

Matplotlib for Python
Developers

Build remarkable publication quality plots the easy way

Sandro Tosi

 BIRMINGHAM - MUMBAI

Matplotlib for Python Developers

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2009

Production Reference: 2221009

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847197-90-0

www.packtpub.com

Cover Image by Raghuram Ashok (raghuram.ashok@gmail.com)

Credits

Author
Sandro Tosi

Reviewers
Michael Droettboom

Reinier Heeres

Acquisition Editor
Usha Iyer

Development Editor
Rakesh Shejwal

Technical Editor
Namita Sahni

Copy Editor
Leonard D'Silva

Indexers
Monica Ajmera

Hemangini Bari

Editorial Team Leader
Akshara Aware

Project Team Leader
Priya Mukherji

Project Coordinator
Zainab Bagasrawala

Proofreader
Lesley Harrison

Graphics
Nilesh Mohite

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

About the Author

Sandro Tosi was born in Firenze (Italy) in the early 80s, and graduated with a B.Sc.
in Computer Science from the University of Firenze.

His personal passions for Linux, Python (and programming), and computer
technology are luckily a part of his daily job, where he has gained a lot of experience
in systems and applications management, database administration, as well as project
management and development.

After having worked for five years as an EAI and an Application architect in an
energy multinational, he's now working as a system administrator for an important
European Internet company.

I'd like to thank Laura, who has assisted and supported me while
writing this book.

About the Reviewers

Michael Droettboom holds a Master's Degree in Computer Music Research
from The Johns Hopkins University. His research in optical music recognition lead
to the development of the Gamera document image analysis framework, which has
been used to recognize features in documents as diverse as medieval manuscript,
Navajo texts, historical Scottish census data, and early American sheet music. His
focus on computer graphics has lead to specializations in consumer electronics,
computer-assisted engineering, and most recently, the science software for the Space
Telescope Science Institute. He is currently one of the most active developers on the
Matplotlib project.

I wish to thank my son, Kai, for asking all the hard questions.

Reinier Heeres has an MSc degree in Applied Physics from the Delft University of
Technology, The Netherlands. He is currently pursuing a PhD there in the Quantum
Transport group of the nanoscience department.

He has previously worked on Sugar, the child-friendly user interface mainly in use
by One Laptop Per Child's $100 laptop. For this project, he designed the Calculator
application.

Recently, he revived and extended the 3D plotting functionalities for Matplotlib to
make it an excellent 2D graphing library, and a simple 3D plotting tool again.

Table of Contents
Preface 1
Chapter 1: Introduction to Matplotlib 7

Merits of Matplotlib 8
Matplotlib web sites and online documentation 10
Output formats and backends 10

Output formats 11
Backends 12

About dependencies 13
Build dependencies 15

Installing Matplotlib 15
Installing Matplotlib on Linux 15
Installing Matplotlib on Windows 16
Installing Matplotlib on Mac OS X 16
Installing Matplotlib using packaged Python distributions 17
Installing Matplotlib from source code 17
Testing our installation 18

Summary 19
Chapter 2: Getting Started with Matplotlib 21

First plots with Matplotlib 21
Multiline plots 25

A brief introduction to NumPy arrays 27
Grid, axes, and labels 28

Adding a grid 28
Handling axes 29
Adding labels 31

Titles and legends 32
Adding a title 32
Adding a legend 33

Table of Contents

[ii]

A complete example 35
Saving plots to a file 36
Interactive navigation toolbar 38
IPython support 40

Controlling the interactive mode 42
Suppressing functions output 43

Configuring Matplotlib 43
Configuration files 44
Configuring through the Python code 45
Selecting backend from code 46

Summary 47
Chapter 3: Decorate Graphs with Plot Styles and Types 49

Markers and line styles 49
Control colors 50

Specifying styles in multiline plots 52
Control line styles 52
Control marker styles 53
Finer control with keyword arguments 56

Handling X and Y ticks 58
Plot types 59

Histogram charts 59
Error bar charts 61
Bar charts 63
Pie charts 67
Scatter plots 69

Polar charts 71
Navigation Toolbar with polar plots 73
Control radial and angular grids 73

Text inside figure, annotations, and arrows 74
Text inside figure 74
Annotations 75
Arrows 77

Summary 79
Chapter 4: Advanced Matplotlib 81

Object-oriented versus MATLAB styles 81
A brief introduction to Matplotlib objects 85
Our first (simple) example of OO Matplotlib 85

Subplots 86
Multiple figures 88
Additional Y (or X) axes 89

Table of Contents

[iii]

Logarithmic axes 91
Share axes 92

Plotting dates 94
Date formatting 95
Axes formatting with axes tick locators and formatters 96
Custom formatters and locators 99

Text properties, fonts, and LaTeX 99
Fonts 101
Using LaTeX formatting 102

Mathtext 103
External TeX renderer 104

Contour plots and image plotting 106
Contour plots 106
Image plotting 109

Summary 111
Chapter 5: Embedding Matplotlib in GTK+ 113

A brief introduction to GTK+ 113
Introduction to GTK+ signal system 115

Embedding a Matplotlib figure in a GTK+ window 116
Including a navigation toolbar 119

Real-time plots update 123
Embedding Matplotlib in a Glade application 132

Designing the GUI using Glade 132
Code to use Glade GUI 135

Summary 144
Chapter 6: Embedding Matplotlib in Qt 4 145

Brief introduction to Qt 4 and PyQt4 145
Embedding a Matplotlib figure in a Qt window 147

Including a navigation toolbar 151
Real-time update of a Matplotlib graph 156
Embedding Matplotlib in a GUI made with Qt Designer 165

Designing the GUI using Qt Designer 165
Code to use the Qt Designer GUI 168
Introduction to signals and slots 171
Returning to the example 172

Summary 179
Chapter 7: Embedding Matplotlib in wxWidgets 181

Brief introduction to wxWidgets and wxPython 181
Embedding a Matplotlib figure in a wxFrame 182

Including a navigation toolbar 186

Table of Contents

[iv]

Real-time plots update 192
Embedding Matplotlib in a GUI made with wxGlade 203
Summary 213

Chapter 8: Matplotlib for the Web 215
Matplotlib and CGI 216

What is CGI 216
Configuring Apache for CGI execution 216
Simple CGI example 218
Matplotlib in a CGI script 219
Passing parameters to a CGI script 220

Matplotlib and mod_python 223
What is mod_python 223
Apache configuration for mod_python 224
Matplotlib in a mod_python example 226
Matplotlib and mod_python's Python Server Pages 228

Web Frameworks and MVC 231
Matplotlib and Django 232

What is Django 232
Matplotlib in a Django application 233

Matplotlib and Pylons 237
What is Pylons 237
Matplotlib in a Pylons application 238

Summary 242
Chapter 9: Matplotlib in the Real World 243

Plotting data from a database 244
Plotting data from the Web 247
Plotting data by parsing an Apache log file 250
Plotting data from a CSV file 256
Plotting extrapolated data using curve fitting 261
Tools using Matplotlib 267

NetworkX 267
Mpmath 269

Plotting geographical data 271
First example 272
Using satellite background 274
Plot data over a map 275
Plotting shapefiles with Basemap 277

Summary 279
Index 281

Preface
This book is about Matplotlib, a Python package for 2D plotting that generates
production quality graphs. Its variety of output formats, several chart types,
and capability to run either interactively (from Python or IPython consoles)
and non-interactively (useful, for example, when included into web applications),
makes Matplotlib suitable for use in many different situations.

Matplotlib is a big package with several dependencies and having them all installed
and running properly is the first step that needs to be taken. We provide some ways
to have a system ready to explore Matplotlib. Then we start describing the basic
functions required for plotting lines, exploring any useful or advanced commands
for our plots until we come to the core of Matplotlib: the object-oriented interface.
This is the root for the next big section of the book—embedding Matplotlib into
GUI libraries applications. We cannot limit it only to desktop programs, so we show
several methods to include Matplotlib into web sites using low level techniques for
two well known web frameworks—Pylons and Django. Last but not the least, we
present a number of real world examples of Matplotlib applications.

The core concept of the book is to present how to embed Matplotlib into Python
applications, developed using the main GUI libraries: GTK+, Qt 4, and wxWidgets.
However, we are by no means limiting ourselves to that. The step-by-step
introduction to Matplotlib functions, the advanced details, the example with web
frameworks, and several real-life use cases make the book suitable for anyone willing
to learn or already working with Matplotlib.

Preface

[2]

What this book covers
Chapter 1—Introduction to Matplotlib introduces what Matplotlib is, describing its
output formats and the interactions with graphical environments. Several ways
to install Matplotlib are presented, along with its dependencies needed to have a
correctly configured environment to get along with the book.

Chapter 2—Getting started with Matplotlib covers the first examples of Matplotlib
usage. While still being basic, the examples show important aspects of Matplotlib
like how to plot lines, legends, axes labels, axes grids, and how to save the finished
plot. It also shows how to configure Matplotlib using its configuration files or
directly into the code, and how to work profitable with IPython.

Chapter 3—Decorate Graphs with Plot Styles and Types discusses the additional plotting
capabilities of Matplotlib: lines and points styles and ticks customizations. Several
types of plots are discussed and covered: histograms, bars, pie charts, scatter plots,
and more, along with the polar representation. It is also explained how to include
textual information inside the plot.

Chapter 4—Advanced Matplotlib examines some advanced (or not so common) topics
like the object-oriented interface, how to include more subplots in a single plot or how
to generate more figures, how to set one axis (or both) to logarithmic scale, and how
to share one axis between two graphs in one plot. A consistent section is dedicated to
plotting date information and all that comes with that. This chapter also shows the
text properties that can be tuned in Matplotlib and how to use the LaTeX typesetting
language. It also presents a section about contour plot and image plotting.

Chapter 5—Embedding Matplotlib in GTK+ guides us through the steps to embed
Matplotlib inside a GTK+ program. Starting from embedding just the Figure and the
Navigation toolbar, it will present how to use Glade to design a GUI and then embed
Matplotlib into it. It also describes how to dynamically update a Matplotlib plot
using the GTK+ capabilities.

Chapter 6—Embedding Matplotlib in Qt 4 explores how to include a Matplotlib figure
into a Qt 4 GUI. It includes an example that uses Qt Designer to develop a GUI and
how to use Matplotlib into it. What Qt 4 library provides for a real-time update of a
Matplotlib plot is described here too.

Chapter 7—Embedding Matplotlib in wxWidgets shows what is needed to embed
Matplotlib into a wxWidget graphical application. An important example is the one
for a real-time plot update using a very efficient technique (borrowed from computer
graphics), allowing for a high update rate. WxGlade is introduced, which guides us
step-by-step through the process of wxWidgets GUI creation and where to include a
Matplotlib plot.

Preface

[3]

Chapter 8—Matplotlib for the Web describes how to expose plots generated with
Matplotlib on the Web. The first examples start from the lower ground, using CGI
and the Apache mod_python module, technologies recommended only for limited
or simple tasks. For a full web experience, two web frameworks are introduced,
Pylons and Django, and a complete guide for the inclusion of Matplotlib with these
frameworks is given.

Chapter 9—Matplotlib in the Real World takes Matplotlib and brings it into the real
world examples field, guiding through several situations that might occur in the
real life. The source code to plot the data extracted from a database, a web page, a
parsed log file, and from a comma-separated file are described in full detail here. A
couple of third-party tools using Matplotlib, NetworkX, and Mpmath, are described
presenting some examples of their usage. A considerable section is dedicated to
Basemap, a Matplotlib toolkit to draw geographical data.

What you need for this book
In order to be able to have the best experience with this book, you have to start with
an already working Python environment, and then follow the advice in Chapter 1
on how to install Matplotlib and its most important dependencies. Some examples
require additional tools, libraries, or modules to be installed: consult the distribution
or project documentation for installation details.

Python, Matplotlib, and all other tools are cross-platform, so the book examples can
be executed on Linux, Windows, or Mac OS X.

The book and the example code was developed using Python 2.5 and Matplotlib
0.98.5.3, but due to recent developments, Python 2.6 (Python 3.x is still not well
supported by NumPy, Matplotlib, and several other modules) and Matplotlib 0.99.x
can be used as well.

Who this book is for
This book is essentially for Python developers who have a good knowledge of
Python; no knowledge of Matplotlib is required. You will be creating 2D plots using
Matplotlib in no time at all.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[4]

Code words in text are shown as follows: "This is used for enhanced handling of the
datetime Python objects."

A block of code is set as follows:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: y = np.arange(1, 3)
In [4]: plt.plot(y, 'y');
In [5]: plt.plot(y+1, 'm');
In [6]: plt.plot(y+2, 'c');
In [7]: plt.show()

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

c[0]*x**deg + c[1]*x**(deg – 1) + ... + c[deg]

Any command-line input or output is written as follows:

$ easy_install matplotlib-<version>-py<py version>-win32.egg

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "There are
several aspects we might want to tune in a widget, and this can be done using the
Properties window."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com, and
mention the book title via the subject of your message.

Preface

[5]

If there is a book that you need and would like to see us publish, please send us
a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/7900_Code.zip to
directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted
and the errata added to any list of existing errata. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Preface

[6]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to Matplotlib
A picture is worth a thousand words.

We all know that images are a powerful form of communication. We often use
them to understand a situation better or to condense pieces of information into
a graphical representation.

Just to give a couple of examples on how helpful they can be, let's consider the
scientific and performance analysis fields. In order to clearly identify the bottlenecks,
it is very important to be able to visualize data when analyzing performance
information. Similarly, taking a quick glance at a graph drawn for a scientific
experiment can give a scientist a better understanding of the results, something
which is harder to achieve by looking only at the raw data.

Python is an interpreted language with a strong core functions basis and a powerful
modular aspect which allows us to expand the language with external modules that
offer new functionalities.

Modules reflect the Unix philosophy:

Do one thing, do it well.

So the result is that we have an extensible language with tools to accomplish a single
task in the best possible way. Modules are often organized in packages. A package
is a structured collection of modules that have the same purpose. One example of a
package is Matplotlib.

Introduction to Matplotlib

[8]

Matplotlib is a Python package for 2D plotting that generates production-quality
graphs. It supports interactive and non-interactive plotting, and can save images in
several output formats (PNG, PS, and others). It can use multiple window toolkits
(GTK+, wxWidgets, Qt, and so on) and it provides a wide variety of plot types
(lines, bars, pie charts, histograms, and many more). In addition to this, it is highly
customizable, flexible, and easy to use.

The dual nature of Matplotlib allows it to be used in both interactive and
non-interactive scripts. It can be used in scripts without a graphical display,
embedded in graphical applications, or on web pages. It can also be used
interactively with the Python interpreter or IPython.

In this chapter, we will introduce Matplotlib, learn what it is, and what it can do.
Later on, we will see what tools and Python modules are needed to have the best
experience with Matplotlib and how to get them installed on our system, be it
Linux, Windows, or Mac OS X.

The topics we are going to cover are:

• Introduction to Matplotlib
• Output formats and backends
• Dependencies
• How to install Matplotlib

Merits of Matplotlib
The idea behind Matplotlib can be summed up in the following motto as quoted
by John Hunter, the creator and project leader of Matplotlib:

Matplotlib tries to make easy things easy and hard things possible.

We can generate high quality, publication-ready graphs with minimal effort
(sometimes we can achieve this with just one line of code or so), and for elaborate
graphs, we have at hand a powerful library to support our needs.

Matplotlib was born in the scientific area of computing, where gnuplot and
MATLAB were (and still are) used a lot.

With the entrance of Python into scientific toolboxes, an example of a workflow to
process some data might be similar to this: "Write a Python script to parse data, then
pass the data to a gnuplot script to plot it". Now with Matplotlib, we can write a
single script to parse and plot data, with a lot more flexibility (that gnuplot doesn't
have) and consistently using the same programming language.

Chapter 1

[9]

We have to think of plotting not just as the final step in working with our data, but as
an important way of getting visual feedback during the process. Here, the interactive
capabilities of Matplotlib will come and rescue us.

Matplotlib was modeled on MATLAB, because graphing was something that
MATLAB did very well. The high degree of compatibility between them made
many people move from MATLAB to Matplotlib, as they felt like home while
working with Matplotlib.

But what are the points that built the success of Matplotlib? Let's look at some of them:

• It uses Python: Python is a very interesting language for scientific purposes
(it's interpreted, high-level, easy to learn, easily extensible, and has a
powerful standard library) and is now used by major institutions such as
NASA, JPL, Google, DreamWorks, Disney, and many more.

• It's open source, so no license to pay: This makes it very appealing for
professors and students, who often have a low budget.

• It's a real programming language: The MATLAB language (while being
Turing-complete) lacks many of the features of a general-purpose language
like Python.

• It's much more complete: Python has a lot of external modules that will
help us perform all the functions we need to. So it's the perfect tool to
acquire data, elaborate the data, and then plot the data.

• It's very customizable and extensible: Matplotlib can fit every use case
because it has a lot of graph types, features, and configuration options.

• It's integrated with LaTeX markup: This is really useful when writing
scientific papers.

• It's cross-platform and portable: Matplotlib can run on Linux, Windows,
Mac OS X, and Sun Solaris (and Python can run on almost every
architecture available).

In short, Python became very common in the scientific field, and this success is
reflected even on this book, where we'll find some mathematical formulas. But
don't be concerned about that, we will use nothing more complex than high school
level equations.

Introduction to Matplotlib

[10]

Matplotlib web sites and online
documentation
The official Matplotlib presence on the Web is made up of two web sites:

• The SourceForge project page at http://sourceforge.net/projects/
matplotlib/

• The main web site at http://matplotlib.sourceforge.net/

The SourceForge page contains, in particular, information about the development
of Matplotlib, such as the released source code tarballs and binary packages, the
SVN repository location, the bug tracking system, and so on. SourceForge also hosts
some mailing lists for Matplotlib which are used for developers' discussions and
users support.

On the main web site, we can find several important pieces of information about
the Matplotlib package itself. For example:

• It contains a very attractive gallery with a huge number of examples of
what Matplotlib can do

• The official documentation of Matplotlib is also present on this web site

The official documentation for Matplotlib is extensive. It covers in detail, all the
submodules and the methods exposed by them, including all of their arguments.
There are too many function arguments to cover in this book, so we are presenting
only the most common ones here. In case of any doubts or questions, the official
documentation is a good place to start your research or to look for an answer.

We encourage you to take a look at the gallery—it's inspiring!

Output formats and backends
The aim of Matplotlib is to generate graphs. So, we need a way to actually view
these images or even to save them to files. We're going to look at the various output
formats available in Matplotlib and the graphical user interfaces (GUIs) supported
by the library.

Chapter 1

[11]

Output formats
Given its scientific roots (that means several different needs), Matplotlib has a lot
of output formats available, which can be used for articles/books and other print
publications, for web pages, or for any other reason we can think of. Let's first
differentiate the output formats into two distinct categories:

• Raster images: These are the classic images we can find on the Web or used
for pictures. The most well known raster file formats are PNG, JPG, and BMP.
They are widespread and well supported. The format of these images is like
a matrix, with rows and columns, and at every matrix cell we have a pixel
description (containing information such as colors). This format is said to be
resolution-dependent, because the size of the matrix (the number of rows and
columns) is determined when the image is created. An important parameter
for raster images is the DPI (dots-per-inch) value. Once the image dimensions
are decided (length and width, in inches), the DPI value specifies the detail
level of the image. Hence, higher the DPI value, higher is the quality of the
image (because for the same inch we get more dots). Scaling operations such as
zooming or resizing can result in a loss of quality, because the image contains
only a limited amount of information.

• Vector images: As opposed to raster images, vector images contain
a description of the image in the form of mathematical equations and
geometrical primitives (for example, points, lines, curves, polygons, or
shapes). We can think of this format as a series of directives to plot the image:
"Draw a point here, draw another point there, draw a line between those two
points" and so on. Given this descriptive format, these images are said to be
resolution-independent, because it's the image interpreter that replots the image
at the requested resolution using the instructions in it. Typical examples of
vector image usage are typesetting and CAD (architectural or mechanical
parts drawings).

Of course, Matplotlib supports both the categories, particularly with the following
output formats:

Format Type Description
EPS Vector Encapsulated PostScript.
JPG Raster Graphic format with lossy compression method for photographic

output.
PDF Vector Portable Document Format (PDF).
PNG Raster Portable Network Graphics (PNG), a raster graphics format with a

lossless compression method (more adaptable to line art than JPG).
PS Vector Language widely used in publishing and as printers jobs format.
SVG Vector Scalable Vector Graphics (SVG), XML based.

Introduction to Matplotlib

[12]

PS or EPS formats are particularly useful for plots inclusion in LaTeX documents,
the main scientific articles format since decades.

Backends
In the previous section, we saw the file output formats—they are also called
hardcopy backends as they create something (a file on disk).

A backend that displays the image on screen is called a user interface backend.

The backend is that part of Matplotlib that works behind the scenes and allows
the software to target several different output formats and GUI libraries (for
screen visualization).

In order to be even more flexible, Matplotlib introduces the following two layers
structured (only for GUI output):

• The renderer: This actually does the drawing
• The canvas: This is the destination of the figure

The standard renderer is the Anti-Grain Geometry (AGG) library, a high
performance rendering engine which is able to create images of publication level
quality, with anti-aliasing, and subpixel accuracy. AGG is responsible for the
beautiful appearance of Matplotlib graphs.

The canvas is provided with the GUI libraries, and any of them can use the AGG
rendering, along with the support for other rendering engines (for example, GTK+).

Let's have a look at the user interface toolkits and their available renderers:

Backend Description
GTKAgg GTK+ (The GIMP ToolKit GUI library) canvas with AGG rendering.
GTK GTK+ canvas with GDK rendering. GDK rendering is rather primitive,

and doesn't include anti-aliasing for the smoothing of lines.
GTKCairo GTK+ canvas with Cairo rendering.
WxAgg wxWidgets (cross-platform GUI and tools library for GTK+, Windows,

and Mac OS X. It uses native widgets for each operating system, so
applications will have the look and feel that users expect on that
operating system) canvas with AGG rendering.

WX wxWidgets canvas with native wxWidgets rendering.
TkAgg Tk (graphical user interface for Tcl and many other dynamic languages)

canvas with AGG rendering.

Chapter 1

[13]

Backend Description
QtAgg Qt (cross-platform application framework for desktop and embedded

development) canvas with AGG rendering (for Qt version 3 and earlier).
Qt4Agg Qt4 canvas with AGG rendering.
FLTKAgg FLTK (cross-platform C++ GUI toolkit for UNIX/Linux (X11), Microsoft

Windows, and Mac OS X) canvas with Agg rendering.

Here is the list of renderers for file output:

Renderer File type
AGG .png

PS .eps or .ps
PDF .pdf

SVG .svg
Cairo .png, .ps, .pdf, .svg
GDK .png, .jpg

The renderers mentioned in the previous table can be used directly in Matplotlib,
when we want only to save the resulting graph into a file (without any visualization
of it), in any of the formats supported.

We have to pay attention when choosing which backend to use. For example, if we
don't have a graphical environment available, then we have to use the AGG backend
(or any other file). If we have installed only the GTK+ Python bindings, then we can't
use the WX backend.

About dependencies
As mentioned earlier, Matplotlib has its origin in scientific fields, so it is commonly
used to plot huge datasets. Python's native support for long lists becomes impractical
for such sizes, so Matplotlib needs better support for arrays.

NumPy, the de facto standard Python module for numerical elaborations, provides
support for high performance operations even with big mathematical data types
such as arrays or matrices—along with many other mathematical functions that can
be useful to Matplotlib users.

NumPy has to be available to use Matplotlib.

Introduction to Matplotlib

[14]

Once we have chosen the set of user interfaces (UIs) we prefer, then we need to
install the Python bindings for them. Here is a summarizing list:

User Interface
(UI)

Binding Version Description

FLTK pyFLTK 1.0 or
higher

pyFLTK provides Python wrappers for the FLTK
widgets library for use with FLTKAgg backend.

GTK+ PyGTK 2.2 or
higher

PyGTK provides Python wrappers for the GTK+
widgets library to use it with the GTK or GTKAgg
backend.
It is recommended to use a version higher than
2.12, for a correct memory management.

Qt PyQt or
PyQt4

3.1 or
higher
and for
Qt4, 4.0
or higher

PyQt or PyQt4 provides Python wrappers for the
Qt toolkit and is required by the Matplotlib QtAgg
and Qt4Agg backends. The library is widely used
on Linux and Windows.

Tk PyTK 8.3 or
higher

Python wrapper for Tcl or Tk widgets library is used
in TkAgg backend.

Wx wxPython 2.6 or
higher,
or
2.8 or
higher

wxPython provides Python wrappers for the
wxWidgets library for use with the WX and WXAgg
backends. It is widely used on Linux, Mac OS X,
and Windows.

Another important tool, in particular for interactive usage, is IPython. It's an
interactive Python shell with a lot of useful features, such as history, commands
repeating, and others. It already has a Matplotlib mode in it. We'll be using IPython
in this book, so it is recommended to install it.

Some of the tools that are needed by Matplotlib are already shipped with it (in the
source code as well as in the binary distributions). Here is the list of those tools:

• AGG (version 2.4): This is the Anti-Grain Geometry rendering engine. The
local copy of the library is linked with the Matplotlib code in a static way.
So, there's no need to install it (as a shared library).

• pytz (version 2007g or higher): This is used for handling the time zone for
datetime Python objects. It will be installed if it's not already present in the
system. It can be overridden using setup.cfg.

• python-dateutil (version1.1 or higher): This is used for enhanced handling
of the datetime Python objects. It needs to be installed if it's not already
present in the system and can be overridden using setup.cfg.

Chapter 1

[15]

Build dependencies
The following tools are needed if we're going to install Matplotlib from the source:

• Python: Currently, only Python 2.x is supported (no Python 3 yet)
• NumPy: Version 1.1 or higher
• libpng: Version 1.1 or higher is needed to load or save PNG images

(Windows users can skip this requirement)
• FreeType: Version 1.4 or higher is needed for reading TrueType font

files (Windows users can skip this requirement)

libpng and FreeType for Windows users are already packaged in the
Matplotlib Windows installer.

Installing Matplotlib
There are several ways to install Matplotlib on our system:

• Using packages from a Linux distribution
• Using binary installers (for Windows and Mac OS X only)
• Using packaged Python distributions that contain Matplotlib in the

toolbox proposed
• From the source code

We will look at each option in detail. We assume that Python, NumPy, and the
optional build and runtime dependencies are already installed in the system (in
order to install them, refer to their installation guides).

Installing Matplotlib on Linux
The advantage of using a Linux distribution is that several programs and libraries are
already prepared by the distribution developers and made available (in a package
format) to users. All we have to do is use the right tool and install the package.

Introduction to Matplotlib

[16]

In the following table, we will present some of the common Linux distributions
package names for Matplotlib and the tools we can use to install the package:

Distribution Package name Installer tool
Debian or Ubuntu

(and all other Debian
derivatives)

python-matplotlib Synaptic (graphical)

apt-get or aptitude (command line)

Fedora python-matplotlib PackageKit (graphical)

yum or rpm (command line)
openSUSE python-matplotlib YaST (graphical)

zipper or rpm (command line)

Installing Matplotlib on Windows
Before we can install Matplotlib, we have to satisfy its main dependencies. So, we
have to download:

• Installers for Python, which are available in the DOWNLOAD section of
http://www.python.org/

• Installers for NumPy, which are available in the Download section of
http://www.scipy.org/

Once we've got the above packages correctly installed, we can go to the main project
page of Matplotlib on SourceForge at http://sourceforge.net/projects/
matplotlib/. In the Files section, we can find the relative versions of the binary
packages for the Python that we have just installed (2.4, 2.5, or 2.6).

Installing Matplotlib on Mac OS X
The procedure to install Matplotlib correctly on Mac OS X is similar to that
of Windows.

First of all, we need to download:

• Installers for Python, which are available in the DOWNLOAD section of
http://www.python.org/ (the one already available in Mac OS X fives
problem when using Matplotlib)

• Installers for NumPy, which are available in the Download section
of http://www.scipy.org/ or can be retrieved directly from
http://pythonmac.org/

Chapter 1

[17]

At this point, once they are correctly installed, we can download the binary
installer from the download area of Matplotlib SourceForce page at
http://sourceforge.net/projects/matplotlib/ or we can retrieve the
version available at http://pythonmac.org/.

Installing Matplotlib using packaged
Python distributions
There are some packaged distributions of Python that contain Matplotlib in them,
along with many other tools, such as IPython, NumPy, SciPy, and so on. These
distributions will set up all the necessary things we need so that we can use
Matplotlib on our machine. Some of the distributions are as follows:

• Enthought Python Distribution (EPD): This package is available for
Windows, Mac OS X, and Red Hat. We can download it from
http://www.enthought.com/products/epd.php.

• Python(x,y): This package is available for Windows and Ubuntu at
http://www.pythonxy.com/.

• Sage: This package is available for Linux at http://www.sagemath.org/.

These are mainly scientific distributions that install a lot of tools we don't directly
need or use, but they have the advantage of making it easy to get Python, NumPy,
and Matplotlib installed and working on our system.

Installing Matplotlib from source code
There are two ways of obtaining the Matplotlib source code. They are:

• Downloading it from the source code tarballs available in the download
area of Matplotlib SourceForge project page at http://sourceforge.net/
projects/matplotlib/.

• Retrieving it from the Subversion (SVN) repository. This is the
place where development takes place, so use it only if you know what
you're doing.

If we decided to go with SVN, we can follow the instructions available in the
Develop section of http://sourceforge.net/projects/matplotlib/.

Introduction to Matplotlib

[18]

If we are going to use the source code tarball, we will have to unpack it, go into the
created source directory, and execute the following commands:

$ python setup.py build

$ sudo python setup.py install

These commands will build and then install Matplotlib. We will need administrative
privileges to install it into the system directories (hence the sudo command in this
Linux example).

Many aspects of the installation can be tuned using setup.cfg, a file shipped with
the source code and used at build and install time. We can use it to customize the
build process, such as changing the default backend, or choosing whether to install
the optional libraries or not.

If we want to install Matplotlib from source on Windows, the Files section of
Matplotlib SourceForge page contains handy egg files which we can download
(choosing the Python version of interest) and then install using setuptools
command. The following command will install Matplotlib on your machine:

$ easy_install matplotlib-<version>-py<py version>-win32.egg

Egg files are also available for Mac OS X, and we can use them in the same way
as described above.

Testing our installation
To ensure we have correctly installed Matplotlib and its dependencies, a very simple
test can be carried out in the following manner:

$ python

Python 2.5.4 (r254:67916, Feb 18 2009, 03:00:47)

[GCC 4.3.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy

>>> print numpy.__version__

1.2.1

>>> import matplotlib

>>> print matplotlib.__version__

0.98.5.3

If there's no error while executing this, then we are done.

Chapter 1

[19]

Summary
In this chapter, we have covered the following areas:

• What is Matplotlib and what are its main key points
• The several file output formats and graphical user interfaces (GUIs) that

are supported
• The packages required by Matplotlib, and the ones needed for the GUI

bindings
• Installing and testing Matplotlib on a Linux, Windows, or Mac OS X

system, in multiple ways

At this point, we only have a general idea of what Matplotlib is, along with the
package correctly installed in our system. So let's go and start using Matplotlib!

Getting Started with
Matplotlib

In the previous chapter, we have given a brief introduction to Matplotlib. We now
want to start using it for real—after all, that's what you are reading this book for.

In this chapter, we will:

• Explore the basic plotting capabilities of Matplotlib for single or
multiple lines

• Add information to the plots such as legends, axis labels, and titles
• Save a plot to a file
• Describe the interaction with IPython
• Customize Matplotlib, both through configuration files and Python code

Let's start looking at some graphs.

First plots with Matplotlib
One of the strong points of Matplotlib is how quickly we can start producing plots
out of the box. Here is our first example:

$ ipython
In [1]: import matplotlib.pyplot as plt
In [2]: plt.plot([1, 3, 2, 4])
Out[2]: [<matplotlib.lines.Line2D object at 0x2544f10>]
In [3]: plt.show()

Getting Started with Matplotlib

[22]

This code snippet gives the output shown in the following screenshot:

As you can see, we are using IPython. This will be the case throughout the book, so
we'll skip the command execution line (and the heading) as you can easily recognize
IPython output.

Let's look at each line of the previous code in detail:

In [1]: import matplotlib.pyplot as plt

This is the preferred format to import the main Matplotlib submodule for plotting,
pyplot. It's the best practice and in order to avoid pollution of the global namespace,
it's strongly encouraged to never import like:

from <module> import *

The same import style is used in the official documentation, so we want to be
consistent with that.

In [2]: plt.plot([1, 3, 2, 4])

Chapter 2

[23]

This code line is the actual plotting command. We have specified only a list of values
that represent the vertical coordinates of the points to be plotted. Matplotlib will
use an implicit horizontal values list, from 0 (the first value) to N-1 (where N is the
number of items in the list).

If you remember from high school, the vertical values represent the Y-axis while
the horizontal values are the X-axis, and what we do is called "to plot Y against X".

In [3]: plt.show()

This command actually opens the window containing the plot image.

Of course, we can also explicitly specify both the lists:

In [1]: import matplotlib.pyplot as plt
In [2]: x = range(6)
In [3]: plt.plot(x, [xi**2 for xi in x])
Out[3]: [<matplotlib.lines.Line2D object at 0x2408d10>]
In [4]: plt.show()

that results in the following screenshot:

Getting Started with Matplotlib

[24]

As we can see, the line shown in the previous screenshot has several edges, while
we might want a smoother parabola. So, we can start introducing the interaction
with NumPy with one of its most used functions, arange(), and highlighting the
difference with range():

• range(i, j, k) is a Python built-in function that generates a sequence of
integers from i to j with an increment of k (both, the initial value and the
step are optional).

• arange(x, y, z) is a part of NumPy, and it generates a sequence of
elements (with data type determined by parameter types) from x to y
with a spacing z (with the same optional parameters as that of the
previous function).

So we can use arange() to generate a finer range:

In [1]: import matplotlib.pyplot as plt

In [2]: import numpy as np

In [3]: x = np.arange(0.0, 6.0, 0.01)

In [4]: plt.plot(x, [x**2 for x in x])

Out[4]: [<matplotlib.lines.Line2D object at 0x2f2ef10>]

In [5]: plt.show()

Chapter 2

[25]

Multiline plots
It's fun to plot a line, but it's even more fun when we can plot more than one line
on the same figure. This is really easy with Matplotlib as we can simply plot all
the lines that we want before calling show(). Have a look at the following code
and screenshot:

In [1]: import matplotlib.pyplot as plt
In [2]: x = range(1, 5)
In [3]: plt.plot(x, [xi*1.5 for xi in x])
Out[3]: [<matplotlib.lines.Line2D object at 0x2076ed0>]
In [4]: plt.plot(x, [xi*3.0 for xi in x])
Out[4]: [<matplotlib.lines.Line2D object at 0x1e544d0>]
In [5]: plt.plot(x, [xi/3.0 for xi in x])
Out[5]: [<matplotlib.lines.Line2D object at 0x20864d0>]
In [6]: plt.show()

Note how Matplotlib automatically chooses different colors for each line—green for
the first line, blue for the second line, and red for the third one (from top to bottom).

Can you tell why a float value was used in line [5]? Try it yourself with an integer
one and you'll see. The answer is that if divided by 3 (that is, by using an integer
coefficient), the result will also be an integer. So you'll see a line plot like "stairs".

Getting Started with Matplotlib

[26]

plot() supports another syntax useful in this situation. We can plot multiline figures
by passing the X and Y values list in a single plot() call:

In [1]: import matplotlib.pyplot as plt
In [2]: x = range(1, 5)
In [3]: plt.plot(x, [xi*1.5 for xi in x], x, [xi*3.0 for xi in x], x,
[xi/3.0 for xi in x])
Out[3]:
[<matplotlib.lines.Line2D object at 0x1d4bed0>,
 <matplotlib.lines.Line2D object at 0x1d56fd0>,
 <matplotlib.lines.Line2D object at 0x1d5d3d0>]
In [4]: plt.show()

The preceding code simply rewrites the previous example with a different syntax.

While list comprehensions are a very powerful tool, they can generate a little bit
of confusion in these simple examples. So we'd like to show another feature of the
arange() function of NumPy:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: x = np.arange(1, 5)
In [4]: plt.plot(x, x*1.5, x, x*3.0, x, x/3.0)
Out[4]:
[<matplotlib.lines.Line2D object at 0x15d5d10>,
 <matplotlib.lines.Line2D object at 0x15ddf90>,
 <matplotlib.lines.Line2D object at 0x15e4390>]
In [5]: plt.show()

Here, we take advantage of the NumPy array objects returned by arange().

The multiline plot is possible because, by default, the hold property is enabled
(consider it as a declaration to preserve all the plotted lines on the current figure
instead of replacing them at every plot() call). Try this simple example and see
what happens:

In [1]: import matplotlib.pyplot as plt
In [2]: plt.interactive(True)# enable interactive mode, in case it was
not
In [3]: plt.hold(False) # empty window will pop up
In [4]: plt.plot([1, 2, 3])
Out[4]: [<matplotlib.lines.Line2D object at 0x19ea1d0>]
In [5]: plt.plot([2, 4, 6])
Out[5]: [<matplotlib.lines.Line2D object at 0x19e8cd0>]

Since hold is not enabled, each plot() command overwrites the current figure.

Chapter 2

[27]

A brief introduction to NumPy arrays
In the previous section, we've mentioned NumPy array objects (in relation to
arange()), but they deserve a proper introduction because we will be using them
throughout this book.

Python lists are extremely flexible and really handy, but when dealing with a large
number of elements or to support scientific computing, they show their limits.

One of the fundamental aspects of NumPy is providing a powerful N-dimensional
array object, ndarray, to represent a collection of items (all of the same type).

Creating an array (an object of type ndarray) is simple:

In [1]: import numpy as np
In [2]: x = np.array([1, 2, 3])
In [3]: x
Out[3]: array([1, 2, 3])

We can pass a list or a tuple to array() and in return, we have an array object.

We can treat this array as if it was a list; we can slice it or select one of its elements
using the standard Python syntax:

In [4]: x[1:]
Out[4]: array([2, 3])
In [5]: x[2]
Out[5]: 3

As we have already seen, we can operate on the whole array (this kind of operation
is common in MATLAB):

In [6]: x*2
Out[6]: array([2, 4, 6])

This code snippet returns a new array with the elements of x multiplied by 2; if we
were working with a list, we would have had to use a list comprehension:

In [7]: l = [1, 2, 3]
In [8]: [2*li for li in l]
Out[8]: [2, 4, 6]

We can work with more arrays and make them interact:

In [9]: a = np.array([1, 2, 3])
In [10]: b = np.array([3, 2, 1])
In [11]: a+b
Out[11]: array([4, 4, 4])

Getting Started with Matplotlib

[28]

We can also create multidimensional arrays:

In [12]: M = np.array([[1, 2, 3], [4, 5, 6]])
In [13]: M[1,2]
Out[13]: 6

Another important function—the one that we already met, is arange():

In [14]: range(6)
Out[14]: [0, 1, 2, 3, 4, 5]
In [15]: np.arange(6)
Out[15]: array([0, 1, 2, 3, 4, 5])

It mimics the range() function from the core Python but it returns a NumPy array.

Grid, axes, and labels
Now we can learn about some features that we can add to plots, and some features
to control them better.

Adding a grid
In the previous images, we saw that the background of the figure was completely
blank. While it might be nice for some plots, there are situations where having a
reference system would improve the comprehension of the plot—for example with
multiline plots. We can add a grid to the plot by calling the grid() function; it takes
one parameter, a Boolean value, to enable (if True) or disable (if False) the grid:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: x = np.arange(1, 5)
In [4]: plt.plot(x, x*1.5, x, x*3.0, x, x/3.0)
Out[4]:
[<matplotlib.lines.Line2D object at 0x8fcc20c>,
 <matplotlib.lines.Line2D object at 0x8fcc50c>,
 <matplotlib.lines.Line2D object at 0x8fcc84c>]
In [5]: plt.grid(True)
In [6]: plt.show()

We can see the grid in the following screenshot, as a result of executing the
preceding code:

Chapter 2

[29]

Handling axes
You might have noticed that Matplotlib automatically sets the limits of the figure
to precisely contain the plotted datasets. However, sometimes we want to set the
axes limits ourself (defining the scale of the chart). Let's take the first multiline plot.
Wouldn't it be better to have more spaces between lines and borders? We can achieve
this with the following code:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: x = np.arange(1, 5)
In [4]: plt.plot(x, x*1.5, x, x*3.0, x, x/3.0)
Out[4]:
[<matplotlib.lines.Line2D object at 0x2a00d10>,
 <matplotlib.lines.Line2D object at 0x2a05f90>,
 <matplotlib.lines.Line2D object at 0x2a0f390>]
In [5]: plt.axis() # shows the current axis limits values
Out[5]: (1.0, 4.0, 0.0, 12.0)
In [6]: plt.axis([0, 5, -1, 13]) # set new axes limits
Out[6]: [0, 5, -1, 13]
In [7]: plt.show()

Getting Started with Matplotlib

[30]

We can see in the following screenshot that we now have more space around the lines:

If we execute axis() without parameters, it returns the actual axis limits.

There are two ways to pass parameters to axis(): by a list of four values or by
keyword arguments.

The list of values, that's the whole set of four values of keyword arguments [xmin,
xmax, ymin, ymax], allows us to specify at the same time, the minimum and
maximum limits respectively for the X-axis and the Y-axis. We can use the specific
keyword arguments, for example:

plt.axis(xmin=NNN, ymax=NNN)

If we wish to set only some of these limits (in the previous line, we set only the
minimum value for X-axis and the maximum value for Y-axis).

We can also control the limits for each axis separately using xlim() and ylim()
functions. Let's take the previous code before calling the axis() function, and
change it in the following way:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: x = np.arange(1, 5)
In [4]: plt.plot(x, x*1.5, x, x*3.0, x, x/3.0)
Out[4]:

Chapter 2

[31]

[<matplotlib.lines.Line2D object at 0x9f9320c>,
 <matplotlib.lines.Line2D object at 0x9f9350c>,
 <matplotlib.lines.Line2D object at 0x9f9384c>]
In [5]: plt.xlim()
Out[5]: (1.0, 4.0)
In [6]: plt.ylim()
Out[6]: (0.0, 12.0)

We obtain the current X and Y limits at line [5] and [6].

Also for xlim() and ylim(), we can pass a list of two values (for example,
xlim([xmin, xmax])), or use the keyword arguments.

Adding labels
Now that we know how to manage the axes dimensions, another important piece of
information to add to a plot is the axes labels, since they usually specify what kind of
data we are plotting.

By referring to the first image that we have seen under the First plots with Matplotlib
section of this chapter, we can now add labels using these new functions:

In [1]: import matplotlib.pyplot as plt
In [2]: plt.plot([1, 3, 2, 4])
Out[2]: [<matplotlib.lines.Line2D object at 0x26f8f10>]
In [3]: plt.xlabel('This is the X axis')
Out[3]: <matplotlib.text.Text object at 0x26e9110>
In [4]: plt.ylabel('This is the Y axis')
Out[4]: <matplotlib.text.Text object at 0x26e9cd0>
In [5]: plt.show()

Getting Started with Matplotlib

[32]

Note how we have defined the labels between the plot() call and the actual show()
of the image. During this interval, many annotations are possible, and labels are just
an example.

Titles and legends
We are about to introduce two other important plot features—titles and legends.

Adding a title
Just like in a book or a paper, the title of a graph describes what it is:

In [1]: import matplotlib.pyplot as plt
In [2]: plt.plot([1, 3, 2, 4])
Out[2]: [<matplotlib.lines.Line2D object at 0xf54f10>]
In [3]: plt.title('Simple plot')
Out[3]: <matplotlib.text.Text object at 0xf4b850>
In [4]: plt.show()

Matplotlib provides a simple function, plt.title(), to add a title to an image, as
shown in the previous code. The following screenshot displays the output of the
previous example:

Chapter 2

[33]

Adding a legend
The last thing we need to see to complete a basic plot is a legend.

Legends are used to explain what each line means in the current figure. Let's take the
multiline plot example again, and extend it with a legend:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: x = np.arange(1, 5)
In [4]: plt.plot(x, x*1.5, label='Normal')
Out[4]: [<matplotlib.lines.Line2D object at 0x2ca6f50>]
In [5]: plt.plot(x, x*3.0, label='Fast')
Out[5]: [<matplotlib.lines.Line2D object at 0x2cabf50>]
In [6]: plt.plot(x, x/3.0, label='Slow')
Out[6]: [<matplotlib.lines.Line2D object at 0x2cb33d0>]
In [7]: plt.legend()
Out[7]: <matplotlib.legend.Legend object at 0x2cb3750>
In [8]: plt.show()

The output of this code snippet is shown here:

Getting Started with Matplotlib

[34]

We added an extra keyword argument, label, to the plot() call. This keyword
argument provides the information required to compose the text of the legend. Since
keyword arguments must come after non-keyword arguments, we have to plot each
line in separate plot() calls that include the label argument. Now, calling the
legend() function with no argument will show that information
in the legend box.

If any label argument is set to the literal string _nolegend_-, then
that line is excluded from the legend.

Alternatively, we could specify the labels of the lines (as mentioned in their
respective label arguments), as a list of strings to the legend() call. Thus, the
relevant code would appear like this:

In [4]: plt.plot(x, x*1.5)
In [5]: plt.plot(x, x*3.0)
In [6]: plt.plot(x, x/3.0)
In [7]: plt.legend(['Normal', 'Fast', 'Slow'])

But still, this solution is not the optimum one because of the following reasons:

• It's the plot() command that knows what the line represents, so that
information should be there.

• We have to remember the order of lines plotted because the legend()
parameters are matched with the lines as they are plotted.

We have to consider plotting as a continuous process, performing the fine-tuning
of the result every time it's needed. In the previous screenshot, we can see that the
legend is placed on top of a part of one line, and it would be more optimized to have
it in the unused space on the upper-left corner. The legend() function allows us to
select several locations, which can be specified as an optional argument (or with the
keyword argument, loc). The following table gives us the various positions at which
the legend could be placed along with the equivalent codes for these positions.

String Code
best 0

upper right 1

upper left 2

lower left 3

lower right 4

right 5

Chapter 2

[35]

String Code
center left 6

center right 7

lower center 8

upper center 9

center 10

We can specify either the location string or the code value.

Alternatively, we can specify the location as a two-elements tuple of coordinates
where (0, 1) is the top-left, (0.5, 0.5) is the center, and so on. You can even go
outside the plot area, for example, loc=(-0.1, 0.9). Note that in this case, the loc
argument specifies the position of the lower-left corner of the legend, so you should
adjust the coordinates according to that.

An interesting functionality is the auto-legend positioning—setting loc='best',
Matplotlib automatically tries to find the the optimal legend position. Another nice
argument we'd like to mention is ncol; this argument specifies how many columns
to use to layout the legend items.

A complete example
Let's now group together all that we've seen so far and create a complete example
as follows:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: x = np.arange(1, 5)
In [4]: plt.plot(x, x*1.5, label='Normal')
Out[4]: [<matplotlib.lines.Line2D object at 0x2ab5f50>]
In [5]: plt.plot(x, x*3.0, label='Fast')
Out[5]: [<matplotlib.lines.Line2D object at 0x2ac5210>]
In [6]: plt.plot(x, x/3.0, label='Slow')
Out[6]: [<matplotlib.lines.Line2D object at 0x2ac5650>]
In [7]: plt.grid(True)
In [8]: plt.title('Sample Growth of a Measure')
Out[8]: <matplotlib.text.Text object at 0x2aa8890>
In [9]: plt.xlabel('Samples')
Out[9]: <matplotlib.text.Text object at 0x2aa6150>
In [10]: plt.ylabel('Values Measured')
Out[10]: <matplotlib.text.Text object at 0x2aa6d10>
In [11]: plt.legend(loc='upper left')
Out[11]: <matplotlib.legend.Legend object at 0x2ac5c50>
In [12]: plt.show()

Getting Started with Matplotlib

[36]

A very nice looking plot can be obtained with just a bunch of commands. The plot
obtained from the previous code snippet looks like this:

Saving plots to a file
Saving a plot to a file is an easy task. The following example shows how:

In [1]: import matplotlib.pyplot as plt
In [2]: plt.plot([1, 2, 3])
Out[2]: [<matplotlib.lines.Line2D object at 0x22a2f10>]
In [3]: plt.savefig('plot123.png')

Just a call to savefig() with the filename as the parameter, and we can find
the saved plot in the current directory.

$ file plot123.png

plot123.png: PNG image, 800 x 600, 8-bit/color RGBA, non-interlaced

The file format is based on the filename extension (so in the previous example,
we saved a PNG image).

Two values govern the resulting image size in pixels—the figure size and the DPI.

Chapter 2

[37]

Here, we can see the default values for Matplotlib:

In [1]: import matplotlib as mpl
In [2]: mpl.rcParams['figure.figsize']
Out[2]: [8.0, 6.0]
In [3]: mpl.rcParams['savefig.dpi']
Out[3]: 100

So, an 8x6 inches figure with 100 DPI results in an 800x600 pixels image (as seen in
the previous example).

When an image is displayed on the screen, the length units are ignored, and simply
the pixels are displayed. When printed (or used in a document), the size and DPI are
used to determine how to scale the image.

The image sizes are expressed in inches, while all other properties are
expressed in points such as line width, or font size.

We can set the DPI value when saving by passing the additional keyword argument
dpi to savefig(). This is explained with the help of the following line of code:

In [4]: plt.savefig('plot123_2.png', dpi=200)

This code generates a file like this:

$ file plot123_2.png

plot123_2.png: PNG image, 1600 x 1200, 8-bit/color RGBA, non-interlaced

This file is double the size of the first one (since we've doubled the DPI).

If we need to plot to a file without any display available, then the Agg backend is
the one we should use:

In [1]: import matplotlib as mpl
In [2]: mpl.use('Agg') #before importing pyplot
In [3]: import matplotlib.pyplot as plt
In [4]: plt.plot([1,2,3])
Out[4]: [<matplotlib.lines.Line2D object at 0x23f5410>]
In [5]: plt.savefig('plot123_3.png')

The execution of this code would result in:

$ file plot123_3.png

plot123_3.png: PNG image, 800 x 600, 8-bit/color RGBA, non-interlaced

Agg is limited to the .png output format, but it's the best renderer available. We
can also use the PS, PDF, or SVG backends for non-interactive plotting.

Getting Started with Matplotlib

[38]

An interesting feature of savefig() is its ability to receive an open file object (such
as the standard output) instead of a filename. This is particularly useful in the
context of web servers, where we may be streaming an output over a network.

We might be also interested in the keyword argument transparent, which if set
to True will generate a file with a transparent background. This could be useful
if, for example, we're going to include that image in a web page which has a
colored background.

Interactive navigation toolbar
If you have tried some of the book examples proposed so far, then you may have
already noticed the interactive navigation toolbar (because when using matplotlib.
pyplot, the toolbar is enabled by default for every figure), but in any case, here is a
screenshot of the window:

Chapter 2

[39]

This window pops up with the following code, when executed in IPython:

In [1]: import matplotlib as mpl
In [2]: mpl.use('GTKAgg') # to use GTK UI
In [3]: import matplotlib.pyplot as plt
In [4]: plt.plot([1, 3, 2, 4])
Out[4]: [<matplotlib.lines.Line2D object at 0x909b04c>]
In [5]: plt.show()

It's worth taking the time to learn more about this window, since it provides basic
elaboration and manipulation functions for interactive plotting.

First of all, note how passing the mouse over the figure area results in the mouse
pointer's coordinates being shown in the bottom-right corner of the window.

At the bottom of the window, we can find the navigation toolbar. A description of
each of its buttons (from left to right) follows:

Button Description
Click on this button to go back to the default (first) view of your data. The
net result is to revert all defined views (created using other buttons).
Click on these buttons to traverse back and forward between the previously
defined views. Consider these two buttons and the home one just like the
buttons in a web browser: Home takes you back to the first view, while the
back and forward buttons navigate between the views defined during this
session (they have no effect if nothing has been done so far).
We can use this button in two different modes: pan and zoom. Click on this
button to enable it, and move the mouse into the figure area. The two views
are described as follows:

•	 Pan: Click on the left mouse button and hold it to pan the figure,
dragging it to a new position. Once we're happy with the position,
release the mouse button. While panning, if we press (or hold) the x
or y key, then the panning is limited to the selected axis.

•	 Zoom: Click on the right mouse button and hold it to zoom the
figure, dragging it to a new position. Movement to the right or to
the left generates a proportional zoom in or out of the X-axis of the
figure. The same holds for the up or down movement of the Y-axis.
The point where we click the mouse remains still so that we are able
to zoom around a given point in the figure. The x and y keys work
in the same way as mentioned earlier, but now we can press the Ctrl
key to preserve the aspect ratio.

Getting Started with Matplotlib

[40]

Button Description
Enabling this mode, we can draw a rectangle on the figure (hold the left
mouse button while drawing it), and the view will be zoomed to that
rectangle.
When we click on this button, a window pops up that allows us to configure
the various spaces that surround the figure (left, right, up, button, between).

Click on this button, and a save file dialog will pop up that allows us to
save the current figure.

When a mode is enabled, its name appears in the bottom-right part of the window
(together with the mouse pointer position on the figure).

There are even a series of keyboard shortcuts to enable these functions. They are:

Keyboard shortcut Command
h or r or home Home or Reset

c or left arrow or backspace Back

v or right arrow Forward

p Pan or Zoom

o Zoom-to-rectangle

s Save

f Toggle fullscreen

hold x Constrain pan or zoom to x-axis

hold y Constrain pan or zoom to y-axis

hold ctrl Preserve aspect ratio

g Toggle grid

l Toggle y-axis scale (log or linear)

IPython support
We have already used IPython throughout the chapter, and we saw how useful it is.
Therefore, we want to give it a better introduction.

Matplotlib tends to defer drawing till the end, since it's an expensive operation,
and updating the plot at every property change would slow down the execution.

That's fine for batch operations, but when we're working with the Python shell,
we want to see updates at every command we type. Easy to say, but difficult
to implement.

Chapter 2

[41]

Most GUI libraries need to control the main loop of execution of Python, thus
preventing any further interaction (that is, you can't type while viewing the image).
The only GUI that plays nice with Python's standard shell is Tkinter.

Tkinter is the standard Python interface to the Tk GUI library.

So you might want to set the backend property to TkAgg and interactive to True
when using the Python interpreter interactively.

IPython uses a smart method to handle this situation—it spawns a thread to execute
GUI library code in, and uses another thread to handle user command input.

To activate this feature for Matplotlib, simply pass the -pylab option to the IPython
command line. The -pylab option enables a special Matplotlib support mode
in IPython that reads the Matplotlib configuration file looking for the backend,
activating the proper GUI threading model if required. It also sets the Matplotlib
interactive mode, so that show() commands won't block the interactive shell.

Getting Started with Matplotlib

[42]

After entering the plot() command, the image window opens automatically,
and we are still able to type commands in the IPython console to change the plot

In this mode, we do not need to import any modules (because they are already
imported through the -pylab mode), and IPython enables the interactive mode
so that every command triggers a figure update.

Controlling the interactive mode
The term Interactive in the Matplotlib sense specifies when the figure is updated. If
we are in interactive mode, then the figure is redrawn on every plot command. If we
are not in interactive mode, a figure state is updated on every plot command, but the
figure is actually drawn only when an explicit call to draw() or show() is made.

In IPython, -pylab mode automatically enables interactive mode, but there are
other ways to control it.

First, there is the interactive: True flag in the matplotlibrc file. Also, the
interactive property is available in the rcParams dictionary.

In [1]: import matplotlib as mpl
In [2]: mpl.rcParams['interactive']
Out[2]: True

we can also change it using a Matplotlib function:

In [3]: mpl.interactive(False)
In [4]: mpl.rcParams['interactive']
Out[4]: False

Here are the functions available in -pylab mode (provided by pylab module)
to manage interactive mode:

• isinteractive(): Returns True or False, the value of interactive
property

• ion(): Enables interactive mode
• ioff(): Disables interactive mode
• draw(): Forces a figure canvas redraw

Remember that draw() is an expensive operation, in particular, for big figures. So
there are situations where it's better to temporarily disable the interactive mode
while executing some commands and to re-enable it after them. It's a wise choice
even for batch executions.

Chapter 2

[43]

Suppressing functions output
Some commands print some information about their execution to the output.
Given the complexity or the quantity of input, the output can be very long, and in
particular during interactive sessions, we'd like to suppress it.

With IPython, we just need to append a semicolon at the end of the line to suppress
the command output.

In [1]: import matplotlib.pyplot as plt
In [2]: plt.plot([1, 2])
Out[2]: [<matplotlib.lines.Line2D object at 0x26abfd0>]
In [3]: plt.plot([2, 1]);
In [4]:

We can see that at line [2] we got an output from plot(), while on line [3], which
is using the semicolon, the output is suppressed.

Configuring Matplotlib
In order to have the best experience with any program, we have to configure it to our
own preferences; the same holds true for Matplotlib.

Matplotlib provides for massive configurability of plots, and there are several places
to control the customization:

• Global machine configuration file: This is used to configure Matplotlib for
all the users of the machine.

• User configuration file: A separate file for each user, where they can choose
their own settings, overwriting the global configuration file (note that it will be
used by that used any time the given user execute a Matplotlib-related code).

• Configuration file in the current directory: Used for specific customization
to the current script or program. This is particularly useful in situations when
different programs have different needs, and using an external configuration
file is better than hardcoding those settings in the code.

• Python code in the current script or program or interactive session: To fine-
tune settings only for that execution; this overwrites every configuration file.

On a Linux system, the global configuration file is located at /etc/matplotlibrc,
while the user configuration file is located in the users' home directory at $HOME/.
matplotlib/matplotlibrc.

Getting Started with Matplotlib

[44]

On a Windows system, the user configuration file is located at C:\Documents and
Settings\yourname\.matplotlib (there's no global configuration file).

With these files and Matplotlib functions, we can control every property of your
plots such as image size, colors, lines width, legends, and so on.

Configuration files contain many useful parameters to allow you to tweak your
setup, so we'll take a look at some of them. They share the same syntax so we can
apply what we'll learn to any of them.

Let's reinforce the fact that configuration is done at various layers. Matplotlib has a
set of default configuration parameters that can be customized with this precedence
order (from the most specific to the most general):

• Matplotlib functions in Python code
• matplotlibrc file in the current directory
• User matplotlibrc file
• Global matplotlibrc file

We only need to change the settings we want to: all the others will maintain the
default values.

Configuration files
On a Debian system, /etc/matplotlibrc is the same configuration file shipped with
an upstream tarball. It contains every possible configuration item (commented with a
"#" character, if not currently set) along with a description of its purpose and usage.
A look at that file will give you an idea of how much can be customized in Matplotlib.

Since there are a lot of configuration settings, let's look at some of the ones that might
be particularly interesting. One of the most important settings (and probably the first
we would like to set up) is the backend:

backend : TkAgg

TkAgg is the backend that should work without any additional dependency, since
it uses Tkinter (available with Python itself). For the same reason, it is the default
backend on some systems (such as Debian or Ubuntu).

Chapter 2

[45]

Here are some other settings:

Setting Description
numerix Specifies the numerical library to use. Nowadays, the one to use is

numpy, but on older systems we can find Numeric or numarray.
interactive Specifies to enable the interactive mode (boolean).
line.linewidth Specifies the default line width (in points) used on plots.
line.linecolor Specifies the default line color used on plots.
figure.figsize Specifies the figure sizes, in inches.
savefig.dpi Specifies the DPI when saving to file.
savefig.edgecolor Specifies the edge color when saving to file.
savefig.facecolor Specifies the face color when saving to file.

Configuring through the Python code
Matplotlib provides a way to change the settings for the current session, be it a
script or program or an interactive session with the Python interpreter or IPython.

Let's first see how we can view the parameters currently set:

$ ipython
In [1]: import matplotlib as mpl
In [2]: mpl.rcParams
Out[2]:
{'agg.path.chunksize': 0,
 'axes.axisbelow': False,
 'axes.edgecolor': 'k',
 'axes.facecolor': 'w',

matplotlib.rcParams is a handy dictionary, global to the whole matplotlib
module, which contains default configuration settings (overridden by matplotlibrc
files, if present). We can modify this dictionary directly with code like this:

mpl.rcParams['<param name>'] = <value>

For example, with the following command, we set the figure size to 4x3 inches:

In [3]: mpl.rcParams['figure.figsize'] = (4, 3)

Getting Started with Matplotlib

[46]

Matplotlib has a couple of useful functions to modify configuration parameters:

• matplotlib.rcdefaults(): Restores Matplotlib's default configuration
parameters values

• matplotlib.rc(): Sets multiple settings in a single command

For example, we can set the same property to more than one group (In this case,
figure and savefig groups):

mpl.rc(('figure', 'savefig'), facecolor='r')

This is equivalent to:

mpl.rcParam['figure.facecolor'] = 'r'
mpl.rcParam['savefig.facecolor'] = 'r'

This command sets facecolor to red for both the displayed image (figure) and
the saved one (savefig). We can also set more parameters for the same group:

mpl.rc('line', linewidth=4, linecolor='b')

This line of code is equivalent to the following:

mpl.rcParam['line.linewidth'] = 4
mpl.rcParam['line.linecolor'] = 'b'

This code sets the line width to four points and line color to blue.

Related to rc settings, there is the module matplotlib.rcsetup that contains
the default Matplotlib parameter values and some validation functions to prevent
spurious values from being used in a setting.

Selecting backend from code
Matplotlib has another configuration function, to select the backend to use at
runtime, matplotlib.use():

In [1]: import matplotlib as mpl
In [2]: mpl.use('Agg') # to render to file, or to not use a graphical
display
In [3]: mpl.use('GTKAgg') # to render to a GTK UI window

Chapter 2

[47]

Please note that the function matplotlib.use() must be called right
after importing matplotlib for the first time, in particular before
importing pylab or pyplot (or matplotlib.backends), or else it
won't work.

Summary
If you've arrived here, now you know:

• How to create single or multiline plots handling the axes limits
• How to add information to the plot such as legends, labels, and titles
• How to save plots to a file for reuse
• How to use the toolbar that the interactive window provides
• Why IPython is so useful in collaboration with Matplotlib
• How to customize Matplotlib to your needs (both from configuration files

and from Python code)

But we have only scratched the surface of what Matplotlib can do. We'll see
much more in the next chapter!

Decorate Graphs with Plot
Styles and Types

So far, we have only seen a glimpse of Matplotlib's potential, and we want to see
more—that's exactly what this chapter aims at.

We saw plain lines, but Matplotlib can do a lot more. In this chapter, we will explore:

• Line style customization—changing how the lines are drawn
• Point style customization—changing how we plot points on the graph
• Axes tick customization—changing how we draw ticks on the axes
• The several plots types available in Matplotlib such as histograms, bars,

error bars, pie charts, scatter plots, and so on
• Polar charts, in case we need to plot relationships better expressed in

terms of angles and radii
• Inserting textual information in our plots

Let's start with line and marker customizations.

Markers and line styles
In the previous chapter, all the plots were made of points with lines joining them.
The points are the pairs (x,y) from the X and Y input lists we pass to plot(); lines
are the straight segments connecting any two adjacent points.

Points are almost invisible, if not for the edges in the graph. However, they are the
real generators of the plot because points mark positions. As a result, they are called
markers in Matplotlib terminology.

Decorate Graphs with Plot Styles and Types

[50]

By default, Matplotlib draws markers as a single dot and lines as straight thin
segments; there are situations where we would like to change either the marker style
(to clearly identify them in the plot) or the line style (so that the line appears dashed,
for example).

plot() supports an optional third argument that contains a format string for each
pair of X, Y arguments in the form of:

plt.plot(X, Y, '<format>', ...)

There are three levels of customization:

• Colors
• Line styles
• Marker styles

Each of them can be represented by a given set of characters that can be concatenated
into a single format string.

We are now going to see them one-by-one.

Control colors
We've already seen that in a multiline plot, Matplotlib automatically chooses
different colors for different lines. We are also free to choose them by ourselves:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: y = np.arange(1, 3)
In [4]: plt.plot(y, 'y');
In [5]: plt.plot(y+1, 'm');
In [6]: plt.plot(y+2, 'c');
In [7]: plt.show()

Chapter 3

[51]

In the preceding code, we specify color as the last argument—the <format>
argument (in this case with an implicit X-axis)—to draw yellow, magenta, and
cyan lines (from bottom to top).

Here is a table of the abbreviations used to select colors:

Color
abbreviation

Color Name

b blue

c cyan

g green

k black

m magenta

r red

w white

y yellow

There are several ways to specify colors, other than by color abbreviations:

• The full color name, such as yellow, as specified in the Color name column
of the previous table

• Hexadecimal string (the same format as in HTML code) such as #FF00FF
• RGB or RGBA tuples, for example, (1, 0, 1, 1)
• Grayscale intensity, in string format such as '0.7'

Decorate Graphs with Plot Styles and Types

[52]

Specifying styles in multiline plots
We appreciated the flexibility of the plot() function in multiline plots—specifying
all the lines in a single function call. So, we expect the same for formatting.

Indeed, the plot() syntax can be expanded as:
plt.plot(x1, y1, fmt1, x2, y2, fmt2, ...)

Where we specify the (Xi, Yi) pairs, along with the relative formatting strings.

Thus, we can rewrite the previous example in a more compact way:
In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: y = np.arange(1, 3)
In [4]: plt.plot(y, 'y', y+1, 'm', y+2, 'c');
In [5]: plt.show()

and obtain the same image as shown previously.

Control line styles
All the lines seen until now are proper ones without any dots or dashes. Matplotlib
allows us to use different line styles, for example:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: y = np.arange(1, 3)
In [4]: plt.plot(y, '--', y+1, '-.', y+2, ':');
In [5]: plt.show()

This code snippet generates a blue dashed line, a green dash-dotted line, and a red
dotted line, as shown in the next screenshot:

Chapter 3

[53]

All the available styles are listed in the following table:

Style abbreviation Style
- solid line
-- dashed line
-. dash-dot line
: dotted line

Now, we can see the default format string for a single line plot is 'b-'.

Control marker styles
Markers are, by default, drawn as point markers. They are just a location on the
figure where segments join.

Matplotlib provides a lot of customization options for markers. The following
table contains a list of the available styles:

Marker abbreviation Marker style
. Point marker
, Pixel marker
o Circle marker

Decorate Graphs with Plot Styles and Types

[54]

Marker abbreviation Marker style
v Triangle down

marker
^ Triangle up marker
< Triangle left marker
> Triangle right

marker
1 Tripod down

marker
2 Tripod up marker
3 Tripod left marker
4 Tripod right marker
s Square marker
p Pentagon marker
* Star marker
h Hexagon marker
H Rotated hexagon

marker
+ Plus marker
x Cross (x) marker
D Diamond marker
d Thin diamond

marker
| Vertical line (vline

symbol) marker
_ Horizontal line

(hline symbol)
marker

Let's look at some of them:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: y = np.arange(1, 3, 0.2)
In [4]: plt.plot(y, 'x', y+0.5, 'o', y+1, 'D', y+1.5, '^', y+2, 's');
In [5]: plt.show()

Chapter 3

[55]

In the preceding code, we did not specify any color, so the default sequence is used
(blue, green, red, cyan, and magenta). There is no style for lines, so there is no line at
all; we have to explicitly indicate the line format to use if we specify a marker's style.

In the following example, we try to group up all the customization available for
colors, lines, and markers in the following way:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: y = np.arange(1, 3, 0.3)
In [4]: plt.plot(y, 'cx--', y+1, 'mo:', y+2, 'kp-.');
In [5]: plt.show()

Decorate Graphs with Plot Styles and Types

[56]

As we can see in the next screenshot, the preceding code snippet results in a cyan
dashed line with crosses as markers, a magenta line with circles as markers, and a
black line with pentagons as markers.

Finer control with keyword arguments
Format strings are really useful, but they have some drawbacks. For example, they
don't allow us to specify different colors for lines and markers, as we saw in the
previous example.

plot() is a really rich function, and there are some keyword arguments to configure
colors, markers, and line styles:

Keyword argument Description
color or c Sets the color of the line; accepts any Matplotlib color format.
linestyle Sets the line style; accepts the line styles seen previously.
linewidth Sets the line width; accepts a float value in points.
marker Sets the line marker style.
markeredgecolor Sets the marker edge color; accepts any Matplotlib color

format.
markeredgewidth Sets the marker edge width; accepts float value in points.
markerfacecolor Sets the marker face color; accepts any Matplotlib color format.
markersize Sets the marker size in points; accepts float values.

Chapter 3

[57]

With them, we can now plot a blue line in a dot-dash style with red markers having
black edges and all of the markers being bigger than their default width:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: y = np.arange(1, 3, 0.3)
In [4]: plt.plot(y, color='blue', linestyle='dashdot', linewidth=4,
marker='o', markerfacecolor='red', markeredgecolor='black',
markeredgewidth=3, markersize=12);
In [5]: plt.show()

Well, the previous screenshot is not one of the prettiest graphs that Matplotlib can
generate, but it shows how many configuration options we have at hand.

Another possibility offered by keyword arguments is that if we plot multiple lines,
the arguments are applied to all of them. Let's say that we want to plot two lines in
green, so we can call:

plt.plot(x1, y1, x2, y2, color='green')

and the color is applied to both the lines.

There's a lot to experiment with markers and line styles, and your imagination is
the only limit.

Decorate Graphs with Plot Styles and Types

[58]

Handling X and Y ticks
We have seen X and Y ticks in every plot but we haven't yet noticed their
presence explicitly.

Vertical and horizontal ticks are those little segments on the axes, usually coupled
with axes labels, used to give a reference system on the graph (they are, for example,
the origin of the grid lines).

Matplotlib provides two basic functions to manage them—xticks() and yticks().
They behave in the same way, so the description for one function will apply to the
other too.

Executing with no arguments, the tick function returns the current ticks' locations
and the labels corresponding to each of them:

locs, labels = plt.xticks()

The arguments (in the form of lists) that we can pass to the function are:
• Locations of the ticks
• Labels to draw at these locations (if necessary)

Let's try to explain it with an example:
In [1]: import matplotlib.pyplot as plt
In [2]: x = [5, 3, 7, 2, 4, 1]
In [3]: plt.plot(x);
In [4]: plt.xticks(range(len(x)), ['a', 'b', 'c', 'd', 'e', 'f']);
In [5]: plt.yticks(range(1, 8, 2));
In [6]: plt.show()

In this code snippet, we used xticks() to specify both, locations and labels and
yticks() to only show ticks at odd numbered locations.

The previous example gives us the following output:

Chapter 3

[59]

Plot types
In all the images that we have encountered so far, we have only plotted lines.
Matplotlib has a lot of other plot formats, and we are about to see many of them. We
want to introduce first a really nice graph that helps to choose the best chart for the
kind of comparison and data we want to show:

Chart Suggestions—A Tought-Starter

Few Items

Column Chart Circular Area Chart

Cyclical Data

Simple Share
of Total

Pie Chart

Relative and Absolute
Differences Matter

Stacked Area Chart

Composition

Comparison

What Would you
like to show?

Few Categories

Relationship

Many Periods

Many Periods

Column ChartLine Chart

Non-Cyclical Data

Over Time

Single of Few Categories

Single
Variable

Distribution

Static

Components
of Components

Stacked 100%
Column Chart with
Subcomponents

Accumulation or
Subtraction to Total

Waterfall Chart

Two
Variables

Tree
Variables

Many
Data
Points

Few
Data
Points

Few Periods

Many Categories

Column Histogram

Line Chart

Line Histogram

Scatter Chart

3D Area Chart

Two Variables
per Item

Among Items

Two
Variables

Tree
Variables

Only Relative
Differences Matter

Few Periods

Variable Width
Column Chart

Table or Table with
Embedded Charts

One Variable per Item

Bar Chart

Many Items

Only Relative
Differences Matter

Relative and Absolute
Differences Matter

Stacked 100%
Area Chart

Changing
Over Time

Many
Categories

Stacked 100%
Column Chart

Stacked
Column Chart

Bubble Chart

Scatter Chart

Tree
Variables

Histogram charts
Histogram charts are a graphical display of frequencies, represented as bars.
They show what portion of the dataset falls into each category, usually specified
as non-overlapping intervals. Matplotlib calls those categories bins.

We will use NumPy random.randn()to obtain an array of random numbers
in a Gaussian distribution and then plot them in a histogram format using
hist() function:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: y = np.random.randn(1000)

Decorate Graphs with Plot Styles and Types

[60]

In [4]: plt.hist(y);
In [5]: plt.show()

The output of this code snippet is displayed in the next screenshot:

Histogram plots group up values into bins of values. By default, hist() uses a bin
value of 10 (so only ten categories, or bars, are computed), but we can customize
it, either by passing an additional parameter, for example, in hist(y, <bins>), or
using the bin keyword argument as hist(y, bin=<bins>).

Replotting the previous dataset, but with bin=25:

In [6]: plt.hist(y, 25);
In [7]: plt.show()

This results in a set of finer grained bars, as shown in the following screenshot:

Chapter 3

[61]

Error bar charts
In experimental sciences, we know that all the measurements that we take lack
perfect precision. This leads to repeating the measurements, which results in
obtaining a set of values. The expected result is that all those measures group up
around the true value that we want to measure.

The representation of this distribution of data values is done by plotting a single
data point, (commonly) the mean value of dataset, and an error bar to represent the
overall distribution of data. This helps us to get a general idea of how accurate a
measurement is (or how far the reported value could be from the error-free value).

Using the errorbar() function, Matplotlib allows us to create such a graph type.

Let's take a look at the next example:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: x = np.arange(0, 4, 0.2)
In [4]: y = np.exp(-x)
In [5]: e1 = 0.1 * np.abs(np.random.randn(len(y)))
In [6]: plt.errorbar(x, y, yerr=e1, fmt='.-');
In [7]: plt.show()

We just plotted x versus y with error deltas as vertical error bars, as specified by the
yerr keyword argument. There is an equivalent argument, xerr, to draw horizontal
error bars.

Decorate Graphs with Plot Styles and Types

[62]

Note that we used a custom format for the line, specified by the fmt argument. The
interesting formatting arguments are:

• fmt: This is the plot format for lines. If None, then only the error bars are
plotted with no line connecting them.

• ecolor: This accepts any Matplotlib color and specifies the color of the error
bars. If None, then the marker color is used.

• elinewidth: This specifies the line width of the error bars. If None, then the
line width is used.

• capsize: This specifies the size of the cap of the error bars in pixels.

We can also specify both yerr and xerr together:

In [8]: e2 = 0.1 * np.abs(np.random.randn(len(y)))
In [9]: plt.errorbar(x, y, yerr=e1, xerr=e2, fmt='.-', capsize=0);
In [10]: plt.show()

In this code, we have used the capsize argument as well.

As we can see, for each point we can have four different errors, that is, one for each
direction: -x, +x, -y, and +y.

The error bars described in the previous example are called symmetrical error
bars, as their negative error is equal in value to the positive error (so error bar is
symmetrical to the point where it's drawn). There is another type of error bar,
which is asymmetrical error bar.

Chapter 3

[63]

To draw asymmetrical error bars, we have to pass two lists (or a 2D array) of values
to yerr and/or xerr—the first list is for negative errors while the second list is for
positive errors.

In [11]: plt.errorbar(x, y, yerr=[e1, e2], fmt='.-');
In [12]: plt.show()

In this code snippet, -y is e1 and +y is e2.

Bar charts
Bar charts display rectangular bars (either vertical or horizontal) with their length
proportional to the values they represent. They are commonly used to visually
compare two or more values.

The bar() function is used to generate bar charts in Matplotlib. The function expects
two lists of values: the X coordinates that are the positions of the bar's left margin
and the heights of the bars:

In [1]: import matplotlib.pyplot as plt
In [2]: plt.bar([1, 2, 3], [3, 2, 5]);
In [3]: plt.show()

Decorate Graphs with Plot Styles and Types

[64]

As we can see in the following screenshot, the left margin of the bars start at the
points specified in the first list, while their heights are the values of the second list.

Matplotlib sets, the bar width to 0.8 by default (width is also the name of the
keyword argument to change that value), so we see nice separated bars. As usual,
everything is scaled and auto-adjusted to perfectly fit the figure area.

We can say that a bar is contained in a box starting from the left-bottom corner,
specified by the value on the first list, with height specified by the value on the
second list. The width of the bar is either the default value or the one we specify
using the width argument.

To recap, the box has these dimensions (with a rather free notation, we hope you
allow us), expressed in clockwise direction, starting from left or bottom—left, left +
height, left + height + width, left + width.

A list of the most useful keyword arguments is as follows:

• width: The width of the bars
• color: The color of the bars
• xerr, yerr: The error bars on the bar chart (yes, bar() supports error bars)
• bottom: The bottom coordinates of the bars

Chapter 3

[65]

Let's see an example where we create a bar chart from a dictionary. We will use the
dictionary values as bar heights and as parameters to yticks(), while the dictionary
keys are used as xtick() locations and labels of the bars.

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: dict = {'A': 40, 'B': 70, 'C': 30, 'D': 85}
In [4]: for i, key in enumerate(dict): plt.bar(i, dict[key]);
In [5]: plt.xticks(np.arange(len(dict))+0.4, dict.keys());
In [6]: plt.yticks(dict.values());
In [7]: plt.show()

In this example, note how:

• We add bars one-by-one by calling bar()each time and not by passing two
lists of values to a single bar() call (line [4]).

• As we know that the bar's width is 0.8, we used 0.4 (the half) to place the
label at the middle of bars (line [5]).

• yticks() contain only the height of the bars, so only they are used as ticks
without intermediate values. Due to this, the resulting graph displays the
plotted values more clearly.

The output of the previous code is displayed in the following screenshot:

We will now try a more complex example where we will use three sets of bars—the
second one with an error bar in it, managing carefully the locations of the xticks.

Decorate Graphs with Plot Styles and Types

[66]

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: data1 = 10*np.random.rand(5)
In [4]: data2 = 10*np.random.rand(5)
In [5]: data3 = 10*np.random.rand(5)
In [6]: e2 = 0.5 * np.abs(np.random.randn(len(data2)))
In [7]: locs = np.arange(1, len(data1)+1)
In [8]: width = 0.27
In [9]: plt.bar(locs, data1, width=width);
In [10]: plt.bar(locs+width, data2, yerr=e2, width=width,
color='red');
In [11]: plt.bar(locs+2*width, data3, width=width, color='green') ;
In [12]: plt.xticks(locs + width*1.5, locs);
In [13]: plt.show()

In the previous screenshot, we can see that the bar group colors are blue, red, and
green (the usual sequence), while the color of the error bar is blue.

Note the width variable usage: first, we used it to specify the width of each bar to
be the same, then we made the subsequent bar series start at multiples of width (so
that the previous bar ends where the current one begins, packing the bars together);
last, we used it to place the xticks in the middle of the "group of three bars"—
multiplying by 1.5 (equal to 3/2), we obtain to place it in the middle of the group.

A similar function provided by Matplotlib is barh() that plots horizontal bars
(instead of vertical, as bar() does). Moreover, there are other types of bar charts; for
example, up or down, stacked, candlestick bars, and so on. You can go through the
Matplotlib documentation and enjoy experimenting with them.

Chapter 3

[67]

Pie charts
Pie charts are circular representations, divided into sectors (also called wedges). The
arc length of each sector is proportional to the quantity we're describing. It's an
effective way to represent information when we are interested mainly in comparing
the wedge against the whole pie, instead of wedges against each other.

Matplotlib provides the pie() function to plot pie charts from an array X. Wedges
are created proportionally, so that each value x of array X generates a wedge
proportional to x/sum(X).

Please note that if sum(X) is less than 1, then the pie is drawn using X values directly
and no normalization is done, resulting in a pie with discontinuity.

Pie charts look best if the figure and axes are in a square format (if not, with the
common rectangular figure, they look like ellipses).

In the next example, we are going to plot a simple pie, using the legend keyword
argument to give names to the wedges:

In [1]: import matplotlib.pyplot as plt
In [2]: plt.figure(figsize=(3,3));
In [3]: x = [45, 35, 20]
In [4]: labels = ['Cats', 'Dogs', 'Fishes']
In [5]: plt.pie(x, labels=labels);
In [6]: plt.show()

We can see from the previous screenshot that the color progression in wedges is the
same as that of lines—the first wedge is colored in blue, the second in green, and the
third in red.

Decorate Graphs with Plot Styles and Types

[68]

The sum of the array X is 100, but we can specify any values for wedges, and
Matplotlib will adapt the pie to them accordingly.

There are some interesting keyword arguments we can use to customize pie charts:
• explode: If specified, it's an array of the same length as that of X. Each of its

values specify the radius fraction with which to offset the wedge from the
center of the pie.

• colors: This is a list of Matplotlib colors, cyclically used to color the wedges.
• labels, labeldistance: This is a list of labels, one for each of the X values.

labeldistance is the radial distance at which the labels are drawn.
• autopct, pctdistance: This formatting string or function is used to label

wedges with their numeric values. pctdstance is the ratio between the
center of the pie and the start of the text.

• shadow: This draws a shadow for wedges or pie.

Let's put some of them together and see the result:
In [1]: import matplotlib.pyplot as plt
In [2]: plt.figure(figsize=(3,3));
In [3]: x = [4, 9, 21, 55, 30, 18]
In [4]: labels = ['Swiss', 'Austria', 'Spain', 'Italy', 'France',
'Benelux']
In [5]: explode = [0.2, 0.1, 0, 0, 0.1, 0]
In [6]: plt.pie(x, labels=labels, explode=explode, autopct='%1.1f%%');
In [7]: plt.show()

We can observe in the next screenshot that the color progression in wedges is the
same as that of lines—blue, green, red, cyan, magenta, and yellow. We can also see
that the wedges are drawn from the horizontal axis, starting from the right side, and
moving counterclockwise.

Chapter 3

[69]

Scatter plots
Scatter plots display values for two sets of data. The data visualization is done
as a collection of points not connected by lines. Each of them has its coordinates
determined by the value of the variables (one variable determines the X position,
the other the Y position).

A scatter plot is often used to identify potential association between two variables,
and it's often drawn before working on a fitting regression function. It gives a good
visual picture of the correlation, in particular for nonlinear relationships.

Matplotlib provides the scatter() function to plot X versus Y unidimensional
array of the same length as scatter plot.

Let's show an example, again by using the randn() NumPy function to generate
our datasets (so no correlation can be searched here).

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: x = np.random.randn(1000)
In [4]: y = np.random.randn(1000)
In [5]: plt.scatter(x, y);
In [6]: plt.show()

The output of the previous code is as shown:

Decorate Graphs with Plot Styles and Types

[70]

We can decorate the chart by using some of the following keyword arguments:

• s: This stands for the size of the markers in pixel*pixel. It can be a single
value (to be used for all the points) or an array of the same size of X and Y
(so that each point will have its own size).

• c: This is the points color. It can be a single value or a list of colors (that will
be cycled on the points plotted) eventually of the same size of X and Y. The
values can be the Matplotlib color codes or even numbers mapped to colors
using color maps.

• marker: This specifies the marker to use to plot the points; the available
values are:

Marker value Description
s Square
o Circle
^ Triangle up
v Triangle down
> Triangle right
< Triangle left
d Diamond
p Pentagon
h Hexagon
8 Octagon
+ Plus
x Cross

We can now apply some of them to the next example, where we specify a different
size and color for each point of the previous dataset.

In [7]: size = 50*np.random.randn(1000)
In [8]: colors = np.random.rand(1000)
In [9]: plt.scatter(x, y, s=size, c=colors);
In [10]: plt.show()

Chapter 3

[71]

On executing this code snippet, we get the output as:

Polar charts
Polar plots use a completely different coordinate system, so we have dedicated a
separate section to them.

For all the previous images, we used the Cartesian system—two perpendicular lines
meet at a point (the origin of axes) with precise axes directions to determine positive
and negative values on both, the X and Y axes.

A polar system is a two-dimensional coordinate system, where the position of a
point is expressed in terms of a radius and an angle. This system is used where
the relationship between two points is better expressed using those information.

As mentioned earlier, there are two coordinates—the radial and the angular
coordinates. The radial coordinate, represented as r, denotes the point distance from
a central point (called pole, equivalent to the origin on Cartesian systems). On the
other hand, the angular coordinate, represented as theta, denotes the angle required
to reach the point from the 0° ray (also known as polar axis, equivalent to the X-axis in
Cartesian systems).

The angular coordinate can be expressed either in radians or in degrees. Though,
Matplotlib uses degrees.

Decorate Graphs with Plot Styles and Types

[72]

The polar() Matplotlib function plots polar charts. Its parameters are two lists (of
the same length)—theta for the angular coordinates and r for the radial coordinates.
It's the corresponding function of plot() for polar charts, so it can take multiple
theta and r, along with the formatting strings.

Here is an example of what we can do in polar coordinates:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: theta = np.arange(0., 2., 1./180.)*np.pi
In [4]: plt.polar(3*theta, theta/5);
In [5]: plt.polar(theta, np.cos(4*theta));
In [6]: plt.polar(theta, [1.4]*len(theta));
In [7]: plt.show()

The output is as shown:

Note the following points in the previous example:

• At line [3], we define theta to be an array of 360 values, equally spaced
between 0 and 2Π.

• At line [4], we draw a spiral.
• At line [5], we draw a polar rose, a pretty function that resembles a flower.
• Lastly, at line [6], we draw a circular line. In a polar system, to draw a circle

we just need to keep r constant (in this case, we set it to 1.4).

Chapter 3

[73]

Navigation Toolbar with polar plots
The navigation toolbar (the bar displayed at the bottom of the window shown in
interactive mode that we had treated in Chapter 2, Getting Started with Matplotlib)
behaves a little differently with polar plots, particularly with the pan and zoom
functions. The radial coordinate labels can be dragged using the left mouse button,
while the radial scale can be zoomed in and out using the right mouse button.

Control radial and angular grids
There are two functions to control the radial and the angular grids: rgrid() and
thetagrid() functions respectively.

rgrids(), when called with no arguments, returns two arrays–the radial grid lines
(the dashed concentric circles around the pole) and the tick labels (the numbers all
plotted in a row at the circle's positions).

The arguments we can pass are:

• radii: The radial distances at which the grid lines should be drawn.
• labels: The labels to display at radii grid. By default, the values from

radii would be used, but if not None, then it has to be of the same length as
that of radii.

• angle: The angle at which the labels are displayed (by default it's 22.5°).

The given tick's labels are printed at the specified radii location. The only required
argument is radii. labels which becomes radii values if not specified. If labels
for angle() is not specified, then its default values are used.

thetagrids() behaves similar to rgrids() when called with no arguments: the
current radial lines (the dashed lines that connect the pole to the labels) and labels
are returned.

The arguments we can pass are:

• angles: The location where to draw the labels, which are the only
required arguments.

• labels: Specifies the labels to be printed at given angles. If None, then
the angles values are used, or else the array must be of the same length
of angles.

• frac: The polar axes radius fraction at which we want the label to be
drawn (1 is the edge, 1.1 is outside, and 0.9 is inside).

Decorate Graphs with Plot Styles and Types

[74]

Let's plot an example to show both of them:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: theta = np.arange(0., 2., 1./180.)*np.pi
In [4]: r = np.abs(np.sin(5*theta) - 2.*np.cos(theta))
In [5]: plt.polar(theta, r);
In [6]: plt.thetagrids(range(45, 360, 90));
In [7]: plt.rgrids(np.arange(0.2, 3.1, .7), angle=0);
In [8]: plt.show()

Using the rgrids() and thetagrids(), this code snippet generates a nice line
resembling a butterfly as shown:

Text inside figure, annotations,
and arrows
We are going to introduce additional features to allow even more plot decorations.

Text inside figure
We already saw how to use xlabel(), ylabel(), and title() to add text around
the figure, but we can do something more, namely, add text inside the figure.

The text() function does that—writes a string (text) at an arbitrary position
(specified by (x,y)):

plt.text(x, y, text)

Chapter 3

[75]

Let's plot the sine function, and add a note that says sin(0) is equal to 0.

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: x = np.arange(0, 2*np.pi, .01)
In [4]: y = np.sin(x)
In [5]: plt.plot(x, y);
In [6]: plt.text(0.1, -0.04, 'sin(0)=0');
In [7]: plt.show()

The output of this code snippet is shown in the following screenshot:

The location specified in the text() function is in data coordinates, and it's relative
to the data currently plotted. There's a similar function, figtext(), that draws a
given string at a position in figure coordinates. It takes a couple of values between
0 and 1 where (0,0) is the lower-left corner, and (1,1) is the upper-right corner.

Annotations
The text() function places text at a given position on the plot, but often, what we
really want is to annotate some features of a graph.

The annotate() function provides functionality to make annotation easy. In
annotation, we have to consider two points—the graph point we want to annotate
(represented by an xy keyword argument) and the plot position where we want to
place the annotation text (represented by xytext). Both are expressed in an (x,y)
format in data coordinate positions.

Decorate Graphs with Plot Styles and Types

[76]

Moreover, there is an additional argument to specify the arrow properties, that's
the fundamental difference between text() and annotate(). We connect the
annotation text to the annotated point with an arrow.

Let's see an example of the usage of annotate():

In [1]: import matplotlib.pyplot as plt
In [2]: y = [13, 11, 13, 12, 13, 10, 30, 12, 11, 13, 12, 12, 12, 11,
12]
In [3]: plt.plot(y);
In [4]: plt.ylim(ymax=35);
In [5]: plt.annotate('this spot must really\nmean something',
xy=(6, 30), xytext=(8, 31.5), arrowprops=dict(facecolor='black',
shrink=0.05));
In [6]: plt.show()

The output of this code snippet is as shown:

A note about the shrink property—it is used to make some space from the points
passed as a parameter and the arrow tip and base. If this property is not specified,
then the arrow would exactly connect the two points—xy and xytext. This looks
visually unpleasant. Some interesting arguments are:

• width: The width of the arrow in points
• frac: The fraction of the arrow length occupied by the head
• headwidth: The width of the base of the arrow head in points
• shrink: Moves the tip and the base of the arrow some percent away from

the annotated point and text, in percentage (so 0.05 is equal to 5%)

Chapter 3

[77]

Also note that we had to use ylim() to adjust the Y limits, as annotate() does not
do it automatically.

Arrows
We have just learned about the arrows of annotate(), but it is also possible to use
arrows elsewhere in other plots.

Matplotlib provides an arrow() function. It takes the coordinates of the arrow origin
(x,y), and the delta distance (dx, xy), the distance at which the head is to be
placed. This implies that the arrow starts at (x,y) and ends at (x + dx, y + dy):

plt.arrow(x, y, dx, dy)

Sadly, this function is quite hard to use and presents several difficulties.

We can use a small trick here. Reuse annotate() without text to only create an
arrow. annotate() uses a different object under the hood, and is much more
powerful and graphically attractive.

On such an arrow, there are two possible types of customization—the connection
and the arrow styles.

The connection style (represented by the connectionstyle keyword argument)
describes how the two points are connected. The available connection styles are:

Name Attributes (= default values)
angle angleA=90, angleB=0, rad=0.0
angle3 angleA=90, angleB=0
arc angleA=0, angleB=0, armA=None, armB,=None, rad=0.0
arc3 rad=0.0

They are rather specific to Bezier curves, but the following examples will clarify
this a bit.

The arrow style (represented by the arrowstyle keyword argument) describes
how the arrow will be drawn. The available arrow styles are:

Name Attributes
- None
-> head_length=0.4, head_width=0.2
-[WidthB=1.0, lengthB=0.2, angleB=None
<- head_length=0.4, head_width=0.2

Decorate Graphs with Plot Styles and Types

[78]

Name Attributes
<-> head_length=0.4, head_width=0.2
fancy head_length=0.4, head_width=0.4, tail_width=0.4
simple head_length=0.5, head_width=0.5, tail_width=0.2
wedge tail_width=0.3, shrink_factor=0.5

Let's see some examples.
In [1]: import matplotlib.pyplot as plt
In [2]: plt.axis([0, 10, 0, 20]);
In [3]: arrstyles = ['-', '->', '-[', '<-', '<->', 'fancy', 'simple',
'wedge']
In [4]: for i, style in enumerate(arrstyles):
 ...:
 plt.annotate(style, xytext=(1, 2+2*i), xy=(4, 1+2*i),
arrowprops=dict(arrowstyle=style));
In [5]: connstyles=["arc", "arc,angleA=10,armA=30,rad=15",
"arc3,rad=.2", "arc3,rad=-.2", "angle", "angle3"]
In [6]: for i, style in enumerate(connstyles):
 plt.annotate("", xytext=(6, 2+2*i), xy=(8, 1+2*i), arr
owprops=dict(arrowstyle='->', connectionstyle=style));
 ...:
In [7]: plt.show()

Chapter 3

[79]

In the first series of the example, we used the annotation text, but only to show what
arrow style we were using. To get an arrow alone, we should use a form such as:

plt.annotate("", ...)

This form was used in the second series.

Needless to say, all these options can be used even when we really need to annotate
a plot.

Summary
Our Matplotlib toolbox has now grown to a considerable size. Let's recap what
we've just seen in this chapter:

• How we can customize the markers and lines representation
• How we can adjust the visualization of ticks on plot axes
• How we can use different plot types—histograms, error bars, bars, pies,

scatters charts, and so on
• How we can generate polar charts, and the peculiarities they have
• How we can describe the plots, either by adding text or annotating (using

text and arrows) the plot, and how we can draw arrows alone

Matplotlib still has a lot to show us, in particular, for advanced users and
purposes. The next chapter will introduce the object-oriented world of Matplotlib,
and much more.

Advanced Matplotlib
We are about to explore some advanced aspects of Matplotlib. The topics that we are
going to cover in detail are:

• Matplotlib's object-oriented interface
• Subplots and multiple figures
• Additional and shared axes
• Logarithmic scaled axes
• Date plotting with ticks formatting and locators
• Text properties, fonts, LaTeX typewriting
• Contour plots and image plotting

The basis for all of these topics is the object-oriented interface, so we will learn about
that first.

Object-oriented versus MATLAB styles
So far in this book, we have seen a lot of examples, and in all of them we used the
matplotlib.pyplot module to create and manipulate the plots, but this is not the
only way to make use of the Matplotlib plotting power.

There are three ways to use Matplotlib:

• pyplot: The module used so far in this book
• pylab: A module to merge Matplotlib and NumPy together in an

environment closer to MATLAB
• Object-oriented way: The Pythonic way to interface with Matplotlib

Advanced Matplotlib

[82]

Let's first elaborate a bit about the pyplot module: pyplot provides a
MATLAB-style, procedural, state-machine interface to the underlying object-oriented
library in Matplotlib.

A state machine is a system with a global status, where each operation performed
on the system changes its status.

matplotlib.pyplot is stateful because the underlying engine keeps track of the
current figure and plotting area information, and plotting functions change that
information. To make it clearer, we did not use any object references during our
plotting we just issued a pyplot command, and the changes appeared in the figure.

At a higher level, matplotlib.pyplot is a collection of commands and functions
that make Matplotlib behave like MATLAB (for plotting).

This is really useful when doing interactive sessions, because we can issue a
command and see the result immediately, but it has several drawbacks when we
need something more such as low-level customization or application embedding.

If we remember, Matplotlib started as an alternative to MATLAB, where we have at
hand both numerical and plotting functions. A similar interface exists for Matplotlib,
and its name is pylab.

pylab (do you see the similarity in the names?) is a companion module, installed
next to matplotlib that merges matplotlib.pyplot (for plotting) and numpy (for
mathematical functions) modules in a single namespace to provide an environment
as near to MATLAB as possible, so that the transition would be easy.

We and the authors of Matplotlib discourage the use of pylab, other than for
proof-of-concept snippets. While being rather simple to use, it teaches developers
the wrong way to use Matplotlib, so we intentionally do not present it in this book.

The third way to use Matplotlib is through the object-oriented interface (OO, from
now on). This is the most powerful way to write Matplotlib code because it allows
for complete control of the result however it is also the most complex. This is the
Pythonic way to use Matplotlib, and it's highly encouraged when programming with
Matplotlib rather than working interactively. We will use it a lot from now on as it's
needed to go down deep into Matplotlib.

Please allow us to highlight again the preferred style that the authors of this book,
and the authors of Matplotlib want to enforce: a bit of pyplot will be used, in
particular for convenience functions, and the remaining plotting code is either done
with the OO style or with pyplot, with numpy explicitly imported and used for
numerical functions.

Chapter 4

[83]

In this preferred style, the initial imports are:

import matplotlib.pyplot as plt
import numpy as np

In this way, we know exactly which module the function we use comes from (due to
the module prefix), and it's exactly what we've always done in the code so far.

Now, let's present the same piece of code expressed in the three possible forms
which we just described.

First, we present it in the same style that we have used in the previous chapters,
pyplot only:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: x = np.arange(0, 10, 0.1)
In [4]: y = np.random.randn(len(x))
In [5]: plt.plot(x, y)
Out[5]: [<matplotlib.lines.Line2D object at 0x1fad810>]
In [6]: plt.title('random numbers')
In [7]: plt.show()

The preceding code snippet results in:

Advanced Matplotlib

[84]

Now, let's see how we can do the same thing using the pylab interface:

$ ipython -pylab
...
In [1]: x = arange(0, 10, 0.1)
In [2]: y = randn(len(x))
In [3]: plot(x, y)
Out[3]: [<matplotlib.lines.Line2D object at 0x4284dd0>]
In [4]: title('random numbers')
In [5]: show()

Note that:

ipython -pylab

is not the same as running ipython and then:

from pylab import *

This is because ipython's-pylab switch, in addition to importing everything from
pylab, also enables a specific ipython threading mode so that both the interactive
interpreter and the plot window can be active at the same time.

Finally, lets make the same chart by using OO style, but with some pyplot
convenience functions:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: x = np.arange(0, 10, 0.1)
In [4]: y = np.random.randn(len(x))
In [5]: fig = plt.figure()
In [6]: ax = fig.add_subplot(111)
In [7]: l, = plt.plot(x, y)
In [8]: t = ax.set_title('random numbers')
In [9]: plt.show()

As we can see, the pylab code is the simplest, and pyplot is in the middle, while the
OO is the most complex or verbose.

As the Python Zen teaches us, "Explicit is better than implicit" and "Simple is better
than complex" and those statements are particularly true for this example: for simple
interactive sessions, pylab or pyplot are the perfect choice because they hide a lot
of complexity, but if we need something more advanced, then the OO API makes
clearer where things are coming from, and what's going on. This expressiveness
will be appreciated when we will embed Matplotlib inside GUI applications.

From now on, we will start presenting our code using the OO interface mixed with
some pyplot functions.

Chapter 4

[85]

A brief introduction to Matplotlib objects
Before we can go on in a productive way, we need to briefly introduce which
Matplotlib objects compose a figure.

Let's see from the higher levels to the lower ones how objects are nested:

Object Description
FigureCanvas Container class for the Figure instance
Figure Container for one or more Axes instances
Axes The rectangular areas to hold the basic elements, such as lines,

text, and so on

Our first (simple) example of OO Matplotlib
In the previous pieces of code, we had transformed this:

...
In [5]: plt.plot(x, y)
Out[5]: [<matplotlib.lines.Line2D object at 0x1fad810>]
...

into:

...
In [7]: l, = plt.plot(x, y)
...

The new code uses an explicit reference, allowing a lot more customizations.

As we can see in the first piece of code, the plot() function returns a list of Line2D
instances, one for each line (in this case, there is only one), so in the second code, l
is a reference to the line object, so every operation allowed on Line2D can be done
using l.

For example, we can set the line color with:

l.set_color('red')

Instead of using the keyword argument to plot(), so the line information can be
changed after the plot() call.

Advanced Matplotlib

[86]

Subplots
In the previous section, we have seen a couple of important functions without
introducing them. Let's have a look at them now:

• fig = plt.figure(): This function returns a Figure, where we can add
one or more Axes instances.

• ax = fig.add_subplot(111): This function returns an Axes instance,
where we can plot (as done so far), and this is also the reason why we call
the variable referring to that instance ax (from Axes). This is a common way
to add an Axes to a Figure, but add_subplot() does a bit more: it adds a
subplot. So far we have only seen a Figure with one Axes instance, so only
one area where we can draw, but Matplotlib allows more than one.

add_subplot() takes three parameters:

fig.add_subplot(numrows, numcols, fignum)

where:
• numrows represents the number of rows of subplots to prepare
• numcols represents the number of columns of subplots to prepare
• fignum varies from 1 to numrows*numcols and specifies the current

subplot (the one used now)

Basically, we describe a matrix of numrows*numcols subplots that we want into the
Figure; please note that fignum is 1 at the upper-left corner of the Figure and it's
equal to numrows*numcols at the bottom-right corner. The following table should
provide a visual explanation of this:

numrows=2, numcols=2, fignum=1 numrows=2, numcols=2, fignum=2
numrows=2, numcols=2, fignum=3 numrows=2, numcols=2, fignum=4

Some usage examples are:

ax = fig.add_subplot(1, 1, 1)

Where we want a Figure with just a single plot area (like in all the previous examples).

ax2 = fig.add_subplot(2, 1, 2)

Here, we define the plot's matrix as made of two subplots in two different rows, and
we want to work on the second one (fignum=2).

Chapter 4

[87]

An interesting feature is that we can specify these numbers as a single parameter
merging the numbers in just one string (as long as all of them are less than 10).
For example:

ax2 = fig.add_subplot(212)

which is equivalent to:

ax2 = fig.add_subplot(2, 1, 2)

A simple example can clarify a bit:

In [1]: import matplotlib.pyplot as plt
In [2]: fig = plt.figure()
In [3]: ax1 = fig.add_subplot(211)
In [4]: ax1.plot([1, 2, 3], [1, 2, 3]);
In [5]: ax2 = fig.add_subplot(212)
In [6]: ax2.plot([1, 2, 3], [3, 2, 1]);
In [7]: plt.show()

We will use a simple naming convention for the variables that we are using. For
example, we call all the Axes instance variables ax, and if there is more than one
variable in the same code, then we add numbers at the end, for example, ax1, ax2,
and so on.

Advanced Matplotlib

[88]

This will allow us to make changes to the Axes instance after it's created, and in the
case of multiple Axes, it will allow us to modify any of them after their creation.

The same applies for multiple figures.

Multiple figures
Matplotlib also provides the capability to draw not only multiple Axes inside the
same Figure, but also multiple figures.

We can do this by calling figure() multiple times, keeping a reference to the Figure
object and then using it to add as many subplots as needed in exactly the same way
as having a single Figure.

We can now see a code with two calls to figure():

In [1]: import matplotlib.pyplot as plt
In [2]: fig1 = plt.figure()
In [3]: ax1 = fig1.add_subplot(111)
In [4]: ax1.plot([1, 2, 3], [1, 2, 3]);
In [5]: fig2 = plt.figure()
In [6]: ax2 = fig2.add_subplot(111)
In [7]: ax2.plot([1, 2, 3], [3, 2, 1]);
In [8]: plt.show()

This code snippet generates two windows with one line each:

Chapter 4

[89]

Note how the Axes instances are generated by calling the add_subplot() method
on the two different Figure instances.

As a side note, when using pylab or pyplot, we can call figure() with an integer
parameter to access a previously created Figure: figure(1) returns a reference to
the first Figure, figure(2) to the second one, and so on.

Additional Y (or X) axes
There are situations where we want to plot two sets of data on the same image.
In particular, this is the case when for the same X variable, we have two datasets
(consider the situation where we take two measurements at the same time, and
we want to plot them together to spot some relationships).

Matplotlib can do it:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: x = np.arange(0., np.e, 0.01)
In [4]: y1 = np.exp(-x)
In [5]: y2 = np.log(x)
In [6]: fig = plt.figure()
In [7]: ax1 = fig.add_subplot(111)
In [8]: ax1.plot(x, y1);
In [9]: ax1.set_ylabel('Y values for exp(-x)');

Advanced Matplotlib

[90]

In [10]: ax2 = ax1.twinx() # this is the important function
In [11]: ax2.plot(x, y2, 'r');
In [12]: ax2.set_xlim([0, np.e]);
In [13]: ax2.set_ylabel('Y values for ln(x)');
In [14]: ax2.set_xlabel('Same X for both exp(-x) and ln(x)');
In [15]: plt.show()

What's really happening here is that two different Axes instances are placed such
that one is on top of the other. The data for y1 will go in the first Axes instance, and
the data for y2 will go in the second Axes instance.

The twinx() function does the trick: it creates a second set of axes, putting the new
ax2 axes at the exact same position of ax1, ready to be used for plotting.

This is the reason why we had to set the red color for the second line: the plot
information was reset so that line would have been blue, as if it was part of a
completely new figure.

We can see that by using ax1 and ax2 for referring to Axes instances, we are able to
modify the information (in this case, the axes labels) for both of them. Of course, since
X is shared between the two, we have to call set_xlabel() for just one Axes instance.

Using two different Axes also allows us to have different scales for the two plots.

The complementary function, twiny(), allows us to share the Y-axis with two
different X-axes.

Chapter 4

[91]

Logarithmic axes
Another interesting feature of Matplotlib is the possibility to set the axes scale
to a logarithmic one. We can independently set the X, the Y, or both axes to a
logarithmic scale.

Let's see an example where both subplots and the logarithmic scale are put together:

In [1]: import matplotlib as mpl
In [2]: mpl.rcParams['font.size'] = 10.
In [3]: import matplotlib.pyplot as plt
In [4]: import numpy as np
In [5]: x = np.arange(0., 20, 0.01)
In [6]: fig = plt.figure()
In [7]: ax1 = fig.add_subplot(311)
In [8]: y1 = np.exp(x/6.)
In [9]: ax1.plot(x, y1);
In [10]: ax1.grid(True)
In [11]: ax1.set_yscale('log')
In [12]: ax1.set_ylabel('log Y');
In [13]: ax2 = fig.add_subplot(312)
In [14]: y2 = np.cos(np.pi*x)
In [15]: ax2.semilogx(x, y2);
In [16]: ax2.set_xlim([0, 20]);
In [17]: ax2.grid(True)
In [18]: ax2.set_ylabel('log X');
In [19]: ax3 = fig.add_subplot(313)
In [20]: y3 = np.exp(x/4.)
In [21]: ax3.loglog(x, y3, basex=3);
In [22]: ax3.grid(True)
In [23]: ax3.set_ylabel('log X and Y');
In [24]: plt.show()

Advanced Matplotlib

[92]

The output of the preceding code is as follows:

Note how the characters in this image are smaller than those in the other plots. This
is because we had to reduce the font size to avoid the labels and plots overlapping
with each other.

semilogx() (and the twin function semilogy()) is a commodity function that
merges plot() and ax.set_xscale('log') functions in a single call. The same
holds for loglog(), which makes a plot with log scaling on both X and Y axes.

The default logarithmic base is 10, but we can change it with the basex and basey
keyword arguments for their respective axes. The functions set_xscale() or
set_yscale() are more general as they can also be applied to polar plots, while
semilogx(), semilogy(), or loglog() work for lines and scatter plots.

Share axes
With twinx(), we have seen that we can plot two Axes on the same plotting area
sharing one axis. But what if we want to draw more than two plots sharing an axis?
What if we want to plot on different Axes in the same figure, still sharing that axis?
Some areas where we might be interested in such kind of graphs are:

• Financial data—comparing the evolution of some economic indicators over
the same time

Chapter 4

[93]

• Hardware testing—plotting the electrical signals received at each pin of a
parallel or serial port

• Health status—showing the development of some medical information in
a given time frame (such as blood pressure, beating heart rate, weight, and
so on)

Note that while having the same unit measure on the shared
axis, the other is free to have any unit; this is very important
as it allows us to group up heterogeneous information.

Matplotlib makes it very easy to share an axis (for example, the X one) on different
Axes instances, for example, pan and zoom actions on one graph are automatically
replayed to all the others.

In [1]: import matplotlib as mpl
In [2]: mpl.rcParams['font.size'] = 11.
In [3]: import matplotlib.pyplot as plt
In [4]: import numpy as np
In [5]: x = np.arange(11)
In [6]: fig = plt.figure()
In [7]: ax1 = fig.add_subplot(311)
In [8]: ax1.plot(x, x);
In [9]: ax2 = fig.add_subplot(312, sharex=ax1)
In [10]: ax2.plot(2*x, 2*x);
In [11]: ax3 = fig.add_subplot(313, sharex=ax1)
In [12]: ax3.plot(3*x, 3*x);
In [13]: plt.show()

Advanced Matplotlib

[94]

Again, we have to use a smaller font for texts. When printed, it looks like a standard
subplot image. However, if you run the code on ipython, then you'll observe that
when zooming, panning, or performing other similar activities on a subplot, all the
others will be modified too, according to the same transformation.

As we can expect, there are a couple of keyword arguments; sharex and sharey, and
it's also possible to specify both of them together. In particular, this is useful when
the subplots show data with the same units of measure.

Plotting dates
Sooner or later, we all have had the need to plot some information over time, be it for
the bank account balance each month, the total web site accesses for each day of the
year, or one of many other reasons.

Matplotlib has a plotting function ad hoc for dates, plot_date() that considers data
on X, Y, or both axes, as dates, labeling the axis accordingly.

As usual, we now present an example, and we will discuss it later:

In [1]: import matplotlib as mpl
In [2]: import matplotlib.pyplot as plt
In [3]: import numpy as np
In [4]: import datetime as dt
In [5]: dates = [dt.datetime.today() + dt.timedelta(days=i) \
 ...: for i in range(10)]
In [6]: values = np.random.rand(len(dates))
In [7]: plt.plot_date(mpl.dates.date2num(dates), values, linestyle='-
');
In [8]: plt.show()

Chapter 4

[95]

First, a note about linestyle keyword argument: without it, there's no line
connecting the markers that are displayed alone.

We created the dates array using timedelta(), a datetime function that helps us
define a date interval—10 days in this case. Note how we had to convert our date
values using the date2num() function. This is because Matplotlib represents dates
as float values corresponding to the number of days since 0001-01-01 UTC.

Also note how the X-axis labels, the ones that have data values, are badly rendered.

Matplotlib provides ways to address the previous two points—date formatting and
conversion, and axes formatting.

Date formatting
Commonly, in Python programs, dates are represented as datetime objects, so we
have to first convert other data values into datetime objects, sometimes by using
the dateutil companion module, for example:

import datetime
date = datetime.datetime(2009, 03, 28, 11, 34, 59, 12345)

or

import dateutil.parser
datestrings = ['2008-07-18 14:36:53.494013','2008-07-20
14:37:01.508990', '2008-07-28 14:49:26.183256']
dates = [dateutil.parser.parse(s) for s in datestrings]

Once we have the datetime objects, in order to let Matplotlib use them, we have to
convert them into floating point numbers that represent the number of days since
0001-01-01 00:00:00 UTC.

To do that, Matplotlib itself provides several helper functions contained in the
matplotlib.dates module:

• date2num(): This function converts one or a sequence of datetime objects to
float values representing days since 0001-01-01 00:00:00 UTC (the fractional
parts represent hours, minutes, and seconds)

• num2date(): This function converts one or a sequence of float values
representing days since 0001-01-01 00:00:00 UTC to datetime objects
(or a sequence, if the input is a sequence)

• drange(dstart, dend, delta): This function returns a date range
(a sequence) of float values in Matplotlib date format; dstart and dend
are datetime objects while delta is a datetime.timedelta instance

Advanced Matplotlib

[96]

Usually, what we will end up doing is converting a sequence of datetime objects
into a Matplotlib representation, such as:

dates = list of datetime objects

mpl_dates = matplotlib.dates.date2num(dates)

drange() can be useful in situations like this one:

import matplotlib as mpl
from matplotlib import dates
import datetime as dt
date1 = dt.datetime(2008, 9, 23)
date2 = dt.datetime(2009, 4, 12)
delta = dt.timedelta(days=10)
dates = mpl.dates.drange(date1, date2, delta)

where dates will be a sequence of floats starting from date1 and ending at date2
with a delta timestamp between each item of the list.

Axes formatting with axes tick locators and
formatters
As we have already seen, the X labels on the first image are not that nice looking. We
would expect Matplotlib to allow a better way to label the axis, and indeed, there is.

The solution is to change the two parts that form the axis ticks—locators and
formatters. Locators control the tick's position, while formatters control the formatting
of labels. Both have a major and minor mode: the major locator and formatter are active
by default and are the ones we commonly see, while minor mode can be turned on
by passing a relative locator or formatter function (because minors are turned off by
default by assigning NullLocator and NullFormatter to them).

While this is a general tuning operation and can be applied to all Matplotlib plots,
there are some specific locators and formatters for date plotting, provided by
matplotlib.dates:

• MinuteLocator, HourLocator, DayLocator, WeekdayLocator,
MonthLocator, YearLocator are all the locators available that place a tick at
the time specified by the name, for example, DayLocator will draw a tick at
each day. Of course, a minimum knowledge of the date interval that we are
about to draw is needed to select the best locator.

• DateFormatter is the tick formatter that uses strftime() to format strings.

Chapter 4

[97]

The default locator and formatter are matplotlib.ticker.AutoDateLocator
and matplotlib.ticker.AutoDateFormatter, respectively. Both are set by the
plot_date() function when called. So, if you wish to set a different locator and/or
formatter, then we suggest to do that after the plot_date() call in order to avoid
the plot_date() function resetting them to the default values.

Let's group all this up in an example:

In [1]: import matplotlib as mpl
In [2]: import matplotlib.pyplot as plt
In [3]: import numpy as np
In [4]: import datetime as dt
In [5]: fig = plt.figure()
In [6]: ax2 = fig.add_subplot(212)
In [7]: date2_1 = dt.datetime(2008, 9, 23)
In [8]: date2_2 = dt.datetime(2008, 10, 3)
In [9]: delta2 = dt.timedelta(days=1)
In [10]: dates2 = mpl.dates.drange(date2_1, date2_2, delta2)
In [11]: y2 = np.random.rand(len(dates2))
In [12]: ax2.plot_date(dates2, y2, linestyle='-');
In [13]: dateFmt = mpl.dates.DateFormatter('%Y-%m-%d')
In [14]: ax2.xaxis.set_major_formatter(dateFmt)
In [15]: daysLoc = mpl.dates.DayLocator()
In [16]: hoursLoc = mpl.dates.HourLocator(interval=6)
In [17]: ax2.xaxis.set_major_locator(daysLoc)
In [18]: ax2.xaxis.set_minor_locator(hoursLoc)
In [19]: fig.autofmt_xdate(bottom=0.18) # adjust for date labels
display
In [20]: fig.subplots_adjust(left=0.18)
In [21]: ax1 = fig.add_subplot(211)
In [22]: date1_1 = dt.datetime(2008, 9, 23)
In [23]: date1_2 = dt.datetime(2009, 2, 16)
In [24]: delta1 = dt.timedelta(days=10)
In [25]: dates1 = mpl.dates.drange(date1_1, date1_2, delta1)
In [26]: y1 = np.random.rand(len(dates1))
In [27]: ax1.plot_date(dates1, y1, linestyle='-');
In [28]: monthsLoc = mpl.dates.MonthLocator()
In [29]: weeksLoc = mpl.dates.WeekdayLocator()
In [30]: ax1.xaxis.set_major_locator(monthsLoc)
In [31]: ax1.xaxis.set_minor_locator(weeksLoc)
In [32]: monthsFmt = mpl.dates.DateFormatter('%b')
In [33]: ax1.xaxis.set_major_formatter(monthsFmt)
In [34]: plt.show()

Advanced Matplotlib

[98]

The result of executing the previous code snippet is as shown:

We drew the subplots in reverse order to avoid some minor overlapping problems.

fig.autofmt_xdate() is used to nicely format date tick labels. In particular, this
function rotates the labels (by using rotation keyword argument, with a default
value of 30°) and gives them more room (by using bottom keyword argument, with
a default value of 0.2).

We can achieve the same result, at least for the additional spacing, with:

fig = plt.figure()
fig.subplots_adjust(bottom=0.2)
ax = fig.add_subplot(111)

This can also be done by creating the Axes instance directly with:

ax = fig.add_axes([left, bottom, width, height])

while specifying the explicit dimensions.

The subplots_adjust() function allows us to control the spacing around the
subplots by using the following keyword arguments:

• bottom, top, left, right: Controls the spacing at the bottom, top, left,
and right of the subplot(s)

• wspace, hspace: Controls the horizontal and vertical spacing between
subplots

Chapter 4

[99]

We can also control the spacing by using these parameters in the Matplotlib
configuration file:

figure.subplot.<position> = <value>

Custom formatters and locators
Even if it's not strictly related to date plotting, tick formatters allow for custom
formatters too:

...
import matplotlib.ticker as ticker
...
def format_func(x, pos):
 return <a transformation on x>
...
formatter = ticker.FuncFormatter(format_func)
ax.xaxis.set_major_formatter(formatter)
...

The function format_func will be called for each label to draw, passing its value and
position on the axis. With those two arguments, we can apply a transformation (for
example, divide x by 10) and then return a value that will be used to actually draw
the tick label.

Here's a general note on NullLocator: it can be used to remove axis ticks by
simply issuing:

ax.xaxis.set_major_locator(matplotlib.ticker.NullLocator())

Text properties, fonts, and LaTeX
Matplotlib has excellent text support, including mathematical expressions, TrueType
font support for raster and vector outputs, newline separated text with arbitrary
rotations, and Unicode.

We have total control over every text property (font size, font weight, text location,
color, and so on) with sensible defaults set in the rc configuration file. Specifically for
those interested in mathematical or scientific figures, Matplotlib implements a large
number of TeX math symbols and commands to support mathematical expressions
anywhere in the figure.

We already saw some text functions, but the following list contains all the functions
which can be used to insert text with the pyplot interface, presented along with the
corresponding API method and a description:

Advanced Matplotlib

[100]

Pyplot
function

API method Description

text() mpl.axes.Axes.text() Adds text at an arbitrary location
on the Axes

xlabel() mpl.axes.Axes.set_xlabel() Adds an axis label to the X-axis
ylabel() mpl.axes.Axes.set_ylabel() Adds an axis label to the Y-axis
title() mpl.axes.Axes.set_title() Adds a title to the Axes
figtext() mpl.figure.Figure.text() Adds text to the Figure at an

arbitrary location
suptitle() mpl.figure.Figure.suptitle() Adds a centered title to the Figure
annotate() mpl.axes.Axes.annotate() Adds an annotation with an

optional arrow to the Axes

All of these commands return a matplotlib.text.Text instance. We can customize
the text properties by passing keyword arguments to the functions or by using
matplotlib.artist.setp():

t = plt.xlabel('some text', fontsize=16, color='green')

We can also do it as:

t = plt.xlabel('some text')
plt.setp(t, fontsize=16, color='green')

Handling objects allows for several new possibilities; such as setting the same
property to all the objects in a specific group. Matplotlib has several convenience
functions to return the objects of a plot. Let's take the example of the tick labels:

ax.get_xticklabels()

This line of code returns a sequence of object instances (the labels for the X-axis ticks)
that we can tune:

for t in ax.get_xticklabels():
 t.set_fontsize(5.)

or else, still using setp():

setp(ax.get_xticklabels(), fontsize=5.)

It can take a sequence of objects, and apply the same property to all of them.

To recap, all of the properties such as color, fontsize, position, rotation, and
so on, can be set either:

Chapter 4

[101]

• At function call using keyword arguments
• Using setp() referencing the Text instance
• Using the modification functions

Fonts
Where there is text, there are also fonts to draw it. Matplotlib allows for several
font customizations.

The most complete documentation on this is currently available in the Matplotlib
configuration file, /etc/matplotlibrc. We are now reporting that information here.

There are six font properties available for modification:

Property name Values and description
font.family This property has five values:

• serif (example, Times)
• sans-serif (example, Helvetica)
• cursive (example, Zapf-Chancery)
• fantasy (example, Western)
• monospace (example, Courier)

Each of these font families has a default list of font names in
decreasing order of priority associated with them (as seen in the next
table). In addition to these generic font names, font.family may
also be an explicit name of a font available on the system.

font.style This property has three values: normal (or roman), italic,
or oblique. The oblique style will be used for italic, if it is
not present.

font.variant This property has two values: normal or small-caps. For
TrueType fonts, which are scalable, small-caps is equivalent to
using a font size of smaller, or about 83% of the current font size.

font.weight This property has effectively 13 values—normal, bold, bolder,
lighter, 100, 200, 300, ..., 900. normal is the same as 400, and
bold is 700. bolder and lighter are relative values with respect
to the current weight.

Advanced Matplotlib

[102]

Property name Values and description
font.stretch This property has 11 values—ultra-condensed, extra-

condensed, condensed, semi-condensed, normal, semi-
expanded, expanded, extra-expanded, ultra-expanded,
wider, and narrower. This property is not currently
implemented. It works if the font supports it, but only few do.

font.size This property sets the default font size for text, given in points.
12pt is the standard value.

The list of font names, selected by font.family, in the priority search order is:

Property name Font list
font.serif Bitstream Vera Serif, New Century Schoolbook, Century

Schoolbook L, Utopia, ITC Bookman, Bookman, Nimbus Roman
No9 L, Times New Roman, Times, Palatino, Charter, serif

font.sans-serif Bitstream Vera Sans, Lucida Grande, Verdana, Geneva, Lucid,
Arial, Helvetica, Avant Garde, sans-serif

font.cursive Apple Chancery, Textile, Zapf Chancery, Sand, cursive
font.fantasy Comic Sans MS, Chicago, Charcoal, Impact, Western, fantasy
font.monospace Bitstream Vera Sans Mono, Andale Mono, Nimbus Mono L, Courier

New, Courier, Fixed, Terminal, monospace

The first valid and available (that is, installed) font in each family is the one that will
be loaded. If the fonts are not specified, the Bitstream Vera Sans fonts are used by
default.

As usual, we can set these values in the configuration file or in the code accessing
the rcParams dictionary provided by Matplotlib.

Using LaTeX formatting
If you have ever used LaTeX, you know how powerful it can be at rendering
mathematical expressions. Given its root in the scientific field, Matplotlib allows
us to embed TeX text in its plots. There are two ways available:

• Mathtext
• Using an external TeX renderer

Chapter 4

[103]

Mathtext
Matplotlib includes an internal engine to render TeX expression, mathtext. The
mathtext module provides TeX style mathematical expressions using FreeType 2
and the default font from TeX, Computer Modern.

As Matplotlib ships with everything it needs to make mathtext work, there is no
requirement to install a TeX system (or any other external program) on the computer
for it to be used.

The markup character used to signal the start and the end of a mathtext string is $;
encapsulating a string inside a pair of $ characters will trigger the mathtext engine
to render it as a TeX mathematical expression.

We should use raw strings (preceding the quotes with an r character) and surround
the mathtext with dollar signs ($), as in TeX. The use of raw strings is important so
that backslashes (used for TeX symbols escaping) are not mangled by the Python
interpreter.

Matplotlib accepts TeX equations in any text expressions, so regular text and
mathtext can be interleaved within the same string.

An example of the kind of text we can generate is:

In [1]: import matplotlib.pyplot as plt
In [2]: fig = plt.figure()
In [3]: ax= fig.add_subplot(111)
In [4]: ax.set_xlim([1, 6]);
In [5]: ax.set_ylim([1, 9]);
In [6]: ax.text(2, 8, r"$ \mu \alpha \tau \pi \lambda \omega \tau \
lambda \iota \beta $");
In [7]: ax.text(2, 6, r"$ \lim_{x \rightarrow 0} \frac{1}{x} $");
In [8]: ax.text(2, 4, r"$ a \ \leq \ b \ \leq \ c \ \Rightarrow \ a \
\leq \ c$");
In [9]: ax.text(2, 2, r"$ \sum_{i=1}^{\infty}\ x_i^2$");
In [10]: ax.text(4, 8, r"$ \sin(0) = \cos(\frac{\pi}{2})$");
In [11]: ax.text(4, 6, r"$ \sqrt[3]{x} = \sqrt{y}$");
In [12]: ax.text(4, 4, r"$ \neg (a \wedge b) \Leftrightarrow \neg a
\vee \neg b$");
In [13]: ax.text(4, 2, r"$ \int_a^b f(x)dx$");
In [14]: plt.show()

Advanced Matplotlib

[104]

The preceding code snippet results in the following:

The escape sequence is almost the same as that of LaTeX; consult the Matplotlib
and/or LaTeX online documentation to see the full list.

External TeX renderer
Matplotlib also allows to manage all the text layout using an external LaTeX engine.
This is limited to Agg, PS, and PDF backends and is commonly needed when we want
to create graphs to be embedded into LaTeX documents, where rendering uniformity
is really pleasant.

To activate an external TeX rendering engine for text strings, we need to set this
parameter in the configuration file:

text.usetex : True

or use the rcParams dictionary:

rcParams['text.usetex'] = True

This mode requires LaTeX, dvipng, and Ghostscript to be correctly installed
and working. Also note that usually external TeX management is slower than
Matplotlib's mathtext and that all the texts in the figure are drawn using the external
renderer, not only the mathematical ones.

Chapter 4

[105]

There are several optimizations and configurations that you will need to do
when dealing with TeX, postscripts and so, we invite you to consult an official
documentation for additional information.

When the previous example is executed and rendered using an external LaTeX
engine, the result is:

Also, look at how the tick label's text is rendered in the same font as the text in the
figure, as in this real world example:

In [1]: import matplotlib as mpl
In [2]: import matplotlib.pyplot as plt
In [3]: mpl.rcParams['text.usetex'] = True
In [4]: import numpy as np
In [5]: x = np.arange(0., 5., .01)
In [6]: y = [np.sin(2*np.pi*xx) * np.exp(-xx) for xx in x]
In [7]: plt.plot(x, y, label=r'$\sin(2\pi x)\exp(-x)$');
In [8]: plt.plot(x, np.exp(-x), label=r'$\exp(-x)$');
In [9]: plt.plot(x, -np.exp(-x), label=r'$-\exp(-x)$');
In [10]: plt.title(r'$\sin(2\pi x)\exp(-x)$ with the two asymptotes
$\pm\exp(-x)$');
In [11]: plt.legend();
In [12]: plt.show()

Advanced Matplotlib

[106]

The preceding code snippet results in a sinusoidal line contained in two asymptotes:

Contour plots and image plotting
We will now discuss the features Matplotlib provides to create contour plots and
display images.

Contour plots
Contour lines (also known as level lines or isolines) for a function of two variables are
curves where the function has constant values. Mathematically speaking, it's a graph
image that shows:

f(x, y) = L

with L constant. Contour lines often have specific names beginning with iso- (from
Greek, meaning equal) according to the nature of the variables being mapped.

There are a lot of applications of contour lines in several fields such as meteorology
(for temperature, pressure, rain precipitation, wind speed), geography,
oceanography, cartography (elevation and depth), magnetism, engineering, social
sciences, and so on.

Chapter 4

[107]

The absolutely most common examples of contour lines are those seen in weather
forecasts, where lines of isobars (where the atmospheric pressure is constant) are
drawn over the terrain maps. In particular, those are contour maps because contour
lines are drawn above a map in order to add specific information to it.

The density of the lines indicates the slope of the function. The gradient of the
function is always perpendicular to the contour lines, and when the lines are close
together, the length of the gradient is large and the variation is steep.

Here is a contour plot from a random number matrix:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: matr = np.random.rand(21, 31)
In [4]: cs = plt.contour(matr)
In [5]: plt.show()

where the contour lines are colored from blue to red in a scale from the lower to the
higher values.

The contour() function draws contour lines, taking a 2D array as input (a list of list
notations). In this case, it's a matrix of 21x31 random elements. The number of level
lines to draw is chosen automatically, but we can also specify it as an additional
parameter, N:

contour(matrix, N)

Advanced Matplotlib

[108]

The previous line of code tells us to draw N automatically chosen level lines.

There is also a similar function that draws a filled contours plot, contourf():

In [6]: csf = plt.contourf(matr)
In [7]: plt.colorbar();
In [8]: plt.show()

contourf() fills the spaces between the contours lines with the same color
progression used in the contour() plot: dark blue is used for low value areas,
while red is used for high value areas, fading in between for the intermediate values.

Contour colors can be changed using a colormap, a set of colors used as a lookup
table by Matplotlib when it needs to select more colors, specified using the cmap
keyword argument.

We also added a colorbar() call to draw a color bar next to the plot to identify the
ranges the colors are assigned to. In this case, there are a few bins where the values
can fall because rand() NumPy function returns values between 0 and 1.

Labeling the level lines is important in order to provide information about what
levels were chosen for display; clabel() does this by taking as input a contour
instance, as returned by a previous contour() call:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: x = np.arange(-2, 2, 0.01)

Chapter 4

[109]

In [4]: y = np.arange(-2, 2, 0.01)
In [5]: X, Y = np.meshgrid(x, y)
In [6]: ellipses = X*X/9 + Y*Y/4 - 1
In [7]: cs = plt.contour(ellipses)
In [8]: plt.clabel(cs);
In [9]: plt.show()

Here, we draw several ellipses and then call clabel() to display the selected levels.
We used the NumPy meshgrid() function to get the coordinate matrices, X and Y,
from the two coordinate vectors, x and y. The output of this code is shown in the
following image:

Image plotting
Matplotlib also has basic image plotting capabilities provided by the functions:
imread() and imshow().

imread() reads an image from a file and converts it into a NumPy array; imshow()
takes an array as input and displays it on the screen:

import matplotlib.pyplot as plt
f = plt.imread('/path/to/image/file.ext')
plt.imshow(f)

Advanced Matplotlib

[110]

Matplotlib can only read PNG files natively, but if the Python Imaging Library
(usually known as PIL) is installed, then this library will be used to read the image
and return an array (if possible).

Note that when working with images, the origin is in the upper-left corner. This can
be changed using the origin keyword argument, origin='lower' (which is the
only other acceptable value, in addition to the default 'upper'), which will set the
origin on the lower-left corner. We can also set it as a configuration parameter, and
the key name is image.origin.

Just note that once the image is an array, we can do all the transformations we like.

imshow() can plot any 2D sets of data and not just the ones read from image files.
For example, let's take the ellipses code we used for contour plot and see what
imshow() draws:

In [1]: import matplotlib.pyplot as plt
In [2]: import numpy as np
In [3]: x = np.arange(-2, 2, 0.01)
In [4]: y = np.arange(-2, 2, 0.01)
In [5]: X, Y = np.meshgrid(x, y)
In [6]: ellipses = X*X/9 + Y*Y/4 - 1
In [7]: plt.imshow(ellipses);
In [8]: plt.colorbar();
In [9]: plt.show()

This example creates a full spectrum of colors starting from deep blue of the image
center, slightly turning into green, yellow, and red near the image corners:

Chapter 4

[111]

Summary
We've come a long way even in this chapter, so let's recap the arguments
we touched:

• Object-oriented interfaces and the relationship with pyplot and pylab
• How to draw subplots and multiple figures
• How to manipulate axes so that they can be shared between subplots

or can be shared between two plots
• Logarithmic scaled axes
• How to plot dates, and tune tick formatters and locators
• Text properties, fonts, and LaTeX typewriting both with the internal engine

mathtext and with an external renderer
• Contour plots and image plotting

With the information that we have gathered so far, we are ready to extract Matplotlib
from a pure script or interactive usage inside the Python interpreter and learn how
we can embed this library in a GUI Python application.

Embedding Matplotlib in
GTK+

We have seen a lot of examples so far, and we are now pretty productive with
Matplotlib and the IPython interpreter.

While this is very handy for interactive plotting, experimenting with datasets, trying
different visualization of the same data, and so on, there will be cases where we want
an application to acquire, parse, and then, display our data.

In this chapter, we will present some examples of how to embed Matplotlib in
applications (quite simple ones) that use GTK+ as the graphical interface library.
While doing this, we will show how using the Matplotlib API to program these
examples is the best way to achieve this goal.

We will see the following in detail:
• How to embed a Matplotlib Figure into a GTK+ window
• How to embed both, Matplotlib Figure and a navigation toolbar into a

GTK+ window
• What does GTK+ provide to update a Matplotlib graph in real-time
• How we can use Glade to design a GUI for GTK+ and then embed

Matplotlib into it

A brief introduction to GTK+
Let's first clarify that this is not a course in GTK+ programming, so we are not going
to get into the specifics of GTK+, but we will show how to embed Matplotlib inside
simple GTK+ application examples. If you find it interesting, then you're encouraged
to explore GTK+ in more depth.

Embedding Matplotlib in GTK+

[114]

We are now going to give a brief, high-level presentation of what GTK+ is. But we
will give additional details about specific functionalities of GTK+ as and when we
encounter them while describing the code we present.

GTK+ is a highly usable, feature-rich toolkit used to develop graphical user
interfaces with a cross-platform compatibility and an easy-to-use API.

GTK+ was initially developed as a widget set for the GNU Image Manipulation
Program (GIMP)—the name comes from GIMP ToolKit—but then it became
bigger and it's now the base for the GNOME desktop environment along with
many other applications.

The GTK+ library has been developed for over ten years and has reached a high level
of stability and performance. While being the library traditionally used to develop
nice GUI applications for Linux, it has been ported to several platforms: Linux,
Windows, and Mac OS. It is also being made available on mobile platforms.

Getting slightly more specific, GTK+ has a wide collection of core widgets available,
for example: windows, buttons, trees, menus, combo boxes, toolbars, dialog
windows, and many others.

GTK+ mainly relies on another library, GLib, that provides fundamental algorithms
and language constructs (such as thread support, lists, arrays, hash tables, trees, and
so on) which are commonly used, thus avoiding code duplication.

Another important library for GTK+ is GObject. The name comes from the
contraction of GLib Object System, and it aims to provide a flexible and
easy-to-map object-oriented framework to C. It contains a generic type system, a
collection of fundamental type implementations (such as integers and so forth),
and a signal system that can serve as a powerful notification system. Thus, it
provides the object system used by GTK+.

Together with the Glade GUI builder, they provide a very powerful application
development environment.

The GTK+ library is written in C, but it has several bindings to many popular
programming languages, and this makes it quite an attractive library for application
development. This list also includes Python with the PyGTK project.

PyGTK is a binding for the GTK+ library, which allows us to easily create
GUI programs using Python and the GTK+ library, which provides all the
graphical elements.

Joining Python and GTK+ allows us to develop a truly multiplatform application
which is able to run unmodified on several platforms.

Chapter 5

[115]

Introduction to GTK+ signal system
GTK+ is an event-driven toolkit, which means it is always sleeping in a loop function
and waiting for events to occur, and then passes control to the appropriate function.
Examples of events are a click on a button, a menu item activation, the ticking of a
checkbox, and so forth.

This passing of control is done using the idea of signals. Note that, although the
terminology is almost identical, GTK+ signals are not the same as the Unix system
signals and are not implemented using them.

When an event, such as the press of a mouse button occurs, the appropriate signal is
emitted by the widget that received the click. This is one of the most important parts
of GTK+ work. There are signals that all the widgets inherit, such as destroy, and
there are signals that are widget specific such as toggled on a toggle button.

To let the signal framework be functional, we need to set up a signal handler to
catch those signals and call the appropriate function.

We can do this by using a GtkWidget method (inherited from the GObject class):
connect(). The generic form for connect() is:

handler = widget.connect(signal_name, func, func_params)

where:
• handler is an optional (we can call widget.connect() directly) reference

to the signal handler that can be used to disconnect or block the handler
• widget is the GtkWidget object that emits the signal named signal_name

that we want to catch
• func is a reference to the function we will call upon receiving a signal
• func_params are optional parameters we can pass to func

The function func is a callback function: the name comes from the fact that we do not
call this function directly, instead it is called by the GTK+ events manager when an
event occurs.

The general form for a GTK+ signal's callback function is:

def callback_func(widget, callback_data)

where widget is a reference to the widget that emitted the signal, and
callback_data is an optional reference to func_params object defined
in the connect() method.

If the callback function is an object method, then as usual, the self object needs to
be the first parameter.

Embedding Matplotlib in GTK+

[116]

Embedding a Matplotlib figure in a
GTK+ window
We can now start to describe how to embed a Matplotlib Figure into a GTK+
window as we walk through the code. We will present a simple example, and
describe it step-by-step, highlighting the important parts of the code, in particular
the GTK+ related ones.

Note again, we are not going to explain the GTK+ functionalities completely, and it
is left to the reader to read further if he/she is interested.

Let's start:

import gtk
from matplotlib.figure import Figure
import numpy as np

These are the usual imports along with the gtk module, which is required to access
the GTK+ library functions. Once imported, the gtk module also takes care of GTK+
environment initialization.

It is also common to find this type of import:

import pygtk
pygtk.require('2.0')
import gtk

It's useful to differentiate between multiple copies of PyGTK that might be installed
on our system. The require() function specifies that we need version 2.0, which
covers all the versions with major number 2.

from matplotlib.backends.backend_gtkagg \
 import FigureCanvasGTKAgg as FigureCanvas

This line of code imports Matplotlib's FigureCanvasGTKAgg class, which is needed
to let a Figure object be rendered using the GTKAgg backend.

FigureCanvasGTKAgg is based on the FigureCanvasBase class (that is
backend-independent) and adds the logic needed to use GTK+ renderer upon
it; in fact, this is also a gtk.DrawingArea object, a GTK+ widget.

win = gtk.Window()

This creates the GTK+ main window—the window that will contain all other
widgets. We can consider it as the window where the users will have the main
interactions.

Chapter 5

[117]

Rather than creating a window of 0x0 size, without children and with no specific
dimensions, GTK+ sets it to 200x200 by default, so you can still manipulate it.

Note that after this command, the window is not displayed yet, as we have to
explicitly pass the execution control to GTK+, and we will do it only at the very
end of the example.

win.connect("destroy", gtk.main_quit)

We connect the signal destroy, emitted by the GTK+ main window (because we
invoked the connect() method of the win object), when the user closes the window
to the function gtk.main_quit() that causes the GTK+ window and the main
program with it, to quit.

Another common code snippet for the previously mentioned connect() method is:

win.connect('destroy', lambda x: gtk.main_quit())

But we feel that the version we have proposed is clearer and nicer.

Going on:

win.set_default_size(600, 400)

This line of code sets the GTK+ main window's height and width, in pixels.

win.set_title("Matplotlib Figure in a GTK+ Window")

This is the window title, not the Figure one; it's the string set at the GUI level,
such as Firefox, or OpenOffice.org Writer, which appears at the top of the window.

fig = Figure(figsize=(5, 4), dpi=100)
ax = fig.add_subplot(111)
x = np.arange(0,2*np.pi,.01)
y = np.sin(x**2)*np.exp(-x)
ax.plot(x, y)

This is the Matplotlib code used to generate a plot. There should be nothing
new here.

canvas = FigureCanvas(fig)

With this command, we associate the Figure object (that is backend-independent)
to the FigureCanvas (that we recall to be FigureCanvasGTKAgg), so now we have a
widget that's able to draw a Figure using GTK+ primitives.

win.add(canvas)

Embedding Matplotlib in GTK+

[118]

We now add that new widget to the GTK+ main window using the add() method.

win.show_all()

This is used to show all the widgets that are attached to the main window (in this
case, we have only one widget, the FigureCanvas).

gtk.main()

We now start the GTK+ main loop.

The main loop is the GTK+ event processing code where the library sleeps while
continuously checking if an event has occurred, and whether it was a signal, a
timeout, or an I/O notification.

Now that we have introduced the main loop, we can clarify what the
gtk.main_quit() function does: it simply lets GTK+ exit from the loop,
causing the application to quit.

Let's now display the whole program so that we can have a global look at the code:

gtk module
import gtk

matplotlib Figure object
from matplotlib.figure import Figure
numpy functions for image creation
import numpy as np

import the GtkAgg FigureCanvas object, that binds Figure to
GTKAgg backend. In this case, this is a gtk.DrawingArea
from matplotlib.backends.backend_gtkagg \
 import FigureCanvasGTKAgg as FigureCanvas

instantiate the GTK+ window object
win = gtk.Window()
connect the 'destroy' signal to gtk.main_quit function
win.connect("destroy", gtk.main_quit)
define the size of the GTK+ window
win.set_default_size(600, 400)
set the window title
win.set_title("Matplotlib Figure in a GTK+ Window")

matplotlib code to generate the plot
fig = Figure(figsize=(5, 4), dpi=100)
ax = fig.add_subplot(111)

Chapter 5

[119]

x = np.arange(0,2*np.pi, .01)
y = np.sin(x**2)*np.exp(-x)
ax.plot(x, y)

we bind the figure to the FigureCanvas, so that it will be
drawn using the specific backend graphic functions
canvas = FigureCanvas(fig)
add that widget to the GTK+ main window
win.add(canvas)

show all the widget attached to the main window
win.show_all()
start the GTK+ main loop
gtk.main()

When this example is executed, the following window is generated:

Including a navigation toolbar
The navigation toolbar that is always present when doing interactive plotting might
also be useful when embedding Matplotlib in a GUI application, since it already
contains many functions to manipulate the plot.

So what we'll be doing here is modifying the previous code to also add the
Matplotlib navigation toolbar into the GTK+ window application.

Embedding Matplotlib in GTK+

[120]

We will show only the additional code that has been added, and then again present
the whole program:

from matplotlib.backends.backend_gtkagg \
 import NavigationToolbar2GTKAgg as NavigationToolbar

This line of code imports the NavigationToolbar2GTKAgg class that draws the
navigation toolbar.

vbox = gtk.VBox()
win.add(vbox)

Here, we instantiate a gtk.VBox object and add it to the main window. A
gtk.VBox is a container that organizes its child widgets into a single column,
it's a vertical box, as the name implies.

Now that we have more than one widget to add to the main window, we cannot
simply do:

win.add(canvas)

Instead, we need to do some more operations:

vbox.pack_start(canvas)
toolbar = NavigationToolbar(canvas, win)
vbox.pack_start(toolbar, expand=False, fill=False)

Here, we use the pack_start() function to inject the Matplotlib objects into the VBox
instance. The pack_start() method adds an object to the box, starting from the top
of the box. The widget is packed after any other child in the next available position
from the beginning of the box.

In the first call, we added the Figure canvas to the VBox. In the second call, where
we want to add the navigation toolbar, we used additional parameters
to pack_start():

• expand: This controls whether or not the widget should consume all of the
space available when the container and the children are shown. Note that
the extra space is shared between all the widgets with expand=True. In the
navigation toolbar case, it's set to False, so the dimensions don't change, and
all the extra space allocated to the box can be given to the Matplotlib Figure
(the only other widget in the VBox).

• fill: This controls whether the extra space granted with the expand parameter
is actually allocated to the widget (extending its dimensions) or is just used
as padding. If expand=False, then fill has no meaning. In the navigation
toolbar case, we set it to False to maintain the widget's original size (we added
it for clarity reasons, even though it's not needed, as explained earlier).

Chapter 5

[121]

• padding: Though this argument is not used here, it's still available to specify
the padding space around the widget in pixels.

Here is the complete source code:

#!/usr/bin/python

gtk module
import gtk

matplotlib Figure object
from matplotlib.figure import Figure
numpy functions for image creation
import numpy as np

import the GtkAgg FigureCanvas object, that binds Figure to GTKAgg
backend.
In this case, this is a gtk.DrawingArea
from matplotlib.backends.backend_gtkagg \
 import FigureCanvasGTKAgg as FigureCanvas
import the NavigationToolbar GTKAgg widget
from matplotlib.backends.backend_gtkagg \
 import NavigationToolbar2GTKAgg as NavigationToolbar

instantiate the GTK+ window object
win = gtk.Window()
connect the 'destroy' signal to gtk.main_quit function
win.connect("destroy", gtk.main_quit)
define the size of the GTK+ window
win.set_default_size(600,400)
set the window title
win.set_title("Matplotlib Figure in a GTK+ Window With
NavigationToolbar")

create a vertical container for widgets
vbox = gtk.VBox()
and add it to the main GTK+ window
win.add(vbox)

 # matplotlib code to generate the plot
fig = Figure(figsize=(5, 4), dpi=100)
ax = fig.add_subplot(111)
x = np.arange(0,2*np.pi,.01)
y = np.sin(x**2)*np.exp(-x)
ax.plot(x,y)

Embedding Matplotlib in GTK+

[122]

we bind the figure to the FigureCanvas,so that it will be drawn
using the specific backend graphic functions
canvas = FigureCanvas(fig)
add the Figure widget as the first one on the box container
vbox.pack_start(canvas)
instantiate the NavigationToolbar as bind to the Figure
and the main GTK+ window
toolbar = NavigationToolbar(canvas, win)
add the NavigationToolbar to the box container
vbox.pack_start(toolbar, expand=False, fill=False)

show all the widgets attached to the main window
win.show_all()
start the GTK+ main loop
gtk.main()

The output of this program results in the next screenshot:

Chapter 5

[123]

Real-time plots update
We have all heard a lot about real-time these days and the possibility to always have
fresh results as things change is becoming more important everyday. So the ability
to update our graphs as soon as data comes in or changes is a really interesting
feature for those applications (scientific mainly) where we deal with real-time streams
of data.

Embedding our graphs in a GTK+ window allows us to use some additional
sophisticated mechanisms provided by its underlying libraries, and one of these
is the ability to simulate a real-time update of our plot.

To design our example in a slightly more realistic way, we decided to take the
plotting data from a real source: our CPU (Central Processing Unit, the processor
on our machine) usage, during a 30 second period, taking a sample every second.

In a modern operating system, there are several processes always running together
with the user programs. Each of these processes participate for a given slice of the
total CPU usage.

In particular, we will plot four CPU usage indicators:

• user: Time consumed by processes executed by the users of the machine
• nice: Time consumed by processes executed by the users but with a

lower priority
• system: Time consumed by system tasks
• idle: Time consumed when waiting for something to execute

These four values will tell us how the computer is being used. Note that there are
other indicators that we have ignored here: they contribute to only a very minimal
part of the global CPU usage, so discarding them introduces an error that we
can simply ignore.

As done before, we will describe the code in blocks, and then present the whole
code right after it.

Here is the beginning:

import gtk

We import this module to access the GTK+ library.

import gobject

This module is needed because it's the binding to the GNOME GLib library, and
we need a function from it.

Embedding Matplotlib in GTK+

[124]

from matplotlib.figure import Figure
from matplotlib.backends.backend_gtkagg \
 import FigureCanvasGTKAgg as FigureCanvas

These are the classic Matplotlib modules.
import time

We need to call the sleep() function, which is present in the time module.
import psutil as p

psutil is a multiplatform module (which can run on Linux, Windows, and
Mac OS X) that provides an interface to retrieve information about the running
system, such as processes, memory, CPU, and so on. In particular, it has a function
to access the CPU usage set of information.

def prepare_cpu_usage():

We start by creating a function that will retrieve the CPU information and return
them in a format we can easily use to generate the plot.

 t = p.cpu_times()

So at first, we read the CPU usage information by using the function cpu_times()
from psutil.

 if hasattr(t, 'nice'):
 return [t.user, t.nice, t.system, t.idle]
 else:
 # special case for Windows, without 'nice' value
 return [t.user, 0, t.system, t.idle]

Windows doesn't have the concept of niced processes, so we check if the nice
attribute is present, then returning the whole set of data, else replacing nice with a 0.
In this way, we have a code that can run unmodified both on Windows and on
Unix-like systems.

def get_cpu_usage():

We define another function, which will take care of preparing the data for plotting.
We take the CPU usage values each second, so we need to know (in seconds) what
the percentage of each indicator is compared to the total CPU usage.

 global before

We use a global variable before that contains the CPU usage values of the
previous execution.

Chapter 5

[125]

 now = prepare_cpu_usage()

We then retrieve the current values of CPU usage.

 delta = [now[i]-before[i] for i in range(len(now))]

The values returned by cpu_times() of psutil() are counters that are always
incremented (initialized at machine boot and reset at reboot), so we compute the
difference between the current and the previous values for each indicator (that
represent the indicator slice in the total CPU usage).

 total = sum(delta)

Then we compute the sum of these differences (that represents the total CPU usage
in current time interval).

 before = now

This line of code saves the current values (so that they'll be available when the
function will be called the next time).

 return [(100.0*dt)/total for dt in delta]

At the end we return the values that we really need to plot: we compute the
percentage of each indicator (take each of them, multiply by 100, and then divide
by the sum).

def update_draw(*args):
 global i
 result = get_cpu_usage()
 user.append(result[0])
 nice.append(result[1])
 sys.append(result[2])
 idle.append(result[3])

This is the first piece of the function we call to update the plot.

We use the global variable i to count the number of executions of this function. Then
we take the values returned by the get_cpu_usage() function, and we append them
to their respective lists.

 l_user.set_data(range(len(user)), user)
 l_nice.set_data(range(len(nice)), nice)
 l_sys.set_data(range(len(sys)), sys)
 l_idle.set_data(range(len(idle)), idle)
 fig.canvas.draw()

Embedding Matplotlib in GTK+

[126]

This is a very important part of the function. Matplotlib returns an object reference
after each plot() call, which allows us to control the line object. What we don't
want to do here is replot the same data at every iteration, but to update the line
already drawn to reflect the new values as this is much faster and there is no
flickering on screen.

Here, we are resetting the lines values, both for X and for Y to the new values: we
call set_data() for each indicator with a range() of the same length as that of the
list and the list itself.

After that, we have to explicitly call a draw() on the canvas to force Matplotlib's
engine to redraw the objects that were updated.

 i += 1
 if i > 30:
 return False
 else:
 time.sleep(1)
 return True

Here, we are controlling the number of repetitions. We are incrementing the counter
and checking if we've completed the number of iterations decided. If False is
returned, then the graph's updates are stopped; else the CPU sleeps for a second
and then returns True, in order to let this function be executed again.

i = 0
before = prepare_cpu_usage()

We start now the main part of the code, setting the two global variables we need for
updating the algorithm: i, to keep track of the number of executions of the updating
function, and before to compute the percentage of CPU usage.

win = gtk.Window()
win.connect("destroy", gtk.main_quit)
win.set_default_size(600, 400)
win.set_title("30 Seconds of CPU Usage Updated in real-time")

Nothing new, this is the GTK+ window setup, which was also done in the
previous examples.

fig = Figure()
ax = fig.add_subplot(111)
ax.set_xlim(0, 30)
ax.set_ylim([0, 100])
ax.set_autoscale_on(False)

Chapter 5

[127]

That's a part of the Matplotlib code: we define the Figure, the Axes inside it, and
then we set the X and Y limits. The intervals are from 0 to 30 for X-axis as these will
be the number of seconds during which we plot data, and from 0 to 100 for Y-axis as
this is the possible range for percentage.

We also have to stop the automatic axes scaling done by Matplotlib, or else the
forced limits would be useless. If we wish to let the Y-axis autoscale, then we will
have to add ax.set_autoscale_on(False) right after these lines:

locator = ax.yaxis.get_major_locator()
ax.set_ylim(locator.autoscale())

Continuing with the example code:

user, nice, sys, idle = [], [], [], []
l_user, = ax.plot([], user, label='User %')
l_nice, = ax.plot([], nice, label='Nice %')
l_sys, = ax.plot([], sys, label='Sys %')
l_idle, = ax.plot([], idle, label='Idle %')

Here, we are simply generating placeholder line objects for the real plot of CPU
data. Both the axes are empty, but the most important thing is that now we have
the handlers for the line objects, and we will use them to animate the image
(as described earlier).

ax.legend()

We add a legend to the plot using the labels defined by the previous plot() calls.

canvas = FigureCanvas(fig)
win.add(canvas)

This is the same binding that is done between the Matplotlib FigureCanvas and the
GTK+ main window.

update_draw()

We make an explicit call to the updating function: it's a trick to speed up the
visualization of the lines on the window.

gobject.idle_add(update_draw)

We use the idle_add() function from the gobject module, passing our
update_draw as a callback function. idle_add() sets a function to be called when
no other events of a higher priority are running. Since in our application, the GTK+
main loop usually has no other events to process, our function is called almost
continuously (but remember, we do sleep() in the function).

Embedding Matplotlib in GTK+

[128]

Will the function be called indefinitely or can we stop it? Here the return value of
the callback function becomes important: if the function returns False, the function
itself is removed from the list of events to check, so it will not be called again and
the animation stops. If the function returns True, then it's kept in the list and will be
called again.

If our function had parameters, then we could pass them after the function name in
the idle_add() call.

win.show_all()
gtk.main()

In the end, we have the usual function call to show all the widgets of the GTK+ main
window and the one to start the GTK+ main loop.

As promised, here is the full code:

gtk module
import gtk

binding for GLib
import gobject

matplotlib Figure object
from matplotlib.figure import Figure
import the GtkAgg FigureCanvas object, that binds Figure to
GTKAgg backend. In this case, this is a gtk.DrawingArea
from matplotlib.backends.backend_gtkagg \
 import FigureCanvasGTKAgg as FigureCanvas

needed for the sleep function
import time

used to obtain CPU usage information
import psutil as p

def prepare_cpu_usage():
 """Helper function to return CPU usage info"""

 # get the CPU times using psutil module
 t = p.cpu_times()

 # return only the values we're interested in
 if hasattr(t, 'nice'):

Chapter 5

[129]

 return [t.user, t.nice, t.system, t.idle]

 else:
 # special case for Windows, without 'nice' value
 return [t.user, 0, t.system, t.idle]

def get_cpu_usage():
 """Compute CPU usage comparing previous and current values"""
 # use the global 'before' variable
 global before

 # take the current CPU usage information
 now = prepare_cpu_usage()
 # compute deltas between current and previous measurements
 delta = [now[i]-before[i] for i in range(len(now))]
 # compute the total (needed for percentages calculation)
 total = sum(delta)
 # save the current measurement to before object
 before = now
 # return the percentage of CPU usage for our 4 categories
 return [(100.0*dt)/total for dt in delta]

def update_draw(*args):
 """Update the graph with current CPU usage values"""

 # use the global 'i' variable
 global i

 # get the CPU usage information
 result = get_cpu_usage()

 # append new data to the datasets
 user.append(result[0])
 nice.append(result[1])
 sys.append(result[2])
 idle.append(result[3])

 # update lines data using the lists with new data
 l_user.set_data(range(len(user)), user)
 l_nice.set_data(range(len(nice)), nice)
 l_sys.set_data(range(len(sys)), sys)
 l_idle.set_data(range(len(idle)), idle)

Embedding Matplotlib in GTK+

[130]

 # force a redraw of the Figure
 fig.canvas.draw()

 # after 30 iteration, exit; else, sleep 1 second
 i += 1
 if i > 30:
 return False
 else:
 time.sleep(1)

 return True

global var to initialize the loop counter
i = 0
global var, initialized with the current CPU usage values
before = prepare_cpu_usage()

instantiate the GTK+ window object
win = gtk.Window()
connect the 'destroy' signal to gtk.main_quit function
win.connect("destroy", gtk.main_quit)
define the size of the GTK+ window
win.set_default_size(600, 400)
set the window title
win.set_title("30 Seconds of CPU Usage Updated in real-time")

first image setup
fig = Figure()
ax = fig.add_subplot(111)

set specific limits for X and Y axes
ax.set_xlim(0, 30)
ax.set_ylim([0, 100])

and disable figure-wide autoscale
ax.set_autoscale_on(False)

generates first "empty" plots
user, nice, sys, idle = [], [], [], []

l_user, = ax.plot([], user, label='User %')
l_nice, = ax.plot([], nice, label='Nice %')
l_sys, = ax.plot([] , sys, label='Sys %')
l_idle, = ax.plot([], idle, label='Idle %')

Chapter 5

[131]

add legend to plot
ax.legend()
we bind the figure to the FigureCanvas, so that it will be
drawn using the specific backend graphic functions
canvas = FigureCanvas(fig)
add that widget to the GTK+ main window
win.add(canvas)

explicit update the graph (speedup graph visualization)
update_draw()

exec our "updated" funcion when GTK+ main loop is idle
gobject.idle_add(update_draw)
show all the widget attached to the main window
win.show_all()

start the GTK+ main loop
gtk.main()

The output of the previous program is as shown:

To take this snapshot, we have simulated a high low on this machine. The result is
the nice line (green) near the top of the graph that represents 100% of CPU usage.
The other indicators are at the bottom of the graph with the user line (in blue) a bit
above the idle line (cyan) and the system line (red) is almost at 0%. In Chapter 7,
we will present a similar technique to update a plot in real-time, but with a much
higher throughput.

Embedding Matplotlib in GTK+

[132]

Embedding Matplotlib in a Glade
application
Glade is a user interface designer that allows to create and edit user interfaces for
GTK+ applications.

Glade is used to place GTK+ widgets in a GUI, and change the layout or the
properties of each widget. It also allows to add connections between those widgets
and the application code.

Glade stores the GUI design in an XML format, and by using libglade, Glade XML
files can be dynamically loaded in applications developed in several programming
languages (Python included).

The example we are going to present is about counting the letters in a file and
then plotting the result. If you have ever studied basic cryptography, you were
taught that e is the most common letter in the English writings—this is your chance
to experimentally verify that!

Before presenting and discussing the Python code, we will describe how we have
designed the GUI with Glade.

Designing the GUI using Glade
When Glade executable is started (with no glade file as parameter), it displays a
window to select some settings for the new project; the important thing here is to
select the project file format as Libglade (at least if we want it to be used in Python
code). This option can be changed later, but let's start with the right one.

Now, we are presented with an empty design space that we can populate: the palette
toolbox contains all the widgets that we can use. Let's start taking a main GTK+
window and keep adding widgets until we reach the desired result. This is really
easy as everything is done through drag-and-drop, mouse selection, and so on.

Chapter 5

[133]

The GUI we have designed for this example appears like this in Glade:

As we can see, there is a large unmanaged area in the GUI: this will be the place
where we will embed the Matplotlib Figure object directly from the Python code.

To determine the layout of the GUI, we suggest using VBox, HBox, Table, Alignment,
and other similar widgets as they create groups of widgets that can be resized,
moved, and so on—altogether, that will result in a nice user interface.

For example, we used an Alignment and an HBox to contain and format the text
entry and button widgets, and then we used a VBox to contain the menu, the
Alignment set, and the empty area for Figure.

As briefly just mentioned, we also included a short menu with two items: a file
selector and the quit item.

To have a clear view of all the widget dependencies and locations, Glade provides
an Inspector window with the widgets hierarchy:

Embedding Matplotlib in GTK+

[134]

The previous screenshot shows the tree of our widgets. We encourage to choose
widget names that are descriptive: for example, we named them all starting with mpl
(the common abbreviation for Matplotlib), then we used the widget name, and in
case there are more widgets of the same type in the GUI, then we numbered them or
clarified the location of the widgets in the window.

There are several aspects we might want to tune for each widget, and this can be
done using the Properties window:

Chapter 5

[135]

This is the screenshot where we not only set the Visible field of the main window
to Yes (by default it's not shown if we don't set this property, take note for your
project too), but we also set the Expand property of the mplbutton to No to limit
its dimensions, allowing the mplentry widget to use as much space as possible.

Another important configuration to do when designing the interface is defining
the signals each widget emits (if any) and the callback functions for them.

This is done in the Properties toolbar under the Signals tab:

This information will then be used in the Python code to actually set up the
signal framework.

It's there that we define the Handler name for each signal we want to catch. We
suggest a naming convention for these callback functions like the one proposed
by Glade itself:

on_<widget name>_<signal name>

Code to use Glade GUI
We are now able to explore the code that will be used to implement our example:

from __future__ import with_statement
import numpy as np
import gtk
import gtk.glade

Embedding Matplotlib in GTK+

[136]

from matplotlib.figure import Figure
from matplotlib.backends.backend_gtkagg \
 import FigureCanvasGTKAgg as FigureCanvas

The modules imported are almost the same as before except for the gtk.glade
module, which is needed to load the Glade XML file to create the GUI and the with
statement, backported from Python 2.6 to 2.5 and available through __future__.

The with statement is a nice construct to use when we need to open files: it
automatically closes the file object at the end of the statement, and it also handles
error conditions without leaving open file objects hanging around.

def parse_file(filename):

We define a function that we will use to parse the input file.

 letters = {}
 for i in range(97, 122 + 1):
 letters[chr(i)] = 0

Here is the letters dictionary initialization: we first create an empty dictionary,
then we add a key for each lowercase letter of the English alphabet (calling chr()
on numbers between 97 and 122) with value 0. They represent the occurrences of
each letter, so at the beginning, they are of course all 0.

 with open(filename) as f:
 for line in f:
 for char in line:
 if ord(char.lower()) in range(97, 122 + 1):
 letters[char.lower()] += 1
 return letters

Here is the parsing code, there is nothing extremely special about it: we access the
file using the with statement, then for each line of the file, and for each character
in the line, we check if it's a letter and in that case, we increment its counter in
the dictionary. At the end, we return the letters dictionary with the number of
occurrences of each letter in the given file.

def update_graph(fig_ref, ax_ref, letters_freq):

We define another function that we will use to update the Matplotlib plot. We
pass as parameters the references to the Matplotlib Figure and Axes, and also
the dictionary containing the letters frequencies.

 k = sorted(letters_freq.keys())
 v = [letters_freq[ki] for ki in k]

Chapter 5

[137]

From that letters_freq dictionary, we extract a sorted list of the keys, and then we
generate the list of dictionary values ordered by k.

 ax_ref.clear()

We clear the Axes, removing all elements from it, to start the new plot from scratch.

 ax_ref.bar(np.arange(len(k))-0.25, v, width=0.5)

Then we draw a set of bars, one for each letter in k, with the heights set to the letter's
frequencies. We set the bar width to be 0.5, so shifting the bar's starting point
by 0.25 will center them on the X ticks.

 ax_ref.set_xlim(xmin=-0.25, xmax=len(k)-0.75)

Due to the bar's shift, we have also to adjust the X limits to contain the bars precisely:
the minimum is set to -0.25 because the first bar starts there (the tick is at 0, but
half of the bar is on the negative side), while the maximum is set to the tick position
(len(k)-1), but adding an additional half-bar quantity of 0.25 makes it -0.75.

 ax_ref.set_xticks(range(len(k)))
 ax_ref.set_xticklabels(k)

We set the ticks at k positions (that will be in the middle of the bars), and the labels
are the letters themselves.

 ax_ref.get_yaxis().grid(True)

We enable grid lines only for the Y-axis (enabling grid also for X would only
create confusion).

 fig_ref.canvas.draw()

In the end, we force a redraw of plot on the Figure.

class GladeEventsHandlers:

We now define a class to contain the callback functions for the events of the Glade
GUI. This is a common practice, and it also allows for a nice trick that we'll see in a
bit (but for the trick to work we have to define the callback functions with the exact
same name in the Glade GUI, and in this class).

 def on_mplbutton_clicked(event):
 update_graph(fig, ax, parse_file(entry.get_text()))

This is the callback function for the clicked event emitted by mplbutton object (as
the function name should tell). When that event occurs, we call the update_graph()
function to update the graph line.

 def on_mplopenmenuitem_activate(event):

Embedding Matplotlib in GTK+

[138]

To facilitate the selection of a file to parse, we added a menu item to open a file
selection dialog, and this is the callback function that does it.

 chooser = gtk.FileChooserDialog("Open..",
 None,
 gtk.FILE_CHOOSER_ACTION_OPEN,
 (gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL,
 gtk.STOCK_OPEN, gtk.RESPONSE_OK))

We instantiate the FileChooserDialog dialog object.

 chooser.set_default_response(gtk.RESPONSE_OK)
 res = chooser.run()

We set the default response and then start the dialog window to be
actually displayed.

 if res == gtk.RESPONSE_OK:
 entry.set_text(chooser.get_filename())

If the result is a click on the OK button, then we take the file selected by the user and
reset the entry widget text to the path of that file.

 chooser.destroy()

In the end, we destroy the dialog window.

We can now describe the main code of the example:

win = gtk.glade.XML('7900_05_04_glade.glade', 'mplwindow')

With the method gtk.glade.XML(), we instantiate the Glade XML file into the
interface that we now can access to get the widgets contained in it and modify them.

win.signal_autoconnect(GladeEventsHandlers.__dict__)

The glade module allows us to connect handlers to the signals defined
in the interface. We do this by using the module's dictionary of the
GladeEventsHandlers class:

In [7]: GladeEventsHandlers.__dict__
Out[7]:
{'__doc__': None,
 '__module__': '__main__',
 'on_mplbutton_clicked': <function on_mplbutton_clicked at 0x2272668>,
 'on_mplopenmenuitem_activate': <function on_mplopenmenuitem_activate
at 0x22721b8>}

Chapter 5

[139]

If we take a look at this dictionary, we can see that it contains the name of the signal
handlers (that are the methods names), along with their references (the method's
memory locations). As we have defined the same handlers' names in Glade, we have
a handy way to associate the callback functions references with the handlers defined
in the Glade GUI.

d = {"on_mplwindow_destroy": gtk.main_quit}
win.signal_autoconnect(d)

We can also explicitly define a dictionary and then call signal_autoconnect()on it.

win.get_widget("mplquitmenuitem").connect("activate", gtk.main_quit)

or we can do the usual connect() of the signal to the callback function once we
have obtained a reference to the widget using the get_widget() method of the
gtk.glade.XML object.

window = win.get_widget('mplwindow')
window.set_title("Matplotlib In a Glade GUI - Count letters frequency
in a file")

Here, we get a reference to the main GTK+ window's widgets to define the
window title.

fig = Figure()
ax = fig.add_subplot(111)

This is the code to set up the Matplotlib Figure and Axes.

entry = win.get_widget("mplentry")

We take the reference to the mplentry widget as we need it to read the filename from
it and to reset that value if we choose another file using the FileChooserDialog. We
already preset a file for this widget /usr/share/dict/words, a file present on the
Debian system (and probably on other Linux distributions) that contains a very long
list of English words—a very nice default value for this example.

canvas = FigureCanvas(fig)
canvas.show()
canvas.set_size_request(600, 400)

We embed the Figure object in a canvas, and set its size.

place = win.get_widget("mplvbox")
place.pack_start(canvas, True, True)

Embedding Matplotlib in GTK+

[140]

Then we get the reference to a VBox widget, and we inject our FigureCanvas into the
empty area that we had left during our GUI design.

gtk.main()

At the end, we can start the GTK+ main loop and play with the resulting application.

Here is the whole code in a block:

used to parse files more easily
from __future__ import with_statement

Numpy module
import numpy as np

gtk module
import gtk

module to handle Glade ui
import gtk.glade

matplotlib Figure object
from matplotlib.figure import Figure
import the GtkAgg FigureCanvas object, binds Figure to GTKAgg
In this case, this is also a gtk.DrawingArea
from matplotlib.backends.backend_gtkagg \
 import FigureCanvasGTKAgg as FigureCanvas

def parse_file(filename):
 """Function to parse a text file to extract letters freqs"""

 # dict initialization
 letters = {}

 # lower-case letter ordinal numbers
 for i in range(97, 122 + 1):
 letters[chr(i)] = 0

 # parse the input file
 with open(filename) as f:
 for line in f:
 for char in line:
 # counts only letters
 if ord(char.lower()) in range(97, 122 + 1):
 letters[char.lower()] += 1

Chapter 5

[141]

 return letters
def update_graph(fig_ref, ax_ref, letters_freq):

 """Updates the graph with new letters frequencies"""

 # sort the keys and the values
 k = sorted(letters_freq.keys())
 v = [letters_freq[ki] for ki in k]

 # clean the Axes
 ax_ref.clear()

 # draw a bar chart for letters and their frequencies
 # set the width to 0.5 and shift bars of 0.25, to be centered
 ax_ref.bar(np.arange(len(k))-0.25, v, width=0.5)

 # reset the X limits
 ax_ref.set_xlim(xmin=-0.25, xmax=len(k)-0.75)
 # set the X ticks & tickslabel as the letters
 ax_ref.set_xticks(range(len(k)))

 ax_ref.set_xticklabels(k)
 # enable grid only on the Y axis
 ax_ref.get_yaxis().grid(True)

 # force an image redraw
 fig_ref.canvas.draw()

class GladeEventsHandlers:
 def on_mplbutton_clicked(event):
 """callback for a click on the button"""

 update_graph(fig, ax, parse_file(entry.get_text()))

 def on_mplopenmenuitem_activate(event):
 """callback for activate on the Open menu item"""

 # create a FileChooserDialog window
 chooser = gtk.FileChooserDialog("Open..",
 None,
 gtk.FILE_CHOOSER_ACTION_OPEN,
 (gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL,
 gtk.STOCK_OPEN, gtk.RESPONSE_OK))
 chooser.set_default_response(gtk.RESPONSE_OK)

Embedding Matplotlib in GTK+

[142]

 # execute the dialog window and get the result
 res = chooser.run()

 # if the result is a click on OK
 if res == gtk.RESPONSE_OK:
 # get file selected and set it to the entry widget
 entry.set_text(chooser.get_filename())

 # distroy the dialog window
 chooser.destroy()

Main

parse glade xml file, return an object to access widgets
contained in the glade file
win = gtk.glade.XML('7900_05_04_glade.glade', 'mplwindow')
connect the signals with the function in GladeEventsHandlers
class with a trick...
win.signal_autoconnect(GladeEventsHandlers.__dict__)
commodity dictionary to easily connect destroy to gtk.main_quit()
d = {"on_mplwindow_destroy": gtk.main_quit}
win.signal_autoconnect(d)
also connect the menu item Quit to gtk.main_quit() function
win.get_widget("mplquitmenuitem").connect("activate", gtk.main_quit)

get the main window widget and set its title
window = win.get_widget('mplwindow')
window.set_title("Matplotlib In a Glade GUI - Count letters frequency
in a file")

matplotlib code to generate an empty Axes
we define no dimensions for Figure because it will be
expanded to the whole empty space on main window widget
fig = Figure()
ax = fig.add_subplot(111)

get the mplentry widget, we will use across callback functions
entry = win.get_widget("mplentry")
we bind the figure to the FigureCanvas, so that it will be
drawn using the specific backend graphic functions
canvas = FigureCanvas(fig)
canvas.show()
define dimensions of the Figure canvas
canvas.set_size_request(600, 400)

embed the canvas into the empty area left in glade window
place = win.get_widget("mplvbox")

Chapter 5

[143]

place.pack_start(canvas, True, True)

start the GTK+ main loop
gtk.main()

Here we can see the screenshot of the running program:

We can see how the vowels, and in particular, the letter e, are indeed the most used
letters in the example file.

Embedding Matplotlib in GTK+

[144]

Summary
In this chapter, we presented some examples of how to:

• Embed Matplotlib Figure inside a simple GTK+ window
• Add the Matplotlib navigation toolbar
• Plot data in real time
• Use Glade to design the GUI and then embed Matplotlib into it

We kept the examples simple to concentrate only on the important parts, but we
encourage our readers to explore further possibilities.

GTK+ is not the only GUI library that can be used. In the coming chapters, we'll see
how to use two other important libraries—stay tuned!

Embedding Matplotlib in Qt 4
There are several GUI libraries available, and one of the most famous is Qt. In this
book, we will use Qt 4, the latest major version of this library. Unless explicitly
mentioned, when we write Qt, we are referring to Qt 4.

We will follow the same progression as in the GTK+ chapter, and we will present
the same examples, but this time written in Qt.

We believe that this method will allow us to directly compare the libraries, and it has
the advantage of not leaving the "How would I write something with library X?"
question unanswered.

During this chapter, we will see how to:

• Embed a Matplotlib Figure into a Qt widget
• Embed a Figure and navigation toolbar into a Qt widget
• Use events to update in real-time a Matplotlib plot
• Use Qt Designer to draw a GUI and then use it with Matplotlib in a

simple Python application

We begin by giving an introduction to the library.

Brief introduction to Qt 4 and PyQt4
Qt is a cross-platform application development framework, widely used for
graphical programs (GUI) but also for non-GUI tools.

Qt was developed by Trolltech (now owned by Nokia), and it's probably best
known for being the foundation of the K Desktop Environment (KDE) for Linux.

Embedding Matplotlib in Qt 4

[146]

The Qt toolkit is a collection of classes to simplify the creation of programs. Qt is
more than just a GUI toolkit; it includes components for abstractions of network
sockets, threads, Unicode, regular expressions, SQL databases, SVG, OpenGL,
and XML, as well as a fully functional web browser, a help system, a multimedia
framework, and a rich collection of GUI widgets.

Qt is available on several platforms, in particular: Unix/Linux, Windows, Mac OS
X, and also some embedded devices. As it uses the native APIs of the platform to
render the Qt controls, applications developed with Qt have a look and feel which
fits the running environment (without looking like aliens in it).

Though written in C++, Qt can also be used in several other programming
languages, through language bindings available for Ruby, Java, Perl, and also
Python with PyQt.

PyQt is a comprehensive set of Python bindings for the Qt framework. PyQt
provides bindings for Qt 2 and Qt 3. PyQt4 is a separate set of bindings and covers
the Qt 4 series of releases. We will use PyQt4 and references to PyQt should be
considered to be referring to PyQt4.

PyQt brings together the Qt C++ cross-platform application framework and the
cross-platform interpreted language, Python. An application written in Qt and
PyQt often runs unchanged on all the supported platforms.

The Qt components are mapped to several Python submodules (where PyQt4 is
the main module), and the most important are:

• The QtCore module, which contains the core non-GUI classes (for example,
the event loop).

• The QtGui module, which contains the majority of the GUI classes.
• QtOpenGL, QtScript (JavaScript support), QtSql (SQL databases support),

QtSvg (SVG file support), QtTest (unit testing support), QtXml (XML
support), QtNetwork (for network programming), and several others. Note
how many of these submodules provide functionalities that are already
present in Python standard library.

Chapter 6

[147]

Embedding a Matplotlib figure in a Qt
window
We are going to see how to embed a Matplotlib Figure into a simple Qt window.
We will first walk through the code and describe it, while presenting it as a whole
at the end of the section (this presentation style will be used throughout the chapter).

Here is the beginning:

import sys

The module sys contains information and functions used to interact with the Python
interpreter. In this case, we need it to access the command-line arguments passed
to the Python script.

from PyQt4 import QtGui

We import the PyQt4 submodule, QtGui which contains the biggest part of the GUI
classes, for example, all the basic GUI widgets are located in this module.

import numpy as np

The NumPy module is needed for our example graph.

from matplotlib.figure import Figure

Import the Figure Matplotlib object: this is the backend-independent representation
of our plot.

from matplotlib.backends.backend_qt4agg \
 import FigureCanvasQTAgg as FigureCanvas

Here we import from the matplotlib.backends.backend_qt4agg module
the FigureCanvasQTAgg class, which is the backend-dependent figure canvas; it
contains the backend-specific knowledge to render the Figure we've drawn to
the Qt 4 backend.

Note that FigureCanvasQTAgg, other than being a Matplotlib class, is also a
QWidget—the base class of all user interface objects (it simply represents an empty
area). So this means we can treat FigureCanvasQTAgg like a pure Qt widget object,
using it in the GUI window as we would do with buttons, text areas, and so on.

class Qt4MplCanvas(FigureCanvas):

We now define a new class, Qt4MplCanvas, to render our Matplotlib plot; it inherits
from FigureCanvas, as well as from QWidget. Therefore, it can be used as a Qt
element in the main window of our application.

Embedding Matplotlib in Qt 4

[148]

 def __init__(self):
 self.fig = Figure()
 self.axes = self.fig.add_subplot(111)
 self.x = np.arange(0.0, 3.0, 0.01)
 self.y = np.cos(2*np.pi*self.x)
 self.axes.plot(self.x, self.y)

In the __init__ method, which is called upon class instantiation, we write the code
to draw the graph.

 FigureCanvas.__init__(self, self.fig)

We also instantiate the FigureCanvas, which is responsible for taking the Matplotlib
Figure object, and render it in a Qt widget.

qApp = QtGui.QApplication(sys.argv)

This command creates the Qt application, initialized with the list of arguments
given from the command line. This is a required parameter, and it's the reason we
imported the sys module.

Every PyQt4 application must create one and only one QApplication
instance, no matter how many windows compose the application.

QApplication manages the GUI application's control flow and main settings. It's
the place where the main event loop is executed, processing and dispatching to the
widgets all the events coming from the window system and other sources.

It is also responsible for application initialization and finalization, handling most
of the system-wide and application-wide settings.

Since QApplication handles the entire initialization phase, it must be created
before any other objects related to the UI are created.

mpl = Qt4MplCanvas()

We can now instantiate the Qt4MplCanvas. A QWidget with no parent (like the one
over here) is called a window. Consider the parent as the object where we want to
put the widget; if it's None, then it's a main window. Otherwise, if we want to put
the widget in a window, then we set the parent as a reference to that window.

mpl.show()

The show() method makes the widget visible on the screen.

sys.exit(qApp.exec_())

Chapter 6

[149]

The command qApp.exec_() enters the Qt main event loop. Once exit() or quit()
is called, it returns the relevant return code. Until the main loop is started, nothing is
displayed on screen.

It's necessary to call this function as the main loop handles all events and signals
coming from both the application widgets and from the window system; essentially,
no user interaction can take place before it's called.

You may be wondering why there is an underscore in exec_(); the reason is simple:
exec() is a reserved word in Python, thus the addition of the underscore to the
exec() Qt method.

Wrapping it inside sys.exit() allows the Python script to exit with the same return
code, informing the environment how the application ended (whether successfully
or not).

Here is the complete source code:

for command-line arguments
import sys

Python Qt4 bindings for GUI objects
from PyQt4 import QtGui

Numpy functions for image creation
import numpy as np

Matplotlib Figure object
from matplotlib.figure import Figure
import the Qt4Agg FigureCanvas object, that binds Figure to
Qt4Agg backend. It also inherits from QWidget
from matplotlib.backends.backend_qt4agg \
 import FigureCanvasQTAgg as FigureCanvas

class Qt4MplCanvas(FigureCanvas):
 """Class to represent the FigureCanvas widget"""
 def __init__(self):
 # Standard Matplotlib code to generate the plot
 self.fig = Figure()
 self.axes = self.fig.add_subplot(111)
 self.x = np.arange(0.0, 3.0, 0.01)
 self.y = np.cos(2*np.pi*self.x)
 self.axes.plot(self.x, self.y)
 # initialize the canvas where the Figure renders into
 FigureCanvas.__init__(self, self.fig)

Embedding Matplotlib in Qt 4

[150]

Create the GUI application
qApp = QtGui.QApplication(sys.argv)
Create the Matplotlib widget
mpl = Qt4MplCanvas()
show the widget
mpl.show()
start the Qt main loop execution, exiting from this script
with the same return code of Qt application
sys.exit(qApp.exec_())

Here is the screenshot from the running application:

Chapter 6

[151]

Including a navigation toolbar
Here we're going to add the navigation toolbar to the Matplotlib plot to explore
some additional aspects of Qt.

import sys

This is used for command-line argument retrieval.

from PyQt4 import QtGui

We now import the Qt 4 GUI widget's submodule.

import numpy as np

This is the usual NumPy import to generate the plot data.

from matplotlib.figure import Figure
from matplotlib.backends.backend_qt4agg \
 import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt4agg \
 import NavigationToolbar2QTAgg as NavigationToolbar

Here we import the Matplotlib Figure object along with the FigureCanvasQTAgg
and NavigationToolbar2QTAgg. Note that the last two are Qt 4 specific and also
inherit from QWidget, so they can be used as Qt objects in a QApplication.

class Qt4MplCanvas(FigureCanvas):

We now define a new class and as it inherits from FigureCanvas, it is also a
QWidget that can be embedded into a Qt application.

 def __init__(self, parent):
 self.fig = Figure()
 self.axes = self.fig.add_subplot(111)
 t = np.arange(0.0, 3.0, 0.01)
 s = np.cos(2*np.pi*t)
 self.axes.plot(t, s)

This is the usual code to draw a Matplotlib example graph.

 FigureCanvas.__init__(self, self.fig)

We now initialize the FigureCanvas object, the Qt 4-specific figure canvas.

 self.setParent(parent)

Embedding Matplotlib in Qt 4

[152]

We set the parent of this widget to the parent parameter of __init__.

 FigureCanvas.setSizePolicy(self,
 QtGui.QSizePolicy.Expanding,
 QtGui.QSizePolicy.Expanding)

The setSizePolicy() QWidget method is used to set the widget size behavior. We
set it to be freely expandable so that we can resize the window and have the Figure
be resized accordingly.

 FigureCanvas.updateGeometry(self)

We need to call this method because we have changed the size polices, so we now
notify the layout system of this change.

class ApplicationWindow(QtGui.QMainWindow):

We create another class that will be our main application window.

The QMainWindow class provides a framework to create the main windows of
application user interfaces; it's common to subclass it, when defining our own window.

As we've seen in the previous example, there are other ways to create a visible
window (we did it with a QWidget without a parent), but using QMainWindow is
the best way to build a full-featured GUI application.

 def __init__(self):
 QtGui.QMainWindow.__init__(self)

We call the constructor of the superclass, since we inherit from it. It's necessary
to initialize the base class (to be able to use its functionalities) while initializing
our own class.

 self.setWindowTitle("Matplotlib Figure in a Qt4 Window With
NavigationToolbar")

We set the window title, as we expect a real application to have a title.

 self.main_widget = QtGui.QWidget(self)

We create a widget that will be the main widget displayed by our application.

 vbl = QtGui.QVBoxLayout(self.main_widget)

Here is a vertical box: vertical and horizontal boxes are used to group widgets
together (on a vertical or horizontal layout) and allow size transformations on
all of them. They are also called geometry or layout managers, since they are able
to automatically position and adjust the widgets they contain.

Chapter 6

[153]

The idea behind layout managers is to pack widgets into an area where their
positions are relative to the other widgets and to the window. Resize the window,
and the layout managers will automatically adjust the size and position of widgets
to accommodate this change.

 qmc = Qt4MplCanvas(self.main_widget)
 ntb = NavigationToolbar(qmc, self.main_widget)

Now we have the two Matplotlib objects we're interested in—the figure canvas
and the toolbar. Note how one of the toolbar parameters is the figure canvas.

 vbl.addWidget(qmc)
 vbl.addWidget(ntb)

So now we can pack these two widgets into the vertical box that will align widgets
from top to bottom.

 self.main_widget.setFocus()

We set the focus on our main widget.

 self.setCentralWidget(self.main_widget)

We now define it as the central widget. QApplication has the concept of central
widget that we can think of as the main part of the application. It is not the toolbar, the
menu, or anything else, rather it is the actual main functional area of the application.

qApp = QtGui.QApplication(sys.argv)

We create the QApplication instance.

aw = ApplicationWindow()

We instantiate our main window.

aw.show()

We show the main window.

sys.exit(qApp.exec_())

and at the end, start the Qt 4 main events loop.

The whole code is :

for command-line arguments
import sys

Python Qt4 bindings for GUI objects
from PyQt4 import QtGui
Numpy functions for image creation

Embedding Matplotlib in Qt 4

[154]

import numpy as np

Matplotlib Figure object
from matplotlib.figure import Figure
import the Qt4Agg FigureCanvas object, that binds Figure to
Qt4Agg backend. It also inherits from QWidget
from matplotlib.backends.backend_qt4agg \
 import FigureCanvasQTAgg as FigureCanvas
import the NavigationToolbar Qt4Agg widget
from matplotlib.backends.backend_qt4agg \
 import NavigationToolbar2QTAgg as NavigationToolbar

class Qt4MplCanvas(FigureCanvas):
 """Class to represent the FigureCanvas widget"""
 def __init__(self, parent):
 # plot definition
 self.fig = Figure()
 self.axes = self.fig.add_subplot(111)

 t = np.arange(0.0, 3.0, 0.01)
 s = np.cos(2*np.pi*t)
 self.axes.plot(t, s)

 # initialization of the canvas
 FigureCanvas.__init__(self, self.fig)
 # set the parent widget
 self.setParent(parent)

 # we define the widget as expandable
 FigureCanvas.setSizePolicy(self,
 QtGui.QSizePolicy.Expanding,
 QtGui.QSizePolicy.Expanding)
 # notify the system of updated policy
 FigureCanvas.updateGeometry(self)

class ApplicationWindow(QtGui.QMainWindow):
 """Example main window"""
 def __init__(self):
 # initialization of Qt MainWindow widget
 QtGui.QMainWindow.__init__(self)
 # set window title
 self.setWindowTitle("Matplotlib Figure in a Qt4 Window With
NavigationToolbar")

 # instantiate a widget, it will be the main one
 self.main_widget = QtGui.QWidget(self)
 # create a vertical box layout widget
 vbl = QtGui.QVBoxLayout(self.main_widget)
 # instantiate our Matplotlib canvas widget

Chapter 6

[155]

 qmc = Qt4MplCanvas(self.main_widget)
 # instantiate the navigation toolbar
 ntb = NavigationToolbar(qmc, self.main_widget)
 # pack these widget into the vertical box
 vbl.addWidget(qmc)
 vbl.addWidget(ntb)

 # set the focus on the main widget
 self.main_widget.setFocus()
 # set the central widget of MainWindow to main_widget
 self.setCentralWidget(self.main_widget)

create the GUI application
qApp = QtGui.QApplication(sys.argv)
instantiate the ApplicationWindow widget
aw = ApplicationWindow()
show the widget
aw.show()
start the Qt main loop execution, exiting from this script
with the same return code of Qt application
sys.exit(qApp.exec_())

When we execute this application, it will show something similar to:

Embedding Matplotlib in Qt 4

[156]

Real-time update of a Matplotlib graph
In this section, we will present a simple application—a CPU usage monitor, where
we will update the Matplotlib graph in real-time (once every second over a period
of 30 seconds).

As there are several indicators of CPU usage in a modern operating system, we
decided to restrict our graph to the four main ones:

• user: The time consumed by processes executed by the users of the machine
• nice: The time consumed by processes executed by users but with a lower

priority
• system: The time consumed by system tasks
• idle: The time consumed waiting for something to execute

The ignored indicators contribute for just a minimal part of the CPU usage, so their
exclusion doesn't disturb the validity of the example.

Of those four indicators, what we will plot is the percentage of each of them against
the total CPU usage.

Here we start:

import sys
from PyQt4 import QtGui

These are the modules for command-line parameters and for Python bindings of
the QtGui submodule.

from matplotlib.figure import Figure
from matplotlib.backends.backend_qt4agg \
 import FigureCanvasQTAgg as FigureCanvas

The classic Matplotlib import for the required objects.

import psutil as p

Python is full of modules that do almost everything we can think of, so for our
example, we leverage an existing module—psutils.

psutil is a multiplatform module (available for Windows, Linux, and Mac OS X)
that exports a common interface to access system information such as processes,
memory, CPU, and so on. We will use its functionalities to obtain the CPU usage.

MAXITERS = 30

Chapter 6

[157]

This is the total number of iterations we want to perform. Since we perform an
iteration every second, the total number of iterations equals 30 seconds of CPU
usage monitoring.

class CPUMonitor(FigureCanvas):

As usual, we define a class for the Matplotlib graph elaboration.

 def __init__(self):
 self.before = self.prepare_cpu_usage()

In the initialization method, we save the current CPU usage information.
The algorithm we will use to update the graph needs a previous set of values.

 self.fig = Figure()
 self.ax = self.fig.add_subplot(111)

The basic Matplotlib Figure and Axes initialization.

 FigureCanvas.__init__(self, self.fig)

Initialization for the canvas, referring to the Figure object defined earlier.

 self.ax.set_xlim(0, 30)
 self.ax.set_ylim(0, 100)
 self.ax.set_autoscale_on(False)

We set the limits for the X-axis (to have a 30 seconds interval) and for the Y-axis
(the range of percentage usage), and then disable the autoscale feature. This will
allow us to have a fixed dimension Axes, where the plot can be redrawn without
resizing the figure.

 self.user, self.nice, self.sys, self.idle = [], [], [], []
 self.l_user, = self.ax.plot([],self.user, label='User %')
 self.l_nice, = self.ax.plot([],self.nice, label='Nice %')
 self.l_sys, = self.ax.plot([],self.sys, label='Sys %')
 self.l_idle, = self.ax.plot([],self.idle, label='Idle %')

This draws a placeholder line for the four datasets that we will use. This is important
because we now have the references to the four line objects, and we can dynamically
update their information without generating a new object at every iteration.

 self.ax.legend()

Here, we add a legend.

 self.fig.canvas.draw()

Embedding Matplotlib in Qt 4

[158]

The preceding line of code forces a draw of the canvas.

 self.cnt = 0

We initialize the iterations counter to 0.

 self.timerEvent(None)

We make an explicit call to the method that we will use to update the graph
dynamically: this is a little trick used to speed up the visualization of the plot.

 self.timer = self.startTimer(1000)

With this command, we start a timer object and save the reference to
self.timer. QTimer is a class that triggers an event every n milliseconds
(the interval is specified on instantiation).

In this case, our timer will generate an event every second, and we will use this
event to update our graph.

The main loop (started by exec_()) processes the timer events (along with all
the others) and delivers them to this widget.

 def prepare_cpu_usage(self):

This function will take care of preparing the CPU usage information we need.

 t = p.cpu_times()

We use the psutil cpu_times() method to retrieve the current CPU usage.

 if hasattr(t, 'nice'):
 return [t.user, t.nice, t.system, t.idle]
 else:
 # special case for Windows, without 'nice' value
 return [t.user, 0, t.system, t.idle]

We check if the nice attribute is available. On a Unix-like system, that attribute is
present, so we can return the whole set of data. On Windows, where there is no
distinction between user and nice processes, the attribute is missing, so we set its
value to 0 while still returning the other indicators. The net result is that we have a
cross-platform code able to run on Windows and on Unix-like systems.

 def get_cpu_usage(self):

We define another function to take the values from prepare_cpu_usage()
and compute the information needed for plotting.

 now = self.prepare_cpu_usage()

Chapter 6

[159]

We take the current CPU usage values.

 delta = [now[i]-self.before[i] for i in range(len(now))]

Then we compute the deltas from the previous measurement to the current one.
Delta is the Greek letter for d (from difference), commonly used when dealing
with differences.

Values returned from psutil cpu_times() are counters. They are monotonically
increased from the moment the machine boots until it is turned off. What we're
interested in is the amount of CPU taken by each of the four categories that we plot
during the measurement interval. These commands do this evaluation.

 total = sum(delta)

We compute the sum of the deltas.

 self.before = now

We replace the self.before value with now, so at the next iteration, the current
values will be used.

 return [(100.0*dt)/total for dt in delta]

and we return the CPU usage percentage for our four categories. dt/total
represents the fraction of the total time used by that category and multiplying it
by 100.0 generates a percentage value.

 def timerEvent(self, evt):

As said, events are an important part of Qt, and the main loop receives and
dispatches them to the right widgets. A common way by which a widget processes
events is by reimplementing event handlers.

In our example, QTimer object generates (at a regular rate of one event per second) a
QTimerEvent that is sent to our widget (since it's the widget that started the timer).

To modify the widget behavior following the reception of an event, we need to
define our own event handler, which in the case of a timer is called timerEvent().

 result = self.get_cpu_usage()

We get the current percentage values for CPU usage.

 self.user.append(result[0])
 self.nice.append(result[1])
 self.sys.append(result[2])
 self.idle.append(result[3])

Embedding Matplotlib in Qt 4

[160]

We add them to the relevant datasets.

 self.l_user.set_data(range(len(self.user)), self.user)
 self.l_nice.set_data(range(len(self.nice)), self.nice)
 self.l_sys.set_data(range(len(self.sys)), self.sys)
 self.l_idle.set_data(range(len(self.idle)), self.idle)

Now, we replot the lines with the updated information. We have added one item to
each indicator's list, and now we are updating the line objects to reflect the new data.
Updating the lines instead of creating a completely new plot (or removing the old
lines and adding new ones) is faster and does not create any annoying visual effect
on the window.

 self.fig.canvas.draw()

We force a redraw of the canvas to actually show the changed lines.

 if self.cnt == MAXITERS:

then we have to check if we've performed all the iterations or not.

 self.killTimer(self.timer)

Once we have completed all the iterations, we stop the timer by calling killTimer()
and passing the timer reference that we had created and saved when creating
startTimer().

 else:
 self.cnt += 1

Alternatively, we simply increment the counter and wait for the next timer event to
occur.

app = QtGui.QApplication(sys.argv)

we now start the main part of the application, and as the first thing, we create our
wrapper QApplication instance.

widget = CPUMonitor()

Here, we create our CPUMonitor widget.

widget.setWindowTitle("30 Seconds of CPU Usage Updated in RealTime")

we set the window title.

widget.show()

Chapter 6

[161]

We show the widget.

sys.exit(app.exec_())

and at the end, we start the main loop.

Here is the full example code:

for command-line arguments
import sys

Python Qt4 bindings for GUI objects
from PyQt4 import QtGui

Matplotlib Figure object
from matplotlib.figure import Figure
import the Qt4Agg FigureCanvas object, that binds Figure to
Qt4Agg backend. It also inherits from QWidget
from matplotlib.backends.backend_qt4agg \
 import FigureCanvasQTAgg as FigureCanvas

used to obtain CPU usage information
import psutil as p

Total number of iterations
MAXITERS = 30

class CPUMonitor(FigureCanvas):
 """Matplotlib Figure widget to display CPU utilization"""
 def __init__(self):
 # save the current CPU info (used by updating algorithm)
 self.before = self.prepare_cpu_usage()

 # first image setup
 self.fig = Figure()
 self.ax = self.fig.add_subplot(111)

 # initialization of the canvas
 FigureCanvas.__init__(self, self.fig)

 # set specific limits for X and Y axes
 self.ax.set_xlim(0, 30)
 self.ax.set_ylim(0, 100)

 # and disable figure-wide autoscale

Embedding Matplotlib in Qt 4

[162]

 self.ax.set_autoscale_on(False)

 # generates first "empty" plots
 self.user, self.nice, self.sys, self.idle =[], [], [], []

 self.l_user, = self.ax.plot([],self.user, label='User %')
 self.l_nice, = self.ax.plot([],self.nice, label='Nice %')
 self.l_sys, = self.ax.plot([],self.sys, label='Sys %')
 self.l_idle, = self.ax.plot([],self.idle, label='Idle %')

 # add legend to plot
 self.ax.legend()

 # force a redraw of the Figure
 self.fig.canvas.draw()

 # initialize the iteration counter
 self.cnt = 0

 # call the update method (to speed-up visualization)
 self.timerEvent(None)

 # start timer, trigger event every 1000 millisecs (=1sec)
 self.timer = self.startTimer(1000)

 def prepare_cpu_usage(self):
 """helper function to return CPU usage info"""

 # get the CPU times using psutil module
 t = p.cpu_times()

 # return only the values we're interested in
 if hasattr(t, 'nice'):
 return [t.user, t.nice, t.system, t.idle]
 else:
 # special case for Windows, without 'nice' value
 return [t.user, 0, t.system, t.idle]
 def get_cpu_usage(self):
 """Compute CPU usage comparing previous and current
measurements"""

 # take the current CPU usage information
 now = self.prepare_cpu_usage()
 # compute delta between current and previous measurements

Chapter 6

[163]

 delta = [now[i]-self.before[i] for i in range(len(now))]
 # compute the total (needed for percentages calculation)
 total = sum(delta)
 # save the current measurement to before object
 self.before = now
 # return the percentage of CPU usage for our 4 categories
 return [(100.0*dt)/total for dt in delta]

 def timerEvent(self, evt):
 """Custom timerEvent code, called at timer event receive"""
 # get the cpu percentage usage
 result = self.get_cpu_usage()

 # append new data to the datasets
 self.user.append(result[0])
 self.nice.append(result[1])
 self.sys.append(result[2])
 self.idle.append(result[3])

 # update lines data using the lists with new data
 self.l_user.set_data(range(len(self.user)), self.user)
 self.l_nice.set_data(range(len(self.nice)), self.nice)
 self.l_sys.set_data(range(len(self.sys)), self.sys)
 self.l_idle.set_data(range(len(self.idle)), self.idle)

 # force a redraw of the Figure
 self.fig.canvas.draw()

 # if we've done all the iterations
 if self.cnt == MAXITERS:
 # stop the timer
 self.killTimer(self.timer)
 else:
 # else, we increment the counter
 self.cnt += 1

create the GUI application
app = QtGui.QApplication(sys.argv)
Create our Matplotlib widget
widget = CPUMonitor()
set the window title
widget.setWindowTitle("30 Seconds of CPU Usage Updated in RealTime")
show the widget
widget.show()

Embedding Matplotlib in Qt 4

[164]

start the Qt main loop execution, exiting from this script
with the same return code of Qt application
sys.exit(app.exec_())

Here is a screenshot which was taken while running the preceding application:

At the top of the window, we can see the green line for the CPU usage of nice
processes, down below there is the blue line for user CPU usage, and very near the 0
we have system time (in red) and idle time (in cyan) lines, barely visible. In Chapter
7, we will present a similar technique to update a plot in real time, but with a much
higher throughput.

Chapter 6

[165]

Embedding Matplotlib in a GUI made with
Qt Designer
For simple examples, designing the GUI in the Python code can be good enough, but
for more complex applications, this solution does not scale.

There are some tools to help you design the GUI for Qt, and one of the most
commonly used is Qt Designer.

Similar to Glade, we can design the user interface part of the application using on-
screen form and drag-and-drop interface. Then we can connect the widgets with the
backend code, where we develop the logic of the application.

The core of our example application will be plotting the frequencies of occurrences
of letters in a text file: we will count the number of times each letter of the English
alphabet appears in a given file and then plot this information in a bar graph.

First, we will show how to design our GUI with Qt Designer, in particular, how to
create a custom Matplotlib widget managed by an external Python source file. Then,
we will convert that GUI into a Python code that we can use for our main program.

This example is made up of several source files:

• qtdesigner.ui: UI file generated by Qt Designer
• qtdesigner.py: Python code generated from UI file
• mplwidget.py: Python code to control the custom Matplotlib widget
• 7900_06_04_qt_designer.py: Main code used to execute the example

We start by looking at how we used the Qt Designer. This chapter is about Qt 4, so
we have to use development tools for that version, for example, our Qt Designer is
the one for Qt 4 (in particular, version 4.5.1).

Designing the GUI using Qt Designer
Once started, the Designer asks us what kind of form we want to design. For our
purpose, we will create a main window. An empty window will show up, ready for
designing the interface.

Embedding Matplotlib in Qt 4

[166]

From that empty window, the final result will be:

Let's see how to achieve this.

First, rename the main window to MplMainWindow. Double-click on the widget in
the Object Inspector to change its name. We will rename all the widgets to start with
mpl to recall Matplotlib. Then, we can also remove the status bar (as we do not use it)
from the Object Inspector.

At this point, we can start adding the widgets that will make up our GUI.

The use of layout managers is important to obtain a nice-looking GUI. So we
will add a Horizontal Layout widget, and then we add a Line Edit and a PUSH
BUTTON widget to it.

Chapter 6

[167]

As you can see, the Horizontal Layout is just dropped in the window right where we
dragged it, without a specific layout. Now that we have a widget in the main window,
we can decide its global layout. Right-click on the main window widget in the Object
Inspector, and choose Lay Out Vertically from the Lay Out submenu.

We can see that our Horizontal Layout widget is now expanded to fill the
whole window.

Now, place a widget right below the Horizontal Layout. This will be our custom
widget, where we will plot Matplotlib Figure. Each widget is resized to take
only half of the window space, but we want to give all the space we can to the
custom widget.

We can achieve this by changing the size policy properties of the widget. Click on
the widget, and in the Property editor, look for the sizePolicy section. Set both the,
Horizontal Policy and Vertical Policy properties to Expanding, and the widget will
be expanded to take much more space (as we expected).

But how can we define the new widget as a custom widget? We have to promote it.
This is the way to define a custom widget in Qt Designer:

Embedding Matplotlib in Qt 4

[168]

Select the widget, right-click on it and select Promote to... and a window will pop
up. This is where we will define our custom widget class name and the external
library that manages it. We set Promoted class name to MplWidget to identify
this as the widget for Matplotlib plotting, and Header file to mplwidget, that's the
filename without the .py extension where we will write the Python code to govern
its behavior. Add it to the promoted class, and finally promote the widget to it.

We have almost created the whole GUI, just another step left to go: add a menu with
two items, one to select a file to parse and the other to close the application.

Let's see the widgets hierarchy showing the widgets names, their classes, and how
they're related to each other:

Code to use the Qt Designer GUI
Now that we have our GUI ready, let's save it to a file, we chose the filename
qtdesigner.ui. The UI file format is XML, so we have to convert it to Python
code, using pyuic4: pyuic4 generates Python code from the GUI designed with
Qt 4 Designer.

The tool outputs the result to the terminal, so we have to redirect it into a file:

$ pyuic4 qtdesigner.ui > qtdesigner.py

If we look at the generated file, we can see that the code is structured as a single
class that creates the GUI. On the last line we can see:

from mplwidget import MplWidget

Embed Matplotlib in Qt 4

Chapter 6

[169]

This is the same name used in the Header file field when promoting the widget.

This import connects the custom widget with the external Python code that controls
it; in our example, the file that contains that code is mplwidget.py.

So let's give it a look:

from PyQt4 import QtGui
from matplotlib.backends.backend_qt4agg \
 import FigureCanvasQTAgg as FigureCanvas
from matplotlib.figure import Figure

These are the usual imports for the Qt GUI widgets: the Matplotlib Qt4Agg backend
canvas and the Figure object.

class MplCanvas(FigureCanvas):
 def __init__(self):
 self.fig = Figure()
 self.ax = self.fig.add_subplot(111)
 FigureCanvas.__init__(self, self.fig)
 FigureCanvas.setSizePolicy(self,
 QtGui.QSizePolicy.Expanding,
 QtGui.QSizePolicy.Expanding)
 FigureCanvas.updateGeometry(self)

This is the class that represents the Matplotlib Figure for the Qt backend; nothing
new, we've already seen it in the previous examples.

class MplWidget(QtGui.QWidget):

This is an important class: the name must match with the one used for the custom
widget defined in Qt Designer UI file, as this will manage widget drawing. The code
is quite similar to what we already saw:

 def __init__(self, parent = None):
 QtGui.QWidget.__init__(self, parent)

Here, we initialize the widget.

 self.canvas = MplCanvas()

We instantiate the Matplotlib canvas object.

 self.vbl = QtGui.QVBoxLayout()

Here, we create a layout manager (in this case a vertical box).

 self.vbl.addWidget(self.canvas)

Embedding Matplotlib in Qt 4

[170]

We add the Matplotlib canvas to the layout manager.

 self.setLayout(self.vbl)

Here, we delegate the layout handling to the vbl object.

The main program, 7900_06_04_qt_designer.py, will glue all the code together to
create our application. It will:

• Import the UI
• Define the code to compose the application logic
• Instantiate the QApplication with the window layout defined by our GUI
• Start the main loop

At the beginning, we have the import part (as usual):

from __future__ import with_statement

This helps to open the file easily.

import numpy as np

NumPy is needed for its array support.

import sys

For command-line arguments, it is needed for QApplication instantiation.

from PyQt4 import QtCore
from PyQt4 import QtGui

Here, we also import QtCore, the Qt submodules for non-GUI, low-level functions.

from qtdesigner import Ui_MplMainWindow

We import the main window designed with Qt Designer; the name of the main
window in Designer is MplMainWindow and so pyuic4 creates a class called
Ui_MplMainWindow that we can now import to have access to the main window
object.

class DesignerMainWindow(QtGui.QMainWindow, Ui_MplMainWindow):

We now define a class to merge the UI we have designed (with the Qt Designer)
with the code to develop the application.

 def __init__(self, parent = None):
 super(DesignerMainWindow, self).__init__(parent)

Chapter 6

[171]

We initialize the superclass.

 self.setupUi(self)

setupUi() is a method of Ui_MplMainWindow, created by pyuic4 at conversion
time.It is used to create the UI. The parameter is the widget in which the user
interface is created.

 QtCore.QObject.connect(self.mplpushButton, QtCore.
SIGNAL("clicked()"), self.update_graph)
 QtCore.QObject.connect(self.mplactionOpen, QtCore.
SIGNAL('triggered()'), self.select_file)
 QtCore.QObject.connect(self.mplactionQuit, QtCore.
SIGNAL('triggered()'), QtGui.qApp, QtCore.SLOT("quit()"))

Here we need to introduce the concept of signals and slots.

Introduction to signals and slots
One of the fundamental (and most innovative) concepts in Qt is signals and slots.

They are a very elegant solution which was introduced by Qt to let widgets interact.
Signals are emitted (sent) by an object that wants to notify the world that something
interesting just happened (usually in response to a user interaction, such as a click),
and by connecting signals to slots, the notification arrives to the slot of objects that
are interested.

Slots are functions that respond to certain signals. When a signal is emitted, Qt
executes all the slots that are connected to that signal.

We can also connect signals to other signals, creating a chain of notifications.

Signals and slots are primarily used for event handling, but they can also be used to
let objects interact (keeping this fact hidden from them). Those objects know nothing
about who emits the signals or where the slots are; it's all handled by Qt, so they are
loosely coupled, resulting in more reusable components.

With the function QtCore.QObject.connect(), we connect a slot to a particular
signal. The complementary function, QtCore.QObject.disconnect(), is used
to remove the slot from the signal notification. If a signal isn't connected to a slot,
nothing happens; the component that emits the signal does not know if the signal
is being used or not.

The general line for connect() is:

QtCore.QObject.connect(objA, QtCore.SIGNAL("QtSig()"), objB, QtCore.
SLOT("QtSlot()"))

Embedding Matplotlib in Qt 4

[172]

It's made of four parameters:

• The sender, objA—the object emitting the signal
• The signal, QtSig—the signal emitted
• The receiver, objB—the object that will receive the signal
• The slot, QtSlot—the slot that will react to the signal

In case objB is self, then we can omit the third argument:

QtCore.QObject.connect(objA, QtCore.SIGNAL("QtSig()"), QtCore.
SLOT("QtSlot()"))

SIGNAL() is used to refer a signal, while SLOT() is used to refer a slot. The strings
passed to those functions are used to look up dictionaries of signals and slots into
Qt engine, so we have to match the definition precisely.

PyQt allows any Python callable (functions mainly) to be used as a slot, not just Qt
slots. This is done by simply referencing the callable. As Qt slots are implemented as
class methods, they are also available as Python callables. Therefore, it is not usually
necessary to use QtCore.SLOT() for Qt slots.

So, we will end up with a line like this one:

QtCore.QObject.connect(objA, QtCore.SIGNAL("QtSig()"),pyFunction)

In our example, we used both formats: SLOT() is used to connect the quit() slot of
qApp to the triggered() signal of Quit menu item, while Python function references
are used for button clicked() signal and Open menu item triggered() signal.

A note about the order of signals receiving: there is no fixed order for the arrival
of signals at their destinations. If a signal is connected to more slots, then the slots
are called in no particular order, every time the signal is emitted. Note that if two
different signals are connected to two separated slots, then the slots are called in
the order in which the signals are emitted.

Returning to the example
Getting back to where we stopped:

 def select_file(self):

This is the function called when the menu item Open is selected.

 file = QtGui.QFileDialog.getOpenFileName()

Chapter 6

[173]

It creates a dialog to select a file, obtaining the selected file (if any).

 if file:
 self.mpllineEdit.setText(file)

It saves the file to the Line Edit widget, but only if a file was selected in the dialog
(think about what happens when we click on the Cancel button).

 def parse_file(self, filename):

This function will take care of parsing the input file and extracting the information
we will plot later.

 letters = {}

We define the dictionary that will hold the letters information.

 for i in range(97, 122 + 1):
 letters[chr(i)] = 0

we initialize that dictionary with all the lowercase English letters (identified in the
ASCII table with numbers from 97 to 122) setting the value to 0.

 with open(filename) as f:
 for line in f:
 for char in line:
 # counts only letters
 if ord(char.lower()) in range(97, 122 + 1):
 letters[char.lower()] += 1

For each line in the file and for each letter in that line, we check if it's a plain text
letter, and in that case we increment the counter for it.

 k = sorted(letters.keys())
 v = [letters[ki] for ki in k]
 return k, v

At the end, we return the sorted dictionary keys with the related values.

 def update_graph(self):

This function is called when the mplpushButton button is clicked and handles the
graph update.

 l, v = self.parse_file(self.mpllineEdit.text())

First of all, we get the letters and their frequencies by passing the file set in the Line
Edit widget to parse_file().

 self.mpl.canvas.ax.clear()

Embedding Matplotlib in Qt 4

[174]

Then we clear the Axes to ensure that the next plot will seem a completely new one,
while we are reusing the same Figure and Axes instances.

 self.mpl.canvas.ax.bar(np.arange(len(l))-0.25, v, width=0.5)

We plot a set of bars, one for each letter with the height set to the number of
occurrences of that letter in the parsed file.

Note how we set up the bars: we shift their starting point by 0.25 to the left and the
width is set to 0.5; this will result in bars centered on the X ticks.

 self.mpl.canvas.ax.set_xlim(xmin=-0.25, xmax=len(l)-0.75)

We have to adjust the X limits. As said earlier, we shifted bars start by 0.25, so the
minimum X value is -0.25; the maximum X value is len(l)-1 (the last tick position)
but then we have to add 0.25 (half the bar width). With these limits, we have the bars
perfectly fitting into the plot area.

 self.mpl.canvas.ax.set_xticks(range(len(l)))
 self.mpl.canvas.ax.set_xticklabels(l)

We set the X-axis ticks with their labels (the letters).

 self.mpl.canvas.ax.get_yaxis().grid(True)

We draw a grid on the plot, but only for the Y-axis

 self.mpl.canvas.draw()

Then we force a redraw of the canvas to show the changes we just did.

app = QtGui.QApplication(sys.argv)

As usual, we instantiate a QApplication to wrap our widget.

dmw = DesignerMainWindow()

we instantiate the main window.

dmw.show()

We show the main window.

sys.exit(app.exec_())

Then, we start the Qt main loop.

Chapter 6

[175]

The complete source code for mplwidget.py is:

Python Qt4 bindings for GUI objects
from PyQt4 import QtGui

import the Qt4Agg FigureCanvas object, that binds Figure to
Qt4Agg backend. It also inherits from QWidget
from matplotlib.backends.backend_qt4agg \
 import FigureCanvasQTAgg as FigureCanvas

Matplotlib Figure object
from matplotlib.figure import Figure

class MplCanvas(FigureCanvas):
 """Class to represent the FigureCanvas widget"""
 def __init__(self):
 # setup Matplotlib Figure and Axis
 self.fig = Figure()
 self.ax = self.fig.add_subplot(111)

 # initialization of the canvas
 FigureCanvas.__init__(self, self.fig)
 # we define the widget as expandable
 FigureCanvas.setSizePolicy(self,
 QtGui.QSizePolicy.Expanding,
 QtGui.QSizePolicy.Expanding)
 # notify the system of updated policy
 FigureCanvas.updateGeometry(self)

class MplWidget(QtGui.QWidget):
 """Widget defined in Qt Designer"""
 def __init__(self, parent = None):
 # initialization of Qt MainWindow widget
 QtGui.QWidget.__init__(self, parent)
 # set the canvas to the Matplotlib widget
 self.canvas = MplCanvas()
 # create a vertical box layout
 self.vbl = QtGui.QVBoxLayout()
 # add mpl widget to vertical box
 self.vbl.addWidget(self.canvas)
 # set the layout to th vertical box
 self.setLayout(self.vbl)

Embedding Matplotlib in Qt 4

[176]

The whole source code for 7900_06_04_qt_designer.py is:

used to parse files more easily
from __future__ import with_statement

Numpy module
import numpy as np

for command-line arguments
import sys

Qt4 bindings for core Qt functionalities (non-GUI)
from PyQt4 import QtCore
Python Qt4 bindings for GUI objects
from PyQt4 import QtGui

import the MainWindow widget from the converted .ui files
from qtdesigner import Ui_MplMainWindow

class DesignerMainWindow(QtGui.QMainWindow, Ui_MplMainWindow):
 """Customization for Qt Designer created window"""
 def __init__(self, parent = None):
 # initialization of the superclass
 super(DesignerMainWindow, self).__init__(parent)
 # setup the GUI --> function generated by pyuic4
 self.setupUi(self)

 # connect the signals with the slots
 QtCore.QObject.connect(self.mplpushButton, QtCore.
SIGNAL("clicked()"), self.update_graph)
 QtCore.QObject.connect(self.mplactionOpen, QtCore.
SIGNAL('triggered()'), self.select_file)
 QtCore.QObject.connect(self.mplactionQuit, QtCore.
SIGNAL('triggered()'), QtGui.qApp, QtCore.SLOT("quit()"))

 def select_file(self):
 """opens a file select dialog"""
 # open the dialog and get the selected file
 file = QtGui.QFileDialog.getOpenFileName()
 # if a file is selected
 if file:
 # update the lineEdit text with the selected filename
 self.mpllineEdit.setText(file)

 def parse_file(self, filename):

Chapter 6

[177]

 """Parse a text file to extract letters frequencies"""
 # dict initialization
 letters = {}

 # lower-case letter ordinal numbers
 for i in range(97, 122 + 1):
 letters[chr(i)] = 0

 # parse the input file
 with open(filename) as f:
 for line in f:
 for char in line:
 # counts only letters
 if ord(char.lower()) in range(97, 122 + 1):
 letters[char.lower()] += 1

 # compute the ordered list of keys and relative values
 k = sorted(letters.keys())
 v = [letters[ki] for ki in k]

 return k, v

 def update_graph(self):
 """Updates the graph with new letters frequencies"""

 # get the letters frequencies
 l, v = self.parse_file(self.mpllineEdit.text())

 # clear the Axes
 self.mpl.canvas.ax.clear()

 # draw a bar chart for letters and their frequencies
 # set width to 0.5 and shift bars of 0.25, to be centered
 self.mpl.canvas.ax.bar(np.arange(len(l))-0.25, v, width=0.5)
 # reset the X limits
 self.mpl.canvas.ax.set_xlim(xmin=-0.25, xmax=len(l)-0.75)
 # set the X ticks & tickslabel as the letters
 self.mpl.canvas.ax.set_xticks(range(len(l)))
 self.mpl.canvas.ax.set_xticklabels(l)
 # enable grid only on the Y axis
 self.mpl.canvas.ax.get_yaxis().grid(True)
 # force an image redraw
 self.mpl.canvas.draw()

Embedding Matplotlib in Qt 4

[178]

create the GUI application
app = QtGui.QApplication(sys.argv)
instantiate the main window
dmw = DesignerMainWindow()
show it
dmw.show()
start the Qt main loop execution, exiting from this script
with the same return code of Qt application
sys.exit(app.exec_())

A screenshot of the application running, where we can see a bar for each letter
with heights corresponding to the number of occurrences of that letter in the file
is as follows:

Chapter 6

[179]

Summary
In this chapter, we learned how to use Qt and Matplotlib together. Now we know
how to:

• Embed a Figure in a QWidget
• Use layout manager to pack a Figure and navigation toolbar in a QWidget
• Create a timer, react to events, and update a Matplotlib graph accordingly
• Use Qt Designer to draw a simple GUI and then refer it into our Python code

We are now ready to learn about another GUI library, wxWidgets.

Embedding Matplotlib in
wxWidgets

This chapter will explain how we can use Matplotlib in the wxWidgets framework,
particularly using the wxPython bindings.

The contents we will present in this chapter are:

• A brief introduction to wxWidgets and wxPython
• A simple example of embedding Matplotlib in wxWidgets
• Extending the previous example to include the Matplotlib navigation toolbar
• How to update a Matplotlib plot in real-time using the wxWidgets framework
• How to design a GUI with wxGlade and embed a Matplotlib Figure in it

Let's first start with an overview of the features of wxWidgets and wxPython.

Brief introduction to wxWidgets and
wxPython
wxWidgets (formerly known as wxWindows, now available at http://www.
wxwidgets.org/) is a widget toolkit used for creating GUIs.

One of its most important features is cross-platform portability: it currently supports
Windows, Mac OS X, Linux (with X11, Motif, and GTK+ libraries), OS/2, and several
other operating systems and platforms (including an embedded version which is
currently under development).

Embedding Matplotlib in wxWidgets

[182]

wxWidgets would be best described as a native mode toolkit because it provides a
thin API abstraction layer across platforms, and uses platform-native widgets under
the hood, as opposed to emulating them. Using native controls gives wxWidgets
applications a natural and familiar look and feel.

On the other hand, introducing an additional layer can result in a slight performance
penalty, although this is unlikely to be noticed in the kind of applications we will
commonly develop.

wxWidgets is not restricted to GUI development and it's more than just a graphics
toolkit, providing a whole set of additional facilities, such as database libraries,
inter-process communication layer, networking functionalities, and so on.

Though it's written in C++, there are several bindings for many commonly used
programming languages. Among them is Python binding provided by wxPython.

wxPython (available at http://www.wxpython.org/) is a Python extension module
that provides a set of bindings to the Python language from the wxWidgets library.
This extension module allows Python programmers to create instances of wxWidgets
classes and to invoke methods of those classes.

wxPython mirrors many of the wxWidgets GUI classes and functions, and the
differences that exist are only because of the intrinsic differences between C++ and
Python. Therefore, if we already know how to program with wxWidgets, using
wxPython is quite straightforward.

Embedding a Matplotlib figure in a
wxFrame
We will present examples by commenting each relevant source code block, and at
the end, we will show the complete source code.

In the first example, we will describe how to embed a Matplotlib Figure in a
wxFrame.

wxFrame is one of the most important widgets in wxWidgets. It's considered to be a
container because it contains other widgets. wxFrame consists of a title bar, borders,
and a center container area: the classic application window layout.

The example code starts with:

import wx

Chapter 7

[183]

This is the main wxPython module. It contains all the submodules, objects, and
functions for the wxWidgets library. Every application that uses wxPython imports
this module.

from matplotlib.figure import Figure
import numpy as np

These are the usual imports of Matplotlib Figure and NumPy module.

from matplotlib.backends.backend_wxagg import \
 FigureCanvasWxAgg as FigureCanvas

Here is the import of the backend-specific FigureCanvas object: this class also
inherits from wxPanel, so it's indeed a wxPython object that we can embed into
a wxWidgets application.

class MplCanvasFrame(wx.Frame):

Every application must have a top-level wxFrame. What we are doing here is creating
a customized wxFrame. In the classic object-oriented programming style, we inherit
from a class and change its behavior to our own needs.

 def __init__(self):

In the initialization method, we will write the main code because in this small
example, we don't need any additional methods.

 wx.Frame.__init__(self, None, wx.ID_ANY,
 title='Matplotlib in Wx', size=(600, 400))

Here, we initialize the superclass. The parameters are:

• parent: In this case, set to None meaning we don't have a parent (it's a
top-level window); it's common for a wxFrame to have no parent because
it is the parent of other widgets.

• id: An identifier for the wxWidgets object, in this case set to wx.ID_ANY,
which means to request an ID to the system (so we don't have to specify one).
As wx.ID_ANY is equal to -1, sometimes we can also find this value specified
in the initialization calls (although it's a bad practice).

• title: This will be the window title.
• size: We choose a size that is exactly the same as that of the Figure.

 self.figure = Figure(figsize=(6, 4), dpi=100)
 self.axes = self.figure.add_subplot(111)
 x = np.arange(0, 6, .01)
 y = np.sin(x**2)*np.exp(-x)
 self.axes.plot(x, y)

Embedding Matplotlib in wxWidgets

[184]

This is the Matplotlib code to create a sample plot.

 self.canvas = FigureCanvas(self, wx.ID_ANY, self.figure)

Here we initialize the FigureCanvas: using the WxAgg backend, we pass the parent
set to self, the current wxFrame, the id as a system-defined one, and then the
Figure Matplotlib object to render.

app = wx.PySimpleApp()

Every wxWidgets application must be wrapped inside one wxApp
instance which ensures that the GUI platform and wxWidgets are
fully loaded and functional.

PySimpleApp is a simpler application class that we can use directly, particularly
for small examples.

frame = MplCanvasFrame()

Now that we have created an application, we can also initialize the custom wxFrame
object that will draw the Matplotlib plot.

frame.Show(True)

A call to Show() is needed to actually display the wxFrame on screen

app.MainLoop().

In the end, we start the main loop for events processing. After the MainLoop() is
called, wxWidgets takes control and starts to check for events: whenever an event
occurs, wxWidgets framework will dispatch it to the appropriate event handler.

The full code for this example is:

wxPython module
import wx

Matplotlib Figure object
from matplotlib.figure import Figure
Numpy functions for image creation
import numpy as np

Chapter 7

[185]

import the WxAgg FigureCanvas object, that binds Figure to
WxAgg backend. In this case, this is a wxPanel
from matplotlib.backends.backend_wxagg import \
 FigureCanvasWxAgg as FigureCanvas

class MplCanvasFrame(wx.Frame):
 """Class to represent a Matplotlib Figure as a wxFrame"""
 def __init__(self):
 # initialize the superclass, the wx.Frame
 wx.Frame.__init__(self, None, wx.ID_ANY,
 title='Matplotlib in Wx', size=(600, 400))

 # usual Matplotlib functions
 self.figure = Figure()#figsize=(6, 4), dpi=100)
 self.axes = self.figure.add_subplot(111)
 x = np.arange(0, 6, .01)
 y = np.sin(x**2)*np.exp(-x)
 self.axes.plot(x, y)

 # initialize the FigureCanvas, mapping the figure to
 # the Wx backend
 self.canvas = FigureCanvas(self, wx.ID_ANY, self.figure)

Create a wrapper wxWidgets application
app = wx.PySimpleApp()
instantiate the Matplotlib wxFrame
frame = MplCanvasFrame()
show it
frame.Show(True)
start wxWidgets mainloop
app.MainLoop()

Embedding Matplotlib in wxWidgets

[186]

If we execute the previous example, the following screenshot will be displayed:

Including a navigation toolbar
Matplotlib's interactive plots present together with a graph, a very handy toolbar
that has several buttons with common operations. We may be interested in using
the same toolbar in our wxWidgets applications, so let's see how we can achieve
this, extending the previous example:

import wx

First, we import the wx module needed to have access to wxPython library.

from matplotlib.figure import Figure

Here is the import for Matplotlib Figure object, the backend-independent plot
representation.

import numpy as np

Chapter 7

[187]

The import of NumPy module that is used to create a sample plot.

from matplotlib.backends.backend_wxagg import \
 FigureCanvasWxAgg as FigureCanvas
from matplotlib.backends.backend_wx import NavigationToolbar2Wx

These are the imports for the backend-specific FigureCanvas and a
navigation toolbar.

class MplCanvasFrame(wx.Frame):

As we have seen before, we define our own wxFrame to render the Figure and
toolbar. Let's repeat that the wxFrame is the classic application top-level window.

 def __init__(self):
 wx.Frame.__init__(self, None, wx.ID_ANY, size=(600, 400),
 title='Matplotlib Figure with Navigation Toolbar')

We now initialize the superclass, calling its __init__ method with None as parent
(as it will be the top-level window, it has no parent object), then, we ask for a
system-generated ID, we set the window dimensions, and lastly, we set the
window title.

 self.figure = Figure()
 self.axes = self.figure.add_subplot(111)
 x = np.arange(0, 6, .01)
 y = np.sin(x**2)*np.exp(-x)
 self.axes.plot(x, y)

This is the code to generate the Matplotlib plot.

 self.canvas = FigureCanvas(self, wx.ID_ANY, self.figure)

This maps the Figure object to the backend-dependent canvas.

 self.sizer = wx.BoxSizer(wx.VERTICAL)

Here we create a BoxSizer object. One of the biggest problems in GUI design
is how to react to changes in canvas size, a problem commonly referred to as
layout management.

Embedding Matplotlib in wxWidgets

[188]

The layout managers for wxWidgets are the sizer widgets: they are the containers for
widgets (including other sizers) that will handle the visual arrangement of widgets'
dimensions according to our configuration. BoxSizer takes one parameter, its
orientation. In this case, we pass the constant. wx.VERTICAL to have widgets laid in
a column, but there is also the constant. wx.HORIZONTAL to have a row of widgets.

 self.sizer.Add(self.canvas, 1, wx.LEFT | wx.TOP | wx.EXPAND)

We are now able to add our FigureCanvas object to the sizer. The arguments of
the Add() function are really important:

• The first parameter is a reference to the object to be added.
• Then, we have the second parameter: proportion—this is used to express how

much of the additional free space should be assigned to this widget. Often,
the widgets on a GUI don't take up all the space, so there is some extra space
available. This space is redistributed to all the widgets based on the proportion
value of each widget and all the widgets present in the GUI. Let's take an
example: if we have three widgets respectively with proportion set to 0, 1,
and 2, then the first (with proportion set to 0) will not change at all, while the
third (with proportion set to 2) will change twice more than the second (with
proportion set to 1). In the book example we set it to 1, so we declare that the
widget should take one slot of the free space available when resizing.

• The third parameter is a combination of flags to further configure widget
behavior in the sizer: it controls borders, alignment, separation between
widgets, and expansions. Here we declare that the FigureCanvas should
expand when the window is resized.

Note that adding a widget to a sizer does not make the sizer the parent widget:
the canvas parent is still self (wxFrame).

 self.toolbar = NavigationToolbar2Wx(self.canvas)

We now create an instance of the navigation toolbar, and we set the FigureCanvas
object as the parent.

 self.toolbar.Realize()

This call is not needed on Linux systems , however it is required on the Windows
ones. This method must be called after all the buttons have been added to the
toolbar (in case we have added custom ones), and it will reorder and place them in
a platform-specific manner.

 self.sizer.Add(self.toolbar, 0, wx.LEFT | wx.EXPAND)

Chapter 7

[189]

We add the toolbar to the sizer; objects are packed in the sizer as they are added to
it, so the navigation toolbar will be right below the Figure object. The proportion
parameter is set to 0, so that only the minimum sizes of the toolbar will be used.
Nonetheless, we request the widget to expand, but this will happen only when
resizing the width of the window. The height of the toolbar will always be the same.

 self.toolbar.Show()

We explicitly show the toolbar, making a call to its Show() method.

 self.SetSizer(self.sizer)

We now set this sizer as the layout manager for the main window. As we are
inheriting from wxPanel, a call to self tells the top-level window to use this sizer.

 self.Fit()

Then, we call the Fit() method on the wxFrame object. This method is used to
calculate the initial size and position of each widget to fit nicely in the wxFrame.

class MplApp(wx.App):

Here we define a new class, inheriting from wxApp to create a customized application
where we will embed the Frame object previously defined.

As said before, every wxWidgets application must be wrapped inside a wxApp: here,
we can see how to inherit from it in order to customize its behavior to our needs.

 def OnInit(self):

OnInit is the only method that we will write for this class, as it is called as part of
system initialization when creating an application. The purpose of OnInit is to create
a window and all the other objects necessary for the program to be operational.

 frame = MplCanvasFrame()

We create an instance of our Matplotlib wxFrame.

 self.SetTopWindow(frame)

We inform the wxWidgets system that our frame is one of the top-level windows.
The application can only terminate when all the top-level windows have been closed.

 frame.Show(True)

Embedding Matplotlib in wxWidgets

[190]

Then we force a show on the frame.

 return True

Finally, we return True: returning True signals to continue processing. If we had
returned False, then the application would have exited immediately.

mplapp = MplApp(False)

At this point, in the main part of the code, we create an instance of our application;
the redirect parameter (the only one needed) is set to False to let errors go to the
interpreter (instead of popping up a window).

mplapp.MainLoop()

We can now start the main loop of events processing.

The full source code of the example is:

wxPython module
import wx

Matplotlib Figure object
from matplotlib.figure import Figure
Numpy functions for image creation
import numpy as np

import the WxAgg FigureCanvas object, that binds Figure to
WxAgg backend. In this case, this is also a wxPanel
from matplotlib.backends.backend_wxagg import \
 FigureCanvasWxAgg as FigureCanvas
import the NavigationToolbar WxAgg widget
from matplotlib.backends.backend_wx import NavigationToolbar2Wx

class MplCanvasFrame(wx.Frame):
 """Class to represent a Matplotlib Figure as a wxFrame"""
 def __init__(self):
 wx.Frame.__init__(self, None, wx.ID_ANY, size=(600, 400),
 title='Matplotlib Figure with Navigation Toolbar')
 # usual Matplotlib functions
 self.figure = Figure()
 self.axes = self.figure.add_subplot(111)
 x = np.arange(0, 6, .01)
 y = np.sin(x**2)*np.exp(-x)
 self.axes.plot(x, y)

Chapter 7

[191]

 # initialize the FigureCanvas, mapping the figure to
 # the WxAgg backend
 self.canvas = FigureCanvas(self, wx.ID_ANY, self.figure)

 # create an BoxSizer, to define the layout of our window
 self.sizer = wx.BoxSizer(wx.VERTICAL)
 # add the figure canvas
 self.sizer.Add(self.canvas, 1, wx.LEFT | wx.TOP | wx.EXPAND)

 # instantiate the Navigation Toolbar
 self.toolbar = NavigationToolbar2Wx(self.canvas)
 # needed to support Windows systems
 self.toolbar.Realize()
 # add it to the sizer
 self.sizer.Add(self.toolbar, 0, wx.LEFT | wx.EXPAND)
 # explicitly show the toolbar
 self.toolbar.Show()

 # sets the window to have the given layout sizer
 self.SetSizer(self.sizer)
 # adapt sub-widget sizes to fit the window size,
 # following sizer specification
 self.Fit()

class MplApp(wx.App):
 """Define customized wxApp for MplCanvasFrame"""
 def OnInit(self):
 # instantiate our custom wxFrame
 frame = MplCanvasFrame()
 # set it at the top-level window
 self.SetTopWindow(frame)
 # show it
 frame.Show(True)
 # return True to continue processing
 return True

we instantiate our wxApp class
mplapp = MplApp(False)
and start the main loop
mplapp.MainLoop()

Embedding Matplotlib in wxWidgets

[192]

If we execute the preceding application, then the following window will appear

Real-time plots update
In several situations, data is generated in real time, and we want to plot it as it
comes. Being able to process data and generate dynamic plots that are continuously
updated is very interesting.

We are going to present an example where we take a sample of a quantity, and we
show its progression in a real-time plot.

The information we will collect is CPU utilization; in a modern operating system,
there are several processes always running on a machine, each using a part of the
CPU time. On a Unix system, we can identify the major part of the time as being
used by:

• System processes (sys)
• User processes (user)

Chapter 7

[193]

• User processes with lower priority, for example, for background
processing (nice)

• Time not used (idle)

Between parenthesis, we reported the name that we will use in our code to represent
that slice of CPU usage.

We will use an additional module, psutil (available at http://code.google.
com/p/psutil/), to gather information about CPU usage. The module is cross-
platform (it's available for Linux, Windows, and Mac OS X), and it abstracts from the
operating system to present a common layer to access run-time information. It allows
us to query process information along with several other system indicators.

We will also use a particular way to update the plot in real time (borrowed from
computer graphics) that grants a very high throughput (but requires a bit of
additional work).

We now start to show the code, and we discuss some aspects in details during
description:

import wx

this module is needed to access wxWidgets library objects, widgets, and functions.

from matplotlib.figure import Figure
import matplotlib.font_manager as font_manager

We import the usual Matplotlib Figure but this time we also need the font manager.

from matplotlib.backends.backend_wxagg import \
 FigureCanvasWxAgg as FigureCanvas

Then, we import the backend-specific FigureCanvas.

import psutil as p

Here, we import psutil: in this example, we are interested in CPU usage, and
psutil allows us to run the code on Linux, Mac OS X, and Windows without
modifications.

TIMER_ID = wx.NewId()

Now we define an ID (that is guaranteed to be unique during application lifecycle) to
identify the timer in the application.

Embedding Matplotlib in wxWidgets

[194]

A timer is an object that triggers an event at every given time interval. We will use
those events to update the plot.

POINTS = 300

The number of data points we will use in our plot.

class PlotFigure(wx.Frame):

This will be the main wxFrame of the application where we will embed the animated
Matplotlib Figure.

 def __init__(self):
 wx.Frame.__init__(self, None, wx.ID_ANY, title="CPU Usage
Monitor", size=(600, 400))

As usual, while initializing this object, we also initialize the superclass where we
specify the window's title and size.

 self.fig = Figure((6, 4), 100)
 self.canvas = FigureCanvas(self, wx.ID_ANY, self.fig)
 self.ax = self.fig.add_subplot(111)

Here we prepare the Matplotlib Figure object, creating a new one and binding it
to the backend-specific FigureCanvas; at the end, we create the Axes instance by
adding a subplot to the Figure.

 self.ax.set_ylim([0, 100])
 self.ax.set_xlim([0, POINTS])
 self.ax.set_autoscale_on(False)

We want our plot to have constant dimensions to avoid the unpleasant effect of axes
resizing at each update.

To do so, we set the X and Y limits, by using the xlim() and ylim() functions (we
prefer two separate function calls instead of a call to axis() for clarity) and then
disable the autoscale feature.

The Axes limits are set to be percentage values on the Y-axis (so between 0 and 100)
and the number of data points we want to keep on the X-axis (300).

 self.ax.set_xticks([])

We remove the ticks and labels from the X-axis as the update effect can be unpleasant.

 self.ax.set_yticks(range(0, 101, 10))

Chapter 7

[195]

As the percentage value varies from 0 to 100, we decided to partition the Y-axis every
10 units. We use 101 as the higher value in range() as a trick to make the value
"100" appear in the list.

 self.ax.grid(True)

We draw the grid: this will be made up of only horizontal lines, originating from the
Y ticks, as we removed the ticks from the X-axis.

 self.user = [None] * POINTS
 self.nice = [None] * POINTS
 self.sys = [None] * POINTS
 self.idle = [None] * POINTS

Here, we create four lists of POINTS (300) items to contain the data we will be
plotting. We use None to initialize them because None represents lack of data and is
not plotted (at the contrary of 0, which represents a valid position in the axes and
hence is plotted).

 self.l_user,=self.ax.plot(range(POINTS),self.user,label='User %')
 self.l_nice,=self.ax.plot(range(POINTS),self.nice,label='Nice %')
 self.l_sys, =self.ax.plot(range(POINTS),self.sys, label='Sys %')
 self.l_idle,=self.ax.plot(range(POINTS),self.idle,label='Idle %')

We now plot four empty lines; they are just markers and will be updated as the
data comes in.

 self.ax.legend(loc='upper center',
 ncol=4,
 prop=font_manager.FontProperties(size=10))

We would also like to draw a legend on the plot. The parameters of the legend()
function are:

• loc: The location of the legend, in this case at the upper center of the
figure.

• ncol: The number of columns in the legend; it's usually 1, so the legend is
rendered as a vertical list. But in this case, we prefer a horizontal list, so we
set the number of columns equal to the number of lines.

• prop: The properties for the legend text; here we have reduced the text font
to 10 points.

 self.canvas.draw()

We force a draw on the canvas: this is needed to let the grid and the legend be
rendered on the Figure; without this call, we would not be able to see them.

 self.bg = self.canvas.copy_from_bbox(self.ax.bbox)

Embedding Matplotlib in wxWidgets

[196]

This is the first part of the particular method we will use to animate the plot. We
save the plot background that is currently made up of empty Axes (no visible lines),
the grid, and the legend.

Technically, what we are doing here is saving a rectangular region into a pixel
buffer, in this case, the Axes bounding box (bbox).

 self.before = self.prepare_cpu_usage()

We take the first set of values of CPU usage because the update algorithm needs
two sets to work —(the current and the previous one).

 wx.EVT_TIMER(self, TIMER_ID, self.onTimer)

As said, we use a timer to trigger an event at the specified interval: now we are
defining that in response to those timer events. The callback function to call is self.
onTimer. Note how we have used the TIMER_ID identifier to match the timer object.

 def prepare_cpu_usage(self):

This function is used to get the CPU information and return them in a format
we expect.

 t = p.cpu_times()

We use psutil module's cpu_times() function to obtain the CPU usage
information.

 if hasattr(t, 'nice'):
 return [t.user, t.nice, t.system, t.idle]
 else:
 return [t.user, 0, t.system, t.idle]

As t.nice is not available on Windows systems, we check if that attribute is present.
If it is, we return the complete dataset, otherwise we return 0 in replacement of the
missing attribute. This grants for portable code that works on both Unix-like and
Windows systems.

 def get_cpu_usage(self):

This is the function that will generate the information we will plot: the CPU
usage percentage.

 now = self.prepare_cpu_usage()

Here we take a snapshot of the current CPU usage.

 delta = [now[i]-self.before[i] for i in range(len(now))]

Chapter 7

[197]

Now we compute the deltas between the current and previous relative values.
We need to do this because operating systems keep CPU usage as additive
counters while we are interested in the difference between the previous and the
current measurements.

 total = sum(delta)

We compute the total CPU usage by summing up the delta items.

 self.before = now

We replace the before variable with the current CPU information stored in now.

 return [(100.0*dt)/total for dt in delta]

At the end, we return the usage percentage for each category, dividing each delta
item by the total CPU usage and multiplying it by 100.0.

 def onTimer(self, evt):

This is the callback function called upon receiving timer events, and it will update
our plot.

 tmp = self.get_cpu_usage()

We get the CPU usage percentage as the first thing.

 self.canvas.restore_region(self.bg)

Then we restore the background (the Axes bounding box) saved during the
execution of the __init__ method.

 self.user = self.user[1:] + [tmp[0]]
 self.nice = self.nice[1:] + [tmp[1]]
 self.sys = self.sys[1:] + [tmp[2]]
 self.idle = self.idle[1:] + [tmp[3]]

Then we update the data lists. We remove the first item from the lists and append the
new values. This will keep the data points' count constant, generating a flow in the
line's plot from right to left.

 self.l_user.set_ydata(self.user)
 self.l_nice.set_ydata(self.nice)
 self.l_sys.set_ydata(self.sys)
 self.l_idle.set_ydata(self.idle)

Embedding Matplotlib in wxWidgets

[198]

We now update the lines ydata with the updated lists.

 self.ax.draw_artist(self.l_user)
 self.ax.draw_artist(self.l_nice)
 self.ax.draw_artist(self.l_sys)
 self.ax.draw_artist(self.l_idle)

and we force a draw only on the Lines objects over the clean background.

 self.canvas.blit(self.ax.bbox)

Here comes the magic: the blit() function.

A simple approach to the animation problem would lead to a solution where we
redraw the complete Figure each time (by using draw() method, for example),
even if just one element was updated.

The idea behind blit() is drawing the background and animating objects over it.

Once we have restored the clean background with self.canvas.restore_
region(self.bg), we can draw the animated lines on top of it with self.ax.draw_
artist(<line ref>), and afterwards, the blit() function copies this result to
the window.

Even though Matplotlib is not designed specifically for animated plots, with this
technique, we can obtain a very high rate of FPS (frames per second).

if __name__ == '__main__':
 app = wx.PySimpleApp()

When we execute the example, we instantiate the wxWidgets wrapper application.

 frame = PlotFigure()

then we instantiate the wxFrame object defined earlier.

 t = wx.Timer(frame, TIMER_ID)

We create a timer by binding it to the frame instance and assigning the TIMER_ID:
this will allow us to identify the timer throughout the application.

 t.Start(50)

We start the timer, specifying that it should trigger an event every 50 milliseconds:
the blit() technique allows a very fast update cycle.

 frame.Show()

Chapter 7

[199]

Then we show the frame.

 app.MainLoop()

Now, we start the application main loop for events processing.

Here is the full example code:

wxPython module
import wx

Matplotlib Figure object
from matplotlib.figure import Figure
Matplotlib font manager
import matplotlib.font_manager as font_manager

import the WxAgg FigureCanvas object, that binds Figure to
WxAgg backend. In this case, this is also a wxPanel
from matplotlib.backends.backend_wxagg import \
 FigureCanvasWxAgg as FigureCanvas

used to obtain CPU usage information
import psutil as p

wxWidgets object ID for the timer
TIMER_ID = wx.NewId()

number of data points
POINTS = 300

class PlotFigure(wx.Frame):
 """Matplotlib wxFrame with animation effect"""

 def __init__(self):
 # initialize the super class
 wx.Frame.__init__(self, None, wx.ID_ANY, title="CPU Usage
Monitor", size=(600, 400))

 # Matplotlib Figure
 self.fig = Figure((6, 4), 100)
 # bind the Figure to the backend specific canvas
 self.canvas = FigureCanvas(self, wx.ID_ANY, self.fig)
 # add a subplot
 self.ax = self.fig.add_subplot(111)

Embedding Matplotlib in wxWidgets

[200]

 # limit the X and Y axes dimensions
 # we prefer 2 separate functions for clarity
 self.ax.set_ylim([0, 100])
 self.ax.set_xlim([0, POINTS])
 # but we want a "frozen" window (defined by y/xlim functions)
 self.ax.set_autoscale_on(False)

 # we do not want ticks on X axis
 self.ax.set_xticks([])
 # we want a tick every 10 point on Y (101 is to have 100 too)
 self.ax.set_yticks(range(0, 101, 10))
 # disable autoscale, since we don't want the Axes to adapt
 # draw a grid (it will be only for Y)
 self.ax.grid(True)

 # generates first "empty" plots
 self.user = [None] * POINTS
 self.nice = [None] * POINTS
 self.sys = [None] * POINTS
 self.idle = [None] * POINTS

 self.l_user,=self.ax.plot(range(POINTS),self.user,label='User
%')
 self.l_nice,=self.ax.plot(range(POINTS),self.nice,label='Nice
%')
 self.l_sys, =self.ax.plot(range(POINTS),self.sys, label='Sys
%')
 self.l_idle,=self.ax.plot(range(POINTS),self.idle,label='Idle
%')

 # add the legend
 self.ax.legend(loc='upper center',
 ncol=4,
 prop=font_manager.FontProperties(size=10))

 # force a draw on the canvas()
 # trick to show the grid and the legend
 self.canvas.draw()

 # save the clean background - everything but the line
 # is drawn and saved in the pixel buffer background
 self.bg = self.canvas.copy_from_bbox(self.ax.bbox)

 # take a snapshot of CPU usage, needed for the update
algorithm

Chapter 7

[201]

 self.before = self.prepare_cpu_usage()

 # bind events coming from timer with id = TIMER_ID
 # to the onTimer callback function
 wx.EVT_TIMER(self, TIMER_ID, self.onTimer)

 def prepare_cpu_usage(self):
 """helper function to return CPU usage info"""

 # get the CPU times using psutil module
 t = p.cpu_times()

 # return only the values we're interested in
 if hasattr(t, 'nice'):
 return [t.user, t.nice, t.system, t.idle]
 else:
 # special case for Windows, without 'nice' value
 return [t.user, 0, t.system, t.idle]

 def get_cpu_usage(self):
 """Compute CPU usage comparing previous and current
measurements"""

 # take the current CPU usage information
 now = self.prepare_cpu_usage()
 # compute deltas between current and previous measurements
 delta = [now[i]-self.before[i] for i in range(len(now))]
 # compute the total (needed for percentages calculation)
 total = sum(delta)
 # save the current measurement to before object
 self.before = now
 # return the percentage of CPU usage for our 4 categories
 return [(100.0*dt)/total for dt in delta]

 def onTimer(self, evt):
 """callback function for timer events"""

 # get the CPU usage information
 tmp = self.get_cpu_usage()

 # restore the clean background, saved at the beginning
 self.canvas.restore_region(self.bg)

Embedding Matplotlib in wxWidgets

[202]

 # update the data
 self.user = self.user[1:] + [tmp[0]]
 self.nice = self.nice[1:] + [tmp[1]]
 self.sys = self.sys[1:] + [tmp[2]]
 self.idle = self.idle[1:] + [tmp[3]]

 # update the plot
 self.l_user.set_ydata(self.user)
 self.l_nice.set_ydata(self.nice)
 self.l_sys.set_ydata(self.sys)
 self.l_idle.set_ydata(self.idle)

 # just draw the "animated" objects
 self.ax.draw_artist(self.l_user)
 self.ax.draw_artist(self.l_nice)
 self.ax.draw_artist(self.l_sys)
 self.ax.draw_artist(self.l_idle)

 # "blit" the background with the animated lines
 self.canvas.blit(self.ax.bbox)

if __name__ == '__main__':
 # create the wrapping application
 app = wx.PySimpleApp()
 # instantiate the Matplotlib wxFrame object
 frame = PlotFigure()

 # Initialize the timer - wxPython requires this to be connected to
 # the receiving event handler
 t = wx.Timer(frame, TIMER_ID)
 t.Start(50)

 # show the frame
 frame.Show()
 # start application event loop processing
 app.MainLoop()

When we run this application, a similar window will come up:

Chapter 7

[203]

In this screenshot, we can see the nice time (green line) on the top of the image, the
user time (blue line) between 10% and 20% lines, the system time (red line) is always
almost low, and idle time (cyan line) only present at some spots.

Embedding Matplotlib in a GUI made with
wxGlade
For very simple applications with limited GUIs, we can design the interface from
inside the application source code. Once the GUI becomes more complex, this
solution is not acceptable, and we need a tool to support us in the GUI design.

One of the most well-known tools for this activity in wxWidgets is wxGlade.
wxGlade is an interface design program written in Python using wxPython, and
this allows it to run on all the platforms where these two are available.

Embedding Matplotlib in wxWidgets

[204]

The philosophy is similar to Glade, the famous GTK+ GUI designer, and the
look and feel is very similar as well. wxGlade is a program that helps us to create
wxWidgets or wxPython user interfaces, but it is not a fully-featured code editor:
it's just a designer, and the code it generates does nothing more than displaying the
created widgets.

For this example, we are going to design a GUI with wxGlade to let us select a file,
parse its content, and draw a Matplotlib plot of the number of occurrences of each
letter in the file.

The GUI we are about to design will look like this:

Let's see how we can come to this result.

When opening wxGlade, it presents an empty application. We start adding a
frame to it by clicking on the corresponding button in the widgets panel: an empty
window will pop up and the Properties window changes to show the attributes of
the widgets just created. We rename both the frame and the class to MplFrame. To
recall, this is a Matplotlib example. We also change the frame title (which will be the
application title) by changing the Title property.

As we can see, adding a frame to the application automatically also adds a sizer.
Sizers are really important for GUI layout, and presenting a default sizer is a smart
idea particularly because every widget in wxGlade must be inside a sizer.

First, we rename this default sizer to mplsizer1, then we right-click on it on the Tree
object's window and then on Add slot: we now see our window divided into two
empty parts, one above the other. We will use these slots like this:

• A text area and a button in the upper slot
• The Matplotlib Figure in the lower slot

Chapter 7

[205]

Let's start with the upper one: we add another sizer to it by selecting Add a BoxSizer
from the widgets panel and then click on the slot. A configuration window is now
shown: just select two slots and click on OK, and a new sizer is added. Lastly, we
rename it to mplsizer2.

Now we can select TextCtrl from the widgets panel, and add it to the left slot of
mplsizer2, then select a Button, and add it to the right slot of mplsizer2.

While we are here, we rename the TextCtrl to mpltextctrl and set the default text by
modifying the Value field in the Widget tab of the Properties window. Additionally,
we rename the button to mplbutton, change the Label value, and define a handler
for it; we select the Events tab in the Properties sheet and set a value for the EVT_
BUTTON event:

This defines the function that the wxWidgets framework will call when the button
is clicked: in this case, the function will take care of parsing the file and drawing
the chart.

The layout is far from optimal: what we want is the TextCtrl to be expanded to
occupy the entire window length, while the extra space below the text control and
the button to be assigned to the lower slot. Of course, we can do that:

1. We select the mplsizer2 in the Tree view, and in its Properties window,
we set Proportion 0: this value handles how the available extra space is
distributed (spread) over widgets. When it is set to 0, the sizer shrinks to
accommodate the widgets it contains.

2. We click on mpltextctrl, then go to the Properties window, and select the
Layout tab: set Proportion to 1 and add the wxEXPAND property in the
Alignment section. We can see that the mpltextctrl expands to fill all the
extra space in mplsizer2.

The net result of this is an empty, unused area as the second slot of mplsizer1: this
is the area that we are going to use for the Matplotlib Figure.

Embedding Matplotlib in wxWidgets

[206]

We select a panel from the widgets window and add it to the empty area, which will
be completely filled by it.

We now declare it as a custom panel. We select the panel, and go into the Common
tab of the Properties window; we now set Name as mplpanel, in Class we replace
wxPanel with MplPanel (the name of our custom class), and then enable Base class
and set it to wxPanel.

In this way, we declared a custom panel mplpanel managed by the custom class
MplPanel, which will control the Matplotlib Figure.

Let's see the whole tree of objects, just to have a global view of the widgets
relationships:

As we can see, there is a menubar also: to add one, we select the MplFrame, select
the Widget tab of the Properties window, we check the Has MenuBar property, and
a menubar widget is added to the Tree widget window.

We now click on it to rename it to mplmenubar and then in the Properties window,
we click on Edit menus... to create our menu items. The result is:

Chapter 7

[207]

As we can see, we have also defined the event handlers and the callback functions
that will react when a menu item is selected.

The GUI design has been completed.

At this point, we want wxGlade to generate the Python code to implement the
GUI itself.

To do this, we select the Application object from the widgets Tree (it's at the root),
and the Application tab appears on Properties window. This panel also presents an
option for Code Generation:

Embedding Matplotlib in wxWidgets

[208]

The Application tab on the Properties windows looks like this:

We select Separate file for each class so that each class is written in a different file,
instead of having just one big file. This is very important for big projects. After this,
we select python as the Language and 2.8 for the wxWidgets compatibility version
and then we configure the Output path. To generate the code, we can click on the
Generate code button.

But there is more than the GUI in an application: we have to add all the logic to it, to
define how the application reacts to a users inputs, the interactions, and so on.

Chapter 7

[209]

The code generated by wxGlade for this example is separated in three files:

• app.py: The code to execute the application
• MplFrame.py: The frame where we designed the GUI
• MplPanel.py: The custom panel that contains the Matplotlib Figure

wxGlade uses the well-known technique of guarded region. The autogenerated code
of wxGlade is wrapped inside comments blocks that are actually instructions for
wxGlade; for example:

begin wxGlade: ...

... wxGlade generated code ...
end wxGlade

Code between these comments is overwritten completely everytime we ask wxGlade
to regenerate the code. Outside these regions, the code is preserved. This is where we
can add our logic while still letting wxGlade modify its own parts.

Let's look at the source code files, and in details, the code that we added (the code
that was not generated by wxGlade).

app.py is really simple:

import wx
from MplFrame import MplFrame
if __name__ == "__main__":
 app = wx.PySimpleApp(0)
 wx.InitAllImageHandlers()
 MplFrame = MplFrame(None, -1, "")
 app.SetTopWindow(MplFrame)
 MplFrame.Show()
 app.MainLoop()

It contains the code to initialize and show the MplFrame. app.py is the file to execute
to run the application.

MplFrame.py contains the code to create the main window, and it's almost
completely generated except for the bodies of callback functions (the function's
headers are generated by wxGlade):

 def onFileQuit(self, event): # wxGlade: MplFrame.<event_handler>
 self.Close(True)
 def onFileOpen(self, event): # wxGlade: MplFrame.<event_handler>
 filename = wx.FileSelector()
 if filename:
 self.mpltextctrl.SetValue(filename)

Embedding Matplotlib in wxWidgets

[210]

These are the functions called once we select an item in the menu: to close the
application and to open a file selector to choose a file to parse.

 def parse_file(self, event): # wxGlade: MplFrame.<event_handler>
 self.mplpanel.update_graph(self.mpltextctrl.GetValue())

This is called when the button is clicked.

But it's in MplPanel.py where there is the biggest part of custom code:

from __future__ import with_statement

At the head of the file, we add the import for the with statement that will be used to
open the file for parsing.

from matplotlib.figure import Figure
import numpy as np
from matplotlib.backends.backend_wxagg import \
 FigureCanvasWxAgg as FigureCanvas

Still in the heading part, we import the Figure class, the NumPy module, and the
FigureCanvas specific for the WxAgg backend.

class MplPanel(wx.Panel):
 def __init__(self, *args, **kwds):
 # begin wxGlade: MplPanel.__init__
 wx.Panel.__init__(self, *args, **kwds)
 self.__set_properties()
 self.__do_layout()
 # end wxGlade
 self.figure = Figure(figsize=(6, 4), dpi=100)
 self.axes = self.figure.add_subplot(111)
 self.canvas = FigureCanvas(self, wx.ID_ANY, self.figure)

This is the __init__ method of our custom class: we can see the guarded region
for wxGlade, and then we can add our code to set up an empty Axes where we will
draw the plot later.

 def parse_file(self, filename):

We add a function to parse the file: its task is to count the occurrences of each letter
in the given file.

 letters = {}
 for i in range(97, 122 + 1):
 letters[chr(i)] = 0

Chapter 7

[211]

So we first initialize the letters dictionary with a value of 0 for each letter; 97 is the
ordinal number for the lowercase letter a, while 122 is the ordinal number for the the
lowercase letter z.

 with open(filename) as f:
 for line in f:
 for char in line:
 if ord(char.lower()) in range(97, 122 + 1):
 letters[char.lower()] += 1

The actual parse code for each character in each line of the file checks if it's a letter,
and if it is, increments its counter.

 return sorted(letters.keys()), [letters[k] for k in
sorted(letters.keys())]

The last instruction is the return statement: we return two lists, one containing
the ordered letters (the keys of the dictionary) and the second containing the
corresponding letter's frequencies (the values of the dictionary, indexed by ordered
letters).

 def update_graph(self, filename):

We need another function, one that will take care of updating the Axes instance with
the occurrences of the frequencies of letters of the current file.

 l, v = self.parse_file(filename)

At the beginning, we take the resultset from the parse_file() function.

 self.axes.clear()

Then we clear the Axes instance: this will reset all Axes information (such as X and Y
limits), will remove any objects from it, and so on.

 self.axes.bar(np.arange(len(l))-0.25, v, width=0.5)

So now we can draw the bar plot for the letters frequencies. We set the bars width to
be 0.5 units; to have bars centered around the X ticks we shift the bars starting point
(as specified by the first list in bar()) by 0.25 to the left: the center of the bar will
now match the tick position with half the bar on the left and half on the right.

 self.axes.set_xlim(xmin=-0.25, xmax=len(l)-0.75)

We fine tune the X limits: the first bar would have started at position 0, but as we
have shifted all bars beginning by 0.25 to the left, the first bar now starts at -0.25.
At the opposite, the last bar ends at the last tick position (len(l) – 1) plus an
additional half-bar width of 0.25. That's how the limit values are obtained.

Embedding Matplotlib in wxWidgets

[212]

 self.axes.set_xticks(range(len(l)))
 self.axes.set_xticklabels(l)

We set the xticks to be right below each bar, labeling them with the letters.

 self.axes.get_yaxis().grid(True)

We enable a grid, but only for the Y-axis. Note that a grid is drawn per axis,
and so calling grid() on the Axes instance is like calling grid() on each of the
axis separately.

 self.figure.canvas.draw()

At the end, we force a draw on the Figure canvas.

If we execute the app.py file and parse the default file, then we will see a window
like this:

Chapter 7

[213]

Summary
With what we have seen here, we are now able to develop wxWidgets applications
and then embed Matplotlib in them.

In particular, we have seen how to:

• Embed a Matplotlib Figure in a wxFrame
• Use a sizer to embed both Figure and navigation toolbar in a wxFrame
• Update a plot in real time using wxWidgets timer and Matplotlibs blit()
• Use wxGlade to design a GUI, generate the source code to implement it, and

embed Matplotlib into it

We are now ready to move further and see how to integrate Matplotlib into the Web.

Matplotlib for the Web
The World Wide Web is pervasive in all of our activities. Today, we are seeing a
gradual shift from the desktop to the Web: applications that were earlier installed on
personal desktop computers are now used through the browser and so on.

Programming for the Web has become an even hotter topic since the rise of the
so-called Web 2.0. So if we want to be a part of this, then we need powerful tools
at hand, and a web graphing solution is one of them.

In this chapter, we will explore how to expose Matplotlib on the Web using:

• CGI (through Apache mod_cgi)
• mod_python
• Django
• Pylons

The first two are low-level methods for programming the Web, while the latter are
two of the most popular web frameworks for Python.

The world of programming is always evolving, so it's important to have a common
ground from where we can start productively. Here are the versions of the tools
that we will use during this chapter. We suggest you to use the same versions to try
the examples to avoid problems with missing or changed functionalities in older or
newer versions:

• Apache: version 2.2.11, available at http://www.apache.org/
• mod_python: version 3.3.1, available at http://www.modpython.org/
• Django: version 1.0.2, available at http://www.djangoproject.com/
• Pylons: version 0.9.7, available at http://pylonshq.com/

Matplotlib for the Web

[216]

Each section will start with a brief introduction to the technology, moving on to
explaining, with the help of some examples, how to use Matplotlib into it.

Please note that this is not a book about those tools, so we expect the user to have
them installed and working, and in case of problems, refer to the tool documentation
and/or the operating system support.

Matplotlib and CGI
CGI, being quite simple, is the perfect start for Matplotlib on the Web.

What is CGI
CGI is the acronym for Common Gateway Interface, and it's one of the oldest (and
hence well-supported by almost every web server) ways to write web applications.

CGI defines a way for a web server to interact with external content-generating
programs, which are often referred to as CGI programs or CGI scripts. It is the
simplest, and the most common way to put dynamic content on a web site.

At a very low level, we can see a CGI script as just a script executed by a web server,
receiving the inputs (if any) from the request and then returning the result to the
user browser.

The CGI programs code must be interpreted by a web server. As there are far too
many web servers available, each with its own configuration, we decided to show
how to configure the most widely used one: Apache.

Configuring Apache for CGI execution
In this section, we are about to see how to configure Apache to permit CGI execution.

Apache default configuration usually has a cgi-bin directory to contain CGI scripts,
a special directory that is separated from the rest of the contents (mainly for
security reasons).

It is possible to add as many directories for CGI execution as we need, and so we
decided to create a new directory to contain the CGI scripts for Matplotlib examples.

So we edit the general Apache configuration file, httpd.conf, and change the
VirtualHosts (if any) we are using. In any case, the additional configuration we
need is:

 ScriptAlias /matplotlib/cgi-bin/ /path/to/cgi-bin/
 <Directory "/path/to/cgi-bin/">

Chapter 8

[217]

 Options +ExecCGI
 Order allow,deny
 Allow from all
 </Directory>

where /path/to/ indicates a the full path to the location of the cgi-bin directory,
whatever we may choose it to be.

A change to Apache's configuration requires a service restart to
be applied.

Let's describe these directives.

Apache has a default location for web contents, the DocumentRoot. Apache is said
to expose a web space: the hierarchy of pages provided by the web server, retrieved
from the DocumentRoot. Anything outside the DocumentRoot is not (by default)
accessible by Apache web sites.

The Alias directive maps an additional web space to an external directory (the tree
of files and directory) from the filesystem space (what is stored on the hard drives).
This way we can serve contents outside the DocumentRoot.

For CGI scripts, there is a more specific directive, ScriptAlias that works the
same way as that of Alias but additionally, it will force all the content located
at that target to be treated as CGI scripts.

In our configuration, we map the /matplotlib/cgi-bin/ web space to the /path/
to/cgi-bin/ directory that will contain our scripts.

As the directory specified in ScriptAlias is outside the DocumentRoot, we have to
define what options to use for it; Apache provides the Directory directive to do it.

Here we have to specify that the files in it are CGI scripts and that they need to be
processed by the mod_cgi script handler by enabling the option ExecCGI.

We also need to explicitly permit access to the target directory using:

 Order allow,deny
 Allow from all

Now, all the files in the directory will be treated as CGI scripts.

Please note these simple tips to prevent common mistakes:

• A CGI script must be a working script, with a correct shebang (the first
line of the script, starting with #! and then specifying the full path to the
interpreter to use) and without syntax errors.

Matplotlib for the Web

[218]

• The scripts must be readable and executable by any users. Apache is usually
run by an unprivileged user, so it must be able to read the script
and execute it (and the same applies to any file that the script uses).

Simple CGI example
Writing a CGI script in Python is simple—it's just a script that receives user input
and then generates an output that the web server will redirect to the client browser.

Python's standard library supplies modules to handle common CGI-related tasks:

• cgi: To handle user inputs in CGI scripts
• cgitb: To display a nice traceback in case an error occurs

It's now time for an example; let's take the following code:

#!/usr/bin/python
print "Content-Type: text/html" # headers; HTML is following
print # blank line, end of headers
print """<html>
<head><title>Simple CGI script</title></head>
<body><h2>Hello, world!</h2></body>
</html>"""

Save it to a file named 7900_08_01.py in our cgi-bin directory (the one defined
earlier), and then point the browser to http://localhost/matplotlib/cgi-
bin/7900_08_01.py. Hello, world! will be displayed:

Even though this example is very simple, it demonstrates an important aspect of
CGI scripts.

The output of any CGI script must consist of two sections, separated by one (or
more) blank line: first comes the headers, telling the client (the browser) what kind of
data will follow. The second section contains the data itself (such as HTML code, an
image, and so on).

Chapter 8

[219]

In the previous script, the Content-Type HTTP header (which must be always
present) specifies that the data is to be parsed as HTML, we then have the separation
line, and finally some simple HTML text.

However, there is a downside with CGI: as the processes are started by the web
server itself, every request starts a new Python interpreter to execute the script, and
it takes some time to start up. This poses a big limitation for situations where a fast
response is required or where high-load applications are running.

Matplotlib in a CGI script
We are now ready to see how to use Matplotlib in a CGI script. It's not really
different from writing a Python script, but there are some tips to do it nicely.
Here is the code:

import sys

At the beginning of the script, we import the sys module because we need it to
access the standard output.

import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt

Many web servers don't have a graphical environment enabled, so we have to select
a Matplotlib backend that doesn't rely on a GUI library to render the figure. As
we are going to generate PNG images, we will use the Agg backend that uses the
antigrain rendering engine to create nice PNGs.

Remember that to change the Matplotlib backend, matplotlib.use()
must be called before any Matplotlib plotting module is imported.

plt.plot([1, 2, 3, 2, 3, 4])

Here we generate the graph, as always.

print "Content-Type: image/png\n"

Then we can start to output the result to the client: we must specify the Content-
Type, and select the MIME string to represent a PNG image. This means that what will
follow is a PNG image. The '\n' notation in print grants us an additional new line to
inform the browser that the headers section is over and the data comes next.

plt.savefig(sys.stdout, format='png')

Matplotlib for the Web

[220]

Here is the trick: we save the plot directly to the standard output. This will make
the web server send the image data to the client (the browser) that will handle it
correctly because we specified the correct Content-Type.

If we now call the URL http://localhost/matplotlib/cgi-bin/7900_08_02.py,
we will see this:

Passing parameters to a CGI script
CGI scripts can also receive user data, for example, using the GET method for
passing parameters. Let's see how we can process them and generate a dynamic
graph with Matplotlib.

import sys

We import the sys module to output the graph in a standard output.

import cgitb
cgitb.enable()

Chapter 8

[221]

Debugging CGI scripts has traditionally been difficult, mainly because it is hard to
study the output (standard output and error) from scripts which fail to run properly
and because the information is sent only to the Apache logs that are not always
accessible by developers.

cgitb can help us with this: it activates a special exception handler that will display
detailed information in the web browser (in case any errors occur), instead of only
writing the traceback into the Apache log files.

Without cgitb, in case of an error the interpreter just crashes and a non-descriptive
Internal Server Error message is displayed on the browser, and the Python traceback
is printed only in the Apache error.log.

It's important that cgitb is imported before cgi, so that the exception handler is
replaced before cgi is loaded.

A security note: remember to disable cgitb for production CGI scripts,
as it can expose internal or confidential information, and also because all
exceptions should be caught and handled.

Continuing with the scripts we have:

import cgi

The standard library's cgi module that allows to access GET parameters.

import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt

We select the non-GUI Agg backend and then import pyplot.

form = cgi.FieldStorage()

the FieldStorage instance contains parameters passed in GET or POST, and it
provides a handy way to access them.

form_data = form.getfirst('data', '1,3,2,2,4')

getfirst() returns only one value associated to the requested field name (note that
browser can reorder parameters, so it's the first in the order it is received), even if
more are specified.

Matplotlib for the Web

[222]

This is a security tip: we should never expect users to provide valid
inputs (either due to mistakes or malevolent attempts), so while using
getfirst(), the script won't crash if more parameters with the same
name are passed.

The additional argument is the default value, which is used in case the requested
field is missing.

In this case, we try to access the data parameter that should contain a
comma-separated values (CSV) list of integers to plot, but if it's missing, we fall
back to the default value.

data = [int(x) for x in form_data.split(',')]

Here we parse the list, splitting on the ',' character to generate a list of integers to
be plotted.

plt.plot(data)

We generate the plot starting from the data list.

print "Content-Type: image/png\n"
plt.savefig(sys.stdout, format='png')

Finally, we plot the resulting image to the standard output, so it is directly sent to
the client program.

Calling the URL http://localhost/matplotlib/cgi-bin/7900_08_
03.py?data=2,3,2,1,2,3,2 generates the following screenshot:

Chapter 8

[223]

This script represents a real image, so we can also embed it in web
pages, using:

as done for any other image file.

Matplotlib and mod_python
Let's first introduce what mod_python is and then show some examples.

What is mod_python
mod_python is an Apache module that embeds the Python interpreter within the
web server.

With CGI, a separate process is spawn and its output is then returned to the
client's application; every request to a CGI script creates a new process, and this
results in unnecessary CPU and I/O activity that poses serious problems to
application scalability.

Matplotlib for the Web

[224]

mod_python solves this problem by embedding the Python interpreter directly into
the Apache processes, thus speeding up the applications response time. Not having to
start a Python interpreter at every request eliminates the typical startup penalty of CGI.

The result is that you can make web applications that are many times faster than
the CGI approach and have full access to advanced features (such as database
connection retention between hits) and to Apache internals.

Also, simple Python scripts and programs benefit from this approach. They don't
have to pay the price of starting the Python interpreter at each request, thus
providing a fast response mechanism well suited for exposing function libraries on
the Web.

But we have to notice that there are also some drawbacks:

• Every Apache child process needs to load the whole Python interpreter, even
if it doesn't use it. This will result in a higher memory usage and a slow startup
of the child process (however a child remains active for several requests).

• mod_python uses a specific version of Python (in particular, linking against
a given version of libpython), so it's not possible to upgrade Python without
upgrading mod_python too.

• The Python interpreter is loaded and remains active, and as Python uses
caching when executing files, if a script is changed, the whole Apache server
must be restarted to see the change. A restart is also needed to free memory
if the memory usage increased due to a higher number of requests or if there
was a memory leak in the application.

Apache configuration for mod_python
As it's an Apache module, we have to configure the httpd server before we can start
using mod_python.

After the installation of mod_python, we have to let Apache load it by specifying the
following line in the httpd.conf file:

LoadModule python_module modules/mod_python.so

Then, we can edit our VirtualHost (for example, /etc/apache2/sites-
available/default – default vhost on Debian) to add:

 ScriptAlias /matplotlib/mod_python/ /path/to/mod_python/
 <Directory "/path/to/mod_python/ ">
 Order allow,deny
 Allow from all

Chapter 8

[225]

 AddHandler mod_python .py .psp
 PythonHandler mod_python.publisher | .py
 PythonHandler mod_python.psp | .psp
 PythonDebug On
 </Directory>

Alternatively, we can do this configuration in the .htaccess file in the same
directory. In this last case, Apache restart is not needed.

The first two options are needed to allow users to access the directory, if it's outside
the DocumentRoot of Apache server. Then, there are the mod_python-specific
options.

Even if we use the ScriptAlias directive to specify that the directory will contain
only the script, we might need to have more handlers for them. By using this line.

 AddHandler mod_python .py .psp

We tell Apache that every request for .py and .psp filename extensions in this
directory (or its subdirectories) needs to be served by the mod_python handler.

PythonHandler specifies which is the main response handler (where the contents
of the response are typically generated); we use a particular syntax:

 PythonHandler mod_python.publisher | .py
 PythonHandler mod_python.psp | .psp

Since we have multiple resource types that need to be processed by distinct handler
functions, we have to qualify what extensions should be served by what handler.

Our configuration is such that:

• The publisher handler will take care of the Python script (with .py
extension) execution

• The psp handler will process text documents with Python code embedded
in them (.psp extensions)

The last option:

 PythonDebug On

instructs mod_python to output any Python errors to the browser instead of only
in the Apache error log (but that does not imply not to check log files); this is very
useful for debugging purposes during development phases.

Matplotlib for the Web

[226]

Due to security concerns (as it can expose internal information), it's highly
recommended to disable the PythonDebug option for production usage,
but keeping it active while developing.

After changing the Apache configuration file, we have to restart the web server (not
needed when using .htaccess).

Matplotlib in a mod_python example
In this example, we will see how to generate a simple image using Matplotlib and
mod_python.

import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np

This is the usual import to set a non-GUI backend and for modules needed to
generate the plot.

from cStringIO import StringIO

We will use this module to simulate file writing to Matplotlib functions while we
are actually writing into a StringIO object (no disk access is needed).

def index(req):

This is the function that gets called when an access request is made to a resource
under mod_python control.

There is always one argument—the request object. The req object is automatically
created and provides all the information about that particular request, such as the IP
address of a client, the headers, URI, and so on. Note that the communication back to
the client is also done through the request object: there is no response object.

 plt.cla()

We clear the Axes. As the Python interpreter is loaded and then never closed until
Apache shutdown, if we don't clean the Axes, successive plots will be drawn over
the previous ones.

 x = np.arange(0, 6, .01)
 plt.plot(x, np.sin(x)**3 + 0.5*np.cos(x))

Chapter 8

[227]

We prepare our plot.

 s = StringIO()

We instantiate the StringIO object.

 plt.savefig(s)

Then save the figure on it.

 req.content_type = "image/png"

We set the Content-Type HTTP header. We have to be sure to write the Content-
Type before any write() call. This is because once the first write() is called, the
HTTP headers (and thus including Content-Type) are sent to the client, and all
subsequent headers are simply lost.

 req.write(s.getvalue())

Next, we write the content of s (that's actually the Matplotlib plot) to the req object.

If we save this script in a file named 7900_08_04.py and visit this URL http://
localhost/matplotlib/mod_python/7900_08_04.py, then we will see a web page
similar to the following screenshot:

Matplotlib for the Web

[228]

Matplotlib and mod_python's Python Server
Pages
mod_python provides presentation support—a templating system called Python
Server Pages (PSP). PSP is a framework that allows us to embed Python code within
HTML, similar to what PHP, JSP or ASP does.

Anything in between the <% and %> delimiters is interpreted as Python code,
and whatever is in between <%= and %> is replaced with the result of the
expression contained.

Our example starts with an open tag for PSP, <% at the top of the file, and then
we have.

import matplotlib
matplotlib.use('Agg')

We select a non-GUI backend.

from matplotlib.backends.backend_agg import \
 FigureCanvasAgg as FigureCanvas

we import the Figure and FigureCanvasAgg (that maps a Figure into a
backend-dependent representation, Agg in this case): we will use the API approach
in this example.

from cStringIO import StringIO

We import the StringIO module to simulate a file write.

if (form.has_key('data')) and form.getfirst('data') != '':

It's real Python code, so we can check for a variable existence and so on; here we
check if the data GET parameter is present (and not empty). The first time a form
variable is accessed in a PSP file, an instance of FieldStorage is automatically
created, containing the necessary functions to handle the submitted data.

 data = [int(x) for x in form.getfirst('data').split(',')]

We expect the data to be a CSV of integer values, so we now parse that parameter
to generate a list of integers.

Note that getfirst() will return the first parameter submitted by the form with the
given name (this will avoid any unexpected problems, should some malicious users
pass the same parameter more than once).

 fig = Figure()
 canvas = FigureCanvas(fig)
 ax = fig.add_subplot(111)

Chapter 8

[229]

 ax.plot(data)

We generate the plot.

 s = StringIO()
 canvas.print_figure(s)

Print it to the StringIO object.

 req.content_type = "image/png"

Now, we set the Content-Type.

 req.write(s.getvalue())

Write the image to the req object, sending it to the client.

else:

If we don't have the data parameter (or it's empty), then we present an HTML page
with a textbox where we can enter values to the plot.

%>
<html><head>
<title>A simple script to generate a plot</title>
<head>
<body>
<form method="POST" action="/matplotlib/mod_python/7900_08_05.psp">
<p>
<hr>

<input type="text" name="data" size=30 />

<input type="submit" value="Generate the Plot" />

<hr>
</form>
</body></html>

Note how the form action recalls the script itself by passing the value set in the
data input box.

Matplotlib for the Web

[230]

Now, by calling the URL at http://localhost/matplotlib/mod_python/7900_
08_05.psp, we can enter some values:

and see them plotted as:

Chapter 8

[231]

Web Frameworks and MVC
The previous approaches are perfectly fine for independent scripts or for very simple
web applications.

But, as soon as the application starts to grow, they suddenly show their limits:

• Common parts of the code (for example, database connection) must be
shared between the scripts

• Developers should concentrate on coding the application core, without
dwelling on the technicalities of the web infrastructure (such as
setting Content-Type)

• Deploying the application in a different environment often requires a lot
of changes (parameters, setup, and so on)

A web framework provides the programming infrastructure for creating web
applications so that the developers can focus on writing clean maintainable code
without reinventing the wheel and creating sites that are faster and more robust.

Modern frameworks give us everything we need to start working: a template engine,
a way to save and access data in a database, and many more features.

Usually, a web framework is a collection of packages or modules that allow
developers to write web applications whose main advantage is to spare
developers from handling low-level details such as protocols, sockets, or process/
thread management.

Recently one web application pattern arose as the winning one: MVC.

MVC, the acronym for Model-View-Controller, is a way of organizing the project,
not a programming technique. It is quite interesting to note that MVC was conceived
significantly before the explosion of WWW, in particular the design traces back to
1979, as a part of Smalltalk programming language.

In the MVC pattern, we have a clear separation between these three aspects:

• Model: The interface used to access data resources (usually a database)
where data is stored and retrieved

• View: How the data is presented to the users, the user interface
• Controller: The application core logic that manipulates the data from

the model to present it to the users (using a view) and controls the users'
interactions with it

Organizing the code by following the MVC pattern will result in a web application
that is easily extensible, flexible, and scalable.

Matplotlib for the Web

[232]

Matplotlib and Django
Django is a very well-known Python web framework. Let's first introduce it and
then present the example.

What is Django
Django grew from a practical need: create a framework for building intensive
web applications for journalism or news web sites.

As Django was born in the news environment, it offers several features which are
particularly well suited for content web sites. Although Django is particularly good
for developing those sorts of sites, that doesn't preclude it from being an effective
tool for building any kind of dynamic web site.

Moreover, it's a common misinterpretation that Django is a Content Management
System (CMS); well, it is not. It's a web framework, a programming tool, as well as
something that we can use to create a CMS.

Django changes the MVC pattern slightly; in its interpretation:

• The view describes the data that gets presented to the users (not necessarily
how the data will be presented, but which data to present). This is basically a
Python callback function for a particular URL.

• The controller is (probably) Django itself: the machinery that delivers
requests to the appropriate view.

It might be quite confusing because a controller in MVC is a view in Django, and a
view in MVC is a template in Django. For these reasons, Django is often referred to
as an MTV framework: Model-Template-View.

Some of the fundamental aspects of Django are:

• Simplicity: It has been designed to make common web development tasks
fast and easy, reducing the pain of repetitive tasks.

• Loose coupling: Even if it's a full stack of convenience components, the
various layers of the framework should not know about each other.

• Less code: A Django app should use as little code as possible.
• Quick development: Makes the tedious task of web development fast, so

that developers can concentrate on the real core of the application.

Chapter 8

[233]

• Elegant URL scheme: URLs should be as flexible as possible and completely
decoupled from the underlying Python code: in fact, Django uses a very
interesting feature for this, a regular expression-based URLs dispatching
mechanism.

Matplotlib in a Django application
The first step in creating a Django application is to create a Django project. Before that,
we create a directory (that will contain our project) and move into it. It's not a good
idea to store the Django project files and directories under the web server document
root because we risk the possibility that people may be able to view the code over the
Web. So, using a directory outside the document root is highly encouraged.

Then we can issue this command:

$ django-admin startproject mpldjango

This commands creates a directory called mpldjango (we must use a name that
would not conflict with other Python components, because it will be imported)
that will contain our project.

If we look at the mpldjango directory contents, we can see this hierarchy:

mpldjango/
|-- __init__.py
|-- manage.py
|-- settings.py
`-- urls.py

Let's have a look at the following table for a brief description of these files:

Filename Description
__init__.py Empty file, used only to tell Python that this directory can be

imported by other Python packages.
manage.py A command-line utility to interact with this Django project.
settings.py Settings or configuration for this Django project.
urls.py The URLs or the functions mapping of this Django project; consider

it like the "Table of contents" of the site, the file that specifies which
view is called for a given URL pattern.

Now that we have our environment (project) set up, we are ready to start doing
some work, and this work is done by an application (also called app).

Matplotlib for the Web

[234]

Let's first look at the differences between an application and a project:

• An application is a web application that does something (which can be
useful to a project)

• A project is a collection of settings and applications for a given web site
• A project can contain multiple applications
• An application can be in multiple projects

So the applications are the building blocks of a Django project.

To create an app from within the mpldjango project directory, we execute
this commands:

$ python manage.py startapp mpl

that creates a new directory named mpl with this content:

mpl/
|-- __init__.py
|-- models.py
`-- views.py

where:

Filename Description
__init__.py Has the same function as that of the project's __init__.py
models.py Contains the database layout classes
views.py Contains the views for the application, the core logic for the pages

A view is a type of web pages in our Django app that serves a specific function.

The contents of the page are produced by a view function, so we are about to write
a function in the views.py file to generate and return a Matplotlib plot.

import django

import Figure and FigureCanvas, we will use API
from matplotlib.backends.backend_agg import \
 FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure

used to generate the graph
import numpy as np

def mplimage(request):
 # do the plotting
 fig = Figure()
 canvas = FigureCanvas(fig)
 ax = fig.add_subplot(111)

Chapter 8

[235]

 x = np.arange(-2,1.5,.01)
 y = np.sin(np.exp(2*x))
 ax.plot(x, y)

 # prepare the response, setting Content-Type
 response=django.http.HttpResponse(content_type='image/png')
 # print the image on the response
 canvas.print_png(response)
 # and return it
 return response

The only difference from other examples is the import of the django module and
the preparation of the response object.

Now that we have the view ready, we need to expose it in Django.

Django provides a clean and elegant URL schema where the requests are mapped to
the Python code using a map between URLs and callback functions. Moreover, the
map is done using regular expressions, granting an extreme flexibility.

The map is stored in the file indicated by ROOT_URLCONF item in settings.py that
usually points to <app>/urls.py.

So in our example, the file mpldjango/urls.py contains the URLs dispatching
configuration, so we're going to add a line to the urlpatterns tuple there:

urlpatterns = patterns('',
 (r'mplimage.png', 'mpl.views.mplimage'),
)

The previous code snippet maps the URL (the first field) to the location of the
callback function to call to serve that request (the second field).

In this case, it's really simple (not even using a regular expression), but generally
speaking, when a user requests a page, Django runs through each pattern (in the
order they are written in the file) and stops at the first one that matches the requested
URL. At this point, Django imports and calls the given view.

Regular expressions are compiled at load time, so this mechanism is extremely fast.

Matplotlib for the Web

[236]

But we are curious to see what we've just developed, so let's start the Django
development web server with:

$ python manage.py runserver

Validating models...

0 errors found

Django version 1.0.2 final, using settings 'mpldjango.settings'

Development server is running at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

This is a lightweight web server shipped with Django to
develop things rapidly. An important note: do not ever use it for
production environment, as it's intended to be used only while
developing.

So now, by pointing the browser to http://127.0.0.1:8000/mplimage.png, we see
the next screenshot:

Chapter 8

[237]

Matplotlib and Pylons
First, we will introduce Pylons, and then we will see how to use Matplotlib with it.

What is Pylons
Pylons provides a structured but extremely flexible Python web framework.

It works a bit differently from other frameworks. Instead of presenting a rigid
structure or recreating all the pieces that a web application framework should
provide, it chooses a loosely coupled approach.

Pylons is a collection of very carefully selected components that are well known and
widespread, and almost any of them can be exchanged (that's what we meant by
loosely coupled). Pylons is just a thin glue layer used to merge all these components,
abstract them, and present a consistent and flexible environment.

This allows developers to model Pylons to their needs, and to use the tools they
know best. It also allows to choose the best components for the specific job at hand.

Just to give an example of the available components, here is a (short) list of
supported projects along with their function in Pylons:

• Data model: SQLAlchemy, SQLObject, CouchDB, and so on
• Templating: Mako, Genshi, Jinja2, and so on
• Helpers: WebHelpers, FormAlchemy, and so on
• URL dispatching: Routes, and so on

Pylons is built on top of Paste, which is mainly a web server and an extensive
set of tools to help developers and system administrators develop and deploy
web applications.

Pylons uses the MVC pattern—requests are dispatched to the controller that interact
with the model to retrieve the relevant information which is then presented to the
user using a view.

And Pylons is also much more than just a framework, for example it has:

• Interactive web debugger: In case of an exception, a traceback is displayed
on the browser, and we can interact with it.

• Built-in web server: When using Paste, Pylons doesn't need to use any
external web server (such as Apache), and that makes the upgrade and the
deploy processes easier.

Matplotlib for the Web

[238]

Matplotlib in a Pylons application
We start by creating a new Pylons project, using Paste's paster command:

$ paster create --template=pylons mplpylons

Selected and implied templates:

 Pylons#pylons Pylons application template

Variables:

 egg: mplpylons

 package: mplpylons

 project: mplpylons

Enter template_engine (mako/genshi/jinja2/etc: Template language)
['mako']: mako

Enter sqlalchemy (True/False: Include SQLAlchemy 0.5 configuration)
[False]: False

...

The previous command creates a project called mplpylons using the pylons
template (that specifies directories and file structure for the project), the default one.

Then several output lines are printed. We are prompted to choose the templating
engine and whether to include SQLAlchemy support. We will not use them, so any
response is fine.

This generates a complex directory tree that we have reduced to the following
because these are the items we will be using:

mplpylons/
|-- <several other files and directories>
|-- mplpylons
| |-- <several other files and directories>
| `-- controllers
`-- development.ini

where:

• development.ini: This is the application project configuration file.
It contains settings to run the Pylons application in a development
environment. For example, when developing a Pylons application, it is very
useful to be able to see a debug report every time an error occurs. For a
production environment, there will be a different file.

• mplpylons subdirectory: This is the main application directory, and the name
is the same as we gave in the paster create command line (lowercase)—it
is the place where our code is stored.

Chapter 8

[239]

• mplpylons/controllers: This is where the application controllers are
written; as said, controllers are the core of the application, handling requests,
interacting with models and views.

At this point, we already have a working web application. Even though it is empty,
we can start it with:

$ cd mplpylons

$ paster serve --reload development.ini

Starting subprocess with file monitor

Starting server in PID 20006.

serving on http://127.0.0.1:5000

This command will start a web server that listens to localhost on port 5000 (it's all
written in development.ini file) with our application running, so we can visit
http://127.0.0.1:5000/ and see the Pylons welcome page.

It's recommended to use the Paste HTTP web server; we can think of Paste for Pylons
as being like Apache for PHP. It listens for HTTP requests and dispatches them to the
running applications, returning the result through HTTP to the client's browser.

Note the --reload option: it ensures that the server is automatically reloaded, if
changes are made to Python files or to development.ini; this way changes are
immediately reflected on the live site. This is very useful during development.
To stop the server, press Ctrl+c or the platform's equivalent.

What we need to do now is create a new controller to generate an image using
Matplotlib.

In the MVC pattern, the controller receives a request, interprets its inputs, and
interacts with the model to prepare data for representation, which is then rendered
using a view (for example, using a templating language).

In our situation, we don't have a model to query, or a view—our controller will
directly generate an image and will send it to the client.

There are two options for serving images to the user:

1. Writing a temporary file and serve that
2. Directly output the image data to the browser

We will use the second option, as it's the most efficient.

To create the controller, we use the paster command:

$ paster controller mpl

Matplotlib for the Web

[240]

Creating .../mplpylons/controllers/mpl.py

Creating .../mplpylons/tests/functional/test_mpl.py

As we can see, it adds two files—the actual controller and a test file, which is used to
run some of the functional tests.

The controller file is just a skeleton, so we need to add a method to it. In the Pylons
terminology, a method in a controller is called an action.

The code is nothing new. We just have some little additions for the Pylons framework:

import logging
from pylons import request, response, session, tmpl_context as c
from pylons.controllers.util import abort, redirect_to
from mplpylons.lib.base import BaseController, render
log = logging.getLogger(__name__)

This is a big part, autogenerated by paster for importing Pylons' modules.

import matplotlib
matplotlib.use('Agg')
from matplotlib.backends.backend_agg import \
 FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
import numpy as np

Here we add the imports for Matplotlib plot generation.

from cStringIO import StringIO

This is used to simulate file writing.

class MplController(BaseController):
 def index(self):

Then, we have the definition of the controller class and the response method.
Note how the controller class is the concatenation of the controller's name with
Controller (in camel case).

In the body of the index() function, we'll be writing the Matplotlib code:

 fig = Figure()
 canvas = FigureCanvas(fig)
 ax = fig.add_subplot(111)
 x = np.arange(-2,2,.01)
 y = x*np.sin(x**3)
 ax.plot(x, y)
 s = StringIO()

Chapter 8

[241]

 canvas.print_figure(s)
 response.headers['Content-Type'] = 'image/png'
 return s.getvalue()

In every action, we have access to the request object (created automatically at
each request) that contains all the information about HTTP request, parameters,
and so on.

To return data to the client, we use the response object, where we set the
Content-Type HTTP header and the payload, retuning the image bytes (anytime
we return something from a controller action, Pylons automatically writes it to
the response objects).

The --reload option makes the Paste server reload after the new controller changes:

.../mplpylons/controllers/mpl.py changed; reloading...

-------------------- Restarting --------------------

Starting server in PID 21188.

serving on http://127.0.0.1:5000

Now we can point our browser to http://127.0.0.1:5000/mpl/index and see that
the controller generates the Matplotlib Figure.

Matplotlib for the Web

[242]

Note how the URLs are mapped to the controller and then to the function to call.
Pylons uses Routes package that allows for very sophisticated URL mapping.

The default URL map is http://<server>:<port>/<controller>/<action>. So
with this URL, we are invoking the index() action (method) of the MplController
class that generates our graph.

Summary
Being able to create plots with Matplotlib in web applications is really interesting.
In this chapter, we've seen how Matplotlib can interact with older but consolidated
techniques such as:

• CGI
• mod_python

Along with that, this chapter also covered Matplotlib interaction with recent, but
very popular Python application web frameworks such as:

• Django
• Pylons

Matplotlib in the Real World
In this chapter you will see several examples of Matplotlib usage in real-world
situations, showing some of the common cases where we can use Matplotlib to draw
a plot of some values.

There is a common workflow for this kind of job:

1. Identify the best data source for the information we want to plot
2. Extract the data of interest and elaborate it for plotting
3. Plot the data

Usually, the hardest part is to extract and prepare the data for plotting. Due to this,
we are going to show several examples of the first two steps.

The examples are:

•	 Plotting data from a database
•	 Plotting data from a web page
•	 Plotting the data extracted by parsing an Apache log file
•	 Plotting the data read from a comma-separated values (CSV) file
•	 Plotting extrapolated data using curve fitting
•	 Third-party tools using Matplotlib (NetworkX and mpmath)
•	 Plotting geographical data using Basemap

Let's begin

Matplotlib in the Real World

[244]

Plotting data from a database
Databases often tend to collect much more information than we can simply extract
and watch in a tabular format (let's call it the "Excel sheet" report style).

Databases not only use efficient techniques to store and retrieve data, but they are
also very good at aggregating it.

One suggestion we can give is to let the database do the work. For example, if we
need to sum up a column, let's make the database sum the data, and not sum it up
in the code. In this way, the whole process is much more efficient because:

•	 There is a smaller memory footprint for the Python code, since only the
aggregate value is returned, not the whole result set to generate it

•	 The database has to read all the rows in any case. However, if it's smart
enough, then it can sum values up as they are read

•	 The database can efficiently perform such an operation on more than one
column at a time

The data source we're going to query is from an open source project: the Debian
distribution. Debian has an interesting project called UDD, Ultimate Debian
Database, which is a relational database where a lot of information (either historical
or actual) about the distribution is collected and can be analyzed.

On the project website http://udd.debian.org/, we can find a full dump
of the database (quite big, honestly) that can be downloaded and imported
into a local PostgreSQL instance (refer to http://wiki.debian.org/
UltimateDebianDatabase/CreateLocalReplica for import instructions).

Now that we have a local replica of UDD, we can start querying it:

module to access PostgreSQL databases
import psycopg2
matplotlib pyplot module
import matplotlib.pyplot as plt

Since UDD is stored in a PostgreSQL database, we need psycopg2 to access it.
psycopg2 is a third-party module available at http://initd.org/projects/
psycopg.

connect to UDD database
conn = psycopg2.connect(database="udd")
prepare a cursor
cur = conn.cursor()

Chapter 9

[245]

We will now connect to the database server to access the udd database instance,
and then open a cursor on the connection just created.

this is the query we'll be making
query = """
select to_char(date AT TIME ZONE 'UTC', 'HH24'), count(*)
 from upload_history
 where to_char(date, 'YYYY') = '2008'
 group by 1
 order by 1"""

We have prepared the select statement to be executed on UDD. What we wish to
do here is extract the number of packages uploaded to the Debian archive (per hour)
in the whole year of 2008.

A couple of notes:

•	 date	AT	TIME	ZONE	'UTC': As date field is of the type timestamp	with	
time	zone, it also contains time zone information, while we want
something independent from the local time. This is the way to get a date
in UTC time zone.

•	 group by 1: This is what we have encouraged earlier, that is, let the
database do the work. We let the query return the already aggregated data,
instead of coding it into the program.

execute the query
cur.execute(query)
retrieve the whole result set
data = cur.fetchall()

We execute the query and fetch the whole result set from it.

close cursor and connection
cur.close()
conn.close()

Remember to always close the resources that we've acquired in order to avoid
memory or resource leakage and reduce the load on the server (removing
connections that aren't needed anymore).

unpack data in hours (first column) and
uploads (second column)
hours, uploads = zip(*data)

Matplotlib in the Real World

[246]

The query result is a list of tuples, (in this case, hour and number of uploads), but
we need two separate lists—one for the hours and another with the corresponding
number of uploads. zip() solves this with *data, we unpack the list, returning the
sublists as separate arguments to zip(), which in return, aggregates the elements
in the same position in the parameters into separated lists. Consider the following
example:

In [1]: zip(['a1', 'a2'], ['b1', 'b2'])
Out[1]: [('a1', 'b1'), ('a2', 'b2')]

To complete the code:

graph code
plt.plot(hours, uploads)
the the x limits to the 'hours' limit
plt.xlim(0, 23)
set the X ticks every 2 hours
plt.xticks(range(0, 23, 2))
draw a grid
plt.grid()
set title, X/Y labels
plt.title("Debian packages uploads per hour in 2008")
plt.xlabel("Hour (in UTC)")
plt.ylabel("No. of uploads")

The previous code snippet is the standard plotting code, which results in the
following screenshot:

Chapter 9

[247]

From this graph we can see that in 2008, the main part of Debian packages uploads
came from European contributors. In fact, uploads were made mainly in the evening
hours (European time), after the working days are over (as we can expect from a
voluntary project).

Plotting data from the Web
Often, the information we need is not distributed in an easy-to-use format such as
XML or a database export but for example only on web sites.

More and more often we find interesting data on a web page, and in that case we
have to parse it to extract that information: this is called web scraping.

In this example, we will parse a Wikipedia article to extracts some data to plot.
The article is at http://it.wikipedia.org/wiki/Demografia_d'Italia and
contains lots of information about Italian demography (it's in Italian because the
English version lacks a lot of data); in particular, we are interested in the population
evolution over the years.

Probably the best known Python module for web scraping is BeautifulSoup
(http://www.crummy.com/software/BeautifulSoup/). It's a really nice library
that gets the job done quickly, but there are situations (in particular with JavaScript
embedded in the web page, such as for Wikipedia) that prevent it from working.

As an alternative, we find lxml quite productive (http://codespeak.net/lxml/).
It's a library mainly used to work with XML (as the name suggests), but it can also
be used with HTML (given their quite similar structures), and it is powerful and
easy–to-use.

Let's dig into the code now:

to get the web pages
import urllib2
lxml submodule for html parsing
from lxml.html import parse
regular expression module
import re
Matplotlib module
import matplotlib.pyplot as plt

Matplotlib in the Real World

[248]

Along with the Matplotlib module, we need the following modules:

•	 urllib2: This is the module (from the standard library) that is used to access
resources through URL (we will download the webpage with this).

•	 lxml: This is the parsing library.
•	 re: Regular expressions are needed to parse the returned data to extract the

information we need. re is a module from the standard library, so we don't
need to install a third-party module to use it.

general urllib2 config
user_agent = 'Mozilla/5.0 (compatible; MSIE 5.5; Windows NT)'
headers = { 'User-Agent' : user_agent }
url = "http://it.wikipedia.org/wiki/Demografia_d'Italia"

Here, we prepare some configuration for urllib2, in particular, the user_agent
header is used to access Wikipedia and the URL of the page.

prepare the request and open the url
req = urllib2.Request(url, headers=headers)
response = urllib2.urlopen(req)

Then we make a request for the URL and get the HTML back.

we parse the webpage, getroot() return the document root
doc = parse(response).getroot()

We parse the HTML using the parse() function of lxml.html and then we get
the root element. XML can be seen as a tree, with a root element (the node at the
top of the tree from where every other node descends), and a hierarchical structure
of elements.

find the data table, using css elements
table = doc.cssselect('table.wikitable')[0]

We leverage the structure of HTML accessing the first element of type table of
class wikitable because that's the table we're interested in.

prepare data structures, will contain actual data
years = []
people = []

Preparing the lists that will contain the parsed data.

iterate over the rows of the table, except first and last ones
for row in table.cssselect('tr')[1:-1]:

Chapter 9

[249]

We can start parsing the table. Since there is a header and a footer in the table, we
skip the first and the last line from the lines (selected by the tr tag) to loop over.

 # get the row cell (we will use only the first two)
 data = row.cssselect('td')

We get the element with the td tag that stands for table data: those are the cells in
an HTML table.

 # the first cell is the year
 tmp_years = data[0].text_content()
 # cleanup for cases like 'YYYY[N]' (date + footnote link)
 tmp_years = re.sub('\[.\]', '', tmp_years)

We take the first cell that contains the year, but we need to remove the additional
characters (used by Wikipedia to link to footnotes).

 # the second cell is the population count
 tmp_people = data[1].text_content()
 # cleanup from '.', used as separator
 tmp_people = tmp_people.replace('.', '')

We also take the second cell that contains the population for a given year. It's quite
common in Italy to separate thousands in number with a '.' character: we have to
remove them to have an appropriate value.

 # append current data to data lists, converting to integers
 years.append(int(tmp_years))
 people.append(int(tmp_people))

We append the parsed values to the data lists, explicitly converting them to
integer values.

plot data
plt.plot(years,people)
ticks every 10 years
plt.xticks(range(min(years), max(years), 10))
plt.grid()
add a note for 2001 Census
plt.annotate("2001 Census", xy=(2001, people[years.index(2001)]),
 xytext=(1986, 54.5*10**6),
 arrowprops=dict(arrowstyle='fancy'))

Matplotlib in the Real World

[250]

Running the example results in the following screenshot that clearly shows why the
annotation is needed:

In 2001, we had a national census in Italy, and that's the reason for the drop in that
year: the values released from the National Institute for Statistics (and reported in the
Wikipedia article) are just an estimation of the population. However, with a census,
we have a precise count of the people living in Italy.

Plotting data by parsing an Apache
log file
Plotting data from a log file can be seen as the art of extracting information from it.

Every service has a log format different from the others. There are some
exceptions of similar or same format (for example, for services that come from
the same development teams) but then they may be customized and we're back at
the beginning.

The main differences in log files are:

•	 Fields orders: Some have time information at the beginning, others in the
middle of the line, and so on

•	 Fields types: We can find several different data types such as integers,
strings, and so on

•	 Fields meanings: For example, log levels can have very different meanings

Chapter 9

[251]

From all the data contained in the log file, we need to extract the information we are
interested in from the surrounding data that we don't need (and hence we skip).

In our example, we're going to analyze the log file of one of the most common
services: Apache. In particular, we will parse the access.log file to extract the total
number of hits and amount of data transferred per day.

Apache is highly configurable, and so is the log format. Our Apache configuration,
contained in the httpd.conf file, has this log format:

"%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\""

This is in LogFormat specification where:

Log directive Description
%h The host making the request
%l Identity of the client (which is usually not available)
%u User making the request (usually not available)
%t The time the request was received
%r The request
%>s The status code
%b The size (in bytes) of the response sent to the client (excluding the

headers)
%{Referer}i The page from where the requests originated (for example, the

HTML page where a PNG image is requested)
%{User-Agent}i The user agent used to make the request

This resulting log looks like this:

127.0.0.1 - - [08/Aug/2009:00:26:05 +0200] \
 "GET /doc/apache2-doc/manual/images/down.gif HTTP/1.1" 200 56 \
 "http://localhost/doc/apache2-doc/manual/en/logs.html" \
 "Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.0.11) \
 Gecko/2009061317 Iceweasel/3.0.11 (Debian-3.0.11-1)"

where we introduced the line breaks for clarity.

Let's look at the code to parse this log:

to read Apache log file
from __future__ import with_statement

Matplotlib in the Real World

[252]

We open the file using the with statement.

Numpy and matplotlib modules
import numpy as np
import matplotlib.pyplot as plt
needed for formatting Y axis
from matplotlib.ticker import FuncFormatter

This is the standard import for Numpy and Matplotlib pyplot module, along with
the FuncFormatter that is needed to properly format the Y-axis.

to parse the log file
import re

We need to parse the log file and the best way to do this is by using regular
expressions.

def megabytes(x, pos):
 """Formatter for Y axis, values are in megabytes"""
 return '%1.f' % (x/(1024*1024))

This function will be used for formatting the Y-axis: it is called for each tick, passing
the value of the label and its position. We gather values in bytes, and this function
will display values in megabytes.

prepare the regular expression to match
the day and the size of the request
apa_line = re.compile(r'.*\[([^:]+):.* ([0-9]+) .+ .+')

Here we prepare the regular expression to extract the day and the transferred data
for the request. It consists of the following parts:

Pattern Description
.* Matches a string of any length made of any character
\[The literal [is needed to mark the positions where the interesting data

begins
([^:]+) A non-zero string of characters (none of them equals to ':') will match the

day, the parentheses signal to save the value for further reference
:.* A literal colon : followed by a string of any length made of any character
 ([0-9]+) A space followed by a number
 .+ .+ A space followed by two non-empty strings (separated by a space)

In this way, we extract the day of the request along with the response size from
every line.

Chapter 9

[253]

prepare dictionaries to contain the data
day_hits = {}
day_txn = {}

These dictionaries will store the parsed data.

we open the file
with open('<location of the Apache>/access.log') as f:
 # and for every line in it
 for line in f:

we open the file (we have to select the proper location of access.log as it differs
between operating systems and/or installation), and for every line in it

 # we pass the line to regular expression
 m = apa_line.match(line)
 # and we get the 2 values matched back
 day, call_size = m.groups()

We parse the line and take the resulting values.

 # if the current day is already present
 if day in day_hits:
 # we add the call and the size of the request
 day_hits[day] += 1
 day_txn[day] += int(call_size)

else if the current day is already present in the dictionaries, then add the hit and the
size to the respective dictionaries.

 else:
 # else we initialize the dictionaries
 day_hits[day] = 1
 day_txn[day] = int(call_size)

If the current day is not present, then we need to initialize the dictionaries for a
new day.

prepare a list of the keys (days)
keys = sorted(day_hits.keys())

We prepare a sorted list of dictionary keys, since we need to access it several times.

prepare a figure and an Axes in it
fig = plt.figure()
ax1 = fig.add_subplot(111)

Matplotlib in the Real World

[254]

We prepare a Figure and an Axes in it.

bar width
width = .4

We define the bars width.

for each key (day) and it's position
for i, k in enumerate(keys):

Then we enumerate the item in keys so that we have a progressive number
associated with each key.

 # we plot a bar
 ax1.bar(i - width/2, day_hits[k], width=width, color='y')

Now we can plot a bar at position i (but shifted by width/2 to center the tick) with
its height proportional to the number of hits, and width set to width. We set the bar
color to yellow.

for each label for the X ticks
for label in ax1.get_xticklabels():
 # we hide it
 label.set_visible(False)

We hide the labels on the X-axis to avoid its superimposition with the other Axes
labels (for transfer size).

add a label to the Y axis (for the first plot)
ax1.set_ylabel('Total hits')

We set a label for the Y-axis.

create another Axes instance, twin of the previous one
ax2 = ax1.twinx()

We now create a second Axes, sharing the X-axis with the previous one.

plot the total requests size
ax2.plot([day_txn[k] for k in keys], 'k', linewidth=2)

We plot a line for the transferred size, using the black color and with a bigger width.

set the Y axis to start from 0
ax2.set_ylim(ymin=0)

Chapter 9

[255]

We let the Y-axis start from 0 so that it can be congruent with the other Y-axis.

set the X ticks for each element of keys (days)
ax2.set_xticks(range(len(keys)))
set the label for them to keys, rotating and align to the right
ax2.set_xticklabels(keys, rotation=25, ha='right')

We set the ticks for the X-axis (that will be shared between this and the bar plot)
and the labels, rotating them by 25 degrees and aligning them to the right to better
fit the plot.

set the formatter for Y ticks labels
ax2.yaxis.set_major_formatter(FuncFormatter(megabytes))
add a label to Y axis (for the second plot)
ax2.set_ylabel('Total transferred data (in Mb)')

Then we set the formatter for the Y-axis so that the labels are shown in megabytes
(instead of bytes).

add a title to the whole plot
plt.title('Apache hits and transferred data by day')

Finally, we set the plot title.

On executing the preceding code snippet, the following screenshot is displayed:

The preceding screenshot tells us that it is not a very busy server, but it still shows
what's going on.

Matplotlib in the Real World

[256]

Plotting data from a CSV file
A common format to export and distribute datasets is the Comma-Separated Values
(CSV) format. For example, spreadsheet applications allow us to export a CSV from
a working sheet, and some databases also allow for CSV data export. Additionally,
it's a common format to distribute datasets on the Web.

In this example, we'll be plotting the evolution of the world's population divided by
continents, between 1950 and 2050 (of course they are predictions), using a new type
of graph: bars stacked.

Using the data available at http://www.xist.org/earth/pop_continent.aspx
(that fetches data from the official UN data at http://esa.un.org/unpp/index.
asp), we have prepared the following CSV file:

Continent,1950,1975,2000,2010,2025,2050
Africa,227270,418765,819462,1033043,1400184,1998466
Asia,1402887,2379374,3698296,4166741,4772523,5231485
Europe,547460,676207,726568,732759,729264,691048
Latin America,167307,323323,521228,588649,669533,729184
Northern America,171615,242360,318654,351659,397522,448464
Oceania,12807,21286,31160,35838,42507,51338

In the first line, we can find the header with a description of what the data in the
columns represent. The other lines contain the continent's name and its population
(in thousands) for the given years.

There are several ways to parse a CSV file, for example:

•	 NumPy's loadtxt() (what we are going to use here)
•	 Matplotlib's mlab.csv2rec()
•	 The csv module (in the standard library)

but we decided to go with loadtxt() because it's very powerful (and it's what
Matplotlib is standardizing on).

Let's look at how we can plot it then:

for file opening made easier
from __future__ import with_statement

We need this because we will use the with statement to read the file.

numpy
import numpy as np

Chapter 9

[257]

NumPy is used to load the CSV and for its useful array data type.

matplotlib plotting module
import matplotlib.pyplot as plt
matplotlib colormap module
import matplotlib.cm as cm
needed for formatting Y axis
from matplotlib.ticker import FuncFormatter
Matplotlib font manager
import matplotlib.font_manager as font_manager

In addition to the classic pyplot module, we need other Matplotlib submodules:

•	 cm (color map): Considering the way we're going to prepare the plot,
we need to specify the color map of the graphical elements

•	 FuncFormatter: We will use this to change the way the Y-axis labels
are displayed

•	 font_manager: We want to have a legend with a smaller font, and
font_manager allows us to do that

def billions(x, pos):
 """Formatter for Y axis, values are in billions"""
 return '%1.fbn' % (x*1e-6)

This is the function that we will use to format the Y-axis labels. Our data is in
thousands. Therefore, by dividing it by one million, we obtain values in the order
of billions. The function is called at every label to draw, passing the label value and
the position.

bar width
width = .8

As said earlier, we will plot bars, and here we define their width.

The following is the parsing code. We know that it's a bit hard to follow (the data
preparation code is usually the hardest one) but we will show how powerful it is.

open CSV file
with open('population.csv') as f:

The function we're going to use, NumPy loadtxt(), is able to receive either
a filename or a file descriptor, as in this case. We have to open the file here
because we have to strip the header line from the rest of the file and set up the
data parsing structures.

 # read the first line, splitting the years
 years = map(int, f.readline().split(',')[1:])

Matplotlib in the Real World

[258]

Here we read the first line, the header, and extract the years. We do that by calling
the split() function and then mapping the int() function to the resulting list,
from the second element onwards (as the first one is a string).

 # we prepare the dtype for exacting data; it's made of:
 # <1 string field> <len(years) integers fields>
 dtype = [('continents', 'S16')] + [('', np.int32)]*len(years)

NumPy is flexible enough to allow us to define new data types. Here, we are creating
one ad hoc for our data lines: a string (of maximum 16 characters) and as many
integers as the length of years list. Also note how the first element has a name,
continents, while the last integers have none: we will need this in a bit.

 # we load the file, setting the delimiter and the dtype above
 y = np.loadtxt(f, delimiter=',', dtype=dtype)

With the new data type, we can actually call loadtxt(). Here is the description of
the parameters:

•	 f: This is the file descriptor. Please note that it now contains all the lines
except the first one (we've read above) which contains the headers, so no
data is lost.

•	 delimiter: By default, loadtxt() expects the delimiter to be spaces, but
since we are parsing a CSV file, the separator is comma.

•	 dtype: This is the data type that is used to apply to the text we read. By
default, loadtxt() tries to match against float values

 # "map" the resulting structure to be easily accessible:
 # the first column (made of string) is called 'continents'
 # the remaining values are added to 'data' sub-matrix
 # where the real data are
 y = y.view(np.dtype([('continents', 'S16'),
 ('data', np.int32, len(years))]))

Here we're using a trick: we view the resulting data structure as made up of two
parts, continents and data. It's similar to the dtype that we defined earlier, but
with an important difference. Now, the integer's values are mapped to a field name,
data. This results in the column continents with all the continents names, and the
matrix data that contains the year's values for each row of the file.

data = y['data']
continents = y['continents']

Chapter 9

[259]

We can separate the data and the continents part into two variables for easier
usage in the code.

prepare the bottom array
bottom = np.zeros(len(years))

We prepare an array of zeros of the same length as years. As said earlier, we plot
stacked bars, so each dataset is plot over the previous ones, thus we need to know
where the bars below finish. The bottom array keeps track of this, containing the
height of bars already plotted.

for each line in data
for i in range(len(data)):

Now that we have our information in data, we can loop over it.

 # create the bars for each element, on top of the previous bars
 bt = plt.bar(range(len(data[i])), data[i], width=width,
 color=cm.hsv(32*i), label=continents[i],
 bottom=bottom)

and create the stacked bars. Some important notes:

•	 We select the the i-th row of data, and plot a bar according to its element's
size (data[i]) with the chosen width.

•	 As the bars are generated in different loops, their colors would be all the
same. To avoid this, we use a color map (in this case hsv), selecting a
different color at each iteration, so the sub-bars will have different colors.

•	 We label each bar set with the relative continent's name (useful for
the legend)

•	 As we have said, they are stacked bars. In fact, every iteration adds a piece
of the global bars. To do so, we need to know where to start drawing the bar
from (the lower limit) and bottom does this. It contains the value where to
start drowing the current bar.

 # update the bottom array
 bottom += data[i]

We update the bottom array. By adding the current data line, we know what the
bottom line will be to plot the next bars on top of it.

label the X ticks with years
plt.xticks(np.arange(len(years))+width/2,
 [int(year) for year in years])

Matplotlib in the Real World

[260]

We then add the tick's labels, the years elements, right in the middle of the bar.

some information on the plot
plt.xlabel('Years')
plt.ylabel('Population (in billions)')
plt.title('World Population: 1950 - 2050 (predictions)')

Add some information to the graph.

draw a legend, with a smaller font
plt.legend(loc='upper left',
 prop=font_manager.FontProperties(size=7))

We now draw a legend in the upper-left position with a small font (to better fit the
empty space).

apply the custom function as Y axis formatter
plt.gca().yaxis.set_major_formatter(FuncFormatter(billions))

Finally, we change the Y-axis label formatter, to use the custom formatting function
that we defined earlier.

The result is the next screenshot where we can see the composition of the world
population divided by continents:

Chapter 9

[261]

In the preceding screenshot, the whole bar represents the total world population, and
the sections in each bar tell us about how much a continent contributes to it. Also
observe how the custom color map works: from bottom to top, we have represented
Africa in red, Asia in orange, Europe in light green, Latin America in green, Northern
America in light blue, and Oceania in blue (barely visible as the top of the bars).

Plotting extrapolated data using curve
fitting
While plotting the CSV values, we have seen that there were some columns
representing predictions of the world population in the coming years. We'd like to
show how to obtain such predictions using the mathematical process of extrapolation
with the help of curve fitting.

Curve fitting is the process of constructing a curve (a mathematical function) that
better fits to a series of data points.

This process is related to other two concepts:

•	 interpolation: A method of constructing new data points within the range
of a known set of points

•	 extrapolation: A method of constructing new data points outside a known
set of points

The results of extrapolation are subject to a greater degree of uncertainty and are
influenced a lot by the fitting function that is used.

So it works this way:

1. First, a known set of measures is passed to the curve fitting procedure that
computes a function to approximate these values

2. With this function, we can compute additional values that are not present in
the original dataset

Let's first approach curve fitting with a simple example:

Numpy and Matplotlib
import numpy as np
import matplotlib.pyplot as plt

These are the classic imports.

the known points set
data = [[2,2],[5,0],[9,5],[11,4],[12,7],[13,11],[17,12]]

Matplotlib in the Real World

[262]

This is the data we will use for curve fitting. They are the points on a plane (so each
has a X and a Y component)

we extract the X and Y components from previous points
x, y = zip(*data)

We aggregate the X and Y components in two distinct lists.
plot the data points with a black cross
plt.plot(x, y, 'kx')

Then plot the original dataset as a black cross on the Matplotlib image.
we want a bit more data and more fine grained for
the fitting functions
x2 = np.arange(min(x)-1, max(x)+1, .01)

We prepare a new array for the X values because we wish to have a wider set of
values (one unit on the right and one on to the left of the original list) and a fine
grain to plot the fitting function nicely.

lines styles for the polynomials
styles = [':', '-.', '--']

To differentiate better between the polynomial lines, we now define their styles list.
getting style and count one at time
for d, style in enumerate(styles):

Then we loop over that list by also considering the item count.
 # degree of the polynomial
 deg = d + 1

We define the actual polynomial degree.
 # calculate the coefficients of the fitting polynomial
 c = np.polyfit(x, y, deg)

Then compute the coefficients of the fitting polynomial whose general format is:
c[0]*x**deg + c[1]*x**(deg – 1) + ... + c[deg]

 # we evaluate the fitting function against x2
 y2 = np.polyval(c, x2)

Here, we generate the new values by evaluating the fitting polynomial against the
x2 array.

 # and then we plot it
 plt.plot(x2, y2, label="deg=%d" % deg, linestyle=style)

Chapter 9

[263]

Then we plot the resulting function, adding a label that indicates the degree of the
polynomial and using a different style for each line.

show the legend
plt.legend(loc='upper left')

We then show the legend, and the final result is shown in the next screenshot:

Here, the polynomial with degree=1 is drawn as a dotted blue line, the one with
degree=2 is a dash-dot green line, and the one with degree=3 is a dashed red line.

We can see that the higher the degree, the better is the fit of the function against
the data.

Let's now revert to our main intention, trying to provide an extrapolation for
population data. First a note: we take the values for 2010 as real data and not
predictions (well, we are quite near to that year) else we have very few values
to create a realistic extrapolation.

Let's see the code:

for file opening made easier
from __future__ import with_statement
numpy
import numpy as np
matplotlib plotting module
import matplotlib.pyplot as plt
matplotlib colormap module

Matplotlib in the Real World

[264]

import matplotlib.cm as cm
Matplotlib font manager
import matplotlib.font_manager as font_manager

bar width
width = .8

open CSV file
with open('population.csv') as f:
 # read the first line, splitting the years
 years = map(int, f.readline().split(',')[1:])

 # we prepare the dtype for exacting data; it's made of:
 # <1 string field> <6 integers fields>
 dtype = [('continents', 'S16')] + [('', np.int32)]*len(years)
 # we load the file, setting the delimiter and the dtype above
 y = np.loadtxt(f, delimiter=',', dtype=dtype)

 # "map" the resulting structure to be easily accessible:
 # the first column (made of string) is called 'continents'
 # the remaining values are added to 'data' sub-matrix
 # where the real data are
 y = y.view(np.dtype([('continents', 'S16'),
 ('data', np.int32, len(years))]))

extract fields
data = y['data']
continents = y['continents']

This is the same code that is used for the CSV example (reported here for
completeness).

x = years[:-2]
x2 = years[-2:]

We are dividing the years into two groups: before and after 2010. This translates to
split the last two elements of the years list.

What we are going to do here is prepare the plot in two phases:

1. First, we plot the data we consider certain values
2. After this, we plot the data from the UN predictions next to our extrapolations

prepare the bottom array
b1 = np.zeros(len(years)-2)

We prepare the array (made of zeros) for the bottom argument of bar().

for each line in data
for i in range(len(data)):
 # select all the data except the last 2 values

Chapter 9

[265]

 d = data[i][:-2]

For each data line, we extract the information we need, so we remove the last
two values.

 # create bars for each element, on top of the previous bars
 bt = plt.bar(range(len(d)), d, width=width,
 color=cm.hsv(32*(i)), label=continents[i],
 bottom=b1)
 # update the bottom array
 b1 += d

Then we plot the bar, and update the bottom array.

prepare the bottom array
b2_1, b2_2 = np.zeros(2), np.zeros(2)

We need two arrays because we will display two bars for the same year—one from
the CSV and the other from our fitting function.

for each line in data
for i in range(len(data)):

 # extract the last 2 values
 d = data[i][-2:]

Again, for each line in the data matrix, we extract the last two values that are
needed to plot the bar for CSV.

 # select the data to compute the fitting function
 y = data[i][:-2]

Along with the other values needed to compute the fitting polynomial.

 # use a polynomial of degree 3
 c = np.polyfit(x, y, 3)

Here, we set up a polynomial of degree 3; there is no need for higher degrees.

 # create a function out of those coefficients
 p = np.poly1d(c)

This method constructs a polynomial starting from the coefficients that we pass
as parameter.

 # compute p on x2 values (we need integers, so the map)
 y2 = map(int, p(x2))

Matplotlib in the Real World

[266]

We use the polynomial that was defined earlier to compute its values for x2. We also
map the resulting values to integer, as the bar() function expects them for height.

 # create bars for each element, on top of the previous bars
 bt = plt.bar(len(b1)+np.arange(len(d)), d, width=width/2,
 color=cm.hsv(32*(i)), bottom=b2_1)

We draw a bar for the data from the CSV. Note how the width is half of that of the
other bars. This is because in the same width we will draw the two sets of bars for a
better visual comparison.

 # create the bars for the extrapolated values
 bt = plt.bar(len(b1)+np.arange(len(d))+width/2, y2,
 width=width/2, color=cm.bone(32*(i+2)),
 bottom=b2_2)

Here, we plot the bars for the extrapolated values, using a dark color map so that
we have an even better separation for the two datasets.

 # update the bottom array
 b2_1 += d
 b2_2 += y2

We update both the bottom arrays.

label the X ticks with years
plt.xticks(np.arange(len(years))+width/2,
 [int(year) for year in years])

We add the years as ticks for the X-axis.

draw a legend, with a smaller font
plt.legend(loc='upper left',
 prop=font_manager.FontProperties(size=7))

To avoid a very big legend, we used only the labels for the data from the CSV,
skipping the interpolated values. We believe it's pretty clear what they're referring
to. Here is the screenshot that is displayed on executing this example:

Chapter 9

[267]

The conclusion we can draw from this is that the United Nations uses a different
function to prepare the predictions, especially because they have a continuous set of
information, and they can also take into account other environmental circumstances
while preparing such predictions.

Tools using Matplotlib
Given that it's has an easy and powerful API, Matplotlib is also used inside other
programs and tools when plotting is needed. We are about to present a couple of
these tools:

•	 NetworkX
•	 Mpmath

NetworkX
NetworkX (http://networkx.lanl.gov/) is a Python module that contains tools
for creating and manipulating (complex) networks, also known as graphs.

A graph is defined as a set of nodes and edges where each edge is associated with
two nodes. NetworkX also adds the possibility to associate properties to each node
and edge.

Matplotlib in the Real World

[268]

NetworkX is not primarily a graph drawing package but, in collaboration with
Matplotlib (and also with Graphviz), it's able to show the graph we're working on.

In the example we're going to propose, we will show how to create a random graph
and draw it in a circular shape.

matplotlib
import matplotlib.pyplot as plt
networkx nodule
import networkx as nx

In addition to pyplot, we also import the networkx module.

prepare a random graph with n nodes and m edges
n = 16
m = 60
G = nx.gnm_random_graph(n, m)

Here, we set up a graph with 16 nodes and 60 edges, chosen randomly from all the
graphs with such characteristics. The graph returned is undirected: edges just connect
two nodes, without a direction information (from node A to node B or vice versa).

prepare a circular layout of nodes
pos = nx.circular_layout(G)

Then we are using a node positioning algorithm, particularly to prepare a circular
layout for the nodes of our graphs; the returned variable pos is a 2D array of nodes'
positions forming a circular shape.

define the color to select from the color map
as n numbers evenly spaced between color map limits
node_color = map(int, np.linspace(0, 255, n))

We want to give a nice coloring to our nodes, so we will use a particular color map,
but before that we have to identify what colors of the color map would be assigned
to each node. We do this by selecting 16 numbers evenly spaced in the 256 available
colors in the color map. We now have a progression of numbers that will result in a
nice fading effect in the nodes' colors.

draw the nodes, specifying the color map and the list of color
nx.draw_networkx_nodes(G, pos,
 node_color=node_color, cmap=plt.cm.hsv)

Chapter 9

[269]

We start drawing the graph from the nodes. We pass the graph object, the position
pos to draw nodes in a circular layout, the color map, and the list of colors to be
assigned to the nodes.

add the labels inside the nodes
nx.draw_networkx_labels(G, pos)

We then request to draw the labels for the nodes. They are numbers identifying the
nodes plotted inside them.

draw the edges, using alpha parameter to make them lighter
nx.draw_networkx_edges(G, pos, alpha=0.4)

Finally, we draw the edges between nodes. We also specify the alpha parameter
so that they are a little lighter and don't just appear as a complicated web of lines.

turn off axis elements
plt.axis('off')

We then remove the Matplotlib axis lines and labels. The result is as shown in
the next screenshot where the nodes' colors are distributed across the whole
color spectrum:

We advise you to look at the examples available on the NetworkX web site. If you
like this kind of stuff, then you'll enjoy it for sure.

Mpmath
mpmath (http://code.google.com/p/mpmath/) is a mathematical library,
written in pure Python for multiprecision floating-point arithmetic, which means
that every calculation done using mpmath can have an arbitrarily high number of
precision digits. This is extremely important for fields such as numerical simulation
and analysis.

Matplotlib in the Real World

[270]

It also contains a high number of mathematical functions, constants, and a library
of tools commonly needed in mathematical applications with an astonishing
performance.

In conjunction with Matplotlib, mpmath provides a convenient plotting interface
to display a function graphically.

It is extremely easy to plot with mpmath and Matplotlib:

In [1]: import mpmath as mp
In [2]: mp.plot(mp.sin, [-6, 6])

In this example, the mpmath plot() method takes the function to plot and the
interval where to draw it.

Running this code, the following window pops up:

We can also plot multiple functions at a time and define our own functions too:

In [1]: import mpmath as mp
In [2]: mp.plot([mp.sqrt, lambda x: -0.1*x**3 + x-0.5], [-3, 3])

On executing the preceding code snippet, we get the following screenshot where we
have plotted the square root (in blue, upper part) and the function we defined (in
red, lower part):

Chapter 9

[271]

To plot more functions, simply provide a list of them to plot(). To define a new
function, we use a lambda expression.

Note how the square root plot is done in full lines for positive values of X, while
it's dotted in the negative part. This is because for X negatives, the result is a
complex number: mpmath represents the real part with dashes and the imaginary
part with dots.

Plotting geographical data
We can also use Matplotlib to draw on geographical map projections using the
Basemap external toolkit. Basemap provides an efficient way to draw Matplotlib
plots over real world maps.

Basemap is a Matplotlib toolkit, a collection of application-specific functions that
extends Matplotlib functionalities, and its complete documentation is available at
http://matplotlib.sourceforge.net/basemap/doc/html/index.html.

Toolkits are not present in the default Matplotlib installation (in fact, they also have
a different namespace, mpl_toolkits), so we have to install Basemap separately. We
can download it from http://sourceforge.net/projects/matplotlib/, under
the matplotlib-toolkits menu of the download section, and then install it following
the instructions in the documentation link mentioned previously.

Matplotlib in the Real World

[272]

Basemap is useful for scientists such as oceanographers and meteorologists, but
other users may also find it interesting. For example, we could parse the Apache
log and draw a point on a map using GeoIP localization for each connection.

We use the 0.99.3 version of Basemap for our examples.

First example
Let's start playing with the library. It contains a lot of things that are very specific,
so we're going to just give an introduction to the basic functions of Basemap.

pyplot module import
import matplotlib.pyplot as plt
basemap import
from mpl_toolkits.basemap import Basemap
Numpy import
import numpy as np

These are the usual imports along with the basemap module.

Lambert Conformal map of USA lower 48 states
m = Basemap(llcrnrlon=-119, llcrnrlat=22, urcrnrlon=-64,
 urcrnrlat=49, projection='lcc', lat_1=33, lat_2=45,
 lon_0=-95, resolution='h', area_thresh=10000)

Here, we initialize a Basemap object, and we can see it has several parameters
depending upon the projection chosen.

Let's see what a projection is: In order to represent the curved surface of the Earth
on a two-dimensional map, a map projection is needed.

This conversion cannot be done without distortion. Therefore, there are many map
projections available in Basemap, each with its own advantages and disadvantages.
Specifically, a projection can be:

•	 equal-area (the area of features is preserved)
•	 conformal (the shape of features is preserved)

No projection can be both (equal-area and conformal) at the same time.

In this example, we have used a Lambert Conformal map. This projection requires
additional parameters to work with. In this case, they are lat_1, lat_2, and lon_0.

Along with the projection, we have to provide the information about the portion of
the Earth surface that the map projection will describe. This is done with the help of
the following arguments:

Chapter 9

[273]

Argument Description
llcrnrlon Longitude of lower-left corner of the desired map domain
llcrnrlat Latitude of lower-left corner of the desired map domain
urcrnrlon Longitude of upper-right corner of the desired map domain
urcrnrlat Latitude of upper-right corner of the desired map domain

The last two arguments are:

Argument Description
resolution Specifies what is the resolution of the features added to the map

(such as coast lines, borders, and so on), here we have chosen
high resolution (h), but crude, low, and intermediate are also
available.

area_thresh Specifies what is the minimum size for a feature to be plotted. In
this case, only features bigger than 10,000 square kilometer

draw the coastlines of continental area
m.drawcoastlines()
draw country boundaries
m.drawcountries(linewidth=2)
draw states boundaries (America only)
m.drawstates()

We start adding features to the map. In this case, we have just added:

•	 The coast lines
•	 The country borders (with a bigger line style)
•	 The state borders inside the country (they are only available for America)

fill the background (the oceans)
m.drawmapboundary(fill_color='aqua')
fill the continental area
we color the lakes like the oceans
m.fillcontinents(color='coral',lake_color='aqua')

We give some colors to our map. We color the ocean with aqua color and the interior
of the continents are coral (but lakes have the same color of the ocean).

draw parallels and meridians
m.drawparallels(np.arange(25,65,20),labels=[1,0,0,0])
m.drawmeridians(np.arange(-120,-40,20),labels=[0,0,0,1])

Matplotlib in the Real World

[274]

We draw a 20 degrees graticule of parallels and meridians for the map. Note how the
labels argument controls the positions where the graticules are labeled. labels is
an array having four elements:

[left, right, top, bottom]

These elements define the label of the parallels and the meridian when they intersect
the borders of the plot. In this case, parallels are labeled when they intersect the left
border and meridians are labeled at the bottom.

After adding a title to it, the result is as shown:

Using satellite background
Basemap can also use a terrain image as a map background.

m = Basemap(llcrnrlon=-119, llcrnrlat=22, urcrnrlon=-64,
 urcrnrlat=49, projection='lcc', lat_1=33, lat_2=45,
 lon_0=-95, resolution='h', area_thresh=10000)

We are using the same map as before.

display blue marble image (from NASA) as map background
m.bluemarble()

We add the satellite images taken from the NASA images library.

draw the coastlines of continental area

Chapter 9

[275]

m.drawcoastlines()
draw country boundaries
m.drawcountries(linewidth=2)
draw states boundaries (America only)
m.drawstates()

Then, we draw the Basemap features over it, as done before, and this results in a
very pretty image, as shown in the following screenshot:

Plot data over a map
We got to know Matplotlib as a tool that can plot datasets easily. It would be really
nice if we can mix this with Basemap projections. Well, of course it's possible, and
this is how it is done.

We need some geographical data to plot over a map, so we take a group of cities,
and we'll plot them on a map. The cities along with their coordinates (taken from
Wikipedia) are:

City Latitude Longitude
London 51° 30′ 28″ N 0° 7′ 41″ W
New York 40° 43′ 0″ N 74° 0′ 0″ W
Madrid 40° 24′ 0″ N 3° 41′ 0″ W
Cairo 30° 3′ 28.8″ N 31° 13′ 44.4″ E
Moscow 55° 45′ 6″ N 37° 37′ 4″ E
Delhi 28° 36′ 36″ N 77° 13′ 48″ E
Dakar 14° 41′ 34″ N 17° 26′ 48″ W

Matplotlib in the Real World

[276]

From the previous table, we can prepare these three lists:

Cities names and coordinates
cities = ['London', 'New York', 'Madrid', 'Cairo', 'Moscow',
 'Delhi', 'Dakar']
lat = [51.507778, 40.716667, 40.4, 30.058, 55.751667,
 28.61, 14.692778]
lon = [-0.128056, -74, -3.683333, 31.229, 37.617778,
 77.23, -17.446667]

where we have recorded the names and coordinates of different cities.

orthogonal projection of the Earth
m = Basemap(projection='ortho', lat_0=45, lon_0=10)

We now prepare a map using an orthogonal projection that displays the Earth in the
way a satellite would see it. The additional arguments, lat_0 and lon_0, represent
the points at the center of the projection (what the satellite looks down at).

draw the borders of the map
m.drawmapboundary()
draw the coasts borders and fill the continents
m.drawcoastlines()
m.fillcontinents()

We then draw the map's border (the edge of the map projection region) and the
coastal lines, and then fill the continents.

map city coordinates to map coordinates
x, y = m(lon, lat)

Here we convert the latitude and longitudes of the different cities into map domain
coordinates—in particular, note that the resulting lists are values in meters on the map.

Calling a Basemap instance with arrays of longitudes and latitudes returns those
locations in the native map projection coordinates.

draw a red dot at cities coordinates
plt.plot(x, y, 'ro')

Now that we have the cities' locations in the map coordinates, we can plot a red dot
at their positions.

for each city,
for city, xc, yc in zip(cities, x, y):
draw the city name in a yellow (shaded) box
 plt.text(xc+250000, yc-150000, city,
 bbox=dict(facecolor='yellow', alpha=0.5))

Chapter 9

[277]

We also want to display the name of the city next to the point in the map. In order to
do this, we use the text() function to write the name of the city (inside a nice yellow
box, a bit translucent because of the alpha channel) next to the points position. Note
the big numbers that are used to adapt the text's position. They need a little bit of
hand tweaking and remember that they are in meters.

The following image is created as a result of executing the preceding code:

Plotting shapefiles with Basemap
Through the DATA.gov portal, the US government is releasing a huge quantity of
high quality datasets that are free to use and analyze. Some of the datasets contain
geographical information in a particular format: Shapefile.

A Shapefile, which commonly refers to a collection of files, is a popular geospatial
data format for Geographical Information Systems (GIS).

Shapefiles store geometrical primitives such as points, lines, and polygons (the shapes)
to represent a geographical feature in a dataset. Each item can also have attributes and
information associated to it, which are used to describe what it represents.

Matplotlib in the Real World

[278]

We will use the dataset available at the URL http://www.data.gov/details/16. It
represents the locations of the copper smelters in the world (it also contains several
other attributes and characteristics about the smelters, but we are not going to use
them here).

the map, a Miller Cylindrical projection
m = Basemap(projection='mill',
 llcrnrlon=-180. ,llcrnrlat=-60,
 urcrnrlon=180. ,urcrnrlat=80.)

We use a map from a Miller cylindrical projection. We limit the latitude (while
keeping the world-wide longitude) because the excluded areas don't have smelters,
and so we have more space for the zones where they are present.

read the shapefile archive
s = m.readshapefile('<location of shapefile>/copper', 'copper')

Reading a shapefile is as simple as calling the readshapefile() function and
passing the shapefile location. The additional argument (in this case, copper) is
the name of the map attribute that will be created to hold the shapefiles' vertices and
features. m.copper will contain the smelters locations in map domain coordinates,
while s contains only general information about the Shapefile.

prepare map coordinate lists for copper smelters locations
x, y = zip(*m.copper)

We prepare a list of coordinates (in the map domain) for the copper smelters
locations; zip() receives the m.copper array unpacked (each sublist is passed as
a separate parameter to zip()).

draw coast lines and fill the continents
m.drawcoastlines()
m.fillcontinents()

We draw the coast lines and fill the continents

draw a blue dot at smelters location
plt.plot(x, y, 'b.')

We can then draw a blue dot at the smelters' locations.

Chapter 9

[279]

When we run the example, we can see a map with dots (in blue) that represent the
places where the smelters are located:

Summary
In this chapter, we have seen several examples of real world Matplotlib
usage, including:

•	 How to plot data read from a database
•	 How to plot data extracted from a parsed Wikipedia article
•	 How to plot data from parsing an Apache log file
•	 How to plot data from a CSV file
•	 How to plot extrapolated data using a curve fitting polynomial
•	 How to plot using third-party tools such as NetworkX and mpmath
•	 How to plot geographical data using Basemap

We hope these practical examples have increased your interest in exploring
Matplotlib, if you haven't already explored it!

Index
Symbols
__init__ method 210
-pylab mode

about 42
functions 42

-pylab mode, functions
draw() 42
ioff() 42
ion() 42
isinteractive() 42

A
Add() function 188
add() method 118
add_subplot() function

fignum parameter 86
numcols parameter 86
numrows parameter 86

add_subplot() method 89
AGG 12
angular coordinates 71
annotate() function

about 75
and text() function, differences 76

annotate(), Pyplot function 100
annotations

annotate() function 75
annotate() function and text() function, dif-

ferences 76
shrink property 76

Anti-Grain Geometry. See AGG
Apache

2.2.11 215
configuring, for CGI execution 216, 217

configuring, for mod_python 224, 225
app.py file 209
arange() function 26
arange(x, y, z) 24
arrow() function 77
arrows

about 77
arrow() function 77
arrow style 77, 78
connection style 77

arrow style
- 77
-[77
-> 77
<- 77
<-> 78
about 77
fancy 78
simple 78
wedge 78

asymmetrical error bars 62
auto-legend positioning 35
autopct, pctdistance keyword argument 68
axes

formatting 96
handling 29-31

axes formatting 96
Axes, Matplotlib objects 85
ax = fig.add_subplot(111) function 86
axis() function 30

B
backend

about 12
FLTKAgg 13

[282]

GTK 12
GTKAgg 12
GTKCairo 12
Qt4Agg 13
QtAgg 13
TkAgg 12
WX 12
WXAgg 12

bar charts
bar() function 63
barh() function 66
bottom, keyword argument 64
color, keyword argument 64
width, keyword argument 64
xerr, keyword argument 64
xticks() 64
xticks location 65
yerr, keyword argument 64
yticks() 64, 65

bar() function 63
barh() function 66
Basemap

about 271
features 272
map projection 272
map projection, advantages 272

Beautiful Soup 247
before, global variable 124
blit() function 198
bottom, keyword argument 64, 98
BoxSizer object 188

C
canvas 12
capsize argument 62
central widget 153
CGI 216
CGI example 218, 219
c, keyword argument 56
C, keyword argument 70
clabel() function 108
clicked() signal 172
cm module 257
color, keyword argument 64
colors

abbreviation 51

controlling 50, 51
selecting 51
specifying, ways 51

colors, abbreviation
b 51
c 51
g 51
k 51
m 51
r 51
w 51
y 51

colors, keyword argument 68
Common Gateway Interface. See CGI
complex directory tree, Pylons application

development.ini 238
mplpylons/controllers 239
mplpylons subdirectory 238

configuration file, in current directory 43
connect()

callback function 115
func 115
handler 115
widget 115

connect() function 171
connection style, arrow

about 77
angle 77
angle3 77
arc 77
arc3 77

connect() method 117
contourf() function 108

colorbar() call 108
contour() function 107
contour lines

about 106
clabel() function 108
contour() call 108
contour colors changing, colormap

used 108
contourf() function 108
contour() function 107
density 107
meshgrid() function 109

CPUMonitor widget
creating 160

[283]

cpu_times() function 124
CPU usage indicators, plot

idle 123
nice 123
system 123
user 123

CSV 222
CSV file

parsing 256
curve fitting

about 261
approaches 261
extrapolation 261
interpolation 261

custom formatters
about 99
format_func function 99

custom locators 99

D
data

plotting, by parsing Apache log file 250
plotting, from CSV file 256-261
plotting, from database 244-247
plotting, from log file 250-255
plotting, from web 247-250

databases 244
date2num() function 95
DateFormatter 96
date formatting, plotting dates

about 95
matplotlib.dates module, helper functions

95
dates plotting

about 94
axes ticks 96
custom formatters 99
custom locators 99
date2num() function 95
DateFormatter 96
date formatting 95
datetime function 95
DayLocator 96
formatters 96
HourLocator 96
linestyle keyword argument 95

locators 96
matplotlib.dates 96
MinuteLocator 96
MonthLocator 96
plot_date() function 94
text property 99
timedelta() 95
WeekdayLocator 96
YearLocator 96

datetime function 95
datetime objects 95
DayLocator 96
delimiter parameter 258
delta items 197
dependencies 13
Django

about 232
features 232

Django 1.0.2 215
Django application 233
Django, features

elegant URL scheme 233
less code 232
loose-coupling 232
quick development 232
simplicity 232

dot-per-inch. See DPI
DPI 11
drange(dstart, dend, delta) function 95
drange() function 96
draw() 126
draw() method 198
dtype parameter 258

E
ecolor argument 62
elinewidth argument 62
Enthought Python Distribution. See EPD
EPD 17
EPS format 11
error bar charts

about 61
asymmetrical error bar 62
capsize argument 62
ecolor argument 62
elinewidth argument 62

[284]

errorbar() function 61
fmt argument 62
symmetrical error bars 62

errorbar() function 61
exec() Qt method 149
explode, keyword argument 68
external TeX renderer 104
extrapolated data

plotting, curve fitting used 261-267

F
fig.autofmt_xdate() 98
fig = plt.figure() function 86
figtext() function 75
figtext(), Pyplot function 100
FigureCanvasBase class 116
FigureCanvas, Matplotlib objects 85
FigureCanvas object, initializing 151
FigureCanvasQTAgg class 147
figure.figsize setting 45
Figure, Matplotlib objects 85
fmt argument 62
font.family

cursive value 101
fantasy value 101
monospace value 101
sans-serif value 101
serif value 101

font_manager module 257
font, properties

font.family 101
font.size 102
font.stretch 102
font.style 101
font.variant 101

fonts 101
font.size

12pt value 102
font.stretch

condensed value 102
expanded value 102
extra-condensed value 102
extra-expanded value 102
narrower value 102
normal value 102
semi-condensed value 102

semi-expanded value 102
ultra-condensed value 102
ultra-expanded value 102
wider value 102

font.style
italic value 101
normal (roman) value 101
oblique value 101

font.variant
font.variantnormal value 101
font.variantsmall-caps value 101

font.weight
100 value 101
200 value 101
300 value 101
400 value 101
500 value 101
600 value 101
700 value 101
800 value 101
900 value 101
bolder value 101
bold value 101
lighter value 101
normal value 101

format_func function 99
f parameter 258
FPS 198
frac argument 76
framework 231
FuncFormatter module 257

G
geographical data

first example 272
plotting 271
plotting, over map 275-277
projection 272
satellite background, using 274
shapefiles, plotting with Basemap 277

get_cpu_usage() function 125
GIMP 114
GIS 277
Glade

code, for using Glade GUI 135-139, 143
libglade used 132

[285]

Matplotlib, embedding 132
used, for designing GUI 132-135

GLib 114
GLib Object System 114
global machine configuration file 43
GNOME desktop environment 114
GNU Image Manipulation Program. See

GIMP
gnuplot 8
GObject 114
grid

adding 28
grid() function 28
GTK+

about 113, 114
GLib Object System 114
GObject library 114
signal system 115

GTK+ library
about 114
PyGTK 114

GTK+ signal callback function
general form 115

GTK+ signal system
about 115
add() method 118
connect() method 117
FigureCanvasBase class 116
GtkWidget method 115

gtk.VBox object 120
GtkWidget method 115
GTK+ window

Matplotlib Figure, embedding 116-119
GUI

designing, Glade used 132-135
Glade GUI, code for using 135-139, 143
GUIdesigning with wxGlade 204

H
hardcopy backends 12
headwidth argument 76
hist() function 59
histogram charts

about 59
hist() function 59, 60
NumPy random.randn() used 59

HourLocator 96

I
idle_add() function 127
id parameter 183
image plotting

about 109
imread() function 109, 110
imshow() function 109, 110

imread() function 109, 110
imshow() function 110
installing, Matplotlib

from source code 17, 18
on Linux 15
on Mac OS X 16
on Windows 16
packaged Python distributions used 17

interactive setting 45
IPython

about 8, 40, 41
functionsa output, suppressing 43
interactive mode, controlling 42
plot() command 42
-pylab mode 42
-pylab option 41

isolines. See contour lines

J
JPG format 11

K
KDE 145
K Desktop Environment. See KDE
keyboard shortcuts

C or left arrow or Backspace 40
F 40
G 40
hold Ctrl 40
hold X 40
hold Y 40
H or R or Home 40
L 40
O 40
P 40
S 40

[286]

V or right arrow 40
keyword argument

about 57
c 56
color 56
linestyle 56
linewidth 56
marker 56
markeredgecolor 56
markeredgewidth 56
markerfacecolor 56
markersize 56

L
labels

adding 31, 32
labels, labeldistance keyword argument 68
LaTeX formatting

about 102
external TeX renderer 104
external TeX renderer, activating 104, 105
mathtext 103, 104

legend
adding 33-35

legend() call 34
legend() function 34

about 195
parameters 195

level lines. See contour lines
libglade 132
line.linecolor setting 45
line.linewidth setting 45
linestyle, keyword argument 56, 95
line styles

abbreviation 53
controlling 52, 53

line styles, abbreviation
line styles, abbreviation 53
- 53
-- 53
-. 53

linewidth, keyword argument 56
loc parameter, legend() function 195
logarithmic axes

about 91
loglog() function 92

semilogx() function 92
semilogy() function 92
set_xscale() function 92
set_yscale() function 92

loglog() function 92
lxml 248

M
MainLoop() method 184
map projection 272
markeredgecolor, keyword argument 56
markeredgewidth, keyword argument 56
markerfacecolor, keyword argument 56
marker, keyword argument 56, 70
markersize, keyword argument 56
marker styles

^ 54
_ 54
, 53
. 53
* 54
+ 54
< 54
| 54
1 54
2 54
3 54
4 54
controlling 53-56
d 54
D 54
h 54
H 54
o 53
p 54
s 54
v 54
x 54

marker styles, abbreviation
^ 54
_ 54
, 53
. 53
* 54
+ 54
< 54

[287]

> 54
| 54
1 54
2 54
3 54
4 54
d 54
D 54
h 54
H 54
o 53
p 54
s 54
v 54
x 54

mathtext module 103, 104
MATLAB language 9
MATLAB styles

versus Object-oriented 81
Matplotlib

about 7
arange(x, y, z) 24
backend 12
colors, controlling 50
colors, selecting 51
configuring 43
embedding, in Glade 132
embedding, in GUI made with wxGlade

204-211
embedding, in GUI Qt Designer 165
exposing on Web, CGI used 216
exposing on Web, Django used 232
exposing on Web, mod_python used 223
exposing on Web, Pylons used 237
features 9
first plots 21-23
in CGI script 219
in, Django application 233
installation, testing 18
installing 15
installing, from source code 17, 18
installing from source, necessities 15
installing, on Linux 15, 16
installing, on Mac OS X 16, 17
installing, on Windows 16
line styles, controlling 52, 53
marker styles, controlling 53-56

merits 8
multiline plots 25, 26
official documentation 10
output formats 11
packaged Python distributions used 17
plots, real-time update 123-131
plot, types 59
range(i, j, k) 24
tools 14
using, styles 81
web site 10
xticks() function 58
yticks() function 58

matplotlib.artist.setp() 100
matplotlib.backends.backend_qt4agg

module 147
Matplotlib, configuring

backend, selecting from code 46, 47
configuration file, in current directory 43
files 44, 45
global machine configuration file 43
matplotlib.rc() 46
matplotlib.rcdefaults() 46
Python code, in current script 43
Python code, in interactive session 43
Python code, in program 43
through Python code 45, 46
user configuration file 43

matplotlib.dates module, helper functions
date2num() 95
datetime objects 95
dateutil, companion module 95
drange() 96
drange(dstart, dend, delta) 95
num2date() 95

Matplotlib, embedding in GUI Qt designer
example 172-177
GUI designing, Qt Designer used 165-171
Qt Designer GUI using, code 168, 169
signals 171
slots 171

Matplotlib, embedding in GUI Qt Designer
165

Matplotlib figure
central widget 153
embedding, in GTK+ window 116-119
embedding, in Qt window 147-149

[288]

embedding, in wxFrame 182-184
FigureCanvas 148
FigureCanvas object, initializing 151
CanvasQTAgg class 147
matplotlib.backends.backend_qt4agg mod-

ule 147
QApplication 148, 153
QMainWindow class 152
setSizePolicy() QWidget method 152
window 148
navigation toolbar, including 119, 151, 121,

187-190
Matplotlib graph

idle 156
nice 156
psutil cpu_times() method 158
QTimer object 159
real-time update 156-164
self.timer. QTimer class 158
startTimer() function 160
system 156
timerEvent() function 159
user 156

Matplotlib, in Real World
data, plotting from CSV file 256-261
data, plotting from database 244-247
data, plotting from log file 250-255
data, plotting from web 247-250
extrapolated data, plotting 261
extrapolated data, plotting curve fitting

used 262-267
geographical data, plotting 271

Matplotlib interaction with CGI
about 216
Apache, configuring 216
CGI example 218, 219
CGI script, debugging 221
exception handler 221
Matplotlib, in CGI script 219
parameters, [passign to CGI 220-222

Matplotlib interaction with Django
about 232
Django application , creating 233

Matplotlib interaction with mod_python
about 223
Apache, configuring 224
mod_python example 226

Python Server Pages 228
Matplotlib interaction with Pylons

about 237
Pylons application 238

Matplotlib, layers for GUI output
canvas 12
renderer 12

Matplotlib mode 14
Matplotlib objects

about 85
Axes 85
Figure 85
FigureCanvas 85

matplotlib.pyplot module 82
matplotlib.rcdefaults() function 46
matplotlib.rc() function 46
matplotlib.rcParams 45
Matplotlib, styles

object-oriented (OO) interface 82
object-oriented way 81
pylab module 81, 82
pyplot module 81, 82

matplotlib.ticker.AutoDateFormatter 97
matplotlib.ticker.AutoDateLocator 97
Matplotlib, tools

AGG (version 2.4) 14
python-dateutil (version1.1 or higher) 14
pytz (version 2007g or higher) 14

meshgrid() function 109
Miller cylindrical projection 278
MinuteLocator 96
mod_python

about 223
drawbacks 224
features 224

mod_python 3.3.1 215
mod_python example 226
MonthLocator 96
mpl.axes.Axes.annotate(), API method 100
mpl.axes.Axes.set_title(), API method 100
mpl.axes.Axes.set_xlabel(), API method 100
mpl.axes.Axes.set_ylabel(), API method 100
mpl.axes.Axes.text(), API method 100
mpldjango directory

about 233
__init__.py file 233
manage.py file 233

[289]

settings.py file 233
urls.py file 233

mpl.figure.Figure.suptitle(), API method
100

mpl.figure.Figure.text(), API method 100
MplFrame.py file 209
MplPanel.py file 210
mplpushButton button 173
mpmath 269-271
multiline plots

about 25
NumPy, arange() function 26
NumPy arrays 27
plot() call 25
styles, specifying 52

multiple figures
about 88, 89
add_subplot() method 89

MVC 231

N
navigation toolbar

about 119
gtk.VBox object 120
NavigationToolbar2GTKAgg class 120
about 38, 39
buttons 39, 40
barkeyboard shortcuts 40
pan mode 39
zoom mode 39
pack_start() function 120

ndarray 27
NetworkX 267, 269
nloc parameter, legend() function 195
NullLocator 99
num2date() function 95
numerix setting 45
NumPy

about 13
arange() function 26

NumPy arrays
arange() function 28
ndarray 27

NumPy module 183
NumPy random.randn() 59

O
Object-oriented

example 85
pylab interface 84
pyplot 84
versus MATLAB styles 81

OO. See Object-oriented
output formats

about 11
EPS format 11
JPG format 11
PDF format 11
PNG format 11
PS format 11
raster images 11
SVG format 11
vector images 11

P
pack_start() function 120

expand 120
fill 120
padding 121

pack_start() method 120
parent parameter 183
parse_file() function 211
PDF format 11
pie charts

about 66
autopct, pctdistance keyword argument 68
colors, keyword argument 68
explode, keyword argument 68
keyword arguments 68
pie() function 67
shadow, keyword argument 68

pie() function 67
PIL 110
plot() 50
plot() call 26, 126
plot() command 42
plot_date() function 94, 97
plots

example 21-23, 35
legend, adding 33-35
multiline plots 25, 26

[290]

saving, to file 36-38
title, adding 32

plot, types
bar charts 63-66
error bar charts 61, 62
histogram charts 59, 60
pie charts 66-68
scatter plots 69

plt.title() function 32
PNG format 11
polar charts

about 71
angle argument 73
angles argument 73
angular coordinates 71
frac argument 73
labels argument 73
polar() function 72
radial coordinates 71
radii argument 73
rgrids() function 73
thetagrid() function 73
toolbar 73

prepare_cpu_usage() 158
projection 272
proportion parameter 189
prop parameter, legend() function 195
PS format 11
PSP 228
psutil 124, 156
psutil cpu_times() 159
psutil cpu_times() method 158
psutil module 193
PyGTK 114
pylab module 82
Pylons

about 237
built-in web server 237
features 237
interactive web debugger 237

Pylons 0.9.7 215
Pylons application

about 238
creating 238-240

Pyplot function
annotate() 100
figtext() 100

mpl.axes.Axes.annotate(), API method 100
mpl.axes.Axes.set_title(), API method 100
mpl.axes.Axes.set_xlabel(), API method 100
mpl.axes.Axes.set_ylabel(), API method

100
mpl.axes.Axes.text(), API method 100
mpl.figure.Figure.suptitle(), API method

100
mpl.figure.Figure.text(), API method 100
suptitle() 100
text() 100
title() 100
xlabel() 100
ylabel() 100

pyplot module 82
PyQt 146
PyQt4 146
Python 7
Python code

in current script 43
in interactive session 43
in program 43

PythonHandler 225
Python Imaging Library. See PIL
Python Server Pages. See PSP

Q
QApplication 151, 153
QMainWindow 152
QMainWindow class 152
Qt 145, 146
QtCore module 146
QtCore.QObject.connect() function 171
QtCore.QObject.disconnect() function 171
QtCore.SLOT() 172
Qt Designer

used, for GUI designing 165-168
QtGui module 146
QtGui submodule 156
QTimer object 159
QtNetwork (for network programming) 146
QtSql (SQL databases support) 146
QtSvg (SVG file support) 146
QtTest (unit testing support) 146
Qt toolkit 146
Qt window

[291]

Matplotlib figure, embedding 147-149
QtXml (XML support) 146
QWidget 147, 148

R
radial coordinates 71
range(i, j, k) 24
raster images, output formats 11
re 248
real-time plot

updating 192
updating, blit() function used 198-202
updating, timer used 194-197

real-time update, plots
about 123
before, global variable 124
cpu_times() function 124
CPU usage indicators, plot 123
draw() 126
get_cpu_usage() function 125
idle_add() function 127
psutil 124
set_data() 126
sleep() function 124

renderer
about 12
FLTKAgg 13
for file output 13
GTK 12
GTKAgg 12
GTKCairo 12
Qt4Agg 13
QtAgg 13
TkAgg 12
user interface toolkits 12
WX 12
WXAgg 12

renderer, for file output
AGG 13
Cairo 13
GDK 13
PDF 13
PS 13
SVG 13

request object 226

rgrids() function
angle argument 73
labels argument 73
radii argument 73

rotation, keyword argument 98

S
savefig.dpi setting 45
savefig.edgecolor setting 45
savefig.facecolor setting 45
scatter() function 69
scatter plots

about 69
C, keyword argument 70
marker, keyword argument 70
randn() NumPy function 69
scatter() function 69
S, keyword argument 70

self.timer. QTimer class 158
semilogx() function 92
semilogy() function 92
set_data() 126
setSizePolicy() QWidget method 152
setupUi() method 171
set_xscale() function 92
set_yscale() function 92
shadow, keyword argument 68
shapefiles 277
share axes

about 92
financial data 92
hardware testing 93
health status 93
ipython 94
sharex. keyword argument 94
sharey. keyword argument 94
twinx() function 92

show() commands 41
show() method 148
Show() method 184, 189
shrink argument 76
shrink property 76
SIGNAL() 172
signals 171
size parameter 183
sizer widgets 188

[292]

S, keyword argument 70
sleep() function 124
SLOT() 172
slots 171
SourceForge page 10
state machine 82
StringIO object 226
subplots

about 86
additional X axes 89, 90
additional Y axes 89, 90
add_subplot() function 86
ax = fig.add_subplot(111) function 86
example 86, 87, 88
fig = plt.figure() function 86
logarithmic axes 91, 92
multiple figures 88, 89
share axes 92, 94
twinx() function 90
twiny() function 90

subplots_adjust() function
bottom 98
hspace 98
left 98
right 98
top 98
wspace 98

suptitle(), Pyplot function 100
SVG format 11
symmetrical error bars 62

T
td tag 249
text() function 74, 75
text inside figure

about 74
text() function 74, 75

text(), Pyplot function 100
thetagrid() function

angles argument 73
frac argument 73
labels argument 73

thetagrids() function
angles argument 73
frac argument 73
labels argument 73

time module 124
timer 194
timerEvent() function 159
title

adding 32
title parameter 183
title(), Pyplot function 100
TkAgg 44
Tkinter 41
tools, using Matplotlib

about 267
mpmath 269
NetworkX 267

triggered() signal 172
twinx() function 90
twiny() function 90

U
UDD 244
UI

about 14
FLTK 14
GTK+ 14
Qt 14
Tk 14
Wx 14

Ui_MplMainWindow class 170
update_draw 127
urllib2 248
user configuration file 43
User Interface. See UI
user interface backend

about 12

V
vector images, output formats 11

W
web scraping 247
web site

main web site 10
SourceForge project page 10

wedges 66
WeekdayLocator 96
width argument 76

[293]

Y
YearLocator 96
yerr, keyword argument 64
ylabel(), Pyplot function 100
ylim() function 30, 194
yticks() function 58

width, keyword argument 64
wxFrame 182
wxGlade

about 203
features 204

wx.HORIZONTAL 188
wx module

importing 187
wxPython

about 182
features 182

wxPython module 182
wx.VERTICAL 188
wxWidgets

about 181
features 182

X
xerr, keyword argument 64
xlabel(), Pyplot function 100
xlim() function 30, 194
xticks() function 58

Thank you for buying
Matplotlib for Python Developers

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Matplotlib for Python Developers, Packt will have given
some of the money received to the Matplotlib project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

Expert Python Programming
ISBN: 978-1-847194-94-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1. Learn Python development best practices from
an expert, with detailed coverage of naming
and coding conventions

2. Apply object-oriented principles, design
patterns, and advanced syntax tricks

3. Manage your code with distributed
version control

CherryPy Essentials: Rapid
Python Web Application
Development
ISBN: 978-1-904811-84-8 Paperback: 272 pages

Design, develop, test, and deploy your Python web
applications easily

1. Walks through building a complete Python
web application using CherryPy 3

2. The CherryPy HTTP:Python interface

3. Use CherryPy with other Python libraries

4. Design, security, testing, and deployment

Please check www.PacktPub.com for information on our titles

Grok 1.0 Web Development
ISBN: 978-1-847197-48-1 Paperback: 250 pages

Create flexible, agile web applications using the
power of Grok—a Python web framework

1. Develop efficient and powerful web
applications and web sites from start to finish
using Grok, which is based on Zope 3

2. Integrate your applications or web sites with
relational databases easily

3. Extend your applications using the power of
the Zope Toolkit

Django 1.0 Website Development
ISBN: 978-1-847196-78-1 Paperback: 272 pages

Build powerful web applications, quickly and cleanly,
with the Django application framework

1. Teaches everything you need to create a
complete Web 2.0-style web application with
Django 1.0

2. Learn rapid development and clean,
pragmatic design

3. No knowledge of Django required

4. Packed with examples and screenshots for
better understanding

Please check www.PacktPub.com for information on our titles

	Packt - Matplotlib for Python Developers (11-2009) (ATTiCA)
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Introduction to Matplotlib
	Merits of Matplotlib
	Matplotlib web sites and online
documentation
	Output formats and backends
	Output formats
	Backends

	About dependencies
	Build dependencies

	Installing Matplotlib
	Installing Matplotlib on Linux
	Installing Matplotlib on Windows
	Installing Matplotlib on Mac OS X
	Installing Matplotlib using packaged
Python distributions
	Installing Matplotlib from source code
	Testing our installation

	Summary

	Chapter 2: Getting Started with Matplotlib
	First plots with Matplotlib
	Multiline plots
	A brief introduction to NumPy arrays

	Grid, axes, and labels
	Adding a grid
	Handling axes
	Adding labels

	Titles and legends
	Adding a title
	Adding a legend

	A complete example
	Saving plots to a file
	Interactive navigation toolbar
	IPython support
	Controlling the interactive mode
	Suppressing functions output

	Configuring Matplotlib
	Configuration files
	Configuring through the Python code
	Selecting backend from code

	Summary

	Chapter 3: Decorate Graphs with Plot Styles and Types
	Markers and line styles
	Control colors
	Specifying styles in multiline plots

	Control line styles
	Control marker styles
	Finer control with keyword arguments

	Handling X and Y ticks
	Plot types
	Histogram charts
	Error bar charts
	Bar charts
	Pie charts
	Scatter plots

	Polar charts
	Navigation Toolbar with polar plots
	Control radial and angular grids

	Text inside figure, annotations, and
arrows
	Text inside figure
	Annotations
	Arrows

	Summary

	Chapter 4: Advanced Matplotlib
	Object-oriented versus MATLAB styles
	A brief introduction to Matplotlib objects
	Our first (simple) example of OO Matplotlib

	Subplots
	Multiple figures
	Additional Y (or X) axes
	Logarithmic axes
	Share axes

	Plotting dates
	Date formatting
	Axes formatting with axes tick locators and formatters
	Custom formatters and locators

	Text properties, fonts, and LaTeX
	Fonts
	Using LaTeX formatting
	Mathtext
	External TeX renderer

	Contour plots and image plotting
	Contour plots
	Image plotting

	Summary

	Chapter 5: Embedding Matplotlib in GTK+
	A brief introduction to GTK+
	Introduction to GTK+ signal system

	Embedding a Matplotlib figure in a
GTK+ window
	Including a navigation toolbar

	Real-time plots update
	Embedding Matplotlib in a Glade
application
	Designing the GUI using Glade
	Code to use Glade GUI

	Summary

	Chapter 6: Embedding Matplotlib in Qt 4
	Brief introduction to Qt 4 and PyQt4
	Embedding a Matplotlib figure in a Qt window
	Including a navigation toolbar

	Real-time update of a Matplotlib graph
	Embedding Matplotlib in a GUI made with Qt Designer
	Designing the GUI using Qt Designer
	Code to use the Qt Designer GUI
	Introduction to signals and slots
	Returning to the example

	Summary

	Chapter 7: Embedding Matplotlib in wxWidgets
	Brief introduction to wxWidgets and
wxPython
	Embedding a Matplotlib figure in a
wxFrame
	Including a navigation toolbar

	Real-time plots update
	Embedding Matplotlib in a GUI made with wxGlade
	Summary

	Chapter 8: Matplotlib for the Web
	Matplotlib and CGI
	What is CGI
	Configuring Apache for CGI execution
	Simple CGI example
	Matplotlib in a CGI script
	Passing parameters to a CGI script

	Matplotlib and mod_python
	What is mod_python
	Apache configuration for mod_python
	Matplotlib in a mod_python example
	Matplotlib and mod_python's Python Server Pages

	Web Frameworks and MVC
	Matplotlib and Django
	What is Django
	Matplotlib in a Django application

	Matplotlib and Pylons
	What is Pylons
	Matplotlib in a Pylons application

	Summary

	Chapter 9: Matplotlib in the Real World
	Plotting data from a database
	Plotting data from the Web
	Plotting data by parsing an Apache
log file
	Plotting data from a CSV file
	Plotting extrapolated data using curve
fitting
	Tools using Matplotlib
	NetworkX
	Mpmath

	Plotting geographical data
	First example
	Using satellite background
	Plot data over a map
	Plotting shapefiles with Basemap

	Summary

	Index

