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ABSTRACT
This paper demonstrates the feasibility of using the vibra-

tion motor in mobile devices as a sound sensor, almost like

a microphone. We show that the vibrating mass inside the

motor – designed to oscillate to changing magnetic fields –

also responds to air vibrations from nearby sounds. With

appropriate processing, the responses become intelligible,

to the extent that humans can understand the vibra-motor

recorded words with greater than 80% average accuracy.

Even off-the-shelf speech recognition softwares are able to

decode at 60% accuracy, without any training or machine

learning. While these findings are not fundamentally sur-

prising (given that any vibrating object should respond to

air vibrations), the fidelity to which this is possible has been

somewhat unexpected. We present our overall techniques

and results through a system called VibraPhone, and dis-

cuss implications to both sensing and security.

1. INTRODUCTION
Vibration motors, also called “vibra-motors”, are small
actuators embedded in all types of phones and wear-
ables. These actuators have been classically used to
provide tactile alerts to human users. This paper iden-
tifies the possibility of using vibra-motors as a sound
sensor, based on the observation that the same movable
mass that causes the pulsation, should also respond to
changes in air pressure. Even though the vibra-motor
is likely to be far less sensitive compared to the (much
lighter) diaphragm of an actual microphone, the ques-
tion we ask is: to what fidelity can the sound be repro-
duced?

Even modest reproduction could prompt new applica-
tions and threats. On one hand, wearable devices like
fitbits, that otherwise do not have a microphone, could
now respond to voice commands. Further, in devices
that already have microphones, perhaps better SNR
could be achieved by combining the uncorrelated (noise)
properties of the vibra-motor and microphone. On the
other hand, leaking sound through vibra-motors opens
new side channels – a malware that has default access
to a phone’s vibra-motor may now be able to eavesdrop
into every phone conversation. Toys that have vibra-
motors embedded could potentially listen into the am-

bience. This paper is an investigation into the vibra-
motor’s e�cacy as a sound sensor, speech in particular.

Our work follows a recent line of work in which mo-
tion sensors in smartphones have been shown to detect
sound. Authors of Gyrophone [29] first demonstrated
the feasibility of detecting sound signals from the ro-
tational motions of smartphone gyroscopes. A recent
work [45] reported how accelerometers may also be able
to detect sound, in fact, classify spoken keywords such
as “OK Google” or “Hello Siri”. Authors rightly iden-
tified the applicability to continuous sound sensing –
the energy-e�cient accelerometer could always stay ac-
tive, and turn on the energy-hungry microphone only
upon detecting a keyword. While certainly useful, we
observe that these systems run pattern recognition al-
gorithms on the features of the signals. The vocabulary
is naturally limited to less than 3 keywords, trained by
a specific speaker. VibraPhone is attempting a di↵erent
problem altogether – instead of learning a motion sig-
nature, it attempts to reconstruct the inherent speech
content from the low bandwidth, highly distorted out-
put of the vibra-motor. Hence, there are no vocabulary
restrictions, and the output of VibraPhone should be
decodable by speech-to-text softwares.

As a first step towards converting a vibra-motor into
a sound sensor, VibraPhone exploits the notion of re-
verse electromotive force (back-EMF) in electronic cir-
cuits. Briefly, the A/C current in the vibra-motor cre-
ates a changing magnetic field around a coil, which in
turn causes the vibra-motor mass to vibrate. However,
when an external force impinges on the same mass –
say due to the pressure of ambient sound – it causes
additional motion, translating into a current in the op-
posite direction. This current, called back-EMF, can be
detected through an ADC after su�cient amplification.
Of course, the signal extracted from the back-EMF is
noisy and at a lower bandwidth than human speech.
However, given that human speech obeys an “acous-
tic grammar”, we find an opportunity to recover the
spoken words even from the back-EMF’s signal traces.
VibraPhone focuses on exactly this problem, and de-
velops a sequence of techniques, including spectral sub-
traction, energy localization, formant extrapolation, and
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harmonic reconstruction, to ultimately distill out legible
speech.

Our experimentation platform is both a Samsung
smartphone and a custom circuit that uses vibra-motor
chips purchased online (these chips are exactly the ones
used in today’s phones and wearables). We characterize
the extent of signal reconstruction as a function of the
loudness of the sound source. Performance metrics are
defined by the accuracy with which the reconstructed
signals are intelligible to humans and to (open-source)
automatic speech recognition softwares. We use the
smartphone microphone as an upper bound, and for
fairness, record the speech at the same sound pressure
level (SPL) [23, 4, 40] across all the devices. We exper-
iment across a range of scenarios within our university
building, and observe that results are robust/useful
when the speaker is less than 2 meters from the vibra-
motor.

Finally, we emphasize that smartphone vibra-motors
cannot be used as microphones today, primarily because
the actuator is simply not connected to an ADC. To
this end, launching side-channel attacks is not immedi-
ate. However, as discussed later, we find that enabling
the listening capability requires almost trivial rewiring
(just soldering at 4 clearly visible junctions). This paper
sidesteps these immediacy questions and concentrates
on the core nature of the information leakage. At the
least, we hope this work will draw attention to the per-
mission policies on vibra-motors, which today are open
to all apps by default. We have made various audio
demos of VibraPhone available on our website [5] – we
request the readers to listen to them to better experi-
ence the audio e↵ects and reconstructions. In closing,
the main contributions in this paper may be summa-
rized as:

• Recognizing that ambient sound manifests itself as
back-EMF inside vibra-motor chips. This leads to
an actuator becoming a sound sensor with minimal
changes to the current mobile device hardware.

• Designing techniques that exploit constraints and
structure of human speech to decode words from a
noisy, low bandwidth signal. Building the system
on a smartphone and custom hardware platform,
and demonstrating decoding accuracy of up to 88%
when a male user is speaking in normal voice near
his phone.

The rest of the paper expands on these contributions.
We begin with a brief introduction to vibra-motors and
our hardware platform.

2. UNDERSTANDING VIBRA-MOTORS
A vibra-motor is an electro-mechanical device that
moves a magnetic mass rhythmically around a neutral

position to generate vibrations [34]. While there are
various kinds of vibra-motors, a popular one is called
Linear Resonant Actuators (LRA) shown in Figure 1.
With LRA, vibration is generated by the linear move-
ment of the magnetic mass suspended near a coil, called
the “voice coil”. Upon applying AC current to the mo-
tor, the coil also behaves like a magnet (due to the
generated electromagnetic field) and causes the mass
to be attracted or repelled, depending on the direction
of the current. This generates vibration at the same
frequency as the input AC signal, while the amplitude
of vibration is dictated by the signal’s peak-to-peak
voltage. Thus LRAs o↵er control on both the mag-
nitude and frequency of vibration. Most smartphones
today use LRA based vibra-motors.

Figure 1: Basic sketch of an LRA vibra-motor.

2.1 Sound Sensing through back-EMF
Back-EMF is an electro-magnetic e↵ect observed in
magnet-based motors when relative motion occurs be-
tween the current carrying armature/coil and the mag-
netic mass’s own field. According to Faraday’s law of
electromagnetic induction [15], this changing magnetic
flux induces an electromotive force in the coil. Lenz’s
law [39] says this electromotive force acts in the re-
verse direction of the driving voltage, called back-EMF
of the motor. As the rate of change of the magnetic
flux is proportional to the speed of the magnetic mass,
the back-EMF serves as an indicator of the extraneous
vibration experienced by the mass.

Since sound is a source of external vibration, the mov-
able mass in the vibra-motor is expected to exhibit a
(subtle) response to it. Our experiments show that,
when the vibra-motor is connected to an ADC, the
back-EMF generated by the ambient sound can be
recorded. This is possible even when the vibra-motor
is passive (i.e., not pulsating to produce tactile alerts).
We call this ADC output vibra-signal to distinguish it
from the microphone signal that we will later use as a
baseline for comparison. We now describe our platform
to record and process the vibra-signal.

2.2 Experiment Platform
Custom hardware setup: Today’s smartphones o↵er
limited exposure/API to vibra-motor capabilities and
other hardware components (e.g., amplifiers). To by-
pass these restrictions, we have designed a custom hard-
ware setup using o↵-the-shelf LRA vibra-motor chips
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connected to our own ADC and amplifier. Figure 2
shows our setup – we mount this vibration motor adja-
cent to a standard microphone that serves as a compara-
tive baseline. The vibra-signal is amplified and sampled
at 16KHz. Test sounds include live speech from humans
at varying distances, as well as sound playbacks through
speakers at varying loudness levels.

Microphone	

Vibra7on	motor	

Amplifier	circuit	

Figure 2: The custom hardware setup with col-
located vibration motor and microphone.

Smartphones: While the custom hardware o↵ers bet-
ter programmability, we also use a smartphone setup to
understand the possibilities with today’s systems. Fig-
ure 3 shows our prototype – terminals of the built-in
vibra-motor of a Samsung Galaxy S-III smartphone is
connected to the audio line-in input port with a sim-
ple wire. The rewiring is trivial – for someone familiar
with the process, it can be completed in less than 10
minutes. Once rewired, we collect the samples of the
vibra-signal from the output channels of the earphone
jack, using our custom Android application.

V.	motor	
power	port	

Enameled	wire	

Audio	port	

V.	motor	

Figure 3: The smartphone setup with a simple
wire connected between the vibra-motor’s out-
put to the audio line-in port.

3. SOUNDS AND HUMAN SPEECH
This section is a high level introduction to speech pro-
duction in humans, followed by a discussion on the
structure of speech signals.

3.1 Human Speech Production
Human speech can be viewed as periodic air waves pro-
duced by the lungs, modulated through a sequence of
steps in the throat, nose, and mouth. More specifically,
the air from the lungs first passes through the vocal
cords – a pair of membranous tissue – that constricts or
dilates to block or allow the air flow (Figure 4). When
the vocal cords are constricted, the vibrations induced
in the air-flow are called voiced signals. The voiced sig-
nals generate high energy pulses – in the frequency do-
main, the signal contains a fundamental frequency and
its harmonics. All vowels and some consonants like “b”
and “g” are sourced in voiced signals.

Figure 4: The vocal cords constricted in (a) and
dilated in (b), creating voiced and unvoiced air
vibrations, that are then shaped by the glottis
and epiglottis.

On the other hand, when the vocal cords dilate and al-
low the air to flow through without heavy vibrations,
the outcome is called unvoiced signals. This generates
sounds similar to noise, and is the origin of certain con-
sonants, such as “s”, “f”, “p”, “k”, “t”. Both voiced
and unvoiced signals then pass through a flap of tissue,
called glottis, which further pulsates to add power to the
signal as well as distinctiveness to an individual’s voice.
These glottal pulses travel further and are finally mod-
ulated by the oral/nasal cavities to produce fine-tuned
speech [11]. The overall speech production process is
often modeled as a “source-filter” in literature, essen-
tially implying that the human trachea/mouth applies a
series of filters to the source sound signal. This source-
filter model will later prove useful, when VibraPhone
attempts to reconstruct the original speech signal.

3.2 Structure in Speech Signals
While the above discussions present a biological/linguistics
point of view, we now discuss how they relate to the
recorded speech signals and their structures. Figure 5
shows the spectrogram when a human user pronounces
the alphabets “sa” – the signal was recorded through
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Figure 5: The spectrogram of the spoken conso-
nant ‘s’ followed by the vowel ‘a’ recorded with
microphone.

a smartphone microphone (not a vibra-motor)1. Al-
though a toy case, the spectrogram captures the key
building blocks of speech structure. We make a few
observations that will underpin the challenges and the
designs in the rest of the paper.

• The first visible signal (between 0.6 and 0.75 sec-
onds) corresponds to the unvoiced component, the
consonant “s”. This signal is similar to noise with
energy spread out rather uniformly across the fre-
quency band. The energy content in this signal is
low to moderate.

• The second visible signal corresponds to the vowel
“a” and is an example of the voiced component. The
signal shows a low fundamental frequency and many
harmonics all the way to 4KHz. Fundamental fre-
quencies are around 85–180Hz for males and 165–
255Hz for females [41]. The energy content of this
signal is far stronger than the unvoiced counterpart.

• Within the voiced signal, the energy content is higher
in the lower frequencies. These strong low frequency
components determine the intelligibility of the spo-
ken phonemes (i.e. the perceptually distinct units
of sound [42]), and are referred to as formants [27].
The first two formants (say, F1, F2) remain between
300–2500Hz and completely forms the sound of the
vowels, while some consonants have another signif-
icant formant, F3, at a higher frequency. Figure 6
shows examples of 2 vowel formants – “i” and “a” –
recorded by the microphone.

In extracting human speech from the vibra-motor’s
back-EMF signal, VibraPhone will need to identify,
construct, and bolster these formants through signal
processing.
1The Y axis shows up to 4KHz, since normal human con-
versation in non-tonal languages like English is dominantly
confined to this band.
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Figure 6: The locations of the first two formants
(F1 and F2) for (a) the vowel sound ‘i’ and (b)
the vowel sound ‘a’, both recorded with micro-
phone.

4. CHALLENGES
Figure 7(a,b) compares the spectrogram of the mi-
crophone and the vibra-motor for the same spoken
phoneme, “sa”. Figure 7(c,d) shows the same com-
parison for a full word, namely, “entertainment”. The
reader is encouraged to listen to these sound clips at
our project website [5]. Evidently, the vibra-motor’s
response is weak and incomplete, and on careful analy-
sis, exhibits various kinds of distortions even where the
signal is apparently strong. The goal in this paper is
to reconstruct, to the extent possible, the left columns
of Figure 7 from the right columns. We face 4 key
challenges discussed next.

Figure 7: The spectrogram for “sa” as recorded
by: (a) the microphone and (b) the vibra-motor.
The spectrogram for the full word “entertain-
ment” as recorded by: (c) the microphone and
(d) the vibra-motor. The vibra-motor’s re-
sponse is weak and partially missing.

(1) Over-Sensitivity at Resonance Frequency
All rigid objects tend to oscillate at a fixed natural fre-
quency when struck by an external force. When the
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force is periodically repeated at a frequency close to
the object’s natural frequency, the object shows exag-
gerated amplitude of oscillation – called resonance [33].
Resonance is often an undesirable phenomenon, desta-
bilizing the operation of an electro-mechanical device.
Microphones, for example, carefully avoid resonance by
designing its diaphragm at a specific material, tension,
and sti↵ness – that way, the resonance frequencies lie
outside the operating region [18, 10]. In some cases, ad-
ditional hardware is embedded to damp the vibration
at the resonant frequencies [10].

Unfortunately, vibra-motors used in today’s smart-
phones exhibit sharp resonance between 216 to 232Hz,
depending on the mounting structure. Some weak com-
ponents of speech formants are often present in these
bands – these components get amplified, appearing
as a pseudo-formant. The pseudo-formants manifest
as unexpected sounds within uttered words, a↵ect-
ing intelligibility. The impact is exacerbated when
the fundamental frequency of the voiced signal is it-
self close to the resonant band – in such cases, the
sound itself gets garbled. Figure 8 shows the e↵ect of
resonance when the vibration motor is sounded with
di↵erent frequency tones in succession (called a Sine
Sweep [13, 12]). Observe that for all tones in the Sine
Sweep, the vibra-motor exhibited appreciable response
in the resonance band. This is because the tones have
some frequency tail around the 225Hz, and this always
gets magnified. The microphone exhibits no such phe-
nomenon. VibraPhone will certainly need to cope with
resonance.

Figure 8: The spectrogram of (a) the micro-
phone and (b) the vibra-motor, in response to a
Sine Sweep (i.e., tones played at increasing nar-
row band frequencies). The vibration motor sig-
nal shows an over-sensitive resonance frequency
band near 220Hz.

(2) High Frequency Deafness
The vibra-motor’s e↵ective diaphragm – the area
amenable to the impinging sound – is around 10mm,
almost 20x larger than that of a typical MEMS mi-
crophone (0.5mm). This makes the vibration motor
directional for the high frequency sounds, i.e., the
high frequencies arriving from other directions are sup-
pressed, somewhat like a directional antenna. Unfortu-

nately, human voices contain lesser energy at frequen-
cies higher than 2KHz, thereby making the vibra-motor
even less e↵ective in “picking up” these sounds. Some
consonants and some vowels – such as “i” and “e” –
have formants close to or higher than 2KHz, and are
severely a↵ected. Figure 9 compares the spectrogram
when just the vowel “a” was spoken – evidently, the
vibra-motor is almost “deaf” to higher frequencies.

Figure 9: The spectrogram of the spoken
vowel ‘a’ recorded with (a) microphone and
(b)vibration motor. The vibra-motor exhibits
near-deafness for frequencies > 2KHz.

(3) Higher Energy Threshold
A microphone’s sensitivity, i.e., the voltage produced
for a given sound pressure level, heavily depends on the
weight and sti↵ness of its diaphragm. The spring-mass
arrangement of the vibra-motor is considerably more
sti↵, mainly due to the heavier mass and high spring
constant. While this is desirable for a vibration actua-
tor, it is unfavorable to sound sensing. Thus, using the
actuator as a sensor yields low sensitivity in general,
and particularly to certain kinds of low-energy conso-
nants (like f, s, v, z), called fricatives [17]. The e↵ect
is visible in Figure 7 (a,b) – the fricative consonant “s”
goes almost undetected with vibra-motors.

(4) Low Signal-to-Noise Ratio (SNR)
In any electrical circuit, thermal noise is an unavoidable
phenomena arising from the Brownian motion of elec-
trons in resistive components. Fortunately, the low 26
Ohm terminal resistance in vibra-motors leads to 10dB
lower thermal noise than the reference MEMS micro-
phone. However, due to low sensitivity, the strength of
the vibra-signal is significantly lower, resulting in poor
SNR across most of the spectrum. Figure 10 compares
the SNR at di↵erent sound pressure levels2 – except
around the resonance frequencies, the SNR of the vibra-
signal is significantly less compared to the microphone.

5. SYSTEM DESIGN
Our system design is modeled as a source-filter, i.e., we
treat the final output of the vibra-motor as a result of
2Note that sound pressure level is a standard metric to mea-
sure the e↵ective pressure caused by sound waves, and is
typically expressed in dBSPL [4].
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Figure 10: The SNR of (a) the microphone and
(b) the vibra-motor at various frequencies for
varying sound pressure levels (dB SPL). Note
the unequal Y axis range.

many filters applied serially to the original air-flow from
the lungs. Figure 11 illustrates this view, suggesting
that an ideal solution should perform two broad tasks:
(1) “undo” the vibra-motor’s distortions for signal com-
ponents that have been detected, and (2) reconstruct
the undetected signals by leveraging the predictable
speech structure in conjunction with the slight “signal
hints” picked up by the vibra-motor. VibraPhone re-
alizes these tasks through two corresponding modules,
namely, signal pre-processing and partial speech synthe-
sis. We describe them next.

Voiced	
speech	source	

Unvoiced	
speech	source	

OR	 X	 X	

Vocal	tract	
response	

Vibra7on	motor	
response	

Original	
speech	

Recorded	
speech	

Source	
sound	

Figure 11: The source-filter model of the speech
generation and recording.

5.1 Signal Pre-processing
All of our algorithms operate on the frequency domain
representation of the signal. Therefore, we first convert
the amplified signal to the time-frequency domain using
the Short Time Fourier Transform (STFT), which basi-
cally computes the complex FFT coe�cients from 100
millisecond segments (80% overlapped, Hanning win-
dowed) of the input time signal. The result is a 2D ma-
trix that we call time-frequency signal and illustrated
in Figure 12 – each column is a time slice and each row
is a positive frequency bin. We will refer to this matrix
for various explanations.

Frequency Domain Equalization
When a microphone is subject to a Sine Sweep test,
the frequency response is typically flat, meaning that
the microphone responds almost uniformly to each fre-
quency component. The vibra-motor’s response, on the
other hand, is considerably jagged, and thereby induces

Figure 12: 2D time-frequency matrix

distortions into the arriving signal. Figure 13 shows a
case where the vowel “u” is recorded by both the micro-
phone and vibra-motor. The vibra-motor distortions on
“u” are quite dramatic, altering the original formants at
266 and 600Hz to new formants at 300Hz and 1.06KHz.
In fact, the altered formants bear resemblance to the
vowel “aa” (as in “father”), and in reality, do sound
like it. More generally, the vibra-motor’s frequency re-
sponse exhibits this rough shape, thereby biasing all the
vowels to the sound of “aa” or “o”.
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Figure 13: Formants of vowel ‘u’ recorded
through (a) microphone and (b) vibra-motor.
The vibra-motor introduces a spurious formant
near 1KHz.

Fortunately, the frequency response of the vibra-motor
is only a function of the device and does not change
with time (at least until there is wear and tear of the
device). We tested this by computing the correlation
of the Sine Sweep frequency response at various sound
pressure levels – the correlation proved strong, except
for a slight dip at the resonant frequencies due to the
non-linearities. Knowing the frequency response, we ap-
ply an equalization technique, similar to channel equal-
ization in communication. We estimate the inverse gain
by computing the ratio of the coe�cients from the mi-
crophone and the vibra-motor, and multiply the inverse
gain with the frequency coe�cients of the output signal.

Background Noise Removal
Deafness in vibra-motors implies that the motor’s re-
sponse to high frequency signals (i.e., > 2KHz) is in-
distinguishable from noise. If this noise exhibits a sta-
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tistical structure, a family of spectral subtraction algo-
rithms can be employed to improve SNR. However, two
issues need attention. (1) The pure noise segments in
the signal needs to be recognized, so that its statisti-
cal properties are modeled accurately. This means that
noise segments must be discriminated from speech. (2)
Within the speech segments, voiced and unvoiced seg-
ments must also be separated so that spectral subtrac-
tion is only applied on the voiced components. This is
because unvoiced signals bear noise-like properties and
spectral subtraction can be detrimental.

To reliably discriminate the presence of speech seg-
ments, we exploit the exaggerated behavior in the res-
onance frequency band. We consistently observed that
speech brings out heavy resonance behavior in vibra-
motors, while noise elicits a muted response. Thus,
resonance proved to be an opportunity. Once speech
is segregated from noise, the next step is to isolate the
voiced components in speech. For this, we leverage its
well-defined harmonic structure. Recall the 2D matrix
in Figure 12. We consider a time window and slide
it up/down to compute an autocorrelation coe�cient
across di↵erent frequencies. Due to the repetition of
the harmonics, the autocorrelation spikes periodically,
yielding robust detection accuracy. When autocorre-
lation does not detect such periodic spikes, they are
deemed as the unvoiced segments.

The final task of spectral subtraction is performed on
the voiced signal alone. For a given voiced signal (i.e.,
a set of columns in the matrix), the closest noise seg-
ments in time are selected – these noise segments are
averaged over a modest time window. Put di↵erently,
for every frequency bin, the mean noise floor is com-
puted, and then subtracted from the corresponding bin
in the voiced signal. For zero mean Gaussian noise, this
does not o↵er any benefit, however, the noise is often
not zero mean. In such cases, the SNR improves and
alleviates the deafness. Figure 14 shows the beneficial
e↵ect of spectral subtraction when “yes” is spoken.

Figure 14: The spectrogram of the spoken word
“yes” (a) before and (b) after the spectral sub-
traction.

Speech Energy Localization
Observe that noise removal described above brings the
mean noise to zero, however, noise still exists and the

SNR is still not adequate. In other words, deafness is
still a problem. However, now that noise is zero mean
and Gaussian, there is an opportunity to exploit its di-
versity to further suppress it. Even localizing the speech
signal energy in the spectrogram would be valuable,
even if the exact signal is not recovered in this step.

Our core idea is to average the signals from within a
frequency window, and slide the frequency window all
the way to 10KHz. Referring to the 2D matrix, we
compute the average of W elements in each column (W
being the window size), and slide the window vertically;
the same operation is performed for each column. Each
element is a complex frequency coe�cient, containing
both the signal and the noise. With su�ciently large
W , the average converges to the average of the signal
content in these elements since the (average) noise sum
up to zero. Mathematically, if Ci denotes the signal
at frequency fi, and Ci = Si + Ni, where Si is the
speech signal and Ni the noise, then the averaged C⇤

i is
computed as:

C⇤
i =

1

W

i+W
2X

f=i�W
2

Ci =
1

W

i+W
2X

f=i�W
2

Si+
1

W

i+W
2X

f=i�W
2

Ni (1)

Since the term
P

Ni is zero mean Gaussian, it ap-
proaches zero for larger W , while the 1

W

P
Si term is

simple smoothing. For every frequency bin, we nor-
malize the C⇤

i values over a time window so that they
range between [0, 1]. The result is a 3D contour map,
where the locations of higher elevations, i.e., hills, in-
dicate the presence of speech signals. We identify the
dominant hills and zero force all areas outside them.
This is because speech signals always exhibit a large
time-frequency footprint, since human voice is not ca-
pable of producing sounds that are narrow in frequency
and time. Figure 15 illustrates the e↵ect of this scheme
– the dominant hills are demarcated as the location of
speech energy. Evidently, the improvement is conspic-
uous after this energy localization step.

5.2 Partial Speech Synthesis
Once the vibra-motor output has been pre-processed,
the structure of speech can now be leveraged for signal
recovery – we describe our approach next.

Voice Source Expansion
After the localization step above, we know the location
of speech energy (in time-frequency domain), but we
do not know the speech signal. In attempting to re-
cover this signal, we exploit the opportunity that the
fundamental frequencies in speech actually manifest in
higher frequency harmonics. Therefore, knowledge of
the lower fundamental frequencies can be expanded to
reconstruct the higher frequencies. Unfortunately, the
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Figure 15: Readers are requested to view this
figure in color: (a) Raw vibra-motor signal,
(b) The output of the speech energy localiza-

tion makes the signal energy visible through a
heat-map like contour. (c) The corresponding
microphone signal bearing good resemblance to
the energy locations.

actual fundamental frequency often gets distorted by
the resonant bands.

As a workaround, we use the relatively high SNR sig-
nals in the range [250, 2000Hz] to synthesize the voice
source signal at higher frequencies. Synthesis is essen-
tially achieved through careful replication. Specifically,
the algorithm copies the coe�cient Ct,f , where t is the
time segment and f is the frequency bin of the time-
frequency signal, and adds it to Ct,kf for all integer k,
such that kf is less than the Nyquist frequency. Here in-
teger k indicates the harmonic number for the frequency
f . Intuitively, we are copying the harmonics from the
reliable range, and replicating them at the higher fre-
quencies. As shown in Figure 16, this only synthesizes
the voiced components (recall the harmonics are only
present in the voiced signals). For unvoiced signals, we
blindly fill in the deaf frequencies with copies of the
lower frequency signals.
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Figure 16: Result of source expansion for the
voiced signal components. (a) Raw vibra-signal,
and (b) after harmonic replication. Readers are
requested to view this figure in color.

Speech Reconstruction
Recall that the mouth and nasal cavities finally modu-
late the air vibrations – this can be modeled as weights
multiplied to the fundamental frequencies and their har-
monics. While we do not know the values of these
weights, the location of the energies – computed from

the 3D contour hills – is indeed an estimate. We now
utilize this location estimate as an energy mask. As a
first step, we apply an exponential decay function along
the frequency axis to model the low intensity of natu-
ral speech at the higher frequencies. Then the energy
mask is multiplied with this modified signal, emulating
an adaptive gain filter. As this also improves the SNR of
the unvoiced section of the speech, we apply a deferred
spectral subtraction method on these segments to fur-
ther remove the background noise. Finally, we convert
this resultant time-frequency signal to time domain us-
ing inverse short time Fourier transform (ISTFT). Fig-
ure 17 compares the output against the microphone and
the raw vibra-motor signal.
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Figure 17: Word “often” as manifested in the (a)
raw vibra-motor signal, (b) after VibraPhone’s
processing, and (c) microphone signal.

6. EVALUATION
Section 2.2 described the two experimentation plat-
forms for our system, namely the custom hardware
and the Samsung Galaxy smartphone. In both cases,
we evaluate VibraPhone’s speech intelligibility against
the performance of the corresponding microphone. In
the custom hardware, the microphone is positioned
right next to the vibra-motor, while in the smartphone,
their locations are modestly separated. We generate
the speech signals using a text-to-speech (TTS) utility
available in OS X 10.9, and play them at di↵erent vol-
umes through a loudspeaker. The position/volume of
the loudspeaker is adjusted such that the sound pres-
sure levels at the vibra-motor and the microphone are
equal. The accent and intonation of the TTS utility also
does not a↵ect the experiment since both VibraPhone
and the microphone hear the same TTS speech. The
content of the speech is drawn from Google’s Trillion
Word Corpus [3] – we pick 2000 most frequent words,
which is prescribed as a good benchmark [32].
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6.1 Methodology and Metrics
We perform automatic and manual speech recognition
experiments as follows.

(1) Automatic Speech Recognition (ASR)
In ASR, a software programmatically converts the time
domain speech signal to text. ASR tools typically have
3 distinct components: (a) an acoustic model, (b) a pro-
nunciation dictionary, and (c) a language model. The
acoustic model is a trained statistical model (e.g., HMM,
Neural Networks, etc. [14, 19]) that maps segments of
the input waveform to a sequence of phonemes. These
phonemes are then looked up in the pronunciation dic-
tionary, which lists the candidate words (along with
their possible pronunciations) based on the matching
phoneme sequence. Among these candidates, the most
likely output is selected using a grammar or a language
model.

Our ASR tools is the open-source Sphinx4 (pre-alpha
version) library published by CMU [1, 20]. The acoustic
model is sensitive to the recording parameters, includ-
ing the bandwidth and the features of the microphone.
Such parameters do not apply to vibra-motors, so we
used a generic acoustic model trained with standard mi-
crophone data. This is not ideal for VibraPhone, and
hence, the reported results are perhaps a slight under-
estimate of VibraPhone’s capabilities.

(2) Manual Speech Recognition (MSR)
We recruited a group of 6 volunteers from our depart-
ment building – 1 native English speaker, 1 Indian fac-
ulty with English as first language, 2 Indian PhD stu-
dents, and 2 Chinese PhD students. We played the
vibra-motor and microphone outputs to all the partici-
pants simultaneously and collected their responses. In
some experiments, volunteers were asked to guess the
word or phrase from the playback; in other experiments,
the volunteers were given a list of phrases and asked to
pick the most likely one, including the option of “none
of the above”. All human responses were accompanied
by a subjective clarity score – every volunteer expressed
how intelligible the word was, even when he/she could
not guess with confidence. Finally, in some experi-
ments, volunteers were asked to guess first, and then
guess again based on a group discussion. Such discus-
sions served as a “prior” for speech recognition, and
often the group consensus was di↵erent from the first
individual guess.

Metrics
Across all experiments, 9 hours of sound was recorded
and a total of 20,000 words were tested with ASR at
various sound pressure levels (measured in dBSPL).
For MSR, a total of 300 words and 40 phrases were
played, resulting in more than 2000 total human re-

sponses. We report “Accuracy” as the percentage of
words/phrases that were correctly guessed, and show
its variation across di↵erent loudness levels (measured
in dBSPL). We report “Perceived Clarity” as a subjec-
tive score reported by individuals, even when they did
not decode the word with confidence. Finally, we report
“Precision”, “Recall”, and “Fallout” for experiments in
which the users were asked to select from a list. Re-
call that precision intuitively refers to “what fraction of
your guesses were correct”, and recall intuitively means
“what fraction of the correct answers did you guess”.
We now present the graphs, beginning with ASR.

6.2 Performance Results with ASR

Accuracy v/s Loudness
Custom Hardware: Figure 18(a) reports the accu-
racy with ASR as a function of the sound pressure level
(dbSPL), a standard metric proportionally related to
the loudness of the sound. VibraPhone’s accuracy is
around 88% at 80 dbSPL, which is equivalent to the
sound pressure experienced by the smartphone’s mi-
crophone during typical (against the ear) phone call.
The microphone’s accuracy is obviously better at 95%,
while the raw vibra-motor signal performs poorly at
43% (almost half of VibraPhone). Importantly, the
pre-processing and the synthesis gains are individually
small, but since intelligibility is defined as binary metric
here, the improvement jumps up when applied together.

Once the loudness decreases at 60 dbSPL – compara-
ble to a normal conversation 1 meter away from the
microphone [2] – VibraPhone’s accuracy drops to ⇡
60%. At lower sound pressure level, the accuracy drops
faster since the vibra-motor’s sensitivity is inadequate
for “picking up” the air vibrations. However, the accu-
racy can be improved with training the acoustic model
with vibra-motors (recall that with ASR, the training
is performed through microphones, which is unfavorable
to VibraPhone).
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Figure 18: Automatic recognition accuracy as
a function of loudness for (a) the custom hard-
ware, (b) the Samsung smartphone.

Samsung Smartphone: Figure 18(b) plots the accu-
racy with ASR for the smartphone based platform. Vi-
braPhone’s performance is weaker compared to the cus-
tom hardware setup, although the di↵erence is marginal

9



– ASR output is still at 80% at 80 dbSPL. Admittedly,
we are not exactly sure of the reason for this di↵erence
– we conjecture that the smartphone signal processing
pipeline may not be exactly tuned to the vibra-motor
like we have done in the custom case.

Rank of the Words
The accuracy results above counts only perfect matches
between ASR’s output and the actual spoken word. In
certain applications, a list of possible words may also
be useful, particularly when the quality of the speech is
poor. We record the list of all predictions from ASR for
each spoken word, played at 50 dbSPL. Figure 19 plots
the CDF of the rank of the correct word in this list. At
this relatively softer 50 dbSPL experiment, only ⇡ 20%
of the words are ranked at 1, implying exact match. In
41% of the cases, the words were within top-5 of the
list, and top-10 presents a 58% accuracy.
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Figure 19: The CDF of word rank from ASR’s
prediction at 50 dbSPL for custom hardware.

Phoneme Similarity
The acoustic model we used with ASR is not ideal
for VibraPhone – the impact is pronounced for dis-
torted phonemes. Training ASR’s acoustic model with
the vibra-motor response is expected to o↵er improve-
ments, but in the absence of that, we report a subjective
overview of the entropy in di↵erent phonemes recorded
by VibraPhone. In other words, we ask whether au-
tocorrelation between the same phonemes is high and
cross correlation across phonemes are low. We extract
the STFT coe�cients of the 100 phonemes (28 vowels
and 72 consonants) from the International Phoneme Al-
phabet [6, 7] and use these coe�cients as the features.
We then calculate correlation coe�cient of all pairs of
phonemes in the list – Figure 20 presents the heat map.
In case of raw vibra-signal in Figure 20(a), the (dis-
torted) phonemes bear substantial similarity between
each other, indicated by the multiple dark o↵-diagonal
blocks. The two large darker squares in the figure rep-
resents the pulmonic (58 phonemes) and non-pulmonic
(14 phonemes) consonant groups [26, 17]. However,
with VibraPhone, Figure 20(b) shows substantial im-
provements. The autocorrelation is strong across the

diagonal of the matrix, while the o↵-diagonal elements
are much less correlated. This extends hope that a
vibra-motor trained acoustic model could appreciably
boost VibraPhone’s performance.
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Figure 20: The heat-map shows the correlation
of the frequency domain features of the phoneme
sounds, recorded with custom vibration motor:
(a) before processing and (b) after processing.

6.3 Performance Results with MSR

Accuracy v/s loudness
Figure 21 shows the accuracy with manual speech recog-
nition (MSR) in comparison to automatic (ASR). Un-
surprisingly, the accuracy is around 20% more than
ASR at higher loudness regimes (60 dbSPL or more) –
the individuals guessed the words individually in these
experiments. Using consensus from group discussion,
the accuracy increases to 88% at 60 dbSPL. When the
loudness is stronger, VibraPhone is comparable to mi-
crophones, both for custom hardware and smartphones.

Sound pressure level (dbSpl) 
40 50 60 70 80

Ac
cu

rac
y (

%)
 

0

20

40

60

80

100

Human (group)
Human (indiv.)
ASR

Figure 21: This plot compares the accuracy of
human decoding with ASR. It shows the per-
formance of the human decoders while working
individually and as a collaborative team.

Hot-phrase detection
Figure 24 shows manual performance with “hot phrases”,
i.e., where the volunteer was asked to pick a phrase from
the list that best matched the spoken phrase (the volun-
teer could also select none of the phrases). We provided
a list of 10 written phrases before playing the positive
and negative samples in arbitrary sequence. Example
phrases were “turn left”, “happy birthday”, “start the
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computer”, etc., and the negative samples were chosen
with comparable number of words and characters.

Figure 24(a) reports results from the custom hardware
– volunteers almost perfectly identified the phrases and
rejected the negative samples.
However, when using the smartphone vibra-motor, Vi-
braPhone failed to identify some positive samples – Fig-
ure 24(b) shows the outcome in relatively higher false
negative values. Of course, the degradation is relative
– the absolute detection performance is still quite high,
with accuracy and precision at 0.83 and 0.90, respec-
tively, for the processed vibra-signal.
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Figure 22: The accuracy, precision, recall, and
fallout values for manual hot-phrase detection.
The recording device is (a) the custom hardware
and (b) the smartphone.

Perceived clarity
Human volunteers also assigned a “clarity score” on a
range of [0, 10] to every word/phrase he/she listened
to (a score of 10 indicated a perfectly intelligible word).
Figure 23 plots the average clarity score of the correctly
decoded samples and compares it between the vibra-
tion motor and the microphone. The subjective per-
ception of clarity does not change for the microphone
for sound pressure levels 50 dbSPL and above. While
VibraPhone’s clarity is lower than microphone in gen-
eral, the gap reduces at higher loudness levels. At 80
dbSPL, the perceived clarity scores for microphones and
VibraPhone are 9.1 and 7.6, respectively.
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Figure 23: The perceived clarity of the correctly
decoded speech recorded with microphone and
vibration motor.

Kinds of Words
Figure 24 shows the top-10 and bottom-10 intelligible
words from the ASR experiments. The font size is
proportional to the decoding accuracy, indicating that
“international” was decoded correctly most frequently,
while prepositions like “a”, “and”, “or” were consis-
tently missed. Unsurprisingly, longer words are decoded
with higher accuracy because of better interpolation be-
tween the partially decoded phonemes. Figure 25 quan-
tifies this with ASR and MSR, respectively – words with
5+ characters are mostly multi-syllable, yielding im-
proved recognition.
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Figure 24: Top 10 words that are (a)correctly
and (b)incorrectly decoded by ASR.
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Figure 25: (a) ASR and (b) MSR accuracy for
long (> 6 chars) and short ( 6 chars) words, as
a function of loudness.

7. POINTS OF DISCUSSION
We discuss a few limitations of this paper, and a few
other kinds of applications using VibraPhone.

What is the Best Possible? We have not been able
to comment on the best possible performance possible
with VibraPhone. Such an analysis will certainly need
a deeper signal processing treatment, as well as detailed
domain knowledge from speech recognition. This work
is more of a lower bound on feasibility, drawing on a
diverse set of established techniques from literature,
and modifying them to suit the needs of this specific
problem. We have initiated collaboration with signal
processing researchers to push the envelope of this side
channel leak.

Energy: We have sidestepped energy considerations in
this paper. However, we intuitively believe that Vibra-
Phone is not likely to be energy hungry (even though the
vibra-motor consumes considerable energy while pul-
sating). This is because VibraPhone picks up the am-
bient sounds while it is in the inactive/passive mode,
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i.e., when it is not serving as an actuator. We plan to
characterize the energy profile in future.

Applications: We observed that when vibra-motors
are pasted to walls and floors, and music is being played
in the adjacent rooms, VibraPhone is able to detect
these sounds better than the microphone. We also ob-
served that by placing the vibra-motor on the throat,
various speech components can be detected, and in some
cases, compliments the response of the microphone. Fi-
nally, we find that noise properties of vibra-motors and
microphones are uncorrelated, enabling the possibility
of diversity combining (i.e., they could together behave
like a MIMO system, improving the capacity of acoustic
channels). All these observations are preliminary, and
hence, not reported in this paper – we plan to investi-
gate them further as a continuation of VibraPhone.

8. RELATED WORK
Past work on acoustic side channels and speech recov-
ery are most relevant to this paper. Given both are
reasonably mature areas, we sample a subset of them.

Passive speech recording
Gyrophone and AccelWord [29, 45] are perhaps the clos-
est to our work. In Gyrophone [29], authors identify the
MEMS sensors’ capability to capture sound. The paper
presents a range of signal processing and machine learn-
ing techniques to recover traces of ambient sounds from
the gyroscope data [35]. AccelWord [45] takes a step for-
ward and uses speech information from the accelerome-
ter [22] to implemented a low energy voice control appli-
cation for a limited vocabulary of commands. However,
these techniques recover only a low bandwidth of the
spectrum (< 200Hz), which does not even cover the
full range of fundamental frequencies in female speech
(165� 255 Hz). Therefore, these techniques mainly fo-
cus on extracting the reliable features of sound for con-
sistent pattern classification. In contrast, VibraPhone
concentrates on recovering a telephone-quality speech
(bandwidth 4KHz [21, 30]) from the vibration motor
signal, making the output amenable to manual or au-
tomatic decoding. Both Gyrophone and AccelWord are
unable to produce (actually not designed for) machine
understandable speech.

A family of techniques [31, 37, 43, 38] targets a
light/LASER beam on an object exposed to the speech
signal and records its vibration by measuring the fluc-
tuation of the reflected beam. Visual microphone [9]
is also a similar technique that uses high speed video
of the target object to recover the vibration propor-
tional to the speech signal. Camera based techniques
are devoid of the noisy data that pollute motion sen-
sors/actuators, while they must tackle other di�cult
challenges in computer vision. A number of solutions

have monitored the change in received signal strength
(RSS) and phase of the wireless radio signal reflected
o↵ the loudspeaker to capture the traces of sound. The
projects [44] and [28] demonstrate successful sound
recovery using reflected radio signal even when the re-
ceiver is not in the line-of-sight of the vibrating object.

Speech Recovery
We borrowed building blocks from the vast literature of
speech processing. A body of research [8, 25, 24] ex-
plores artificial bandwidth expansion problems primar-
ily to aid high quality voice transfer over band-limited
telephonic channel. Some solutions attempt to identify
the phonemes from the low bandwidth signal and then
replace them with high bandwidth phonemes from a li-
brary. These solutions do not solve VibraPhone’s prob-
lems as majority of them consider 4KHz signal as the
input providing enough diversity for correct phoneme
identification. VibraPhone attempts to extend the ef-
fective bandwidth from 2KHz to 4Khz – a challenge be-
cause the features up to 2KHz provide limited exposure
to phonemes.

Data imputation techniques [36, 16] attempt to predict
erasures in audio signals. When these signals exhibit
a consistent statistical model, the erasures can be pre-
dicted well, enabling successful imputation. However,
vibra-signals often lack such properties, and moreover,
the location of erasures cannot be confidently demar-
cated.

9. CONCLUSION
This paper demonstrates that the vibration motor,
present in almost all mobile devices today, can be used
as a listening sensor, similar to a microphone. While
this is not fundamentally surprising (since vibrating
objects should respond to ambient air vibrations), the
ease and extent to which the actuator has “picked up”
sounds has been somewhat unexpected for us. Impor-
tantly, the decoded sounds are not merely vibration
patterns that correlates to some spoken words. Rather,
they actually contain the phonemes and structure of
human voice, thereby requiring no machine learning
or pattern recognition to extract them. We show that
with basic signal processing techniques, combined with
the structure of human speech, the vibra-motor’s out-
put can be quite intelligible to most human listeners.
Even automatic speech recognizers were able to decode
the majority of the detected words and phrases, es-
pecially at higher loudness. The application space of
such systems remains open, and could range from mal-
ware eavesdropping into human phone conversation, to
voice controlled wearables, to better microphones that
use the vibra-motor as a second MIMO-antenna. Our
ongoing work is in pursuit of a few such applications.
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