L earning Perl/Tk

Nancy Walsh

O’REILLY*

Beijing « Cambridge « Farnham ¢ Koln ¢ Paris ¢ Sebastopol « Taipei « Tokyo

Learning Perl/Tk
by Nancy Walsh

Copyright (c) 1999 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.
Editor:Linda Mui

Editorial and Production Services: TIPS-Technica Publishing, Inc.

Production Editor: Ellie Fountain Maden

Printing History:

January 1999: First Edition.
March 1999: Minor corrections.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Rellly logo are registered
trademarks of O'Reilly & Associates. The use of an emu image in association with Perl/
Tk isatrademark of O'Reilly & Associates, Inc. Permission may be granted for non-
commercial use; please inquire by sending mail to camel @ora.com.

Many of the designations used by manufacturers and sellersto distinguish their products
are claimed as trademarks. Where those designations appear in this book, and O'Reilly &
Associates, Inc. was aware of atrademark claim, the designations have been printed in
caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

oy
&S

This book is printed on acid-free paper with 85% recycled content, 15% post-consumer
waste. O'Reilly & Associates is committed to using paper with the highest recycled
content available consistent with high quality.

ISBN: 1-56592-314-6:[5/99]

Table of Contents

Preface

1. Introduction to Perl/Tk

A Bit of History About Perl (and Tk)
Perl/Tk for Both Unix and Windows 95/NT
Why Use a Graphical Interface?

Why Use Perl/Tk?

Installing the Tk Module

IN

N

[o8)

lon

Creating Widgets

Coding Style

Displaying a Widget

The Anatomy of an Event Loop

Hello World Example

Using exit Versus Using destroy

Naming Conventions for Widget Types

Using print for Diagnostic/Debugging Purposes

Designing Y our Windows (A Short Lecture)
2. Geometry Management

Pack

Grid

Place

Geometry Management Summary
3. The Basic Button

The Button Widget

Some Fun Thingsto Try

o))

4. Checkbuttons and Radiobuttons
The Checkbutton Widget
The Radiobutton Widget
Fun Thingsto Try
5. Label and Entry Widgets
The Label Widget
The Entry Widget
Fun Thingsto Try
6. Scrollbars
Defining Scrollbar Parts
The Scrolled Method
The Scrollbar Widget
Examples
Fun Thingsto Try
7. The Listbox Widget
Creating and Filling a Listbox
Listbox Options
Selection Modes

Colors

101

102

102

108

123

124

124

126

128

137

140

141

141

142

144

145

Listbox Style

Configuring a Listbox
Inserting Items

Deleting Items

Retrieving Elements
Selection Methods

Moving to a Specific Index
Trandating Indexes
Counting Items

Active Versus Selected
Bounding Box

Finding an Index by Y Coordinate
Scrolling Methods

Listbox Example

Fun Thingsto Try

146

147

147

148

148

149

150

150

150

150

151

151

151

152

153

8. The Text Widget 154

Creating and Using a Text Widget 154
Text Widget Options 155
A Short Break for a Simple Example 160
Text Indexes 161
Text Tags 164
Inserting Text 171
Deleting Text 172
Retrieving Text 172
Tranglating Index Values 172
Comparing Index Values 173
Showing an Index 173
Getting the Size of a Character 173
Getting Line Information 173
Searching the Contents of a Text Widget 174
Scrolling 175
Marks 175
Embedding Widgets 176

Internal Debug Flag 179

Fun Thingsto Try 180

9. The Canvas Widget 181
Creating a Canvas 181
Coordinate System 182
The Scrollable Region 183
Using Bind with a Canvas 184
Canvas Options 184
Creating Itemsin a Canvas 188
Configuring the Canvas Widget 198
Configuring Items in the Canvas Widget 199
Tags 199
Retrieving Bounding Box Coordinates 202
Trandating Coordinates 202
Moving Items Around 202
Changing the Display List 203
Deleting Items 203
Deleting Tags 204
Determining Item Type 204

Set Keyboard Focus 204

Rendering the Canvas as PostScript 204

Scaling the Canvas 205
Scanning 206
A Drawing Program Example 206
Fun Thingsto Try 209
10. The Scale Widget 210
Creating a Scale 210
Assigning a Callback 213
Orientation 213
Minimum and Maximum Values 213
Displayed Versus Stored Vaue 214
Adding a Label 214
Displaying Vaue Increments 214
Changing the Size of the Scale 215
Options You'll Probably Never Need 215
Configuring a Scale 216
Getting the Value of a Scale 216
Setting the Value of a Scale 216

Determining Coordinates 216

|dentifying Parts of a Scale 216

Fun Thingsto Try 217
11. Menus 218
Different Types of Menus 218
The Menubutton Widget 220
Complete Menubutton Examples 236
The Menu Widget 238
Optionmenu Widget 248
Fun Thingsto Try 250
12. Frames 251
Creating a Frame 251
Frame Style 253
Frames Aren't Interactive 255
Colormap Complications 255
Frame Methods 256

Fun Thingsto Try 256

13. Toplevel Widgets 257

Creating a Toplevel Widget 257
Toplevel Methods 260
Review 269
Fun Thingsto Try 269
14. Binding Events 270
The bind Method 270
Arguments Sent to the Callback 272
Defining Event Sequences 273
Event Information 278
Bailing Out of a Callback Created with bind 279
The bindtags Method 280
Ways to Use bind 280
15. Composite Widgets 281
Looking at an Example Sideways 282
L ocation of Files 283
Creating a Composite Widget Based on Frame 284
Toplevel-Based Composite Widgets 289

16. Methods for Any Widget 290

Building a Family Tree
Color-Related Methods
Option Databases

The Application's Name
Widget Existence

Is the Widget Mapped?
Converting Screen Distances
Size of Widget

Widget Position

Screen Information
Atom Methods

Ringing a Bell
Clipboard Methods
Selection Methods
Destroying a Widget
Focus Methods

Grab Methods

Interapplication Communication

290

292

293

295

295

295

295

296

297

298

300

300

300

301

302

302

303

304

Waiting for Events to Happen

Parsing Command-Line Options

Time Delays
A. Configuring Widgets with configure and cget
B. Operating System Differences
C. Fonts

I ndex

Preface

Perl isagreat language for file processing, connecting to databases, and many other
tasks that are too tedious to do manually. For many years, however, Perl programs were
limited to a command-line interface. The Tk interface changed all that.

The Tk extension to Perl allows you to create graphical interfaces for your programs.
Using the modules included with the distribution of Tk, you can create windows with
buttons, lists, text, and other types of widgets to help your user navigate within your
application.

What You Should Already Know

To get the most out of this book, you should already know the basics of Perl
(specifically, Perl version 5). Y ou should be familiar enough with Perl to be ableto at
least read some code and know what the code is doing. Y ou don't have to be a Perl guru

or Perl hacker to learn Perl/Tk, but it will help if you feel comfortable with the language.

Here's the laundry list of things you should at |east recognize: hashes, arrays,
subroutines, and their anonymous versions, $ and @ .

304

306

306

309

331

334

341

Perl/Tk utilizes the object-oriented features available in Perl 5, so even if you don't
completely understand them, you should be able to recognize them when you see them.
The only other thing you'll need is your prior knowledge of other graphical user
interfaces (GUIs) and what you did and did not like about them. This helps when
deciding what features to include in your own applications. Take alook at the word
processor you use on your PC, your web browser, or any program that has buttons and
scrollbars and accepts both mouse and keyboard inpui.

Those applications are pretty major ones; we'll start with much simpler examples and
build up from there. We'll be covering each basic widget and all its associated options in
detail. You'll learn how to make a window look the way you want it to look. Y ou'll also
learn how to make awindow user-friendly and attractive.

If you want to know more about Perl in general, you should read Learning Perl,
Programming Perl, Advanced Perl Programming, and Perl Cookbook, which are also
published by O'Rellly & Associates, Inc. There are a'so numerous FAQs and documents
available on the Web. Thisbook's focusisthe Tk extension to Perl, which isafairly
specific portion of Perl.

What'sin This Book

Chapter 1, Introduction to Perl/Tk

Thefirst chapter contains some interesting history about Perl and the Tk module. It starts
you out with asimple Hello World program and gives a short introduction to event-
driven programs.

Chapter 2, Geometry Management

Geometry management is probably the most important concept in using Perl/Tk. It
determines how your widgets are to be drawn on the screen (or, in some cases, how not
to be drawn on the screen). The three geometry managers-pack, gri d, and pl ace-are

covered here. Most examples in the book use pack.

Chapter 3, The Basic Button

The button isthe first widget we cover and there are lots of details here. There are also
tons of code snippets and screen shots showing different ways to manipulate and
mutilate the button widget. Many of the options discussed here are common among the
other standard widgets.

Chapter 4, Checkbuttons and Radiobuttons
Checkbuttons and radiobuttons are similar to the standard button, but they look different
and are usually programmed differently.

Chapter 5, Label and Entry Widgets

Thelabel isthe smplest widget of al. It is usually used with an entry widget, which is
why they are included in the same chapter. The entry widget will let you get input from
your user.

Chapter 6, Scrollbars

Certain widgets in Perl/Tk can be scrolled, which means they can contain more
information than you can see on the screen. Scrollbars are used to navigate the data
inside these widgets. Chapter 6 tells you how scrollbars communicate with each widget
and what you need to do to create and use them.

Chapter 7, The Listbox Widget

A listbox can contain any sort of data, but it usually contains alist of options from which
the user can select. In Chapter 7, you'll learn how to create the listbox, fill it with some
items, and change the way the user selects the items from the list.

Chapter 8, The Text Widget

The text widget is a versatile widget you can use for many purposes besides just
displaying text. Chapter 8 coversthe different things you can put inside a text widget
(such astext or other widgets) and how to get the best use out of them.

Chapter 9, The Canvas Widget
A canvas can display objects such as circles, rectangles, text, and even other widgets.
Chapter 9 covers al the options and methods available and how to use them.

Chapter 10, The Scale Widget

The scale widget is great for giving the user arange of numbers from which to select so
thereis no possibility of a user typing in a number out of range or accidentally typing in
letters. Chapter 10 includes examples of the scale widget and covers all the methods
available for setting it up and using it.

Chapter 11, Menus
Once an application gets complex enough, you will need to put amenu in it. Chapter 11
shows different ways to create menus and how they can best be used in an application.

Chapter 12, Frames

The frame widget is used for organizing your other widgets on the screen to get the ook
you want. Chapter 12 shows how you can use frames in coordination with a geometry
manager (covered in Chapter 2) to make your windows look the way you want them to.

Chapter 13, Toplevel Widgets

An application often needs more than one window init. Y ou can use a toplevel widget to
create a second window. In Chapter 13 you'll learn how to create one and display it. We
also cover the numerous methods available for manipulating toplevel widgets.

Chapter 14, Binding Events

One of the best ways to add functionality to your application isto add additional
bindings to the widgets. This chapter tells you what a binding is and how to create one
and useit.

Chapter 15, Composite Widgets

Y ou can combine widgets to make a much more useful, reusable widget. Many of the
additional widgets you can use with Perl/Tk are created this way. Chapter 15 includes an
example of a composite widget and gives you some ideas for creating your own.

Chapter 16, Methods for Any Widget
There are several methods available for all widgets in Perl/Tk. We cover them in
Chapter 16 and show you how to use them.

Appendix A, Configuring Widgets with configure and cget
Appendix A explainstheconf i gur e and cget methods, which are used with every

widget. It also includes atable that shows the options and defaults for each widget
option.

Appendix B, Operating System Differences
Appendix B covers the differences you'll encounter when you use Perl/Tk on different
operating systems, specifically, Unix and Win32.

Appendix C, Fonts
Appendix C coversfont usage for Tk, for both Unix and Win32 systems. It aso covers
the new font syntax in Tk8.

Reading Order

This book was designed and written with two major audiences in mind: people new to
Perl/Tk and those who have experience with it.

Perl/Tk Novices

If you have no idea where to start, start at the beginning. This book is designed to lead
you into topics by building a foundation of knowledge. We'll start simple with the button
widget in Chapter 3, The Basic Button, and move up to more complicated widgets. Using
Perl/Tk is not really that hard once you understand the basic fundamentals of how it
works.

Somewhat Experienced to Gurus

Okay, so you've written aton of programs with Perl/Tk and think you know how to do
things. Chances are you have found a "way that works," and have stuck with it. |
recommend reading through Chapter 2, Geometry Management, so you have a complete
understanding of how the geometry managers work. Then skip around to the widget
sections you are interested in. | have included useful snippets of code (and sometimes
full programs) that will give you ideas on how to use widgets in different ways. The list
of options for each widget are helpful reminders of all those pesky options and how they
affect each widget.

Typographical Conventions
The following typographical conventions are used in this book:

Italic
is used for filenames, command names, URLS, and emphasis. In syntax lines, it is used
to identify replaceable values.

Constant Wdth

Isused for function and method names and their arguments, and to show literal code in
text.

Bold
Is used to show default values in syntax lines.

We'd LiketoHear from You

We have tested and verified the information in this book to the best of our ability, but
you may find that features have changed (which may in fact resemble bugs). Please |et
us know about any errors you find, as well as your suggestions for future editions, by
writing to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472
1-800-998-9938 (in U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (fax)

Y ou can also send us messages electronically. To be put on our mailing list or request a
catalog, send email to:

info@oreilly.com
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

We have aweb site for the book, where we'll list errata and plans for future editions.
Here you'll also find all the source code for programs from the book available for
download so you don't have to typeit al in.

http: //www.oreilly.com/catal og/l per 1tk

Acknowledgments

This book has taken quite a bit of time out of my life, and | would like to thank the
people who helped make it possible and put up with me while | was off writing it: first,
my husband Mike, who helped out in so many little waysit isimpossible to list them all;
our dogs, Brandy and Theo, for keeping my feet warm; our cats, Thumper and Sasha, for
keeping the monitor and keyboard anchored to the desk (any typos are completely their
fault); my co-worker, Kreg Webb, who suggested this whole crazy idea; and my editor,
LindaMui, for always coming up with positive things to say in addition to the not-so-
good things.

I'd also like to thank all the reviewers of the book. They include: Stephen Lidie, Achim
Bohnet, Peter Prymmer, Nick Ing-Simmons, and Phivu Nguyen.

]__
I ntroduction to Perl/Tk

There are many different modules available that extend the functionality of Perl. This
book will concentrate on the Tk module. The Tk module allows usto easily add a
graphical interface to our Perl scripts and still use all the features that make Perl great.
Instead of requiring a typed command with some options or user input on the command
line, your program is invoked with an icon or a ssmple command and the interface
handles everything from there.

The Tk extension to Perl doesn't come with the standard distribution of Perl.* You'll
need to get it separately from a CPAN site and install it. After you install the Tk module,
you simply add use Tk; to thetop of your Perl scripts.

A Bit of History About Perl (and Tk)

Originaly, Perl was written asa"quick-fix" to a problem Larry Wall was having with
hisjob. Typical of al self-admittedly lazy people, he found a better and easier way to do
it, and thus Perl was born. It has since evolved into a widespread and well-used
language. Perl has been made available for numerous different platforms, has been well
documented, and best of all, islicense-fee free. Hopefully the reason you're looking at
this book is because you're already converted to the way-of-Perl and want to know how
to utilize it to the fullest.

The Tk extension to Perl handles all the widgets, whodads, and whatsits that combine to
make a graphical interface. It was ported by Nick Ing-Simmons from Tcl/Tk for use with
Perl. A common misconception isthat you need Tcl/Tk installed in addition to Perl and
Tk for the whole thing to work, but all you really need is Perl

* Unless you get the Win32 binary from CPAN, or another pre-built distribution such
as ActiveState Perl.

and its Tk extension. Thanksto alot of work by alot of other people, self-admittedly
lazy people like me can download the binary for the machine they have and install it in
less than 10 minutes (download time not included). Y ou can also compile it from source
for your machine.

Perl/Tk for Both Unix and Windows 95/NT

As | was writing this book and cursing the fact that | didn't have enough machines at
home to write this book with MS Word and test code examples on my Linux machine
without booting back and forth from OS to OS, a miracle was happening. The Tk
extension for Perl was ported to Windows. By Windows, | mean the overly-large, overly-
influencing OS that is the default on most PCs nowadays, Microsoft Windows. Most
people don't have C compilers for their Windows machines, but thanks to the work of
Gurasamy Sarathy, there's a great binary distribution of Perl and a good selection of the
Perl extensions, including Tk. Y ou simply download the binary, run the install, and
you're ready to go.

There are no differences between the way you write Perl/Tk applications on a Unix
machine and the way you write them on a Windows machine. Y ou can use any simple
text editor on either system. There is a small difference in the way you run them; see
Appendix B, Operating System Differences, for details. For now, I'll just say that | prefer
to run my Perl applications on Windows NT 4.0 (Service Pack 3) rather than Windows
95.

Versions

When | started writing this book, the latest and greatest versions of Perl and Tk were
5.003 and 400.202. Since then, a Win32 version of the Tk module has been devel oped
and released. Perl has also had some changes. Right before the book was going to print,
the port of Tk800.007 was in beta and Perl was up to 5.004_68 (also betd). | have made
every effort to include information that is relevant to the new version of Tk and Perl and
to test the examples with the new versions. There are certain instances (fonts, for
example) where some significant functionality has been added in the new version of Tk.
| have tried to note all the changes where they apply, but for the most part, you don't
have to worry about which version you have.

Why Use a Graphical | nterface?

Hopefully, you bought this book (or are considering it in the bookstore) because you
have some idea of why you might want to use a graphical interface for one or more of
your scripts. Just in case you don't, read on....

Because you are familiar with writing Perl scripts, you understand the ways you can get
information in and out of one. It usually involves a combination of reading/writing files,
command-line options, and possibly, datain or out at application runtime (STDIN/

STDOUT, using pipes (|) or <>. Certain applications can run with no input, and others,

such as an installation script, require constant information fed to it from the user: Do you
want to install thisfile? Can | overwrite this DLL? Do you want to create this directory?
Do you want the help files? Sometimes you can set up abunch of defaults so the user
just has to press return to say yes, but then they are stuck sitting at the keyboard and
waiting for the next question to come up. Wouldn't it be nice to gather all that
information up front and then have the user press a Go button to execute all the steps
after the decisions were made?

A GUI interface adds alittle flair and professionalism to an application. However, there
are times when it would be overkill to add a GUI to ascript. If all you aredoing is
reading in one file, munging a bit with no user input, and spitting out another, a GUI
would be silly and unnecessary. GUI interfaces work best where you require alot of
decisions and input from the user, such as our installation example in the preceding

paragraph.
Here are some examples of good uses for agraphical user interface:

* A mini web client that connects to adictionary server and lets you ook up words.

» An application that takes aregular expression as input and displays the state map
graphically in a scrollable window.

» An application that interfaces with a database and displays query results in several
widgets, with labels to indicate what the dataiis.

» A mail reader that interfaces with your inbox and can also send out mail messages.

» Sometimes your boss says "make it easy to use!" and that usually means either a
wrapper around a script or an interface that makesit easy for users to understand the
decisions they have to make. Y our users also might be used to a graphical interface
rather than a command-line interface.

Why Use Perl/Tk?

Have you ever tried to draw awindow using so-called "native" facilities? If youdo it in
C, you'll end up with about 100 lines of code just to create aHello World program,
whether you use MS Windows or X Windows. This doesn't even include an Exit button
that would allow you to quit the application nicely.

| have used several different methods to draw windows and create GUI applications
throughout my programming life. Using the basic X Windows routines (such

asX Create Line fromx to y)isbascaly adrag. True, you havetotal control

over every little detail, but then again, you have to control every little detail. Sometimes
| like not knowing exactly how the button got drawn; it is enough for me to know that it
did. (I drive acar, and don't exactly understand the intricate details of the combustion
engine. | likethat | can turn the key and succeed in my mission of driving to work.)

Y ou have probably seen several books on Tcl/Tk. The problem with Tcl is that you have
to program within the constraints of the Tcl language. | much prefer using alanguage
that | already know really well and adding on to it.

Perl/Tk provides you with all the annoying little details. It handles the event loop. It
handles drawing the 3D edges on your buttons (if you're not quite sure what I'm talking
about, hang in there; I'll explain it all in due time). Y ou can ssimply use the Perl language
to "place a button here," which translates to real Perl as.

$mw >But t on(-text => " Sonet hi ng") - >pack() ;

In addition, because of the wonderful community Perl has, there are multitudes of
different complex widget types available for use. If you can't find the perfect widget
(such as a multi-listbox-sel ection-thingy with associated canvas), it isfairly ssmple to
create your own by using a combination of some basic and/or not so basic widgets and
constructs.

From a programmer's view the bottom line is that using Perl/Tk to write a GUI isfun! It
Is the best instant-gratification programming high. With just afew lines of code, you can
instantly display a button and several other widgets that ook like afull-blown
application. Of course, it takes a bit more time to code the guts behind it, but it's amost
as much fun.

Asyou go through this book, the best way to understand what is going on isto try lots of
different examples. There are tons of working code snippets included for this very
reason. Start with the basic Hello World program and change the options to the button as
you go through Chapters 2 and 3. See what the results are on your very own screen.

Also, you might want to check out these tools (which we don't cover in this book, but
they are fun to use): tkpsh and ptksh (new in Tk800.007, the latest version of Tk for
Perl). Y ou can download them from http: //www.monmouth.convV~beller. Both programs
allow you to typein code on STDIN and have it evaluate each statement (similar to
wish).

Installing the Tk Module

Before we go into more details on using Perl/Tk, we should cover how to install it. There
are many different waysto get Perl and Tk and install them on your machine. Y ou can
get the source and compileit (easy in Unix; not so easy in Ms Windows), or you can get
abinary distribution and install that. Some of the binary distributions may not have all
the components you want in it though, so make sure you read any README files
included with the package.

The two major binary distributions for Perl on Win32 are available from ActiveState
(http://www.activestate.com) and CPAN (http://www.per|.com). The binary distribution

on CPAN includes the Tk module, so that's the one I'll cover here.

First you need to get Perl installed:

You can test to seeif you already have the Tk module installed by using this command
(both Unix and Win32):

perl -e 'use Tk’

If you don't get an error, you're ready to go. If you do get one, the error will look like
this:

Can't locate Tk.pmin @NC (@NC contains: C\PERL\Iib
\site C\PERL\lib c:\perl\lib c:\perl\lib\site c:\
perl\lib\site .) at nyscript line 1.

You'll need to find the Tk module on a CPAN site. Try starting with http: //mwww.per|.
com/CPAN/modul es/by-modul e/Tk/. From that directory, find the following files:
Tk*readme and Tk*tar.gz (always try to grab the latest versions; the * isfor the version
number). Be careful when you download the .gz file because some systems try to rename
thefileto .tar.tar. Simply rename the file back so that it has a .tar.gz extension and it
will unzip properly. Follow the instructions in the README file to make sure that you
have the right version of Perl already. After downloading Tk*tar.gz, you need to
uncompress it using WinZip for MS Windows or gunzip and tar -xvf for Unix. Follow
the instructionsin the Install file once you have it unpacked. It isvery similar to
installing Perl itself.

Run the test

perl -e 'use Tk'

again to make sure it all worked correctly. (Note: Windows users will need to use
perl -e "use Tk").For both MS Windows and Unix, make sure your perl/bin
directory isin your PATH environment variable. Y ou can then use the widget demo to
see what types of widgets are available.

Creating Widgets

All widgets are created in the same basic fashion, with only afew exceptions. Each
widget must have a parent widget to watch over it asit is created and keep track of it
while it exists in the application. When you create an application, you'll have a central
window that will contain other widgets. Usually, that window will be the parent of all
the widgetsinside it and any other windows you create in your application. Y ou are
creating an order to the widgets so the communication between child and parent widgets
can happen automatically without any intervention from you once you set it all up.

Assuming that the $par ent widget already exists, the generic usage when you create
widget W dget t ype isasfollows:

$child = $parent->Wdgettype([-option => value, ...]);

Note that the variables that store the widgets are scalars. Actually, they are referencesto

widget objects, but you don't need to know that right now. If you aren't familiar with the

object-oriented programming in Perl, using the - > between the $par ent and

W dget t ype invokesthe method W dget t ype, from the $par ent object. It makes
the $par ent related to the child $chi | d. Asyou might guess, the $par ent becomes

the parent of the widget being created. A parent can have many children, but a child can
only have one parent. That's pretty much all there isto assigning children to their parents.

When you invoke the W dget t ype method, there are usually configuration parameters
that you send to set up the widget and interactions within the application. The
configuration parameters will occur in pairs: an option and associated value. Y ou will
seeoptionssimilar to-t ext , - st at e, or - vari abl e. Notice that the options all start

with a dash. Even with the dash, they are really just strings that are labels to indicate the
next value to comein thelist. Usualy, it is not necessary to put quotation marks around
the options because Perl is smart enough to recognize them as strings. However, if you
are using the -w switch, Perl may complain about an option that it thinks is not text. You
can stick quotes around all your options all the time to avoid this, but it shouldn't be
necessary. The option names are always all lowercase (except in afew very rare cases,
which are noted as we cover them).

Options are specified in list form like this:
(-option => value, -option => value, -option => val ue)

Don't be fooled by the funny-looking =>; it isjust adifferent way of saying "comma." In
fact, you could use just the commas and not the => notation, that is:

(-option, value, -option, value, -option, value)

However, it's much harder to tell which are the option/value pairs. Consider the
following syntactically equal statements (which each create a button widget that is 10
pixels by 10 pixels, displays the word "Exit," and performs the action of quitting the
application when pressed):

$bttn = $parent->Button(-text, "Exit", -
command, sub { exit }, -width, 10,
- hei ght, 10);

$bttn = $parent->Button(-text => "Exit", -
command => sub { exit }, -width =>
10, -height => 10);

In the second line, it is much more obvious which arguments are paired together. The
option must be directly before the value associated with it: - t ext ispaired with "Exit,"

- command hasthevaluesub { exit },and-w dt h and- hei ght both have
values of 10.

Congratulations, we're not even done with the first chapter yet, and you already know
how to read atypical line of Perl/Tk code!

Quick Definitions of Toplevel, MainWindow, and Frame Widgets

The next chapter covers geometry management, and several of the examples use widgets
you don't know anything about yet. Most of the widgets are easy to figure out, but afew
require a short introduction.

A MainWindow widget is a special version of atoplevel widget. Both MainWindow and
toplevel are the windows that contains other widgets. The only difference between a
toplevel and a ManWindow isthat the MainWindow is the first window you createin
your application. Both of these widgets are covered in greater detail in alater chapter
(Chapter 13, Toplevel Widgets).

The other type of widget you need to know about is aframe widget. A frameisa
container that can also contain other widgets. It isusually invisible and just used to
arrange the widgets as desired. The frame widget is also discussed in its own chapter
(Chapter 12, Frames).

Here iswhat each widget's creation code looks like:

$mw = new Mai nW ndow; # or $nw = Mai nW ndow >new() ;
$top = $mw >Topl evel ();
$frame = $mw >Frame(-borderwidth => 2, -relief => "groove");

For now, just keep in mind the general meanings of MainWindow, toplevel, and frame
widgets.

Coding Style

The code linesin aPerl/Tk script can get quite cumbersome and clunky because of all
the option/value pairs used in defining and configuring each widget. There are severa
ways to format the code to deal with readability (and in some cases, "edit-ability"). Most
just involve adding extra spaces or tabs to line up different portions of code. Once you
get used to seeing the code, it won't appear to be quite so mysterious and unwieldy.

One coding style places each option/value pair on separate lines (thisis my personal
favorite, and | useit al the time):

$bttn = $parent->Button(-text => "nmy text",
-command => sub { exit },
-wi dth => 10,
-hei ght => 10);

With thistype of coding style, it is extremely obvious what the pairs are and what value
Is associated with which option. (Y ou could also go to the extreme of aligning each =>

to make nice columns, depending on how much time you have to press the space bar.)
Some people like to start the option/value pairs on the next line and put the ending) ; on

its own separate line, after the last option/value pair, which retains the comma for
formatting ease:

$bttn = $parent->Button(
-text => "Exit",
-command => sub { exit },
-wi dth => 10,

- hei ght => 10,

);

This makes the code easier to edit; an option/value pair can be added or deleted on each
line without having to mess with parentheses, semicolons or commas. It also keeps the
next lines closer to the left side of the page so if you have several indentation levels, you
don't end up with code quite so deep to theright.

Sometimes, if there are only one or two option/value pairs, it just makes sense to leave
them all on the same line and conserve alittle bit of space:

$bttn = $parent->Button(-text => "ny text", -
command => sub { exit });

Eventually you'll come up with a style that works for the way you read the code and the
way you edit it. Whichever way you choose, just try to be consistent throughout your
scripts in case someone el se takes over the maintenance of your code (it could even be
you ayear or more down the road).

Displaying a Widget

Y ou use two separate commands to create awidget and display it, although sometimes
they are squished into the same line, which makes them look like the same command. In
the examples so far, we've used the But t on method to create the button, but nothing is

displayed by using that method alone. Instead you have to use a geometry manager to
cause the widget to be displayed in its parent widget or in another widget. The most
commonly used geometry manager ispack, and to use it, you simply call the pack()

method on the widget object like this:
$wi dget - >pack() ;
For example:

$but t on- >pack() ;

There are arguments that can be sent to the pack method, but we'll cover those in
Chapter 2, Geometry Management.

It is not necessary to invoke the pack method on a separate line. The - >pack can be
added to the creation of the widget:

$parent ->Button(-text => "Bye!", -command => sub { exit })-
>pack() ;

The other geometry managers availablearegri d and pl ace. All three behave

differently, and which one you use often depends on the look you are trying to get in
your application. Again, look for information on the geometry managers in Chapter 2.

The Anatomy of an Event L oop

When you are programming an application that uses a graphical interface rather than a
textual interface, there are alot of different thingsto consider. In a text-based
application, you can read from standard input (STDIN), use command-line options, read
files, or prompt the user for specific information. The keyboard is your only avenue of
input from the user. In a GUI, input can not only come from those places, but it can also
come from the mouse and the window manager (such asa"close" directive from a
window manager like mwm or MS Windows). Although this extra input allows more
flexibility in our applications, it also makes our job more difficult. Aslong aswe tell it
what to do, Perl/Tk helps us handle all that extra input gracefully.

Input in a GUI is defined by events. Events are typically different combinations of using
the keyboard and mouse at the same or different times. If the user pushes the left mouse
button on button "B", that is one type of event. Pushing the right mouse button on button
"C" would be another event. Typing the letter "a" would

be another event. Y et another event would be holding down the Control key and clicking
with the middle mouse button. Y ou get the idea.

Events are processed during an event loop. This event loop does just what its name says-
it handles events during aloop. It determines what subroutines to call based on what
type of event happened. Here is a pseudo-code event |oop:

while (1) {
get _event _info

if event is left-nouse-click call process |eft_nouse_click
else if event is right-nouse-

click call process right nouse click
else if event is keyboard-input call type_it

el se handl e events for redrawing, resizing etc

}

Obvioudly, thisisavery simplistic approach to an event loop, yet it still shows the basic
idea. The event loop is a weeding-out process to determine what type of input was given
to the application. For example, the subroutine pr ocess_| eft _nouse_cl i ck

might determine where the pointer was when the mouse click occurred and then call
other subroutines based on that information.

In Perl/Tk, the event loop isinitiated by calling aroutine called Mai nLoop. Anything

prior to this statement isjust setting up the interface. Any code after this call will not
happen until after the GUI has been exited by using $mw >dest r oy .*

If we forget to include the Mai nLoop statement, the program will think about things for

awhile and then go right back to the command prompt. None of the windows, buttons,
or widgets will be drawn at all. One of the first things that occurs after calling
Mai nLoop isthat the interface is drawn and the event loop is started.

Before we get too much further into the event loop and what it does (and what you need
to do so it worksright), let'slook at areal, live, working program, Hello World. (You
were expecting something else?)

Hello World Example

Every programming language goes through the Hello World example. It is a good
example because it shows how to do something very simple but useful. In our

* Throughout the book, | will use $nwto indicate the variable that refers to the main
window created at the beginning of the application.

Hello World example, we'll have the title of our window say "Hello World" and create a
button that will dismiss the application:

#! [usr/ bi n/ perl

use Tk;

ny $mw = Mai nW ndow >new,

Smw->title("Hello World");

$mn >But ton(-text => "Done", -command => sub { exit })->pack;
Mai nLoop;

Despite only being six lines long, there is quite abit going on in our little program. The
first line, as any Perl programmer knows, invokes Perl (only on Unix; in Win32 you
have to type perl hello.pl to invoke the program). The second line tells Perl that we
would like to use the Tk module.

Thethird line

ny $mwv = Mai nW ndow >new,

Is how we create awindow. The window will have the same basic window manager
decorations as all your other windows. In aUnix environment, it will look like al your
other windows, and if it werein MS Windows, it would look like those windows.

Thetitle of our window is changed by using thet i t | e method. If we hadn't used this

method, the text across the top of the window would be the same as the name of thefile
containing the code. For instance, if my code were stored in afile named hello_world,
the string "Hello_world" would appear across the title bar of my application (Tk
automatically capitalizes the first character for you). Using thet i t | e method is not

required, but it makes the application ook more polished.

Any string we put as an argument becomes the title. If | wanted thetitle to be "Hey!
Look at my great program!" this would be the place. Thisis akin to using the -title
option when starting up any standard X Windows application. There are more methods
for aMainWindow object, which will be covered later in Chapters 12 and 13.

The next line creates a Button widget, sets basic properties, and packsit. (See Chapter 3,
The Basic Button, for all available configuration options.)

The button is set up to display the text "Done" and to perform the Perl command exi t
when pushed. Finaly, the last item of concernisthe Mai nLoop command. This starts

the event handler in motion, and from then on the application will do only what we have
told it to do: If the user clicks on the button, the application will exit. Anything else the
user does-minimizing, resizing, changing to other applications-will all be processed by
the window manager and ignored by our application. See Figure 1-1 for a picture of the
Hello World window.

Done .?

= smm ===

. mmu_ﬂ

e |

Figure 1-1.
Hello World window

Using exit Versus Using destr oy

In al of the examplesin thisbook you will seesub { exit; } usedto quitthe Perl/
Tk application. Thisworksfine aslong asyou have doneause Tk; inthesamefile
that containsthesub { exit }.Perl/Tk definesitsown exi t routine which does

some cleanup and various other things that are important to Tk. Another way to quit the
Tk portion of the application isto call $mw >dest r oy () , which destroys the main

window and returns to the code listed after Mai nLoop. The code after Mai nLoop will
not be executed even if youusesub { exit }.Keepthisinmindif you are goingto
be doing anything after the GUI portion is done.

Naming Conventionsfor Widget Types

Naming conventions? How boring! Well, sometimes our programs get so large and
unwieldy that we can't remember what that stupid $but t on variable was pointing to. If

there are over 10 buttons in our program, we would be hard-pressed to figure out which
button was $but t on3 without digging through a bunch of code.

I'm merely going to suggest a naming convention, and if you likeit, please use it! If not,
either come up with your own, or hope you have areally good memory.

For buttons, | liketouse b, bttn, or Butt on asatype of qualifier to the variable
name. For instance, | would name my button in the Hello World example $done_b,
$done_bttn, or $doneBut t on.

A specialized widget type is the very first window we create with the Mai nW ndow
method. | always use $mw as the variable name for this. Y ou will see other programs use
$mai n or $mai nwi ndow as well.

Table 1-1 contains alist of widget types and my suggested naming conventions for them.
Replace "blah" with a sensible description of the widget's purpose (e.g., exi t). If you
use this convention, you'll aways know what type of widget you're working with.

Table 1-1. Naming conventions by widget type

Widget Type Suggested Name Examples
Button $bl ah_b (or $exit b, $apply b, SnewBut t on
$bl ah_bttn, $bl ahButt on)
Canvas $bl ah_canvas $bl ahCanvas $mai n_canvas, $t i nyCanvas
Checkbutton $bl ah_cb or $bl ahCheckbut t on $uppercase_ch,
$l ower caseCheckbut t on
Entry $bl ah_e or $bl ahEntry $nane_e, $addressEntry
Frame $bl ah_f or $bl ahFr ane $main_f,$left_f,$canvasFrane
Label $bl ah_| or $bl ahLabel $name_| , $addr essLabel
Listbox $bl ah_I b or $bl ahLi st box $t eans_| b, $t eansLi st box
Menu $bl ah_mor $bl ahMenu $file_mbedit_m $hel pMenu
Radiobutton $bl ah_rb or $bl ahRadi obut t on $bl ue_rb, $grey_rb,
$r edRadi obut t on
Scae $bl ah_scal e or $bl ahScal e $age_scal e, $i nconeScal e
Scrollbar $bl ah_scrol | (or $bl ah_sbar) or $x_scrol | ,$yScrol |
$bl ahScrol |
Text $bl ah_t (or $bl ahText) $fil e_txt,$comrent Text
Toplevel $bl ah_wor $bl ahW ndow $mai n_w, $f i | eopenW ndow

| admit | don't follow my own rules all the time. Throughout this book, you'll see me use just
$but t on in example code. I'll use $but t onl and $but t on2 if there are two in the example.

Anything larger than just afew lines, | will try (scout's honor?) to use my own convention. | will
always use a name that indicates what type of widget I'm referring to.

Using print for Diagnostic/Debugging Purposes

Normally, you'll run your Perl/Tk program by typing the program name at the command prompt:

% hello_world

or

C. \>perl hello_world

When you invoke the program this way, any output created by using apri nt (or pri nt f)isto that

terminal window. Sometimes, you won't see the information actually printed until you quit the
program. Thisis probably because you didn't put a\ n on the end of the string to be printed, which

causes an automatic flushing of output. During your application processing, if you think you aren't
seeingapri nt statement when you should be, make surea\ nisonthepri nt statement.

Designing Your Windows (A Short Lecture)

Before you decide what events to handle, it is worthwhile to spend some time sketching
out a few windows on paper and deciding what should happen (from the user's
perspective) when you click a button or invoke a menu item.

One of the most important things to keep in mind when you design your application's
windows is that nothing happens until that event loop starts up. Everything prior to the
call to Mai nLoop isjust preparation for the event loop.

A GUI often makes the application look much more polished and purposeful than a
command-line interface does. Also, it is often much easier to manipul ate many different
kinds of user input through a GUI.

Here are some things to consider when you are deciding what the GUI should look like:
 Every widget should have a purpose. It should be intuitive and informative.

 Think about the way a user will use an application and design it accordingly.

 Don't try to cram everything your application is doing into one window.

» Don't always try to separate everything into different windows. Sometimes the
application is so simple that one window is al you need.

* Colors are great, but there are alot of color-blind people out there. If you insist on
using color, alow it to be customized viaafile or through the application itself.

» Some widgets do their job better than others do. Use the right widget for the right job.

That's it for the lecture. Now, get ready to learn the ropes.

2—
Geometry M anagement

To display widgets on the screen, they must be passed to a geometry manager. The
geometry manager controls the position and size of the widgets in the display window.
There are several geometry managers available with Perl/Tk: pack, pl ace,andgri d.

All three geometry managers are invoked as methods on the widget, but they all have
their own methodol ogies and arguments to change where and how the widgets are put on
the screen:

$wi dget 1- >pack(); $wi dget 2->pl ace(); $wi dget 3->grid();

When you organize the widgets in your window, it is often necessary to separate groups
of widgetsto get acertain look and feel. For instance, when you use pack() , itis

difficult to have widgets stacked both horizontally and vertically without grouping them
in some fashion. We group widgets by using aframe widget inside a window or by using
another window (atoplevel widget).

We create our first window by calling Mai nW ndow. The Mai nW ndowis a special

form of atoplevel widget. For more detailed information on how to create/configure
frames and toplevel widgets, see Chapter 12, Frames, and Chapter 13, Toplevel Widgets.

Because of the differences between the three geometry managers, it is difficult (not
entirely impossible, but definitely not recommended) to use more than one geometry
manager within the same area. In our $nmw, | can display many types of widgets, but if |

start using pack() , | should continue to use pack() on all of the widgets contained
directly in $mw. | wouldn't want to switch inthe middleto using gri d() . Because a
window can contain aframe, which in turn contains other widgets, we use pack() to
pack the frame inside the main window and then we could use gr i d() to manage the
widgets inside the frame. See Figure 2-1.

Region1:
Contains several widgets and a frame

all managead by pack()

Widget A

Widget A

Frame:
Placed in window by pack(), but widgets
inside it are managed by grid().

Figure 2-1.
Frame within awindow that uses a different geometry manager

Although the different geometry managers have their own strengths and weaknesses, the
most commonly used ispack(), so I'll discussit first and in the most detail. Thegri d

() geometry manager was under development as | was writing this book. gr i d has

been improved greatly with the release of Tk 8.0 and subsequent porting to Perl. The
pl ace() geometry manager isthe most tedious to use because you have to determine

exact coordinates for every single widget.

Pack

Remember when you were a small child and you had those wooden puzzles to put
together? They often had cute little pictures of animals on them. Each piece in the puzzle
had exactly one place where it could go, and there weren't any overlaps allowed between
pieces.

With the pack geometry manager, our windows are similar to the wooden puzzle

because widgets cannot overlap or cover each other (partially or completely). See Figure
2-2. If abutton is packed in a certain space on the window, the next button (or any
widget) will have to move around the already packed button. Luckily, our windows will
only be dealing with rectangular shapes instead of funny-shaped puzzle pieces.

The order in which you pack your widgets is very important because it directly affects
what you see on the screen. Each frame or toplevel maintains alist of items that are
displayed withinit. Thislist has an order to it; if widget A is packed before widget B,
then widget A will get preference. Thiswill become clear as we go through some
examples. You will often get avery different look to your window just by packing the
widgetsin adifferent order.

Widget A |

Owverlap not allowed by pack

Widget B

Figure 2-2.
Overlap error

If you don't care what the window |ooks like and how the widgets are put in it, you can
use pack() with no arguments and skip the rest of this chapter. Here it isagain:

$wi dget - >pack() ;

To make your window look nicer and more manageable (and user friendly), there are
arguments that can be sent to the pack method that will change the way the widgets and

the window looks. Aswith anything in Perl/Tk, the arguments are arranged in pairs. So
the more sophisticated usage would be:

$wi dget - >pack([option => value, ...]);

Hereisthe code to create a window that doesn't use any optionsto pack() . Figure 2-3

shows the resulting window (I know we haven't covered all the widgets used in this
example, but hang in there, it's pretty simple).

#!/usr/bin/perl -w
use Tk;

ny $mw = Mai nW ndow >new;,

$mw>titl e("Bad W ndow');

$mw >Label (-

text => "This is an exanple of a w ndow that | ooks bad
\ nwhen you don't send any options to pack")->pack;
$mn >Checkbutton(-text => "1 like it!")->pack;

$mn >Checkbutton(-text => "1 hate it!")->pack;
$mn >Checkbutton(-text => "1 don't care")->pack;
$mw >Button(-text => "Exit",

-command => sub { exit })->pack;
Mai nLoop;

= BadVindow o
This is an example of a window that looks bad
when you don’t send any options to pack

i ke it!
_{ I hate it!

| I don't care

o |

Figure 2-3.
Window with widgets managed by pack

We can alter the preceding code and add some optionsto the pack() callsthat will make our
window look much nicer:

#!/usr/bin/perl -w
use Tk;
nmy $mw = Mai nW ndow >new;
$mw->titl e(" God W ndow');
$mw >Label (-
text => "This wi ndow | ooks nmuch nore organi zed, and | ess haphazard
\ nbecause we used sone options to nmake it | ook nice")->pack;
$mw >Button(-text => "Exit",
-command => sub { exit })->pack(-side => 'bottom,
-expand => 1,

-fill = "x");
$mn >Checkbutton(-text => "1 like it!")->pack(-side => "left",
-expand => 1);
$mw >Checkbutton(-text => "1 hate it!")->pack(-side => "left",
-expand => 1);
$mw >Checkbutton(-text => "I don't care")->pack(-side => "left",

-expand => 1);
Mai nLoop;

Figure 2-4 shows the much more organized window.

o [Good Window T L]
This window looks much more organized, and less haphazard
because we used some options to make it look nice

I Tike it! _I | hate it! I I'don't care

Exit

Figure 2-4.
Window with widgets managed by pack using some options

Using pack() alowsyou to control:

* Position in the window relative to the window or frame edges

* Size of widgets, relative to other widgets or absolute

* Spacing between widgets

* Position in the window's or frame's widget list

The options, values, and defaults are listed and discussed in the following section.
Pack Options

Thislist shows all the options available when you call pack() . The default values are

shown in bold (which indicates if you don't use that option, you'll get the effects of that
value for that option).

-side => "left' |'right' |"top' |' bottom
Puts the widget against the specified side of the window or frame

-fill => "none' |'x" |'y" |' both'
Causes the widget to fill the allocation rectangle in the specified direction

expand => 1
|0

Causesthe
allocation
rectangle to fill
the remaining
Space available
in the window
or frame

-anchor =>"'n'" ['ne' | 'e" [|'se"' |'s'" |"sw |'W |'nwW |'center’
Anchors the widget inside the allocation rectangle

-after => $ot herw dget
Puts $wi dget after $ot her wi dget in packing order

-bef ore => $ot herwi dget
Puts $Wi dget before $ot her wi dget in packing order

in => $ot herw ndow
Packs $wi dget inside of
$ot her wi ndow rather
than the parent of

$wi dget , whichisthe
default

| padx =>
amount
Increases
the size of
the widget
horizontally
by amount
X 2

-i pady =>amount

Increases the size of the widget vertically by amount x 2
padx =>
amount
Places
padding
on the left
and right

of the
widget

- pady =>amount
Places padding on the top and bottom of the widget
Positioning Widgets

Each window (or frame) has four sides to it: top, bottom, left, and right. The packer uses
these sides as points of reference for widgets. By default, pack() placesthe widgets

against the top of the toplevel or frame.
Y ou can control what side awidget is placed against by using the - si de option:
-side => "left' | "right' | "top' | 'bottom

For example, if we would like our button against the left edge of the window, we can
specify -side => 'left'.

Using our Hello World example as a base, let's ook at what happens when we pack our
button against the different sides. The only line we will changeisthe - >pack part of

the Button creation line. We'll also change the "Hello World" string in the $ma-
>t i t| e command to easily show the new options to pack.

[sWe=top’ [(]|

Done |

——h

$mn >But ton(-text => ' Done',
-command => sub { exit })
->pack(-side => "top');

OR

$mw >But t on(-text => ' Done',
-command => sub { exit })
- >pack;

—| =-side => "hottom’ 7 ;Ef

Done |

$mn >But ton(-text => ' Done',
-command => sub { exit })
->pack(-side => 'bottom);

| —swe = left. ||l

Done [

st]

$mw >But t on(-text => ' Done',
-command => sub { exit })
->pack(-side => "left');

$mw >But t on(-text => ' Done',
-command => sub { exit })
->pack(-side => "right');

The windows shown here have been made a bit larger to emphasi ze the difference that
using alternative values for - si de makes. Normally, the window will be only aslarge

as required to show the button. When you are deciding which way to place widgetsin a
window, it is always a good idea to see what happens when you make the window both
larger and smaller. Make sure the behavior you get is what you want.

Sofar, pack() seems pretty ssmple, but what if you want to put more than one button
in your application? What happens when we simply add more buttons?

$mw >Button(-text => 'Donel', -command => sub { exit })-
>pack;
$mw >Button(-text => 'Done2', -command => sub { exit })-
>pack;
$mn >Button(-text => 'Done3d', -command => sub { exit })-
>pack;
$ma>Button(-text => 'Doned4', -command => sub { exit })-
>pack;

Since the default - si de ist op, we would expect them to all be mushed up against the

top of the window, right? Sort of. The packer allocates space for each widget and then
manipul ates the widget inside that space and the space inside the window.

Figure 2-5 shows what the window with the four Done buttons looks like; the next
section explains why.

..........

Figure 2-5.
Four buttons packed with default settings

Allocation Rectangles

When given an item to pack, the packer first looks to see which side (top, bottom, right,
or left) to use. It then sets aside an invisible rectangular area across the length of that
side for use only by that widget.

In Figure 2-6, the solid-line rectangle represents our empty window (or frame), and the
dotted-line rectangle is the rectangular area that the packer sets aside for the first button.

It actually does go all the way across the width or height of the window, but to make it
easier to see, it's shown alittle indented.

...

Figure 2-6.
Rectangular areas set aside by packer when using -side => 'top' and -side => 'l eft’

The dimensions for the dotted-line box, which we'll call the allocation rectangle, are
calculated based on the size of the requesting widget. For both the top and bottom sides,
the allocation rectangle is as wide as the window and only as tall as the widget to be
placed in it. For the right and |eft sides, the allocation rectangle is astall as the window
but only as wide as required to fit the widget.

Our examples so far have used buttons in which the text of the button determines the
width of the button. If we create a button with the text "Done" on it and one with the text
"Done, Finished, That'sit," the second button is going to be much wider than the first.
When these two buttons are placed up against either the right or left side of the window,
the second button would have awider allocation rectangle than the first. If we placed
those same two buttons against the top and the bottom, the all ocation rectangles would
be the same height and width because the width is determined by the window, not the
widget.

After the size of the allocation rectangle is determined, the widget is placed within the
allocation rectangle according to other options passed and/or the default values of those
options. | will go over those options and how they can affect the allocation rectangle
|ater.

Once the first widget has been placed in the window, the amount of area available for
subsequent allocation rectanglesis smaller because the first allocation rectangle has used
some of the space (see Figure 2-7).

Figure 2-7.
Second allocation rectangle when default side 'top' is used

When more than one button is placed against different sides in the same window, the
results will vary depending on the order used.

Well start by placing one button along the top, one along the bottom, and then buttons
right and | eft:

$mn >Button(-text => "TOP", -conmand => sub { exit })
->pack(-side => "top');

$mn >Button(-text => "BOTTOM', -conmand => sub { exit })
->pack(-side=> 'bottom);

$mw >Button(-text => "RIGHT", -conmmand => sub { exit })
->pack(-side => "right');

$mn >Button(-text => "LEFT", -command => sub { exit })
->pack(-side => "left');

The allocation rectangles for this window would look like the diagram in Figure 2-8.

Allocation rectangle for TOP

||||||||| [ETRETRT LT R LI T TN T T P P P LT PR PR
1 u

| Allocation rectangle : Allocation rectangle ;
i forLEFT i forRIGHT |

Figure 2-8.
Allocation rectangles for four buttons

Figure 2-9 shows what the actual window looks like, both normal size and resized so it's
abit larger.

= 4 Buttons EE
—{aButtons | ||| _ToP |
TOP | i
LEFT | RIGHT || LEFT | RIGHT
| st et tedistrsiri
BOTTOM |
) BOTTOM
L= s "_:::'_J
Figure 2-9.

Four buttons placed around the sides of the window
Filling the Allocation Rectangle

Normally, the widget is left at the default size, which is usually smaller than the
alocation rectangle created for it. If the- f i | | option isused, the widget will resize

itself to fill the allocation rectangle according to the value given. The possible values are:
-fill =>"none'" | '"xX'" | '"y" | 'both

Using thevalue' x' will resize the widget in the x direction. Likewise, ' y' will cause
thewidget to resizeinthey direction. Using-fil |l => ' bot h' isagood way to see
exactly what size and placement was given to the allocation rectangle because' bot h'

resizes the widget in both x and y directions. Using our four-button example again, welll
specify -fill => "both'.

$mn- >Button(-text => "TOP", -command => sub { exit })

->pack(-side => "top', -fill => "both");

$mn >Button(-text => "BOTTOM', -conmand => sub { exit })
->pack(-side => "bottom, -fill => "both');

$mn >Button(-text => "RIGHT", -command => sub { exit })
->pack(-side => "right', -fill => "both");

$mn >Button(-text => "LEFT", -command => sub { exit })
->pack(-side => "left', -fill => "both');

Figure 2-10 shows the resulting window.

If we switch the button we create first, we get adifferent result. The window in Figure 2-
11 was created by packing the widgets in this order: left, right, top, bottom.

Figure 2-12 demonstrates yet another order, which really shows that the allocation
rectangles change size depending on what gets packed first.

—| " side and filgt, b, ;1) ||
Top =i il
______ oo A E
|
LEFT RIGHT :
BOTTOM |
Figure 2-10.

Four buttons packed to each side using -fill => 'both'

| —|__side and fill {r, 1, t,b) [-] [
‘ | TOP |
LEFT RIGHT
BOTTOM | .
Figure 2-11.

Four buttons packed to each side in adifferent order using -fill => 'both'

—[4Buttons (brb) [|
TOP :
i | L)
LEFT | .
| RIGHT
! Skl |
' BOTTOM |
Figure 2-12.

Four buttons packed in order of top, right, bottom, and left

A commonuseof - fill isonwidgetswith scrollbars: listbox, canvas, and text.

Usually, the scrollbars are along the edge of the window, and you want the listbox to fill
the remaining area. See Chapter 6, Scrollbars, and Chapter 7, The Listbox Widget, for
more information.

Expanding the Allocation Rectangle

The - expand option manipul ates the allocation rectangle and not the widget inside it.
The value associated with - expand is a boolean value.

-expand => 1| O

Given atrue value, the allocation rectangle will expand into any available space |eft over
in the window depending on which side the widget was packed.

Widgets packed with side right or left will expand in the horizontal direction. Widgets
packed with side top or bottom will expand in the vertical direction. If more than one
widget is packed with - expand turned on, the extra space in the window is divided

evenly among all the allocation rectangles that want it.

In Figure 2-9 or 2-10, you saw that there was some space left in the center of the window
that wasn't occupied by any widget. If we change the code and add - expand => 1 to

the list of pack options for each button, the result is the window in Figure 2-13.

TOP ! |
LEFT: - | RIGHT
BOTTOM Il
1]
2o |
Figure 2-13.
Four buttons using the -expand => 1 and -fill => 'both' options
Notethat Figure 2-13 leftthe-fi |l => 'bot h' optioninthe code. If we omit the -
fill option, the buttons stay their original size, but the allocation rectangles (which are

invisible) take over the extra space in the window (see Figure 2-14).

L B

TOP

rm— =

In Figure 2-14, the buttons are centered in their allocation rectangles because of the

Figure 2-14.

Four buttons using -expand => 1 and -fill => 'none’

default value of the - anchor option, whichis' center"' .

Anchoring a Widget in Its Allocation Rectangle

The anchor option manipulates the widget inside the allocation rectangle by anchoring it to the
place indicated by the value passed in. It uses the points of a compass as areference.

anchor

Figure 2-15 shows those locations in an example allocation rectangle.

=>

lel

'w

1 n' | 1 Sl | 1 ne' | 1 nW

1 Sel

'sw

‘center'

: W n ne |
' w center P
W s 0
Figure 2-15.

Allocation rectangle with -anchor points labeled

The default for - anchor is' cent er' , which keeps the widget in the center of its allocation
rectangle. Unlessthe - expand option is set to atrue value, this won't seem to change much of
anything in the window. As seen in Figure 2-16, which shows the result of using the -

expand => 1 option, it isobvious that the widget sticks to that center position when the window
Isresized.

Figure 2-16.
Default behavior of -anchor with -expand set to 1

If all other defaults are used to pack the widget, Figure 2-17 showswhat - anchor
=> 'e' and -anchor =>"'w does.

Remember that the allocation rectangle is created based on which side the widget is packed against,
So certain combinations will appear to have not had any effect. For example:

$mw >Button(-text => "Done", -command => sub { exit })
->pack(-side => "top', -anchor ->'n");

Ql'ﬂ!ﬁlﬁ"-} e []u |

_EU

Figure 2-17.
Examples of -anchor =>'e' and -anchor =>'w'

This code fragment will leave the widget exactly where it wasif the- anchor option

had not been specified because the allocation rectangle does not change size at all. If the
- expand option is also specified, then when the window is resized, the widget would

stick to the north side of the window. If - anchor =>"'s' had been specified, when
the window is resized, the widget would stick to the south side of the window.

The - anchor option is more often used to line up several widgetsin arow. Figure 2-18
and Figure 2-19 show two common examples.

:ﬁ
-
.

Done

Done

Dona

Figure 2-18.
Window with three buttons all packed with -side => 'top', -anchor => 'w'

Figure 2-19.
Windows with three buttons all packed with -side =>'l¢eft’, -anchor =>'n’

Sometimes, when - si de and - anchor are used together, the results don't seem to be

what you would expect at first glance. Always keep in mind that invisible allocation
rectangle and how it affects what you see on the screen.

Widget Order in the Window

Each window that has widgets packed into it keeps track of those widgets in an ordered
list. The order of thislist is normally determined by the order in which the widgets were
packed. The last item packed isthe last item inthe list. Using the - af t er option, you

can change the default order by specifying which widget should be placed after your new
widget. On the opposite end, if you use the - bef or e option, you can put the new

widget before a previously packed widget:

-after => $ot herw dget
-bef ore => $ot herw dget

As an example, let's create four buttons ($wi dget 1, $wi dget 2, $wi dget 3,
$wi dget 4) and only pack three to begin with. The pack command for $wi dget 4
might then be:

$wi dget 4- >pack(-after => $wi dget 1);

Figure 2-20 shows two windows: one before $wi dget 4 is packed and one after
$wi dget 4 is packed.

- m e | o P . L, . S e b =]
Eunnaﬂ | Donez | Done3 |f {1 Donel | Doned | DoneZ ; Done3 |
I |

2 o
—e e

Figure 2-20.
On left: the window with three buttons packed in order. On right: the button with Done4 |abel
was packed using -after => $widgetl

If we want to put $wi dget 4 in front of $wi dget 1, we use this command, and see the
resultsin Figure 2-21.

$wi dget 4- >pack(-before => $w dget1);

-h Doned |.rﬂunu1 :-:j-!.:: - i DﬂnE‘S|

Figure 2-21.
Button with Done4 label was packed using -before => $donel

Padding the Size of the Widget

The final way to force pack to size the widget isto use the padding options. The first set
of padding options affects the widget itself by adding to its default size. Different
amounts can be added in the x and y direction, or they can be

the same. To specify how much padding should occur in the x direction, use the -
| padx option:

-1 padx => anount
Specify padding for they direction like this:
-i pady => anopunt

The amount is a number that isavalid screen distance. I'll discuss the definition of a
valid screen distance in the next section.

Both the- i padx and - i pady options change the size of the widget before the
alocation rectangleis calculated. - i padx adds the amount specified to both the right

and |eft sides of the widget. The overall width of the widget would increase by (2 x
amount). - i pady adds to the top and bottom of the widget, causing the overall height

of the widget to increase by (2 x amount). Figure 2-22 shows how the - i padx and -
| pady options affect a button.

Ij. axample I 4 I_l
‘ P Done? | Done3 |
Figure 2-22.

The Donel button was created with options: -ipadx => 10, -ipady => 10

The other kind of padding is inserted between the edge of the widget and the edge of the
alocation rectangle and is done with the - padx and - pady options:

- padx => anount
- pady => anount

Using - padx and - pady does not affect the size of the widget, but it does affect the
size of the allocation rectangle. It acts as a buffer around the widget, protecting it from
having to touch other widgets. Figure 2-23 shows the effects of using - padx and -

pady.

= example []

¢ Done2 | Dones J

Dorel

| A
s I

Figure 2-23.
The Donel button was created with options -padx => 10, -pady => 10

A good way to remember the difference between - i padx/ y and - padx/ y isthat the
"I" stands for "inside the widget" or "internal padding.”
Valid screen distances

Many times you'll see options that require values specified in screen units (or what is
called avalid screen distance). The options - i padx and - i pady are examples of this

type of option. Always check to see what value the option actually requires.

A screen unit is a number followed by a designation for the unit to use. If thereisno
designation, the units are in pixels. Table 2-1 shows all the possibilities.

Table 2-1. Valid screen units

Designator Meaning Examples

(none) Pixels (default) 20,30,"20","40"
c Centimeters *3c',"4c' ,"3"

i Inches 21,31

m Millimeters $csam', " 4t

P Printer points (1/72 inch) “72p"," 40p'

To use these designators, it is hecessary to use quotes (either single or double) around
the value. Here are some examples:

$but t on- >pack(-i pdax => 20); # 20 pixels

$but t on- >pack(-i padx => "'20"); # Also 20 pixels
$but t on- >pack(-i padx => "1i"); # 1 inch

$but t on- >pack(-i pdax => "1m); # 1 mllimeter

$but t on- >pack(-i padx => '1); # 1 pixel

$but t on- >pack(-i pdax => '20p'); # 20 printer points

Remember that a"p" designator does not stand for pixels, but printer points. |
recommend always using pixels as your unit of measure. Different screens display
different resolutions; one screen might display an actual inch and another might display
something else.

Displaying in a Parent Other Than Your Own

By default, when awidget is packed, it is packed inside the region that created it.
Sometimes it is necessary to display awidget inside a different region. Usethe-i n

option to do so:

-in => $ot her wi ndow

It puts the new widget at the end of the packing order for the $ot her wi ndowand
displaysit accordingly. All other options specified inthe pack() call still apply.

M ethods Associated with Pack

There are afew methods that are used in conjunction with the pack geometry manager.

They allow the programmer to get information about either the widget that has been
packed or the parent widget in which other widgets are packed.

Unpacking a widget
To unpack awidget from awindow or frame, use the pack For get method:
$wi dget - >packForget ();

packFor get makesit look like the widget disappears. The widget is not destroyed, but

it isno longer managed by pack. The widget is removed from the packing order, so if it
were repacked later, it would appear at the end of the packing order.

Retrieving pack information

To return alist containing all the pack-configuration information about a widget, use
packl nf o:

@i st = $w dget->packlinfo ();

The format of the list isin option/value pairs. Thefirst pair inthelistis- i n and the
current window that contains $wi dget (usually also the parent). Thisis an example of
the information returned from pack! nf o:

-in Mai nW ndow=HASH (0x818dcf4) -anchor n -expand O -
fill none -ipadx O -ipady
0 -padx 10 -pady 10 -side left

From this, we can tell that we packed our $wi dget into the main window rather than a

frame. Since thelist hasa"paired" quality to it, we could easily store the result from
packl nf o in ahash and reference the different option values by using akey to the hash:

%acki nfo = $w dget - >packl nf o;
print "Side used: ", $packinfo{-side}, "\n";

Disabling and enabling automatic resizing

When you put awidget inside a window, the window (or frame) will resize itself to
accommodate the widget. If you are dynamically placing widgets inside your window
while the program is running, the window will seem to bounce from size to size. You
can turn off this behavior by using packPr opagat e on the frame or toplevel widget:

$wi dget - >packPropagate (0);

If settoO or' of f' , packPr opagat e changes the behavior of the widget so that it

doesn't resize to accommodate items packed inside of it. When afalse value is sent to
packPr opagat e before widgets are placed inside it, this automatic resizing doesn't

happen, so you can't see any of the widgets placed inside the parent until it is manually
resized. If you call packPr opogat e after the widgets have been placed inside it, the

widget will ignore any size changes from its child widgets.

Listing widgets

Y ou can determine the widgets your frame or toplevel holds with the pack Sl aves
method:

@i st = $parentw dget - >packSl aves ();

packSl aves returns an ordered list of all the widgets that were packed into the
$par ent w dget . An empty string (or empty list) isreturned if no widgets were
packed into $par ent wi dget .

Thelist returned from pack Sl aves looks like this:

Tk: : But t on=HASH(0x81b2970) Tk: : Butt on=HASH(0x8116ccc)
Tk: : But t on=HASH(0x81bcdd4)

Each item is areference to a packed widget and can be used to configure it. For example,
you can increase the size of each widget by 20 in both the x and y directions by looping
through it and "packing” it with new information. Using our good window examplein
Figure 2-4, we can add a button that will contain a subroutine that uses pack Sl aves:

$ma>But ton(-text => "Enl arge",
-command => \ & epack_ki ds) - >pack(-
side => "bottom,

anchor => 'center');
sub repack _kids {
ny @i ds = $mw >packSl aves;
foreach (@ids) {
$ _->pack(-ipadx => 20, -ipady => 20);
}
}

Figure 2-24 shows the resulting window.

This window In:ul-'.s much mvur& m‘gmizeu anzl Iﬂss hﬂphazar.l:l
because we used some options to make it look nice

11l it 21 I'hate jt? © 21 1don’t care
Exit

Enlarge l

Figure 2-24.
Window before pressing Enlarge button

Let'slook at what happens when we press the Enlarge button. As shown in Figure 2-25,
al the widgets are now repacked with additional parametersof - i padx => 20, -

I pady => 20. These new options are in addition to any other parameters the widgets

were packed with before. If an option is repeated, the last one specified overrides the
previous ones.

i -

."u_|-_- iTeE

AT PRSI B

| Vot P e) AT e CECE T
e I T I S St R SR e e T i

s e LT A

a ki ! |
E This window looks much more organized, and less haphazard f
because we used some options to make it look nice
i .
i ik it! _i I hate jt? i ldon't care |

Exit !
Enlarge
Figure 2-25.

Window after pressing Enlarge button

The window is suddenly huge! Subsequent presses of the Enlarge button will do nothing
more to the window because all the widgets already havean - i padx and - i pady of

20. If we wanted to always add 20 to the values of - i padx and - i pady, we would
have to request the current values and add 20 to them. Here's the code for that:

sub repack _kids {
ny @i ds = $mw >packSl aves;
foreach (@ids) {
Y%packi nfo = $_->packinfo ();
$ _->pack(-ipadx => 20 + $packi nfo{"-i padx"},
-i pady => 20 + $packi nfo{"-i pady"})
}

}

We use packl nf o to get the current configuration and add 20 to that value.

Grid

Thegr i d geometry manager divides the window into a grid composed of columns and
rows starting at 0,0 in the upper left-hand corner. Figure 2-26 shows a sample grid.

Rather than using the sides of awindow as reference points, gri d() dividesthe screen

into columns and rows. It looks alot like a spreadsheet doesn't it? Each widget is
assigned a grid cell using the options availabletogri d() .

Column 0, Row & | Column 1, Row O | Column 2, Row 0
Column 0, Rowe 1 | Column 1, Rowe 1 | Column 2, Row 1
Column O, Raw 2 | Column 1, Row 2 lE-::nIumn 2, Row 2
Column 0, Row 3 | Column 1, Row 3 | Column 2, Row 3

Figure 2-26.
Diagram showing window divided into grid

Thegri d() method takes alist of widgets instead of operating on only one widget at a
time.* Here isthe generic usage:

$wi dget 1->gri d

([$widget2, ... , 1 [option => value, ...]);
A specific example:

$wi dget 1- >gri d($wi dget 2, $wi dget 3);
Instead of using three separate calls, you can useonegr i d() call to display al three
widgets. You can also invokegri d() on each widget independently just as you can
pack() .Eachcaltogri d() will create another row in the window. So in our
example, $wi dget 1, $wi dget 2, and $wi dget 3 will be placed in the first row.

Another call to grid would create a second row. Thisis what happens when you do not
specify any additional optionstothegri d() call.

For greater control, you can specify explicit - r owand - col unm options for each
widget in the window. | will cover these options later.

These assumptions are made when additional options are not specified:

 The first widget in the row (for example, $wi dget 1 in the preceding example)
invokesthegri d() command.

* All remaining widgets for that row will be specified as argumentsto thegri d()
command.

» Each additional call togri d() will add another row to the display.

* Specia characters can be used to change the - col utmspan and - r owspan of the
widget without using - col utmspan or - r owspan explicitly.

A few examples will help demonstrate. Each call togri d() will create another row, so
we know we have two rows in the following example:

Create two rows, each with four w dgets
$wi dget 1- >gri d($wi dget 2, $wi dget 3, $wi dget 4) ;
$wi dget 5->gri d($wi dget 6, $wi dget 7, $wi dget 8) ;

* Several people have told methat pack can also take alist of widgets. | didn't cover
this because it is not how pack isnormally used.

In this example, we have created four rows and there is only one widget in each row:

Create four rows, each with one w dget
$wi dget 1->gri d();
$wi dget 2->gri d();
$wi dget 3->gri d();
$wi dget 4->gri d();

We can also create widgets as we go:

$mn >Button(-text => 'Buttonl', -command => \&call 1) ->grid(
$mn >Button(-text => 'Button2', -

command => \ &cal | 2),
$mn >Button(-text => 'Button3d', -

command => \ &cal |l 3),
$mn >Button(-text => 'Button4d', -

command => \ &cal |l 4));

Pay careful attention because the second, third, and fourth callsto But t on areinside
thecal togri d() . All four of the buttons will be placed in the first row. If we executed
the same exact command again, the new widgets would be placed in the next row.

Special Characters

There are several special characters that can be used to alter the way the widgets are
gridded in the window. Each specia character serves as atype of placeholder that
Indicates what to do with that position in the grid:

-" (aminussign)
Tells grid that the widget specified right before this one in the list should span this

column aswell. To span more than one column, placea™ - " in each widget position to
span. A" -" may not follow a" " oran" x".
n XII

Effectively leaves a blank space where a widget would otherwise be placed.

mn /\II

A widget in row x will span row x and x + 1 when this character is placed inthegri d
command for row x + 1 in that row/column position. The number of " A" characters
must match the number of columns the widget spansin row x. Similarto " - ", but goes
down, not across.*

The following sections include some examples that illustrate what the special characters
do.

* When | used the special character " " with Tk4.002, | got a nasty core dump. This
isfixed in Tk8.0, so if you get this error also, check which version you have.

Spanning columns

The following bit of code creates three rows of buttons. The first two rows are normal,
and in the third, the second button spans three columns. Each ™ - " character adds one to

the number of columns the button uses, and the default is 1. So the original column and
two hyphens (" - ", " - ") indicate that there are three columnsto span. The- st i cky

option is necessary for the widgets to stick to the sides of the cellsit spans. If the -
st i cky option had been left out, the button would be centered across the three cellsit
spans.

$mn >Button(-text => "Buttonl", -command => sub { exit })-
>grid
($mw >But ton(-text => "Button2", -command => sub { exit }),
$mn >Button(-text => "Button3", -command => sub { exit }),

$mw >Button(-text => "Button4", -
command => sub { exit }));

$mw >Button(-text => "Button5", -comand => sub { exit })-
>grid
($mw>Button(-text => "Button6", -conmmand => sub { exit }),
$mw >Button(-text => "Button7", -command => sub { exit }),

$mn >Button(-text => "Button8", -
command => sub { exit }));

$mw >Button(-text => "Button9", -command => sub { exit })-
>grid

($mw >But ton(-text => "Buttonl0", -
command => sub { exit }),

-ty "=t -sticky => "nsew');

The resulting window is shown in Figure 2-27.

Button1 | Buttonz | Button3 m1mn4|

|
Buttons | Buttong | Button? Ell.ﬂtﬂnﬂi

Figure 2-27.
Example of column spanning using the "-" character

Empty cells

The" x" character translates to "skip this space”" and leaves ahole in the grid. | removed

the line that created Button6 and replaced it with an "x" in the following code. The cell
for itisstill there, it just doesn't contain awidget.

$mn >Button(-text => "Buttonl", -command => sub { exit })-
>grid
($mw >Button(-text => "Button2", -command => sub { exit }),
$mn >Button(-text => "Button3", -command => sub { exit }),

$mn >Button(-text => "Button4", -
command => sub { exit }));

$mn >Button(-text => "Button5", -commuand => sub { exit })-
>grid

("x",

$mn >Button(-text => "Button7", -command => sub { exit }),

$mw >Button(-text => "Button8", -
command => sub { exit }));

The resulting window is shown in Figure 2-28.

B

Buttons Button? 1 Buttond ||

Figure 2-28.
Leaving an empty cell between widgets

Grid Options

Therest of the options are similar to those used with pack():

Specia character used ingr i d widget list. Increases col utmspan of widget prior to it
in widget list.

"
Specia character used ingr i d widget list. Leaves ablank spacein the grid.

n /\II

Specia character used ingr i d widget list. Increasesr owspan of the widget in the grid
directly aboveit.

-colum =>n
Sets the column to place widget in (n >= 0).

-row =>m
Sets the row to place widget in (m>=0).

- col umspan =>n
Sets the number of columns for the widget to span beginning with - col umm.

-rowspan =>m
Sets the number of rows for the widget to span beginning with - r ow,

-sticky =>sdtring
String contains charactersn, s, e, or w. Widget will stick to those sides.

-in => $ot herw ndow
Indicates that widget is gridded inside $ot her wi ndowinstead of parent of $wi dget .

-1 padx =>amount
$w dget becomeslarger in x direction by 2 x amount.

- i pady => amount
$w dget becomeslarger iny direction by 2 x amount.

- padx =>amount
Buffer space equal to amount is placed to left and right of widget.

- pady =>amount
Buffer space equal to amount is placed on top and bottom of widget.

Explicitly Specifying Rows and Columns

Rather than letting gr i d() make assumptions, it is sometimes necessary to explicitly

state the row and column in which the widget should be placed. Thisis done by using
the - r owand - col umm options. Each option takes a nonnegative integer as an

argument:
-colum => n, -row =>m

When you use- r owand - col um, it isnot necessary to build or gri d() thewidgets

in any sort of logical order (except for your own sanity when you are debugging). You
could place your first widget in column 10 and row 5 if you like. All of the other cells
with lower row and column values will remain empty.

Explicitly Spanning Rows and Columns

It is also possible to explicitly indicate that a widget (or widgets) should span some
columns or rows. The option to use to span columnsis- col utmspan. For spanning

rows, the option is - r owspan. Both options take an integer that is 1 or greater. The

value indicates how many rows or columns should be spanned, including the row or
column in which the widget is placed.

For this example, | have used the easy way to place widgets in columns and rows by not
explicitly specifying the - r owand - col unm options. Note that the second gr i d

command applies to two button widgets, so the single - col utmspan option applies to
both buttons created there.

$mw >Button(-text => "Buttonl", -command => sub { exit })-
>grid
($mw>Button(-text => "Button2", -command => sub { exit }),
$mw >Button(-text => "Button3", -command => sub { exit }),
$mw >Button(-text => "Buttond4", -command => sub { exit }),

-sticky => "nsew');

Button5 will span Colums 0-1 and Button6 will span 2-3

$mn >Button(-text => "Button5", -command => sub { exit })-
>grid
($mw >But ton(-text => "Button6", -command => sub { exit }),
-sticky => "nsew', -columspan => 2);

The resulting window is shown in Figure 2-29.

Button1 I[Button?

Button3 ! Buttond

! . Buttons

Buttong

R =]

Figure 2-29.
-columnspan example

Thiswindow could also have been created using the " - * special character to indicate

column spanning, like this:

$mw >Button(-text => "Buttonl", -command =>
>grid
($mw >Button(-text => "Button2", -command
$mn >Button(-text => "Button3", -comand
$mn >But ton(-text => "Button4", -conmmand

-sticky => "nsew');

Button5 w ||

$mn >But t on(-text => "Button5", -comand
>grid
("-", $mmw+>Button(-text => "Button6",

command => sub { exit }), "-
-sticky => "nsew');

span Col umms 0-1 and Button6 wil |

=>

sub { exit })-

=> sub { exit }),
=> sub { exit }),
=> sub { exit }),

span 2-3
sub { exit })-

This example illustrates how to explicitly usethe- r owand - col unm optionsin

addition to the - r ows pan option:

$ma >But t on(- t ext
grid(-row => 0,
sticky => 'nsew);

=> "Buttonl",
-colum => 0,

$mw >But t on(-t ext => "Button2"
grid(-row => 0, -colum => 1)
$mw- >But t on(-t ext => "Button3"
grid(-row => 0, -colum => 2)
$mw >But t on(-t ext => "Button4",

grid(-row => 0, -colum => 3)

$mn- >But t on(-text => "Buttonb5"
grid(-row => 1, -colum => 1)
$mn- >But ton(-text => "Button6"
grid(-row => 1, -colum => 2)
$mn- >But ton(-text => "Button7"

grid(-row => 1, -colum => 3)

See Figure 2-30 for the resulting window.

- command
-rowspan

- command
- command

- command

- conmand
- conmand
- conmand

sub { exit })->
2, -

sub { exit
sub { exit

sub { exit

sub { exit

sub { exit

sub { exit

|~ Grid Examgle (]|

| Button? | Button3 ButtnrﬂJ
Buttonl | — E
| Button5 | Buttons | Button7 ||

Figure 2-30.
Explicit -rowspan example

Forcing a Widget to Fill the Cell

When you use the pack() command, it isnecessary to indicate both-fi |1 and -
expand optionsto get the widget to resize inside its allocation rectangle. Thegri d()
command doesn't have an allocation rectangle to fill, but it does have the cell within the
grid. Using the - st i cky optionwithgri d() issimilartousing-fil | and-
expand with pack() .

The value associated with - st i cky isastring containing the compass points to which

the widget should "stick." If the widget should always "stick" to the top of the cell, you
woulduse-sti cky => "n".Toforcethewidget tofill the cell completely, use -

sticky => "nsew'.Tomakethewidget astall asthe cell but only aswide asit
needsto be, use- sticky => "ns". Thestring value can contain commas and
whitespace, but they will be ignored. These two statements are equivalent:

-sticky => "nsew'
-sticky => "n, s, e, W # Sane thing

If you use- st i cky with your widgets and then resize the window, you'll notice that

the widgets don't resize as you think they should. They don't because resizing of the cells
and the widgets in them istaken care of withthegr i dCol urmconf i gur e and

gr i dRowconf i gur e methods, which are discussed later in this chapter.

Padding the Widget

gri d() asoacceptsthese four options. - i padx, - i pady, - padx, - pady. They
work exactly the same asthey doin pack() , but instead of affecting the size of the
alocation rectangle, they affect the size of the cell in which the widget is placed.

In this example, the - i pady and - i padx options are applied to the top row of buttons

and not the bottom row. Notice in Figure 2-31 how Buttons 5 through 8 are also wider
than they really need to be. Thisis because we used the- sti cky => "nsew' option.

$mn >But t on(-t ext =>
>grid
($mw >But t on(- t ext
$mn >But t on(- t ext
$mn >But t on(- t ext
-sticky =>
$mw >Butt on(-t ext =>
>grid
($mn >But t on(- t ext
$mw >But t on(- t ext
$mw >But t on(- t ext

-sticky =>

"nsew',

"Buttonl",

=> "Button2",
=> "Button3",
=> "Button4",
-i padx => 10,
"Buttonb",

=> "Button6",
=> "Button7",
=> "Button8",

"nsew') ;

-command => sub { exit })-

-command => sub { exit }),
-command => sub { exit }),
-command => sub { exit }),
-i pady => 10);

-command => sub { exit })-

-command => sub { exit }),
-command => sub { exit }),
-command => sub { exit }),

Buttonz [Button3

Buttont J Button? |

LR = ma el D

Figure 2-31.
grid -ipadx and -ipady example

In this example, the - pady and - padx options are applied to the top row of buttons

and not the bottom row. Figure 2-32 shows the results.

$mn >Button(-text => "Buttonl", -comuand =>
>grid
($mw >But ton(-text => "Button2", -comuand
$mn >But ton(-text => "Button3", -comand
$mn >But t on(-text => "Button4", -comuand
-sticky => "nsew', -padx => 10, -pady =>
$ma>But ton(-text => "Button5", -conmmand =>
>grid
($mr >But t on(-text => "Button6", -conmand
$mw->Button(-text => "Button7", -conmand
$mw->Button(-text => "Button8", -conmand

-sticky => "nsew');

sub { exit })-

=> sub {exit }),
=> sub { exit }),
=> sub { exit }),
10);

sub { exit })-
=> sub { exit }),

=> sub { exit }),
=> sub { exit }),

Button1 | Button2 i Button3 E

Euttunﬁ|

Shikiseil il o S

—

Figure 2-32.
grid -padx and -pady example

Specifying a Different Parent

The- i n option works the same way it doesin pack() . The$wi dget will be placed
in$ot her wi ndowand not in the default parent of $wi dget . Here is the usage:

-in => %ot her wi ndow
Configuring Columns and Rows

Aswith any of the geometry managers, gr i d has afew methods that are associated with

it. Each method isinvoked viaawidget that has been placed on the screen by using
grid().Sometimesit is hecessary to change the options of the group of cells that

makes up your grid.

Y ou can control resizing and the minimum size of a cell with the
gri dCol ummconfi gure andgri dRowconf i gur e methods. Each takes a column

or arow number asitsfirst argument and then takes some optional arguments that will
change the configuration of that column or row.

Both gri dCol ummconfi gure andgri dRowconf i gur e work very similar to the
conf i gur e method used with widgets. Unlike the conf i gur e method used with
widgets, however, the options you can specify with gr i dCol utmconf i gur e and
gri dRowconf i gur e cannot be used withthegri d() command. The options you
can use with gridColumnconfigure and gr i dRowconf i gur e are- wei ght , -

m nsi ze, and - pad.

If you send only arow or column number, an array is returned with the current options
and their values for that method:

@ol um_configs = $mw >gri dCol unmconfi gure(0);
@ ow_configs = $mw >gri dRowconfi gure(0);

In this example, we are getting the options and their values for the first column and the
first row. The results of using the default values would look like this:

-mnsize 0 -pad 0 -weight O
-mnsize 0 -pad 0 -weight O

Y ou can get the value of only one of the options by sending that option as the second
argument:

print $mw >gri dCol unmconfigure(0, -weight), "\n";
print $mw >gri dRowconfigure(0, -weight), "\n";

The results would be:

0
0

To change the value of the options, use the option and then the value you want
associated with it immediately after the option; for example:

$mn >gri dCol umconfi gure(0, -weight => 1);
$mw >gri dRowconfi gure(0, -weight => 1);

Y ou can aso specify multiple optionsin one call:

$mw >gri dCol umconfigure(0, -weight => 1, -pad => 10);
$mw >gri dRowconfigure(0, -weight => 1, -pad => 10);

Now that we know how to call gri dCol unmconf i gur e and
gr i dRowconf i gur e, we need to know what the three different options do.

Weight

The - wei ght option sets how much space is to be alocated to that column or row
when the window is divided into cells. Remember touse- sti cky => "nsew' in

your gri d() command if you want the widget to resize when the cell does. The default
- wei ght is0, which causes the column width or row height to be dictated by the
largest widget in the column. Each - wei ght value has arelationship to the other -

wei ght s intherows or columns.

If acolumn or row hasa- wei ght of 2, itistwice asbig asacolumn or row that has a -
wei ght of 1. Columnsor rowsof - wei ght O don't get resized at all. If you want al

your widgets to resize in proportion to the size of the window, add this to your code
before you call Mai nLoop:

($col umms, $rows) = $mw>gri dSi ze();
for ($i = 0; $i < $colums; $i++) {
$mn->gri dCol utmconfigure($i, -weight => 1);

}
for ($i =0; $i < $rows; $i++) {
$mn >gri dRowconfigure($i, -weight => 1);

}

This code will assign the - wei ght of 1 to every single row and column in the grid, no

matter what size the grid is. Of course, this method only works if you want to assign the
same size to each row and each column, but you get the idea.

Hereis an example of how the - wei ght option works (Figure 2-33 shows the result):

$mw >Button(-text => "Buttonl", -command => sub { exit })-

>grid
($mw >Button(-text => "Button2", -command => sub { exit }),
$mw >Button(-text => "Button3", -command => sub { exit }),
$mw >Button(-text => "Buttond4", -command => sub { exit }),

-sticky => "nsew');

$mn >Button(-text => "Button5", -command => sub { exit })-
>grid
("x",
$mn >Button(-text => "Button7", -command => sub { exit }),
$mn >Button(-text => "Button8", -command => sub { exit }),

-sticky => "nsew');
$mn >gri dCol umconfi gure(1, -weight => 1);
$mn >gri dRowconfigure(l, -weight => 1);

By giving row 1 and column 1 aweight of 1 (whereas all other rows and columns have 0
weight), they take over any extra available space when the size of the window is
increased. Notice that columns 0O, 2, and 3 are only as wide asis necessary to draw the
buttons and their text, but column 1 hasfilled in the extra space. The same effect
happens for row 0 with aweight of 0 and row 1 with a new weight of 1. (The window
has been resized larger to demonstrate the effects of - wei ght .)

| | . G Examgle T]
f Button Button2 { Buttond | Buttond
Buttons Button? Buttong
| —'__T:"_T"."._- — — - — = ——mrr_re. I
Figure 2-33.

gridRowconfigure and gridColumnconfigure example
Minimum cell size

The option - m nsi ze setsthe smallest width for the column or the smallest height for
each row. The - m nsi ze option takes a valid screen distance asavalue. In this
example, the minimum size of the cellsin row 0 and column O is set to 10 pixels:

$mn >gri dCol umconfi gure(0, -ninsize => 10);
$mn >gri dRowconfi gure(0, -minsize => 10);

If the column or row was normally less than 10 pixels wide, then it would be forced to
be at |east that large.

Padding

Y ou can add padding around the widget and to the widget by using the - padx/y and -
| padx/y options. You can also add a similar type of padding by using the - pad option
withthegri dCol utmconf i gur e and gri dRowconf i gur e methods. The padding

Is added around the widget, not to the widget itself. When you call
gri dCol ummconf i gur e, the - pad option will add padding to the left and right of

the widget. Calling gr i dRowconf i gur e with - pad will add padding to the top and
bottom of the widget. Here are two examples:

$mw >gri dCol uimconfi gure(0, -pad => 10);
$mw >gr i dRowconfi gure(0, -pad => 10);

Bounding box

To find out how large acell is, you can usethegr i dBbox method:

($xof fset, $yoffset, $w dth, $height) = $naster->gri dBbox
(0, 2);

This example gets the bounding box for column 0 and row 2. All the values returned are
in pixels. The bounding box will change as you resize the window. The four values
returned represent the x offset, the y offset, the cell width, and the cell height (offsets are
relative to the window or frame where the widget is gridded).

Removing a Widget

LikepackFor get, gri dFor get causesthe widget(s) to be removed from view on

the screen. This may or may not cause the window to resize itself; it depends on the size
of $wi dget and where it was on the window. Here are some examples:

$mn >gri dForget () ; # Not hi ng happens

$wi dget - >gri dFor get () ; # $wi dget goes away

$wi dget - >gri dFor get

($wi dget 1) ; # $wi dget and $w dgetl go away

$wi dget - >gri dFor get ($wl, $wW3); # $w dget, $wl, 3$w3 go away

The widgets are undrawn from the screen, but the cells they occupied remain.
Getting Information

Thegri dl nf o method returns information about the $wi dget inalist format. Just as
with packl nf o, the first two elements indicate where the widget was placed:

@ist = $w dget->gridlnfo();

Here are some sampleresultsfrom gri dl nf o:

-in Tk:: Frame=HASH(O0x81abc44) -colum O -row O -
col umspan 1 -rowspan 2
-ipadx O -ipady O -padx O -pady O -sticky nesw

Widget Location

Thegri dLocat i on method returns the column and row of the widget nearest the
given (X, y) coordinates:

($col um, $row) = $master->gridLocation($x, 9$y);

Both $x and $y are in screen units relative to the master window (in our examples,
$mw). For locations above or to the left of the grid, -1 is returned.

When given the arguments (0, 0), our application returned this:
00

which indicates the cell at column 0 and row O.

Propagation

Thereisagri dPr opagat e method that issimilar to packPr opagat e:
$mast er - >gri dPropagate(0);

When given afalse value, gr i dPr opagat e turns off geometry propagation, meaning
size information is not sent upward to the parent of $rmast er . By default, propagation
isturned on. If gr i dPr opagat e isnot given an argument, the current valueis
returned.

How Many Columns and Rows?

To find out how large the grid has become after placing numerous widgetsin it, you can
usegri dSi ze to get back the number of columns and the number of rows:

($col ums, $rows) = $nmaster->gri dSi ze();

The list returned contains the number of columns and then the number of rows. In many
of the earlier examples, we had a grid size that was four columns by two rows.

($c, $r) = $f->gridSize(); #$c = 4, $r =2

It is not necessary for awidget to be placed in a column/row for it to be considered a
valid column/row. If you place awidget in column 4 and row 5 using - r ow=>5, -

col um=>4 and the only other widget isin row 0 and column O, thengr i dSi ze will
return 5 and 6.

Grid Slaves

There are two ways to find out which widgets have been put in awindow or frame. Use
gri dSl aves without any arguments to get the full list or specify arow and column.

Here are examples of both:

@l aves = $mw>gri dSl aves();
print "@laves\n";

The preceding code would have printed this:

Tk: : But t on=HASH(0x81b6f b8) Tk: : But t on=HASH(0x81ba454)
Tk: : But t on=HASH(0x81ba4cc) Tk: : Button=HASH(0x81ba538)
Tk: : But t on=HASH(0x81b6f a0) Tk: : But t on=HASH(0x81ba5e0)
Tk: : But t on=HASH(0x81ba6dc) Tk: : Butt on=HASH(0x81ba748)

We could have specified the widget in column O, row O:
$w dget = $mw >gri dSl aves(-row => 0, -colum => 0);

print "$w dget\n";
Wul d print this: Tk::Button=HASH(0x81b6f b8)

If you specify only the - r owoption, you'll get alist containing only the widgets in that
row. The same goes for only specifying a- col umm; your list will contain only the
widgets in that column.

Place

Thepl ace() geometry manager isdifferent thangri d() or pack() . Rather than
referencing against a cell location or awindow's side, most of the time you'll be

using arelative form of x and y coordinates. Y ou can also use pl ace() to overlap
portions of widgets, which isn't allowed in either gri d() or pack() .

Invoking pl ace() issimilar to caling the other geometry managers:
$wi dget - >place([option => value, ...]);

The options specified when you call pl ace() affect how the widgets are put on the
screen.

Place Options

-anchor =>"'n'"|'ne' |'e' |'se' |'s" |'"sw |'W |'nwW |'center’
Sets the position in the widget that will be placed at the specified coordinates.
-bordernode => 'inside' |'outside' |'ignore'

Determines whether or not the border portion of the widget isincluded in the coordinate
system.

- hei ght =>amount
Sets the absolute height of the widget.

-in => $w ndow
Indicates that the child widget will be packed inside $wi ndowinstead of in the parent
that created it. Any relative coordinates or sizes will still refer to the parent.

-rel hei ght =>ratio
Indicates that the height of the widget relates to the parent widget's height by ratio.

-relw dt h =>ratio
Indicates that the width of the widget relates to the parent widget's width by ratio.

-rel x =>xratio
Indicates that the widget will be placed relative to its parent by xratio.

-rely =>yratio
Indicates that the widget will be placed relative to its parent by yratio.

-wW dt h =>amount
Indicates that the width of the widget will be amount.

-X =>X
Indicates that the widget will be placed at x. x isany valid screen distance.

-y =2y
Indicates that the widget will be placed at y. y is any valid screen distance.

Absolute Coordinates

The parent window (or frame) has a standard coordinate system where 0,0 isin the
upper-left corner. The x values increase to the right, and the y values increase as you go
down. See Figure 2-34.

X increases

o
[}

Y increases

Figure 2-34.
Coordinate system of parent window when absolute coordinates are used

To use absolute coordinates to specify where to place the widget, we would use options -
X and-vy:

-X = X, -y =>

Valid valuesfor x and y are valid screen distances (for example, 5, which isin pixels).
The widget will have its anchor position (controlled by - anchor) placed at the x and y

coordinates. The default anchor is™ nw' ; the upper-left corner of the widget.

Another mgjor difference between pl ace() and the other geometry managersisthat at
least two arguments are required when pl ace() isinvoked. There are no default values
for the- x and - y options. Y ou will get an error if you try to invoke pl ace() with no
arguments (for example, $wi dget - >pl ace()).

The ssimplest example of using - x and - y isto place awidget at 0,0:

$mn >Button(-text => "Exit",
-command => sub { exit })->place(-x => 0, -
y => 0);

As you would expect, the widget ends up in the upper-left corner of the window as
shown in Figure 2-35. No matter what size the window, our widget will remain
positioned at (0,0). Even when the window is resized as small as possible, the widget
will not move.

Hereis an example of using -x and -y to create some overlapping widgets:

$mw >Button(-text => "Exit",

-command => sub { exit })->place(-x => 10, -
y => 10);
$mw >Button(-text => "Exit"

-command => sub { exit })->place(-x => 20, -
y => 20);

Figure 2-36 shows the resulting window.

! = | Place Example -'5'.'_‘-.'=I',Li~i|':-_-4 .

Exit |

Figure 2-35.
Button placed using -x => 0, -y =>0

Figure 2-36.
Overlapping buttons with place0

Relative Coordinates

Inpl ace(), thereisan additional coordinate system defined for the parent widget that
allowsrelative placement within it. This coordinate system is shown in Figure 2-37.

¥=00
y=00 child widget
“ s 'ii/,,/’
W cenler e
Ll
A= 1.0
— =10
Figure 2-37.

The relative coordinate system

The upper-left corner has the coordinates (0.0,0.0). The lower-right corner's coordinates
are (1.0, 1.0). The middle of the window would be (0.5, 0.5). The coordinates are
specified in floating point form to allow pl ace() to handle any size window. This
allows the widget to remain at that position (in the center, for instance) no matter how
the window is resized.

It isvalid to specify coordinates both smaller than 0.0 and larger than 1.0. However, your
widget most likely won't be completely visible in the window when you use out-of-range
coordinates.

This code snippet produces the button shown in Figure 2-38:

$b = $mw>Button(-text => "Exit", -command => sub { exit });
$b->pl ace(-relx => 0.5, -rely => 0.5);

Exit J

Figure 2-38.
Using place with -relx => 0.5, -rely => 0.5

Although the button in Figure 2-38 is placed in the middle of the screen, it looks off-
center because the upper-left corner of the widget was placed in the middle of the
window instead of the center. You can change thiswith the - anchor option, which I'll
discuss shortly. If we resize this window, the button still stays in the middle of the
window (see Figure 2-39).

Figure 2-39.
-relx => 0.5, -rely => 0.5 window resized larger

This next example creates two buttons, both placed in the window with relative
coordinates:

$mn >Button(-text => "Exit",
-command => sub { exit })->place(-relx => 0.2, -
rely => 0.2);

$mw>Button(-text => "Exit",

-command => sub { exit })->place(-relx => 0.5,
-rely => 0.5);

No matter what size the window is or where other widgets are in the screen, the two
buttons will stay in those relative locations (see Figure 2-40).

Exit |

Exit |

Figure 2-40.
Two buttons placed relative to the parent window

The left window in Figure 2-40 is the default size of the window when it was created.
The right window iswhat it looks like after the window was resized to make it much
smaller. Notice that the second button placed in the window remains on top. It does so
because we are still maintaining the ordered list of widgets in the window; the second
Exit button (placed at 0.5,0.5) isdrawn last, so it's drawn above the other button.

Y ou can aso combine the absolute and relative coordinate systems simply by using both
in the argument list. The relative coordinate system is considered first, and then the x or
y value is added to that position. Theoptions-rel x => 0.5,-x => -10 meansto

place the widget 10 pixels to the left of the middle of the window.

Anchoring the Widget

Think of the child widget as a piece of paper that you want to put on your bulletin board
(the board is the parent widget). Y ou have a tack that you are going to use to keep the

paper up on the board. Y ou can put the tack right through the center of the paper, in the
upper-left corner (* nw*), or in the lower-right corner (" se"). The point where the tack

Is going to stick the paper to the board isthe - anchor point. The - anchor point on
the widget is "tacked" to the coordinatesgivenby - x,-y or-rel x,-rel y. The
default - anchor is" nw'. Figure 2-37 showsthese - anchor points within the child
widget.

It isimportant to know where the - anchor isbecause it will affect how we see the
widget within the parent.

Figure 2-41.
Different -anchor values affect where the widget is placed in the window

In Figure 2-41, amost identical place commands were used to put the Exit button in the
window, but the - anchor value was changed. The left window's button was created

with this command:

$mw >Button(-text => "Exit",

-command => sub { exit })->place(-
rel x => 0.5, -
rely => 0.5);

The window on the right in Figure 2-41 used this command:

$mn >Button(-text => "Exit",
-command => sub { exit })->place(-relx => 0.5,

anchor => "center",
-rely => 0.5);

Aswith pack() andgri d(), thepossiblevauesfor - anchor are:' n' ," e',"'s',
"W ,'center','nw,'sw,'ne' ,and’'se'.However, thevalue now appliesto
the child widget instead of the position within the allocation rectangle.

Width and Height

When you use pl ace() , you can specify the width and height of the widget in one of
three ways.

* Allow the widget to determine its own size.
» Specify width and/or height in absolute measurements.
» Specify width and/or height in relative measurements (rel ative to the parent widget).

To let the widgets determine their own size, no options are specified at all. The other
waysinvolve the options- wi dt h, - hei ght and-rel w dt h,-rel hei ght

respectively.

The-w dt h and - hei ght options allow you to specify the exact width or height of
the widget in a screen distance:

-wi dth => anount, -height => anount

Each amount is avalid screen distance (discussed earlier in this chapter under pack).

The widget will be these sizes even if it cuts off edges of theitems displayed in it. Our
button looks quite silly on the screen when we use a- wi dt h of 40 pixels (see Figure 2-

42).

$mw >But t on(-
text => "This Button WII| Cause the Programto Exit",
-command => sub { exit })->place(-x => 0, -
y :> 0’
-wi dth => 40);

Figure 2-42.
Using-width with placeO

The other two options, - r el wi dt h and - r el hei ght , determine the widget in
relation to the parent widget.

-relwidth => ratio, -relheight =>ratio
Theratio isafloating point number (similar to that specifiedby -rel x or - r el y).

A value of 1.0 will make the widget as wide (or astall) as the parent widget. A value of
0.5 will make the widget half as wide as the parent (see Figure 2-43).

Exit Exit

=" et

Figure 2-43.
Example of the same window resized with -relwidth => 0.5, -relheight => 0.5

The options-w dt h and - r el wi dt h are additive when used together, and so are -
hei ght and - r el hei ght.

Border Options
Normally, the border of the widget is used as the edge of the possible space in the
window, which means any widgets placed with either the absolute or relative

coordinate system will be placed inside the border. This can be changed by using the -
bor der node option:

-bordernode => '"inside' | 'outside' | 'ignore'

Using' out si de' will allow the coordinate system to use the space occupied by the border as
well. A valueof ' i gnor e' will have the coordinate system use the space designated as the official
X area. Overall, thisoption is pretty useless, as you can see from the difference each makes on our

examplein Figure 2-44.
Figure 2-44.

-bordermode examples

If you look very closely (get out your magnifying glass), you can see that the' out si de' version
ISstwo pixels higher and two pixelsto the left thanthe' i nsi de' version. Thisis because on my
window manager (fvwm), my border is defined as 2 pixels.

M ethods Associated with Place

The methods for pl ace() aresimple and don't allow much manipulation of the widgets.

Removing the widget
Aswithpack andgri d, thereisapl ace version of the For get method:
$wi dget - >pl aceFor get ();

If you use this method on the widget, the widget will be removed from view on the screen. It isaso
removed from the list maintained by the parent widget.

Place infor mation
Thepl acel nf o method returns alist of information related to the widget:

@nfo = $w dget->pl acel nfo();
print "@nfo";

Produced these results (there are bl anks where there are no val ues)
-X 0 -relx 0 -y O -rely O -width -relwdth -height -rel height -
anchor nw

Place slaves

@\ dgets = $parent - >pl aceSl aves();

pl aceSl aves returnsalist of the slave widgets that are within $par ent . Thelist
looks the same as it does when it isreturned from packSl aves() orgri d- Sl aves

() x

Geometry Management Summary

Y ou now know more about the three different geometry managers than you'll ever need
to know to write a successful Perl/Tk application. Here are some helpful hintson
deciding which geometry manager to use:

» pack() isgood for general purpose use and will be your choice around 95% of the
time.

e grid() isperfect for those situations in which you would like to create a columnar
layout that is similar to a spreadshest.

* pl ace() ismost useful when you want your widgets to stay in aposition or size that

isrelative to the widget that created them. When it is used correctly, it can be very
powerful.

» No matter which manager you use, take the time to get the widgets on your window
where they belong (or more likely, where you want them). There's nothing more
unsettling than a button that looks like it just doesn't belong in the window.

Asyou read through this book, you'll notice that some of the option names for the
geometry managers are also option names when you are creating or configuring a widget
type. For example, you can specify the - wi dt h of abutton without using pl ace() .

Always keep in mind the context in which the option is used. Sometimes the functional
difference is very subtle.

3
The Basic Button

The Button Widget

Button muget_! Of al of the widgets available with Perl/Tk, the button is one of the

most commonly used. Just see all the examplesin Chapter 2, Geometry Management.
When the button is pressed, something happens. That something can vary from exiting
the program (asin our Hello World example) to beginning alonger series of operations
such as opening afile or starting another process. The button typically displays a short
text string: Done, Apply, Save, Ok, Exit.

Other widgets are also classified as buttons: radiobuttons, checkbuttons, and
menubuttons. This chapter covers the traditional button. Chapter 4, Checkbuttons and
Radiobuttons, and Chapter 11, Menus, will cover the other types because they look
different on the screen and behave differently aswell.

We cover the button widget first becauseit is easy to see the way different options affect
it on the screen. Many of the other widgets included in Perl/Tk utilize the same options.
Usually, if the option name is the same, the change to the widget will also be the same
(more or less).

Creating a Button
The basic usage to create a button is as follows:
$button = $parentw dget->Button([option => value, ...]);

We have aready seen examples of buttons in our Hello World program in Chapter 1,
and in all the geometry management examples in Chapter 2. In these examples, a button
Is created and placed on the screen with acommand like this:

$mw >But t on(-text => "Done",-comand => sub { exit })->pack;

Y ou can save areference to the button like this;

$button = $nmw >Button(-text => "Done", -
command => sub { exit })->pack;

In Hello World, we didn't need to refer to the button again later, so it wouldn't have
made sense to save areference to it. But most of the examples for this chapter will
assume that we've saved a reference to the button widget when we created it.

Button Options

The rest of this chapter covers the options available to change the look of the button and
how to make it do what you want.

-acti vebackground => color

Sets the color the background should be when the mouse cursor is over the button. A
colorisatext stringsuchas" red" .

-acti vef oreground => color
Sets the color the text should be when the mouse cursor is over the button.

-anchor =>'n' |'ne' |'e' |'"se'" |'s" |"sw |'W |'"nw |'center'
Causes the text to stick to the specified position in the button.

- backgr ound => color
Sets the background of the button to color.

-bitmap => ' bit napnane’
Sets default bitmap or the location of a bitmap file (with @in front of path).

- bor derw dt h =>amount
Changes the width of the edge drawn around the button. (Emphasizesthe-rel i ef .)

- command => callback
Indicates a pointer to a function that will be called when the button is pressed.

-cursor => 'cursornange'
Indicates that the mouse cursor will changeto' cur sor nane' when over the button.

- di sabl edf or egr ound => color
Sets the color the text should be when the button is disabled.

-font => 'fontnane'
Changesthe font of all the text on the button.

-foreground => color
Changes the text color to color.

- hei ght =>amount
Sets the height of the button in charactersif text is displayed, and the screen distance if
an image or bitmap is displayed.

- hi ghl i ght backgr ound => color

Sets the color of the area behind the focus rectangle (shows when widget does not have
focus).

- hi ghl i ght col or => color
Sets the color of the focus rectangle.

- hi ghl i ghtt hi ckness =>amount
Sets the thickness of the black box around the button; indicates focus.

-i mage => $ingptr
$i ngpt r isapointer to an Image object that was made with a GIF or PPM/PGM file.

-justify => "left' |'right' |'center’
Sets the side of the button against which multiline text will justify itself.

- padx => amount
Adds extra space to the left and right side of the button inside the button edge.

- pady =>amount
Adds extra space to the top and button inside the button edge.

-relief => "flat' |'groove' |'raised |'ridge' |'sunken' |
"solid
Changes the type of edges drawn around the button

state => 'normal’
|' di sabl ed" |
"active'

Indicates the button's

state of responsiveness.
If setto" di sabl ed"”,

the button does not
respond.

-takef ocus => 0|1 |undef
Indicates that the button will never get focus (0), always get focus (1), or let the
application decide (undef).

-text => 'text'
Sets the text string displayed on the button.

-textvari able => \ $vari abl e

Pointer to a variable containing text to be displayed in button. Button text will change as
$vari abl e does.

-underline =>n

Underlines the nth character in the text string. Allows keyboard input via that character
when button has the focus.

-w dt h =>amount
Sets the width of the button in charactersif text is displayed and as a screen distance if
an image or bitmap is displayed.

-w apl engt h =>amount
Sets the screen distance for the maximum amount of text displayed on one line. Default:
0.

Displaying Text

For the user to know what the button does when it's pressed, you need to indicate the
function of the button with its text string. The option that doesthisis- t ext :

-text => "text'

When you are trying to come up with a descriptive text string, short and simpleisthe
key. You don't want your button to take over the whole window with along text string.

The string can be anything: alphanumeric, newling(s), or variables. Just like any other
string in Perl, if it isput in single quotes, it is taken literally, and with double quotes, it is
interpolated. The interpolation only happens once (the first time the option is parsed). If
the variable changes later in the program, it has no effect on the text in the button. The
only way the text in the button can be changed after it has been created is by using the
confi gur e method to reset it (e.g., $but t on- > confi gure (-

text => "newtext");) orbyusingthe-textvari abl e option.

There is no default for the - t ext option; the button will ssmply have no text if - t ext
IS not specified.

The other way to display text on the button is by using the - t ext var i abl e option.
The-t ext vari abl e option alows a scalar variable to be associated with the button;

anything in the variable will be displayed on the button. Specify the scalar variable as
follows:

-textvariable => \ $vari abl e

This means the text of the button will change as the contents of $var i abl e change.

When the text within the button changes, the button may become larger or smaller, and
the entire window may change size.

This piece of code shows how the - t ext var i abl e optionis used:

$count = 0;
$mw>Button(-text => "Add 1",
-command => sub { $count ++ })->pack(-
side => "left');
$mn >Butt on(-textvariable => \$count) - >pack(-side => "left");
$mw >Button(-text => "Exit",
-command => sub { exit })->pack(-side => "left');

Figure 3-1 shows two windows. The first window shows how it looks when it isfirst
created, and the second window shows what it looks like after clicking on the "Add 1"
button many times.

— | Bution Exampld - || | Button Example |
add1 | o | Exit |H | Ada | 15 | Exit
| S e———— _I-T_ ._'_': L= '_'_' —

Figure 3-1.
Example of using -textvariable

Displaying an Image or Bitmap | nstead of Text

Instead of displaying atext string on the button, you can usethe - i mage option to
display an image:
-image => $ingptr

GIF and PPM/PGM formats are valid image types. Support is available for JPEG images
in a separate module (Tk::JPEG), which is available for download from CPAN. Other
types of images are also supported as more modules like Tk::JPEG are being devel oped.
Check CPAN to see what is currently available.

When using an image, only the image will be displayed because the button can display
only atext string or an image, not both. To create an $i ngpt r variable, use the Photo

method (and supply the name and path if the image is not in the current directory) of the
imagefile. The $i ngpt r ispassed in asavalueto the- i nage option:

$arrow = $mw >Photo(-file => "Xcanel .gif");
$mw>Button(-text => "Exit', -command => sub { exit },
-image => $arrow) - >pack;

Figure 3-2 shows an example of a button with aGIF file on it.*

Figure 3-2.
Button with image instead of text

Usethe- bi t map option to alow a button to display a bitmap specified in atext string:

-bi tmap => ' bi t mapnane’

* When | tried this example under the Windows 95 OS, | didn't get a good colormap of
the GIF file. The problem may have been my video card or video driver for Windows
95, so it might look better on your machine.

There are several default bitmaps. er r or, gray12, gray25, gray50, gray75,
hour gl ass, i nf o, quest head, quest i on, and war ni ng (see Figure 3-3). They
are specified in the option by placing single quotes around the bitmap name:

$mn >Button(-bitmap => "error', -command => \ &andl e_error) -
>pack;

To specify abitmap from afile, you need to put an @in front of the path.

$mw->Button(-bitmap => ' @usr/ nwal sh/ nybi t map',
-command => sub { exit })->pack;

Note that, if you use double quotes, you have to escape the @with a backslash, (e.g.,
"\ @ usr/ nwal sh/ nybi t map").

| B iu][
||| % |

A e

Figure 3-3.
Window showing all the default bitmaps

Assigning a Callback

In addition to the - t ext option, the - comrand option is amost always used to create

a button. For the button to do something when pressed, we have to associate a callback
with the button viathe - conmand option. The callback happens when mouse button 1

isreleased over the button.* If you click down on the button but move the cursor away
from the button before releasing, nothing happens because the mouse-click was aborted.

In the Hello World program, we used the exi t routine as our callback:
$mn >Button(-text => "Done", -command => sub { exit })->pack;

There are several ways to associate a subroutine or set of commands with the button.
This discussion will apply to all widgets that have a- comrand option, so you will see

this option referred to often.
Defining a -command Callback
There are several ways the callback can be defined:

» Anonymous subroutine: eg.,sub { .. do sonething .. }
 Reference to asubroutine: e.g., \ &rysub

» Anonymous list with the first element as a subroutine pointer, and the rest of the list as
argumentsto the subroutine: [\ &rysub, $arg0, $argl, \@rg2 ...]

* Mouse button 1 is the leftmost mouse button, mouse button 2 is the middle mouse
button, and mouse button 3 is the rightmost mouse button.

The button we created in our Hello World program used an anonymous subroutine. Here
Isthe code again:

$mw >Button(-text => "Done", -conmand => sub { exit; })-
>pack;

We also could have created the anonymous subroutine prior to the button creation and
sent the reference to it instead:

$nmysubref = sub { exit };
$mn >Button(-text => "Done", -command => $mysubref) - >pack;

Thisis useful when our anonymous subroutine does some fancy things and it would look
awkward shoved into the list of arguments.

We could also create aregular subroutine to handle the exit and then just pass a
referenceto it:

sub do_exit {
&do_sonet hi ng_el se;
exit;

}

$mw >Button(-text => "Done", -conmand => \&do_exit)->pack;

It isagood ideato use a subroutine like this if you have more than one way to exit the
application. For instance, you could set up your application to exit viaa menu, a button,
or the window manager Close command.

If we need to pass argumentsto our do_exi t () routine we would use the anonymous
list form:

sub do_exit {
ny ($argl, $arg2) = @;
&do_sonething else if ($argl = 12);
exit;
}
$mw >Butt on(-text => "Done",
-command => [\&Jo_exit, $argl, $arg2])->pack;

It is important to remember how the different ways to specify a callback affect the scope
and which variables you can access.

Anonymous subroutines

Anonymous subroutines merely get "set aside” to be called later from within
Mai nLoop. The commands inside the anonymous subroutine are not parsed until then.

Any variables you use will not be evaluated until that time.

foreach (@anes) {
$mw>Button(-text => $_,
-command => sub { print "$_was pressed!'\n"; })-
>pack;

}

In the preceding code, we are using the $__ variablein thef or each loop. The button's
text string will be set as expected because the $_ is evaluated when the button is created.
However, the $_ that isinside the scope of the anonymous subroutine doesn't get
evaluated until the button is actually pressed. At that point, $ could be undefined and
errors start printing out every time you click the button.

Subroutinereferences. argumentsor no arguments

The subroutine reference and the anonymous list are very similar except the list allows
additional arguments (especially ones from within the current scope) to be sent to the
subroutine:

foreach (@anes) {
$mw >Button(-text => $_,
-command => [\&print_nane, $])->pack;

}
sub print_name {
print "$ [0] was pressed!\n";

}

The anonymous list gets created during the call to create the button. Thismeansthat $
in thelist is evaluated within the context of the f or each loop and will be set to the
samevaue asthe -t ext option uses.

Those of you who are comfortable with creating anonymous subroutines on the fly can
also do it thisway:

foreach (@anes) {
$mw >Button(-text => $_,
-command => [sub { print "$ [0] was pressed!

$]1)->pack;

The anonymous subroutineis the first item in the list to the - conmand option, and the
second item in thelist isthe argument $_. Keep in mind that sometimes you'll want alot
morethan asinglepri nt statement in the subroutine, and for readability, it makes
senseto put it in anamed subroutine.

Thisis meant to be a brief overview of anonymous subroutines as it relates to Perl/Tk.
The Camel Book* has all the information you would ever want and more.

Disabling a Button

When abutton is created, it shows up on the screen by default, ready for action. The
button will change colors when the mouse passes over it and will perform the assigned
callback when pushed. Y ou can change this by using the - st at e option:

-state => "normal " | "disabled" | "active"

* Technically known as Programming Perl, also available from O'Reilly & Associates,
Inc.

The" nor mal " state wasjust described. The" acti ve" state iswhen the mouse
cursor is physically over the button and is used internaly. The" di sabl ed" stateis
when the button appears grayed out (or with whatever colors have been specified by -

di sabl edf or egr ound and - di sabl edbackgr ound) and will not respond to the
mouse at all.

A button should not be available for selecting unless it makes sense in the application;
for example, a button that disables another when it is pressed. The code would look like
this:

ny $exit b = $mw>Button(-text => '"Exit',
-command => sub { exit })->pack;
$var = "Disable Exit";
$mw >But t on(-textvari abl e => \ $var,
-command => sub { nmy $state = $exit_b->configure
(-state);
if ($state eq "disabled") {
$exit _b->configure(-
state => '"normal ');
$var = "Disable Exit";
} else {
$exit _b->configure(-
state => 'disabled);
$var = "Enable Exit";
}}) - >pack;

In this example, areference to the Exit button is saved because it needs to be used later
to change the state of the button. Also, note that $exi t _b isused inside the scope of

the anonymous subroutine. Thiswill only work if $exi t _b isleft in the global scope of
the entire program so that $exi t _b will be defined when the anonymous subroutine is
executed. Be careful to not set $exi t b to something else; if you do, when the
anonymous subroutine isinvoked, it will refer to the new value in $exi t _b, not the
one you wanted.

Figure 3-4 shows the window after we have clicked on the Disable Exit button once.

Figure 3-4.
Window with disabled button (Exit) and normal button

Theconfi gur e() method isexplained later in this chapter; you don't need to worry
about how it works just yet.

By disabling widgets when they can't do anything, you can give users visual hints about
what they can and cannot do in the application.

Manipulating the Text

In addition to displaying text in the button, you can ater the appearance and location of
the text within the button. The simplest thing you can do isto use the - f ont option to

change the font:

-font => 'fontnange'

There are several waysto specify the font. If you are using Tk4 (which is the current
version as the book is being written) you should follow the directionsin the following
paragraphs. If you are using the newest version of Perl/Tk, which includes Tk8.0,* you
should see Appendix C, Fonts; it covers the new methods to use with fonts.

The new font is specified as atext string that contains afont name. Thereis a difference
in the way you specify fonts for Win32 systems and Unix systems. Valid fonts for your
Unix system can be obtained by using the xIsfonts command or by using the Tk::Fonts
module. The default font for the button widget on my Unix system is**:

"- Adobe- Hel vetica-Bol d- R-Normal - -*-120-*-*-*_*_%_x*"

Although you'll see this default on aWin32 system, you need to send a different type of
string asthe value to the - f ont option. Here's an example:

-font => "{Tinmes New Roman} 12 {nornmal}"

Y ou can look in the Control Panel under Fonts to see which fonts are available. Double-
clicking on them will bring up awindow that shows the font in the different sizes
available. Use the name of the font asit's listed in the Fonts directory for the first part of
the font name between the curly braces. The number after the font name is the size of the
font in points. The third part is the type of the font, usually normal, italic, or bold.

There can only be asingle font for each button, so the text string cannot change font in
the middle of aword. Each button (or widget) in an application can have a different font.
Here is an example of two buttons in awindow, one with the default font and the other
with" | uci dasans- 14" (aUnix font) asits font:

$mw >Button(-text => "Exit",
-command => sub { exit })->pack(-side => "left",
-fill => "both', -
expand => 1);
$mw >Button(-text => "Exit",
-font => "luci dasans-14",
-command => sub { exit })->pack(-side => "left",
-fill => "both', -
expand => 1);

Figure 3-5 shows the resulting window.

* The numbering system for Perl/Tk follows the Tcl/Tk version numbers. | have no
ideawhy they skipped 5, 6, and 7.

** Not al fonts are available on every system, although your system's default should work.
Use the following command to get the default font for your system:
@onfig = $button->configure(-font);print "@onfig\n";

Figure 3-5.
Buttons with various fonts

In addition to changing the font, you can aso move the text around within the button. As
you can in aword processing document, you can change where the text will adjust itself.
The option that controlsthisis-j usti fy:

-justify => "left" | "right' | 'center'

Thedefault for - j usti fyis' center' . Normally, the text displayed in abuttonisa

quick one- or two-word statement; for example, Exit, Done, Yes, No, or Cancel. The
justification of the text isn't too obvious unless multiple lines of text are used. By default,
the button will only display multiple linesif a\ n isincluded in the string. Y ou can have

the program help decide when to wrap by using the - wr apl engt h option:
-wr apl engt h => anount

The amount indicates the maximum length of the line as avalid screen distance (see
Chapter 1). If the length of the text string in the button exceeds this amount, the text will
be wrapped around to the next line. The default for - wr apl engt h isO.

Thisisan example that uses both the- j usti fy and - wr apl engt h options:

foreach (gwmleft center right)) {
$b = $ma >But t on(-
text =>"This button will be justified $ ",
-command => sub { exit },
-wrapl ength => 53,
-justify => $)->pack(-side => "left',
-fill => "'both',
-expand => 1);

}

Figure 3-6 shows the results of the three buttons. Although this example doesn't show it,
it is possible for the text to be wrapped in the middle of aword.

| justify example E |
™mis | s | This '|
button | button | buiton ||
wilhe | willbe | will he ,5|
justified | justified | justified d
left | center | right ::l

Figure 3-6.
Effects of -justify and -wraplength in a button

The final possible adjustment to the text (or bitmap) isits position within the button. Thisis controlled by
the- anchor option, which issimilar to the - anchor option used with the different geometry
managers:

anchor =>'n" | 'ne'" | 'e" | '"se'" | 's'" | 'sw | ‘W | '"nw | 'center'

Like the window, the button has compass points that define locations within the button. Figure 3-7 shows
where these points are in the button.

nw n ne
W center e
SW 5 58

Figure 3-7.

Anchor points within a button

The default position for thetext is' cent er ' . When the position is changed, it is not obvious that this

option isin effect unless the button isresized larger. In Figure 3-8, the button is the same one that was
created inthe - j ust i f y example (Figure 3-6) except - anchor => ' nw hasbeen added to the
option list.

Figure 3-8.
Anchor on button set to 'nw'

As mentioned earlier, this option issimilar to the - anchor option to the pack command. It isimportant
to note that this option changes the position of the text in the button; the - anchor option to pack()
changes the position of the widget in the window.

Altering the Button's Style

By default, a button looks like it's dlightly raised off the surface of the window. By using the-r el i ef
option, you can change the style of the button edges:

relief =>"flat' | 'groove' | 'raised | 'ridge' | 'sunken' | 'solid'

Each value changes the look of the button slightly, as you can see in Figure 3-9.

fl at
Makesit ook like only text is present inthewindow. ' f | at ' isnot recommended for a

button because the user has no visual information that the button can be pressed (the
button looks just like alabel).

gr oove
Givesadlightly depressed look to the edge (asif there were a ditch around the text).

rai sed
The default; gives a 3D look with a shadow on the lower and right sides of the button,
which causes it to look higher than the window surface.

ridge
The opposite of ' gr oove' ; makesit look like aridge is around the text.

sunken
The opposite of ' r ai sed' ; givesthe 3D effect of being below the surface of the
window.

No matter which value is specified for the - r el i ef option, when the button is pressed
with the mouse, itsrelief will changeto' sunken' .

E T rOINT T e e 2iH]
flat groove | raised | rll:tga [_nlr.en H

Figure 3-9.
Different relief typesfor a button

In addition to changing the type of edge drawn around a button, you can also change the
thickness of the edge by using - bor der wi dt h:

- borderw dt h => amount

The default - bor der wi dt h is2. The wider the - bor der wi dt h, the more dramatic
the effects of the- r el i ef option become. Figure 3-10 shows what a borderwidth of 10
does to each relief type.

rﬂﬂﬂfﬂiﬂ wmwﬁ!m-:w

e

Figure 3-10.
Different relief types with -borderwidth set to 10

Borderwidth can also be specified by using - bd as an abbreviation. Although using - bd
will obtain the same results, using - bor der wi dt h makes your code eas-

ier to follow later on. Also, - bd isn't supported with all widgets, so relying on it can be
dangerous.

| don't recommend using - bor der wi dt h with values greater than 4, because it makes
the widgets look extremely odd. In each of the widget chapters you'll find a screenshot
showing what happens to the widget with alarger - bor der wi dt h value for each of
the possible-r el i ef values. The best use of - bor der wi dt h is making one widget

stand out more than the others temporarily during development. (I also use it often with
frames to figure out where the frameis. Normally they are invisible. See Chapter 12.)

Changing the Size of a Button

Normally, the size of the button is automatically determined by the application and is
dependent on the text string or image displayed in the button. The width and height can
be specified explicitly by using the - wi dt h and/or - hei ght options:

~width => x, -height =>y

The values specified for x and y change depending on whether a bitmap/image or text is
displayed in the button. When a bitmap or image is displayed, the valuesin x and y
represent valid screen distances. If text is displayed on the button, x and y are character
Sizes.

This example has one button that is default size and another that is drawn with - wi dt h
of 10 and - hei ght of 10. (It is not necessary that the amounts for - wi dt h and -
hei ght bethe same or that you use both):

$mw >Button(-text => "Exit",

-command => sub { exit })->pack(-side => "left');
$mn >Button(-text => "Exit",

-width => 10, -height => 10,

-command => sub { exit })->pack(-side => "left');

In Figure 3-11, the second button is much taller than it is wide because text characters
aretaller than they are wide.

E:-sit| Exit

Figure 3-11.
Example of button displaying default text and text with -width => 10, -height => 10

The value specified for both - wi dt h and - hei ght are characters because the button is
displaying text. When - wi dt h and - hei ght are used with abitmap, the

amount specified isin screen distance. Here is an example of using - wi dt h and -
hei ght with abitmap:

$mn >Button(-bitmap => "error',

-width => 10, -height => 10,

-command => sub { exit })->pack(-side => "left");
$mw >Button(-bitmap => "error',

-command => sub { exit })->pack(-side => "left");
$mw >Button(-bitmap => "error',

-width => 50, -height => 50,

-command => sub { exit })->pack(-side => "left');

Thefirst button is created with arestriction on the width and height of 10. The middle
button looks like it would normally. The third button is created with a width and height
of 50. Figure 3-12 shows the resulting window.

—| Button |] 11])
NS © ‘[

Figure 3-12.
A bitmap displayed three times with different values for -width and -height

. __

The default value for both - wi dt h and - hei ght is0. Using O allows the program to
dynamically decide the height and width of the button.

The total width for buttons with text is calculated by the width the text takes up plus 2 x
- padx amount. The height is the text height plus 2 x - pady amount. The width and

height for buttons with a bitmap is just the width and height of the bitmap itself. Any -
padx or - pady options are ignored when a bitmap is displayed.

As an dternative to specifying an explicit width or height, it is possible to increase the
size of the button by using the options - padx and/or - pady to add padding between

the text and edge of the button:
- padx =>amount, - pady =>amount

The amount specified with - pady is added to both the left and right side of the button.
The amount specified with - pady is added to both the top and bottom of the button.
Figure 3-13 shows an example.

By using these options you are telling the button to be sized larger than it normally
would, but you don't have to worry that it will be sized too small, as you would if you
explicitly set - wi dt h and - hei ght .

Remember, - padx and - pady areignored when a bitmap is displayed.

| Button Examg - | _i

Exit] | Exit2

st __Jl

—

Figure 3-13.
Example of -padx => 20, -pady => 20

Adding a Keyboard Mapping

A button is traditionally invoked by clicking mouse button 1 when the mouse cursor is
over the button. It can also be invoked by pressing the Tab key until the button has the
keyboard focus and then pressing the spacebar. The effects are the same: The callback
associated with the button is called, and the button - r el i ef changes momentarily. The

keyboard focusis visually indicated by athin black rectangle drawn around the widget
(see Figure 3-20 later in this chapter).

To allow an additiona keyboard character to invoke the button, you can use the -
under | i ne option in a button displaying text:

-underline => N

Thiswill underline the Nth character in the text string. The first character of the text
string is the Oth character, so with the text string "Exit", - under | i ne => 1 will

underline the second character in the string, the "x" (see Figure 3-14).

=EE 5
Exit | i

Figure 3-14.
Example of -underline=>1

The default value for - under | i ne is-1, which means no characters will be underlined
in the text string.

Color Options

The options that can change the button's colors are - backgr ound, -

foreground, -activebackground, -activeforeground,and-

di sabl edf or egr ound. Each option takes a string that identifies a color. This string
could either be acolor description such as"” bl ue" or ahex string such as" #d9d9d9"
which also describes a color, but is much more cryptic.

For either Win32 or Unix systems you can run the widget demo included with the Tk
module. If the perl/bin directory isin your path, you can smply type" w dget "

on the DOS or Unix command line. Under the listbox section is an example that displays
color names. Y ou can double-click on the namesin the list to see them change the
application’s color.

Valid valuesfor the color string are available on your Unix systemin afile called rgb.
txt. Typically thisfileislocated in the X11 lib directory. On my Linux system, itis
located in /usr/X11R6/lib/rgb.txt. Y ou can also use the X application xcolors or showrgb.
Check the manpages for each command to determine the best way to use them.

Another place to look for valid color names (and this appliesto Win32 as well) isin your
Per| distribution directory. Look for the file xcolors.h. It is atext file that contains the
RGB values and names for quite afew colors. | found thisfilein C:\Perl\lib\site\Tk\ptk
on my Windows 95 machine.

The color of the button depends on the state the button isin at the time. When the button
hasastateof ' nor nal ' , the colorsassignedto - f or egr ound and - backgr ound

arein effect. The background of the button is the area behind the text string but within
the edges of the button.

The background is specified like this:

- backgr ound => color

The default background color isalight gray color (" #d9d9d9" in its hexadecimal RGB

representation). Figure 3-15 shows the results of changing the second Exit button's
background to blue.*

Figure 3-15.
Example of -background => 'blue’

The foreground of the button is the text (or bitmap) displayed. The foreground color is
specified like this:

-foreground => color

By default - f or egr ound is' bl ack' . Make sure that whatever color you pick
contrasts enough with the background color to be readable. In the example in Figure 3-
15, | left the text the default color, and it doesn't contrast very well with the background
color of the button. If we change- f or egr ound to' whi t e’ , then

* Although we are talking about color, the figures are in black and white.
Unfortunately, using color figures would have made the book too expensive to
produce. I've tried to make color choices that contrast so the figureslook as good as
possible. The best way to determine what happens with each color optionisto
experiment and run the examples.

we will be able to see the text much more easily, asyou'll seein Figure 3-16. (The
shortcut for - f or egr ound is- f g, which may or may not work on other types of

widgets. | suggest sticking with - f or egr ound as the option name.)

Figure 3-16.
Example of -background => 'blue’ and -foreground => 'white'

When you usethe - f or egr ound and - backgr ound optionsin conjunction with a

bitmap, the bitmap foreground and background will change to the specified colors. The
effect of the colors depends on the bitmap. See Figure 3-17.

=

i

Figure 3-17.
‘error' bitmap with -foreground => ‘white' and -background => 'black’

The- f or egr ound and - backgr ound options control what color the button is when
itisinthe' nor mal ' state. When the button has the mouse cursor over it, the -
acti vebackground and-acti vef or egr ound colors are used:

-acti vebackgr ound => color, - act i vef or egr ound => color

These colors are different because we want users to have some visual cluesthat they can
press the button. By having the colors change slightly when the mouse cursor is over the
button, users know that the button can be pressed to do something. The default for -

act i vebackgr ound isadlightly darker gray color (" #ececec").

Thefinal color option, - di sabl edf or egr ound, isthe color of the text when the
button's stateis' di sabl ed' .

- di sabl edf or egr ound => color

When the button isin adisabled state, it will not respond when the mouse cursor is over
it, or if it is pressed. The default for the color of the text (or bitmap) is" #a3a3a3" .
Figure 3-18 shows the difference between the text colors with one disabled button and
one normal button. (We aso saw this example in Figure 3-4. Lookthere for the code that
created this window.)

Enable Exit | |

Figure 3-18.

-disabledforeground example

Changing the Mouse Cursor

The mouse cursor normally looks like an arrow.* This can be changed on a widget-by-widget basis with the

- cur sor option:

- cur sor

=> cursorname

When the mouse is over the button, the cursor will change to the one specified. The cursor change will
happen whether the button is disabled or not. Thereis alarge set of available cursors. Following isalist of
cursors, and Figure 3-19 shows what they look like.

X_cursor

boat

bottom_side

circle

Cross_reverse

dotbox

draped box

gumby

icon

arrow

bogosity

bottom_tee

clock

crosshair

double_arrow

exchange

hand1

iron_cross

based arrow_down

bottom_left corner

box_spiral

coffee_mug

diamond_cross

draft_large

fleur

hand2

left ptr

based arrow_up

bottom_right_corner

center_ptr

Cross

dot

draft_small

gobbler

heart

left_side

left tee

man

pirate

right_side

sailboat

sb_right_arrow

sizing

target

top_right_corner

ul_angle

xterm

|eftbutton

middlebutton

plus

right_tee

sb_down_arrow

sb_up_arrow

spider

tcross

top side

umbrella

[1_angle

mouse

guestion_arrow

rightbutton

sb_h double arrow

sb_v_double arrow

Spraycan

top_left_arrow

top_tee

ur_angle

Ir_angle

pencil

right_ptr

rtl_logo

sb_left_arrow

shuttle

Star

top_left_corner

trek

watch

* What cursor is displayed is dependent on the window manager you are using, but most of thetimeitisan

arrow.

XA |7 |2 |=H |z
LiL|@EiA|0|R &
—9—%%-&!1:7?‘,-’
Eﬁﬂ&*é Elfit-LJ%f:?
éﬂﬁ h?l{—l—ﬂ]LJ
M| & 3|2+ 2) 4
—‘:I-Iﬁ‘ﬂjlll*-r*—
adR RN HETE N RE
| O+ | %|R|FATF|T| 8
FE @)]
Figure 3-19.

The standard cursors

Here's aprogram to look at the different cursors interactively:

#!/usr/bin/perl -w
use Tk;

Create el enents of w ndow
$mw = Mai nW ndow >new;
$mn >Button(-text => "Exit",
-command => sub { exit })->pack(-
side => "bottont,
-fill =>"x");
$scroll = $mw >Scrol | bar;
$l b = $mw >Li st box(-sel ect nbde => 'single',
-yscrol l command => [set => $scroll]);
$scrol | ->configure(-conmand => [yview => $l b]);

$scrol | ->pack(-side => "right', -fill => "y");
$l b- >pack(-side => "left', -fill => "both');

Qpen file that contains all available cursors

M ght have to change this if your cursorfont.

h is el sewhere

On Wn32 systens look in C\Perl\Ilib\site\Tk\X11

\cursorfont.h

open (FH, "/usr/X11R6/include/ X11/cursorfont.h") ||
die "Couldn't open cursor file.\n";

while (<FH>) {
push (@ursors, $1) if (/\#define XC (\w) /);
}

cl ose(FH);

$l b->insert('end', sort @ursors);
$l b- >bi nd(' <Button-1>",

sub { $mw >configure(-cursor => $| b->get ($l b-
>cursel ection)); });

Mai nLoop;

Although this program might seem a bit complicated at this point in the book, take a
look at how it doesthings. If you don't completely understand it right away, it's okay.
Keep reading for afew chapters and then come back and look at it again until it starts to
sink in. For reference, listboxes are covered in Chapter 7, The Listbox Widget, and bi nd

is covered in Chapter 14, Binding Events.
Focus Options

In an application, you can tab between widgets to make them available for input from
the keyboard. The application indicates that a widget is available for keyboard input by
drawing an outline around it in black (thisis called the highlight rectangle; see Figure 3-
20). If awidget has this outline around it, it is said to have the focus of the application.
(You can force the focus of an application to start with a specific widget by using

$w dget - >f ocus; .) Once a button has the focus, you can use the spacebar on your

keyboard to activate it instead of using the mouse.

Figure 3-20.
Thefirst button has the input focus.

Y ou can force the application to not allow your button to receive the keyboard focus at
al by using the - t akef ocus option:

-takefocus => 0 | 1 | undef

The -t akef ocus optionisnormally set to an empty string (undef), which alowsthe

application to dynamically decide if the widget will accept focus. If awidget hasits state
setto' di sabl ed' , it will be skipped over when userstab through all the widgets. To

have the application always ignore the widget when tabbing through, use -
t akef ocus => 0. To havethe application always alow focus to the widget, use -
t akef ocus => 1.

Altering the Highlight Rectangle

The highlight rectangle* is normally displayed with athickness of 2 pixels. This can be
changed by using the - hi ghl i ght t hi ckness option:

- hi ghli ghtthi ckness => anount

The amount specified is any valid screen distance. In Figure 3-21, the Exit button on the
right hasa- hi ghl i ght t hi ckness of 10 and has the focus.

Figure 3-21.
Example of -highlightthickness => 10

When the button doesn't have the keyboard focus, a small space isleft around it. If this
extra space bothers you, you can set - hi ghl i ght t hi ckness to 0 and the space

won't display even if that widget has the focus. It is bad style to set the -
hi ghl i ght t hi ckness to 0if you aren't aso setting - t akef ocus to 0.

The color of the highlight rectangle can also be changed. There are two values for this:
the color of the highlight rectangle when the button does not have the focus and the color
of the highlight rectangle when it does have the focus. The option - hi ghl i ght col or

Isthe color of the highlight rectangle when the button does have focus:

- hi ghl i ght col or => color

Figure 3-22 shows the right button with the focus and with - hi ghl i ght col or setto
"yel | ow . Compareit to the picture in Figure 3-21 to see the difference.

g Bt tony
- HLELLA] = =2
| (il ﬁ:.-l; ‘.+.+'.LF':I.‘: e

e

e |

Figure 3-22.
Example of button with -highlightcolor => "yellow'

To change the color of the space |eft around the button when it doesn't have the focus,
use the option - hi ghl i ght backgr ound:

- hi ghl i ght backgr ound => color

* On Win32 systems, the highlight rectangle is drawn as a dashed line within the
widget.

Normally, the highlight rectangle is the same color as the background of the window, which
alowsit to blend in with the background of the window or frame that contains the button.

Figure 3-23 shows an example where both buttons have the following configuration:

-hi ghlightcolor => "Dblue', -highlightbackground => "yell ow

The right button is the one that has the focus.

Figure 3-23.
Example of button with -highlightcolor => 'blue’ and -highlightbackground => 'yellow'

Configuring a Button

After creating the widget and saving areferenceto it in ascalar (such as$but t on), itis
possible to use methods on that button.

There are two methods available to configure a button after it is created and to get configuration
information back: conf i gur e and cget . They are generic to all widgets and are covered in
Appendix A, Configuring Widgets with configure and cget. Here are some common examples to
get you started:

$state = $button->cget (- # CGet the current value for -state
state);

$state = $button=>configure(- #Get the current value for -state
state);

$but t on- >confi gur e(- Change the text

text => "New Text");

$text = S$button->cget (-text); # Get the current text val ue

@l | = $button->configure(); # Get info on all options for button

Flashing the Button

Thef | ash method will cause the button to appear to be "flashing" on the screen. It changes
back and forth from the normal state colors to the active state colors:

$but t on- >f | ash();

I nvoking the Button

Thei nvoke method invokes the subroutine to which the - conmmand option points. Once you
use - comrand to assign the callback, then anytime you need to perform that same task, you
canusei nvoke() :

$but t on- >i nvoke();

Some Fun Thingsto Try

One of the best ways to figure out how Perl/Tk worksisto try it. Once you understand
the basics, you'll spend most of your time tweaking options and callbacks to do the
correct thing. Here are some ways to learn about the button widget:

» Create awindow with three buttons in it. Have each button print something different
when clicked on.

* Create awindow with three buttons. Have the first two buttons change each other's text
when pressed. The last button should allow you to exit the program.

» Make some really big buttons and some really tiny buttons al in the same window.

4—
Checkbuttons and Radiobuttons

This chapter discusses both checkbutton and radiobutton widgets. Although they are
very similar, they are used for different purposes.

Checkbuttons are useful when you want to select as many items as you want, such asa
shopping list. Radiobuttons are used in group situations when you must make a choice
between items, such as on a multiple-choice exam:

Q1: What year did Columbus discover America?
A) 1400

B) 1470

C) 1472

D) 1492

E) none of the above

Because radiobuttons are grouped together, you are forced to select one and only one
choicein that group. If the default choiceis always A and you click on D, A would be
automatically unclicked (or unselected).

The two sections in this chapter cover how to use both widget types and ways to set
them up and configure them.

The Checkbutton Widget
i Checkbution Widget

In Chapter 3, The Basic Button, you learned the options associated with the button
widget. A checkbutton is also considered atype of button (and it uses many of the same
options), even though the way it isused in an application is different from the way a
standard button is used.

Instead of clicking on a checkbutton and expecting something to happen immediately,
you use it to indicate ayes or no answer. If the checkbutton is checked it

means yes; unchecked means no. Y ou might use a checkbutton to list options for
printing a document. The text on the checkbuttons might say Print Header Page, Even
Pages Only, Odd Pages Only, and Number Pages. At the bottom of the window there
would be a Print button, and when you clicked on it, the program would find out which
checkbuttons were selected and submit the print job accordingly.

A window listing several jobsto run (like a batch job controller) might use checkbuttons
to ask the user if each job should be run. If the checkbutton next to the job nameis
selected, the job will be run. If the checkbutton is unselected, then the job will be
skipped this time around.

Each time a checkbutton is used, the application is asking the user to answer ayesor no
guestion. Checkbuttons that make up a group are typically related (asin our print job
example), but they don't have to be because the answer to each checkbutton is
independent of any other widgets or checkbuttons on the screen.

The checkbutton is similar to a button; it displays atext string, but it also has an

indicator on the left side of the widget. By default, the outside edges of the checkbutton
don't have 3D relief like a standard button does, but the indicator (that little square on the
left) does.

A checkbutton operates in the same way a standard button does; you click on it with the
left mouse button. A button will changeitsown - r el i ef (theway the edges of the

button are drawn) to look like it has been pushed down whereas a checkbutton will only
change the state of the indicator. If the checkbutton is on, the indicator will look asiif it
has been pushed into the window and filled with a darker color.* If the checkbutton is
off, it will look like atiny gray button.

Sometimes the terminology becomes confusing because there is the indicator's status (or
value) and the state of the checkbutton itself. If the checkbutton looks like atiny raised
button without color, then it is off (Figure 4-1; left checkbutton). If it isfilled in with
color, we say it ison (Figure 4-1; right checkbutton). The state of the entire checkbutton
(including the indicator) can be normal, active, or disabled. Both checkbuttonsin Figure
4-1 have a state of normal.

‘ Checkbutton Widget o Checkbutton Widget

Figure 4-1.
A checkbutton that is off and onethat ison

* Some operating systems actually put a checkmark {3 into the little box. Others use
atiny "x" in the indicator to show the state as on.

Aswhen creating any widget, the checkbutton is created using a method named after the
capitalized version of the widget name, Checkbut t on, invoked from the parent

widget. The basic usage looks like this:

$cb = $parent w dget - >Checkbutton([option => value, ...])-
>pack;

In addition to having an indicator with a status, the checkbutton also can have a callback
that uses the - command option associated with it. When the checkbutton is clicked

(regardless of the indicator's status), the callback isinvoked. However, it isn't always
necessary to associate a callback for radiobuttons and checkbuttons since you can just
check the status of the radiobutton or checkbutton later on in the program.

The boolean status of the checkbutton is stored in a variable that you give viathe -
var i abl e option when it is created. Each checkbutton should have its own status

stored in its own unique variable. When the checkbutton is clicked, the status is updated.
In addition, any callback associated with the - command option isinvoked (regardless of

the new status of the checkbutton). The options that change a checkbutton's behavior are
listed below and explained in greater detail afterwards.

Checkbutton Options

The following checkbutton options work exactly the same as a standard button, so |
won't go over them in detail again. Refer to Chapter 3, for compl ete descriptions of these
options. - act i vebackgr ound, - acti vef or eground, - anchor, -

backgr ound, - borderw dt h, - cur sor, - di sabl edf or egr ound, -font, -
f oreground, - hei ght, - hi ghl i ght backgr ound, - hi ghl i ght col or, -
hi ghl i ghtt hi ckness,-justify,-padx,-pady,-state,-takefocus,-
text,-textvariabl e,-underline,-w dt h,and-w apl engt h.

The rest of the options behave alittle differently or are exclusive to the checkbutton
widget. They are covered in the following list. Some options deal with only the indicator
(suchas- sel ect i nage). Remember that the - st at e option refers to the entire

checkbutton widget, and the status of the indicator is governed by the options -
onval ue, - of f val ue,-i ndi catoron,and-vari abl e.

-acti vebackground => color
Sets the color the widget's background should be when the mouse is over it.

-acti vef oreground => color
Sets the color the widget's text should be when the mouse is over it.

-anchor =>"'n'" |'ne' |'e' |'"se'" |['s" |'"swW |'"W |['nw |'center'

Sets the position of the text within the widget. M ost noticeable when the widget is
resized larger.

- backgr ound => color
Sets the color of the widget background (behind the text).

-bi t map => bitmap
Displays this bitmap instead of text.

- border w dt h => amount

Sets the edge thickness of the widget. Also changes the thickness of the indicator.
Default is 2.

- command => callback
Associates a subroutine to the button. Called when button is clicked.

- Cursor => cursorname
Sets the cursor to change to cursorname when it is over the widget.

- di sabl edf or egr ound => color
Setsthe color of thetext when - st at e is' di sabl ed' .

-font => fontname
Sets the font to use when displaying text in the widget.

-foreground => color
Sets the color of the text.

- hei ght =>amount
Sets the height of the button; amount is a valid screen distance.

- hi ghl i ght backgr ound => color

Sets the color the highlight rectangle around the widget should be when the widget does
not have focus.

- hi ghl i ght col or => color

Sets the color the highlight rectangle around the window should be when the widget
does have focus.

hi ghl i ghtt hi ckness =>

amount
Sets the thickness of the
highlight rectangle.

-1 mage =>imgptr
Displays image instead of text.

-indicatoron => 0|1
Determines whether to display the indicator.

justify => 'left'
|'right' |'center'
Sets the justification of

the text within the
widget.

- of f val ue => newvalue
Sets the value used when the button is off. Must be ascalar. Default isO.

-onval ue => newvalue
Sets the value used when the button is on. Must be ascalar. Default is 1.

- padx =>amount
Sets the amount of space left between text/indicator and left/right edges of widget.

- pady => amount
Sets the amount of space left between text/indicator and top/bottom edges of widget.

-relief =>"flat' |'groove' |'raised |'ridge' |'sunken' |
‘solid
Changes the look of the widget edges.

-sel ect col or => color
Sets the color of the indicator when on.

-sel ecti mage =>imgptr
Indicates the image to display instead of text when buttonison. Ignored if - i mage is
not used.

-state => 'normal ' |'di sabled' |'active'
Sets the state of the widget. If disabled, it will not respond to any inpuit.

-takef ocus => 0|1 |undef
Determines if the widget is available for focus or not.

-text => "text"
Sets the text displayed in the widget.

-textvariable => \$vari abl e
Indicates that text in $var i abl e isdisplayed as text in widget.

-underline =>n
Underlines the nth character in the text string.

-vari abl e => \ $val ue
Associates the on/off value of indicator with $var i abl e.

-w dt h =>amount
Sets the widget to this width. Can be any valid screen distance.

-wr apl engt h => amount
Indicates that the text will wrap when it exceeds this amount.

Storing the Indicator's Status

The option - var i abl e will associate a variable with the status of the indicator by
sending areference as the value. To use the scalar $val ue, you would add thisto the
option list of the Checkbut t on call:

-vari abl e => \ $val ue

Just asthe - t ext vari abl e option sets the variable that is associated with the text of
the checkbutton, this option sets the variable associated with the indicator.

When the checkbutton is clicked, $val ue will now contain the status of the indicator
(the value placed in $val ue isdefined by - onval ue and - of f val ue and by default
are 1 and O respectively).

In addition to using the mouse to change the status, you can aso change the contents of
$val ue directly. If your code contains $val ue = 1 at some point, the indicator will

be turned on. Y ou can specify $val ue = 1 before creating the checkbutton, which

will draw the checkbutton for the first time with the indicator on. If you change the value
in$val ue at any time after you create the checkbutton in your program, the

checkbutton will change to reflect the new value. The subroutine associated with -
commrand (if thereis one) is not invoked when the value of $val ue is changed.

Utilizing - var i abl e isusually the easiest way to check the status of the indicator on

the button. Here is an example that has two buttons that change the value in
$cb_val ue:

$cb_val ue = 0;

$cb = $mw >Checkbutton(-text => "Checkbutton",
-variabl e => \$cb_val ue,

command => sub { print "dicked! $cb_value\n" }
) ->pack(-side => "top');

$mw >Button(-text => "CB on",

-command => sub { $cb_value = 1 })->pack(-
side => "left');
$mw >Button(-text => "CB of f",

-command => sub { $cb _value = 0 })->pack(-

side => "'"left');

See Figure 4-2 for the resulting window.

| Checkbutton -

W Checkbutton

Ll s |

Figure 4-2.
Buttons changing the value of a checkbutton

Thevalue stored in $cb_val ue can be changed in three ways: clicking on the

checkbutton, clicking on the "CB off" button, or clicking on the "CB on" button. Only
when you click on the checkbutton will you see the word " Clicked!" written in the shell
window from which it was run.

There are other ways to change the value associated with the checkbutton. Seei nvoke,
sel ect,desel ect, andt oggl e in"Checkbutton Methods" |ater in this chapter.

Assigning a Callback

The - command option worksjust like it does for a standard button, but usually the

function associated with a checkbutton's callback does something less obvious. Many
times, there is no callback at al associated with the checkbutton because the important
information is the status of the checkbutton rather than whether the checkbutton was just
clicked.

One of the things a checkbutton might do is alter the appearance of the window. The
checkbutton might look something like the one in Figure 4-3.

Figure 4-3.
Checkbutton that will display other widgets on the screen when clicked

When the user clicks on the checkbutton to turn it on, our window magically changes to
look like Figure 4-4.

~ cCheckbutton
¥ Show all widgets

Butlonl i ButtonZ i Buttond | Buttond | Buttons I

Figure 4-4.
Window after clicking the checkbutton

Here's the code that makes the magic happen:

#!/usr/bin/perl -w

use Tk;

$mw = Mai nW ndow >new,
$mw>ti tl e(" Checkbutton")

Create other wi dgets, but don't pack themyet!
for ($i =1; $i <=5; $i++) {

push (@uttons, $mw>Button(-text => "Button$i"));
}

$mw >Checkbutton(-text => "Show all wi dgets"
-variabl e => \$cb_val ue,
-conmand => sub {
if ($cb_value) {
foreach (@uttons) {
$ ->pack(-side => "left');
}
} else {
foreach (@uttons) {

$ ->pack('forget');
}

}
})->pack(-side => "top');
Mai nLoop;

So we can display some widgets later on in the program, we create them ahead of time
and store references to them in the @ut t ons array. The buttonsin this example aren't

very useful because they don't even have a- conmand associated with them. Normally,

they would each have a specific task they would perform when pressed; however, for our
example, we just want them to exist.

Then we create our magic checkbutton. When the button is clicked (regardless of the
status of itsindicator), it will call the subroutine pointed to by - conmmand. Our

subroutine looks at the current value of $cb_val ue, showsthe buttonsiif it ison, and
hidesthemif it is off. Thevaluein $cb_val ue ischanged before this subroutineis

called. When our checkbutton is clicked again, the extra buttons will be removed from
the window and the window will shrink back to the size it was previoudly.

Thistype of setup is great when you want to keep a basic window uncluttered but want
the ability to show more widgets if the user can handle the advanced functions of the
extrawidgets. For example, you can create a Find window that has a place to enter some
text, a button to start the find, and an Advanced Search checkbutton. Clicking on
Advanced Search would add some more widgets to the bottom of the window allowing
you to match case, use regular expressions, and use other fancy search mechanisms.

On and Off Values

If you don't like the default on value of 1, you can use the - onval ue option to change
it
-onval ue => newal ue ## Default is 1

The same is true of the off value:

-of fval ue => newal ue ## Default is O

These options will change the values stored in $var i abl e. Depending on how you

would like the checkbutton to interact with the rest of your application, sometimesit
makes sense to use different values. The newal ue could be anything, aslong asitisa
scalar value. This means that you can use references to arrays and hashes if you really
want to.

It is good practice to keep the meaning of - onval ue the opposite of - of f val ue. If -
onval ue isnow thestring " ON", logically - of f val ue should be" OFF" . Of

course, if the purpose of this checkbutton is to use a more accurate value of T, then -
onval ue couldbe" 3. 14159265359", and - of f val ue couldbe" 3. 14" .

Be careful when you use unusual valuesfor - onval ue and - of f val ue. If you set the

variable to something that doesn't equal either one of them, the checkbutton will be
considered off, even though the value of the $var i abl e will not equal the -

of f val ue value. For instance, if you set - onval ue => 1,-offval ue => 0,
and you set $var i abl e to 3, then the checkbutton will be considered off.

I ndicator Color

You can usethe- sel ect col or option to ater the color that fillsin the indicator
when the checkbutton is sel ected:

-sel ectcol or => col or

The default valueis" #b03060" (adark pink color). Changing the value for -
sel ect col or will aso change the background of the button when the button is
selected and - i ndi cat oron => 0.

Hiding the I ndicator

One of the ways a checkbutton is different from a standard button is the indicator. Use
the- 1 ndi cat or on option to tell Perl/Tk not to draw that funny little square button at

al:

-indicatoron => 0 | 1

As we have seen from the previous examples, the default for - i ndi cat oronisl(i.e,
show theindicator). If we changethis- i ndi cat or on to 0, the checkbutton will look

amost like anormal button (without quite as much space around the text, though). Even
though it looks alot like aregular button, its behavior when it is clicked (to turn the
indicator, which is hidden, to on) is completely different (see Figure 4-5). Note that the -

rel i ef optionisignored completely when - i ndi cat or on issettoO.

| Checkbutton | .| __:'.umﬂmu'ltm_lxqj

| Checkbutton Widget| | [GhieEipiton WAger

g

Figure 4-5.
Checkbutton with -indicatoron => 0. Window on left is unchecked. Window on right is checked.

In this example, the color for the background on the checked button is the -
sel ect col or, not the - backgr oundcol or . You might want to use the

nonindicator configuration if you change the text of the button to reflect the new state of
the checkbutton. For instance, change Logging Enabled to Logging Disabled.

Displaying a Picture I nstead of Text

Asyou can with anormal button, you can usethe - i nage option to display animagein
place of the text on a checkbutton. Another option, - sel ect i nage, isavailableto
display a different image when the checkbutton has been clicked:

-image => $inmgptr [, -selectinmge => $ingptr]

The usage statement shows - sel ect i nage as optional because it will beignored if -
I mage isnot used.

Thei ngpt r s can be created by using the same methods as those used in Chapter 3
with abutton's- i mage option: $arr ow = $mw >Photo(-file => "nextart.

gif");

The image will be put in place of the text on the checkbutton. These options have
precedence over the- t ext option, so if both -t ext and - i mage arelisted, the -

t ext option will beignored.

Which image is displayed depends on whether the button is on or off. If only the -

I mage option is specified, thisimage will be displayed no matter what. If -

sel ect i mage isalso specified, the image associated with it will be displayed when
the button is checked. Figure 4-6 shows an example that uses both options.

= enfFa| =] E |

i \‘ = X
et | { et | |

__‘l"_r _ ==—_|

Figure 4-6.
The same window with the checkbutton unchecked (on the left) and checked (on the right)

The checkbuttons in Figure 4-6 were created with this code snippet:

$imgl = $mw->Bitmap(-file =>

"/usr/ X11R6/i ncl ude/ X11/ bi t maps/ i neQp.
xbm') ;
$i ng2

= $mn>Bitmap(-file => "/usr/ X11R6/i ncl ude/ X11/ bi t maps/
x| 0go32")

$mw >Checkbut t on(-t ext => "Checkbutton",

-image => $ingl,

-sel ecti mage => $i ng2,

-variabl e => \ $cb_val ue) - >pack(-
side => 'top');

Using two different images to indicate whether the checkbutton is off or on might make
more sense if you al'so use - i ndi cat or on and set it to O. For instance, if you want to

indicate that a document is locked (read-only) or unlocked you could use a picture of a
lock for - i mage and apicture of alock with alinethroughiit for - sel ect i nage.

For this example, | chose to use bitmap files as our images. Instead of using the - i mage
option to display a bitmap, you could use the - bi t map option directly. The- bi t map
option is exactly the same as the standard button - bi t map option; it replaces the text of
the button with the specified bitmap (see Figure 4-7).

Figure 4-7.
Checkbutton with -bitmap => 'warning'

Unlike- i mage and - sel ect i mage, using - bi t map will not change the image
when the button is clicked on or off.

Y ou might think that using images instead of text would make your application easier
for non-English speakers to understand. However, if you use too many checkbuttons
with images, you might confuse people even more. A few easily understood icons are
better than alarge collection of vague icons.

Checkbutton Style

Although the button and checkbutton both sharethe-r el i ef and- bor derw dt h

options, and they mean the exact same thing, when they are used with a checkbutton, the
effects are visually different because of the indicator. As areminder, the possible values
are:

-relief =>"'flat'|'groove'|'raised |'ridge'|"'sunken'|"'solid
- borderw dt h => anount

Figure 4-8 shows the different relief types when a default - bor der wi dt h valueis
used. The default for acheckbuttonis' f | at ' because the relief of the outside edge of

the checkbutton doesn't change when the checkbutton is clicked; only the indicator
changes. Figure 4-8 a so shows that the edges of the checkbutton are much closer to the
text; the- padx and - pady default values are smaller than the default for a button. The

-rel i ef option does not affect the indicator.

The - bor der wi dt h option affects both the outside edge of the checkbutton and the
indicator inside the checkbutton. The indicator itself stays the same size no

Figure 4-8.
Example of all possible -relief types

matter what the borderwidth of the widget is, but the indicator's edges change in width.
When you use alarge - bor der wi dt h, you get some interesting results, as shown in

Figure 4-9.

A [BT R oo el o wirer I waclddittnar e e =
20 b R sk Tk R ﬂk E -._".:_-.,.-.'.,'-_..:'.-,'.]-_:' L, et]

1 4 fat |__1 gmnm-’l P rals:m:il A ridge | § 4 sunken

Figure 4-9.
Example using -borderwidth => 4

We used a- bor der w dt h of 4, and you can see that the outside edges got a bit
thicker, and so did the edges of the indicator. With alarger - bor der wi dt h, thereis

much less room to show the indicator's color when it is on (see the tiny square in the
middle of those indicators?).

Figure 4-10.
Example using -borderwidth => 10

In Figure 4-10, we used a- bor der wi dt h of 10. Notice the remarkable difference! We

can no longer see theindicator at al, even though thereis still space left for it. When
these checkbuttons are checked or unchecked, there is no way to tell what the current
state it is because the indicator is essentially invisible.

| highly recommend that you do not use the - bor der wi dt h option associated with a
checkbutton because of thisinteresting side effect.

Configuring a Checkbutton

Like the button widget, the checkbutton has methods that can manipulate it after it is
created. These methods can be invoked at any time after the checkbutton is created, even
before it is displayed on the screen.

Y ou can use both conf i gur e and cget methods with a checkbutton as well. These
methods are explained in Appendix A, Configuring Widgets with configure and cget.

Turning a Checkbutton On and Off

Y ou can force the checkbutton to go from on to off or vice versausing thedesel ect
and sel ect methods.

Thedesel ect method will always set the indicator to the off state and the variable
assigned by - var i abl e tothevaluein - of f val ue:

$cb- >desel ect ();

The opposite of desel ect, sel ect will causethe indicator to be set to the on state
and the variable assigned by - var i abl e tothe- onval ue:

$cb->sel ect () ;

Both methods areignored if - st at e is' di sabl ed' .

Y ou can also toggle the indicator from on to off or vice versausing thet oggl e method:
$cb->t oggl e() ;

Calling t oggl e does not cause the subroutine associated with the - conmand valueto
be called.

Flashing the Checkbutton

Y ou can make the indicator flash with the - backgr ound and - f or egr ound colors
by callingf | ash:

$cb->fl ash();

I nvoking the Checkbutton

To perform the same action as clicking the checkbutton with the left mouse button, call
| nvoke:

$cb- >i nvoke();

It will cause any callback associated with - command to be called; it will also switch the
state of the indicator from on to off or vice versa.

The Radiobutton Widget

.~ Rasiobutton A radiobutton looks similar to a checkbutton because it also has an

indicator on the left side. The radiobutton indicator is a diamond, rather than a square.
Both look 3D and are dightly raised when unsel ected.

The main difference between a radiobutton and a checkbutton is the function they serve
in an application. A radiobutton is used to select one of several different choices:

 In amultiple choice test, the answers A, B, C, D, or E

» Which version of atool you would like to use

* Your income range: 0-20,000; 20,001-30,000; 30,001-40,000; 40,000 and up
» Which type of entree you prefer: beef, chicken, or vegetarian

In each example, only one answer is appropriate. For instance, it wouldn't make sense to
have a salary of both $18,000 and $33,000. And when you are taking a multiple-choice
test, you can't select all the answers and hope that the teacher gives you credit. Y ou have
to pick only one.

Because radiobuttons are used to decide between several choices, you should always
create at least two.* It doesn't make sense to ask a question at all if thereisonly one
choice. Radiobuttons should always be created in groups of two or more.

Creating Radiobuttons

So far, you have learned to create one widget at a time. Because radiobuttons are always
in agroup, we generally need to create more than one at atime. So you can be efficient
and create all the widgets as quickly and painlessly as possible, I'll show you some quick
ways to make up a group of radiobuttons.

(To show you how to take advantage of the widgets in the best way, the examples will
start to get abit more complicated. By now, you should know the basics of widget
creation and how to specify options during the creation. I'll often say that an option
works exactly like it did with widget X and refer you to that chapter for a more complete
discussion.)

Radiobuttons are similar to checkbuttons; they also have a$var i abl e associated with
the state of the indicator (using the option - var i abl e). When you create a group of
radiobuttons, use the same $var i abl e for every radiobutton in the group. The value
put into the $var i abl e will change according to which radiobutton is selected. To

create a new group of radiobuttons, simply associate the new group with a different
$vari abl e

Because each radiobutton in a group points to the same $var i abl e, thereisn't a

concept of onvalue and offvalue. The offvalue would be whatever the other radiobutton
wanted it to be. To accomplish this, radiobuttons use the option - val ue instead of -

onval ue and - of f val ue.

* |f you did create only one radiobutton, it would start out unselected (unless the
variable you associated with it contained the on value). Once that radiobutton was
selected, you would never be able to deselect it.

For our first example, we'll create a group of radiobuttons that indicate the background
color of our window. We need to use colors that are valid to the $mw > conf i gur e(-

backgr ound => color) command. Simple color names usually work, so we will use
red, yellow, green, blue, and gray.

As aways, the basic usage for creating a radiobutton is as follows:

$rb = $parentw dget - >Radi obutton([option => value, ...])-
>pack;

Hereisthe code that will create the radiobutton group that controls the background color:

setup the default value we would |ike
$rb_value = "red";
$mw >confi gur e(- background => $rb_val ue);

create the radiobuttons that wll et us change it
foreach (gwmred yell ow green blue grey)) {
$mv >Radi obutton(-text => $_,
-value => $_,
-variable => \$rb_val ue,
-command => \ &set bg) - >pack(-
side => "'"left');

}

function to change the background col or using $rb_val ue
sub set _bg {

print "Background value is now. $rb_val ue\n";

$mn >confi gure(-background => $rb_val ue);

}

We are storing the status of our radiobutton group in $r b_val ue. We set it to an initial
valueof " r ed" , which happens to match the first radiobutton we are creating. When

any of the radiobuttons are clicked, including the one currently selected, the subroutine
set _bg will be called. This subroutine will print the new value of $r b_val ue and

then change the background of our main window to that color.

One thing to note: Although we set the default value of our radiobutton groupto " r ed",

that doesn't mean that the background of the window has been set to red as well. We do
thisby calling the conf i gur e command and sending it the valuein $r b_val ue. We

could also do it by an explicit call totheset _bg routine, or we could have done it
when we created the MainWindow.

The window we have created looks like Figure 4-11.

red - yellow - green - blue - grey Exit

=—

Figure 4-11.
Radiobuttons that will change the background color of the window

The best way to understand how this window works is to type in the code and run it.

Thiswill betruefor alot of the examples shown in this book. When you click on each
radiobutton, you'll see a strip of the window at the top and bottom change color. You'll
only see this small strip because we only changed the background of $rmw;, not of each

radiobutton or the exit button.

Now that we've seen a basic application of radiobuttons, we can go over each of the
options.

Radiobutton Options

As with the checkbutton, the following options are the same for any of the three types of
buttons: - act i vebackground, - acti vef or egr ound, - anchor, -

backgr ound, - bor derw dt h, - cur sor, - di sabl edf or eground, -font, -
f or eground, - hei ght, - hi ghl i ght backgr ound, - hi ghl i ght col or, -
hi ghl i ght t hi ckness, - padx, - pady, - st at e, -t akef ocus, -t ext, -
textvariabl e,-underline,and-w dt h.

In addition, the following options are the same between checkbutton and radiobutton: -
command, - i ndi cat oron, -i mage, - sel ecti nage, - bi t map, -
wr apl engt h,-justify,and-sel ectcol or.

Therest | will discuss because they behave a bit differently because of the context in
which we are using them.

-acti vebackground => color
Sets the color the widget's background should be when mouse is over it.

-acti vef oreground =>color
Sets the color the widget's text should be when the mouse is over it.

-anchor =>'n' |['ne' |'e' |'se' |['s"' |"sw |'"W |'nwW |'center'
Sets the position of the text within the widget. Most noticeable when the widget is
resized larger.

- backgr ound => color
Sets the color of the widget background (behind the text).

- bi t map => bitmapname
Displays this bitmap instead of text.

- borderw dt h =>amount

Sets the edge thickness of the widget. Also changes the thickness of the indicator.
Default is 2.

-command => callback
Associates a subroutine to the button. Called when the button is clicked.

- Cur sor => cursorname
Indicates that the cursor will change to cursorname when it is over the widget.

- di sabl edf or egr ound => color
Setsthe color of thetext when - st at e is' di sabl ed' .

-font => fontname
Sets the font to use when displaying text in the widget.

-foreground => color
Sets the color of the text.

- hei ght =>amount
Sets the height of the button; amount is a valid screen distance.

- hi ghl i ght backgr ound => color

Sets the color the highlight rectangle around the widget should be when the widget does
not have focus.

- hi ghl i ght col or => color

Sets the color the highlight rectangle around the window should be when the widget
does have focus.

- hi ghl i ght t hi ckness =>amount
Sets the thickness of the highlight rectangle.

-1 mage =>imgptr
Indicates that an image is displayed instead of text.

-indicatoron => 0|1
Indicates the status of the indicator; O means indicator is not displayed.

-justify => 'center' |'"left' |'right'
Sets the jusdtification of the text within the widget.

- padx =>amount
Sets the amount of space |eft between text/indicator and left/right edges of the widget.

- pady => amount
Sets the amount of space left between text/indicator and top/bottom edges of widget.

-relief =>"flat' |'groove' |'raised |'ridge' |'sunken' |
‘solid
Changes the look of the widget edges.

-sel ect col or =>color
Sets the color the indicator should be when on.

-sel ecti mage =>imgptr
Indicates that an image should be displayed instead of text when the button is on.
Ignored if - i mage isnot used.

-state => 'nornmal’' |'active' |'disabled
Sets the state of the widget. If disabled, it will not respond to any input.

-takefocus => 0|1 |undef
Determines whether the widget is available for focus or not.

-t ext =>textstring
Sets the text displayed in the widget.

-textvariabl e => \$vari abl e
Indicates that the text in $var i abl e isdisplayed astext in the widget.

-underline =>n
Underlines the nth character in the text string.

-val ue =>newvalue
Setsthe value assigned to $var i abl e (set with - var i abl e option) when this
radiobutton is selected (default is 1).

-vari able => \$vari abl e
Sets the variable to use when this radiobutton is clicked.

-w dt h =>amount
Sets the width of the widget. Can be any valid screen distance.

-wr apl engt h => amount
Indicates that the text will wrap when it exceeds this amount.

Using the -variable Option

The- vari abl e option will look the same in each radiobutton creation command,

except logically, we are using it differently. We should have several radiobuttons sharing
the same $var i abl e instead of each one having their own distinct $var i abl e. The

example for Figure 4-11 shows how this works.
Setting the Value

With checkbuttons, we had two options, - onval ue and - of f val ue, because we had

to worry about the state of each individual checkbutton. With radiobuttons, we only care
about the state of the whole group. Each radiobutton should have a different - val ue to

it, so aglance at $var i abl e will tell uswhich radiobutton is selected.

The default - val ue is 1. (Remember: When you use a group that consists of only one
radiobutton, that one is always checked.)

To make sure you understand the difference between the - var i abl e option and the -
val ue option, let'swalk through a short example.

$mw >Radi obutton(-text => "Beef", -value => "Beef",
-variable => \$entree);
$mn >Radi obut t on(-text => "Chicken", -value => "Chicken",

-variable => \$entree);
$mn >Radi obut t on(-text => "Vegetarian",
val ue => "Vegetarian",

-variable => \$entree);

Here we have created three radiobuttons that all use the variable $ent r ee to store their
valuesin. If the user selects Beef, then $ent r ee will contain the value of " Beef " . If
the user selects Chicken, then $ent r ee will contain the value of " Chi cken" . Later in

the program when we build the physical menu for the printer, we can just check to see
what isin $ent r ee to find out what that user wants for dinner.

Radiobutton Style

Okay, sothe-r el i ef option does the same thing it doesin a checkbutton. But it is

worthwhile to show a screen shot of what happens when different relief types are used
(see Figure 4-12).

& flat [& gmnm & r.alsJ + rh:lge |+ '

Figure 4-12.
Different relief types for aradiobutton

As with the checkbutton, changing - bor der wi dt h can cause the radiobutton to ook
drastically different (see Figure 4-13).

= _ Badiobutton [] |
& flat | * groove| * raised| [+ n v 1
el A Aot dge | sunken |

Figure 4-13.
Radiobuttons with -borderwidth of 4

Remember how the indicator completely disappeared in a checkbutton when we used a -
bor derw dt h of 10? Well, in aradiobutton, it makesit look kind of like akite (see

Figure 4-14). You still won't be able to tell which radiobutton is checked or not, so |
don't recommend using the - bor der wi dt h option.

Figure 4-14.
Radiobuttons with -borderwidth of 10

Configuring a Radiobutton

Just as you can with our other widgets, you can use conf i gur e and cget to get or set

option values for each radiobutton widget. See Appendix A for more details on how to
use these methods.

Selecting and Unselecting a Radiobutton
A radiobutton also has both sel ect and desel ect methods:

$r b- >desel ect () ;
$rb->sel ect () ;

Using sel ect causes the radiobutton to be selected. (Using desel ect will cause the
radiobutton to be unselected. It setsthe $var i abl e to an empty string. If you use this

method, make sure you account for it in any code that evaluates the value of
$vari abl e). Any command associated viathe - comrand option will also be invoked

with both sel ect anddesel ect.

Flashing the Radiobutton

Thef | ash method will flash the radiobutton's background/foreground colors off and
on, but otherwise, it does nothing interesting:

$rb->fl ash();

I nvoking a Radiobutton

To programmatically select a radiobutton, use thei nvoke method:
$r b->i nvoke();

It causes the radiobutton to be selected and will also invoke any callback associated with
the radiobutton viathe - command option. Essentialy, it does the same thing it would

do if you clicked on the radiobutton with the mouse.

Fun Thingsto Try

» Create a bunch of checkbuttons and a Go button that will report the status of al the
checkbuttons.

» Make up asurvey that uses checkbuttons for questions that have one or more options
and radiobuttons with only one appropriate choice.

* Create three different groups of checkbuttons: Favorite Color, Favorite Song, and Shoe
Size. Then create a radiobutton to represent each group. The currently selected
radiobutton dictates which checkbuttons the user can see and use.

5
L abel and Entry Widgets

There are times you'll want users to type in specific information such as their name,
address, or even a serial number. The simplest way to do thisis to use entry widgets.

Y ou can use alabel widget with an entry to clearly communicate to the user what should
be typed in the entry. Most often, you'll see the label and entry combination used
multiple times in a database entry-type window where there are many different pieces of
information the user must enter.

The Label Widget

Label Widget So far, all we have talked about are buttons, buttons, and more

buttons. What if we just want to put some informative text on the screen? The |abel
widget does just that. A label islike abutton that doesn't do anything. Itisa
noninteractive widget and by default cannot have the keyboard focus (meaning you can't
tab to it) and it does nothing when you click onit.

The label widget is probably the smplest widget. It is similar to abutton in that it can
show text (or abitmap), have relief (default isflat), display multiple lines of text, have a
different font, and so on. Figure 5-1 shows a simple window, with both a button and
label, created with this code;

use Tk;

$mw = Mai nW ndow >new() ;

$mn >Label (-text => "Label Wdget")->pack();

$mw- >Button(-text => "Exit", -command => sub { exit })->pack

();
Mai nLoop;

of ekl s
Label Widget

bt

—

Figure 5-1.
A simple window with label and button

Here are some typical usesfor alabel:

* Put alabel to the left of an entry widget so the user knows what type of datais
expected.

* Put alabel above agroup of radiobuttons, making their purpose more clear (e.g.,
"Background Color:"). You can do the same thing with checkbuttons if they happen to
be related or along the same theme.

» Use alabel to tell users what they did wrong: "The number entered must be between 10
and 100." (Typically, you would use a Dialog composite widget to give messages to the
user like this, but not always.)

* Put an informational line across the bottom of your window. All the other widgets
would have a mapping that displays a string containing information about that widget.

Creating a Label

The command to create alabel is, of course, Label . Here's the basic usage:
$l abel = $parent->Label ([option => value ...])->pack();

Hopefully, you are starting to see atrend in the creation command. As you might expect,
when you create alabel, you can specify options that will change its appearance and how
it behaves.

Label Options

Thefollowing list isacomprehensive list of options for labels:

-anchor =>"'n'" |'ne' |'e" |'"se' |['s" |'"swW |'"W |['nw |'center'
Causes the text to stick to that position in the label widget. This won't be obvious unless
the label isforced to be larger than standard size.

- backgr ound => color
Sets the background color of the label to color.

- bi t map => bitmap
Displays the bitmap contained in bitmap instead of text.

- bor derw dt h =>amount
Changes the width of the edges of the label.

cur sor => cursorname
Changes the cursor to cursorname when the mouse is over this widget.

-font => fontname
Indicates that the text in the widget will be displayed with fontname.

-f oreground => color
Changes the text of the button (or the bitmap) to be color color.

- hei ght =>amount
Sets the height of the label to amount; amount is avalid screen distance.

- hi ghl i ght backgr ound => color
Sets the color of the focus rectangle when the widget is not in focus to color.

- hi ghl i ght col or => color
Sets the color of the focus rectangle when the widget has focus to color.

- hi ghl i ghtt hi ckness =>amount
Sets the width of the focus rectangle. Default is O for the labdl.

-i mage =>imgptr

Displays the image to which imgptr points instead of text.
-justify => "left' ['right' |'center’

Setsthe side of the label against which multi-line text will justify.

- padx =>amount
Adds extra space inside the edge to the left and right of the labdl.

- pady =>amount
Adds extra space inside the edge to the top and bottom of the label.

-relief =>"flat' |'groove' |'raised |'ridge' |'sunken’
Changes the type of edges drawn around the button.

-takefocus => 0|1 |undef
Changes the ahility of the label to have the focus or not.

-text =>text
Displaysin the label atext string.

-textvariable => \$vari abl e

Points to the variable containing text to be displayed in the label. Label will change
automatically as$var i abl e changes.

-underline =>n

Causes the nth character to be underlined. Allows that key to invoke the widget when it
has the focus. Default value is -1 (no character underlined).

-wW dt h => amount
Causes the |abel to be width amount.

-wr apl engt h =>amount
Indicates that the text in the label will wrap when it gets longer than amount.

Thislist briefly describes each option and what it does. Some of the options have
different defaults for the label widget than we are used to seeing with the buttontype
widgets, causing the label to behave a bit differently.

How a Label Differsfrom Other Widgets

When we created button-type widgets, we could either click them with the mouse or tab
to them and then use the keyboard to cause the button to be pressed. A label widget, on
the other hand, does not interact with the user. It is there for informational purposes
only, so thereisno - conmand option. We also can't tab to alabel widget because

nothing would happen.

The default value for the - t akef ocus option is 0, making the label noninteractive.

When tabbing between widgets on the screen, the highlight rectangle shows us which
widget currently has the keyboard focus. Since we don't alow the label to have the focus
(remember, - t akef ocus isset to 0), it doesn't make sense to have avisible highlight

rectangle. The default value for the - hi ghl i ght t hi ckness option in alabel widget
1S 0. Y ou can make arectangle appear around a label by setting -

hi ghl i ght t hi ckness to something greater than O, and setting -

hi ghl i ght backgr ound to acolor such as blue or red.

The label widget aso doesn't have a- st at e option. Since we shouldn't be able to click
alabel, we should never have to disable it.

Relief

In Figure 5-2, you can see what happens when you change the label's- r el i ef option.

Notice that the edges of the widget are very close to the text. Unlike a button, you
usually don't want much extra space around the label (space is controlled by the - padx

and - pady options). Normally, you want the label widget to sit right next to the widget
(or widgets) it is describing.

= T T o |
| tat |groove| raised| ridge sunken |

Figure 5-2.
L abels with different relief values. Window on right has a -borderwidth of 10.

You'll notice that | like seeing what widgets look like with the different relief values.
This sometimes hel ps determine where the widget ends, especially with widgets that

have a default value of "flat". Also, | often change the relief of different widgetsto make
sure | know which widgets are where on the screen. After creating 10 entries and |abels
with less than creative variable names, it's easy to lose track. Also, changing the
borderwidth is bound to make that one widget stand out. Of course, | always change the
relief and borderwidth back to something non-obnoxious before | give the program to
anyone elseto run! Color is aso agood way to do a diagnostic message.

Status Message Example

| often use the groove or ridge relief when I'm making a help or status label along the
bottom of my window. | make alabel that is packed with - si de => ' bottom and-

fill =>"'x".Therearetwo different waysyou can use a status label:

* Set the variable associated with it so it changes as your program progresses,
announcing to the user that it is busy, or something is happening.

» Have the help label give information on each of the different widgets in your
application when it gets the focus, using the bi nd command.

Both types are demonstrated in the following sample code.

This code shows the "What I'm doing now" type of help label:

$mn >Label (-textvari able => \ $nessage, -borderwi dth => 2,
-relief => 'groove')->pack(-fill =>"'x",
-side => "bottom);
$mw >Text () - >pack(-side => '"top',
-expand => 1,
-fill => "both");

$nessage "Loading file index.htm...";

éﬁéssage "Done" ;

The label is created across the bottom of the screen. We pack it first because we want it
to stay on the screen if we resize the window (remember, the last widgets packed will get
lower priority if the window runs out of room). As the program executes (represented by
the...), it changes the label accordingly.

This code shows an example of using awidget-helper help label:
$mw->title("Hel p Label Exanple");

$mw >Label (-textvariabl e => \ $nessage)
->pack(-side => "bottom, -fill => "x");

$b = $mw>Button(-text => "Exit", -command => \&exit)
->pack(-side => "left');
&bi nd_nessage($b, "Press to quit the application");

$b2 = $mw>Button(-text => "Do Nothi ng") - >pack(-
side => "left');
&bi nd_nmessage($b2, "This button does absolutely nothing!");

$b3 = $mw >Button(-text => "Sonet hi ng",

-command => sub { print "sonething\n"; })->pack(-
side => "left');
&bi nd_nessage($b3, "Prints the text 'sonething ");

sub bi nd_nessage {

ny ($widget, $msg) = @;

$wi dget - >bi nd(' <Enter>', [sub { $nessage = $_
[1]; }, $msg]);

$wi dget - >bi nd(' <Leave>', sub { $nessage = ""; });
}

Thisexampleisabit longer because we are using the bi nd method (the bi nd method

isexplained in more detail in Chapter 14, Binding Events). For each widget we create,
we want to associate a help message with it. We do this by adding bindings to each
widget that change the variable $nmessage to a specified string when the mouse enters
the widget, and to an empty string if the mouse |eaves the widget. We used a subroutine
to avoid writing the same two bi nd lines over and over again. Figure 5-3 shows what
our window looks like with the mouse over the center button.

Extl Do Muﬂlqting | Something i

__ This button does alisalutely nothing!

Figure 5-3.
Window with |abel across the bottom

Container Frames

In Figure 5-3, you can see that the example text is centered within the label widget.
When using non-multiple line labels, when you fill the widget across the screen, the text
remains centered, evenif youaddthe-justify => 'l eft' option. You can get
around this by creating a container frame, giving it the desired relief, filling the frame
across the screen (instead of the label), and placing the label widget within the frame:

$f: = $nmw >Frane(-relief => 'groove',

-bd => 2)->pack(-side => 'bottom,
-fill == "x");
$f - >Label (-textvari abl e => \ $nessage,) - >pack(-
side => "left');

This alowsthe label to grow and shrink within the frame as necessary, while the text
sticksto the left side. If you've typed this short little example in and played with the
strings bound to each widget, you might have noticed that the window will resize itself if
the text assigned to $nessage istoo long to display in the label. This can get annoying

if your window isfairly small to begin with. There are two ways to deal with this: First,
you can always use really short text strings, and second, you can tell the window to not
resize when the label changes size.

The drawbacks with each approach aren't too bad, and which one you pick just depends
on the application you are working on. If you can make really short sentences that make
sense, great. Telling the window to not resize is amost as easy, though-it is
accomplished by adding one line to your program:

$mw >packPr opagat e(0) ;

Using packPr opagat e will cause your window to not resize when awidget is placed
inside the window (we first talked about packPropagate in Chapter 2, Geometry
Management). This means that your window might not be showing all your widgets
right away. Y ou can deal with thisby keeping it on until you get all your widgetsin it,
figuring out a good starting size for your window and using $mw >georet r y(size) to
request that size initially. (See Chapter 13, Toplevel Widgets, for info on the geonet ry
method.)

Label Configuration

Label isapretty boring widget, so there are only two methods available to change or get
information onit: cget and conf i gur e. Both methods work for Label the same way

they work for the Button widget. Please refer to Appendix A for the details on arguments
and return values,

The Entry Widget

lentry widget ~ Until now, the only input we know how to get from the user is

amouseclick on a button widget (Button, Checkbutton, or Radiobutton), which is
handled viathe - conmand option. Getting input from a mouseclick is useful, but it's

also limiting. The entry widget will let the user typein text that can then be used in any
way by the application. Here are afew examples of where you might use an entry widget:

* In adatabase form that requires one entry per field (e.g., Name, Last name, Address)

* In a software registration window that requires a serial number

* In alogin window that requires a username and password
* In aconfiguration window to get the name of a printer
* In an Open File window that requires the path and name of afile

Normally, we don't care what userstype in an entry widget until they are done typing,
and any processing will happen "after the fact" when a user clicks some sort of Go
button. Y ou could get fancy and process each character asit's typed by setting up a
complicated bind-but it is probably more trouble than it is worth.

The user can type anything into an entry widget. It is up to the programmer to decide if
the text entered is valid or not. When preparing to use the information from an entry, we
should do some error checking. If we want an integer and get some al phabetic
characters, we should issue awarning or error message to the user.

An entry widget is a much more complex widget than it first appears to be. The entry
widget isreally asimplified one-line text editor. Text can be typed in, selected with the
mouse, deleted, and added. | would classify an entry widget as a middle-of-the-line
widget. It's more complicated than a button, but much less complicated than the text or
canvas widgets.

Creating the Entry Widget
No surprises here:
$entry = $parent->Entry([option => value ...])->pack;

When the entry widget is created, it isinitially empty of any text, and the insert cursor (if
the entry had the keyboard focus) is at the far-left side.

Entry Options

The following list contains a short description of each option available for configuring
an entry widget. Several of them are discussed in more detail later in this chapter.

- backgr ound => color
Sets the background color of the entry widget. Thisis the area behind the text.

- bor derw dt h =>amount
Changes the width of the outside edge of the widget. Default valueis 2.

- cursor => cursorname
Changes the cursor to cursorname when it is over the widget.

-exportselection => 0|1

If the Boolean value specified is true, any text selected will be exported to the
windowing system's clipboard.

Fun Thingsto Try

» Create a bunch of checkbuttons and a Go button that will report the status of al the
checkbuttons.

» Make up asurvey that uses checkbuttons for questions that have one or more options
and radiobuttons with only one appropriate choice.

* Create three different groups of checkbuttons: Favorite Color, Favorite Song, and Shoe
Size. Then create a radiobutton to represent each group. The currently selected
radiobutton dictates which checkbuttons the user can see and use.

5
L abel and Entry Widgets

There are times you'll want users to type in specific information such as their name,
address, or even aserial number. The simplest way to do thisisto use entry widgets.

Y ou can use alabel widget with an entry to clearly communicate to the user what should
be typed in the entry. Most often, you'll see the label and entry combination used
multiple times in a database entry-type window where there are many different pieces of
information the user must enter.

The Label Widget

Label Widget So far, al we have talked about are buttons, buttons, and more

buttons. What if we just want to put some informative text on the screen? The |abel
widget doesjust that. A label islike abutton that doesn't do anything. Itisa
noninteractive widget and by default cannot have the keyboard focus (meaning you can't
tab to it) and it does nothing when you click onit.

The label widget is probably the simplest widget. It issimilar to abutton in that it can
show text (or abitmap), have relief (default isflat), display multiple lines of text, have a
different font, and so on. Figure 5-1 shows a simple window, with both a button and
|abel, created with this code:

use Tk;

$mw = Mai nW ndow >new() ;

$mw >Label (-text => "Label Wdget")->pack();

$mn >Button(-text => "Exit", -command => sub { exit })->pack

();
Mai nLoop;

—_— J%J

e| |

Figure 5-1.
A simple window with label and button

Here are some typical usesfor alabel:

* Put alabel to the left of an entry widget so the user knows what type of datais
expected.

* Put alabel above agroup of radiobuttons, making their purpose more clear (e.g.,
"Background Color:"). You can do the same thing with checkbuttons if they happen to
be related or along the same theme.

» Use alabel to tell users what they did wrong: " The number entered must be between 10
and 100." (Typically, you would use a Dialog composite widget to give messages to the
user like this, but not always.)

* Put an informational line across the bottom of your window. All the other widgets
would have a mapping that displays a string containing information about that widget.

Creating a Label

The command to create alabel is, of course, Label . Here's the basic usage:
$l abel = $parent->Label ([option => value ...])->pack();

Hopefully, you are starting to see atrend in the creation command. As you might expect,
when you create alabel, you can specify options that will change its appearance and how
it behaves.

Label Options

Thefollowing list isacomprehensive list of options for labels:

-anchor =>"'n'" |'ne' |'e" |"se" |['s" |'"sW |'"W |['nw |'center'
Causes the text to stick to that position in the label widget. Thiswon't be obvious unless

the label isforced to be larger than standard size.

- backgr ound => color
Sets the background color of the label to color.

-bi t map => bitmap
Displays the bitmap contained in bitmap instead of text.

- borderw dt h =>amount
Changes the width of the edges of the label.

cur sor => cursorname
Changes the cursor to cursorname when the mouse is over this widget.

-f ont => fonthame
Indicates that the text in the widget will be displayed with fontname.

-foreground =>color
Changes the text of the button (or the bitmap) to be color color.

- hei ght =>amount
Sets the height of the label to amount; amount is avalid screen distance.

- hi ghl i ght backgr ound => color
Sets the color of the focus rectangle when the widget is not in focus to color.

- hi ghl i ght col or => color
Sets the color of the focus rectangle when the widget has focus to color.

- hi ghl i ghtt hi ckness =>amount
Sets the width of the focus rectangle. Default is O for the label.

-1 mage =>imgptr

Displays the image to which imgptr points instead of text.
-justify => "left' |'right' |'center’

Sets the side of the label against which multi-line text will justify.

- padx =>amount
Adds extra space inside the edge to the left and right of the label.

- pady =>amount
Adds extra space inside the edge to the top and bottom of the label.

-relief =>"flat' |'groove' |'raised |'ridge' |'sunken'
Changes the type of edges drawn around the button.

-takef ocus => 0|1 |undef
Changes the ability of the label to have the focus or not.

-text =>text
Displaysin the label atext string.

-textvari able => \$vari abl e

Points to the variable containing text to be displayed in the label. Label will change
automatically as$var i abl e changes.

underli ne =>

n
Causes the nth
character to be
underlined.
Allows that key
to invoke the
widget when it
has the focus.
Default valueis -
1 (no character
underlined).

W dth =>
amount
Causesthe
label to be

width
amount.

wr apl ength =>
amount

Indicates that the
text in the |abel
will wrap when it

gets longer than
amount.

Thislist briefly describes each option and what it does. Some of the options have
different defaults for the label widget than we are used to seeing with the buttontype
widgets, causing the label to behave a bit differently.

How a Label Differsfrom Other Widgets

When we created button-type widgets, we could either click them with the mouse or tab
to them and then use the keyboard to cause the button to be pressed. A label widget, on
the other hand, does not interact with the user. It isthere for informational purposes
only, so thereisno - conmand option. We also can't tab to alabel widget because

nothing would happen.

The default value for the - t akef ocus option is 0, making the label noninteractive.

When tabbing between widgets on the screen, the highlight rectangle shows us which
widget currently has the keyboard focus. Since we don't alow the label to have the focus
(remember, - t akef ocus isset to 0), it doesn't make sense to have avisible highlight

rectangle. The default value for the - hi ghl i ght t hi ckness option in alabel widget
is0. Y ou can make arectangle appear around alabel by setting -

hi ghl i ght t hi ckness to something greater than O, and setting -

hi ghl i ght backgr ound to acolor such as blue or red.

The label widget aso doesn't have a- st at e option. Since we shouldn't be able to click
alabel, we should never haveto disableit.

Relief

In Figure 5-2, you can see what happens when you change the label's- r el i ef option.

Notice that the edges of the widget are very close to the text. Unlike a button, you
usually don't want much extra space around the label (space is controlled by the - padx

and - pady options). Normally, you want the label widget to sit right next to the widget
(or widgets) it is describing.

| |EiE abel o]
flat \groove| raised|rdge surﬂmﬂ

Figure 5-2.
L abels with different relief values. Window on right has a -borderwidth of 10.

You'll notice that | like seeing what widgets look like with the different relief values.
This sometimes hel ps determine where the widget ends, especially with widgets that

have a default value of "flat". Also, | often change the relief of different widgetsto make
sure | know which widgets are where on the screen. After creating 10 entries and labels
with less than creative variable names, it's easy to lose track. Also, changing the
borderwidth is bound to make that one widget stand out. Of course, | always change the
relief and borderwidth back to something non-obnoxious before | give the program to
anyone elseto run! Color is also agood way to do a diagnostic message.

Status Message Example

| often use the groove or ridge relief when I'm making a help or status |abel along the
bottom of my window. | make alabel that is packed with- si de => ' bottom and-

fill =>"'x".Therearetwo different waysyou can use a status label:

* Set the variable associated with it so it changes as your program progresses,
announcing to the user that it is busy, or something is happening.

» Have the help label give information on each of the different widgetsin your
application when it gets the focus, using the bi nd command.

Both types are demonstrated in the following sample code.

This code shows the "What I'm doing now" type of help label:

$mw >Label (-textvari abl e => \ $nessage, -borderwi dth => 2,
-relief => "'groove')->pack(-fill =>"'x",
-side => 'bottom);
$mn >Text () - >pack(-side => "top',
-expand => 1,
-fill => "both");

$nessage "Loading file index.htm...";

$nessage = "Done";

The label is created across the bottom of the screen. We pack it first because we want it
to stay on the screen if we resize the window (remember, the last widgets packed will get
lower priority if the window runs out of room). As the program executes (represented by

the...), it changes the label accordingly.
This code shows an example of using a widget-helper help label:
$mn>titl e("Hel p Label Exanple");

$mw >Label (-textvariabl e => \ $nessage)
->pack(-side => "bottom, -fill =>"x");

$b = $mm>Button(-text => "Exit", -conmmand => \&exit)
->pack(-side => "left");
&bi nd_nmessage($b, "Press to quit the application");

$b2 = $mn>Button(-text => "Do Not hi ng") - >pack(-
side => "'"left');
&bi nd_nessage($b2, "This button does absolutely nothing!");

$b3 = $nmw >Button(-text => "Sonething",

-command => sub { print "sonething\n"; })->pack(-
side => "left');
&bi nd_nessage($b3, "Prints the text 'sonething ");

sub bi nd_nessage {

ny ($widget, $nmsg) = @;
$wi dget - >bi nd(' <Enter>', [sub { $message = $_

[1]; }, $nmsg]);
$wi dget - >bi nd(' <Leave>', sub { $nessage = ""; });
}

This exampleisabit longer because we are using the bi nd method (the bi nd method

isexplained in more detail in Chapter 14, Binding Events). For each widget we create,
we want to associate a help message with it. We do this by adding bindings to each
widget that change the variable $message to a specified string when the mouse enters
the widget, and to an empty string if the mouse leaves the widget. We used a subroutine
to avoid writing the same two bi nd lines over and over again. Figure 5-3 shows what
our window looks like with the mouse over the center button.

0 Ml mshat Eyairinde Al -
A B b ot e L e pT P

Ext | Do Mﬂtl"rting | Something i

.

__ This button does aisalutely nothing!

Figure 5-3.
Window with |abel across the bottom

Container Frames

In Figure 5-3, you can see that the example text is centered within the label widget.
When using non-multiple line labels, when you fill the widget across the screen, the text
remains centered, evenif youaddthe-j ustify => 'l eft' option. You can get

around this by creating a container frame, giving it the desired relief, filling the frame
across the screen (instead of the label), and placing the label widget within the frame:

$f: = $nmw >Frane(-relief => 'groove',

-bd => 2)->pack(-side => 'bottom,
-fill = "x");
$f - >Label (-textvari abl e => \ $nessage,) - >pack(-
side => "left');

This alowsthe label to grow and shrink within the frame as necessary, while the text
sticksto the left side. If you've typed this short little example in and played with the
strings bound to each widget, you might have noticed that the window will resize itself if
the text assigned to $nessage istoo long to display in the label. This can get annoying
if your window isfairly small to begin with. There are two ways to deal with this: First,
you can always use really short text strings, and second, you can tell the window to not
resize when the label changes size.

The drawbacks with each approach aren't too bad, and which one you pick just depends
on the application you are working on. If you can make really short sentences that make
sense, great. Telling the window to not resize is amost as easy, though-it is
accomplished by adding one line to your program:

$mw >packPr opagat e(0) ;

Using packPr opagat e will cause your window to not resize when awidget is placed

inside the window (we first talked about packPropagate in Chapter 2, Geometry
Management). This means that your window might not be showing all your widgets
right away. Y ou can deal with thisby keeping it on until you get all your widgetsin it,
figuring out a good starting size for your window and using $mw >geormet r y(size) to
request that size initially. (See Chapter 13, Toplevel Widgets, for info on the geonet ry
method.)

Label Configuration

Label isa pretty boring widget, so there are only two methods available to change or get
information onit: cget and conf i gur e. Both methods work for Label the same way

they work for the Button widget. Please refer to Appendix A for the details on arguments
and return values.,

The Entry Widget

lentywidget ~~ Until now, the only input we know how to get from the user is

amouseclick on a button widget (Button, Checkbutton, or Radiobutton), which is
handled viathe - comand option. Getting input from a mouseclick is useful, but it's
also limiting. The entry widget will let the user typein text that can then be used in any
way by the application. Here are afew examples of where you might use an entry widget:

* In adatabase form that requires one entry per field (e.g., Name, Last name, Address)

* In asoftware registration window that requires a serial number

* In alogin window that requires a username and password
* In aconfiguration window to get the name of a printer
* In an Open File window that requires the path and name of afile

Normally, we don't care what userstype in an entry widget until they are done typing,
and any processing will happen "after the fact" when a user clicks some sort of Go
button. Y ou could get fancy and process each character asit's typed by setting up a
complicated bind-but it is probably more trouble than it is worth.

The user can type anything into an entry widget. It is up to the programmer to decide if
the text entered is valid or not. When preparing to use the information from an entry, we
should do some error checking. If we want an integer and get some al phabetic
characters, we should issue awarning or error message to the user.

An entry widget is a much more complex widget than it first appears to be. The entry
widget isreally asimplified one-line text editor. Text can be typed in, selected with the
mouse, deleted, and added. | would classify an entry widget as a middle-of-the-line
widget. It's more complicated than a button, but much less complicated than the text or
canvas widgets.

Creating the Entry Widget
No surprises here:
$entry = $parent->Entry([option => value ...])->pack;

When the entry widget is created, it isinitially empty of any text, and the insert cursor (if
the entry had the keyboard focus) is at the far-left side.

Entry Options

The following list contains a short description of each option available for configuring
an entry widget. Severa of them are discussed in more detail later in this chapter.

- backgr ound => color
Sets the background color of the entry widget. Thisis the area behind the text.

- bor derw dt h =>amount
Changes the width of the outside edge of the widget. Default valueis 2.

- cursor => cursorname
Changes the cursor to cursorname when it is over the widget.

exportselection => 0
| 1

If the Boolean value specified
istrue, any text selected will
be exported to the windowing
system's clipboard.

-f ont => fonthame
Changes the font displayed in the entry to fonthame.

-foreground =>color
Changes the color of the text.

- hi ghl i ght backgr ound => color

Sets the color the highlight rectangle should be when the widget does not have the
keyboard focus.

- hi ghl i ght col or => color

Sets the color the highlight rectangle should be when the widget does have the keyboard
focus.

- hi ghl i ghtt hi ckness =>amount
Sets the thickness of the highlight rectangle around the widget. Default is 2.

-i nsertbackground => color
Sets the color of the insert cursor.

-insertborderw dt h =>amount
Sets the width of the insert cursor's border. Normally used in conjunction with - i padx
and - i pady options for the geometry manager.

-insertofftime =>milliseconds
Sets the amount of time the insert cursor is off in the entry widget.

-insertonti nme =>milliseconds
Sets the amount of time the insert cursor ison in the entry widget.

-i nsertw dt h =>amount

Sets the width of the insert cursor. Default is 2.

-justify => "left' ['right' |'center’

Sets the justification of the text in the entry widget. The default is left.

-relief => "'flat' |'"groove' |'raised |'ridge' |'sunken' |
‘solid
Setstherelief of the outside edges of the entry widget.

- sel ect background => color
Sets the background color of any selected text in the entry widget.

- sel ect borderw dt h =>amount
Sets the width of the selection highlight's border.

-sel ectforeground => color
Sets the text color of any selected text in the entry widget.

- show => char
Sets the character that should be displayed instead of the actual text typed.

-state => "normal ' |'disabled |'active'
Indicates the state of the entry. Default is' nor mal ' .

-takefocus => 0|1 |undef
Allows or disallows this widget to have the keyboard focus.

-textvariable => \$vari abl e
Sets the variabl e associated with the information typed in the entry widget.

-w dt h =>amount
Sets the width of the entry in characters.

-xscrol | conmand => callback
Assigns a callback to use when scrolling back and forth.

The following options behave as we expect them to, and aren't worth further discussion:
- background, - cursor,-font,-highlightbackground, -

hi ghl i ght col or,-hi ghlightthickness,-foreground,-justify,-
t akef ocus, and - st at e. For more detailed information on these how these options
affect awidget, see Chapter 3.

Assigning the Entry's Contentsto a Variable
The-t ext vari abl e option lets you know what the user typed in the entry widget:

-textvariable => \$vari abl e

By now, you should be familiar with this option from several of our button examples.
Any text input into the entry widget will get assigned into $var i abl e. Thereverse

also applies. Any string that gets assigned to $var i abl e will show up in the entry
widget.

It isimportant to remember that no matter what the user enters, it will be assigned to this
variable. This means that even though you are expecting numeric input (e.g., “314"), you
might get something like "3s14" if the user accidentally (or on purpose!) presses the
wrong key(s). Before using any information from an entry widget, it's agood ideato do
some error checking to make sure it's the information you expect or, at the very least, in
the correct format. Trying to use "3s14" in an equation would most likely produce
undesired results.

The other way you can find out what isin the entry widget is by using the get method:

$stuff = $entry->get();

You can use get whether or not you have used the - t ext var i abl e option.

Relief
Aswith all the widgets, you can change the way the edges are drawn by using the -

rel i ef and/or - bor derw dt h options:

-relief =>"flat' | 'groove' | 'raised | 'ridge' | 'sunken'
- borderw dt h => anount

The default for anentry is' sunken' , which is aso a change from what we've seen so
far. Figure 5-4 shows the different relief types at different - bor der wi dt h values
incrementing from the default, 2, to 4, to 10.

_|j E“Ij"] ""Id'lj :I~ iy ::mﬁa “'L'}Ii";-r.- i i

fiat | flat !
ES"E'E.".'E_________'____'_E:?.: | groove | I greove [
rmEd —] raised E -
dge! | s = JEHLRT i
Fsu NKEn I — n_dgﬂ

; Jsuriken . ! I

Exil | E
= e ' sunken

Exit |

Figure 5-4.
Different relief types for an entry widget: -borderwidth of 2 (the default), 4, and 10

Thisisthe code snippet that created the five entry widgets and used the relief name as
the entry widget's text:

foreach (gw flat groove raised ridge sunken/) {
$e = $mw->Entry(-relief => $)->pack (-expand => 1);
$e->insert ('end, $); # put sonme text in the entry

}
Entry I ndexes

In order to manipulate the text in the entry widget, you need some way to identify
specific portions or positions within the text. The last example actually used an index in
it. Theline$e->i nsert (' end', $_) usestheindex' end' . Justlikethei nsert
method (covered later in the chapter), all of the methods that require information about a
position will ask for an index (or two, if the method requires arange of characters). This
index can be as simple as 0, meaning the very beginning of the text, or something more
complicated like' i nsert' .

Here are the different forms of index specification and what they mean:

n (any integer)
A numerical character position. O isthe first character in the string. If the entry contains
thestring" My not her hit your nother right on the nose" andwe

used an index of 12, the character pointed to would be the "t" in the word "hit."

‘insert’

Indicates the character directly following the insertion cursor. The insertion cursor is that
funny-looking little bar thing that shows up inside the entry widget when text is typed.

Y ou can move it around with the arrow keys or by clicking on a different location in the
entry widget.

"sel .first'

Thefirst character in the selection string. Thiswill produce an error if thereis no
selection. The selection string is the string created by using the mouse or shift-arrow.
The selected text is dightly raised from the background of the entry.

If our selected text were the word "nose” in this string (shown here in bold)
My mother hit your mother right on the nose

"sel.first' wouldindicatethe"n".

sel .| ast'

The character just after the last character in the selection string. Thiswill also produce an
error if thereis no selection in the entry widget. In the preceding example, this would
mean the space after the "€" in nose.

‘anchor’
The' anchor' index changes depending on what has happened with the selection in

the entry widget. By default, it starts at the far left of the entry: 0. It will change if you
click anywhere in the entry widget with the mouse. The new value will be at the index
you clicked on. The' anchor ' index will also change when anew selection is made-

either with the mouse (which meansthe' anchor' will be wherever you clicked with
the mouse) or by Shift-clicking-and ' anchor ' will be set to where the selection starts.

Mostly, thisindex is used internally, and you'll rarely find a case where it would be
useful in an application.

end

Thisindicates the character just after the last one in the text string. Thisvalueisthe
same asif you specified the length of the entire string as an integer index.

I@Xl
This form uses an x coordinate in the entry widget. The character that contains this x
coordinate will beused. " @" indicates the leftmost (or first) character in the entry

widget. Thisform of index specification is also one you'll rarely use.
Text Selection Options

Y ou can select the text in an entry widget, and several things happen. Theindices' sel .
first' and' sel .l ast' pointto the beginning and end of the selected text

respectively. You can a'so make the selected text available on the clipboard on a Unix
system by using the - export sel ect i on option:

-exportselection => 0| 1

The - export sel ecti on option indicates whether or not any selected text in the

entry will be also be put in the selection buffer in addition to being stored internal to the
entry as a selection. By leaving this option in its default value, you can paste selected
text into other applications.

The selected text also has some color options associated with it: -
sel ect backgr ound, - sel ect f or eground, and - sel ect bor der wi dt h:

- sel ect background => col or
-sel ectforeground => col or
-sel ect borderw dth => anount

The- sel ect background and - sel ect f or egr ound options change the color of

the text and the area behind the text when that text is highlighted. In Figure 5-5, the word
"text" is selected.

. : % -
S e e e e
Select the word (g in this antry R |

[Exit |

Figure 5-5.

Entry with -selectbackground => 'red' and -selectforeground => 'yellow’

Y ou can change the width of the edge of that selection box by using -
sel ect bor der wi dt h. If you left the size of the entry widget unchanged, you

wouldn't see the effects of it. The entry widget cuts off the selection box. To actually see
the results of increasing the - sel ect bor der wi dt h value use the -

sel ect bor der wi dt h option in the entry command and the- i padx and - i pady in
the geometry management command.

5 ERiE 4
[\Select the wumﬂn thiz eniry |
| !
| Exit i [

Figure 5-6.

Entry widget with -selectborderwidth => 5

Y ou might want to changethe - sel ect bor der wi dt h option if you like alittle extra

space around your text or if you really want to emphasize the selected text. Here's the
code that generated the entry widget in Figure 5-6:

$e = $mw>Entry(-sel ect borderwi dth => 10)->pack (-
expand => 1,

fill = "'x'
I padx => 10,

i pady => 10);
$e->insert ('end , "Select the word text in this entry");

Noticethe- i padx and - i pady optionsin the pack command.

Thelnsert Cursor

Theinsert cursor isthat funny-looking little bar that blinks on and off inside the entry
widget when it has the keyboard focus. It will only show up when the entry widget
actually has the keyboard focus. If another widget (or none) has the keyboard focus, the
insertion cursor is still there, but it isinvisible. In Figure 5-7, the insertion cursor is
immediately after the second "n" in the word "Insertion."

insertion] Cursor

Exit |

——————

Figure 5-7.
Default insertion cursor

Y ou can change the thickness, border width, and width of the insertion cursor by using
these options:

-i nsertbackground => col or
-1 nsertborderw dt h => anpunt
-insertw dth => anount

The-i nsertw dt h option simply changes the width of the cursor so it looks fatter.
The- i nsert backgr ound option changes the overall color of the insertion cursor.
Figure 5-8 shows an example.

Insertion Cursor |
Exit 7

Figure 5-8.
Insertion cursor with -insertbackground => 'green’ and -insertwidth => 10

No matter how wide the cursor, it is always centered over the position between two
characters. Theinsertion cursor in Figure 5-8 isin the same location it was in Figure 5-7.
This can look distracting to users and might just confuse them unnecessarily, so you
most likely won't changethe- i nsertw dt h option.

Y ou can give theinsertion cursor a3D look by using - i nsert bor derw dt h (asin
Figure 5-9). Likethe-i nsertw dt h option, the- i nsert bor derw dt h option
doesn't have much practical use.

Insertian Cursor

Exit J

Figure 5-9.
Insertion cursor with -insertborderwidth => 5, -insertbackground => 'green’ and
-insertwidth => 10

Y ou can also change the amount of time the cursor blinks on and off by using these
options:

-insertofftime => tine
-insertontine => tine

The default valuefor - i nsert of f ti me is300 milliseconds. The default for -
I nsertonti me is600 milliseconds. The default values make the cursor's blink stay on
twice aslong asit is off. Any value specified for these options must be nonnegative.

For areally frantic-looking cursor, change both values to something much smaller. For a
relaxed and mellow cursor, double the default times. If you don't like a blinking cursor,
change-insertofftinmetoO.

Password Entries

There are times when you'll request information from the user that shouldn't be
displayed on the screen. To display something other than the actual text typed in, use the
- show option:

-show => char

The char isasingle character that will be displayed instead of the typed-in characters.
For a password entry, you might use asterisks (see Figure 5-10). If you specify a string,
just the first character of that string will be used. By default, this value is undefined, and
whatever the user actually typed will show.

P e T

Figure 5-10.
Entry displaying a password

When using the - show option, the information stored in the associated $var i abl e
will contain the real information, not the asterisks.

If you use this feature, the user can't cut and paste the password (regardless of the value
of - exportsel ecti on). If itiscut and pasted to another screen, what the user saw

on the screen (the asterisks, for example) is actually pasted, not the information behind
it. You might think that if you did a configure on the entry widget such as$ent r y-

>configure (-show => ""); , thewordsthe user entered would suddenly

appear. Luckily, thisisn't true. A bunch of \x0s (essentially gibberish) show up instead.
Any variable that usesthe - t ext var i abl e option and is associated with the entry

will still contain the correct information. If you perform an $ent ry- >get () , the

correct (nongibberish) information will be returned as well. The get method is described
later in this chapter.

Using a Scrollbar

If the information requested from the user could get lengthy, the user can use the arrow
keys to manually scroll through the text. To make it easier, we can create and assign a
horizontal scrollbar to the entry widget by using the- xscr ol | command option:

-xscroll conmand => ['set' => $scrollbar]

For now, I'm going to show you the most basic way to assign a scrollbar to the entry
widget. For more details on the scrollbar see Chapter 6, Scrollbars.

To create a scrollbar and associate it with an entry widget, do this:

$scrol |l = $mw >Scrol | bar (-

orient => "horizontal"); # create scroll bar

$e = $mw>Entry(-xscroll command => ['set' => $scroll])->
pack(-expand => 1, -fill =>"'x"); # create entry

$scrol | - >pack(-expand => 1, -fill => "'x");

$scrol | ->confi gure(-
command => [$e => 'xview]); # link them
$e->insert('end', "Really really really long text string");

Figure 5-11 shows the resulting window in two states: on the left, the window asit
looked when it was created, and on the right, how it looks after scrolling al the way to
the right.

o [=L Ao i
\Really really really long ! |

[P = P
[Exit | | ' Exit | N
Figure 5-11.

Scrollbar and an entry widget

You'll very rarely want to use a scrollbar with an entry widget. The scrollbar doubles the
amount of space taken, and you can get the same functionality without it by simply using
the arrow keys when the entry widget has the focus. If the user needs to enter multiple
lines of text, you should use atext widget instead. See Chapter 8, The Text Widget, for
more information on what it can do.

Configuring an Entry Widget

Both cget and conf i gur e are the same for the entry widget as they are for any of the

other widgets. The default options for the entry widget are listed in Appendix A,
Configuring Widgets with configure and cget.

Deleting Text

You can usethe del et e method when you want to remove some or al of the text from

the entry widget. Y ou can specify arange of indices to remove two or more characters or
asingle index to remove one character:

$entry->del ete(firstindex, [lastindex])

To remove al of thetext, you canuse $ent ry- >del et e(0, 'end').If youuse
the-t ext vari abl e option, you can aso delete the contents by reassigning the
variable to an empty string: $vari able = ""

Here are some other examples of how to usethe del et e method:

$entry->del et e(0); # Renove only the first character
$entry->del ete(1); # Renove the second character
$entry->del ete('sel.first', 'sel.

last') # Renove sel ected text
if $entry->sel ecti onPresent(); # i f present

Getting the Contents of an Entry Widget

There are two ways to determine the contents of the entry widget: the get method or the
variable associated with the - t ext var i abl e option. Using the get method,
$entry text = $entry->get () will assign the entire contents of the entry
widget into$entry _t ext.

Which way you find out the content depends on what you are going to do with the
information. If you only need to reference it once in order to write it to afile or insert it
into a database, it doesn't make sense to waste memory by storing it in avariable. Simply
usetheget methodinthepri nt statement (or wherever it would be appropriate). If

the information in the entry widget is going to be a frequently used value such asa
number for amathematical calculation, then it makes senseto initially storeitina
variable for easy access later.

Moving the I nsertion Cursor
Thei cur sor method will place the cursor at the specified index:
$ent ry->i cursor (i ndex);

By default, the insertion cursor starts out wherever thelasti nsert took place. To force
the insertion cursor to show up elsewhere, you could do something like this:

$e txt = "Entry Text";
$e = $mw>Entry(-textvariable => \$e_txt)->pack();
$e- >f ocus;

$e->icursor(1l); # put cursor at this index

We use thef ocus method (which is not specific to the entry widget; it's generic to all

widgets) to have the application start with the focus on our entry widget. Then we place
the insertion cursor between the first and second characters (indices 0 and 1) in the entry.
See Chapter 16, Methods for Any Widget, for more information on f ocus.

Y ou might want to move the starting position of your cursor if you are starting the text
with a specific string. For instance, set $e_t xt = "http://" andthen do $e-
>j cursor('end')

Getting a Numeric Index Value
Thei ndex method will convert a named index into a numeric one;
$num ndex = $entry->i ndex(i ndex)

One of the uses of i ndex isto find out how many characters are in the entry widget:
$l ength = $entry->i ndex(' end'). Of coursg, if weused the-t ext vari -

abl e option, we could get the sameresult by using $l engt h = | engt h
($vari abl e).

Asan example of using i ndex to find out where the current selection starts, use this
code:

$startindex = $entry->sel ectionPresent() ?
$entry->i ndex('sel.first') : -1;

Wediscusssel ecti onPresent later inthe chapter.

I nserting Text

Thei nsert function will let you insert any text string at the specified index:
$entry->insert (i ndex, string);

Here'sasimple application that usesi nsert :

#! [usr/ bi n/ perl

use Tk;

$mw = Mai nW ndow >new;
$mw>title("Entry");

$e_txt = "Entry Text"; # Create entry with initial text
$e = $mw >Entry(-textvariable => \$e_t xt)->pack(-expand => 1,
-fill = "x");

$mv >Button(-text = > "Exit",
-command => sub { exit })->pack(-
side => '"bottonl);

Create a Button that will insert a counter at the cursor
$i = 1,
$mw >Button(-text => "lInsert #", -command =>
sub {
if ($e->selectionPresent()) {
$e->insert('sel.last', "$i"); $i++
}
}) - >pack;
Mai nLoop;

Wefill the entry widget with" Entry Text" asadefault. Then we create two buttons.

Thefirst oneisthe obvious Exit button that will allow us to quit the application. The
second oneis abit more complicated. When pressed, it will check to seeif any text is
selected in the entry $e. If text is selected, it will insert a number that keeps track of the

number of times we have pressed the Insert # button.

In Figure 5-12, we first selected the word "Entry" and then pressed the Insert # button
four times. Each time it was pressed, it inserted a number at theindex " sel . | ast ".

Thisindex didn't change in between button presses, so it looks as if we are counting
backward!

o R = e |
\Entrya321 Text
Insert # J
ZF |
Exit | ‘
Figure 5-12.

Using the insert method
Scanning Text

Both ScanMar k and scanDr agt o are used within the entry widget. They allow fast
scrolling within the entry widget. A call to scanMar k simply records the x coordinate
passed in for use later with scanDr agt o. It returns an empty string.

$ent ry->scanhar k(x) ;
$ent ry- >scanDr agt o(X;

The companion function to scanMar k isscanDr agt o, which also takes an x
coordinate. The new coordinate is compared to the scanMar k x coordinate. The view
within the entry widget is adjusted by 10 times the difference between the coordinates.

Working with the Selection

Thesel ect i on method has several possible argument lists. If you look at the web-
page documentation, you'll see that you can use:

$entry->sel ecti onAdj ust (i ndex) .

You might also seetheform $ent ry- >sel ecti on(' adj ust' , index), where
‘adj ust ' isthefirst argument. Be aware that they mean the same thing as you read
code written by other people.

Y ou can adjust the selection to a specified index by using sel ect i onAdj ust
$ent ry->sel ecti onAdj ust (i ndex) ;

The selected text is extended toward the index (from whichever end is closest).

To clear out the selection:

$entry->sel ecti ond ear () ;

Any selection indicator will be removed from the entry widget, and the indices' sel .
first' and' sel .l ast' arenow undefined. The selected text remains.

Toresetthe' anchor' index to the specified index, usesel ecti onFrom

$ent ry->sel ecti onFron(i ndex) ;

This does not affect any currently selected text or theindexes' sel . first' and
‘sel.last"'.

The only way to check to seeif there is a selection in the entry widget isto use
sel ecti onPresent:

if ($entry->selectionPresent()) {

}

It returnsalif thereis a selection, which means that you can safely usethe' sel .
first' and' sel .l ast"' indices(if thereisn't aselection, an error will be printed
when you refer to either index). sel ect i onPr esent will returnaOif thereisno
current selection.

Y ou can change the selection range by calling sel ect i onRange:
$entry->sel ecti onRange(startindex, endindex);

The two indices indicate where you would like the selection to cover. If start-index isthe
same or greater than endindex, then the selection is cleared, causing' sel . first' and

‘sel . last' tobeundefined. Otherwise' sel . first' and' sel .| ast' are
defined to be the same as startindex and endindex respectively.

Thesel ecti onTo method will cause the new selection to be set from the current
‘anchor' point to the specified index:

$entry->sel ecti onTo(i ndex);
Changing the View in the Entry Widget

xVvi ewisamethod that will change its purpose based on what arguments are passed in.

With no arguments, it will return atwo-element list containing numbers from O to 1.
These two numbers define what currently isvisible in the entry widget. The first number
indicates how much of thetext is off to the left and not visible. If it were .3, then 30% of
the text isto the left of the entry widget. The second number returned is how much of the
text is not visible on the left side of the entry widget plus the amount that isvisible in the
widget. In this case, 50% of the text is actually visible in the entry widget (see Figure 5-
13).

($left, $right) = $entry->xview);

When passing an index value to xvi ew, the text in the entry widget will shift position so
that the text at the specified index isvisible at the far-left edge:

$entry->xvi ew(i ndex) ;

Entry Widoet
.

Y

This is tt:le text in the Entiy widget. You can't see it all

 ANRPRRIY.

Sleft (30%)

4 4
Sright (50%)

Figure 5-13.
What $left and $right mean

The rest of the forms of xvi ew have to do directly with scrolling (and are explained in
detail in Chapter 6):

$ent ry->xvi ewhbvet o(fraction);
$ent ry->xvi ewScrol | (nunber, what)

Fun Thingsto Try

There aren't too many exciting things you can do with label widgets, but it's a good idea
to practice using the entry widget.

* Create an entry and label combination and display the same information in both. When
you put something new in the entry, the label should display it simultaneoudly.

* Create a database entry form, labeling each entry with Name, Address, City, State, Zip,
Phone. Add an Update button that will perform some error checking on the information
in the entry widgets based on the information expected.

* Create a window with an entry widget and several buttons, each of which does
something different to the entry widget. Some suggestions: Clear, Delete Selection, or
Default (replace with original string).

* Create an entry widget and type something in it. Put a button in the window that will
reverse the string in the entry widget when pressed.

6—
Scrollbars

Scrollbars are used with widgets when there is more to see than can be shown at once.
One or two scrollbars allow a user to scroll awidget's contents horizontally and/or
verticaly. You've seen a scrollbar on many different types of applications. Every major
word processor has scrollbars. A drawing program has scrollbars. Even your web
browser has scrollbars. This chapter will show you how you can use scrollbars with
certain Perl/Tk widgets.

Defining Scrollbar Parts

Figure 6-1 shows all the different parts of a scrollbar and their names.

arrow’ slider £ ! arrowe
~. 1! -
trought frough?
Figure 6-1.

Different parts of a scrollbar

The trough is the sunken part between the two arrows. It is divided into two parts,
troughl andtrough2, by thesl i der. Thesl i der isthe rectangle that indicates

how much of the window is available for scrolling. If you were in the middle of thelist,
you would see the slider rectangle in the center of the trough with space on either side of
it. The arrows on either end are called ar r owl and ar r ow2. If the scrollbar were

vertical (rotated 90 degrees clockwise), ar r owl would be the top arrow.

Clicking on either arrow will move the information in the associated widget one unit at a
time. What the unit is depends on what type of widget the scrollbar is associated with.
With an entry widget, the units are characters. With a listbox widget and a vertical
scrollbar, the units are lines. Clicking in the trough on either side of the slider will page
the information in the widget in that direction. Y ou can also click directly on the slider
and, holding the mouse button down, move it directly.

Scrollbars can be horizontal or vertical. Typically, they reside on the bottom and/or to
the right of the widget they are scrolling, but not always.

Some of the Perl/Tk widgets that can be configured for use with scrollbars are text,
listbox, canvas, entry, ghostview, hlist, and tiler. Only the first four widgets (text,
listbox, canvas, entry) are covered in this book. See Figures 6-2 through 6-5 for
examples of scrollbars with each of the covered widgets.

5] i

[Really really really long t |

Figure 6-2.
Entry widget with a scrollbar

jﬂ;. Scrol '-‘Tﬂrdfgﬂ
ne1 X
iUnaz | _
{Line 3 i
!Une4
Line 3 {
Line & |
iUHET '
Line o 1_
IUHEH |
{|Line 10 |

- ST s

.

Figure 6-3.
Listbox widget with scrollbar

There are two ways to create and configure scrollbars for use with widgets. Y ou can use
the Scr ol | bar widget creation command, or you can use the Scr ol | ed method to
create the widget and associated scrollbars. Both have their advantages and
disadvantages. Using Scr ol | ed is much lesswork and requires less coding, but it
won't let you do anything fancy like associate the same scrollbar with two different
widgets. Creating the scrollbar widgets yourself takes more code, but you can do much
fancier things with them since you'll have direct control over where

Conversion from Tk4. 0 scrollbar. tcl competed.
ackage Tk::Scrollbar;

require Th;

use AutoLoader;

BISA = gwiTk: :Widget);

Conatruct Tk::Widget ‘Scrollbar”;
lbootstrap Tk::Scrollbar 5Tk :VERSION;
sub Tk cmd { “&Tk::scrollbar)

i sub Needed
| {
S g /
I PE— PN T P—
Figure 6-4.

Text widget with scrollbar. Text widget is displaying Scrollbar.pm file

Figure 6-5.
Canvas widget with scrollbars

they go and which widget(s) they are associated with. This chapter will cover both
methods of creating scrollbars.

The Scrolled Method

To create awidget and scrollbars at the same time, use the Scr ol | ed method.
Scr ol | ed returns a pointer to the widget created. It isthe easiest way to add scrollbars

to a scrollable widget. The method creates a frame, which contains the widget and
scrollbar(s). Y ou create them all in one command.

The usage for the Scr ol | ed method is:

$wi dget = $parent->Scrol |l ed(' Wdget',
-scrollbars => "string' [, options]);

The first argument is the widget to create, such as"” Li st box" or " Canvas" . The other argument
you'll need to useisthe- scr ol | bar s option, which takes a string that tells it which scrollbarsto
create and where to put them.

The possiblevaluesfor - scrol | bars are"n","s","e","w',or"on","os","oe","ow', or
some combination of those that combinesn or swith an eor w. The" n" means to put a horizontal
scrollbar above the widget. An" s" meansto put a horizontal scrollbar below the widget. The" e
means to put avertical scrollbar to the right of the widget. The" w' meansto put a vertical scrollbar to
the left of the widget.

Y ou can have a maximum of two scrollbars for each widget. For instance, we can create one scrollbar
onthe" n" side of the widget. It ispossibleto use” nw' to create two scrollbars, one on the top and one

on the left of the widget. It isnot legal touse” ns" because" n" and " s" scroll in the same direction.

The" 0" infront of the direction makes that scrollbar optional. Optional scrollbars will only display

when the size of the widget makes it necessary to scroll the information in the widget. Always list the
north or south value first (if you use either) to avoid complaints from the subroutine. Here are some
examples to make this clearer:

Create optional scrollbar east (to the right) of w dget
$Ib = $mn >Scrol | ed("Li stbox", -scrollbars => "'oe')->pack;

Create scrollbars to south (below) and east (to the right) of w dget
$I b = $nmw>Scrol | ed("Li st box", -scrollbars => 'se')->pack;

Create optional scrollbars south (below) and east (right) of w dget
$Ib = $mn >Scrol | ed("Li stbox", -scrollbars => 'osoe')->pack;

Create scrollbars to the north (above) and west (to the left) of w dget
$I b = $mn >Scrol | ed("Li stbox", -scrollbars => "'nw)->pack;

Configuring the Scrollbar(s) Created with Scrolled

Any other options sent with the Scr ol | ed method will configure only the widget created. If you need
to configure the scrollbars, use the Subwi dget method from the widget reference. The Subwi dget
method can be used because a Scr ol | ed widget isreally a composite widget. Composite widgets are
covered in Chapter 15, Composite Widgets.

To turn the background of your horizontal scrollbar green, use this code:

$l b- >Subwi dget (" xscrol | bar")->confi gure(-background => "green");

To configure avertical scrollbar, use" yscrol | bar" inplaceof " xscrol | bar™. If youtryto
configure a scrollbar that you didn't create (for instance, you used - scr ol | bars => "e" and
tried to configurethe" xscr ol | bar "), nothing will happen.

To configure just the widget, you can use $w dget - >conf i gur e after caling Scrol | ed(),
Or you can use;

$wi dget - >Subwi dget ("wi dget")->configure(...);

Using Subwi dget thisway issilly because you can just use $wi dget . The" wi dget " stringis
the same as the first argument sent to Scr ol | ed, except it'sall lowercase. For instance, in the
preceding example we called Scr ol | ed with " Li st box" , but wewoulduse" | i st box" with
the Subw dget method.

The Scrollbar Widget

- Instead of automatically creating one or more scrollbars with

L

the Scr ol | ed method, you can usethe Scr ol | bar widget method and perform the

configuration yourself. It is better to create and configure your own scrollbars when you need to
do something nonstandard, such as having one scrollbar scroll two listboxes.

Creating a Scrollbar Widget

To create the scrollbar, invoke the Scr ol | bar method from the parent widget. It returns a
reference to the newly created scrollbar that you can use for configuration:

$scrol | bar = $mw>Scrol I bar([options ...])

There are at least two other things you need to do to get a scrollbar working with another widget.
First, create the to-be-scrolled widget and use the scrollbar with its- xscr ol | conmand or -

yscrol | command option. Then configure the scrollbar so that it knows to talk to that widget.

Here's an example that creates a listbox widget (don't worry if you don't quite follow all of this
now; | just want to show a complete example before we go on to talk about all the options):

Create the vertical scrollbar

$scrol I bar = $mw >Scrol | bar () ;

$l b = $mw >Li st box(-yscroll command => ['set' => $scrollbar]);
#Configure the scrollbar to talk to the Iistbox w dget

$scrol | bar->configure(-command => ['yview => $lb]);

#Pack the scrollbar first so that it doesn't disappear when we resize
$scrol | bar->pack(-side => "right', -fill => "'y");
$l b- >pack(-side => "left', -fill => "both');

Creating the scrollbar is pretty simple; we want all the default optionsfor it. As we create the
listbox, we have to set up a callback so the listbox can communicate with the scrollbar when the
contents of the listbox move around. Our scrollbar isvertical, so the- yscr ol | command

option has the set command and our scrollbar assigned to it (if it is horizontal, use -
xscrol | command). When the contents of the listbox are scrolled by the user without using
the scrollbar, the listbox will aert the scrollbar by invoking $scr ol | bar - >set (...).

Theline$scrol | bar->confi gure(-comand => ['yview => $I|b]) does

almost the opposite; it configures the scrollbar to communicate with the listbox. When the user
clicks on the scrollbar, the scrollbar will invoke $I b- >yvi ew(...) to tell the listbox how to

change the view of the contents. We use the "y" version of the view command because thisisa
vertical scrollbar.

There is more information on the details of yvi ewin "How the Scrollbar Communicates with

Other Widgets," later in this chapter. The last two linesin this example pack the scrollbar and
the listbox in the window so that the scrollbar is the same height as the listbox and liesto the
right of the listbox.

Always pack your scrollbars first within the window or frame. This allows the scrollbarsto
remain visible when the user resizes the window smaller. It will then resize the listbox (or other
widget) but leave the scrollbars visible on the edges of the screen.

Now that we've seen a complete example of how to create a scrollbar and how to set up the
widget it will scroll, we can go over the options with an idea of how they are used.

Scrollbar Options

Thislist contains the options available with a scrollbar, and their quick definitions. The
important options are discussed in more detail later in this chapter.

-activebackground => color
Sets the color the scrollbar should be when the mouse pointer is over it.

activerelief => "flat' | 'groove' | 'raised | 'ridge' | 'sunken'
The-acti verel i ef option determines how active elements are drawn. The elementsin
guestion arear r owl, arr ow2, andthesl i der.

- backgr ound => color
Sets the background color of the scrollbar (not the trough color).

- borderw dt h =>amount
Sets the width of the edges of the scrollbar and thear r owl, arr ow2, and sl i der elements.

- command => callback
Sets the callback that is invoked when the scrollbar is clicked.

- cursor => cursorname
Sets the cursor that is displayed when the mouse pointer is over the scrollbar.

- el enent bor derw dt h => amount
Sets the width of the borders of thear r owl, arr ow2, and sl i der elements.

- hi ghl i ght backgr ound => color

Sets the color the highlight rectangle around the scrollbar widget should be when it does not have the
keyboard focus.

- hi ghl i ght col or => color

Sets the color the highlight rectangle around the scrollbar should be when it does have the keyboard
focus.

- hi ghl i ghtt hi ckness =>amount
Sets the thickness of the highlight rectangle. Default is 2.

-junmp => 0| 1
Indicates whether or not the scrollbar will jJump scroll.

-orient => "horizontal" | "vertical"
Sets the orientation of the scrollbar.

relief =>"flat' | 'groove' | 'raised | 'ridge' | 'sunken' | 'solid
Changes the edges of the widget.

-repeat del ay =>time
Sets the number of milliseconds required to hold down an arrow before it will auto-repeat. Default is
300 ms.

-repeatinterval =>time
Sets the number of milliseconds in between auto-repeats. Default is 100 ms.

-takefocus => 0 | 1 | undef
Controls whether the scrollbar can obtain the keyboard focus.

-troughcol or =>color
Changes the color of the trough (both troughl and trough?2).

-w dt h => amount
Sets the width of the scrollbar.

Scrollbar Colors

Within the scrollbar, we have a new part of the widget called a trough. This trough getsits own
coloring through the - t r oughcol or option. The trough is considered the part behind the arrows
and dlider. Figure 6-6 shows an example.

Figure 6-6.
Scrollbar with -troughcolor set to 'green’

The background of the scrollbar consists of the arrows, the slider, and a small portion
around the outside of the trough. Y ou change the color of the background by using the -

backgr ound option. The- act i vebackgr ound option controls the color that is

displayed when the mouse cursor is over one of the arrows or the dider. Figure 6-7
shows two examples of - backgr ound; the second window uses both - backgr ound

and -t roughcol or.

Figure 6-7.
Examples of -background option

Scrollbar Style

The-relief and- bor derw dt h options affect both the outside edges of the
scrollbar and thear r owl, arr ow2, and sl i der elements. Thisis similar to how the
checkbutton and radiobutton widgets are affected by the-r el i ef and -

bor der wi dt h options. See Figure 6-8 for a screen shot of different values for these
two options.

s

Figure 6-8.
First row shows different relief values; second row different relief values with
-borderwidth => 4

The-acti verel i ef option affects the decoration of three elements-arrowl, arrow2,
and the dlider-when the mouse cursor is over them. The - el enent bor der wi dt h
also affects the same three elements: ar r owl, ar r ow2, and the sl i der . The width of
the edges of these elements can be changed with this option. The - bor der wi dt h

option also changes the width of these elements but also changes the width of the edges
of the widget. Notice in Figure 6-9 how the edges of the scrollbar remain at awidth of 2.

Figure 6-9.
Example of -elementborderwidth set to 4

The - wi dt h of the scrollbar is the distance across the skinny part of the scrollbar, not

including the borders. Figure 6-10 demonstrates how the scrollbar changes when you
alter the- wi dt h.

Figure 6-10.
Top scrollbar has default width of 15, bottom scrollbar has width of 20

Scrollbar Orientation

As mentioned earlier, a scrollbar can be vertical or horizontal. The default for a scrollbar
is' vertical'.Tochangethis, usethe- ori ent option:

$scrol | bar = $mw >Scrol | bar (-orient => 'horizontal');

Youcouldasouse-orient => "vertical',butsncethisisthedefault, itisnot
necessary.

Using the Arrows and Slider

When you click on one of the arrows in a scrollbar, you cause the slider to move in that
direction by one unit. If you continue to hold the mouse button down, after abit of a
delay, the slider will auto-repeat that movement. The amount of time you must wait
before the auto-repeat kicksin is determined by the - r epeat del ay option. The

default is 300 milliseconds.

Once you have held the mouse button down long enough to start auto-repeating, thereis
ashort delay between each time it repeats the action. Thisdelay is controlled by the -

repeat i nt er val option. The default for - r epeat i nt er val is 100 milliseconds.

Normally, when you click on the slider and move it around, the data within the widget
will move accordingly. Thisis because the scrollbar is updating the widget continuously
as you move the dlider. To change the scrollbar so that it will only update the widget
when you let go of the dlider, use the - j unp option and set it to 1. The default for -

j unp is0. Youwould most likely wanttouse-j unp => 1

when your scrolled widget contains alarge amount of data, and waiting for the screen to
update while you slide through it would make the application seem slow.

Assigning a Callback

When you create a scrollbar, you tell it which widget to talk to and which method in that
widget to call by using the - command option with an anonymous list. The list contains

the name of the method to call and the widget from which that method should be
invoked. In this code snippet, we can see that we want to use theyvi ew command to

scroll the widget $I b (alistbox):
$scrol | bar->configure(-comand => ['yview => $lb])

Now when the scrollbar gets clicked on by the user, it will invoke $I b- >yvi ew. We
know that the scrollbar associated with $I b isvertical because it usestheyvi ew
command. For a horizontal scrollbar, use xvi ew. Bothyvi ewand xvi ewtell the

widget to move the widget contents an amount that is determined by where the user
clicked in the scrollbar. Theyvi ewand xvi ew methods are covered in the next section.

How the Scrollbar Communicates with Other Widgets

As described earlier, you use the - command option with the scrollbar so it knows which
widget and method to use when the scrollbar is clicked. The command should be xvi ew
for horizontal scrollbarsand yvi ewfor vertical scrollbars. Y ou can call these methods
yourself, but most of the time you won't want to.

Both xvi ewand yvi ewtake the same type of arguments. Where the user clicked in the

scrollbar determines the value used, but the value will always be sent as one of the
following forms:

$wi dget - >xvi embvet o(fraction); # or
$wi dget - >yvi ewMbvet o(fracti on);

This form is used when the user clicks on the slider, moves it around, and dropsiit
again. The argument is afraction, areal number from O to 1 that represents the first
part of the data to be shown within the widget. If the user moved the slider all the
way to the top or left of the scrollbar, the very first part of the datain the widget
should be seen on the screen. This means the argument should be O:

$wi dget - >xvi ewMovet o(0) ;

If the slider were moved to the center of the scrollbar, the argument is 0.5:

$wi dget - >xvi ewMovet 0(0. 5) ;

$wi dget - >xvi ewScr ol | (nunber, "units"); # or
$wi dget - >yvi ewScr ol | (nunber, "units");

Thisform is used when the user clicks on one of the arrow elementsin the
scrollbar. The widget should move its data up/down or left/right unit by unit.

Thefirst argument is the number of unitsto scroll by. The value for number can be
any number, but it'stypically either 1 or -1. A value of 1 means that the next unit of
data on the bottom or right of the widget becomes visible (scrolling one unit of data
off the left or top). A value of -1 means that a previous unit of datawill become
visible in the top or right of the widget (one unit will scroll off the bottom or right
of the widget). For example, every time the user clicks on the down arrow in a
vertical scrollbar associated with alistbox, a new line shows up at the bottom of the
listbox.

The second argument isthe string " uni t s" . What a unit is depends on the widget.

In alistbox, a unit would mean one line of text. In an entry widget, it would be one
character.

Here are some example calls:

User clicked down arrow
$li st box->yviewScrol | (1, "units");

User clicked up arrow
$li st box->yviewScrol | (-1, "units");

User clicked right arrow
$entry->xviewScrol I (1, "units");

$wi dget - >xvi ewScr ol | (nunber, "page"); # or
$wi dget - >yvi ewScr ol | (nunber, "page");

Thisform is exactly like our previous one except the last argument is" page”
instead of " uni t s" . When users click in the trough area of the scrollbar (between
the dlider and arrows), they expect to see the data move by an entire page.

The type of page is defined by the widget being scrolled. For example, alistbox
would page up/down by the number of lines shown in the listbox. It would page
right/left by the width of the listbox.

Scrollbar Configuration

Y ou can get and set any of the options available with a scrollbar by using cget and
confi gur e. See Appendix A, Configuring Widgets with configure and cget, for
compl ete detail s on these methods.

Defining What We Can See

The set method, which we tell the scrolled widget about when we create it, defines

what isvisible. In our first example, we created a listbox and told it to use our scrollbar
and the set method:

$scrol | bar = $mw >Scrol | bar () ; # Vertical scrollbar
$lb = $mw >Li st box(-
yscrol I conmand => ['set' => $scrollbar]);

When the widget invokesthe set command, it sends two fractions (first and last) as the
arguments:

$scrol | bar->set (first, last);

Thiswill change the position in the data that we are seeing. The arguments first and last
are real numbers between 0 and 1. They represent the position of the first dataitem we
can see and the position of the last data item we can see, respectively. If we can see dl of
the datain our widget, they would be 0 and 1. The first value gets larger as more datais
scrolled off the top, and the last value gets smaller as more datais scrolled off the
bottom. Y ou will probably never find a case in which to call set yourself, so just try to
get an idea of what it does behind the scenes.

I -:'EEE.'E!& oata
line 1 item 1]
| I::-F:: ; UM L2 e fes 10% into dlata
: | tine & :
i
 a—— vigw of dala throvgh widget
Tagt” ,.. | N Y K S PR, BT PE 0% ko dala
line 20
line 21
Figure 6-11.

View of datathrough widget by set method (assumes vertical scrollbar)

Figure 6-11 shows a hypothetical document that we are viewing with a vertically
scrolled widget. The dashed rectangle represents the view of what we can currently see
within the widget. When the widget callsset , it determines how far into the document
the first viewable item is and sends this as the first argument. In Figure 6-11, thiswould
be 10%, or 0.10. The second argument to set () ishow far into the document the last

viewable item is. From our example, this would be 80%, or 0.80.

Getting the Current View
Theget method returnsin alist whatever the latest argumentsto set were:

($first, $last) = $scrollbar->get();

This data can change if the widget requests a change in position of the data or if the
scrollbar requests a change.

Activating Elementsin a Scrollbar
To determine which part of the scrollbar is active, you can usetheact i vat e method:

$el em = $scrol | bar->activate();

The value returned is an empty string (which means no element is currently active) or
the name of the currently active element. The possible elementsare™ ar r owl" ,

"arrow2",or"slider".

If you sent an element name as the argument to act i vat e, that element will change to
the color and relief specified by the- act i vebackground and- acti vereli ef

options. The element will continue to display that color and relief until an event (such as
the mouse cursor passing over the element) causes it to change. Contrary to what you
might believe, using act i vat e does not invoke that element. Here are some examples:

$scrol | bar->activate("arrowl");

$scrol | bar->activate("arrow");
$scrol | bar->activate("slider");

Thereisnoacti vat e for "t r ough" because the trough doesn't change color when
the mouseisover it.

Calculating Change from Pixels

The number returned by del t a indicates how much the scrollbar must change to move

the dider deltax pixels for horizontal scrollbars and deltay pixels for vertical scrollbars.
(The inapplicable argument isignored for each type of scrollbar).

$anount = $scrol |l bar->del ta(del tax, deltay)
The amount returned can be positive or negative.
Locating a Point in the Trough

Given apoint at (x,y), f ract i on will return areal number between 0 and 1 indicating
where that coordinate point would fall in the trough of the scrollbar:

$l oc = $scrol |l bar->fraction(x, Vy);

The point (x,y) must be relative to the scrollbar. Figure 6-12 shows the location of three
possible results from fraction: 0.0, 0.5 and 1.0.

P -
0.0 0.5 1.0

Figure 6-12.
Example of values returned by the fraction method

| dentifying Elements

Thei dent i f y method returns a string containing the name of the element located at
the X,y coordinate:

$el em = $scrol | bar->identify(x,y);

If X,y isnot in any element, the string will be empty. Both x and y must be pixel
coordinates relative to the scrollbar. The possible element namesare" ar r owl" ,

"arrow2","trough",and"slider".

Examples

These examples are included to hopefully clear up any confusion about how to use
scrollbarsin the real world. Each example usesthe Scr ol | ed method if possible; then

we do the same thing manually. We haven't covered all the widget types we are using
here, but we aren't doing anything fancy with them either. If you see an option or method
you don't recognize, just see the appropriate chapter for that widget to learn more.

Entry Widget

The entry widget can only be scrolled horizontally. The entry can only contain one line
of text at most, so a vertical scrollbar would do nothing. Using Scr ol | ed to createa

scrolled entry widget is easy:

$mn >Scrol l ed("Entry", -scrollbars => "s", -width => 30)-
>pack() ;

If you want to make the scrollbar only show when the data in the entry widget requires
it,use-scrol |l bars => "o0s".Usingthe Scr ol | bar method is abit more work:

$scrol | bar = $mw>Scrol | bar(-orient => "horizontal');
$entry = $mw>Entry(-wi dth => 30,

-xscrol l command => ['set', $scrollbar]);
$scrol | bar->configure(-command => ['xview , $entry]);
$scrol | bar->pack(-side => "bottom, -fill =>"x");
$entry->pack(-side => "bottom, -fill =>"'x");

Both will create an entry that looks similar to the one in Figure 6-13.

¥ X ...-.rbL:_.- :‘ ol

[Really really really long 1
o] e -

Exit |

Figure 6-13.
Entry widget with a scrollbar

Listbox, Text, and Canvas Widgets

A listbox widget can be scrolled both horizontally and vertically, although you might not
always want to use both options. If you know how wide your data is going to be and the
window can accommodate it, a horizontal scrollbar is unnecessary. Our first example
usesthe Scr ol | ed method and creates two scrollbars:

$mw >Scrol | ed("Li stbox", -scrollbars => "se",
-width => 50, -height => 12)->pack();

To do the same thing manually, we need to use Scr ol | bar to create two scrollbars
and configure them to work with the widget:

$f = $mw >Frame() - >pack(-side => "top', expand => 1, -

fill => '"both');

$xscroll = $f->Scroll bar(-orient => 'horizontal');

$yscroll = $f->Scroll bar();

$lb = $f->Li stbox(-w dth => 50, -height => 12,
-yscrol |l command => ['set', $yscroll],
-xscroll command => ['set', $xscroll]);

$xscrol | ->configure(-command => ['xview , $Ib]);

$yscrol | ->configure(-command => ['yview, $Ib]);

$xscrol | ->pack(-side => "bottom, -fill =>"x");
$yscrol | ->pack(-side => "right', -fill =>"y');
$l b- >pack(-side => "bottom, -fill => "both', -expand => 1);

Asyou can see, using Scr ol | ed savesalot of extrawork. In Figure 6-14, we see a

listbox with two scrollbars, one on the south and one on the east. This window was
created using Scr ol | ed. Thereisasubtle difference: the small square of open space

where the two scrollbars meet in the southeast corner. When we create the scrollbars
ourselves, we don't get that small space (whichever scrollbar gets packed first takes it).

Scrolled text and canvas widgets are created the same exact way a scrolled listbox
widget is created, so we won't bother repeating the same code again.

One Scrollbar, Multiple Widgets

There are times when you want to use one scrollbar with more than one widget. When
the user clicks on the scrollbar, it should scroll all the widgets in the same direction at
the same time. For this example, we will create three listboxes, each

package Tk::Scrollhar;
require Tk;
use Autoloader;

@ISA = gqw{Tk:Widget);
Construct Tk::Widget *Scrolibar’;

hootstrap Tk::Scrollbar $TK::VERSION;

sub Tk _cmd { W Tk:scrollhar } /

Figure 6-14.
A listbox with two scrollbars

with eleven items. There will be one scrollbar that will scroll al three lists when the user
clicks on it. When the user tabsto the listboxes and scrolls up and down by using the
arrow keys or the pageup/pagedown keys, the other listboxes are also scrolled. Figure 6-
15 shows what the window looks like.

Figure 6-15.
A window with three listboxes all controlled by the same scrollbar

The code for Figure 6-15 is as follows:

use Tk;

$mw = Mai nW ndow >new() ;
$mn>titl e("One Scroll bar/ Three Listboxes");
$mw- >Button(-text => "Exit",

-conmmand => sub { exit })->pack(-
side => "bottom);

$scroll = $mw>Scrol | bar ();
Anonynous array of the three |istboxes
$l i stboxes = [$mw >Listbox(), $mw>Listbox(), $mw >Listbox

0O 1

This nethod is called when one listbox is scrolled with the keyboard
It makes the scrollbar reflect the change, and scrolls the other lists
sub scroll _|istboxes {

ny ($sb, $scrolled, $lbs, @rgs) = @;

$sh->set (@rgs); # tell the scrollbar what to display

ny ($top, $bottom) = $scroll ed->yview);

foreach $list (@l bs) {

$list->yvi ewlbvet o($top); # adjust each |Ib

}
}
Configure each listbox to call &scroll _|istboxes
foreach $list (@listboxes) {
$list->configure(-yscrollcomand => [\&scroll |istboxes, $scroll
$list, $listboxes]);
}

Configure the scrollbar to scroll each |istbox

$scrol | ->configure(-comand => sub { foreach $list (@listboxes) {
$list->yview(@) ;
)

Pack the scrollbar and |i stboxes
$scrol | ->pack(-side => "left', -fill =>"'y');
foreach $list (@listboxes) {
$list->pack(-side => "left");
$list->insert('end, "one", "two", "three", "four", "five", "six",
"seven", "eight", "nine", "ten", "eleven");

}
Mai nLoop;

In order to connect multiple widgets to one scrollbar, we first use the Scr ol | bar command to create
the scrollbar. Then we configure the scrollbar so it callsyvi ewfor each of the listboxes we are

scrolling (the listboxes are kept in an anonymous array so that all methods can reference them easily).
The other part that makes the listboxes truly connected is to configure each listbox to call a special
subroutine that scrolls all three listboxes in addition to adjusting the scrollbar. Normally, -

yscrol | command would only have[' set', $I b] assignedtoit. Instead, we use a callback to
\&scroll |istboxes andcal set from within that subroutine.

Fun Thingsto Try

» Create two of each scrollable widget type, make one Scr ol | ed, and create your own scrollbars for
the second of each type. Thiswill show you which method you prefer to use.

* Create two scrollbars and attach them to the same widget (the opposite of our one scrollbar/multiple
widgets example). For instance, create alistbox with a scrollbar on the left and one on the right, both
of which will scroll the listbox verticaly.

7—
The Listbox Widget

j =1 stbox {1
A
J | A listbox widget is designed to list strings of text, one text string per

Tpum-—\

A

line. You can then select aline or multiple lines from the listbox to perform other
operations on. Some examples of things to place inside a listbox:

» An aphabetized list of cities.

* A list of serversto login to. Select a server name and then enter a name and password
into some entry widgets. Click the OK button to log in.

* A list of operating systems.
* A list of payment options: MasterCard, American Express, Visa, Check, Cash.

A listbox isideal for replacing radiobuttons or checkboxes that have become too
numerous to display on the screen. Usually 3 or 4 checkbuttons or radiobuttons aren't a
big deal, but if you had to try to display 10 at atime, the window could get alittle
crowded. A group of radiobuttons can be replaced by alistbox that limits the number of
selections to one and has a default selection. A bunch of checkbuttons can be replaced by
alistbox that allows multiple selections.

Creating and Filling a Listbox
To create alistbox widget, usethe Li st box method on the parent of the listbox:
$I b = $parent->Listbox([options...])->pack;

TheLi st box method returns areference to the listbox that has been created. Y ou can
now use this reference to configure the listbox, insert itemsinto the listbox,

and so on. The most common thing to do after creating alistbox isto usethei nsert
method to insert itemsinto it:

$l b->insert('end', @istbox_ itens);
or...
$lb->insert('end', Siteml, S$itenR, S$itenBd);

Thei nsert method takes an index value as the first argument; the rest of the

arguments will be considered items to be put into the listbox. Listbox indexes are similar
to the entry widget indexes except they refer to lines instead of individual characters.

We could use alistbox instead of radiobuttons to select our window background color
(see Chapter 4, Checkbuttons and Radiobuttons, for the radiobutton example). The
listbox code looks like this:

$Ib = $mw >Li st box(-sel ect nbde => "singl e")->pack();
$l b->insert('end, gw red yell ow green blue grey/);
$l b- >bi nd(' <Button-1>",
sub { $Il b->confi gure(-background =>
$l b- >get ($l b- >cur sel ecti on

0O));
1),

The - sel ect node option limits the number of selectionsto one. Wei nsert some
colorsto choose from. Thereisno - conmand option for alistbox, so we use bi nd (see

Chapter 14, Binding Events) to have something happen when the user clicks on an item
with the left mouse button. Using the listbox methods get and cur sel ecti on, we
determine which item the user clicked on and then set the background of the listbox to
that color. There are only five colorsin our example here; you can use more colors and
add a scrollbar to make it more useful. Y ou can add a scrollbar by changing the line with
Li st box init:

$Ib = $mn>Scrol | ed("Li stbox", -scrollbars => "e",
-sel ect rode => "single")->pack();

All the other lines in the program remain unchanged. For more information about adding
and utilizing scrollbars, see Chapter 6, Scrollbars. Now that we've looked at an example,
let's go over the options and methods that let us use the listbox the way we want to.

Listbox Options

Aswith any of the widgets, you can configure the listbox using options. The standard
widget optionsare - cur sor, - f ont , - hei ght , - hi ghl i ght backgr ound, -

hi ghl i ght col or, - hi ghli ghtthickness,-takefocus,-w dth,-

xscrol | -command, and - yscr ol | conmmand. The options that behave the same for

each widget will only be listed in the following list. Those options specific to listbox
widgets will be discussed later in this chapter.

- backgr ound => color
Sets the color of the area behind the text.

- bor derw dt h => amount
Sets the width of the edges of the widget. Default is 2.

- Cur sor => cursorname
Sets the cursor to display when the mouse is over the listbox.

-exportselection =>0]1
Determinesif the current listbox selection is made available for the X selection as well.
If set to 1, prevents two listboxes from both having selections at the same time.

-font => fontname
Setsthe font of any text displayed within the listbox.

-foreground => color
Sets the color of nonselected text displayed in the listbox.

- hei ght =>amount
Sets the height of the listbox.

- hi ghl i ght backgr ound => color

Sets the color the highlight rectangle should be when the listbox does not have the
keyboard focus.

- hi ghl i ght col or => color

Sets the color the highlight rectangle should be when the listbox does have the keyboard
focus.

hi ghl i ghtt hi ckness =>

amount

Sets the thickness of the
highlight rectangle. Default is
2.

-relief =>"flat' |'groove' |'raised |'ridge' |'sunken' |
"solid'
Setstherelief of the edges of the listbox.

- sel ect backgr ound => color
Sets the color behind any selected text.

- sel ect borderw dt h =>amount
Sets the width of the border around any selected text.

-sel ect f oreground => color
Sets the color of the text in any selected items.

-sel ectnode =>"single" |"browse" |"nmul tiple" |"extended"

Affects how many items can be selected at once; also affects some key/mouse bindings
for the listbox (such as Shift-select). Default is™ br owse" .

-setgrid => 0|1
Turns gridding off or on for the listbox. Default is 0.

-takef ocus => 0|1 |undef

Determines the ability of the widget to get the keyboard focus or not. 0 means never, 1
means always, undef means dynamic decision.

-wW dt h => amount
Sets the width of the listbox in characters. If amount is O or less, the listbox is made as
wide as the longest item.

-xscrol |l command => callback
Assigns horizontal scrollbar to widget. See Chapter 6.

-yscrol | conmand => callback
Assigns vertical scrollbar to widget. See Chapter 6.

Selection Modes

As part of the listbox widget, you are given severa choicesin the way you can select
itemsin the listbox. Y ou can have it so only one item at atime can be selected
(emulating radiobuttons), or you can have many different contiguous or noncontiguous
items selected (emulating checkbuttons). Y ou control this behavior with the -

sel ect node option.

The possible select modes are " br owse" , " si ngl e","mul ti pl e", or
"ext ended" . Thedefault modeis" br owse".

br owse &
singl e
The

"br owse"

and

"singl e"
modes are
similar in
that only
one item can
be selected
at atime;

clicking on
any item
will deselect
any other
selectionin
the listbox.
The browse
mode has a
dlight
difference:
when the
mouseis
held down
and moving
around, the
selection
moves with
the mouse.
For bi nd
purposes, a
"<Butt on-
1>" bind
will be
invoked
when you
first click
down. If you
want to
catch the
event when
the mouse is
released,
define a

But t on-
Rel ease
binding
(binding
eventsto
widgetsis
discussed in
Chapter 14).

ext ended

The
"ext ended"

mode lets you
select more
than one item
at atime. You
canclickona
singleitem
with the left
mouse button,
but it will
deselect any
other
selection. To
select more
than one item,
you must Shift-
click or
Control-click
more items.
Shift-clicking
(holding down
the Shift key
while pressing
amouse
button) will
extend the
selection from
the already
selected item
to the newly
selected item.
Control-
clicking
(holding down
the Control
key while
pressing a
mouse button)
will add the
item being
clicked onto
the selection,
but it won't
ater any of
the other
selections.

Operating System Differences

You can aso
click anitem
with the
mouse button,
hold down the
button, and
then move the
pointer over
other itemsto
select them.
Thisiswhat |
cal aclick-
drag motion.
Using

"ext ended"
alowsfor
very fast
selection of
many different
itemsin the
listbox.

mul tiple

The

"mul tiple"
mode also
allowsyou to
select more
than one item.
Instead of
Shift-clicking
or Control-
clicking, you
have to select
itemsoneat a
time. Selecting
an unselected
item will
select it, and
selecting an
aready
selected item
will unselect it.

When testing the - sel ect node feature, | discovered that Windows 95 does not allow
the" mul ti pl e" selection mode to behave properly. It behaves the same as

"si ngl e" mode on Windows 95 only. On Unix and Windows NT, " mul ti pl e"
mode works correctly.

When you select an item in alistbox, by default it is made available as an X selection
(meaning you can cut and paste it like any X selection in any window). Even though this
doesn't do anything with the clipboard on Win32 systems, it still affects the selectionin
multiple listboxes. Items can be selected in only one listbox at atime, even if you have
more than one listbox. The option - export - sel ect i on controlsthis. Use -

exportsel ecti on=>0toalow itemsto be selected in more than one listbox at the
same time.

Colors

In most widgetsthereisa- backgr ound and a- f or egr ound color. In addition to
those, we also havethe - sel ect backgr ound and the - sel ect f or egr ound color
optionsin alistbox. When alistbox entry is selected, it appearsin adifferent color.

Although you can change the color of the selected text, you can only use one color. Y ou
cannot make different linesin the listbox different colors.

S R A | T |
nne | ‘ [one
antrdein Vg N

{ |l three 2

four i

two ,
throe |
fowy |
|
|

it !

Figure 7-1.
Examples of -foreground, -background, -selectforeground, and -sel ectbackground

In Figure 7-1, the listbox on the left has - f or egr ound =>"'red' , - backgr ound
=>"'green' . Thelistbox ontheright has- sel ect f oreground =>"'red', -
sel ect background =>" green' . Make sure that the foreground and background
values contrast with each other if you change these options.

Listbox Style

Thedefault - r el i ef of alistbox is' sunken' . Thedefault - bor derw dt h is2.

Figure 7-2 shows the five different relief types (flat, raised, ridge, groove, and sunken).
In the first window, the default - bor der wi dt h isused; in the second window, a -

bor der w dt h of 4isused. To save space in the windows, | didn't draw any scrollbars.

Figure 7-2.
Examples of -relief and -borderwidth in listboxes

Style of Selected Items

There is also a borderwidth associated with any selected text. Thisis controlled by the -
sel ect bor der wi dt h option. Figure 7-3 shows what changing the selection
borderwidth to 4 does to the listbox.

Figure 7-3.
Example of -selectborderwidth => 4

Special Listbox Resizing

The- set gri d option changes how the window is drawn when it'sresized. Using -
setgrid => 1 causesthewindow to stay resized to the grid created by the listbox
widget. Essentially, this means that the listbox will display only complete lines (no half
lines) and complete characters. A side benefit is that the listbox will aways display at
least one line and can't get resized off the visible window. This option has nothing to do
with which geometry manager you use to put the listbox in the window.

Listbox I ndexes

Theitemsin an entry widget are ordered. Thefirst listbox item is at index O, and the
numbers increment by 1. These values are valid for any of the methods that require an
index value.

n
Aninteger index. Thefirstitemin alistbox is at index O.

"active"

The index within the listbox that has the location cursor. If the listbox has the keyboard
focus, it will be displayed with an underline.

"anchor"
Thisindex is set withthesel ect i onAnchor (...) method.

"end"

The end of the listbox. Depending on which method is using thisindex, it could mean just
after the last element (such aswheni nsert isused), or it could mean the last element in

the listbox (such aswhen del et e isused).

n @’ yll
The listbox item that covers the point at the coordinate x,y (pixel coordinates). The closest
item will be used if X,y isnot at a specific item.

Configuring a Listbox

You can usethe cget method to find out the current value of any of the listbox options. Y ou
can useconf i gur e to query or set any of the listbox options. See Appendix A,

Configuring Widgets with configure and cget, for more information on using the
confi gur e and cget methods.

Inserting Items

Usethei nsert method to add items to the listbox:
$l b->i nsert (i ndex, elenent, elenment ...);

Each element is another linein the listbox. Theindexisavalid index (see "Listbox Indexes'
later in this chapter) that the new elements will be inserted before. For instance, to insert
items at the end of the listbox:

$l b->i nsert('end', @ew el enents);
O
$l b->insert('end , "lteml", "ltenR", "ItenB8");

To insert items at the beginning of the listbox:

$l b->i nsert (0, @ew el enents);

Deleting Items
You can usethe del et e method to delete items from the listbox:
$l b->del ete(firstindex [, lastindex]);

The first argument is the index from which to start deleting. To delete more than just that
one item, you can add a second index. The firstindex must be less than or equal to the
lastindex specified. To delete all the elements in the listbox:

$l b- >del ete(0, 'end');

To delete the last item in the listbox:
$l b->del ete(' end') ;

Retrieving Elements
The get method returns alist of listbox elements specified by the indexesfirst to last:
$l b->get (firstindex [, lastindex]);

If only the firstindex is specified, only one element is returned. The firstindex must be
less than or equal to the lastindex. To get alist of all elements in the listbox:

@l enments = $l b->get (0, 'end');

To get the last item in the listbox:
$lastitem = $l b=>get (' end');

To find out which items in the listbox are selected, usethecur sel ect i on method:
@ist = $l b->cursel ection();

It returns alist containing the indexes of al currently selected itemsin the listbox. If no
items are selected, cur sel ect i on returns an empty string. Here is an example of how

thecur sel ect i on method is used:

@el ected = $l b->cursel ecti on;
foreach (@el ected) {
do something with the index in $_

}

Make sure to remember that cur sel ect i on returns alist of indexes, not € ements.

Selection M ethods

Thecur sel ect i on method, discussed in the preceding section, only tells you what

the user has selected. Y ou can also change the selection by using aform of the
sel ect i on method.

Selecting I tems

To select arange of itemsin alistbox, you can use the "set" form of thesel ect i on
method (sel ecti onSet). sel ecti onSet takes either asingleindex or arange.

Any items not in the range are not affected. If you use arange, the first index must be
less than or equal to the last index. Here are some examples:

sel ect everything

$l b- >sel ectionSet (0, 'end);
#select the first item

$l b- >sel ecti onSet (0);

Even if you have used - sel ect node to limit the selection to only one item, you can
force more than one item to be selected by using sel ect i onSet (...).

Unselecting I tems

To clear any selectionsin the listbox, use the "clear" form of thesel ect i on method
(sel ecti ond ear). Passin an index or arange or indexes from which to clear the

selection. For instance, to remove all the selections in the listbox, you would do the
following:

$l b- >sel ectionCl ear (0, "end");

Any indexes outside the specified range will not be unsel ected-this allows you to
unselect oneitem at atime. Y ou can aso clear the selection from just one item:

$l b- >sel ecti onC ear ("end");

Testing for Selection

To test to seeif aspecific index is already selected, use the "includes' form of
sel ection (sel ectionl ncl udes). Calingsel ecti onl ncl udes returns 1 if

the item at the specified index is selected and O if it is not. For instance, to see if the last
iteminthelist is selected:

if ($l b->selectionlncludes('end)) {

}

Anchoring the Selection

Using the "anchor” form of selection (sel ecti onAnchor) to set the index
"anchor" tothe specified index. The" anchor " isused when you are using the

mouse cursor to select several items within the listbox. The first item you click (without
letting up on the mouse button) becomesthe " anchor " index. For example, you would

use this to set the anchor asthefirst item in the list;

$l b- >sel ecti onAnchor (0);

Moving to a Specific I ndex

To cause the listbox to show a specific item, you can use the see method.
$l b- >see(i ndex) ;

Given an index, see will cause the listbox to page up or down to show the item at that
index. For an example of using see, look at the Listbox Example later in this chapter.

Trandating Indexes

Thei ndex method translates an index specification (suchas" acti ve") into the
numerical equivalent. For instance, if the listbox contained 12 items, $i ndex = $I b-
>i ndex (" end") would set the variable $i ndex to 11. (Remember the first itemin a
listbox isat index 0.)

Counting Items
The si ze method returns the total number of itemsin the listbox:

$count = $I b->si ze();

Active Versus Selected

Theact i vat e method will set the listbox item at index index to the active element.
Thisalows you to access thisitem later using the" act i ve" index. Figure 7-4 shows
two windows with active elements underlined. Each listbox also has the black highlight
rectangle around it, which indicates it has the keyboard focus (the active element isn't
seen as marked unless the listbox has focus).

The first wi ndow activates the item"four"
$l b->activate (3);

$l b->focus();

The second w ndow activates the item"three"
$l b2->activate(2);

$l b2->f ocus() ;

Figure 7-4.
Windows showing alistbox with an "active" element

Bounding Box

The method bbox returnsalist of four elements that describes the bounding box around
the text at index:

($x, $y, $w, $h) = $I b->bbox(i ndex);

The four elements are (in order): X, y, w, and h. The x,y coordinates are the upper |eft
corner of the bounding box. The w isthe width of the text in pixels. The h isthe height
of the text in pixels. These measurements are shown in Figure 7-5.

XY |
Textinlistbox | # '
W a

Figure 7-5.
Bounding box values around text

Finding an Index by Y Coordinate

If you know ay coordinate in the listbox, you can determine the index of the nearest
listbox item to it by using the near est method:

$i ndex = $| b->nearest (y)

Thenear est method returns a number that corresponds to the index of the closest
visible listbox item.

Scrolling Methods

The listbox can be scrolled both horizontally and vertically so it has both xvi ewand
yvi ewmethods and all their associated forms. These forms and how to use them are
described in detail in Chapter 6.

The scan method allows you to use aredlly fast scrolling method. It is automatically bound to the
second mouse button by the listbox. Here is how you can do the same thing within your window:

$mw >bi nd(" Li st box", "<2>", ['scan', 'mark', BEv('x"),EBEv('y')]);
$mn >bi nd(" Li st box", "<B2-Motion>", ['scan', 'dragto', Ev('x'),Ev('Yy')]);

When you click in the window with the second mouse button and then move your mouse around, you'll
see the contents of the listbox zi p by at super-fast speed. Y ou could change the second argument of

each bi nd statement if you wanted to bind this to another combination of keys/mouse actions. The
bi nd method is explained in Chapter 14.

Listbox Example

Sometimes when you put alot of itemsin alistbox, it takes along time to scroll through the listbox. If
you insert the itemsin the listbox sorted, you can implement a search routine. Here's a quick script that
shows you how to use an entry widget to input the search text and then search the listbox every time you
get anew character in the entry:

use Tk;

$mw = Mai nW ndow >new;

$mw->title("Listbox");

For exanpl e purposes, we'll use one word for each letter

@hoi ces = gw al pha beta charlie delta echo foxtrot golf hotel india
juliet kilo Iima notel nancy oscar papa quebec radio sierra
tango uni formvictor whi skey xray yankee zul u/;

Create the entry widget, and bind the do_search sub to any keypress
$entry = $mw >Entry(-textvariable => \ $search)->pack(-side => "top",

-fill =>"x");
$entry->bi nd("<keyPress>", [\&Jo _search, Ev("K")]);

Create listbox and insert the list of choices into it

ny $lb = $mw >Scrol | ed(" Li st box", -scrollbars => "osoe",
) ->pack(-side => "left");

$l b->i nsert ("end", sort @hoices);

$mn >Button(-text => "Exit",
-command => sub { exit; })->pack(-side => "bottont{);

Mai nLoop;

This routine is called each tine we push a keyboard key.
sub do_search {

ny ($entry, S$key) = @;

lgnore the backspace key and anythi ng that doesn't change the word
i.e. The Control or At keys

return if ($key =~ /backspacel/i);

return i f ($ol dsearch eq $search);

Use what's currently displayed in listbox to search through
This is a non-conplicated in order search
ny @ist = $l b->get(0, "end");
foreach (0 .. $#list) {
if ($list[$_] =~ /"$search/) {

$l b- >see($);

$l b- >sel ectionC ear (0, "end");

$l b->sel ectionSet ($);

| ast;

}
}

$ol dsearch = $search;

}

Fun Thingsto Try

Use alistbox to create amini file viewer. Use an entry field to read a filename and a button that,
when you click on it, loads the file into your listbox (each line in the file becomes one entry in the
listbox).

fo N
The Text Widget

When you think about what atext widget might do, you automatically think, "it displays
text." Thisistrue, yet it can do quite a bit more. The text widget is one of the most
powerful standard widgets available in Perl/Tk. It isflexible, configurable, and easy to
use for simple tasks. Here are some examples of how you can use text widgets:

* Display and edit aplain text file.

e Display formatted text from an HTML document.

» Create a scrollable color key, with buttons that allow you change the colors

» Gather multiline, formatted text (including colors) from a user (mini word processor).
* Display text with different colors based on the input.

» Make certain portions of text "clickable" and perform an action when clicked on. This
could be HTML, or it could be similar to the widget demo.*

Y ou can put simple text, formatted text, and other widgets inside a text widget. A text
widget can be used in conjunction with scrollbars to allow many pages of information to
be viewed in much less space.

Creating and Using a Text Widget

To create atext widget, use the Text method from the desired parent widget:

$text = $parent->Text ([options ...])->pack;

* When you installed the Tk module with Perl, you aso installed the widget demo.
Type widget on the command line to see the capabilities of widgetsin Perl/Tk.

After the text widget is created, there are several different waysto placetext init. The
user can type directly into it, or you can usethei nsert method:

$text->insert('end , "To be or not to be...
\nThat is the question");

The basic form of thei nsert method takes two arguments. Thefirst is an index value

that indicates where to start placing the text. The second argument is the string to insert.
Unlikethelistbox i nsert method, You can't use an array as the second argument. If

you do, only thefirst item in the array is inserted into the text box.

A typical use of the text widget isto read afile and placeit in the text widget as it's read:

$text = $mw>Scrol | ed(" Text")->pack();
open (FH, "chapterl1l”) || die "Could not open chapterl”;
while (<FH>) {

$text->insert (‘end, $);

}
cl ose(FH);

Y ou can use the text widget to display the file backward (line by line) by changing the
insert lineto $t ext - >i nsert (0,$). Thiswill put the next line read at the top of the

text widget instead of at the end.

The text widget can do alot more than just display afile or two linesfrom a
Shakespearean play. In addition to options, we also have tags, indexes, and marksto
control how the contents of atext widget are displayed.

Text Widget Options

Options used with the Text method change the way the text is displayed within the text
widgets. The following options are standard for al the widgets: - backgr ound, -
borderw dt h, - cursor,-exportsel ection,-foreground, -

hi ghl i ght backgr ound, - hi ghl i ght col or, - hi ghl i ghtt hi ckness, -

I nsert-background,-insertborderwi dth,-insertofftine,-

I nsertontine,-insertw dth,-padx, - pady, - sel ect backgr ound, -

sel ect borderw dt h,-sel ectforeground,-setgrid,-state,-

t akef ocus, - wr ap, - xscrol | conmand, and - yscr ol | command.

To find out more about what these options do, check back to Chapter 3, The Basic
Button, where they were first covered.

- backgr ound => color
Changes the color of the screen displayed behind the text.

- bor der wi dt h=> amount
Sets the width of the edges of the widget.

- Cursor => cursorname
Sets the cursor displayed when the mouse cursor isin front of the text widget.

-exportselection => 0|1

Determinesiif the text selected within the widget can aso be used by the windowing
system (such as X windows).

-font => fontname
Sets the font in which the text is displayed.

- foreground => color
Sets the color of the text.

- hei ght =>amount
Sets the height of the widget. Default is 24.

- hi ghl i ght background => color

Sets the color the highlight rectangle around the widget should be when it does not have
the keyboard focus.

- hi ghl i ght col or => color

Sets the color the highlight rectangle around the widget should be when it does have the
keyboard focus.

hi ghl i ghtt hi ckness =>

amount

Sets the thickness of the
highlight rectangle around the
widget. Default is 2.

-i nsert background => color
Changes the color of the insert cursor.

-insertborderw dt h =>amount
Changes the width of the insert cursor.

-insertofftime =>time
Sets the time the insert cursor blinks in the off position. Default is 300.

i nsertontine =>
time

Setsthe time the
insert cursor blinksin
the on position.
Default is 600.

- padx => amount

i nsertwi dth =>

amount
Sets the width of the
insert cursor.

Adds extra space to the left and right of the text inside the text widget's edge.

-sel ect borderw dt h => amount
Sets the width of the border of the selected area.

pady =>
amount
Adds
extra
spaceto
the top
and
bottom of
the text
inside the
text
widget's
edge.
relief =>
"flat' |
'groove' |
"rai sed' |
"ridge' |
"sunken' |
"solid
Setsthe
relief of the
edges of the
widget.
Default is
"sunken'.

sel ect background =>

color
Sets the color of the area
behind the selected text.

-sel ect f oreground => color
Sets the color of the selected text.

- spaci ng2 =>amount

setgrid =>
0|1

Enables
gridding for
the text
widget.
Default isO.

spaci ngl =>
amount

Sets the amount
of additional
space left on top
of aline of text
that begins on
itsown line.
Default is 0.

Sets the amount of additional space left on top of aline of text after it has been wrapped

around automatically by the text widget. Default isO.

spaci ng3 =>
amount

Sets the amount
of additional
space left on top
of aline of text
after it has been
wrapped around
automatically
by the text
widget. Default
isO.

-state =>

"normal ' |
' di sabl ed'

Indicates the
state of the text
widget. Default
is' normal ' .
If setto

" di sabl ed',

no text can be
inserted by
either the user
or the
application (via
thei nsert
method).

tabs =>
list
Specifies
alist of
tab stops
tousein
the text
widget.
Default is
undefined
(or no tab
stops).

t akef ocus =>
0|1 |undef
Determinesif

widget can obtain
keyboard focus.

W dth =>
amount
Setsthe
width of
the text
widget in
characters.
Default is
80.

-wrap =>"none" |"char" |"word"
Sets the mode used to determine automatic line wrapping. Default is" char "

=xscrol | conmand => callback
Determines the callback used when the text widget is scrolled horizontally.

yscrol | command =>
callback

Determines the callback
used when the text
widget is scrolling
vertically.

Fonts

You can usethe - f ont option to change the font, including how large or small the text

is (see Figure 8-1). This defines the default font for the entire text widget. Text that is
inserted without a text tag (atag allows you specify special formatting that applies only
to certain portions of the text) will use thisfont.

The use of fonts was covered in Chapter 3, the first time we saw the - f ont option.

B s |
O T = g |
This 1s a different font! !

|
We are using fontname "r16”

Figure 8-1.
Text widget using -font => "r16"

Widget Size

When you first create a text widget, it will usually have a height of 24 lines and awidth
of 80 characters. Depending on how you put the text widget in the window (whether you
use pack withthe- expand and-fil | optionsorgri d with-sti cky =>
"nsew'), it can change size when the window changes size. To force a certain size, you
can usethe-w dt h and - hei ght options:

Text wi dget 20 characters wde and 10 lines tall
$mw >Text (-wi dt h => 20, -height => 10)->pack;

The values associated with - wi dt h arein characters, and the values associated with -
hei ght arelines of text. It is possible that the text widget will not be that exact width
and height if you force the window to be larger viathe mi nsi ze routine (i.e., $mw-
>m nsi ze(400, 400)), especialy if youused - expand =>1and-fil |l =>

" bot h' with the pack command. So if you don't see what you expect on the screen the
first time out, keep thisin mind.

Widget Style

As with other widgets, you can change how the edges of the text widget are drawn using
-relief and- borderw dt h options. The examples shown in Figure 8-2 might not

look much like text widgets, but trust me-they are!
Line Spacing

When text is displayed in atext widget, it can wrap around automatically if the line
becomes longer than the text widget can display. The amount of room left between lines
isdefined by using the - spaci ngN options. Figure 8-3 shows the different areas that -

spaci ngl, - spaci ng2, and - spaci ng3 affect.

The - spaci ngl option affects how much room is above a new line of text (the first
linein aparagraph). The - spaci ng2 option affects the space between lines when text
that is wrapped automatically istoo long to fit on oneline. The - spaci ng3 option

determines how much room is |eft after a paragraph is finished (right after an explicit
newline).

e e [|

-relief =» groowve

=relief =3 raised

—relief => ridge

[-relief =3 sunken

Figure 8-2.
Text widgets showing different -relief values (also shows use of -width and -height
options to force smaller size)

i -spaﬂngf i t’
Thls |s a |II'|E uf le:ﬂ It can wrap amund tn the
- _-spacing? -
nezﬂ Ime and even another line. T‘ne spacmg
_-spacing2
de!ermlnas h::lw rnuuh 5 panﬂ IE |Eﬁ tlﬂh".l'ﬂﬂﬂ
-EpacingZ
Imes.
spacmg.?
: -spacing1 :
and betwean paragraphs

Figure 8-3.
Example of -spacingN options

Tab Stops

The default setup for text widget tab stopsis every eight characters. Each tab equals
eight spaces (but it doesn't actually use spaces). Y ou can replace this default setting by
using the - t abs option as follows:

-tabs => [gw 2 center/] # Place tabs every 2 pixels
-tabs =>[2, "center"] # The sanme thing, different syntax

The argument that goes with - t abs isan anonymous list that specifies positionsin

which to place each of the tab stops. Y ou can aso specify an optional justification value
for each tab stop (asin the preceding example) after each tab stop's

numerical value. This all sounds much more confusing than it really is. Here are some examples to help
clarify things:

-tabs => [gw 1i center/] #every inch, text centered on tab-stop

tabs => [gw/ 1li 1.5i/] # ts at 1 inch, 1.5 inch and every .5 inch after

Thedefaultjustlflcatlonls“l ef t". The possiblejustification valuesare" | eft " ,"ri ght "
"center",or"numeric".

When you specify the values (whether in centimeters, inches, or pixels), they are not cumulative. The
list["1i"," 1. 5i "] trandlates to one tab stop at 1 inch from the left edge of the text widget, and the

next tab stop will be 1.5 inches from the left edge. If the specified list isn't long enough to span the
entire window, the distance between the last two tab stops specified will be repeated across the screen.

Of course, setting up new tab stopsis pretty useless unless you're doing major text editing, so in most
cases, you'll leave this option alone.

Y ou can reset the tab stops back to the default by setting - t abs toundef :

$t ext - >configure(-tabs => undef);

A Short Break for a Simple Example

Before we get into some of the more complex (and more fun) things you can do with atext widget, let's
look at complete use of the text widget.

Thisisashort program that will display afile, let you make changesto it, and then save it:

use Tk;
$mw = Mai nW ndow >new,
Create necessary w dgets

$f = $mw >Frame- >pack(-side => "top', -fill =>"x");

$f - >Label (-text => "Filenane:")->pack(-side => "left', -anchor => "wW);

$f->Entry(-textvariable => \$fil enane) - >pack(-side => "left",
-anchor =>"'w, -fill => "x', -expand => 1);

$f->Button(-text => "Exit", -command => sub { exit; })->
pack(-side => "right');

$f ->Button(-text => "Save", -comand => \&save file)->
pack(-side => "right', -anchor => "e');

$f ->Button(-text => "Load", -comand => \& oad file)->
pack(-side => 'right', -anchor => 'e');

$mw- >Label (-textvariable => \$info, -relief => "ridge')->
pack(-side => '"bottom, -fill => "x");

$t = $mw>Scrol | ed(" Text")->pack(-side => 'botton,
-fill =>"both', -expand => 1);

Mai nLoop;

load_file checks to see what the filenane is and loads it if possible
sub load _file {

$info = "Loading file '$filenane' ...";
$t->del ete("1.0", "end");
if (lopen(FH, "$filenane")) ({
$t->insert("end", "ERROR Could not open $fil enane\n");

return;
}
while (<FH>) { $t->insert("end", $); }
cl ose (FH);
$info = "File '$fil enane' | oaded";

}

save _file saves the file using the filenanme in the entry box.
sub save file {

$info = "Saving ' $fil enane'";

open (FH, ">$fil enane");

print FH $t->get("1.0", "end");

$info = "Saved. ";

}

Figure 8-4* shows the window when a document has been loaded and saved.

i File Editor

Filename: [textfile Load | Save | Exit |

e

[rm—— ————
AfThi= i & fil= that ju=t contains text.

You can add text, or delete text,

You can create a file just by typing text here. then
entering a new filename, and clicking sove.

= [

Figure 8-4.
Simple file editor with a "textfile" loaded

Text Indexes

When we talked about listbox index values, each index referred to aline in the listbox.
Thefirst linein the listbox was at index 0, and so on. With atext widget, the index can
point to a specific line, but it can also point to a character within that line. An index for a
text widget is built by using a base index and then optionally modifying that index with a
modifier. The entire index, base, and modifier should be put in double quotes.

* For those of you paying attention, you'll notice this screenshot looks slightly different.
That's because this was taken off of Windows 95 instead of X Windows. Note the "Tk"
in the upper left-hand corner, and the Windows controls in the upper-right.

Base Index Values

Iln.mll

This format allows you to explicitly specify aline number and a character number
within that line. Lines start at 1 (which is different than the listbox widget), and
characters start at O.

" @X,yl
The character in the widget that is closest to the x,y coordinate.

end"
The very end of the text widget, after any "\ n" characters as well.

"mark”

Specifies the character after the location named mark. The two mark names provided by
Tkare"current” and"i nsert".What they refer to is discussed later in this
chapter.

"tag.first”

A tag nameis simply a placeholder for some special formatting instructions (discussed
in the very next section). After creating tags, you can usethisindex form. tag.fi r st is

the first character in the text widget that is of typetag. That is, you could create a
"headi ng" taganduse" headi ng. first" index.

"tag.| ast "
Specifies the character directly after the text marked with tag.

$wi dget
If you have an embedded widget, you can refer to its location within the text widget by
the variable referring to it.

$i mage
Y ou can have embedded images as of Tk8.0. Y ou can refer to its location by using the
variable referring to it.

Index Modifiers
The index modifiers can be used following a base index value.

[+]- Jcount[chars |lines]

You can usethe + and - to add/subtract lines and characters to a base index. The index
"end - 1 chars" refersto text ontheline beforethe” end" . Be careful when you
use this, though, because any "\ n" lines aso count as a complete line.

i nestart

Modifies the index to refer to the first character on that line; i.e., $t - > i nsert
("end linestart",$string) will insert the string at the front of the last linein
the text widget. i nser t will place the new text before the index given.

| 1 neend

Refersto the last character in the line (usually the newline). It is useful when you don't
know the exact number of charactersin aline but want to insert text at the end of it.

wor dst art

Adjusts the index to refer to the first character at the start of the word that contains the
base index.

wor dend

Adjusts the index to refer to the character after the end of the word that contains the base
index.

Text Index Examples

"end"

The position right after the last line of text in the widget, no matter how much text isin
the widget.

"1.0"
Thefirst character on thefirst line in the text widget. The 1 representstheline, and O
represents the character.

"2.0 - 1 chars”

The last character on the end of thefirst line. We reference it by using the first character
on the second line (2. 0) and subtracting one character value from that. If we used the

I nsert method with thisitem, we would insert the text right beforethe "\ n" at the
end of thefirst line.

"1.end"
Also the last character on the end of the first line. Thisisasimpler way of getting to it.

"2.0 lineend"
The end of the second line. It is necessary to specify 2. 0, not just 2, because 2 isan
invalid base index.

The basic indexes are easy. When you start doing index arithmetic, it becomes a little
more complicated. Y ou just have to remember that you are referring to a position in the
text widget that may change if other text has been inserted or deleted (either by the user
or the application).

Although some of the combinations may seem silly (for example," 1. 0 | i ne-
start"), keep in mind that you will most likely be calling methods that return

indeterminate information about an event. For example, a user clicksin the text widget
and presses a button that will increase the font size of that entire line. The index
arithmetic allows you to reference that entire line without even knowing for sure which
lineitison.

Text Tags

Text tags give you another way to address portions of text in the text widget. A tag has
three purposes, and the same tag can serve all three or only one:

« Assigning formatting information to a portion(s) of text
» Associating a binding with text in the widget
» Managing selected text

Tags are also used to change how the text appears on the screen: font, size, coloring, and
spacing are among afew of the text properties affected by tags. Y ou change text
properties by creating your own tags (with their own names), and using option/value
pairs to assign formatting information. In addition to changing the formatting, you can
use atag to apply a specific binding (such as perform atask when the user clicks on that
text). A special tag " sel " manages the selected text. Anytime the user selects some

text, the location of that text is marked with thetag " sel ".

Any of the text within the text widget can have one or more tags associated with it. If
you apply two tags to the same piece of text and they both alter the font, the last tag
applied wins.

Options Used With Tags

The options you can use to configure tagged text are mostly a subset of the configuration
options of the text widget itself. There are some options that can only be used through
tagged text.

- backgr ound => color
Sets the color of the area behind the text.

- bgsti ppl e => pattern
Sets the pattern used to draw the area behind the text. Can create a shaded |ook.

- bor derw dt h =>amount
Sets the width of the relief drawn around the edges of the text, line by line.

-fgsti ppl e => pattern
Sets the pattern used to draw the text.

-font => fontname
Sets the font used for the text.

- foreground => color
Sets the color of the text.

-justify => "left' |'right' |'center’
Sets the position of the text within the text widget.

- | mar gi n1=> amount
Sets the amount of indentation from the left edge for the first line of a paragraph.

- | mar gi n2=> amount
Sets the amount of indentation from the left edge for the second and greater lines of a
paragraph. Sometimes called a hanging indent.

-of f set =>amount

Sets the amount the text is raised or lowered from the baseline. Can be used to create
superscripts and subscripts.

-overstrike => 0|1
If atrue value, causes the text to have aline drawn through it.

-relief =>"flat' |'groove' |'raised |'ridge' |'sunken'
Determines the way the edges of the text are drawn, line by line.

-rmar gi n => amount
Sets the amount of space |eft between the text and the right edge of the widget.

- spaci ngl =>amount
Sets the amount of additional space left on top of aline of text that begins on its own
line. Default is 0.

- spaci ng2 =>amount
Sets the amount of additional space left on top of aline of text after it has been wrapped
around automatically by the text widget. Default isO.

- spaci ng3 =>amount
Sets the amount of additional space |eft after aline of text has been ended by a"\ n" .
Default isO.

-tabs =>ligt
Indicates the set of tab stops for thistext. See "Tab Stops* earlier in this chapter for more
detailed information.

-under | i ne => boolean
Indicates that the text should be drawn with an underline.

-wrap => 'none' |'char' |'word'

Determines the mode in which the text iswrapped. ' none' means linesthat are longer
than the text widget iswide are not wrapped. ' char' will wrap at each character.
"wor d' will wrap between words.

A Simple Tag Example

Let'slook at an example of how asimpletag is created and use it to insert some text into
atext widget (the resulting screen is shown in Figure 8-5):

$t = $mw >Text () - >pack();
$t - >tagConfigure(' bold , -font =>

_");

Use -font => "{Courier New} 24 {bold}" for Wn32 systens
$t->insert('end', "This is sonme normal text\n");
$t->insert('end, "This is some bold text\n", 'bold);

Line 1 creates the Text widget and placesit on the screen.

Line 2 createsthe' bol d' tag. Don't be fooled by the use of the word "configure”

instead of "create." When you configure atag, you are creating it. We created atag
named' bol d' and associated a different font with it (it happens to be the same as our

Unix text widget default font, just the bold version).

At this point, we haven't changed anything in the text widget. We are just setting up to
use the tag later in the code. Y ou can use any nameto indicate atag aslong asitisa
valid text string. We could have named the tag "bold_font" or "big_bold_font" or "tagl."
If you have good programming style (and want to be able to maintain your code), use a
name that indicates what the tag does.

Line 3 inserts some text into the text widget.

Line 4 inserts some more text into the text widget, but usesthe' bol d' tag. The

I nsert method allows us to specify atag as the third argument. This causes that string
of text to be inserted into the text widget and assigned thetag ' bol d' . The' bol d'
tag was configured to change the font, so any text with the' bol d' tag will be shown
with the different font.

 Tag Exampie ﬁﬂﬂmg

This is seme normal test
| This is seme bold text

Figure 8-5.
Text widget with normal and bold text

Thisisapretty smplified example. What if we want to alter text that has been typed in
by the user? We can't usethei nsert method then. We use thet agAdd method:

$t->tagAdd(' bold', "1.0', "end);

Thisappliesthe' bol d' tagto all of the text within the text widget.

Using the" sl Tag to Manipulate the Selection

The" sel " tagisaspecia tag that is maintained by the text widget. Any text that is
selected by the user will be assigned the” sel " tag. Y ou can aso force the selection by
using some of the tag methods (which we haven't covered yet) to put the" sel " tag on
some text. For instance, to select the third line:

$t - >t agAdd("sel ", "3.0", "3.0 lineend");

Here's an example that shows how to add another tag to the currently selected text:

$t->tagAdd(' bold', 'sel.first', "sel.last') if ($t->tagRanges
("sel"));

When you usethe"” sel " tag as part of an index, you need to make sure the tag, exists
(usingt agRanges) within the text widget first or you'll get areally nasty huge error.

Configuring and Creating Tags

Thefirst thing you'll do with atagiscreateit by usingt agConf i gur e (unlessyou're
using the automatically defined " sel " tag). Thefirst argument tot agConfi gur e is

the name of the tag. The rest of the arguments (which are optional) are option/value pairs
as described in the earlier section, "Options Used with Tags." Here are some examples:

creating a tag with no options
$t ext - >t agConfi gure("special ");

Creating a tag that wll change the col or

$t ext - >t agConfi gure("blue", -foreground => "blue");
Creating a tag that will nake underlined text

$t ext - >t agConfi gure("underline", -underline => 1);

Creating a tag that changes the col or and spaci ng
$t ext - >t agConf i gure("bi gbl ue", -foreground => "bl ue",
-spaci ng2 => 6);

Y ou can change the settings for an already created tag by usingt agConf i gur e a

second time. Any changes you make to the tag immediately affect any text on the screen
that has that tag:

Add background color to "blue" tag

$t ext - >t agConfi gure("bl ue", -background => "red");
Change the spacing for "bigbl ue"

$t ext - >t agConfi gure("bi gbl ue", -spacing2 => 12);

Aswith widget conf i gur e methods, you can uset agConf i gur e to find out the

current settings for a specific tag. To get al the tag options and their valuesin alist of
lists:

@istoflists = $text->tagConfigure("blue");
foreach $1 (@ist) { print "@l\n"; } # print it out

Each list within the list contains two elements: the option name and the value. Y ou can
also limit the information you retrieve to a single option:

($option, $value) = $text->tagConfigure("blue", -font);
If you only want information on the value for a particular option, uset agCget :
$val ue = $text->tagCget ("bi gbl ue", -spacing2)
Adding a Tag to Existing Text

We've already seen an example of using thet agAdd method. It allows you to add atag
to portions of text in the text widget. The usage of t agAdd isasfollows:

$t ext - >t agAdd
('tagnanme’', index1l [, index2, indexl, index2, ...])

Y ou can add atag to asingle index or arange of indexes. This means you can add atag
to the text widget to multiple places at the same time. Let's say you wanted to add the tag
" headi ng' tothe 1st, 12th, and 30th lines because they are the location of some

heading information that you want to look different than the rest of the text. The
t agAdd linewould look like this:

$t ext - >t agAdd(' heading', '1.0', '1.0 lineend',
*12.0', '12.0 lineend',
*30.0', '30.0 lineend');

Now, assuming the formatting of ' headi ng' makes the font bigger, those lines now
show up differently than the defaults from the rest of the text in the widget.

Y ou can add more than one tag to a section of text. For example, you can have both a
"headi ng' taganda' col or' tag. If both tagstry to alter the same option (such as -

f ont), the last setting for that option wins.

Once you place atag on arange of text, any text inserted between the beginning and
ending indices of that text will automatically get the tag of the characters surrounding it.
This happens whether you are using i nser t without any specific tags or the user just

types text into the text widget. If you specify atag withi nsert , it overridesthe
surrounding tag.

Using Bind with Tags

One of the main reasons for tags is the ability to assign a binding to certain portions of
the text. After creating atag witht agConf i gur e, you can use bi nd so a callback

will execute when a sequence of events happens (such as a mouse click) on that tagged
text. On our button widgets, we have a default binding of <But t on- 1> that invoked

the callback associated with the - command option. We can do the same thing with
tagged text.

The best example is using text like aweb hyperlink. When you click on the link,
something happens: a new document is loaded or another window is created and
presented to the user. The basic form of at agBi nd call isasfollows:

$t ext - >t agBi nd(tagnanme [, sequence, callback])

The callback is similar to that specified for the - conmmand callback on a button. The
sequence is a description of the event that triggers the script. The only sequences you
can specify are those that are keyboard or mouse related. (See Chapter 14, Binding
Events, for more details on available events.)

The following code shows a psuedo-link example. All the link does when we click on it
Is show the end of the text widget:

$t = $mw>Scrol l ed("Text", -wi dth => 40)->pack(-expand => 1,
fill => "both');

$t - >t agConfigure(' goto_end', -underline => 1, -

foreground => 'red');

$t->tagBi nd(' goto_end', "<Button-1>", sub { shift->see
("end); });

Setup Bindings to change cursor when over that |ine
$t->tagBind(' goto_end', "<Any-Enter>',

sub { shift->configure(-cursor => 'hand2') });
$t->tagBi nd(' goto_end', "<Any-lLeave>",

sub { shift->configure(-cursor => "xterm) });
$t->insert('end , "END\n", "goto_end");

Insert a bunch of |ines

for ($i = 1; $i <= 100; $i++) {
$t->insert('end , "$i\n");

}

Inside the subsin thet agBi nd calls, weusethe shi ft command to invoke a method.
We can do this because the first argument sent to the bi nd callback is the text widget.
Thisis done implicitly for you. Whichever widget t agBi nd isinvoked on is the widget
that will be sent as the first argument to the callback. To use the text widget more than
once in the callback, assign it to alocal variable; for example,

ny $w dget = shift.

If we created our text widget in the global scope of the program and placed areference
to the widget in the variable $t , we could also access the text widget in the callback via

the $t variable. Thisisonly possible because $t isin the global scope and available

during the callback. If you have two different text widgets that you want to use the same
callback with, useshi f t to get the correct text widget:

$t 1->tagBi nd(' goto_end', "<Button-1>", \&goto _end);
$t 2- >t agBi nd(' goto_end', "<Button-1>", \&goto _end);
sub goto_end {

ny $text = shift;

$t ext - >see(' end');

}

Using the same callback for both text widgets helps save space in your program.

To determine what the bindings are for atagname, just uset agBi nd with only the tag
name argument:

@i ndi ngs = $text->tagBi nd("tagnane");
Thelist will be empty if there are no bindings currently for that tag.
Deleting All Instances of a Tag

Once atag is created, you can usethet agDel et e method to delete the tag:
$t ext - >t agDel ete(tagnane [, tagnanme ...])

The tags are deleted completely when you uset agDel et e. This means the text reverts

back to the default configuration values, and any bindings or other information
associated with those tags is also del eted.

Thet agDel et e method can be used if you are creating temporary tags dynamically

within the program and you need to delete the tags later when the information is no
longer valid.

Removing a Tag from the Text
To remove the tag from a specific block of text, you can use thet agRenove method:

$t ext - >t agRenove
(tagnanme, indexl1l [, index2, indexl, index2 ...])

Specify the name of the tag and an index or range of indexes from which to remove the
tag. Thisleaves the tag intact; it merely removes it from the specific text indicated with
the indices.

Raising and Lowering Tags

When there are several tags applied to the same text, the last tag added to the text
overrides the previous ones, and its configuration options are given priority. You can
change the priority of thetags by usingt agLower andt agRai se:

$t ext - >t agLower (tagnanme [, belowtag])
$t ext - >t agRai se(tagnane [, abovetag])

These methods take a tag name as the first argument. If there is no second tag argument,
thefirst tag is given the highest or lowest priority. This affects the entire text in the text
widget no matter where the tags are applied. If a second tag is specified, thefirst tag is
specifically placed before or after the second tag.

Think of it asreordering a stack of tags (all applied to the same text). The tag on the top
has the most say, and if it hasa- f or egr ound optionof ' red' , then all

the text with that tag will be red, regardless of what the other text tags set - f or e-
gr ound to. If weuset agRai se to move atag with - f or egr ound of ' bl ue' to
the top, the tagged text will change to blue.

Getting Tag Names

Y ou can find out all the different tags that apply to a specific index or to the whole text
widget by using thet agNanmes method:

$t ext - >t agNanmes([i ndex])

If you specify an index, the list returned contains tags that only apply to that index. If a
specific index isn't given, then the list returned contain all the tags that apply to the entire
text widget whether or not that tag has been applied to text within the widget.

Determining Where a Tag Applies

If you know the name of the tag, you can find out where it appliesin the text widget by
using the range methods. The first method, t agRanges, returns alist that contains

pairs of index values for the whole text widget:

@ist = $text->tagRanges("tagname")
returns (beginl, endl, begin2, end2 ...)

If no text in the text widget has that tag, the returned list will be empty.

Y ou can get the pairs of index values one at atime by using thet agNext r ange
method:

($start, $end) = S$text->tagNextrange
("tagnane", indexl [, index2])

The search for "t agnane” will begin at index1 and go no farther than index2. If index2

Is not specified, then the search will continue until the end of the text widget or until it
finds the tagname, whichever comesfirst.

Inserting Text

Now that we've gone over text indexes and marks, we can talk in more detail about the
methods for manipulating the widget's contents.

Aswe've seen from the many examples in this chapter, we usei nsert to put text into

the text widget. The first argument is an index and indicates where the text will be
inserted. The second argument is the string to insert. The next argument (whichis
optional) isasingle tag name or alist of tag names to assign to the inserted text. The

usageis:

$t ext - >i nsert
(i ndex, string, [taglist, string, taglist ...])

So far we've only seen single tags used withi nser t . If you want to specify more than
one tag, put the tag names into square brackets, creating alist:

$t->insert('end, "This is a very tagged |line",
["tagl', 'tag2', 'tag3']);

To use different sets of tags, you can supply additional text lines and additional tag lists:

$t - >i nsert
("end', "This is the heading", ['heading', 'underline'],
"Second line", ['bold , '"blue']);

When you usethei nsert command to insert more than one set of text with different
tags, make sure they always comein pairs: text, tags, text, tags, etc. If the tag used isn't
defined (witht agConf i gur e), there will be no effect on the text but the tag will still
be assigned to that text. Y ou can create the tag later if you wish.

Deleting Text
To remove text from the text widget, you can use the del et e method:
$text - >del ete(indexl [, index2]);

Thefirst index argument is required; the second is optional. If both are specified, then
the first index must be less than or equal to the second. All the characters from index1 to
(but not including) index2 are removed from the text widget. If you want to delete
everything from the text widget, you can use $t ext - > del ete ("1. 0", end").

Retrieving Text

Theget functionisoneyou'll use alot. It returns the text located from index1 to index2.

If index2 isn't specified, just the character located at index1 is returned. The usage of
get isasfollows:

$t = $text->get(indexl [, index2]);

Aswith any index ranges, index1 must be less than or equal to index2 or an empty string
will be returned.

Trandating Index Values

When you work with indexes, it is useful to be able to convert a complicated index form
into asimpler one. Thei ndex method returns an index with the form line.char.

$newal ue = $text->i ndex(i ndexl);

The index1 value can be any valid index expression.

Comparing Index Values
Y ou can compare two index values by using the conpar e method.
$t ext - >conpar e(i ndex1l, op, index2);

Y ou pass the first index, the test operation to perform, and the second index. The values
foropare " <","<=","=="">=" and"! =". Thefunction returns 1 if the test was

trueand O if it wasn't. The call

$status = $text->conpare("1.0", "<=", "end");

returnsa l becausetheindex " 1. 0" islessthan" end" .

Showing an Index

By using the see method, you can cause the text widget to show the portion of it that
contains index:

$t ext - >see(i ndex) ;

The text within the widget will be scrolled up or down as aresult of thiscall. If the index
is aready visible, nothing happens.

Getting the Size of a Character

The bbox method returns alist containing four items that describe the box around the
character at index:

($x, 3By, $w, $h) = $text->bbox(index);

Thefirst two items returned are the x and y coordinates of the upper-left corner. The last
two are the width and height of the box. The bounding box only describes the visible
portion of the character, so if it is half hidden or not visible at all, the values returned
will reflect this.

Getting Line Information

Thedl i nei nf o method returns alist of five items. These items describe the area of
the line that contains index:

* X coordinate of the upper-left corner
* Y coordinate of the upper-left corner
 Width of the area
» Height of the area

* Baseline position of the line, measured from x

Hereis an example call:

($x, By, Sw, $h, $base) = $text->lineinfo("index");

Unlike the bbox method, even areas not shown (due to nonwrapped characters) are used

in the calculations as long as some of the line is showing. However, if the lineis not
visible at al on the screen, the list will be empty. If the line happens to wrap to multiple
lines, the entire areais used.

Sear ching the Contents of a Text Widget

Y ou can use the sear ch method to search the text widget for a pattern or regular
expression. The sear ch method takes some optional switches, the pattern to search for,
and an index at which to start searching:

$i ndex = $text->search
([sw tches], pattern, index, [stopindex])

If amatch is made, the index returned will point to the first character in the match. If no
match is made, an empty string is returned.

The possible switches are:

- forwar ds
Tellssear ch to search forward through the text widget starting at index. Thisisthe
default.

- backwar ds
Tellssear ch to search backward through the text widget starting at the character
before index.

- exact
The pattern must match the text exactly. Thisis the default.

-regexp
The pattern will be considered as aregular expression.

- nocase
|gnores case between pattern and the text within the text widget.

- count =>varname
varname isapointer to avariable (i.e.,\ $var i abl e). The number of characters
matched will be stored within that variable.

This option does nothing except force the next argument to be taken as the pattern even
if the next string startswitha" - " .

Hereisasimple example of using sear ch:

$result = $text->search(-backwards, "find nme", 'end');

$l ocati on = $text->search(-nocase, "SWTCHES"', "1.0");

Scrolling

The text widget can be scrolled both horizontally and vertically, so it implements both
xvi ewand yvi ewmethods. These two methods are described in Chapter 6, Scrollbars.

Marks

There are severa waysto refer to different positions throughout the text widget. Index
values refer to a character. Tags are named references to a specific character or
characters. The term mark is used to refer to the spaces in between characters. Similar to
tags, amark has aname. For example, the" i nsert " mark refersto the position of the

insert cursor. However, tags refer to the actual characters, and if those characters are
deleted, the tag is no longer associated with those characters. The mark staysin place
whether the characters surrounding it are deleted or other characters are added. Marks
can only refer to one location within the text widget at atime.

Onceit is created, you can use amark as an index. The gravity of the mark will affect on
which side the text will be inserted. If the gravity is' ri ght ' (the default), the text will

be inserted to the left of the mark because the mark is glued to the character to the right
of the mark. If the gravity is' | eft"' , thetext will be inserted to the left of the mark and

the mark will refer to the left of the last character inserted.

There are two special marks that are set automatically by the text widget: " i nsert "
and"current".The"i nsert" mark iswherever theinsert cursor is. The
“current" mark isthe position closest to the mouse and adjusts as the mouse moves

(aslong as a mouse button is pressed). Both marks are maintained internally and cannot
be deleted.

You will also seeamark called " anchor " that shows up in the get Nanes method
after you click in the text widget. It aways has the sameindex value asthe" i nsert "
mark, but " anchor " might not always exist.

Setting and Getting the Gravity
To set the gravity of the mark, you canusemar kGravi ty:
$text->markG avity(marknane [, direction])

The possible valuesfor directionare" ri ght " and" | ef t " . The default gravity for
new marksis" ri ght " . If you don't specify agravity, the current gravity for that mark
IS returned.

Determining Mark Names
To get alist of al the marksin the text widget, you can use mar kNanes:

@anes = $t ext->markNanes ()

There are no arguments to the mar kNanes function, and it returns alist. Hereis an
example of how to report the marks within the text widget:

$f ->Button(-text => "Report",
-command => sub { ny @n = $t->mar kNanes ();

foreach (@) {
print "MARK: $ at ", $t-
> ndex($_), "\n";
}})->pack(-side => "left');

The results after clicking in the window to set the insertion cursor are as follows:

MARK: insert at 2.15
MARK: anchor at 2.15
MARK: current at 3.0

Creating and Deleting Marks
Y ou can create amark and set it at a specific index by using the mar kSet method.
$t ext - >mar kSet (mar knane, i ndex)

In addition to the markname you want to create, specify the index where the mark should
be placed. For instance, if you always want to be able to insert at the end of line 3:

$text ->markSet ("end of 1ine3", "3.0 |lineend");
$text->insert("end of line3", "text to insert");

The mar kUnset method removes the mark from the text widget and del etes the mark
completely. It will no longer show up in the mar kNanes list after it has been unset, and

it can't be used as an index value either. Y ou can specify more than one markname in
mar kUnset :

$t ext - >mar kUnset (marknanme [, marknane, marknane ...])

Embedding Widgets

One of the best things you can do with a text widget is put other widgets (such as button
or entry widgets) inside it. One advantage of embedding widgetsisyou can create a
scrolled set of widgets on aline-by-line basis.

Before we go over all the different functions that are available to work with embedded
widgets, let's ook at a quick example. We often want to do alot of dataentry in a
program, which means we need alot of label and entry widgets.

Sometimes there are so many of them that it's hard to fit them all on the screen without
making a mess of the window. By using a scrolled text widget and putting the label and
entry widgets inside it, we can create alot more widgets within a smaller space. Here's
the code:

use Tk;
$mw = Mai nW ndow >new;
$mw->title("Data Entry");
$f = $mw >Frane- >pack(-side => "bottom);
$f->Button(-text => "Exit",
-conmmand => sub { exit; })->pack(-
side => "left');
$f->Button(-text => "Save",
-conmmand => sub { # do sonmething with % nfo;
})->pack(-side => '"bottonl);
$t = $mw>Scrol l ed("Text", -w dth => 40,
-wap => 'none')->pack(-expand => 1, -
fill => "both');

foreach (gw Nanme Address City State Zi p Phone Cccupation
Conpany Busi ness_Addr ess Busi ness_Phone/) {
$w = $t->Label (-text =>"$ ", -
relief => 'groove', -width => 20);
$t - >wi ndowCr eat e(' end', -w ndow => $w);
$w = $t->Entry(-width => 20, -textvariable => \$info
{$_});
$t - >wi ndowCr eat e(' end', -w ndow => $w);
$t->insert('end , "\n");
}

$t->configure(-state => 'disabled'); # disallows user typing

Mai nLoop;

Figure 8-6 shows the Win32 version of this window.

7+ Data Entry M= E3 I

] B

o

|
Adilress: i
City: |
st
5 Zip:

‘| Business_hddress: ||
I‘"‘I | =)

Exit | Sawe

s e

Figure 8-6.
Text widget containing other widgets

We disable the text widget before running Mai nl oop because we don't want the user to

be able to type text directly into the text widget. This only disables the ability to enter or
delete text-the internal widgets still function normally. We also turned off the - wr ap

option so the label and entry widgets don't accidentally drop down to the next line when
the window is resized.

Y ou could put atext widget inside another text widget, but you probably wouldn't want
to.

The window Method

Asyou can see from the preceding example, we use thewi ndowCr eat e method to

insert an embedded widget. The widget should have already been created, and it should
be a child of the text widget. The general syntax is:

$wi dget = $text->Wdget(...);
$t ext - >wi ndowCr eat e(i ndex,
wi ndow => $wi dget, [option => value]);

In our example above, we used the' end' index. You can use any valid text widget
index to insert the embedded widgets. The only option we used was a- wi hdow option
with the reference to the new $wi dget .

Here are the available options for the w ndow method:

-al i gn =>where
Possiblevaluesof ' basel i ne' ," botton ,' center',or'top'.Itdetermines

where the widget is placed within the lineif it isnot astall asthe line itself. The default
is' center'.

- padx =>amount and - pady => amount
Add space around the widget in the x and y directions respectively (- padx => 10).

-stretch => 0|1

Takes aboolean value (1 or 0). A true value will stretch the widgetsto fill the line from
top to bottom.

-wi ndow => $wi dget
Takes areference to another widget.

There are several different forms of thew ndow method. The first one, the "Create"

form, creates the widget within the text widget. The "Names' form lets you know what
types of widgets are embedded in the text widget:

@ypes = $text->w ndowNanes() ;

The results ook like this:

.text.radi obutton .text.label .text.button .text.entry .text.
checkbutt on

Usethewi ndowCget function to get information about the options that were used
when the window was created in the text widget:

$val ue = $t ext->w ndowCget (i ndex, option;

In order to usewi ndowCget you need to know the index the widget is currently

occupying (each widget occupies one character in the text widget, even if it looks like it
takes more space).

The "Configure" form of wi ndowwill allow you change the options associated with the
widget at index or retrieve the value of the configuration option:

$t ext - >Wi ndowConfi gure(index [, option => value]);

Remember that the only options you can use with thismethod are - al i gn, - padx, -
pady, - stretch, and-w ndow. Other than this, w ndowConf i gur e(...) behaves
just like aregular widget's conf i gur e method. To make changes on the $wi dget
directly, use $wi dget - >confi gure(...).

I nter nal Debug Flag

The debug function takes an optional boolean argument:
$t ext - >debug([boolean]);

If the value passed in istrue, then internal consistency checks will be turned on in the B-
tree code associated with text widgets. If false, the checks will be left off. Without any
argument, the debug method will return the value" on" if it has been turned on, and

“of f" if not. All text widgets in the application share the same debug flag.
Scanning

ThescanMar k and scanDr agt o methods are used internally within the text widget.
A call to scanMar k simply records the x, y passed in for use later with scanDr agt o.
It returns an empty string:

$t ext - >scanMar k(x, vy);

scanDr agt o aso takes x, y coordinates, which are compared to the scanMar k x, y

coordinates. The view within the text widget is adjusted by 10 times the difference
between the coordinates.

$t ext - >scanDr agt o(X, VY);

Fun Thingsto Try

* Create a scrollable text widget. Insert a button widget that has text describing the
foreground color of the text widget and when you click the button, have it cycle between
severa different colors, updating the button's- f or egr ound color and text. For a
practical application, have several buttons, each associated with a different color in your
application. When the user clicks the button, you can change the color to a different
value (possibly using the ColorEdit composite widget).

* Create atext widget that will display aread-only file. Create two buttons on the
window, one to decrease the font within the text widget, the other to increaseit.,

o—
The Canvas Widget

The canvas widget is mainly used for drawing items such as arcs, lines, rectangles,
circles, and so on. Y ou can also place text and other widgets inside a canvas widget.
Think of it as apainter's canvas: It is blank until you decide to draw something on it. But
unlike a painter's canvas, which islimited in size, this canvas is scrollable in any
direction. Here are some examples of how you can use a canvas widget:

* Create a drawing program.
* Display a graph based on input from the user.
* Create a customized dlider.

Each item you create in a canvas widget can have bindings attached to it to allow for
easy interaction with the user.

Creating a Canvas

| recommend that you always use the Scr ol | ed method to create a canvas unless you
know for sure that your canvas is going to be afixed size that will fit in the window:

$canvas = $mw >Canvas([option => values, ...])->pack();
or...

$canvas = $mw >Scrol | ed(' Canvas', [option => values, ...])-
>pack() ;

Thefirst line creates just a canvas and the second creates a canvas with scrollbars. (See
Chapter 6, Scrollbars, for more information on what else you can do with the
Scr ol | ed method.) To create a canvas widget, use the desired parent widget to

invoke the Canvas method and pass any initial optionsin with their values. The
Canvas method returns areference to the newly created canvas widget.

Before we get into the options and methods available with a canvas widget, here are a
few miscellaneous things you should know about using a canvas widget.

Coordinate System

A canvas widget uses a coordinate system to locate items inside of it, but the coordinate
system isn't anormal one. It's more like an upside-down coordinate system.

Figure 9-1 shows a diagram that demonstrates the coordinate system a canvas widget
USes.

- A=100 ¥=-1(0
-

Figure 9-1.
Canvas coordinate system

The x coordinates behave normally; the larger coordinates are to the right and the
smaller ones are to the left. The y coordinates look like they have been drinking vodka;
the larger y coordinates are on the bottom rather than on the top because the 0,0 point is
in the upper-left corner. Although it israre, you can use negative coordinates in a canvas.

The coordinate system isn't too hard to deal with once you realize what is happening, but
if you try to draw abuilding with a standard coordinate system in mind (that is, with the
larger y coordinates higher up), your building will come out upside down.

There are severa waysto deal with this. First, adjust your way of thinking so you aways
think y coordinates are larger at the bottom (never mind all those years we all struggled
through geometry classes). Or, you are just as stubborn as| am, you can think in normal
coordinates, and have your program do a quick little calculation before sending y
coordinates to the canvas functions. (Multiply all y coordinates by -1. Tricky, huh?)

Whichever way you decide to deal with it, be consistent and make sure you comment
your code.

The x and y coordinates can be specified in any valid screen unit. They are pixels by
default. If you follow the coordinate number with aletter m then you are measuring

distance in millimeters. The other letters you can use are p for printer points, i for
inches, and ¢ for centimeters. The default is pixels, which iswhat we'll use for all of the
examplesin this chapter.

The Scrollable Region

The scrollable areais the portion of the canvas widget that you want the user to be able
to see. If you don't create a scrollable area (by using the- scr ol | r egi on option), the

user can scroll infinitely in any direction and the scrollbars don't reflect where items on
the canvas are.

Figure 9-2 shows an example of the scrollable area compared with the areathat isvisible
in the canvas. If these two areas are the same size, you don't need scrollbars on the
canvas (if you use scrollbars, their sliders will completely fill the trough areq).

A

Serollable arep

Canvas area visibla

ik LEERLER LR RN L] R R -_-____.h.

Figure 9-2.
Scrollable area compared with visible area

The arrows on the axis markersin Figure 9-2 indicate that the canvas can still be larger
than the indicated scrolling area. For instance, if you decide to insert acircle beyond the
scrolling area, you have to adjust the scrollable area so the user will be able to see the
new circle.

The best way to do thisisto use the bbox method, which returns a bounding box for al
items that match the tags you send it. Here's what the code looks like:

$canvas- >configure(-scrollregion => [$canvas->bbox

("all™) 1);

Calling this after you add or remove items to the canvas resets the scroll region to where
it needs to be. Of course, if you are adding many different items all at once, you should
wait until after you have added them all and then update the scroll region.

Using Bind with a Canvas

When you try to use the bi nd method with a canvas widget, you'll run into some
unexpected problems. You'll either get an error and your script won't run, or your script
will run but your bi nd won't seem to have any effect. In order to get around this, you'll
need to use the explicit TK: : bi nd instead of just bi nd (because the canvas hasits
own bi nd method that you have to avoid using):

$canvas = $mw >Canvas();
$canvas->Tk: : bi nd("<Button-1>", sub { print "bind!'\n"; });

You can also use SUPER: : bi nd instead of Tk: : bi nd. Either way will work.*

If you used the Scr ol | ed method to create your canvas, you'll have an added
difficulty; you'll have to use the Subwi dget method to get to the canvas widget:

$canvas = $mw >Scrol | ed(" Canvas");
$real _canvas = $canvas- >Subwi dget (" canvas");
$real _canvas->Tk:: bi nd("<Button-1>", sub { print "bind!

\n")

Other than this one small annoyance, bi nd works just as you would expect it would.

Here'saquick (and fairly useful) example that will print out the coordinate you clicked
on:

$c = $mw >Scrol | ed(" Canvas") - >pack() ;
$canvas = $c- >Subwi dget (" canvas");
$canvas- >Tk: : bi nd("<Button-1>", [\&print_xy, Ev('x"), EBEv
Cy) 1)
sub print_xy {
ny ($canv, $x, $y) = @;
print "(x,y) =", $canv->canvasx($x), ", ", $canv->canvasy
($y), "\n";
}

This example prints out the coordinates (in canvas coordinates) when you click the left
mouse button.

Canvas Options

The options listed in this section affect the entire canvas widget and the items within it.
Items are circles, lines, rectangles, text, or other widgets. These options act as you would
expect them to (as explained in Chapter 3, The Basic Button, for

* For those using Tk8.0: You can use canvasBi nd instead of Tk: : bi nd. I'll
refer to Tk: : bi nd throughout the rest of the chapter, but note that you should use
canvasBi nd instead.

most options and in Chapter 6 for the scrollbar options): - backgr ound, -
borderw dt h, - cursor, - hei ght, - hi ghli ght background, -

hi ghl i ght col or,-hi ghlightthickness,-relief,-takefocus,-
wi dt h, - xscr ol | command, and - yscr ol | command.

New Options

When selecting items in the canvas with the mouse cursor, the canvas widget does
calculations to determine if the mouse cursor isinside or outside the item. The -

cl oseenough option controls how close the mouse must be to the item beforeit is
considered inside the item. The default value for - cl oseenough is” 1. 0", whichis

1.0 pixels away. Any floating point number isavalid value (and will alwaysbein
pixels) for - cl oseenough.

| discussed the- scrol | regi on option briefly in "The Scrollable Region” earlier in

this chapter. It takes alist reference, and that list must contain four coordinates. The
coordinates indicate a bounding region for the scrollable areain the canvas. The
coordinates are in this order: [minx, miny, maxx, maxy]. Y ou can also think of the
coordinates asif they were defining the [left, top, right, bottom] edges of the scrollable
region.

Normally, the canvas widget limits the user to seeing only the area defined by the -
scrol | regi on option. You can allow the user to scroll beyond this area by using -
confine => 0. Thedefaultfor-confineisl.

Additional Scrolling Options

The- xscrol | command and - yscr ol | conmmand options both work as described in

Chapter 6, but there are two additional options that affect how the canvas scrollsits
contents: - xscrol | i ncrement and-yscrol | i ncrenment . Each option takes a

valid screen distance for avalue. Thisdistance is the unit the canvas will useto scroll in
the associated direction. For instance, if you specify - xscrol | i ncrenent => 10,

each time you click an arrow on the horizontal scrollbar, the contents of the canvas will
shift so that the left edge of the contentsis an even multiple of 10. Essentially, the
canvas will shift the contents 10 pixelsin the arrow's direction.

If the value associated with - xscr ol | i ncrenent or-yscrol |l i ncrenent isOor
less, scrolling is done in normal increments.

Optionsfor Text |tems

The following options are applied to the entire canvas widget, but they really only affect
the text items inside the canvas widget: - i nser t backgr ound, -

i nsertborderwi dth,-insertofftinme,-insertontine,-insertw dth,
- sel ect background, - sel ect borderw dt h,and- sel ect f or egr ound.

These options work the same as they would for an entry widget or atext widget. See
Chapter 5, Label and Entry Widgets, and Chapter 8, The Text Widget, for more details.

Canvas Widget Option List

These options all are used with the Canvas method:

- backgr ound => color
Sets the background of the canvasto color.

borderw dth =>

amount

Changes the width
of the edges of the
canvas to amount.

cl oseenough =>

float_amount

Sets the amount of
distance from the
item when the
cursor is considered
inside the item.

-confine => 1|0
Indicates that the canvas will limit itself to the areadefined by - scr ol | r egi on if set
to 1. Default is 1.

- cur sor => cursorname
Indicates that the cursor will change to cursorname when it is over the canvas.

- hei ght =>amount
Sets the height of the canvas to amount.

hi ghl i ght background =>

color

Sets the color the highlight
rectangle should be when the
canvas does not have the
keyboard focus.

hi ghl i ght col or =>
color

Sets the color the
highlight rectangle
should be when the
canvas does have the
keyboard focus.

- hi ghl i ghtt hi ckness =>amount
Sets the highlight rectangle. Default is 2.

I nsertbackground =>

color
Sets the color of the area
behind the text insert cursor.

-1 nsertborderw dt h =>amount
Sets the width of the borders on the insert cursor.

-insertofftime =>milliseconds
Sets the amount of time the cursor disappears from the screen when it is blinking off.

i nsertontine =>

milliseconds

Sets the amount of
time the cursor
appears on the screen
when it is blinking on.

insertwdth =>

amount
Sets the width of the
insert cursor.

-sel ectforeground => color
Sets the color of the selected text.

relief => "flat"
|' groove' |

‘rai sed' |
‘ridge' |
‘sunken' |'solid'
Indicates the way the
edges of the canvas are

drawn. Default is
"flat'.

scrol l regi on =>
[left, top, right,
bottom |

Defines the areathe
user is allowed to
scroll.

sel ect background =>

color
Sets the color of the area
behind any selected text.

sel ectborderwidth =>

amount
Sets the width of the border
of the selected area.

t akefocus => 0
| 1 |undef

Determines whether
or not the canvas
can get keyboard
focus. Default isfor
the application to
decide.

-wW dt h => amount
Sets the width of the canvas to amount.

xscrol |l command =>

callback

Determines the callback
used when the canvasis
scrolled horizontally
(automatically set to the
correct callback when
the Scr ol | ed method

Is used).

xscrol lincrenent =>
amount

Sets the distance the canvas
contents move when the
arrow on the horizontal
scrollbar is clicked.

yscrol | command =>

callback

Determines the callback
used when the canvasis
scrolled vertically.

-yscrol |l i ncrenent =>amount

Sets the distance the canvas contents move when the arrow on the vertical scrollbar is
clicked.

Creating Itemsin a Canvas

The whole point of having a canvasisto put itemsin it. Y ou can create arcs, bitmaps,
images, lines, rectangles, ovals (circles), polygons, text, and widgets. Each has an
associated cr eat e XXX method, where the type of item you want to create replaces the

XXX. All of the cr eat e methods return a unique ID, which can be used to refer to the

item later. When you see a method that takes atag or an ID as an argument, the ID isthe
one returned from the cr eat e method.

The Arc Item

When you create an arc, you specify a bounding rectangle with two sets of x and y
coordinates. The arc is drawn within the confines of the bounding box. Additional
options that will change how the arc is drawn in the canvas are explained shortly. The
basic cr eat eAr c statement isasfollows:

$id = $canvas->createArc(x1, yl, x2, y2,);

Any additional optionsused inthe cr eat eAr ¢ method are specified after the
coordinates:

$id = $canvas->createArc(x1, yl, x2, y2, option => val ue);

Each option for the arc item can be used later with thei t entget and
i t enconfi gur e canvas methods. The options are:

-extent =>degrees
The length of the arc is specified in degrees by using the - ext ent option. The default -
ext ent (or length) is 90 degrees. The arc is drawn from the starting point (see- st art

option) counterclockwise within the rectangle defined by (x1, y1) and (x2, y2). The
degrees value should be between -360 and 360. If it ismore or less, then the value used
is the specified number of degrees modulo 360.

Here are some examples of the - ext ent option:

This draws half of an oval

$canvas- >creat eArc(0, 0, 100, 150, -extent => 180);
This will draw _ of an oval

$canvas- >creat eArc(0, 0, 100, 150, -extent => 270);

-fill =>color
To fill the arc with the specified color. By default, there is no fill color for an arc.

-outline =>color

Normally the arc is drawn with a black outline. To change the default, use the -
out | i ne option. The outline color is separate from the fill color, so to makeit a
completely solid object, make the color for - out | i neand-fil | thesame.

outlinestipple =>
bitmap

Touse-

outl i nesti ppl e,
you must also use the -
out | i ne option.

Normally, the outline of
the arc isdrawn solid.
Use abitmap with -
outlinestippleto

make the outline
nonsolid; the specified
bitmap pattern will be
used to draw the outline
of the arc.

-start =>
degrees

The vaue
associated with
the- st art

option determines
where Perl/Tk
starts drawing the
arc. The default
start position is at
three o'clock (O
degrees). The
degrees specified
are added to this
position, but in a
counterclockwise
direction. Use -
start => 90
to make the arc
start at the twelve
o'clock position,
use -

start => 180
to make the arc
start at the nine
o'clock position,

and so on.

-sti ppl e => bitmap
The- st i ppl e option causes the arc to be filled with a bitmap pattern, but only if the -
fill option has been specified aswell.

-style => "pieslice" |"chord" |"arc"
The - st yl e of the arc determines how the arc is drawn. The default, " pi esl i ce",

draws the arc and two lines from the center of the oval ends of the arc segment. The
" chor d" value drawsthe arc and a line connecting the two end points of the arc

segment. The" ar ¢" value draws just the arc portion with no other lines. The-fi | |
and - sti ppl e optionsareignored if " ar c" isused.

-tags =>taglist
When you create an arc, you use the - t ags option to assign tag namesto it. The value
associated with - t ags isan anonymous list of tag names; for example:

$canvas- >createArc(0, 0, 10, 140, -tags => ["arc", "tall"]);

Y ou don't need to use an anonymous list if you are only specifying one tag name;

$canvas- >creat eArc(0, 0, 10, 140, -tags => "arc");

W dth =>
amount
The width
of the
outlineis
specified
by using -
w dt h.
The default
-widthis
1.

The Bitmap Item

A canvas widget can display a bitmap instead of text just as a button or label can. Y ou
canusecr eat eBi t map to insert abitmap into your canvas widget:

$i d = $canvas- >creat eBi t map(x, y);

Of course, you must use the - bi t map option to specify which bitmap to display or you
won't see anything. So we redlly create a bitmap like this:

$id = $canvas->createBitmap(x, y, -bitmap => bitnap);

Why they didn't just make the bitmap the third argument, | don't know. That's just the
way it is. The other captions available for cr eat eBi t map are:

_ anchor => n Cent er n | n r]Il | n elI | n SII | n WI I n r]ell | n nWl | n SeIl | n SWl
The - anchor option determines how the bitmap is placed on the canvas relative to the
X,y coordinates indicated. The default for - anchor is" cent er ", which putsthe

center of the image at the x,y coordinates. Using asingle cardinal direction (for example,
" e") would place the center of that edge at the X,y coordinates.

- backgr ound => color

The - backgr ound option specifies the color to use for all the O (zero) bitmap pixels. If
you don't specify a background color or use an empty string (* "), the O pixels willbe
transparent.

- bi t map => bitmapname

Y ou must usethe - bi t map option to tell the canvas which bitmap to display. Y ou can
use the built-in bitmaps such as' i nf o' or' war ni ng' just asyou can with the button
widget, or you can specify afilename. Remember, to specify a bitmap file, use an @sign
in front of the bitmap filename.

-f oreground => color

The foreground color of a bitmap is the opposite of the background color. (By definition,
bitmaps can only have two colors.) The - f or egr ound option will color all the 1 pixels

with this color. The default for - f or egr ound is black.

-tags =>taglist
When you create a bitmap, you can assign tag namesto it by using the - t ags option.
The value associated with - t ags isan anonymous list of tag names; for example:

$canvas->createBi tmap(0,0, -bitmap => "info',
-tags => ["info", "bitmap"]);

Y ou don't need to use thelist if you are only specifying one tag name:

$canvas->createBitmap(0,0, -bitmap => 'info', -
tags => "bitmp");

Thelmage Item

If we can create a bitmap on a canvas, it makes sense that we can create an image as
well. We can do so with thecr eat el nage method:

$i d = $canvas->createl mge(x, y,-inmage => i mage);

Again, you have to specify an image to display or you won't see anything. The other
options available for cr eat el mage are:

-anchor => "center" |"n" | "e" | "s" |"W' | "ne" ["nw' | "se" |
s

The- anchor option for an image works the same as it does for a bitmap. The -
anchor option ishow the image is positioned around the X,y coordinates. The default
for-anchor is' center' .

-i mage => $i mage

The - i mage option indicates which image to display. The image value is actually a
reference to an image created with Phot o or Bi t map methods. (See Chapter 3 for
more information on how to specify an imagefile.)

-tags =>taglist
Usethe -t ags option to assign tag names to an image. The value associated with -
t ags isan anonymous list of tag names; for example:

$canvas- >creat el nage(0, 0, -inmage => $i ngptr,
-tags => ["inmage", "blue"]);

Y ou don't need to use thelist if you are only specifying one tag name:

$canvas- >creat el mage(0, 0, -imge => $ingptr, -
tags => "inmage");

TheLineltem

Thecr eat Li ne method can actually create multiple connected lines, not just one. The

first two coordinate sets you supply create the first line, and any additional coordinates
will continue the line to that point:

$id = $canvas->creat eLi ne

(0,0, 400, 400); # creates one line
$i d = $canvas- >creat eLi ne(0, 0, 400, 400, -

50, 240); # creates two |lines

After the coordinates, you can specify any options and values you wish to configure the
lineg(s); the options and values are as follows:

-arrow => "none" |"first" ["last" |"bot h"
Y ou can place arrowheads at either end of the line (or both) by using the - ar r ow
option. If you have more than onelinein your cr eat eLi ne method, only the first and/

or last point can be made into an arrow. If you want each line to have an arrowhead, then
use multiplecr eat eLi ne statements.

-arrowshape =>[distl, dist2, dist3]
The - ar r owshape option only appliesif you usethe - ar r ow option as well. Figure 9-
3 shows what the distance values mean.

Specify the three distances by using an anonymous list such asthis:

$canvas- >creat eLi ne(10, 10, 200, -40, -arrow => "both",
-arrowshape => [20, 20, 20]);

-.':ﬁ‘*lsiE

digti—

]
st

Figure 9-3.
Definition of arrowhead

-capstyle => "butt" |"projecting" |"round"
Instead of arrowheads, you can make the ends of the line have one of these styles.

-fill =>color
The-fill optionismisnamed becauseit isn't actualy filling anything. Thelineis
simply drawn with this color instead of black.

-joinstyle => "bevel" |"mter" |"round"
The-j oi nstyl e option affects how multiple lines are joined together. The default is
“mter".If thereisonly oneline created, this option has no effect.

-snmooth => 1|0
If - smoot h hasavalue of 1, then, using Bezier spling(s), the line(s) will be drawn asa

curve. Thefirst two lines make the first spline, the second and third line make up the
second spline, and so on. To make a straight line, repeat the end points of the desired
straight line (or use cr eat eLi ne again to make a separate line).

-spl i nest eps => count
When you use the - snoot h option, the more - spl i nest eps you use, the smoother

the curve. To find out how many steps create the desired effect, you'll haveto
experiment with different values.

-sti ppl e => bitmap
To have the line drawn with a bitmap pattern (1sin the bitmap have color, Os are
transparent), usethe- st i ppl e option. The bitmap can be a default bitmap name or a

filename. The wider the line (see- wi dt h), the more the stipple design will show up.

-tags =>taglist
When you create aline (or lines), assign tag names to them by using the - t ags option.
The value associated with - t ags is an anonymous list of tag names; for example:

$canvas- >creat eLi ne(0,0, 100,100, -tags => ["line", "blue"]);

Y ou don't need to use alist if you are only specifying one tag name:

$canvas- >creat eLi ne(0,0, 100, 100, -tags => "line");

-wi dt h =>amount
Y ou can make the ling(s) thicker by using the - wi dt h option. Normally thelineis

drawn only 1 pixel wide. The amount can be any valid screen distance (e.g., centimeters,
inches).

The Oval Item

Anoval canbeacircleif you draw it just right. To create acircle/oval, use the
cr eat eOval method and specify two sets of points that indicate a rectangle (or

square) in which to draw the circle/oval. Hereis a simple example:

$id
$id

$canvas- >createCOval (0,0, 50, 50); # creates a circle
$canvas- >creat eOval (0,0, 50, 100); # creates an oval

The options for the oval will be familiar, so we'll just cover them briefly:

-fill =>color
The oval will befilled in with the specified color. This color is different than the outline
color. By default, the oval isnot filled.

-outline =>color

The outline isthe line drawn around the outside of the circle. Normally the outlineis
black, but it can be changed by using the - out | i ne option. If you make the outline and

the fill color the same, the oval appears solid.

-sti ppl e => bitmap
Tofill the oval with abitmap pattern (1 values in bitmap are colored, O values are
transparent), usethe- st i ppl e option. If the-fi | | optionisn't used, - sti ppl e has

no effect. - st i ppl e takesadefault bitmap name or afile with abitmap init.

-tags =>taglist
When you create an oval, use the - t ags option to assign tag names to them. The value
associated with - t ags is an anonymous list of tag names; for example:

$canvas- >creat eOval (0,0, 100,100, -tags => ["oval", "blue"]);

Y ou don't need to use alist if you are only specifying one tag hame:
$canvas- >creat eOval (0,0, 100, 100, -tags => "oval");
-w dt h =>amount

The - wi dt h option changes how wide the outline of the oval is drawn. The default for -
wi dt his1 pixel.

The Polygon Item

A polygon is merely a bunch of lines where the first point is connected to the last point
automatically to create an enclosed area. The cr eat ePol ygon method requires at

least three X,y coordinate pairs. For instance, the following piece of code will create a
three-sided polygon:

$i d = $canvas- >creat ePol ygon(1000, 1000, 850, 950, 30, 40);

Additional x,y coordinate pairs can be specified as well; for example:

$i d = $canvas- >creat ePol ygon
(1000, 1000, 850,950, 30, 40, 500, 500);

The options you can specify with cr eat ePol ygon are the same as those you use with
createLine:-fill,-outline,-snooth,-splinesteps,-stipple,-

t ags, and - w dt h. Just remember that cr eat ePol ygon connects the first point to
the last point to enclose the area.

The Rectangle [tem

Asif being ableto create arectangle using cr eat eLi ne or cr eat ePol ygon weren't
enough, we also have the cr eat eRect angl e method. It only takestwo x y
coordinate sets, which are the opposite corners of the rectangular area:

$id = $canvas- >creat eRect angl e(10, 10, 50, 150);

Again, we have seen the options available for cr eat eRect angl e with the other
create methods:. -fill,-outline,-stipple,-tags,and-w dth. Although
I've covered these options already, here are afew examples:

A blue rectangle with bl ack outli ne:

$canvas- >cr eat eRect angl e(10, 10, 50, 150, -fill => "blue');
A blue rectangle with a thicker outline:
$canvas- >cr eat eRect angl e(10, 10, 50, 150, -fill => 'blue', -
wi dth => 10);

The Text Item

Finally, an item type that doesn't have linesinit! Y ou can add text to a canvas widget by
using thecr eat eText method. It requires an x,y coordinate pair, which determines

where you place the text in the canvas, and the text to be displayed:

$id = $canvas->createText (0,0, -text => "origin");

The -t ext optionisactually optional, but then you wouldn't see any text on the screen.
Because there is no point in that, we will assume that you will always specify - t ext
with atext value to display. The other options available for text items are as follows:

_anchor :> "Cent er n |Il nll |l| elI |"S" |II WI III r]ell ||l nWl |”Se” |l| SWI
The - anchor option determines where the text is placed in relation to the x,y

coordinate. The default is centered: The text will be centered over that point no matter
how large the piece of text is.

-fill =>color
The text isnormally drawn in black; you can change thisby usingthe-fi | | option.

The name of this option doesn't make much sense when you think about it in terms of
text (normally our widgets use - f or egr ound to change the color of the text). For

example, -fill => "Dbl ue' will draw blue text.

-front => fontname
Y ou can change the font for the displayed text by using the - f ont option.

-justify => "left" |"right" |"center"
If the displayed text has more than oneline, the - j ust i fy option will causeit to be
justified as specified. The default justification isto the | eft.

-sti ppl e => bitmap
Thisoption isabit strange, but here it isanyway. If you specify a bitmap name (or file)
withthe- st i ppl e option, the text will be drawn by using the bitmap pattern. Most of

the time, this will make the text unreadable, so don't useit unlessyou're using alarge
font.

-tags =>taglist
Thet agl i st isasingletag name or an anonymous list of tag names to be assigned to
thisitem.

-text =>sdtring
This option is not optional. The specified string is displayed in the canvas widget at the X,
y coordinate.

-wi dt h =>amount

Thisis another misnamed option because it does not change the width of each text
character. It determines the maximum length of each line of text. If the text islonger
than thislength, the line will automatically wrap to a second line. The default value for
amount is 0, which will only break lines at newline characters. Lines are always broken
at spaces so words won't be cut in half.

Text item indexes

Methods that affect text items will sometimes ask for an index value. Text indexes for
the regular text widget were covered in Chapter 8, and the index values for a canvas text
item are similar. The only difference is that each item is considered only one line (even
if ithas"\ n" charactersinit). Index values are as follows:

n
A number value: for example, 0 or 12.0 isthe first character, 1 isthe second, and so on.

end"
The character directly after the last one. Often used with thei nser t method to add to
the end of the string.

“insert"
The character directly before the insertion cursor.

sel .first"
Thefirst character of the selected text. Only valid if there is a selection.

"sel .l ast”
The last character of the selected text. Only valid if there is a selection.

&, y"

The character closest to the point x,y of the canvas (not screen coordinates).

Deleting characters

To delete characters from within atext item, usethe dchar s method: $canvas-
> dchar s (tag/id, first [, last]). Specify atag or ID to match the text item(s) and the

index at which to start deleting. If the end index isn't specified, all the characters to the
end of the string will be deleted (including any "\ n" characters).

Positioning the cur sor

Y ou can specifically place the blinking text cursor by using i cur sor : $canvas-
> | cursor (tag/id, index). The cursor will only show up immediately if the specified

item has the current keyboard focus. Y ou can still set the position of the cursor if it
doesn't, it just won't display until the item does get the keyboard focus.

I ndex information

Y ou can find out an index based on another index by using thei ndex method. Don't get
confused yet; here's an example:

$i ndex = $canvas->i ndex("textitent, "sel.first");

Thiswill return the numerical index associated with the first selected character in the
text item. If more than one item will match thetag or ID indicated (in this caseit'satag
named "t ext it ent'), then the first one found will be used.

Adding text

To add more text to atext item, usethei nsert method: $canvas- >i nsert (tag/id,

index, string). The first argument is the tag or 1D, which can match multiple items. The
second argument is the index before which to insert the new string, and the last argument
Isthe actual string to insert into the text item.

Selecting text

There are severa methods you can use to programmatically select portions of the text.
To clear the selection (any selection; there are no tags or 1Ds sent with this command),
use $canvas- >sel ect G ear () . To select aportion of text, usesel ect Fr omand

sel ect To. Thefollowing two lines of code select the text from beginning to end for
the first item that matchesthetag " t ext t ag"

$canvas- >sel ect Fron("texttag", 0);
$canvas- >sel ect To("texttag", "end");

Y ou can add to the selection by using sel ect Adj ust : $canvas- >sel ect Adj ust
("adj ust ", tag/id, index). Y ou can get the ID of the item that currently hasthe
selectioninitby using$i d = $canvas->sel ectlteny).

The Widget | tem

Y ou can put any type of widget inside a canvas-buttons, checkbuttons, text widgets, or
even another canvas widget (if you are alittle crazy)-by using thecr eat eW ndow

method. Before calling cr eat eW ndow, you must create the widget to put into the
canvas. Here's an example:

$bttn = $canvas->Button(-text => "Button",

command => sub {print "Button in canvas\n";});
$id = $canvas- >creat eW ndow(0, 0, -wi ndow => $bttn);

There are afew things you should note about this example (which isfairly typical except
the subroutine associated with the button doesn't do anything useful):

 The button is a child of the canvas widget. The button could be a child of an ancestor
of the canvas (the button could be a child of the main window if the canvasisalso a
child of the main window). However, the button should not be a child of adifferent
toplevel widget that has nothing to with the canvas.

* Thecr eat eW ndow method doesn't actually create the widget; it just putsit in the

canvas. The button is placed at the specified coordinates inside the canvas and has not
been placed on the screen with pack(),gri d(),or pl ace().

» The widget must be created before you call cr eat eW ndow.

* You can click the button and the callback associated with it will be invoked, just as
with any other button.

» \When you create the widget, you can use any of that widget's options to configure it.
Y ou can continue to configure the widget by using the referenceto it (e.g., $bt t n).

The following options which you can use when you call cr eat eW ndow are more like
options you use with pack() than widget options:

- anchor :> n Cent er n | n I,]II | n eII | n SII | n WI | n I,]ell | n nv\/l | n
n SWI
The widget will be placed at the x,y coordinates according to the - anchor value. The

defaultis" cent er ", which means that the widget will have its center point placed on X,
y.

Sell |

- hei ght =>amount
The widget will be given this height. If you don't use - hei ght , the widget will have the
height it was created with (usually the natural size of the widget).

-tags =>taglist
The taglist associates a tag with the widget. Y ou can specify either asingle tag string, or
an anonymous list of tag names.

-w dt h =>amount
The widget will be given thiswidth. If you don't use the- wi dt h option, the widget will
have the width it was created with (the natural size of the widget).

-w ndow => $w dget

Thisisanonoptional option. If you don't specify - wi ndow, there will be no widget put
in the canvas. The $wi dget isareferenceto awidget item. Y ou can create the widget
beforehand or inline as follows:

$canvas- >cr eat eW ndow 0, 0, -w ndow => $canvas- >Butt on(-
text => "Button",
-command => sub { print "Button!\"; }));

It makes sense to create the widget inline if you don't need to do anything fancy
withit.

Configuring the Canvas Widget

Asusual, to configure or get information about the canvas widget, you can use the
confi gur e and cget methods, explained in detail in Appendix A, Configuring

Widgets with configure and cget. Remember, conf i gur e and cget operate on the
entire canvas widget (possibly affecting the items within it).

Configuring Itemsin the Canvas Widget

To change the configuration options of any of the items within the canvas, you only need
to know the tag name or the ID for that item. Y ou can then usethei t entget and

I t enconfi gur e methods. They behave just likethecget andconfi gure

methods, except as afirst argument, they take the tag or ID of the item(s). | use the term
"item(s)" because atag can refer to more than one item. Here are some examples:

$col or = $canvas->itencget ("circle", -fill)
$canvas- >i t enconfi gure($i d_nunber, -fill => "yellow', -
outline => 5);

Make sure the options you use withi t enconfi gure andi t encget arevalid. Each

item type has alist of valid options; they are listed earlier in this chapter with each
cr eat e method.

When you set the - t ags option, thei t enconf i gur e method will replace any
currently set tags for the item. The taglist associated with - t ags can also be empty,
which will essentially remove all tags.

Tags

Each item can also have atag (or more than one tag) associated with it. We have seen
tags used before in the text widget, where sections of text could be assigned atag. A tag
can be assigned when the item is created, or you can use the addt ag method to assign a

tag after the item has been created.

There are two special tags that are automatically assigned and maintained: the
"current” and"al | " tagrefersto al theitemsin the canvas. The" current " tag

refers to the topmost item that the mouse cursor is over. If the mouse cursor is outside of
the canvas widget or not over an item, thenthe"” cur r ent " tag does not exist.

Y ou can use tags to make changes to many different items at once. For instance, if you
want all circles to have the same color, but you want to be able to change it from time to
time, then giveadl circlesa" ci r cl e" tag when you create them. Using the

| t enconf i gur e method to change the configuration options of the items with the
“circle" tag.

The following are some sample syntax lines for creating tags.

$canvas- >addt ag (" newt ag", " above", tag/id);

The" newt ag" tagisadded to the item that is above the tag/I D item. If there is more
than one match for tag/ID, the last item found will be used so the " newt ag" isdirectly
above the tag/ID item in the display list. The display list

Is created as you add items to the canvas and can be manipulated with ther ai se
and | ower methods.

$canvas- >addt ag("new ag", "all");

The keyword" al | " isaspecial tag that includes every item currently in the canvas.
Items added to the canvas after the call to addtag will not contain " newt ag"” in their
taglist.

$canvas- >addt ag(" newt ag", "bel ow', tag/id);
The" newt ag" tag isadded to the item that is directly below the tag/ID item. If more
than one item matches the below tag/ID search, the lowest item in the list will be used.

$canvas- >addtag (" newtag", "closest", xy);
Usethe" cl osest " tag to select the item closest to the x,y coordinates (in canvas
coordinates). If more than one item matches, the last one found is used.

There are two more possible arguments for this form of addt ag. Y ou can specify

anumber that indicates how far out from the X,y coordinates items are to be
considered. For instance, if you want an item that is within 10 pixelsto be
considered " cl osest ", make the call asfollows:

$canvas- >addt ag("newt ag", "closest", 50, 100, 10);

Y ou can also specify a starting tag/ID to start a search. The call would then look
likethis:

$canvas- >addt ag(" newt ag”, "closest", x, y, 10, $tag or id);
By using this form, you can loop through all the closest items.

$canvas- >addt ag(" newt ag", "encl osed", x1,vyl, x2,vy2);

Y ou can assign the same tag to several items within the area bounded by (x1,y1) to (x2,
y2) by using the" encl osed" form of addt ag. [temswill only be given" newt ag”

If they are completely within the area. The coordinates must make sense when you
specify them: x1 < x2 and y1 <y2.

$canvas- >addt ag(" newt ag", "overl appi ng" xl,vyl, x2,y2);

To assign tags to any item that has any part inside a bounded region, use
"over | appi ng" instead of " encl osed" . Even if theitem has only one pixel inside

thisarea, it will still count. All other rules for the bounding area are the same as for
“encl osed"

$canvas- >addt ag("newt ag", "w thtag", tag/id);
Assigns" newt ag" to all the itemswith thetag or ID specified.

Binding Items Using Tags

Each item in a canvas can have an event sequence bound to it so that a callback will be
invoked when that event sequence happens. Thisis similar to adding an event sequence
binding for widgets except item tags or item | Ds are used. (Remember, if you want to
add a normal binding to the canvas widget itself, you must use Tk: : bi nd (or

canvasBi nd for Tk8.0 users) instead of just bi nd.)
The general form of bi nd isasfollows:
$canvas- >Tk: : bi nd(tag/id [, sequence, command));

The sequence would be similar to " <But t on- 1>" or " <Doubl e- 1>" . A complete
definition and explanation of event sequence is available in Chapter 14, Binding Events.

When you create item bindings, keep in mind that only mouse and keyboard bindings are
valid for items. Y ou can't do any of the weird esoteric bindings that are available for all
widgets.

Here is an example that changes the color of any items tagged with " bl ue" when the
mouse is over it:

When the nmouse is over the item color it blue
$c->Tk: : bi nd(" bl ue", "<Enter>",
sub { $c->itentonfigure("blue", -

fill => "blue"); });
When the nouse is over the item color it black.
$c->Tk: : bi nd(" bl ue", "<Leave>",
sub { $c->itenctonfigure("blue", -
fill => "blue"); });
Finding Tags

You can usethef i nd command to determine which items have a certain tag. The
possible waysto call f i nd are the same as those of addt ag (except for the newtag

argument). Here are the basic formats (see "Tags" earlier in this chapter for more details
on what they mean and how they work):

$canvas- >fi nd("above", tag/id);
$canvas->find("all");

$canvas->find("bel ow', tag/id);

$canvas->find("closest”, x, y [, additional _area] [, tag/
id]);

$canvas->fi nd("encl osed", x1, yl, x2, y2);

$canvas- >fi nd("overl appi ng", x1, yl, x2, y2);
$canvas->find("wi thtag", tag/id);

Getting Tags from a Specific Item
To get alist of al the tags associated with an item, use:
@i st = $canvas->gettags(tag/id);

If the tag/ID matches more than one item, then the first item found is used. If the tag/ID
doesn't match anything, an empty string is returned.

Retrieving Bounding Box Coordinates

When we talked about the scrolling region of a canvas, we saw an example of the bbox
method. The bbox method returns alist with four e ements that define the areain which
all the specified tags exist. The example used the specia " al | " tag, which refersto

every item in the canvas. Thiswas how we used it to define our scrolling region. You
can specify more than one tag/ID to search for as follows:

($1, $r, $t, $b) = $canvas->bbox("blue", "red");

Assuming that you have been assigning thetags " bl ue" and" r ed" to appropriately

color items, this code would return the region in the canvas that encloses all blue and red
items.

Tranglating Coor dinates

When you set up a callback and usethe Ev(' x') and/or Ev('y') argumentsto find

out where the user clicked, you must translate that information into canvas coordinates
(Ev isexplained in Chapter 14). To do this, usethe canvasx and canvasy methods:

$x = $canvas- >canvasx(screenx [, gridspacing]);
$y $canvas- >canvasy(screeny [, gridspacing]);

Each method takes an optional gridspacing argument; then the canvas coordinate value
will be rounded to the nearest value to fit the grid.

Moving Items Around

Once an item has been created on the canvas, you can move it by using one of two
methods. nove or coor ds. The nove method takes atag or 1D to indicate which items

to move and the amounts to add to the x and y coordinates:

$canvas- >nove(tag/id, xdistance, ydi stance);

For instance, the following code will move itemswith the" bl ue" tag 100 pixelsin the
x direction and 100 pixelsin they direction:

$canvas- >nove(" bl ue", 100, 100);

To move an item in the negative direction, simply specify a negative value for the
xdistance and/or ydistance. The other method, coor ds, allows you to explicitly specify

anew x and y location for the first item found that is identified by the tag or ID:

$canvas->coords(tag/id, newx, newy);
If the item requires more than one set of x, y coordinates, you simply continue to specify

them:

$canvas- >coords(tag/id, newxl, newyl, newx2, new2...);

Y ou can also find out where an item currently isin the canvas by using coor ds and not
specifying the x or y coordinates:

@oords_list = $canvas->coords(tag/id);

Remember, the coor ds method only appliesto the first item it finds that matches the
giventag or ID.

Changing the Display List

Every time a method looks through all the itemsin the canvas for a specific tag or ID, it
looks through the display list. The display list is created as items are added to the canvas.
Thefirst item added to the canvasisthe first itemsin the display list, and items are
added in order asthey are created. Also, items created |ater are drawn above the ones
created earlier if they overlap at al. To change the display order, usether ai se and

| ower methods:

$canvas->rai se(tag/id, abovetag/id);
$canvas->l ower (tag/id, belowtag/id);

Thefirst argument for each method isthe tag or ID of the item(s) you want to move in
the display list. The second isthetag or ID next to which the first item should be placed
(either above or below). If the first tag or ID matches more than one item, they are all
moved.

Note that if you usethe Scr ol | ed method to create the canvas, you can't use the item
returned by that method to invoke either r ai se or | ower ; you'll get a nasty error about
the wrong argument types because Scr ol | ed isnot invoking thisversion of r ai se or
| ower , but another one. Use the subwidget to get the actual canvas reference and the
cal tor ai se and | ower will work.

Deleting Items

To remove an item (or more than one item) from the canvas completely, use the
del et e method. It takes alist of tag or IDs to remove from the canvas. It will delete all

matches it finds for the tag names, so be careful that you aren't deleting something you
don't want to delete. Here is an example that uses three separate tag/I Ds:

$canvas- >del ete("blue", "circle", $id _nun;

Y ou can specify only one tag/ID or as many as you want.

Deleting Tags
Y ou can remove tags from items by using the dt ag method. There are two forms:

$canvas- >dt ag(t ag) ;
$canvas->dtag(tag/id, deltag);

Thefirst one will search for items with the specified tag and then delete the tag. The
second will search for items that match the tag or ID and then deletethe del t ag (if it

exists) from that item. This allows you to delete a subset of the tabs, rather than every
single tag.

Determining Item Type

To determine an item's type, call thet ype method:
$canvas->type(tag/id);

If the tag or ID mathods more than one item, only the type of the first item is returned.
The returned value will be a string describing the item type: " oval ", "t ext ",

"rectangl e", and soon.

Set Keyboard Focus

To assign the keyboard focus to an item, use the f ocus method:
$canvas->focus(tag/id);

If the item doesn't know what to do with the keyboard focus, nothing will happen. Y ou'll
use this to change the focus to widget within the canvas.

Rendering the Canvas as PostScript

Y ou can get acopy of the canvas as postscript by using the post scri pt method. It
will either return the PostScript output or, if the- f i | e option is specified, putitinafile

$postscript = $canvas->postscript();
$canvas->postscript(-file=> "ps.out");

The following options allow you to control the output of the PostScript.

-col ormap =>\@array
Specifies that each element in @array must be avalid postscript command for setting
color values,;eg.,"1.0 1.0 0.0 setrgbcol or".

-col ornode => "color" |"gray" |" nmono"
Creates the postscript in full color, grayscale (" gr ay"), or black and white (" nono").

-file =>filename
Specifies the file in which to put the PostScript output.

-font map =>\@array

Each element in @array is atwo-element array that contains a fontname and a point
size. The fontname should be a complete font name so Tk will parseit correctly (e.g., " -
*-Hel vetica-Bol d- O Nor mal - - *-140-*").

- hei ght =>sgize
Sets the height of the areato print. The default height is the canvas height.

- pageanchor => "n" |"e" |"s" |"W |["center"
Indicates where the page should be placed over the positioning point specified by -
pagex and - pagey options. Defaultis” cent er .

- pagehei ght => height
Sets the height of the printed page. The canvasimage will be scaled to fit. height is any
valid screen distance.

- pagewi dt h =>width
Sets the width of the printed page. The canvasimage will be scaled to fit.

- pagex =>x
Sets the coordinate for the x positioning point. Can be any valid screen distance.

- pagey =>y
Sets the coordinate for the y positioning point. Can be any valid screen distance.

-rotate => 0|1
If 1, the page is rotated into alandscape orientation. Default is portrait orientation.

-w dth =>sdze
Sets the width of the canvas area to be printed. Defaults to the width of the canvas.

-X =>X
Sets the | eft edge of the areato be printed (in canvas coordinates). Default is the left
edge of the window.

-y ==Yy
Sets the top edge of the areato be printed (in canvas coordinates). Default is the left edge
of the window.

Scaling the Canvas

When you put a large number of items on the canvas, it's sometimes hard to see them all
without scrolling all over the place. It's possible to scale the canvas, for

example, so it will shrink everything in half or explode it to twice the original size. The
usage for scal e isasfollows:

$canvas->scal e(tag/id, xorigin, yorigin, xscale, yscale);

The scaling is centered around the xorigin and yorigin. | suggest using the real origin (0,
0) unless you can come up with a good reason not to. Both xscale and yscale are the
scaling factors used on each coordinate in each item. Here are some examples:

$canvas->scale("all", 0, 0, 1, 1); # no change!

$canvas->scale("all", 0, 0, .5, .5); # nake all 1/2 size
$canvas->scale("all", 0, 0, 2, 2); # doubl e everything
$canvas->scale("all", 0, 0, 3, 3) # triple everything!

It's agreat ideato add a Zoom In and Zoom Out button that takes care of the scaling for
you. Keep track of the scaling factor in avariable ($scal e, for instance); setitto 1 to

start with. Multiply it by .5 to zoom out and by 2 to zoom in. The last thing you'll need to
do is make sure that, if you insert any new items into the canvas, you multiply those
coordinates by the scale factor as well (otherwise they will ook either too large or too
small compared to the rest of the canvas items).

Scanning
Use the scan method to implement scanning of the canvas:

$canvas- >scanMark(x, vy);
$canvas->ScanDr agt o(X, Y)

Thefirst call, $canvas- >scanMar k(x, YY), recordsthe x andy coordinates and the
current canvas view. The second call, $canvas- >scanDr agt o(x, V), causesthe

view in the canvasto be adjusted by 10 times the difference between these coordinates
and the previous ones sent with scanMar k. This makes the canvas look asif it was

moved at high speed.
Scrolling Methods

The canvas widget can be scrolled both horizontally and vertically. The methods xvi ew
and yvi eware used to communicate with the scrollbars. See Chapter 6 for more
information on how these methods work.

A Drawing Program Example

The canvas widget is very versatile and can be useful for displaying different types of
items. One of the first things that comes to mind when people think of acanvasisa
drawing program. To save you the trouble, I've written a rudimentary

drawing program called Quick Draw you can use to draw rectangles, ovals, and lines. Y ou
can also change the thickness of the objects before you draw them. It only requires atiny
bit of error-checking to make it aslicker program. Here's the code:

use Tk;
$mw = Mai nW ndow >new;
$mw->titl e("Quick Draw');

$f = $mw>Frame(-relief => "'groove',
-bd => 2,
-l abel => "Draw. ")->pack(-side => 'left', -
fill =>"'y");
$draw_item = "rectangl e";
$f - >Radi obution(-variable => \$draw i tem
-text => "Rectangl e"”
-val ue => "rectangl e",
-command => \ &i nd_start)->pack(-
anchor => '"w);
$f - >Radi obutton(-variable => \$draw item
-text => "Oval"
-val ue => "oval "
-command => \ &bi nd_start)->pack(-anchor=>"w);
$f - >Radi obutton(-vari able => \$draw i tem
-text => "Line"
-value => "line",
-conmmand => \ &bi nd_start) - >pack(-
anchor => "w);
$f - >Label (-text => "Line Wdth:")->pack(-anchor => "W);
$t hi ckness = 1;
$f ->Entry(-textvariabl e => /$t hi ckness) - >pack(-anchor => 'wW);

$c = $mw >Scrol | ed(" Canvas"”, -cursor => "crosshair")->pack(
-side => "left", -fill => "both', -expand => 1);
$canvas = $c->Subwi dget (" canvas");

&bi nd _start();
Mai nLoop;

sub bind_start {
If there is a "Mtion" binding, we need to allow the user
to finish drawing the item before rebinding Button-1
this fcn gets called when the finish drawing the item again
@i ndi ngs = $canvas->Tk: :bind("<Mdtion>");
return if ($#bi ndings >= 0);

if ($draw_itemeq "rectangle” || $draw itemeq "oval" ||
$draw itemeq "line") {
$canvas->Tk: :bind("<Button-1>", [\&start_draw ng, Ev

("x"), Bv('y')]);

sub start_draw ng {
ny ($canv, $x, $y) = @;
$x = $canv->canvasx($x);
$y = $canv->canvasy(3y);

Do a little error checking
$thickness = 1 if ($thickness !~ /[0-9]+/);
if ($draw itemeq "rectangle") {

$canvas- >cr eat eRect angl e($x, $y, $x, $y,
-wi dth => $t hi ckness, -tags => "drawnenow');
} elsif ($draw_itemeq "oval") {
$canvas- >creat eOval ($x, 3By, $x, 9y,
-wi dt h => $t hi ckness, -tags => "drawnenow');
} elsif ($draw itemeq "line") {
$canvas- >creat eLi ne($x, 3y, $x, 9y,
-wi dt h => $t hi ckness, -tags => "drawnenow');

}

$startx = $x; $starty = $y;
Map the Button-

1 binding to &nd_drawi ng i nstead of start draw ng
$canvas- >Tk: : bi nd("<Mdtion>", [\&size_ item Ev('x"); BEv('y')]),
$canvas- >Tk: : bi nd("<Button-1>", [\&end_draw ng, Ev('x'), Ev

Cy)l);

}

sub size_item{

my ($canv, $x, $y) = @;
$x = $canv->canvasx($x);
$y = S$canv->canvasy(93y);

$canvas- >coords("drawnenow', $startx, S$starty, $x, $y);

}

sub end_draw ng {
ny ($canv, $x, $y) = @;
$x = $canv->canvasx($x);
$y = $canv->canvasy(3y);

finalize the size of the item and renove the tag fromthe item
$canvas- >coords("drawnenow', $startx, S$starty, $x, $y);
$canvas- >dt ag(" dr awnrenow') ;

renove notion bi ndi ng.
$canvas->Tk: : bi nd(" <Motion>", "");

&bind start();
}

Notethat | didn't set the- scr ol | r egi on at all because | wanted to create a limitless drawing

space for the user. (This was the easiest way to provide this functionality: Do nothing!) It'sa
cute little program that demonstrates how to use bi nd and afew of the canvas methods. Figure

9-4 shows a screen shot of the application after afew items have been drawn on it.

| = Guick Draw 7| -!U
A |

! Draner:

-~ Reclangls

o Ol

% Line [
Lire Width:

(1=
ot

Figure 9-4.
Quick Draw application screen

Fun Thingsto Try

The Quick Draw application doesn't do much that is useful, but here are some ideas for
features to add to the application:

 Add the capability to print to a PostScript file.

* Create a Save Drawing feature that will loop through all the items and write out their
types and coordinates to atext file. Of course, you'll need a Load Drawing feature as
well.

» Allow the user to create text items.

» Add an entry widget that lets you change the color (by typing in a colorname) with
which to draw the items.

10—
The Scale Widget

A scale widget is a strange little widget. It's ssimilar to a scrollbar because it islong and
skinny with a button in the middle of it, but it doesn't scroll anything other than itself. It
does keep track of something though-a number. When you change the position of the
button in the scale, the value associated with the scale changes. Here are some things
you can do with a scale widget:

* Create awidget from which a user can select a number between 1 and 100.
» Create three scales, each representing avauein an RGB (red, green, blue) number.

» Create four diders, each representing a portion of an IP address. Each scale can go
from 0 to 255, and it would probably be smart to start them at 255. Use alabel widget to
show the completed | P address, periods and all.

* Create atemperature scale that starts at -50 and goes to 130 degrees.

 Show the amount of rainfall so far this year. The scale can be marked to show every
five inches.

The scale widget can be placed horizontally or vertically, depending on where you have
the most room in your application window.

Creating a Scale

As with other widgets, you can create a scale by using a parent widget and passing
options to the scale to change its configuration:

$parent - >Scal e([option => value])->pack;

Use one of the geometry managers discussed in Chapter 2, Geometry Management, to
place it on the screen (such as pack, as shown in the preceding code).

Most of the options associated with the scale widget are the standard options that used
with all other widgets. All of the possible options are in the following list. A discussion
of special options that have a dlightly different meaning for the scale and options that are
specific to the scale widget follows the list.

-acti vebackground => color
Sets the color the dlider's background should be when the cursor is over the slider (the -
stateis' active').

- backgr ound => color
Sets the color the dlider's background should be when the cursor is not over the slider (-
stateis' normal"’

- bi gi ncrenent => amount
Sets the amount by which the slider will change value when required to do so in large
increments. Default is 0, causing the value to change by 1/10 the top value of the scale.

- borderw dt h =>amount
Sets the width of the edges of the widget. Default is 2.

- command => callback
Sets the callback invoked when the dider is moved.

- cursor => cursorname
Determines the cursor to display when the mouse is over the scale.

-di gits =>amount
Indicates how many significant digitsto retain when conversion from a number to a
string takes place.

-f ont => fonthame
Sets the font used to display any text in the scale.

-f oreground => color
Sets the color of the text displayed in the scale.

-from =>value
Indicates the low end of the scale values. Default is 0.

- hi ghl i ght backgr ound => color

Sets the color of the highlight rectangle displayed around the scale when it does not have
the keyboard focus.

- hi ghl i ght col or => color

Sets the color of the highlight rectangle displayed around the scale when it has the
keyboard focus.

- hi ghl i ghtt hi ckness =>amount
Sets the thickness of the highlight rectangle displayed around the scale.

-1 abel =>labelstring
Describes alabel for the scale. Default isno label.

-1 engt h =>amount
Sets the length of the slider (the long direction, regardless of thevalue of ori ent) ina
valid screen distance.

-orient => "vertical' |'horizontal'
Setsthe direction the scaleisdrawn. Defaultis' verti cal ' .

-relief => "raised |'sunken' |'flat' |'ridge' |'groove' |
‘solid
Determines how the edges of the widget are drawn. Defaultis' f 1l at ' .

-repeat del ay => milliseconds
Sets the number of milliseconds the widget waits before repeating.

-repeatinterval =>milliseconds
Sets the number of milliseconds the widget delays between repeats.

-resol uti on =>value
Sets the increments by which the value in the scale will change. Default is 1.

-showal ue => 0|1
If set to O, the value of the slider setting is not shown at al. Default is 1.

-sliderl ength =>value
Sets the size of the dider (inside the widget). Default is 25.

-state => 'normal’' |'active' |'disabled
Determines the state of the widget and whether or not the user can interact with it.
Defaultis' nor mal ' .

-takefocus => 1|0 |undef

Determines whether or not the widget can receive keyboard focus. Default isto let the
program decide.

-tickinterval =>value

Describes the labels drawn by the right (or on the bottom) of the scale. Labels are drawn
for every value. A vaue of 0 means no labelswill be drawn at al. Default is 0.

-to =>value
Sets the top value of the scale. Default is 100.

-t roughcol or => color
Sets the color of the area behind the slider button (same as a scrollbar).

-vari abl e =>\$variable
Sets the variable in which the dlider value is stored.

-w dt h =>amount
Sets the width of the skinny part of the slider (regardless of the value associated with -
orient).

Assigning a Callback

Asusual, use the - command option to assign a callback for the widget. The callback is

invoked every time the scale value is changed. So if you change the value from 50 to
100 and the scale increment is 1, the callback will be invoked 50 times. The callback is
also called when the widget is created. My recommendation is not to use - conmand

unless you have a small number of possible values.

Orientation

To change the orientation of the scale, usethe - or i ent option. It takes a string value
that should contain either " hori zont al " or"verti cal ". Thedefault for this
optionis" verti cal " . Figure 10-1 shows both a horizontal scale and a vertical scale.

= EE|

Figure 10-1.
Vertical scale (the default orientation) and horizontal scal

Minimum and Maximum Values

Usethe- f r omand - t 0 options to change the possible range of values for the scale.
Usually the value associated with - f r omis smaller than the value associated with - t 0.

If you happen to switch them, the scale will still display with the higher value on the
right and the lower value on the left. Either or both values can be negative. Here are
some examples:

$mw >Scale (-from=> -10, -to => 10)->pack;

$mw>Scale (-from=> 10, -to => -100) - >pack;

$mw >Scale (-from=> -100, -to => -50)->pack;

$mw >Scale (-from=> -0.5, -to => 0.5, -resolution => 0.1)-
>pack;

Asyou can see, the values assigned to - f r omand - t 0 also don't need to be whole
integers.

Displayed Versus Stored Value

Sometimes the value you are searching for resides between two numbers that are very far
apart, such as 0 and 1,000,000. Stepping through each of those values one by one would
be tedious. Y ou can change the step value of the displayed number using the -

r esol ut i on option. The default for - r esol uti onis1, but it can be changed to any
value that isless or greater than that.

Note that if the resolution islarger than 1, it is possible for the slider to have a value (set
by the program, for example) that is smaller or larger than the displayed value.

Adding a L abel

Y ou can add alabel to your scale by using the- | abel option. Thelabel isplacedina
different location depending on the value associated with - or i ent (see Figure 10-2).

= Scale example |l

“{ | vertical

horizontal
1)

|1

Figure 10-2.
Two scales with labels

Displaying Value I ncrements

The scale displays its current value above or to the left of itself (depending on the value
associated with - or i ent). Suppose you want to display labels (such as 0, 10, 20, ...
100) that show the user approximately where the button needs to be to select those
values. If you want to display them underneath or to the left of the scale, you can use the
-tickinterval option. By default, it is set to 0 and no numbers are displayed. To

show the values every 10 numbers, use-ti cki nter-val => 10. Thelarger the

range of values from which the scale can select, the larger the value this should be, or
you'll end up with a bunch of numbers so close together that you won't be able to tell
what they are. See Figure 10-3.

et

0.0 o

W i
1] Z0 40 60 80 100

0.5

Figure 10-3.
Using-tickinterval with both horizontal and vertical scales

Changing the Size of the Scale

Y ou can change the size of the scale by using the- | engt h and - wi dt h options. You
can also change the size of the button displayed in the slider widget; to do so, use the -
sl i der | engt h option. It takes avalue specified in screen units and will change the
length of the slider button. See Figure 10-4.

$mn- >Scal e (-
sliderlength => 100); # nake the button 100 pi xel s.

Default sliderength:
0

=T

Slideriength of 100: .
| g .‘.
Sliderength of 10: .
0 E
1

Figure 10-4.
Different-dliderlength values

Options You'll ProbOably Never Need

The two final options for the Scal e widget creation method are - bi gi ncr enent and
-di gi ts. The- bi gi ncr enent option specifies the size of jumps when using really
large numbers. The default for - bi gi ncr enent is0, which meansit will jump in
increments that are 1/10 the total range.

The- di gi t s option represents how many digits will be used when converting from a

number to a string. The default (0) forces the scale to use a precision that allows for a
different string for every possible value on the scale.

Configuring a Scale

Asusual, the scale has both conf i gur e and cget methods, which let you query and

set options for the scale widget. See Appendix A for more details on how to use these
methods.

Getting the Value of a Scale
The get method will return the current value of the scale:
$val ue = $scal e->get();
Y ou can also specify x and y coordinates and retrieve the value of the scale at that point:

$val ue = $scal e->get (x, Vy);

Setting the Value of a Scale
Y ou can force the value associated with the scale by using the set method:
$scal e- >set (val ue) ;

This method is great for setting an initial value if you aren't using the - var i abl e
option at all. If you wereusing - var i abl e, just set that variable to the desired starting
value.

Determining Coordinates
The coor ds method returns alist containing x and y coordinates:

($x, $y) = S$scal e->coords ();

The coordinates indicate the position in which the current value is located in the scale.
Y ou can also passin avalueto find the coordinates of:

($x, $y) = $scal e->coords (val ue);

| dentifying Parts of a Scale

Y ou can find out what part of the scale a coordinate residesin by using thei dent i fy
method:

$val ue = $scale->identify (x, y);

Thei dent i f y method returns a string containing one of the following values:

“slider","troughl","trough2", or an empty string (if the coordinates don't
refer to any of these parts).

Fun Thingsto Try

» Create a survey from that contains scale widgets for user information. Items such as
age (0-150 would be a safe range), income, and number of children in the household can
al be entered into ascale. Make good use of the-r esol uti on,-to,and-from

options to make the job easier for the user.

» Create a ping application that uses scale widgets (one for each portion of the IP
address) to request an |P address from the user.

11—
M enus

Different Types of Menus

There are severa waysto create and utilize a menu from within your Perl/Tk
application. Here are some examples of how you can use a menu-type widget:*

» Create File, Edit, and Help menus across the top of your application.

* Display alist of fonts from which the user can choose (the selected font can be marked
with a checkmark).

* Display alist of editing commands that become available when the user right-clicks on
another object (such as alistbox or entry widget) in your window.

Y ou can build each of these different types of menus with the basic menu widget. The
menu widget itself isalist of itemsthat are displayed oneitem per linein abox. Each
item can have an associated callback that is called when the menu item isinvoked or
selected. Unlike the other widgets we have seen so far, you cannot use any of the
geometry managers on a menu. Instead, you must use amethod called post to display

your menu widget (post will be discussed later in this chapter).

Figure 11-1 shows the contents of atypical menu widget. It contains severa items, a
separator, and afew more items. Separators are useful for grouping together related
commands and providing avisual break if one menu contains a number of commands.

* Typically, a menu contains commands that aren't used frequently, such as
configuration options, File Open, File Close, Help, and so on. Y ou would be wise to
put frequently accessed commands in the window to provide easier access for the user.

menu widget
ltem1
ltem2
| Item3
; Itemd
Figure 11-1.

Simple menu widget with five items: Item1, Item2, Separator, Item3, and Item4

Menus are a great way to replace checkbuttons and radiobuttons. If you have five
radiobuttons, you can place them on a menu and save a ton of screen space for more
important widgets.

A menubutton widget is based on the menu widget and has a button that controls when
the menu is displayed. When the button is pressed, the menu is displayed directly below
the button. The button contains a text string that describes the itemsin the menu. A
menubutton is the type of menu you'll use 90% of the time. Figure 11-2 shows a block
diagram of a menubutton after the button has been pressed. The button part of the
menubutton is the where the word "File" appears.

Menubutton widget

Figure 11-2.
A menubutton widget that uses a menu widget

The main advantage of using a menubutton widget is that it handles the display functions
of the menu. Because this is the most frequently used menu-related widget, it will be
covered first.

The last menu-related widget covered is the optionmenu, which behaves differently than
the other type of menus. The optionmenu allows the user to select one item from alist of
items. For example, you can use an optionmenu to add the following options to your
program:

* Allow usersto select afavorite color from alist of colors.
* Allow usersto select the country in which they live.
* Allow usersto choose how verbose they would like the application to be: Silent, Semi-

Verbose, and Verbose.

Figure 11-3 shows a block diagram of an optionmenu with Item3 selected.

Optionmenu widget
(or popup menu) | Itemd
ltem2

ltem3
Select Value: [jtama

Figure 11-3.
Example of an optionmenu widget

Menus simply give you away to group related tasks together, and the optionmenu allows
you to group several choicestogether. Thereis a callback associated with each menu
item, much like the callbacks associated with button widgets. Instead of using 10
separate buttons, you can create 2 menus that each contain 5 menu items. This saveson
display space and helps users understand that those items have a similar purpose and
have been grouped together for their convenience.

The Menubutton Widget

i e i it i e I|
==~

BmEn |
pam 2 |
em 3 |
Hem 4|

As described earlier, the menubutton widget has a menu that drops down from a button
when the button is pressed. The menu is removed from the window when an item from
the menu is selected or when the user clicks elsewhere in the application.

Many applications use a menubutton-type construct. The menubuttons are normally
grouped across the top of the application and have names like File, Edit, Options, and

Help. Figure 11-4 shows an example of several menubuttons grouped together in aframe.
*

Creating a Menubutton

When you create a menubutton widget, use the parent widget to invoke the
Menubut t on method, which then creates a menubutton widget reference. The options

you send with the Menubut t on method can configure both the button that isinitially
displayed on the screen and the actual menu items:

$nbutton = $parent->Menubutton ([options...])->pack;

* Y ou can accomplish this same look in awindow by using a menubar widget.
However, the additional functionality that it providesis minimal, so we won't be
covering it in thisbook. To get thislook, create aframe widget with arelief of
"ridge" and borderwidth of 2. Pack the menubuttonswith- si de =>"| eft"

for al but the help menu, whichhas- si de => "right".

| Menubution B
File Edit Options Hnlp|
I
Exit
Figure 11-4.

Example of window with several menubuttons across the top

When it isfirst displayed with one of the geometry managers, you will only see the
button part of the menubutton, which is a button with "flat" relief. The menu part of the
menubutton won't appear until you press the button. Figure 11-5 shows the menubutton
widget before and after the button is pressed. Notice how the relief of the button changes

after it is pressed.
| Menul |- |
: | Menubution [
rihmu"i JI‘ T :
Menubutton | ftem 1
e —————— | e &

Item 3
Item 4

Figure 11-5.
Menubutton before and after the button is pressed

Menubutton Options

The options specified with the Menubut t on command (or viathe conf i gur e

method) can affect only the button part of the menubutton, both the button and the menu,
or just the menu.* The options that affect the menu are valid for the menu widget as well
as the menubutton widget. We will cover the available options briefly (and some not so
briefly) in order to discuss the effects of each. The brief synopsis of all the options and
their effects appearsfirst.

When the description says "Affects the button only," the behavior isthe same asit would
be for a button widget.

* The menubutton widget comprises other widgets (in this case, button and menu) to
provide the overal functionality.

-activeforeground => color

acti vebackground =>

color

Affects the background
color of the button and the
currently highlighted menu
item.

Affectsthe text color of the button and the currently highlighted menu item.

- bi t map => bitmapname
Affects the button only. Displays bitmap instead of text.

anchor =>'n'

|"ne’ |"e |
"se' |'s' |
"swo|'w |
‘nw |'center'
Affects the button

only. Changesthe
position of the text
within the button.

background =>

color

Affects the button
and the menu. All
the background
color changes to
color when the
state of the button
and menuitemsis
"normal ' .

borderwi dth =>
amount

Affects the button
only. Changes the
width of the button
edges.

cursor =>

Cur sorname
Affectsthe
button only.
Changesthe
cursor when
it's over the
button part
of the
menubutton.

di sabl edf or eground =>
color

Affects the button and the
menu item text when the -

st at e for either is

" di sabl ed' .

-direction => "above" |"bel ow' |"left" |"right" |"fl ush"

Tk8.0 option only. The value "above" puts the menu above the menubutton, " bel ow"
putsit below the button, and" | ef t " and" ri ght " putsit on the appropriate side of
the button. " f | ush" puts the menu directly over the button.

- hei ght

Affects the button only. Changes the height of the button.

=> amount

font =>
fontname
Affects
the button
only.
Changes
the font of
any text
displayed
inthe
button.

f oreground =>

color

Affects the button
only. Changes the
color of any text or
bitmap to color.

hi ghl i ght background =>
color

Affects the button only. Changes
the color of the highlight
rectangle displayed around the
button when the button does not
have the keyboard focus.

hi ghl i ght col or =>
color

Affects the button only.
Changes the color of the
highlight rectangle
displayed around the
button when the button
does not have the
keyboard focus.

hi ghl i ghtt hi ckness =>

amount

Affects the button only.
Default is 0. Changes the
width of the highlight
rectangle around all edges of
the button.

| mge =>
imgptr
Affectsthe
button
only.
Displays an
image
instead of
text.

-indicatoron => 0|1
Affects the button; indirectly affects the display mechanism for the menu. When set to 1,
asmall bar appears on the right side of the button next to any text, bitmap, or image.

justify => "left'
|'right' |'center'
Affects the button only.
Changes the justification
of the text within the
button.

menu => $nenu
Tellsthe
menubutton to
display the menu
associated with
$menu instead of
anything specified
viathe -

nenui t ens

option.

nmenui tens =>
list
Causes the menu
to display alist of
items to create.

padx =>
amount
Affects
the button
only.
Adds
extra
spaceto
the left
and right
of the
button
inside the
button
edge.

pady =>
amount
Affects
the button
only.
Adds
extra
space to
the top
and
bottom of
the button
inside the
button
edge.

relief =>"flat'|

' groove' |
‘raised' |'ridge'
|' sunken’
Affects the button only.

Defaultis' fl at' .

The relief of the button
changesto' r ai sed'

when the button is
pressed.

-state => '"normal ' |'"active' |'disabl ed’
Affects the button; indirectly affects menu (menu cannot be displayed if stateis
"di sabl ed').

-t akef ocus => 0|1 |undef
Affects the button only. Default is 0. Determines whether or not the button can have the
keyboard focus.

-tearoff => 0|1
Affects the menu only. Default is 1. If set to O, does not display the tear-off dashed line
in the menu.

-t ext =>textstring
Affects the button only. Displays the specified string on the button (ignored if the -
bi t map or - i mage option isused.)

textvariable =>\
$vari abl e

Affects the button only.
The information
displayed in
$vari abl e is
displayed on the button.

-under |l i ne =>charpos

Affects the button only. The character at the integer charposis underlined. If the button
has the keyboard focus, pressing the key causes the button that corresponds to the
underlined character to be pressed.

-W dt h =>amount
Affects the button only. Changes width of the button to amount.

wr apl ength =>
pos

Affects the button
only. Default isO.
Determines the
screen distance for
the maximum
amount of text
displayed on one
line.

Button-Only Options

The following options affect only the button portion of the menubutton, and behave
exactly as described in Chapter 3: - cur sor, , - anchor, - bi t map, - bor der -

wi dt h,-font,-foreground,-hei ght,-hi ghlightbackground, -

hi ghl i ght - col or, - hi ghl i ghtthi ckness, -i mage,-j ustify,-padx, -
pady,-relief,-state,-takefocus,-text,-textvariable,-

underl i ne,-w dt h, and - wr apl engt h.

Tear-off-ltems

Each menu you create can be "torn off" from its window. The first item onthemenu isa
dashed line (see Figure 11-6); when you select this item, the menu widget becomes its
own window and remains present until you close it with the window manager.

Y ou can move the menu around on the screen, but you can't resize it. The other menu
items will behave normally when they are selected. Be careful; you can tear off the same
menu multiple times. Torn-off menus won't be updated when other eventsin the
program are updated, so it isagood ideato limit your use of tear-off menus.

To remove the tear-off ability, use-t ear of f => 0 with your list of arguments when
you create the menu and the dashed line will no longer appear.

The tear-off line in the menu actually counts as an item. It usesindex O if it exists, so
your menu items will then number from 1 and up. If you use -t ear of f =>0, then your

menu items will number from 0 and up.

e o EETEE]
1 Menubulton [HEHuhutm
[e 1
ltem 1 :
Item & :
Item 3 i
Item 4 |

Figure 11-6.
Menu with tear-off item and menu without tear-off item

Color Options

Several options that determine color affect both the button and the menu: -
acti vebackground, - acti vef or eground, - backgr ound, and -
di sabl edf or egr ound.

Both- acti vebackground and- acti vef or egr ound affect the text/bitmap

displayed in the button and the currently active menu item in the menu. The currently
active menu item is the one that the mouse cursor is currently over. The menu item
becomes dlightly raised and might change color depending on these options. The effect
of these options on the button isthe same asit isfor a normal button widget.

The - backgr ound option affects the entire menu and button background. The -

di sabl edf or egr ound option changes the color of the text of any menu items that
have their own - st at e of ' di sabl ed' ; it also changes the text/bitmap color of the
buttonif its- st at e is' di sabl ed' .

Button I ndicator

In Chapter 4, we saw how the radiobutton and checkbutton widgets each have their own
type of indicator. The button part of a menubutton also has an indicator that can
displayed on it. The indicator isasmall 3D bar displayed to the right of the text, bitmap,
or image on the button (see Figure 11-7). Usually the indicator is used to show that
something different will happen when you press the button. The option to display the
indicator is- i ndi cat or on, the same option used to display the indicator for the

radiobutton and checkbutton widgets.

—| Menubutton | |,__|1

Indicatoron Menu —

Figure 11-7.
M enubutton with indicator shown

Setting - i ndi cat or on to 1 does not change the appearance of the menu at all. Usually, you
would not use the - i ndi cat or on option unless you were using the menubutton as a type of
option menu or in a non-standard fashion.

Specifying Items for the Menu

Everything in this section will also apply to using the - menui t ens option with the menu
widget in addition to the menubutton widget.

The easiest way to add items to the menu in a menubutton is to use the - menui t ens option.
The value sent with the - menui t ens optionisalist of lists* that indicates not only the order

of itemsin the menu but also any possible configuration options for that menu item. The best
way toillustrate thisis with an example.

$nmenub = $mw >Menubut ton(-text => "Menubutton",
-menuitens => [['command’ => "Item 1"],
['command' => "Item 2"],

["command' => "lItem 3"],
["command' => "ltem4"]]);

In this snippet of code, we are creating the same menu that we displayed in Figure 11-5.

Here's a breakdown of the elements of the list and what they mean. The - nenui t ens option

expectsalist of lists. It isthe sub-lists that contain information about each menu item. Each list
that configures a menu item has a specified order to it. Thefirst thing in thelist is a string that
will determine what type of menu item is created. The available types of menu items are
"command", " r adi obut t on"," checkbut t on",and" cascade" . The second thing in

theitem list isastring that is displayed on the menu. After that, the options that affect that
menu item type can be specified. To create a separator, use a string in place of an anonymous
list.

Asyou can see, after - menui t ens, | didn't assign any callbacks for any of the menu items. If

you selected one, nothing would happen. To assign callbacks, we would change the statement to
look like this:

$nmenub = $mw >Menubut t on(-text => "Menubutton",
-menuitens => [['command’ => "ltem 1",
-command => \&do_iteml],
['command' => "Item 2",
-conmand => \ &do_itenk],

* |f you don't know what | mean by "list of lists,” you'll find that the Camel book
(Programming Perl) is auseful reference. The new version contains more information than
you'll ever need to know about lists, hashes, and creating anonymous lists.

[l squo;
command' => "ltem 3",
[-
command => \&do itenB],
['command’ => "Item 4",

command => \&do_item4]1]);

| used the - conmmand option to add the callbacks, and | used a different subroutine for each
menu item. It doesn't make any sense to specify a callback for the separator item.

Thefirst two items for each item list must be the item type string followed immediately by
atext string that will be displayed in the menu. Even if you plan to display a different text
string by using the - | abel option or to display an image, the second argument in thislist
must be a string.

It might be confusing that we use both " command” and - conmand. Thefirst isthe item
type string and the second is the option(which should be followed by a callback).

You can aso usethe Addl t ens() method to add items to the menu: $nenub-
> Addltens ("comand", -label => "Iteml", -

command => \ &Jo_itenl) ;. Theargument listis dightly different (you send only the
type, and then you must usethe - | abel option to specify the text to appear on the menu,
but al the options for each menu item type are exactly the same).

Certain options only apply to certain menu item types, which are discussed in the following
sections.

Command item type

So far, each example of amenu has had only " command" and " separ at or " types of
items. Usually, you'll also use the - command option so that something will happen when
the menu item is selected.

Radiobutton item type

It is possible to put radiobuttons in a menu rather than inside the window where they take
up space. They look and act just like a radiobutton would in the window except they are
listed in the menu instead. The same radiobutton rules apply: Y ou should always have at
least two radiobuttons and they should be grouped logically by using the same -

vari abl e => $vari abl e option for each group. Figure 11-8 shows an example of the

placement of radiobuttonsin a menu.

oy Mar'uﬂ.a [
1 Menubulton

~ Radio 1
Radio 2| ‘
“ Radio 3 |
A Radip 4|
~ Ragio 5 |
“* Radin b

Figure 11-8.
Radiobuttons as menu items

In an example in Chapter 4, Checkbuttons and Radiobuttons, we used radiobuttons to
select the background color of the window. We could also use those radiobuttonsin a
menu and save space in our application:

#!/usr/ bin/perl -w

use Tk;

ny $nw = Mai nW ndow >new,

$mw>titl e(" Menubutton");

$menub = $mw >Menubutton (-text => "Col or")->pack(-
side => "left',

anchor => 'n");
foreach (gw red yell ow green blue grey/) {
$menub- >r adi obutton (-1 abel => $-
-command => \ &set bg,
-vari abl e => \ $background_col or,
-value => $);

}
Mai nLoop;
sub set_bg {

print "Background value is now $background_col or\n";
$mw >confi gure (-background => $background col or);

}

Figure 11-9 shows what the window looks like after it has been resized and the menu has
been posted.

Checkbutton item type

Y ou can also put checkbuttons in a menu to keep them out of the way. Use the -
commrand option to configure the checkbutton to perform an action when it is selected.
Figure 11-10 shows what checkbuttons look like in a menu.

Remember the checkbutton guidelines: each checkbutton should have its own -
vari abl e, because each can be selected or not.

Figure 11-9.
Using radiobuttons in a menu to set background color

Figure 11-10.
Checkbuttonsin amenu (1, 3, and 5 selected manually)

Cascadeitem type

A cascade menu item points to another menu. When you select this type of menu item,
another menu will pop up to the right of the current menu. Thisis the most complicated
item type to implement because you have to create another entire menu to display (the
next major section in this chapter covers the menu widget). Figure 11-11 shows what a
cascade menu item looks like.

Cascacle Item -

Figure 11-11.
Cascade menu item inside a menubutton widget

The submenu must be a child of the menu within the menubutton widget. This allows Perl/Tk
to keep track of the correct hierarchy of the menus. The best way to create a submenu isto
create the menubutton first and then create the submenu.

$menub = $nw >Menubutton (-text => "My Menu",

menui tens => [["cascade" => "Subnmenu"]]);
$subnmenu = $nenub- >nmenu->Menu (-nenuitens => [...]);

We can use the menubutton widget'smenu() method to return the actual menu item and

then create the new menu as a child of the menu item. Now we can add the cascade item to
the menubutton and configure it to point to the new submenu:

$menub- >entryconfigure ("Subnenu", -nmenu => $subnenu);

Because of some problems with cascade menus, it is necessary to first create the cascade
entry and then configure it with the actual menu it will display. Hereis an entire Perl
program for you to play around with so you can get the feel of cascade menus. It creates two
submenus, one with numbers and one with |etters:

#!/usr/bin/perl -w

use Tk;

ny $nw = Mai nW ndow >new;

$m>title ("Menubutton");

Create nmenubutton and put on the screen

$nmenub = $mw >Menubutton (-text => "Menubutton") - >pack;

make our sub nenu to be cascaded a child of upper nenu.
$menul = $nenub- >nenu- >Menu;
foreach (qw one two three four/) {

$nenul->add (' conmand', -label => $);

}

make second sub nmenu also a child of the upper nenu
$nenu2 = $nmenub- >nenu- >Menu;
foreach (gwW A B C D) {

$menu2- >r adi obutton (-label => $);

}

now add the cascade itens to the nmain nenu
$nenub- >cascade (-Iabel => "Nunbers");
$nmenub- >cascade (-1 abel => "Letters");

now configure those cascade entries to point to correct submenu

$nmenub- >entryconfigure ("Nunbers", -nmenu => $nenul);
$nenub- >entryconfigure ("Letters", -nenu => $nmenu2);
Mai nLoop;

Y ou can aso create cascade menu items on a menu that cascades from another menu, but
remember to create it as a child of that menu's menu.

Separator item type

Separators are noninteractive portions of amenu. They do nothing except provide avisual break
between menu items. To create one, either call the separ at or method on the menubutton widget or

use astring inthe- menui t ens list instead of another list.

—|Menut |

Menubution

-

e

Item 1
Item 2

Item 3 Hﬁ“‘*« |

HH“H
Tema| soparator line

Figure 11-12.
Separator in a menubutton widget

Figure 11-12 shows the separator line. It isasolid line, unlike the tear-off menu, which is a dashed line
(not shown in Figure 11-12). The following code was used to create the menubutton shown in Figure 11-
12:

$mw >Menubutton (-tearoff => 0,-menuitens => [['comuand’ => "ltem 1"],
['command' => "lItem 2"],
['command’ => "ltem 3"],
['command => "Item4"]])-
>pack;

We could have used any string at all in place of the" - " line. However, it is good style to always use the
same string so it is easy to recognize when a separator item is created.

Accelerators

The- accel er at or option allowsyou to place atext string to the right of the text or image displayed

in the menu. The string usually contains a clue to a quick-key combination that will execute the
command associated with the menu item. In Figure 11-13, Item 1 has the accelerator string Alt+1 next
to it. The menuitem was created by using thislist in the - menui t ens option:

["command' => "Item 1, -accelerator => "At+1"].TomaketheAlt-1key
combination actually perform an action, you'll need to use bi nd (see Chapter 14, Binding Events).

B EE

Menubutton

Item 1 <+1
item 2

Item 3
Item 4

......

Figure 11-13.
Menu with accelerator next to Item 1

Displaying an Image in a Menu Item

Each menu item is atype of button, so it makes sense that you can display an image
instead of text. Figure 11-14 shows what happens when you also specify the - i nage

option. The code that created the menu is as follows:

$inmgl = $mw>Bitnmap (-file =>
"/usr/ X11R6/i ncl ude/ X11/ bi t maps/ i neCQp. xbm');
$mw >Menubutton (-text => "Menubutton",
-menuitens => [['command’ => "ltem 1"],
["command' => "Item 2",
-i mage => $ingl],

["command' => "Item 3"],
["command' => "Item 4"]
) - >pack(-side => "left');

]

Item 1

N

Item 3
Itam 4

Figure 11-14.
An image displayed instead of text

In Chapter 4, | discussed using icons and how they can make options easier to
understand. Try to use good judgment and not go crazy with the picture menu items. Too
many vague icons (such as the one displayed in Figure 11-14) can make an application
confusing.

Assigning a Different Menu

By default, when you use the - menui t ens option, amenu is created. Y ou can create

your own menu widget and tell the menubutton widget to use it instead. But thereisa
trick involved. It's a chicken-before-the-egg problem. Y ou need to create the menubutton
and then create the menu widget as a child of the menubutton. Useconf i gur e to

assign the new menu to the menubutton. Here is a code example:

create nenubutton w sone fake nenu itens
$nml = $mw >Menubutton(-text => "Text Menul ",
-menui tenms=> [[' command’ => "Item1'],
[' command' => "ltem 2"],
['command’ => "lItem 3"],
['command' => "Item 4"]
])->pack(-side => "left",
-expand => "'y',
-fill =>"both");

Create a Menu as a child of the Menubutton $n

$nmenu = $nil->Menu (-nenuitens => [['command’ =>"Item 1"],
['command' => "Item 2"],
["command' => "lItem 3"]]);

Now use the $nenu with the Menubutton
$m ->configure (-nenu => $nenu);
Mai nLoop;

As mentioned, you need to create the menubutton first and make it a child of $nw (the

Main Window). | created some menu items that will be different on the new menu so you
can tell which menu the menubutton is using.

Configuring a Menubutton

The cget method allows you to get configuration information about any of the options
associated with a menubutton. Y ou can use conf i gur e to query or change any of the
options. Both conf i gur e and cget are explained fully in Appendix A, Configuring
Widgets with configure and cget.

Configuring Menubutton Items

The menubutton widget hasan ent r ycget method that is the same as the menu
widget'sent r ycget method.

$val ue = $nmenub->entrycget (index, option);

The arguments are an index and the option to query. Valid index values are discussed in
"The Menu Widget" later in this chapter.

Theent ryconf i gur e method is aso provided by the menubutton widget. It
performs the same function the menu widget'sent r yconf i gur e method performs:

$nenub- >entryconfigure(index, [option]);
Adding Items to a Menubutton

The Addl t enrs method gives you another way to put new itemsin the menu. It will
always add the new item(s) to the end of the menu in the order they appear in the list.
Similar to the arguments sent to the - nenui t ens option, the arguments sent to

Addl t ens areincluded in severd lists. There isno need to enclose the item listsinside
another list level because the only thing you send to AddI t ens isitem lists. Hereis an
example:

$menub = $mw >Menubutton (-text => "File") ->pack;
$nmenub- >Addl tens (["command" => "Qpen", -
command => \ &do_open],
["command” => "C ose", -
command => \ &o_cl ose],
["command" => "Exit", -
command => sub { exit }]);

Thisuse of Addl t ens isjust another way of saying the following:

$nmenub = $mw >Menubutton (-text => "File", -nenuitens =>
[["command" => "QOpen", -command => \ &do_open],
["command"” => "Cl ose", -command => \ &Jo_ cl ose],
["command"” => "Exit", -command => sub { exit }]
1) - >pack;

Noticethe extraset of [] around the lists containing the menu item information. All

the information in between the[] isexactly the same asit was when it was sent to
Addl t ens.

The conmand method adds a command item to the end of the menu. When you use
comrand, you must usethe - | abel option to specify the text to be displayed in the
menu. This code creates the same menu AddI t ens() example created:

$menub = $mw >Menubutton (-text => "File")->pack;

$nenub- >command(- | abel => "COpen", -command => \ &do_open);
$nmenub- >command(-1 abel => "C ose", -conmand => \ &o_cl ose);
$menub- >separ at or ;

$nenub- >command(-1 abel => "Exit", -command => sub { exit });

Creating a Checkbutton

Thecheckbut t on method adds a checkbutton item to the end of the menu. Like the
conmmand method, you are required to use the - | abel option to specify the text string
to display in the menu with the checkbutton. All other checkbutton item

options are the same as those listed in " Specifying Items for the Menu" earlier in this
chapter. Here's an example:

$menub = $mw >Menubutton(-text => "Options");
$nmenub- >checkbutton(-1abel => "Confirm Quit?",
-variable => \$confirmaquit);

checkbut t on isreally a menu widget method, but it also works on a menubutton
widget. The sameistrue of r adi obut t on, separ at or , and cascade.

Creating a Radiobutton

Ther adi obut t on method adds a radiobutton item to the end of the menu. Y ou must
specify the text to be displayed in the menu by using the - | abel option.

$menub- >r adi obut t on(-1 abel =>"Radi o itenl);

Creating a Separator

Thesepar at or method adds a separator line tot he end of the menu. It does not take
any arguments:

$nenub- >separator ();

Adding a Cascade Menu

The Cascade method adds a cascade item to the end of the menu. Y ou must specify the
text to be displayed by using the | abel option. Use $nenub-> entryconfi gure
(-menu => $subnenu) to assign the menu to be cascaded.

assunme we al ready created $nmenu_nore
$nmenub- >cascade (|l abel => "Mre nenu...");
$nenub->entryconfigure ("Mre nmenu...", -nmenu => $nenu_nove);

Getting a Reference to the Menu Item

The menu mefhod returns a reference to the menu used within the menubutton widget.

This alows us to create cascade entries with the actual menu as the parent of the
cascaded menu; it also allows us accessto all of the menu widget methods. For example,
we could delete a menu item from our menu by using $nenub- >nenu- >del et e(1) ,

which would delete the second item in the menu. For more information on the menu
widget methods, see "The Menu Widget" later in this chapter.

Complete Menubutton Examples

Menus are a more complicated widget than we've seen before because you don't always
add items to them the same way. Sometimes you can use the simple - nenui t ens

option, and other times you'll want to add to them dynamically. This section contains
some full-length Perl scripts that create some useful menus.

Creating a Menubar

Hereis the code that was used to create the window and menubar in Figure 11-4:

#!/usr/bin/perl -w

use Tk;

ny $nw = Mai nW ndow >new;
$mw->titl e("Menubutton");

$mw >Button(-text => "Exit",
-command => sub { exit; })->pack(-
side => "bottonl);

ny $f = $mw>Frane(-relief => 'ridge', -borderwidth => 2);
$f - >pack(-side => "top', -anchor => 'n', -expand => 1, -
fill =>"x");

foreach (gw File Edit Options Hel p/) {
push (@renus, $f->Menubutton(-text => $));

}

$nmenus|[3] - >pack(-side => '"right');
$nmenus[0] - >pack(-side => "left');
$nmenus|[1] - >pack(-side => "left');
$nmenus| 2] - >pack(-side => 'left');

Mai nLoop;

First aframe was created across the top of the window and packed so it will resize itself
dynamically when the window gets larger or smaller. Then the menubuttons were
created and packed into the frame. Each of the menus has no items. Well leave that as an
exercise for the reader.

Dynamic Document List

In certain cases, you'll want to add and remove items from a menu dynamically. Many
applications remember which documents you've most recently opened and keep them
attached to the File menu for easier access later. This example does something similar,
but I've smplified the problem-we'll just have a button that creates a new document
name, and we'll display that document name in an entry

widget so we know which one we are editing. Using our menubutton and afew select methods from the
menu widget, we can create a solution like this:

#!/usr/bin/perl -w

use Tk;

$nmw = Mai nW ndow >new,
$ma>titl e(" Docunents”);

Create a frame for our nenubar across the top of the w ndow
$f = $mw>Frane(-relief => 'ridge', -borderwi dth => 2)
->pack(-side => "top', -anchor =>"'n', -expand => 1, -fill =>"x");

Create the nmenubutton, with two itens: New Doc and a separ at or
$filem= $f ->Menubutton(-text => "File",
-tearoff => 0,
-menuitens => [["comand” => "New Docunent",
-command => \ &ew _docunent],
]) ->pack(-side => "left");
W will open docunment 1 to begin with, and we want to limt the nunber
of docunments in our list to 0-9 (leaves 10 docs nmax in nenu)
$doc_num = 1;
$doc_list limt = 9;

Create button that will do the sane thing as the New Docunment nenu item
$mw >But t on(-text => "New Docunent",
-command => \ &ew _docunent) - >pack(-side => 'bottoni,
-anchor => 'e');
The entry wll display the current doc we are "editing".
$entry = $mw>Entry(-wi dth => 80) ->pack(-expand => 1, -fill => "both");

Mai nLoop;

Creates the next doc in line, incs the doc counter
Adds the new doc to the nmenu, and renoves any docs fromthe
menu that are over the |imt (oldest out first)
sub new docunent {
ny $nanme = "Docunent $doc_nunt;
$doc_numt+;

push (@urrent, $nane);
$fil em >command(- | abel => "$nane",
-command => [\&sel ect _docunent, $nane]);

&sel ect _docunent ($nane);

if ($#current > $doc_list_limt) {
$fi |l em >nmenu- >del et e(2) ;
shift (@urrent);
}
}

sub sel ect _docunent {
ny ($selected) = @;

$entry->del ete(0, 'end');
$entry->insert('end , "SELECTED DOCUMENT: $sel ected");
}

Figure 11-15 shows what our window looks like after we've created three documents:

R - —

File |

|SELECTED DOCUMENT: Document 3

Figure 11-15.
Example of Document History window

The Menu Widget

There are times when you won't want to use a menubutton widget. Perhaps you need to
create some menus that will cascade from your menubutton. Y ou still need to create the
menus. Y ou might also think of away to use a menu that doesn't involve a button. For
example, you could set up your application so the user right-clicks on awidget* and a
related menu pops up, allowing the user to change configuration options.

It isalso agood ideato be familiar with the methods for manipul ating a menu, whether
it'samenu widget by itself or the menu attached to a menubutton.

Creating the Basic Menu
To create amenu widget, invoke Menu from the desired parent of the menu:
$nmenu = $parent->Menu (options);

The menu widget is the only widget on which one of the geometry managers is not used
directly. The menu is displayed to the user viaapost directive:

$nmenu->post (...);

Different arguments sent to post will determine how the menu is displayed. This
method is discussed later in this chapter.

* Use" <But t on- 3>" with bi nd.

Menu Creation Options

Aswith any widget, there are options that affect how the menu widget looks and
behaves. Many of the options for the menu widget were discussed in the menubutton
widget portion of the chapter, so I'll only cover those that perform actions that aren't
available with the menubutton widget or whose actions are different.

The following isalist of the options available for the menu widget:

-acti vebackground => color
Sets the color of the background behind the active menu item.

-acti veborderw dt h =>amount
Sets the width of the edges of the active menu item's border.

-acti vef oreground => color
Sets the color of the text in the active menu item.

- backgr ound => color
Sets the color of the background of the entire menu.

- bor derw dt h => amount
Sets the width of the menu's edge.

- cursor => cursorname
Sets the cursor displayed when the mouse cursor is over the menu.

- di sabl edf or eground => color
Sets the color of the text of any disabled menu items.

-font =>font
Sets the of the text displayed in the menu.

-foreground => color
Sets the color of the text in the menu.

-nmenui tens =>list
Defines alist of itemsto create in the menu.

- post conmand => callback
Sets the callback that isinvoked before the menu is posted to the screen.

-relief =>"flat' |'groove' |'raised |'ridge' |'sunken
Sets therelief of the edges of the menu.

-sel ect col or => color
Sets the color of the salection box in checkbutton or radiobutton items.

-takef ocus => 0|1 |undef
Controls the ability to use the keyboard to traverse the menu. Default is 0.

-tearoff => 0|1
Determines whether or not the menu will contain the tear-off item as the first item.
Default is 1.

Menu Style

The edges of the menu defaultto ' r ai sed' witha- bor derw dt h of 2. This makes

the menu look like alarge button with multiple items of text listed in it. We can change
the look of the menu edges by using the-r el i ef option:

-relief =>"'flat' | 'groove' | 'raised | 'ridge' | 'sunken'

The menus in Figure 11-16 were created and then torn off so they are left on the screen.
The actual menu edge is inside the window manager's decoration.

Menu wiralsed
Itean 1
Item &

Item 3
| e 4

Figure 11-16.
Different relief options with menu widget

The width of the menu's edges (regardless of the-r el i ef) are changed by using the -
bor der w dt h option:

-borderw dt h => anmount

Changing the - bor der wi dt h always makes the different relief types stand out more,
asshown in Figure 11-17.

Figure 11-17.
Menus with different relief options and -borderwidth set to 4

The-acti vebor der w dt h option affects the active menu item (the one with the
MOUSe Cursor over it):

-activeborderw dth => anpunt
Menu Fonts and Cursors
The font of the text displayed in the entire menu is controlled with the - f ont option:

-font => font

Figure 11-18 shows a menu with a different font, " | uci dasans- 14" . Fonts that can
be used for the value of - f ont were covered in Chapter 3.

Menu w/groove
Item 1
Item 2

Item 3
Item_ﬂ“_

| |

Figure 11-18.
Menu with adifferent font

To change the cursor displayed when the mouse cursor is over a menu widget, use the -
cur sor option:

-cursor => cursornane

The default cursor for amenu widget is different than the window's default cursor. The
default cursor for amenu is' ar r ow , whereas the window cursor is an arrow that
points the other way.

Calling a Subroutine Before Displaying the Menu

Before displaying the menu (viathe post command or a menubutton), you can use the -
post conmand option to specify a subroutine to call:

- post command => cal | back

The form for the callback is the same as the one used in a button widget (described in
Chapter 2). One of the best uses of the - post command option isto update the state of

each menu item if needed. Here is an example that uses a menubutton widget but uses -
post conmand to perform an update of the menu before it is drawn:

Create the nmenubutton
$nmenub = $mw >Menubutton(-text => "File", -tearoff => 0,
-menuitens => [['command’ => "Qpen", -
command => \ &lo_sonet hi ng],
['command' => "Save" -
command => \ &lo_sonet hi ng],
['command' => "d ose", -
command => \ &lo_sonet hi ng],
['command' => "Exit",
command => sub { exit }]]
) - >pack() ;
A flag we use to see if the docunent has been saved yet.
$unsaved = O;
We have to wait until after we've created the nenubutton to
access the nmenu wi dget part of it:
$nmenub- >nmenu() - >confi gur e(- post command => \ &pdat e_nenu) ;

This | ooks at some flags in our program and determnes if the itens
shoul d be updated or not
sub update_nenu {
i f ($unsaved) {
$nenub- >menu- >entryconfigure(1l, -state
} else {
$nenub- >nmenu- >entryconfigure(l, -state => "disabl ed");

}

> "normal ") ;

}
Specifying Menu ltems

The - menui t ens option allows you to create the menu and the menu items at the same time.
The format for doing so is the same as the format for the menubutton's - menui t ens option.

Thereisno AddI t ens method for a menu widget. The Addl t ens method is only available with
the menubutton widget. Y ou can use either the - menui t ens option or theadd method with a
menu widget. add is described in the next section.

Menu I ndexes
Like entry and text widgets, menu widgets have their own indexing scheme, as follows.

n
The itemsin amenu are numbered from 0 to n; O isthefirst item at the top of the menu, and nis
the last item in the menu. (The tear-off item in amenu counts asindex O if it is present. Use -

tearof f => Ototurnit off.)

"active"

The menu item that is currently active (the mouse is over it and it is highlighted). If there are no
menu items active, then " act i ve" meansthesameas' none' .

n er](jll
Thelast menu item in the menu. If there are no items in the menu, then' end' meansthe same as
"none".

"l ast"
Another way to say " end"

"none"
No item.

n @ll
The number isay coordinate in the window. This form of index specification will resolve to the
menu item closest to they coordinate. " @" means the same as 0.

"pattern”

The pattern is text to match the menu items against. The first menu item (starting with 0)
it matchesis used.

There aren't redlly that many menu widget methods. The most important methods are
probably ent r yconf i gur e and del et e because you'll use them more often than

you'll use the others. Remember, if you are using a menubutton widget, you can invoke
the menu widget method directly by using $menubut t on- >menu- > method().

Configuring the Menu Widget

The cget method returns the current value of an option. It only affects the options for
the entire menu; thereisan ent r ycget method that will return information about
specific menu items. Both the conf i gur e and cget methods are discussed in detail in
Appendix A.

Configuring Menu Items

Theent r ycget method queries a specific menu item and returns the information
about that configuration option:

$menu- >entrycget (i ndex, -option);

The index determines which menu item ent r ycget affects. Any of the options that
can be sent with the add method (covered in the following section) are valid.

Theent ryconf i gur e method returns or alters the configuration options of the menu
item at index just as conf i gur e does for the entire menu widget:

$nmenu- >entryconfigure (index, [-option, value, ...]);

Y ou can specify no options to get the current configurations for all of the options at that
index. Y ou can specify a single option to get the value of only that option for that index.
Y ou can also specify multiple option/value pairs to set the values of those options for
that index.

Adding Items

In addition to the - menui t ens option, you can use the add method to add items to the
end of amenu. The first argument to add isthe type of menu item to be added. It should

be one of the following: " conmand", " r adi obutt on"," checkbutt on",
“separator",or"cascade". Hereisausage statement:

$nenu->add(type [, options...]);

The options that affect each menu item are the same as those for the - menui t ens
option: - acti vebackground, - acti vef oreground, - accel er at or,

- backgr ound, - bi t map, - command, - f ont , - f or egr ound, - i mage, -
I ndi cat oron, -1 abel ,-nenu, - of f val ue, - onval ue, - sel ect col or, -
sel ecti mage, - stat e,-underl i ne,-val ue,and- vari abl e.

The results of the following two code snippets are identical:

Snippet 1
Using add for nenu itens
$menu = $mw >Menu;

$nenu- >add(" comand", -I|abel => "COpen",
-conmand => \ &open _file);
$nenu- >add(" command”, -1abel => "C ose",

-command => \&cl ose file);
#Sni ppet 2

Sending a list intially using -nmenuitens option

$nmenu = $nw >Menu(-nmenuitens => [["conmand" => "(Qpen",
-conmmand => \ &open_fil e],
["command” => "Cl ose",
-command => \ &cl ose_fil e]

1);

Each additional call to add will add another item to the end of the menu. To add amenu
item to somewhere other than the end of the menu, seethei nsert method (coveredin
the next section).

Instead of - t ext or -t ext vari abl e options, weuse- | abel toindicate the text
shown on the menu item. Y ou should notice that we don't have a- | abel vari abl e

option. If you need to change the text shown in the menu item, you will need to use the
ent ryconf i gur e method (discussed later in this chapter).

| nserting Menu Items

Thei nsert method works exactly the same way the add method works, except the

new menu item will be inserted right before the menu item at index. Y ou cannot insert a
menu item before the tear-off menu item because the tear-off must always be the first
item in the menu:

$nenu->i nsert (i ndex, type [, options ...]);
Hereis an example:

$nenu- >i nsert ("end", "radiobutton", -label=>"red");
Deleting Menu Items

To remove menu items from your menu, use the del et e method:

$nenu- >del et e(i ndex) ;
or..

$menu- >del et e(i ndex1, index2);

Y ou can delete one item by specifying only one index. Y ou can delete more than one by
specifying arange of indexes. Here are some examples:

$menu- >del ete ('last'); # deletes the last nenu item
$nenu->del ete (0, 'end');

deletes every nenu item (except tear off)

$nmenu-

>del ete ("Open"); # deletes the itemthat matches " Open"

I nvoking Menu ltems

Thei nvoke method will try to invoke the menu item at the specified index (asif you
clicked on it with the mouse):

$nenu- >i nvoke (i ndex);

The specific result of the invocation depends on what type of menu item is at index. The
result from any - command callback associated with that index will be returned by the

I nvoke method.
$nenu- >i nvoke ("red");

Determining Item Type

Thet ype method returns a string that indicates the type of menu item located at index:
$type = $nenu- >t ype(i ndex);

The string returned will be one of the following: " command” , " r adi obut t on",

"checkbutton","cascade","separator",or"tearoff".

$type = $nmenu->type(0); # look at index O

Trangdating Index Values

Thei ndex method returns the numerical index of the menu item at index:
$nmenu- >i ndex (i ndex);

The code $nmenu- >i ndex(' end') returns 9 if there are 10 menu items in the menu.
The code $mrenu- >i ndex (" Qpen™) returnsthe index number of the menu item that
matches " Qpen" .

Displaying a Menu

If you aren't using a menubutton widget to display your menu, you need away to display
it. You can use the post method or the Popup method.

The post method displays the menu for you, but the menu only goes away after you
select amenu item or specifically call unpost . The Popup displaysthe menu only
while the mouse button is depressed.

The post method requires x and y coordinatesto tell it where to place the menu on the

screen. Typically, you call it wherever the user clicked (unless you want it to display in
the same place al thetime). Here is an exampl e that displays the menu when the user
clicks the right mouse button in alistbox:

Create a nenu with two itenms for our exanple
$nmenu = $mw >Menu(-tearoff => 0,
-menuitens => [[' command’ => "A"],
['command’ => "B"]]);
$1b = $ma >Li stbox () ->pack ()
create a binding on the listbox that will display our nenu
when we click wth the right nouse button
$l b->bind ("<Button-3>", [\&display nmenu (), Ev('X), Ev
("Y)1);
sub di splay_nenu {

ny ($lb, $x, $y) = @;
$nmenu- >post ($x, $y) ;

}

| created a simple menu so we can get through the example quickly. | removed the tear-
off item from the menu because | don't like tear-off menus all over the place (but some
users do, so keep thisin mind). The bi nd iswhere | mapped the right mouse button to

display the menu. | used Ev(" X") and Ev(" Y") to send the coordinates of the
location in which the user clicked (see Chapter 14 for more information about Ev(" X")
and Ev(" Y")). The subroutine ssimply calspost with the correct arguments.

The menu will be displayed even when the user lets go of the mouse button. It will
unpost itself automatically when the user selects amenu item.

Another way to display amenu isto use Popup. . This causes the menu to be displayed

only while the user holds down the mouse button. To select a menu item, you must click
down the mouse button, slide the cursor to the desired item, and then let go of the mouse
button. The Popup method can be called with no arguments or with one or two options.

The options that affect Popup are- popover and - popanchor . Caling Popup like
this

$menu- >Popup() ;

displays the menu at the very center of your entire screen. Thisisn't very useful, so |
recommend that you at |east use the - popover option. The - popover option will

take either the string " cur sor " or awidget reference. The menu will be centered under
the cursor or centered over the widget; for example:

$nmenu- >Popup(-
popover => "cursor"); # Center nmenu under cursor
$nmenu- >Popup(-
popover => $button); # Center nenu over $button
$nmenu- >Popup(-
popover => $listbox); #Center nmenu over $listbox

Notice that we are not using the syntax \ $I i st box. Because our scalars already
contain areference to awidget, we don't need to reference it again.

The second option, - popanchor , affects how the menu gets positioned relative to the -
popover argument (or the entire screen if - popover isn't specified). The -
popanchor option takes a string argument where the string is one of the following:
“nw',"ne","sw'.or"se" Forinstance, if you would like to display the menu's
upper-left corner where the user clicks, use this code:

$nenu- >Popup (-popover => "cursor", -popanchor => "nw');

Thisishow | like to create right-click menus that are associated with widgets. See the
complete example in the "Right-Click Menu Example.”

Displaying a Cascading Menu
If your menu has a cascading menu associated with it, use post cascade to display it:
$menu- >post cascade(i ndex) ;

The post cascade method will unpost any other submenu and then post any cascade

menu associ ated with the menu item located at index. If the menu item at index is not a
cascade item type, then the only thing that happens s that any other submenus are
unposted.

$nenu- >post cascade ("subnenu");

Undisplaying a Menu

If you have displayed the menu on the screen using post , you can useunpost to
remove it from the screen:

$menu- >unpost () ;

Thiswill unmap $nenu from the window. If any cascaded menus of this menu are also
displayed, they will be unmapped as well.

Getting the Position of an Item

Theyposi t i on method returns a decimal string that gives the y coordinate of the
topmost pixel of the menu item at index:

$l ocati on = $menu->yposi tion(i ndex);
Right-Click Menu Example

There are times you'll want to use aright-click menu, which isamenu that appears when
you right-click on a particular widget or location in the application. A canvasis a perfect
place to use aright-click menu; there are often so many different possible actions to take
that associating different menus with different types of objectsin the canvasis
advantageous.

To create aright-click menu, simply create a menu widget, add the itemsto it as desired,
and use the - conmand option to make the items perform useful tasks. To display the

menu when the user right-clicks on the desired object, use the bi nd command:

$obj ect - >bi nd(" <Button-3>", sub {$nenu->Popup(-
popover => 'cursor'); });

Y ou can use aright-click menu with alistbox to allow usersto delete or edit the
currently selected item.

Optionmenu Widget

EThe optionmenu is a specific implementation of a menubutton widget. The

difference between the two is that the optionmenu automatically sets the -
I ndi cat or on option to 1, removes the tear-off menu item, and handles the display of
the menu in aslightly different way.

Y ou can use an optionmenu when you want to give the user a choice between several
different items but don't want to waste space with alistbox and scrollbar or with several
radiobuttons. To add items, use the - opt i ons command instead of - nenui t ens or

the other methods that allowed you to add to a menu or menubutton.
Creating and Configuring an Optionmenu

The optionmenu is created by using the Opt i onnmenu method:

$opti onnmenu = $mw >Cpti onnenu(...);

All the options that are available with a menubutton widget are also available for the
optionmenu widget. The following options are specific to the optionmenu: -

textvari abl e,-options,-vari abl e, and- command.

Instead of using a- nenui t ens option or other methods to add itemsto an
optionmenu, use the - opt i ons option. It takes an anonymous list that can contain

either strings or other anonymous lists. The idea behind an optionmenu isto select one
item from alist of items. The text displayed is the currently selected menu item. The -

t ext vari abl e option determines where the displayed text is stored. Thereisalso a-
var i abl e option, which you can useto store avalue that is different than the one
shown on the menu. Specify the displayed value and the stored value by using the -

opt i ons option. If the displayed value is the same as the stored value, use asimple list:

-options =>[1, 2, 3, 4, 5, 6], -textvariable => $nunber

To store a value other than the one shown, use this code:

-options => [["one",1], ["two",2], ["three", 3],
["four",4], ["five",5], ["six",6]],

-textvari abl e => $di spl ayed,

vari abl e => $nunber

In this example, the written words are displayed in the menu (and are stored in
$di spl ayed), and the stored value (in $nunber) are the integers. The nondisplayed

value can be any scalar value.

The - command option assigns a callback that will be executed when a selection has
been made. The default arguments to the callback are the variables assigned with -

t ext vari abl e andthen- vari abl e (if it exists). You can use callbacks to perform
an action based on the item selected from the optionmenu.

Here's a complete script that will allow you to see most of the optionmenu's useful
features:

#!/usr/bin/perl -w
use Tk;

$mw = Mai nW ndow >new;
$mw->titl e(" Optionnenu");

$di splay_var = "ten";
$mw >Opt i onnenu (- comand =>
sub { print "ARGS: @\n"; print "in optionnmenu\n" ;},
-textvariable => \ $di spl ay_var,
-variable => \ $stored_var,
-options => [["ten", 10],

["twenty", 20],
["thirty", 30]]
) - >pack() ;
Mai nLoop;

It's good idea to also create a label widget so the user is aware of the optionmenu's
purpose (shown in Figure 11-19).

i SleEE
| Integer: 10 — |
I

Figure 11-19.
Optionmenu with a label widget to the left

The only methods available with the optionmenu arethe cget and confi gur e
methods. The cget method returns information about an option in the optionmenu. The
conf i gur e method can get or set option values for the optionmenu widget. Both
cget andconfi gur e are covered in detail in Appendix A.

Fun Thingsto Try

» Create one menu that has two items: Disabled and Normal. When you rightclick on a
widget, the menu will pop up. If you select’ Di sabl ed' , that widget will be disabled.

Selecting' Nor mal ' reenables that widget.

* Create an application with two menubuttons. Have the items on the first add and delete
different types of menu items to the second menu.

 Take al the fun things from previous chapters and add menus to them. Add at least a
File menu, with an Exit item. Be inventive!

12—
Frames

A frame widget is a boring widget at first glance. All it doesis provide a place for other
widgets to sit. This doesn't seem important, but it is. The geometry managers provided
with Perl/Tk have some limitations (see Chapter 2, Geometry Management), and we can
use frames to help them do their jobs better. We'll use pack as our example geometry
manager throughout this chapter because it seems to be the most popular, but remember
that the basic rules for using aframe apply to the other geometry managers as well.

A frame widget's job is to contain other widgets, accommodating the size of the widgets
within. If you don't have any widgets packed into the frame, you won't see the frame. If
the widgets inside the frame are resized for any reason, the frame will try to resize as
well (either larger or smaller).*

Creating a Frame
Use the parent widget of the frame to invoke the Fr anme() method:
$frane = $parent->Frame([option => value, ...])->pack();

The $par ent can be aMainWindow, atoplevel, or another frame widget.** After the

frameis created, it can become a parent to other widgets. Y ou must have created the
frame but not necessarily packed it on the screen for it to be the parent

* Y ou can change this behavior by using pack Pr opagat e() or
gri dPropagate().
** Technically, any widget can be a parent of another widget, but | like to make my life

easier when it comesto placing the widget inside the window. If | made a frame the child
of a$but t on, | wouldn't be able to pack it inside the button. | would then have to use the

- I n option with pack, confusing myself even further. Keep it simple, and you'll be much
happier.

of other widgets. Keep in mind that, even if you pack other widgets inside your frame, if
you don't pack the frame as well, the other widgets won't show on the screen.

Just as with all the other widgets in Perl/Tk, the options specified in the Fr ame method

will change how the frame looks inside the window. There are few options available
with the frame widget, and they aren't complicated at all. This section coversal the
options and what they do.

- backgr ound => color
Sets the color of the frame's background area (there is no foreground area).

- bor derw dt h =>amount
Sets the width of the frame's edges. Default is 0.

-cl ass => classname

Indicates the class associated with the frame in the option database. This option can
actually be used on any widget, not just aframe.

-col ormap => "new' |$w ndow
Specifies whether to use a new colormap or share one with another widget in the
application. Default isundef .

-container => 0|1
Tk8.0 only. If true, this frame will be used to contain another embedded application.

- Cursor => cursorname
Changes the cursor to use when the mouse pointer is over the frame.

- hei ght =>amount
Sets the starting height of the frame in avalid screen distance.

- hi ghl i ght backgr ound => color

Sets the color the highlight rectangle should be when the frame does not have keyboard
focus.

- hi ghl i ght col or => color

Sets the color the highlight rectangle should be when the frame does have the keyboard
focus. Default color is black.

- hi ghl i ghtt hi ckness =>amount
Sets the thickness of the highlight rectangle. Default is 0.

-| abel => labelstring
Adds alabel to the Frame with the text "labelstring".

- | abel Pack =>[pack options]
Specifies pack options for the label.

-1 abel Vari abl e => \ $vari abl e
Specifies avariable that contains the text for the label.

-relief =>"flat' |'groove' |'raised" |'ridge' |'sunken' |
‘solid
Changes the appearance of the edges of the widget. Defaultis' fl at ' .

-takefocus => 0|1 |undef
Specifies whether the frame should take the focus. Default isO.

-vi sual =>"type#"
When used on an X Windows system, changes the depth of colors available to your
application. Does nothing on Win32 systems.

-w dt h =>amount
Sets the starting width of the frame in avalid screen distance.

Frame Style

Aswith all widgets, you canusethe-rel i ef and- bor der w dt h optionsto change
how the edges of aframe widget are drawn. Thedefault-rel i ef is' fl at' , and the
default - bor der wi dt h isO. If you want the frame to have any edges at all, make sure
you change - bor der wi dt h to something higher than 0. Unless you put something in a

frame, you'll never seeit. So, for the examplesin Figure 12-1, | have inserted a label
widget and an entry widget that state the relief of that frame. Note that | actually created
alabel widget by using Label () and did not usethe- | abel option (see the next

section).

Figure 12-1.
Different relief values for frames; borderwidth of 2 and borderwidth of 5

Using-relief and-borderw dt h isagreat way to find out where your frameisin

the window. If you have a complicated window, it's confusing to remember which frame
iswhere. I'll oftenadd - borderwi dth => 5, -relief =>"groove" tomy

Fr ame command to find that frame in the window.

Adding a Label to a Frame

With Perl/Tk. you can add alabel to your frame by using the - | abel option, which
takes atext string as an argument:

$mn >Frame(-1 abel => "My Frane:") - >pack;

configure label in frame | ater
$f rame- >configure(-1abel => "My Frane:")->pack;

By default, the label is placed at the top of the frame, centered across the width (see
Figure 12-2). Again, | put something in the frame so you can see the frame as well asthe
item in the frame. In this case, | placed a button with the default pack optionsin the
frame. | also created the framewith-rel i ef => 'groove', -

borderw dt h => 2 options so you can see the edge.

 FrameLabel | |
Button in frame | ﬂ
|

Figure 12-2.
Frame with label in default position

Y ou can change the location of the label inside the frame by using the - | abel Pack

option. It takes an anonymous array as an argument, where the array contains any pack
options for the label:

-l abel Pack => [-side => "left', -anchor =>"w]

Be careful to notice that this option has an uppercase letter init. If you try to use -

| abel Pack without the capital "P," you'll get acompilation error. Also notice that
thereisnta- | abel Gri d option available. You must use pack() to put widgets
inside your frame if you are going to usethe - | abel option. If you don't, bad things
happen (your application might not run at al).

Instead of using a static text string with your frame's label, you can assign a variable by
usingthe- | abel Var i abl e option (again, notice the capital V):

-l abel Vari abl e => \ $l abel _text

When you change the contents of the variable $| abel _t ext , thelabel in the frame
will change as well.

Theinstant you usethe- | abel or -1 abel Vari abl e option, alabel is created and

placed inside the frame. Y ou can use these options either in theinitial Fr ame() call or
later with $f r ame- >confi gure(...).If youusethem later, thelabel is placed
above all other widgets inside the frame.

FramesAren't I nteractive

The frame widget itself is not interactive; by default, it can't accept input from the user.
The widgetsinside it can, but the frame cannot. As always, the focus ability is controlled
by the - t akef ocus option:

-takefocus => 0

With aframe widget, it isset to O. If for some reason you need to get input from the user
on your frame, you will need to changeitto-t akef ocus => 1.

Colormap Complications

When you are running several applications at once and you start a web browser, you'll
sometimes notice that the colors become corrupted. When you switch from an
application to the browser, the colorsin your other applications suddenly change. If you
switch back from your browser to an application, the browser colors change. Thisis
happening because the web browser is a color hog. It has requested more colors than the
operating system can alocate at once. The OS must alter the colormap between
applications to allow the active application to use the colorsit wantsto use. The
colormap simply gives the operating system away to keep track of who is using which
colors.

Perl/Tk applications can have many colors too-you can get color-happy and make each
button a different color of the rainbow. This can cause problemsiif there are other
applications running that want alot of different colorstoo. If other applications are color
hogs, Perl/Tk will switch to black-and-white mode. If you don't like this behavior, you
can usethe - col or map option to override it. - col or map takes either the word

"new" or areferenceto another window. If given" new", it will create its own
colormap. When you use - col or map with another window, the two windows will
share the colormap. But there is one catch, and that isthe - vi sual option.

The- vi sual option takes as an argument a string that contains a keyword and a
number; for example:

-visual => "staticgrey 2"

The keyword can be any one of the following: st ati cgr ey, greyscal e,stati c-
col or, pseudocol or,truecol or,ordirect col or. The number indicates the
depth of color used (2 = black/white).

When you use - col or map to share the colormap between two windows, the - vi sual
option for both must be the same. This meansthat - vi sual must beundef for both
(the default) or it must have the same value. Neither - col or map nor - vi sual canbe
atered by using the conf i gur e method.

You will seeboth - col or map and - vi sual optionsin Chapter 13, Toplevel Widgets,

also. We covered it here first because thisis where we see it first. To be honest, you'll
probably never use either option in either widget.

The Magical Class Option

Y ou can force your frame to be in another class (besides frame) by using the - cl ass
option. Simply giveit astring that is a unique class identifier;

-class => "Wfrane"

For more information on using classes (and what good they can do you), see Chapter 13.

Frame M ethods

The only methods available with the frame widget arecget and confi gur e. These
are described in detail in Appendix A, Configuring Widgets with configure and cget.

Fun Thingsto Try

When you use the Scr ol | ed method, you are using frames without even knowing it.

The newly scrolled widget is placed inside a frame with its scrollbars so that it behaves
as one contained widget. Here are some other ways you can use frames:

* Create several lines of labels with entry widgets. Each 'line' needsto beinitsown
frame so it will look right.

» Place an image along one side of your application window. Put the widgetsin aframe
(on the left or on the right) and place the image on the other side of them.

* Place a scrolled listbox in your application window, a frame containing three buttons
(OK, Cancel, Apply) along the bottom of the window, and a frame along the right
containing two buttons (Delete, Add) that manipulate the listbox. By using frames, you
can keep the buttons that belong together in one areainstead of grouping them with other
buttons that serve a different purpose.

13—
Toplevel Widgets

Any Perl/Tk application includes at |east one toplevel widget. When you call the new
method from the Mai nW ndow class, you are creating a toplevel widget without even

knowing it. Y ou can create other toplevel widgets to be used in your applicationin
additionto the MainWindow toplevel widget. The MainWindow is special because it
automatically displays when you call Mai nLoop() . Other toplevel widgetsin your

program must be explicitly displayed somewhere in the code.
Here are some examples of how you can use toplevel widgets:
* Display informational text with a Close button.*

* Provide data gathering that is triggered by something the user does (for example,
clicking a button).

All toplevel widgets have the same behavior: Each has decoration that is consistent with
the system on which your application is run. Each toplevel can contain other widgets and/
or multiple groups of widgets (for example, they can be grouped in aframe widget).

The rest of the chapter will cover how to use toplevel widgets and what options allow
you to change their behavior.

Creating a Toplevel Widget

To create atoplevel, cal Topl evel from the desired parent widget, usually the
MainWindow widget (you already know that to create a main window, you must

* Look at Tk::Dialog. It is designed to do this and uses atoplevel widget.

use Mai nW ndow >new()) . Thereturned item is areference to the toplevel widget;

the reference allows you to configure the widget, call methods on it, and place items
within it. Here is a simple example:

use Tk;

$mw = Mai nW ndow >new;,

$mw->titl e(" Mai NW ndow') ;

$mw >Button(-text => "Topl evel ", -command => \ & o _t opl evel) -
>pack();

Mai nLoop;
sub do_toplevel {
if (! Exists ($t1)) {
$t1 = $nmw >Topl evel ();
$tl->title("Topl evel ");
$t1->Button(-text => "C ose",
-command => sub { $tl->w thdraw })->pack;
} else {
$t | ->dei coni fy();
$tl->raise();
}
}

When you run this program, clicking on the Toplevel button in the main window creates
the toplevel widget (if it needs to) and displaysit. Clicking Close hides the toplevel from
view. Y ou need to test for the existence of the toplevel before you show it because you
don't want to re-create it if it already exists and you don't want to try to show something
that doesn't exist.

When the Close button is clicked, the toplevel iswithdrawn. It still exists; it isjust not
visible to the user. This saves time the next time around by redisplaying the same
window. You can aso usew t hdr awif you don't want to show the toplevel while you

arefilling it with widgets. Simply use thew t hdr aw method, place the interior
widgets, and then redisplay the widget by using dei coni fy andr ai se.

These options can be specified in the call to Topl evel or by usingtheconfi gure
method.

- backgr ound => color

Sets the background color of the toplevel widget. Note that the background may be
hidden by widgets placed in the toplevel if the toplevel is completely covered by widgets.

- bor derw dt h =>amount
Sets the width of the border around the toplevel. Default is 0.

- cl ass => classname
Sets the classname used with the option database for this toplevel widget.

-col ormap => "new' |$w ndow
Specifies whether to use a new colormap or share one with another widget in the
application. Default isundef .

-container => 0|1
Tk8.0 only. If true, thiswindow will contain an embedded application (seethe - use
option).

- cursor => cursorname
Sets the type of cursor used over the toplevel widget.

- hei ght => amount
Sets the height of the toplevel.

- hi ghl i ght backgr ound => color
Sets the color the highlight rectangle should be when the toplevel does not have focus.

- hi ghl i ght col or => color
Sets the color the highlight rectangle should be when the toplevel does have focus.

- hi ghl i ght t hi ckness => amount
Sets the thickness of the highlight rectangle. Default is 0.

-menu => $nenu
Tk8.0 only. Indicates that the toplevel usesthe menu in $nenu across the top of the
window.

-relief => "flat' |'groove' |'raised' |'ridge' |'sunken' |
‘solid
Changes the appearance of the edges of thetoplevel. Defaultis' | at ' .

- SCreen => screenname
Sets the screen on which to place the toplevel. Cannot be changed by configure method.

-takefocus => 0|1 |undef

Determinesif toplevel can have keyboard focus. Default is 0, meaning it cannot have
keyboard focus.

-use => $w ndow d
Tk8.0 only. $wi ndowi d must contain a hex string of the window to embed in the
toplevel. The- cont ai ner option must have the value 1 to use this option.

-vi sual =>"type#"
When used on an X Window System, changes the depth of colors available to your
application. Does nothing on Win32 systems.

-w dt h =>amount
Sets the desired width of the toplevel.

Toplevel Methods

The methods available with the toplevel widget are listed and explained in the following
sections (it isimportant to note that all of these methods apply to a MainWindow as
well; aMainWindow isjust a specialized toplevel widget). Y ou haven't seen many of
them before because toplevel is adifferent sort of widget than the others covered so far
in this book. Also keep in mind that alot of these methods were designed originally for
use with a Unix windowing environment, and quite afew of them will state "No effect in
Win32 system.” Many of these functions serve no useful purpose to the typical ordinary
Perl/Tk application, but I'll document them here for thoroughness.

Several of the methods here alter window manager properties, which often look like
WM _PROPERTY _THING. These properties are also traditionally associated with the X
Window system on Unix, but some still apply in Win32 systems as well. If a specific
method doesn't say anything about which system it appliesto, it will apply to both. If it
only appliesto one or the other (or only half-worksin one system), thiswill be
mentioned as well.

Configuring a Toplevel

Both cget and conf i gur e methods are used to set and get option values for a

toplevel widget. See Appendix A for more detailed information on how to use these
methods.

Sizing a Toplevel

Y ou can usethe geonet r y method to define or retrieve a geometry string. A geometry

string determines the size and placement of awindow on the screen. The geometry string
IS a concept that originated on Unix systems, and at first glance, it isabit cryptic. Hereis
aregular expression that describes a complete geometry string:

A=2(\d+x\ d+) 2([+-]\ d+] +-]\ d+) 2$

The equal sign can be omitted completely (and usually is). The first portion (\ d+x\ d
+) isthewidth and height (in that order) separated by an x. Both width and height are
specified in pixels by default and in grid unitsif the window is gridded with thegri d

method (described later). The last portion of the geometry string represents the x and y
coordinates of the location in which the toplevel should be placed on the screen. Both x
and y are always in pixels. Here are afew examples of what some geometry strings ook
like:

300x300 # w dt h and hei ght both = 300
0

300%x450 # width = 300, height = 45

300%x450+0

+0 # wdth = 300, height = 450 placed in upper |eft corner
300%x450- 0-

0 # wdth = 300, height = 450 placed in |ower right corner

300%450+10+10 # width = 300, height = 450
placed 10 pixels out fromupper |eft corner
+0
+0 # window is 'natural' size, placed in upper |eft corner

When geonet r y iscalled with no arguments, the current geometry string is returned. Y ou can
also specify anew geometry by using geonet r y with the new geometry string as the
argument. To set the size and position of the window immediately, you would do this:

$nw = Mai nW ndow >new() ;
$mw >geonet ry (" 300x450+0+0") ;

If you specify only the width and height, the placement of the window is determined by the
window manager. If you specify only the positioning, then the size of the window will be
determined by the widgets placed within the toplevel, but the window will be placed at those x
and y coordinates.

Y ou can force the window back to its natural size by callinggeonetry () with an empty
geometry string:

$t opl evel - >geonetry("");
Maximum Size

You can use maxsi ze to restrict the largest size of the window. It takes two integers as
arguments, as follows:

$t opl evel - >maxsi ze(300, 300)

If you call maxsi ze without any arguments, you'll get an empty string or alist with two items
in it representing the current values. Calling maxsi ze with two empty strings cancels the
limitation.

Minimum Size

Y ou can also restrict the smallest size of the window by using m nsi ze. The window will
always be at |east the size specified:

$t opl evel - >mi nsi ze(100, 100) ;

Caling m nsi ze without arguments will return an empty string or alist containing the width
and height respectively. Calling m nsi ze with two empty strings will eliminate the minimum
size restriction.

Limiting Resizing
Y ou can control whether awindow can be resized in width and/or height by using r esi zabl e:
$t opl evel - >resi zabl e(1, 0)

($canwi dt h, $canhei ght) = $topl evel ->resi zabl e();

Specifying 1 meansit is resizable, and 0 meansit is nonresizable in the specified
direction. If you don't specify any arguments, r esi zabl e returnsalist with two items.

Thefirst itemisal or 0 and indicates whether if the width is resizable. The second item
isal or 0 and indicates whether if the height isresizable. By default, awindow is
resizable in both directions.

Using a Size Aspect
You can usetheaspect method to force the window to stay a certain width and height:
$t opl evel ->aspect([mnN, m nD, maxN, maxD]);

Theaspect method does some very subtle things, and you'll probably never useit. If

you do, play around with different values (starting with the example below) to get the
effect you want

When you usetheaspect method with no arguments, it returns either an empty string

(if there are no constraints to the aspect of the window) or an array containing four
elements:

($m nN, $m nD, $nmaxN, $maxD) = $topl evel - >aspect;
Using these values, you can see how aspect controls the window:
($mi NN/ $ni nD) < wi dt h/ hei ght < ($maxN $nmaxD)

Y ou can also send four empty strings to unset the aspect restrictions on the window. Try
using $t opl evel - >aspect (1, 2, 3, 1) ; theeffect is subtle.

Setting the Title

Y ou can change the text across the top of the window by using thet i t | e method:

$toplevel ->title("This will be the title");

Passastring inwithti t | e and the new title will appear immediately in the window,
assuming the window is currently visible. If you don't pass an argument withtitl e,

the current title string is returned. For the X Window System, the default title of a
window is the name used to run the program, and the first character of the nameis
uppercase. For Microsoft Windows, the title always starts out as Toplevel.

Showing the Toplevel

Thedei coni f y method causes the toplevel to be displayed noniconified or deiconifies
it immediately if the window has aready been displayed once. If the window

has been withdrawn, a $t opl evel - >r ai se() must also be done to correctly display
the window.

Ther ai se method brings the toplevel to the front of all the other toplevel windows in
the application if you call it with no arguments:

$t opl evel ->rai se();
Y ou can also put the toplevel in front of another toplevel:

$t opl evel - >rai se($ot her _t opl evel);

It is sometimes necessary to use both dei coni fy andr ai se to get the window to
show up on the screen.

Withdrawing the Toplevel

When you create awindow, it isagood ideato make it invisible while you fill it with
widgets. Y ou can do so by using thew t hdr aw method:

$t opl evel ->wi t hdraw() ;

If the window is aready visible, wi t hdr awwill make the window manager forget
about the window until it has been deiconified.

| conifying the Toplevel
Thei coni f y method forces the toplevel into iconified form:
$t opl evel ->i coni fy();

|conifying is not the same as withdrawing the window; withdrawing the window will not
show an icon on the desktop.

Specifying the I con Bitmap

In the Unix X Window System, when you iconify your application, it is represented on
the screen with abitmap. You usethei conbi t map method to specify this bitmap:

$t opl evel - >i conbi t map() ;
$t opl evel - >i conbi t map(" bit map");

It takes a bitmap in the same form the - bi t map option supported by the button widget
(see Chapter 3, The Basic Button). Calling i conbi t map with no arguments returns the
current bitmap or an empty string. Callingi conbi t map with an empty string removes
the current bitmap.

On Win32 systems, the application is kept in the Start taskbar with an unchangeable Tk
icon and the name of the application. Using thei conbi t map method on a Win32

system does nothing.

Specifying the I con Mask

A mask for the icon bitmap can be specified by using thei conmask method

(remember, thiswill only work with X Window Systems). It also takes a bitmap
specified from afile or adefault bitmap name (see - bi t map documentation in Chapter

3). Where the bitmap mask has zeroes, no part of the normal icon bitmap will be
displayed. Where the mask has ones, normal icon bitmaps will be displayed.

Cdling i conmask with no arguments returns the current bitmap mask or an empty
string if no bitmap is being used. Callingi conmask with an empty string unsets the
mask:

$current mask = $topl evel ->i conmask(); # get the nask
$t opl evel - >i conmask(" bi t mapnane"); # set the mask
$t opl evel - >i conmask(""); # unset the nask

Setting the Name of the I con

Thei connanme method sets or returns the current text associated with theicon that is

displayed when the application isiconified. Y ou can passin anew string or an empty
string:

$t opl evel - >i connane(" newnane") ;
$current _nanme = $topl evel - >i connane();

If you don't specify an argument at al, i connane returns the current iconname or an

empty string. Y ou can query and set the iconname on aWin32 system, but it doesn't do
anything. Thisis amethod that is used on the X Window System only.

Setting the I con Position

Thei conposi ti on method suggests to the X Window Systems manager where the
icon should be placed on the desktop when the application isiconified:

($x, $y) = S$toplevel ->i conposition();
$t opl evel - >i conposi tion($x, $y);

If x and y aren't specified, alist isreturned containing only two items, the current x and
y.If youcal i conposi ti on with two empty strings (one for each x and y), the

suggestion to the window manager is cancelled.
Using a Window I nstead of an Icon

Some systems (not Win32) support the idea of using awidget (or window) instead of a
bitmap for an icon. Specify the widget by using thei conwi ndow method. To find out

what the current widget is, call i conwi ndow with no arguments (an empty

string is returned if there is no associated $wi dget). Y ou can specify an empty string
instead of $wi dget to cancel by using awidget for the icon:

$currentw ndow = $topl evel ->i conwi ndow(); # get

$t opl evel - >i conwi ndow($wi ndow) ; # set
$t opl evel - >i conwi ndow(""); # unset

Determining the State

The state method returns one of three strings: " nor mal ", " i coni ¢, or
"W t hdrawn".

$state = $topl evel ->state();
The string indicates the state of the window when st at e iscalled.
Assigning an Application Name

Thecl i ent method returns an empty string if your application doesn't have a name
assigned to it.

$nane = $toplevel->client();
$t opl evel ->client ("name");

To assign aname, send astring tothecl i ent method after you create your toplevel

widget. You can use thisin an .Xdefaults file in the X Window System to assign colors
to your application.

Window Properties

The pr ot ocol method controls the following window properties: WM_DELETE _

WINDOW, WM_SAVE_YOURSELF, and WM_TAKE_FOCUS. The calback (if any)
associated with each property will be invoked when the window manager recognizes the
event associated with the property:

$t opl evel ->protocol ([property_nane] [, callback]);

The WM_DELETE_WINDOW property callback isinvoked when the window has been
deleted by the window manager. By default, there is a callback assigned by Perl/Tk that
destroys the window. If you assign a new callback, your callback will be invoked instead
of the default callback. If you need to save data associated with that window, do so in the
callback and then invoke $t opl evel - >dest r oy() to mimic the correct behavior

afterward.

The other two properties, WM_SAVE_YOURSELF and WM_TAKE_FOCUS, are
much less commonly used. For instance, WM_TAKE_ FOCUS s used in Unix systems
but not in Win32. The presence of these propertiesis dependent on the window system
you are running. If your application will be running on multiple systems, don't expect
these properties to always be available. To find out if they

are available, assign each one a callback that doesapr i nt and then run the application
toseeif thepri nt isever invoked.

If you leave out the callback when you use pr ot ocol , the current callback assigned to

that property will be returned (or an empty string if there isn't a current callback
assigned). Y ou can remove the callback by sending an empty string instead of the
callback. If neither argument is specified, the method returns alist of all properties that
have callbacks assigned to them.

Colormap Property

Thecol or mapwi ndows method affectsthe WM_COLORMAP_WINDOWS

property. This property is used to talk to the window manager about windows that have
private colormaps. Using col or mapwi ndows with no arguments returns alist of

windows. The list contains windows (in order of priority) that have a different colormap
than their parents:

@i st = $toplevel ->col or mapwi ndows() ;
You can pass alist of windowsto col or mapwi ndows aswell:

$t opl evel - >col or mapwi ndows(@i st);

If you don't use this function at al, Perl/Tk will take care of everything for you, although
the order of the windows might be different.

The Command Property

The command method (not to be confused with the - command option used with most

of the widgets) controlsthe WM_COMMAND property. When used with no arguments,
comrand returns alist reference:

$listref = $topl evel ->comand() ;

The list holds the words of the command used to start the application. Use this bit of
code to determine what your application command was (which is sometimes nothing):

$listptr = $nmw >conmand() ;

foreach (@listptr) {
print "$.\n";

}

Y ou can unset the WM_COMMAND property by sending an empty string:

$t opl evel - >conmand("");

The Focus Model

Thef ocusnodel method controls whether or not the toplevel widget will give up the
keyboard focus when another application or window should have it:

$t opl evel - >f ocusnodel (["active" | "passive"]);

The default is" passi ve" , meaning it will give up the keyboard focus. The changes

present in your application depend completely on the type of window manager you are
running your application under. My testing revealed no changes under Win32 or the X
Window System.

Getting the Parent of the Toplevel

Thef r ame method returns a hexadecimal string that isthe "1D" of the parent of the
toplevel widget:

$id = $toplevel ->franme();
You can use $wi dget - >i d() to get the same ID from any widget in your application.

The Application Grid

There are afew complications with the gr i d method. Remember way back in Chapter 2
therewasagr i d there also which controlled geometry management. To resolve this
little problem, we have to call thisgr i d method in afunny way:

$Smw->wn(' grid', ...);

We must use the Wn(stands for window manager) method to invoke gr i d indirectly.

Now that we have that cleared up, we can get intowhatw{(' grid', ...) does.
When you tell the window to gr i d, you are restricting the size it can be. The size must
always snap to the grid as defined ingr i d. We have to remember the listbox widget and
the- set gri d option back in Chapter 7, The Listbox Widget. Once you use -

setgrid => 1onalistbox,youcanuse @i st = $topl evel -> wm
("grid); todeterminethevauesusedinthegrid. The values| got on my system

were 10, 10, 7, and 17. This means the base width and height were each 10 pixels and
each grid unit incremented by 7 pixelsin width and 17 pixelsin height. Y ou can change
the grid size and increments by callingw(' grid', ...) withnew vauesif you

desire, but if you don't, Tk manages everything quite nicely for any of the gridded
widgets.

Y ou should also know that you can unset the grid values by using empty strings for each
instead of new values.

Being the Leader

Thisis another method you'll never use, but it's good to know what you're not using it
for. The gr oup method makes a widget the group leader of related windows. For each

toplevel that you want to bein $wi dget 'sgroup, cal $t opl evel - >gr oup
($w dget) . If $wi dget isn't specified, it will return the current group leader of
$t opl evel , or it will return an empty string if $t opl evel isn't part of agroup.

Y ou can send an empty string to cancel toplevel's association with that group. That is, to
remove atoplevel from the group, call $t opl evel - >group(" ").

Removing Decorations

To make awindow with none of the normal window decorations (titlebar, borders, and
so on) you can usetheover ri der edi r ect method with atrue value:

$topl evel ->overrideredirect(1); # Renove all decorations

Be careful though; you won't be able to move the window on the screen once it is drawn.
If you forgot to put an exit button on it, you won't be able to quit the application
gracefully (doing a CTRL-C in the window that started the script will kill it).

Thisisaway to make a splash screen-a screen that shows up as your application is
loading. Remember that you must call Mai nLoop for it to show up at all.

Cdlingoverri der edi r ect with no argument returns the current value (1 or 0):

$current _val ue = $topl evel ->overrideredirect();

Calingoverri der edi rect aganwith a0 value will not turn decorations back on
once the window has been displayed.

Who Placed the Window?

When the toplevel widget is placed on the window, either the window manager tells the
program where to be or the program tells the window manager where it wants to be. In
some cases, the user positions the window manually when it comes up.

$who = $topl evel - >positionfron();
$t opl evel ->positionfrom("progrant'); # Try and force it

When called without argument, the posi t i onf r ommethod returns information on
which one happened. If it returnsthe string " pr ogr ani', an empty string, or a

$w dget , it means either the window manager or the program requested the position. If
posi ti onfromreturnsthestring " user ", the user manually placed the window
when it was created.

Y ou can try to force which will happen by calling posi t i onf r omwith the
"progrant or"user" string, but it will only work if your window manager agrees
with you.

Who Sized 1t?

The si zef r ommethod does the same thing posi t i onf r omdoes except it returns
information regarding the size of the window.

$who = $topl evel ->si zefron(); # "progrant or "user"?
$t opl evel ->si zefronm("user"); # Try and force it

Not a Real Window

A transient window is one that isn't quite areal window (such as a pull-down menu).
Y ou can indicate to the window manager that the toplevel (for example, the pulldown
menu) isrelated to its master (the window in which it is displayed) by using the

t ransi ent method:

$nymaster = $topl evel ->transient();
$t opl evel ->transi ent ($nmaster) ;

If you don't use any argumentswith t r ansi ent , it returns either the current master or
an empty string.

Review

It isagood ideato use another toplevel widget instead of the MainWindow if thereistoo
much information to fit in one window. Using toplevels to group information is al'so
sometimes a good idea. When to use an additional toplevel is adesign decision that
you'll have to make. Y ou don't want to have too many windows for the user to navigate,
but a well-designed application might be able to make use of one or two. For instance,
the Tk module comes with a Tk::Dialog module that lets you easily display messages to
the user. Check out the documentation included with the Dialog.pm file for more
information on how to useit.

Fun Thingsto Try

Take the Dynamic Document List example from the last chapter and make it create a
new toplevel every time the user hits the New Document button. (Advanced: actually
create or load afile.)

14—
Binding Events

Perl/Tk is an event-driven programming language. Y ou design your program to respond
to events generated by the program. Event sequences can be pushing a button, moving
the mouse, or typing some characters with a keyboard. The relationship between the
event sequence and the widget is called a binding.

Each widget provided with Perl/Tk hasits own default bindings. For example, the button
widget changes color when the mouse pointer is over the button and it invokes a callback
that you specified when it is clicked. These are default bindings, ones that are created
when you create the widget itself.

Y ou can have your program respond to additional events by using the bi nd command
to assign callbacks to different event sequences; the basic format is:

$w dget - >bi nd(sequence, call back);

In addition, you can override the default bindings by creating your own or just removing
them.

The bind M ethod

To usethe bi nd method, invoke it from the widget to which you would like to add the
binding. For instance, if you want to add a binding to abuttonin $but t on, use
$but t on- >bi nd. In certain instances, you would use the main window

of your application: $mw >bi nd(. . .) . There are severa different sets of valid
arguments you can send to bi nd. The following list explains them all:

$wi dget - >bi nd() ;

Calling bind with no arguments returns a list of bind sequences (e.g. <But t on- 1>,
<Key- D>) that have been created for that widget. It will not return any of the default
bindings. Here's an example:

$button = $mw>Button(...)->pack;
$but t on- >bi nd("<Button-3>", sub { ... });

@i ndi ngs = $but t on- >bi nd() ;

print "Bindings for button : @i ndi ngs\n";
woul d print:

Bi ndings for button: <Button-3>

This function will return an empty string if there are no additional bindings for that
widget.

$wi dget - >bi nd (sequence);
Y ou can determine what callback is associated with a bind sequence. Passin the bind
sequence (for example, " <But t on- 3>") asthe first argument and the currently

assigned callback will be returned. Expanding the preceding example, we can use the
information in @i ndi ngs to see what callbacks are associated with them:

foreach (@i ndings) {
print "$ is assigned callback ", $button->bind($), "\n";
}

<Button-3> is assigned call back Tk:: Cal | back=CODE(0x91f dcc)

If you send a bind sequence that doesn't exist for that widget, you'll ssmply get an
empty string as the result. Also, if you use a sequence that is considered a default
binding (for example, " <But t on- 1>" on a button widget), you'll get an empty
string as well (unless you've added another binding to it with bi nd).

$w dget - >bi nd (sequence, callback);

To have a callback invoked when a sequence happens, specify it after the sequence in the
bi nd call. It can be any of the valid forms for callbacks discussed in Chapter 3. Here are
afew examples:

$but t on- >bi nd("<Button-3>", sub { print "Right clicked\n" });
$ent ry- >bi nd

("<Return>", sub { print "Ht returnin entry wdget\n" });
$but t on- >bi nd(" <Button-1>", \ &1 addtl _action());

$canvas- >Tk: : bi nd("<Button-1>", [\&raw rectangle, Ev

("X'), Ev("Y) 1)

To remove a binding for a specific sequence, send an empty string for the callback.

$w dget - >bi nd (tag [, sequence, callback]);

A tagisaway to refer to awidget class. You use tags if you wanted every widget of a
certain type to have the same behavior. For instance, if you want a search menu to pop up
when you right-click in the text widget, you can do this:

$t1 = $mn>Scrol | ed(" Text ") - >pack(-expand => 1, -

fill => 'both');
$t2 = $mw>Scrol | ed(" Text") - >pack(-expand => 1, -
fill => 'both');

$menu = $mw >Menu(-nenuitens => [["conmand" => "Search",
-command => \ &search_file],
["command" => "Search Again",
-command => \ &ear ch_agai n]

1,
-tearof f => 0);
$ma- >bi nd(Tk: : Text, "<Button-3>",
sub { $nmenu->Popup (-popover => 'cursor'
- popanchor => "nw') });

Any text widgets you create inside the application would then have the search menu
pop up over it. You would have to do alittle work in the search routines to determine
which text widget triggered the function, but you wouldn't have to recode the same
bind sequence for each text widget you create.

In the preceding example, we specified the sequence (" <But t on- 3>") to be

bound. If we didn't, we would get alist of the current callbacks associated with that
event sequence.

Thespecial tag' al | ' can be used to refer to every widget and window in the

application. But be careful; you'll get much more activity in your callback than you
would think!

Arguments Sent to the Callback

Thefirst argument to a callback assigned with bi nd is aways areference to the calling

widget. Thisistrue even when you bind to awidget class. Y ou can use the reference
passed in to retrieve information about the widget from which the sequence was invoked.

Here's an example of using a single entry widget:

$entry = $mw>Entry() - >pack;
$entry->bi nd("<Return>", \&hit_return);
sub hit_return {
ny ($e) = @;
print "Entry contained: ", $e->get, "\n";

}

When you use bi nd to invoke a callback on an entire widget class, it makes the job of
determining which widget was the subject of the event much easier:

$mn >Scrol | ed(" Text ") - >pack(-expand => 1, -fill => "both');
$mn >Scrol | ed(" Text ") - >pack(-expand => 1, -fill =>"both');

$menu = $mw >Menu (-nenuitens =>[["command" => " Save",
-command => \ &save file],
["command" => "(Open",
-command => \ &open_fil e]
1,
-tearof f => 0);
$mw >bi nd(Tk: : Text, "<Button-3>",
sub {$nmenu- >Popup(- popover => 'cursor') });
sub save file {
ny ($text) = @;

open

(FH, ">outfile") || die "Couldn't open outfile for witing";
print FH $text->get("1.0", "end");
cl ose (FH);

}

Thecal tobi nd usesTk: : Text asthefirst argument. Thiswill cause the bind to be

applied to every text widget in the application. In this example, no matter which text
widget is clicked, its contents will bewrittento " out fi | e" . The application might

also prompt the user for a different filename at that point, allowing it to actually do
something useful.

Defining Event Sequences

So far, you've seen severa different event sequences-<But t on- 3>, <But t on- 1>,
and <Ret ur n>-but | haven't yet explained the format for building them. Although the

examples you've seen may seem obvious and simple, event sequences can get much
more complicated.

The event sequenceis built from an optional modifier, an event, and an optional detail.
They are separated by dashes and then placed between angle brackets:

<nodi fi er-event-detail >

Aswe discuss al the possible bindings, keep in mind that it is possible for more than
one event sequence to match. The more detailed matches will invoke their callbacks
first. If abinding has been created on a specific button, and then another binding is
created on al of the buttons, the specific-button bind callback will be invoked first, and
then the more general all-button bind callback will be invoked.

Modifiers

A modifier is an event that happens at the same time the main event happens, such as
holding down the Control key and clicking the mouse. The modifying

event must happen first in order for the entire event sequence to match (e.g., pressing the
Control key and then pressing the mouse button).

The possible modifiers and their meanings are as follows:

Control
The Control key must be pressed down as the main event is happening (e.g.,
<Control - Button-1>).

Shift
The Shift key must be pressed down as the main event happens (e.g., <Shi f t -
But t on- 3>).

Lock
The Caps Lock key must be pressed to turn on caps lock (e.g., <Lock- Key- a>).

Alt
Causes the main event to match only if either of the Alt keysis pressed down while the
main event happens (e.g., <Al t - Key- x>).

Microsoft Windows users should be aware that sometimes M'S Windows doesn't
allow the event notifier to notify applications that the left Alt key has been pressed.
The left Alt key isnormally the Alt key people use when switching between
applications by using ALT-Tab. If the left Alt key doesn't work, try the right one
before giving up. Thiswarning also applies if you are using an X Window server (e.
g., Exceed) on MS Windows to access a Unix system.

Button# where #is 1, 2, 3, 4, or 5. You could also use B# as a shortcut.

These modifiersindicate that, before the rest of the event happens, the specified mouse-

button number must be depressed. For instance, if you want to trigger an event when the
user clicks mouse button 1 and then mouse button 3, you can use the event <But t on1-

But t on- 3> (or <B1- But t on- 3>). The same event would not be triggered if you
clicked mouse button 3 and then mouse button 1. The events are order dependent.

It isnot valid to use only <But t on#> because, without the dash between
“But t on" and the number, you are indicating a modifier to another event type.

Double

Doubleis a specia type of modifier that indicates the main event should happen twice.
Double puts a constraint on the minimum amount of time between the repetitions of the
main event. Double is most often used to indicate a double-click of a mouse button.

It isimportant to note that <Doubl e- But t on- 1> isnot equivalent to <But t on-
1><But t on- 1>. Although they sort of mean the same thing, there is no

time constraint with the <But t on- 1><But t on- 1> event. The second means

"Y ou clicked button 1, and then at some later point, you clicked button 1 again.”
The <Doubl e- But t on- 1> event means "Y ou clicked button 1, and within a

certain time period, you clicked button 1 again.”

Triple
Similar to Double, Tripleis another special modifier type. It requires that themain event
occur three times in rapid succession.

Another interesting thing to consider with Double and Triple modifiersis that they
are cumulative. If you click five times quickly on a button, the first click would
match at <But t on- 1> event, the second click would match a<Doubl e-

But t on- 1> event, the third click would match Tr i pl e- But t on- 1> event, and
the fourth click would also match a<Tr i pl e- But t on- 1>event, and so on. This
istrueonly if the<Tri pl e- But t on- 1> event isdefined. If only <Doubl e-
But t on- 1> isdefined, the third click would reactivate that binding instead of the
<Tri pl e> binding. The timeline in Figure 14-1 shows when the events are
generated.

Clieckl Click2 Click3 Click4

Single Click 15t Dowble Glick 2nd Double Click 3rd Doubla Click
gvent generated event generated event generated event generated

Figure 14-1.
Cumul ative double-clicking example

Meta (or M)
Requires that the Meta key be pressed during the main event. The Meta key is usually
used on X Window Systems only.

Mod#or M#
Thisisaso only used on X Window Systems. There are several modifiers (1-5); use Ev

(' K') todetermine where they are on your keyboard.

Event Types (with Optional Details)

The event portion of the event string is the event we are looking for. It can have a
modifier or not (as specified in the preceding section). When the information says an
event istriggered or generated, it means that the event has happened. If thereisno
callback associated with the event, it will look asif nothing has actually happened. The
following isalist event types and the optional details where applicable.

ButtonPress (or Button)

A ButtonPress happens when a mouse button is pressed down. The Button event also
refersto a ButtonPress; it's just a shorter way to writeit. If you use the event

<But t on>, it refersto any mouse button, but you can specify a specific button by

adding adetail: <But t on- 1>, <But t onRel ease- 2>, and so on.

ButtonRelease

A ButtonRelease event happens when the mouse button is released. Y ou can have
different things happen based on the button being pressed down (Button or ButtonPress)
and let up (ButtonRElease). Y ou can spcify adetail to indicate a different button:

<But t onRel ease- 1, <But t onRel ease- 2>, and so on. If a specific button isn't

specified, any button will match the event.

Circulate
The Circulate event is generated when your application has more than one window and
the stacking order is switched around.

Colormap
The Colormap event happens when the colormap for the widget (usually atoplevel) has
changed.

Configure

The Configure event happens when awidget is configured. If you map a callback to this
one, be careful; it can be called quite often. Every time the application window is
resized, each widget within the window is configured, resulting in a Configure event
being generated for those widgets. When the widget isfirst created, it also generates a
Configure event.

Destroy
When the widget is destroyed, the Destroy event is generated. Y ou can forcefully
destroy awidget by using $wi dget - >dest roy() .

Enter

The Enter event happens when the mouse cursor enters the area occupied by the widget.
It isimportant to remember that thisis not the "user-presses-the-RETURN/Enter-
keyboard-key" event.

Expose
The Expose event happens when the window has been exposed.

Focusln
When the widget receives the keyboard focus because the user has tabbed to it (or
$w dget - >f ocus() happensin the program), the Focusln event happens.

FocusOut
The FocusOut event is the opposite of Focusln. When the keyboard focus |eaves the
widget, FocusOut is triggered.

Gravity
The Gravity event happens when the widget moves because the widget's parent changed
size.

KeyPress (or Key)

When akey on the keyboard is pressed, the KeyPress (or Key) event is generated. It is
possible to narrow this down to the specific key such asthe "a" key by using a detail
with the event: <Key- a>. If you want to determine which key was pressed to trigger the

event, you canuse Ev(' K') asan argument with your callback:

$ma >bi nd(" <Key>", [\&check _key, Ev ("K) 1);

This has the effect of sending the key symbol for the key pressed as an argument to
check_key. Tofind out which key symbols are for which keys, use this piece of

code:

use Tk:

$mw = Mai nW ndow >new;

$mw >bi nd(" <Key>", [sub { print "Key: $ [1]\n"; }, Ev
("K)I)

Mai nLoop;

Asyou press keys on the keyboard, you'll see their key symbols printed out on the
screen. Notice that the shift characters above the numbers (such as $, %, [J, and so
on) come out as named ("dollar,”, "percent," "caret,”, and so on).

KeyRelease

The KeyRelease event is the companion event to KeyPress. It isinvoked when thekey is
released. Sometimes it is preferable to wait until the key has been released before doing
anything.

Leave

The Leave event happens when the mouse cursor leaves the area occupied by the widget.
Use Enter and L eave events to create two bindings for the same widget and you can do
neat things such as change the mouse cursor while the mouse isin the widget (look into
using - cur sor firstif it'savailable for that widget).

Map
The Map event happens when window has been mapped or opened (deiconified).

Motion

When the mouse moves around on the screen above your application, it generates a
Mation event. Thisis another event that you don't want to bind to lightly because your
callback will be triggered all the time. Granted, if you bind to just a single widget, you'll
only get Motion events when you are passing over that widget, but that is still alot of
invocations of the callback. | suggest having avery good reason for binding to the
Motion event.

Reparent
The Reparent event happens when parent of the bound widget has changed.

Unmap
The Unmap event happens when the bound window has been iconified.

Visibility
When awidget first becomes visible, it triggers the Visibility event. There are several
ways awidget becomes visible in your application:

» When the application first starts up, and the widget is placed on the screen, it
triggersaVisibility event. Note that if you create awidget and don't pack it onto the
screen, aVisibility event will not be generated.

» When the widget is unpacked by using pack (' f or get ') and then repacked.

* When the window is resized and the widget suddenly comes into view (usually
after the window has been made smaller and then resized larger).

» When the widget is inside another widget (such as atext or canvas widget) and
scrolls back on the screen.

Event I nformation

Y ou can find out information about an event by using the Ev method. There are many
valuesyou can usein acall to Ev, and they are thoroughly documented on the Perl/Tk

documentation web site at http;//w4.Ins.cornell.edu/~pubp/ptk/doc/bind.btm, which is
maintained by Peter Prymmer, and http://www.perl.conv ptk/pod/bind.pod.. I'll cover the

values that you would want to use 99.9 percent of the time. Remember that certain
values used with Ev are only valid for certain events. If you use an Ev value that doesn't

apply, you'll get an undefined value.

Coordinates

To determine the coordinates at which the event happened, use Ev(' x') and Ev
('y") . They return coordinates relative to the window in which the event happened. If

you want coordinates relative to the root of your window system (desktop in Windows,
Xroot in X), useuppercase X and Y. Ev(' X') andEv('Y').

Ev(' X') andEv(' Y') arevalid only for ButtonPress, ButtonRelease, KeyPress,
KeyRelease, or Motion events.

Button Number

To find out which button number on the mouse was pressed, use Ev(' b') . Itisvalid
only for ButtonPress or ButtonRelease events. If youuse Ev(' b') witha<But t on-
1> event, you would obviously get 1 back.

Height and Width

Usean' h' toreturnthe height anda' w to return the width associated with the event.

The width and height returned indicate how large the widget is. For instance, if you want
to find out the new size of a button after the window has been manually resized by the
user, you can do this:

$but t on- >bi nd(" <Configure>", [sub { print "H $[1], W $_
[2]\n"; },
Ev('h'), Bv('wW)]);

The callback will only be invoked when the widget has been configured. This happens
when the widget isfirst created and any time the widget is resized.

Ev('h') andEv(' w) arevalidonly for Configure, Expose, and GraphicsExpose
events.

Keyboard I nformation

There are severa waysto find out which keys the user has pressed on the keyboard. Use
"K' to print out the value associated with that keycalled a keysym. If you use lowercase

"K' you'll get the ASCII value associated with the key. Try this bit of code to see the
difference:

$b->bi nd("<Key>", [sub { print "ARGS: @\n" }, BEV('K)]);
Ev('k') andEv(' K') arevalidonly for KeyPress and KeyRelease events.

Y ou can also get the keysym as a decimal number rather than a string by using Ev
("N).

Event Type

Y ou can find out what type of event the callback isresponding to by using Ev(' T').
When responding to a KeyPress event, the string will be " KeyPr ess” . It's pretty

obvious, but sometimes it's useful if you are using the same callback to respond to
several different events.

Bailing Out of a Callback Created with bind

To stop the processing within your callback, you can use ar et ur n statement to return

control. Thiswill not stop any further bound callbacks from being processed. To halt the
processing of any and all callbacks bound to a widget/event combination, you can use
Tk: : br eak instead of the milder r et ur n.

The bindtags M ethod

To find out the tags associated with awidget, use the bi ndt ags method; for example:

print join(' ', $button->bindtags())
prints this: Tk::Button .button . all
print join(' ', $mw>bindtags()) ;

#prints this: MainWndow . all

Thistells us the order in which the widget will respond to binding callbacks. The first
response is aways to the class that the widget belongs to; Tk::Button in the first example
and MainWindow in the second.

The information returned from bi ndt ags isn't nearly as interesting as what you can do

with arguments sent to it. To remove all specific bindings from awidget except those
that apply to* al | *

$but t on- >bi ndtags (['a||'])’

Now the button will not respond to being pressed, mouse movements, or the default
bindings associated with the widget. As demonstrated in the Perl/Tk web page for
bi ndt ags, you can reverse the order in which the widget responds to eventslike this:

$b->bi ndtags(['all"' , $b->topl evel ,ref ($b), $b]);

We aready know that * al | ' means any bindings associated with the special * al | '
bindtag. Using $b- >t opl evel returnsthe window $b livesin: Mai nW n-
dow=HASH(Ox9798d8) . Using r ef ($b) givesthe package $b belongsto: Tk: :
But t on. Finally, $b means the specific instanceof $ b: Tk: : But t on=HASH
(Ox99c0cc).

HASH(Ox99cCcc) isawhat we see when we print the value out. The hex number in

parentheses is just the physical memory location of that widget. HASH meansthat it is
stored in a hash structure.

Waysto Use bind

Using bi nd isapowerful way to make your application do things easily. You can add a
binding to alistbox widget so it will display a menu when you right-click on it. Use

bi nd with text tags to create a pseudo-html document. Add a double-click binding to
the listbox so that something happens when a user double-clicks on an item in the
listbox. There are more ways you can use bi nd than | could ever cover here. Just make
sure you don't do anything that the user can't figure out (for example, triple-clicking
while holding down the Control key is abit obscure).

15—
Composite Widgets

So far, we have only discussed each basic widget separately. The Perl/Tk distribution
aso includes several composite widgets. Composite widgets are combinations of widgets
that do something specific when they are combined. Here are some examples of
composite widgets:

Optionmenu
Based on menubutton widget; it allows the user to select from alist of items on the
menu.

LabEntry
Based on frame widget; it is an entry widgetwith a configurable |abel.

Dialog
Based on toplevel widget; it displays a bitmapand a message to the user.

I chose these examples because they demonstrate a good point about composite widgets.
They can be based on awidget (in this case, menubutton), on aframe that contains
widgets, or onatoplevel widget that contains other widgets and is a complete window.

When | first started learning about composite widgets, | aways felt like | was
missingsomething. If | looked at the code out of the corner of my eye, it made sense. Y et
if | looked at ithead on, | was suddenly utterly confused and wasn't sure what it was
doing. The important thing toremember is that there is quite a bit that goes on behind the
scenes that we take advantage of when we are creating a composite widget.

My goal with this chapter isn't for you to write the most complex type of composite
widget youcan think of. Simply understanding how composite widgets work is more
than enough. Y ou canbuild up slowly from there. The best thing to do is read through
this chapter and then look at theexamples already included with the

distribution of Perl/Tk. The composite widgets included with the Tk module are
complete, havebeen reviewed by many different people, and will do something when
you run them (plus they areusually documented with pod documentation). Rather than
show a do-nothing example in thischapter, | will refer you to real code.

Looking at an Example Sideways

I admit it. | like examples. They give me a starting point to come back to when I'm
getting intothe nitty-gritty. Since thereis quite a bit of nitty-gritty with composite
widgets, we'll start simple andwork up from there.

If you look at the code for these composite widgets, the LabEntry has the smallest
amount ofcode. Here is the LabEntry.pm widget code:

Copyright (c) 1995-1997 Nick |Ing-

Simons. Al rights reserved.

This programis free software; you can redistribute it and/
or

modify it under the same terms as Perl itself.

O ass Label edEntry

package Tk::LabEntry;
require TK:: Franeg;
@SA = gWM Tk: : Frane) ;

Construct Tk::Wdget 'LabEntry';

sub Popul at e

{
require Tk::Entry;

Label edEntry constructor.

#

nmy($cw, $args) = @;

$cw >SUPER: : Popul ate ($args);

Advertised subwi dgets: entry.

ny $e = $cw >Entry();

$e->pack(-expand => 1, -fill => 'both');
$cw >Advertise ('entry' => $e);

$cw >Confi gSpecs(DEFAULT => [$e]);

$cw >Del egat es(DEFAULT => $e);

$cw >AddScrol | bars ($e) if (exists $args->{-scrollbars});

}
1;
That's the complete set of code, commentsand all. Y ou can

tell it's aframe-based composite widget because of theline@ SA = gw(Tk: :
Fr ane) . We can look inProgramming Perl (O'Reilly, 1997) to find out what the
@ SAarray isfor: "Within each package a special array called @ SAtells Perl where else

to look for amethod if it can't find the method in that package." There's alot more there
about

how this implements inheritance, but | wouldn't want to overuse their words just to
explain asimple concept: To have your composite widget work, you need thislinein
your code.* All the otherexplanation is nitty-gritty.**

Next step-how does the entry widget come into play? We know it gets createdbecause if
we use a LabEntry, we see one on the screen. You'll notice there's only one subroutinein
the wholefile; that subroutineis called Popul at e. You never cal itdirectly, but it does
get called. The argumentsto Popul at e are twoscaars. The first is areference to the
frameitself, and the second is areference to a hash thatcontains all the argument pairs

you would have used to create the widget. Here's an example of creating a LabEntry
widget:

$l abel _entry = $ma >LabEntry(-textvariable => \ $text,
-l abel => "Enter Name:",
-l abel Pack => [-

side => "left'])->pack();

Asyou glance through the code, you know an entry widget is created because you see
thisline my $e = $cw >Ent ry() . Then abunch of weird stuff happens with

Advertising, ConfigSpecs, and Delegates. For now let's just say that these functions
alow the entry widget to behave as you would expect an entry widget to behave.

The LabEntry's label is created automatically because we usethe- | abel option when
we create it. If we look back to Chapter 12, Frames, we know that if we usethe - | abel

option with aframe, alabel will be created for us. So what makes thisasimple
composite widget is that it takes advantage of the label alreadyincluded with aframe
widget.

L ocation of Files

When you create your own composite widgets, you create afile that has the same name
(including capitalization) of your widget and has a .pm suffix. For instance, if you
wantedto create a new composite widget called ListButton, you would place the code for
itin afile calledListButton.pm.

In the code that uses your new widget, includeuse Li st Butt on after theuse Tk at

the top of your code, assuming you keep yourcomposite widget files (such as ListButton.
pm) in the same directory as the rest of yourapplication code. If not, before any use or
requi r e statements, add:

use lib ("dirl™, "dir2");

pointing to whatever directory you're using for ListButton.pm.

* You realy don't need to inherit from aframe, but most people do, and itmakes things
alittle smpler because you have an automatic container for your composite widget.

** The nitty-gritty would involve tracing through all the Perl/Tk code to seewhat gets
called where, but we don't need that level of detail here.

Creating a Composite Widget Based on Frame

There are dlight differences between creating a composite widget based on aframe
andcreating one based on atoplevel. | will include a short example for each to give you
an idea of whatyou can do.

Assuming you're making a composite widget called MyW dget ,thefirst fivelinesyou
absolutely must have in your new composite widget file are:

package MyW dget ;

require TK:: Franeg;

@SA = qw (Tk:: Frane);

Construct Tk::Wdget ' MyW dget"';

sub Popul at e

{
}

Y ou must declare your new widget as its own package, hencethepackage MyW dget

line. (If you were going to have asubdirectory for your widgets, you would use
Di r Nane: : MyW dget .

The next two linesare simple: r equi r e Tk: : Fr ane tomake sure you have loaded
the information necessary to use a frame widget, and then addTk::Frame to the @ SA
variable. The next line callstheConst r uct method from Tk::Widget (you could aso
writethisasTk: : W dget - >Const ruct (" M/W dget") withthe name of your
widget. Inthiscall to Const r uct you do not add thename of the directory in which
your widget resides.

By calling Const r uct , you create a constructor method for yournew MyWidget
widget. This allows you to create a new MyWidget by calling theMyW dget method:

$newni dget = $mw>M/W dget (...);

Y ou are creating a composite widget based on aframe, so you need to usePopul at e to
create your subwidgets and do any other necessaryconfiguration.

Inside Populate

Itisagoodideato add ar equi r e statement for any other widgets you want to create
in your composite widget. In the LabEntry code, wesaw ar equi re Tk:: Entry
because LabEntrycreates an entry widget.

Popul at e iscalled with two arguments: areference to thecomposite widget and a
reference to a hash. Assign these arguments to variables so you can usethem later:

ny ($cw, $args) = @;

The next thing you should do is deal with any specific options that apply to your
entirecomposite widget. Do this by getting them out of the $ar gs hashreference and

then seeing if the value was defined:

$option_value = delete $args->{"-flag"};
if (defined $option_value) {

}

Let's say you want to use the option - f i | enane, which will get thevalue associated
withthe-fi | enane optioninto$fi | enane:

$filename = delete $args-> {"filenane"};
if (defined $filenane) {
#Open file...

}

After dealing with all the arguments that you want to pull out directly, it isagood ideato
calSUPER: : Popul at e likethis:

$cw >SUPER: : Popul ate ($args);

Next you should create the widgets you want in your composite widget. For instance, if
youwant to create a listbox with several buttons, call the appropriate methods for each
one. If you wantthe user to be able to manipulate those widgets, you should
callAdverti se for each one.

Calling Advertise

The Adverti se method allows you to use thesubwi dget method to get directly at

that widget later on in the program.For example, after you create the LabEntry, you can
get areference to the entry widget:

$l abel _entry = $ma>LabEntry (-textvariable => \$text,
-l abel => "Enter Nane:",
- | abel Pack => [-

side => "left'])->pack();

$entry = $l abel _entry->Subwi dget ("entry");

$entered = $entry->get();

When you create a composite widget remember to add another call toAdverti se for

each widget. For example, if you create an entry and abutton, you'll have two callsto
Adverti se:

$cw >Advertise('entry' => $e);
$cw >Advertise(' button' => S$button);

Calling Delegates

When you create a composite widget, you are essentially combining two or three
widgets into one. When you invoke methods on the composite widget, you have to
define what methods are actually called. Do so by using the Delegates method and
sending it areference to the widget you want to use:

$cw->Del egat es (DEFAULT => $e);

All other subwidget methods of the composite will have to be accessed by using
thesubwi dget method and then invoking methods from there.

You can also use Del egat es to call amethod on a subwidget as follows:

$cw Del egates ('insert' => $scrolled_listbox,
"delete' => $scrolled_listbox,
DEFAULT => $e);

In this example, if the user calls$conposi te-i nsert (...) themethod call will be
passed along tothe $scrol | ed_| i st box-i nsert method. You cannot pass along

any methods that your composite already defines. If you composite uses its own
i nsert method, you would have to manually pass control to the subwidget yourself.

Calling ConfigSpecs

When you create a composite widget, you want to be able to callconf i gur e onit. You
can use Conf i gSpecs to do so. There are three different waysto call Conf i gSpecs:

create an option and away to handle it, alias an option to another option, or specify a
default widget that will handle al of theconf i gur e calls.

A simple composite widget such as LabEntry will callConf i gSpecs justtoset a
default widget to handle all of the configuration. It called Conf i gSpecs likethis:

$cw >Confi gSpecs(DEFAULT => [$e]);

Specify DEFAULT asthe first parameter, and then specify an anonymous list containing
the widget to use as the second parameter. This way, anytime you callconf i gur e and
use the composite widget reference, you'll be configuring the entry widget.

Creating an alias

You can use Conf i gSpecs to create an aias for an option, possibly to make a short
and long version of the same option. If youwanttouse-fil e and-fi | e- nane to
mean exactly thesame thing, call Conf i gSpecs likethis:

$cw ConfigSpecs('-file' =>"'-filenane');

Specify the alias first and the equivalent option second.

Defining options
To define an option and associate some action with it, callConf i gSpecs like this:

$cw >Confi gSpecs(-newoption => [<action>, "newQOption",
"NewOpt i on", <fallbackval ue>1]);

The option you are creating the action for islisted first, and the second argument is an anonymous list
consisting of four items. The first item is the action you want to take and should
be" DESCENDANTS" " ADVERTI SED" " SELF" " CHI LDREN" ," PASSI VE" " METHOD" ," CALLBACK",

or a$r ef er ence to asubwidget. The second and third itemsin the list have to do with the option database
and can be |eft blank if you prefer. The fourth item is the default value of that option, usally undef or"" or
whatever you want the default value of that option to beif the user doesn't specify it.

The action part of the list defines what happens. Each possible value is defined as follows:

DESCENDANTS

The configure for that option will be applied recursively to all descendants.
ADVERTI SED

The configure will be applied to all advertised subwidgets.

SELF

The configure will be applied to the base widget (in this case, aframe, but the base widget can also be
another composite widget).

CHI LDREN
The configure will beapplied to all children.

PASSI VE
The value will be stored in$ar gs. Thisisthe way you would useConf i gSpecs on any options that can
be used at create time or bycustom methods of your composite widget.

METHOD
The method with the samename as the option will be called. For instance, if you call $cw >Conf i gSpecs
(-newoption => ["METHOD', "", "", undef]) andthen the user usesthe- newopti on

option, the method newopt i on(which you still have to define in the file somewhere) will be invoked.
When you cannot define anoption with one of the other settings, you can use METHOD.

CALLBACK

Invokes a method insideyour composite widget if that option is configured or sent when the widget is
created. For instance,$cw >Conf i gSpecs(-

myopt

=> [" CALLBACK",

"myMet hod",

" MyMet hod"

undef]) would call the

subroutine my Met hod when the option- nyopt isused (also see BrowseEntry.pm'sConf i gSpecs below for an example).

$ref erence
Forcesacall to$r ef er ence- >confi gure(-option => val ue) for thatoption. Usually $r ef er ence isasubwidget of the
composite widget (forexample, an entry widget).

ConfigSpecs example

Hereisthe Conf i gSpecs call from the Tk8.0 version of BrowseEntry.pm:

$w >ConfigSpecs(-listwidth => [gw PASSI VE listWdth Li stwdth/, undef],
-listend => [gw CALLBACK listCnd Li st Cnd/, undef],
- browscnd => [gw CALLBACK br owseCnd Br owseCnd/ undef],
- choi ces => [gw METHOD choi ces Choi ces/, undef],
-state => gw METHOD State State normal /],
-arrow nmage = MR: 3>[{-

i mmage => $b), qw

arrowl mage Arrow nmage/,

undef],
vari abl e => "-textvariabl e",
DEFAULT => [$e]);

Asyou can see, you can send multiple pairs of information toConf i gSpecs. In this example, there is onePASSI VE option, two
CALLBACK options,and two METHCD options. Any other callstoconf i gur e with different options will be directed to the subwidget
$e. Take alook at the complete code to see what the methods pointedto in Conf i gSpecs do.

Frame-Based Widget Review

Just to sum up, here's some pseudocode to show you how to create your own frame-basedcomposite widget:

$package Neww dget ;
@ SA = gM Tk: : Frane) ;
Tk: :Wdget->Construct (' NewW dget"');

sub Popul ate ()

{
ny ($cw, $args) = @;

Handl e any creation only options
ny $val ue = del ete $args->{-option};
if (defined $val ue) {

}

Create any subwi dgets you want to...
$wi dget = $cw>Wdget (...);

$cw >Del egat es() ;

$cw >ConfigSpecs(...);
}
sub nyoption {
}
1;

Toplevel-Based Composite Widgets

Thereis one small difference between a composite widget based on a frame instead of
atoplevel. If you want to be ableto use - >new() to create your window,define

I ni t Obj ect instead of Popul at e. Mostof the composite widgets included with the
Tk distribution do not do this, however. Look atColor Editor.pm and Dial ogBox.pm for
examples of how to create a toplevel-based composite widget. All the rules for using
Conf i gDef aul t s arethesame.

16—
Methods for Any Widget

So far, most of the chaptersin this book have concentrated on specific widgets. This
chapter covers the methods that apply to all widgets. Y ou'll probably never need most of
these methods, but there are afew that you'll use frequently.

Many times, you'll use aMainWindow reference (usually $mwin our examples) to call
these methods, but you can also call them from other widgets, such as $but t on,
$checkbut t on, and so on. Most of the methods are informational only, meaning you
pass no arguments to them; you only get a value back.

Welll use the generic $wi dget hereinstead of a specific widget type. Thiswill help
you to remember that these are multipurpose methods.

Building a Family Tree

The following methods deal with the ancestors or children of widgets and how they were
created: chi | dr en, nane, par ent ,t opl evel , manager, andcl ass.

Widget's Children

To determine the children of awidget (usually atoplevel or aframe), use the
chi | dr en method:

@i ds = $wi dget->children();
i.e. Tk::Button=HASH(0x85e3a0) Tk: : Button=HASH(0x85e4a8)

Thelist returned contains scalars that are the children of $wi dget . You can then use
those references to perform actions such as setting a background color or font.

Name of a Widget

To determine what the parent calls the widget use the nanme method:
$name = $wi dget - >nane();

Y ou can combine the name and chi | dr en method like this:

@i ds = $w dget->children();
foreach (@ids) {

print "Nanme: ", $_->nane(), "\n";
}
Here is example output from that code:
button
buttonl

Parent of a Widget
To get areference to the parent of awidget, use the par ent method:

$parent = $w dget - >parent ();

The Widget's Toplevel
To get the toplevel widget that contains awidget, uset opl evel :
$path = $wi dget - >t opl evel ();

The $pat h returned is anumber (that is, 8606484) that you can compare to another
number that was returned from another call tot opl evel to seeif they are equal.

Widget's Manager
Y ou can find out which geometry manager $wi dget used by calling manager :
$manager = $wi dget - >manager () ;

It returns a string that describes the geometry manager; for instance, if it isatoplevel

widget, it will return™ gri d", " pack”, " pl ace", or"wni . Themanager method
doesn't seem to work correctly on Windows 95, but it works on Unix and Windows NT.

The Widget's class

Thecl ass method returns a string that indicates which class it belongs to. For
example, $1 i st box- >cl ass() returns” Li st box", and $menu- >cl ass()
returns" Menu" .

Widget's 1D
You can get an ID string for awidget by using thei d method:
$id = $w dget->id();

print "$id\n";
Prints 0x9c944c

The value returned is a hex value. This method does not work under Windows 95.
Widget's Path

Y ou can get the pathname of the window by calling pat hnanme and using the ID you
retrieved with the i d method:

$pat h = $wi dget - >pat hnane($i d) ;
Thereis also the Pat hName method:
$path = $mw >Pat hNanme() ;

This method prints out the path of the widget that is calling it. For example, my $mw
would have aPat hNane of " . ".

Color-Related M ethods

There are four methods that deal with color: col or mapful | ,rgb, cel | s, and
dept h.

I sthe Colormap Full?

To determine if the colormap for the widget isfull, usecol or mapf ul | :

$isfull = $wi dget->col ormapful | ();
The col or mapf ul | method returnsal if the colormap isfull and O if it isnot full.

Cell Count

The number of cellsin the colormap can be obtained by using the cel | s method:
$count = $wi dget->cel I s();

The value returned is a number indicating the number of colors; for example, 64.

Color Depth

Y ou can get the number of bits per pixel by using the dept h method:

$dept h = $wi dget - >dept h();
$depth m ght contain "16"

Translateto RGB Value

Y ou can trandlate a color name to the red, green, and blue values by using ther gb
method. Send r gb a color name (valid color names were covered in Chapter 3) and it
returns alist containing three items that represent the red, green, and blue numbers.

($red, $green, $blue) = $wi dget->rgb("color");
Now $r ed, $gr een, and $bl ue each contain an integer from 0 to 255.

Setting Colors

Y ou can have your entire application based on one color automatically by using the
set Pal et t e method:

$wi dget - >set Pal ett e(col or);

The background color of $wi dget is set to the specified color, and the colors for al

other widgets are calculated based on that color. So if abutton's edgeis alighter color
than the background, it will show up alighter shade of whatever color you picked. This
method affects the entire application even if you only call it on awidget instead of a
toplevel.

Y ou can set colors for explicit options by specifying the name and then the color to
associate with it. For instance, the following code will set all foreground itemsin the
application to red and al backgroundsto blue:

$b- >set Pal ette
("background" => "blue", "foreground" => "red");

Predefined Color Scheme

The bi sque method sets the entire application to use a bisque scheme. Calling
$wi dget - >bi sque() isthesameascaling $w dget - >set Pal ett e
(" bisque").

Option Databases

Under the X Window System, afile named .Xdefaults in the user's home directory
contains configuration information for X applications, including the colors and fonts an
application should use. Y ou can create the same type of file for Win32 systems and call
it whatever you want. You might use afile like thisto let your users change the
application’s color settings.

Typicaly thelinesin thisfile look something like this:

screen*background: yell ow
screen. button. f oreground: green
screen*font: {Arial} 24 {normal}

The first item in each line should be the name of your application unless the options are
for your application only. My test application wasin afile named screen, so that is what
| used asthe first keyword in each line. The second keyword (if specified) is awidget
type or name (you can specify a name for any widget by adding the - nane option to the

creation command of that widget). The third keyword isthe "class’ for which you want
to set adefault. You can set adefault value for any of the options associated with a
widget. See Appendix A to find out which class is associated with each widget type.

Toread inthisfile, call opt i onReadf i | e with the location of the file (for example,
"“color_options" or"C:/ .Xdefaults" or ".Xdefaults"):

$wi dget - >opti onReadfil e("fil enane");

Make sure to include a newline on the last line of thisfile or you'll get an error that says,
"missing newline on line 2 at C:\PERL\lib\site\TK\Submethods.pm line 16." This error
doesn't make much sense except that the first line number it gives you matches the
number of linesin the option file you are trying to read in. If you use $wi dget -

>option("readfile", ...) tocal themethod, you'll get amore sensible error
message.

Asthe second argument to opt i onReadf i | e you can specify an optional priority,
which should beone of "wi dget Defaul t","startupFil e","userDefaul t",
or"interactive".Thedefault priorityis"i nteracti ve", whichisthe highest
priority.

$wi dget - >opti onReadfil e("fil enane", "w dgetDefault");

Y ou can add an option type in the program dynamically by using the opt i onAdd
method (whether or not you have used opt i onReadfi | e):

$wi dget - >opt i onAdd(pattern => val ue);

For example, we can change the font for the entire program like this:

$wi dget - >opti onAdd("screen*font", "{Arial} 24 {normal}");

Theopt i onCl ear method should clear out any current option settings and reread the
file (or retrieve them from the resource manager):

$wi dget - >opt i onCl ear ();

To determine the current setting for the value associated with a specified name and class,
call opti onGet:

$wi dget - >opti onGet (nane, class);

The Application's Name

The name of the application that is used in the option file discussed earlier is by default the name of the file from
which the script isrun. You can use the appnane method to change the name of the file:

$mw >appnanme(" newnane") ;
Y ou can find out the current name of the application by calling appnane with no arguments:

$nane = $nw >appnane() ;

Widget Existence

To determine if awidget has been created, use Exi st s($wi dget) :
i f (Exists($widget)) {
} .

Note the uppercase "E" on this method. The Exi st s method is different from the built-in Perl exi st s method.
Make sure you don't confuse the two.

Isthe Widget Mapped?
To find out if the widget has been mapped to the screen, usethei smapped method:
i f ($wi dget->i smapped())
Do somet hi ng
} else {

map the wi dget
}

Thei smapped method returns 1 if the widget is currently mapped to the screen and O if it is not.

Converting Screen Distances

If you prefer to use inches as a screen distance but you want to print out pixels, you can use the pi xel s method
to convert any valid screen distance string into a pixel value; for example:

$pi xel s $wi dget - >pi xel s("2i"); # What is 2 inches in pixels?

$pi xel s = $w dget - >pi xel s("2n"); # What is 2 millinmeters in pixels?

The pi xel s method rounds to the nearest whole pixel. Y ou can get afractional pixel result by using f pi xel s:

$pi xel s = $wi dget - >f pi xel s("2i"); # What is 2 inches in pixels?
$pi xel s = $wi dget - >f pi xel s("2m"); # What is 2 millinmeters in pixels?
Size of Widget

Y ou can use the following methods to find out the size of awidget in several different ways.
Widget's Geometry
The geonet r y method returns the geometry string for the widget in the form of widthxheight+x+y.
$geom = $wi dget - >geonetry();
The geometry string was discussed in detail in Chapter 13. Geometry values are specified in pixels.
Requested Height
The height of the widget isreturned by ther eqhei ght method:
$hei ght = $wi dget - >r eqhei ght () ;
The widget itself determines the appropriate height.
Requested Width
The width of the widget can be determined by using ther egqwi dt h method:
$wi dth = $wi dget - >reqwi dt h()
Actual Width
To get the width of the widget asit currently is drawn, use thew dt h method:
$cur_width = $widget->wi dth();

When the widget isfirst created, wi dt h will return a 1 until the application has finished drawing everything. After
that, it will return the actual width of the widget.

Actual Height
To get the current height, use the hei ght method:

$h = $wi dget - >hei ght () ;

Just likethewi dt h method, hei ght returnsa 1 when the widget isfirst created. You
can usetheupdat e or theaf t er | dl e method to force everything else to happen and
then call hei ght or wi dt h to get the finished values.

Widget Position

The methods in this section all deal with the position of awidget.

Position Relative to the Root Window

To determine which widget is at the point X,y;, use the cont ai ni ng method:
$whi ch = $wi dget - >cont ai ni ng($x, $y);

The $x and $y coordinates must be relative to the root window (or on a Microsoft

Windows system, the desktop). An empty string is returned if there is no widget found at
those coordinates. If there are several widgets located at those coordinates, the one
closest to the front is returned.

Coordinates Relative to Parent

Y ou can get the coordinates of the upper-left corner of awidget by using thex andy
methods. The coordinates they return are relative to the parent of the widget:

$x
$y

$wi dget - >x() ;
$wi dget - >y();

Coordinates Relative to Root Window

To get the coordinates relative to the root window, you can user oot x andr oot y on
the widget:

$x =
Sy =

W dget - >r oot x() ;

$
$wi dget - >root y();

The coordinates refer to the upper-left corner of the widget.

Virtual Desktop Coordinates

If you have avirtual desktop, there are special methods that will give coordinates
relative to the virtual desktop. Virtual desktops are very common on the X Window
System (such as the fvwm and tvtwm window managers), but they exist on Microsoft
Windows as well.

To determine the height and width of the virtual desktop, usethevr oot hei ght and
vr oot wi dt h methods:

$hei ght = $wi dget - >vr oot hei ght () ;
$wi dt h = $wi dget - >vrootw dt h();

To get the coordinates of the widget's upper-left corner relative to the virtual desktop,
usevr oot x andvr oot y:

$x
$y

$wi dget - >vr oot x() ;
$wi dget - >vroot y();

All four of these methods return an empty string if avirtual desktop is not found.

Cursor Coordinates Relative to Desktop

You can use poi nt er x, poi nt ery, and poi nt er xy to determine where the user
clicked on the screen in awidget:

$x = $wi dget - >poi nterx();
$y = $wi dget - >poi ntery();
($x, $y) = $wi dget->poi nterxy();

All the coordinates returned are relative to the desktop (even if it isavirtual desktop).

Screen | nformation

The following methods all return information based on the screen (which can be avirtua
desktop or anormal desktop) and the colors of the desktop.

Screen Name

Each screen you use has a name associated with it. To get the name, usethescr een
method:

$nane = $wi dget->screen();

The name returned will be formatted as " displayName.screenlindex”. My Windows 95
machinereturned " : 0. 0" asthe screen name.

Screen Height and Width

The screen height and width isreally just the resolution of the screen. Sometimes you
might need information to determine how large awindow can fit on auser'sdisplay. To
get the height and width of the screen in pixels, usethescr een- hei ght and

screenw dt h methods:
$hei ght = $wi dget - >screenhei ght () ;
$wi dth = $wi dget - >screenwi dt h();

If my resolution is 768x1024, then scr eenhei ght returns 768 and scr eenw dt h

returns 1024. If you prefer to get the size of the screen in millimeters, then use
screenmrhei ght and scr eenmmi dt h:

$hei ght mm = $wi dget - >scr eenmrhei ght () ;
$wi dt hrm = $wi dget - >screennmni dt h() ;

The same resolution, 768x1024, returns 203 millimeters as the height and 270
millimeters as the width for my monitor.

Cell Count

The number of cellsin the default colormap isretrieved by using scr eencel | s:
$count = $wi dget - >screencel | s();

My Windows 95 machine has 64 cellsin its default colormap.

Screen Depth

To determine the number of bits per pixel your screen has, usethescr eendept h
method:

$dept h = $wi dget - >screendept h() ;
The depth of my Windows 95 machine is 16 bits per pixel.
Color Type

Thetype of color is defined by class, and it will be" di r ect col or™," grayscal e",
"pseudocol or","staticcolor"”,"staticgray",or"truecol or".To
determine the class for the screen that contains the widget, use scr eenvi sual :

$type = $wi dget - >screenvi sual ();
To determine the class of color for the widget itself, usevi sual :
$type = $wi dget - >vi sual ();

To find out the entire list of classes available for the current setup, use the
vi sual savai | abl e method:

@ist = $w dget->visual savail abl e

Each element in @ i st describes the visual and the color depth for that visual. For
instance, on my Windows 95 machine, @ i st contained only one item:
"truecol or 16".

Server Type
Thetype of server is available through the ser ver method:
$servert_type = $wi dget->server();
My Windows 95 has a server type of " W ndows 4.0 67109975 W n32".

I sthe Widget Viewable?

A widget is determined viewable if the widget and all of its ancestors are mapped. Y ou
can ask the widget itself if it isviewable by using thevi ewabl e method:

$i svi ewabl e = $wi dget - >vi ewabl e() ;

vi ewabl e returns 1 if the widget can be viewed and O if not.

Atom Methods

Each widget is assigned a name, which is called an atom. The atom has a string name
(you can get it for each widget by using the name method) and a 32-bit ID. These

methods are used internally to handle things such as the selection mechanism.

To get the 32-bit ID for a given widget, send the nane of the widget to the at om
method:

$id = $w dget - >at on{ $wi dget - >nane());

Y ou can do the opposite and use the ID to get the name of the atom back. To do so, use
the at orman® method:

$nane = $wi dget - >at ormane($i d) ;

Ringing a Bell
To make the computer beep at the user, call bel | :

$wi dget - >bel | () ;

Clipboard Methods

The following methods manipul ate the internal Tk clipboard and also the Windows
clipboard (either Unix or Win32).

To add data to the clipboard, usethecl i pboar dAppend method:

$wi dget - >cl i pboar dAppend("data to add");

When you call cl i pboar dAppend, you can specify aformat by using the - f or mat
option with avalue. The - f or mat by defaultis™ STRI NG', but it can

also be" ATOM' . Another option can be specified, - t ype, which takes a string such as
"STRI NG' or" FI LE_NAME".

To clear out the clipboard, usecl i pboar dCl ear:
$wi dget - >cl i pboar dC ear () ;
Any datain the clipboard will be removed.

To find out what isin the clipboard, seethesel ect i onGet method in the section
entitled "Getting the Selection.”

Selection Methods

Some widgets allow the user to make a selection. For example, the user can make a
selection in the text, entry, and listbox widgets. Y ou can manipulate the selection by
using the following methods.

Clearing the Selection

To cleat the current selection from any widget (thiswill aso clear an X selection) use
Sel ecti onCl ear:

$wi dget - >Sel ecti onC ear ();

Y ou can specify a- sel ect i on option, which takes either " PRI MARY" or
" CLI PBOARD' . Thedefaultis" PRI MARY" . Using " CLI PBOARD" clears out the
clipboard as well.

Getting the Selection

To determine what the current selection for the application is, use Sel ect i onGet :
$sel ection = $w dget->Sel ecti onGet();

Y ou can aso specify the- sel ect i on option with the Sel ect i onGet method:

$cl i pboard = $wi dget - >Sel ecti onCet (-
sel ection => "CLI PBOARD") ;

The - sel ect i on method takes either " PRI MARY" or " CLI PBOARD" . The default is
" PRI MARY" , s0 if you don't specify - sel ect i on, you will get back the value that
represents thecurrent selection in the application. Using " CLI PBOARD" will return the
value in the clipboard.

Assigning a Callback

You can call Sel ecti onHandl e to assign a callback that will automatically be
invoked when the selection associated with $wi n changes:

$wi dget - >Sel ecti onHandl e($wi n => \ &ubrouti ne);

When $wi n owns the selection, the callback will be invoked (in this example,
subr out i ne). You can specify the options- f or mat , -t ype, and- sel ecti on

with the same possible values shown in the preceding code example. If you call
Sel ect i onHandl e with an empty string as the callback, the previously assigned

callback is removed.
Determining Owner

Y ou can find out which widget on the screen currently owns the selection by calling
Sel ect i onOwner (awidget ownsthe selection if it has something selected in it):

$wi dget = $wi dget - >Sel ecti onOmner ();

Y ou can aso specify the- sel ect i on option with either " PRI MARY" or
" CLI PBOARD" asthe value to determine who owns the selection, or the current
clipboard value, respectively.

Setting the Owner
To force awidget to own the selection, call Sel ect i onOwn:
$wi dget - >sel ecti onOmn () ;

Y ou can a'so specify which type of selection to force by using the - sel ect i on option
with " PRI MARY" or " CLI PBOARD" . Finally, you can specify a- command option
with an associated callback that will be invoked when that widget's selection is forced
away.

Destroying a Widget

Y ou can destroy awidget by calling dest r oy onthewidget (usingi f TKk:
Exi st s isrecommended):

$wi dget - >destroy () if Tk: :Exists ($w dget);

If the widget is a parent of any other widgets, the other widgets are destroyed as well.

Focus Methods

When your application is running, you can force awidget to have the keyboard focus by
caling f ocus on that widget:

$wi dget - >f ocus ();

Y ou might want to do thisif you have an entry widget into which the user should start
typing first. Calling f ocus right before Mai nLoop causes the widget to get the

focusright away. If you press the Tab key, the focus automatically changes from one
widget to the next (remember that you can tell when awidget has the focus by the
highlight rectangle around it). There are several methods that allow you to manipulate
the focus.

To make the focus follow the mouse around, usef ocusFol | owsMuse:

$wi dget - >f ocusFol | owsMouse ();

This method is buggy under both Windows 95 and Unix. A patch just recently came out
for Tk8, so if you want to use this method and it isn't working, make sure you get the
patch.

To find out which widget has the focus, call f ocusCur rent :
$who = $wi dget - >f ocusCurrent ();

To force awidget to have the focus even if the application isn't currently active, call
focusForce:

$wi dget - >f ocusForce();
Thisis not anice thing to do, so try to not useiit.
To find out which widget had the focus last, call f ocusLast :
$whi ch = $wi dget - >f ocusLast ();
If none of the widgets in the window has the focus, the toplevel is returned.

To find out the order in which the focus will change, you can usethef ocusNext and
f ocusPr ev methods:

$next wi dget
$prevwi dget

$wi dget - >f ocusNext () ;
$wi dget - >f ocusPrev ();

Grab Methods

When awindow does a"grab" it meansthat it holds all of the keyboard and mouse input
toitself. That window will not allow any other windows in the application to receive
input. Thereisaso aglobal grab, which means that no applicationsin the entire system
can get input except the one window that has done the global grab. These methods are
usually called from atoplevel widget.

Todo aloca grab for the widget, use gr ab
$wi dget ->grab ();

A local grab means that you can interact with other windows in the system but not with
other windows in the application. To do aglobal grab, usegr abd obal :

$wi dget - >gr abd obal ();

$wi dget - >gr abd obal ();
To "ungrab”, call gr abRel ease:
$wi dget - >gr abRel ease ();
To find out which widget has done agrab, call gr abCur r ent :
$who = $wi dget - >grabCurrent ();
To find out the current grab state of a$wi dget , cal gr abSt at us:
$status = $widget->grabStatus ();
Thegr abSt at us method returnsastring that is” none™ , " | ocal ", or " gl obal ".

To find out all the windows that are currently under the influence of grab, use gr abs to
get alist back:

@i ndows = $wi dget - >grabs ();

I nterapplication Communication

Y ou can use the send command to have Perl/Tk (and even Tcl/Tk) applications

communicate back and forth. The arguments include an application to talk to and the
command to execute in that application.

$wi dget - >send ("application" => call back);

Y ou can a'so specify the option - async, which will return control immediately instead
of waiting for the callback to execute.

By default, your application will return an error to another application trying to
communicate with it. If you want to actually receive communications from other
applications, define Tk: : Recei ve ($wi dget, "conmmand") and bevery

careful with what you do with the command string. Allowing any application to send
unknown commands to your application can be dangerous.

When doing interapplication communication, it is agood ideato run your Perl script
with the - T switch, which force taint checking.

Waiting for Eventsto Happen

At certain pointsin your application, it makes sense to wait until something happens. For
instance, if you create a ColorEditor window and want it to assign the color the user
selectsto avariable, you can usewai t Var i abl e towait until the variableis set.

To have a program wait until avariable'svalue is changed, call wai t Var i abl e:

$wi dget - >wai t Vari abl e (\ $var);

Processing will continue as soon as the value contained within $var is changed to
something different. To wait until a$wi dget isvisible, usewai t Vi si bility:

$wi dget->wai tVisibility ();
To wait until awidget is destroyed, call wai t W ndow:
$wi dget - >wai t W ndow () ;

When you call these methods, nothing will happen in your program until the requested
for event has taken place.

An aternativetowai t W ndowis OnDest r oy, where you specify a callback. The
widget methods are still available when you use OnDest or y:

$wi dget - >OnDestroy (sub { ... });
File Events

Thereis aspecial method in Perl/Tk called f i | eevent . You can useit to watch and be

notified when afileis readable or writable. Here is an example snippet of code that
shows how it can used (this code is meant to be executed on a Unix system because we
usethe Unix t ai I command):*

use TKk;
open (FH, "tail -f -
n 25 text_filel") || die "Could not open file!\n";
nmy $nw = Mai nW ndow >new () ;
ny $text = $mw>Scrolled (" Text",
-wi dth => 80,
- hei ght => 25) ->pack(-expand => 1);
$mw>fil eevent (FH, 'readable', [\& nsert_text]);
Mai nLoop;

sub insert_text

{
ny $curline;
if ($curline = <FH>)
{
$text->insert ('end , S$curline);
$text->yview (' noveto', 100);
}
el se
{
$mn>fi |l eevent (FH, 'readable', "");
}
}

* Thanks to my friend Phivu Nguyen for sharing his code with me.

This short program sits around and waits until afile is readable and then does an insert
into atext box with the newly read information. You canalsouse' wri t abl e' .

$mw>fil eevent (FH, 'witable', callback);

If you get rid of the callback portion, the callback will be returned. Replace the callback
with an empty string (") and the callback is removed.

Parsing Command-L ine Options

In the Unix world, it is standard practice to specify command-line options when you are
invoking an application, especially agraphical program. Starting your program as
nyscri pt -geonetry "80x40" would not be unusual. To have Perl/Tk
automatically parse and apply these command-line options for you, just call CrdLi ne
immediately after you create your Mai nW ndow.

$mw >CndLi ne ();

in Tk4, if you want to have CndLi ne stop processing command-line arguments and
leave some for you to deal with, add a double dash (-) before the arguments you want it
to leave for you; for instance, myscri pt -geonetry "80x40" --nyopt .

In Tk8, the processing of options will stop when the first unknown option is found.

Another way to deal with command-line optionsisto use the Perl Get opt s modules.

Take alook in Programming Perl (O'Reilly, 1997) to find out how to use the methods
availablein Get opt s. The methodsinside Get opt s don't handle the options for you;

it just puts them in a structure that's easier to deal with.

Time Delays

There are times when you'll want to be able to delay the program a bit before going on,
or maybe you'll want to execute the same command every minute. To have the program
sleep for x number of milliseconds, call af t er with the number of milliseconds:

$wi dget->after (milliseconds);

To specify acallback that will be called after so many milliseconds instead of waiting,
send a callback as the second argument toaf t er :

$id = $widget->after (mlliseconds, callback);
#1i. e.
$id = $wi dget->after (1000, \&do_sonet hing);

If you want to execute a subroutine after the program has been idle for awhile, call
afterldle:

$id = $widget->afterldle (callback);

Tocancel thecall toafter orafterl dl e,useaft er Cancel withthe$i d
returned by af t er :

$wi dget - >af t er Cancel ($id);
You can al so do this:
$i d->cancel ();

Y ou can have the program repeatedly call the same callback by using ther epeat
method:

$wi dget - >repeat (mlliseconds, callback);
#1i. e.
$wi dget - >r epeat (600, \&update_status);

If you destroy $wi dget , any calstoaf t er andr epeat are automatically canceled
for you.

VRENLY

A—
Configuring Widgets with configure and cget

Every widget included in the Perl/Tk distribution (and some not included, but available
separately) can usethe conf i gur e and cget methods. No matter the widget, the

arguments to these functions are the same, and the results passed back have the same
format.

Theconf i gur e method allows you to assign or change the value of an option to the
widget. It can also be used to retrieve the current value of the option. The cget method

cannot assign values, but simply retrieves them with ssmpler syntax than that of
configure.

The configure Method

The basic format of the conf i gur e method is asfollows:
$wi dget - >configure([option => newalue, ...]);
Depending on the arguments passed to it, the conf i gur e method can do three things:
* Set or change the values of the options for $wi dget
* Get the current value of any option for $wi dget
* Get the current values for al of the options for $wi dget

To set or change the value for an option, send the option pair exactly asit would have
appeared in the widget creation command:

$wi dget - >confi gure(-opti on => newal ue);

Whatever effect the option has will take place immediately. To see the current values for
asingle option, send the option you are interested in as the argument. The return value
depends on whether conf i gur e iscalled in list context or scalar context. In the

following line, conf i gur e iscaledin list context (sinceits return valueis being
assigned to an array):

@nfo = $wi dget->configure(-highlightthickness);
In list context, an array of scalarsisreturned. The results of thiscall look like this:

- hi ghli ghtt hi ckness hi ghli ght Thi ckness Hi ghli ght Thi ckness 2 2

The following five values are in the returned array:

0 Option name

1 Option name from the option database (also as it would
appear in the . Xdefaults file)

2 Class in the option database
3 Default value of the option

4 Current value of the option

Often, al you're interested in is the current value of the option. If that's the case, call
confi gur e inscalar context by assigning the result to a scalar:

$val = $wi dget - >confi gure(-highlightthickness);
print "$val\n";

The result would be;

2

If you want to see the list of valuesfor all of the options the widget supports, use this
format:

@onfig = $w dget->configure();

@onfi gisnow an array of arrays. The easiest way to print out thisinformation is to

utilize Tk::Pretty, which will do al the hard work of traversing the arrays and then put
the information into a readable form:

use Tk;
use Tk::Pretty;

$wi dget = $mw >But t on;

@onfig = $wi dget->configure;
print Pretty @onfig;

The result is as follows:

['_

acti vebackground', activeBackground, Foreground, "#ececec', '#ececec'],
['-activeforeground' , activeForeground, Background, Bl ack, Bl ack], [-
activei mage',

acti vel mage, Acti vel mage, undef , undef],['-anchor', ' anchor’,

Anchor, 'center',
"center'],['-background', ' background', Background,' #d9d9d9', ' #d9d9d9'],
['-bd",

borderwdth], ['-bg','background],['-bitmap'," bitmap', Bi t map, undef,
undef],

['-borderw dth', borderWdth, BorderWdth,2,2],['-comand’',' conmand’,
Conmmand,

undef , bl ess([CODE(0x8189888)], Tk:: Cal | back)],['-cursor', ' cursor’,

Cur sor,

undef , undef],[' - di sabl edf or eground' , di sabl edFor egr ound,

Di sabl edFor egr ound,

' #a3a3a3' , ' #a3a3a3'],['-fg ,'foreground'],['-font', ' font', Font,"' - Adobe
-Hel vetica-Bol d-R- Normal - -*-120-*-*-*-*_*_*" *_ Adobe- Hel veti ca- Bol d- R-
Nor mal

--*-120-*-*-*-*_*_x'"1 ['-foreground','foreground', Foreground, Bl ack,

Bl ack],

['-height','height', Height,0,0],['-highlightbackground',

hi ghl i ght Backgr ound,

Hi ghl i ght Background, '#d9d9d9',"' #d9d9d9'],['-highlightcolor’',

hi ghl i ght Col or,

Hi ghl i ght Col or, Bl ack, Bl ack], ['-highlightthickness', highlightThickness,
Hi ghl i ght Thi ckness, 2,2],['-image',"'imge', | mge, undef, undef], [’ -
justify',
"justify',Justify, ' center', ' center'],['-padx', padx, pad, 3,9],["'-pady’',
pady,

Pad, 1m 3] ,['-relief','relief',"Relief,"raised ,'raised],['-
state','state',

State, ' normal ', ' normal '], ['-takefocus',takeFocus, TakeFocus, undef,
undef],

['-text', 'text', Text,undef, Do_Sonething],['-textvariable',textVariable,
Vari abl e, undef, undef],['-underline',"'underline' ,Underline,-1,-1],["-

wi dth',

"width',Wdth,0,0],['-waplength',wapLength, WapLengt h, 0, 0]

Although thislist may look nasty and ugly, it distinguishes between the different lists of lists for you
by adding the [and] characters and the commas that separates them. Usually, you would only look at
thislist for debugging purposes. The default values for each widget are listed at the end of this
appendix.

The cget Method
Instead of using conf i gur e to retrieve values, you can use the cget method:
$wi dget - >cget (- opti on)

It only returns the current value (or address if the option stores a reference) of the option rather than
the entire list that conf i gur e returns. Think of cget as standing for "configuration get.". Hereis

an example of how to usecget :

print $b->cget (- highlightthickness), "\n";

Prints this:

2

return reference :

print $option_menu->cget(-textvariable), "\n";

return actual val ue:

Print ${$option_nmenu->cget (-textvariable)}, "\n";
or...

$ref = $option_nmenu->cget (-textvariable);

print $$ref, "\n";

Default Valuesfor Each Widget in Table Form

The following tables contain all of the options for each standard widget (in Tk8). The
five columns represent the five values returned in the arrays for each option when
conf i gur e isused. Note that column 5, "Current Value,” will probably not mean
much to you, but I've included it for completeness because you'll get it back when you
run the same code.

The information in the tables was created by using this code snippet (substitute the
correct widget in for W dget):

Button

Option name

-activebackground
-activeforeground
-activei mage
-anchor

- backgr ound

- bd

- bg

bi t map

- bor derw dt h

- command

- cur sor

def aul t

- di sabl edf or egr ound

_fg

-font

f or egr ound

- hei ght

- hi ghl i ght backgr ound

$w = $mw >W dget - >pack;
@onfig = $w >configure();
print Pretty @onfig;

Xdefault's name

acti veBackground
acti veFor eground
activel mage
anchor

backgr ound

bor der Wdt h
backgr ound

bi t map
borderWdth
command

cur sor

def aul t

di sabl edFor egr ound
f oreground

f ont

f or egr ound

hei ght

hi ghl i ght Backgr ound

Class name

For egr ound
Backgr ound
Acti vel mage
Anchor

Backgr ound

Bi t map

Bor der Wdth
Conmmand

Cur sor

Def aul t

Di sabl edFor egr ound

Font

For egr ound

Hei ght

Hi ghl i ght Backgr ound

Default Value
Syst enbut t onFace
Syst enBut t onText
undef
center

Syst enBut t onFace

ndef

2

undef
undef

di sabl ed

Syst enDi sabl edText

{M5 Sans Serif} 8

Syst enBut t onText
0

Syst enBut t onFace

Current Value

Syst enBut t onFace
Syst enBut t onText
undef

center

Syst enBut t onFace

undef

2

undef
undef

di sabl ed

Syst enDi sabl edText

bl ess ({M5 Sans
Serif} 8 Tk:: font

Syst enBut t onText
0

Syst enBut t onFace

- hi ghli ght col or
hi ghl i ghtt hi ckness
-i mage

-justify

Button (continued)
Option name

- padx

- pady

-relief

-state

-t akef ocus

-t est

-textvai abl e

-underline

-wi dth

-wr apl engt h

hi ghl i ght Col or
hi ghl i ght Thi ckness
i mage

justify

Xdefault's name
padx
pady
relief
state
t akeFocus
t ext

text Vari abl e

underl i ne
wi dt h
wr apLengt h

Hi ghl i ght Col or
Hi ghl i ght Thi ckness
| mage

Justify

Class name

pad

pad

Rel i ef

State

TakeFocus

Text

Vari abl e
underline

W dth

W apLengt h

Syst emW ndowFr ane
1
undef

center

.Default Value name
1
1
rai sed
nor mal
undef
undef
undef
-1

0

Syst emW ndowFr ane
1
undef

center

Current Value

1

1
rai sed
nor nal

undef

undef

Canvas
Option name
- backgr ound
- bd
- bg
-borderwi dt h
- cl oseenough
-confine
- cur sor
- hei ght

- hi ghl i ght backgr ound

Canvas (continued)

Option name

- hi ghl i ght col or

- hi ghl i ghtthi ckness
-insertbackground
-insertborderw dth
-insertofftine
-insertontinme
-insertw dth
-relief

-scrollregion

Xdefault's name

backgr ound
borderWdth
backgr ound
bor der W dt h
cl oseEnough
confine

cur sor

hei ght

hi ghl i ght Backgr ound

Xdefault'sname

hi ghl i ght Col or

hi ghl i ght Thi ckness
i nsert Background

i nsert Border Wdth
insert O fTine

i nsert OnTi ne
insertWdth

relief

scrol | Regi on

Class name

Backgr ound

Bor der Wdt h
cl oseEnough
confine

Cur sor

Hei ght

Hi ghl i ght Backgr ound

Class name

Hi ghl i ght Col or

Hi ghl i ght Thi ckness
For er ound

Bor der Wdt h

O fTine

OnTi ne

I nsert Wdth

Rel i ef

scrol | Regi on

Default Value

Syst enBut t onFace

undef
7c

Syst enBut t onFace

Default Value

Syst emW ndowFr ane
2

Syst enBut t onText
0

300

600

flat

undef

Current Value

Syst enBut t onFace

1

1
undef
265

Syst enBut t onFace

Current Value

Syst emW ndowFr ane
2

Syst enBut t onText
0

300

600

flat

undef

- sel ect background
-sel ect borderw dth
-sel ectforeground
-t akef ocus

-wi dth

- xscrol | conmand
-xscrol l'i ncrenment
-yscrol lincrenent

-yscrol lincrenent

Checkbutton

Option name

-acti vebackgfound
-activeforeground
-anchor

- backgr ound

- bd

- bg

- bi t map

- bor derw dt h

- command

- cur sor

- di sabl edf or egr ound

sel ect Backgr ound
sel ect Borderwi dt h
sel ect For gr ound

t akeFocus

wi dt h

xScr ol | Conmand
xScrol | I ncrenment
yScrol | Command

yScrol | | ncrenent

Xdefault'sname

acti veBackground
acti veFor egr ound
anchor

backgr ound
borderWdth
backgr ound

bi t map
borderwWdth
command

cur sor

di sabl edFor egr ound

For egr ound

Bor der Wdt h
Backgr ound
TakeFocus

W dth

Scr ol | Comrand
Scrol | I ncrenment
Scr ol | Command

Scrol | I ncrenent

Class name

For egr ound
Backgr ound
Anchor

Backgr ound

Bi t map

Bor der Wdth
Cormand

Cur sor

Di sabl edFor egr ound

Syst enHi ghl i ght

1

Syst enHi ghl i ght Text
undef

10c

undef

0

undef

Default Value

Syst enBut t onFace
Syst emW ndowText
center

Syst enBut t onFace

undef
2

undef
undef

Syst enDi sabl eText

SystenHi ghl i ght

1

Syst enHi ghl i ght Text
undef

378

undef

0

undef

Current Value

Syst enBut t onFace
Syst emW ndowText
center

Syst enBut t onFace

undef
2

undef
undef

Syst enDi sabl edText

_fg

-font

- f oreground

- hei ght

- hi ghl i ght backgr ound

- hi ghl i ght col or

- hi ghl i ghtthi ckness

-i mage
-indi catoron
-justify

-of fval ue

Checkbutton (continued)

Option name

-onval ue

- padx

- pady
-relief

-sel ecti nage
-sel ecti nage
-State

-t akef ocus

-t ext

f oregr ound

f ont

f oreground

hei ght

hi ghl i ght Backgr ound

hi ghl i ght Col or

hi ghl i ght Thi ckness
i mage

i ndi cat or On
justify

of f Val ue

Xdefault's name

onVal ue
padX

padY

relief

sel ect Col or
sel ecti mage
state

t akeFocus

t ext

Font

For egr ound

Hei ght

Hi gl i ght Backgr ound
Hi ghl i ght Col or

Hi ghl i ght Thi ckness
| mage

I ndi cat or On
Justify

Val ue

Class name

Val ue

pad

Pad

Rel i ef
Backgr ound
Sl ect | mage
state
TakeFocus

Text

{M5 Sans Serif} 8

Syst emW ndowText

0

Syst enBut t onFace

Syst emW ndowFr ane
1

undef

1

center

0

Default Value

1

1

1

flat
Syst em\W ndow
undef

nor mal

undef

undef

bl ess({M5 Sans
Serif} 8 Tk::font)

Syst emW ndowText
0

Syst enBut t onFace
Syst emW ndowFr ane
1

undef

1

center

0

Current Value

1

1

1

flat
Syst emW ndow
undef

nor nmal

undef

-textvari abl e

-underline
-vari abl e
-width

-wr apl engt h

Entry

Option name

- backgr ound
- bd

- bd

- borderwi dth
- cur sor

-exoi rtsel ecti on?

Entry (continued)
Option name
- f g

-font

- f oreground

- hi ghl i ght backgr ound

- hi ghl i ght col or

-hi ghtlightthickness

text Vari abl e
underline
vari abl e

wi dt h

wr apLengt h

Xdefault'sname

backgr ound
borderwWdth
backgr ound
bor der W dt h
cur sor

export Sel ection

Xdefault'sname

f oreground

f ont

f oregr ound

hi ghl i ght Backgr ound

hi ghl i ghCol or

hi ghl i ght Thi ckness

Vari abl e
Underli ne
Vari abl e
W dt h

W aplLengt h

Class name

Backgr ound

Bor der W dt h
Cur sor

Export Sel ecti on

Class name

Font

For egr ound
Hi ghl i ght Backgr ound
Hi ghl i ght Col or

Hi ght Thi ckness

undef

undef

Default Value

Syst enWW ndow

xterm

Default Value

{M5 Sans Serif} 8

Syst emW ndowText
St st enBut t onFace
Syst emW ndowFr ane

0

undef

undef

Current Value

SystemWindow

xterm

Current Value

bl ess({ M5 Sans
Serif} 8 Tk::font)

Syst emW ndowText
Syst enBut t onFace
Syst emW ndowFr ane

0

-insertbackground
-insertborderw dth
-insertofftine
-insertontine
-insertw dth
-justify

-relief

- sel ect background
-sel ect borderwi dt h
-sel ect f oreground
- show

-state

-t akef ocus
-textvariabl e

-wi dth

xscrol | command

nsert Backgr ound

nsert Bor der Wdt h

nsert O fTi me

nsert OnTi me

nsert Wdth

justify

relief

sel ect Backgr ound
sel ect Bor derwi dt h
sel ect For egr ound
show

state

t akeFocus

Vari abl e

wi dt h

xScr ol | Conmand

For egr ound
Border Wdth
OfTinme
OnTi ne

I nsert Wdth
Justify
Rel i ef

For egr ound
Bor der Wdt h
Backgr ound
Show

State
TakeFocus
Vari abl e

W dt h

Scr ol | Command

Syst emW ndowText
0

300

600

2

| eft

sunken

Syst enHi ghl i ght
0

Syst enHi ghl i ght Text
undef

nor nal

undef

undef

20

undef

Syst emW ndowText
0

300

600

2

| eft

sunken

Syst entHi ghl i ght
0

Syst enHi ghl i ght Text
undef

nor e

undef

undef

20

undef

Frame

Option name

- backgr ound

- bd

- bd

-borderwi dth

-cl ass

- col or map

- cont ai ner

- cur sor

_fg

- f oreground

- hei ght

- hi ghl i ght backgr ound
- hi ghl i ght col or

- hi ghli ghtthi ckness
- | abel

- | abel Pack

-1 abel Vari abl e
-relief

-t akef ocus

-vi sual

-w dth

Xdefault'sname

backgr ound

bor der W dt h

backgr ound
borderWdth

cl ass

col or map

cont ai ner

cur sor

f or egr ound

f or egr ound

hei ght

hi ghl i ght Backgr ound
hi ghl i ght Col or

hi ghl i ght Thi ckness
undef

undef

undef

relief

t akef ocus

vi sual

wi dt h

Class name

Backgr ound

Border Wdth
C ass
Col or map
Cont ai ner

Cur sor

For egr ound

Hei ght

Hi ghl i ght Backgr ound
Hi ghl i ght Col or

Hi gl i ght Thi ckness
undef

undef

undef

Rel i ef

TakeFocus

Vi sual

Width

Default Value

Syst enBut t onFace

Fr ame

undef

undef

Bl ack

0

Syst enBut t onFace
Syst enW ndowFr ane
0

undef

undef

undef

flat

undef

Current Value

Syst enBut t onFace

Frame

undef

undef

Bl ack

0

Syst emW ndowFace
Syst emW ndowFr ane
0

undef

undef
flat

0

"CodeSample-footnote">undef21,
undef

0

Label

Option name

- anchor

- backgr ound
- bd

- bd

- bi t map

- borderwi dth
- cur sor

fg

-font

- f oreground

- hei ght

- hi ghl i ght backgr ound
- hi ghli ght col or

- hi ghli ghtthi ckness
-i mage

justify

- padx

- pady

-relief

-t akef ocus

Xdefault'sname

anchor
backgr ound
borderWdth
backgr ound
- bi t map

bor der Wdt h
cur sor

f oregr ound

f ont

f or egr ound

hei ght

hi ghl i ght Backgr ound
hi ghl i ght Col or

hi ghl i ghThi ckness

i mage

justify

padX

padY

relief

t akeFocus

Class name

Anchor

Backgr ound

Bi t map
Bor der W dt h

Cur sor

Font

For egr ound

Hei ght

Hi ghl i ght Backgr ound
Hi ghl i ght Col or

Hi ghl i ght Thi ckness
| mage

Justify

Pad

Pad

Rel i ef

TakeFocus

Default Value

center

Syst enBut t onFace

undef

undef

{M5 Sans Serif} 8

Syst enBot t onText

0

Syst enBut t onFace

Syst emW ndowFr ane
0

undef

center

1

1

flat

Current Value

center

Syst enBut t onFace

undef

undef

bl ess({M5 Sans
Serif} 8 Tk::font)

Syst enBut t onText
0

Syst enBut t onFace
Syst emW ndowFr anme
0

undef

center

1

1

flat

-t ext

-textvari abl e

Label (continued)

Option name
-underline
-width

-wr apl engt h

Listbox

Option name

- backgr ound

- bd

- bg

-borderwi dth

- cur sor

-export selection
-fg

-font

-foreground
- hei ght
- hi ghl i ght backgr ound

- hi ghli ghtcol or

t ext

textvari abl e

Xdefault'sname

underl i ne
wi dt h
wr apLengt h

Xdefault'sname

backgr ound

bor der W dt h
backgr ound

bor der Wdt h

cur sor
export Sel ection
f or egr ound

f ont

f or egr ound
hei ght
hi ghl i ght Backgr ound

hi ghl i ght Col or

Text

Vari abl e

Class name

Underl i ne
W dt h

W aplLengt h

Class name

Backgr ound

Bor der W dt h
Cur sor

Export Sel ecti on

Font

For egr ound
Hei ght
Hi ghl i ght Backgr ound

Hi ghl i ght Col or

undef

undef

Default Value
-1

0

Default Value

Syst enBut t onFace

undef

{M5 Sans Serif} 8

Syst enBut t onText
10

Syst enBut t onFace

Syst emW ndowfr ane

undef

Current Value
-1

0

Current Value

Syst enBut t onFace

undef

bl ess ({M5 Sans
Serif} 8 Tk::font)

Syst enBut t onText
10

Syst enBut t onFace

Syst emW ndowfFr ane

- hi ghl i ghtthi ckness
-relief

- sel ect background

Listbox (Continued)

Option name

-sel ect borderwi dt h
-sel ect f oreground
sel ect node
-setgrid

-t akef ocus

-wi dth
-xscrol | command

-yscrol | comand

Menu

Option name

-acti vebackground
-activeborderwi dth
-activeforeground
- backgr ound

- bd

_bg

hi ghl i ght Thi ckness
relief

sel ect Backgr ound

Xdefault'sname

sel ect Bor der W dt h
sel ect For egr ound
sel ect Mode
setGid

t akeFocus

wi dt h

xScr ol I Command

yScrol | Comand

Xdefault'sname

act i veBackground
acti veBorder Wdt h
acti veFor egr ound
backgr ound

border Wdt h

backgr ound

Hi ghl i ght Thi ckness
Rel i ef

For egr ound

Classname

Bor der Wdth
Backgr ound
Sel ect Mbde
SetGid
TakeFocus

W dt h

Scr ol | Command

Scr ol | Command

Class name

For egr ound
Bor der Wdt h
Backgr ound

Backgr ound

1
sunken

Syst enHi ghl i ght

Default Value

1

Syst enHi ghl i ght Text
browse

0

undef

20

undef

undef

Default Value

Syst enHi ghl i ght

1

Syst enHi ghl i ght Text

Syst enBut t onFace

1
sunken

Syst enHi ghl i ght

Current value

1

Syst enHi ghl i ght Text
br owse

0

undef

20

undef

undef

Current Value

Syst entHi ghl i ght

1

Syst enHi ghl i ght Text

Syst enBut t onFace

- bor derw dt h

- cur sor

- di sabl edf or egr ound
-fg

-font

Menu (continued)

Option name

- foreground
- over anchor
- popanchor

- popover

- post command
-relief

-sel ectcol or
-t akef ocus
-tearoff

-t ear of f comrand
-title

-type

borderWdth

cursor

di sabl edFor egr ound
For egr ound

f ont

Xdefault'sname

f oregr ound
undef

undef

undef

post Command
relief

sel ect Col or

t akeFocus
tear O f

t ear O f Commrand

title

type

Bor der W dt h
Cur sor

Di sabl edFor egr ound

Font

Class name

For egr ound
undef

undef

undef

Comand

Rel i ef

Backgr ound
TakeFocus

Tear O f

Tear O f Conmand

Title

Type

1
arr ow

Syst enDi sabl edText

Tim 10

Default Value

Bl ack
undef
undef
undef
undef
flat
Syst emvenuText
0

1
undef
undef

nor nmal

1
arrow

Syst enDi sabl edText

bl ess(Tim 10
Tk: : font)

Current Value

Bl ack
undef
undef
undef
undef
flat
Syst emvenuText
0

1
undef
undef

nor mal

Radiobutton

Option name

-activebackground
-activeforeground
-anchor

- backgr ound

- bd

- bg

- bi t map

-borderw dth

Radiobutton (continued)

Option name

- comand

-cursor

- di sabl edf or egr ound

_fg

-font

- f oreground

- hei ght

- hei ghl i ght backgr ound

- hi ghl i ght col or

- hi ghl i ghtthi ckness

Xdefault'sname

acti veBackgr ound
acti veFor egr ound
anchor

backgr ound
borderWdt h
backgr ound

bi t map

border Wdt h

Xdefault'sname

conmand

cursor

di sabl edFor egr ound
f oregr ound

f ont

f oreground

hei ght

hi ghl i ght Backgr ound
hi ghl i ght Col or

hi ghl i ght Thi ckness

Classname

For egr ound
Backgr ound
Anchor

Backgr ound

Bi t map

Bor der W dt h

Class name

Command
Cur sor

Di sabl edFor egr ound

Font

For egr ound

Hei ght

Hei ghl i ght Backgr ound

Hi ghl i ght Col or

Hi ghl i ght Thi ckness

Default Value

Syst enBut t onFace
Syst emW ndowText
center

Syst enBut t onFace

undef

Default Value

undef
undef

Syst enDi sabl edText

{M5 Sans Serif} 8

Syst emN ndowText
0

Syst emW ndowFr ane
Syst emW ndowFr ane

1

Current Value

Syst enBut t onFace
Syst emW ndowText
center

Syst enBut t onFace

undef

Current Value

undef
undef

Syst enDi sabl edText

bl ess({M5 Sans
Serif} 8 Tk::font)

Syst emW ndowText
0

Syst emW ndowFr ane
Syst emW ndowFr ane

1

-i mage

-i ndi cat oron
-justify

- padx

- pady
-relief

-sel ectcol or
-sel ecti nage
-state

-t akef ocus
-t ext

-textvari abl e

Radiobutton (continued)

Option name

-underline
-val ue
-vari abl e
-width

-wr apl engt h

i mage

i ndi cat or On
justify
padX

padY

relief

sel ect Col or
sel ect | mage
state

t akeFocus

t ext

text Vari abl e

Xdefault'sname

underline
val ue
vari abl e
wi dt h

wr apLengt h

| mage

I ndi cat or On
Justify

Pad

Pad

Rel i ef
Backgr ound
Sel ect | mage
State
TakeFocus
Text

Vari abl e

Class name

Underline
Val ue
Vari abl e
W dt h

W aplLengt h

undef
1
center
1

1

flat
Syst enWW ndow
undef
nor nmal
undef
undef

undef

Default Value
-1

undef

sel ect edBut t on

0

0

undef

1

center

1

1

flat

Syst enWW ndow
undef

nor nal

undef

undef

Current Value

Scale

Option name

-activebackground
- backgr ound

- bi gi ncrenent

- bd

- bg

-borderw dth

- conmand

- cur sor

-digits

_fg

-font

-foreground

-from

Scale (continued)

Option name

- hi ghl i ght backgr ound
- hi ghli ght col or

- hi ghli ghtthi ckness
-l abe

-l ength

Xdefault'sname

acti veBackgr ound
backgr ound

bi gl ncr enent

bor der W dt h
backgr ound
borderWdt h
command

cur sor

digits

f or egr ound

f ont

f oregr ound

from

Xdefault'sname

hi ghl i ght Backgr ound
hi ghl i ght Col or

hi ghl i ght Thi ckness
| abel

| engt h

Class name

For egr ound
Backgr ound

Bi gl ncr enment

Bor der W dt h
Conmmand
Cur sor

Digits

Font

For egr ound

From

Class name

Hi ghl i ght Backgr ound
Hi ghl i ght Col or

Hi ghl i ght Thi ckness
Label

Length

Default Value

Syst enBut t onFace
Syst enBut t onFace

0

undef

undef

{M5 Sans Serif} 8

Syst enBut t onText

0

Default Value

Syst enBut t onFace
Syst emW ndowFr ane
2

undef

100

Current Value

Syst enBut t onFace
Syst enBut t onFace

0

undef

undef

bl ess({M5 Sane
Serif} 8 Tk::font)

Syst enBut t onText

0

Current Value

Syst enBut t onFace
Syst emW ndowFr ane
2

undef

100

-orient
-relief
-repeat del ay
-repeatinterva
-resol ution

- showal ue
-sliderlength
-sliderrelief
-state

-t akef ocus
-tickinterva
-to
-troughcol or
-variabl e

-wi dth

Scrollbar

Option name

-activebackground

-activerelief
- backgr ound
- bd

_bg

orient
relief

r epeat Del ay
repeatlinterva
resol uti on
showval ue
sliderLength
sliderRelief
state

t akeFocus
tickl nterval
to

t r oughCol or
vari abl e

wi dt h

Xdefault's name

-activeBackground

activeRel i ef
backgr ound

border Wdt h

backgr ound

Orient

Rel i ef
Repeat Del ay
Repeat | nterva
Resol ution
Showval ue
Sli derLength
Sli derRel i ef
State
TakeFocus

Ti ckl nterva
To

Backgr ound
Vari abl e

W dt h

Class name

For egr ound
Rel i ef

Backgr ound

Verti cal
flat

300

100

1

1

10m

rai sed
nor mal
undef

0

100

Syst entscr ol | bar
undef

5m

Default Value

Syst enBut t onFace
rai sed

Syst enBut t onFace

verti cal
flat

300

100

1

1

38

rai sed
nor mal
undef

0

100

Syst entscr ol | bar
undef

19

Current Value

Syst enBut t onFace
rai sed

Syst enBut t onFace

-borderwi dth

- conmand

- cursor

- el enent bor derwi dt h
- hi ghl i ght backgr ound
- hi ghl i ght col or

- hi ghli ghtthi ckness
-junp

-orient

-relief
-repeat del ay
-repeatinterva

-t akef ocus
-troughcol or

-wi dth

Text

Option name

- backgr ound
- bd

-bg
-borderw dth

- cursor

bor der Wdt h
command

cur sor

el enment Bor der W dt h
hi ghl i ght Backgr ound
hi ghl i ght Col or

hi ghl i ght Thi ckness
junp

orient

relief

r epeat Del ay
repeatinterva

t akeFocus

t r oughCol or

wi dt h

Xdefault'sname

backgr ound

border Wdt h
backgr ound
border Wdth

cursor

Bor der Wdt h
Comand

Cur sor

Border Wdth

Hi ghl i ght Backgr ound
Hi ghl i ght Col or

Hi ghl i ght Thi ckness
Junmp

Oient

Rel i ef

Repeat Del ay
Repeat I nterva
TakeFocus

Backgr ound

W dt h

Class name

Backgr ound

Bor der W dt h

Cur sor

undef

undef

-1

Syst enBut t onFace
Syst emW ndowFr ane
0

0

verti cal

sunken

300

100

undef

Syst entcr ol | bar

13

Default Value

Syst emW ndow

xterm

undef

undef

-1

Syst enBut t onFace
Syst emW ndowFr ane
0

0

verti cal

sunken

300

100

undef

Syst entscr ol | bar

13

Current Value

Syst emW ndow

xterm

-exportsel ection
_fg

-font

-foreground

- hei ght

- hi ghl i ght backgr ound
- hi ghl i ght col or

- hi ghl i ghtthi ckness
-insertbackground
-insertborderw dth
-insertofftine
-insertontinme
-insertw dth

- padx

- pady

-relief

- sel ect background

export Sel ection
f or egr ound

f ont

f or egr ound

hei ght

hi ghl i ght Backgr ound
hi ghl i ght Col or

hi ghl i ght Thi ckness
i nsert Background

i nsert Border Wdth
insert O fTine

i nsert OnTi ne
insertWdth

padX

padY

relief

sel ect Backgr ound

Export Sel ecti on

Font

For egr ound

Hei ght

Hi ghl i ght Backgr ound
Hi ghl i ght Col or

Hi ghl i ght Thi ckness
For egr ound

Bor der Wdt h

O f Ti me

OnTi ne

I nsert Wdth

Pad

Pad

Rel i ef

For egr ound

{M5 Sans Serif} 8

Sust emW ndowText
24

Syst enBut t onFace
Syst emW ndowFr ane
0

Syst emN ndowText
0

300

600

2

1

1

sunken

Syst enHi ghl i ght

bl ess({M5 Sans
Serif} 8 Tk::font)

Syst emW ndowText
24

Syst enBut t onFace
Syst emW ndowFr ane
0

Syst emW ndowText
0

300

600

2

1

1

sunken

Syst entHi ghl i ght

Text (continued)

Option name

-sel ect borderw dth

-sel ectforeground

-setgrid

- spaci ngl
- spaci ng2
- spaci ng3
-state
-tabs

-t akef ocus
-wi dth
-wrap

-xscrol | command

-yscrol | command

Toplevel

Option name

- backgr ound
- bd

- bg

- borderwi dth

-cl ass

Xdefault'sname

sel ect Bor der W dt h

sel ect For egr ound

setGid
spaci ngl
spaci ng2
spaci ng3
state

t abs

t akeFocus
wi dt h

wr ap

xScr ol | Conmand

xScr ol | Command

Xdefault's name

backgr ound
borderwdth
backgr ound
bor der Wdt h

cl ass

Class name

Bor der W dt h

Backgr ound

SetGid
Spaci ng
Spaci ng
Spaci ng
State
Tabs
TakeFocus
W dt h

W ap

Scr ol | Command

Scr ol | Command

Class name

Backgr ound

Bor der W dt h

d ass

Default Value

0

Syst enHi ghl i ght Text

0

0

0

0

nor nal
undef
undef
80
char
undef

undef

Default Value

Syst enBut t onFace

0

Topl evel

Current Value

0

Syst enHi ghl i ght Text

0

0

0

0

nor mal
undef
undef
80
char
undef

undef

Current Value

Syst enBut t onFace

0

Topl evel

-col ormap

-cont ai ner

Toplevel (continued)
Option name

- cur sor

-fg

- f oreground

- hei ght

- hi ghl i ght backgr ound
- hi ghl i ght col or

- hi ghli ghtthi ckness
- menu

- over anchor

- popanchor

- popover

-relief

-screen

-t akef ocus

-title

-use

- vi sual

-wi dth

col or map

cont ai ner

Xdefault's name

cur sor
f or egr ound

f or eground

hei ght

hei ghl i ght Backgr ound
hi ghl i ght Col or

hi ghl i ght Thi ckness
menu

undef

undef

undef

relief

screen

t akeFocus

undef

use

vi sual

wi dt h

Col or map

Cont ai ner

Class name

Cur sor

For egr ound

Hei ght

Hei ghl i ght Backgr ound
Hi ghl i ght Col or

Hi ghl i ght Thi ckness
Menu

undef

undef

undef

Rel i ef

Scr een

TakeFocus

undef

Use

Vi sual

W dth

undef

Default Value

undef

Bl ack

0

Syst enBut t onFace
Syst emW ndowfr ane
0

undef

undef

undef

undef

flat

undef

0

Topl evel

undef

undef

0

undef

Current Value

undef

Bl ack

0

Syst enBut t onFace
Syst emW ndowFr ane
0

undef

undef

undef

undef

flat

undef

0

Topl evel

undef

undef

0

B—
Operating System Differences

Perl was originally written for Unix systems. The Tk module was meant for use with the
X Window System, which isthe graphical user interface associated with Unix. Since
then, Perl has been ported for use on many other platforms, including Macintosh and
Microsoft Windows (both 95 and NT). The same is true of the Tk module, although the
portsfor it followed along a bit more slowly. So now we have Perl available on all
platforms and Perl/Tk available for both the X Window System (which can be emul ated
or run on many different platforms) and Microsoft Windows.

There are very few differences between how Perl/Tk operates on the Unix X Window
System and how it operates on Microsoft Windows. Most of the differences come about
because Microsoft Windows doesn't have all of the different functions that the X
Windows System has. Throughout this book, you may have seen references to a method
that didn't work on Windows 95 or that worked differently on Windows 95. | won't be
covering al those minor differences again. One big difference between Unix and
Windows is how to specify fonts. Appendix C, Fonts, covers font specificationsin
detail; see that appendix for information for both Unix and Windows.

Unix

All of the methods listed in this book should work well under Unix systems. There might
be subtle differences between the different flavors of Unix (such as what type of value
you get back on a Solaris machine compared to the values you get back on a Linux
machine), but nothing that will cause your program to crash.

All of the screen shots for this book, except where noted, were taken from a Linux
system running the X Window System with Motif-style windows. The window

manager | used specifically was fuwm, but the style of windowsis similar to mwm. |
don't cover the differences between window managers and how they change the style of
the window. There are many other books available that discuss the X Window System
and the window managersit uses.

Windows NT and 95

When you create a Perl/Tk window for Windows NT or Windows 95, the window comes
up looking just like all your other windows do for those operating systems. For instance,
it will have asmall x in the upper-right corner that will kill the application. Just to the
left of that x will be a small button that maximizes the window. To the |eft of the
Maximize button isasmall bar that will iconify the application. In the upper-left of the
applicationisasmall "Tk" that, if clicked, will display a menu that gives options to
minimize, maximize, or close the application. These are all standard features of an MS
Windows window. The same functionality is present in the X Window System version

of a Tk application; it just looks alittle different (see Figure B-1).

Exit | i Exit | Exit

Figure B-1.
A Win32 window and an X Windows window

Windows 95 Problems

| used both a Windows 95 machine and aWindows NT 4.0 (Service Pack 3) machineto
test the code in this book. | did find some minor problems running applications under
Windows 95. Windows NT did not seem to have the same problems, so if | had a choice
between 95 and NT, | would develop and run Perl/Tk on Windows NT. Hereis alist of
some of the problems | ran into while | was testing Perl/Tk applications under Windows
95 (note that these are not necessarily reproducible 100% of the time; | just wanted you
to be aware that | did run into some minor problems):

« | created a Main Window with one button, resized the window, and couldn't click on
the Exit button.

» The same scenario as the preceding item; clicking anywhere in the window after it was
resized caused the button to be pressed.

» When | tabbed between applications, clicked in another application, and then went
back to the Tk app, it didn't recognize the mouse. Clicking on the app icon in the start
bar seems to fix this. (There doesn't seem to be any solid reproducible cause and effect
for loss of mouse recognition.)

* The- under | i ne option doesn't seem to work properly when | attempted to

underline aletter in amenu option, so the corresponding key could be used as a
keyboard shortcut.

» Some methods (most of which you wouldn't use because they are obscure) didn't return
areasonable value. These were noted throughout the book as they were discussed.

* When | clicked in atext widget to give it the keyboard focus and then clicked
elsewhere, the text widget didn't give up the focus. Y ou can use Shift-Tab to switch
between widgets within the window once text has the focus, but it still doesn't seem to
want to give up the focus (the cursor stays as an | bar cursor, and won't interact with the
button at al).

» When | tried to display a photo as an image in a button (by using the - i mage option),
the photo looked garbled.

Other than these minor problems, most of which probably wouldn't apply to a run-of-the-
mill application, everything worked well.

Selections

In the X Window System, the user can select text by simply highlighting it. In Microsoft
Windows, you have to highlight the text and put it in the clipboard by typing CTRL-C
(for Copy), pasting it back with CTRL-V or the equivaent for the application you're
running. Perl/Tk does not interact with the clipboard like this. There are several widgets
that have an - export sel ect i on option (such aslistbox and text) and still work as

indicated; if they are set to zero, however, they won't copy the selected text to the
clipboard.

C_
Fonts

This appendix describes how to use the new methods in Tk8.0 to create and maintain
fonts. In Tk4, you could only pass afont string to - f ont option. You can still passa

font string in Tk8.0, but you can also use some methods to create your own named fonts
and perform operations on them. First I'll go over the simple way to use afont string,
which works in both versions. Then we'll get into the more complicated methods
available with Tk8.0.

The Font String

When thereisa- f ont option for awidget, you need to pass a string that indicates
which font to use. There are several ways to specify afont string:

» Specify the name of afont with thef ont Cr eat e method (f ont Cr eat e is
explained later in this chapter in "Font Methods').

» Use astring that describes the font and follows a predefined format (see Appendix B,
Operating System Differences); for example, "Times 12 Normal."

» Use the name of afont that can be interpreted by the graphics display (typically a Unix
system running X Windows). These strings usually have asterisks in them and are very
hard for humans to comprehend.

To specify afont in astring, you first have to know which fonts are available on your
system.

Determining Available Fonts

In Unix, you must specify fonts by using along, drawn-out syntax with alot of asterisks
that represent families, size, type, and so on. In the X Window System, you can get alist
of Unix fonts by running the command

xl sfonts > font file

Thefilenamed f ont _fi | e will now contain ahuge list of fonts that you can use on
your system. Be careful when picking fonts from this huge list. If you are going to be
running your application from more than one system, the font you pick might not be
available on all systems.

If you use Microsoft Windows, you'll have adifferent way of seeing what fonts are
available. Click on the Start menu and select Settings (p) Control Panel. Once the
Control Panel appears, double-click Fonts and awindow similar to the one shown in
Figure C-1 appears.

| & CAWINDDWSVFONTS

B HIE
' %] il Ibzhe 7] Boakman Ok Stye Bokd
] Abertuz Modum %] izl Martow %] Besokenan Ol Sty lLake
(%] Arbgue Obve] ial Hastow Boid %] Buccanees Regula
17 Artique Ofve Bold % el Hacionw Bold [take 7] Burton's Mighimare

] dintique Dlve tgic %] dusial Mertow Ibabc 7] Celtic G aelige Reguls
] il] augie %] Centuty Sehoolbock,
i) Asisl Black] Bard] CE Times
] izl Bod 7] Boakman 0l Stpe 7] GG Times Eold
1] izl B tafic %] Breakman Dl Shde Bold 7] CG Times Boid llalc |

———— e T e e e

Figure C-1.
The Fonts from a Windows 95 System

My system has most of the standard fonts and a few that I've downloaded over the
Internet, such as augie and Bard. If | want to use these fonts | have to know how to
specify them. If you double-click on afont name, another window appears and displays
detailed information about the font (see Figure C-2).

The information about the font includes how much space it takes up on the hard drive
(64K inthis case), what version it is, and its name. It also lists the available sizes. The
Aria font starts at 12 points and goes up to 72 points. To usethe - f ont option to

specify this font for awidget (for instance, a button), you need to know the name of the
font (Arial), the size, and the type (normal, bold, or italic). With these

| i Asial [TiseType)

|Arial (TrueType)

Typeface name: Arial

(File size: 64 KB

IV ersion MS core font V2 00
[Typeface @ The Monotype Corporation ple. Data @ The
' lonotyps Co

la abedefghijkimnopgrstuvixyz
ABCDEFGHIJKLMNOPQRSTIUNWNWXYZ |

1234567890.:,:("*17")

12 The quick brown fox Jumps over the lazy dog. 13
iz The quick brown fox jumps ovi

The quick brown fox jur |

Figure C-2.
The Arid font details

three pieces of information, you can build afont string: " Ari al 24 normal " .*
That's all thereistoit. To create a button with this font, use the - f ont option:

$mw >Button(-text => "Exit", -command => sub { exit },
-font => "Arial 24 normal")->pack();

Figure C-3 shows a button with the default font, and one with alarger font.

Figure C-3.
A default size font button and one with Arial 24

If the name of the font has spacesin it such as Times New Roman, you still build the
string the same way:

-font => "Tines New Roman 12 normal "

* Y ou might also see afont specified with curly braces around the name and the style
of thefont (e.g.,"{Arial} 12 {normal }"). The curly braces are not required

Y ou might see an error on the console when using this type of font specification:

SplitString ' Times New Roman 12 normal' at script line 7

Y ou can ignore these errors, and as far as | know, there is no easy way to get rid of them.
Hopefully, later versions of the Tk module will deal more gracefully with this (initial
tests with Tk 8.0 show that this error no longer appears).

| don't recommend changing the font for the text on any of the standard widgets because
you'll have to worry about whether the font is available. The only place you might
absolutely have to change font isin the text widget, and then only if you are actually
going to format the text.

One more thing: Thereis a Tk::Fonts module available, but it doesn't work correctly
under Microsoft Windows (95 or NT). If you are using X Windows, you should play
around with the Tk::Font a bit; it does have some useful features.

Font M ethods

The following methods are available only with the newest version of Perl/Tk, which
contains Tk8.0.

Create
Thef ont Cr eat e method creates a new font.

$name = $wi dget - >font Creat e();
$nane = 3$wi dget - >f ont Cr eat e(f ont nane) ;

Y ou can either specify afont name or one will be generated in the format "fontX" where
Xisanumber. You can specify options for the font:

$nane = $wi dget ->font Create(-size => 12);
$nane = 3$wi dget - >f ont Cr eat e(f ont nanme, -size => 12);

The options you can use to create afont are as follows:

-fam |y =>name
Thefamily namecanbe" courier”,"times",or"hel veti ca". If you specify

one of these, the closest match on your system will be used. Y ou can aso specify the
name of afont that is specific to your machine (for example, " Moon Runes™), but it

might not show up on other systems.

-si ze =>amount

The amount specified for the font size indicates how big you want the font to be. If the
amount is positive, the font will be sized in points. If the amount is negative, the font
will be sized by using the absolute value of the amount in pixels.

-wei ght => "normal " |" bol d"
The - wei ght option determines the thickness of the font.

-slant => "roman" |"italic"

The dlant of the font is how far it tips over to one side. By default, " r oman” means that
the font is upright. Specifying"i t al i ¢c" asthevaluefor - sl ant will tilt the font to
theright dlightly.

-underline => 0|1
If you want the characters to be underlined, specify 1 for the- under | i ne option.

-overstrike => 0|1
A lineisdrawn through the text when - over st ri ke hasavalue of 1.

Configuring

Y ou can change the options associated with afont by using thef ont Conf i gur e
method. This method worksjust likeaconf i gur e method does on any widget:

%opti onsNval ues = $wi dget - >f ont Confi gur e(f ont nane) ;
$val ue = $wi dget - >f ont Confi gur e(f ont nane, -size);

$wi dget - >f ont Confi gur e(f ont nane, -
size => 24); # Change size to 24

Y ou can use the same options with f ont Cr eat e and f ont Conf i gur e

Actual Information

If aspecified font size is not available on the user's system, the system substitutes
another font size, or even adifferent font altogether. Y ou can find out which font is
actually displayed by using thef ont Act ual method. To get alist of al options and

their values, call f ont Act ual with just afont name:
%al s = $w dget - >f ont Actual (fontnane);

To get the actual value for just one option:

$val ue = $wi dget - >f ont Act ual (f ont nane, -size);

Again, al the optionsused in f ont Cr eat e can be used with f ont Act ual

Deleting
To delete one or more fonts, usethe f ont Del et e method:

$wi dget - >f ont Del et e(f ont nane) ;
$wi dget - >font Del et e(font1, font2);

If the font is currently being used by awidget, it will not actually be deleted until the
widget isn't using it anymore. If you re-create afont by using f ont Cr eat e with the

name of the original font, the widgets that use the original font will use the new font
information.

Text Size

Y ou can find out how much space atext string that uses a particular font would take by
calling f ont Measur e:

$pi xel s = $wi dget - >f ont Measur e(f ont nane, textstring);

The value returned into $pi xel s isonly an estimate because characterssuchas”\ t "
or "\ n" aren't expanded before the measurement is taken.

Font Metrics

Metrics are details about afont: the ascent, descent, space between lines, and whether or
not the font is proportional. Y ou can usethef ont Met ri cs method to get this

information about a named font. Calling f ont Met r i ¢cs with only afont name gives
you all the metrics and their values for that font:

%al ues = $wi dget - >f ont Metri cs(font nane);

Y ou can also find out the value of a specific metric by passing it in as an option:

$val ue = $wi dget->fontMetrics("fontnane", -ascent);

Note that you cannot change afont's metrics. They are calculated when the font is created

The valid metric options are as follows:

- ascent
Measures the highest part of the font above the baseline. Amount returned isin pixels.

- descent
Measures the lowest part of the font below the baseline. Amount returned isin pixels.

-l i nespace
M easures the distance between two lines of text that use the same font. Amount returned
isin pixels.

-fixed

Returns 1 if the font is afixed width font (all characters take up the same amount of
space, such asin Courier). Returns O if the font is proportional (each character takes up a
different amount of space based on how fat or skinny it is; the letter "1" takes up less
space than "M").

Families & Names

To find out all the font families that exist on aparticular $wi dget 'sdisplay, call
font Fam | i es:

@amlies = $w dget->fontFam lies();
To determine the names of all the fonts that are defined, call f ont Nane:

@anes = $w dget - >f ont Nanmes() ;

| ndex
Symbols
,(comma), 6

-(minus sign), 36-37

accelerators, 231
activate method, 150
activating scrollbar elements, 136
add method, 243-244
adding text, 197
Addltems method, 227, 234
addtag method, 201
Advertice method, 285
after method, 306
afterCancel method, 307
afterldle method, 297, 307
aligning text, 178
all tag, 199
allocation rectangle, 22-28
expanding,19, 25

filling, 19, 24

Alt key, 274
anchoring widgets
allocation rectangle, 27
basic button, 58
bitmap item, 190
checkbutton, 83
createWindow method, 198
image item, 191
label, 103
menubutton widget, 222
overview, 52
pack, 19
place, 48
radiobutton, 96
text item, 195
anonymous subroutines, 63
appearance, widget (see style)
application
grid, 267
name, 265, 295

applications, communicating among, 304

appname
method,

295

arcs

arrows
lineitem, 191
scrollbar, 132
aspect method, 262
assigning callbacks (see callbacks, assigning)
atom, 300
(see also widgets, name)
atom method, 300
atomname method, 300

automatic window resizing, 32

B
background color (see color, options)
basic button

anchoring, 58

basic button (continued)

anonymous subroutines, 63
border width, 58

callbacks, 58, 62-64

color options, 58-59, 72-74
configuring, 79

creating, 57

cursor options, 58
disabling, 64

displaying

images, 59, 61
text, 60, 66
flashing, 79
focus, 59
font, setting, 58, 66
height, 59
invoking, 79
keyboard mapping, 72
naming conventions, 12
option list, 58-60
padding, 59
relief, 59
size, 70
state, 59
style, 68
text
justification, 59
wrapping, 60
underlining characters, 59
variable options, 59
width, 60

bbox method

canvas widget, 183, 202
listbox, 151

text widget, 173

bell method, 300
bind method, 270-272
canvas widget, 184
label widget, 107
listbox, 152
uses, 280
using with text tags, 168
valid argument list, 271
binding
events, 270-280
items using tags, 201
bindtags method, 280
bisque method, 293
bitmap
creating, 189
displaying
bitmap item, 190
checkbutton, 84
label widget, 103
menubutton widget, 222
radiobutton, 96
item option list, 189
options, 190

setting name and location, 58

(see also image)
border width

basic button, 58
canvas widget, 186
checkbutton, 84
entry widget, 109
frame widget, 252
|abel widget, 104
listbox, 143
menu widget, 239-240
menubutton widget, 222
radiobutton, 96
scale widget, 211
scrollbar, 129
text

tags, 164

widget, 155
toplevel widget, 258

bounding box, 151

(see also bbox method)

browse mode, listbox, 144
buffering, space, 38
Button method, 57

button (see basic button, checkbutton, or radiobutton)

ButtonPress event, 276

ButtonRelease event, 276

C
callbacks

arguments sent back, 272
assigning
basic button, 58, 62-64
canvas widget, 187

checkbutton, 83-84, 87

entry widget, 111
menu widget, 239, 241
radiobutton, 96
scale widget, 211, 213
scrollbar, 130, 133
selection, 301
text widget, 157

bind method, 272

stop processing, 279

(see also subroutine)

Camel book, 64

(see also Programming Perl)

Canvas method, 182
canvas widget, 181-209
adding text, 194

arc item, 188

bind method, using, 184
binding, 201
bitmap item, 190
bounding box coordinates, 202
callbacks, assigning, 187
color options, 186-187
configuring, 198
coordinate system, 182
creating

bitmaps, 189

canvas, 181

items, 188
cursor options, 186
deleting

items, 203

tags, 204
display list, changing, 203
example, 206
focus, setting, 187, 204
height, 186
indexes, text item, 196
inserting other widgetsin, 197
item type, determining, 204

items, moving, 202

lineitem, 191
option list, 184-187
oval item, 193
polygon item, 194
rectangle item, 194
relief, 187
scaling, 205
scroll options, 187
scrollable region, 183
scrollbars with, 138
scrolling options, 185
tags, 199-201
text indexes with, 196
trandlating coordinates, 202
uses, 181
width, 187
canvasBind method, 184, 201
canvasx, canvasy methods, 202
Caps Lock key, 274
caret symbol, 36

cascade menu
adding, 235

item, 229
cascade method, 235

cascading menu, 247

cells method, 292

cget method

basic button, 79

canvas widget, 198
entry widget, 118
format, 311

frame widget, 256

label widget, 108
listbox, 147

menu widget, 243
menubutton widget, 233
optionmenu widget, 249
overview, 309
radiobutton, 100

scale widget, 216
scrollbar, 134

character spacing (see marks)

checkbutton, 81-93
anchoring, 83
bitmap, displaying, 84
border width, 84
callbacks, assigning, 84
color options, 83-85

configuring, 92

creating, 83, 234
cursor options, 84
flashing, 93
focus, 85

font, setting, 84

height, 84

checkbutton (continued)
image, displaying, 84, 90
indicator
color, setting, 89
displaying, 84
hiding, 89
storing status, 85
invoking, 93
on and off values, 88
option list, 83-85
overview, 81
relief, 85
state, 85
style, 91
text justification, 84
turning on and off, 93
underlining characters, 85

width, 85

with menubutton widget, 228
wrapping text, 85
Checkbutton method, 83
checkbutton method, 234
child widgets, 6, 290
children method, 290
circletag, 199
Circulate event, 276
class method, 291
classes, with frame widget, 256
client method, 265
clipboard, manipulating, 300
clipboardAppend method, 300
clipboardClear method, 301
Cmd-Line method, 306
coding style, 8
color
basic button, 72-74
corruption, 255

depth, 253, 259, 292

highlight rectangle, 78
listbox, 145
options

arc item, 188

basic button, 58-59

bitmap item, 190
canvas widget, 186-187
checkbutton, 83, 85
entry widget, 109-110
frame widget, 252
label widget, 103-104
lineitem, 192
listbox widget, 143
menu widget, 239
menubutton widget, 222, 225
oval item, 193
postscript method, 204
radiobutton, 96-97
scale widget, 211-212
scrollbar, 129-130
text item, 195
text tags, 164
text widget, 155-157
toplevel widget, 258

scrollbar, 130

setting for application, 293

colormap
cell count, 292

determining if full, 292

options
frame widget, 252
postscript, 204
toplevel widget, 259, 266
problems, 255
Colormap event, 276
colormapfull method, 292
colormapwindows method, 266
columns
setting, 38
spanning, 37-38
(seedso grid)
comma, 6
command method, 234, 266
command-line options, 306
communication among
applications, 304
widgets, 133
compare method, 173
composite widget, 281-289
advertise, calling, 285
alias, creating, 286
configure, calling, 286
creating based on aframe, 284

defining options, 287

delegates, calling, 286
example, 282
file location, 283

ConfigSpecs method, 286

Configure event, 276

configure method

basic button, 79

button widget, 313-314, 316-317, 319-323, 325, 327-329

canvas widget, 198, 312
checkbutton widget, 316
entry widget, 118, 317
format, 309

frame widget, 255-256, 319
label widget, 108, 320
listbox, 147

listbox widget, 321

menu widget, 243, 322
menubutton widget, 221, 233
optionmenu widget, 249
overview, 309

radiobutton, 100
radiobutton widget, 323
scale widget, 216, 325

scrollbar, 134

scrollbar widget, 327

text widget, 328

toplevel widget, 329
configuring

basic button, 79

canvas widget, 198

checkbutton, 92

entry widget, 118

label widget, 108

menu widget, 243

menubutton widget, 233

optionmenu widget, 248

radiobutton, 100

scale widget, 216

scrollbar, 127, 134

toplevel widget, 260
Construct method, 284

container

frame widget, 252
frames, 107
containing method, 297
Control key, 274
coordinate system, canvas widget, 182

coordinates

event, 278

setting, 48

translating, 202
coords method, 202, 216
counting itemsin alistbox, 150
createArc method, 188
createBitmap method, 189
createl mage method, 190
createLine method, 191
createOval method, 193
createPolygon method, 194
createRectangle method, 194
createText method, 194
createWindow method, 197
creating

basic button, 57

canvas widget, 181

checkbutton, 83

entry widget, 109

frame widget, 251

label widget, 103

listbox, 141

menu widget, 238

menubutton, 220

optionmenu widget, 248

ovals, 193
polygons, 194
radiobutton, 94
rectangles, 194
scale widget, 210
scrollbar widget, 128
text widget, 154
toplevel widget, 257
widget, 6-7
current tag, 199
curselection method, 149
cursor
changing, 75
insert, 115, 119
options
basic button, 58
canvas widget, 186
checkbutton, 84
entry widget, 109-110
frame widget, 252
label widget, 104
menu widget, 239, 241
menubutton widget, 222

radiobutton, 97

scale widget, 211
scrollbar, 130
text widget, 156

toplevel widget, 259

cursor (continued)
positioning, 196
setting
listbox, 143

text widget, 155

D
databases, option, 293
dchars method, 196
debug function, 179
debugging code, 13, 179
defining event sequences, 273
deiconify method, 258, 262
delaying a program, 306
Delegates method, 286
delete method, 172
canvas widget, 203
entry widget, 118
listbox widget, 148
menu widget, 243-244

text widget, 172

deleting
items from

canvas widget, 203
listbox, 148

menu items, 244

tags, 204

text, 118, 172, 196

text tag, 170
delta method, 136
deltag method, 204
demo, widget, 72
depth method, 292
desel ecting radiobuttons, 100
designing windows, 14
Destroy event, 276
destroy method, 302
destroy versus exit, 12
destroying widgets, 302
Dialog widget, 281
disabling buttons, 64
display list, changing, 203
displayed values, 214
displaying

menus, 245

widgets, 9

distances, screen, 295
dlineinfo method, 173
document list, dynamic, 236
double modifier, 274

dtag method, 204

dynamic document list, 236

E

embedding widgets, 176

enlarging widget, 38

Enter event, 276

entering passwords, 116

Entry method, 109

entry widget, 108-123
assigning content to avariable, 111
border width, 109
color options, 109-110
configuring, 118
creating, 109
cursor options, 109-110
deleting text, 118
determining contents, 119
focus, 111
font, setting, 110

indexes, 112-114

inserting text, 120
option list, 109-111
password entry, 116
relief, 110
relief options, 112
scrollbar use, 117
state, 110
text
justification, 110
selecting, 114
trandating index values, 119
uses, 108
variable options, 111
width, 111
with
listbox, 152
scrollbars, 137
entrycget method, 233, 243
entryconfigure method, 234, 243
Ev method, 278

event

button number, 278
coordinates, 278
defined, 9

height, 279

keyboard information, 279

loop, 10

sequences, defining, 273
type, 275, 279
width, 279
Exists method, 295
exit versus destroy, 12
exiting the application, 12
expanding allocation rectangle, 19, 25
exporting text, 109
Expose event, 276

extended mode, listbox, 144

=
fileevent method, 305
filling
alocation rectangle, 19, 24
listbox, 141
find method, 201
finding tags, 201
flash method, 79, 93, 100
flashing
basic buttons, 79
checkbuttons, 93

radiobuttons, 100

focus

basic button, 59

canvas widget, 187
checkbutton, 85

entry widget, 111

frame widget, 253, 255
|abel widget, 104
listbox, 144
manipulating, 302
menu widget, 239
menubutton widget, 223
options, 77

radiobutton, 98

scale widget, 212
scrollbar, 130

setting, 204

text widget, 157
toplevel widget, 259, 267

focus method, 119, 204, 302

focusCurrent method, 303
focusFollowsMouse method, 303
focusForce method, 303

Focusln event, 276

focusL ast method, 303

focusmodel method, 267
FocusOut event, 276

font, setting

basic button, 58

checkbutton, 84

entry widget, 110

label widget, 104

listbox, 143

menu widget, 239-240

menubutton widget, 222

postscript method, 205

radiobutton, 97

scale widget, 211

text

item, 195
tags, 164

text widget, 156
font string, 334
fontActual method, 338
fontConfigure method, 338
fontCreate method, 334
fontDelete method, 338
fontFamilies method, 339
fontM easure method, 338

fontMetrics method, 339

fontNames method, 339

fonts

configuring, 338
creating, 337

deleting, 338

families, 339

metrics, 339

specifying in buttons, 66
text widget, 157
Tk::Fonts module, 66
with Tk8.0 334

foreground color (see color, options)

fpixels method, 296
fraction method, 136
Frame method, 251
frame method, 267
frame widget, 251-256
adding alable, 254
border width, 252
color options, 252

colormap
options, 252
problems, 255

creating, 251

cursor options, 252

defined, 7

fram widget (continued)

focus, 253, 255
height, 252
label, 252
option list, 252-253
relief, 253
style, 253
width, 253
frames, container, 107
functions
(see the individual method names)
G
geometry manager
deciding which to use, 56
overview, 9, 15
(see also pack, grid, and place)
geometry method, 260, 296
get method
entry widget, 111, 119
listbox, 148
scale widget, 216

scrollbar, 136

text widget, 172
getNames method, 175
Getopts modules, 306
gettags method, 201
GIF support, 61
grab method, 303
grabCurrent method, 304
grabGlobal method, 303
grabRelease method, 304
grabStatus method, 304
graphical user interface (see GUI)
graphics (see image)
Gravity event, 277
gravity, mark, 175
grid, 34-47
columns
setting, 38
spanning, 38
configuring columns and rows, 42
creating an empty cell, 37
determining widget location, 46
getting configuration information, 46
options, 38
padding widgets, 41

propagation, 46

removing widgets, 46
rows
setting, 38
Spanning, 38

Sizing text widget, 158

space buffer, 38

spanning columns/rows, 37, 39

special characters, 36

specifying rows and columns, 39

turning on or off, 143
grid method, 267
grid, setting, 157
gridColumnconfigure method, 43
gridForget method, 46
gridinfo method, 46
gridL ocation method, 46
gridPropagate method, 46, 251
gridRowconfigure method, 43
gridSize method, 47
group method, 268

GUI

design considerations, 14

reasons to use, 2

hanging indent, 165
height
basic button, 59
button, 70
canvas widget, 186
checkbutton, 84
createWindow method, 198
event, 279
frame widget, 252
label widget, 104
listbox, 143
menubutton widget, 222
postscript method, 205
radiobutton, 97
setting, place, 48
text widget, 156
toplevel widget, 259
widget, specifying, 53
height method, 296

Hello World example

anonymous subroutine, 63
buttonin, 57

callbacks, 62

overview, 10-11

positioning widgets, 20

highlight rectangle, changing, 78

iconbitmap method, 263
iconify method, 263
iconmask method, 264
iconname method, 264
iconposition method, 264
inconwindow method, 264
icursor method, 119, 196
id method, 292
ID string, widget, 292
identify method, 137, 216
image
creating, 190
displaying
basic button, 59
checkbutton, 84
image item, 191
in amenu item, 232
in basic buttons, 61
in checkbuttons, 90
|abel widget, 104
menubutton widget, 223

radiobutton, 97

item, 191
indentation, setting, 165
index method

canvas widget, 196

entry widget, 119

listbox widget, 150

menu widget, 245

text widget, 172

indexes

bounding box, 151
comparing values, 173
entry widget, 112-114
listbox, 147

menu, 242

text, 196

text widget, 161-163

trandlating

into numerical equivalent, 150

values, 119, 172, 245

indicator

checkbutton, 89
color, 97
displaying, 84

options, menubutton widget, 223, 225

status, 97
status, storing, 85
insert cursor, 115, 119

(see also cursor, options)
insert method

canvas widget, 196-197

entry widget, 120

listbox, 147

menu widget, 244

text tag, 166

text widget, 155, 171
inserting

itemsin alistbox, 147

menu items, 244

text, 120, 171, 197

installing the Tk module, 5
invoke method, 79, 93, 100, 245
invoking
basic buttons, 79
checkbuttons, 93
menu items, 245
radiobuttons, 100
@ISA array, 282
ismapped method, 295

itemcget method, 199

itemconfigure method, 199

J

JPEG file support, 61
jump scrall, 130
justification, text
basic button, 59
checkbutton, 84
entry widget, 110
label widget, 104
menubutton widget, 223
radiobutton, 97
text
item, 195
tags, 165
widget, 160
K
keyboard
information, event, 279
mapping, 72
KeyPress event, 277

KeyRelease event, 277

L

Label method, 103

|abel widget, 102-10
anchoring, 103
bitmap, displaying, 103
border width, 104
color options, 103-104
configuring, 108
container frames, 107
creating, 103
cursor options, 104
focus, 104
height, 104
image, displaying, 104
option list, 103-105
padding, 104
relief options, 104-105
setting font, 104
status messages, 106
text

justification, 104
wrapping, 105

underlining characters, 104

uses, 103

variable options, 104
width, 105

labels

frame, 254

frame widget, 252

scale widget, 212, 214
LabEntry widget, 281-282
Leave event, 277
line

creating, 191

item options, 191

spacing, text widget, 157-158
listbox, 141-153

active versus selected, 150

border width, 143

color options, 143, 145

configuring, 147

counting items, 150

creating, 141

cursor, setting, 143

deleting items, 148

example script, 152

filling, 141

focus, setting, 144

font, setting, 143
height, 143
indexes, 147
inserting items, 147
options, 142
relief, 143
relief style, 146
resizing, 146
retrieving elements, 148
scolling methods, 151
scrollbar, assigning, 144
selection options, 144, 149-150
turning grid on or off, 143
width, 144
with
entry widget, 152
scrollbars, 138
Listbox method (see listbox)
listing widgets, 33
lower method, 203
M
MainL oop method, 257
MainLoop routine, 10-12

MainWindow class, 257

MainWindow method, 12, 15
MainWindow widget, 7
Map event, 277
mapping keys, 72
margin, setting, 165
markGravity method, 175
markNames method, 176
marks, 175-176
markSet method, 176
markUnset method, 176
$master, 46
maxsize method, 261
menu
displaying, 245
indexes, 242
uses, 218
Menu method, 238
menu method, 235
menu widget, 238-250
assigning callbacks, 239, 241
border width, 239-240
cascading menu, 247
color options, 239
configuring, 243

creating, 238

cursor options, 239, 241
deleting menu items, 244
example, 247
focus, setting, 239
font, setting, 239-240
indexes, trandating values, 245
inserting menu items, 244
invoking menu items, 245
item type, determining, 245
option list, 239
relief, 239
style, 240

menubar, creating, 236

M enubutton method, 220

menubutton widget, 219-238
accelerators, 231
anchoring, 222
bitmap, displaying, 222
border width, 222
cascade menu, 235
cascade menu item, 229
checkbutton item, 228
color options, 222, 225

command item, 227

configuring, 233
creating, 220
cursor options, 222
examples, 236
focus, setting, 223
font, setting, 222
height, 222
image, displaying, 223
indicator options, 223, 225
items, adding, 234
option list, 221-224
padding, 223
radiobutton, 235
radiobutton item, 227
relief, 223
separator, 235
Separator item, 231
state, 223
text

justification, 223

wrapping, 224
underlining characters, 224
width, 224

Metakey, 275

methods (see the individual method names)

metrics, font, 339
minsize method, 261
minus sign, 36-37
modifier, 273

modules, Perl/Tk

Getopts, 306
Tk::Diaog, 257
Motion event, 277
mouse cursor, changing, 75
move method, 202
moving items, canvas widget, 202

multiple mode, listbox, 145

N
name
application, 265, 295
widget, determining, 291
name method, 291, 300
naming conventions, widget, 12
nearest method, 151
new method, 257

next method, 303

O

offsetting text, 165

on and off values

checkbuttons, 88
radiobuttons, 98
OnDestroy method, 305
operating system differences, 145, 331-333
option databases, 293
Optionmenu method, 248
optionmenu widget, 248-249
configuring, 248
creating, 248
overview, 281
ordering widgets, 29
organizing widgets (see geometry manager)
orientation
scale widget, 212-213
scrollbar, 130
oval item options, 193-194
ovals, creating, 193
overrideredirect method, 268
overstrike, 165

owner, determining, 302

P
pack, 16-34
allocation rectangles, 22-28
anchoring widgets, 19, 27
automatic resizing, 32
getting configuration information, 32
listing widgets, 33
option list, 19
ordering widgets, 29
overview, 9
packing order, 19
padding widgets, 19, 29
positioning widgets, 20
screen distances, 31
Sizing text widget, 158
unpacking widgets, 32
with frame widget, 251
packForget method, 32
packlnfo method, 32
packing order, 19
packPropagate method, 32, 108, 251
packSlaves method, 33
padding

basic button, 59

label widget, 104
menubutton widget, 223
text widget, 156
widgets, 19, 29
window method, 178
parent method, 291
parent widgets
determining, 291
overview, 6
with frames, 251
password entries, 116
pathname method, 292
pathname, widget, 292
Perl
history, 1
reference, general, x
Tk extension (see Perl/Tk)
Perl/Tk
coding style, 8
debugging a program, 13
fonts, 334
Getopts modules, 306
history, 1

installing, 1, 5

modules (see modules, Perl/Tk), 257
quiting, 12
reasons to use, 3
Tk::Fonts module, 66
using in Perl scripts, 1
versions, 2
with
Unix, 331
Windows, 332
Photo method, 61
pictures (see image)
pixels method, 295
place, 47-56
absolute coordinates, 49
anchoring widgets, 52
getting configuration information, 55
options, 48
relative coordinates, 50
specifying height and width, 53
placeForget method, 55
placel nfo method, 55
placSlaves method, 55
placing widgets (see place)
pointerx, pointery, pointerxy methods, 298

polygons, creating, 194

Popup method, 245
positionfrom method, 268
positioning

cursor, 196

widgets, 20, 22, 297

(see also pack)

post method, 218, 245
postcascade method, 247
postscript method, 204
PostScript output, canvas widget, 204
PPM/PGM file support, 61
prev method, 303
print, printf, 13
Programming Perl, 64, 282, 306

protocol method, 265

Q
Quick Draw program, 207

quitting an application, 12

R

radiobutton, 93-100
anchoring, 96

assigning callbacks, 96

bitmap, displaying, 96
border width, 96

color options, 96-97
configuring, 100
creating, 94

cursor options, 97
flashing, 100

focus, 98

font, setting, 97
height, 97

highlight rectangle, 97
indicator

color, 97

status, 97
invoking, 100
menubutton widget, 235
on and off values, 98
option list, 96-98
overview, 81
relief, 97
selecting and deselecting, 100
state, 98
style, 99

text justification, 97

underlining characters, 98
variable options, 98
width, 98
with menubutton widget, 227
wrapping, text, 98
Radiobutton method, 95
radiobutton method, 235
raise method, 203, 258
range of values, scale widget, 213
rectangle
allocation (see alocation rectangle)
creating, 194
highlight, 78, 97
relief
canvas widget, 187
checkbutton, 85
entry widget, 110
frame widget, 253
label widget, 104
listbox, 143
menu widget, 239
menubutton widget, 223
options

basic button, 59

entry widget, 112
|abel widget, 105
listbox, 146
radiobutton, 97
scale widget, 212
scrollbar, 129-130
text
tags, 165
widget, 156
toplevel widget, 259
removing widgets, 46, 55
Reparent event, 278
repeat method, 307
regheight method, 296
reqwidth method, 296
resizable method, 261
resizing
listbox, 14
window, automatic, 32
retrieving elements from alistbox, 148
rgb method, 293
RGB value, 293
right-click menu example, 247
rootx, rooty method, 297

rows

setting, 38
spanning, 38
(seealsogrid)

S

Scale method, 206, 210

scale widget, 210-217
assigning callbacks, 211
border width, 211
changing size, 215
color options, 211-212
configuring, 216
creating, 210
cursor options, 211
determining coordinates, 216
focus, setting, 212
font, setting, 211
identifying parts, 216
label options, 212, 214
option list, 211-212
orientation, 212-213
range of values, 213
relief, 212
setting value, 216

slider options, 212

scale widget (continued)

state, 212
uses, 210
value increments, displaying, 214
variable options, 212
width, 212
scaling the canvas widget, 205
scan method, 152

scanDragto method, 121, 179, 206

scanMark method, 121, 179, 206

scanning
canvas, 206
text, 121

screen
distances

converting, 295
units, 31
information, 298

screen method, 298
screencells method, 299
screendepth method, 299
screenheight method, 298
screenvisua method, 299

screenwidth method, 298

scrollable region, canvas widget, 183
scrollbar, 124-140

activating elements, 136

arrows, 132

assigning callbacks, 130, 133

border width, 129

color options, 129-130

communicating with other widgets, 133

configuring, 127, 134

creating, 128

cursor options, 130

defining, 124, 135

examples, 137

focus, setting, 130

option list, 129-130

orientation, 130

relief, 129-130

dider, 132

style, 131

using one with multiple widgets, 138

width, 130

with

entry widget, 117, 137
listbox, text, or canvas widgets, 138

scrollbar, assigning to widget, 144

Scrollbar method, 128

Scrolled method

canvas widget, 181, 184, 203

scrollbar widget, 125-128

scrolling

canvas widget, 206

listbox, 151

text, 121
search method, 174
searching text widget, 174
see method, 150, 173
sel tag, 164, 167
selectClear method, 197
select From method, 197
selecting

itemsin alistbox, 144

radiobutton, 100

text
canvas widget, 197
entry widget, 114
selection
method, 121, 149
mode, 143

options, listbox, 149-150

selectionAnchor method, 150
Selection Clear method, 301
selectionClear method, 149
SelectionGet method, 301
SelectionHandle method, 301
Selectionlncludes method, 149
SelectionOwn method, 302
selectionOwner method, 302
sel ectionPresent method, 122
selectionRange method, 122
selectionSet method, 149
selectionTo method, 122
selectTo method, 197

send method, 304

Separator, creating, 235
separator item, 231

separator method, 235

server method, 300

server type, 300

set method, 135, 216setPal ette method, 293
setting tab stops, 159

Shift key, 274

single mode, listbox, 144size method, 150

Size, widget, 296

sizefrom method, 269

sizing
text widget, 158
toplevel widget, 260
widgets (see pack)
dider
scale widget, 212
scrollbar, 132
spacing
character (see marks)

line, 157-158
spanning rows and columns, 39

state

basic button, 59

checkbutton, 85

entry widget, 110

menubutton widget, 223

radiobutton, 98

scale widget, 212

toplevel widget, 265
status label, 106

stipple pattern

arc item, 189

lineitem, 192

oval item, 193

text item, 195

text tags, 164
stored values, 214
storing indicator status, 85
style

basic button, 68

checkbutton, 91

frame widget, 253

menu widget, 240

radiobutton, 99

scrollbar, 131

subroutine

anonymous, 63
references, 64

(see also callbacks)

Subwidget method, 184
SUPER::bind, 184
SUPER::Populate, 285
switches, search method, 174
syntax

options, 6

screen distances, 31

T

tab stops, setting, 159

tabs, setting, 157, 165
tag names

arc item, 189

bitmap item, 190

create Window method, 198

image item, 191

line item, 193

oval item, 193

text item, 195
tagAdd method, 166, 168
tagBind method, 169
tagCget method, 168
tagConfigure method, 167, 172
tagDelete method, 170
tagL ower method, 170
tagNames method, 171
tagNextrange method, 171
tagRaise method, 170
tagRanges method, 171
tagRemove method, 170
tags

canvas widget, 199-201

finding, 201

text, 164-171

Tcl/Tk, 1,4
tear-off items, 224
text
adding, 197
deleting, 118, 196
entering, 108
exporting, 109
in acanvas widget, 194
indexes, 196
inserting, 120, 171
item indexes, 196
justification (see justification, text)
scanning, 121
scrolling, 121
selecting, 197
selection options, entry widget, 114
tags, 164-171
adding to existing text, 168
border width, 164
changing priority, 170
color options, 164
configuring, 167

creating, 167

text, tags (continued)

deleting, 170

example, 166

font, setting, 164

justification, text, 165

option list, 164-165

relief, 165

removing tag from text, 170

stipple pattern, 164

underlining characters, 165

using bind method, 168

wrapping, text, 165
widget, 154-180

assigning callbacks, 157

border width, 155

changing appearance, 164

color options, 155-157

creating, 154

cursor options, 156

cursor , setting, 155

debugging, 179

deleting text, 172

embedding other widgets, 176

example, 160

font, setting, 156
font use, 157
grid, setting, 157
height, 156
indexes, 161-163
inserting text, 171
justification values, 160
line spacing, 157-158
marks, 175-176
option list, 155-157
padding, 156
relief, 156
scrollbars with, 138
searching contents, 174
setting tab stops, 159
sizing, 158
state, 157
tabs, 157
tag, 166
uses, 154
width, 157
wrapping (see wrapping, text)
Text method, 154

time delays, 306

title method, 11, 262
Tk clipboard, manipulating, 300
Tk (see Perl/TK)
Tk::bind, 184, 201
Tk::break, 279
Tk::Button, 280
Tk::Diaog, 257
Tk::Fonts module, 66
Tk::Frame, 284
Tk::JPEG, 61
Tk::Widget, 284
Toplevel method, 257
toplevel method, 291
toplevel widget, 257-269
application grid, 267
border width, 258
color options, 258
colormap options, 259, 266
command property, 266
configuring, 260
creating, 257
cursor options, 259
defined, 7
focus model, 267

focus, setting, 259

height, 259
icon
bitmap, 263
mask, 264
name, 264
position, 264
option list, 258-259
relief, 259
setting title, 262
sizing, 260
state, 265
uses, 257
width, 259
window properties, 265
transient method, 269
trandating to RGB value, 293
triple modifier, 275

type method, 204, 245

U
underlining characters

basic button, 59
checkbutton, 85
label widget, 104

menubutton widget, 224

radiobutton, 98

text tags, 165
Unix

color values, 73

fonts, 66

using Perl/Tk with, 331
Unmap event, 278
unpacking widgets, 32
unpost method, 247

update method, 297

V
value

displayed versus stored, 214
increments, scale widget, 214
range, scale widget, 213
variable options
basic button, 59
entry widget, 111
label widget, 104
radiobutton, 98
scale widget, 212
versions of Perl/Tk, 2
viewable method, 300

virtual desktop, 297

Visibility event, 278
visual savailable method, 299
vrootheight method, 298

vrootwidth method, 298

W

waitV ariable method, 304
waitWindow method, 305
widget types
basic button, 57-80
canvas, 181-209
checkbutton, 81-93
composite, 281-289
entry, 108-123
frame, 251-256
label, 102-108
listbox, 141-153
MainWindow, 7
menu, 238-248
menubutton, 220-238
optionmenu, 248-249
radiobutton, 93-100
scale, 210-217
scrollbar, 124-140

text, 154-180

toplevel, 257-269
widgets

anchoring, 27, 52
checkbutton, 83
place, 48

children, determining, 290

creating, 6-7

demo with Tk module, 72

destroying, 302

displaying, 9

embedding, 176

enlarging, 38

height, setting, 48

item, 197

listing, 33

name, 291

(see also atom)

naming conventions, 12

ordering, 29

organizing (see geometry manager)
padding, 29, 41

parent and child, 6

parent, determining, 291
pathname, 292

placing (see place)

position, 297
positioning, 20, 22

(see also pack)
removing, 46, 55
resizing, automatic, 32
screen information, 298
size, determining, 296
sizing, 19

(see a'so pack)
space buffer, 38
specifying width and height, 53
unpacking, 32
width, setting, 48

Widgettype method, 6

width

arc item, 189

basic button, 60

button, 70

canvas widget, 187
checkbutton, 85
createWindow method, 198

entrywidget, 111

About the Author

Nancy Walsh is a consultant for Sybase, Inc. She spent too many years at the University
of Arizona, changing majors a multitude of times and finally ending up withaB. S. in
computer science. Continuing on in life, she has worked mostly with Perl and Javain the
last few years.

In the family tradition of not sitting still, Nancy has numerous hobbies, which include
quilting (pieced and applique, hand and machine quilting), stained glass (anything that
doesn't break yet), martial arts (sheis approximately halfway to ablack beltin Tae
Kwon Do), amateur radio (QRP mostly), and reading (anything with words).

Colophon

Our look isthe result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The bird on the cover of Learning Perl/Tk isajuvenile emu (Dromaius
novaebollandiae). This large, flightless bird is found throughout the Australian bush
steppes. The emu is one of the largest birds in existence, second only to its cousin the
ostrich. Adult emus stand about 5 feet (1.5 m) high and weigh up to 120 pounds (55 kg).
The grayish-brown emu's small wings contain only six or seven feathers. They are
hidden by the long, hairlike rump plumage. Emus have extremely strong legs, which
they use as defensive and offensive weapons when fighting. A human limb can be
broken by a kick from an emu. Their powerful legs make emus strong swimmers and
fast runners; they can reach speeds of up to 50 km/hour.

Male emus, which are dlightly smaller than the females, tend to the incubation of eggs
and the raising of the young. An emu nest contains up to fifteen to twentyfive deep green
eggs, laid by severa hens. Incubation of the eggs takes from twenty-five to sixty days.
The large discrepancy in incubation time occurs because the male needs to leave the nest
periodically to find food and drink. The length of time he is away affects the time for
incubation. Newly hatched emus weigh about 15 ounces (440 g). They are fully grown at
two to three years.

The relationship between emus and Australian farmers has always been an adversarial
one,; three coastal subspecies of emu have been exterminated. Because emus can jump
over high fences, it is difficult to keep them out of fields, where they eat

and trample crops. In the arid Australian bush, emus also compete with cattle and sheep
for grass and water. On the other hand, emus eat many insects that would otherwise eat
crops. In 1932 Australian farmers declared war on the emus, making an all-out effort to
eradicate them. Fortunately, the effort failed. The battle between emus and farmers
continues to this day.

Edie Freedman designed the cover of this book, using a 19th-century engraving from the
Dover Pictorial Archive. Kathleen Wilson designed the back cover and produced the
cover layout with QuarkXPress 3.32, using the ITC Garamond font.

The interior design was done by Edie Freedman and modified by Nancy Priest, using the
I TC Garamond Light and Garamond Book fonts. The text was prepared in FrameM aker
5.5 by Mike Sierra. The illustrations were created by Robert Romano in Adobe
Photoshop 5.0 and Macromedia Freehand 8.0. Quality assurance was provided by Ellie
Fountain Maden, Jeffrey Liggett, Claire Cloutier LeBlanc, and Sheryl Avruch. This
colophon was written by Clairemarie Fisher O'Leary. Editorial and production services
were provided by TIPS Technica Publishing-copyediting by Judy Flynn, composition
and indexing by Karen Brown of Scriptorium Publishing Services, Inc., proofreading by
Rachel Anderson of Archer Editorial, and project management by Robert Kern.

Whenever possible, our books use a durable and flexible lay-flat binding, either
RepK over(tm) or Otabind(tm). If the page count exceeds the maximum bulk possible for
this type of binding, perfect binding is used.

	Table of Contents
	Preface
	Introduction to Perl/Tk
	Geometry Management
	The Basic Button
	Checkbuttons and Radiobuttons
	Label and Entry Widgets
	Scrollbars
	The Listbox Widget
	The Text Widget
	The Canvas Widget
	The Scale Widget
	Menus
	Frames
	Toplevel Widgets
	Binding Events
	Composite Widgets
	Methods for Any Widget
	Configuring Widgets with configure and cget
	Operating System Differences
	Index

