assertions.

Zero-width assertionmatch gpattern not just a condition in the string. Most importantly, they bt consume the portion of
the pattern that they match. For example, to find a cat onats gou might use a word boundary assertion:

my $just_a_cat = gr/cat\b/;

... but if you want to find a non-disastrous feline, you mighe azero-width negative look-ahead assertion

my $safe_feline = gr/cat(?!astrophe)/;

The construct?! . . .) matches the phrasat only if the phrasesstrophe does not immediately follow.

The zero-width positive look-ahead assertion

my $disastrous_feline = gr/cat(?=astrophe)/;

... matches the phrassat only if the phraseastrophe immediately follows. This may seem useless, as a normalaegu
expression can accomplish the same thing, but consideuifywant to find all non-catastrophic words in the dictionaryieh
start withcat. One possibility is:

my $disastrous_feline = qr/cat(?!astrophe)/;

while (<$words>)

{
chomp;
next unless NA(?<some_cat>$disastrous_feline. *\Z/;
say "Found a non-catastrophe '$+{some_cat}";

96

Regular Expressions and Matching

Because the assertion is zero-width, it consumes none silvee string. Thus the anchore€\Z pattern fragment must be
present; otherwise the capture would only capturecttteportion of the source string.

Zero-width look-behind assertions also exist. Unlike thaklahead assertions, the patterns of these assertionfiavesfixed
widths; you may not use quantifiers in these patterns.

To assert that your feline never occurs at the start of ajioe might use theero-width negative look-behind assertion

my $middle_cat = qr/(?<!")cat/;

...where the constructz<! . . .) contains the fixed-width pattern. Otherwise you could esprthat theat must always occur
immediately after a space character with #leeo-width positive look-behind assertion

my $space_cat = qr/(?<=\s)cat/;

...where the construct’<=. . .) contains the fixed-width pattern. This approach can beulsdfen combining a global regex
match with the\G madifier, but it's an advanced feature you likely won't usten.

Regex Modifiers

The regular expression operators allow several modifeechange the behavior of matches. These modifiers appda ent
of the match, substitution, ang-// operators. For example, to enable case-insensitive nmatchi

my $pet = 'CaMeLiA’;

like($pet, gr/Camelia/, 'You have a nice butterfly there')

like($pet, gr/Camelia/i, "Your butterfly has a broken shif t key'); ’

The first1ike () will fail, because the strings contain different lettereeTsecond ike () will pass, because théi modifier
causes the regex to ignore case distinctitiremadm are equivalent in the second regex due to the modifier.

You may also embed regex modifiers within a pattern:

my $find_a_cat = qr/(?<feline>(?i)cat)/;

The (7i) syntax enables case-insensitive matching only for itscamad) group: in this case, the entifeline capture group.
You may use multiple modifiers with this form (provided theake sense for a portion of a pattern). You may also disable
specific modifiers by preceding them with the minus chaatt):

my $find_a_rational = gr/(?<number>(?-i)Rat)/;

The multiline operator/m, allows the~ and$ anchors to match at any start of line or end of line within tnimg.

The /s modifier treats the source string as a single line such tiet imetacharacter matches the newline character. Damian
Conway suggests the mnemonic thatmodifies the behavior ahultipleregex metacharacters, while modifies the behavior
of asingleregex metacharacter.

The /x modifier allows you to embed additional whitespace and cemwithin patterns without changing their meaning.
With this modifier in effect, the regex engine treats whitese and the comment charactgy &nd everything following as
comments; it ignores them. This allows you to write much nresslable regular expressions:

my $attr_re = qr{
n # start of line

miscellany

(2
[\n\s] = # blank spaces and spurious semicolons
(22N . x 2\ %[)? # C comments

)*

97

Modern Perl

attribute marker
ATTR

type

\s+

(U?INTVAL
| FLOATVAL
| STRING\s+\ *
| PMC\s+\ =*
| \w =

)

X

This regex isn’tsimple but comments and whitespace improve its readability. Egou compose regexes together from
compiled fragments, théx modifier can still improve your code.

The /g modifier matches a regex globally throughout a string. Thékes sense when used with a substitution:

appease the Mitchell estate
my $contents = slurp($file);
$contents =~ s/Scarlett O'Hara/Mauve Midway/g;

When used with a match—not a substitution—tltemetacharacter allows you to process a string within a loap dwnk
at a time.\G matches at the position where the most recent match endgatotess a poorly-encoded file full of American
telephone numbers in logical chunks, you might write:

while ($contents =~ NG(\W{3})(\W{3})(\w{4})/g)
{

push @numbers, "($1) $2-$3";

Be aware that th&G anchor will take up at the last point in the string where thevjous iteration of the match occurred. If
the previous match ended with a greedy match suchkathe next match will have less available string to match. Ti$e of
lookahead assertions can become very important here,yaddh®t consume the available string to match.

The /e modifier allows you to write arbitrary Perl 5 code on the tigide of a substitution operation. If the match succeeds,
the regex engine will run the code, using its return valudastibstitution value. The earlier global substitutiomepke could
be more robust about replacing some or all of an unfortunategonist’'s name with:

appease the Mitchell estate
my $contents = slurp($file);
$contents =~ s{Scarlett(O'Hara)?}
{ 'Mauve' . defined $1 ? ' Midway' : " }ge;

You may add as manye modifiers as you like to a substitution. Each additionalusocence of this modifier will cause another
evaluation of the result of the expression, though only gelfers tend to usgee or anything more complex.

Smart Matching

The smart match operatot;, compares two operands and returns a true value if they neatcin other. The fuzziness of the
definition demonstrates the smartness of the operatottyfieof comparison depends on the type of both operandsv&ou’
seen this behavior before, gsven (see Given/When, page 33) performs an implicit smart match.

See the “Smart matching in detail” sectionfridoc perlsyn for far more detail. Some of the semantics|of
smart match have changed between Perl 5.10.0 and Perl 5sbOnthen possible, use smart matching only after
5.10.1.

The smart match operator is an infix operator:

98

Regular Expressions and Matching

say 'They match (somehow)' if $loperand ~~ $roperand;

The type of comparison generally depends first on the typhefright operand and then on the left operand. For example,
if the right operand is a scalar with a numeric componentctiraparison will use numeric equality. If the right operasdi
regex, the comparison will use a grep or a pattern matchelfitiht operand is an array, the comparison will perform @ gre

a recursive smart match. If the right operand is a hash, thpadson will check the existence of one or more keys.

For example:

scalar numeric comparison

my $x = 10;
my $y = 20;
say 'Not equal numerically' unless $x ~~ 3y;

scalar numeric-ish comparison

my $x = 10;

my $y = '10 little endians’;

say 'Equal numeric-ishally' if $x ~~ $y;
..or:

my $needlepat = qr/needle/;

say 'Pattern match’ if $needle ~~ $needlepat;
say 'Grep through array' if @haystack ~~ $needlepat;
say 'Grep through hash keys' if %hayhash ~~ $needlepat;
L.or:
say 'Grep through array' if $needlepat ~~ @haystack;
say 'Array elements exist as hash keys' if %hayhash ~~ @hayst ack;
say 'Array elements smart match’' if @strawstack ~~ @haystac k;
. or.
say 'Grep through hash keys' if $needlepat ~~ %hayhash;
say 'Array elements exist as hash keys' if @haystack ~~ %hayh ach;
say 'Hash keys identical if %hayhash ~~ %haymap;

These comparisons work correctly if one operandnsfarenceo the given data type. For example:

say 'Hash keys identical' if %hayhash ~~ \%hayhash;

You may overload (see Overloading, page 145) the smart ntggehator on objects. If you do not do so, the smart match
operator will throw an exception if you try to use an objecaaperand.

You may also use other data types sucluadef and function references as smart match operands. See titéncharldoc
perlsyn for more details.

99

Objects

Writing large programs requires more discipline than wgtsmall programs, due to the difficulty of managing all of the
details of your program simultaneously. Abstraction (firtgdand exploiting similarities and near-similaritiesjancapsulation
(grouping specific details together and accessing thententhey belong) are essential to managing this complexity.

Functions help, but functions by themselves aren't suffiicier the largest programs. Object orientation is a popt@ehnnique
for grouping functions together into classes of relatecabis.

Perl 5’s default object system is minimal. It's very flex@bl-you can build almost any other object system you want ontop o
it—but it provides little assistance for the most common sask

Moose

Moose is a powerful and complete object system for Perl Guiltb on the existing Perl 5 system to provide simpler degul
better integration, and advanced features from languagdsas Smalltalk, Common Lisp, and Perl 6. It’s still wortarging
the default Perl 5 object system—especially when you hav&tiegi code to maintain—but Moose is the best way to write
object oriented code in modern Perl 5.

Object orientation(O0O), orobject oriented programmin@OP), is a way of managing programs by categorizing theirmm
nents into discrete, unique entities. Theseagcts In Moose terms, each object is an instance ofeas which serves as a
template to describe any data the object contains as wel apécific behaviors.

Classes

A class in Perl 5 stores class data. By default, Perl 5 classepackages to provide namespaces:

package Cat;

use Moose;

This Cat class appears to do nothing, but Moose does a lot of work faal#ie class and register it with Perl. With that done,
you can create objects (orstance}of theCat class:

my $brad = Cat->new();
my $jack = Cat->new();

The arrow syntax should look familiar. Just as an arrow @gegfces a reference, an arrow calls a method on an objeetss:. cl

Methods

A methods a function associated with a class. It resembles a fullgtitied function call in a superficial sense, but it diffen
two important ways. First, a method call always hasraocanton which the method operates. When you create an object, the
nameof the class is the invocant. When you call a method on an instdhat instance is the invocant:

my $fuzzy = Cat->new();
$fuzzy ->sleep_on_keyboard();

100

Objects

Second, a method call always involvedispatchstrategy. The dispatch strategy describes how the objstdrsydecidewhich
method to call. This may seem obvious when there’s ontyig but method dispatch is fundamental to the design of object
systems.

The invocant of a method in Perl 5 is its first argument. F@amegle, theCat class could have meow () method:

package Cat;
use Moose;
sub meow

my $self = shift;
say 'Meow!;

Now all Cat instances can wake you up in the morning because they haaeh yet:

my $alarm = Cat->new();
$alarm->meow();
$alarm->meow();
$alarm->meow();

By pervasive convention, methods store their invocantexitél variables namegkelf. Methods which access invocant data
areinstance method$ecause they depend on the presence of an appropriatairiiacwork correctly. Methods (such as

meow ()) which do not access instance data@ess methodss you can use the name of the class as an invocant. Copssruct
are also class methods. For example:

Cat->meow() for 1 .. 3;

Class methods can help you organize your code into namespatteout requiring you to import (see Importing, page 67)
functions, but a design which relies heavily on class metHodanything other than constructors may be the sign of headd
thinking.

Attributes

Every object in Perl 5 is unique. Objects can contginibutes or private data associated with each object. You may alao he
this described amstance datar state

To define object attributes, describe them as part of thescla

package Cat;
use Moose;

has 'name’, is => 'ro', isa => 'Str

In English, that line of code means§&t objects have aame attribute. It's readable but not writable, and it’s a string

In Perl and Moose termaas () is a function which declares an attribute. The first argunethe name of the attribute, in this
case'name'. Theis => 'ro' pair of arguments declares that this attributegadonly, so you cannot modify it after you've
setit. Finally, theisa => 'Str' pair declares that the value of this attribute can only bexng. This will all become clear

soon.

That single line of code creates an accessor methank(()) and allows you to passmame parameter to the constructor:

101

Modern Perl

use Cat;
for my $name (qw(Tuxie Petunia Daisy))

my $cat = Cat->new(name => $name);
say "Created a cat for ", $cat->name();

Attributes do nonheedto have types, in which case Moose will skip all of the vedfion and validation for you:

{
package Cat;

use Moose;
has 'name’, is => 'ro', isa => 'Str
has 'age', is => 'ro}

}

my $invalid = Cat->new(name => 'bizarre', age => 'purple’);

This can be more flexible, but it can also lead to strangergiifsomeone tries to provide invalid data for an attribdtee
balance between flexibility and correctness depends onlgoal coding standards and the type of errors you want thcat

The Moose documentation uses parentheses to separatélant@tiame from its characteristics:
has 'name' => (is => 'ro', isa => 'Str');

Perl parses both that form and the form used in this book thees@ay. Youcould achieve the same effect hy
writing either:

has('name’, 'is', 'ro', 'isa', 'Str');
has(qw(name is ro isa Str));

... but in this case, extra punctuation adds clarity. Theaggh of the Moose documentation is most useful when
dealing with multiple characteristics:
has 'name' => (

is => 'ro',
isa => 'Str,

advanced Moose options; perldoc Moose
init_arg => undef,
lazy_build => 1,

)i

...but for the sake of simplicity of introduction, this bopkefers to use less punctuation. Perl gives you |the
flexibility to choose whichever approach makes the intdryioar code most clear.

If you mark an attribute as readalded writable (withis => rw), Moose will create anutatormethod—a method you can
use to change the value of an attribute:

package Cat;

use Moose;

has 'name', is => 'ro', isa => 'Str’;
has 'age’, is => 'ro', isa => 'Int
has 'diet', is => 'rw';

}

my $fat = Cat->new(name => 'Fatty’, age => 8, diet => 'Sea Trea ts');
say $fat->name(), * eats ', $fat->diet();

$fat->diet('Low Sodium Kitty Lo Mein');
say $fat->name(), ' now eats ', $fat->diet();

102

Objects

Trying to use aro accessor as a mutator will throw the exceptitaihnot assign a value to a read-only accessor
at

Usingro or rw is a matter of design, convenience, and purity. Moose doesnforce any particular philosophy in this area.
One school of thought suggests making all instance glatand passing all relevant data into the constructor (see batbility,
page 116). In th€at exampleage () might still be an accessor, but the constructor could taggelar of the cat’s birth and
calculate the age itself based on the current year, ratherrélying on someone to update the age of all cats manudily. T
approach helps to consolidate all validation code and telpasure that all created objects have valid data.

Now that individual objects can have their own instance ,datavalue of object orientation may be more obvious. An abje
is a group of related data as well as behaviors appropriathdbd data. A class is the description of the data and bersathat
instances of that class possess.

Encapsulation

Moose allows you to declarghichattributes class instances possess (a cat has a name) as thelkttributes of those attributes
(you cannot change a cat's name). By default, Moose doesemotipyou to describe how an objestbresits attributes; Moose
decides that for you. This information is available if yoaltg need it, but the declarative approach can actually aw@rour
programs. In this way, Moose encouragggapsulationhiding the internal details of an object from external ssef that
object.

Consider how you might change the weat handles ages. Instead of requiring a static value for an aggeg to the construc-
tor, pass in the year of the cat’s birth and calculate the ageaded:

package Cat;

use Moose;

has 'name’, is => 'ro', isa => 'Str';
has ‘diet’, is => 'rw";

has 'birth_year', is => 'ro', isa => 'Int};
sub age

my $self = shift;
my $year = (localtime)[5] + 1900;

return $year - $self->birth_year();
}

While the syntax focreatingCat objects has changed, the syntax isingCat objects has not. Thege () method does the
same thing it has always done, at least as far as all codeleuittheCat class understandslow it does that has changed, but
that is a detail internal to theat class and encapsulated within that class itself.

Retain the old syntax focreatingCat objects by customizing the generatetk constructor to allow passing an
age parameter. Calculateirth_year from that. Se@erldoc Moose: :Manual::Attributes.

This new approach to calculatir@at ages has another advantage; you candefault attribute valueso reduce the code
necessary to createCat object:

package Cat;

use Moose;

has ‘name’, is => 'ro', isa => 'Str;
has 'diet’, is => 'rw', isa => 'Str,

has 'birth_year', is => 'ro', isa => 'Int,
default => sub { (localtime)[5] + 1900 };

Thedefault keyword on an attribute takes a function reference whichrnstthe default value for that attribute when con-
structing a new object. If the constructor does not receivapropriate value for that attribute, the object gets dedault
value instead. Now you can create a kitten:

103

Modern Perl

my $kitten = Cat->new(name => 'Bitey');

...and that kitten will have an age ofuntil next year. You can also use a simple value, such as a @wuorbstring, as a
default value. Use a function reference when you need tailzaéesomething unique for each object, including a hashraya
reference.

Polymorphism

A program which deals with one type of data and one type of¥iehan that data receives few benefits from the use of object
Encapsulation is useful, to be sure—but the real power ofobbjgentation is not solely in encapsulation. A well degidr©O
program can manage many types of data. When well designestslaacapsulate specific details of objects into the apiptep
places, something curious happens to the rest of the progrhas the opportunity to becontessspecific.

In other words, moving the specifics of the details of what pnogram knows about individuahts (the attributes) and what
the program knows thatats can do (the methods) into thet class means that code that deals with instances can happily
ignorehowCat does what it does.

This is clearer with an example. Consider a function whicécdbes an object:

sub show_vital_stats

{
my $object = shift;

say 'My name is ', $object->name();
say 'l am ', $object->age();
say 'l eat ', $object->diet();

It's obvious (in context) that you can pas€at object to this function and get sane results. You can do theesaith other
types of objects. This is an important object orientatiooperty calledoolymorphismwhere you can substitute an object of
one class for an object of another class if they provide theesexternal interface.

Any object of any class which provides theme (), age (), anddiet () accessors will work with this function. The function
is sufficiently generic that any object which respects thisriface is a valid parameter.

Some languages and environments require a formal rel&ijpbstween two classes before allowing a program to

substitute instances of one class for another. Perl 5 pgevichys to enforce these checks, but it does not require
them. Its default ad-hoc system lets you treat any two imgsuwith methods of the same name as equivalent
enough. Some people call thdsick typing arguing that any object which cajuack () is sufficiently duck-like
that you can treat it as a duck.

The benefit of the genericity iBhow_vital_stats() is that neither the specific type nor the implementationhef dbject
provided matters. Any invocant is valid if it supports threethodsname (), age (), anddiet () which take no arguments and
each return something which can concatenate in a stringxonfou may have a hundred different classes in your cod® no
of which have any obvious relationships, but they will workhithis method if they conform to this expected behavior.

This is an improvement over writing specific functions taragt and display this information for even a fraction ofsadwun-
dred classes. This genericity requires less code, and asi@dl-defined interface as the mechanism to access ttosnation
means that any of those hundred classes can calculate filwahation in any way possible. The details of those caldoiestis
where it matters most: in the bodies of the methods in theselathemselves.

Of course, the mere existence of a method catkesk () or age () does not by itself imply the behavior of that objectDAg

object may have aage () which is an accessor such that you can disc@veidney is 8 but$lucky is 3. A Cheese object
may have arage () method that lets you control how long to st@wheddar to sharpen it. In other wordage () may be an
accessor in one class but not in another:

104

Objects

how old is the cat?
my $years = $zeppie->age();

store the cheese in the warehouse for six months
$cheese->age();

Sometimes it's useful to knowhatan object does. You need to understand its type.

Roles

A role is a named collection of behavior and stite\ class is like a role, with the vital difference that you dastantiate a
class, but not a role. While a class is primarily a mechanisnofganizing behaviors and state into a template for objects
role is primarily a mechanism for organizing behaviors atatiesinto a named collection.

A role is something a class does.

The difference between some sortiefimal—with aname (), anage (), and a preferrediet ()—andCheese—which can
age () in storage—may be that therimal does the.ivingBeing role, while theCheese does theStorable role.

While youcouldcheck that every object passed istow_vital_stats() is aninstance dfnimal, you lose some genericity
that way. Instead, check that the objdoestheLivingBeing role:

{
package LivingBeing;

use Moose::Role;

requires qw(name age diet);

Anything which does this role must supply theme (), age (), anddiet () methods. This does not happen automatically; the
Cat class must explicitly mark that it does the role:

package Cat;

use Moose;
has 'name’, is => 'ro', isa => 'Str';
has ‘diet’, is => 'rw', isa => 'Str}

has 'birth_year', is => 'ro', isa => 'Int,
default => (localtime)[5] + 1900;

with ‘LivingBeing’;

sub age { ... }

That single line has two functions. First, it tells Moosettte class does the named role. Seconchimposeshe role into the
class. This process checks that the ckasaehowprovides all of the required methods and all of the requit&ibates without
potential collisions.

ThecCat class provideaame () anddiet () methods as accessors to named attributes. It also dedamyenage () method.

Thewith keyword used to apply roles to a class must oater attribute declaration so that composition can
identify any generated accessor methods.

Now all Cat instances will return a true value when queried if they pilewiheLivingBeing role andCheese objects should
not:

283ee the Perl 6 design documents on rolestap: //feather.perl6.n1/syn/S14.html and research on traits in Smalltalkiattp: //scg.unibe.
ch/research/traits for copious details.

105

http://feather.perl6.nl/syn/S14.html
http://scg.unibe.ch/research/traits
http://scg.unibe.ch/research/traits

Modern Perl

say 'Alive!" if $fluffy->DOES('LivingBeing’);
say 'Moldy!" if $cheese->DOES('LivingBeing');

This design approach may seem like extra bookkeeping, baepirates theapabilitiesof classes and objects from theple-
mentationof those classes and objects. The special behavior afdhelass, where it stores the birth year of the animal and
calculates the age directly, could itself be a role:

{
package CalculateAge::From::BirthYear;
use Moose::Role;

has 'birth_year', is => 'ro', isa => 'Int,
default => sub { (localtime)[5] + 1900 };
sub age
{
my $self = shift;
my $year = (localtime)[5] + 1900;

return $year - $self->birth_year();

Moving this code out of th€at class into a separate role makes it available to other dask®vCat can compose both roles:

package Cat;
use Moose;

has 'name', is => 'ro', isa => 'Str}
has 'diet', is => 'rw

with 'LivingBeing', 'CalculateAge::From::BirthYear';

The implementation of thege () method supplied by thealculateAge: :From: :BirthYear satisfies the requirement of
the LivingBeing role, and the composition succeeds. Checking that objecthel.ivingBeing role remains unchanged,
regardless ohow objects do this role. A class could choose to provide its egg() method or obtain it from another role;
that doesn’t matter. All that matters is that it contains.dr@s isallomorphism

Pervasive use of allomorphism in your designs can reducsitkeof your classes and allow you to share more code between
classes. It also allows more flexibility in your design bymiag specific collections of behaviors so that you can thst t
capabilities of objects and classes and not their impleatiemnis.

For a lengthy comparison of roles and other design techeiqueh as mixins, multiple inheritance, and monkeypatchiag
http://www.modernperlbooks.com/mt/2009/04/the-why-of-perl-roles.html.
Roles and DOES()

Applying a role to a class means that the class and its inssandl return true when you call tHgES () method on them:

say 'This Cat is alive!" if $kitten->DOES('LivingBeing');

Inheritance

Another feature of Perl 5’s object systemineritance where one class specializes another. This establishdatmmship
between the two classes, where the child inherits attribaitel behavior of the parent. As with two classes which pethie
same role, you may substitute a child class for its parerdnmsense, a subclass provides the role implied by the egéestef
its parent class.

Consider a&ightSource class which provides two public attributesapdle_power andenabled) and two methodsl@ght
andextinguish):

106

http://www.modernperlbooks.com/mt/2009/04/the-why-of-perl-roles.html

Objects

Recent experiments in role-based systems in Perl 5 denata#tat you can replace almost every use of inheritance
in a system with roles. The decision to use either one is kaggmatter of familiarity. Roles provide composition-
time safety, better type checking, better-factored ansldesipled code, and finer-grained control over names|and
behaviors, but inheritance is more familiar to users of ptheguages. The design question is whether one ¢lass
truly extendsanother or whether it provides additional (or, at led&teren) behavior.

package LightSource;

use Moose;
has 'candle_power, is => 'ro', isa => 'Int',
default => 1;
has ‘enabled’, is => 'ro', isa => 'Bool’,
default => 0, writer => '_set_enabled’;
sub light

my $self = shift;
$self->_set_enabled(1);
sub extinguish

my $self = shift;
$self->_set_enabled(0);

Thewriter option to theenabled attribute creates a private accessor usable within the theset the value.

Inheritance and Attributes

Subclassind.ightSource makes it possible to define a super candle which behavesathe svay ad.ightSource but
provides a hundred times the amount of light:

{
package LightSource::SuperCandle;

use Moose;
extends 'LightSource'

has ' +candle_power', default => 100;

The extends function takes a list of class names to use as parents of thenticlass. The at the start of theandle_-
power attribute name indicates that the current class extendgesrides the declaration of the attribute. In this casestiper
candle overrides the default value of the light source, sonemw SuperCandle created has a light value of 100 candles. The
other attribute and both methods are availabl€@perCandle instances; when you invokei ght or extinguish on such an
instance, Perl will look ir.ightSource: : SuperCandle for the method, then in the list of parents of the class. Wtily it
finds them inLightSource.

Attribute inheritance works in a similar way (sperldoc Class: :MOP for details).

Method dispatch ordefsometimes writtemmethod resolution ordesr MRO) is easy to understand in the case of single-parent
inheritance. When a class has multiple parentsl{iple inheritancg dispatch is less obvious. By default, Perl 5 provides a
depth-first strategy of method resolution. It searchesthss of thdirst named parent and all of its parents recursively before
searching the classes of the subsequent named parentbehiigor is often confusing; avoid using multiple inherita until

107

Modern Perl

you understand it and have exhausted all other alternat8asperldoc mro for more details about method resolution and
dispatch strategies.

Inheritance and Methods
You may override methods in subclasses. Imagine a lightitatannot extinguish:

{
package LightSource::Glowstick;

use Moose;
extends 'LightSource’;
sub extinguish {}

}

All calls to the extinguish method for objects of this class will do nothing. Perl’s nwethdispatch system will find this
method and will not look for any methods of this name in anyhef parent classes.

Sometimes an overridden method needs behavior from itsipasenell. Theoverride command tells Moose (and everyone
else reading the code) that the subclass deliberatelyidesrthe named method. Thaper () function is available to dispatch
from the overriding method to the overridden method:

{
package LightSource::Cranky;

use Carp;
use Moose;

extends 'LightSource’;
override light => sub
{

my $self = shift;

Carp::carp("Can't light a lit light source!")
if $self->enabled,;

super()
override extinguish => sub
{

my $self = shift;

Carp::carp("Can't extinguish an unlit light source!")
unless $self->enabled,

super()
}

This subclass adds a warning when trying to light or extislyu light source that already has the current state sther ()
function dispatches to the nearest parent’s implememtaftithe current method, per the normal Perl 5 method reswiatider.

You can achieve the same behavior by using Moose method imidifSeeperldoc Moose: :Manual: :-
MethodModifiers.

Inheritance and isa()

Inheriting from a parent class means that the child classfird its instances will return a true value when you call tke. ()
method on them:

say 'Looks like a LightSource' if $sconce->isa('LightSour ce'
say 'Monkeys do not glow' unless $chimpy->isa('LightSourc e'

_—

108

Objects

Moose and Perl 5 OO

Moose provides many features you'd otherwise have to boild/éurself with the default object orientation of Perl 5. \léhi
you canbuild everything you get with Moose yourself (see BlessefkRaces, page 110), or cobble it together with a series of
CPAN distributions, Moose is a coherent package which jusks; includes good documentation, is part of many sucakessf
projects, and is under active development by an attentiddalanted community.

By default, with Moose objects you do not have to worry abartstructors and destructors, accessors, and encapaulatio
Moose objects can extend and work with objects from the haRierl 5 system. You also getetaprogramming-a way

of accessing the implementation of the system through tk&esyitself—and the concomitant extensibility. If you'veeev
wondered which methods are available on a class or an ohjedhioh attributes an object supports, this metaprogrargmin
information is available with Moose:

my $metaclass = Monkey::Pants->meta();

say 'Monkey::Pants instances have the attributes:’
say $_->name for $metaclass->get_all_attributes;
say 'Monkey::Pants instances support the methods:

say $_->fully_qualified_name for $metaclass->get_all_m ethods;

You can even see which classes extend a given class:

my $metaclass = Monkey->meta();
say 'Monkey is the superclass of:';

say $_ for $metaclass->subclasses;

Seeperldoc Class::MOP::Class for more information about metaclass operations getlldoc Class: :MOP for Moose
metaprogramming information.

Moose and itsneta-object protocolor MOP) offers the possibility of a better syntax for deirigrand working with classes
and objects in Perl 5. This is valid Perl 5 code:

use MooseX::Declare;
role LivingBeing { requires qw(name age diet) }
role CalculateAge::From::BirthYear

has 'birth_year', is => 'ro', isa => 'Int,
default => sub { (localtime)[5] + 1900 };

method age

{
}

return (localtime)[5] + 1900 - $self->birth_year();

}

class Cat with LivingBeing with CalculateAge::From::Birt hyear

{
has 'name’, is => 'ro', isa => 'Str}
has 'diet, is => 'w';

}

The MooseX: :Declare extension from the CPAN uses a clever module calledel : :Declare to add new syntax to Perl
5, specifically for Moose. Thelass, role, andmethod keywords reduce the amount of boilerplate necessary te\gdbd
object oriented code in Perl 5. Note specifically the dextlae nature of this example, as well as the now unnecessary
$self = shift; line at the start of thege method.

One drawback of this approach is that you must be able tollirf@BAN modules (or a custom Perl 5 distribution such as
Strawberry Perl or Strawberry Perl Professional which nmejuide them for you), but in comparison to Perl 5's core dbjec
orientation, the advantage in cleanliness and simplidityi@ose should be obvious.

Seeperldoc Moose: :Manual for more information on using Moose.

109

Modern Perl

it

As of Perl 5.12, the Perl 5 core explicitly suppobtsvel : :Declare, but the module is not a core module and
works with earlier versions of Perl 5.

Blessed References

Perl 5's default object system is deliberately minimal.@ésimple rules combine to form the simple—though effectivasid
object system:

* Aclassis a package.
* A method is a function.
* A (blessed) reference is an object.

You've already seen the first two rules (see Moose, page. T0® third rule is new. Theless builtin associates the name of
a class with a reference, such that any method invocatidonpeed on that reference uses the associated class foutiesol
That sounds more complicated than it is.

The result is a minimal but working system, though its mirliema can be impractical for larger projects. In particuliue
default object system offers only partial and akward ftiesifor metaprogramming (see Code Generation, page 14i0)sé/fis
a better choice for serious, modern Perl programs largeraltauple of hundred lines, but you will likely encounterdsaones
Perl 5 OO in existing code.

The default Perl 5 object constructor is a method which eseanhd blesses a reference. By convention, constructoesthav
namenew (), but this is not a requirement. Constructors are also alalestysclass methods

sub new

{
my $class = shift;
bless {}, $class;

bless takes two arguments, the reference to associate with aatesthe name of a class. You may i8ess outside of a
constructor or a class—though abstraction recommends ¢hefilse method. The class name does not have to exist yet.

By design, this constructor receives the class name as th®odig invocant. It's possible, but inadvisable, to haatie the
name of a class directly. The parametric constructor all@use of the method through inheritance, delegation, cortixg.

The type of reference makes no difference when invoking ottlon the object. It only governs how the object stametance
data—the object’s own information. Hash references are most comiout you can bless any type of reference:

my S$array_obj = bless [], $class;
my $scalar_obj = bless \$scalar, $class;
my $sub_obj = bless \&some_sub, $class;

Whereas classes built with Moose define their own objedbatis declaratively, Perl 5’s default OO is lax. A clasgesgnting
basketball players which stores jersey number and positight use a constructor like:

package Player;
sub new
my ($class, %attrs) = @_;

bless \%attrs, $class;

...and create players with:

110

Objects

my $joel = Player->new(
number => 10,
position => ‘center’,

);

my $jerryd = Player->new(
number => 4,
position => 'guard’,

Within the body of the class, methods can access hash elsieattly:

sub format

{
my $self = shift;
return '# . $self->{number} . ' plays ' . $self->{position}

Yet so can any code outside of the class. This violates entams—in particular, it means that you can never change the
object’s internal representation without breaking exaégode or perpetuating ugly hacks—so it's safer to providessor
methods:

sub number { return shift->{number} }
sub position { return shift->{position} }

Even with two attributes, Moose is much more appealing imgeof code you don't have to write.

Moose’s default behavior of accessor generation encosnameto do the right thing with regard to encapsulatjon
as well as genericity.

Method Lookup and Inheritance
Besides instance data, the other part of objects is mettapaidih. Given an object (a blessed reference), a methodfdhk
form:

my $number = $joel->number();

...looks up the name of the class associated with the bles$extnce$joel. In this case, the class Fayer. Next, Perl
looks for a function namedumber in thePlayer package. If thelayer class inherits from another class, Perl looks in the
parent class (and so on and so on) until it findsiaber method. If one exists, Perl calls it withjoel as an invocant.

Moose classes store their inheritance information in a metkel which provides additional abilities on top of Perl 8&fault
OO system.

In the default system, every class stores information alteystarents in a package global variable namgdA. The method
dispatcher looks in a class SA to find the names of parent classes in which to search forgpeoariate method. Thus, an
InjuredPlayer class might contaiRlayer in its @ISA. You could write this relationship as:

package InjuredPlayer;

@InjuredPlayer::ISA = 'Player’;

Many existing Perl 5 projects do this, but it's easier andpénto use th@arent pragma instead:

package InjuredPlayer;

use parent 'Player’;

111

Modern Perl

Perl 5.10 addeg@arent to supersede thease pragma. If you can’t use Moose, userent.

You may inherit from multiple parent classes:

package InjuredPlayer;

use parent qw(Player Hospital::Patient);

Perl 5 has traditionally preferred a depth-first searchemépts when resolving method dispatch. That is to say,jfiredPlayer
inherits from bothPlayer andHospital: :Patient, a method call on aldnjuredPlayer instance will dispatch first to
InjuredPlayer, thenPlayer, then any oPlayer’s parents before dispatchingliospital::Patient.

Perl 5.10 also added a pragma calta@ which allows you to use a different method resolution schealied C3. While the
specific details can get complex in the case of complex plalthheritance hierarchies, the important differencéas method
resolution will visit all children of a parent before visitj the parent.

While other techniques such as roles (see Roles, page 105)@rsk method modifiers allow you to avoid multiple inhenita,
themro pragma can help avoid surprising behavior with method disp&nable it in your class with:

package InjuredPlayer;

use mro 'c3}

Unless you're writing a complex framework with multiple énbperable plugins, you likely never need to use this.

AUTOLOAD

If there is no applicable method in the invocant’s class grahts superclasses, Perl 5 will next look for ABTOLOAD function
in every class according to the selected method resolutieroPerl will invoke anyAUTOLOAD (see AUTOLOAD, page 85) it
finds to provide or decline the desired method.

As you might expect, this can get quite complex in the face witipie inheritance and multiple potenti&TOLOAD targets.

Method Overriding and SUPER

You may override methods in the default Perl 5 OO system a agein Moose. Unfortunately, core Perl 5 provides no
mechanism for indicating yountentto override a parent’s method. Worse yet, any function yadeclare, declare, or import
into the child class may override a method in the parent damply by existing and having the same name. While you may
forget to use theverride system of Moose, you have no such protection (even optioméhe default Perl 5 OO system.

To override a method in a child class, declare a method ofah@esame as the method in the parent. Within an overridden
method, call the parent method with t8éPER: : dispatch hint:

sub overridden

{
my $self = shift;
warn "Called overridden() in child!";
return $self->SUPER::overridden(@_);

The SUPER: : prefix to the method name tells the method dispatcher tcatliépto the named method irparentimplementa-
tion. You may pass any arguments to it you like, but it's sati@seusee_.

112

Objects

Beware that this dispatcher relies on the package into whigloverridden method was originally compiled when
redispatching to a parent method. This is a long-standirgfeaiure retained for the sake of backwards compati-
bility. If you export methods into other classes or compages into classes manually, you may run afoul of this
feature. ThesUPER module on the CPAN can work around this for you. Moose hantlgsely as well.

Strategies for Coping with Blessed References

Avoid AUTOLOAD where possible. If yomustuse it, use forward declarations of your functions (see &@w Functions, page
63) to help Perl know whiclAUTOLOAD will provide the method implementation.

Use accessor methods rather than accessing instance matéydhrough the reference. This applies even within theids of
methods within the class itself. Generating these youcselfbe tedious; if you can’t use Moose, consider using a necglith
asClass: :Accessor to avoid repetitive boilerplate.

Expect that someone, somewhere will eventually need tdast(or delegate to or reimplement the interface of) yoassss.
Make it easier for them by not assuming details of the intsrofiyour code, by using the two-argument formeakss, and
by breaking your classes into the smallest responsibls ohitode.

Do not mix functions and methods in the same class.
Use a singlepmfile for each class, unless the class is a small, self-coatbhelper used from a single place.

Consider using Moose anthy: :Moose instead of bare-bones Perl 5 OO; they can interact with kzaoihsses and objects
with ease, alleviate almost of the tedium of declaring @asand provide more and better features.

Reflection

Reflection(or introspection is the process of asking a program about itself as it runenEvough you can write many useful
programs without ever having to use reflection, technicueh as metaprogramming (see Code Generation, page 14fitben
from a deeper understanding of which entities are in theegyst

Class: :MOP (see Class::MOP, page 144) simplifies many reflectiongdskobject systems, but many useful programs do not
use objects pervasively, and many useful programs do natlsgss : : MOP. Several idioms exist for using reflection effectively
in the absence of such a formal system. These are the most@omm

Checking that a Package Exists

To check that a package exists somewhere in the system—tlifasdagne code somewhere has executethékage directive
with a given name—check that the package inherits folIVERSAL by testing that the package somehow provideste()
method:

say "$pkg exists" if eval { $pkg->can(‘can') };

Although youmayuse packages with the naneand ' ' 2%, thecan () method will throw a method invocation exception if you
use them as invocants. Theal block catches such an exception.

You couldalso grovel through the symbol table, but this approach iskgu and easier to understand.

Checking that a Class Exists

Because Perl 5 makes no strong distinction between paclkageslasses, the same technique for checking the existéace o
package works for checking that a class exists. There is nergeway for determining if a package is a class. tam check
that the packagean () providenew (), but there is no guarantee that argw () found is a method, nor a constructor.

29 only if you define them symbolically, as these awe identifiers forbidden by the Perl 5 parser.

113

Modern Perl

Checking that a Module Has Loaded

If you know the name of a module, you can check that Perl besiéhas loaded that module from disk by looking in ¥i&C
hash. This hash correspondsemiC; when Perl 5 loads code witkse or require, it stores an entry iffINC where the key is
the file path of the module to load and the value is the fulhpat disk to that module. In other words, loadingiern: :Perl
effectively does:

$INC{'Modern/Perl.pm?} =
‘/path/to/perl/lib/site_perl/5.12.1/Modern/Perl.pm'

The details of the path will vary depending on your inst@lat but for the purpose of testing that Perl has succegdhdided
a module, you can convert the name of the module into the ¢ealdile form and test for existence with§INC:

sub module_loaded

(my $modname = shift) =~ sl:l/lg;
return exists $INC{ $modname . '.pm' };

Nothing prevents other code from manipulatific itself. Depending on your paranoia level, you may check #ta pnd the
expected contents of the package yourself. Some modulek &Test: :MockObject Or Test: :MockModule) manipulate
%INC for good reasons. Code which manipuldt@sC for poor reasons deserves replacing.

Checking the Version of a Module

There is no guarantee that a given module provides a verBi@n so, all modules inherit froMNIVERSAL (see The UNI-
VERSAL Package, page 139), so they all hawERSION () method available:

my $mod_ver = $module->VERSION();

If the given module does not overrid&@RSION () or contain a package variat$&ERSION, the method will return an undefined
value. Likewise, if the module does not exist, the methotvedil fail.

Checking that a Function Exists

The simplest mechanism by which to determine if a functiastexs to use thean () method on the package name:

say "$func() exists" if $pkg->can($func);

Perl will throw an exception unleskpkg is a valid invocant; wrap the method call in amal block if you have any doubts
about its validity. Beware that a function implemented imtgs of AUTOLOAD () (see AUTOLOAD, page 85) may report the
wrong answer if the function’s package does not also overrigh () correctly. This is a bug in the other package.

You may use this technique to determine if a modul&sort () has imported a function into the current namespace:

say "$func() imported!" if _ PACKAGE__->can($func);

You may also root around in the symbol table and typeglobgterchine if a function exists, but this mechanism is simated
easier to explain.

Checking that a Method Exists

There is no generic way to determine whether a given fundsam function or a method. Some functions behave as both
functions and methods; though this is overly complex andilysa mistake, it is an allowed feature.

114

Objects

Rooting Around in Symbol Tables

A Perl 5 symbol table is a special type of hash, where the keysh® names of package global symbols and the values are
typeglobs. Atypeglobis a core data structure which can contain any or all of a gcataarray, a hash, a filehandle, and a
function. Perl 5 uses typeglobs internally when it looks hgse variables.

You can access a symbol table as a hash by appending doubiestothe name of the package. For example, the symbol table
for theMonkeyGrinder package is available §8lonkeyGrinder: :.

You cantest the existence of specific symbol names within a syndietwith theexists operator (or manipulate the symbol
table toadd or removesymbols, if you like). Yet be aware that certain changes éoRerl 5 core have modified what exists by
default in each typeglob entry. In particular, earlier \@ns of Perl 5 have always provided a default scalar varitdlevery
typeglob created, while modern versions of Perl 5 do not.

See the “Symbol Tables” section erldoc perlmod for more details, then prefer the other techniques in thisice for
reflection.

Advanced OO Perl

Creating and using objects in Perl 5 with Moose (see Moogge p80) is easyesigninggood object systems is not. Additional
capabilities for abstraction also offer possibilities édxfuscation. Only practical experience can help you uridedsthe most
important design techniques. . . but several principlesgeade you.

Favor Composition Over Inheritance

Novice OO designs often overuse inheritance for two reastonseuse as much code as possible and to exploit as much
polymorphism as possible. It's common to see class hieiesahhich try to model all of the behavior for entities witfthme
system in a single class. This adds a conceptual overheaadiratanding the system, because you have to understand the
hierarchy. It adds technical weight to every class, becaosdlicting responsibilities and methods may obstructessary
behaviors or future modifications.

The encapsulation provided by classes offers better wagsgmize code. You don’t have to inherit from superclassgsa-
vide behavior to users of objects.CAr object does not have to inherit fronvahicle: : Wheeled object (aris-a relationship;
it can contain severalheel objects as instance attributesh@s-a relationshijp

Decomposing complex classes into smaller, focused enfitibether classes or roles) improves encapsulation andesdhe
possibility that any one class or role will grow to do too mu8maller, simpler, and better encapsulated entities aierc®
understand, test, and maintain.

Single Responsibility Principle

When you design your object system, model the problem in tefmssponsibilities, or reasons why each specific entity ma
need to change. For example,BEiployee object may represent specific information about a perseerse, contact informa-
tion, and other personal data, whileJeb object may represent business responsibilities. A simpsgth might conflate the
two into a single entity, but separating them allowstheloyee class to consider only the problem of managing information
specific to who the person is and theb class to represent what the person does. (Engloyees may have alob-sharing
arrangement, for example.)

When each class has a single responsibility, you can imph®vericapsulation of class-specific data and behaviorseahite
coupling between classes.

Don’t Repeat Yourself

Complexity and duplication complicate development andntesiance activities. The DRY principle (Don’'t Repeat Yali)s
is a reminder to seek out and to eliminate duplication withmsystem. Duplication exists in many forms, in data as aslh
code. Instead of repeating configuration information rwsga, and other artifacts within your system, find a sing&onical
representation of that information from which you can gatesall of the other artifacts.

115

Modern Perl

This principle helps to reduce the possibility that impotfaarts of your system can get unsynchronized, and helpsoyind
the optimal representation of the system and its data.

Liskov Substitution Principle

The Liskov substitution principle suggests that subtyes given type (specializations of a class or role or subelsisg a
class) should be substitutable for the parent type withaatowing the types of data they receive or expanding thestye
data they produce. In other words, they should be as geremalraore general at what they expect and as specific as or more
specific about what they produce.

Imagine two classe®essert andPecanPie. The latter subclasses the former. If the classes followLthleov substitution
principle, you can replace every usebefssert objects withPecanPie objects in the test suite, and everything should {ass

Subtypes and Coercions

Moose allows you to declare and use types and extend themgihrsubtypes to form ever more specialized descriptions of
what your data represents and how it behaves. You can usetifmssannotations to verify that the data on which you want to
work in specific functions or methods is appropriate ancheieespecify mechanisms by which to coerce data of one type to
data of another type.

SeeMoose: :Util: : TypeConstraints andMooseX: : Types for more information.

Immutability

A common pattern among programmers new to object oriemtégito treat objects as if they were bundles of records whéeh u
methods to get and set internal values. While this is simplempdement and easy to understand, it can lead to the unfateun
temptation to spread the behavioral responsibilities ajmiedividual classes throughout the system.

The most useful technique to working with objects effedyive to tell them what to do, not how to do it. If you find youle
accessing the instance data of objects (even through acaesshods), you may have too much access to the respotiegili
of the class.

One approach to preventing this behavior is to considerctdbps immutable. Pass in all of the relevant configuratiata do
their constructors, then disallow any modifications obthiformation from outside the class. Do not expose any nustho
mutate instance data.

Some designs go as far as to prohibit the modification oimst datavithin the class itself, though this is much more difficult
to achieve.

0See Reg Braithwaite’s "IS-STRICTLY-EQUIVALENT-TO-A" for more details, http://weblog.raganwald.com/2008/04/
is-strictly-equivalent-to.html.

116

http://weblog.raganwald.com/2008/04/is-strictly-equivalent-to.html
http://weblog.raganwald.com/2008/04/is-strictly-equivalent-to.html

Style and Efficacy

Programming and programmirvgell are related, but distinct skills. If we only wrote progranmce and never had to modify

or maintain them, if our programs never had bugs, if we neadrtb choose between using more memory or taking more time,
and if we never had to work with other people, we wouldn’t heovevorry about how well we program. To program well, you
must understand the differences between potential sokibased on specific priorities of time, resources, anddytlans.

Writing Perl well means understanding how Perl works. It aisans developing a sense of good taste. To develop that skill
you must practice writing and maintaining code and readingdgcode. There are no shortcuts—but you can improve the
effectiveness of your practice by following a few guidebne

Writing Maintainable Perl

The easier your program is to understand and to modify, thterbd his ismaintainability Set aside your current program
for six months, then try to fix a bug or add a feature. The moaéntainable the code, the less artificial complexity yoll wi
encounter making changes.

To write maintainable Perl you must:

* Remove duplicationPerl offers many opportunities to use abstraction to reduak remove duplication. Functions,
objects, roles, and modules, for example, allow you to @efirodels of the problem and your solution.

The more duplication in your system, the more work it is to makecessary change, and the more likely you will forget
to make a change in every place necessary. The less dupti¢atyour system, the more likely you've found an effective
design for your problem. The best designs allow you to adtlifea while removing code overall.

* Name entities welEverything you can name in your system—functions, classethads, variables, modules—can aid
or hinder clarity. The ease with which you can name thesegientieveals your understanding of the problem and the
cohesion of your design. Your design tells a story, and eweny you use effectively can help you remember that story
when you must later maintain the code.

» Avoid unnecessary clevernedfvices sometimes mistake cleverness for concision. Germmde avoids unnecessary
complexity. Clever code sometimes prefers its own cleveste simplicity. Perl offers many approaches to solve simil
problems. One form may be more readable to your team. Anathgibe faster. A third may be simpler. Where possible,
optimize for obviousness first.

You can't always avoid the dark corners of Perl, and somelpnob require cleverness to solve effectively. Only good
taste and experience will help you evaluate the appropiéatd of cleverness. As a rule of thumb, if you're prouder
of explaining your solution to your coworkers than you aresolfving a problem, your code may have unnecessary
complexity.
If you doneed clever code, encapsulate it behind a simple interfastel@cument your cleverness very well.

* Embrace simplicityGiven two programs which solve the same problem, the sirhigl@émost always easier to maintain.

Simplicity doesn’t require you to eschew advanced Perl kadge, or to avoid using libraries, or to pound out hundreds
of lines of procedural code.

Simplicity means that you've solved the problem at handagiffely without adding anything you don’t need. This is no
excuse to avoid error checking or verification or validatay security. Instead it's a reminder to think about whagally
important. Sometimes you don’t need frameworks, or objectsomplex data structures. Sometimes you do. Simplicity
means knowing the difference.

117

Modern Perl

Writing Idiomatic Perl

Perl steals ideas from other languages as well as from tleewetld outside of programming. Perl tends to claim thesasde
by making them Perlish. To write Perl well, you must know hoyperienced Perl programmers write it.

¢ Understand community wisdofihe Perl community often debates techniques, sometimele Yet even these dis-
agreements offer enlightenment on specific design trdslaofd styles. You know your specific needs, but CPAN authors
CPAN developers, your local Perl Mongers group, and othagiammers have experience solving similar problems. Talk
to them. Read their public code. Ask questions. Learn froemtland let them learn from you.

¢ Follow community normsThe Perl community isn’'t always right, especially if youreds are very specific or unique,
but it works continually to solve problems as broadly as fssPerl’s testing and packaging tools work best when you
organize your code as if you were to distribute it on the CPAtbpt the standard approaches to writing, documenting,
packaging, testing, and distributing your code, to takeaathge of these tools.

Similarly, CPAN distributions such &erl::Critic andPerl::Tidy andCPAN: :Mini can make your work simpler
and easier.

* Read codelJoin in a mailing list such as the Perl Beginners lisitfp: //learn.perl.org/faq/beginners.html),
browse PerIMonkshttp: //perlmonks.org/), and otherwise immerse yourself in the Perl Commuityou'll have
plenty of opportunities to see how other people solve theblems, good and bad. Learn from the good (it's often
obvious) and the bad (to see what to avoid).

Writing a few lines of code to solve a problem someone elseepdsta great way to learn.

Writing Effective Perl

Knowing Perl’s syntax and semantics is only the beginnirgy &an only achieve good design if you follow habitetecourage
good design.

« Write testable codePerhaps the best way to ensure that you can maintain codaiitécan effective test suite. Writing
test code well exercises the same design skills as designiggams well; never forget that test code is still code.rEve
S0, a good test suite will give you confidence that you canifg@program and not break existing behaviors you care
about.

« Modularize.Break your code into individual modules to enforce encagisut and abstraction boundaries. Make a habit
of this and you'll recognize individual units of code which tho many things. You'll identify multiple units that work
too tightly together.

Modularity also forces you to manage different levels oftedugion; you must consider how the entities of your sys-
tem work together. There’s no better way to learn the valuabstraction than having to revise systems into effective
abstractions.

» Take advantage of the CPANhe single best force multiplier for any Perl 5 program is @ineazing library of reusable
code available for anyone to use. Thousands of developees mdtten tens of thousands of modules to solve more
problems than you can imagine, and the CPAN only continuegda. Community standards for documentation, for
packaging, for installation, and for testing contributeétte quality of the code, and the CPAN’s centrality in modeerl P
has helped the Perl community grow in knowledge, in wisdamd,ia efficacy.

Whenever possible, search the CPAN first—and ask your feltmwmunity members—for advice on solving your prob-
lems. You may even report a bug, or submit a patch, or prodogeogwn distribution on the CPAN. Nothing demonstrates
you're an effective Perl programmer more than helping opfeeple solve their problems.

 Establish sensible coding standard<fective guidelines establish policies for error hanglisecurity, encapsulation,
API design, project layout, and other maintainability cems. Excellent guidelines evolve as you and your team under
stand each other and your projects better. The goal of pmugiag is to solve problems, and the goal of coding standards
is to help you communicate your intentions clearly.

31Seehttp://www.perl.org/community . html for more links.

118

http://learn.perl.org/faq/beginners.html
http://perlmonks.org/
http://www.perl.org/community.html

Style and Efficacy

Exceptions

Programming would be simpler if everything always workedhésnded. Unfortunately, files you expect to exist dontnge-
times you run out of disk space. Your network connectionstaes. The database stops accepting new data.

Exceptional cases happen, and robust software must hanudle ¢xceptional conditions. If you can recover, greatbif gan't,
sometimes the best you can do is retry or at least log all of¢levant information for further debugging. Perl 5 handles
exceptional conditions through the useesteptionsa dynamically-scoped form of control flow that lets you dkmerrors in
the most appropriate place.

Throwing Exceptions

Consider the case where you need to open a file for loggingufcannot open the file, something has gone wrong.dise
to throw an exception:

sub open_log_file
{
my $name = shift;
open my $fh, '>>', $name
or die "Can't open logging file '$name": $!";
return $fh;

}

die () sets the global variabl&e to its argument and immediately exits the current functigmout returning anythingif the
calling function does not explicitly handle this exceptitime exception will propagate upwards to every caller waihething
handles the exception or the program exits with an error agess

This dynamic scoping of exception throwing and handlindghessame as the dynamic scopingletal symbols
(see Dynamic Scope, page 74).

Catching Exceptions

Uncaught exceptions eventually terminate the program.efiomas this is useful; a system administration program ramf
cron (a Unix jobs scheduler) might throw an exception wheneiror logs have filled; this could page an administratat th
something has gone wrong. Yet many other exceptions shatldenfatal; good programs can recover from them, or at least
save their state and exit more cleanly.

To catch an exception, use the block form of &val operator:

log file may not open
my $fh = eval { open_log_file('monkeytown.log') };

As with all blocks, the block argument &ral introduces a new scope. If the file open succegtis will contain the filehandle.
If it fails, $£h will remain undefined, and Perl will move on to the next sta¢at in the program.

If open_log_file() called other functions which called other functions, armhi¢ of those functions threw its own exception,
this eval could catch it, if nothing else did. There is no requireméat tyour exception handlers catch only those exceptions
you expect.

To check which exception you've caught (or if you've caugheaception at all), check the value 4:

log file may not open

my $fh = eval { open_log_file('monkeytown.log') };

caught exception

it @) { ... }

Of course $@ is aglobal variable. For optimal safetfocalize its value before you attempt to catch an exception:

119

Modern Perl

local $@;

log file may not open
my $fth = eval { open_log_file('monkeytown.log') };

caught exception

if @) { ... }

You may check the string value & against expected exceptions to see if you can handle thetixecer if you should throw
it again:

if (my $exception = $@)

{

die $exception unless $exception =~ /*Can't open logging fi le/;
$fh = log_to_syslog();

Copy $e to $exception to avoid the possibility of subsequent code clobbering thba) variable$e. You never
know what else has used amal block elsewhere and resge.

Rethrow an exception by callingiie () again, passinga.

You may find the idea of using regular expressions agairesviue of$e distasteful; you can also use abjectwith die.
Admittedly, this is rare$@ cancontain any arbitrary reference, but in practice it seeniset®5% strings and 5% objects.

As an alternative to writing your own exception system, $&eQPAN distributiorException: :Class.

Exception Caveats
Using$e correctly can be tricky; the global nature of the variabb/ks it open to several subtle flaws:

¢ Unlocalized uses further down the dynamic scope may reset its value

« The destruction of any objects at scope exit from exceptioowing may calkval and change its value
* It may contain an object which overrides its boolean vatueeturn false

¢ A signal handler (especially ttBEE signal handler) may change its value when you do not expect it

Writing a perfectly safe and sane exception handler is diffidine Try: : Tiny distribution from the CPAN is short, easy to
install, easy to understand, and very easy to use:

use Try:Tiny;
my $th = try { open_log_file('monkeytown.log') }

catch { ... }

Not only is the syntax somewhat nicer than the Perl 5 defauttthe module handles all of those edge cases for you without
your knowledge.

Built-in Exceptions
Perl 5 has several exceptional conditions you can catchamittval block.perldoc perldiag lists them as “trappable fatal
errors”. Most are syntax errors thrown during compilati@thers are runtime errors. Some of these may be worth caftchin
syntax errors rarely are. The most interesting or likelyeptions occur for:

» Using a disallowed key in a locked hash (see Locking Haghaase 46)

 Blessing a non-reference (see Blessed References, pape 11

« Calling a method on an invalid invocant (see Moose, pagé 100

120

Style and Efficacy

Failing to find a method of the given name on the invocant
» Using a tainted value in an unsafe fashion (see Taint, pagg 1

Modifying a read-only value
e Performing an invalid operation on a reference (see Refe® page 50)

If you have enabled fatal lexical warnings (see Registevimgr Own Warnings, page 128), you can catch the exceptias th
throw. The same goes for exceptions frantodie (see The autodie Pragma, page 167).

Pragmas

Perl 5’'s extension mechanism is modules (see Modules, pa4e Most modules provide functions to call or they define
classes (see Moose, page 100), but some modules instazehicdl the behavior of the language itself.

A module which influences the behavior of the compiler ipragma By convention, pragmas have lower-case names to
differentiate them from other modules. You've heard of sdr@fre:strict andwarnings, for example.

Pragmas and Scope

A pragma works by exporting specific behavior or informatiato the enclosing static scope. The scope of a pragma is the
same as the scope of a lexical variable. In a way, you can tifitéxical variable declaration as a sort of pragma with funn
syntax. Pragma scope is clearer with an example:

{
S$lexical is not visible; strict is not in effect
{ _
use strict;
my $lexical = 'available here’;
$lexical is visible; strict is in effect

$lexical is again not visible; strict is not in effect

A sufficiently motivated Perl guru could implement a poodblghaved pragma which ignores scoping, but that
would be unneighborly.

Just as lexical declarations affect inner scopes, so dov@agnaintain their effects on inner scopes:

file scope
use strict;

{

inner scope, but strict still in effect
my $inner = ‘another lexical’;

Using Pragmas

Pragmas have the same usage mechanism as modules. As witlemagau may specify the desired version number of the
pragma and you may pass a list of arguments to the pragma tiwtids behavior at a finer level:

require variable declarations; prohibit bareword functi on names
use strict qw(subs vars);

Within a scope you may disable all or part of a pragma withathéuiltin:

121

Modern Perl

use strict;

{

get ready to manipulate the symbol table
no strict 'refs’;

Useful Core Pragmas
Perl 5 includes several useful core pragmas:

the strict pragma enables compiler checking of symbolic referent¢esuse of barewords, and the declaration of
variables

thewarnings pragma enables optional warnings for deprecated, uniatgrathd awkward behaviors that are netes-
sarily errors but may produce unwanted behaviors

theut£8 pragma enables the use of the UTF-8 encoding of source code

theautodie pragma (new in 5.10.1) enables automatic error checkingstém calls and builtins, reducing the need for
manual error checking

the constant pragma allows you to create compile-time constant valuesugh se®eadonly from the CPAN for an
alternative)

thevars pragma allows you to declare package global variables,as&VERSION or those for exporting (see Exporting,
page 136) and manual OO (see Blessed References, page 110)

Several useful pragmas exist on the CPAN as well. Two worfilogig in detail areautobox, which enables object-like
behavior for Perl 5's core types (scalars, referencesysri@nd hashes) angkr15i, which combines and enables many
experimental language extensions into a coherent wholesd'lwo pragmas may not belong yet in your production code
without extensive testing and thoughtful consideratiarn,tbey demonstrate the power and utility of pragmas.

Perl 5.10.0 added the ability to write your own lexical pragnn pure Perl codg@erldoc perlpragma explains how to do
so, while the explanation df*H in perldoc perlvar explains how the feature works.

122

Managing Real Programs
Writing simple example programs to solve example problenasiook helps you learn a language in the small. Yet writing rea
programs requires more than learning the syntax of a laregwagts design principles, or even how to find and use itslies.

Practical programming requires you to manage code: to argdnto know that it works, to make it robust in the face afoes
of logic or intent, and to do all of this in a concise, cleargd anaintainable fashion. Fortunately, modern Perl providesy
tools and techniques to write real programs—from testingp¢oorganization of your source code.

Testing

Testingis the process of writing and running automated verificgadithat your software behaves as intended, in whole or in
part. At its heart, this is an automation of a process youarégumed countless times already: write a bit of code, ruaritl see

if it works. The difference is in thautomation Rather than relying on humans to perform each manual ched&qily every
time, let the computer handle the repetition.

Perl 5 provides great tools to help you write good and useftdraated tests.

Test::More

Perl testing begins with the core moddlest : :More and itsok () function.ok () takes two parameters, a boolean value and
a string describing the purpose of the test:

ok(1, 'the number one should be true');

ok(0, '... and the number zero should not');
ok(", 'the empty string should be false');
ok(', '... and a non-empty string should not');

Ultimately, any condition you can test for in your progranoshl become a binary value. Does the code work as | intended?
A complex program may have thousands of these individuadlitions. In general, the smaller the granularity the beftae
purpose of writing individual assertions is to isolate indual features to understand what doesn’t work as you @edrand
what ceases to work after you make changes in the future.

This snippet isn't a complete test script, howevesst : :More and related modules require the use dkat plan which
represents the number of individual tests you plan to run:

use Test:More tests => 4;

ok(1, 'the number one should be true');

ok(0, '... and the number zero should not');
ok(", 'the empty string should be false');
ok(', "... and a non-empty string should not');

Thetests argument tCest : :More sets the test plan for the program. This gives the test aniaddi assertion. If fewer than
four tests ran, something went wrong. If more than four testssomething went wrong. That assertion is unlikely to deful
in this simple scenario, but @ancatch bugs in code that seems too simple to have éfrors

32As a rule, any code you brag about being too simple to contaimsewill contain errors at the least opportune moment.

123

Modern Perl

You don't have to provideests => ... as animport () argument. At the end of your test program, call the
functiondone_testing (). While a plan at the start with a fixed number of tests can yehét you ran only the
expected number of tests, sometimes it’s difficult or pdittfwerify that number. In those cas@sne_testing()
verifies that the test program completed successfully—uetise, how would yotknow?

Running Tests
The resulting program is now a full-fledged Perl 5 progranictproduces the output:

1.4

ok 1 - the number one should be true

not ok 2 - ... and the number zero should not

Failed test '... and the number zero should not'
at truth_values.t line 4.

not ok 3 - the empty string should be false

Failed test 'the empty string should be false'

at truth_values.t line 5.

ok 4 - ... and a non-empty string should not

Looks like you failed 2 tests of 4.

This format adheres to a standard of test output calke, the Test Anything Protocdlhttp://testanything.org/). As
part of this protocol, failed tests produce diagnostic ragss. This is a tremendous aid to debugging.

The output of a test file containing multiple assertiongpéesally multiplefailed assertions) can be verbose. In most cases,
you want to know either that everything passed or that x, ¢, zafailed. The core moduleest : : Harness interprets TAP and
displays only the most pertinent information. It also po®s a program calleprove which takes the hard work out of the
process:

$ prove truth_values.t

truth_values.t .. 1/4

Failed test '... and the number zero should not'
at truth_values.t line 4.

Failed test 'the empty string should be false'

at truth_values.t line 5.

Looks like you failed 2 tests of 4.

truth_values.t .. Dubious, test returned 2 (wstat 512, 0x20 0)
Failed 2/4 subtests

Test Summary Report

truth_values.t (Wstat: 512 Tests: 4 Failed: 2)
Failed tests: 2-3

That's a lot of output to display what is already obvious: sgeond and third tests fail because zero and the empty string
evaluate to false. It's easy to fix that failure by invertitige sense of the condition with the use of boolean coerciea (s
Boolean Coercion, page 47):

ok(1 0, ... and the number zero should not');
ok(! ", 'the empty string should be false');

With those two changegrove now displays:

$ prove truth_values.t
truth_values.t .. ok
All tests successful.

124

http://testanything.org/

Managing Real Programs

Better Comparisons

Even though the heart of all automated testing is the booteawition “is this true or false?”, reducing everything tat
boolean condition is tedious and offers few diagnostic ipig&s. Test: :More provides several other convenient functions
to ensure that your code behaves as you intend.

Theis () function compares two values using the operator. If the values are equal, the test passes. Otlerthistest fails
and provides a relevant diagnostic message:

is(4, 2 + 2, 'addition should hold steady across the universe)
is('pancake’, 100, '‘pancakes should have a delicious numer ic value');

As you might expect, the first test passes and the secorgd fail

t/lis_tests.t .. 1/2

Failed test 'pancakes should have a delicious numeric valu e'
at t/is_tests.t line 8.

got: 'pancake’

expected: '100'

Looks like you failed 1 test of 2.

Whereok () only provides the line number of the failing tesg () displays the mismatched values.
is() applies implicit scalar context to its values. This meanseikample, that you can check the number of elements in an
array without explicitly evaluating the array in scalar tat:

my @cousins = gqw(Rick Kristen Alex Kaycee Eric Corey);
is(@cousins, 6, 'l should have only six cousins');
...though some people prefer to writealar @cousins for the sake of clarity.

Test: :More provides a correspondinignt () function which passes if the provided values are not equabfaling to thene
operator). Otherwise, it behaves the same waisd3 with respect to scalar context and comparison types.

Bothis () andisnt () applystring comparisonsvith the Perl 5 operatorsq andne. This almost always does the right thing,
but for complex values such as objects with overloading ®e=rloading, page 145) or dual vars (see Dualvars, page/d8),
may prefer explicit comparison testing. Taep_ok () function allows you to specify your own comparison operator

cmp_ok(100, $cur_balance, '<=', 'l should have at least $10 0);
cmp_ok($monkey, $ape, '==", 'Simian numifications should agree');

Classes and objects provide their own interesting waystevant with tests. Test that a class or object extends anolhes
(see Inheritance, page 106) witha_ok ():

my $chimpzilla = RobotMonkey->new();

isa_ok($chimpzilla, 'Robot’);

isa_ok($chimpzilla, 'Monkey");

isa_ok() provides its own diagnostic message on failure.

can_ok () verifies that a class or object can do the requested methoddthods):

can_ok($chimpzilla, 'eat_banana');
can_ok($chimpzilla, 'transform’, 'destroy_tokyo');

Theis_deeply () function compares two references to ensure that their nthéere equal:

use Clone;

my $numbers = [4, 8, 15, 16, 23, 42 |;
my $clonenums = Clone::clone($numbers);

is_deeply($numbers, $clonenums,
'Clone::clone() should produce identical structures');

125

Modern Perl

If the comparison failsTest: :More will do its best to provide a reasonable diagnostic indigatine position of the first
inequality between the structures. See the CPAN modides: :Differences andTest : : Deep for more configurable tests.

Test: :More has several more test functions, but these are the most.usefu

Organizing Tests

testing; testing; CPAN's infrastructure and ecosystenmeetgdistributions to include @ containing one or more test files
named with thet suffix. By default, when you build a distribution witiodule: :Build or ExtUtils: :MakeMaker, the
testing step runs all of thi*.t files, summarizes their output, and succeeds or fails omebelts of the test suite as a whole.
There are no concrete guidelines on how to manage the cerdkimdividual.t files, though two strategies are popular:

» Each.t file should correspond to pmfile

» Each.t file should correspond to a feature

The important considerations are maintainability of trst fites, as larger files are more difficult to maintain thamedler files,
and the granularity of the test suite. A hybrid approachéstiost flexible; one test can verify that all of your modulempile,
while other tests verify that each module behaves as intende

It's often useful to run tests only for a specific feature endevelopment. If you're adding the ability to breathe fiweyour
RobotMonkey, you may want only to run thébreathe_fire.test file. When you have the feature working to your satigact
run the entire test suite to verify that local changes haveniotended global effects.

Other Testing Modules

Test: :More relies on a testing backend knownasst : :Builder. The latter module manages the test plan and coordinates
the test output into TAP. This design allows multiple testdumes to share the samiest : :Builder backend. Consequently,
the CPAN has hundreds of test modules available—and theylloaor& together in the same program.

» Test::Exception provides functions to ensure that your code throws (and doethrow) exceptions appropriately.

e Test::MockObject andTest : : MockModule allow you to test difficult interfaces apmocking(emulating but producing
different results).

e Test::WWW: :Mechanize allows you to test live web applications.
» Test::Database provides functions to test the use and abuse of databases.

e Test::Class offers an alternate mechanism for organizing test suitegldws you to create classes in which specific
methods group tests. You can inherit from test classes pistoar code classes inherit from each other. This is an
excellent way to reduce duplication in test suites. SeeT#e : : Class series written by Curtis Poe attp://www.
modernperlbooks.com/mt/2009/03/organizing-test-suites-with-testclass.html.

e Test::Differences tests strings and data structures for equality and disglayslifferences in its diagnostics.
e Test: :Deep tests the equivalence of nested data structures (see Nestedbtructures, page 55).

e Devel: :Cover analyzes the execution of your test suite to report on theuatrad your code your tests actually exercises.
In general, the more coverage the better—though 100% cawésamt always possible, 95% is far better than 80%.

The Perl QA projecti{ttp: //qa.perl.org/) is a primary source of test modules as well as wisdom andipshexperience
making testing in Perl easy and effective.

Handling Warnings

Perl 5 produces optional warnings for many confusing, warckend ambiguous situations. Even though you should aletost
ways enable warnings unconditionally, certain circumstardictate prudence in disabling certain warnings—andsepgorts
this.

126

http://www.modernperlbooks.com/mt/2009/03/organizing-test-suites-with-testclass.html
http://www.modernperlbooks.com/mt/2009/03/organizing-test-suites-with-testclass.html
http://qa.perl.org/

Managing Real Programs

Producing Warnings

Use thewarn builtin to emit a warning:

warn 'Something went wrong!’;

warn prints a list of values to the STDERR filehandle (see Input @utput, page 129). Perl will append the filename and line
number on which thearn call occurred unless the last element of the list ends in dinew

The coreCarp module offers other mechanisms to produce warninggatte () function reports a warning from the perspec-
tive of the calling code. That is, you could check the aritgdéinction (see Arity, page 59) with:

use Carp;
sub only_two_arguments

my ($lop, $rop) = @_;
Carp::carp('Too many arguments provided') if @_ > 2;

...and anyone who reads the error message will receive lgrefe and line number of tlealling code, notonly_two_-
arguments (). Similarly, Carp’s cluck() produces an entire backtrace of all function calls up to tireemt function.

To track down weird warnings or exceptions throughout ygstesm, enabl€arp’s verbose mode throughout the entire pro-
gram:

$ perl -MCarp=verbose my_prog.pl

This changes alkarp () (andcroak ()—see Reporting Errors, page 67) calls to include a backtk&ben you organize your
code into modules (see Modules, page 134), use Carp insteagoor die to save debugging time.

Enabling and Disabling Warnings

Lexical encapsulation of warnings is as important as lé>@oaapsulation of variables. Older code may use-theommand-

line argument to enable warnings throughout the prograem éwther code has not specifically attempted to suppress-w
ings. It's all or nothing. If you have the wherewithal to elirate warnings and potential warnings throughout the etide-

base, this can be useful.

The modern approach is to use thernings pragma2, which indicates the intent of the author of the code thatmabr
operation should not produce warnings.

The -w flag enables warnings throughout the program unilateraflgardless of lexical enabling or disabling
through thewarnings pragma. The-X flag disableswarnings throughout the program unilaterally. Neither is
common.

All of -w, -W, and-X affect the value of the global varialb$ew. Code written before thearnings pragma (Perl 5.6.0 in spring
2000) maylocalize $~W to suppress certain warnings within a given scope. New cbdeld use the pragma instead.

Disabling Warning Categories

To disable selective warnings within a scope, nisewarnings; with an argument list. Omitting the argument list disabliés a
warnings within that scope.

33, .. or an equivalent such ase Modern::Perl;.

127

Modern Perl

perldoc perllexwarn lists all of the warnings categories your version of Perl S8anstands with the@arnings pragma.
Most of them represent truly interesting conditions whiahmlPnay find in your program. A few may be unhelpful in specifi
conditions. For example, thescursion warning will occur if Perl detects that a function has caltsdlf more than a hundred
times. If you are confident in your ability to write recursi@nding conditions, you may disable this warning withia stope
of the recursion (though tail calls may be better; see TdikCpage 70).

If you're generating code (see Code Generation, page 14dgalty redefining symbols, you may wish to disable th@efine
warnings.

Some experienced Perl hackers disableithénitialized value warnings in string-processing code which concaésnat
values from many sources. Careful initialization of valésbcan avoid the need to disable the warning, but local styte
concision may render this warning moot.

Making Warnings Fatal
If your project considers warnings as onerous as errors,camumake them lexically fatal. To promo#édl warnings into
exceptions:

use warnings FATAL => ‘all’;

You may also make specific categories of warnings fatah suscthe use of deprecated constructs:

use warnings FATAL => ‘'deprecated’;

Catching Warnings

Just as you can catch exceptions, so you can catch warning%sTG variablé* holds handlers for all sorts of signals Perl or
your operating system might throw. It also includes twossfot signal handlers for Perl 5 exceptions and warnings atohca
warning, install an anonymous function ird8IG{__WARN__}:

my $warning;
local $SIG{__WARN__} = sub { $warning .= shift };

do something risky

say "Caught warning:\n$warning" if $warning;

Within the warning handler, the first argument is the wag'snmessage. Admittedly, this technique is less useful thsabling
warnings lexically—but it can come to good use in test modalesh asTest : :Warnings from the CPAN, where the actual
text of the warning is important.

Registering Your Own Warnings

With the use of th@arnings: : register pragma you can even create your own lexical warnings so seaswf your code can
enable and disable lexical warnings as appropriate. Tleiasy to accomplish; from a modulese thewarnings: :register
pragma:

package Scary::Monkey;
use warnings::register;

1;

34Seeperldoc perlvar.

128

Managing Real Programs

This will create a new warnings category named after theggedcary : : Monkey. Enable these warnings witfse warnings
'Scary: :Monkey' and disable them witho warnings 'Scary::Monkey'.

Usewarnings: :enabled() to test if the calling lexical scope has the given warninggaty enabled. Usearnings: : -
warnif () to produce a warning only if warnings are in effect. For eximip produce a warning in thieprecated category:

package Scary::Monkey;
use warnings::register;

sub import

{
warnings::warnif('deprecated’,
‘empty imports from ' . _ PACKAGE__ . ' are now deprecated')
unless @_;

Seeperldoc perllexwarn for more details.

Files

Most programs deal with the outside world in some fashiod,ranch of that interaction takes place with files: readirenth
writing them, manipulating them in some other fashion. Besrly history as a language for system administrationtart
processing has produced a language very well suited fomi#ripulation.

Input and Output

The primary mechanism of interacting with the world outside program is through filehandle Filehandles represent the
state of some channel of input or output, such as the starlaut or output of a program, a file from or to which to read or
write, and the position in a given file. Every Perl 5 prograas lthree standard filehandles availal$feDIN (the input to the
program),STDOUT (the output from the program), aiSdDERR (the error output from the program).

By default, everything yoprint or say goes toSTDOUT, while errors and warnings and everything ywarn () goes to
STDERR. This separation of output allows you to redirect usefupat&nd errors to two different places—an output file and
error logs, for example.

The speciabATA filehandle represents the current file. When Perl finisteamiling the file, it leaves the package
globalDATA available and open at the end of the compilation unit. If ylmuesstring data after _DATA__ or _-
_END__, you can read that from th@ATA filehandle. This is useful for short, self-contained p@ags.perldoc
perldata describes this feature in more detail.

Besides the standard filehandles, you can open your ownefiléles with thepen builtin. To open a file for reading:

open my $fh, '<', ‘filename’
or die "Cannot read '$filename: $I\n";

The first operand is a lexical which will hold the openedti#émdle. The second operand is file mode which determines
the type of the filehandle operation. The final operand &sriame of the file. If thepen fails, thedie clause will throw an
exception, with the contents éft giving the reason why the open failed.

Besides files, you can open filehandles to scalars:

use autodie; # see The autodie Pragma, page 167

my $captured_output;
open my $fh, >, \$captured_output;

do_something_awesome($fh);

129

Modern Perl

Table 1: File Modes

Symbols Explanation

< Open for reading

> Open for writing, clobbering existing contents |if
the file exists and creating a new file otherwise.

>> Open for writing, appending to any existing con-
tents and creating a new file otherwise.

+< Open for readin@nd writing.

Such filehandles support all of the existing file modes.
You may encounter older code which uses the two-argumemt édopen () :

open my $fh, "> $some_file"
or die "Cannot write to '$some_file": $\n";

The lack of clean separation between the intended file modetfze name of the file allows the possibility of unintenibn
behaviord® when interpolating untrusted input into the second oper¥ad can safely replace the two-argument form of open
with the three-argument form in every case without any Id$eature.

perldoc perlopentut offers far more details about more exotic usesmin, including its ability to launch and control other
processes, as well as the usepéopen for finer-grained control over input and outpgerldoc perlfaqg5 includes working
code for many common IO tasks.

Reading from Files

Given a filehandle opened for input, read from it with tieadline operator, also written as>. The most common idiom is
toread aline at a time inwhile () loop:

use autodie;

open my $fh, '<', 'some_file’;
while (<$fh>)

{

chomp;
say "Read a line '$_";

In scalar contextreadline iterates through the lines of the file until it reaches thd efthe file of ()). Each iteration
returns the next line. After reaching the end of the file,hetieration returnsindef. Thiswhile idiom explicitly checks the
definedness of the variable used for iteration, such thigttble end of file condition ends the loop.

Every line read fromreadline includes the character or characters which mark the end iofealh most cases, this is a
platform-specific sequence consisting of a newling) (a carriage return\), or a combination of the two\¢\n). Usechomp
to remove your platform’s specific newline sequence.

With everything all together, the cleanest way to read frdesfin Perl 5 is:

use autodie;
open my $fh, '<', $filename;

while (my $line = <$fh>)

35When you read that phrase, train yourself to think “I wondéhét might produce security problems?”

130

Managing Real Programs

chomp $line;

If you're not readingextualdata—instead readirfginary data—uséinmode on the filehandle before reading from or writing
to it. This builtin tells Perl to treat all of the filehandéedata as pure data. Perl will not modify it in any fashiontasight for
platform portability. Although Unix-like platforms may hto needbinmode in this case, portable programs use it anyway (see
Unicode and Strings, page 17).

Writing to Files
Given a filehandle open for output, you mpyint or say to it:
use autodie;

open my S$out_fh, ">, ‘output_file.txt’;

print $out_fh "Here's a line of text\n";
say $out_fh "... and here's another";

Note the lack of comma between the filehandle and the sules¢@perand.

Damian Conway’'sPerl Best Practicesecommends enclosing the filehandle in curly braces as &. fdbs is
necessary to disambiguate parsing of a filehandle cordaiman aggregate variable, and it won'’t hurt anything
the simpler cases.

in

You may write an entire list of values trint or say, in which case Perl 5 uses the magic globaks the separator between
list values. Perl also uses any valueggfas the final argument torint or say.
Closing Files

When you've finished working with a file, you maylose it explicitly or allow its filehandle to go out of scope, in veh case
Perl will close it for you. The benefit of callinglose explicitly is that you can check for—and recover from—specaéirors,
such as running out of space on a storage device or a brokennketonnection.

As usualautodie handles these checks for you:

use autodie;

open my $fth, >, $file;

close $fh;

Special File Handling Variables
For every line read, Perl 5 increments the value of the vieigh which serves as a line counter.

readline uses the current contents$f as the line-ending sequence. The value of this variableittef@ the most appropriate
line-ending character sequence for text files on your cuipéatform. In truth, the wordine is a misnomer. You can sét to
contain any sequence of charactérghis is useful for highly-structured data in which you wemtead aecordat a time.

By default, Perl usebuffered outputwhere it performs IO only when it has enough data to excedulestold. This allows
Perl to batch up expensive IO operations instead of alwaifgwgyrvery small amounts of data. Yet sometimes you want italse

36, .. but never a regular expression, because Perl 5 doesparsuhat.

131

Modern Perl

data as soon as you have it without waiting for that bufferiggpecially if you're writing a command-line filter connedtto
other programs or a line-oriented network service.

The$| variable controls buffering on the currently active outfilghandle. When set to a non-zero value, Perl will flush the
output after each write to the filehandle. When set to a zelwey#erl will use its default buffering strategy.

In lieu of the global variable, use thatoflush () method on a lexical filehandle. Be sure to |daid eHandle first, as you
cannot call methods on lexical filehandles otherwise:

use autodie;
use FileHandle;

open my $fh, >, 'pecan.log’;
$fh->autoflush(1);

Once you have loadeflileHandle, you may also use itsnput_line_number () andinput_record_separator () meth-
ods instead 0. and$/ respectively. Seperldoc FileHandle andperldoc I0::Handle for more information.

10::File has supersedetileHandle in Perl 5.12.

Directories and Paths

You may also manipulate directories and file paths with BeWorking with directories is similar to working with fileexcept
that you cannotvrite to directoried’. Open a directory handle wibpendir:

use autodie;

opendir my $dirh, '’home/monkeytamer/tasks/’;

Thereaddir builtin reads from a directory. As withead1line, you may iterate over the contents of directories one at a tim
or you may assign them to a list in one swoop:

iteration
while (my $file = readdir $dirh)
{

}

flattening into a list
my @files = readdir $otherdirh;

As a new feature available in 5.12¢addir in awhile will set $_, just as doeseadline in while:

use 5.012;
use autodie;

opendir my $dirh, 'tasks/circus/;

while (readdir $dirh)
{

next if /A,
say "Found a task $_!";

37Instead, you save and move and rename and remove files.

132

Managing Real Programs

The curious regular expression in this example skips sedaidden fileson Unix and Unix-like systems, where a leading
dot prevents them from appearing in directory listings bfadk. It also skips two special files returned from evesaddir
invocation, specifically. and. ., which represent the current directory and the parent @irgcrespectively.

The names returned fromeaddir arerelative to the directory itself. In other words, if thiasks/directory contains three
files namedeat drink, andbe_monkeyreaddir will return eat, drink, andbe_monkey andnot tasks/eattasks/drink and
task/be_monkeyn contrast, armbsolutepath is a path fully qualified to its filesystem.

Close a directory handle by letting it go out of scope or withd1losedir builtin.

Manipulating Paths

Perl 5 offers a Unixy view of the world, or at least your filsggm. Even if you aren’t using a Unix-like platform, Perl
will interpret Unix-style paths appropriately for your apéng system and filesystem. In other words, if you're gsMi-
crosoft Windows, you can use the pafh/My Documents/Robots/Bendgtist as easily as you can use the p&tMy
Document§Robots Caprica Six.

Even so, manipulating file paths in a safe and cross-platfmanner suggests that you avoid string interpolation andate-
nation. The cor&ile: : Spec module family provides abstractions to allow you to margpelfile paths in safe and portable
fashions. Even so, it's not always easy to understand ord¢@osectly.

ThePath: :Class distribution on the CPAN provides a nicer interface aroBmile : : Spec. Use thedir () function to create
an object representing a directory and ftiee () function to create an object representing a file:

use Path::Class;

my $meals = dir('tasks', 'cooking');
my $file = file('tasks’, ‘health’, 'exoskeleton_research Axt');

...and you can get file objects from directories:

my $lunch = $meals->file('veggie_calzone.txt');

...and vice versa:

my $robots_dir = $robot_list->dir();

You can even open filehandles to directories and files:

my $dir_fh = $dir->open();
my $robots_fh = $robot_list->open('r') or die "Open failed HERTE

BothPath: :Class: :Dir andPath: :Class: :File offer further useful behaviors.

File Manipulation

Besides reading and writing files, you can also manipulaetas you would directly from a command line or a file manager
The -X file test operators can give you information about the latteés of files and directories on your system. For example, t
test that a file exists:

say 'Present!" if -e $filename;

The -e operator has a single operand, the name of a file or a file recttiry handle. If the file exists, the expression will
evaluate to a true valugerldoc -f -X lists all other file tests; the most popular are:

-f, which returns a true value if its operand is a plain file
-d, which returns a true value if its operand is a directory

133

Modern Perl

-r, which returns a true value if the file permissions of its i@mel permit reading by the current user

-z, which returns a true value if its operand is a non-empty file

As of Perl 5.10.1, you may look up the documentation for anthe§e operators witherldoc -f -r, for example.

Therename builtin can rename a file or move it between directoriesakets two operands, the old name of the file and the new
name:

use autodie;
rename 'death_star.txt', 'carbon_sink.txt’;

or if you're stylish:
rename 'death_star.txt' => 'carbon_sink.txt'’;

There’s no core builtin to copy a file, but the cafele: : Copy module provides botleopy () andmove() functions. Use
unlink to remove one or more files. These functions and builtinssallrn true values on success anddgebn error.

Path: :Class provides convenience methods to check certain file atgibas well as to remove files completely,
in a cross-platform fashion.

Finally, Perl allows you to change its notion of the curreméectory. By default, this is the active directory from wherou
launched the program. The cated module allows you to determine this. The builihdir attempts to change the current
working directory. This can be useful for manipulating $ileith relative—not absolute—paths.

Modules

A moduleis a package contained in its own file and loadable with or require. A module must be valid Perl 5 code. It must
end with an expression which evaluates to a true value sdttbd®erl 5 parser knows it has loaded and compiled the module
successfully.

There are no other requirements, only strong conventions.

Packages correspond to files on disk in that when you load dufeavithuse or require’s bareword form, Perl splits the
package name on double-colons) and turns the components of the package name into a file patts:

use StrangeMonkey;

...causes Perl to search for a file nangtcangeMonkey.ptim every directory ineINC, in order, until it finds one or exhausts
the list. As well:

use StrangeMonkey::Persistence;

...causes Perl to search for a file nanredsistence. pmin every directory name8trangeMonkeypresent in every directory
in @INC, and so on. Finally:

use StrangeMonkey::Ul::Mobile;

...causes Perl to search for a relative file pathStfangeMonkey/Ul/Mobile.prm every directory in@INC. There is no
technical requirement that the file at that location contain grackage declaration, let alone gackage declaration of
StrangeMonkey: :UI: :Mobile. Maintenance concerns highly recommend that conventioneter.

134

Managing Real Programs

perldoc -1 Module: :Name will print the full path to the relevanpmfile, provided that thelocumentatiorior
that module exists in thgmfile.

Using and Importing

When you load a module with these builtin, Perl loads it from disk, then calls itsiport () method, passing any arguments
you provided. This occurs at compilation time:

use strict; # calls strict->import()
use CGI "standard’; # calls CGIl->import("standard')
use feature qw(say switch) # calls feature->import(qw(say switch))

You do not have to provide atmport () method, and you may use it to do anything you wish, but thedstiahAP1 expectation

is that it takes a list of arguments of symbols (usually fiore) to make available in the calling namespace. This igrsttong
requirement; pragmas (see Pragmas, page 121) sustrast use arguments to change their behavior instead of exporting
symbols.

Theno builtin calls a module’sinimport () method, if it exists, passing any arguments. While it's galedio remove exported
symbols, it's more common to disable specific features afjpras and other modules which introduce new behaviorsdhrou
import ():

use strict;

no symbolic references, variable declaration required, n o barewords

no strict 'refs’;

symbolic references allowed
variable declaration still required; barewords prohibit ed

Like use andimport (), no callsunimport () during compilation time. Effectively:

use Module::Name qw(list of arguments);

...is the same as:

BEGIN
{

require 'Module/Name.pm’;
Module::Name->import(qw(list of arguments));

Similarly:
no Module::Name qw(list of arguments);

...is the same as:

BEGIN
{

require 'Module/Name.pm’;
Module::Name->unimport(qw(list of arguments));

135

Modern Perl

If import () or unimport () does not exist in the module, Perl will not give an error mgesdhey are truly,
optional.

...including therequire of the module.

You may callimport () andunimport () directly, though it makes little sense to unimport a pragmuside of aBEGIN block,
as they often have compilation-time effects.

Perl 5'suse andrequire are case-sensitive, even if the underlying filesystem is\Wtile Perl knows the difference between
strict andStrict, your combination of operating system and file system madylhgou were to writeuse Strict;, Perl
would not findstrict.pmon a case-sensitive filesystem. With a case-insensitigsyfstem, Perl will happily loa8trict.pm but
will try to call Strict->import (). Nothing will happen, becausgrict.pmdeclares a package namegrict.

Portable programs are strict about case even if they dowd twabe.

Exporting

A module can make certain global symbols available to otlaekages through a process knowreaporting This is the flip
side of passing argumentsiaport () through ause statement.

The standard way of exporting functions or variables to othedules is through the core mod®eporter. Exporter relies
on the presence of package global variabl@g*PORT_OK and @EXPORT in particular—which contain a list of symbols to
export when requested.

Consider e&strangeMonkey: :Utilities module which provides several standalone functions ughaldeighout the system:

package StrangeMonkey::Utilities;
use Exporter ‘import’;

our @EXPORT_OK = qw(round_number translate screech);

Any other code now can use this module and, optionally, impoy or all of the three exported functidfisYou may also
export variables:

push @EXPORT_OK, qw($spider $saki $squirrel);

The CPAN moduleub: :Exporter provides a nicer interface to export functions without ggackage globals. It
also offers more powerful options. HowevEgporter can export variables, whikub: : Exporter only exports
functions.

You canexport symbols by default by listing them @XPORT instead 0f@EXPORT_OK:

our @EXPORT = gw(monkey_dance monkey_sleep);

...S0 that anyuse StrangeMonkey::Utilities; will import both functions. Be aware that specifying symbabd import
will notimport default symbols. You can also load a module withoytaniing any symbols by providing an explicit empty
list:

38, .. thoughusingthe module in any code is sufficient to allow any other codevoka its functions by their fully-qualified names.

136

Managing Real Programs

make the module available, but import() nothing
use StrangeMonkey::Utilities ();

Regardless of any import lists, you can always call funcimnanother package with their fully-qualified names:

StrangeMonkey::Utilities::screech();

Organizing Code with Modules

Perl 5 does not require you to use modules, nor packagesaneespaces. You may put all of your code in a singldile,
or in multiple..pl files yourequire as necessary. You have the flexibility to manage your codbérmost appropriate way,
given your development style, the formality and risk andahof the project, your experience, and your comfort with Be
deployment.

Even so, a project with more than a couple of hundred line®déceceives multiple benefits from module organization:

« Modules help to enforce a logical separation betweenntiséntities in the system.
e Modules provide an API boundary, whether procedural or OO.
¢ Modules suggest a natural organization of source code.

The Perl 5 ecosystem has many tools devoted to creatingtanaing, organizing, and deploying modules and distribu-
tions.

¢ Modules provide a mechanism of code reuse.

Even if you do not use an object-oriented approach, modeliegy distinct entity or responsibility in your system wit own
module keeps related code together and separate codetsepara

Distributions

A distributionis a collection of one or more modules (see Modules, page WBih forms a single redistributable, testable,
and installable unit. Effectively it's a collection of mdéuand metadata.

The easiest way to manage software configuration, buildiiggribution, testing, and installation even within yauganization

is to create distributions compatible with the CPAN. Thewamtions of the CPAN—how to package a distribution, how to
resolve its dependencies, where to install software, hovetify that it works, how to display documentation, how torrage

a repository—have all arisen from the rough consensus oftmls of contributors working on tens of thousands of ptgjec

In particular, the copious amount of testing and reporting @ependency checking achieved by CPAN developers exteeds
available information and quality of work in any other laage community. A distribution built to CPAN standards can be
tested on several versions of Perl 5 on several differertviee platforms within a few hours of its uploading—all witio
human intervention.

You may choose never to release any of your code as public Gigthbutions, but you can reuse existing CPAN tools and
designs as possible. The combination of intelligent dédaarid customizability are likely to meet your specific need

Attributes of a Distribution
A distribution obviously includes one or more modules. $icsincludes several other files and directories:

 Build.PL or Makefile.PL, the program used to configure, build, test, bundle, an@iirithe distribution.

MANIFEST a list of all files contained in the distribution. This helpackaging tools produce an entire tarball and helps
to verify that recipients of the tarball have all of the neszey files.

META.ymland/orMETA .json a file containing metadata about the distribution andéfgethdencies.
README a description of the distribution, its intent, and its cogit and licensing information.

lib/, the directory containing Perl modules.

137

Modern Perl

« t/, a directory containing test files.
e Changesa log of every change to the distribution.

Additionally, a well-formed distribution must contain aigne name and single version number (often taken from itagny
module). Any well-formed distribution you download frometipublic CPAN should conform to these standards—and the
CPANTS service evaluates the kwalitgef all CPAN distributions and recommends packaging impnosets.

CPAN Tools for Managing Distributions

The Perl 5 core includes several tools to manage distribstienot just installing them from the CPAN, but developing and
managing your own:

e CPAN.pnm is the official CPAN client. While by default it installs digiutions from the public CPAN, you can point it to
your own repository instead of or in addition to the publipasitory.

e CPANPLUS is an alternate CPAN client with a different design approdctoes some things better th@RAN . pm, but
they are largely equivalent at this point. Use whichever gafer.

e Module: :Build is a pure-Perl tool suite for configuring, building, inditad), and testing distributions. It works with the
Build.PLfile mentioned earlier.

e ExtUtils::MakeMaker is an older, legacy tool whichodule: :Build intends to replace. It is still in wide use, though
it is in maintenance mode and receives only the most cribagl fixes. It works with theMakefile.PLfile mentioned
earlier.

* Test: :More (see Testing, page 123) is the basic and most widely usedgesbdule used to write automated tests for
Perl software.

» Test::Harness andprove (See Running Tests, page 124) are the tools used to run tests aterpret and report their
results.

In addition, several non-core CPAN modules make your lifdexaas a developer:

e App::cpanminus is a new utility which provides almost configuration-fregeuof the public CPAN. It fulfills 90% of
your needs to find and install modules.

e App::perlbrew helps you to manage multiple installations of Perl 5. Thigasy useful to use a newer version than
the system version or to isolate distributions you've itksthfor one application from distributions you've instdl for
another.

e CPAN::Mini and thecpanmini command allow you to create your own (private) mirror of thedlpc CPAN. You can
inject your own distributions into this repository and mgeavhich versions of the public modules are available in your
organization.

e Dist::Zillais atoolkit for managing distributions by automating awaynenon tasks. While it can use eith&rdule: : -
Build or ExtUtils: :MakeMaker, it can replaceyour use of them directly.

» Test: :Reporter allows you to report the results of running the automatedstgites of distributions you install, giving
their authors more data on any failures.

Designing Distributions

The process of designing a distribution could fill a booke(Sam Tregar'$Vriting Perl Modules for CPAIN but a few design
principles will help you. Start with a utility such a®dule: :Starter or Dist::Zilla from the CPAN. The initial cost of
learning the configuration and rules may seem like a steggstment, but the benefit of having everything set up thiet ricay
(and in the case dfist: : Zilla, nevergoing out of date) relieves you of much tedious bookkeeping.

Then consider several rules.

39Quality is difficult to measure with heuristics. Kwalitee feetmachine measurable relative of quality.

138

Managing Real Programs

e Each distribution should have a single, well-defined pwgadhat purpose may be to process a particular type of data
file or to gather together several related distributiorts i single installable bundle. Decomposing your softwate i
individual bundles allows you to manage their dependeragigsopriately and to respect their encapsulation.

« Each distribution needs a single version numb&rsion numbers must always increase. The semantic vepsilicy
(http://semver.org/) is sane and compatible with the Perl 5 approach.

e Each distribution should have a well-defined ARIcomprehensive automated test suite can verify that yountaiai
this API across versions. If you use a local CPAN mirror taalsyour own distributions, you can re-use the CPAN
infrastructure for testing distributions and their depamzles. You get easy access to integration testing acrosable
components.

« Automate your distribution tests and make them repeatafdevaluable Managing software effectively requires you to
know when it works and how it fails if it fails.

¢ Present an effective and simple interfadgoid the use of global symbols and default exports; allowgle to use only
what they need and do not pollute their namespaces.

The UNIVERSAL Package

Perl 5 provides a special package which is the ancestor otladr packages in a very object-oriented way. TNEVERSAL
package provides a few methods available for all other ekaaad objects.

The isa() Method

Theisa() method takes a string containing the name of a class or the n&ambuilt-in type. You can call it as a class method
or an instance method on an object. It returns true if thes@a®bject is or derives from the named class, or if the olifjeelf
is a blessed reference to the given type.

Given an objec$pepper, a hash reference blessed into Heakey class (which inherits from thigammal class):

say $pepper->isa('Monkey'); # prints 1
say $pepper->isa('Mammal'); # prints 1
say $pepper->isa('HASH'); # prints 1
say Monkey->isa('Mammal'); # prints 1
say $pepper->isa('Dolphin'); # prints 0
say $pepper->isa('ARRAY'); # prints 0
say Monkey->isa('HASH'); # prints O

Perl 5's core types ar€CALAR, ARRAY, HASH, Regexp, 10, andCODE.

You can overrideisa() in your own classes. This can be useful when working with malgjects (se@est: :MockObject
andTest : :MockModule on the CPAN, for example) or with code that does not use rales Roles, page 105).

The can() Method

Thecan () method takes a string containing the name of a method. imetureference to the function which implements that
method, if it exists. Otherwise, it returns false. You maljl ttas on a class, an object, or the name of a package. In ttex la
case, it returns a reference to a function, not a method.

Given a class namegbiderMonkey with a method namedcreech, you can get a reference to the method with:

if (my $meth = SpiderMonkey->can('screech')) { ... }
if (my $meth = $sm->can('screech')

$sm->$meth();
}

Given a plugin-style architecture, you can test to see if ekpge implements a specific function in a similar way. The
UNIVERSAL: :require module adds aequire() method to theJNIVERSAL namespace to invert the sense of teguire
builtin:

139

http://semver.org/

Modern Perl

a useful CPAN module
use UNIVERSAL::require;

die $@ unless $module->require();
if (my $register = $module->can('register')

$register->();

...though in larger programs, udedule: :Pluggable to handle this busy work for you.

You can (and should) overridean () in your own code if you us@UTOLOAD () (see Drawbacks of AUTOLOAD, page 87).

—

There isoneknown case where callingNIVERSAL: :can() as a function and not a method is not incorrect
determine whether a class exists in Perl BINfVERSAL: :can($classname, 'can') returns true, someong
somewhere has defined a class of the n@rlessname—though consider using instead Moose’s introspectign.

(6]

=]

The VERSION() Method

TheVERSION() method is available to all packages, classes, and objécetuins the value of th@VERSION variable for the
appropriate package or class. It takes a version number@stiamal parameter. If you provide this version number tethod
will throw an exception if the querie$VERSION is not equal to or greater than the parameter.

Given aHowlerMonkey module of versior . 23:

say HowlerMonkey->VERSION(); # prints 1.23

say $hm->VERSION(); # prints 1.23

say $hm->VERSION(0.0); # prints 1.23

say $hm->VERSION(1.23); # prints 1.23

say $hm->VERSION(2.0); # throws exception

You can override/ERSION () in your own code, but there’s little reason to do so.

The DOES() Method

TheDOES() method is new in Perl 5.10.0. It exists to support the use lekr(see Roles, page 105) in programs. Pass it an
invocant and the name of a role, and the method will retura ifthe appropriate class somehow does that role—whether
through inheritance, delegation, composition, role ayapion, or any other mechanism.

The default implementation @QES () falls back toisa(), because inheritance is one mechanism by which a class may do
role. Given &Cappuchin:

say Cappuchin->DOES('Monkey'); # prints 1
say $cappy->DOES(‘Monkey'); # prints 1
say Cappuchin->DOES('Invertebrate'); # prints 0

You can (and should) overrid®ES () in your own code if you manually provide a role or other allopitac behavior.

Extending UNIVERSAL

It's tempting to store other methods INIVERSAL to make it available to all other classes and objects in PeAvbid this
temptation; this global behavior can have subtle side tffleecause it is unconstrained.

With that said, occasional abuse @fIVERSAL for debuggingpurposes and to fix improper default behavior may be excus-
able. For example, Joshua ben JO@KEVERSAL: :ref distribution makes the nearly-uselessf () operator usable. The

140

Managing Real Programs

UNIVERSAL: :can and UNIVERSAL: :isa distributions can help you debug anti-polymorphism bugs (Method-Function
Equivalence, page 162), whikerl: :Critic can detect tho$€ problems.

Outside of very carefully controlled code and very specifery pragmatic situations, there’s no reason to put COUBINERSAL
directly. There are almost always much better design altemes.

Code Generation

Improving as a programmer requires you to search for bebigractions. The less code you have to write, the bettermidre
general your solutions, the better. When you can delete cudladd features, you've achieved something great.

Novice programmers write more code than they need to wrag)ypfrom unfamiliarity with their languages, librarieand
idioms, but also due to inexperience creating and maimtgigbod abstractions. They start by writing long lists ofqaaural
code, then discover functions, then parameters, thentsbped—perhaps—higher-order functions and closures.

Writing programs to write programs for youmetaprogrammingr code generatiop—offers greater possibilities for abstrac-
tion. This can be as clear as exploiting higher-order prognang capabilities or a rat hole down which you find yourself
confused and frightened. The techniques are powerful agfdilug-or example, they form the basis of Moose (see Moogg pa
100).

The AUTOLODAD technique (see AUTOLOAD, page 85) for missing functions amethods demonstrates this technique in a
constrained form; Perl 5’s function and method dispatclesgsallows you to customize what happens when normal lookup
fails.

eval

The simplest code generation technique is to build a stamgaining a snippet of valid Perl and compile it with thersgréval
operator. Unlike the exception-catching bloskal operator, stringsval compiles the contents of the string within the current
scope, including the current package and lexical bindings.

A common use for this technique is providing a fallback if yaan't (or don’t want to) load an optional dependency:

eval { require Monkey::Tracer }
or eval 'sub Monkey::Tracer::log {};

If Monkey: : Tracer is not available, it og () function will exist, but will do nothing.

—

This isn't necessarily theestway to handle this feature, as the Null Object pattern offieose encapsulation, by
it is away to do things.

This simple example is deceptive. You must handle quotieges to include variables within yoerald code. Add more
complexity to interpolate some but not others:

sub generate_accessors

{

my ($methname, $attrname) = @_;

eval <<"END_ACCESSOR";
sub get_$methname

my \$self = shift;

return \$self->{$attrname};

}

sub set_$methname

40, .and many, many other.

141

Modern Perl

my (\$self, \$value) = \@_;
\$self->{$attrname} = \$value;

}
END_ACCESSOR
}

Woe to those who forget a backslash! Good luck convincing gguatax highlighter what's happening! Worse yet, each-invo
cation of stringeval builds a new data structure representing the entire codapiog code isn't free, either—cheaper than
performing 10, perhaps, but not free.

Even so, this technique is simple and reasonably easy tastade.

Parametric Closures

While building accessors and mutators withe1 is straightforward, closures (see Closures, page 79) altawto add param-
eters to generated code at compilation time without reagiaidditional evaluation:

sub generate_accessors
my $attrname = shift;
my $getter = sub

my $self = shift;
return $self->{$attrname};

h
my $setter = sub
my ($self, $value) = @_;

$self->{$attrname} = $value;

return $getter, $setter;

This code avoids unpleasant quoting issues and runs macklyjlas there’s only one compilation stage, no matter howyma
accessors you create. It even uses less memory by sharingrigled code between all instances of the closure. All that
differs is the binding to th@attrname lexical. In a long-running process, or with a lot of accessthis technique can be very
useful.

Installing into symbol tables is reasonably easy, if ugly:

{

my ($getter, $setter) = generate_accessors(‘homecourt')

no strict 'refs';
+{ 'get_homecourt' } = $getter;
*{ 'set_homecourt' } = $setter;

}

The odd syntax of an asterfS8kdeferencing a hash refers to a symbol in the cursgnibol tablewhich is the place in the
current namespace which contains globally-accessibldsimsuch as package globals, functions, and methods. fsgig
reference to a symbol table entry installs or replaces tipeogpiate entry. To promote an anonymous function to a ntgtho
assign that function reference to the appropriate entrigérsyymbol table.

This operation refers to a symbol with a string, not a liter@liable name, so it's a symbolic reference and it's necgdsa
disablestrict reference checking for the operation. Many programs hawgtesbug in similar code, as they assign and
generate in a single line:

4IThink of it as atypeglob sigil where aypeglobis Perl jargon for “symbol table”.

142

Managing Real Programs

no strict 'refs’;

*{ $methname } = sub {
subtle bug: strict refs
are disabled in here too

This example disables strictures for the outer block as agethe inner block, the body of the function itself. Only tissign-
ment violates strict reference checking, so disable stéstfor that operation alone.

If the name of the method is a string literal in your sourcee;adther than the contents of a variable, you can assigreto th
relevant symbol directly rather than through a symbolierefce:

no warnings 'once’;
(*get_homecourt, *set_homecourt) = generate_accessors('homecourt');

Assigning directly to the glob does not violate strictutag, mentioning each glob only ondeesproduce a “used only once”
warning unless you explicitly suppress it within the scope.

Compile-time Manipulation

Unlike code written explicitly as code, code generateduflostringeval gets compiled at runtime. Where you might expect
a normal function to be available throughout the lifetimeyofir program, a generated function might not be availablerwh
you expect it.

Force Perl to run code—to generate other code—during the ¢atiopi stage by wrapping it in BEGIN block. When the Perl
5 parser encounters a block labeREEGIN, it parses the entire block. Provided it contains no syntexrs, the block will run
immediately. When it finishes, parsing will continue as été were no interruption.

In practical terms, the difference between writing:
sub get_age { ..}
sub set_age { ..}

sub get name { .. }
sub set_name { ...}

sub get_weight { ... }
sub set_weight { ... }

..and:

sub make_accessors { ... }

BEGIN
{

for my $accessor (qw(age name weight))

{
my ($get, $set) = make_accessors($accessor);
no strict 'refs’;

+{ 'get_' . $accessor } = $get;
*{ 'set_' . $accessor } = $set;

...is primarily one of maintainability.

Within a module, any code outside of functions executes wioeruse it, because of the implicBEGIN Perl adds around the
require andimport (see Importing, page 67). Any code outside of a function hsidie the module will executeeforethe

143

Modern Perl

import () call occurs. If yourequire the module, there is no implidEGIN block. The execution of code outside of functions
will happen at theendof parsing.

Also beware of the interaction between lexidatlaration(the association of a name with a scope) and lexasalgnmentThe
former happens during compilation, while the latter ocairthe point of execution. This code has a subtle bug:

use UNIVERSAL::require;

buggy; do not use
my $wanted_package = 'Monkey::Jetpack’;

BEGIN
{

$wanted_package->require();
$wanted_package->import();

}

... because thBEGIN block will executebeforethe assignment of the string valueft@anted_package occurs. The result will
be an exception from attempting to invoke thejuire () method on the undefined value.

Class::MOP

Unlike installing function references to populate namesgaand to create methods, there’'s no simple default wayetter
classes in Perl 5. Fortunately, a mature and powerful Higtidn is available from the CPAN to do just thiS.ass: : MOP is the
library which makes Moose (see Moose, page 100) possilpeoVides aneta object protocel-a mechanism for creating and
manipulating an object system in terms of itself.

Rather than writing your own fragile stringral code or trying to poke into symbol tables manually, you camimaate the
entities and abstractions of your program with objects aathods.

To create a class:

use Class::MOP;

my $class = Class::MOP::Class->create('Monkey::Wrench');

You can add attributes and methods to this class when yotedtea

use Class::MOP;

my $class = Class::MOP::Class->create(
‘Monkey::Wrench' =>

attributes =>

[
Class::MOP::Attribute->new(‘$material'),
Class::MOP::Attribute->new('$color'),

]

methods =>

{
tighten => sub { ... },
loosen => sub { ... },

)
...or add them to thmetaclasgthe object which represents that class) after you've erkit

$class->add_attribute(experience => Class::MOP::Attri bute->new('$xp'));
$class->add_method(bash_zombie => sub { ... });

...and you can inspect the metaclass:

my @attrs = $class->get_all_attributes();
my @meths = $class->get_all_methods();

You can similarly create and manipulate and introspeabaties and methods wittlass: :MOP: : Attribute andClass: : -
MQOP: :Method.

144

Managing Real Programs

Overloading

Perl 5 is not a pervasively object oriented language. It data types (scalars, arrays, and hashes) are not obj#ttaethods
you can overload. Even so, yeancontrol the behavior of your own classes and objects, ealbgwihen they undergo coercion
or evaluation in various contexts. Thisagerloading

Overloading can be subtle but powerful. An interesting eplenis overloading how an object behaves in boolean context,
especially if you use something like the Null Object patté@ntp://www.c2.com/cgi/wiki?NullObject). In boolean
context, an object will be true. . . but not if you overload lifb@ation.

You can overload what the object does for almost every ojerastringification, numification, boolification, itation, in-
vocation, array access, hash access, arithmetic opesatiomparison operations, smart match, bitwise operatam even
assignment.

Overloading Common Operations

The most useful are often the most common: stringificatmmification, and boolification. Theverload pragma allows you
to associate a function with an operation you can overloadel a class which overloads boolean evaluation:

package Null;

use overload 'bool' => sub { 0 };

In all boolean contexts, every instance of this class willeate to false.

The arguments to theverload pragma are pairs where the key describes the type of ovedonddhe value is a function
reference to call in place of Perl's default behavior fott thigject.

It's easy to add a stringification:

package Null;

use overload
‘bool' => sub { O },
" => sub { '(null) }

Overriding numification is more complex, because arithmeperators tend to be binary ops (see Arity, page 59). Giwen
operands both with overloaded methods for addition, whidte$ precedence? The answer needs to be consistent, easy to
explain, and understandable by people who haven't readbtives code of the implementation.

perldoc overload attempts to explain this in the sections labetalling Conventions for Binary Operatioraxd MAGIC
AUTOGENERATIONbut the easiest solution is to overload numification afidoteerload to use the provided overloads as
fallbacks where possible:

package Null;

use overload
‘bool" => sub { 0 },
=> sub { '(null)’ },
0+ =>sub { 0},
fallback => 1;

Settingfallback to a true value lets Perl use any other defined overloadsrtgpose the requested operation, if possible. If
that’s not possible, Perl will act as if there were no ovettkom effect. This is often what you want.

Without fallback, Perl will only use the specific overloadings you have pded. If someone tries to perform an operation
you have not overloaded, Perl will throw an exception.

145

http://www.c2.com/cgi/wiki?NullObject

Modern Perl

Overload and Inheritance

Subclasses inherit overloadings from their ancestorsy Tieey override this behavior in one of two ways. If the pardass
uses overloading as shown, with function references pealidirectly, a child classnustoverride the parent’s overloaded
behavior by usingverload directly.

Parent classes can allow their descendants more fleyibyitspecifying thenameof a method to call to implement the over-
loading, rather than hard-coding a function reference:

package Null;

use overload
‘bool' => 'get_bool’,
=> 'get_string’,
0+ => 'get_num’,
fallback => 1;

Child classes do not have to useerload themselves; they can merely override the appropgate * methods. This is often
more flexible.

Uses of Overloading

Overloading may seem like a tempting tool to use to producebsyic shortcuts for new operations. The: : A11 CPAN
distribution pushes this idea to its limit to produce cleideras for concise and composable code. Yet for every lillkeP|
refined through the appropriate use of overloading, a dozere messes congeal. Sometimes the best code eschewsetsver
in favor of simple and straightforward design.

Overriding addition, multiplication, and even concatémabn aMatrix class makes sense, only because the existing notation
for those operations is pervasive. A new problem domainawuithhat established notation is a poor candidate for oaditw,
as is a problem domain where you have to squint to make P&i$treg operators match a different notation.

Damian Conway'sPerl Best Practicesuggests that the other useful use of overloading is to ptdfie accidental abuse of
objects. For example, overloading numificatiorciwak () for objects which have no reasonable single numeric reptaen
can help you find real bugs in real programs. Overloadingerl B is relatively rare, but this suggestion can improve the
reliability and safety of programs.

Taint

Perl gives you tools with which to write programs securelye3e tools are no substitute for careful thought and plan ot
theyreward caution and understanding and can help you avoid subtl@keist

Using Taint Mode

A feature calledtaint modeor taint adds a small amount of metadata to all data which comes framtes outside of your
program. Any data derived from tainted data is also tainted. may use tainted data within your program, but if you ugde it
affect the outside world—if you use it insecurely—Perl wiltdtv a fatal exception.

perldoc perlsec explains taint mode in copious detail among other secutitgieines.

To enable taint mode, launch your program with tieflag. You can use this flag on the! line of a program only if you
make the program executable and do not launch it wéthl; if you run it asper]l mytaintedappl.pl and neglect theT
flag, Perl will exit with an exception. By the time Perl encoers the flag on thé! line, it's missed its opportunity to taint the
environment data which makes #pnv, for example.

Sources of Taint

Taint can come from two places: file input and the prograrpsrating environment. The former is anything you read from a
file or collect from users in the case of web or network prograng. The latter is more subtle. This includes any comniarel-
arguments, environment variables, and data from systde Ealen operations such as reading from a directory hangiened
with opendir ()) produces tainted data.

146

Managing Real Programs

Thetainted () function from the core modulgcalar: : Util returns true if its argument is tainted:

die "Oh no!" if Scalar::Util::tainted($some_suspicious_ value);

Removing Taint from Data

To remove taint, you must extract known-good portions ofdéta with a regular expression capture. The captured d#taewi
untainted. If your user input consists of a US telephone rarmfmu can untaint it with:

die "Number still tainted!"
unless $tainted_number =~ /(\(/d{3}\) \d{3}-\d{4})/;

my $safe_number = $1;

The more specific your pattern is about what you allow, theensecure your program can be. The opposite approadérgfing
specific items or forms runs the risk of overlooking someghinarmful. In the case of security, Perl prefers that yoalttig/
something that’s safe but unexpected than that you alloveiang harmful which appears safe. Even so, nothing prewent
from writing a capture for the entire contents of a variablastih that case, why use taint?

Removing Taint from the Environment

One source of taint is the superglol&NV, which represents environment variables for the systens.ddta is tainted because
forces outside of the program’s control can manipulateealihere. Any environment variable which modifies how Perl o
the shell finds files and directories is an attack vectoraidttsensitive program should delete several keys @8NV and set
$ENV{PATH} to a specific and well-secured path:

delete @ENV{ qw(IFS CDPATH ENV BASH_ENV) };
$ENV{PATH} = ‘/path/to/app/binaries/’;

If you do not seSENV{PATH} appropriately, you will receive messages about its insgcur

If this environment variable contained the current workéigectory, or if it contained relative directories, or |if
the directories specified had world-writable permissjanslever attacker could hijack system calls to perpetrate
insecure operations.

For similar reason®INC does not contain the current working directory under taiotien Perl will also ignore thBERLSLIB
andPERLLIB environment variables. Use theb pragma or the-I flag to perl if you need to add library directories to the
program.

Taint Gotchas

Taint mode is all or nothing. It's either on or off. This soinets leads people to use permissive patterns to untaint atada
gives the illusion of security. Review untainting carefull

Unfortunately, not all modules handle tainted data appatgly. This is a bug which CPAN authors should take seripusl
you have to make legacy code taint-safe, consider the useettflag, which enables taint mode but reduces taint violations
from exceptions to warnings. This is not a substitute forthiht mode, but it allows you to secure existing programshuit

the all or nothing approach efT.

147

Perl Beyond Syntax

Perl 5 is a large language, like any language intended t@ gowbblems in the real world. Effective Perl programs regjaiore
than mere understanding of syntax; you must also begin terstahd how Perl’s features interact and common ways oirgplv
well-understood problems in Perl.

Prepare for the second learning curve of Perl: Perlish thinkThe effective use of common patterns of behavior antitui
shortcuts allow you to write concise and powerful code.

Idioms

Any language—programming or natural—devel@iems or common patterns of expression. The earth revolves, bspwak
of the sun rising or setting. We talk of clever hacks and nhatks and slinging code.

As you learn Perl 5 more clearly, you will begin to see and ustd@d common idioms. They're not quite language features—
you don’thaveto use them—and they’re not quite large enough that you caapsuotate them away behind functions and
methods. Instead, they’re mannerisms. They're ways ofrvgriPerl with a Perlish accent.

The Object as $self

Perl 5’s object system (see Moose, page 100) treats theanvef a method as a mundane parameter. The invocant of a class
method—a string containing the name of the class—is that rd&ttiost parameter. The invocant of an object or instance
method—the object itself—is that method’s first parameteu #re free to use or ignore it as you see fit.

Idiomatic Perl 5 use$class as the name of the class method ad1f for the name of the object invocant. This is a
convention not enforced by the language itself, but it ismveation strong enough that useful extensions sudfvaseX: : -
Method: :Signatures assume you will us@self as the name of the invocant by default.

Named Parameters

Without a module such asignatures or MooseX: :MultiMethods, Perl 5's argument passing mechanism is simple: all argu-
ments flatten into a single list accessible throwghsee Function Parameters, page 64). While this simpliciocéasionally
too simple—named parameters can be very useful at times—stramreclude the use of idioms to provide named parameters.

The list context evaluation and assignmentegfallows you to unpack named parameters as pairs in a natudaPariish
fashion. Even though this function call is equivalent togi@g a comma-separatedat/ /-created list, arranging the arguments
as if they were true pairs of keys and values makes the cgtleref the function appear to support named parameters:

make_ice_cream_sundae(
whipped_cream => 1,

sprinkles = 1,
banana => 0,
ice_cream => 'mint chocolate chip’,

)
The callee side can unpack these parameters into a hasreanth hash as if it were the single argument:

sub make_ice_cream_sundae
{
my %args = @_;

my $ice_cream = get_ice_cream($args{ice_cream}));

148

Perl Beyond Syntax

Perl Best Practicesuggests passing a hash reference instead. This allowsR&rck that you've constructed|a
valid hash on the caller side. It also uses slightly less nmgrii@n the other approach.

This technique works well witimport () (see Importing, page 67); you can process as many paranastemu like before
slurping the remainder into a hash:

sub import

my ($class, %args) = @_;
my $calling_package = caller();

The Schwartzian Transform

People new to Perl sometimes overlook the importance aféist list processing as a fundamental component of expressi
evaluation. Put more simply, the ability for Perl programst chain expressions which evaluate to variable-lenigth |
provides countless opportunities to manipulate data &ffey.

The Schwartzian transforris an elegant demonstration of that principle as an idiondiyaborrowed from the Lisp family of
languages.

Suppose you have a Perl hash which associates the names abyaorkers with their phone extensions:

my %extensions =

(
4 => "Jerryd',
5 => 'Rudy’,
6 => 'Juwan’,
7 => 'Brandon’,
10 => 'Joel,
21 => 'Marcus',
24 => 'Andre’,
23 => 'Martell’,
52 => 'Greg,,
88 => 'Nic',

Suppose you want to print a list of extensions and co-worgerted by their names, not their extensions. In other woris,
need to sort this hash by its values. Sorting the values dfidlsé in string order is easy:

my @sorted_names = sort values %extensions;

... but that loses the association of names with extensidresSchwartzian transform can perform the sorting whilsg@neng
the necessary information. First, convert the hash intstaofi data structures which contain the vital informatiorsartable
fashion. In this case, convert the hash pairs into two-etg@eonymous arrays:

my @pairs = map { [$_, $extensions{$_}] } keys %extensions;

Reversing the hasim placewould work if no one had the same name. This particular ddtaresents no such
problem, but code defensively.

sort takes the list of anonymous arrays and compares their sedengbnts (the names) as strings:

my @sorted_pairs = sort { $a->[1] cmp $b->[1] } @pairs;

149

Modern Perl

The block provided teort takes its arguments in two package-scoped (see Scope, Ppgariablesta and$b*2. You do not
have to declare these variables; they are always availalyleur current package. Thrt block takes its arguments two at
a time; the first becomes the contents$afand the second the contents$af. If $a should come beforéb in the results, the
block must return -1. If both values are sufficiently equathia sorting terms, the block must return 0. Finally$df should
come afte$b in the results, the block should return 1. Any other retulues are errors.

The cmp operator performs string comparisons and<4ke performs numeric comparisons.

Given@sorted_pairs, a seconchap operation converts the data structure to a more usable form:

my @formatted_exts = map { "$_->[1], ext. $_->[0]" } @sorted _pairs;

...and now you can print the whole thing:

say for @formatted_exts;

Of course, this uses several temporary variables (with &eldhy bad names). It's a worthwhile technique and good et
stand, but the real magic is in the combination:

say for
map { " $_->[1], ext. $_->[0]" }
sort { $a->[1] cmp $b->[1] }
map {[$_ => $extensions{$_}] }

keys %extensions;

Read the expression from right to left, in the order of evédua For each key in the extensions hash, make a two-itemyano
mous array containing the key and the value from the hash.t&atrlist of anonymous arrays by their second elements, the
values from the hash. Format a string of output from thostedarrays.

The Schwartzian transform is this pipelinemefp-sort-map where you transform a data structure into another form eésie
sorting and then transform it back into your preferred foamrhodification.

This transformation is simple. Consider the case whereautalog the right value to sort is expensive in time or memeugh

as calculating a cryptographic hash for a large file. In ttee, the Schwartzian transform is also useful because aou c
execute those expensive operations once (in the rightira@dt compare them repeatedly from a de facto cache irsthe,
and then remove them in the leftmasip.

Easy File Slurping

Perl 5’s magic global variables are truly global in many sa#és all too easy to clobber their values elsewhere, wyes! use
local everywhere. Yet this requirement has allowed the creatieeweral interesting idioms. For example, you can slugsfil
into a scalar in a single expression:

my $file = do { local $/ = <$fh> };
or

my $file = do { local $/; <$fh> };

$/ is the input record separataobcalizing it sets its value tandef, pending assignment. Thihdcalization takes placbefore
the assignment. As the value of the separator is undefirextihBppily reads the entire contents of the filehandle i@ ®woop
and assigns that value . Because @o block evaluates to the value of the last expression evaluaitin the block, this
evaluates to the value of the assignment, or the contentgedii¢. Even thougl$/ immediately reverts to its previous state at
the end of the block$file now contains the contents of the file.

42Seeperldoc -f sort for an extensive discussion of the implications of this sagpi

150

Perl Beyond Syntax

The second example contains no assignment and merely saharsingle line read from the filehandle. You may see either
example; they both work the same way in this case.

This can be useful (and, admittedly, maddening for peoplaraitiar with this particular combination of Perl 5 featg)eaf you
don't haveFile: : Slurp installed from the CPAN.

Controlled Execution

The effective difference between a program and a moduléts intended use. Users invoke programs directly, whilgpms
load modules after execution has already begun. The teahdifference between a program and a module is whether it's
meaningful to invoke the entity directly.

You may encounter this when you wish to use Perl’s testingst(s®ee Testing, page 123) to test functions in a standalone
program or when you wish to make a module users can run dirédtlyou need to do is to discovérowPerl began to execute
a piece of code. For this, ugaller.

caller’s single optional argument is the number of call frames Whdcreport. (Acall frameis the bookkeeping information
which represents a function call.) You can get informatibowt the current call frame witballer (0). To allow a module to
run correctly as a programr a module, write an appropriaiein () function and add a single line to the start of the module:

main() unless caller(0);

If there’sno caller for the module, someone invoked it directly as a pog(withperl path/to/Module.pm instead ofuse
Module};).

Checking the eighth element of the list returned frea ler in list context may be more accurate in most cases,
but it's rare. This value is true if the call frame represers or require andundef otherwise.

Handling Main

Perl requires no special syntax for creating closures ($esu€es, page 79); you can close over a lexical variableveraently.
This israrely a problem in practice, apart from specific concerns in med gituations. .. andain () functions.

Many programs commonly set up several file-scoped lexieakbles before handing off processing to other functidt'ss.
tempting to use these variables directly, rather than pgssilues to and returning values from functions, espgcalbrograms
grow to provide more features. Worse yet, these programscarag to rely on subtleties of what happens when during Perl 5’
compilation process; a variable ythoughtwould be initialized to a specific value may not get initzgd until much later.

There is a simple solution. Wrap the main code of your programsimple functionpain (). Encapsulate all of the variables
you don’t need as true globals. Then add a single line to thebig of your program, after you've used all of the modules
and pragmas you need:

#!/usr/bin/perl

use Modern::Perl;
use autodie;

main(@ARGS);

Callingmain () beforeanything else in the program forces you to be explicit aboitialization and order of compilation. It
also helps to remind you to encapsulate the behavior of ymgram into functions and modules. (It works nicely witle§l
which can be programs and libraries—see Controlled Exetypiage 151.)

151

Modern Perl

Postfix Parameter Validation

Even if you don’'t use a CPAN module suchResrams : : Validate or MooseX: :Params: :Validate to verify that the param-
eters your functions receive are correct, you can still fiefiem occasional checks for correctness. i ess control flow
modifier is an easy and readable way to assert your expeasait the beginning of a function.

Suppose your function takes two arguments, no more and soYesacouldwrite:
use Carp;
sub groom_monkeys

it @_ =2

{ croak 'Monkey grooming requires two monkeys!’

}

...but from a linguistic perspective, the consequencesnamre important than the check and deserve to be astdreof the
expression:

croak 'Monkey grooming requires two monkeys! if @_ != 2;

...which, depending on your preference for reading postixditions, you can simplify to:

croak 'Monkey grooming requires two monkeys!" unless @_ == 2

This is easier to read if you focus on the text of the messagaeu(heed to pass two parameters!”) and the testghould
contain two items). It's almost a single row in a truth table.

Regex En Passant
Many Perl 5 idioms rely on the language design where express&valuate to values, as in:

say my $ext_num = my $extension = 42;

It's bad form to write code like that, but it demonstratespgb@t: you can use the value of one expression in anotheesgjn.
This isn’t a new idea; you've likely used the return value dtiaction in a list or as an argument to another function kefor
You may not have realized its implications.

Suppose you have a whole name and you want to extract thedins¢. This is easy to do with a regular expression:

my ($first_name) = $name =~ /($first_name_rx)/;

...where$first_name_rx is a precompiled regular expression. In list context, a essiul regex match returns a list of all
captures, and Perl assigns the first ongftorst_name.

Now imagine if you want to modify the name, perhaps removithgp@n-word characters to create a useful user name for a
system account. You can write:

(my $normalized_name = $name) =~ tr/A-Za-z//dc;

Unlike the previous example, this one reads right to lefst-assign the value ¢hame to $normalized_name. Then, translit-
erate$normalized_name*. The assignment expression evaluates to/tiréable $normalized_name. This technique works
on all sorts of in-place modification operators:

my $age = 14;
(my $next_age = $age)++;

say "Next year | will be $next_age";

43The parentheses here affect the precedence so that therassighappens first.

152

Perl Beyond Syntax

Unary Coercions

Perl 5's type system often does the right thing, at leastuf gtaoose the correct operators. To concatenate stringtheisering
concatenation operator, and Perl will treat both scalastragys. To add two numbers, use the addition operator aridhvitie
treat both scalars as numeric.

Sometimes you have to give Perl a hint about what you mearer&8ewnary coercionsexist, by which you can use Perl 5
operators to force the evaluation of a value a specific way.

To ensure that Perl treats a value as numeric, add zero:

my $numeric_value = 0 + $value;

To ensure that Perl treats a value as boolean, double négate i

my $hoolean_value = !! $value;

To ensure that Perl treats a value as a string, concatemaité the empty string:

my $string_value = " . $value;

Though the need for these coercions is vanishingly rareshould understand these idioms if you encounter them.

Global Variables

Perl 5 provides severalper global variableshat are truly global, not restricted to any specific pagkahese super globals
have two drawbacks. First, they're global; any direct oiirect modifications may have effects on other parts of thogymm.
Second, they're terse. Experienced Perl 5 programmers fnaweorized some of them. Few people have memorized all of
them. Only a handful are ever usefpkrldoc perlvar contains the exhaustive list of such variables.

Managing Super Globals

The best approach to managing the global behavior of thgsr gjlobals is to avoid using them. When you must use them,
uselocal in the smallest possible scope to constrain any modifinatiyou are still susceptible to any changes codeoaiu
makes to those globals, but you reduce the likelihood ofr&ing codeoutsideof your scope.

Workarounds exist for some of this global behavior, but mainjhese variables have existed since Perl 1 and will coatasi
part of Perl 5 throughout its lifetime. As the easy file siagpidiom (see Easy File Slurping, page 150) demonstratésjg
often possible:

my $file = do { local $/ = <$fh> };

The effect oflocalizing $/ lasts only through the end of the block. There is a low chanaeany Perl code will run as a result
of reading lines from the filehand&and change the value 6§ within thedo block.

Not all cases of using super globals are this easy to guatdhiswften works.

Other times you need teadthe value of a super global and hope that no other code hadietbiti Catching exceptions with
aneval block can be susceptible to race conditith thatDESTROY () methods invoked on lexicals that have gone out of
scope may reseo:

44A tied filehandle is one of the few possibilities.

4SUseTry: : Tiny instead!

153

Modern Perl

local $@;
eval { ... }

if (my $exception = $@) { ... }
Copy$e immediatelyto preserve its contents.

English Names

The coreEnglish module provides verbose names for the punctuation-hegwgrgglobals. Import them into a namespace
with:

use English '-no_match_vars';

Subsequently you can use the verbose names documentesiliioc perlvar within the scope of this namespace.

Three regex-related super globa$($¢, and$') impose a global performance penalty &t regular expressions within a
program. If you neglect to provide that import flag, your gram will suffer the penalty even if you don’t explicitly ré&om
those variables. This is not the default behavior for backecompatibility concerns.

Modern Perl programs should use thevariable as a replacement for the terrible three.

Useful Super Globals

Most modern Perl 5 programs can get by with using only a coofllee super globals. Several exist for special circum&anc
you're unlikely to encounter. Whil@erldoc perlvar is the canonical documentation for most of these variatdeme
deserve special mention.

e $/ (or $INPUT_RECORD_SEPARATOR from theEnglish pragma) is a string of zero or more characters which denotes
the end of a record when reading input a line at a #fimBy default, this is your platform-specific newline chatec
sequence. If you undefine this value, Perl will attempt tadréhe entire file into memory. If you set this value to a
referenceto an integer, Perl will try to read that mabytesper record (so beware of Unicode concerns).

e $. ($INPUT_LINE_NUMBER) contains the number of current record read from the moshtbecaccessed filehandle. You
can read from this variable, but writing to it has no effeaicélizing this variable will localize the filehandle to vehiit
refers.

* $| ($0UTPUT_AUTOFLUSH) is the boolean value of this variable governs whether P#rflush everything written to the
currently selected filehandle immediately or only whenl'Bé&uffer is full. Unbuffered output is useful when writing
a pipe or socket or terminal which should not block waitingifgout.

e Q@ARGV contains the command-line arguments passed to the program.

* $! ($ERRNO) is a dualvar (see Dualvars, page 48) which contains thdtreSthe most recensystem call. In numeric
context, this corresponds to C&rno value, where anything other than zero indicates some kinerrafr. In string
context, returns the appropriate system error string. lizedhis variable before making a system call (implicitly o
explicitly) to avoid overwriting the appropriate value fother code elsewhere. Many places within Perl 5 itself make
system calls without your knowledge. The value of this \@dgacan change out from under you, so copyrnimediately
after making such a call yourself.

e $" ($LIST_SEPARATOR) is a string used to separate array and list elements ifggabinto a string.
%+ contains named captures from successful regular expresgtches (see Named Captures, page 94).
» $0 ($EVAL_ERROR) contains the value thrown from the most recent exceptiea (Zatching Exceptions, page 119).

» $0 ($PROGRAM_NAME) contains the name of the program currently executing. Yay modify this value on some Unix-
like platforms to change the name of the program as it apgeather programs on the system, suclpasr top.

46Yes, readline () should more accurately headrecord(), but the name has stuck by now.

154

Perl Beyond Syntax

* $$ ($PID) contains the process id of the currently running instari¢eprogram, as the operating system understands
it. This will vary betweenfork () ed programs and may vary between threads in the same program.

e Q@INC holds a list of filesystem paths in which Perl will look fotefs to load withuse or require. Seeperldoc -f
require for other items this array can contain.

* %SIG maps OS and low-level Perl signals to function referencesl g handle those signals. Trap the standard Ctrl-

C interrupt by catching th&NT signal, for example. Seperldoc perlipc for more information about signals and
especially safe signals.

Alternatives to Super Globals

The worst culprits for action at a distance relate to |10 antkpkonal conditions. UsinGry: : Tiny (See Exception Caveats,

page 120) will help insulate you from the tricky semanticgudper exception handlin@ocalizing and copying the value of
$! can help you avoid strange behaviors when Perl makes irhgjistem calls.

I0: :Handle allows you to call methods on filehandles (see FilehandifieiRaces, page 54) to replace the manipulation of
IO-related super globals. Call thextoflush() method on a lexical filehandle instead @$1ecting the filehandle, then
manipulating$|. Use theinput_line_number () method to get the equivalent @f. for that specific filehandle. See the
I0: :Handle documentation for other appropriate methods.

155

What to Avoid

Perl 5 isn’t perfect. Some features seemed like good idete dime, but they're difficult to use correctly. Others dombrk
as anyone might expect. A few more are simply bad ideas. Tleasares will likely persist—removing a feature from Perdis
serious process reserved for only the most egregious @fenbut you can and should avoid them in almost every case.

Barewords

Perl uses sigils and other punctuation pervasively to hetp the parser and the programmer identify the categoriesioied
entities. Even so, Perl is a malleable language. You carevpribgrams in the most creative, maintainable, obfuscated,
bizarre fashion as you prefer. Maintainability is a conagrgood programmers, but the developers of Perl itself dorgsume
to dictate whaoufind most maintainable.

Perl's parser understands the builtin Perl builtins andratpes; it knows thabless () means you're making objects (see
Blessed References, page 110). These are rarely ambigubuisPerl programmers can add complexity to parsing bygusin
barewords A bareword is an identifier without a sigil or other attadldisambiguation as to its intended syntactical function.
Because there’s no Perl 5 builtiurse, the literal wordcurse appearing in source code is ambiguous. Did you intend to use
a variable$curse or to call a functioncurse () ? Thestrict pragma warns about use of such ambiguous barewords for good
reason.

Even so, barewords are permissible in several places irbRerlgood reason.

Good Uses of Barewords

Hash keys in Perl 5 are barewords. These are usually not amisgoecause their use as keys is sufficient for the parser to
identify them as the equivalent of single-quoted stringst e aware that attempting to evaluate a function call orilirbu
operator (such ashift) to producea hash key may not do what you expect, unless you disambigygieviding arguments,
using function argument parentheses, or prepending uhasy@force the evaluation of the builtin rather than itemptretation

as a string:

the literal 'shift' is the key
my $value = $items{ shift }

the value produced by shift is the key
my $value = $items{ shift @_ }

unary plus uses the builtin shift
my $value = $items{ +shift};

Package names in Perl 5 are barewords in a sense. Good namirentions for packages (initial caps) help prevent unadnt
surprises, but the parser uses a complex heuristic basdaeorotle it's already compiled within the current namespace t
determine whethePackage->method () means to call a function nameéd.ckage () and then call theethod () method on

its results or whether to treBtickage as the name of a package. You can disambiguate this with gtéppackage separator
(::), but that’s rare and admittedly ugly:

probably a class method
Package->method();

definitely a class method
Package::->method();

156

What to Avoid

The special named code blocks provide their own types ofweacs. AUTOLOAD, BEGIN, CHECK, DESTRQY, END, INIT, and
UNITCHECK declarefunctions, but they do not need tlsab builtin to do so. You may be familiar with the idiom of writing
BEGIN without sub:

package Monkey::Butler;

BEGIN { initialize_simians(_ PACKAGE__) }

You canleave off thesub on AUTOLOAD () declarations, but that's uncommon.

Constants declared with thenstant pragma are usable as barewords:

don't use this for real authentication
use constant NAME => 'Bucky"
use constant PASSWORD => '|38fish!lhead74|’;

return unless $name eq NAME && $pass eq PASSWORD;

Be aware that these constantsrdi interpolate in interpolation contexts such as double-gdistrings.

Constants are a special case of prototyped functions (seetffves, page 159). If you've predeclared a prototype fanation,
you may use that function as a bareword; Perl 5 knows evenytihineeds to know to parse all occurrences of that function
appropriately. The other drawbacks of prototypes stillapp

[lI-Advised Uses of Barewords

Barewords should be rare in modern Perl code; their amlyiguitduces fragile code. You can avoid them in almost evesg ca
but you may encounter several poor uses of barewords inyegate.

Prior to lexical filehandles (see Filehandle Referencagefb4), all file and directory handles used barewords. éouatmost
always safely rewrite this code to use lexical filehandiks;exceptions ar&@TDIN, STDOUT, andSTDERR.

Code written withouktrict 'subs' in effect may use bareword function names. You may safelgnibesize the argument
lists to these functions without changing the intent of theet’.

Along similar lines, old code may not take pains to quotevleiesof hash pairs appropriately:

poor style; do not use
my %parents =

(

mother => Annette,
father => Floyd,

Because neither thEloyd () nor Annette () functions exist, Perl parses these hash values as stringstkict 'subs'
pragma makes the parser give an error in this situation.

Finally, thesort builtin can take as its second argument tlagneof a function to use for sorting. Instead provideséerence
to the function to use for sorting to avoid the use of bareword

poor style; do not use
my @sorted = sort compare_lengths @unsorted;

better style
my $comparison = \&compare_lengths;
my @sorted = sort $comparison @unsorted;

47Useperl -MO=Deparse,-p to discover how Perl parses them, then parenthesize acgbydin

157

Modern Perl

The result is one line longer, but it avoids the use of a baréwdnlike other bareword examples, Perl's parser needs no
disambiguation for this syntax. There is only one way fooiirtterpretcompare_lengths. However, the clarity of an explicit
reference can help human readers.

Perl 5’s parsedoes nounderstand the single-line version:

does not work
my @sorted = sort \&compare_lengths @unsorted;

This is due to the special parsing eért; you cannot use an arbitrary expression (such as takingeserefe to a named
function) where a block or a scalar might otherwise go.

Indirect Objects

A constructor in Perl 5 is anything which returns an objeet; is not a builtin operator. By convention, constructors das<
methods namedew (), but you have the flexibility to choose a different approteimeet your needs. Several old Perl 5 object
tutorials promote the use of C++ and Java-style construetits:

my $g = new CGI; # DO NOT USE

...instead of the unambiguous:

my $gq = CGIl->new();

These syntaxes are equivalent in behavior, except wheiretet.

The first form is the indirect object form (more preciselye tlativecase), where the verb (the method) precedes the noun to
which it refers (the object). This is fine in spoken langugadmit it introduces parsing ambiguities in Perl 5.

Bareword Indirect Invocations

One problem is that the name of the method is a bareword (sesvBals, page 156). The parser must apply several hesristic
to determine the proper interpretation. While these hecsisire well-tested analmostalways correct, their failure modes are
confusing. Worse, they’re fragile in the face of threler of compilation and module loading.

Parsing is more difficult for humarandthe computer when the constructor takes arguments. Theeaidityle may resemble:

DO NOT USE
my $obj = new Class(arg => $value);

...thus making the class narigass look like a function call. Perl ®andisambiguate many of these cases, but its heuristics
depend on which package names the parser has seen at th@ poing in the parse, which barewords it has already resolve
(and how it resolved them), and thamesof functions already declared in the current package.

Imagine running afoul of a prototyped function (see Prqgtes; page 159) with a name which just happens to conflict kome
with the name of a class or a method called indirectly. Thisfiequent, but so difficult to debug that avoiding this syois
always worthwhile.

Indirect Notation Scalar Limitations

Another danger of the syntax is that the parser expects &soglar expression as the object. Printing to a filehasidlieed in
an aggregate variabkeem®bvious, but it is not:

DOES NOT WORK AS WRITTEN
say $config->{output} "This is a diagnostic message!";

158

What to Avoid

print, close, andsay—all builtins which operate on filehandles—operate in anriectifashion. This was fine when filehandles
were package globals, but lexical filehandles (see FildleaReferences, page 54) make the indirect object syntaXems
obvious. In the previous example, Perl will try to call tsey method on théconfig object. The solution is to disambiguate
the expression which produces the intended invocant:

say { $config->{output} } "This is a diagnostic message!";

Alternatives to Indirect Notation

Direct invocation notation does not suffer this ambiguitglgem. To construct an object, call the constructor methodhe
class name directly:

my $g = CGIl->new();
my $obj = Class->new(arg => $value);

For the limited case of filehandle operations, the dativeigso prevalent that you can use the indirect invocatiomcguih if
you surround your intended invocant with curly bracketsothier option is to use the cof®: : Handle module which adds
IO methods to lexical filehandles.

For supreme paranoia, disambiguate class method caltefury appending: to the end of class names, such|as
CGI::->new(). Very little code does this in practice, however.

The CPAN modulePerl: :Critic: :Policy: :Dynamic: :NoIndirect (a plugin forPerl: :Critic) can identify indirect
invocations during code reviews. The CPAN modidirect can identify and prohibit their use in running programs:

warn on indirect use
no indirect;

throw exceptions on their use
no indirect “fatal’;

Prototypes

A prototypeis a piece of optional metadata attached to a function cetader. Novices commonly assume that these prototypes
serve as function signatures; they do not. Instead they detw separate purposes: they offer hints to the parser twgehthe
way it parses functions and their arguments, and they maldifyvay Perl 5 handles arguments to those functions.

To declare a function prototype, add it after the name:

sub foo (&@);
sub bar %$) { ... }
my $baz = sub (&&) { ... }

You may add prototypes to function forward declarationsu Yoy also omit them from forward declarations. If you use a
forward declaration with a prototype, that prototype muespbesent in the full function declaration; Perl will give @type
mismatch warning if not. The converse is not true: you maytaha prototype from a forward declaration and include it for
the full declaration.

There’s little reason to omit the prototype from a forwardldeation except for the desire to write too-clever code.

The original intent of prototypes was to allow users to defimeir own functions which behaved like (certain) builtpeoators.
Consider the behavior of theish operator, which takes an array and a list. While Perl 5 wouldnadly flatten the array and

159

Modern Perl

list into a single list at the call site, the Perl 5 parser kadkat a call tgpush must effectively pass the array as a single unit so
thatpush can operate on the array in place.

The builtinprototype takes the name of a function and returns a string represgitsiprototype. To see the prototype of a
builtin, use thecORE: : form:

$ perl -E "say prototype 'CORE::push’;"
\@@

$ perl -E "say prototype 'CORE::keys';"
\%

$ perl -E "say prototype 'CORE::open'’;"
*$@

Some builtins have prototypes you cannot emulate. In thesesprototype will return undesf:

$ perl -E "say prototype 'CORE::system' // 'undef' "

undef

You can't emulate builtin function system's calling convention.
$ perl -E "say prototype 'CORE::prototype' // 'undef' "

undef
Builtin function prototype has no prototype.

Look atpush again:

$ perl -E "say prototype 'CORE::push’;"
\@@

Thea@ character represents a list. The backslash forces the asefeirencao the corresponding argument. Thus this function
takes a reference to an array (because you can'’t take ameéete a list) and a list of valuesypush might be:
sub mypush (\@@)
{
my ($array, @rest) = @_;

push @$array, @rest;
}

Valid prototype characters includeto force a scalar argumerito mark a hash (most often used as a reference)&avitich
marks a code block. Seerldoc perlsub for full documentation.

The Problem with Prototypes

Prototypes can change the parsing of subsequent code gndatheoerce the types of arguments. They don't serve as docu-
mentation to the number or types of arguments functionsaxper do they map arguments to named parameters.

Prototype coercions work in subtle ways, such as enfor@aas context on incoming arguments:

sub numeric_equality($$)
my ($left, $right) = @_;

return $left == $right;
}

my @nums = 1 .. 10;

say "They're equal, whatever that means!" if numeric_equal ity @nums, 10;

... but donotwork on anything more complex than a simple expression:

sub mypush(\@@);

compilation error: prototype mismatch
(expected array, got scalar assignment)
mypush(my $elems =[], 1 .. 20);

Those aren't even thaubtlerkinds of confusion you can get from prototypes.

160

What to Avoid

Good Uses of Prototypes
As long as code maintainers do not confuse them for full fioncsignatures, prototypes have a few valid uses.

First, they are often necessary to emulate and overridarsuivith user-defined functions. You must first check thaiti can
override the builtin by checking thatrototype does not returmundef. Once you know the prototype of the builtin, use a
forward declaration of a function with the same name as the looiltin:

use subs 'push’;

sub push (\@@) { ... }

Beware that theubs pragma is in effect for the remainder of tfike, regardless of any lexical scoping.

The second reason to use prototypes is to define compike-tiomstants. A function declared with an empty prototype (as
opposed tano prototype) which evaluates to a single expression becorneastant rather than a function call:

sub PI () { 4 * atan2(1, 1) }

After it processed that prototype declaration, the Perltsdper knows it should substitute the calculated valueiefimenever
it encounters a bareword or parenthesized calllta the rest of the source code (with respect to scoping ariloliNtg).

Rather than defining constants directly, the cosastant pragma handles the details for you and may be clearer to lead.
you want to interpolate constants into strings,Reedonly module from the CPAN may be more useful.

The final reason to use a prototype is to extend Perl's sytataperate on anonymous functions as blocks. The CPAN module
Test: :Exception uses this to good effect to provide a nice API with delayed matation. ltsthrows_ok () function takes
three arguments: a block of code to run, a regular expredsionatch against the string of the exception, and an optional
description of the test. Suppose that you want to test Perb¥ception message when attempting to invoke a method on an
undefined value:

use Test::More tests => 1;
use Test::Exception;

throws_ok
{ my $not_an_object; $not_an_object->some_method() }
gr/Can't call method "some_method" on an undefined value/,
'Calling a method on an undefined invocant should throw exce ption’;

The exportedhrows_ok () function has a prototype & ; $. Its first argument is a block, which Perl upgrades to afleltiged
anonymous function. The second requirement is a scalarthiifteargument is optional.

The most careful readers may have spotted a syntax oddiépleoin its absence: there is no trailing comma after the énd o
the anonymous function passed as the first argumetiitows_ok (). This is a quirk of the Perl 5 parser. Adding the comma
causes a syntax error. The parser expects whitespace gnatritma operator.

The “no commas here” rule is a drawback of the prototype synta

You can use this API without the prototype. It's slightlydesttractive:

use Test:More tests => 1;
use Test::Exception;

throws_ok (
sub { my $not_an_object; $not_an_object->some_method() }
gr/Can't call method "some_method" on an undefined value/,
'Calling a method on an undefined invocant should throw exce ption');

161

Modern Perl

A sparing use of function prototypes to remove the need f@etib builtin is reasonable. Another is when defining a custom
function to use withsort*8. Declare this function with a prototype 68$) and Perl will pass its arguments @ rather than
the package globala and$b. This is a rare case, but it can save you time debugging.

Few other uses of prototypes are compelling enough to oserdbeir drawbacks.

Method-Function Equivalence

Perl 5's object system is deliberately minimal (see BledReterences, page 110). Because a class is a package, &érl its
makes no strong distinction between a function stored inchkgge and a method stored in a package. The same buwiltin,
expresses both. Documentation and the convention ofrigettie first parameter agself can imply intent to readers of the
code, but Perl itself will treat any function of the appr@pe name it can find in an appropriate package as a method ifryo

to call it as a method.

Likewise, you can invoke a method as if it were a function—figualified, exported, or as a reference—if you pass in your
own invocant manually.

Both approaches have their problems; avoid them.

Caller-side
Suppose you have a class which contains several methods:

package Order;

use List:Util 'sum’;

sub calculate_price

{
my $self = shift;
return sum(0, $self->get_items());

If you have arDrder object$o, the following invocations of this methadayseem equivalent:

my $price = $o->calculate_price();
broken; do not use
my $price = Order::calculate_price($o);

Though in this simple case, they produce the same outputattes violates the encapsulation of objects in subtle wétys
avoids method lookup altogether.

If $o were instead a subclass or allomorph (see Roles, page 105ief which overrodecalculate_price (), calling the
method as a function would produce the wrong behavior. Arngke to the implementation ehlculate_price(), such as
a modification of inheritance or delegation througiTOLOAD ()—might break calling code.

Perl has one circumstance where this behavior may seemsaggelf you force method resolution without dispatch, haw d
you invoke the resulting method reference?

my $meth_ref = $o->can('apply_discount');

There are two possibilities. The first is to discard the metalue of thecan () method:

$o->apply_discount() if $o->can(‘apply_discount');

48Ben Tilly suggested this example.

162

What to Avoid

The second is to use the reference itself with method ini@tatyntax:

if (my $meth_ref = $o->can('apply_discount'))

$o->$meth_ref();

When$meth_ref contains a function reference, Perl will invoke that refeewith$o as the invocant. This works even under
strictures, as it does when invoking a method with a scalataioing its name:

my $name = ‘apply_discount’;
$o->$name();

There is one small drawback in invoking a method by refergifittee structure of the program has changed between sttrang
reference and invoking the reference, the reference magmgel refer to the current, most appropriate method. |Diter
class has changed such tbatier: : apply_discount is no longer the right method to call, the referencémeth_ref will
not have updated.

If you use this form of invocation, limit the scope of the nefleces.

Callee-side

Because Perl 5 makes no distinction between functions aridoae at the point of declaration and becauseptssible
(however inadvisable) to invoke a given function as a fuorctir a method, it's possible to write a function callable idses.

The coreCGI module is a prime offender. Its functions manually insgiecto determine whether the first argument is a likely
invocant. If so, they ensure that any object state the fanatieeds to access is available. If the first argument is figeby
invocant, the function must consult global data elsewhere.

As with all heuristics, there are corner cases. It's difficalpredict exactly which invocants are potentially valad & given
method, especially when considering that users can ctegiteotvn subclasses. The documentation burden is alscegrgaten

the need to explain the dichotomy of the code and the desaediol misuse. What happens when one part of the project uses
the procedural interface and another uses the objectacte?f

Providing separate procedural and object interfaces torarli may be justifiable. Some designs make some technigoes
useful than others. Conflating the two into a single API wikate a maintenance burden. Avoid it.

Tie
Overloading (see Overloading, page 145) lets you give etasastom behavior for specific types of coercions and aeses

A similar mechanism exists for making classes act like Buailtypes (scalars, arrays, and hashes), but with more fapeci
behaviors. This mechanism uses tie builtin; it is tying.

The original use otie was to produce a hash stored on disk, rather than in memoigyallbwed the use of DBM files from
Perl, as well as the ability to access files larger than cfitild memory. The core modulgie: : File provides a similar system
by which to handle data files too large to fit in memory.

The class to which yotie a variable must conform to a defined interface for the spedéta typeperldoc perltie is
the primary source of information about these interfadesiigh the core moduleéBie: : StdScalar, Tie: : StdArray, and
Tie: :StdHash are more useful in practice. Inherit from them to start, ameriade only those specific methods you need to
modify.

Tie::Scalar, Tie::Array, andTie: :Hash define the necessary interfaces to tie scalars, arraydasites, bu
Tie::StdScalar, Tie::StdArray, andTie: :StdHash provide the default implementations.#fie () hasn't
confused you, the organization of this code might.

163

Modern Perl

Tying Variables

Given a variable to tie, tie it with the syntax:

use Tie:File;
tie my @file, Tie:File', @args;

...where the first argument is the variable to tie, the sdésthe name of the class into which to tie it, @t gs is an optional
list of arguments required for the tying function. In theea$Tie: :File, this is the name of the file to which to tie the array.

Tying functions resemble constructolESCALAR, TIEARRAY (), TIEHASH(), or TIEHANDLE() for scalars, arrays, hashes,
and filehandles respectively. Each function returns a nkejgab which represents the tied variable. Both thie andtied
builtins return this object, but most people ignore it indawef checking its boolification to determine whether a givariable

is tied.

Implementing Tied Variables

To implement the class of a tied variable, inherit from a cm@dule such aSie: :StdScalar, then override the specific
methods for the operations you want to change. In the casdied acalar, you probably need to overrigiel'CH and STORE,
may need to overridBIESCALAR (), and can often ignorBESTROY ().

You can create a class which logs all reads from and writestaar with very little code:

package Tie::Scalar::Logged;
use Modern::Perl;

use Tie::Scalar;
use parent -norequire => 'Tie::StdScalar

sub STORE
my ($self, $value) = @_;
Logger->log("Storing <$value> (was [$$self])", 1);
$$self = $value;
sub FETCH
my $self = shift;

Logger->log("Retrieving <$$self>", 1);
return $$self;

Assume that theogger class methodog() takes a string and the number of frames up the call stack afhwioi report the
location. Be aware thatie: : StdScalar does not have its owipmfile, So you must us&ie: : Scalar to make it available.

Within the STORE () andFETCH() methods$self works as a blessed scalar. Assigning to that scalar refergmanges the
value of the scalar and reading from it returns its value.

Similarly, the methods ofie::StdArray andTie: :StdHash act on blessed array and hash references, respectively. The

perldoc perltie documentation explains the copious methods they supmoyt@ can read or write multiple values from
them, among other operations.

The -norequire option prevents thparent pragma from attempting to load a file fote: : StdScalar, as that
module is part of the fil&ie/Scalar.pm

164

What to Avoid

When to use Tied Variables

Tied variables seem like fun opportunities for clevernbssthey make for confusing interfaces in almost all cases,rdostly
to their rarity. Unless you have a very good reason for makinjgcts behave as if they were built-in data types, avoidtorg
your own ties.

Good reasons include to ease debugging (use the logged szlelp you understand where a value changes) and to make
certain impossible operations possible (accessing lalegeih a memory-efficient way). Tied variables are less uisa$ the
primary interfaces to objects; it's often too difficult andnstraining to try to fit your whole interface to that supigar by
tie().

The final word of warning is both sad and convincing; far tooam code does not expect to work with tied variables. Code
which violates encapsulation may prohibit good and valiesusf cleverness. This is unfortunate, but violating thesetgtions
of library code tends to reveal bugs that are often out of yawver to fix.

165

What's Missing

Perl 5 isn’t perfect, at least as it behaves by default. Sopt®ms are available in the core. More are available from the
CPAN. Experienced Perl developers have their own idea of &imideal Perl 5 should behave, and they often use their own
configurations very effectively.

Novices may not know how Perl can help them write programgehet handful of core modules will make you much more
productive.

Missing Defaults

Perl 5’s design process in 1993 and 1994 tried to anticipatedirections for the language, but it's impossible to pcethie
future. Perl 5 added many great new features, but it alsoda@ppatibility with the previous seven years of Perl 1 thio&grl
4. Sixteen years later, the best way to write clean, maiabd@& powerful, and succinct Perl 5 code is very differeatrfriPerl
5.000. The default behaviors sometimes get in the way; fiately, better behaviors are available.

The CPAN (see The CPAN, page 10) contains many modules agthpsadesigned to make your work simpler, more correct,
and more enjoyabfé. As you improve as a Perl programmer, you will have many ojpmities to use (and even to create) such
code in the right circumstances. For now, use these pragntasiadules regularly in your own code.

The strict Pragma

Thestrict pragma (see Pragmas, page 121) allows you to forbid (orable)wvarious language constructs which offer power
but also the potential for accidental abuse.

strict provides three features: forbidding symbolic referencequiring variable declarations, and forbidding the use of
undeclared barewords (see Barewords, page 156). While tfasional use of symbolic references is necessary to magul
symbol tables (barring the use of helper modules, sutfvase), the use of a variable as a variable name offers the paggibil
of subtle errors of action at a distance—or, worse, the pihisgitf poorly-validated user input manipulating intefr@nly data

for malicious purposes.

Requiring variable declarations helps to prevent typosieble names and encourages proper scoping of lexicablas. It's
much easier to see the intended scope of a lexical variablbvifiriables havey or our declarations in the appropriate scope.

strict has alexical effect, based on the compile-time scope obis You may disable certain featuressetict (within the
smallest possible scope, of course) with strict. Seeperldoc strict for more details.

The warnings Pragma

The warnings pragma (see Handling Warnings, page 126) controls the tisgoof various classes of warnings in Perl 5,
such as attempting to stringify thedef value or using the wrong type of operator on values. It alsm&about the use of
deprecated features.

The most useful warnings explain that Perl had trouble wstdrding what you meant and had to guess at the proper iaterpr
tation. Even though Perl often guesses correctly, disamalign on your part will ensure that your programs run cdlyec

Thewarnings pragma has a lexical effect on the compile-time scope ofdes ou may disable some or all warnings with
no warnings (within the smallest possible scope, of course). @8 doc perllexwarn andperldoc warnings for more
details.

49SeeTask: : Kensho to start.

166

What's Missing

Combineuse warnings with use diagnostics, and Perl 5 will display expanded diagnostic messages tir ea
warning present in your programs. These expanded diagsasime fronperldoc perldiag. This behavior is
useful when learning Perl, but it's less useful in code dggdioto production, because it can produce verbose error
output.

|O::Handle

Perl 5.6.0 added lexical filehandles. Previously, filedlas were all package globals. This was occasionally mesdyfien
confusing. Now that you can write:

open my $fh, >, $file or die "Can't write to '$file $N\n";

...the lexical filehandle ir$£h is easier to use. The implementation of lexical filehandiestes objectsith is an instance
of I0: :Handle. Unfortunately, even thoughfh is an object, you can’'t call methods on it because nothingldeded the
I0::Handle class.

This is occasionally painful when you want to flush the bufiethe associated filehandle, for example. It could be ay aa:

$th->flush();

... but only if your program somewhere contairts: I0::Handle. The solution is to add this line to your programs so that
lexical filehandles—the objects as they are—behave as stgbould behave.

The autodie Pragma

Perl 5's default error checking is parsimonious. If you'nt careful to check the return value of everyen () call, for example,
you could try to read from a closed filehandle—or worse, loa& s you try to write to one. Thatodie pragma changes
the default behavior. If you write:

use autodie;

open my $fh, >, $file;

...an unsuccessfulpen () call will throw an exception via Perl 5's normal exceptionahanism. Given that the most appro-
priate approach to a failed system call is throwing an exoepthis pragma can remove a lot of boilerplate code andvatiau
the peace of mind of knowing that you haven't forgotten tooshe return value.

This pragma entered the Perl 5 core as of Perl 5.10.1p&€ekloc autodie for more information.

167

Index

\A
\B
\D
\E
\G
\N{}
\@Q
\S
\W
\Z
\b
\d
\s
\w
\x{}

(7:)

(7=..

(7<=.

(7<>)

*

*%

*k=

circumfix operator, 60

prefix operator, 60
regex escaping metacharacter, 96

start of string regex metacharacter, 92

non-word boundary regex metacharacter, 92
non-digit regex metacharacter, 92

reenable metacharacters regex metacharacter, 96
global match anchor regex metacharacter, 98
escape sequence for named character encodings, 19
disable metacharacters regex metacharacter, 96
non-whitespace regex metacharacter, 92
non-alphanumeric regex metacharacter, 92

end of string regex metacharacter, 92

word boundary regex metacharacter, 92

digit regex metacharacter, 92

whitespace regex metacharacter, 92
alphanumeric regex metacharacter, 92

escape sequence for character encodings, 19
capturing regex metacharacters, 95

circumfix operator, 60

empty list, 21

postcircumfix operator, 60

non-capturing regex group, 95

.z)ero—width positive look-ahead regex assertion, 96
.z.e)ro-width positive look-behind regex assertion, 97
regex named capture, 94

numeric operator, 60

sigil, 142

zero or more regex quantifier, 90

numeric operator, 60

numeric operator, 60

numeric operator, 60

non-greedy zero or one regex quantifier, 91
numeric operator, 60

one or more regex quantifier, 90

prefix operator, 60
unary operator, 156

168

++

auto-increment operator, 61
prefix operator, 60

numeric operator, 60

non-greedy one or more regex quantifier, 91
operator, 62

character class range regex metacharacter, 93
numeric operator, 60

prefix operator, 60

numeric operator, 60

taint command-line argument, 146

enable warnings command-line argument, 127

disable warnings command-line argument, 127
file test operators, 133

numeric operator, 60
prefix operator, 60

dereferencing arrow, 52

directory test operator, 133

file exists operator, 133

file test operator, 133

readable file test operator, 133

enable baby taint command-line argument, 147
enable warnings command-line argument, 127
non-empty file test operator, 133

anything but newline regex metacharacter, 92
infix operator, 60

string operator, 61

flip-flop operator, 62

infix operator, 60

range operator, 22, 62

infix operator, 60

infix operator, 60

numeric operator, 60

circumfix operator, 60

infix operator, 46, 60

logical operator, 61

infix operator, 60

numeric operator, 60

substitution evaluation regex modifier, 98

/g
global match regex modifier, 98
/i
case-insensitive regex modifier, 97
/m
multiline regex modifier, 97
/s
single line regex modifier, 97
/x
extended readability regex modifier, 97
package name separator, 134
numeric comparison operator, 60
infix operator, 60
regex bind, 89
string operator, 61
=>
fat comma operator, 41, 62
?
zero or one regex quantifier, 90, 91
?:
logical operator, 61
ternary conditional operator, 61
??
non-greedy zero or one regex quantifier, 91
]
character class regex metacharacters, 93
circumfix operator, 60
postcircumfix operator, 60
$
end of line regex metacharacter, 97
sigil, 35, 36, 41
$\, 131
$,,131
$.,131,154
$/, 74,131, 150, 154
$0, 154
$1
regex metacharacter, 94
$2

regex metacharacter, 94

$AUTOLOAD, 85

$ERRNO, 154
$EVAL_ERROR, 154
$INPUT_LINE_NUMBER, 154
$INPUT_RECORD_SEPARATOR, 154
$LIST_SEPARATOR, 40, 154
$0UTPUT_AUTOFLUSH, 154
$PID, 154
$PROGRAM_NAME, 154
$SIG{__WARN__}, 128
$VERSION, 49

$#

sigil, 37

$$, 154
$&, 154

default scalar variable, 6
lexical, 28

$~w, 127
$,154

$¢, 154
$a, 150
$b, 150
$self, 148

%

%=

numeric operator, 60
sigil, 40

%+, 154

numeric operator, 60

%ENV, 146
%INC, 114
%SIG, 155
&

bitwise operator, 61

169

&=

&&

sigil, 53, 71
bitwise operator, 61

logical operator, 61

__DATA__, 129

__END

-, 129

bitwise operator, 61

negation of character class regex metacharacter, 93
start of line regex metacharacter, 97

bitwise operator, 61

.tfiles, 126
Higher Order Per| 79
t/ directory, 126

prefix operator, 60
smart match operator, 98

numeric comparison operator, 60

>=
numeric comparison operator, 60
>>
bitwise operator, 61
>>=
bitwise operator, 61
<
numeric comparison operator, 60
<=
numeric comparison operator, 60
<=>
numeric comparison operator, 60
<>
circumfix readline operator, 130
<<
bitwise operator, 61
<<=
bitwise operator, 61
circumfix operator, 60
{3
circumfix operator, 60
postcircumfix operator, 60
regex numeric quantifier, 90
circumfix operator, 60
aliasing, 28

iteration, 28

allomorphism, 106
amount context, 4
anchors

and

end of string, 92
start of string, 92

logical operator, 61

anonymous functions

implicit, 78
names, 77

anonymous variables, 15
Any: :Moose, 113

App: :cpanminus, 138
App: :perlbrew, 138
arguments

named, 148

arity, 59
ARRAY, 139
arrays, 13, 36

anonymous, 52
each, 39
interpolation, 40
pop, 39

push, 39
references, 51
shift, 39
slices, 38

Modern Perl

splice, 39
unshift, 39
ASCII, 18

associativity, 59
disambiguation, 60
left, 59
right, 59
atom, 89
Attribute::Handlers, 84
attributes
default values, 103
objects, 101
ro (read only), 101
rw (read-write), 102
typed, 101
untyped, 102
attributes pragma, 84
auto-increment, 61
autobox, 122
autodie pragma, 167
AUTOLOAD, 112, 156
code installation, 86
delegation, 86
drawbacks, 87
redispatch, 86
autovivification, 48, 57

autovivification pragma, 57

B::Deparse, 60
baby Perl, 3
barewords, 156
cons, 157
filehandles, 157
function calls, 157
hash values, 157
pros, 156
sort functions, 157
base pragma, 112
BEGIN, 143, 156
implicit, 143
Best Practical, 9
binary, 59
binmode, 18
blogs.perl.org, 9
boolean, 36
false, 36
true, 26, 36
boolean context, 5
buffering, 131
builtins
binmode, 18, 131
bless, 110
caller, 67, 151
chdir, 134
chomp, 31, 130
chr, 6
close, 131, 159
closedir, 133
defined, 21, 43
die, 119
do, 71
each, 39, 43
eof, 130
eval, 119, 141, 143
exists, 43
for, 27
foreach, 27
given, 33
goto, 35,71
grep, 7
index, 90
keys, 43
1c, 6
length, 6
local, 74, 150, 153
map, 7, 149
no, 121, 135
open, 18, 129

170

opendir, 132
ord, 6

our, 74
overriding, 161
package, 48, 100
pop, 39
print, 131, 159
prototype, 160
push, 39
readdir, 132
readline, 130
rename, 134
require, 139
reverse, 6
say, 131, 159
scalar, 5
shift, 39

sort, 149, 150, 157, 162

splice, 39
state, 75, 83
sub, 54, 63, 76, 162
sysopen, 130
tie, 163, 164
tied, 164
uc, 6

unlink, 134
unshift, 39
use, 67, 135
values, 43
wantarray, 68
warn, 127
when, 34

call frame, 69

can(), 87, 139, 162

Carp, 68, 127
carp(), 68, 127
cluck(), 127
confess(), 127
croak(), 68, 127
verbose, 127

case-sensitivity, 136

Catalyst, 84

CGI, 135

character classes, 93

charnames pragma, 19

CHECK, 156

circular references, 58

circumfix, 60

class method, 101

Class::MOP, 109, 144

Class::MOP::Class, 109

classes, 100

closures, 79

installing into symbol table, 142

parametric, 142
cmp

string comparison operator, 61

cmp_ok(), 125

CODE, 139

code generation, 141
codepoint, 17
coercion, 47,116, 153

boolean, 47

cached, 48

dualvars, 48

numeric, 47

reference, 48

string, 47
command-line arguments

-T, 146

-W, 127

-X, 127

-t, 147

-w, 127

constant pragma, 161
constants, 161
barewords, 157

Index

context, 3, 68
amount, 4
boolean, 5
conditional, 26
list, 4
numeric, 5
scalar, 4
string, 5
value, 5
void, 4
Contextual: :Return, 69
control flow, 23
control flow directives, 23
else, 24
elsif, 24
if, 23
ternary conditional, 25
unless, 23
CPAN, 10
CPAN.pm, 11
CPAN: :Mini, 138
cpanmini, 138
CPANPLUS, 11
CPANTS, 138
Test: :Reporter, 138
CPAN, 138
cpan.org, 9
CPAN::Mini, 118
CPANPLUS, 138
Cwd, 134

DATA, 129
data structures, 55
Data: :Dumper, 57
dative notation, 158
dclone(), 55
decode(), 18
defined-or, 46

logical operator, 61
default variables

$_,6

array, 7

scalar, 6
delegation, 86
dereferencing, 50
DESTROY, 156
destructive update, 30
Devel: :Cover, 126
Devel: :Declare, 109
dispatch, 101
dispatch table, 76
Dist::Zilla, 138
distribution, 10, 137
DOES(), 106, 140
DRY, 115
dualvar(), 36, 48
dualvars, 36, 48
duck typing, 104
DWIM, 3, 47
dwimmery, 47
dynamic scope, 74

efficacy, 118

empty list, 21
encapsulation, 72, 103
Encode, 18
encode(), 18
encoding, 18, 19

END, 156
English, 154

Enlightened Perl Organization, 9

eq

string comparison operator, 61

escaping, 16, 96
eval, 153

block, 119

string, 141
Exception::Class, 120

exceptions, 119
catching, 119, 153
caveats, 120
core, 120
Exception::Class, 120
die, 119
Try::Tiny, 120
rethrowing, 120
throwing, 119
throwing objects, 120
throwing strings, 119
exporting, 136

ExtUtils::MakeMaker, 126, 138

filehandles, 129
references, 54
STDERR, 129
STDIN, 129
STDOUT, 129

files
absolute paths, 133
copying, 134
deleting, 134
hidden, 133
moving, 134
relative paths, 133
removing, 134
slurping, 150

fixity, 60
circumfix, 60
infix, 60
postcircumfix, 60
postfix, 60
prefix, 60

flip-flop, 62

floating-point values, 20

false, 26

feature, ii, 83
state, 83

feature pragma, 135

File: :Copy, 134

File::Slurp, 151

File::Spec, 133

FileHandle, 132
autoflush(), 132

input_line_number(), 132
input_record_separator(), 132

fully-qualified name, 14
function, 63
functions
aliasing parameters, 66
anonymous, 75

avoid calling as methods, 163

call frame, 69
closures, 79
declaration, 63
first-class, 53
forward declaration, 63
goto, 71
importing, 67
invoking, 63
misfeatures, 71
parameters, 64
Perl 1,71

Perl 4,71
predeclaration, 87
references, 53
sigil, 53

tailcall, 70

garbage collection, 58
ge

string comparison operator, 61

genericity, 104
Github, 10
gitpan, 10
global variables
$\, 131

Modern Perl

$,,131 le
$.,131, 154 string comparison operator, 61
$/,131, 150, 154 left associativity, 59
$0, 154 lexical scope, 72
$ERRNO, 154 lexical shadowing, 73
$EVAL_ERROR, 154 lexical topic, 73
$INPUT_LINE_NUMBER, 154 lexical warnings, 128
$INPUT_RECORD_SEPARATOR, 154 lexicals
$LIST_SEPARATOR, 154 lifecycle, 55
$0UTPUT_AUTOFLUSH, 154 pads, 74
$PID, 154 lexpads, 74
$PROGRAM_NAME, 154 list context, 4
$$, 154 arrays, 39
$&, 154 listary, 59
$-w, 127 lists, 22
$,154 looks_like_number(), 21, 36
$¢, 154 looping directives
%+, 154 for, 27
%SIG, 155 foreach, 27
goto, 71 loops
tailcall, 87 continue, 33
greedy quantifiers, 91 control, 32
gt do, 31
string comparison operator, 61 for, 29
labels, 33
HASH, 139 last, 32
hashes, 13, 40 nested, 31
bareword keys, 156 next, 32
caching, 45 redo, 32
counting items, 45 until, 30
declaring, 40 while, 30
each, 43 1t
exists, 43 string comparison operator, 61
finding uniques, 45 lvalue, 14
keys, 43
locked, 46 m//
named parameters, 46 match operator, 6
references, 52 magic variables
slicing, 44 $/, 74
values, 42 maintainability, 117
values, 43 map
heredocs, 17 Schwartzian transform, 149
Memoize, 85
identifiers, 13 memory management
idioms, 118 circular references, 58
import (), 135 meta object protocol, 144
increment metacharacters
string, 36 regex, 96
indirect, 159 metaclass, 144
indirect object notation, 158 metaprogramming, 109, 141
infix, 60 method dispatch, 101, 111
inheritance, 106 method resolution order, 107
INIT, 156 methods
instance method, 101 AUTOLOAD, 112
integers, 20 avoid calling as functions, 162, 163
interpolation, 16 calling with references, 162
arrays, 40 class, 101, 110
introspection, 113 dispatch order, 107
10, 139 instance, 101
10 layers, 18 invocant, 148
I0::A11, 146 mutator, 102
I0::File, 132 resolution, 107
10::Handle, 132, 155, 159 Module: :Build, 126, 138
IRC, 10 modules, 10, 134
#catalyst, 10 case-sensitivity, 136
#moose, 10 BEGIN, 143
#perl, 10 pragmas, 121
#perl-help, 10 Moose, 144
is(), 125 attribute inheritance, 107
isa(), 108, 139 compared to default Perl 5 OO, 109
isa_ok(), 125 DOES(), 106
isnt(), 125 extends, 107
iteration inheritance, 106
aliasing, 28 isa(), 108
scoping, 28 metaprogramming, 109
MOP, 109
Larry Wall, 2 override, 108
Latin-1, 18 overriding methods, 108

172

Index

moose, 100

Moose: :Util::TypeConstraints, 116
MooseX: :Declare, 109

MooseX: :MultiMethods, 148

MooseX: :Params: :Validate, 152
MooseX: : Types, 116

MRO, 107

mro pragma, 112

multiple inheritance, 107, 112

my $_,28

names, 13
namespaces, 48, 49
fully qualified, 49
multi-level, 50
open, 49
ne
string comparison operator, 61
nested data structures, 55
not
logical operator, 61
null filehandle, 8
nullary, 59
numbers, 20
false, 36
true, 36
underscore separator, 20
numeric context, 5
numeric quantifiers, 90
numification, 36, 47

objects, 100
inheritance, 107
invocant, 148
meta object protocol, 144
multiple inheritance, 107

octet, 18

ok(), 123

00, 100
attributes, 101
AUTOLDAD, 112
bless, 110
class methods, 101, 110
classes, 100
constructors, 110
delegation, 86
dispatch, 101
duck typing, 104
encapsulation, 103
genericity, 104
has-a, 115
immutability, 116
inheritance, 106, 112, 115
instance data, 110
instance methods, 101
instances, 100
invocants, 100
is-a, 115
Liskov Substitution Principle, 116
metaclass, 144
method dispatch, 101
methods, 100, 111
mixins, 106
monkeypatching, 106
multiple inheritance, 106
mutator methods, 102
polymorphism, 104
proxying, 86
single responsibility principle, 115
state, 101

OO: composition, 115

open, 18

operands, 59

operators, 59, 61
\, 50
*, 60
*x, 60
*%=, 60

173

or

>, 60

>=, 60

>>, 61

>>=, 61

<, 60

<=, 60

<=>, 60, 150
<>, 130

<<, 61

<<=, 61

and, 61
arithmetic, 60
arity, 59
auto-increment, 61
bitwise, 61
characteristics, 59
cmp, 61, 150
comma, 62
defined-or, 46, 61
eq, 61, 125
fixity, 60
flip-flop, 62
ge, 61

gt, 61

le, 61
logical, 61
1t, 61

m//, 89
match, 89
ne, 61, 125
not, 61
numeric, 60
or, 61

q, 17

qq, 17

qr//, 89
quoting, 17
qu(), 22
range, 22, 62
repetition, 62
smart match, 98
string, 61

x, 62

xor, 61

logical operator, 61

Modern Perl

orcish maneuver, 45

single quoting operator, 17

overload pragma, 145 qq

overloading, 145 double quoting operator, 17
boolean, 145 aqr//
inheritance, 146 compile regex operator, 89
numeric, 145 quantifiers
string, 145 greedy, 91

zero or more, 90

p5p, 10 qu()

packages, 48 quote words operator, 22
bareword names, 156
namespaces, 49 range, 62

scope, 74

versions, 49
PadWalker, 80
parameters, 64

readline, 154
Readonly, 161
recursion, 69
guard conditions, 70

aliasing, 66 reflection, 113

flattening, 64 references, 50

named, 148 \ operator, 50
slurping, 66 anonymous arrays, 52

Params::Validate, 152
parent pragma, 111
partial application, 82
Path::Class, 133

arrays, 51
dereferencing, 50
filehandles, 54
functions, 53

Path::Class::Dir, 133 hashes, 52
Path::Class::File, 133 reference counting, 55
Perl 5 Porters, 10 scalar, 50
Perl Buzz, 9 weak, 58
Perl Mongers, 10 regex, 89
perl.com, 9 \B, 92
perl.org, 9 \D, 92
perlbi, 122 \G, 98
Perl::Critic, 118, 140, 159 \S, 92
Perl::Critic::Policy::Dynamic::NoIndirect, 159 \w, 92
Perl::Tidy, 118 \d, 92
perldoc \s, 92

-f (search perlfunc), 2 \w, 92

-1 (list path to POD), 2 0,95

-m (show raw POD), 2 ., 92

-q (search perlfaq), 2

/e modifier, 98

PerlMonks, 9 /g modifier, 98
plan(), 123 /i modifier, 97
Planet Perl, 9 /m modifier, 97
Planet Perl Iron Man, 9 /s modifier, 97
POD, 2 /x modifier, 97

polymorphism, 104

alternation, 95

postgircumfix, 60 anchors, 92
postfix, 60 assertions, 96
pragmas, 121 atom, 89

attributes, 84
autodie, 122, 167
autovivification, 57
base, 112

charnames, 19

constant, 122, 161

capture, 152

captures, 94
case-insensitive, 97
disabling metacharacters, 96
engine, 89

escaping metacharacters, 96

disabling, 121 extended readability, 97
enabling, 121 first-class, 89

feature, 135 global match, 98

mro, 112 global match anchor, 98
overload, 145 metacharacters, 92, 96
parent, 111 modification, 152
scope, 121 modifiers, 97

strict, 122, 142, 156, 166 multiline, 97

subs, 87, 161 named captures, 94
useful core pragmas, 122 numbered captures, 94
utfg, 19, 122 one or more quantifier, 90
vars, 122

warnings, 122, 127
precedence, 59

disambiguation, 60
prefix, 60
principle of least astonishment, 3
prototypes, 159

qr//, 89

quantifiers, 90

single line, 97
substitution, 152
substitution evaluation, 98
zero or one quantifier, 90
zero-width assertion, 96

barewords, 157 zero-width negative look-ahead assertion, 96
prove, 124,138 zero-width negative look-behind assertion, 97
proxying, 86 zero-width positive look-ahead assertion, 96

zero-width positive look-behind assertion, 97
q Regexp, 139

174

Index

Regexp: : Common, 21
regular expressions, 89
right associativity, 59
roles, 105
allomorphism, 106
composition, 105
RT, 9
rvalue, 14

s///
subsitution operator, 6
SCALAR, 139
scalar context, 4
scalar variables, 13
Scalar::Util, 47
looks_like_number, 47
Scalar::Util, 21, 36, 48, 58, 146
scalars, 13, 35
boolean values, 36
references, 50
Schwartzian transform, 149
scope, 14, 72
dynamic, 74
iterator, 28
lexical, 72
lexical shadowing, 73
packages, 74
state, 75
search.cpan.org, 10
short-circuiting, 25, 61
sigils, 15
*, 142
$, 35, 36, 41
$#, 37
%, 40
&, 53,71
variant, 36
signatures, 148
slices, 14
array, 38
hash, 44
smart match, 98
sort, 157
Schwartzian transform, 149
state, 83
state, 75
STDERR, 129
STDIN, 129
STDOUT, 129
Storable, 55
strict, 166
strict pragma, 142, 156
string context, 5
stringification, 36, 47
strings, 15
\N{}, 19
\x{}, 19
delimiters, 15
double-quoted, 16
false, 36
heredocs, 17
interpolation, 16
operators, 61
single-quoted, 16
true, 36
Sub::Call::Tail, 70
Sub: :Exporter, 136
Sub::Identify, 77
Sub::Install, 82
Sub: :Name, 77
subroutine, 63
subs pragma, 87, 161
subtypes, 116
SUPER, 113
super globals, 153
alternatives, 155
managing, 153
useful, 154

175

symbol tables, 74, 115, 142
symbolic lookups, 13

tailcalls, 35, 70, 87
taint, 146
checking, 146
removing sources of, 147
untainting, 147
tainted(), 146
TAP (Test Anything Protocol), 124
Task: :Kensho, 166
ternary conditional, 25
Test::Builder, 126
Test::Class, 84, 126
Test::Database, 126
Test: :Deep, 126
Test::Differences, 126
Test: :Exception, 78, 126, 161
Test: :Harness, 124, 138
Test: :MockModule, 126
Test: :MockObject, 126
Test: :More, 123, 138
Test: :WWW: :Mechanize, 126
testing, 123
cmp_ok(), 125
is(), 125
isa_ok(), 125
isnt(), 125
ok(), 123
plan, 123
prove, 124
running tests, 124
TAP, 124
Test::Builder, 126
The Perl Foundation, 10
Tim Toady, 2
TIMTOWTDI, 2
topic
lexical, 73
topicalization, 34
TPF, 10
wiki, 10
tr//
transliteration operator, 6
trinary, 59
true, 26
truthiness, 47
Try::Tiny, 120, 155
typeglobs, 115, 142
types, 116, 153

unary, 59
unary conversions
boolean, 153
numeric, 153
string, 153
undef, 21, 36
coercions, 21
underscore, 20
Unicode, 17
encoding, 18
unimporting, 135
UNITCHECK, 156
UNIVERSAL, 49, 139
can(), 162
UNIVERSAL: :can, 87, 139, 140
UNIVERSAL: :DOES, 140
UNIVERSAL: :isa, 139, 140
UNIVERSAL: :ref, 140
UNIVERSAL: :VERSION, 140
Unix, 133
untainting, 147
UTF-8, 18
utf8 pragma, 19

value context, 5
variable, 14
variables, 15

Modern Perl

$_,6

$self, 148

anonymous, 15

arrays, 13

container type, 15

hashes, 13

lexical, 72

names, 13

scalars, 13

scope, 14

sigils, 15

super global, 153

types, 15

value type, 15
variant sigils, 14
VERSIONQ), 49, 140
void context, 4

Wall, Larry, 2

Want, 69

wantarray, 68

warnings
catching, 128
fatal, 128
registering, 128

warnings, 127

weak references, 58

websites
blogs.perl.org, 9
cpan.org, 9
gitpan, 10
Perl Buzz, 9
perl.com, 9
perl.org, 9
PerlMonks, 9
Planet Perl, 9
Planet Perl Iron Man, 9
TPF wiki, 10

word boundary metacharacter, 92

repetition operator, 62

logical operator, 61

YAPC, 10

176

	Preface
	Running Modern Perl
	Perl 5 and Perl 6
	Credits

	The Perl Philosophy
	Perldoc
	Expressivity
	Context
	Implicit Ideas

	Perl and Its Community
	Community Sites
	Development Sites
	Events
	IRC
	The CPAN

	The Perl Language
	Names
	Variables
	Values
	Control Flow
	Scalars
	Arrays
	Hashes
	Coercion
	Nested Data Structures

	Operators
	Operator Characteristics
	Operator Types

	Functions
	Declaring Functions
	Invoking Functions
	Function Parameters
	Functions and Namespaces
	Reporting Errors
	Advanced Functions
	Pitfalls and Misfeatures
	Scope
	Anonymous Functions
	Closures
	State versus Closures
	State versus Psuedo-State
	Attributes
	AUTOLOAD

	Regular Expressions and Matching
	Literals
	The qr// Operator and Regex Combinations
	Quantifiers
	Greediness
	Regex Anchors
	Metacharacters
	Character Classes
	Capturing
	Grouping and Alternation
	Other Escape Sequences
	Assertions
	Regex Modifiers
	Smart Matching

	Objects
	Moose
	Blessed References
	Reflection
	Advanced OO Perl

	Style and Efficacy
	Writing Maintainable Perl
	Writing Idiomatic Perl
	Writing Effective Perl
	Exceptions
	Pragmas

	Managing Real Programs
	Testing
	Handling Warnings
	Files
	Modules
	Distributions
	The UNIVERSAL Package
	Code Generation
	Overloading
	Taint

	Perl Beyond Syntax
	Idioms
	Global Variables

	What to Avoid
	Barewords
	Indirect Objects
	Prototypes
	Method-Function Equivalence
	Tie

	What's Missing
	Missing Defaults

