
Learning Perl/Tk

Nancy Walsh

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Learning Perl/Tk
by Nancy Walsh

Copyright (c) 1999 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor:Linda Mui

Editorial and Production Services: TIPS-Technical Publishing, Inc.

Production Editor: Ellie Fountain Maden



Printing History:

January 1999:                  First Edition.
March 1999:                    Minor corrections.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered 
trademarks of O'Reilly & Associates. The use of an emu image in association with Perl/
Tk is a trademark of O'Reilly & Associates, Inc. Permission may be granted for non-
commercial use; please inquire by sending mail to camel@ora.com.

Many of the designations used by manufacturers and sellers to distinguish their products 
are claimed as trademarks. Where those designations appear in this book, and O'Reilly & 
Associates, Inc. was aware of a trademark claim, the designations have been printed in 
caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher 
assumes no responsibility for errors or omissions, or for damages resulting from the use 
of the information contained herein.

This book is printed on acid-free paper with 85% recycled content, 15% post-consumer 
waste. O'Reilly & Associates is committed to using paper with the highest recycled 
content available consistent with high quality.

ISBN: 1-56592-314-6:[5/99]

Table of Contents

Preface xi

1. Introduction to Perl/Tk 1

A Bit of History About Perl (and Tk) 1

Perl/Tk for Both Unix and Windows 95/NT 2

Why Use a Graphical Interface? 2

Why Use Perl/Tk? 3

Installing the Tk Module 5



Creating Widgets 6

Coding Style 8

Displaying a Widget 9

The Anatomy of an Event Loop 9

Hello World Example 10

Using exit Versus Using destroy 12

Naming Conventions for Widget Types 12

Using print for Diagnostic/Debugging Purposes 13

Designing Your Windows (A Short Lecture) 14

2. Geometry Management 15

Pack 16

Grid 34

Place 47

Geometry Management Summary 56

3. The Basic Button 57

The Button Widget 57

Some Fun Things to Try 80



4. Checkbuttons and Radiobuttons 81

The Checkbutton Widget 81

The Radiobutton Widget 93

Fun Things to Try 101

5. Label and Entry Widgets 102

The Label Widget 102

The Entry Widget 108

Fun Things to Try 123

6. Scrollbars 124

Defining Scrollbar Parts 124

The Scrolled Method 126

The Scrollbar Widget 128

Examples 137

Fun Things to Try 140

7. The Listbox Widget 141

Creating and Filling a Listbox 141

Listbox Options 142

Selection Modes 144

Colors 145



Listbox Style 146

Configuring a Listbox 147

Inserting Items 147

Deleting Items 148

Retrieving Elements 148

Selection Methods 149

Moving to a Specific Index 150

Translating Indexes 150

Counting Items 150

Active Versus Selected 150

Bounding Box 151

Finding an Index by Y Coordinate 151

Scrolling Methods 151

Listbox Example 152

Fun Things to Try 153



8. The Text Widget 154

Creating and Using a Text Widget 154

Text Widget Options 155

A Short Break for a Simple Example 160

Text Indexes 161

Text Tags 164

Inserting Text 171

Deleting Text 172

Retrieving Text 172

Translating Index Values 172

Comparing Index Values 173

Showing an Index 173

Getting the Size of a Character 173

Getting Line Information 173

Searching the Contents of a Text Widget 174

Scrolling 175

Marks 175

Embedding Widgets 176

Internal Debug Flag 179



Fun Things to Try 180

9. The Canvas Widget 181

Creating a Canvas 181

Coordinate System 182

The Scrollable Region 183

Using Bind with a Canvas 184

Canvas Options 184

Creating Items in a Canvas 188

Configuring the Canvas Widget 198

Configuring Items in the Canvas Widget 199

Tags 199

Retrieving Bounding Box Coordinates 202

Translating Coordinates 202

Moving Items Around 202

Changing the Display List 203

Deleting Items 203

Deleting Tags 204

Determining Item Type 204

Set Keyboard Focus 204



Rendering the Canvas as PostScript 204

Scaling the Canvas 205

Scanning 206

A Drawing Program Example 206

Fun Things to Try 209

10. The Scale Widget 210

Creating a Scale 210

Assigning a Callback 213

Orientation 213

Minimum and Maximum Values 213

Displayed Versus Stored Value 214

Adding a Label 214

Displaying Value Increments 214

Changing the Size of the Scale 215

Options You'll Probably Never Need 215

Configuring a Scale 216

Getting the Value of a Scale 216

Setting the Value of a Scale 216

Determining Coordinates 216



Identifying Parts of a Scale 216

Fun Things to Try 217

11. Menus 218

Different Types of Menus 218

The Menubutton Widget 220

Complete Menubutton Examples 236

The Menu Widget 238

Optionmenu Widget 248

Fun Things to Try 250

12. Frames 251

Creating a Frame 251

Frame Style 253

Frames Aren't Interactive 255

Colormap Complications 255

Frame Methods 256

Fun Things to Try 256



13. Toplevel Widgets 257

Creating a Toplevel Widget 257

Toplevel Methods 260

Review 269

Fun Things to Try 269

14. Binding Events 270

The bind Method 270

Arguments Sent to the Callback 272

Defining Event Sequences 273

Event Information 278

Bailing Out of a Callback Created with bind 279

The bindtags Method 280

Ways to Use bind 280

15. Composite Widgets 281

Looking at an Example Sideways 282

Location of Files 283

Creating a Composite Widget Based on Frame 284

Toplevel-Based Composite Widgets 289

16. Methods for Any Widget 290



Building a Family Tree 290

Color-Related Methods 292

Option Databases 293

The Application's Name 295

Widget Existence 295

Is the Widget Mapped? 295

Converting Screen Distances 295

Size of Widget 296

Widget Position 297

Screen Information 298

Atom Methods 300

Ringing a Bell 300

Clipboard Methods 300

Selection Methods 301

Destroying a Widget 302

Focus Methods 302

Grab Methods 303

Interapplication Communication 304



Waiting for Events to Happen 304

Parsing Command-Line Options 306

Time Delays 306

A. Configuring Widgets with configure and cget 309

B. Operating System Differences 331

C. Fonts 334

Index 341

Preface

Perl is a great language for file processing, connecting to databases, and many other 
tasks that are too tedious to do manually. For many years, however, Perl programs were 
limited to a command-line interface. The Tk interface changed all that.

The Tk extension to Perl allows you to create graphical interfaces for your programs. 
Using the modules included with the distribution of Tk, you can create windows with 
buttons, lists, text, and other types of widgets to help your user navigate within your 
application.

What You Should Already Know

To get the most out of this book, you should already know the basics of Perl 
(specifically, Perl version 5). You should be familiar enough with Perl to be able to at 
least read some code and know what the code is doing. You don't have to be a Perl guru 
or Perl hacker to learn Perl/Tk, but it will help if you feel comfortable with the language. 
Here's the laundry list of things you should at least recognize: hashes, arrays, 
subroutines, and their anonymous versions, $_ and @_.



Perl/Tk utilizes the object-oriented features available in Perl 5, so even if you don't 
completely understand them, you should be able to recognize them when you see them. 
The only other thing you'll need is your prior knowledge of other graphical user 
interfaces (GUIs) and what you did and did not like about them. This helps when 
deciding what features to include in your own applications. Take a look at the word 
processor you use on your PC, your web browser, or any program that has buttons and 
scrollbars and accepts both mouse and keyboard input.

Those applications are pretty major ones; we'll start with much simpler examples and 
build up from there. We'll be covering each basic widget and all its associated options in 
detail. You'll learn how to make a window look the way you want it to look. You'll also 
learn how to make a window user-friendly and attractive.

If you want to know more about Perl in general, you should read Learning Perl, 
Programming Perl, Advanced Perl Programming, and Perl Cookbook, which are also 
published by O'Reilly & Associates, Inc. There are also numerous FAQs and documents 
available on the Web. This book's focus is the Tk extension to Perl, which is a fairly 
specific portion of Perl.

What's in This Book

Chapter 1, Introduction to Perl/Tk
The first chapter contains some interesting history about Perl and the Tk module. It starts 
you out with a simple Hello World program and gives a short introduction to event-
driven programs.

Chapter 2, Geometry Management
Geometry management is probably the most important concept in using Perl/Tk. It 
determines how your widgets are to be drawn on the screen (or, in some cases, how not 
to be drawn on the screen). The three geometry managers-pack, grid, and place-are 
covered here. Most examples in the book use pack.

Chapter 3, The Basic Button
The button is the first widget we cover and there are lots of details here. There are also 
tons of code snippets and screen shots showing different ways to manipulate and 
mutilate the button widget. Many of the options discussed here are common among the 
other standard widgets.

Chapter 4, Checkbuttons and Radiobuttons
Checkbuttons and radiobuttons are similar to the standard button, but they look different 
and are usually programmed differently.

Chapter 5, Label and Entry Widgets
The label is the simplest widget of all. It is usually used with an entry widget, which is 
why they are included in the same chapter. The entry widget will let you get input from 
your user.



Chapter 6, Scrollbars
Certain widgets in Perl/Tk can be scrolled, which means they can contain more 
information than you can see on the screen. Scrollbars are used to navigate the data 
inside these widgets. Chapter 6 tells you how scrollbars communicate with each widget 
and what you need to do to create and use them.

Chapter 7, The Listbox Widget
A listbox can contain any sort of data, but it usually contains a list of options from which 
the user can select. In Chapter 7, you'll learn how to create the listbox, fill it with some 
items, and change the way the user selects the items from the list.

Chapter 8, The Text Widget
The text widget is a versatile widget you can use for many purposes besides just 
displaying text. Chapter 8 covers the different things you can put inside a text widget 
(such as text or other widgets) and how to get the best use out of them.

Chapter 9, The Canvas Widget
A canvas can display objects such as circles, rectangles, text, and even other widgets. 
Chapter 9 covers all the options and methods available and how to use them.

Chapter 10, The Scale Widget
The scale widget is great for giving the user a range of numbers from which to select so 
there is no possibility of a user typing in a number out of range or accidentally typing in 
letters. Chapter 10 includes examples of the scale widget and covers all the methods 
available for setting it up and using it.

Chapter 11, Menus
Once an application gets complex enough, you will need to put a menu in it. Chapter 11 
shows different ways to create menus and how they can best be used in an application.

Chapter 12, Frames
The frame widget is used for organizing your other widgets on the screen to get the look 
you want. Chapter 12 shows how you can use frames in coordination with a geometry 
manager (covered in Chapter 2) to make your windows look the way you want them to.

Chapter 13, Toplevel Widgets
An application often needs more than one window in it. You can use a toplevel widget to 
create a second window. In Chapter 13 you'll learn how to create one and display it. We 
also cover the numerous methods available for manipulating toplevel widgets.

Chapter 14, Binding Events
One of the best ways to add functionality to your application is to add additional 
bindings to the widgets. This chapter tells you what a binding is and how to create one 
and use it.



Chapter 15, Composite Widgets
You can combine widgets to make a much more useful, reusable widget. Many of the 
additional widgets you can use with Perl/Tk are created this way. Chapter 15 includes an 
example of a composite widget and gives you some ideas for creating your own.

Chapter 16, Methods for Any Widget
There are several methods available for all widgets in Perl/Tk. We cover them in 
Chapter 16 and show you how to use them.

Appendix A, Configuring Widgets with configure and cget
Appendix A explains the configure and cget methods, which are used with every 
widget. It also includes a table that shows the options and defaults for each widget 
option.

Appendix B, Operating System Differences
Appendix B covers the differences you'll encounter when you use Perl/Tk on different 
operating systems, specifically, Unix and Win32.

Appendix C, Fonts
Appendix C covers font usage for Tk, for both Unix and Win32 systems. It also covers 
the new font syntax in Tk8.

Reading Order

This book was designed and written with two major audiences in mind: people new to 
Perl/Tk and those who have experience with it.

Perl/Tk Novices

If you have no idea where to start, start at the beginning. This book is designed to lead 
you into topics by building a foundation of knowledge. We'll start simple with the button 
widget in Chapter 3, The Basic Button, and move up to more complicated widgets. Using 
Perl/Tk is not really that hard once you understand the basic fundamentals of how it 
works.

Somewhat Experienced to Gurus

Okay, so you've written a ton of programs with Perl/Tk and think you know how to do 
things. Chances are you have found a ''way that works," and have stuck with it. I 
recommend reading through Chapter 2, Geometry Management, so you have a complete 
understanding of how the geometry managers work. Then skip around to the widget 
sections you are interested in. I have included useful snippets of code (and sometimes 
full programs) that will give you ideas on how to use widgets in different ways. The list 
of options for each widget are helpful reminders of all those pesky options and how they 
affect each widget.



Typographical Conventions

The following typographical conventions are used in this book:

Italic
is used for filenames, command names, URLs, and emphasis. In syntax lines, it is used 
to identify replaceable values.

Constant Width
is used for function and method names and their arguments, and to show literal code in 
text.

Bold
is used to show default values in syntax lines.

We'd Like to Hear from You

We have tested and verified the information in this book to the best of our ability, but 
you may find that features have changed (which may in fact resemble bugs). Please let 
us know about any errors you find, as well as your suggestions for future editions, by 
writing to:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
1-800-998-9938 (in U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (fax)

You can also send us messages electronically. To be put on our mailing list or request a 
catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list errata and plans for future editions. 
Here you'll also find all the source code for programs from the book available for 
download so you don't have to type it all in.

http://www.oreilly.com/catalog/lperltk



Acknowledgments

This book has taken quite a bit of time out of my life, and I would like to thank the 
people who helped make it possible and put up with me while I was off writing it: first, 
my husband Mike, who helped out in so many little ways it is impossible to list them all; 
our dogs, Brandy and Theo, for keeping my feet warm; our cats, Thumper and Sasha, for 
keeping the monitor and keyboard anchored to the desk (any typos are completely their 
fault); my co-worker, Kreg Webb, who suggested this whole crazy idea; and my editor, 
Linda Mui, for always coming up with positive things to say in addition to the not-so-
good things.

I'd also like to thank all the reviewers of the book. They include: Stephen Lidie, Achim 
Bohnet, Peter Prymmer, Nick Ing-Simmons, and Phivu Nguyen.



1—
Introduction to Perl/Tk

There are many different modules available that extend the functionality of Perl. This 
book will concentrate on the Tk module. The Tk module allows us to easily add a 
graphical interface to our Perl scripts and still use all the features that make Perl great. 
Instead of requiring a typed command with some options or user input on the command 
line, your program is invoked with an icon or a simple command and the interface 
handles everything from there.

The Tk extension to Perl doesn't come with the standard distribution of Perl.* You'll 
need to get it separately from a CPAN site and install it. After you install the Tk module, 
you simply add use Tk; to the top of your Perl scripts.

A Bit of History About Perl (and Tk)

Originally, Perl was written as a "quick-fix" to a problem Larry Wall was having with 
his job. Typical of all self-admittedly lazy people, he found a better and easier way to do 
it, and thus Perl was born. It has since evolved into a widespread and well-used 
language. Perl has been made available for numerous different platforms, has been well 
documented, and best of all, is license-fee free. Hopefully the reason you're looking at 
this book is because you're already converted to the way-of-Perl and want to know how 
to utilize it to the fullest.

The Tk extension to Perl handles all the widgets, whodads, and whatsits that combine to 
make a graphical interface. It was ported by Nick Ing-Simmons from Tcl/Tk for use with 
Perl. A common misconception is that you need Tcl/Tk installed in addition to Perl and 
Tk for the whole thing to work, but all you really need is Perl

* Unless you get the Win32 binary from CPAN, or another pre-built distribution such 
as ActiveState Perl.

and its Tk extension. Thanks to a lot of work by a lot of other people, self-admittedly 
lazy people like me can download the binary for the machine they have and install it in 
less than 10 minutes (download time not included). You can also compile it from source 
for your machine.

Perl/Tk for Both Unix and Windows 95/NT



As I was writing this book and cursing the fact that I didn't have enough machines at 
home to write this book with MS Word and test code examples on my Linux machine 
without booting back and forth from OS to OS, a miracle was happening. The Tk 
extension for Perl was ported to Windows. By Windows, I mean the overly-large, overly-
influencing OS that is the default on most PCs nowadays, Microsoft Windows. Most 
people don't have C compilers for their Windows machines, but thanks to the work of 
Gurasamy Sarathy, there's a great binary distribution of Perl and a good selection of the 
Perl extensions, including Tk. You simply download the binary, run the install, and 
you're ready to go.

There are no differences between the way you write Perl/Tk applications on a Unix 
machine and the way you write them on a Windows machine. You can use any simple 
text editor on either system. There is a small difference in the way you run them; see 
Appendix B, Operating System Differences, for details. For now, I'll just say that I prefer 
to run my Perl applications on Windows NT 4.0 (Service Pack 3) rather than Windows 
95.

Versions

When I started writing this book, the latest and greatest versions of Perl and Tk were 
5.003 and 400.202. Since then, a Win32 version of the Tk module has been developed 
and released. Perl has also had some changes. Right before the book was going to print, 
the port of Tk800.007 was in beta and Perl was up to 5.004_68 (also beta). I have made 
every effort to include information that is relevant to the new version of Tk and Perl and 
to test the examples with the new versions. There are certain instances (fonts, for 
example) where some significant functionality has been added in the new version of Tk. 
I have tried to note all the changes where they apply, but for the most part, you don't 
have to worry about which version you have.

Why Use a Graphical Interface?

Hopefully, you bought this book (or are considering it in the bookstore) because you 
have some idea of why you might want to use a graphical interface for one or more of 
your scripts. Just in case you don't, read on....

Because you are familiar with writing Perl scripts, you understand the ways you can get 
information in and out of one. It usually involves a combination of reading/writing files, 
command-line options, and possibly, data in or out at application runtime (STDIN/
STDOUT, using pipes (|) or <>. Certain applications can run with no input, and others, 
such as an installation script, require constant information fed to it from the user: Do you 
want to install this file? Can I overwrite this DLL? Do you want to create this directory? 
Do you want the help files? Sometimes you can set up a bunch of defaults so the user 
just has to press return to say yes, but then they are stuck sitting at the keyboard and 
waiting for the next question to come up. Wouldn't it be nice to gather all that 
information up front and then have the user press a Go button to execute all the steps 
after the decisions were made?



A GUI interface adds a little flair and professionalism to an application. However, there 
are times when it would be overkill to add a GUI to a script. If all you are doing is 
reading in one file, munging a bit with no user input, and spitting out another, a GUI 
would be silly and unnecessary. GUI interfaces work best where you require a lot of 
decisions and input from the user, such as our installation example in the preceding 
paragraph.

Here are some examples of good uses for a graphical user interface:

• A mini web client that connects to a dictionary server and lets you look up words.

• An application that takes a regular expression as input and displays the state map 
graphically in a scrollable window.

• An application that interfaces with a database and displays query results in several 
widgets, with labels to indicate what the data is.

• A mail reader that interfaces with your inbox and can also send out mail messages.

• Sometimes your boss says "make it easy to use!" and that usually means either a 
wrapper around a script or an interface that makes it easy for users to understand the 
decisions they have to make. Your users also might be used to a graphical interface 
rather than a command-line interface.

Why Use Perl/Tk?

Have you ever tried to draw a window using so-called "native" facilities? If you do it in 
C, you'll end up with about 100 lines of code just to create a Hello World program, 
whether you use MS Windows or X Windows. This doesn't even include an Exit button 
that would allow you to quit the application nicely.

I have used several different methods to draw windows and create GUI applications 
throughout my programming life. Using the basic X Windows routines (such

as X_Create_Line_from_x_to_y) is basically a drag. True, you have total control 
over every little detail, but then again, you have to control every little detail. Sometimes 
I like not knowing exactly how the button got drawn; it is enough for me to know that it 
did. (I drive a car, and don't exactly understand the intricate details of the combustion 
engine. I like that I can turn the key and succeed in my mission of driving to work.)

You have probably seen several books on Tcl/Tk. The problem with Tcl is that you have 
to program within the constraints of the Tcl language. I much prefer using a language 
that I already know really well and adding on to it.

Perl/Tk provides you with all the annoying little details. It handles the event loop. It 
handles drawing the 3D edges on your buttons (if you're not quite sure what I'm talking 
about, hang in there; I'll explain it all in due time). You can simply use the Perl language 
to "place a button here," which translates to real Perl as:



$mw->Button(-text => "Something")->pack();

In addition, because of the wonderful community Perl has, there are multitudes of 
different complex widget types available for use. If you can't find the perfect widget 
(such as a multi-listbox-selection-thingy with associated canvas), it is fairly simple to 
create your own by using a combination of some basic and/or not so basic widgets and 
constructs.

From a programmer's view the bottom line is that using Perl/Tk to write a GUI is fun! It 
is the best instant-gratification programming high. With just a few lines of code, you can 
instantly display a button and several other widgets that look like a full-blown 
application. Of course, it takes a bit more time to code the guts behind it, but it's almost 
as much fun.

As you go through this book, the best way to understand what is going on is to try lots of 
different examples. There are tons of working code snippets included for this very 
reason. Start with the basic Hello World program and change the options to the button as 
you go through Chapters 2 and 3. See what the results are on your very own screen.

Also, you might want to check out these tools (which we don't cover in this book, but 
they are fun to use): tkpsh and ptksh (new in Tk800.007, the latest version of Tk for 
Perl). You can download them from http://www.monmouth.com/~beller. Both programs 
allow you to type in code on STDIN and have it evaluate each statement (similar to 
wish).

Installing the Tk Module

Before we go into more details on using Perl/Tk, we should cover how to install it. There 
are many different ways to get Perl and Tk and install them on your machine. You can 
get the source and compile it (easy in Unix; not so easy in Ms Windows), or you can get 
a binary distribution and install that. Some of the binary distributions may not have all 
the components you want in it though, so make sure you read any README files 
included with the package.

The two major binary distributions for Perl on Win32 are available from ActiveState 
(http://www.activestate.com) and CPAN (http://www.perl.com). The binary distribution 
on CPAN includes the Tk module, so that's the one I'll cover here.

First you need to get Perl installed:

You can test to see if you already have the Tk module installed by using this command 
(both Unix and Win32):

perl -e 'use Tk'

If you don't get an error, you're ready to go. If you do get one, the error will look like 
this:



Can't locate Tk.pm in @INC (@INC contains: C:\PERL\lib
\site C:\PERL\lib c:\perl\lib c:\perl\lib\site c:\
perl\lib\site .) at myscript line 1.

You'll need to find the Tk module on a CPAN site. Try starting with http://www.perl.
com/CPAN/modules/by-module/Tk/. From that directory, find the following files: 
Tk*readme and Tk*tar.gz (always try to grab the latest versions; the * is for the version 
number). Be careful when you download the .gz file because some systems try to rename 
the file to .tar.tar. Simply rename the file back so that it has a .tar.gz extension and it 
will unzip properly. Follow the instructions in the README file to make sure that you 
have the right version of Perl already. After downloading Tk*tar.gz, you need to 
uncompress it using WinZip for MS Windows or gunzip and tar -xvf for Unix. Follow 
the instructions in the Install file once you have it unpacked. It is very similar to 
installing Perl itself.

Run the test

perl -e 'use Tk'

again to make sure it all worked correctly. (Note: Windows users will need to use 
perl -e "use Tk"). For both MS Windows and Unix, make sure your perl/bin 
directory is in your PATH environment variable. You can then use the widget demo to 
see what types of widgets are available.

Creating Widgets

All widgets are created in the same basic fashion, with only a few exceptions. Each 
widget must have a parent widget to watch over it as it is created and keep track of it 
while it exists in the application. When you create an application, you'll have a central 
window that will contain other widgets. Usually, that window will be the parent of all 
the widgets inside it and any other windows you create in your application. You are 
creating an order to the widgets so the communication between child and parent widgets 
can happen automatically without any intervention from you once you set it all up.

Assuming that the $parent widget already exists, the generic usage when you create 
widget Widgettype is as follows:

$child = $parent->Widgettype( [ -option => value, ...] );

Note that the variables that store the widgets are scalars. Actually, they are references to 
widget objects, but you don't need to know that right now. If you aren't familiar with the 
object-oriented programming in Perl, using the -> between the $parent and 
Widgettype invokes the method Widgettype, from the $parent object. It makes 
the $parent related to the child $child. As you might guess, the $parent becomes 
the parent of the widget being created. A parent can have many children, but a child can 
only have one parent. That's pretty much all there is to assigning children to their parents.



When you invoke the Widgettype method, there are usually configuration parameters 
that you send to set up the widget and interactions within the application. The 
configuration parameters will occur in pairs: an option and associated value. You will 
see options similar to -text, -state, or -variable. Notice that the options all start 
with a dash. Even with the dash, they are really just strings that are labels to indicate the 
next value to come in the list. Usually, it is not necessary to put quotation marks around 
the options because Perl is smart enough to recognize them as strings. However, if you 
are using the -w switch, Perl may complain about an option that it thinks is not text. You 
can stick quotes around all your options all the time to avoid this, but it shouldn't be 
necessary. The option names are always all lowercase (except in a few very rare cases, 
which are noted as we cover them).

Options are specified in list form like this:

(-option => value, -option => value, -option => value)

Don't be fooled by the funny-looking =>; it is just a different way of saying "comma." In 
fact, you could use just the commas and not the => notation, that is:

(-option, value, -option, value, -option, value)

However, it's much harder to tell which are the option/value pairs. Consider the 
following syntactically equal statements (which each create a button widget that is 10 
pixels by 10 pixels, displays the word "Exit," and performs the action of quitting the 
application when pressed):

$bttn = $parent->Button(-text, "Exit", -
command, sub { exit }, -width, 10,
-height, 10);

$bttn = $parent->Button(-text => "Exit", -
command => sub { exit }, -width =>
10, -height => 10);

In the second line, it is much more obvious which arguments are paired together. The 
option must be directly before the value associated with it: -text is paired with "Exit," 
-command has the value sub { exit }, and -width and -height both have 
values of 10.

Congratulations, we're not even done with the first chapter yet, and you already know 
how to read a typical line of Perl/Tk code!

Quick Definitions of Toplevel, MainWindow, and Frame Widgets

The next chapter covers geometry management, and several of the examples use widgets 
you don't know anything about yet. Most of the widgets are easy to figure out, but a few 
require a short introduction.



A MainWindow widget is a special version of a toplevel widget. Both MainWindow and 
toplevel are the windows that contains other widgets. The only difference between a 
toplevel and a MainWindow is that the MainWindow is the first window you create in 
your application. Both of these widgets are covered in greater detail in a later chapter 
(Chapter 13, Toplevel Widgets).

The other type of widget you need to know about is a frame widget. A frame is a 
container that can also contain other widgets. It is usually invisible and just used to 
arrange the widgets as desired. The frame widget is also discussed in its own chapter 
(Chapter 12, Frames).

Here is what each widget's creation code looks like:

$mw = new MainWindow; # or $mw = MainWindow->new();
$top = $mw->Toplevel();
$frame = $mw->Frame(-borderwidth => 2, -relief => "groove");

For now, just keep in mind the general meanings of MainWindow, toplevel, and frame 
widgets.

Coding Style

The code lines in a Perl/Tk script can get quite cumbersome and clunky because of all 
the option/value pairs used in defining and configuring each widget. There are several 
ways to format the code to deal with readability (and in some cases, ''edit-ability"). Most 
just involve adding extra spaces or tabs to line up different portions of code. Once you 
get used to seeing the code, it won't appear to be quite so mysterious and unwieldy.

One coding style places each option/value pair on separate lines (this is my personal 
favorite, and I use it all the time):

$bttn = $parent->Button(-text => "my text",
                        -command => sub { exit },
                        -width => 10,
                        -height => 10);

With this type of coding style, it is extremely obvious what the pairs are and what value 
is associated with which option. (You could also go to the extreme of aligning each => 
to make nice columns, depending on how much time you have to press the space bar.) 
Some people like to start the option/value pairs on the next line and put the ending ) ; on 
its own separate line, after the last option/value pair, which retains the comma for 
formatting ease:

$bttn = $parent->Button(
   -text => "Exit",
   -command => sub { exit },
   -width => 10,
   -height => 10,
  );



This makes the code easier to edit; an option/value pair can be added or deleted on each 
line without having to mess with parentheses, semicolons or commas. It also keeps the 
next lines closer to the left side of the page so if you have several indentation levels, you 
don't end up with code quite so deep to the right.

Sometimes, if there are only one or two option/value pairs, it just makes sense to leave 
them all on the same line and conserve a little bit of space:

$bttn = $parent->Button(-text => "my text", -
command => sub { exit });

Eventually you'll come up with a style that works for the way you read the code and the 
way you edit it. Whichever way you choose, just try to be consistent throughout your 
scripts in case someone else takes over the maintenance of your code (it could even be 
you a year or more down the road).

Displaying a Widget

You use two separate commands to create a widget and display it, although sometimes 
they are squished into the same line, which makes them look like the same command. In 
the examples so far, we've used the Button method to create the button, but nothing is 
displayed by using that method alone. Instead you have to use a geometry manager to 
cause the widget to be displayed in its parent widget or in another widget. The most 
commonly used geometry manager is pack, and to use it, you simply call the pack() 
method on the widget object like this:

$widget->pack();

For example:

$button->pack();

There are arguments that can be sent to the pack method, but we'll cover those in 
Chapter 2, Geometry Management.

It is not necessary to invoke the pack method on a separate line. The ->pack can be 
added to the creation of the widget:

$parent->Button(-text => "Bye!", -command => sub { exit })-
>pack();

The other geometry managers available are grid and place. All three behave 
differently, and which one you use often depends on the look you are trying to get in 
your application. Again, look for information on the geometry managers in Chapter 2.

The Anatomy of an Event Loop



When you are programming an application that uses a graphical interface rather than a 
textual interface, there are a lot of different things to consider. In a text-based 
application, you can read from standard input (STDIN), use command-line options, read 
files, or prompt the user for specific information. The keyboard is your only avenue of 
input from the user. In a GUI, input can not only come from those places, but it can also 
come from the mouse and the window manager (such as a "close" directive from a 
window manager like mwm or MS Windows). Although this extra input allows more 
flexibility in our applications, it also makes our job more difficult. As long as we tell it 
what to do, Perl/Tk helps us handle all that extra input gracefully.

Input in a GUI is defined by events. Events are typically different combinations of using 
the keyboard and mouse at the same or different times. If the user pushes the left mouse 
button on button "B", that is one type of event. Pushing the right mouse button on button 
"C" would be another event. Typing the letter "a" would

be another event. Yet another event would be holding down the Control key and clicking 
with the middle mouse button. You get the idea.

Events are processed during an event loop. This event loop does just what its name says-
it handles events during a loop. It determines what subroutines to call based on what 
type of event happened. Here is a pseudo-code event loop:

while (1) {
  get_event_info

  if event is left-mouse-click call process_left_mouse_click
  else if event is right-mouse-
click call process_right_mouse_click
  else if event is keyboard-input call type_it
  else handle events for redrawing, resizing etc
}

Obviously, this is a very simplistic approach to an event loop, yet it still shows the basic 
idea. The event loop is a weeding-out process to determine what type of input was given 
to the application. For example, the subroutine process_left_mouse_click 
might determine where the pointer was when the mouse click occurred and then call 
other subroutines based on that information.

In Perl/Tk, the event loop is initiated by calling a routine called MainLoop. Anything 
prior to this statement is just setting up the interface. Any code after this call will not 
happen until after the GUI has been exited by using $mw->destroy.*

If we forget to include the MainLoop statement, the program will think about things for 
a while and then go right back to the command prompt. None of the windows, buttons, 
or widgets will be drawn at all. One of the first things that occurs after calling 
MainLoop is that the interface is drawn and the event loop is started.



Before we get too much further into the event loop and what it does (and what you need 
to do so it works right), let's look at a real, live, working program, Hello World. (You 
were expecting something else?)

Hello World Example

Every programming language goes through the Hello World example. It is a good 
example because it shows how to do something very simple but useful. In our

* Throughout the book, I will use $mw to indicate the variable that refers to the main 
window created at the beginning of the application.

Hello World example, we'll have the title of our window say "Hello World" and create a 
button that will dismiss the application:

#!/usr/bin/perl
use Tk;
my $mw = MainWindow->new;
$mw->title("Hello World");
$mw->Button(-text => "Done", -command => sub { exit })->pack;
MainLoop;

Despite only being six lines long, there is quite a bit going on in our little program. The 
first line, as any Perl programmer knows, invokes Perl (only on Unix; in Win32 you 
have to type perl hello.pl to invoke the program). The second line tells Perl that we 
would like to use the Tk module.

The third line

my $mw = MainWindow->new;

is how we create a window. The window will have the same basic window manager 
decorations as all your other windows. In a Unix environment, it will look like all your 
other windows, and if it were in MS Windows, it would look like those windows.

The title of our window is changed by using the title method. If we hadn't used this 
method, the text across the top of the window would be the same as the name of the file 
containing the code. For instance, if my code were stored in a file named hello_world, 
the string "Hello_world" would appear across the title bar of my application (Tk 
automatically capitalizes the first character for you). Using the title method is not 
required, but it makes the application look more polished.

Any string we put as an argument becomes the title. If I wanted the title to be "Hey! 
Look at my great program!" this would be the place. This is akin to using the -title 
option when starting up any standard X Windows application. There are more methods 
for a MainWindow object, which will be covered later in Chapters 12 and 13.

The next line creates a Button widget, sets basic properties, and packs it. (See Chapter 3, 
The Basic Button, for all available configuration options.)



The button is set up to display the text "Done" and to perform the Perl command exit 
when pushed. Finally, the last item of concern is the MainLoop command. This starts 
the event handler in motion, and from then on the application will do only what we have 
told it to do: If the user clicks on the button, the application will exit. Anything else the 
user does-minimizing, resizing, changing to other applications-will all be processed by 
the window manager and ignored by our application. See Figure 1-1 for a picture of the 
Hello World window.

Figure 1-1.
Hello World window

Using exit Versus Using destroy

In all of the examples in this book you will see sub { exit; } used to quit the Perl/
Tk application. This works fine as long as you have done a use Tk; in the same file 
that contains the sub { exit }. Perl/Tk defines its own exit routine which does 
some cleanup and various other things that are important to Tk. Another way to quit the 
Tk portion of the application is to call $mw->destroy(), which destroys the main 
window and returns to the code listed after MainLoop. The code after MainLoop will 
not be executed even if you use sub { exit }. Keep this in mind if you are going to 
be doing anything after the GUI portion is done.

Naming Conventions for Widget Types

Naming conventions? How boring! Well, sometimes our programs get so large and 
unwieldy that we can't remember what that stupid $button variable was pointing to. If 
there are over 10 buttons in our program, we would be hard-pressed to figure out which 
button was $button3 without digging through a bunch of code.

I'm merely going to suggest a naming convention, and if you like it, please use it! If not, 
either come up with your own, or hope you have a really good memory.

For buttons, I like to use _b, _bttn, or Button as a type of qualifier to the variable 
name. For instance, I would name my button in the Hello World example $done_b, 
$done_bttn, or $doneButton.

A specialized widget type is the very first window we create with the MainWindow 
method. I always use $mw as the variable name for this. You will see other programs use 
$main or $mainwindow as well.



Table 1-1 contains a list of widget types and my suggested naming conventions for them. 
Replace "blah" with a sensible description of the widget's purpose (e.g., exit). If you 
use this convention, you'll always know what type of widget you're working with.

Table 1-1. Naming conventions by widget type

Widget Type Suggested Name Examples

Button $blah_b (or 
$blah_bttn, $blahButton)

$exit_b, $apply_b, $newButton

Canvas $blah_canvas $blahCanvas $main_canvas, $tinyCanvas

Checkbutton $blah_cb or $blahCheckbutton $uppercase_cb, 
$lowercaseCheckbutton

Entry $blah_e or $blahEntry $name_e, $addressEntry

Frame $blah_f or $blahFrame $main_f, $left_f, $canvasFrame

Label $blah_l or $blahLabel $name_l, $addressLabel

Listbox $blah_lb or $blahListbox $teams_lb, $teamsListbox

Menu $blah_m or $blahMenu $file_m, $edit_m,  $helpMenu

Radiobutton $blah_rb or $blahRadiobutton $blue_rb, $grey_rb, 
$redRadiobutton

Scale $blah_scale or $blahScale $age_scale, $incomeScale

Scrollbar $blah_scroll (or $blah_sbar) or 
$blahScroll

$x_scroll, $yScroll

Text $blah_t (or $blahText) $file_txt, $commentText

Toplevel $blah_w or $blahWindow $main_w, $fileopenWindow

I admit I don't follow my own rules all the time. Throughout this book, you'll see me use just 
$button in example code. I'll use $button1 and $button2 if there are two in the example. 
Anything larger than just a few lines, I will try (scout's honor?) to use my own convention. I will 
always use a name that indicates what type of widget I'm referring to.

Using print for Diagnostic/Debugging Purposes

Normally, you'll run your Perl/Tk program by typing the program name at the command prompt:



% hello_world

or

C:\>perl hello_world

When you invoke the program this way, any output created by using a print (or printf) is to that 
terminal window. Sometimes, you won't see the information actually printed until you quit the 
program. This is probably because you didn't put a \n on the end of the string to be printed, which 
causes an automatic flushing of output. During your application processing, if you think you aren't 
seeing a print statement when you should be, make sure a \n is on the print statement.

Designing Your Windows (A Short Lecture)

Before you decide what events to handle, it is worthwhile to spend some time sketching 
out a few windows on paper and deciding what should happen (from the user's 
perspective) when you click a button or invoke a menu item.

One of the most important things to keep in mind when you design your application's 
windows is that nothing happens until that event loop starts up. Everything prior to the 
call to MainLoop is just preparation for the event loop.

A GUI often makes the application look much more polished and purposeful than a 
command-line interface does. Also, it is often much easier to manipulate many different 
kinds of user input through a GUI.

Here are some things to consider when you are deciding what the GUI should look like:

• Every widget should have a purpose. It should be intuitive and informative.

• Think about the way a user will use an application and design it accordingly.

• Don't try to cram everything your application is doing into one window.

• Don't always try to separate everything into different windows. Sometimes the 
application is so simple that one window is all you need.

• Colors are great, but there are a lot of color-blind people out there. If you insist on 
using color, allow it to be customized via a file or through the application itself.

• Some widgets do their job better than others do. Use the right widget for the right job.

That's it for the lecture. Now, get ready to learn the ropes.



2—
Geometry Management

To display widgets on the screen, they must be passed to a geometry manager. The 
geometry manager controls the position and size of the widgets in the display window. 
There are several geometry managers available with Perl/Tk: pack, place, and grid.

All three geometry managers are invoked as methods on the widget, but they all have 
their own methodologies and arguments to change where and how the widgets are put on 
the screen:

$widget1->pack(); $widget2->place(); $widget3->grid();

When you organize the widgets in your window, it is often necessary to separate groups 
of widgets to get a certain look and feel. For instance, when you use pack(), it is 
difficult to have widgets stacked both horizontally and vertically without grouping them 
in some fashion. We group widgets by using a frame widget inside a window or by using 
another window (a toplevel widget).

We create our first window by calling MainWindow. The MainWindow is a special 
form of a toplevel widget. For more detailed information on how to create/configure 
frames and toplevel widgets, see Chapter 12, Frames, and Chapter 13, Toplevel Widgets.

Because of the differences between the three geometry managers, it is difficult (not 
entirely impossible, but definitely not recommended) to use more than one geometry 
manager within the same area. In our $mw, I can display many types of widgets, but if I 
start using pack(), I should continue to use pack() on all of the widgets contained 
directly in $mw. I wouldn't want to switch in the middle to using grid(). Because a 
window can contain a frame, which in turn contains other widgets, we use pack() to 
pack the frame inside the main window and then we could use grid() to manage the 
widgets inside the frame. See Figure 2-1.



Figure 2-1.
Frame within a window that uses a different geometry manager

Although the different geometry managers have their own strengths and weaknesses, the 
most commonly used is pack(), so I'll discuss it first and in the most detail. The grid
() geometry manager was under development as I was writing this book. grid has 
been improved greatly with the release of Tk 8.0 and subsequent porting to Perl. The 
place() geometry manager is the most tedious to use because you have to determine 
exact coordinates for every single widget.

Pack

Remember when you were a small child and you had those wooden puzzles to put 
together? They often had cute little pictures of animals on them. Each piece in the puzzle 
had exactly one place where it could go, and there weren't any overlaps allowed between 
pieces.

With the pack geometry manager, our windows are similar to the wooden puzzle 
because widgets cannot overlap or cover each other (partially or completely). See Figure 
2-2. If a button is packed in a certain space on the window, the next button (or any 
widget) will have to move around the already packed button. Luckily, our windows will 
only be dealing with rectangular shapes instead of funny-shaped puzzle pieces.

The order in which you pack your widgets is very important because it directly affects 
what you see on the screen. Each frame or toplevel maintains a list of items that are 
displayed within it. This list has an order to it; if widget A is packed before widget B, 
then widget A will get preference. This will become clear as we go through some 
examples. You will often get a very different look to your window just by packing the 
widgets in a different order.



Figure 2-2.
Overlap error

If you don't care what the window looks like and how the widgets are put in it, you can 
use pack() with no arguments and skip the rest of this chapter. Here it is again:

$widget->pack();

To make your window look nicer and more manageable (and user friendly), there are 
arguments that can be sent to the pack method that will change the way the widgets and 
the window looks. As with anything in Perl/Tk, the arguments are arranged in pairs. So 
the more sophisticated usage would be:

$widget->pack( [ option  => value, ... ] );

Here is the code to create a window that doesn't use any options to pack(). Figure 2-3 
shows the resulting window (I know we haven't covered all the widgets used in this 
example, but hang in there, it's pretty simple).

#!/usr/bin/perl -w
use Tk;

my $mw = MainWindow->new;
$mw->title("Bad Window");
$mw->Label(-
text => "This is an example of a window that looks bad
\nwhen you don't send any options to pack")->pack;
$mw->Checkbutton(-text => "I like it!")->pack;

$mw->Checkbutton(-text => "I hate it!")->pack;
$mw->Checkbutton(-text => "I don't care")->pack;
$mw->Button(-text => "Exit",
            -command => sub { exit })->pack;
MainLoop;



Figure 2-3.
Window with widgets managed by pack

We can alter the preceding code and add some options to the pack() calls that will make our 
window look much nicer:

#!/usr/bin/perl -w
use Tk;
my $mw = MainWindow->new;
$mw->title("Good Window");
$mw->Label(-
text => "This window looks much more organized, and less haphazard
\nbecause we used some options to make it look nice")->pack;
$mw->Button(-text => "Exit",
            -command => sub { exit })->pack(-side => 'bottom',
                                            -expand => 1,
                                            -fill => 'x');
$mw->Checkbutton(-text => "I like it!")->pack(-side => 'left',
                                              -expand => 1);
$mw->Checkbutton(-text => "I hate it!")->pack(-side => 'left',
                                              -expand => 1);
$mw->Checkbutton(-text => "I don't care")->pack(-side => 'left',
                                                -expand => 1);
MainLoop;

Figure 2-4 shows the much more organized window.



Figure 2-4.
Window with widgets managed by pack using some options

Using pack() allows you to control:

• Position in the window relative to the window or frame edges

• Size of widgets, relative to other widgets or absolute

• Spacing between widgets

• Position in the window's or frame's widget list

The options, values, and defaults are listed and discussed in the following section.

Pack Options

This list shows all the options available when you call pack(). The default values are 
shown in bold (which indicates if you don't use that option, you'll get the effects of that 
value for that option).

-side => 'left' | 'right' | 'top' | 'bottom'
Puts the widget against the specified side of the window or frame

-fill => 'none' | 'x' | 'y' | 'both'
Causes the widget to fill the allocation rectangle in the specified direction

-
expand => 1 
| 0
Causes the 
allocation 
rectangle to fill 
the remaining 
space available 
in the window 
or frame

-anchor => 'n' | 'ne' | 'e' | 'se' | 's' | 'sw' | 'w' | 'nw' | 'center'
Anchors the widget inside the allocation rectangle

-after => $otherwidget
Puts $widget after $otherwidget in packing order

-before => $otherwidget
Puts $widget before $otherwidget in packing order



-
in => $otherwindow
Packs $widget inside of 
$otherwindow rather 
than the parent of 
$widget, which is the 
default

-
ipadx => 
amount
Increases 
the size of 
the widget 
horizontally 
by amount 
× 2

-ipady => amount
Increases the size of the widget vertically by amount × 2

-
padx => 
amount
Places 
padding 
on the left 
and right 
of the 
widget

-pady => amount
Places padding on the top and bottom of the widget

Positioning Widgets

Each window (or frame) has four sides to it: top, bottom, left, and right. The packer uses 
these sides as points of reference for widgets. By default, pack() places the widgets 
against the top of the toplevel or frame.

You can control what side a widget is placed against by using the -side option:

-side => 'left' | 'right' | 'top' | 'bottom'

For example, if we would like our button against the left edge of the window, we can 
specify -side => 'left'.



Using our Hello World example as a base, let's look at what happens when we pack our 
button against the different sides. The only line we will change is the ->pack part of 
the Button creation line. We'll also change the "Hello World" string in the $mw-
>title command to easily show the new options to pack.

 

$mw->Button(-text => 'Done',
  -command => sub { exit })
->pack(-side => 'top');

OR

$mw->Button(-text => 'Done',
  -command => sub { exit })
->pack;

$mw->Button(-text => 'Done',
  -command => sub { exit })
->pack(-side => 'bottom');



$mw->Button(-text => 'Done',
  -command => sub { exit })
->pack(-side => 'left');

$mw->Button(-text => 'Done',
  -command => sub { exit })
->pack(-side => 'right');

The windows shown here have been made a bit larger to emphasize the difference that 
using alternative values for -side makes. Normally, the window will be only as large 
as required to show the button. When you are deciding which way to place widgets in a 
window, it is always a good idea to see what happens when you make the window both 
larger and smaller. Make sure the behavior you get is what you want.

So far, pack() seems pretty simple, but what if you want to put more than one button 
in your application? What happens when we simply add more buttons?

$mw->Button(-text => 'Done1', -command => sub { exit })-
>pack;
$mw->Button(-text => 'Done2', -command => sub { exit })-
>pack;
$mw->Button(-text => 'Done3', -command => sub { exit })-
>pack;
$mw->Button(-text => 'Done4', -command => sub { exit })-
>pack;

Since the default -side is top, we would expect them to all be mushed up against the 
top of the window, right? Sort of. The packer allocates space for each widget and then 
manipulates the widget inside that space and the space inside the window.

Figure 2-5 shows what the window with the four Done buttons looks like; the next 
section explains why.



Figure 2-5.
Four buttons packed with default settings

Allocation Rectangles

When given an item to pack, the packer first looks to see which side (top, bottom, right, 
or left) to use. It then sets aside an invisible rectangular area across the length of that 
side for use only by that widget.

In Figure 2-6, the solid-line rectangle represents our empty window (or frame), and the 
dotted-line rectangle is the rectangular area that the packer sets aside for the first button. 
It actually does go all the way across the width or height of the window, but to make it 
easier to see, it's shown a little indented.

Figure 2-6.
Rectangular areas set aside by packer when using -side => 'top' and -side => 'left'

The dimensions for the dotted-line box, which we'll call the allocation rectangle, are 
calculated based on the size of the requesting widget. For both the top and bottom sides, 
the allocation rectangle is as wide as the window and only as tall as the widget to be 
placed in it. For the right and left sides, the allocation rectangle is as tall as the window 
but only as wide as required to fit the widget.



Our examples so far have used buttons in which the text of the button determines the 
width of the button. If we create a button with the text ''Done" on it and one with the text 
"Done, Finished, That's it," the second button is going to be much wider than the first. 
When these two buttons are placed up against either the right or left side of the window, 
the second button would have a wider allocation rectangle than the first. If we placed 
those same two buttons against the top and the bottom, the allocation rectangles would 
be the same height and width because the width is determined by the window, not the 
widget.

After the size of the allocation rectangle is determined, the widget is placed within the 
allocation rectangle according to other options passed and/or the default values of those 
options. I will go over those options and how they can affect the allocation rectangle 
later.

Once the first widget has been placed in the window, the amount of area available for 
subsequent allocation rectangles is smaller because the first allocation rectangle has used 
some of the space (see Figure 2-7).

Figure 2-7.
Second allocation rectangle when default side 'top' is used

When more than one button is placed against different sides in the same window, the 
results will vary depending on the order used.

We'll start by placing one button along the top, one along the bottom, and then buttons 
right and left:

$mw->Button(-text => "TOP", -command => sub { exit })
   ->pack(-side => 'top');

$mw->Button(-text => "BOTTOM", -command => sub { exit })
   ->pack(-side=> 'bottom');

$mw->Button(-text => "RIGHT", -command => sub { exit })
   ->pack(-side => 'right');

$mw->Button(-text => "LEFT", -command => sub { exit })
  ->pack(-side => 'left');



The allocation rectangles for this window would look like the diagram in Figure 2-8.

Figure 2-8.
Allocation rectangles for four buttons

Figure 2-9 shows what the actual window looks like, both normal size and resized so it's 
a bit larger.

Figure 2-9.
Four buttons placed around the sides of the window

Filling the Allocation Rectangle

Normally, the widget is left at the default size, which is usually smaller than the 
allocation rectangle created for it. If the -fill option is used, the widget will resize 
itself to fill the allocation rectangle according to the value given. The possible values are:

-fill => 'none' | 'x' | 'y' | 'both'

Using the value 'x' will resize the widget in the x direction. Likewise, 'y' will cause 
the widget to resize in the y direction. Using -fill => 'both' is a good way to see 
exactly what size and placement was given to the allocation rectangle because 'both' 
resizes the widget in both x and y directions. Using our four-button example again, we'll 
specify -fill => 'both'.



$mw->Button(-text => "TOP", -command => sub { exit })
  ->pack(-side => 'top', -fill => 'both');

$mw->Button(-text => "BOTTOM", -command => sub { exit })
  ->pack(-side => 'bottom', -fill => 'both');

$mw->Button(-text => "RIGHT", -command => sub { exit })
  ->pack(-side => 'right', -fill => 'both');

$mw->Button(-text => "LEFT", -command => sub { exit })
  ->pack(-side => 'left', -fill => 'both');

Figure 2-10 shows the resulting window.

If we switch the button we create first, we get a different result. The window in Figure 2-
11 was created by packing the widgets in this order: left, right, top, bottom.

Figure 2-12 demonstrates yet another order, which really shows that the allocation 
rectangles change size depending on what gets packed first. 

Figure 2-10.
Four buttons packed to each side using -fill => 'both'

Figure 2-11.
Four buttons packed to each side in a different order using -fill => 'both'



Figure 2-12.
Four buttons packed in order of top, right, bottom, and left

A common use of -fill is on widgets with scrollbars: listbox, canvas, and text. 
Usually, the scrollbars are along the edge of the window, and you want the listbox to fill 
the remaining area. See Chapter 6, Scrollbars, and Chapter 7, The Listbox Widget, for 
more information.

Expanding the Allocation Rectangle

The -expand option manipulates the allocation rectangle and not the widget inside it. 
The value associated with -expand is a boolean value.

-expand => 1 | 0

Given a true value, the allocation rectangle will expand into any available space left over 
in the window depending on which side the widget was packed.

Widgets packed with side right or left will expand in the horizontal direction. Widgets 
packed with side top or bottom will expand in the vertical direction. If more than one 
widget is packed with -expand turned on, the extra space in the window is divided 
evenly among all the allocation rectangles that want it.

In Figure 2-9 or 2-10, you saw that there was some space left in the center of the window 
that wasn't occupied by any widget. If we change the code and add -expand => 1 to 
the list of pack options for each button, the result is the window in Figure 2-13.



Figure 2-13.
Four buttons using the -expand => 1 and -fill => 'both' options

Note that Figure 2-13 left the -fill => 'both' option in the code. If we omit the -
fill option, the buttons stay their original size, but the allocation rectangles (which are 
invisible) take over the extra space in the window (see Figure 2-14).

Figure 2-14.
Four buttons using -expand => 1 and -fill => 'none'

In Figure 2-14, the buttons are centered in their allocation rectangles because of the 
default value of the -anchor option, which is 'center'.

Anchoring a Widget in Its Allocation Rectangle

The anchor option manipulates the widget inside the allocation rectangle by anchoring it to the 
place indicated by the value passed in. It uses the points of a compass as a reference.

-
anchor => 'e' | 'w' | 'n' | 's' | 'ne' | 'nw' | 'se' | 'sw' | 'center'

Figure 2-15 shows those locations in an example allocation rectangle.



Figure 2-15.
Allocation rectangle with -anchor points labeled

The default for -anchor is 'center', which keeps the widget in the center of its allocation 
rectangle. Unless the -expand option is set to a true value, this won't seem to change much of 
anything in the window. As seen in Figure 2-16, which shows the result of using the -
expand => 1 option, it is obvious that the widget sticks to that center position when the window 
is resized.

Figure 2-16.
Default behavior of -anchor with -expand set to 1

If all other defaults are used to pack the widget, Figure 2-17 shows what -anchor 
=> 'e' and -anchor => 'w' does.

Remember that the allocation rectangle is created based on which side the widget is packed against, 
so certain combinations will appear to have not had any effect. For example:

$mw->Button(-text => "Done", -command => sub { exit })
  ->pack(-side => 'top', -anchor -> 'n');



Figure 2-17.
Examples of -anchor => 'e' and -anchor => 'w'

This code fragment will leave the widget exactly where it was if the -anchor option 
had not been specified because the allocation rectangle does not change size at all. If the 
-expand option is also specified, then when the window is resized, the widget would 
stick to the north side of the window. If -anchor => 's' had been specified, when 
the window is resized, the widget would stick to the south side of the window.

The -anchor option is more often used to line up several widgets in a row. Figure 2-18 
and Figure 2-19 show two common examples.

Figure 2-18.
Window with three buttons all packed with -side => 'top', -anchor => 'w'

Figure 2-19.
Windows with three buttons all packed with -side => 'left', -anchor => 'n'

Sometimes, when -side and -anchor are used together, the results don't seem to be 
what you would expect at first glance. Always keep in mind that invisible allocation 
rectangle and how it affects what you see on the screen.



Widget Order in the Window

Each window that has widgets packed into it keeps track of those widgets in an ordered 
list. The order of this list is normally determined by the order in which the widgets were 
packed. The last item packed is the last item in the list. Using the -after option, you 
can change the default order by specifying which widget should be placed after your new 
widget. On the opposite end, if you use the -before option, you can put the new 
widget before a previously packed widget:

-after => $otherwidget
-before => $otherwidget

As an example, let's create four buttons ($widget1, $widget2, $widget3, 
$widget4) and only pack three to begin with. The pack command for $widget4 
might then be:

$widget4->pack(-after => $widget1);

Figure 2-20 shows two windows: one before $widget4 is packed and one after 
$widget4 is packed.

Figure 2-20.
On left: the window with three buttons packed in order. On right: the button with Done4 label

was packed using -after => $widget1

If we want to put $widget4 in front of $widget1, we use this command, and see the 
results in Figure 2-21.

$widget4->pack(-before => $widget1);

Figure 2-21.
Button with Done4 label was packed using -before => $done1

Padding the Size of the Widget



The final way to force pack to size the widget is to use the padding options. The first set 
of padding options affects the widget itself by adding to its default size. Different 
amounts can be added in the x and y direction, or they can be

the same. To specify how much padding should occur in the x direction, use the -
ipadx option:

-ipadx => amount

Specify padding for the y direction like this:

-ipady => amount

The amount is a number that is a valid screen distance. I'll discuss the definition of a 
valid screen distance in the next section.

Both the -ipadx and -ipady options change the size of the widget before the 
allocation rectangle is calculated. -ipadx adds the amount specified to both the right 
and left sides of the widget. The overall width of the widget would increase by (2 x 
amount). -ipady adds to the top and bottom of the widget, causing the overall height 
of the widget to increase by (2 x amount). Figure 2-22 shows how the -ipadx and -
ipady options affect a button.

Figure 2-22.
The Done1 button was created with options: -ipadx => 10, -ipady => 10

The other kind of padding is inserted between the edge of the widget and the edge of the 
allocation rectangle and is done with the -padx and -pady options:

-padx => amount
-pady => amount

Using -padx and -pady does not affect the size of the widget, but it does affect the 
size of the allocation rectangle. It acts as a buffer around the widget, protecting it from 
having to touch other widgets. Figure 2-23 shows the effects of using -padx and -
pady.



Figure 2-23.
The Done1 button was created with options -padx => 10, -pady => 10

A good way to remember the difference between -ipadx/y and -padx/y is that the 
"i" stands for "inside the widget" or "internal padding."

Valid screen distances

Many times you'll see options that require values specified in screen units (or what is 
called a valid screen distance). The options -ipadx and -ipady are examples of this 
type of option. Always check to see what value the option actually requires.

A screen unit is a number followed by a designation for the unit to use. If there is no 
designation, the units are in pixels. Table 2-1 shows all the possibilities.

Table 2-1. Valid screen units

Designator Meaning Examples

(none) Pixels (default) 20, 30, "20", "40"

c Centimeters '3c', '4c', "3"

i Inches '2i', "3i"

m Millimeters $cs'4m', "4m"

p Printer points (1/72 inch) "72p", '40p'

To use these designators, it is necessary to use quotes (either single or double) around 
the value. Here are some examples:

$button->pack(-ipdax => 20);      # 20 pixels
$button->pack(-ipadx => '20');    # Also 20 pixels
$button->pack(-ipadx => "1i");    # 1 inch
$button->pack(-ipdax => '1m');    # 1 millimeter
$button->pack(-ipadx => '1);      # 1 pixel
$button->pack(-ipdax => '20p');   # 20 printer points



Remember that a "p" designator does not stand for pixels, but printer points. I 
recommend always using pixels as your unit of measure. Different screens display 
different resolutions; one screen might display an actual inch and another might display 
something else.

Displaying in a Parent Other Than Your Own

By default, when a widget is packed, it is packed inside the region that created it. 
Sometimes it is necessary to display a widget inside a different region. Use the -in 
option to do so:

-in => $otherwindow

It puts the new widget at the end of the packing order for the $otherwindow and 
displays it accordingly. All other options specified in the pack() call still apply.

Methods Associated with Pack

There are a few methods that are used in conjunction with the pack geometry manager. 
They allow the programmer to get information about either the widget that has been 
packed or the parent widget in which other widgets are packed.

Unpacking a widget

To unpack a widget from a window or frame, use the packForget method:

$widget->packForget ();

packForget makes it look like the widget disappears. The widget is not destroyed, but 
it is no longer managed by pack. The widget is removed from the packing order, so if it 
were repacked later, it would appear at the end of the packing order.

Retrieving pack information

To return a list containing all the pack-configuration information about a widget, use 
packInfo:

@list = $widget->packInfo ();

The format of the list is in option/value pairs. The first pair in the list is -in and the 
current window that contains $widget (usually also the parent). This is an example of 
the information returned from packInfo:

-in MainWindow=HASH (0x818dcf4) -anchor n -expand 0 -
fill none -ipadx 0 -ipady
0 -padx 10 -pady 10 -side left



From this, we can tell that we packed our $widget into the main window rather than a 
frame. Since the list has a "paired" quality to it, we could easily store the result from 
packInfo in a hash and reference the different option values by using a key to the hash:

%packinfo = $widget->packInfo;
print "Side used: ", $packinfo{-side}, "\n";

Disabling and enabling automatic resizing

When you put a widget inside a window, the window (or frame) will resize itself to 
accommodate the widget. If you are dynamically placing widgets inside your window 
while the program is running, the window will seem to bounce from size to size. You 
can turn off this behavior by using packPropagate on the frame or toplevel widget:

$widget->packPropagate (0);

If set to 0 or 'off', packPropagate changes the behavior of the widget so that it 
doesn't resize to accommodate items packed inside of it. When a false value is sent to 
packPropagate before widgets are placed inside it, this automatic resizing doesn't 
happen, so you can't see any of the widgets placed inside the parent until it is manually 
resized. If you call packPropogate after the widgets have been placed inside it, the 
widget will ignore any size changes from its child widgets.

Listing widgets

You can determine the widgets your frame or toplevel holds with the packSlaves 
method:

@list = $parentwidget->packSlaves ();

packSlaves returns an ordered list of all the widgets that were packed into the 
$parentwidget. An empty string (or empty list) is returned if no widgets were 
packed into $parentwidget.

The list returned from packSlaves looks like this:

Tk::Button=HASH(0x81b2970) Tk::Button=HASH(0x8116ccc)
Tk::Button=HASH(0x81bcdd4)

Each item is a reference to a packed widget and can be used to configure it. For example, 
you can increase the size of each widget by 20 in both the x and y directions by looping 
through it and ''packing" it with new information. Using our good window example in 
Figure 2-4, we can add a button that will contain a subroutine that uses packSlaves:



$mw->Button(-text => "Enlarge",
            -command => \&repack_kids)->pack(-
side => 'bottom',
                                             -
anchor => 'center');
sub repack_kids {
  my @kids = $mw->packSlaves;
  foreach (@kids) {
    $_->pack(-ipadx => 20, -ipady => 20);
  }
}

Figure 2-24 shows the resulting window.

Figure 2-24.
Window before pressing Enlarge button

Let's look at what happens when we press the Enlarge button. As shown in Figure 2-25, 
all the widgets are now repacked with additional parameters of -ipadx => 20, -
ipady => 20. These new options are in addition to any other parameters the widgets 
were packed with before. If an option is repeated, the last one specified overrides the 
previous ones.



Figure 2-25.
Window after pressing Enlarge button

The window is suddenly huge! Subsequent presses of the Enlarge button will do nothing 
more to the window because all the widgets already have an -ipadx and -ipady of 
20. If we wanted to always add 20 to the values of -ipadx and -ipady, we would 
have to request the current values and add 20 to them. Here's the code for that:

sub repack_kids {
  my @kids = $mw->packSlaves;
  foreach (@kids) {
    %packinfo = $_->packInfo ();
    $_->pack(-ipadx => 20 + $packinfo{"-ipadx"},
             -ipady => 20 + $packinfo{"-ipady"})
  }
}

We use packInfo to get the current configuration and add 20 to that value.

Grid

The grid geometry manager divides the window into a grid composed of columns and 
rows starting at 0,0 in the upper left-hand corner. Figure 2-26 shows a sample grid.

Rather than using the sides of a window as reference points, grid() divides the screen 
into columns and rows. It looks a lot like a spreadsheet doesn't it? Each widget is 
assigned a grid cell using the options available to grid().



Figure 2-26.
Diagram showing window divided into grid

The grid() method takes a list of widgets instead of operating on only one widget at a 
time.* Here is the generic usage:

$widget1->grid
( [ $widget2, ... , ] [ option => value, ... ] );

A specific example:

$widget1->grid($widget2, $widget3);

Instead of using three separate calls, you can use one grid() call to display all three 
widgets. You can also invoke grid() on each widget independently just as you can 
pack(). Each call to grid() will create another row in the window. So in our 
example, $widget1, $widget2, and $widget3 will be placed in the first row. 
Another call to grid would create a second row. This is what happens when you do not 
specify any additional options to the grid() call.

For greater control, you can specify explicit -row and -column options for each 
widget in the window. I will cover these options later.

These assumptions are made when additional options are not specified:

• The first widget in the row (for example, $widget1 in the preceding example) 
invokes the grid() command.

• All remaining widgets for that row will be specified as arguments to the grid() 
command.

• Each additional call to grid() will add another row to the display.

• Special characters can be used to change the -columnspan and -rowspan of the 
widget without using -columnspan or -rowspan explicitly.

A few examples will help demonstrate. Each call to grid() will create another row, so 
we know we have two rows in the following example:



# Create two rows, each with four widgets
$widget1->grid($widget2, $widget3, $widget4);
$widget5->grid($widget6, $widget7, $widget8);

* Several people have told me that pack can also take a list of widgets. I didn't cover 
this because it is not how pack is normally used.

In this example, we have created four rows and there is only one widget in each row:

# Create four rows, each with one widget
$widget1->grid();
$widget2->grid();
$widget3->grid();
$widget4->grid();

We can also create widgets as we go:

$mw->Button(-text => 'Button1', -command => \&call1)->grid(
            $mw->Button(-text => 'Button2', -
command => \&call2),
            $mw->Button(-text => 'Button3', -
command => \&call3),
            $mw->Button(-text => 'Button4', -
command => \&call4));

Pay careful attention because the second, third, and fourth calls to Button are inside 
the call to grid(). All four of the buttons will be placed in the first row. If we executed 
the same exact command again, the new widgets would be placed in the next row.

Special Characters

There are several special characters that can be used to alter the way the widgets are 
gridded in the window. Each special character serves as a type of placeholder that 
indicates what to do with that position in the grid:

"-" (a minus sign)
Tells grid that the widget specified right before this one in the list should span this 
column as well. To span more than one column, place a "-" in each widget position to 
span. A "-" may not follow a "^" or an "x".

"x"
Effectively leaves a blank space where a widget would otherwise be placed.



"^"
A widget in row x will span row x and x + 1 when this character is placed in the grid 
command for row x + 1 in that row/column position. The number of "^" characters 
must match the number of columns the widget spans in row x. Similar to "-", but goes 
down, not across.*

The following sections include some examples that illustrate what the special characters 
do.

* When I used the special character "^" with Tk4.002, I got a nasty core dump. This 
is fixed in Tk8.0, so if you get this error also, check which version you have.

Spanning columns

The following bit of code creates three rows of buttons. The first two rows are normal, 
and in the third, the second button spans three columns. Each "-" character adds one to 
the number of columns the button uses, and the default is 1. So the original column and 
two hyphens ("-", "-") indicate that there are three columns to span. The -sticky 
option is necessary for the widgets to stick to the sides of the cells it spans. If the -
sticky option had been left out, the button would be centered across the three cells it 
spans.

$mw->Button(-text => "Button1", -command => sub { exit })-
>grid
  ($mw->Button(-text => "Button2", -command => sub { exit }),
   $mw->Button(-text => "Button3", -command => sub { exit }),
   $mw->Button(-text => "Button4", -
command => sub { exit }));

$mw->Button(-text => "Button5", -command => sub { exit })-
>grid
  ($mw->Button(-text => "Button6", -command => sub { exit }),
   $mw->Button(-text => "Button7", -command => sub { exit }),
   $mw->Button(-text => "Button8", -
command => sub { exit }));

$mw->Button(-text => "Button9", -command => sub { exit })-
>grid
  ($mw->Button(-text => "Button10", -
command => sub { exit }),
   "-", "-", -sticky => "nsew");

The resulting window is shown in Figure 2-27.



Figure 2-27.
Example of column spanning using the "-" character

Empty cells

The "x" character translates to "skip this space" and leaves a hole in the grid. I removed 
the line that created Button6 and replaced it with an "x" in the following code. The cell 
for it is still there, it just doesn't contain a widget.

$mw->Button(-text => "Button1", -command => sub { exit })-
>grid
  ($mw->Button(-text => "Button2", -command => sub { exit }),
   $mw->Button(-text => "Button3", -command => sub { exit }),
   $mw->Button(-text => "Button4", -
command => sub { exit }));

$mw->Button(-text => "Button5", -command => sub { exit })-
>grid
  ("x",
   $mw->Button(-text => "Button7", -command => sub { exit }),
   $mw->Button(-text => "Button8", -
command => sub { exit }));

The resulting window is shown in Figure 2-28.

Figure 2-28.
Leaving an empty cell between widgets

Grid Options

The rest of the options are similar to those used with pack():



"-"
Special character used in grid widget list. Increases columnspan of widget prior to it 
in widget list.

"x"
Special character used in grid widget list. Leaves a blank space in the grid.

"^"
Special character used in grid widget list. Increases rowspan of the widget in the grid 
directly above it.

-column => n
Sets the column to place widget in (n >= 0).

-row => m
Sets the row to place widget in (m >= 0).

-columnspan => n
Sets the number of columns for the widget to span beginning with -column.

-rowspan => m
Sets the number of rows for the widget to span beginning with -row.

-sticky => string
String contains characters n, s, e, or w. Widget will stick to those sides.

-in => $otherwindow
Indicates that widget is gridded inside $otherwindow instead of parent of $widget.

-ipadx => amount
$widget becomes larger in x direction by 2 × amount.

-ipady => amount
$widget becomes larger in y direction by 2 × amount.

-padx => amount
Buffer space equal to amount is placed to left and right of widget.

-pady => amount
Buffer space equal to amount is placed on top and bottom of widget.

Explicitly Specifying Rows and Columns



Rather than letting grid() make assumptions, it is sometimes necessary to explicitly 
state the row and column in which the widget should be placed. This is done by using 
the -row and -column options. Each option takes a nonnegative integer as an 
argument:

-column => n, -row => m

When you use -row and -column, it is not necessary to build or grid() the widgets 
in any sort of logical order (except for your own sanity when you are debugging). You 
could place your first widget in column 10 and row 5 if you like. All of the other cells 
with lower row and column values will remain empty.

Explicitly Spanning Rows and Columns

It is also possible to explicitly indicate that a widget (or widgets) should span some 
columns or rows. The option to use to span columns is -columnspan. For spanning 
rows, the option is -rowspan. Both options take an integer that is 1 or greater. The 
value indicates how many rows or columns should be spanned, including the row or 
column in which the widget is placed.

For this example, I have used the easy way to place widgets in columns and rows by not 
explicitly specifying the -row and -column options. Note that the second grid 
command applies to two button widgets, so the single -columnspan option applies to 
both buttons created there.

$mw->Button(-text => "Button1", -command => sub { exit })-
>grid
  ($mw->Button(-text => "Button2", -command => sub { exit }),
   $mw->Button(-text => "Button3", -command => sub { exit }),
   $mw->Button(-text => "Button4", -command => sub { exit }),
   -sticky => "nsew");

# Button5 will span Columns 0-1 and Button6 will span 2-3
$mw->Button(-text => "Button5", -command => sub { exit })-
>grid
  ($mw->Button(-text => "Button6", -command => sub { exit }),
   -sticky => "nsew", -columnspan => 2);

The resulting window is shown in Figure 2-29.



Figure 2-29.
-columnspan example

This window could also have been created using the "-" special character to indicate 
column spanning, like this:

$mw->Button(-text => "Button1", -command => sub { exit })-
>grid
  ($mw->Button(-text => "Button2", -command => sub { exit }),
   $mw->Button(-text => "Button3", -command => sub { exit }),
   $mw->Button(-text => "Button4", -command => sub { exit }),
   -sticky => "nsew");

# Button5 will span Columns 0-1 and Button6 will span 2-3
$mw->Button(-text => "Button5", -command => sub { exit })-
>grid
  ("-", $mw->Button(-text => "Button6", -
command => sub { exit }), "-"
   -sticky => "nsew");

This example illustrates how to explicitly use the -row and -column options in 
addition to the -rowspan option:

$mw->Button(-text => "Button1", -command => sub { exit })->
  grid(-row => 0, -column => 0, -rowspan => 2, -
sticky => 'nsew');
$mw->Button(-text => "Button2", -command => sub { exit })->
  grid(-row => 0, -column => 1);
$mw->Button(-text => "Button3", -command => sub { exit })->
  grid(-row => 0, -column => 2);
$mw->Button(-text => "Button4", -command => sub { exit })->

  grid(-row => 0, -column => 3);
$mw->Button(-text => "Button5", -command => sub { exit })->
  grid(-row => 1, -column => 1);
$mw->Button(-text => "Button6", -command => sub { exit })->
  grid(-row => 1, -column => 2);
$mw->Button(-text => "Button7", -command => sub { exit })->
  grid(-row => 1, -column => 3);

See Figure 2-30 for the resulting window.



Figure 2-30.
Explicit -rowspan example

Forcing a Widget to Fill the Cell

When you use the pack() command, it is necessary to indicate both -fill and -
expand options to get the widget to resize inside its allocation rectangle. The grid() 
command doesn't have an allocation rectangle to fill, but it does have the cell within the 
grid. Using the -sticky option with grid() is similar to using -fill and -
expand with pack().

The value associated with -sticky is a string containing the compass points to which 
the widget should "stick." If the widget should always "stick" to the top of the cell, you 
would use -sticky => "n". To force the widget to fill the cell completely, use -
sticky => "nsew". To make the widget as tall as the cell but only as wide as it 
needs to be, use -sticky => "ns". The string value can contain commas and 
whitespace, but they will be ignored. These two statements are equivalent:

-sticky => "nsew"
-sticky => "n, s, e, w" # Same thing

If you use -sticky with your widgets and then resize the window, you'll notice that 
the widgets don't resize as you think they should. They don't because resizing of the cells 
and the widgets in them is taken care of with the gridColumnconfigure and 
gridRowconfigure methods, which are discussed later in this chapter.

Padding the Widget

grid() also accepts these four options: -ipadx, -ipady, -padx, -pady. They 
work exactly the same as they do in pack(), but instead of affecting the size of the 
allocation rectangle, they affect the size of the cell in which the widget is placed.

In this example, the -ipady and -ipadx options are applied to the top row of buttons 
and not the bottom row. Notice in Figure 2-31 how Buttons 5 through 8 are also wider 
than they really need to be. This is because we used the -sticky => "nsew" option.



$mw->Button(-text => "Button1", -command => sub { exit })-
>grid
  ($mw->Button(-text => "Button2", -command => sub { exit }),
   $mw->Button(-text => "Button3", -command => sub { exit }),
   $mw->Button(-text => "Button4", -command => sub { exit }),
   -sticky => "nsew", -ipadx => 10, -ipady => 10);

$mw->Button(-text => "Button5", -command => sub { exit })-
>grid
  ($mw->Button(-text => "Button6", -command => sub { exit }),
   $mw->Button(-text => "Button7", -command => sub { exit }),
   $mw->Button(-text => "Button8", -command => sub { exit }),
   -sticky => "nsew");

Figure 2-31.
grid -ipadx and -ipady example

In this example, the -pady and -padx options are applied to the top row of buttons 
and not the bottom row. Figure 2-32 shows the results.

$mw->Button(-text => "Button1", -command => sub { exit })-
>grid
  ($mw->Button(-text => "Button2", -command => sub {exit }),
   $mw->Button(-text => "Button3", -command => sub { exit }),
   $mw->Button(-text => "Button4", -command => sub { exit }),
   -sticky => "nsew", -padx => 10, -pady => 10);

$mw->Button(-text => "Button5", -command => sub { exit })-
>grid
  ($mw->Button(-text => "Button6", -command => sub { exit }),
   $mw->Button(-text => "Button7", -command => sub { exit }),
   $mw->Button(-text => "Button8", -command => sub { exit }),
   -sticky => "nsew");



Figure 2-32.
grid -padx and -pady example

Specifying a Different Parent

The -in option works the same way it does in pack(). The $widget will be placed 
in $otherwindow and not in the default parent of $widget. Here is the usage:

-in => $otherwindow

Configuring Columns and Rows

As with any of the geometry managers, grid has a few methods that are associated with 
it. Each method is invoked via a widget that has been placed on the screen by using 
grid(). Sometimes it is necessary to change the options of the group of cells that 
makes up your grid.

You can control resizing and the minimum size of a cell with the 
gridColumnconfigure and gridRowconfigure methods. Each takes a column 
or a row number as its first argument and then takes some optional arguments that will 
change the configuration of that column or row.

Both gridColumnconfigure and gridRowconfigure work very similar to the 
configure method used with widgets. Unlike the configure method used with 
widgets, however, the options you can specify with gridColumnconfigure and 
gridRowconfigure cannot be used with the grid() command. The options you 
can use with gridColumnconfigure and gridRowconfigure are -weight, -
minsize, and -pad.

If you send only a row or column number, an array is returned with the current options 
and their values for that method:

@column_configs = $mw->gridColumnconfigure(0);
@row_configs = $mw->gridRowconfigure(0);

In this example, we are getting the options and their values for the first column and the 
first row. The results of using the default values would look like this:

-minsize 0 -pad 0 -weight 0
-minsize 0 -pad 0 -weight 0

You can get the value of only one of the options by sending that option as the second 
argument:

print $mw->gridColumnconfigure(0, -weight), "\n";
print $mw->gridRowconfigure(0, -weight), "\n";

The results would be:



0
0

To change the value of the options, use the option and then the value you want 
associated with it immediately after the option; for example:

$mw->gridColumnconfigure(0, -weight => 1);
$mw->gridRowconfigure(0, -weight => 1);

You can also specify multiple options in one call:

$mw->gridColumnconfigure(0, -weight => 1, -pad => 10);
$mw->gridRowconfigure(0, -weight => 1, -pad => 10);

Now that we know how to call gridColumnconfigure and 
gridRowconfigure, we need to know what the three different options do.

Weight

The -weight option sets how much space is to be allocated to that column or row 
when the window is divided into cells. Remember to use -sticky => "nsew" in

your grid() command if you want the widget to resize when the cell does. The default 
-weight is 0, which causes the column width or row height to be dictated by the 
largest widget in the column. Each -weight value has a relationship to the other -
weights in the rows or columns.

If a column or row has a -weight of 2, it is twice as big as a column or row that has a -
weight of 1. Columns or rows of -weight 0 don't get resized at all. If you want all 
your widgets to resize in proportion to the size of the window, add this to your code 
before you call MainLoop:

($columns, $rows) = $mw->gridSize();
for ($i = 0; $i < $columns; $i++) {
  $mw->gridColumnconfigure($i, -weight => 1);
}
for ($i = 0; $i < $rows; $i++) {
  $mw->gridRowconfigure($i, -weight => 1);
}

This code will assign the -weight of 1 to every single row and column in the grid, no 
matter what size the grid is. Of course, this method only works if you want to assign the 
same size to each row and each column, but you get the idea.

Here is an example of how the -weight option works (Figure 2-33 shows the result):



$mw->Button(-text => "Button1", -command => sub { exit })-
>grid
  ($mw->Button(-text => "Button2", -command => sub { exit }),
   $mw->Button(-text => "Button3", -command => sub { exit }),
   $mw->Button(-text => "Button4", -command => sub { exit }),
   -sticky => "nsew");

$mw->Button(-text => "Button5", -command => sub { exit })-
>grid
  ("x",
   $mw->Button(-text => "Button7", -command => sub { exit }),
   $mw->Button(-text => "Button8", -command => sub { exit }),
   -sticky => "nsew");
$mw->gridColumnconfigure(1, -weight => 1);
$mw->gridRowconfigure(1, -weight => 1);

By giving row 1 and column 1 a weight of 1 (whereas all other rows and columns have 0 
weight), they take over any extra available space when the size of the window is 
increased. Notice that columns 0, 2, and 3 are only as wide as is necessary to draw the 
buttons and their text, but column 1 has filled in the extra space. The same effect 
happens for row 0 with a weight of 0 and row 1 with a new weight of 1. (The window 
has been resized larger to demonstrate the effects of -weight.)

Figure 2-33.
gridRowconfigure and gridColumnconfigure example

Minimum cell size

The option -minsize sets the smallest width for the column or the smallest height for 
each row. The -minsize option takes a valid screen distance as a value. In this 
example, the minimum size of the cells in row 0 and column 0 is set to 10 pixels:

$mw->gridColumnconfigure(0, -minsize => 10);
$mw->gridRowconfigure(0, -minsize => 10);

If the column or row was normally less than 10 pixels wide, then it would be forced to 
be at least that large.

Padding



You can add padding around the widget and to the widget by using the -padx/y and -
ipadx/y options. You can also add a similar type of padding by using the -pad option 
with the gridColumnconfigure and gridRowconfigure methods. The padding 
is added around the widget, not to the widget itself. When you call 
gridColumnconfigure, the -pad option will add padding to the left and right of 
the widget. Calling gridRowconfigure with -pad will add padding to the top and 
bottom of the widget. Here are two examples:

$mw->gridColumnconfigure(0, -pad => 10);
$mw->gridRowconfigure(0, -pad => 10);

Bounding box

To find out how large a cell is, you can use the gridBbox method:

($xoffset, $yoffset, $width, $height) = $master->gridBbox
(0, 2);

This example gets the bounding box for column 0 and row 2. All the values returned are 
in pixels. The bounding box will change as you resize the window. The four values 
returned represent the x offset, the y offset, the cell width, and the cell height (offsets are 
relative to the window or frame where the widget is gridded).

Removing a Widget

Like packForget, gridForget causes the widget(s) to be removed from view on 
the screen. This may or may not cause the window to resize itself; it depends on the size 
of $widget and where it was on the window. Here are some examples:

$mw->gridForget();                   # Nothing happens
$widget->gridForget();               # $widget goes away
$widget->gridForget
($widget1);       # $widget and $widget1 go away
$widget->gridForget($w1, $w3);       # $widget, $w1, $w3 go away

The widgets are undrawn from the screen, but the cells they occupied remain.

Getting Information

The gridInfo method returns information about the $widget in a list format. Just as 
with packInfo, the first two elements indicate where the widget was placed:

@list = $widget->gridInfo();

Here are some sample results from gridInfo:



-in Tk::Frame=HASH(0x81abc44) -column 0 -row 0 -
columnspan 1 -rowspan 2
-ipadx 0 -ipady 0 -padx 0 -pady 0  -sticky nesw

Widget Location

The gridLocation method returns the column and row of the widget nearest the 
given (x, y) coordinates:

($column, $row) = $master->gridLocation($x, $y);

Both $x and $y are in screen units relative to the master window (in our examples, 
$mw). For locations above or to the left of the grid, -1 is returned.

When given the arguments (0, 0), our application returned this:

0 0

which indicates the cell at column 0 and row 0.

Propagation

There is a gridPropagate method that is similar to packPropagate:

$master->gridPropagate( 0 );

When given a false value, gridPropagate turns off geometry propagation, meaning 
size information is not sent upward to the parent of $master. By default, propagation 
is turned on. If gridPropagate is not given an argument, the current value is 
returned.

How Many Columns and Rows?

To find out how large the grid has become after placing numerous widgets in it, you can 
use gridSize to get back the number of columns and the number of rows:

($columns, $rows) = $master->gridSize();

The list returned contains the number of columns and then the number of rows. In many 
of the earlier examples, we had a grid size that was four columns by two rows.

($c, $r) = $f->gridSize();    #$c = 4, $r = 2

It is not necessary for a widget to be placed in a column/row for it to be considered a 
valid column/row. If you place a widget in column 4 and row 5 using -row=>5, -
column=>4 and the only other widget is in row 0 and column 0, then gridSize will 
return 5 and 6.

Grid Slaves



There are two ways to find out which widgets have been put in a window or frame. Use 
gridSlaves without any arguments to get the full list or specify a row and column. 
Here are examples of both:

@slaves = $mw->gridSlaves();
print "@slaves\n";

The preceding code would have printed this:

Tk::Button=HASH(0×81b6fb8) Tk::Button=HASH(0×81ba454)
Tk::Button=HASH(0×81ba4cc) Tk::Button=HASH(0×81ba538)
Tk::Button=HASH(0×81b6fa0) Tk::Button=HASH(0×81ba5e0)
Tk::Button=HASH(0×81ba6dc) Tk::Button=HASH(0×81ba748)

We could have specified the widget in column 0, row 0:

$widget = $mw->gridSlaves( -row => 0, -column => 0 );
print "$widget\n";
# Would print this: Tk::Button=HASH(0×81b6fb8)

If you specify only the -row option, you'll get a list containing only the widgets in that 
row. The same goes for only specifying a -column; your list will contain only the 
widgets in that column.

Place

The place() geometry manager is different than grid() or pack(). Rather than 
referencing against a cell location or a window's side, most of the time you'll be

using a relative form of x and y coordinates. You can also use place() to overlap 
portions of widgets, which isn't allowed in either grid() or pack().

Invoking place() is similar to calling the other geometry managers:

$widget->place( [ option => value, ... ] );

The options specified when you call place() affect how the widgets are put on the 
screen.

Place Options

-anchor => 'n' | 'ne' | 'e' | 'se' | 's' | 'sw' | 'w' | 'nw' | 'center'
Sets the position in the widget that will be placed at the specified coordinates.

-bordermode => 'inside' | 'outside' | 'ignore'
Determines whether or not the border portion of the widget is included in the coordinate 
system.



-height => amount
Sets the absolute height of the widget.

-in => $window
Indicates that the child widget will be packed inside $window instead of in the parent 
that created it. Any relative coordinates or sizes will still refer to the parent.

-relheight => ratio
Indicates that the height of the widget relates to the parent widget's height by ratio.

-relwidth => ratio
Indicates that the width of the widget relates to the parent widget's width by ratio.

-relx => xratio
Indicates that the widget will be placed relative to its parent by xratio.

-rely => yratio
Indicates that the widget will be placed relative to its parent by yratio.

-width => amount
Indicates that the width of the widget will be amount.

-x => x
Indicates that the widget will be placed at x. x is any valid screen distance.

-y => y
Indicates that the widget will be placed at y. y is any valid screen distance.

Absolute Coordinates

The parent window (or frame) has a standard coordinate system where 0,0 is in the 
upper-left corner. The x values increase to the right, and the y values increase as you go 
down. See Figure 2-34.

Figure 2-34.
Coordinate system of parent window when absolute coordinates are used



To use absolute coordinates to specify where to place the widget, we would use options -
x and -y:

-x => x, -y => 

Valid values for x and y are valid screen distances (for example, 5, which is in pixels). 
The widget will have its anchor position (controlled by -anchor) placed at the x and y 
coordinates. The default anchor is "nw"; the upper-left corner of the widget.

Another major difference between place() and the other geometry managers is that at 
least two arguments are required when place() is invoked. There are no default values 
for the -x and -y options. You will get an error if you try to invoke place() with no 
arguments (for example, $widget->place() ).

The simplest example of using -x and -y is to place a widget at 0,0:

$mw->Button(-text => "Exit",
            -command => sub { exit })->place(-x => 0, -
y => 0);

As you would expect, the widget ends up in the upper-left corner of the window as 
shown in Figure 2-35. No matter what size the window, our widget will remain 
positioned at (0,0). Even when the window is resized as small as possible, the widget 
will not move.

Here is an example of using -x and -y to create some overlapping widgets:

$mw->Button(-text => "Exit",
            -command => sub { exit })->place(-x => 10, -
y => 10);
$mw->Button(-text => "Exit"
            -command => sub { exit })->place(-x => 20, -
y => 20);

Figure 2-36 shows the resulting window.

Figure 2-35.
Button placed using -x => 0, -y => 0



Figure 2-36.
Overlapping buttons with place0

Relative Coordinates

In place(), there is an additional coordinate system defined for the parent widget that 
allows relative placement within it. This coordinate system is shown in Figure 2-37.

Figure 2-37.
The relative coordinate system

The upper-left corner has the coordinates (0.0,0.0). The lower-right corner's coordinates 
are (1.0, 1.0). The middle of the window would be (0.5, 0.5). The coordinates are 
specified in floating point form to allow place() to handle any size window. This 
allows the widget to remain at that position (in the center, for instance) no matter how 
the window is resized.



It is valid to specify coordinates both smaller than 0.0 and larger than 1.0. However, your 
widget most likely won't be completely visible in the window when you use out-of-range 
coordinates.

This code snippet produces the button shown in Figure 2-38:

$b = $mw->Button(-text => "Exit", -command => sub { exit });
$b->place(-relx => 0.5, -rely => 0.5);

Figure 2-38.
Using place with -relx => 0.5, -rely => 0.5

Although the button in Figure 2-38 is placed in the middle of the screen, it looks off-
center because the upper-left corner of the widget was placed in the middle of the 
window instead of the center. You can change this with the -anchor option, which I'll 
discuss shortly. If we resize this window, the button still stays in the middle of the 
window (see Figure 2-39).

Figure 2-39.
-relx => 0.5, -rely => 0.5 window resized larger

This next example creates two buttons, both placed in the window with relative 
coordinates:



$mw->Button(-text => "Exit",
            -command => sub { exit })->place(-relx => 0.2, -
rely => 0.2);

$mw->Button(-text => "Exit",
  
          -command => sub { exit })->place(-relx => 0.5,  
                                             -rely => 0.5);

No matter what size the window is or where other widgets are in the screen, the two 
buttons will stay in those relative locations (see Figure 2-40).

Figure 2-40.
Two buttons placed relative to the parent window

The left window in Figure 2-40 is the default size of the window when it was created. 
The right window is what it looks like after the window was resized to make it much 
smaller. Notice that the second button placed in the window remains on top. It does so 
because we are still maintaining the ordered list of widgets in the window; the second 
Exit button (placed at 0.5,0.5) is drawn last, so it's drawn above the other button.

You can also combine the absolute and relative coordinate systems simply by using both 
in the argument list. The relative coordinate system is considered first, and then the x or 
y value is added to that position. The options -relx => 0.5, -x => -10 means to 
place the widget 10 pixels to the left of the middle of the window.

Anchoring the Widget



Think of the child widget as a piece of paper that you want to put on your bulletin board 
(the board is the parent widget). You have a tack that you are going to use to keep the 
paper up on the board. You can put the tack right through the center of the paper, in the 
upper-left corner ("nw"), or in the lower-right corner ("se"). The point where the tack 
is going to stick the paper to the board is the -anchor point. The -anchor point on 
the widget is "tacked" to the coordinates given by -x, -y or -relx, -rely. The 
default -anchor is "nw". Figure 2-37 shows these -anchor points within the child 
widget.

It is important to know where the -anchor is because it will affect how we see the 
widget within the parent.

Figure 2-41.
Different -anchor values affect where the widget is placed in the window

In Figure 2-41, almost identical place commands were used to put the Exit button in the 
window, but the -anchor value was changed. The left window's button was created 
with this command:

$mw->Button(-text => "Exit",
            -command => sub { exit })->place(-
relx => 0.5,                                              -
rely => 0.5);

The window on the right in Figure 2-41 used this command:

$mw->Button(-text => "Exit",
            -command => sub { exit })->place(-relx => 0.5,
                                             -
anchor => "center",
                                             -rely => 0.5);

As with pack() and grid(), the possible values for -anchor are: 'n', 'e', 's', 
'w', 'center', 'nw', 'sw', 'ne', and 'se'. However, the value now applies to 
the child widget instead of the position within the allocation rectangle.

Width and Height



When you use place(), you can specify the width and height of the widget in one of 
three ways:

• Allow the widget to determine its own size.

• Specify width and/or height in absolute measurements.

• Specify width and/or height in relative measurements (relative to the parent widget).

To let the widgets determine their own size, no options are specified at all. The other 
ways involve the options -width, -height and -relwidth, -relheight 
respectively.

The -width and -height options allow you to specify the exact width or height of 
the widget in a screen distance:

-width => amount, -height => amount

Each amount is a valid screen distance (discussed earlier in this chapter under pack). 
The widget will be these sizes even if it cuts off edges of the items displayed in it. Our 
button looks quite silly on the screen when we use a -width of 40 pixels (see Figure 2-
42).

$mw->Button(-
text => "This Button Will Cause the Program to Exit",
            -command => sub { exit })->place(-x => 0, -
y => 0,
                                             -width => 40);

Figure 2-42.
Using-width with placeO

The other two options, -relwidth and -relheight, determine the widget in 
relation to the parent widget.

-relwidth => ratio, -relheight => ratio

The ratio is a floating point number (similar to that specified by -relx or -rely).

A value of 1.0 will make the widget as wide (or as tall) as the parent widget. A value of 
0.5 will make the widget half as wide as the parent (see Figure 2-43).



Figure 2-43.
Example of the same window resized with -relwidth => 0.5, -relheight => 0.5

The options -width and -relwidth are additive when used together, and so are -
height and -relheight.

Border Options

Normally, the border of the widget is used as the edge of the possible space in the 
window, which means any widgets placed with either the absolute or relative

coordinate system will be placed inside the border. This can be changed by using the -
bordermode option:

-bordermode => 'inside' | 'outside' | 'ignore'

Using 'outside' will allow the coordinate system to use the space occupied by the border as 
well. A value of 'ignore' will have the coordinate system use the space designated as the official 
X area. Overall, this option is pretty useless, as you can see from the difference each makes on our 
example in Figure 2-44.

Figure 2-44.
-bordermode examples

If you look very closely (get out your magnifying glass), you can see that the 'outside' version 
is two pixels higher and two pixels to the left than the 'inside' version. This is because on my 
window manager (fvwm), my border is defined as 2 pixels.

Methods Associated with Place

The methods for place() are simple and don't allow much manipulation of the widgets.



Removing the widget

As with pack and grid, there is a place version of the Forget method:

$widget->placeForget();

If you use this method on the widget, the widget will be removed from view on the screen. It is also 
removed from the list maintained by the parent widget.

Place information

The placeInfo method returns a list of information related to the widget:

@info = $widget->placeInfo();
print "@info";

## Produced these results (there are blanks where there are no values)
-x 0 -relx 0 -y 0 -rely 0 -width -relwidth -height -relheight -
anchor nw

Place slaves

@widgets = $parent->placeSlaves();

placeSlaves returns a list of the slave widgets that are within $parent. The list 
looks the same as it does when it is returned from packSlaves() or grid-Slaves
() .x

Geometry Management Summary

You now know more about the three different geometry managers than you'll ever need 
to know to write a successful Perl/Tk application. Here are some helpful hints on 
deciding which geometry manager to use:

• pack() is good for general purpose use and will be your choice around 95% of the 
time.

• grid() is perfect for those situations in which you would like to create a columnar 
layout that is similar to a spreadsheet.

• place() is most useful when you want your widgets to stay in a position or size that 
is relative to the widget that created them. When it is used correctly, it can be very 
powerful.

• No matter which manager you use, take the time to get the widgets on your window 
where they belong (or more likely, where you want them). There's nothing more 
unsettling than a button that looks like it just doesn't belong in the window.



As you read through this book, you'll notice that some of the option names for the 
geometry managers are also option names when you are creating or configuring a widget 
type. For example, you can specify the -width of a button without using place(). 
Always keep in mind the context in which the option is used. Sometimes the functional 
difference is very subtle.



3—
The Basic Button

The Button Widget

 Of all of the widgets available with Perl/Tk, the button is one of the 

most commonly used. Just see all the examples in Chapter 2, Geometry Management. 
When the button is pressed, something happens. That something can vary from exiting 
the program (as in our Hello World example) to beginning a longer series of operations 
such as opening a file or starting another process. The button typically displays a short 
text string: Done, Apply, Save, Ok, Exit.

Other widgets are also classified as buttons: radiobuttons, checkbuttons, and 
menubuttons. This chapter covers the traditional button. Chapter 4, Checkbuttons and 
Radiobuttons, and Chapter 11, Menus, will cover the other types because they look 
different on the screen and behave differently as well.

We cover the button widget first because it is easy to see the way different options affect 
it on the screen. Many of the other widgets included in Perl/Tk utilize the same options. 
Usually, if the option name is the same, the change to the widget will also be the same 
(more or less).

Creating a Button

The basic usage to create a button is as follows:

$button = $parentwidget->Button( [ option => value, ... ] );

We have already seen examples of buttons in our Hello World program in Chapter 1, 
and in all the geometry management examples in Chapter 2. In these examples, a button 
is created and placed on the screen with a command like this:

$mw->Button(-text => "Done",-command => sub { exit })->pack;

You can save a reference to the button like this:

$button = $mw->Button(-text => "Done",-
command => sub { exit })->pack;

In Hello World, we didn't need to refer to the button again later, so it wouldn't have 
made sense to save a reference to it. But most of the examples for this chapter will 
assume that we've saved a reference to the button widget when we created it.

Button Options

The rest of this chapter covers the options available to change the look of the button and 
how to make it do what you want.



-activebackground => color
Sets the color the background should be when the mouse cursor is over the button. A 
color is a text string such as "red".

-activeforeground => color
Sets the color the text should be when the mouse cursor is over the button.

-anchor => 'n' | 'ne' | 'e' | 'se' | 's' | 'sw' | 'w' | 'nw' | 'center'
Causes the text to stick to the specified position in the button.

-background => color
Sets the background of the button to color.

-bitmap => 'bitmapname'
Sets default bitmap or the location of a bitmap file (with @ in front of path).

-borderwidth => amount
Changes the width of the edge drawn around the button. (Emphasizes the -relief.)

-command => callback
Indicates a pointer to a function that will be called when the button is pressed.

-cursor => 'cursorname'
Indicates that the mouse cursor will change to 'cursorname' when over the button.

-disabledforeground => color
Sets the color the text should be when the button is disabled.

-font => 'fontname'
Changes the font of all the text on the button.

-foreground => color
Changes the text color to color.

-height => amount
Sets the height of the button in characters if text is displayed, and the screen distance if 
an image or bitmap is displayed.

-highlightbackground => color
Sets the color of the area behind the focus rectangle (shows when widget does not have 
focus).

-highlightcolor => color
Sets the color of the focus rectangle.

-highlightthickness => amount
Sets the thickness of the black box around the button; indicates focus.

-image => $imgptr
$imgptr is a pointer to an Image object that was made with a GIF or PPM/PGM file.



-justify => 'left' | 'right' | 'center'
Sets the side of the button against which multiline text will justify itself.

-padx => amount
Adds extra space to the left and right side of the button inside the button edge.

-pady => amount
Adds extra space to the top and button inside the button edge.

-relief => 'flat' | 'groove' | 'raised' | 'ridge' | 'sunken' | 
'solid'
Changes the type of edges drawn around the button

-
state => 'normal' 
| 'disabled' | 
'active'
Indicates the button's 
state of responsiveness. 
If set to "disabled", 
the button does not 
respond.

-takefocus => 0 | 1 | undef
Indicates that the button will never get focus (0), always get focus (1), or let the 
application decide (undef).

-text => 'text'
Sets the text string displayed on the button.

-textvariable => \$variable
Pointer to a variable containing text to be displayed in button. Button text will change as 
$variable does.

-underline => n
Underlines the nth character in the text string. Allows keyboard input via that character 
when button has the focus.

-width => amount
Sets the width of the button in characters if text is displayed and as a screen distance if 
an image or bitmap is displayed.

-wraplength => amount
Sets the screen distance for the maximum amount of text displayed on one line. Default: 
0.

Displaying Text

For the user to know what the button does when it's pressed, you need to indicate the 
function of the button with its text string. The option that does this is -text:



-text => 'text'

When you are trying to come up with a descriptive text string, short and simple is the 
key. You don't want your button to take over the whole window with a long text string.

The string can be anything: alphanumeric, newline(s), or variables. Just like any other 
string in Perl, if it is put in single quotes, it is taken literally, and with double quotes, it is 
interpolated. The interpolation only happens once (the first time the option is parsed). If 
the variable changes later in the program, it has no effect on the text in the button. The 
only way the text in the button can be changed after it has been created is by using the 
configure method to reset it (e.g., $button-> configure (-
text => "newtext");) or by using the -textvariable option.

There is no default for the -text option; the button will simply have no text if -text 
is not specified.

The other way to display text on the button is by using the -textvariable option. 
The -textvariable option allows a scalar variable to be associated with the button; 
anything in the variable will be displayed on the button. Specify the scalar variable as 
follows:

-textvariable => \$variable

This means the text of the button will change as the contents of $variable change. 
When the text within the button changes, the button may become larger or smaller, and 
the entire window may change size.

This piece of code shows how the -textvariable option is used:

$count = 0;
$mw->Button(-text => "Add 1",
            -command => sub { $count++ })->pack(-
side => 'left');
$mw->Button(-textvariable => \$count)->pack(-side => 'left');
$mw->Button(-text => "Exit",
            -command => sub { exit })->pack(-side => 'left');

Figure 3-1 shows two windows. The first window shows how it looks when it is first 
created, and the second window shows what it looks like after clicking on the ''Add 1" 
button many times.

Figure 3-1.
Example of using -textvariable

Displaying an Image or Bitmap Instead of Text



Instead of displaying a text string on the button, you can use the -image option to 
display an image:

-image => $imgptr

GIF and PPM/PGM formats are valid image types. Support is available for JPEG images 
in a separate module (Tk::JPEG), which is available for download from CPAN. Other 
types of images are also supported as more modules like Tk::JPEG are being developed. 
Check CPAN to see what is currently available.

When using an image, only the image will be displayed because the button can display 
only a text string or an image, not both. To create an $imgptr variable, use the Photo 
method (and supply the name and path if the image is not in the current directory) of the 
image file. The $imgptr is passed in as a value to the -image option:

$arrow = $mw->Photo(-file => "Xcamel.gif");
$mw->Button(-text => 'Exit', -command => sub { exit },
            -image => $arrow)->pack;

Figure 3-2 shows an example of a button with a GIF file on it.*

Figure 3-2.
Button with image instead of text

Use the -bitmap option to allow a button to display a bitmap specified in a text string:

-bitmap => 'bitmapname'

* When I tried this example under the Windows 95 OS, I didn't get a good colormap of 
the GIF file. The problem may have been my video card or video driver for Windows 
95, so it might look better on your machine.

There are several default bitmaps: error, gray12, gray25, gray50, gray75, 
hourglass, info, questhead, question, and warning (see Figure 3-3). They 
are specified in the option by placing single quotes around the bitmap name:

$mw->Button(-bitmap => 'error', -command => \&handle_error)-
>pack;

To specify a bitmap from a file, you need to put an @ in front of the path.

$mw->Button(-bitmap => '@/usr/nwalsh/mybitmap',
             -command => sub { exit })->pack;



Note that, if you use double quotes, you have to escape the @ with a backslash, (e.g., 
"\@/usr/nwalsh/mybitmap").

Figure 3-3.
Window showing all the default bitmaps

Assigning a Callback

In addition to the -text option, the -command option is almost always used to create 
a button. For the button to do something when pressed, we have to associate a callback 
with the button via the -command option. The callback happens when mouse button 1 
is released over the button.* If you click down on the button but move the cursor away 
from the button before releasing, nothing happens because the mouse-click was aborted.

In the Hello World program, we used the exit routine as our callback:

$mw->Button(-text => "Done", -command => sub { exit })->pack;

There are several ways to associate a subroutine or set of commands with the button. 
This discussion will apply to all widgets that have a -command option, so you will see 
this option referred to often.

Defining a -command Callback

There are several ways the callback can be defined:

• Anonymous subroutine: e.g., sub { .. do something .. }

• Reference to a subroutine: e.g., \&mysub

• Anonymous list with the first element as a subroutine pointer, and the rest of the list as 
arguments to the subroutine: [ \&mysub, $arg0, $arg1, \@arg2 ...]

* Mouse button 1 is the leftmost mouse button, mouse button 2 is the middle mouse 
button, and mouse button 3 is the rightmost mouse button.



The button we created in our Hello World program used an anonymous subroutine. Here 
is the code again:

$mw->Button(-text => "Done", -command => sub { exit; })-
>pack;

We also could have created the anonymous subroutine prior to the button creation and 
sent the reference to it instead:

$mysubref = sub { exit };
$mw->Button(-text => "Done", -command => $mysubref)->pack;

This is useful when our anonymous subroutine does some fancy things and it would look 
awkward shoved into the list of arguments.

We could also create a regular subroutine to handle the exit and then just pass a 
reference to it:

sub do_exit {
  &do_something_else;
  exit;
}
$mw->Button(-text => "Done", -command => \&do_exit )->pack;

It is a good idea to use a subroutine like this if you have more than one way to exit the 
application. For instance, you could set up your application to exit via a menu, a button, 
or the window manager Close command.

If we need to pass arguments to our do_exit() routine we would use the anonymous 
list form:

sub do_exit {
  my ($arg1, $arg2) = @_;
  &do_something_else if ($arg1 = 12);
  exit;
}
$mw->Button(-text => "Done",
            -command => [ \&do_exit, $arg1, $arg2 ])->pack;

It is important to remember how the different ways to specify a callback affect the scope 
and which variables you can access.

Anonymous subroutines

Anonymous subroutines merely get "set aside" to be called later from within 
MainLoop. The commands inside the anonymous subroutine are not parsed until then. 
Any variables you use will not be evaluated until that time.

foreach (@names) {
  $mw->Button(-text => $_,
            -command => sub { print "$_ was pressed!\n"; })-
>pack;
}



In the preceding code, we are using the $_ variable in the foreach loop. The button's 
text string will be set as expected because the $_ is evaluated when the button is created. 
However, the $_ that is inside the scope of the anonymous subroutine doesn't get 
evaluated until the button is actually pressed. At that point, $_ could be undefined and 
errors start printing out every time you click the button.

Subroutine references: arguments or no arguments

The subroutine reference and the anonymous list are very similar except the list allows 
additional arguments (especially ones from within the current scope) to be sent to the 
subroutine:

foreach (@names) {
  $mw->Button(-text => $_,
            -command => [ \&print_name, $_ ])->pack;
}
sub print_name {
  print "$_[0] was pressed!\n";
}

The anonymous list gets created during the call to create the button. This means that $_ 
in the list is evaluated within the context of the foreach loop and will be set to the 
same value as the -text option uses.

Those of you who are comfortable with creating anonymous subroutines on the fly can 
also do it this way:

foreach (@names) {
  $mw->Button(-text => $_,
              -command => [ sub { print "$_[0] was pressed!
\n"; },
                            $_ ])->pack;
}

The anonymous subroutine is the first item in the list to the -command option, and the 
second item in the list is the argument $_. Keep in mind that sometimes you'll want a lot 
more than a single print statement in the subroutine, and for readability, it makes 
sense to put it in a named subroutine.

This is meant to be a brief overview of anonymous subroutines as it relates to Perl/Tk. 
The Camel Book* has all the information you would ever want and more.

Disabling a Button

When a button is created, it shows up on the screen by default, ready for action. The 
button will change colors when the mouse passes over it and will perform the assigned 
callback when pushed. You can change this by using the -state option:

-state => "normal" | "disabled" | "active"

* Technically known as Programming Perl, also available from O'Reilly & Associates, 
Inc.



The "normal" state was just described. The "active" state is when the mouse 
cursor is physically over the button and is used internally. The "disabled" state is 
when the button appears grayed out (or with whatever colors have been specified by -
disabledforeground and -disabledbackground) and will not respond to the 
mouse at all.

A button should not be available for selecting unless it makes sense in the application; 
for example, a button that disables another when it is pressed. The code would look like 
this:

my $exit_b = $mw->Button(-text => 'Exit',
                         -command => sub { exit })->pack;
$var = "Disable Exit";
$mw->Button(-textvariable => \$var,
            -command => sub { my $state = $exit_b->configure
(-state);
                              if ($state eq "disabled") {
                                $exit_b->configure(-
state => 'normal');
                                $var = "Disable Exit";
                              } else {
                                $exit_b->configure(-
state => 'disabled');
                                $var = "Enable Exit";
                              }})->pack;

In this example, a reference to the Exit button is saved because it needs to be used later 
to change the state of the button. Also, note that $exit_b is used inside the scope of 
the anonymous subroutine. This will only work if $exit_b is left in the global scope of 
the entire program so that $exit_b will be defined when the anonymous subroutine is 
executed. Be careful to not set $exit_b to something else; if you do, when the 
anonymous subroutine is invoked, it will refer to the new value in $exit_b, not the 
one you wanted.

Figure 3-4 shows the window after we have clicked on the Disable Exit button once.

Figure 3-4.
Window with disabled button (Exit) and normal button

The configure() method is explained later in this chapter; you don't need to worry 
about how it works just yet.

By disabling widgets when they can't do anything, you can give users visual hints about 
what they can and cannot do in the application.



Manipulating the Text

In addition to displaying text in the button, you can alter the appearance and location of 
the text within the button. The simplest thing you can do is to use the -font option to 
change the font:

-font => 'fontname'

There are several ways to specify the font. If you are using Tk4 (which is the current 
version as the book is being written) you should follow the directions in the following 
paragraphs. If you are using the newest version of Perl/Tk, which includes Tk8.0,* you 
should see Appendix C, Fonts; it covers the new methods to use with fonts.

The new font is specified as a text string that contains a font name. There is a difference 
in the way you specify fonts for Win32 systems and Unix systems. Valid fonts for your 
Unix system can be obtained by using the xlsfonts command or by using the Tk::Fonts 
module. The default font for the button widget on my Unix system is**:

"-Adobe-Helvetica-Bold-R-Normal--*-120-*-*-*-*-*-*"

Although you'll see this default on a Win32 system, you need to send a different type of 
string as the value to the -font option. Here's an example:

-font => "{Times New Roman} 12 {normal}"

You can look in the Control Panel under Fonts to see which fonts are available. Double-
clicking on them will bring up a window that shows the font in the different sizes 
available. Use the name of the font as it's listed in the Fonts directory for the first part of 
the font name between the curly braces. The number after the font name is the size of the 
font in points. The third part is the type of the font, usually normal, italic, or bold.

There can only be a single font for each button, so the text string cannot change font in 
the middle of a word. Each button (or widget) in an application can have a different font. 
Here is an example of two buttons in a window, one with the default font and the other 
with "lucidasans-14" (a Unix font) as its font:

$mw->Button(-text => "Exit",
            -command => sub { exit })->pack(-side => 'left',
                                      -fill => 'both', -
expand => 1);
$mw->Button(-text => "Exit",
            -font => "lucidasans-14",
            -command => sub { exit })->pack(-side => 'left',
                                      -fill => 'both', -
expand => 1);

Figure 3-5 shows the resulting window.

* The numbering system for Perl/Tk follows the Tcl/Tk version numbers. I have no 
idea why they skipped 5, 6, and 7.



** Not all fonts are available on every system, although your system's default should work. 
Use the following command to get the default font for your system: 
@config = $button->configure(-font); print "@config\n";

Figure 3-5.
Buttons with various fonts

In addition to changing the font, you can also move the text around within the button. As 
you can in a word processing document, you can change where the text will adjust itself. 
The option that controls this is -justify:

-justify => 'left' | 'right' | 'center'

The default for -justify is 'center'. Normally, the text displayed in a button is a 
quick one- or two-word statement; for example, Exit, Done, Yes, No, or Cancel. The 
justification of the text isn't too obvious unless multiple lines of text are used. By default, 
the button will only display multiple lines if a \n is included in the string. You can have 
the program help decide when to wrap by using the -wraplength option:

-wraplength => amount

The amount indicates the maximum length of the line as a valid screen distance (see 
Chapter 1). If the length of the text string in the button exceeds this amount, the text will 
be wrapped around to the next line. The default for -wraplength is 0.

This is an example that uses both the -justify and -wraplength options:

foreach (qw(left center right)) {
  $b =  $mw->Button(-
text =>"This button will be justified $_",
                    -command => sub { exit },
                    -wraplength => 53,
                    -justify => $_)->pack(-side => 'left',
                                          -fill => 'both',
                                          -expand => 1);
  }

Figure 3-6 shows the results of the three buttons. Although this example doesn't show it, 
it is possible for the text to be wrapped in the middle of a word.



Figure 3-6.
Effects of -justify and -wraplength in a button

The final possible adjustment to the text (or bitmap) is its position within the button. This is controlled by 
the -anchor option, which is similar to the -anchor option used with the different geometry 
managers:

-
anchor => 'n' | 'ne' | 'e' | 'se' | 's' | 'sw' | 'w' | 'nw' | 'center'

Like the window, the button has compass points that define locations within the button. Figure 3-7 shows 
where these points are in the button.

Figure 3-7.
Anchor points within a button

The default position for the text is 'center'. When the position is changed, it is not obvious that this 
option is in effect unless the button is resized larger. In Figure 3-8, the button is the same one that was 
created in the -justify example (Figure 3-6) except -anchor => 'nw' has been added to the 
option list.

Figure 3-8.
Anchor on button set to 'nw'

As mentioned earlier, this option is similar to the -anchor option to the pack command. It is important 
to note that this option changes the position of the text in the button; the -anchor option to pack() 
changes the position of the widget in the window.

Altering the Button's Style

By default, a button looks like it's slightly raised off the surface of the window. By using the -relief 
option, you can change the style of the button edges:



-
relief => 'flat' | 'groove' | 'raised' | 'ridge' | 'sunken' | 'solid'

Each value changes the look of the button slightly, as you can see in Figure 3-9.

flat
Makes it look like only text is present in the window. 'flat' is not recommended for a 
button because the user has no visual information that the button can be pressed (the 
button looks just like a label).

groove
Gives a slightly depressed look to the edge (as if there were a ditch around the text).

raised
The default; gives a 3D look with a shadow on the lower and right sides of the button, 
which causes it to look higher than the window surface.

ridge
The opposite of 'groove'; makes it look like a ridge is around the text.

sunken
The opposite of 'raised'; gives the 3D effect of being below the surface of the 
window.

No matter which value is specified for the -relief option, when the button is pressed 
with the mouse, its relief will change to 'sunken'.

Figure 3-9.
Different relief types for a button

In addition to changing the type of edge drawn around a button, you can also change the 
thickness of the edge by using -borderwidth:

-borderwidth => amount

The default -borderwidth is 2. The wider the -borderwidth, the more dramatic 
the effects of the -relief option become. Figure 3-10 shows what a borderwidth of 10 
does to each relief type.

Figure 3-10.
Different relief types with -borderwidth set to 10



Borderwidth can also be specified by using -bd as an abbreviation. Although using -bd 
will obtain the same results, using -borderwidth makes your code eas-

ier to follow later on. Also, -bd isn't supported with all widgets, so relying on it can be 
dangerous.

I don't recommend using -borderwidth with values greater than 4, because it makes 
the widgets look extremely odd. In each of the widget chapters you'll find a screenshot 
showing what happens to the widget with a larger -borderwidth value for each of 
the possible -relief values. The best use of -borderwidth is making one widget 
stand out more than the others temporarily during development. (I also use it often with 
frames to figure out where the frame is. Normally they are invisible. See Chapter 12.)

Changing the Size of a Button

Normally, the size of the button is automatically determined by the application and is 
dependent on the text string or image displayed in the button. The width and height can 
be specified explicitly by using the -width and/or -height options:

-width => x, -height => y

The values specified for x and y change depending on whether a bitmap/image or text is 
displayed in the button. When a bitmap or image is displayed, the values in x and y 
represent valid screen distances. If text is displayed on the button, x and y are character 
sizes.

This example has one button that is default size and another that is drawn with -width 
of 10 and -height of 10. (It is not necessary that the amounts for -width and -
height be the same or that you use both):

$mw->Button(-text => "Exit",
            -command => sub { exit })->pack(-side => 'left');
$mw->Button(-text => "Exit",
            -width => 10, -height => 10,
            -command => sub { exit })->pack(-side => 'left');

In Figure 3-11, the second button is much taller than it is wide because text characters 
are taller than they are wide.

Figure 3-11.
Example of button displaying default text and text with -width => 10, -height => 10



The value specified for both -width and -height are characters because the button is 
displaying text. When -width and -height are used with a bitmap, the

amount specified is in screen distance. Here is an example of using -width and -
height with a bitmap:

$mw->Button(-bitmap => 'error',
            -width => 10, -height => 10,
            -command => sub { exit })->pack(-side => 'left');
$mw->Button(-bitmap => 'error',
            -command => sub { exit })->pack(-side => 'left');
$mw->Button(-bitmap => 'error',
            -width => 50, -height => 50,
            -command => sub { exit })->pack(-side => 'left');

The first button is created with a restriction on the width and height of 10. The middle 
button looks like it would normally. The third button is created with a width and height 
of 50. Figure 3-12 shows the resulting window.

Figure 3-12.
A bitmap displayed three times with different values for -width and -height

The default value for both -width and -height is 0. Using 0 allows the program to 
dynamically decide the height and width of the button.

The total width for buttons with text is calculated by the width the text takes up plus 2 × 
-padx amount. The height is the text height plus 2 × -pady amount. The width and 
height for buttons with a bitmap is just the width and height of the bitmap itself. Any -
padx or -pady options are ignored when a bitmap is displayed.

As an alternative to specifying an explicit width or height, it is possible to increase the 
size of the button by using the options -padx and/or -pady to add padding between 
the text and edge of the button:

-padx => amount, -pady => amount

The amount specified with -pady is added to both the left and right side of the button. 
The amount specified with -pady is added to both the top and bottom of the button. 
Figure 3-13 shows an example.

By using these options you are telling the button to be sized larger than it normally 
would, but you don't have to worry that it will be sized too small, as you would if you 
explicitly set -width and -height.



Remember, -padx and -pady are ignored when a bitmap is displayed.

Figure 3-13.
Example of -padx => 20, -pady => 20

Adding a Keyboard Mapping

A button is traditionally invoked by clicking mouse button 1 when the mouse cursor is 
over the button. It can also be invoked by pressing the Tab key until the button has the 
keyboard focus and then pressing the spacebar. The effects are the same: The callback 
associated with the button is called, and the button -relief changes momentarily. The 
keyboard focus is visually indicated by a thin black rectangle drawn around the widget 
(see Figure 3-20 later in this chapter).

To allow an additional keyboard character to invoke the button, you can use the -
underline option in a button displaying text:

-underline => N

This will underline the Nth character in the text string. The first character of the text 
string is the 0th character, so with the text string ''Exit", -underline => 1 will 
underline the second character in the string, the "x" (see Figure 3-14).

Figure 3-14.
Example of -underline => 1

The default value for -underline is -1, which means no characters will be underlined 
in the text string.

Color Options

The options that can change the button's colors are -background, -
foreground, -activebackground, -activeforeground, and -
disabledforeground. Each option takes a string that identifies a color. This string 
could either be a color description such as "blue" or a hex string such as "#d9d9d9", 
which also describes a color, but is much more cryptic.



For either Win32 or Unix systems you can run the widget demo included with the Tk 
module. If the perl/bin directory is in your path, you can simply type "widget"

on the DOS or Unix command line. Under the listbox section is an example that displays 
color names. You can double-click on the names in the list to see them change the 
application's color.

Valid values for the color string are available on your Unix system in a file called rgb.
txt. Typically this file is located in the X11 lib directory. On my Linux system, it is 
located in /usr/X11R6/lib/rgb.txt. You can also use the X application xcolors or showrgb. 
Check the manpages for each command to determine the best way to use them.

Another place to look for valid color names (and this applies to Win32 as well) is in your 
Perl distribution directory. Look for the file xcolors.h. It is a text file that contains the 
RGB values and names for quite a few colors. I found this file in C:\Perl\lib\site\Tk\ptk 
on my Windows 95 machine.

The color of the button depends on the state the button is in at the time. When the button 
has a state of 'normal', the colors assigned to -foreground and -background 
are in effect. The background of the button is the area behind the text string but within 
the edges of the button.

The background is specified like this:

-background => color

The default background color is a light gray color ("#d9d9d9" in its hexadecimal RGB 
representation). Figure 3-15 shows the results of changing the second Exit button's 
background to blue.*

Figure 3-15.
Example of -background => 'blue'

The foreground of the button is the text (or bitmap) displayed. The foreground color is 
specified like this:

-foreground => color

By default -foreground is 'black'. Make sure that whatever color you pick 
contrasts enough with the background color to be readable. In the example in Figure 3-
15, I left the text the default color, and it doesn't contrast very well with the background 
color of the button. If we change -foreground to 'white', then



* Although we are talking about color, the figures are in black and white. 
Unfortunately, using color figures would have made the book too expensive to 
produce. I've tried to make color choices that contrast so the figures look as good as 
possible. The best way to determine what happens with each color option is to 
experiment and run the examples.

we will be able to see the text much more easily, as you'll see in Figure 3-16. (The 
shortcut for -foreground is -fg, which may or may not work on other types of 
widgets. I suggest sticking with -foreground as the option name.)

Figure 3-16.
Example of -background => 'blue' and -foreground => 'white'

When you use the -foreground and -background options in conjunction with a 
bitmap, the bitmap foreground and background will change to the specified colors. The 
effect of the colors depends on the bitmap. See Figure 3-17.

Figure 3-17.
'error' bitmap with -foreground => 'white' and -background => 'black'

The -foreground and -background options control what color the button is when 
it is in the 'normal' state. When the button has the mouse cursor over it, the -
activebackground and -activeforeground colors are used:

-activebackground => color, -activeforeground => color

These colors are different because we want users to have some visual clues that they can 
press the button. By having the colors change slightly when the mouse cursor is over the 
button, users know that the button can be pressed to do something. The default for -
activebackground is a slightly darker gray color ("#ececec").

The final color option, -disabledforeground, is the color of the text when the 
button's state is 'disabled'.

-disabledforeground => color



When the button is in a disabled state, it will not respond when the mouse cursor is over 
it, or if it is pressed. The default for the color of the text (or bitmap) is "#a3a3a3". 
Figure 3-18 shows the difference between the text colors with one disabled button and 
one normal button. (We also saw this example in Figure 3-4. Lookthere for the code that 
created this window.) 

Figure 3-18.
-disabledforeground example

Changing the Mouse Cursor

The mouse cursor normally looks like an arrow.* This can be changed on a widget-by-widget basis with the 
-cursor option:

-cursor => cursorname

When the mouse is over the button, the cursor will change to the one specified. The cursor change will 
happen whether the button is disabled or not. There is a large set of available cursors. Following is a list of 
cursors, and Figure 3-19 shows what they look like.

X_cursor arrow based_arrow_down based_arrow_up

boat bogosity bottom_left_corner bottom_right_corner

bottom_side bottom_tee box_spiral center_ptr

circle clock coffee_mug cross

cross_reverse crosshair diamond_cross dot

dotbox double_arrow draft_large draft_small

draped_box exchange fleur gobbler

gumby hand1 hand2 heart

icon iron_cross left_ptr left_side



left_tee leftbutton II_angle Ir_angle

man middlebutton mouse pencil

pirate plus question_arrow right_ptr

right_side right_tee rightbutton rtl_logo

sailboat sb_down_arrow sb_h_double_arrow sb_left_arrow

sb_right_arrow sb_up_arrow sb_v_double_arrow shuttle

sizing spider spraycan star

target tcross top_left_arrow top_left_corner

top_right_corner top_side top_tee trek

ul_angle umbrella ur_angle watch

xterm
   

* What cursor is displayed is dependent on the window manager you are using, but most of the time it is an 
arrow.



Figure 3-19.
The standard cursors

Here's a program to look at the different cursors interactively:

#!/usr/bin/perl -w
use Tk;

## Create elements of window
$mw = MainWindow->new;
$mw->Button(-text => "Exit",
            -command => sub { exit })->pack(-
side => "bottom",
                                      -fill => "x");
$scroll = $mw->Scrollbar;
$lb = $mw->Listbox(-selectmode => 'single',
                   -yscrollcommand => [set => $scroll]);
$scroll->configure(-command => [yview => $lb]);

$scroll->pack(-side => 'right', -fill => 'y');
$lb->pack(-side => 'left', -fill => 'both');

## Open file that contains all available cursors
## Might have to change this if your cursorfont.
h is elsewhere
## On Win32 systems look in C:\Perl\lib\site\Tk\X11
\cursorfont.h
open (FH, "/usr/X11R6/include/X11/cursorfont.h") ||
  die "Couldn't open cursor file.\n";

  



while (<FH>) {
  push (@cursors, $1) if (/\#define XC_(\w+) /);
}

close(FH);

$lb->insert('end', sort @cursors);
$lb->bind('<Button-1>',
     sub { $mw->configure(-cursor => $lb->get($lb-
>curselection)); });

MainLoop;

Although this program might seem a bit complicated at this point in the book, take a 
look at how it does things. If you don't completely understand it right away, it's okay. 
Keep reading for a few chapters and then come back and look at it again until it starts to 
sink in. For reference, listboxes are covered in Chapter 7, The Listbox Widget, and bind 
is covered in Chapter 14, Binding Events.

Focus Options

In an application, you can tab between widgets to make them available for input from 
the keyboard. The application indicates that a widget is available for keyboard input by 
drawing an outline around it in black (this is called the highlight rectangle; see Figure 3-
20). If a widget has this outline around it, it is said to have the focus of the application. 
(You can force the focus of an application to start with a specific widget by using 
$widget->focus;.) Once a button has the focus, you can use the spacebar on your 
keyboard to activate it instead of using the mouse.

Figure 3-20.
The first button has the input focus.

You can force the application to not allow your button to receive the keyboard focus at 
all by using the -takefocus option:

-takefocus => 0 | 1 | undef

The -takefocus option is normally set to an empty string (undef), which allows the 
application to dynamically decide if the widget will accept focus. If a widget has its state 
set to 'disabled', it will be skipped over when users tab through all the widgets. To 
have the application always ignore the widget when tabbing through, use -
takefocus => 0. To have the application always allow focus to the widget, use -
takefocus => 1.



Altering the Highlight Rectangle

The highlight rectangle* is normally displayed with a thickness of 2 pixels. This can be 
changed by using the -highlightthickness option:

-highlightthickness => amount

The amount specified is any valid screen distance. In Figure 3-21, the Exit button on the 
right has a -highlightthickness of 10 and has the focus.

Figure 3-21.
Example of -highlightthickness => 10

When the button doesn't have the keyboard focus, a small space is left around it. If this 
extra space bothers you, you can set -highlightthickness to 0 and the space 
won't display even if that widget has the focus. It is bad style to set the -
highlightthickness to 0 if you aren't also setting -takefocus to 0.

The color of the highlight rectangle can also be changed. There are two values for this: 
the color of the highlight rectangle when the button does not have the focus and the color 
of the highlight rectangle when it does have the focus. The option -highlightcolor 
is the color of the highlight rectangle when the button does have focus:

-highlightcolor => color

Figure 3-22 shows the right button with the focus and with -highlightcolor set to 
'yellow'. Compare it to the picture in Figure 3-21 to see the difference.

Figure 3-22.
Example of button with -highlightcolor => 'yellow'

To change the color of the space left around the button when it doesn't have the focus, 
use the option -highlightbackground:

-highlightbackground => color

* On Win32 systems, the highlight rectangle is drawn as a dashed line within the 
widget.



Normally, the highlight rectangle is the same color as the background of the window, which 
allows it to blend in with the background of the window or frame that contains the button.

Figure 3-23 shows an example where both buttons have the following configuration:

-highlightcolor => 'blue', -highlightbackground => 'yellow'

The right button is the one that has the focus.

Figure 3-23.
Example of button with -highlightcolor => 'blue' and -highlightbackground => 'yellow'

Configuring a Button

After creating the widget and saving a reference to it in a scalar (such as $button), it is 
possible to use methods on that button.

There are two methods available to configure a button after it is created and to get configuration 
information back: configure and cget. They are generic to all widgets and are covered in 
Appendix A, Configuring Widgets with configure and cget. Here are some common examples to 
get you started:

$state = $button->cget(-
state);

# Get the current value for -state

$state = $button=>configure(-
state);

#Get the current value for -state

$button->configure(-
text => "New Text");

Change the text

$text = $button->cget(-text); # Get the current text value

@all = $button->configure(); # Get info on all options for button

Flashing the Button

The flash method will cause the button to appear to be "flashing" on the screen. It changes 
back and forth from the normal state colors to the active state colors:

$button->flash();



Invoking the Button

The invoke method invokes the subroutine to which the -command option points. Once you 
use -command to assign the callback, then anytime you need to perform that same task, you 
can use invoke():

$button->invoke();

Some Fun Things to Try

One of the best ways to figure out how Perl/Tk works is to try it. Once you understand 
the basics, you'll spend most of your time tweaking options and callbacks to do the 
correct thing. Here are some ways to learn about the button widget:

• Create a window with three buttons in it. Have each button print something different 
when clicked on.

• Create a window with three buttons. Have the first two buttons change each other's text 
when pressed. The last button should allow you to exit the program.

• Make some really big buttons and some really tiny buttons all in the same window.



4—
Checkbuttons and Radiobuttons

This chapter discusses both checkbutton and radiobutton widgets. Although they are 
very similar, they are used for different purposes.

Checkbuttons are useful when you want to select as many items as you want, such as a 
shopping list. Radiobuttons are used in group situations when you must make a choice 
between items, such as on a multiple-choice exam:

Q1: What year did Columbus discover America?
A) 1400
B) 1470
C) 1472
D) 1492
E) none of the above

Because radiobuttons are grouped together, you are forced to select one and only one 
choice in that group. If the default choice is always A and you click on D, A would be 
automatically unclicked (or unselected).

The two sections in this chapter cover how to use both widget types and ways to set 
them up and configure them.

The Checkbutton Widget

In Chapter 3, The Basic Button, you learned the options associated with the button 
widget. A checkbutton is also considered a type of button (and it uses many of the same 
options), even though the way it is used in an application is different from the way a 
standard button is used.

Instead of clicking on a checkbutton and expecting something to happen immediately, 
you use it to indicate a yes or no answer. If the checkbutton is checked it



means yes; unchecked means no. You might use a checkbutton to list options for 
printing a document. The text on the checkbuttons might say Print Header Page, Even 
Pages Only, Odd Pages Only, and Number Pages. At the bottom of the window there 
would be a Print button, and when you clicked on it, the program would find out which 
checkbuttons were selected and submit the print job accordingly.

A window listing several jobs to run (like a batch job controller) might use checkbuttons 
to ask the user if each job should be run. If the checkbutton next to the job name is 
selected, the job will be run. If the checkbutton is unselected, then the job will be 
skipped this time around.

Each time a checkbutton is used, the application is asking the user to answer a yes or no 
question. Checkbuttons that make up a group are typically related (as in our print job 
example), but they don't have to be because the answer to each checkbutton is 
independent of any other widgets or checkbuttons on the screen.

The checkbutton is similar to a button; it displays a text string, but it also has an 
indicator on the left side of the widget. By default, the outside edges of the checkbutton 
don't have 3D relief like a standard button does, but the indicator (that little square on the 
left) does.

A checkbutton operates in the same way a standard button does; you click on it with the 
left mouse button. A button will change its own -relief (the way the edges of the 
button are drawn) to look like it has been pushed down whereas a checkbutton will only 
change the state of the indicator. If the checkbutton is on, the indicator will look as if it 
has been pushed into the window and filled with a darker color.* If the checkbutton is 
off, it will look like a tiny gray button.

Sometimes the terminology becomes confusing because there is the indicator's status (or 
value) and the state of the checkbutton itself. If the checkbutton looks like a tiny raised 
button without color, then it is off (Figure 4-1; left checkbutton). If it is filled in with 
color, we say it is on (Figure 4-1; right checkbutton). The state of the entire checkbutton 
(including the indicator) can be normal, active, or disabled. Both checkbuttons in Figure 
4-1 have a state of normal.

Figure 4-1.
A checkbutton that is off and one that is on

* Some operating systems actually put a checkmark  into the little box. Others use 
a tiny ''x" in the indicator to show the state as on.



As when creating any widget, the checkbutton is created using a method named after the 
capitalized version of the widget name, Checkbutton, invoked from the parent 
widget. The basic usage looks like this:

$cb = $parentwidget->Checkbutton( [ option => value, ... ] )-
>pack;

In addition to having an indicator with a status, the checkbutton also can have a callback 
that uses the -command option associated with it. When the checkbutton is clicked 
(regardless of the indicator's status), the callback is invoked. However, it isn't always 
necessary to associate a callback for radiobuttons and checkbuttons since you can just 
check the status of the radiobutton or checkbutton later on in the program.

The boolean status of the checkbutton is stored in a variable that you give via the -
variable option when it is created. Each checkbutton should have its own status 
stored in its own unique variable. When the checkbutton is clicked, the status is updated. 
In addition, any callback associated with the -command option is invoked (regardless of 
the new status of the checkbutton). The options that change a checkbutton's behavior are 
listed below and explained in greater detail afterwards.

Checkbutton Options

The following checkbutton options work exactly the same as a standard button, so I 
won't go over them in detail again. Refer to Chapter 3, for complete descriptions of these 
options: -activebackground, -activeforeground, -anchor, -
background, -borderwidth, -cursor, -disabledforeground, -font, -
foreground, -height, -highlightbackground, -highlightcolor, -
highlightthickness, -justify, -padx, -pady, -state, -takefocus, -
text, -textvariable, -underline, -width, and -wraplength.

The rest of the options behave a little differently or are exclusive to the checkbutton 
widget. They are covered in the following list. Some options deal with only the indicator 
(such as -selectimage). Remember that the -state option refers to the entire 
checkbutton widget, and the status of the indicator is governed by the options -
onvalue, -offvalue, -indicatoron, and -variable.

-activebackground => color
Sets the color the widget's background should be when the mouse is over it.

-activeforeground => color
Sets the color the widget's text should be when the mouse is over it.

-anchor => 'n' | 'ne' | 'e' | 'se' | 's' | 'sw' | 'w' | 'nw' | 'center'
Sets the position of the text within the widget. Most noticeable when the widget is 
resized larger.



-background => color
Sets the color of the widget background (behind the text).

-bitmap => bitmap
Displays this bitmap instead of text.

-borderwidth => amount
Sets the edge thickness of the widget. Also changes the thickness of the indicator. 
Default is 2.

-command => callback
Associates a subroutine to the button. Called when button is clicked.

-cursor => cursorname
Sets the cursor to change to cursorname when it is over the widget.

-disabledforeground => color
Sets the color of the text when -state is 'disabled'.

-font => fontname
Sets the font to use when displaying text in the widget.

-foreground => color
Sets the color of the text.

-height => amount
Sets the height of the button; amount is a valid screen distance.

-highlightbackground => color
Sets the color the highlight rectangle around the widget should be when the widget does 
not have focus.

-highlightcolor => color
Sets the color the highlight rectangle around the window should be when the widget 
does have focus.

-
highlightthickness => 
amount
Sets the thickness of the 
highlight rectangle.

-image => imgptr
Displays image instead of text.



-indicatoron => 0 | 1
Determines whether to display the indicator.

-
justify => 'left' 
| 'right' | 'center'
Sets the justification of 
the text within the 
widget.

-offvalue => newvalue
Sets the value used when the button is off. Must be a scalar. Default is 0.

-onvalue => newvalue
Sets the value used when the button is on. Must be a scalar. Default is 1.

-padx => amount
Sets the amount of space left between text/indicator and left/right edges of widget.

-pady => amount
Sets the amount of space left between text/indicator and top/bottom edges of widget.

-relief => 'flat' | 'groove' | 'raised' | 'ridge' | 'sunken' | 
'solid'
Changes the look of the widget edges.

-selectcolor => color
Sets the color of the indicator when on.

-selectimage => imgptr
Indicates the image to display instead of text when button is on. Ignored if -image is 
not used.

-state => 'normal' | 'disabled' | 'active'
Sets the state of the widget. If disabled, it will not respond to any input.

-takefocus => 0 | 1 | undef
Determines if the widget is available for focus or not.

-text => "text"
Sets the text displayed in the widget.

-textvariable => \$variable
Indicates that text in $variable is displayed as text in widget.



-underline => n
Underlines the nth character in the text string.

-variable => \$value
Associates the on/off value of indicator with $variable.

-width => amount
Sets the widget to this width. Can be any valid screen distance.

-wraplength => amount
Indicates that the text will wrap when it exceeds this amount.

Storing the Indicator's Status

The option -variable will associate a variable with the status of the indicator by 
sending a reference as the value. To use the scalar $value, you would add this to the 
option list of the Checkbutton call:

-variable => \$value

Just as the -textvariable option sets the variable that is associated with the text of 
the checkbutton, this option sets the variable associated with the indicator.

When the checkbutton is clicked, $value will now contain the status of the indicator 
(the value placed in $value is defined by -onvalue and -offvalue and by default 
are 1 and 0 respectively).

In addition to using the mouse to change the status, you can also change the contents of 
$value directly. If your code contains $value = 1 at some point, the indicator will 
be turned on. You can specify $value = 1 before creating the checkbutton, which 
will draw the checkbutton for the first time with the indicator on. If you change the value 
in $value at any time after you create the checkbutton in your program, the 
checkbutton will change to reflect the new value. The subroutine associated with -
command (if there is one) is not invoked when the value of $value is changed.

Utilizing -variable is usually the easiest way to check the status of the indicator on 
the button. Here is an example that has two buttons that change the value in 
$cb_value:



$cb_value = 0;
$cb = $mw->Checkbutton(-text => "Checkbutton",
                       -variable => \$cb_value,
                       -
command => sub { print "Clicked! $cb_value\n" }
                       )->pack(-side => 'top');

$mw->Button(-text => "CB on",
            -command => sub { $cb_value = 1 })->pack(-
side => 'left');
$mw->Button(-text => "CB off",
            -command => sub { $cb_value = 0 })->pack(-
side => 'left');

See Figure 4-2 for the resulting window.

Figure 4-2.
Buttons changing the value of a checkbutton

The value stored in $cb_value can be changed in three ways: clicking on the 
checkbutton, clicking on the "CB off" button, or clicking on the "CB on" button. Only 
when you click on the checkbutton will you see the word "Clicked!" written in the shell 
window from which it was run.

There are other ways to change the value associated with the checkbutton. See invoke, 
select, deselect, and toggle in "Checkbutton Methods" later in this chapter.

Assigning a Callback

The -command option works just like it does for a standard button, but usually the 
function associated with a checkbutton's callback does something less obvious. Many 
times, there is no callback at all associated with the checkbutton because the important 
information is the status of the checkbutton rather than whether the checkbutton was just 
clicked.

One of the things a checkbutton might do is alter the appearance of the window. The 
checkbutton might look something like the one in Figure 4-3.



Figure 4-3.
Checkbutton that will display other widgets on the screen when clicked

When the user clicks on the checkbutton to turn it on, our window magically changes to 
look like Figure 4-4.

Figure 4-4.
Window after clicking the checkbutton

Here's the code that makes the magic happen:

#!/usr/bin/perl -w
use Tk;
$mw = MainWindow->new;
$mw->title("Checkbutton")

## Create other widgets, but don't pack them yet!
for ($i = 1; $i <= 5; $i++) {
  push (@buttons, $mw->Button(-text => "Button$i"));
}

$mw->Checkbutton(-text => "Show all widgets"
                 -variable => \$cb_value,
                 -command => sub {
                   if ($cb_value) {
                     foreach (@buttons) {
                       $_->pack(-side => 'left');
                     }
                   } else {
                     foreach (@buttons) {

  



                     $_->pack('forget');
                   }
                 }
                })->pack(-side => 'top');
MainLoop;

So we can display some widgets later on in the program, we create them ahead of time 
and store references to them in the @buttons array. The buttons in this example aren't 
very useful because they don't even have a -command associated with them. Normally, 
they would each have a specific task they would perform when pressed; however, for our 
example, we just want them to exist.

Then we create our magic checkbutton. When the button is clicked (regardless of the 
status of its indicator), it will call the subroutine pointed to by -command. Our 
subroutine looks at the current value of $cb_value, shows the buttons if it is on, and 
hides them if it is off. The value in $cb_value is changed before this subroutine is 
called. When our checkbutton is clicked again, the extra buttons will be removed from 
the window and the window will shrink back to the size it was previously.

This type of setup is great when you want to keep a basic window uncluttered but want 
the ability to show more widgets if the user can handle the advanced functions of the 
extra widgets. For example, you can create a Find window that has a place to enter some 
text, a button to start the find, and an Advanced Search checkbutton. Clicking on 
Advanced Search would add some more widgets to the bottom of the window allowing 
you to match case, use regular expressions, and use other fancy search mechanisms.

On and Off Values

If you don't like the default on value of 1, you can use the -onvalue option to change 
it:

-onvalue => newvalue  ## Default is 1

The same is true of the off value:

-offvalue => newvalue ## Default is 0

These options will change the values stored in $variable. Depending on how you 
would like the checkbutton to interact with the rest of your application, sometimes it 
makes sense to use different values. The newvalue could be anything, as long as it is a 
scalar value. This means that you can use references to arrays and hashes if you really 
want to.

It is good practice to keep the meaning of -onvalue the opposite of -offvalue. If -
onvalue is now the string "ON", logically -offvalue should be "OFF". Of



course, if the purpose of this checkbutton is to use a more accurate value of π, then -
onvalue could be "3.14159265359", and -offvalue could be "3.14".

Be careful when you use unusual values for -onvalue and -offvalue. If you set the 
variable to something that doesn't equal either one of them, the checkbutton will be 
considered off, even though the value of the $variable will not equal the -
offvalue value. For instance, if you set -onvalue => 1, -offvalue => 0, 
and you set $variable to 3, then the checkbutton will be considered off.

Indicator Color

You can use the -selectcolor option to alter the color that fills in the indicator 
when the checkbutton is selected:

-selectcolor => color

The default value is "#b03060" (a dark pink color). Changing the value for -
selectcolor will also change the background of the button when the button is 
selected and -indicatoron => 0.

Hiding the Indicator

One of the ways a checkbutton is different from a standard button is the indicator. Use 
the -indicatoron option to tell Perl/Tk not to draw that funny little square button at 
all:

-indicatoron => 0 | 1

As we have seen from the previous examples, the default for -indicatoron is 1 (i.e., 
show the indicator). If we change this -indicatoron to 0, the checkbutton will look 
almost like a normal button (without quite as much space around the text, though). Even 
though it looks a lot like a regular button, its behavior when it is clicked (to turn the 
indicator, which is hidden, to on) is completely different (see Figure 4-5). Note that the -
relief option is ignored completely when -indicatoron is set to 0.

Figure 4-5.
Checkbutton with -indicatoron => 0. Window on left is unchecked. Window on right is checked.



In this example, the color for the background on the checked button is the -
selectcolor, not the -backgroundcolor. You might want to use the 
nonindicator configuration if you change the text of the button to reflect the new state of 
the checkbutton. For instance, change Logging Enabled to Logging Disabled.

Displaying a Picture Instead of Text

As you can with a normal button, you can use the -image option to display an image in 
place of the text on a checkbutton. Another option, -selectimage, is available to 
display a different image when the checkbutton has been clicked:

-image => $imgptr [ , -selectimage => $imgptr ]

The usage statement shows -selectimage as optional because it will be ignored if -
image is not used.

The imgptrs can be created by using the same methods as those used in Chapter 3 
with a button's -image option: $arrow = $mw->Photo(-file => "nextart.
gif");

The image will be put in place of the text on the checkbutton. These options have 
precedence over the -text option, so if both -text and -image are listed, the -
text option will be ignored.

Which image is displayed depends on whether the button is on or off. If only the -
image option is specified, this image will be displayed no matter what. If -
selectimage is also specified, the image associated with it will be displayed when 
the button is checked. Figure 4-6 shows an example that uses both options.

Figure 4-6.
The same window with the checkbutton unchecked (on the left) and checked (on the right)

The checkbuttons in Figure 4-6 were created with this code snippet:



$img1 = $mw->Bitmap(-file =>
                    "/usr/X11R6/include/X11/bitmaps/lineOp.
xbm");
$img2 = $mw->Bitmap(-file => "/usr/X11R6/include/X11/bitmaps/
xlogo32")

$mw->Checkbutton(-text => "Checkbutton",
                 -image => $img1,
                 -selectimage => $img2,
                 -variable => \$cb_value)->pack(-
side => 'top');

Using two different images to indicate whether the checkbutton is off or on might make 
more sense if you also use -indicatoron and set it to 0. For instance, if you want to 
indicate that a document is locked (read-only) or unlocked you could use a picture of a 
lock for -image and a picture of a lock with a line through it for -selectimage.

For this example, I chose to use bitmap files as our images. Instead of using the -image 
option to display a bitmap, you could use the -bitmap option directly. The -bitmap 
option is exactly the same as the standard button -bitmap option; it replaces the text of 
the button with the specified bitmap (see Figure 4-7).

Figure 4-7.
Checkbutton with -bitmap => 'warning'

Unlike -image and -selectimage, using -bitmap will not change the image 
when the button is clicked on or off.

You might think that using images instead of text would make your application easier 
for non-English speakers to understand. However, if you use too many checkbuttons 
with images, you might confuse people even more. A few easily understood icons are 
better than a large collection of vague icons.

Checkbutton Style

Although the button and checkbutton both share the -relief and -borderwidth 
options, and they mean the exact same thing, when they are used with a checkbutton, the 
effects are visually different because of the indicator. As a reminder, the possible values 
are:



-relief => 'flat'|'groove'|'raised'|'ridge'|'sunken'|'solid'
-borderwidth => amount

Figure 4-8 shows the different relief types when a default -borderwidth value is 
used. The default for a checkbutton is 'flat' because the relief of the outside edge of 
the checkbutton doesn't change when the checkbutton is clicked; only the indicator 
changes. Figure 4-8 also shows that the edges of the checkbutton are much closer to the 
text; the -padx and -pady default values are smaller than the default for a button. The 
-relief option does not affect the indicator.

The -borderwidth option affects both the outside edge of the checkbutton and the 
indicator inside the checkbutton. The indicator itself stays the same size no

Figure 4-8.
Example of all possible -relief types

matter what the borderwidth of the widget is, but the indicator's edges change in width. 
When you use a large -borderwidth, you get some interesting results, as shown in 
Figure 4-9.

Figure 4-9.
Example using -borderwidth => 4

We used a -borderwidth of 4, and you can see that the outside edges got a bit 
thicker, and so did the edges of the indicator. With a larger -borderwidth, there is 
much less room to show the indicator's color when it is on (see the tiny square in the 
middle of those indicators?).

Figure 4-10.
Example using -borderwidth => 10



In Figure 4-10, we used a -borderwidth of 10. Notice the remarkable difference! We 
can no longer see the indicator at all, even though there is still space left for it. When 
these checkbuttons are checked or unchecked, there is no way to tell what the current 
state it is because the indicator is essentially invisible.

I highly recommend that you do not use the -borderwidth option associated with a 
checkbutton because of this interesting side effect.

Configuring a Checkbutton

Like the button widget, the checkbutton has methods that can manipulate it after it is 
created. These methods can be invoked at any time after the checkbutton is created, even 
before it is displayed on the screen.

You can use both configure and cget methods with a checkbutton as well. These 
methods are explained in Appendix A, Configuring Widgets with configure and cget.

Turning a Checkbutton On and Off

You can force the checkbutton to go from on to off or vice versa using the deselect 
and select methods.

The deselect method will always set the indicator to the off state and the variable 
assigned by -variable to the value in -offvalue:

$cb->deselect();

The opposite of deselect, select will cause the indicator to be set to the on state 
and the variable assigned by -variable to the -onvalue:

$cb->select();

Both methods are ignored if -state is 'disabled'.

You can also toggle the indicator from on to off or vice versa using the toggle method:

$cb->toggle();

Calling toggle does not cause the subroutine associated with the -command value to 
be called.

Flashing the Checkbutton

You can make the indicator flash with the -background and -foreground colors 
by calling flash:

$cb->flash();



Invoking the Checkbutton

To perform the same action as clicking the checkbutton with the left mouse button, call 
invoke:

$cb->invoke();

It will cause any callback associated with -command to be called; it will also switch the 
state of the indicator from on to off or vice versa.

The Radiobutton Widget

A radiobutton looks similar to a checkbutton because it also has an 

indicator on the left side. The radiobutton indicator is a diamond, rather than a square. 
Both look 3D and are slightly raised when unselected.

The main difference between a radiobutton and a checkbutton is the function they serve 
in an application. A radiobutton is used to select one of several different choices:

• In a multiple choice test, the answers A, B, C, D, or E

• Which version of a tool you would like to use

• Your income range: 0-20,000; 20,001-30,000; 30,001-40,000; 40,000 and up

• Which type of entree you prefer: beef, chicken, or vegetarian

In each example, only one answer is appropriate. For instance, it wouldn't make sense to 
have a salary of both $18,000 and $33,000. And when you are taking a multiple-choice 
test, you can't select all the answers and hope that the teacher gives you credit. You have 
to pick only one.

Because radiobuttons are used to decide between several choices, you should always 
create at least two.* It doesn't make sense to ask a question at all if there is only one 
choice. Radiobuttons should always be created in groups of two or more.

Creating Radiobuttons

So far, you have learned to create one widget at a time. Because radiobuttons are always 
in a group, we generally need to create more than one at a time. So you can be efficient 
and create all the widgets as quickly and painlessly as possible, I'll show you some quick 
ways to make up a group of radiobuttons.



(To show you how to take advantage of the widgets in the best way, the examples will 
start to get a bit more complicated. By now, you should know the basics of widget 
creation and how to specify options during the creation. I'll often say that an option 
works exactly like it did with widget X and refer you to that chapter for a more complete 
discussion.)

Radiobuttons are similar to checkbuttons; they also have a $variable associated with 
the state of the indicator (using the option -variable). When you create a group of 
radiobuttons, use the same $variable for every radiobutton in the group. The value 
put into the $variable will change according to which radiobutton is selected. To 
create a new group of radiobuttons, simply associate the new group with a different 
$variable

Because each radiobutton in a group points to the same $variable, there isn't a 
concept of onvalue and offvalue. The offvalue would be whatever the other radiobutton 
wanted it to be. To accomplish this, radiobuttons use the option -value instead of -
onvalue and -offvalue.

* If you did create only one radiobutton, it would start out unselected (unless the 
variable you associated with it contained the on value). Once that radiobutton was 
selected, you would never be able to deselect it.

For our first example, we'll create a group of radiobuttons that indicate the background 
color of our window. We need to use colors that are valid to the $mw-> configure(-
background => color) command. Simple color names usually work, so we will use 
red, yellow, green, blue, and gray.

As always, the basic usage for creating a radiobutton is as follows:

$rb = $parentwidget->Radiobutton( [ option => value, ... ] )-
>pack;

Here is the code that will create the radiobutton group that controls the background color:

# setup the default value we would like
$rb_value = "red";
$mw->configure(-background => $rb_value);

# create the radiobuttons that will let us change it
foreach (qw(red yellow green blue grey)) {
  $mw->Radiobutton(-text => $_,
                   -value => $_,
                   -variable => \$rb_value,
                   -command => \&set_bg)->pack(-
side => 'left');
}



# function to change the background color using $rb_value
sub set_bg {
  print "Background value is now: $rb_value\n";
  $mw->configure(-background => $rb_value);
}

We are storing the status of our radiobutton group in $rb_value. We set it to an initial 
value of "red", which happens to match the first radiobutton we are creating. When 
any of the radiobuttons are clicked, including the one currently selected, the subroutine 
set_bg will be called. This subroutine will print the new value of $rb_value and 
then change the background of our main window to that color.

One thing to note: Although we set the default value of our radiobutton group to "red", 
that doesn't mean that the background of the window has been set to red as well. We do 
this by calling the configure command and sending it the value in $rb_value. We 
could also do it by an explicit call to the set_bg routine, or we could have done it 
when we created the MainWindow.

The window we have created looks like Figure 4-11.

Figure 4-11.
Radiobuttons that will change the background color of the window

The best way to understand how this window works is to type in the code and run it. 
This will be true for a lot of the examples shown in this book. When you click on each 
radiobutton, you'll see a strip of the window at the top and bottom change color. You'll 
only see this small strip because we only changed the background of $mw, not of each 
radiobutton or the exit button.

Now that we've seen a basic application of radiobuttons, we can go over each of the 
options.

Radiobutton Options

As with the checkbutton, the following options are the same for any of the three types of 
buttons: -activebackground, -activeforeground, -anchor, -
background, -borderwidth, -cursor, -disabledforeground, -font, -
foreground, -height, -highlightbackground, -highlightcolor, -
highlightthickness, -padx, -pady, -state, -takefocus, -text, -
textvariable, -underline, and -width.



In addition, the following options are the same between checkbutton and radiobutton: -
command, -indicatoron, -image, -selectimage, -bitmap, -
wraplength, -justify, and -selectcolor.

The rest I will discuss because they behave a bit differently because of the context in 
which we are using them.

-activebackground => color
Sets the color the widget's background should be when mouse is over it.

-activeforeground => color
Sets the color the widget's text should be when the mouse is over it.

-anchor => 'n' | 'ne' | 'e' | 'se' | 's' | 'sw' | 'w' | 'nw' | 'center'
Sets the position of the text within the widget. Most noticeable when the widget is 
resized larger.

-background => color
Sets the color of the widget background (behind the text).

-bitmap => bitmapname
Displays this bitmap instead of text.

-borderwidth => amount
Sets the edge thickness of the widget. Also changes the thickness of the indicator. 
Default is 2.

-command => callback
Associates a subroutine to the button. Called when the button is clicked.

-cursor => cursorname
Indicates that the cursor will change to cursorname when it is over the widget.

-disabledforeground => color
Sets the color of the text when -state is 'disabled'.

-font => fontname
Sets the font to use when displaying text in the widget.

-foreground => color
Sets the color of the text.

-height => amount
Sets the height of the button; amount is a valid screen distance.



-highlightbackground => color
Sets the color the highlight rectangle around the widget should be when the widget does 
not have focus.

-highlightcolor => color
Sets the color the highlight rectangle around the window should be when the widget 
does have focus.

-highlightthickness => amount
Sets the thickness of the highlight rectangle.

-image => imgptr
Indicates that an image is displayed instead of text.

-indicatoron => 0 | 1
Indicates the status of the indicator; 0 means indicator is not displayed.

-justify => 'center' | 'left' | 'right'
Sets the justification of the text within the widget.

-padx => amount
Sets the amount of space left between text/indicator and left/right edges of the widget.

-pady => amount
Sets the amount of space left between text/indicator and top/bottom edges of widget.

-relief => 'flat' | 'groove' | 'raised' | 'ridge' | 'sunken' | 
'solid'
Changes the look of the widget edges.

-selectcolor => color
Sets the color the indicator should be when on.

-selectimage => imgptr
Indicates that an image should be displayed instead of text when the button is on. 
Ignored if -image is not used.

-state => 'normal' | 'active' | 'disabled'
Sets the state of the widget. If disabled, it will not respond to any input.

-takefocus => 0 | 1 | undef
Determines whether the widget is available for focus or not.

-text => textstring
Sets the text displayed in the widget.



-textvariable => \$variable
Indicates that the text in $variable is displayed as text in the widget.

-underline => n
Underlines the nth character in the text string.

-value => newvalue
Sets the value assigned to $variable (set with -variable option) when this 
radiobutton is selected (default is 1).

-variable => \$variable
Sets the variable to use when this radiobutton is clicked.

-width => amount
Sets the width of the widget. Can be any valid screen distance.

-wraplength => amount
Indicates that the text will wrap when  it exceeds this amount.

Using the -variable Option

The -variable option will look the same in each radiobutton creation command, 
except logically, we are using it differently. We should have several radiobuttons sharing 
the same $variable instead of each one having their own distinct $variable. The 
example for Figure 4-11 shows how this works.

Setting the Value

With checkbuttons, we had two options, -onvalue and -offvalue, because we had 
to worry about the state of each individual checkbutton. With radiobuttons, we only care 
about the state of the whole group. Each radiobutton should have a different -value to 
it, so a glance at $variable will tell us which radiobutton is selected.

The default -value is 1. (Remember: When you use a group that consists of only one 
radiobutton, that one is always checked.)



To make sure you understand the difference between the -variable option and the -
value option, let's walk through a short example.

$mw->Radiobutton(-text => "Beef", -value => "Beef",
                 -variable => \$entree);
$mw->Radiobutton(-text => "Chicken", -value => "Chicken",
                 -variable => \$entree);
$mw->Radiobutton(-text => "Vegetarian", -
value => "Vegetarian",
                 -variable => \$entree);

Here we have created three radiobuttons that all use the variable $entree to store their 
values in. If the user selects Beef, then $entree will contain the value of "Beef". If 
the user selects Chicken, then $entree will contain the value of "Chicken". Later in 
the program when we build the physical menu for the printer, we can just check to see 
what is in $entree to find out what that user wants for dinner.

Radiobutton Style

Okay, so the -relief option does the same thing it does in a checkbutton. But it is 
worthwhile to show a screen shot of what happens when different relief types are used 
(see Figure 4-12).

Figure 4-12.
Different relief types for a radiobutton

As with the checkbutton, changing -borderwidth can cause the radiobutton to look 
drastically different (see Figure 4-13).

Figure 4-13.
Radiobuttons with -borderwidth of 4

Remember how the indicator completely disappeared in a checkbutton when we used a -
borderwidth of 10? Well, in a radiobutton, it makes it look kind of like a kite (see 
Figure 4-14). You still won't be able to tell which radiobutton is checked or not, so I 
don't recommend using the -borderwidth option.



Figure 4-14.
Radiobuttons with -borderwidth of 10

Configuring a Radiobutton

Just as you can with our other widgets, you can use configure and cget to get or set 
option values for each radiobutton widget. See Appendix A for more details on how to 
use these methods.

Selecting and Unselecting a Radiobutton

A radiobutton also has both select and deselect methods:

$rb->deselect();
$rb->select();

Using select causes the radiobutton to be selected. (Using deselect will cause the 
radiobutton to be unselected. It sets the $variable to an empty string. If you use this 
method, make sure you account for it in any code that evaluates the value of 
$variable). Any command associated via the -command option will also be invoked 
with both select and deselect.

Flashing the Radiobutton

The flash method will flash the radiobutton's background/foreground colors off and 
on, but otherwise, it does nothing interesting:

$rb->flash();

Invoking a Radiobutton

To programmatically select a radiobutton, use the invoke method:

$rb->invoke();

It causes the radiobutton to be selected and will also invoke any callback associated with 
the radiobutton via the -command option. Essentially, it does the same thing it would 
do if you clicked on the radiobutton with the mouse.



Fun Things to Try

• Create a bunch of checkbuttons and a Go button that will report the status of all the 
checkbuttons.

• Make up a survey that uses checkbuttons for questions that have one or more options 
and radiobuttons with only one appropriate choice.

• Create three different groups of checkbuttons: Favorite Color, Favorite Song, and Shoe 
Size. Then create a radiobutton to represent each group. The currently selected 
radiobutton dictates which checkbuttons the user can see and use.

5—
Label and Entry Widgets

There are times you'll want users to type in specific information such as their name, 
address, or even a serial number. The simplest way to do this is to use entry widgets. 
You can use a label widget with an entry to clearly communicate to the user what should 
be typed in the entry. Most often, you'll see the label and entry combination used 
multiple times in a database entry-type window where there are many different pieces of 
information the user must enter.

The Label Widget

So far, all we have talked about are buttons, buttons, and more 

buttons. What if we just want to put some informative text on the screen? The label 
widget does just that. A label is like a button that doesn't do anything. It is a 
noninteractive widget and by default cannot have the keyboard focus (meaning you can't 
tab to it) and it does nothing when you click on it.

The label widget is probably the simplest widget. It is similar to a button in that it can 
show text (or a bitmap), have relief (default is flat), display multiple lines of text, have a 
different font, and so on. Figure 5-1 shows a simple window, with both a button and 
label, created with this code:

use Tk;
$mw = MainWindow->new();
$mw->Label(-text => "Label Widget")->pack();
$mw->Button(-text => "Exit", -command => sub { exit })->pack
();
MainLoop;



Figure 5-1.
A simple window with label and button

Here are some typical uses for a label:

• Put a label to the left of an entry widget so the user knows what type of data is 
expected.

• Put a label above a group of radiobuttons, making their purpose more clear (e.g., 
''Background Color:"). You can do the same thing with checkbuttons if they happen to 
be related or along the same theme.

• Use a label to tell users what they did wrong: "The number entered must be between 10 
and 100." (Typically, you would use a Dialog composite widget to give messages to the 
user like this, but not always.)

• Put an informational line across the bottom of your window. All the other widgets 
would have a mapping that displays a string containing information about that widget.

Creating a Label

The command to create a label is, of course, Label. Here's the basic usage:

$label = $parent->Label( [ option => value ... ] )->pack();

Hopefully, you are starting to see a trend in the creation command. As you might expect, 
when you create a label, you can specify options that will change its appearance and how 
it behaves.

Label Options

The following list is a comprehensive list of options for labels:

-anchor => 'n' | 'ne' | 'e' | 'se' | 's' | 'sw' | 'w' | 'nw' | 'center'
Causes the text to stick to that position in the label widget. This won't be obvious unless 
the label is forced to be larger than standard size.

-background => color
Sets the background color of the label to color.



-bitmap => bitmap
Displays the bitmap contained in bitmap instead of text.

-borderwidth => amount
Changes the width of the edges of the label.

cursor => cursorname
Changes the cursor to cursorname when the mouse is over this widget.

-font => fontname
Indicates that the text in the widget will be displayed with fontname.

-foreground => color
Changes the text of the button (or the bitmap) to be color color.

-height => amount
Sets the height of the label to amount; amount is a valid screen distance.

-highlightbackground => color
Sets the color of the focus rectangle when the widget is not in focus to color.

-highlightcolor => color
Sets the color of the focus rectangle when the widget has focus to color.

-highlightthickness => amount
Sets the width of the focus rectangle. Default is 0 for the label.

-image => imgptr
Displays the image to which imgptr points instead of text.

-justify => 'left' | 'right' | 'center'
Sets the side of the label against which multi-line text will justify.

-padx => amount
Adds extra space inside the edge to the left and right of the label.

-pady => amount
Adds extra space inside the edge to the top and bottom of the label.

-relief => 'flat' | 'groove' | 'raised' | 'ridge' | 'sunken'
Changes the type of edges drawn around the button.

-takefocus => 0 | 1 | undef
Changes the ability of the label to have the focus or not.



-text => text
Displays in the label a text string.

-textvariable => \$variable
Points to the variable containing text to be displayed in the label. Label will change 
automatically as $variable changes.

-underline => n
Causes the nth character to be underlined. Allows that key to invoke the widget when it 
has the focus. Default value is -1 (no character underlined).

-width => amount
Causes the label to be width amount.

-wraplength => amount
Indicates that the text in the label will wrap when it gets longer than amount.

This list briefly describes each option and what it does. Some of the options have 
different defaults for the label widget than we are used to seeing with the buttontype 
widgets, causing the label to behave a bit differently.

How a Label Differs from Other Widgets

When we created button-type widgets, we could either click them with the mouse or tab 
to them and then use the keyboard to cause the button to be pressed. A label widget, on 
the other hand, does not interact with the user. It is there for informational purposes 
only, so there is no -command option. We also can't tab to a label widget because 
nothing would happen.

The default value for the -takefocus option is 0, making the label noninteractive. 
When tabbing between widgets on the screen, the highlight rectangle shows us which 
widget currently has the keyboard focus. Since we don't allow the label to have the focus 
(remember, -takefocus is set to 0), it doesn't make sense to have a visible highlight 
rectangle. The default value for the -highlightthickness option in a label widget 
is 0. You can make a rectangle appear around a label by setting -
highlightthickness to something greater than 0, and setting -
highlightbackground to a color such as blue or red.

The label widget also doesn't have a -state option. Since we shouldn't be able to click 
a label, we should never have to disable it.

Relief



In Figure 5-2, you can see what happens when you change the label's -relief option. 
Notice that the edges of the widget are very close to the text. Unlike a button, you 
usually don't want much extra space around the label (space is controlled by the -padx 
and -pady options). Normally, you want the label widget to sit right next to the widget 
(or widgets) it is describing.

Figure 5-2.
Labels with different relief values. Window on right has a -borderwidth of 10.

You'll notice that I like seeing what widgets look like with the different relief values. 
This sometimes helps determine where the widget ends, especially with widgets that

have a default value of "flat". Also, I often change the relief of different widgets to make 
sure I know which widgets are where on the screen. After creating 10 entries and labels 
with less than creative variable names, it's easy to lose track. Also, changing the 
borderwidth is bound to make that one widget stand out. Of course, I always change the 
relief and borderwidth back to something non-obnoxious before I give the program to 
anyone else to run! Color is also a good way to do a diagnostic message.

Status Message Example

I often use the groove or ridge relief when I'm making a help or status label along the 
bottom of my window. I make a label that is packed with -side => 'bottom' and -
fill => 'x'. There are two different ways you can use a status label:

• Set the variable associated with it so it changes as your program progresses, 
announcing to the user that it is busy, or something is happening.

• Have the help label give information on each of the different widgets in your 
application when it gets the focus, using the bind command.

Both types are demonstrated in the following sample code.

This code shows the "What I'm doing now" type of help label:



$mw->Label(-textvariable => \$message, -borderwidth => 2,
           -relief => 'groove')->pack(-fill => 'x',
                                      -side => 'bottom');
$mw->Text()->pack(-side => 'top',
                            -expand => 1,
                            -fill => 'both');

$message = "Loading file index.html...";
...
$message = "Done";

The label is created across the bottom of the screen. We pack it first because we want it 
to stay on the screen if we resize the window (remember, the last widgets packed will get 
lower priority if the window runs out of room). As the program executes (represented by 
the...), it changes the label accordingly.

This code shows an example of using a widget-helper help label:

$mw->title("Help Label Example");

$mw->Label(-textvariable => \$message)
   ->pack(-side => 'bottom', -fill => 'x');

$b = $mw->Button(-text => "Exit", -command => \&exit)
        ->pack(-side => 'left');
&bind_message($b, "Press to quit the application");

  

$b2 = $mw->Button(-text => "Do Nothing")->pack(-
side => 'left');
&bind_message($b2, "This button does absolutely nothing!");

$b3 = $mw->Button(-text => "Something",
  -command => sub { print "something\n"; })->pack(-
side => 'left');
&bind_message($b3, "Prints the text 'something'");

sub bind_message {
  my ($widget, $msg) = @_;
  $widget->bind('<Enter>', [ sub { $message = $_
[1]; }, $msg ]);
  $widget->bind('<Leave>', sub { $message = ""; });
}



This example is a bit longer because we are using the bind method (the bind method 
is explained in more detail in Chapter 14, Binding Events). For each widget we create, 
we want to associate a help message with it. We do this by adding bindings to each 
widget that change the variable $message to a specified string when the mouse enters 
the widget, and to an empty string if the mouse leaves the widget. We used a subroutine 
to avoid writing the same two bind lines over and over again. Figure 5-3 shows what 
our window looks like with the mouse over the center button.

Figure 5-3.
Window with label across the bottom

Container Frames

In Figure 5-3, you can see that the example text is centered within the label widget. 
When using non-multiple line labels, when you fill the widget across the screen, the text 
remains centered, even if you add the -justify => 'left' option. You can get 
around this by creating a container frame, giving it the desired relief, filling the frame 
across the screen (instead of the label), and placing the label widget within the frame:

$f: = $mw->Frame(-relief => 'groove',

  



                -bd => 2)->pack(-side => 'bottom',
                                -fill => 'x');
$f->Label(-textvariable => \$message,)->pack(-
side => 'left');

This allows the label to grow and shrink within the frame as necessary, while the text 
sticks to the left side. If you've typed this short little example in and played with the 
strings bound to each widget, you might have noticed that the window will resize itself if 
the text assigned to $message is too long to display in the label. This can get annoying 
if your window is fairly small to begin with. There are two ways to deal with this: First, 
you can always use really short text strings, and second, you can tell the window to not 
resize when the label changes size.

The drawbacks with each approach aren't too bad, and which one you pick just depends 
on the application you are working on. If you can make really short sentences that make 
sense, great. Telling the window to not resize is almost as easy, though-it is 
accomplished by adding one line to your program:

$mw->packPropagate(0);

Using packPropagate will cause your window to not resize when a widget is placed 
inside the window (we first talked about packPropagate in Chapter 2, Geometry 
Management). This means that your window might not be showing all your widgets 
right away. You can deal with this by keeping it on until you get all your widgets in it, 
figuring out a good starting size for your window and using $mw->geometry(size) to 
request that size initially. (See Chapter 13, Toplevel Widgets, for info on the geometry 
method.)

Label Configuration

Label is a pretty boring widget, so there are only two methods available to change or get 
information on it: cget and configure. Both methods work for Label the same way 
they work for the Button widget. Please refer to Appendix A for the details on arguments 
and return values.

The Entry Widget

Until now, the only input we know how to get from the user is 

a mouseclick on a button widget (Button, Checkbutton, or Radiobutton), which is 
handled via the -command option. Getting input from a mouseclick is useful, but it's 
also limiting. The entry widget will let the user type in text that can then be used in any 
way by the application. Here are a few examples of where you might use an entry widget:

• In a database form that requires one entry per field (e.g., Name, Last name, Address)



• In a software registration window that requires a serial number

• In a login window that requires a username and password

• In a configuration window to get the name of a printer

• In an Open File window that requires the path and name of a file

Normally, we don't care what users type in an entry widget until they are done typing, 
and any processing will happen "after the fact" when a user clicks some sort of Go 
button. You could get fancy and process each character as it's typed by setting up a 
complicated bind-but it is probably more trouble than it is worth.

The user can type anything into an entry widget. It is up to the programmer to decide if 
the text entered is valid or not. When preparing to use the information from an entry, we 
should do some error checking. If we want an integer and get some alphabetic 
characters, we should issue a warning or error message to the user.

An entry widget is a much more complex widget than it first appears to be. The entry 
widget is really a simplified one-line text editor. Text can be typed in, selected with the 
mouse, deleted, and added. I would classify an entry widget as a middle-of-the-line 
widget. It's more complicated than a button, but much less complicated than the text or 
canvas widgets.

Creating the Entry Widget

No surprises here:

$entry = $parent->Entry( [ option => value ... ])->pack;

When the entry widget is created, it is initially empty of any text, and the insert cursor (if 
the entry had the keyboard focus) is at the far-left side.

Entry Options

The following list contains a short description of each option available for configuring 
an entry widget. Several of them are discussed in more detail later in this chapter.

-background => color
Sets the background color of the entry widget. This is the area behind the text.

-borderwidth => amount
Changes the width of the outside edge of the widget. Default value is 2.

-cursor => cursorname
Changes the cursor to cursorname when it is over the widget.



-exportselection => 0 | 1
If the Boolean value specified is true, any text selected will be exported to the 
windowing system's clipboard.

Fun Things to Try

• Create a bunch of checkbuttons and a Go button that will report the status of all the 
checkbuttons.

• Make up a survey that uses checkbuttons for questions that have one or more options 
and radiobuttons with only one appropriate choice.

• Create three different groups of checkbuttons: Favorite Color, Favorite Song, and Shoe 
Size. Then create a radiobutton to represent each group. The currently selected 
radiobutton dictates which checkbuttons the user can see and use.



5—
Label and Entry Widgets

There are times you'll want users to type in specific information such as their name, 
address, or even a serial number. The simplest way to do this is to use entry widgets. 
You can use a label widget with an entry to clearly communicate to the user what should 
be typed in the entry. Most often, you'll see the label and entry combination used 
multiple times in a database entry-type window where there are many different pieces of 
information the user must enter.

The Label Widget

So far, all we have talked about are buttons, buttons, and more 

buttons. What if we just want to put some informative text on the screen? The label 
widget does just that. A label is like a button that doesn't do anything. It is a 
noninteractive widget and by default cannot have the keyboard focus (meaning you can't 
tab to it) and it does nothing when you click on it.

The label widget is probably the simplest widget. It is similar to a button in that it can 
show text (or a bitmap), have relief (default is flat), display multiple lines of text, have a 
different font, and so on. Figure 5-1 shows a simple window, with both a button and 
label, created with this code:

use Tk;
$mw = MainWindow->new();
$mw->Label(-text => "Label Widget")->pack();
$mw->Button(-text => "Exit", -command => sub { exit })->pack
();
MainLoop;

Figure 5-1.
A simple window with label and button

Here are some typical uses for a label:



• Put a label to the left of an entry widget so the user knows what type of data is 
expected.

• Put a label above a group of radiobuttons, making their purpose more clear (e.g., 
''Background Color:"). You can do the same thing with checkbuttons if they happen to 
be related or along the same theme.

• Use a label to tell users what they did wrong: "The number entered must be between 10 
and 100." (Typically, you would use a Dialog composite widget to give messages to the 
user like this, but not always.)

• Put an informational line across the bottom of your window. All the other widgets 
would have a mapping that displays a string containing information about that widget.

Creating a Label

The command to create a label is, of course, Label. Here's the basic usage:

$label = $parent->Label( [ option => value ... ] )->pack();

Hopefully, you are starting to see a trend in the creation command. As you might expect, 
when you create a label, you can specify options that will change its appearance and how 
it behaves.

Label Options

The following list is a comprehensive list of options for labels:

-anchor => 'n' | 'ne' | 'e' | 'se' | 's' | 'sw' | 'w' | 'nw' | 'center'
Causes the text to stick to that position in the label widget. This won't be obvious unless 
the label is forced to be larger than standard size.

-background => color
Sets the background color of the label to color.

-bitmap => bitmap
Displays the bitmap contained in bitmap instead of text.



-borderwidth => amount
Changes the width of the edges of the label.

cursor => cursorname
Changes the cursor to cursorname when the mouse is over this widget.

-font => fontname
Indicates that the text in the widget will be displayed with fontname.

-foreground => color
Changes the text of the button (or the bitmap) to be color color.

-height => amount
Sets the height of the label to amount; amount is a valid screen distance.

-highlightbackground => color
Sets the color of the focus rectangle when the widget is not in focus to color.

-highlightcolor => color
Sets the color of the focus rectangle when the widget has focus to color.

-highlightthickness => amount
Sets the width of the focus rectangle. Default is 0 for the label.

-image => imgptr
Displays the image to which imgptr points instead of text.

-justify => 'left' | 'right' | 'center'
Sets the side of the label against which multi-line text will justify.

-padx => amount
Adds extra space inside the edge to the left and right of the label.

-pady => amount
Adds extra space inside the edge to the top and bottom of the label.

-relief => 'flat' | 'groove' | 'raised' | 'ridge' | 'sunken'
Changes the type of edges drawn around the button.

-takefocus => 0 | 1 | undef
Changes the ability of the label to have the focus or not.

-text => text
Displays in the label a text string.



-textvariable => \$variable
Points to the variable containing text to be displayed in the label. Label will change 
automatically as $variable changes.

-
underline => 
n
Causes the nth 
character to be 
underlined. 
Allows that key 
to invoke the 
widget when it 
has the focus. 
Default value is -
1 (no character 
underlined).

-
width => 
amount
Causes the 
label to be 
width 
amount.

-
wraplength => 
amount
Indicates that the 
text in the label 
will wrap when it 
gets longer than 
amount.

This list briefly describes each option and what it does. Some of the options have 
different defaults for the label widget than we are used to seeing with the buttontype 
widgets, causing the label to behave a bit differently.

How a Label Differs from Other Widgets

When we created button-type widgets, we could either click them with the mouse or tab 
to them and then use the keyboard to cause the button to be pressed. A label widget, on 
the other hand, does not interact with the user. It is there for informational purposes 
only, so there is no -command option. We also can't tab to a label widget because 
nothing would happen.



The default value for the -takefocus option is 0, making the label noninteractive. 
When tabbing between widgets on the screen, the highlight rectangle shows us which 
widget currently has the keyboard focus. Since we don't allow the label to have the focus 
(remember, -takefocus is set to 0), it doesn't make sense to have a visible highlight 
rectangle. The default value for the -highlightthickness option in a label widget 
is 0. You can make a rectangle appear around a label by setting -
highlightthickness to something greater than 0, and setting -
highlightbackground to a color such as blue or red.

The label widget also doesn't have a -state option. Since we shouldn't be able to click 
a label, we should never have to disable it.

Relief

In Figure 5-2, you can see what happens when you change the label's -relief option. 
Notice that the edges of the widget are very close to the text. Unlike a button, you 
usually don't want much extra space around the label (space is controlled by the -padx 
and -pady options). Normally, you want the label widget to sit right next to the widget 
(or widgets) it is describing.

Figure 5-2.
Labels with different relief values. Window on right has a -borderwidth of 10.

You'll notice that I like seeing what widgets look like with the different relief values. 
This sometimes helps determine where the widget ends, especially with widgets that

have a default value of "flat". Also, I often change the relief of different widgets to make 
sure I know which widgets are where on the screen. After creating 10 entries and labels 
with less than creative variable names, it's easy to lose track. Also, changing the 
borderwidth is bound to make that one widget stand out. Of course, I always change the 
relief and borderwidth back to something non-obnoxious before I give the program to 
anyone else to run! Color is also a good way to do a diagnostic message.

Status Message Example

I often use the groove or ridge relief when I'm making a help or status label along the 
bottom of my window. I make a label that is packed with -side => 'bottom' and -
fill => 'x'. There are two different ways you can use a status label:



• Set the variable associated with it so it changes as your program progresses, 
announcing to the user that it is busy, or something is happening.

• Have the help label give information on each of the different widgets in your 
application when it gets the focus, using the bind command.

Both types are demonstrated in the following sample code.

This code shows the "What I'm doing now" type of help label:

$mw->Label(-textvariable => \$message, -borderwidth => 2,
           -relief => 'groove')->pack(-fill => 'x',
                                      -side => 'bottom');
$mw->Text()->pack(-side => 'top',
                            -expand => 1,
                            -fill => 'both');

$message = "Loading file index.html...";
...
$message = "Done";

The label is created across the bottom of the screen. We pack it first because we want it 
to stay on the screen if we resize the window (remember, the last widgets packed will get 
lower priority if the window runs out of room). As the program executes (represented by 
the...), it changes the label accordingly.

This code shows an example of using a widget-helper help label:

$mw->title("Help Label Example");

$mw->Label(-textvariable => \$message)
   ->pack(-side => 'bottom', -fill => 'x');

$b = $mw->Button(-text => "Exit", -command => \&exit)
        ->pack(-side => 'left');
&bind_message($b, "Press to quit the application");

  



$b2 = $mw->Button(-text => "Do Nothing")->pack(-
side => 'left');
&bind_message($b2, "This button does absolutely nothing!");

$b3 = $mw->Button(-text => "Something",
  -command => sub { print "something\n"; })->pack(-
side => 'left');
&bind_message($b3, "Prints the text 'something'");

sub bind_message {
  my ($widget, $msg) = @_;
  $widget->bind('<Enter>', [ sub { $message = $_
[1]; }, $msg ]);
  $widget->bind('<Leave>', sub { $message = ""; });
}

This example is a bit longer because we are using the bind method (the bind method 
is explained in more detail in Chapter 14, Binding Events). For each widget we create, 
we want to associate a help message with it. We do this by adding bindings to each 
widget that change the variable $message to a specified string when the mouse enters 
the widget, and to an empty string if the mouse leaves the widget. We used a subroutine 
to avoid writing the same two bind lines over and over again. Figure 5-3 shows what 
our window looks like with the mouse over the center button.

Figure 5-3.
Window with label across the bottom

Container Frames

In Figure 5-3, you can see that the example text is centered within the label widget. 
When using non-multiple line labels, when you fill the widget across the screen, the text 
remains centered, even if you add the -justify => 'left' option. You can get 
around this by creating a container frame, giving it the desired relief, filling the frame 
across the screen (instead of the label), and placing the label widget within the frame:



$f: = $mw->Frame(-relief => 'groove',

  

                -bd => 2)->pack(-side => 'bottom',
                                -fill => 'x');
$f->Label(-textvariable => \$message,)->pack(-
side => 'left');

This allows the label to grow and shrink within the frame as necessary, while the text 
sticks to the left side. If you've typed this short little example in and played with the 
strings bound to each widget, you might have noticed that the window will resize itself if 
the text assigned to $message is too long to display in the label. This can get annoying 
if your window is fairly small to begin with. There are two ways to deal with this: First, 
you can always use really short text strings, and second, you can tell the window to not 
resize when the label changes size.

The drawbacks with each approach aren't too bad, and which one you pick just depends 
on the application you are working on. If you can make really short sentences that make 
sense, great. Telling the window to not resize is almost as easy, though-it is 
accomplished by adding one line to your program:

$mw->packPropagate(0);

Using packPropagate will cause your window to not resize when a widget is placed 
inside the window (we first talked about packPropagate in Chapter 2, Geometry 
Management). This means that your window might not be showing all your widgets 
right away. You can deal with this by keeping it on until you get all your widgets in it, 
figuring out a good starting size for your window and using $mw->geometry(size) to 
request that size initially. (See Chapter 13, Toplevel Widgets, for info on the geometry 
method.)

Label Configuration

Label is a pretty boring widget, so there are only two methods available to change or get 
information on it: cget and configure. Both methods work for Label the same way 
they work for the Button widget. Please refer to Appendix A for the details on arguments 
and return values.

The Entry Widget

Until now, the only input we know how to get from the user is 

a mouseclick on a button widget (Button, Checkbutton, or Radiobutton), which is 
handled via the -command option. Getting input from a mouseclick is useful, but it's 
also limiting. The entry widget will let the user type in text that can then be used in any 
way by the application. Here are a few examples of where you might use an entry widget:



• In a database form that requires one entry per field (e.g., Name, Last name, Address)

• In a software registration window that requires a serial number

• In a login window that requires a username and password

• In a configuration window to get the name of a printer

• In an Open File window that requires the path and name of a file

Normally, we don't care what users type in an entry widget until they are done typing, 
and any processing will happen "after the fact" when a user clicks some sort of Go 
button. You could get fancy and process each character as it's typed by setting up a 
complicated bind-but it is probably more trouble than it is worth.

The user can type anything into an entry widget. It is up to the programmer to decide if 
the text entered is valid or not. When preparing to use the information from an entry, we 
should do some error checking. If we want an integer and get some alphabetic 
characters, we should issue a warning or error message to the user.

An entry widget is a much more complex widget than it first appears to be. The entry 
widget is really a simplified one-line text editor. Text can be typed in, selected with the 
mouse, deleted, and added. I would classify an entry widget as a middle-of-the-line 
widget. It's more complicated than a button, but much less complicated than the text or 
canvas widgets.

Creating the Entry Widget

No surprises here:

$entry = $parent->Entry( [ option => value ... ])->pack;

When the entry widget is created, it is initially empty of any text, and the insert cursor (if 
the entry had the keyboard focus) is at the far-left side.

Entry Options

The following list contains a short description of each option available for configuring 
an entry widget. Several of them are discussed in more detail later in this chapter.

-background => color
Sets the background color of the entry widget. This is the area behind the text.

-borderwidth => amount
Changes the width of the outside edge of the widget. Default value is 2.

-cursor => cursorname
Changes the cursor to cursorname when it is over the widget.



-
exportselection => 0 
| 1
If the Boolean value specified 
is true, any text selected will 
be exported to the windowing 
system's clipboard.

-font => fontname
Changes the font displayed in the entry to fontname.

-foreground => color
Changes the color of the text.

-highlightbackground => color
Sets the color the highlight rectangle should be when the widget does not have the 
keyboard focus.

-highlightcolor => color
Sets the color the highlight rectangle should be when the widget does have the keyboard 
focus.

-highlightthickness => amount
Sets the thickness of the highlight rectangle around the widget. Default is 2.

-insertbackground => color
Sets the color of the insert cursor.

-insertborderwidth => amount
Sets the width of the insert cursor's border. Normally used in conjunction with -ipadx 
and -ipady options for the geometry manager.

-insertofftime => milliseconds
Sets the amount of time the insert cursor is off in the entry widget.

-insertontime => milliseconds
Sets the amount of time the insert cursor is on in the entry widget.

-insertwidth => amount
Sets the width of the insert cursor. Default is 2.

-justify => 'left' | 'right' | 'center'
Sets the justification of the text in the entry widget. The default is left.



-relief => 'flat' | 'groove' | 'raised' | 'ridge' | 'sunken' | 
'solid'
Sets the relief of the outside edges of the entry widget.

-selectbackground => color
Sets the background color of any selected text in the entry widget.

-selectborderwidth => amount
Sets the width of the selection highlight's border.

-selectforeground => color
Sets the text color of any selected text in the entry widget.

-show => char
Sets the character that should be displayed instead of the actual text typed.

-state => 'normal' | 'disabled' | 'active'
Indicates the state of the entry. Default is 'normal'.

-takefocus => 0 | 1 | undef
Allows or disallows this widget to have the keyboard focus.

-textvariable => \$variable
Sets the variable associated with the information typed in the entry widget.

-width => amount
Sets the width of the entry in characters.

-xscrollcommand => callback
Assigns a callback to use when scrolling back and forth.

The following options behave as we expect them to, and aren't worth further discussion: 
-background, -cursor, -font, -highlightbackground, -
highlightcolor, -highlightthickness, -foreground, -justify, -
takefocus, and -state. For more detailed information on these how these options 
affect a widget, see Chapter 3.

Assigning the Entry's Contents to a Variable

The -textvariable option lets you know what the user typed in the entry widget:

-textvariable => \$variable



By now, you should be familiar with this option from several of our button examples. 
Any text input into the entry widget will get assigned into $variable. The reverse 
also applies. Any string that gets assigned to $variable will show up in the entry 
widget.

It is important to remember that no matter what the user enters, it will be assigned to this 
variable. This means that even though you are expecting numeric input (e.g., "314"), you 
might get something like "3s14" if the user accidentally (or on purpose!) presses the 
wrong key(s). Before using any information from an entry widget, it's a good idea to do 
some error checking to make sure it's the information you expect or, at the very least, in 
the correct format. Trying to use ''3s14" in an equation would most likely produce 
undesired results.

The other way you can find out what is in the entry widget is by using the get method:

$stuff = $entry->get();

You can use get whether or not you have used the -textvariable option.

Relief

As with all the widgets, you can change the way the edges are drawn by using the -
relief and/or -borderwidth options:

-relief => 'flat' | 'groove' | 'raised' | 'ridge' | 'sunken'
-borderwidth => amount

The default for an entry is 'sunken', which is also a change from what we've seen so 
far. Figure 5-4 shows the different relief types at different -borderwidth values 
incrementing from the default, 2, to 4, to 10.



Figure 5-4.
Different relief types for an entry widget: -borderwidth of 2 (the default), 4, and 10

This is the code snippet that created the five entry widgets and used the relief name as 
the entry widget's text:

foreach (qw/flat groove raised ridge sunken/) {
  $e = $mw->Entry(-relief => $_)->pack (-expand => 1);
  $e->insert ('end', $_);  # put some text in the entry
}

Entry Indexes

In order to manipulate the text in the entry widget, you need some way to identify 
specific portions or positions within the text. The last example actually used an index in 
it. The line $e->insert('end', $_) uses the index 'end'. Just like the insert 
method (covered later in the chapter), all of the methods that require information about a 
position will ask for an index (or two, if the method requires a range of characters). This 
index can be as simple as 0, meaning the very beginning of the text, or something more 
complicated like 'insert'.

Here are the different forms of index specification and what they mean:

n (any integer)
A numerical character position. 0 is the first character in the string. If the entry contains  
the string "My mother hit your mother right on the nose" and we 
used an index of 12, the character pointed to would be the  "t" in the word "hit."

'insert'
Indicates the character directly following the insertion cursor. The insertion cursor is that 
funny-looking little bar thing that shows up inside the entry widget when text is typed. 
You can move it around with the arrow keys or by clicking on a different location in the 
entry widget.

'sel.first'
The first character in the selection string. This will produce an error if there is no 
selection. The selection string is the string created by using the mouse or shift-arrow. 
The selected text is slightly raised from the background of the entry.

If our selected text were the word "nose" in this string (shown here in bold)

My mother hit your mother right on the nose

'sel.first' would indicate the "n".



'sel.last'
The character just after the last character in the selection string. This will also produce an 
error if there is no selection in the entry widget. In the preceding example, this would 
mean the space after the "e" in nose.

'anchor'
The 'anchor' index changes depending on what has happened with the selection in 
the entry widget. By default, it starts at the far left of the entry: 0. It will change if you 
click anywhere in the entry widget with the mouse. The new value will be at the index 
you clicked on. The 'anchor' index will also change when a new  selection is made-
either with the mouse (which means the 'anchor' will be wherever you clicked with 
the mouse) or by Shift-clicking-and 'anchor' will be set to where the selection starts. 
Mostly, this index is used internally, and you'll rarely find a case where it would be 
useful in an application.

'end'
This indicates the character just after the last one in the text string. This value is the 
same as if you specified the length of the entire string as an integer index.

'@x'
This form uses an x coordinate in the entry widget. The character that contains this x 
coordinate will be used. "@0" indicates the leftmost (or first) character in the entry 
widget. This form of index specification is also one you'll rarely use.

Text Selection Options

You can select the text in an entry widget, and several things happen. The indices 'sel.
first' and 'sel.last' point to the beginning and end of the selected text 
respectively. You can also make the selected text available on the clipboard on a Unix 
system by using the -exportselection option:

-exportselection => 0 | 1

The -exportselection option indicates whether or not any selected text in the 
entry will be also be put in the selection buffer in addition to being stored internal to the 
entry as a selection. By leaving this option in its default value, you can paste selected 
text into other applications.

The selected text also has some color options associated with it: -
selectbackground, -selectforeground, and -selectborderwidth:

-selectbackground => color
-selectforeground => color
-selectborderwidth => amount



The -selectbackground and -selectforeground options change the color of 
the text and the area behind the text when that text is highlighted. In Figure 5-5, the word 
"text" is selected.

Figure 5-5.
Entry with -selectbackground => 'red' and -selectforeground => 'yellow'

You can change the width of the edge of that selection box by using -
selectborderwidth. If you left the size of the entry widget unchanged, you 
wouldn't see the effects of it. The entry widget cuts off the selection box. To actually see 
the results of increasing the -selectborderwidth value use the -
selectborderwidth option in the entry command and the -ipadx and -ipady in 
the geometry management command.

Figure 5-6.
Entry widget with -selectborderwidth => 5

You might want to change the -selectborderwidth option if you like a little extra 
space around your text or if you really want to emphasize the selected text. Here's the 
code that generated the entry widget in Figure 5-6:

$e = $mw->Entry(-selectborderwidth => 10)->pack (-
expand => 1,
                                                  -
fill => 'x'
                                                  -
ipadx => 10,
                                                  -
ipady => 10);
$e->insert ('end', "Select the word text in this entry");

Notice the -ipadx and -ipady options in the pack command.



The Insert Cursor

The insert cursor is that funny-looking little bar that blinks on and off inside the entry 
widget when it has the keyboard focus. It will only show up when the entry widget 
actually has the keyboard focus. If another widget (or none) has the keyboard focus, the 
insertion cursor is still there, but it is invisible. In Figure 5-7, the insertion cursor is 
immediately after the second "n" in the word "Insertion."

Figure 5-7.
Default insertion cursor

You can change the thickness, border width, and width of the insertion cursor by using 
these options:

-insertbackground => color
-insertborderwidth => amount
-insertwidth => amount

The -insertwidth option simply changes the width of the cursor so it looks fatter. 
The -insertbackground option changes the overall color of the insertion cursor. 
Figure 5-8 shows an example.

Figure 5-8.
Insertion cursor with -insertbackground => 'green' and -insertwidth => 10

No matter how wide the cursor, it is always centered over the position between two 
characters. The insertion cursor in Figure 5-8 is in the same location it was in Figure 5-7. 
This can look distracting to users and might just confuse them unnecessarily, so you 
most likely won't change the -insertwidth option.

You can give the insertion cursor a 3D look by using -insertborderwidth (as in 
Figure 5-9). Like the -insertwidth option, the -insertborderwidth option 
doesn't have much practical use.



Figure 5-9.
Insertion cursor with -insertborderwidth => 5, -insertbackground => 'green' and

-insertwidth => 10

You can also change the amount of time the cursor blinks on and off by using these 
options:

-insertofftime => time
-insertontime => time

The default value for -insertofftime is 300 milliseconds. The default for -
insertontime is 600 milliseconds. The default values make the cursor's blink stay on 
twice as long as it is off. Any value specified for these options must be nonnegative.

For a really frantic-looking cursor, change both values to something much smaller. For a 
relaxed and mellow cursor, double the default times. If you don't like a blinking cursor, 
change -insertofftime to 0.

Password Entries

There are times when you'll request information from the user that shouldn't be 
displayed on the screen. To display something other than the actual text typed in, use the 
-show option:

-show => char

The char is a single character that will be displayed instead of the typed-in characters. 
For a password entry, you might use asterisks (see Figure 5-10). If you specify a string, 
just the first character of that string will be used. By default, this value is undefined, and 
whatever the user actually typed will show.

Figure 5-10.
Entry displaying a password



When using the -show option, the information stored in the associated $variable 
will contain the real information, not the asterisks.

If you use this feature, the user can't cut and paste the password (regardless of the value 
of -exportselection). If it is cut and pasted to another screen, what the user saw 
on the screen (the asterisks, for example) is actually pasted, not the information behind 
it. You might think that if you did a configure on the entry widget such as $entry-
>configure (-show => "");, the words the user entered would suddenly 
appear. Luckily, this isn't true. A bunch of \x0s (essentially gibberish) show up instead. 
Any variable that uses the -textvariable option and is associated with the entry 
will still contain the correct information. If you perform an $entry->get(), the 
correct (nongibberish) information will be returned as well. The get method is described 
later in this chapter.

Using a Scrollbar

If the information requested from the user could get lengthy, the user can use the arrow 
keys to manually scroll through the text. To make it easier, we can create and assign a 
horizontal scrollbar to the entry widget by using the -xscrollcommand option:

-xscrollcommand => [ 'set' => $scrollbar ]

For now, I'm going to show you the most basic way to assign a scrollbar to the entry 
widget. For more details on the scrollbar see Chapter 6, Scrollbars.

To create a scrollbar and associate it with an entry widget, do this:

$scroll = $mw->Scrollbar(-
orient => "horizontal"); # create scrollbar
$e = $mw->Entry(-xscrollcommand => [ 'set' => $scroll ])->
  pack(-expand => 1, -fill => 'x'); # create entry
$scroll->pack(-expand => 1, -fill => 'x');
$scroll->configure(-
command => [ $e => 'xview' ]); # link them
$e->insert('end', "Really really really long text string");



Figure 5-11 shows the resulting window in two states: on the left, the window as it 
looked when it was created, and on the right, how it looks after scrolling all the way to 
the right.

Figure 5-11.
Scrollbar and an entry widget

You'll very rarely want to use a scrollbar with an entry widget. The scrollbar doubles the 
amount of space taken, and you can get the same functionality without it by simply using 
the arrow keys when the entry widget has the focus. If the user needs to enter multiple 
lines of text, you should use a text widget instead. See Chapter 8, The Text Widget, for 
more information on what it can do.

Configuring an Entry Widget

Both cget and configure are the same for the entry widget as they are for any of the 
other widgets. The default options for the entry widget are listed in Appendix A, 
Configuring Widgets with configure and cget.

Deleting Text

You can use the delete method when you want to remove some or all of the text from 
the entry widget. You can specify a range of indices to remove two or more characters or 
a single index to remove one character:

$entry->delete(firstindex, [ lastindex ])

To remove all of the text, you can use $entry->delete(0, 'end'). If you use 
the -textvariable option, you can also delete the contents by reassigning the 
variable to an empty string: $variable = "".

Here are some other examples of how to use the delete method:

$entry->delete(0);         # Remove only the first character
$entry->delete(1);         # Remove the second character

$entry->delete('sel.first', 'sel.
last')  # Remove selected text
   if $entry->selectionPresent();        # if present



Getting the Contents of an Entry Widget

There are two ways to determine the contents of the entry widget: the get method or the 
variable associated with the -textvariable option. Using the get method, 
$entry_text = $entry->get() will assign the entire contents of the entry 
widget into $entry_text.

Which way you find out the content depends on what you are going to do with the 
information. If you only need to reference it once in order to write it to a file or insert it 
into a database, it doesn't make sense to waste memory by storing it in a variable. Simply 
use the get method in the print statement (or wherever it would be appropriate). If 
the information in the entry widget is going to be a frequently used value such as a 
number for a mathematical calculation, then it makes sense to initially store it in a 
variable for easy access later.

Moving the Insertion Cursor

The icursor method will place the cursor at the specified index:

$entry->icursor(index);

By default, the insertion cursor starts out wherever the last insert took place. To force 
the insertion cursor to show up elsewhere, you could do something like this:

$e_txt = "Entry Text";
$e = $mw->Entry(-textvariable => \$e_txt)->pack();
$e->focus;
$e->icursor(1); # put cursor at this index

We use the focus method (which is not specific to the entry widget; it's generic to all 
widgets) to have the application start with the focus on our entry widget. Then we place 
the insertion cursor between the first and second characters (indices 0 and 1) in the entry. 
See Chapter 16, Methods for Any Widget, for more information on focus.

You might want to move the starting position of your cursor if you are starting the text 
with a specific string. For instance, set $e_txt = "http://" and then do $e-
>icursor('end')

Getting a Numeric Index Value

The index method will convert a named index into a numeric one:

$numindex = $entry->index(index) ;

One of the uses of index is to find out how many characters are in the entry widget: 
$length = $entry->index('end'). Of course, if we used the -textvari-



able option, we could get the same result by using $length = length
($variable).

As an example of using index to find out where the current selection starts, use this 
code:

$startindex = $entry->selectionPresent() ?
                $entry->index('sel.first') : -1;

We discuss selectionPresent later in the chapter.

Inserting Text

The insert function will let you insert any text string at the specified index:

$entry->insert(index, string);

Here's a simple application that uses insert:

#!/usr/bin/perl
use Tk;
$mw = MainWindow->new;
$mw->title("Entry");

$e_txt = "Entry Text";    # Create entry with initial text
$e = $mw->Entry(-textvariable => \$e_txt)->pack(-expand => 1,
                                               -fill => 'x');
$mw->Button(-text = > "Exit",
           -command => sub { exit })->pack(-
side => 'bottom');

# Create a Button that will insert a counter at the cursor
$i = 1;
$mw->Button(-text => "Insert #", -command =>
            sub {
             if ($e->selectionPresent() ) {
               $e->insert('sel.last', "$i"); $i++;
              }
            })->pack;
MainLoop;

We fill the entry widget with "Entry Text" as a default. Then we create two buttons. 
The first one is the obvious Exit button that will allow us to quit the application. The 
second one is a bit more complicated. When pressed, it will check to see if any text is 
selected in the entry $e. If text is selected, it will insert a number that keeps track of the 
number of times we have pressed the Insert # button.



In Figure 5-12, we first selected the word "Entry" and then pressed the Insert # button 
four times. Each time it was pressed, it inserted a number at the index "sel.last". 
This index didn't change in between button presses, so it looks as if we are counting 
backward!

Figure 5-12.
Using the insert method

Scanning Text

Both ScanMark and scanDragto are used within the entry widget. They allow fast 
scrolling within the entry widget. A call to scanMark simply records the x coordinate 
passed in for use later with scanDragto. It returns an empty string.

$entry->scanMark(x);
$entry->scanDragto(x;

The companion function to scanMark is scanDragto, which also takes an x 
coordinate. The new coordinate is compared to the scanMark x coordinate. The view 
within the entry widget is adjusted by 10 times the difference between the coordinates.

Working with the Selection

The selection method has several possible argument lists. If you look at the web-
page documentation, you'll see that you can use:

$entry->selectionAdjust(index).

You might also see the form $entry->selection('adjust', index), where 
'adjust' is the first argument. Be aware that they mean the same thing as you read 
code written by other people.

You can adjust the selection to a specified index by using selectionAdjust

$entry->selectionAdjust(index);

The selected text is extended toward the index (from whichever end is closest).



To clear out the selection:

$entry->selectionClear();

Any selection indicator will be removed from the entry widget, and the indices 'sel.
first' and 'sel.last' are now undefined. The selected text remains.

To reset the 'anchor' index to the specified index, use selectionFrom:

$entry->selectionFrom(index);

This does not affect any currently selected text or the indexes 'sel.first' and 
'sel.last'.

The only way to check to see if there is a selection in the entry widget is to use 
selectionPresent:

if ($entry->selectionPresent()) {
}

It returns a 1 if there is a selection, which means that you can safely use the 'sel.
first' and 'sel.last' indices (if there isn't a selection, an error will be printed 
when you refer to either index). selectionPresent will return a 0 if there is no 
current selection.

You can change the selection range by calling selectionRange:

$entry->selectionRange(startindex, endindex);

The two indices indicate where you would like the selection to cover. If start-index is the 
same or greater than endindex, then the selection is cleared, causing 'sel.first' and 
'sel.last' to be undefined. Otherwise 'sel.first' and 'sel.last' are 
defined to be the same as startindex and endindex respectively.

The selectionTo method will cause the new selection to be set from the current 
'anchor' point to the specified index:

$entry->selectionTo(index);

Changing the View in the Entry Widget

xview is a method that will change its purpose based on what arguments are passed in.



With no arguments, it will return a two-element list containing numbers from 0 to 1. 
These two numbers define what currently is visible in the entry widget. The first number 
indicates how much of the text is off to the left and not visible. If it were .3, then 30% of 
the text is to the left of the entry widget. The second number returned is how much of the 
text is not visible on the left side of the entry widget plus the amount that is visible in the 
widget. In this case, 50% of the text is actually visible in the entry widget (see Figure 5-
13).

($left, $right) = $entry->xview();

When passing an index value to xview, the text in the entry widget will shift position so 
that the text at the specified index is visible at the far-left edge:

$entry->xview(index);

Figure 5-13.
What $left and $right mean

The rest of the forms of xview have to do directly with scrolling (and are explained in 
detail in Chapter 6):

$entry->xviewMoveto(fraction);
$entry->xviewScroll(number, what)

Fun Things to Try

There aren't too many exciting things you can do with label widgets, but it's a good idea 
to practice using the entry widget.

• Create an entry and label combination and display the same information in both. When 
you put something new in the entry, the label should display it simultaneously.

• Create a database entry form, labeling each entry with Name, Address, City, State, Zip, 
Phone. Add an Update button that will perform some error checking on the information 
in the entry widgets based on the information expected.



• Create a window with an entry widget and several buttons, each of which does 
something different to the entry widget. Some suggestions: Clear, Delete Selection, or 
Default (replace with original string).

• Create an entry widget and type something in it. Put a button in the window that will 
reverse the string in the entry widget when pressed.



6—
Scrollbars

Scrollbars are used with widgets when there is more to see than can be shown at once. 
One or two scrollbars allow a user to scroll a widget's contents horizontally and/or 
vertically. You've seen a scrollbar on many different types of applications. Every major 
word processor has scrollbars. A drawing program has scrollbars. Even your web 
browser has scrollbars. This chapter will show you how you can use scrollbars with 
certain Perl/Tk widgets.

Defining Scrollbar Parts

Figure 6-1 shows all the different parts of a scrollbar and their names.

Figure 6-1.
Different parts of a scrollbar

The trough is the sunken part between the two arrows. It is divided into two parts, 
trough1 and trough2, by the slider. The slider is the rectangle that indicates 
how much of the window is available for scrolling. If you were in the middle of the list, 
you would see the slider rectangle in the center of the trough with space on either side of 
it. The arrows on either end are called arrow1 and arrow2. If the scrollbar were 
vertical (rotated 90 degrees clockwise), arrow1 would be the top arrow.

Clicking on either arrow will move the information in the associated widget one unit at a 
time. What the unit is depends on what type of widget the scrollbar is associated with. 
With an entry widget, the units are characters. With a listbox widget and a vertical 
scrollbar, the units are lines. Clicking in the trough on either side of the slider will page 
the information in the widget in that direction. You can also click directly on the slider 
and, holding the mouse button down, move it directly.

Scrollbars can be horizontal or vertical. Typically, they reside on the bottom and/or to 
the right of the widget they are scrolling, but not always.



Some of the Perl/Tk widgets that can be configured for use with scrollbars are text, 
listbox, canvas, entry, ghostview, hlist, and tiler. Only the first four widgets (text, 
listbox, canvas, entry) are covered in this book. See Figures 6-2 through 6-5 for 
examples of scrollbars with each of the covered widgets.

Figure 6-2.
Entry widget with a scrollbar

Figure 6-3.
Listbox widget with scrollbar

There are two ways to create and configure scrollbars for use with widgets. You can use 
the Scrollbar widget creation command, or you can use the Scrolled method to 
create the widget and associated scrollbars. Both have their advantages and 
disadvantages. Using Scrolled is much less work and requires less coding, but it 
won't let you do anything fancy like associate the same scrollbar with two different 
widgets. Creating the scrollbar widgets yourself takes more code, but you can do much 
fancier things with them since you'll have direct control over where



Figure 6-4.
Text widget with scrollbar. Text widget is displaying Scrollbar.pm file

Figure 6-5.
Canvas widget with scrollbars

they go and which widget(s) they are associated with. This chapter will cover both 
methods of creating scrollbars.

The Scrolled Method

To create a widget and scrollbars at the same time, use the Scrolled method. 
Scrolled returns a pointer to the widget created. It is the easiest way to add scrollbars 
to a scrollable widget. The method creates a frame, which contains the widget and 
scrollbar(s). You create them all in one command.



The usage for the Scrolled method is:

$widget = $parent->Scrolled('Widget',
                             -scrollbars => 'string' [, options ]);

The first argument is the widget to create, such as "Listbox" or "Canvas". The other argument 
you'll need to use is the -scrollbars option, which takes a string that tells it which scrollbars to 
create and where to put them.

The possible values for -scrollbars are "n", "s", "e", "w", or "on", "os", "oe", "ow", or 
some combination of those that combines n or s with an e or w. The "n" means to put a horizontal 
scrollbar above the widget. An "s" means to put a horizontal scrollbar below the widget. The "e" 
means to put a vertical scrollbar to the right of the widget. The "w" means to put a vertical scrollbar to 
the left of the widget.

You can have a maximum of two scrollbars for each widget. For instance, we can create one scrollbar 
on the "n" side of the widget. It is possible to use "nw" to create two scrollbars, one on the top and one 
on the left of the widget. It is not legal to use "ns" because "n" and "s" scroll in the same direction.

The "o" in front of the direction makes that scrollbar optional. Optional scrollbars will only display 
when the size of the widget makes it necessary to scroll the information in the widget. Always list the 
north or south value first (if you use either) to avoid complaints from the subroutine. Here are some 
examples to make this clearer:

# Create optional scrollbar east (to the right) of widget
$lb = $mw->Scrolled("Listbox", -scrollbars => 'oe')->pack;

# Create scrollbars to south (below) and east (to the right) of widget
$lb = $mw->Scrolled("Listbox", -scrollbars => 'se')->pack;

# Create optional scrollbars south (below) and east (right) of widget
$lb = $mw->Scrolled("Listbox", -scrollbars => 'osoe')->pack;

# Create scrollbars to the north (above) and west (to the left) of widget
$lb = $mw->Scrolled("Listbox", -scrollbars => 'nw')->pack;

Configuring the Scrollbar(s) Created with Scrolled

Any other options sent with the Scrolled method will configure only the widget created. If you need 
to configure the scrollbars, use the Subwidget method from the widget reference. The Subwidget 
method can be used because a Scrolled widget is really a composite widget. Composite widgets are 
covered in Chapter 15, Composite Widgets.



To turn the background of your horizontal scrollbar green, use this code:

$lb->Subwidget("xscrollbar")->configure(-background => "green");

To configure a vertical scrollbar, use "yscrollbar" in place of "xscrollbar". If you try to 
configure a scrollbar that you didn't create (for instance, you used -scrollbars => "e" and 
tried to configure the "xscrollbar"), nothing will happen.

To configure just the widget, you can use $widget->configure after calling Scrolled(), 
or you can use:

$widget->Subwidget("widget")->configure(...);

Using Subwidget this way is silly because you can just use $widget. The "widget" string is 
the same as the first argument sent to Scrolled, except it's all lowercase. For instance, in the 
preceding example we called Scrolled with "Listbox", but we would use "listbox" with 
the Subwidget method.

The Scrollbar Widget

 Instead of automatically creating one or more scrollbars with 

the Scrolled method, you can use the Scrollbar widget method and perform the 
configuration yourself. It is better to create and configure your own scrollbars when you need to 
do something nonstandard, such as having one scrollbar scroll two listboxes.

Creating a Scrollbar Widget

To create the scrollbar, invoke the Scrollbar method from the parent widget. It returns a 
reference to the newly created scrollbar that you can use for configuration:

$scrollbar = $mw->Scrollbar([ options ...])

There are at least two other things you need to do to get a scrollbar working with another widget. 
First, create the to-be-scrolled widget and use the scrollbar with its -xscrollcommand or -
yscrollcommand option. Then configure the scrollbar so that it knows to talk to that widget. 
Here's an example that creates a listbox widget (don't worry if you don't quite follow all of this 
now; I just want to show a complete example before we go on to talk about all the options):

# Create the vertical scrollbar
$scrollbar = $mw->Scrollbar();
$lb = $mw->Listbox(-yscrollcommand => ['set' => $scrollbar]);
#Configure the scrollbar to talk to the listbox widget
$scrollbar->configure(-command => ['yview' => $lb]);

#Pack the scrollbar first so that it doesn't disappear when we resize
$scrollbar->pack(-side => 'right', -fill => 'y');
$lb->pack(-side => 'left', -fill => 'both');



Creating the scrollbar is pretty simple; we want all the default options for it. As we create the 
listbox, we have to set up a callback so the listbox can communicate with the scrollbar when the 
contents of the listbox move around. Our scrollbar is vertical, so the -yscrollcommand 
option has the set command and our scrollbar assigned to it (if it is horizontal, use -
xscrollcommand). When the contents of the listbox are scrolled by the user without using 
the scrollbar, the listbox will alert the scrollbar by invoking $scrollbar->set (...).

The line $scrollbar->configure(-command => ['yview' => $lb]) does 
almost the opposite; it configures the scrollbar to communicate with the listbox. When the user 
clicks on the scrollbar, the scrollbar will invoke $lb->yview(...) to tell the listbox how to 
change the view of the contents. We use the "y" version of the view command because this is a 
vertical scrollbar.

There is more information on the details of yview in "How the Scrollbar Communicates with 
Other Widgets," later in this chapter. The last two lines in this example pack the scrollbar and 
the listbox in the window so that the scrollbar is the same height as the listbox and lies to the 
right of the listbox.

Always pack your scrollbars first within the window or frame. This allows the scrollbars to 
remain visible when the user resizes the window smaller. It will then resize the listbox (or other 
widget) but leave the scrollbars visible on the edges of the screen.

Now that we've seen a complete example of how to create a scrollbar and how to set up the 
widget it will scroll, we can go over the options with an idea of how they are used.

Scrollbar Options

This list contains the options available with a scrollbar, and their quick definitions. The 
important options are discussed in more detail later in this chapter.

-activebackground => color
Sets the color the scrollbar should be when the mouse pointer is over it.

-
activerelief => 'flat' | 'groove' | 'raised' | 'ridge' | 'sunken'
The -activerelief option determines how active elements are drawn. The elements in 
question are arrow1, arrow2, and the slider.

-background => color
Sets the background color of the scrollbar (not the trough color).

-borderwidth => amount
Sets the width of the edges of the scrollbar and the arrow1, arrow2, and slider elements.



-command => callback
Sets the callback that is invoked when the scrollbar is clicked.

-cursor => cursorname
Sets the cursor that is displayed when the mouse pointer is over the scrollbar.

-elementborderwidth => amount
Sets the width of the borders of the arrow1, arrow2, and slider elements.

-highlightbackground => color
Sets the color the highlight rectangle around the scrollbar widget should be when it does not have the 
keyboard focus.

-highlightcolor => color
Sets the color the highlight rectangle around the scrollbar should be when it does have the keyboard 
focus.

-highlightthickness => amount
Sets the thickness of the highlight rectangle. Default is 2.

-jump => 0 | 1
Indicates whether or not the scrollbar will jump scroll.

-orient => "horizontal" | "vertical"
Sets the orientation of the scrollbar.

-
relief => 'flat' | 'groove' | 'raised' | 'ridge' | 'sunken' | 'solid'
Changes the edges of the widget.

-repeatdelay => time
Sets the number of milliseconds required to hold down an arrow before it will auto-repeat. Default is 
300 ms.

-repeatinterval => time
Sets the number of milliseconds in between auto-repeats. Default is 100 ms.

-takefocus => 0 | 1 | undef
Controls whether the scrollbar can obtain the keyboard focus.

-troughcolor => color
Changes the color of the trough (both trough1 and trough2).

-width => amount
Sets the width of the scrollbar.

Scrollbar Colors



Within the scrollbar, we have a new part of the widget called a trough. This trough gets its own 
coloring through the -troughcolor option. The trough is considered the part behind the arrows 
and slider. Figure 6-6 shows an example.

Figure 6-6.
Scrollbar with -troughcolor set to 'green'

The background of the scrollbar consists of the arrows, the slider, and a small portion 
around the outside of the trough. You change the color of the background by using the -
background option. The -activebackground option controls the color that is 
displayed when the mouse cursor is over one of the arrows or the slider. Figure 6-7 
shows two examples of -background; the second window uses both -background 
and -troughcolor.

Figure 6-7.
Examples of -background option

Scrollbar Style

The -relief and -borderwidth options affect both the outside edges of the 
scrollbar and the arrow1, arrow2, and slider elements. This is similar to how the 
checkbutton and radiobutton widgets are affected by the -relief and -
borderwidth options. See Figure 6-8 for a screen shot of different values for these 
two options.

Figure 6-8.
First row shows different relief values; second row different relief values with

-borderwidth => 4



The -activerelief option affects the decoration of three elements-arrow1, arrow2, 
and the slider-when the mouse cursor is over them. The -elementborderwidth 
also affects the same three elements: arrow1, arrow2, and the slider. The width of 
the edges of these elements can be changed with this option. The -borderwidth 
option also changes the width of these elements but also changes the width of the edges 
of the widget. Notice in Figure 6-9 how the edges of the scrollbar remain at a width of 2.

Figure 6-9.
Example of -elementborderwidth set to 4

The -width of the scrollbar is the distance across the skinny part of the scrollbar, not 
including the borders. Figure 6-10 demonstrates how the scrollbar changes when you 
alter the -width.

Figure 6-10.
Top scrollbar has default width of 15, bottom scrollbar has width of 20

Scrollbar Orientation

As mentioned earlier, a scrollbar can be vertical or horizontal. The default for a scrollbar 
is 'vertical'. To change this, use the -orient option:

$scrollbar = $mw->Scrollbar(-orient => 'horizontal');

You could also use -orient => 'vertical', but since this is the default, it is not 
necessary.

Using the Arrows and Slider

When you click on one of the arrows in a scrollbar, you cause the slider to move in that 
direction by one unit. If you continue to hold the mouse button down, after a bit of a 
delay, the slider will auto-repeat that movement. The amount of time you must wait 
before the auto-repeat kicks in is determined by the -repeatdelay option. The 
default is 300 milliseconds.

Once you have held the mouse button down long enough to start auto-repeating, there is 
a short delay between each time it repeats the action. This delay is controlled by the -
repeatinterval option. The default for -repeatinterval is 100 milliseconds.



Normally, when you click on the slider and move it around, the data within the widget 
will move accordingly. This is because the scrollbar is updating the widget continuously 
as you move the slider. To change the scrollbar so that it will only update the widget 
when you let go of the slider, use the -jump option and set it to 1. The default for -
jump is 0. You would most likely want to use -jump => 1

when your scrolled widget contains a large amount of data, and waiting for the screen to 
update while you slide through it would make the application seem slow.

Assigning a Callback

When you create a scrollbar, you tell it which widget to talk to and which method in that 
widget to call by using the -command option with an anonymous list. The list contains 
the name of the method to call and the widget from which that method should be 
invoked. In this code snippet, we can see that we want to use the yview command to 
scroll the widget $lb (a listbox):

$scrollbar->configure(-command => ['yview' => $lb])

Now when the scrollbar gets clicked on by the user, it will invoke $lb->yview. We 
know that the scrollbar associated with $lb is vertical because it uses the yview 
command. For a horizontal scrollbar, use xview. Both yview and xview tell the 
widget to move the widget contents an amount that is determined by where the user 
clicked in the scrollbar. The yview and xview methods are covered in the next section.

How the Scrollbar Communicates with Other Widgets

As described earlier, you use the -command option with the scrollbar so it knows which 
widget and method to use when the scrollbar is clicked. The command should be xview 
for horizontal scrollbars and yview for vertical scrollbars. You can call these methods 
yourself, but most of the time you won't want to.

Both xview and yview take the same type of arguments. Where the user clicked in the 
scrollbar determines the value used, but the value will always be sent as one of the 
following forms:

$widget->xviewMoveto(fraction); # or
$widget->yviewMoveto(fraction);

This form is used when the user clicks on the slider, moves it around, and drops it 
again. The argument is a fraction, a real number from 0 to 1 that represents the first 
part of the data to be shown within the widget. If the user moved the slider all the 
way to the top or left of the scrollbar, the very first part of the data in the widget 
should be seen on the screen. This means the argument should be 0:

$widget->xviewMoveto(0);

If the slider were moved to the center of the scrollbar, the argument is 0.5:



$widget->xviewMoveto(0.5);

$widget->xviewScroll(number, "units"); # or
$widget->yviewScroll(number, "units");

This form is used when the user clicks on one of the arrow elements in the 
scrollbar. The widget should move its data up/down or left/right unit by unit.

The first argument is the number of units to scroll by. The value for number can be 
any number, but it's typically either 1 or -1. A value of 1 means that the next unit of 
data on the bottom or right of the widget becomes visible (scrolling one unit of data 
off the left or top). A value of -1 means that a previous unit of data will become 
visible in the top or right of the widget (one unit will scroll off the bottom or right 
of the widget). For example, every time the user clicks on the down arrow in a 
vertical scrollbar associated with a listbox, a new line shows up at the bottom of the 
listbox.

The second argument is the string "units". What a unit is depends on the widget. 
In a listbox, a unit would mean one line of text. In an entry widget, it would be one 
character.

Here are some example calls:

# User clicked down arrow
$listbox->yviewScroll(1, "units");

# User clicked up arrow
$listbox->yviewScroll(-1, "units");

# User clicked right arrow
$entry->xviewScroll(1, "units");

$widget->xviewScroll(number, "page"); # or
$widget->yviewScroll(number, "page");

This form is exactly like our previous one except the last argument is "page" 
instead of "units". When users click in the trough area of the scrollbar (between 
the slider and arrows), they expect to see the data move by an entire page.

The type of page is defined by the widget being scrolled. For example, a listbox 
would page up/down by the number of lines shown in the listbox. It would page 
right/left by the width of the listbox.

Scrollbar Configuration

You can get and set any of the options available with a scrollbar by using cget and 
configure. See Appendix A, Configuring Widgets with configure and cget, for 
complete details on these methods.



Defining What We Can See

The set method, which we tell the scrolled widget about when we create it, defines 
what is visible. In our first example, we created a listbox and told it to use our scrollbar 
and the set method:

$scrollbar = $mw->Scrollbar();   # Vertical scrollbar
$lb = $mw->Listbox(-
yscrollcommand => ['set' => $scrollbar ]);

When the widget invokes the set command, it sends two fractions (first and last) as the 
arguments:

$scrollbar->set (first, last);

This will change the position in the data that we are seeing. The arguments first and last 
are real numbers between 0 and 1. They represent the position of the first data item we 
can see and the position of the last data item we can see, respectively. If we can see all of 
the data in our widget, they would be 0 and 1. The first value gets larger as more data is 
scrolled off the top, and the last value gets smaller as more data is scrolled off the 
bottom. You will probably never find a case in which to call set yourself, so just try to 
get an idea of what it does behind the scenes.

Figure 6-11.
View of data through widget by set method (assumes vertical scrollbar)

Figure 6-11 shows a hypothetical document that we are viewing with a vertically 
scrolled widget. The dashed rectangle represents the view of what we can currently see 
within the widget. When the widget calls set, it determines how far into the document 
the first viewable item is and sends this as the first argument. In Figure 6-11, this would 
be 10%, or 0.10. The second argument to set() is how far into the document the last 
viewable item is. From our example, this would be 80%, or 0.80.



Getting the Current View

The get method returns in a list whatever the latest arguments to set were:

($first, $last) = $scrollbar->get();

This data can change if the widget requests a change in position of the data or if the 
scrollbar requests a change.

Activating Elements in a Scrollbar

To determine which part of the scrollbar is active, you can use the activate method:

$elem = $scrollbar->activate();

The value returned is an empty string (which means no element is currently active) or 
the name of the currently active element. The possible elements are "arrow1", 
"arrow2", or "slider".

If you sent an element name as the argument to activate, that element will change to 
the color and relief specified by the -activebackground and -activerelief 
options. The element will continue to display that color and relief until an event (such as 
the mouse cursor passing over the element) causes it to change. Contrary to what you 
might believe, using activate does not invoke that element. Here are some examples:

$scrollbar->activate("arrow1");
$scrollbar->activate("arrow2");
$scrollbar->activate("slider");

There is no activate for "trough" because the trough doesn't change color when 
the mouse is over it.

Calculating Change from Pixels

The number returned by delta indicates how much the scrollbar must change to move 
the slider deltax pixels for horizontal scrollbars and deltay pixels for vertical scrollbars. 
(The inapplicable argument is ignored for each type of scrollbar).

$amount = $scrollbar->delta(deltax, deltay)

The amount returned can be positive or negative.

Locating a Point in the Trough

Given a point at (x,y), fraction will return a real number between 0 and 1 indicating 
where that coordinate point would fall in the trough of the scrollbar:

$loc = $scrollbar->fraction(x, y);



The point (x,y) must be relative to the scrollbar. Figure 6-12 shows the location of three 
possible results from fraction: 0.0, 0.5 and 1.0.

Figure 6-12.
Example of values returned by the fraction method

Identifying Elements

The identify method returns a string containing the name of the element located at 
the x,y coordinate:

$elem = $scrollbar->identify(x,y);

If x,y is not in any element, the string will be empty. Both x and y must be pixel 
coordinates relative to the scrollbar. The possible element names are "arrow1", 
"arrow2", "trough", and "slider".

Examples

These examples are included to hopefully clear up any confusion about how to use 
scrollbars in the real world. Each example uses the Scrolled method if possible; then 
we do the same thing manually. We haven't covered all the widget types we are using 
here, but we aren't doing anything fancy with them either. If you see an option or method 
you don't recognize, just see the appropriate chapter for that widget to learn more.

Entry Widget

The entry widget can only be scrolled horizontally. The entry can only contain one line 
of text at most, so a vertical scrollbar would do nothing. Using Scrolled to create a 
scrolled entry widget is easy:

$mw->Scrolled("Entry", -scrollbars => "s", -width => 30)-
>pack();

If you want to make the scrollbar only show when the data in the entry widget requires 
it, use -scrollbars => "os". Using the Scrollbar method is a bit more work:

$scrollbar = $mw->Scrollbar(-orient => 'horizontal');
$entry = $mw->Entry(-width => 30,
                    -xscrollcommand => ['set', $scrollbar]);
$scrollbar->configure(-command => ['xview', $entry]);
$scrollbar->pack(-side => 'bottom', -fill => 'x');
$entry->pack(-side => 'bottom', -fill => 'x');

Both will create an entry that looks similar to the one in Figure 6-13.



Figure 6-13.
Entry widget with a scrollbar

Listbox, Text, and Canvas Widgets

A listbox widget can be scrolled both horizontally and vertically, although you might not 
always want to use both options. If you know how wide your data is going to be and the 
window can accommodate it, a horizontal scrollbar is unnecessary. Our first example 
uses the Scrolled method and creates two scrollbars:

$mw->Scrolled("Listbox", -scrollbars => "se",
              -width => 50, -height => 12)->pack();

To do the same thing manually, we need to use Scrollbar to create two scrollbars 
and configure them to work with the widget:

$f = $mw->Frame()->pack(-side => 'top', expand => 1, -
fill => 'both');
$xscroll = $f->Scrollbar(-orient => 'horizontal');
$yscroll = $f->Scrollbar();
$lb = $f->Listbox(-width => 50, -height => 12,
                   -yscrollcommand => ['set', $yscroll],
                   -xscrollcommand => ['set', $xscroll]);
$xscroll->configure(-command => ['xview', $lb]);
$yscroll->configure(-command => ['yview', $lb]);
$xscroll->pack(-side => 'bottom', -fill => 'x');
$yscroll->pack(-side => 'right', -fill => 'y');
$lb->pack(-side => 'bottom', -fill => 'both', -expand => 1);

As you can see, using Scrolled saves a lot of extra work. In Figure 6-14, we see a 
listbox with two scrollbars, one on the south and one on the east. This window was 
created using Scrolled. There is a subtle difference: the small square of open space 
where the two scrollbars meet in the southeast corner. When we create the scrollbars 
ourselves, we don't get that small space (whichever scrollbar gets packed first takes it).

Scrolled text and canvas widgets are created the same exact way a scrolled listbox 
widget is created, so we won't bother repeating the same code again.

One Scrollbar, Multiple Widgets



There are times when you want to use one scrollbar with more than one widget. When 
the user clicks on the scrollbar, it should scroll all the widgets in the same direction at 
the same time. For this example, we will create three listboxes, each

Figure 6-14.
A listbox with two scrollbars

with eleven items. There will be one scrollbar that will scroll all three lists when the user 
clicks on it. When the user tabs to the listboxes and scrolls up and down by using the 
arrow keys or the pageup/pagedown keys, the other listboxes are also scrolled. Figure 6-
15 shows what the window looks like.

Figure 6-15.
A window with three listboxes all controlled by the same scrollbar

The code for Figure 6-15 is as follows:



use Tk;

$mw = MainWindow->new();
$mw->title("One Scrollbar/Three Listboxes");
$mw->Button(-text => "Exit",
            -command => sub { exit })->pack(-
side => 'bottom');

$scroll = $mw->Scrollbar();
# Anonymous array of the three listboxes
$listboxes = [ $mw->Listbox(), $mw->Listbox(), $mw->Listbox
() ];

  

# This method is called when one listbox is scrolled with the keyboard
# It makes the scrollbar reflect the change, and scrolls the other lists
sub scroll_listboxes {
  my ($sb, $scrolled, $lbs, @args) = @_;
  $sb->set(@args); # tell the scrollbar what to display
  my ($top, $bottom) = $scrolled->yview();
  foreach $list (@$lbs) {
    $list->yviewMoveto($top); # adjust each lb
  }
}

# Configure each listbox to call &scroll_listboxes
foreach $list (@$listboxes) {
  $list->configure(-yscrollcommand => [ \&scroll_listboxes, $scroll,
                                       $list, $listboxes ]);
}

# Configure the scrollbar to scroll each listbox
$scroll->configure(-command => sub { foreach $list (@$listboxes) {
                                       $list->yview(@_);
                                      }});

# Pack the scrollbar and listboxes
$scroll->pack(-side => 'left', -fill => 'y');
foreach $list (@$listboxes) {
  $list->pack(-side => 'left');
  $list->insert('end', "one", "two", "three", "four", "five", "six",
                       "seven", "eight", "nine", "ten", "eleven");
}

MainLoop;



In order to connect multiple widgets to one scrollbar, we first use the Scrollbar command to create 
the scrollbar. Then we configure the scrollbar so it calls yview for each of the listboxes we are 
scrolling (the listboxes are kept in an anonymous array so that all methods can reference them easily). 
The other part that makes the listboxes truly connected is to configure each listbox to call a special 
subroutine that scrolls all three listboxes in addition to adjusting the scrollbar. Normally, -
yscrollcommand would only have ['set', $lb] assigned to it. Instead, we use a callback to 
\&scroll_listboxes and call set from within that subroutine.

Fun Things to Try

• Create two of each scrollable widget type, make one Scrolled, and create your own scrollbars for 
the second of each type. This will show you which method you prefer to use.

• Create two scrollbars and attach them to the same widget (the opposite of our one scrollbar/multiple 
widgets example). For instance, create a listbox with a scrollbar on the left and one on the right, both 
of which will scroll the listbox vertically.



7—
The Listbox Widget

A listbox widget is designed to list strings of text, one text string per 

line. You can then select a line or multiple lines from the listbox to perform other 
operations on. Some examples of things to place inside a listbox:

• An alphabetized list of cities.

• A list of servers to log in to. Select a server name and then enter a name and password 
into some entry widgets. Click the OK button to log in.

• A list of operating systems.

• A list of payment options: MasterCard, American Express, Visa, Check, Cash.

A listbox is ideal for replacing radiobuttons or checkboxes that have become too 
numerous to display on the screen. Usually 3 or 4 checkbuttons or radiobuttons aren't a 
big deal, but if you had to try to display 10 at a time, the window could get a little 
crowded. A group of radiobuttons can be replaced by a listbox that limits the number of 
selections to one and has a default selection. A bunch of checkbuttons can be replaced by 
a listbox that allows multiple selections.

Creating and Filling a Listbox

To create a listbox widget, use the Listbox method on the parent of the listbox:

$lb = $parent->Listbox( [ options...] )->pack;

The Listbox method returns a reference to the listbox that has been created. You can 
now use this reference to configure the listbox, insert items into the listbox,



and so on. The most common thing to do after creating a listbox is to use the insert 
method to insert items into it:

$lb->insert('end', @listbox_items);
# or...
$lb->insert('end', $item1, $item2, $item3);

The insert method takes an index value as the first argument; the rest of the 
arguments will be considered items to be put into the listbox. Listbox indexes are similar 
to the entry widget indexes except they refer to lines instead of individual characters.

We could use a listbox instead of radiobuttons to select our window background color 
(see Chapter 4, Checkbuttons and Radiobuttons, for the radiobutton example). The 
listbox code looks like this:

$lb = $mw->Listbox(-selectmode => "single")->pack();
$lb->insert('end', qw/red yellow green blue grey/);
$lb->bind('<Button-1>',
          sub { $lb->configure(-background =>
                              $lb->get($lb->curselection
() ) );
              });

The -selectmode option limits the number of selections to one. We insert some 
colors to choose from. There is no -command option for a listbox, so we use bind (see 
Chapter 14, Binding Events) to have something happen when the user clicks on an item 
with the left mouse button. Using the listbox methods get and curselection, we 
determine which item the user clicked on and then set the background of the listbox to 
that color. There are only five colors in our example here; you can use more colors and 
add a scrollbar to make it more useful. You can add a scrollbar by changing the line with 
Listbox in it:

$lb = $mw->Scrolled("Listbox", -scrollbars => "e",
                    -selectmode => "single")->pack();

All the other lines in the program remain unchanged. For more information about adding 
and utilizing scrollbars, see Chapter 6, Scrollbars. Now that we've looked at an example, 
let's go over the options and methods that let us use the listbox the way we want to.

Listbox Options

As with any of the widgets, you can configure the listbox using options. The standard 
widget options are -cursor, -font, -height, -highlightbackground, -
highlightcolor, -highlightthickness, -takefocus, -width, -
xscroll-command, and -yscrollcommand. The options that behave the same for 
each widget will only be listed in the following list. Those options specific to listbox 
widgets will be discussed later in this chapter.



-background => color
Sets the color of the area behind the text.

-borderwidth => amount
Sets the width of the edges of the widget. Default is 2.

-cursor => cursorname
Sets the cursor to display when the mouse is over the listbox.

-exportselection => 0 | 1
Determines if the current listbox selection is made available for the X selection as well. 
If set to 1, prevents two listboxes from both having selections at the same time.

-font => fontname
Sets the font of any text displayed within the listbox.

-foreground => color
Sets the color of nonselected text displayed in the listbox.

-height => amount
Sets the height of the listbox.

-highlightbackground => color
Sets the color the highlight rectangle should be when the listbox does not have the 
keyboard focus.

-highlightcolor => color
Sets the color the highlight rectangle should be when the listbox does have the keyboard 
focus.

-
highlightthickness => 
amount
Sets the thickness of the 
highlight rectangle. Default is 
2.

-relief => 'flat' | 'groove' | 'raised' | 'ridge' | 'sunken' | 
'solid'
Sets the relief of the edges of the listbox.

-selectbackground => color
Sets the color behind any selected text.

-selectborderwidth => amount
Sets the width of the border around any selected text.



-selectforeground => color
Sets the color of the text in any selected items.

-selectmode => "single" | "browse" | "multiple" | "extended"
Affects how many items can be selected at once; also affects some key/mouse bindings 
for the listbox (such as Shift-select). Default is "browse".

-setgrid => 0 | 1
Turns gridding off or on for the listbox. Default is 0.

-takefocus => 0 | 1 | undef
Determines the ability of the widget to get the keyboard focus or not. 0 means never, 1 
means always, undef means dynamic decision.

-width => amount
Sets the width of the listbox in characters. If amount is 0 or less, the listbox is made as 
wide as the longest item.

-xscrollcommand => callback
Assigns horizontal scrollbar to widget. See Chapter 6.

-yscrollcommand => callback
Assigns vertical scrollbar to widget. See Chapter 6.

Selection Modes

As part of the listbox widget, you are given several choices in the way you can select 
items in the listbox. You can have it so only one item at a time can be selected 
(emulating radiobuttons), or you can have many different contiguous or noncontiguous 
items selected (emulating checkbuttons). You control this behavior with the -
selectmode option.

The possible select modes are "browse", "single", "multiple", or 
"extended". The default mode is "browse".

browse & 
single
The 
"browse" 
and 
"single" 
modes are 
similar in 
that only 
one item can 
be selected 
at a time; 



clicking on 
any item 
will deselect 
any other 
selection in 
the listbox. 
The browse 
mode has a 
slight 
difference: 
when the 
mouse is 
held down 
and moving 
around, the 
selection 
moves with 
the mouse. 
For bind 
purposes, a 
"<Button-
1>" bind 
will be 
invoked 
when you 
first click 
down. If you 
want to 
catch the 
event when 
the mouse is 
released, 
define a 
Button-
Release 
binding 
(binding 
events to 
widgets is 
discussed in 
Chapter 14).



extended
The 
"extended" 
mode lets you 
select more 
than one item 
at a time. You 
can click on a 
single item 
with the left 
mouse button, 
but it will 
deselect any 
other 
selection. To 
select more 
than one item, 
you must Shift-
click or 
Control-click 
more items. 
Shift-clicking 
(holding down 
the Shift key 
while pressing 
a mouse 
button) will 
extend the 
selection from 
the already 
selected item 
to the newly 
selected item. 
Control-
clicking 
(holding down 
the Control 
key while 
pressing a 
mouse button) 
will add the 
item being 
clicked on to 
the selection, 
but it won't 
alter any of 
the other 
selections. 



You can also 
click an item 
with the 
mouse button, 
hold down the 
button, and 
then move the 
pointer over 
other items to 
select them. 
This is what I 
call a click-
drag motion. 
Using 
"extended" 
allows for 
very fast 
selection of 
many different 
items in the 
listbox.

multiple
The 
"multiple" 
mode also 
allows you to 
select more 
than one item. 
Instead of 
Shift-clicking 
or Control-
clicking, you 
have to select 
items one at a 
time. Selecting 
an unselected 
item will 
select it, and 
selecting an 
already 
selected item 
will unselect it.

Operating System Differences



When testing the -selectmode feature, I discovered that Windows 95 does not allow 
the "multiple" selection mode to behave properly. It behaves the same as 
"single" mode on Windows 95 only. On Unix and Windows NT, "multiple" 
mode works correctly.

When you select an item in a listbox, by default it is made available as an X selection 
(meaning you can cut and paste it like any X selection in any window). Even though this 
doesn't do anything with the clipboard on Win32 systems, it still affects the selection in 
multiple listboxes. Items can be selected in only one listbox at a time, even if you have 
more than one listbox. The option -export-selection controls this. Use -
exportselection => 0 to allow items to be selected in more than one listbox at the 
same time.

Colors

In most widgets there is a -background and a -foreground color. In addition to 
those, we also have the -selectbackground and the -selectforeground color 
options in a listbox. When a listbox entry is selected, it appears in a different color.

Although you can change the color of the selected text, you can only use one color. You 
cannot make different lines in the listbox different colors.

Figure 7-1.
Examples of -foreground, -background, -selectforeground, and -selectbackground

In Figure 7-1, the listbox on the left has -foreground => 'red', -background 
=> 'green'. The listbox on the right has -selectforeground => 'red', -
selectbackground => 'green'. Make sure that the foreground and background 
values contrast with each other if you change these options.



Listbox Style

The default -relief of a listbox is 'sunken'. The default -borderwidth is 2. 
Figure 7-2 shows the five different relief types (flat, raised, ridge, groove, and sunken). 
In the first window, the default -borderwidth is used; in the second window, a -
borderwidth of 4 is used. To save space in the windows, I didn't draw any scrollbars.

Figure 7-2.
Examples of -relief and -borderwidth in listboxes

Style of Selected Items

There is also a borderwidth associated with any selected text. This is controlled by the -
selectborderwidth option. Figure 7-3 shows what changing the selection 
borderwidth to 4 does to the listbox.

Figure 7-3.
Example of -selectborderwidth => 4

Special Listbox Resizing

The -setgrid option changes how the window is drawn when it's resized. Using -
setgrid => 1 causes the window to stay resized to the grid created by the listbox 
widget. Essentially, this means that the listbox will display only complete lines (no half 
lines) and complete characters. A side benefit is that the listbox will always display at 
least one line and can't get resized off the visible window. This option has nothing to do 
with which geometry manager you use to put the listbox in the window.



Listbox Indexes

The items in an entry widget are ordered. The first listbox item is at index 0, and the 
numbers increment by 1. These values are valid for any of the methods that require an 
index value.

n
An integer index. The first item in a listbox is at index 0.

"active"
The index within the listbox that has the location cursor. If the listbox has the keyboard 
focus, it will be displayed with an underline.

"anchor"
This index is set with the selectionAnchor (...) method.

"end"
The end of the listbox. Depending on which method is using this index, it could mean just 
after the last element (such as when insert is used), or it could mean the last element in 
the listbox (such as when delete is used).

"@x,y"
The listbox item that covers the point at the coordinate x,y (pixel coordinates). The closest 
item will be used if x,y is not at a specific item.

Configuring a Listbox

You can use the cget method to find out the current value of any of the listbox options. You 
can use configure to query or set any of the listbox options. See Appendix A, 
Configuring Widgets with configure and cget, for more information on using the 
configure and cget methods.

Inserting Items

Use the insert method to add items to the listbox:

$lb->insert(index, element, element ... );

Each element is another line in the listbox. The index is a valid index (see ''Listbox Indexes" 
later in this chapter) that the new elements will be inserted before. For instance, to insert 
items at the end of the listbox:

$lb->insert('end', @new_elements);
# Or
$lb->insert('end', "Item1", "Item2", "Item3");



To insert items at the beginning of the listbox:

$lb->insert(0, @new_elements);

Deleting Items

You can use the delete method to delete items from the listbox:

$lb->delete(firstindex [, lastindex ]);

The first argument is the index from which to start deleting. To delete more than just that 
one item, you can add a second index. The firstindex must be less than or equal to the 
lastindex specified. To delete all the elements in the listbox:

$lb->delete(0, 'end');

To delete the last item in the listbox:

$lb->delete('end');

Retrieving Elements

The get method returns a list of listbox elements specified by the indexes first to last:

$lb->get(firstindex [, lastindex ]);

If only the firstindex is specified, only one element is returned. The firstindex must be 
less than or equal to the lastindex. To get a list of all elements in the listbox:

@elements = $lb->get(0, 'end');

To get the last item in the listbox:

$lastitem = $lb=>get('end');

To find out which items in the listbox are selected, use the curselection method:

@list = $lb->curselection();

It returns a list containing the indexes of all currently selected items in the listbox. If no 
items are selected, curselection returns an empty string. Here is an example of how 
the curselection method is used:

@selected = $lb->curselection;
foreach (@selected) {
  # do something with the index in $_
}

Make sure to remember that curselection returns a list of indexes, not elements.



Selection Methods

The curselection method, discussed in the preceding section, only tells you what 
the user has selected. You can also change the selection by using a form of the 
selection method.

Selecting Items

To select a range of items in a listbox, you can use the "set" form of the selection 
method (selectionSet). selectionSet takes either a single index or a range. 
Any items not in the range are not affected. If you use a range, the first index must be 
less than or equal to the last index. Here are some examples:

# select everything
$lb->selectionSet (0, 'end' );
#select the first item
$lb->selectionSet (0);

Even if you have used -selectmode to limit the selection to only one item, you can 
force more than one item to be selected by using selectionSet (...).

Unselecting Items

To clear any selections in the listbox, use the "clear" form of the selection method 
(selectionClear). Pass in an index or a range or indexes from which to clear the 
selection. For instance, to remove all the selections in the listbox, you would do the 
following:

$lb->selectionClear (0, "end");

Any indexes outside the specified range will not be unselected-this allows you to 
unselect one item at a time. You can also clear the selection from just one item:

$lb->selectionClear ("end");

Testing for Selection

To test to see if a specific index is already selected, use the "includes" form of 
selection (selectionIncludes). Calling selectionIncludes returns 1 if 
the item at the specified index is selected and 0 if it is not. For instance, to see if the last 
item in the list is selected:

if ($lb->selectionIncludes('end') ) {
  ...
}



Anchoring the Selection

Using the "anchor" form of selection (selectionAnchor) to set the index 
"anchor" to the specified index. The "anchor" is used when you are using the 
mouse cursor to select several items within the listbox. The first item you click (without 
letting up on the mouse button) becomes the "anchor" index. For example, you would 
use this to set the anchor as the first item in the list:

$lb->selectionAnchor(0);

Moving to a Specific Index

To cause the listbox to show a specific item, you can use the see method.

$lb->see(index);

Given an index, see will cause the listbox to page up or down to show the item at that 
index. For an example of using see, look at the Listbox Example later in this chapter.

Translating Indexes

The index method translates an index specification (such as "active") into the 
numerical equivalent. For instance, if the listbox contained 12 items, $index = $lb-
>index ("end") would set the variable $index to 11. (Remember the first item in a 
listbox is at index 0.)

Counting Items

The size method returns the total number of items in the listbox:

$count = $lb->size();

Active Versus Selected

The activate method will set the listbox item at index index to the active element. 
This allows you to access this item later using the "active" index. Figure 7-4 shows 
two windows with active elements underlined. Each listbox also has the black highlight 
rectangle around it, which indicates it has the keyboard focus (the active element isn't 
seen as marked unless the listbox has focus).

# The first window activates the item "four"
$lb->activate (3);
$lb->focus();
# The second window activates the item "three"
$lb2->activate(2);
$lb2->focus();



Figure 7-4.
Windows showing a listbox with an "active" element

Bounding Box

The method bbox returns a list of four elements that describes the bounding box around 
the text at index:

($x, $y, $w, $h) = $lb->bbox(index);

The four elements are (in order): x, y, w, and h. The x,y coordinates are the upper left 
corner of the bounding box. The w is the width of the text in pixels. The h is the height 
of the text in pixels. These measurements are shown in Figure 7-5.

Figure 7-5.
Bounding box values around text

Finding  an Index by Y Coordinate

If you know a y coordinate in the listbox, you can determine the index of the nearest 
listbox item to it by using the nearest method:

$index = $lb->nearest(y)

The nearest method returns a number that corresponds to the index of the closest 
visible listbox item.

Scrolling Methods

The listbox can be scrolled both horizontally and vertically so it has both xview and 
yview methods and all their associated forms. These forms and how to use them are 
described in detail in Chapter 6.



The scan method allows you to use a really fast scrolling method. It is automatically bound to the 
second mouse button by the listbox. Here is how you can do the same thing within your window:

$mw->bind("Listbox", "<2>", ['scan', 'mark', Ev('x'),Ev('y')]);
$mw->bind("Listbox", "<B2-Motion>", ['scan', 'dragto', Ev('x'),Ev('y')]);

When you click in the window with the second mouse button and then move your mouse around, you'll 
see the contents of the listbox zip by at super-fast speed. You could change the second argument of 
each bind statement if you wanted to bind this to another combination of keys/mouse actions. The 
bind method is explained in Chapter 14.

Listbox Example

Sometimes when you put a lot of items in a listbox, it takes a long time to scroll through the listbox. If 
you insert the items in the listbox sorted, you can implement a search routine. Here's a quick script that 
shows you how to use an entry widget to input the search text and then search the listbox every time you 
get a new character in the entry:

use Tk;

$mw = MainWindow->new;
$mw->title("Listbox");
# For example purposes, we'll use one word for each letter
@choices = qw/alpha beta charlie delta echo foxtrot golf hotel india
              juliet kilo lima motel nancy oscar papa quebec radio sierra
              tango uniform victor whiskey xray yankee zulu/;

# Create the entry widget, and bind the do_search sub to any keypress
$entry = $mw->Entry(-textvariable => \$search)->pack(-side => "top",
                                                     -fill => "x");
$entry->bind("<keyPress>", [ \&do_search, Ev("K") ]);

# Create listbox and insert the list of choices into it
my $lb = $mw->Scrolled("Listbox", -scrollbars => "osoe",
                       )->pack(-side => "left");
$lb->insert("end", sort @choices);

$mw->Button(-text => "Exit",
            -command => sub { exit; })->pack(-side => "bottom");

MainLoop;

# This routine is called each time we push a keyboard key.
sub do_search {
  my ($entry, $key) = @_;

  



  # Ignore the backspace key and anything that doesn't change the word
  # i.e. The Control or Alt keys
  return if ($key =~ /backspace/i);
  return if ($oldsearch eq $search);

  # Use what's currently displayed in listbox to search through
  # This is a non-complicated in order search
  my @list = $lb->get(0, "end");
  foreach (0 .. $#list) {
    if ($list[$_] =~ /^$search/) {
      $lb->see($_);
      $lb->selectionClear(0, "end");
      $lb->selectionSet ($_);
      last;
    }
  }
  $oldsearch = $search;
}

Fun Things to Try

Use a listbox to create a mini file viewer. Use an entry field to read a filename and a button that, 
when you click on it, loads the file into your listbox (each line in the file becomes one entry in the 
listbox).



8—
The Text Widget

When you think about what a text widget might do, you automatically think, "it displays 
text." This is true, yet it can do quite a bit more. The text widget is one of the most 
powerful standard widgets available in Perl/Tk. It is flexible, configurable, and easy to 
use for simple tasks. Here are some examples of how you can use text widgets:

• Display and edit a plain text file.

• Display formatted text from an HTML document.

• Create a scrollable color key, with buttons that allow you change the colors

• Gather multiline, formatted text (including colors) from a user (mini word processor).

• Display text with different colors based on the input.

• Make certain portions of text "clickable" and perform an action when clicked on. This 
could be HTML, or it could be similar to the widget demo.*

You can put simple text, formatted text, and other widgets inside a text widget. A text 
widget can be used in conjunction with scrollbars to allow many pages of information to 
be viewed in much less space.

Creating and Using a Text Widget

To create a text widget, use the Text method from the desired parent widget:

$text = $parent->Text ( [ options ... ])->pack;

* When you installed the Tk module with Perl, you also installed the widget demo. 
Type widget on the command line to see the capabilities of widgets in Perl/Tk.

After the text widget is created, there are several different ways to place text in it. The 
user can type directly into it, or you can use the insert method:

$text->insert('end', "To be or not to be...
\nThat is the question");

The basic form of the insert method takes two arguments. The first is an index value 
that indicates where to start placing the text. The second argument is the string to insert. 
Unlike the listbox insert method, You can't use an array as the second argument. If 
you do, only the first item in the array is inserted into the text box.

A typical use of the text widget is to read a file and place it in the text widget as it's read:



$text = $mw->Scrolled("Text")->pack();
open (FH, "chapter1") || die "Could not open chapter1";
while (<FH>) {
  $text->insert ('end', $_);
}
close(FH);

You can use the text widget to display the file backward (line by line) by changing the 
insert line to $text->insert (0, $_). This will put the next line read at the top of the 
text widget instead of at the end.

The text widget can do a lot more than just display a file or two lines from a 
Shakespearean play. In addition to options, we also have tags, indexes, and marks to 
control how the contents of a text widget are displayed.

Text Widget Options

Options used with the Text method change the way the text is displayed within the text 
widgets. The following options are standard for all the widgets: -background, -
borderwidth, -cursor, -exportselection, -foreground, -
highlightbackground, -highlightcolor, -highlightthickness, -
insert-background, -insertborderwidth, -insertofftime, -
insertontime, -insertwidth, -padx, -pady, -selectbackground, -
selectborderwidth, -selectforeground, -setgrid, -state, -
takefocus, -wrap, -xscrollcommand, and -yscrollcommand.

To find out more about what these options do, check back to Chapter 3, The Basic 
Button, where they were first covered.

-background => color
Changes the color of the screen displayed behind the text.

-borderwidth=> amount
Sets the width of the edges of the widget.

-cursor => cursorname
Sets the cursor displayed when the mouse cursor is in front of the text widget.



-exportselection => 0 | 1
Determines if the text selected within the widget can also be used by the windowing 
system (such as X windows).

-font => fontname
Sets the font in which the text is displayed.

-foreground => color
Sets the color of the text.

-height => amount
Sets the height of the widget. Default is 24.

-highlightbackground  => color
Sets the color the highlight rectangle around the widget should be when it does not have 
the keyboard focus.

-highlightcolor => color
Sets the color the highlight rectangle around the widget should be when it does have the 
keyboard focus.

-
highlightthickness => 
amount
Sets the thickness of the 
highlight rectangle around the 
widget. Default is 2.

-insertbackground => color
Changes the color of the insert cursor.

-insertborderwidth => amount
Changes the width of the insert cursor.

-insertofftime => time
Sets the time the insert cursor blinks in the off position. Default is 300.

-
insertontime => 
time
Sets the time the 
insert cursor blinks in 
the on position. 
Default is 600.



-
insertwidth => 
amount
Sets the width of the 
insert cursor.

-padx => amount
Adds extra space to the left and right of the text inside the text widget's edge.

-
pady => 
amount
Adds 
extra 
space to 
the top 
and 
bottom of 
the text 
inside the 
text 
widget's 
edge.

-
relief => 
'flat' | 
'groove' | 
'raised' | 
'ridge' | 
'sunken' | 
'solid'
Sets the 
relief of the 
edges of the 
widget. 
Default is 
'sunken'.

-
selectbackground => 
color
Sets the color of the area 
behind the selected text.

-selectborderwidth => amount
Sets the width of the border of the selected area.



-selectforeground => color
Sets the color of the selected text.

-
setgrid => 
0 | 1
Enables 
gridding for 
the text 
widget. 
Default is 0.

-
spacing1 => 
amount
Sets the amount 
of additional 
space left on top 
of a line of text 
that begins on 
its own line. 
Default is 0.

-spacing2 => amount
Sets the amount of additional space left on top of a line of text after it has been wrapped 
around automatically by the text widget. Default is 0.

-
spacing3 => 
amount
Sets the amount 
of additional 
space left on top 
of a line of text 
after it has been 
wrapped around 
automatically 
by the text 
widget. Default 
is 0.



-state => 
'normal' | 
'disabled'
Indicates the 
state of the text 
widget. Default 
is 'normal'. 
If set to 
'disabled', 
no text can be 
inserted by 
either the user 
or the 
application (via 
the insert 
method).

-
tabs => 
list
Specifies 
a list of 
tab stops 
to use in 
the text 
widget. 
Default is 
undefined 
(or no tab 
stops).

-
takefocus => 
0 | 1 | undef
Determines if 
widget can obtain 
keyboard focus.

-
width => 
amount
Sets the 
width of 
the text 
widget in 
characters. 
Default is 
80.



-wrap => "none" | "char" | "word"
Sets the mode used to determine automatic line wrapping. Default is "char"

=xscrollcommand => callback
Determines the callback used when the text widget is scrolled horizontally.

-
yscrollcommand => 
callback
Determines the callback 
used when the text 
widget is scrolling 
vertically.

Fonts

You can use the -font option to change the font, including how large or small the text 
is (see Figure 8-1). This defines the default font for the entire text widget. Text that is 
inserted without a text tag (a tag allows you specify special formatting that applies only 
to certain portions of the text) will use this font.

The use of fonts was covered in Chapter 3, the first time we saw the -font option.

Figure 8-1.
Text widget using -font => ''r16"

Widget Size

When you first create a text widget, it will usually have a height of 24 lines and a width 
of 80 characters. Depending on how you put the text widget in the window (whether you 
use pack with the -expand and -fill options or grid with -sticky => 
"nsew"), it can change size when the window changes size. To force a certain size, you 
can use the -width and -height options:

# Text widget 20 characters wide and 10 lines tall
$mw->Text(-width => 20, -height => 10)->pack;



The values associated with -width are in characters, and the values associated with -
height are lines of text. It is possible that the text widget will not be that exact width 
and height if you force the window to be larger via the minsize routine (i.e., $mw-
>minsize(400,400)), especially if you used -expand => 1 and -fill => 
'both' with the pack command. So if you don't see what you expect on the screen the 
first time out, keep this in mind.

Widget Style

As with other widgets, you can change how the edges of the text widget are drawn using 
-relief and -borderwidth options. The examples shown in Figure 8-2 might not 
look much like text widgets, but trust me-they are!

Line Spacing

When text is displayed in a text widget, it can wrap around automatically if the line 
becomes longer than the text widget can display. The amount of room left between lines 
is defined by using the -spacingN options. Figure 8-3 shows the different areas that -
spacing1, -spacing2, and -spacing3 affect.

The -spacing1 option affects how much room is above a new line of text (the first 
line in a paragraph). The -spacing2 option affects the space between lines when text 
that is wrapped automatically is too long to fit on one line. The -spacing3 option 
determines how much room is left after a paragraph is finished (right after an explicit 
newline).

Figure 8-2.
Text widgets showing different -relief values (also shows use of -width and -height

options to force smaller size)



Figure 8-3.
Example of -spacingN options

Tab Stops

The default setup for text widget tab stops is every eight characters. Each tab equals 
eight spaces (but it doesn't actually use spaces). You can replace this default setting by 
using the -tabs option as follows:

-tabs => [qw/2 center/]   # Place tabs every 2 pixels
-tabs => [2, "center"]    # The same thing, different syntax

The argument that goes with -tabs is an anonymous list that specifies positions in 
which to place each of the tab stops. You can also specify an optional justification value 
for each tab stop (as in the preceding example) after each tab stop's

numerical value. This all sounds much more confusing than it really is. Here are some examples to help 
clarify things:

-tabs => [qw/1i center/]  #every inch, text centered on tab-stop
-
tabs => [qw/1i 1.5i/]    # ts at 1 inch, 1.5 inch and every .5 inch after

The default justification is "left". The possible justification values are "left", "right", 
"center", or "numeric".

When you specify the values (whether in centimeters, inches, or pixels), they are not cumulative. The 
list ["1i", "1.5i"] translates to one tab stop at 1 inch from the left edge of the text widget, and the 
next tab stop will be 1.5 inches from the left edge. If the specified list isn't long enough to span the 
entire window, the distance between the last two tab stops specified will be repeated across the screen.

Of course, setting up new tab stops is pretty useless unless you're doing major text editing, so in most 
cases, you'll leave this option alone.

You can reset the tab stops back to the default by setting -tabs to undef:

$text->configure(-tabs => undef);



A Short Break for a Simple Example

Before we get into some of the more complex (and more fun) things you can do with a text widget, let's 
look at complete use of the text widget.

This is a short program that will display a file, let you make changes to it, and then save it:

use Tk;
$mw = MainWindow->new;
# Create necessary widgets
$f = $mw->Frame->pack(-side => 'top', -fill => 'x');
$f->Label(-text => "Filename:")->pack(-side => 'left', -anchor => 'w');
$f->Entry(-textvariable => \$filename)->pack(-side => 'left',
   -anchor => 'w', -fill => 'x', -expand => 1);
$f->Button(-text => "Exit", -command => sub { exit; } )->
  pack(-side => 'right');
$f->Button(-text => "Save", -command => \&save_file)->
  pack(-side => 'right', -anchor => 'e');
$f->Button(-text => "Load", -command => \&load_file)->
  pack(-side => 'right', -anchor => 'e');
$mw->Label(-textvariable => \$info, -relief => 'ridge')->
  pack(-side => 'bottom', -fill => 'x');
$t = $mw->Scrolled("Text")->pack(-side => 'bottom',
  -fill => 'both', -expand => 1);

MainLoop;

# load_file checks to see what the filename is and loads it if possible
sub load_file {

  

  $info = "Loading file '$filename' ...";
  $t->delete("1.0", "end");
  if (!open(FH, "$filename")) {
    $t->insert("end", "ERROR: Could not open $filename\n");
            return;
  }
  while (<FH>) { $t->insert("end", $_); }
  close (FH);
  $info = "File '$filename' loaded";
}

# save_file saves the file using the filename in the entry box.
sub save_file {
  $info = "Saving '$filename'";
  open (FH, ">$filename");
  print FH $t->get("1.0", "end");
  $info = "Saved.";
}

Figure 8-4* shows the window when a document has been loaded and saved.



Figure 8-4.
Simple file editor with a "textfile" loaded

Text Indexes

When we talked about listbox index values, each index referred to a line in the listbox. 
The first line in the listbox was at index 0, and so on. With a text widget, the index can 
point to a specific line, but it can also point to a character within that line. An index for a 
text widget is built by using a base index and then optionally modifying that index with a 
modifier. The entire index, base, and modifier should be put in double quotes.

* For those of you paying attention, you'll notice this screenshot looks slightly different. 
That's because this was taken off of Windows 95 instead of X Windows. Note the "Tk" 
in the upper left-hand corner, and the Windows controls in the upper-right.

Base Index Values

"n.m"
This format allows you to explicitly specify a line number and a character number 
within that line. Lines start at 1 (which is different than the listbox widget), and 
characters start at 0.

"@x,y"
The character in the widget that is closest to the x,y coordinate.

"end"
The very end of the text widget, after any "\n" characters as well.

"mark"
Specifies the character after the location named mark. The two mark names provided by 
Tk are "current" and "insert". What they refer to is discussed later in this 
chapter.



"tag.first"
A tag name is simply a placeholder for some special formatting instructions (discussed 
in the very next section). After creating tags, you can use this index form. tag.first is 
the first character in the text widget that is of type tag. That is, you could create a 
"heading" tag and use "heading.first" index.

"tag.last"
Specifies the character directly after the text marked with tag.

$widget
If you have an embedded widget, you can refer to its location within the text widget by 
the variable referring to it.

$image
You can have embedded images as of Tk8.0. You can refer to its location by using the 
variable referring to it.

Index Modifiers

The index modifiers can be used following a base index value.

[ + | - ] count [ chars | lines ]
You can use the + and - to add/subtract lines and characters to a base index. The index 
"end - 1 chars" refers to text on the line before the "end". Be careful when you 
use this, though, because any "\n" lines also count as a complete line.

linestart
Modifies the index to refer to the first character on that line; i.e., $t-> insert 
("end linestart", $string) will insert the string at the front of the last line in 
the text widget. insert will place the new text before the index given.

lineend
Refers to the last character in the line (usually the newline). It is useful when you don't 
know the exact number of characters in a line but want to insert text at the end of it.

wordstart
Adjusts the index to refer to the first character at the start of the word that contains the 
base index.

wordend
Adjusts the index to refer to the character after the end of the word that contains the base 
index.

Text Index Examples

"end"
The position right after the last line of text in the widget, no matter how much text is in 
the widget.



"1.0"
The first character on the first line in the text widget. The 1 represents the line, and 0 
represents the character.

"2.0 - 1 chars"
The last character on the end of the first line. We reference it by using the first character 
on the second line (2.0) and subtracting one character value from that. If we used the 
insert method with this item, we would insert the text right before the "\n" at the 
end of the first line.

"1.end"
Also the last character on the end of the first line. This is a simpler way of getting to it.

"2.0 lineend"
The end of the second line. It is necessary to specify 2.0, not just 2, because 2 is an 
invalid base index.

The basic indexes are easy. When you start doing index arithmetic, it becomes a little 
more complicated. You just have to remember that you are referring to a position in the 
text widget that may change if other text has been inserted or deleted (either by the user 
or the application).

Although some of the combinations may seem silly (for example, "1.0 line-
start"), keep in mind that you will most likely be calling methods that return 
indeterminate information about an event. For example, a user clicks in the text widget 
and presses a button that will increase the font size of that entire line. The index 
arithmetic allows you to reference that entire line without even knowing for sure which 
line it is on.

Text Tags

Text tags give you another way to address portions of text in the text widget. A tag has 
three purposes, and the same tag can serve all three or only one:

• Assigning formatting information to a portion(s) of text

• Associating a binding with text in the widget

• Managing selected text

Tags are also used to change how the text appears on the screen: font, size, coloring, and 
spacing are among a few of the text properties affected by tags. You change text 
properties by creating your own tags (with their own names), and using option/value 
pairs to assign formatting information. In addition to changing the formatting, you can 
use a tag to apply a specific binding (such as perform a task when the user clicks on that 
text). A special tag "sel" manages the selected text. Anytime the user selects some 
text, the location of that text is marked with the tag "sel".



Any of the text within the text widget can have one or more tags associated with it. If 
you apply two tags to the same piece of text and they both alter the font, the last tag 
applied wins.

Options Used With Tags

The options you can use to configure tagged text are mostly a subset of the configuration 
options of the text widget itself. There are some options that can only be used through 
tagged text.

-background => color
Sets the color of the area behind the text.

-bgstipple => pattern
Sets the pattern used to draw the area behind the text. Can create a shaded look.

-borderwidth => amount
Sets the width of the relief drawn around the edges of the text, line by line.

-fgstipple => pattern
Sets the pattern used to draw the text.

-font => fontname
Sets the font used for the text.

-foreground => color
Sets the color of the text.

-justify => 'left' | 'right' | 'center'
Sets the position of the text within the text widget.

-lmargin1=> amount
Sets the amount of indentation from the left edge for the first line of a paragraph.

-lmargin2=> amount
Sets the amount of indentation from the left edge for the second and greater lines of a 
paragraph. Sometimes called a hanging indent.

-offset => amount
Sets the amount the text is raised or lowered from the baseline. Can be used to create 
superscripts and subscripts.

-overstrike => 0 | 1
If a true value, causes the text to have a line drawn through it.

-relief => 'flat' | 'groove' | 'raised' | 'ridge' | 'sunken'
Determines the way the edges of the text are drawn, line by line.



-rmargin => amount
Sets the amount of space left between the text and the right edge of the widget.

-spacing1 => amount
Sets the amount of additional space left on top of a line of text that begins on its own 
line. Default is 0.

-spacing2 => amount
Sets the amount of additional space left on top of a line of text after it has been wrapped 
around automatically by the text widget. Default is 0.

-spacing3 => amount
Sets the amount of additional space left after a line of text has been ended by a "\n". 
Default is 0.

-tabs => list
Indicates the set of tab stops for this text. See "Tab Stops" earlier in this chapter for more 
detailed information.

-underline => boolean
Indicates that the text should be drawn with an underline.

-wrap => 'none' | 'char' | 'word'
Determines the mode in which the text is wrapped. 'none' means lines that are longer 
than the text widget is wide are not wrapped. 'char' will wrap at each character. 
'word' will wrap between words.

A Simple Tag Example

Let's look at an example of how a simple tag is created and use it to insert some text into 
a text widget (the resulting screen is shown in Figure 8-5):

$t = $mw->Text()->pack();
$t->tagConfigure('bold', -font =>
                  "-*-Courier-Medium-B-Normal--*-120-*-*-*-*-
*-*");
# Use -font => "{Courier New} 24 {bold}" for Win32 systems
$t->insert('end', "This is some normal text\n");
$t->insert('end', "This is some bold text\n", 'bold');

Line 1 creates the Text widget and places it on the screen.

Line 2 creates the 'bold' tag. Don't be fooled by the use of the word "configure" 
instead of "create." When you configure a tag, you are creating it. We created a tag 
named 'bold' and associated a different font with it (it happens to be the same as our 
Unix text widget default font, just the bold version).



At this point, we haven't changed anything in the text widget. We are just setting up to 
use the tag later in the code. You can use any name to indicate a tag as long as it is a 
valid text string. We could have named the tag "bold_font" or "big_bold_font" or ''tag1." 
If you have good programming style (and want to be able to maintain your code), use a 
name that indicates what the tag does.

Line 3 inserts some text into the text widget.

Line 4 inserts some more text into the text widget, but uses the 'bold' tag. The 
insert method allows us to specify a tag as the third argument. This causes that string 
of text to be inserted into the text widget and assigned the tag 'bold'. The 'bold' 
tag was configured to change the font, so any text with the 'bold' tag will be shown 
with the different font.

Figure 8-5.
Text widget with normal and bold text

This is a pretty simplified example. What if we want to alter text that has been typed in 
by the user? We can't use the insert method then. We use the tagAdd method:

$t->tagAdd('bold', '1.0', 'end');

This applies the 'bold' tag to all of the text within the text widget.

Using the "sel" Tag to Manipulate the Selection

The "sel" tag is a special tag that is maintained by the text widget. Any text that is 
selected by the user will be assigned the "sel" tag. You can also force the selection by 
using some of the tag methods (which we haven't covered yet) to put the "sel" tag on 
some text. For instance, to select the third line:

$t->tagAdd("sel", "3.0", "3.0 lineend");

Here's an example that shows how to add another tag to the currently selected text:

$t->tagAdd('bold', 'sel.first', 'sel.last') if ($t->tagRanges
('sel'));

When you use the "sel" tag as part of an index, you need to make sure the tag, exists 
(using tagRanges) within the text widget first or you'll get a really nasty huge error.

Configuring and Creating Tags



The first thing you'll do with a tag is create it by using tagConfigure (unless you're 
using the automatically defined "sel" tag). The first argument to tagConfigure is 
the name of the tag. The rest of the arguments (which are optional) are option/value pairs 
as described in the earlier section, "Options Used with Tags." Here are some examples:

# creating a tag with no options
$text->tagConfigure("special");
# Creating a tag that will change the color
$text->tagConfigure("blue", -foreground => "blue");
# Creating a tag that will make underlined text
$text->tagConfigure("underline", -underline => 1);
# Creating a tag that changes the color and spacing
$text->tagConfigure("bigblue", -foreground => "blue",
                    -spacing2 => 6);

You can change the settings for an already created tag by using tagConfigure a 
second time. Any changes you make to the tag immediately affect any text on the screen 
that has that tag:

# Add background color to "blue" tag
$text->tagConfigure("blue", -background => "red");
# Change the spacing for "bigblue"
$text->tagConfigure("bigblue", -spacing2 => 12);

As with widget configure methods, you can use tagConfigure to find out the 
current settings for a specific tag. To get all the tag options and their values in a list of 
lists:

@listoflists = $text->tagConfigure("blue");
foreach $1 (@list) { print "@$l\n"; } # print it out

Each list within the list contains two elements: the option name and the value. You can 
also limit the information you retrieve to a single option:

($option, $value) = $text->tagConfigure("blue", -font);

If you only want information on the value for a particular option, use tagCget:

$value = $text->tagCget("bigblue", -spacing2)

Adding a Tag to Existing Text

We've already seen an example of using the tagAdd method. It allows you to add a tag 
to portions of text in the text widget. The usage of tagAdd is as follows:

$text->tagAdd
('tagname', index1 [ , index2, index1, index2, ... ] )



You can add a tag to a single index or a range of indexes. This means you can add a tag 
to the text widget to multiple places at the same time. Let's say you wanted to add the tag 
'heading' to the 1st, 12th, and 30th lines because they are the location of some 
heading information that you want to look different than the rest of the text. The 
tagAdd line would look like this:

$text->tagAdd('heading', '1.0', '1.0 lineend',
                         '12.0', '12.0 lineend',
                         '30.0', '30.0 lineend');

Now, assuming the formatting of 'heading' makes the font bigger, those lines now 
show up differently than the defaults from the rest of the text in the widget.

You can add more than one tag to a section of text. For example, you can have both a 
'heading' tag and a 'color' tag. If both tags try to alter the same option (such as -
font), the last setting for that option wins.

Once you place a tag on a range of text, any text inserted between the beginning and 
ending indices of that text will automatically get the tag of the characters surrounding it. 
This happens whether you are using insert without any specific tags or the user just 
types text into the text widget. If you specify a tag with insert, it overrides the 
surrounding tag.

Using Bind with Tags

One of the main reasons for tags is the ability to assign a binding to certain portions of 
the text. After creating a tag with tagConfigure, you can use bind so a callback 
will execute when a sequence of events happens (such as a mouse click) on that tagged 
text. On our button widgets, we have a default binding of <Button-1> that invoked 
the callback associated with the -command option. We can do the same thing with 
tagged text.

The best example is using text like a web hyperlink. When you click on the link, 
something happens: a new document is loaded or another window is created and 
presented to the user. The basic form of a tagBind call is as follows:

$text->tagBind(tagname [, sequence, callback ] )

The callback is similar to that specified for the -command callback on a button. The 
sequence is a description of the event that triggers the script. The only sequences you 
can specify are those that are keyboard or mouse related. (See Chapter 14, Binding 
Events, for more details on available events.)

The following code shows a psuedo-link example. All the link does when we click on it 
is show the end of the text widget:



$t = $mw->Scrolled("Text", -width => 40)->pack(-expand => 1,
                                               -
fill => 'both');
$t->tagConfigure('goto_end', -underline => 1, -
foreground => 'red');
$t->tagBind('goto_end', "<Button-1>", sub { shift->see
('end'); } );

# Setup Bindings to change cursor when over that line
$t->tagBind('goto_end', "<Any-Enter>',
             sub { shift->configure(-cursor => 'hand2') });
$t->tagBind('goto_end', "<Any-Leave>",
             sub { shift->configure(-cursor => 'xterm') });
$t->insert('end', "END\n", "goto_end");

# Insert a bunch of lines
for ($i = 1; $i <= 100; $i++) {
  $t->insert('end', "$i\n");
}

Inside the subs in the tagBind calls, we use the shift command to invoke a method. 
We can do this because the first argument sent to the bind callback is the text widget. 
This is done implicitly for you. Whichever widget tagBind is invoked on is the widget 
that will be sent as the first argument to the callback. To use the text widget more than 
once in the callback, assign it to a local variable; for example, 
my $widget = shift.

If we created our text widget in the global scope of the program and placed a reference 
to the widget in the variable $t, we could also access the text widget in the callback via 
the $t variable. This is only possible because $t is in the global scope and available 
during the callback. If you have two different text widgets that you want to use the same 
callback with, use shift to get the correct text widget:

$t1->tagBind('goto_end', "<Button-1>", \&goto_end );
$t2->tagBind('goto_end', "<Button-1>", \&goto_end );
sub goto_end {
  my $text = shift;
  $text->see('end');
}



Using the same callback for both text widgets helps save space in your program.

To determine what the bindings are for a tagname, just use tagBind with only the tag 
name argument:

@bindings = $text->tagBind("tagname");

The list will be empty if there are no bindings currently for that tag.

Deleting All Instances of a Tag

Once a tag is created, you can use the tagDelete method to delete the tag:

$text->tagDelete(tagname [ , tagname ... ])

The tags are deleted completely when you use tagDelete. This means the text reverts 
back to the default configuration values, and any bindings or other information 
associated with those tags is also deleted.

The tagDelete method can be used if you are creating temporary tags dynamically 
within the program and you need to delete the tags later when the information is no 
longer valid.

Removing a Tag from the Text

To remove the tag from a specific block of text, you can use the tagRemove method:

$text->tagRemove
(tagname, index1 [, index2, index1, index2 ...])

Specify the name of the tag and an index or range of indexes from which to remove the 
tag. This leaves the tag intact; it merely removes it from the specific text indicated with 
the indices.

Raising and Lowering Tags

When there are several tags applied to the same text, the last tag added to the text 
overrides the previous ones, and its configuration options are given priority. You can 
change the priority of the tags by using tagLower and tagRaise:

$text->tagLower(tagname [, belowtag ])
$text->tagRaise(tagname [ , abovetag ])

These methods take a tag name as the first argument. If there is no second tag argument, 
the first tag is given the highest or lowest priority. This affects the entire text in the text 
widget no matter where the tags are applied. If a second tag is specified, the first tag is 
specifically placed before or after the second tag.

Think of it as reordering a stack of tags (all applied to the same text). The tag on the top 
has the most say, and if it has a -foreground option of 'red', then all



the text with that tag will be red, regardless of what the other text tags set -fore-
ground to. If we use tagRaise to move a tag with -foreground of 'blue' to 
the top, the tagged text will change to blue.

Getting Tag Names

You can find out all the different tags that apply to a specific index or to the whole text 
widget by using the tagNames method:

$text->tagNames([ index ])

If you specify an index, the list returned contains tags that only apply to that index. If a 
specific index isn't given, then the list returned contain all the tags that apply to the entire 
text widget whether or not that tag has been applied to text within the widget.

Determining Where a Tag Applies

If you know the name of the tag, you can find out where it applies in the text widget by 
using the range methods. The first method, tagRanges, returns a list that contains 
pairs of index values for the whole text widget:

@list = $text->tagRanges("tagname")
# returns ( begin1, end1, begin2, end2 ... )

If no text in the text widget has that tag, the returned list will be empty.

You can get the pairs of index values one at a time by using the tagNextrange 
method:

($start, $end) = $text->tagNextrange
("tagname", index1 [ , index2 ])

The search for "tagname" will begin at index1 and go no farther than index2. If index2 
is not specified, then the search will continue until the end of the text widget or until it 
finds the tagname, whichever comes first.

Inserting Text

Now that we've gone over text indexes and marks, we can talk in more detail about the 
methods for manipulating the widget's contents.

As we've seen from the many examples in this chapter, we use insert to put text into 
the text widget. The first argument is an index and indicates where the text will be 
inserted. The second argument is the string to insert. The next argument (which is 
optional) is a single tag name or a list of tag names to assign to the inserted text. The 
usage is:

$text->insert
(index, string, [ taglist, string, taglist ...] )



So far we've only seen single tags used with insert. If you want to specify more than 
one tag, put the tag names into square brackets, creating a list:

$t->insert('end', "This is a very tagged line",
           [ 'tag1', 'tag2', 'tag3' ]);

To use different sets of tags, you can supply additional text lines and additional tag lists:

$t->insert
('end', "This is the heading", ['heading', 'underline'],
                  "Second line", ['bold', 'blue']);

When you use the insert command to insert more than one set of text with different 
tags, make sure they always come in pairs: text, tags, text, tags, etc. If the tag used isn't 
defined (with tagConfigure), there will be no effect on the text but the tag will still 
be assigned to that text. You can create the tag later if you wish.

Deleting Text

To remove text from the text widget, you can use the delete method:

$text->delete(index1 [ , index2 ]);

The first index argument is required; the second is optional. If both are specified, then 
the first index must be less than or equal to the second. All the characters from index1 to 
(but not including) index2 are removed from the text widget. If you want to delete 
everything from the text widget, you can use $text-> delete ("1.0", 'end').

Retrieving Text

The get function is one you'll use a lot. It returns the text located from index1 to index2. 
If index2 isn't specified, just the character located at index1 is returned. The usage of 
get is as follows:

$t = $text->get(index1 [ , index2 ]);

As with any index ranges, index1 must be less than or equal to index2 or an empty string 
will be returned.

Translating Index Values

When you work with indexes, it is useful to be able to convert a complicated index form 
into a simpler one. The index method returns an index with the form line.char.

$newvalue = $text->index(index1);

The index1 value can be any valid index expression.



Comparing Index Values

You can compare two index values by using the compare method.

$text->compare(index1, op, index2);

You pass the first index, the test operation to perform, and the second index. The values 
for op are: "<", "<=", "==", ">=", and "!=". The function returns 1 if the test was 
true and 0 if it wasn't. The call

$status = $text->compare("1.0", "<=", "end");

returns a 1 because the index "1.0" is less than "end".

Showing an Index

By using the see method, you can cause the text widget to show the portion of it that 
contains index:

$text->see(index);

The text within the widget will be scrolled up or down as a result of this call. If the index 
is already visible, nothing happens.

Getting the Size of a Character

The bbox method returns a list containing four items that describe the box around the 
character at index:

($x, $y, $w, $h) = $text->bbox(index);

The first two items returned are the x and y coordinates of the upper-left corner. The last 
two are the width and height of the box. The bounding box only describes the visible 
portion of the character, so if it is half hidden or not visible at all, the values returned 
will reflect this.

Getting Line Information

The dlineinfo method returns a list of five items. These items describe the area of 
the line that contains index:

• X coordinate of the upper-left corner

• Y coordinate of the upper-left corner

• Width of the area

• Height of the area

• Baseline position of the line, measured from x



Here is an example call:

($x, $y, $w, $h, $base) = $text->lineinfo("index");

Unlike the bbox method, even areas not shown (due to nonwrapped characters) are used 
in the calculations as long as some of the line is showing. However, if the line is not 
visible at all on the screen, the list will be empty. If the line happens to wrap to multiple 
lines, the entire area is used.

Searching the Contents of a Text Widget

You can use the search method to search the text widget for a pattern or regular 
expression. The search method takes some optional switches, the pattern to search for, 
and an index at which to start searching:

$index = $text->search
([switches], pattern, index, [ stopindex ])

If a match is made, the index returned will point to the first character in the match. If no 
match is made, an empty string is returned.

The possible switches are:

-forwards
Tells search to search forward through the text widget starting at index. This is the 
default.

-backwards
Tells search to search backward through the text widget starting at the character 
before index.

-exact
The pattern must match the text exactly. This is the default.

-regexp
The pattern will be considered as a regular expression.

-nocase
Ignores case between pattern and the text within the text widget.

-count => varname
varname is a pointer to a variable (i.e., \$variable). The number of characters 
matched will be stored within that variable.

--
This option does nothing except force the next argument to be taken as the pattern even 
if the next string starts with a "-".

Here is a simple example of using search:



$result = $text->search(-backwards, "find me", 'end');

$location = $text->search(-nocase, "SWITCHES", "1.0");

Scrolling

The text widget can be scrolled both horizontally and vertically, so it implements both 
xview and yview methods. These two methods are described in Chapter 6, Scrollbars.

Marks

There are several ways to refer to different positions throughout the text widget. Index 
values refer to a character. Tags are named references to a specific character or 
characters. The term mark is used to refer to the spaces in between characters. Similar to 
tags, a mark has a name. For example, the "insert" mark refers to the position of the 
insert cursor. However, tags refer to the actual characters, and if those characters are 
deleted, the tag is no longer associated with those characters. The mark stays in place 
whether the characters surrounding it are deleted or other characters are added. Marks 
can only refer to one location within the text widget at a time.

Once it is created, you can use a mark as an index. The gravity of the mark will affect on 
which side the text will be inserted. If the gravity is 'right' (the default), the text will 
be inserted to the left of the mark because the mark is glued to the character to the right 
of the mark. If the gravity is 'left', the text will be inserted to the left of the mark and 
the mark will refer to the left of the last character inserted.

There are two special marks that are set automatically by the text widget: "insert" 
and "current". The "insert" mark is wherever the insert cursor is. The 
"current" mark is the position closest to the mouse and adjusts as the mouse moves 
(as long as a mouse button is pressed). Both marks are maintained internally and cannot 
be deleted.

You will also see a mark called "anchor" that shows up in the getNames method 
after you click in the text widget. It always has the same index value as the "insert" 
mark, but "anchor" might not always exist.

Setting and Getting the Gravity

To set the gravity of the mark, you can use markGravity:

$text->markGravity(markname [ , direction ])

The possible values for direction are "right" and "left". The default gravity for 
new marks is "right". If you don't specify a gravity, the current gravity for that mark 
is returned.



Determining Mark Names

To get a list of all the marks in the text widget, you can use markNames:

@names = $text->markNames ()

There are no arguments to the markNames function, and it returns a list. Here is an 
example of how to report the marks within the text widget:

$f->Button(-text => "Report",
           -command => sub { my @m = $t->markNames ();
                             foreach (@m) {
                               print "MARK: $_ at ", $t-
>index($_), "\n";
                           }})->pack(-side => 'left');

The results after clicking in the window to set the insertion cursor are as follows:

MARK: insert at 2.15
MARK: anchor at 2.15
MARK: current at 3.0

Creating and Deleting Marks

You can create a mark and set it at a specific index by using the markSet method.

$text->markSet(markname, index)

In addition to the markname you want to create, specify the index where the mark should 
be placed. For instance, if you always want to be able to insert at the end of line 3:

$text->markSet("end of line3", "3.0 lineend");
...
$text->insert("end of line3", "text to insert");

The markUnset method removes the mark from the text widget and deletes the mark 
completely. It will no longer show up in the markNames list after it has been unset, and 
it can't be used as an index value either. You can specify more than one markname in 
markUnset:

$text->markUnset (markname [ , markname, markname ... ])

Embedding Widgets

One of the best things you can do with a text widget is put other widgets (such as button 
or entry widgets) inside it. One advantage of embedding widgets is you can create a 
scrolled set of widgets on a line-by-line basis.

Before we go over all the different functions that are available to work with embedded 
widgets, let's look at a quick example. We often want to do a lot of data entry in a 
program, which means we need a lot of label and entry widgets.



Sometimes there are so many of them that it's hard to fit them all on the screen without 
making a mess of the window. By using a scrolled text widget and putting the label and 
entry widgets inside it, we can create a lot more widgets within a smaller space. Here's 
the code:

use Tk;
$mw = MainWindow->new;
$mw->title("Data Entry");
$f = $mw->Frame->pack(-side => 'bottom');
$f->Button(-text => "Exit",
            -command => sub { exit; })->pack(-
side => 'left');
$f->Button(-text => "Save",
           -command => sub { # do something with %info;
                   })->pack(-side => 'bottom');
$t = $mw->Scrolled("Text", -width => 40,
                    -wrap =>  'none')->pack(-expand => 1, -
fill => 'both');

foreach (qw/Name Address City State Zip Phone Occupation
             Company Business_Address Business_Phone/) {
         $w = $t->Label(-text => "$_:", -
relief => 'groove', -width => 20);
         $t->windowCreate('end', -window => $w);
         $w = $t->Entry(-width => 20, -textvariable => \$info
{$_});
         $t->windowCreate('end', -window => $w);
         $t->insert('end', "\n");
}
$t->configure(-state => 'disabled'); # disallows user typing

MainLoop;

Figure 8-6 shows the Win32 version of this window.



Figure 8-6.
Text widget containing other widgets

We disable the text widget before running Mainloop because we don't want the user to 
be able to type text directly into the text widget. This only disables the ability to enter or 
delete text-the internal widgets still function normally. We also turned off the -wrap 
option so the label and entry widgets don't accidentally drop down to the next line when 
the window is resized.

You could put a text widget inside another text widget, but you probably wouldn't want 
to.

The window Method

As you can see from the preceding example, we use the windowCreate method to 
insert an embedded widget. The widget should have already been created, and it should 
be a child of the text widget. The general syntax is:

$widget = $text->Widget( ... );
$text->windowCreate(index, -
window => $widget, [option => value ] );

In our example above, we used the 'end' index. You can use any valid text widget 
index to insert the embedded widgets. The only option we used was a -window option 
with the reference to the new $widget.

Here are the available options for the window method:

-align => where
Possible values of 'baseline', 'bottom', 'center', or 'top'. It determines 
where the widget is placed within the line if it is not as tall as the line itself. The default 
is 'center'.

-padx => amount and -pady => amount
Add space around the widget in the x and y directions respectively (-padx => 10).

-stretch => 0 | 1
Takes a boolean value (1 or 0). A true value will stretch the widgets to fill the line from 
top to bottom.

-window => $widget
Takes a reference to another widget.

There are several different forms of the window method. The first one, the "Create" 
form, creates the widget within the text widget. The "Names" form lets you know what 
types of widgets are embedded in the text widget:

@types = $text->windowNames();



The results look like this:

.text.radiobutton .text.label .text.button .text.entry .text.
checkbutton

Use the windowCget function to get information about the options that were used 
when the window was created in the text widget:

$value = $text->windowCget(index, option;

In order to use windowCget you need to know the index the widget is currently 
occupying (each widget occupies one character in the text widget, even if it looks like it 
takes more space).

The ''Configure" form of window will allow you change the options associated with the 
widget at index or retrieve the value of the configuration option:

$text->windowConfigure(index [, option => value] );

Remember that the only options you can use with this method are -align, -padx, -
pady, -stretch, and -window. Other than this, windowConfigure(...) behaves 
just like a regular widget's configure method. To make changes on the $widget 
directly, use $widget->configure(...).

Internal Debug Flag

The debug function takes an optional boolean argument:

$text->debug( [ boolean ] );

If the value passed in is true, then internal consistency checks will be turned on in the B-
tree code associated with text widgets. If false, the checks will be left off. Without any 
argument, the debug method will return the value "on" if it has been turned on, and 
"off" if not. All text widgets in the application share the same debug flag.

Scanning

The scanMark and scanDragto methods are used internally within the text widget. 
A call to scanMark simply records the x, y passed in for use later with scanDragto. 
It returns an empty string:

$text->scanMark(x, y);

scanDragto also takes x, y coordinates, which are compared to the scanMark x, y 
coordinates. The view within the text widget is adjusted by 10 times the difference 
between the coordinates.

$text->scanDragto(x, y);



Fun Things to Try

• Create a scrollable text widget. Insert a button widget that has text describing the 
foreground color of the text widget and when you click the button, have it cycle between 
several different colors, updating the button's -foreground color and text. For a 
practical application, have several buttons, each associated with a different color in your 
application. When the user clicks the button, you can change the color to a different 
value (possibly using the ColorEdit composite widget).

• Create a text widget that will display a read-only file. Create two buttons on the 
window, one to decrease the font within the text widget, the other to increase it.,



9—
The Canvas Widget

The canvas widget is mainly used for drawing items such as arcs, lines, rectangles, 
circles, and so on. You can also place text and other widgets inside a canvas widget. 
Think of it as a painter's canvas: It is blank until you decide to draw something on it. But 
unlike a painter's canvas, which is limited in size, this canvas is scrollable in any 
direction. Here are some examples of how you can use a canvas widget:

• Create a drawing program.

• Display a graph based on input from the user.

• Create a customized slider.

Each item you create in a canvas widget can have bindings attached to it to allow for 
easy  interaction with the user.

Creating a Canvas

I recommend that you always use the Scrolled method to create a canvas unless you 
know for sure that your canvas is going to be a fixed size that will fit in the window:

$canvas = $mw->Canvas( [ option => values, ... ] )->pack();
# or...
$canvas = $mw->Scrolled('Canvas', [ option => values, ... ])-
>pack();

The first line creates just a canvas and the second creates a canvas with scrollbars. (See 
Chapter 6, Scrollbars, for more information on what else you can do with the 
Scrolled method.) To create a canvas widget, use the desired parent widget to



invoke the Canvas method and pass any initial options in with their values. The 
Canvas method returns a reference to the newly created canvas widget.

Before we get into the options and methods available with a canvas widget, here are a 
few miscellaneous things you should know about using a canvas widget.

Coordinate System

A canvas widget uses a coordinate system to locate items inside of it, but the coordinate 
system isn't a normal one. It's more like an upside-down coordinate system.

Figure 9-1 shows a diagram that demonstrates the coordinate system a canvas widget 
uses.

Figure 9-1.
Canvas coordinate system

The x coordinates behave normally; the larger coordinates are to the right and the 
smaller ones are to the left. The y coordinates look like they have been drinking vodka; 
the larger y coordinates are on the bottom rather than on the top because the 0,0 point is 
in the upper-left corner. Although it is rare, you can use negative coordinates in a canvas.

The coordinate system isn't too hard to deal with once you realize what is happening, but 
if you try to draw a building with a standard coordinate system in mind (that is, with the 
larger y coordinates higher up), your building will come out upside down.

There are several ways to deal with this. First, adjust your way of thinking so you always 
think y coordinates are larger at the bottom (never mind all those years we all struggled 
through geometry classes). Or, you are just as stubborn as I am, you can think in normal 
coordinates, and have your program do a quick little calculation before sending y 
coordinates to the canvas functions. (Multiply all y coordinates by -1. Tricky, huh?)

Whichever way you decide to deal with it, be consistent and make sure you comment 
your code.



The x and y coordinates can be specified in any valid screen unit. They are pixels by 
default. If you follow the coordinate number with a letter m, then you are measuring 
distance in millimeters. The other letters you can use are p for printer points, i for 
inches, and c for centimeters. The default is pixels, which is what we'll use for all of the 
examples in this chapter.

The Scrollable Region

The scrollable area is the portion of the canvas widget that you want the user to be able 
to see. If you don't create a scrollable area (by using the -scrollregion option), the 
user can scroll infinitely in any direction and the scrollbars don't reflect where items on 
the canvas are.

Figure 9-2 shows an example of the scrollable area compared with the area that is visible 
in the canvas. If these two areas are the same size, you don't need scrollbars on the 
canvas (if you use scrollbars, their sliders will completely fill the trough area).

Figure 9-2.
Scrollable area compared with visible area

The arrows on the axis markers in Figure 9-2 indicate that the canvas can still be larger 
than the indicated scrolling area. For instance, if you decide to insert a circle beyond the 
scrolling area, you have to adjust the scrollable area so the user will be able to see the 
new circle.

The best way to do this is to use the bbox method, which returns a bounding box for all 
items that match the tags you send it. Here's what the code looks like:

$canvas->configure(-scrollregion => [ $canvas->bbox
("all") ]);



Calling this after you add or remove items to the canvas resets the scroll region to where 
it needs to be. Of course, if you are adding many different items all at once, you should 
wait until after you have added them all and then update the scroll region.

Using Bind with a Canvas

When you try to use the bind method with a canvas widget, you'll run into some 
unexpected problems. You'll either get an error and your script won't run, or your script 
will run but your bind won't seem to have any effect. In order to get around this, you'll 
need to use the explicit Tk::bind instead of just bind (because the canvas has its 
own bind method that you have to avoid using):

$canvas = $mw->Canvas();
$canvas->Tk::bind("<Button-1>", sub { print "bind!\n"; });

You can also use SUPER::bind instead of Tk::bind. Either way will work.*

If you used the Scrolled method to create your canvas, you'll have an added 
difficulty; you'll have to use the Subwidget method to get to the canvas widget:

$canvas = $mw->Scrolled("Canvas");
$real_canvas = $canvas->Subwidget("canvas");
$real_canvas->Tk::bind("<Button-1>", sub { print "bind!
\n" });

Other than this one small annoyance, bind works just as you would expect it would. 
Here's a quick (and fairly useful) example that will print out the coordinate you clicked 
on:

$c = $mw->Scrolled("Canvas")->pack();
$canvas = $c->Subwidget("canvas");
$canvas->Tk::bind("<Button-1>", [ \&print_xy, Ev('x'), Ev
('y') ]);
sub print_xy {
  my ($canv, $x, $y) = @_;
  print "(x,y) = ", $canv->canvasx($x), ", ", $canv->canvasy
($y), "\n";
}

This example prints out the coordinates (in canvas coordinates) when you click the left 
mouse button.

Canvas Options

The options listed in this section affect the entire canvas widget and the items within it. 
Items are circles, lines, rectangles, text, or other widgets. These options act as you would 
expect them to (as explained in Chapter 3, The Basic Button, for



* For those using Tk8.0: You can use canvasBind instead of Tk::bind. I'll 
refer to Tk::bind throughout the rest of the chapter, but note that you should use 
canvasBind instead.

most options and in Chapter 6 for the scrollbar options): -background, -
borderwidth, -cursor, -height, -highlightbackground, -
highlightcolor, -highlightthickness, -relief, -takefocus, -
width, -xscrollcommand, and -yscrollcommand.

New Options

When selecting items in the canvas with the mouse cursor, the canvas widget does 
calculations to determine if the mouse cursor is inside or outside the item. The -
closeenough option controls how close the mouse must be to the item before it is 
considered inside the item. The default value for -closeenough is "1.0", which is 
1.0 pixels away. Any floating point number is a valid value (and will always be in 
pixels) for -closeenough.

I discussed the -scrollregion option briefly in "The Scrollable Region" earlier in 
this chapter. It takes a list reference, and that list must contain  four coordinates. The 
coordinates indicate a bounding region for the scrollable area in the canvas. The 
coordinates are in this order: [ minx, miny, maxx, maxy ]. You can also think of the 
coordinates as if they were defining the [ left, top, right, bottom ] edges of the scrollable 
region.

Normally, the canvas widget limits the user to seeing only the area defined by the -
scrollregion option. You can allow the user to scroll beyond this area by using -
confine => 0. The default for -confine is 1.

Additional Scrolling Options

The -xscrollcommand and -yscrollcommand options both work as described in 
Chapter 6, but there are two additional options that affect how the canvas scrolls its  
contents: -xscrollincrement and -yscrollincrement. Each option takes a 
valid screen distance for a value. This distance is the unit the canvas will use to scroll in 
the associated direction. For instance, if you specify -xscrollincrement => 10, 
each time you click an arrow on the horizontal scrollbar, the contents of the canvas will 
shift so that the left edge of the contents is an even multiple of 10. Essentially, the 
canvas will shift the contents 10 pixels in the arrow's direction.

If the value associated with -xscrollincrement or -yscrollincrement is 0 or 
less, scrolling is done in normal increments.



Options for Text Items

The following options are applied to the entire canvas widget, but they really only affect 
the text items inside the canvas widget: -insertbackground, -
insertborderwidth, -insertofftime, -insertontime, -insertwidth, 
-selectbackground, -selectborderwidth, and -selectforeground. 
These options work  the same as they would for an entry widget or a text widget. See 
Chapter 5, Label and Entry Widgets, and Chapter 8, The Text Widget, for more details.

Canvas Widget Option List

These options all are used with the Canvas method:

-background => color
Sets the background of the canvas to color.

-
borderwidth => 
amount
Changes the width 
of the edges of the 
canvas to amount.

-
closeenough => 
float_amount
Sets the amount of 
distance from the 
item when the 
cursor is considered 
inside the item.

-confine => 1 | 0
Indicates that the canvas will limit itself to the area defined by -scrollregion if set 
to 1. Default is 1.

-cursor => cursorname
Indicates that the cursor will change to cursorname when it is over the canvas.

-height => amount
Sets the height of the canvas to amount.



-
highlightbackground => 
color
Sets the color the highlight 
rectangle should be when the 
canvas does not have the 
keyboard focus.

-
highlightcolor => 
color
Sets the color the 
highlight rectangle 
should be when the 
canvas does have the 
keyboard focus.

-highlightthickness => amount
Sets the highlight rectangle. Default is 2.

-
insertbackground => 
color
Sets the color of the area 
behind the text insert cursor.

-insertborderwidth => amount
Sets the width of the borders on the insert cursor.

-insertofftime => milliseconds
Sets the amount of time the cursor disappears from the screen when it is blinking off.

-
insertontime => 
milliseconds
Sets the amount of 
time the cursor 
appears on the screen 
when it is blinking on.

-
insertwidth => 
amount
Sets the width of the 
insert cursor.



-
relief => "flat" 
| 'groove' | 
'raised' | 
'ridge' | 
'sunken' | 'solid'
Indicates the way the 
edges of the canvas are 
drawn. Default is 
'flat'.

-
scrollregion => 
[ left, top, right, 
bottom ]
Defines the area the 
user is allowed to 
scroll.

-
selectbackground => 
color
Sets the color of the area 
behind any selected text.

-
selectborderwidth => 
amount
Sets the width of the border 
of the selected area.

-selectforeground => color
Sets the color of the selected text.

-
takefocus => 0 
| 1 | undef
Determines whether 
or not the canvas 
can get keyboard 
focus. Default is for 
the application to 
decide.



-width => amount
Sets the width of the canvas to amount.

-
xscrollcommand => 
callback
Determines the callback 
used when the canvas is 
scrolled horizontally 
(automatically set to the 
correct callback when 
the Scrolled method 
is used).

-
xscrollincrement => 
amount
Sets the distance the canvas 
contents move when the 
arrow on the horizontal 
scrollbar is clicked.

-
yscrollcommand => 
callback
Determines the callback 
used when the canvas is 
scrolled vertically.

-yscrollincrement => amount
Sets the distance the canvas contents move when the arrow on the vertical scrollbar is 
clicked.

Creating Items in a Canvas

The whole point of having a canvas is to put items in it. You can create arcs, bitmaps, 
images, lines, rectangles, ovals (circles), polygons, text, and widgets. Each has an 
associated create XXX method, where the type of item you want to create  replaces the 
XXX. All of the create methods return a unique ID, which can be used to refer to the 
item later. When you see a method that takes a tag or an ID as an argument, the ID is the 
one returned from the create method.

The Arc Item



When you create an arc, you specify a bounding rectangle with two sets of x and y 
coordinates. The arc is drawn within the confines of the bounding box. Additional 
options that will change how the arc is drawn in the canvas are explained shortly. The 
basic createArc statement is as follows:

$id = $canvas->createArc(x1, y1, x2, y2,);

Any additional options used in the createArc method are specified after the 
coordinates:

$id = $canvas->createArc(x1, y1, x2, y2, option => value);

Each option for the arc item can be used later with the itemcget and 
itemconfigure canvas methods. The options are:

-extent => degrees
The length of the arc is specified in degrees by using the -extent option. The default -
extent (or length) is 90 degrees. The arc is drawn from the starting point (see -start 
option) counterclockwise within the rectangle defined by (x1, y1) and (x2, y2). The 
degrees value should be between -360 and 360. If it is more or less, then the value used 
is the specified number of degrees modulo 360.

Here are some examples of the -extent option:

# This draws half of an oval
$canvas->createArc(0,0,100,150, -extent => 180);
# This will draw _ of an oval
$canvas->createArc(0,0,100,150, -extent => 270);

-fill => color
To fill the arc with the specified color. By default, there is no fill color for an arc.

-outline => color
Normally the arc is drawn with a black outline. To change the default, use the -
outline option. The outline color is separate from the fill color, so to make it a 
completely solid object, make the color for -outline and -fill the same.



-
outlinestipple => 
bitmap
To use -
outlinestipple, 
you must also use the -
outline option. 
Normally, the outline of 
the arc is drawn solid. 
Use a bitmap with -
outlinestipple to 
make the outline 
nonsolid; the specified 
bitmap pattern will be 
used to draw the outline 
of the arc.

-start => 
degrees
The value 
associated with 
the -start 
option determines 
where Per1/Tk 
starts drawing the 
arc. The default 
start position is at 
three o'clock (0 
degrees). The 
degrees specified 
are added to this 
position, but in a 
counterclockwise 
direction. Use -
start => 90 
to make the arc 
start at the twelve 
o'clock position, 
use -
start => 180 
to make the arc 
start at the nine 
o'clock position, 



and so on.

-stipple => bitmap
The -stipple option causes the arc to be filled with a bitmap pattern, but only if the -
fill option has been specified as well.

-style => "pieslice" | "chord" | "arc"
The -style of the arc determines how the arc is drawn. The default, "pieslice", 
draws the arc and two lines from the center of the oval ends of the arc segment. The 
"chord" value draws the arc and a line connecting the two end points of the arc 
segment. The "arc" value draws just the arc portion with no other lines. The -fill 
and -stipple options are ignored if "arc" is used.

-tags => taglist
When you create an arc, you use the -tags option to assign tag names to it. The value 
associated with -tags is an anonymous list of tag names; for example:

$canvas->createArc(0,0,10,140, -tags => ["arc", "tall"]);

You don't need to use an anonymous list if you are only specifying one tag name:

$canvas->createArc(0,0,10,140, -tags => "arc");

-
width => 
amount
The width 
of the 
outline is 
specified 
by using -
width. 
The default 
-width is 
1.

The Bitmap Item

A canvas widget can display a bitmap instead of text just as a button or label can. You 
can use createBitmap to insert a bitmap into your canvas widget:

$id = $canvas->createBitmap(x, y);



Of course, you must use the -bitmap option to specify which bitmap to display or you 
won't see anything. So we really create a bitmap like this:

$id = $canvas->createBitmap(x, y, -bitmap => bitmap);

Why they didn't just make the bitmap the third argument, I don't know. That's just the 
way it is. The other captions available for createBitmap are:

-anchor => "center" | "n" | "e" | "s" | "w" | "ne" | "nw" | "se" | "sw"
The -anchor option determines how the bitmap is placed on the canvas relative to the 
x,y coordinates indicated. The default for -anchor is "center", which puts the 
center of the image at the x,y coordinates. Using a single cardinal direction (for example, 
"e") would place the center of that edge at the x,y coordinates.

-background => color
The -background option specifies the color to use for all the 0 (zero) bitmap pixels. If 
you don't specify a background color or use an empty string (" "), the 0 pixels willbe 
transparent.

-bitmap => bitmapname
You must use the -bitmap option to tell the canvas which bitmap to display. You can 
use the built-in bitmaps such as 'info' or 'warning' just as you can with the button 
widget, or you can specify a filename. Remember, to specify a bitmap file, use an @ sign 
in front of the bitmap filename.

-foreground => color
The foreground color of a bitmap is the opposite of the background color. (By definition, 
bitmaps can only have two colors.) The -foreground option will color all the 1 pixels 
with this color. The default for -foreground is black.

-tags => taglist
When you create a bitmap, you can assign tag names to it by using the -tags option. 
The value associated with -tags is an anonymous list of tag names; for example:

$canvas->createBitmap(0,0, -bitmap => 'info',
                      -tags => ["info", "bitmap"]);

You don't need to use the list if you are only specifying one tag name:

$canvas->createBitmap(0,0, -bitmap => 'info', -
tags => "bitmap");

The Image Item



If we can create a bitmap on a canvas, it makes sense that we can create an image as 
well. We can do so with the createImage method:

$id = $canvas->createImage(x, y,-image => image);

Again, you have to specify an image to display or you won't see anything. The other 
options available for createImage are:

-anchor => "center" |  "n"  |  "e"  |  "s"  | "w"  |  "ne"  |  "nw"  |  "se"  |  
"sw"
The -anchor option for an image works the same as it does for a bitmap. The -
anchor option is how the image is positioned around the x,y coordinates. The default 
for -anchor is 'center'.

-image => $image
The -image option indicates which image to display. The image value is actually a 
reference to an image created with Photo or Bitmap methods. (See Chapter 3 for 
more information on how to specify an image file.)

-tags => taglist
Use the -tags option to assign tag names to an image. The value associated with -
tags is an anonymous list of tag names; for example:

$canvas->createImage(0,0, -image => $imgptr,
                     -tags => ["image", "blue"]);

You don't need to use the list if you are only specifying one tag name:

$canvas->createImage(0,0, -image => $imgptr, -
tags => "image");

The Line Item

The creatLine method can actually create multiple connected lines, not just one. The 
first two coordinate sets you supply create the first line, and any additional coordinates 
will continue the line to that point:

$id = $canvas->createLine
(0,0, 400,400);           # creates one line
$id = $canvas->createLine(0,0, 400,400, -
50, 240); # creates two lines

After the coordinates, you can specify any options and values you wish to configure the 
line(s); the options and values are as follows:



-arrow => "none" | "first" | "last" | "both"
You can place arrowheads at either end of the line (or both) by using the -arrow 
option. If you have more than one line in your createLine method, only the first and/
or last point can be made into an arrow. If you want each line to have an arrowhead, then 
use multiple createLine statements.

-arrowshape => [ dist1, dist2, dist3 ]
The -arrowshape option only applies if you use the -arrow option as well. Figure 9-
3 shows what the distance values mean.

Specify the three distances by using an anonymous list such as this:

$canvas->createLine(10, 10, 200, -40, -arrow => "both",
                    -arrowshape => [20, 20, 20]);

Figure 9-3.
Definition of arrowhead

-capstyle => "butt" | "projecting" | "round"
Instead of arrowheads, you can make the ends of the line have one of these styles.

-fill => color
The -fill option is misnamed because it isn't actually filling anything. The line is 
simply drawn with this color instead of black.

-joinstyle => "bevel" | "miter" | "round"
The -joinstyle option affects how multiple lines are joined together. The default is 
"miter". If there is only one line created, this option has no effect.

-smooth => 1 | 0
If -smooth has a value of 1, then, using Bezier spline(s), the line(s) will be drawn as a 
curve. The first two lines make the first spline, the second and third line make up the 
second spline, and so on. To make a straight line, repeat the end points of the desired 
straight line (or use createLine again to make a separate line).



-splinesteps => count
When you use the -smooth option, the more -splinesteps you use, the smoother 
the curve. To find out how many steps create the desired effect, you'll have to 
experiment with different values.

-stipple => bitmap
To have the line drawn with a bitmap pattern (1s in the bitmap have color, 0s are 
transparent), use the -stipple option. The bitmap can be a default bitmap name or a 
filename. The wider the line (see -width), the more the stipple design will show up.

-tags => taglist
When you create a line (or lines), assign tag names to them by using the -tags option. 
The value associated with -tags is an anonymous list of tag names; for example:

$canvas->createLine(0,0, 100,100, -tags => ["line", "blue"]);

You don't need to use a list if you are only specifying one tag name:

$canvas->createLine(0,0, 100, 100, -tags => "line");

-width => amount
You can make the line(s) thicker by using the -width option. Normally the line is 
drawn only 1 pixel wide. The amount can be any valid screen distance (e.g., centimeters, 
inches).

The Oval Item

An oval can be a circle if you draw it just right. To create a circle/oval, use the 
createOval method and specify two sets of points that indicate a rectangle (or 
square) in which to draw the circle/oval. Here is a simple example:

$id = $canvas->createOval(0,0, 50, 50);  # creates a circle
$id = $canvas->createOval(0,0, 50, 100); # creates an oval

The options for the oval will be familiar, so we'll just cover them briefly:

-fill => color
The oval will be filled in with the specified color. This color is different than the outline 
color. By default, the oval is not filled.

-outline => color
The outline is the line drawn around the outside of the circle. Normally the outline is 
black, but it can be changed by using the -outline option. If you make the outline and 
the fill color the same, the oval appears solid.



-stipple => bitmap
To fill the oval with a bitmap pattern (1 values in bitmap are colored, 0 values are 
transparent), use the -stipple option. If the -fill option isn't used, -stipple has 
no effect. -stipple takes a default bitmap name or a file with a bitmap in it.

-tags => taglist
When you create an oval, use the -tags option to assign tag names to them. The value 
associated with -tags is an anonymous list of tag names; for example:

$canvas->createOval(0,0, 100,100, -tags => ["oval", "blue"]);

You don't need to use a list if you are only specifying one tag name:

$canvas->createOval(0,0, 100, 100, -tags => "oval");

-width => amount
The -width option changes how wide the outline of the oval is drawn. The default for -
width is 1 pixel.

The Polygon Item

A polygon is merely a bunch of lines where the first point is connected to the last point 
automatically to create an enclosed area. The createPolygon method requires at 
least three x,y coordinate pairs. For instance, the following piece of code will create a 
three-sided polygon:

$id = $canvas->createPolygon(1000,1000, 850,950, 30,40);

Additional x,y coordinate pairs can be specified as well; for example:

$id = $canvas->createPolygon
(1000,1000, 850,950, 30, 40, 500, 500);

The options you can specify with createPolygon are the same as those you use with 
createLine: -fill, -outline, -smooth, -splinesteps, -stipple, -
tags, and -width. Just remember that createPolygon connects the first point to 
the last point to enclose the area.

The Rectangle Item

As if being able to create a rectangle using createLine or createPolygon weren't 
enough, we also have the createRectangle method. It only takes two x y 
coordinate sets, which are the opposite corners of the rectangular area:

$id = $canvas->createRectangle(10, 10, 50, 150);



Again, we have seen the options available for createRectangle with the other 
create methods: -fill, -outline, -stipple, -tags, and -width. Although 
I've covered these options already, here are a few examples:

# A blue rectangle with black outline:
$canvas->createRectangle(10,10, 50, 150, -fill => 'blue');
# A blue rectangle with a thicker outline:
$canvas->createRectangle(10,10, 50, 150, -fill => 'blue', -
width => 10);

The Text Item

Finally, an item type that doesn't have lines in it! You can add text to a canvas widget by 
using the createText method. It requires an x,y coordinate pair, which determines 
where you place the text in the canvas, and the text to be displayed:

$id = $canvas->createText(0,0, -text => "origin");

The -text option is actually optional, but then you wouldn't see any text on the screen. 
Because there is no point in that, we will assume that you will always specify -text 
with a text value to display. The other options available for text items are as follows:

-anchor => "center" | "n" | "e" | "s" | "w" | "ne" | "nw" | "se" | "sw"
The -anchor option determines where the text is placed in relation to the x,y 
coordinate. The default is centered: The text will be centered over that point no matter 
how large the piece of text is.

-fill => color
The text is normally drawn in black; you can change this by using the -fill option. 
The name of this option doesn't make much sense when you think about it in terms of 
text (normally our widgets use -foreground to change the color of the text). For 
example, -fill => 'blue' will draw blue text.

-front => fontname
You can change the font for the displayed text by using the -font option.

-justify => "left" | "right" | "center"
If the displayed text has more than one line, the -justify option will cause it to be 
justified as specified. The default justification is to the left.

-stipple => bitmap
This option is a bit strange, but here it is anyway. If you specify a bitmap name (or file) 
with the -stipple option, the text will be drawn by using the bitmap pattern. Most of 
the time, this will make the text unreadable, so don't use it unless you're using a large 
font.



-tags => taglist
The taglist is a single tag name or an anonymous list of tag names to be assigned to 
this item.

-text => string
This option is not optional. The specified string is displayed in the canvas widget at the x,
y coordinate.

-width => amount
This is another misnamed option because it does not change the width of each text 
character. It determines the maximum length of each line of text. If the text is longer 
than this length, the line will automatically wrap to a second line. The default value for 
amount is 0, which will only break lines at newline characters. Lines are always broken 
at spaces so words won't be cut in half.

Text item indexes

Methods that affect text items will sometimes ask for an index value. Text indexes for 
the regular text widget were covered in Chapter 8, and the index values for a canvas text 
item are similar. The only difference is that each item is considered only one line (even 
if it has "\n" characters in it). Index values are as follows:

n
A number value: for example, 0 or 12.0 is the first character, 1 is the second, and so on.

"end"
The character directly after the last one. Often used with the insert method to add to 
the end of the string.

"insert"
The character directly before the insertion cursor.

"sel.first"
The first character of the selected text. Only valid if there is a selection.

"sel.last"
The last character of the selected text. Only valid if there is a selection.

"@x,y"
The character closest to the point x,y of the canvas (not screen coordinates).

Deleting characters



To delete characters from within a text item, use the dchars method: $canvas-
> dchars (tag/id, first [, last ]). Specify a tag or ID to match the text item(s) and the 
index at which to start deleting. If the end index isn't specified, all the characters to the 
end of the string will be deleted (including any "\n" characters).

Positioning the cursor

You can specifically place the blinking text cursor by using icursor: $canvas-
> icursor (tag/id, index). The cursor will only show up immediately if the specified 
item has the current keyboard focus. You can still set the position of the cursor if it 
doesn't, it just won't display until the item does get the keyboard focus.

Index information

You can find out an index based on another index by using the index method. Don't get 
confused yet; here's an example:

$index = $canvas->index("textitem", "sel.first");

This will return the numerical index associated with the first selected character in the 
text item. If more than one item will match the tag or ID indicated (in this case it's a tag 
named "textitem"), then the first one found will be used.

Adding text

To add more text to a text item, use the insert method: $canvas->insert (tag/ id, 
index, string). The first argument is the tag or ID, which can match multiple items. The 
second argument is the index before which to insert the new string, and the last argument 
is the actual string to insert into the text item.

Selecting text

There are several methods you can use to programmatically select portions of the text. 
To clear the selection (any selection; there are no tags or IDs sent with this command), 
use $canvas->selectClear(). To select a portion of text, use selectFrom and 
selectTo. The following two lines of code select the text from beginning to end for 
the first item that matches the tag "texttag"

$canvas->selectFrom("texttag", 0);
$canvas->selectTo("texttag", "end");

You can add to the selection by using selectAdjust: $canvas->selectAdjust 
("adjust", tag/id, index). You can get the ID of the item that currently has the 
selection in it by using $id = $canvas->selectItem().

The Widget Item



You can put any type of widget inside a canvas-buttons, checkbuttons, text widgets, or 
even another canvas widget (if you are a little crazy)-by using the createWindow 
method. Before calling createWindow, you must create the widget to put into the 
canvas. Here's an example:

$bttn = $canvas->Button(-text => "Button",
                        -
command => sub {print "Button in canvas\n";});
$id = $canvas->createWindow(0,0, -window => $bttn);

There are a few things you should note about this example (which is fairly typical except 
the subroutine associated with the button doesn't do anything useful):

• The button is a child of the canvas widget. The button could be a child of an ancestor 
of the canvas (the button could be a child of the main window if the canvas is also a 
child of the main window). However, the button should not be a child of a different 
toplevel widget that has nothing to with the canvas.

• The createWindow method doesn't actually create the widget; it just puts it in the 
canvas. The button is placed at the specified coordinates inside the canvas and has not 
been placed on the screen with pack(), grid(), or place().

• The widget must be created before you call createWindow.

• You can click the button and the callback associated with it will be invoked, just as 
with any other button.

• When you create the widget, you can use any of that widget's options to configure it. 
You can continue to configure the widget by using the reference to it (e.g., $bttn).

The following options which you can use when you call createWindow are more like 
options you use with pack() than widget options:

-anchor => "center" |  "n"  |  "e"  |  "s"  |  "w"  |  "ne"  |  "nw"  | "se"  |  
"sw"
The widget will be placed at the x,y coordinates according to the -anchor value. The 
default is "center", which means that the widget will have its center point placed on x,
y.

-height => amount
The widget will be given this height. If you don't use -height, the widget will have the 
height it was created with (usually the natural size of the widget).

-tags => taglist
The taglist associates a tag with the widget. You can specify either a single tag string, or 
an anonymous list of tag names.



-width => amount
The widget will be given this width. If you don't use the -width option, the widget will 
have the width it was created with (the natural size of the widget).

-window => $widget
This is a nonoptional option. If you don't specify -window, there will be no widget put 
in the canvas. The $widget is a reference to a widget item. You can create the widget 
beforehand or inline as follows:

$canvas->createWindow(0,0, -window => $canvas->Button(-
text => "Button",
         -command => sub { print "Button!\";  }));

It makes sense to create the widget inline if you don't need to do anything fancy 
with it.

Configuring the Canvas Widget

As usual, to configure or get information about the canvas widget, you can use the 
configure and cget methods, explained in detail in Appendix A, Configuring 
Widgets with configure and cget. Remember, configure and cget operate on the 
entire canvas widget (possibly affecting the items within it).

Configuring Items in the Canvas Widget

To change the configuration options of any of the items within the canvas, you only need 
to know the tag name or the ID for that item. You can then use the itemcget and 
itemconfigure methods. They behave just like the cget and configure 
methods, except as a first argument, they take the tag or ID of the item(s). I use the term 
"item(s)" because a tag can refer to more than one item. Here are some examples:

$color = $canvas->itemcget("circle", -fill)
$canvas->itemconfigure($id_number, -fill => "yellow", -
outline => 5);

Make sure the options you use with itemconfigure and itemcget are valid. Each 
item type has a list of valid options; they are listed earlier in this chapter with each 
create method.

When you set the -tags option, the itemconfigure method will replace any 
currently set tags for the item. The taglist associated with -tags can also be empty, 
which will essentially remove all tags.

Tags



Each item can also have a tag (or more than one tag) associated with it. We have seen 
tags used before in the text widget, where sections of text could be assigned a tag. A tag 
can be assigned when the item is created, or you can use the addtag method to assign a 
tag after the item has been created.

There are two special tags that are automatically assigned and maintained: the 
"current" and "all" tag refers to all the items in the canvas. The "current" tag 
refers to the topmost item that the mouse cursor is over. If the mouse cursor is outside of 
the canvas widget or not over an item, then the "current" tag does not exist.

You can use tags to make changes to many different items at once. For instance, if you 
want all circles to have the same color, but you want to be able to change it from time to 
time, then give all circles a "circle" tag when you create them. Using the 
itemconfigure method to change the configuration options of the items with the 
"circle" tag.

The following are some sample syntax lines for creating tags.

$canvas->addtag ("newtag", "above", tag/id);
The "newtag" tag is added to the item that is above the tag/ID item. If there is more 
than one match for tag/ID, the last item found will be used so the "newtag" is directly 
above the tag/ID item in the display list. The display list

is created as you add items to the canvas and can be manipulated with the raise 
and lower methods.

$canvas->addtag("newtag", "all");
The keyword "all" is a special tag that includes every item currently in the canvas. 
Items added to the canvas after the call to addtag will not contain "newtag" in their 
taglist.

$canvas->addtag("newtag", "below", tag/id);
The "newtag" tag is added to the item that is directly below the tag/ID item. If more 
than one item matches the below tag/ID search, the lowest item in the list will be used.

$canvas->addtag ("newtag", "closest", x,y);
Use the "closest" tag to select the item closest to the x,y coordinates (in canvas 
coordinates). If more than one item matches, the last one found is used.

There are two more possible arguments for this form of addtag. You can specify 
a number that indicates how far out from the x,y coordinates items are to be 
considered. For instance, if you want an item that is within 10 pixels to be 
considered "closest", make the call as follows:

$canvas->addtag("newtag", "closest", 50, 100, 10);



You can also specify a starting tag/ID to start a search. The call would then look 
like this:

$canvas->addtag("newtag", "closest", x, y, 10, $tag_or_id);

By using this form, you can loop through all the closest items.

$canvas->addtag("newtag", "enclosed", x1, y1, x2, y2);
You can assign the same tag to several items within the area bounded by (x1,y1) to (x2,
y2) by using the "enclosed" form of addtag. Items will only be given "newtag" 
if they are completely within the area. The coordinates must make sense when you 
specify them: x1 < x2 and y1 < y2.

$canvas->addtag("newtag", "overlapping",x1, y1, x2, y2);
To assign tags to any item that has any part inside a bounded region, use 
"overlapping" instead of "enclosed". Even if the item has only one pixel inside 
this area, it will still count. All other rules for the bounding area are the same as for 
"enclosed"

$canvas->addtag("newtag", "withtag", tag/id);
Assigns "newtag" to all the items with the tag or ID specified.

Binding Items Using Tags

Each item in a canvas can have an event sequence bound to it so that a callback will be 
invoked when that event sequence happens. This is similar to adding an event sequence 
binding for widgets except item tags or item IDs are used. (Remember, if you want to 
add a normal binding to the canvas widget itself, you must use Tk::bind (or 
canvasBind for Tk8.0 users) instead of just bind.)

The general form of bind is as follows:

$canvas->Tk::bind(tag/id [ , sequence, command]);

The sequence would be similar to "<Button-1>" or "<Double-1>". A complete 
definition and explanation of event sequence is available in Chapter 14, Binding Events.

When you create item bindings, keep in mind that only mouse and keyboard bindings are 
valid for items. You can't do any of the weird esoteric bindings that are available for all 
widgets.

Here is an example that changes the color of any items tagged with "blue" when the 
mouse is over it:



# When the mouse is over the item, color it blue
$c->Tk::bind("blue", "<Enter>",
          sub { $c->itemconfigure("blue", -
fill => "blue"); });
# When the mouse is over the item, color it black.
$c->Tk::bind("blue", "<Leave>",
          sub { $c->itemconfigure("blue", -
fill => "blue"); });

Finding Tags

You can use the find command to determine which items have a certain tag. The 
possible ways to call find are the same as those of addtag (except for the newtag 
argument). Here are the basic formats (see "Tags" earlier in this chapter for more details 
on what they mean and how they work):

$canvas->find("above", tag/id);
$canvas->find("all");
$canvas->find("below", tag/id);
$canvas->find("closest", x, y [ , additional_area ]  [ , tag/
id ]);
$canvas->find("enclosed", x1, y1, x2, y2);
$canvas->find("overlapping", x1, y1, x2, y2);
$canvas->find("withtag", tag/id);

Getting Tags from a Specific Item

To get a list of all the tags associated with an item, use:

@list = $canvas->gettags(tag/id);

If the tag/ID matches more than one item, then the first item found is used. If the tag/ID 
doesn't match anything, an empty string is returned.

Retrieving Bounding Box Coordinates

When we talked about the scrolling region of a canvas, we saw an example of the bbox 
method. The bbox method returns a list with four elements that define the area in which 
all the specified tags exist. The example used the special "all" tag, which refers to 
every item in the canvas. This was how we used it to define our scrolling region. You 
can specify more than one tag/ID to search for as follows:

($1, $r, $t, $b) = $canvas->bbox("blue", "red");

Assuming that you have been assigning the tags "blue" and "red" to appropriately 
color items, this code would return the region in the canvas that encloses all blue and red 
items.



Translating Coordinates

When you set up a callback and use the Ev('x') and/or Ev('y') arguments to find 
out where the user clicked, you must translate that information into canvas coordinates 
(Ev is explained in Chapter 14). To do this, use the canvasx and canvasy methods:

$x = $canvas->canvasx(screenx [, gridspacing ]);
$y = $canvas->canvasy(screeny [, gridspacing ]);

Each method takes an optional gridspacing argument; then the canvas coordinate value 
will be rounded to the nearest value to fit the grid.

Moving Items Around

Once an item has been created on the canvas, you can move it by using one of two 
methods: move or coords. The move method takes a tag or ID to indicate which items 
to move and the amounts to add to the x and y coordinates:

$canvas->move(tag/id, xdistance, ydistance);

For instance, the following code will move items with the "blue" tag 100 pixels in the 
x direction and 100 pixels in the y direction:

$canvas->move("blue", 100, 100);

To move an item in the negative direction, simply specify a negative value for the 
xdistance and/or ydistance. The other method, coords, allows you to explicitly specify 
a new x and y location for the first item found that is identified by the tag or ID:

$canvas->coords(tag/id, newx, newy);

If the item requires more than one set of x, y coordinates, you simply continue to specify 
them:

$canvas->coords(tag/id, newx1, newy1, newx2, newy2...);

You can also find out where an item currently is in the canvas by using coords and not 
specifying the x or y coordinates:

@coords_list = $canvas->coords(tag/id);

Remember, the coords method only applies to the first item it finds that matches the 
given tag or ID.

Changing the Display List



Every time a method looks through all the items in the canvas for a specific tag or ID, it 
looks through the display list. The display list is created as items are added to the canvas. 
The first item added to the canvas is the first items in the display list, and items are 
added in order as they are created. Also, items created later are drawn above the ones 
created earlier if they overlap at all. To change the display order, use the raise and 
lower methods:

$canvas->raise(tag/id, abovetag/id);
$canvas->lower(tag/id, belowtag/id);

The first argument for each method is the tag or ID of the item(s) you want to move in 
the display list. The second is the tag or ID next to which the first item should be placed 
(either above or below). If the first tag or ID matches more than one item, they are all 
moved.

Note that if you use the Scrolled method to create the canvas, you can't use the item 
returned by that method to invoke either raise or lower; you'll get a nasty error about 
the wrong argument types because Scrolled is not invoking this version of raise or 
lower, but another one. Use the subwidget to get the actual canvas reference and the 
call to raise and lower will work.

Deleting Items

To remove an item (or more than one item) from the canvas completely, use the 
delete method. It takes a list of tag or IDs to remove from the canvas. It will delete all 
matches it finds for the tag names, so be careful that you aren't deleting something you 
don't want to delete. Here is an example that uses three separate tag/IDs:

$canvas->delete("blue", "circle", $id_num);

You can specify only one tag/ID or as many as you want.

Deleting Tags

You can remove tags from items by using the dtag method. There are two forms:

$canvas->dtag(tag);
$canvas->dtag(tag/id, deltag);

The first one will search for items with the specified tag and then delete the tag. The 
second will search for items that match the tag or ID and then delete the deltag (if it 
exists) from that item. This allows you to delete a subset of the tabs, rather than every 
single tag.

Determining Item Type



To determine an item's type, call the type method:

$canvas->type(tag/id);

If the tag or ID mathods more than one item, only the type of the first item is returned. 
The returned value will be a string describing the item type: "oval", "text", 
"rectangle", and so on.

Set Keyboard Focus

To assign the keyboard focus to an item, use the focus method:

$canvas->focus(tag/id);

If the item doesn't know what to do with the keyboard focus, nothing will happen. You'll 
use this to change the focus to widget within the canvas.

Rendering the Canvas as PostScript

You can get a copy of the canvas as postscript by using the postscript method. It 
will either return the PostScript output or, if the -file option is specified, put it in a file

$postscript = $canvas->postscript();
$canvas->postscript(-file=> "ps.out");

The following options allow you to control the output of the PostScript.

-colormap => \@array
Specifies that each element in @array must be a valid postscript command for setting 
color values; e.g., "1.0 1.0 0.0 setrgbcolor".

-colormode => "color" | "gray" | "mono"
Creates the postscript in full color, grayscale ("gray"), or black and white ("mono").

-file => filename
Specifies the file in which to put the PostScript output.

-fontmap => \@array
Each element in @array is a two-element array that contains a fontname and a point 
size. The fontname should be a complete font name so Tk will parse it correctly (e.g., "-
*-Helvetica-Bold-O-Normal--*-140-*").

-height => size
Sets the height of the area to print. The default height is the canvas height.



-pageanchor => "n" | "e" | "s" | "W" | "center"
Indicates where the page should be placed over the positioning point specified by -
pagex and -pagey options. Default is "center".

-pageheight => height
Sets the height of the printed page. The canvas image will be scaled to fit. height is any 
valid screen distance.

-pagewidth => width
Sets the width of the printed page. The canvas image will be scaled to fit.

-pagex => x
Sets the coordinate for the x positioning point. Can be any valid screen distance.

-pagey => y
Sets the coordinate for the y positioning point. Can be any valid screen distance.

-rotate => 0 | 1
If 1, the page is rotated into a landscape orientation. Default is portrait orientation.

-width => size
Sets the width of the canvas area to be printed. Defaults to the width of the canvas.

-x => x
Sets the left edge of the area to be printed (in canvas coordinates). Default is the left 
edge of the window.

-y => y
Sets the top edge of the area to be printed (in canvas coordinates). Default is the left edge 
of the window.

Scaling the Canvas

When you put a large number of items on the canvas, it's sometimes hard to see them all 
without scrolling all over the place. It's possible to scale the canvas, for



example, so it will shrink everything in half or explode it to twice the original size. The 
usage for scale is as follows:

$canvas->scale(tag/id, xorigin, yorigin, xscale, yscale);

The scaling is centered around the xorigin and yorigin. I suggest using the real origin (0, 
0) unless you can come up with a good reason not to. Both xscale and yscale are the 
scaling factors used on each coordinate in each item. Here are some examples:

$canvas->scale("all", 0, 0, 1, 1);   # no change!
$canvas->scale("all", 0, 0, .5, .5); # make all 1/2 size
$canvas->scale("all", 0, 0, 2, 2);   # double everything
$canvas->scale("all", 0, 0, 3, 3);   # triple everything!

It's a great idea to add a Zoom In and Zoom Out button that takes care of the scaling for 
you. Keep track of the scaling factor in a variable ($scale, for instance); set it to 1 to 
start with. Multiply it by .5 to zoom out and by 2 to zoom in. The last thing you'll need to 
do is make sure that, if you insert any new items into the canvas, you multiply those 
coordinates by the scale factor as well (otherwise they will look either too large or too 
small compared to the rest of the canvas items).

Scanning

Use the scan method to implement scanning of the canvas:

$canvas->scanMark(x, y);
$canvas->ScanDragto(x, y)

The first call, $canvas->scanMark(x, y), records the x and y coordinates and the 
current canvas view. The second call, $canvas->scanDragto(x, y), causes the 
view in the canvas to be adjusted by 10 times the difference between these coordinates 
and the previous ones sent with scanMark. This makes the canvas look as if it was 
moved at high speed.

Scrolling Methods

The canvas widget can be scrolled both horizontally and vertically. The methods xview 
and yview are used to communicate with the scrollbars. See Chapter 6 for more 
information on how these methods work.

A Drawing Program Example

The canvas widget is very versatile and can be useful for displaying different types of 
items. One of the first things that comes to mind when people think of a canvas is a 
drawing program. To save you the trouble, I've written a rudimentary



drawing program called Quick Draw you can use to draw rectangles, ovals, and lines. You 
can also change the thickness of the objects before you draw them. It only requires a tiny 
bit of error-checking to make it a slicker program. Here's the code:

use Tk;
$mw = MainWindow->new;
$mw->title("Quick Draw");

$f = $mw->Frame(-relief => 'groove',
                -bd => 2,
                -label => "Draw:")->pack(-side => 'left', -
fill => 'y');
$draw_item = "rectangle";
$f->Radiobution(-variable => \$draw_item,
                -text => "Rectangle"
                -value => "rectangle",
                -command => \&bind_start)->pack(-
anchor => 'w');
$f->Radiobutton(-variable => \$draw_item,
               -text => "Oval"
               -value => "oval"
               -command => \&bind_start)->pack(-anchor=>'w');
$f->Radiobutton(-variable => \$draw_item,
                -text => "Line"
                -value => "line",
                -command => \&bind_start)->pack(-
anchor => 'w');
$f->Label(-text => "Line Width:")->pack(-anchor => 'w');
$thickness = 1;
$f->Entry(-textvariable => /$thickness)->pack(-anchor => 'w');

$c = $mw->Scrolled("Canvas", -cursor => "crosshair")->pack(
               -side => "left", -fill => 'both', -expand => 1);
$canvas = $c->Subwidget("canvas");

&bind_start();

MainLoop;

sub bind_start {
  # If there is a "Motion" binding, we need to allow the user
  # to finish drawing the item before rebinding Button-1
  # this fcn gets called when the finish drawing the item again
  @bindings = $canvas->Tk: :bind("<Motion>");
  return if ($#bindings >= 0);

  if ($draw_item eq "rectangle" || $draw_item eq "oval" ||
$draw_item eq "line") {
    $canvas->Tk: :bind("<Button-1>", [\&start_drawing, Ev
('x'), Ev('y')]);



  }
}

  

sub start_drawing {
  my ($canv, $x, $y) = @_;
  $x = $canv->canvasx($x);
  $y = $canv->canvasy($y);

  # Do a little error checking
  $thickness = 1 if ($thickness !~ /[0-9]+/);
  if ($draw_item eq "rectangle") {

    $canvas->createRectangle($x, $y, $x, $y,
       -width => $thickness, -tags => "drawmenow");
  } elsif ($draw_item eq "oval") {
    $canvas->createOval($x, $y, $x, $y,
       -width => $thickness, -tags => "drawmenow");
  } elsif ($draw_item eq "line") {
    $canvas->createLine($x, $y, $x, $y,
       -width => $thickness, -tags => "drawmenow");
  }

  $startx = $x; $starty = $y;
  # Map the Button-
1 binding to &end_drawing instead of start drawing
  $canvas->Tk::bind("<Motion>", [\&size_item, Ev('x'); Ev('y')]),
  $canvas->Tk::bind("<Button-1>", [\&end_drawing, Ev('x'), Ev
('y')]);
}

sub size_item {
  my ($canv, $x, $y) = @_;
  $x = $canv->canvasx($x);
  $y = $canv->canvasy($y);

  $canvas->coords("drawmenow", $startx, $starty, $x, $y);
}

sub end_drawing {
  my ($canv, $x, $y) = @_;
  $x = $canv->canvasx($x);
  $y = $canv->canvasy($y);

  # finalize the size of the item, and remove the tag from the item
  $canvas->coords("drawmenow", $startx, $starty, $x, $y);
  $canvas->dtag("drawmenow");

  # remove motion binding.
  $canvas->Tk::bind("<Motion>", "");



  &bind_start();
}

Note that I didn't set the -scrollregion at all because I wanted to create a limitless drawing 
space for the user. (This was the easiest way to provide this functionality: Do nothing!) It's a 
cute little program that demonstrates how to use bind and a few of the canvas methods. Figure 
9-4 shows a screen shot of the application after a few items have been drawn on it.

Figure 9-4.
Quick Draw application screen

Fun Things to Try

The Quick Draw application doesn't do much that is useful, but here are some ideas for 
features to add to the application:

• Add the capability to print to a PostScript file.

• Create a Save Drawing feature that will loop through all the items and write out their 
types and coordinates to a text file. Of course, you'll need a Load Drawing feature as 
well.

• Allow the user to create text items.

• Add an entry widget that lets you change the color (by typing in a colorname) with 
which to draw the items.



10—
The Scale Widget

A scale widget is a strange little widget. It's similar to a scrollbar because it is long and 
skinny with a button in the middle of it, but it doesn't scroll anything other than itself. It 
does keep track of something though-a number. When you change the position of the 
button in the scale, the value associated with the scale changes. Here are some things 
you can do with a scale widget:

• Create a widget from which a user can select a number between 1 and 100.

• Create three scales, each representing a value in an RGB (red, green, blue) number.

• Create four sliders, each representing a portion of an IP address. Each scale can go 
from 0 to 255, and it would probably be smart to start them at 255. Use a label widget to 
show the completed IP address, periods and all.

• Create a temperature scale that starts at -50 and goes to 130 degrees.

• Show the amount of rainfall so far this year. The scale can be marked to show every 
five inches.

The scale widget can be placed horizontally or vertically, depending on where you have 
the most room in your application window.

Creating a Scale

As with other widgets, you can create a scale by using a parent widget and passing 
options to the scale to change its configuration:

$parent->Scale( [ option => value ] )->pack;

Use one of the geometry managers discussed in Chapter 2, Geometry Management, to 
place it on the screen (such as pack, as shown in the preceding code).



Most of the options associated with the scale widget are the standard options that used 
with all other widgets. All of the possible options are in the following list. A discussion 
of special options that have a slightly different meaning for the scale and options that are 
specific to the scale widget follows the list.

-activebackground => color
Sets the color the slider's background should be when the cursor is over the slider (the -
state is 'active').

-background => color
Sets the color the slider's background should be when the cursor is not over the slider (-
state is 'normal'

-bigincrement => amount
Sets the amount by which the slider will change value when required to do so in large 
increments. Default is 0, causing the value to change by 1/10 the top value of the scale.

-borderwidth => amount
Sets the width of the edges of the widget. Default is 2.

-command => callback
Sets the callback invoked when the slider is moved.

-cursor => cursorname
Determines the cursor to display when the mouse is over the scale.

-digits => amount
Indicates how many significant digits to retain when conversion from a number to a 
string takes place.

-font => fontname
Sets the font used to display any text in the scale.

-foreground => color
Sets the color of the text displayed in the scale.

-from => value
Indicates the low end of the scale values. Default is 0.

-highlightbackground => color
Sets the color of the highlight rectangle displayed around the scale when it does not have 
the keyboard focus.



-highlightcolor => color
Sets the color of the highlight rectangle displayed around the scale when it has the 
keyboard focus.

-highlightthickness => amount
Sets the thickness of the highlight rectangle displayed around the scale.

-label => labelstring
Describes a label for the scale. Default is no label.

-length => amount
Sets the length of the slider (the long direction, regardless of the value of orient) in a 
valid screen distance.

-orient => 'vertical' | 'horizontal'
Sets the direction the scale is drawn. Default is 'vertical'.

-relief => 'raised' | 'sunken' | 'flat' | 'ridge' | 'groove' | 
'solid'
Determines how the edges of the widget are drawn. Default is 'flat'.

-repeatdelay => milliseconds
Sets the number of milliseconds the widget waits before repeating.

-repeatinterval => milliseconds
Sets the number of milliseconds the widget delays between repeats.

-resolution => value
Sets the increments by which the value in the scale will change. Default is 1.

-showvalue => 0 | 1
If set to 0, the value of the slider setting is not shown at all. Default is 1.

-sliderlength => value
Sets the size of the slider (inside the widget). Default is 25.

-state => 'normal' | 'active' | 'disabled'
Determines the state of the widget and whether or not the user can interact with it. 
Default is 'normal'.

-takefocus => 1 | 0 | undef
Determines whether or not the widget can receive keyboard focus. Default is to let the 
program decide.



-tickinterval => value
Describes the labels drawn by the right (or on the bottom) of the scale. Labels are drawn 
for every value. A value of 0 means no labels will be drawn at all. Default is 0.

-to => value
Sets the top value of the scale. Default is 100.

-troughcolor=> color
Sets the color of the area behind the slider button (same as a scrollbar).

-variable => \$variable
Sets the variable in which the slider value is stored.

-width => amount
Sets the width of the skinny part of the slider (regardless of the value associated with -
orient).

Assigning a Callback

As usual, use the -command option to assign a callback for the widget. The callback is 
invoked every time the scale value is changed. So if you change the value from 50 to 
100 and the scale increment is 1, the callback will be invoked 50 times. The callback is 
also called when the widget is created. My recommendation is not to use -command 
unless you have a small number of possible values.

Orientation

To change the orientation of the scale, use the -orient option. It takes a string value 
that should contain either "horizontal" or "vertical". The default for this 
option is "vertical". Figure 10-1 shows both a horizontal scale and a vertical scale.

Figure 10-1.
Vertical scale (the default orientation) and horizontal scal

Minimum and Maximum Values



Use the -from and -to options to change the possible range of values for the scale. 
Usually the value associated with -from is smaller than the value associated with -to. 
If you happen to switch them, the scale will still display with the higher value on the 
right and the lower value on the left. Either or both values can be negative. Here are 
some examples:

$mw->Scale (-from => -10, -to => 10)->pack;
$mw->Scale (-from => 10, -to => -100)->pack;
$mw->Scale (-from => -100, -to => -50)->pack;
$mw->Scale (-from => -0.5, -to => 0.5, -resolution => 0.1)-
>pack;

As you can see, the values assigned to -from and -to also don't need to be whole 
integers.

Displayed Versus Stored Value

Sometimes the value you are searching for resides between two numbers that are very far 
apart, such as 0 and 1,000,000. Stepping through each of those values one by one would 
be tedious. You can change the step value of the displayed number using the -
resolution option. The default for -resolution is 1, but it can be changed to any 
value that is less or greater than that.

Note that if the resolution is larger than 1, it is possible for the slider to have a value (set 
by the program, for example) that is smaller or larger than the displayed value.

Adding a Label

You can add a label to your scale by using the -label option. The label is placed in a 
different location depending on the value associated with -orient (see Figure 10-2).

Figure 10-2.
Two scales with labels

Displaying Value Increments



The scale displays its current value above or to the left of itself (depending on the value 
associated with -orient). Suppose you want to display labels (such as 0, 10, 20, ... 
100) that show the user approximately where the button needs to be to select those 
values. If you want to display them underneath or to the left of the scale, you can use the 
-tickinterval option. By default, it is set to 0 and no numbers are displayed. To 
show the values every 10 numbers, use -tickinter-val => 10. The larger the 
range of values from which the scale can select, the larger the value this should be, or 
you'll end up with a bunch of numbers so close together that you won't be able to tell 
what they are. See Figure 10-3.

Figure 10-3.
Using-tickinterval with both horizontal and vertical scales

Changing the Size of the Scale

You can change the size of the scale by using the -length and -width options. You 
can also change the size of the button displayed in the slider widget; to do so, use the -
sliderlength option. It takes a value specified in screen units and will change the 
length of the slider button. See Figure 10-4.

$mw->Scale (-
sliderlength => 100); # make the button 100 pixels.



Figure 10-4.
Different-sliderlength values

Options You'll Prob0ably Never Need

The two final options for the Scale widget creation method are -bigincrement and 
-digits. The -bigincrement option specifies the size of jumps when using really 
large numbers. The default for -bigincrement is 0, which means it will jump in 
increments that are 1/10 the total range.

The -digits option represents how many digits will be used when converting from a 
number to a string. The default (0) forces the scale to use a precision that allows for a 
different string for every possible value on the scale.

Configuring a Scale

As usual, the scale has both configure and cget methods, which let you query and 
set options for the scale widget. See Appendix A for more details on how to use these 
methods.

Getting the Value of a Scale

The get method will return the current value of the scale:

$value = $scale->get( );

You can also specify x and y coordinates and retrieve the value of the scale at that point:

$value = $scale->get (x, y);

Setting the Value of a Scale

You can force the value associated with the scale by using the set method:

$scale->set(value);

This method is great for setting an initial value if you aren't using the -variable 
option at all. If you were using -variable, just set that variable to the desired starting 
value.

Determining Coordinates

The coords method returns a list containing x and y coordinates:

($x, $y) = $scale->coords ();



The coordinates indicate the position in which the current value is located in the scale. 
You can also pass in a value to find the coordinates of:

($x, $y) = $scale->coords (value);

Identifying Parts of a Scale

You can find out what part of the scale a coordinate resides in by using the identify 
method:

$value = $scale->identify (x, y);

The identify method returns a string containing one of the following values: 
"slider", "trough1", "trough2", or an empty string (if the coordinates don't 
refer to any of these parts).

Fun Things to Try

• Create a survey from that contains scale widgets for user information. Items such as 
age (0-150 would be a safe range), income, and number of children in the household can 
all be entered into a scale. Make good use of the -resolution, -to, and -from 
options to make the job easier for the user.

• Create a ping application that uses scale widgets (one for each portion of the IP 
address) to request an IP address from the user.



11—
Menus

Different Types of Menus

There are several ways to create and utilize a menu from within your Perl/Tk 
application. Here are some examples of how you can use a menu-type widget:*

• Create File, Edit, and Help menus across the top of your application.

• Display a list of fonts from which the user can choose (the selected font can be marked 
with a checkmark).

• Display a list of editing commands that become available when the user right-clicks on 
another object (such as a listbox or entry widget) in your window.

You can build each of these different types of menus with the basic menu widget. The 
menu widget itself is a list of items that are displayed one item per line in a box. Each 
item can have an associated callback that is called when the menu item is invoked or 
selected. Unlike the other widgets we have seen so far, you cannot use any of the 
geometry managers on a menu. Instead, you must use a method called post to display 
your menu widget (post will be discussed later in this chapter).

Figure 11-1 shows the contents of a typical menu widget. It contains several items, a 
separator, and a few more items. Separators are useful for grouping together related 
commands and providing a visual break if one menu contains a number of commands.

* Typically, a menu contains commands that aren't used frequently, such as 
configuration options, File Open, File Close, Help, and so on. You would be wise to 
put frequently accessed commands in the window to provide easier access for the user.

Figure 11-1.
Simple menu widget with five items: Item1, Item2, Separator, Item3, and Item4

Menus are a great way to replace checkbuttons and radiobuttons. If you have five 
radiobuttons, you can place them on a menu and save a ton of screen space for more 
important widgets.



A menubutton widget is based on the menu widget and has a button that controls when 
the menu is displayed. When the button is pressed, the menu is displayed directly below 
the button. The button contains a text string that describes the items in the menu. A 
menubutton is the type of menu you'll use 90% of the time. Figure 11-2 shows a block 
diagram of a menubutton after the button has been pressed. The button part of the 
menubutton is the where the word ''File" appears.

Figure 11-2.
A menubutton widget that uses a menu widget

The main advantage of using a menubutton widget is that it handles the display functions 
of the menu. Because this is the most frequently used menu-related widget, it will be 
covered first.

The last menu-related widget covered is the optionmenu, which behaves differently than 
the other type of menus. The optionmenu allows the user to select one item from a list of 
items. For example, you can use an optionmenu to add the following options to your 
program:

• Allow users to select a favorite color from a list of colors.

• Allow users to select the country in which they live.

• Allow users to choose how verbose they would like the application to be: Silent, Semi-
Verbose, and Verbose.

Figure 11-3 shows a block diagram of an optionmenu with Item3 selected.

Figure 11-3.
Example of an optionmenu widget



Menus simply give you a way to group related tasks together, and the optionmenu allows 
you to group several choices together. There is a callback associated with each menu 
item, much like the callbacks associated with button widgets. Instead of using 10 
separate buttons, you can create 2 menus that each contain 5 menu items. This saves on 
display space and helps users understand that those items have a similar purpose and 
have been grouped together for their convenience.

The Menubutton Widget

As described earlier, the menubutton widget has a menu that drops down from a button 
when the button is pressed. The menu is removed from the window when an item from 
the menu is selected or when the user clicks elsewhere in the application.

Many applications use a menubutton-type construct. The menubuttons are normally 
grouped across the top of the application and have names like File, Edit, Options, and 
Help. Figure 11-4 shows an example of several menubuttons grouped together in a frame.
*

Creating a Menubutton

When you create a menubutton widget, use the parent widget to invoke the 
Menubutton method, which then creates a menubutton widget reference. The options 
you send with the Menubutton method can configure both the button that is initially 
displayed on the screen and the actual menu items:

$mbutton = $parent->Menubutton ( [ options... ] )->pack;

* You can accomplish this same look in a window by using a menubar widget. 
However, the additional functionality that it provides is minimal, so we won't be 
covering it in this book. To get this look, create a frame widget with a relief of 
"ridge" and borderwidth of 2. Pack the menubuttons with -side => "left" 
for all but the help menu, which has -side => "right".



Figure 11-4.
Example of window with several menubuttons across the top

When it is first displayed with one of the geometry managers, you will only see the 
button part of the menubutton, which is a button with "flat" relief. The menu part of the 
menubutton won't appear until you press the button. Figure 11-5 shows the menubutton 
widget before and after the button is pressed. Notice how the relief of the button changes 
after it is pressed.

Figure 11-5.
Menubutton before and after the button is pressed

Menubutton Options

The options specified with the Menubutton command (or via the configure 
method) can affect only the button part of the menubutton, both the button and the menu, 
or just the menu.* The options that affect the menu are valid for the menu widget as well 
as the menubutton widget. We will cover the available options briefly (and some not so 
briefly) in order to discuss the effects of each. The brief synopsis of all the options and 
their effects appears first.

When the description says "Affects the button only," the behavior is the same as it would 
be for a button widget.

* The menubutton widget comprises other widgets (in this case, button and menu) to 
provide the overall functionality.



-
activebackground => 
color
Affects the background 
color of the button and the 
currently highlighted menu 
item.

-activeforeground => color
Affects the text color of the button and the currently highlighted menu item.

-
anchor => 'n' 
| 'ne' | 'e' | 
'se' | 's' | 
'sw' | 'w' | 
'nw' | 'center'
Affects the button 
only. Changes the 
position of the text 
within the button.

-
background => 
color
Affects the button 
and the menu. All 
the background 
color changes to 
color when the 
state of the button 
and menuitems is 
'normal'.

-bitmap => bitmapname
Affects the button only. Displays bitmap instead of text.

-
borderwidth => 
amount
Affects the button 
only. Changes the 
width of the button 
edges.



-
cursor => 
cursorname
Affects the 
button only. 
Changes the 
cursor when 
it's over the 
button part 
of the 
menubutton.

-
disabledforeground => 
color
Affects the button and the 
menu item text when the -
state for either is 
'disabled'.

-direction => "above" | "below" | "left" | "right" | "flush"
Tk8.0 option only. The value "above" puts the menu above the menubutton, "below" 
puts it below the button, and "left" and "right" puts it on the appropriate side of 
the button. "flush" puts the menu directly over the button.

-
font => 
fontname
Affects 
the button 
only. 
Changes 
the font of 
any text 
displayed 
in the 
button.

-
foreground => 
color
Affects the button 
only. Changes the 
color of any text or 
bitmap to color.

-height => amount
Affects the button only. Changes the height of the button.



-
highlightbackground => 
color
Affects the button only. Changes 
the color of the highlight 
rectangle displayed around the 
button when the button does not 
have the keyboard focus.

-
highlightcolor => 
color
Affects the button only. 
Changes the color of the 
highlight rectangle 
displayed around the 
button when the button 
does not have the 
keyboard focus.

-
highlightthickness => 
amount
Affects the button only. 
Default is 0. Changes the 
width of the highlight 
rectangle around all edges of 
the button.

-
image => 
imgptr
Affects the 
button 
only. 
Displays an 
image 
instead of 
text.

-indicatoron => 0 | 1
Affects the button; indirectly affects the display mechanism for the menu. When set to 1, 
a small bar appears on the right side of the button next to any text, bitmap, or image.



-
justify => 'left' 
| 'right' | 'center'
Affects the button only. 
Changes the justification 
of the text within the 
button.

-
menu => $menu
Tells the 
menubutton to 
display the menu 
associated with 
$menu instead of 
anything specified 
via the -
menuitems 
option.

-
menuitems => 
list
Causes the menu 
to display a list of 
items to create.

-
padx => 
amount
Affects 
the button 
only. 
Adds 
extra 
space to 
the left 
and right 
of the 
button 
inside the 
button 
edge.



-
pady => 
amount
Affects 
the button 
only. 
Adds 
extra 
space to 
the top 
and 
bottom of 
the button 
inside the 
button 
edge.

-
relief => 'flat'| 
'groove' | 
'raised' | 'ridge' 
| 'sunken'
Affects the button only. 
Default is 'flat'. 
The relief of the button 
changes to 'raised' 
when the button is 
pressed.

-state => 'normal'| 'active' | 'disabled'
Affects the button; indirectly affects menu (menu cannot be displayed if state is 
'disabled' ).

-takefocus => 0| 1 | undef
Affects the button only. Default is 0. Determines whether or not the button can have the 
keyboard focus.

-tearoff => 0 | 1
Affects the menu only. Default is 1. If set to 0, does not display the tear-off dashed line 
in the menu.

-text => text string
Affects the button only. Displays the specified string on the button (ignored if the -
bitmap or -image option is used.)



-
textvariable => \
$variable
Affects the button only. 
The information 
displayed in 
$variable is 
displayed on the button.

-underline => charpos
Affects the button only. The character at the integer charpos is underlined. If the button 
has the keyboard focus, pressing the key causes the button that corresponds to the 
underlined character to be pressed.

-width => amount
Affects the button only. Changes width of the button to amount.

-
wraplength => 
pos
Affects the button 
only. Default is 0. 
Determines the 
screen distance for 
the maximum 
amount of text 
displayed on one 
line.

Button-Only Options

The following options affect only the button portion of the menubutton, and behave 
exactly as described in Chapter 3: -cursor,, -anchor, -bitmap, -border- 
width, -font, -foreground, -height, -highlightbackground, -
highlight- color, -highlightthickness, -image, -justify, -padx, -
pady, -relief, -state, -takefocus, -text, -textvariable, -
underline, -width, and -wraplength.

Tear-off-Items

Each menu you create can be "torn off" from its window. The first item on the menu is a 
dashed line (see Figure 11-6); when you select this item, the menu widget becomes its 
own window and remains present until you close it with the window manager.

You can move the menu around on the screen, but you can't resize it. The other menu 
items will behave normally when they are selected. Be careful; you can tear off the same 
menu multiple times. Torn-off menus won't be updated when other events in the 
program are updated, so it is a good idea to limit your use of tear-off menus.



To remove the tear-off ability, use -tearoff => 0 with your list of arguments when 
you create the menu and the dashed line will no longer appear.

The tear-off line in the menu actually counts as an item. It uses index 0 if it exists, so 
your menu items will then number from 1 and up. If you use -tearoff=>0, then your 
menu items will number from 0 and up.

Figure 11-6.
Menu with tear-off item and menu without tear-off item

Color Options

Several options that determine color affect both  the button and the menu: -
activebackground, -activeforeground, -background, and -
disabledforeground.

Both -activebackground and -activeforeground affect the text/bitmap 
displayed in the button and the currently active menu item in the menu. The currently 
active menu item is the one that the mouse cursor is currently over. The menu item 
becomes slightly raised and might change color depending on these options. The effect 
of these options on the button is the same as it is for a normal button widget.

The -background option affects the entire menu and button background. The -
disabledforeground option changes the color of the text of any menu items that 
have their own -state of 'disabled'; it also changes the text/bitmap color of the 
button if its -state is 'disabled'.

Button Indicator

In Chapter 4, we saw how the radiobutton and checkbutton widgets each have their own 
type of indicator. The button part of a menubutton also has an indicator that can 
displayed on it. The indicator is a small 3D bar displayed to the right of the text, bitmap, 
or image on the button (see Figure 11-7). Usually the indicator is used to show that 
something different will happen when you press the button. The option to display the 
indicator is -indicatoron, the same option used to display the indicator for the 
radiobutton and checkbutton widgets.



Figure 11-7.
Menubutton with indicator shown

Setting -indicatoron to 1 does not change the appearance of the menu at all. Usually, you 
would not use the -indicatoron option unless you were using the menubutton as a type of 
option menu or in a non-standard fashion.

Specifying Items for the Menu

Everything in this section will also apply to using the -menuitems option with the menu 
widget in addition to the menubutton widget.

The easiest way to add items to the menu in a menubutton is to use the -menuitems option. 
The value sent with the -menuitems option is a list of lists* that indicates not only the order 
of items in the menu but also any possible configuration options for that menu item. The best 
way to illustrate this is with an example.

$menub = $mw->Menubutton(-text => "Menubutton",
                         -menuitems => [[ 'command' => "Item 1"],
                                        [ 'command' => "Item 2"],
                                        "-",
                                        [ 'command' => "Item 3"],
                                        [ 'command' => "Item 4"]]);

In this snippet of code, we are creating the same menu that we displayed in Figure 11-5.

Here's a breakdown of the elements of the list and what they mean. The -menuitems option 
expects a list of lists. It is the sub-lists that contain information about each menu item. Each list 
that configures a menu item has a specified order to it. The first thing in the list is a string that 
will determine what type of menu item is created. The available types of menu items are 
"command", "radiobutton", "checkbutton", and "cascade". The second thing in 
the item list is a string that is displayed on the menu. After that, the options that affect that 
menu item type can be specified. To create a separator, use a string in place of an anonymous 
list.

As you can see, after -menuitems, I didn't assign any callbacks for any of the menu items. If 
you selected one, nothing would happen. To assign callbacks, we would change the statement to 
look like this:

$menub = $mw->Menubutton(-text => "Menubutton",
                         -menuitems => [[ 'command' => "Item 1",
                                         -command => \&do_item1 ],
                                        [ 'command' => "Item 2",
                                         -command => \&do_item2 ],
                                        "-"



* If you don't know what I mean by "list of lists," you'll find that the Camel book 
(Programming Perl) is a useful reference. The new version contains more information than 
you'll ever need to know about lists, hashes, and creating anonymous lists.

                                        [lsquo;
command' => "Item 3",
                                          [-
command => \&do_item3 ],
                                        [ 'command' => "Item 4",
                                          -
command => \&do_item4 ]]);

I used the -command option to add the callbacks, and I used a different subroutine for each 
menu item. It doesn't make any sense to specify a callback for the separator item.

The first two items for each item list must be the item type string followed immediately by 
a text string that will be displayed in the menu. Even if you plan to display a different text 
string by using the -label option or to display an image, the second argument in this list 
must be a string.

It might be confusing that we use both "command" and -command. The first is the item 
type string and the second is the option(which should be followed by a callback).

You can also use the AddItems() method to add items to the menu: $menub-
> AddItems ("command", -label => "Item1", -
command => \&do_item1);. The argument list is slightly different (you send only the 
type, and then you must use the -label option to specify the text to appear on the menu, 
but all the options for each menu item type are exactly the same).

Certain options only apply to certain menu item types, which are discussed in the following 
sections.

Command item type

So far, each example of a menu has had only "command" and "separator" types of 
items. Usually, you'll also use the -command option so that something will happen when 
the menu item is selected.

Radiobutton item type

It is possible to put radiobuttons in a menu rather than inside the window where they take 
up space. They look and act just like a radiobutton would in the window except they are 
listed in the menu instead. The same radiobutton rules apply: You should always have at 
least two radiobuttons and they should be grouped logically by using the same -
variable => $variable option for each group. Figure 11-8 shows an example of the 
placement of radiobuttons in a menu.



Figure 11-8.
Radiobuttons as menu items

In an example in Chapter 4, Checkbuttons and Radiobuttons, we used radiobuttons to 
select the background color of the window. We could also use those radiobuttons in a 
menu and save space in our application:

#!/usr/bin/perl -w
use Tk;
my $mw = MainWindow->new;
$mw->title("Menubutton");
$menub = $mw->Menubutton (-text => "Color")->pack(-
side => 'left',
                                                -
anchor => 'n');
foreach (qw/red yellow green blue grey/) {
  $menub->radiobutton (-label => $-
                      -command => \&set_bg,
                      -variable => \$background_color,
                      -value => $_);
}

MainLoop;

sub set_bg {
  print "Background value is now: $background_color\n";
  $mw->configure (-background => $background_color);
}

Figure 11-9 shows what the window looks like after it has been resized and the menu has 
been posted.

Checkbutton item type

You can also put checkbuttons in a menu to keep them out of the way. Use the -
command option to configure the checkbutton to perform an action when it is selected. 
Figure 11-10 shows what checkbuttons look like in a menu.



Remember the checkbutton guidelines: each checkbutton should have its own -
variable, because each can be selected or not.

Figure 11-9.
Using radiobuttons in a menu to set background color

Figure 11-10.
Checkbuttons in a menu (1, 3, and 5 selected manually)

Cascade item type

A cascade menu item points to another menu. When you select this type of menu item, 
another menu will pop up to the right of the current menu. This is the most complicated 
item type to implement because you have to create another entire menu to display (the 
next major section in this chapter covers the menu widget). Figure 11-11 shows what a 
cascade menu item looks like.

Figure 11-11.
Cascade menu item inside a menubutton widget



The submenu must be a child of the menu within the menubutton widget. This allows Perl/Tk 
to keep track of the correct hierarchy of the menus. The best way to create a submenu is to 
create the menubutton first and then create the submenu.

$menub = $mw->Menubutton (-text => "My Menu",
                         -
menuitems => [["cascade" => "Submenu"]]);
$submenu = $menub->menu->Menu (-menuitems => [ ... ]);

We can use the menubutton widget's menu() method to return the actual menu item and 
then create the new menu as a child of the menu item. Now we can add the cascade item to 
the menubutton and configure it to point to the new submenu:

$menub->entryconfigure ("Submenu", -menu => $submenu);

Because of some problems with cascade menus, it is necessary to first create the cascade 
entry and then configure it with the actual menu it will display. Here is an entire Perl 
program for you to play around with so you can get the feel of cascade menus. It creates two 
submenus, one with numbers and one with letters:

#!/usr/bin/perl -w

use Tk;
my $mw = MainWindow->new;
$mw->title ("Menubutton");
# Create menubutton and put on the screen
$menub = $mw->Menubutton (-text => "Menubutton")->pack;

# make our sub menu to be cascaded a child of upper menu.
$menu1 = $menub->menu->Menu;
foreach (qw/one two three four/) {
  $menu1->add ('command', -label => $_);
}

# make second sub menu also a child of the upper menu
$menu2 = $menub->menu->Menu;
foreach (qw/A B C D/) {
  $menu2->radiobutton (-label => $_);
}

# now add the cascade items to the main menu
$menub->cascade (-label => "Numbers");
$menub->cascade (-label => "Letters");

# now configure those cascade entries to point to correct submenu
$menub->entryconfigure ("Numbers", -menu => $menu1);
$menub->entryconfigure ("Letters", -menu => $menu2);

MainLoop;

You can also create cascade menu items on a menu that cascades from another menu, but 
remember to create it as a child of that menu's menu.



Separator item type

Separators are noninteractive portions of a menu. They do nothing except provide a visual break 
between menu items. To create one, either call the separator method on the menubutton widget or 
use a string in the -menuitems list instead of another list.

Figure 11-12.
Separator in a menubutton widget

Figure 11-12 shows the separator line. It is a solid line, unlike the tear-off menu, which is a dashed line 
(not shown in Figure 11-12). The following code was used to create the menubutton shown in Figure 11-
12:

$mw->Menubutton (-tearoff => 0,-menuitems => [ ['command' => "Item 1"],
                                               ['command' => "Item 2"],
                                                "-",
                                               ['command' => "Item 3"],
                                               ['command' => "Item 4"]])-
>pack;

We could have used any string at all in place of the"-" line. However, it is good style to always use the 
same string so it is easy to recognize when a separator item is created.

Accelerators

The -accelerator option allows you to place a text string to the right of the text or image displayed 
in the menu. The string usually contains a clue to a quick-key combination that will execute the 
command associated with the menu item. In Figure 11-13, Item 1 has the accelerator string Alt+1 next 
to it. The menuitem was created by using this list in the -menuitems option: 
[ 'command' => 'Item 1', -accelerator => "Alt+1"]. To make the Alt-1 key 
combination actually perform an action, you'll need to use bind (see Chapter 14, Binding Events).



Figure 11-13.
Menu with accelerator next to Item 1

Displaying an Image in a Menu Item

Each menu item is a type of button, so it makes sense that you can display an image 
instead of text. Figure 11-14 shows what happens when you also specify the -image 
option. The code that created the menu is as follows:

$img1 = $mw->Bitmap (-file =>
   "/usr/X11R6/include/X11/bitmaps/lineOp. xbm");
$mw->Menubutton (-text => "Menubutton",
                -menuitems => [[ 'command' => "Item 1"],
                               [ 'command' => "Item 2",
                                 -image => $imgl],
                               '-',
                               [ 'command' => "Item 3"],
                               [ 'command' => "Item 4"]
                              ])->pack(-side => 'left');

Figure 11-14.
An image displayed instead of text

In Chapter 4, I discussed using icons and how they can make options easier to 
understand. Try to use good judgment and not go crazy with the picture menu items. Too 
many vague icons (such as the one displayed in Figure 11-14) can make an application 
confusing.



Assigning a Different Menu

By default, when you use the -menuitems option, a menu is created. You can create 
your own menu widget and tell the menubutton widget to use it instead. But there is a 
trick involved. It's a chicken-before-the-egg problem. You need to create the menubutton 
and then create the menu widget as a child of the menubutton. Use configure to 
assign the new menu to the menubutton. Here is a code example:

# create menubutton w/ some fake menu items
$m1 = $mw->Menubutton(-text => "Text Menul",
                      -menuitems=> [['command' => "Item 1'],
                                     ['command' => "Item 2"],
                                     "-",
                                     [ 'command' => "Item 3"],
                                     [ 'command' => "Item 4"]
                                    ])->pack(-side => "left",
                                             -expand => 'y',
                                             -fill => 'both');

# Create a Menu as a child of the Menubutton $ml
$menu = $m1->Menu (-menuitems => [[ 'command' =>"Item 1"],
                          [ 'command' => "Item 2"],
                          [ 'command' => "Item 3"]]);

# Now use the $menu with the Menubutton
$ml->configure (-menu => $menu);
MainLoop;

As mentioned, you need to create the menubutton first and make it a child of $mw (the 
Main Window). I created some menu items that will be different on the new menu so you 
can tell which menu the menubutton is using.

Configuring a Menubutton

The cget method allows you to get configuration information about any of the options 
associated with a menubutton. You can use configure to query or change any of the 
options. Both configure and cget are explained fully in Appendix A, Configuring 
Widgets with configure and cget.

Configuring Menubutton Items

The menubutton widget has an entrycget method that is the same as the menu 
widget's entrycget method.

$value = $menub->entrycget (index, option);

The arguments are an index and the option to query. Valid index values are discussed in 
''The Menu Widget" later in this chapter.



The entryconfigure method is also provided by the menubutton widget. It 
performs the same function the menu widget's entryconfigure method performs:

$menub->entryconfigure(index, [ option ]);

Adding Items to a Menubutton

The AddItems method gives you another way to put new items in the menu. It will 
always add the new item(s) to the end of the menu in the order they appear in the list. 
Similar to the arguments sent to the -menuitems option, the arguments sent to 
AddItems are included in several lists. There is no need to enclose the item lists inside 
another list level because the only thing you send to AddItems is item lists. Here is an 
example:

$menub = $mw->Menubutton (-text => "File") ->pack;
$menub->AddItems (["command" => "Open", -
command => \&do_open],
                 ["command" => "Close", -
command => \&do_close],
                 "-",
                 ["command" => "Exit", -
command => sub { exit } ]);

This use of AddItems is just another way of saying the following:

$menub = $mw->Menubutton (-text => "File", -menuitems =>
           [ ["command" => "Open", -command => \&do_open],
             ["command" => "Close", -command => \&do_close],
              "-",
             ["command" => "Exit", -command => sub { exit } ]
           ])->pack;

Notice the extra set of [ ] around the lists containing the menu item information. All 
the information in between the [] is exactly the same as it was when it was sent to 
AddItems.

The command method adds a command item to the end of the menu. When you use 
command, you must use the -label option to specify the text to be displayed in the 
menu. This code creates the same menu AddItems() example created:

$menub = $mw->Menubutton (-text => "File")->pack;
$menub->command(-label => "Open", -command => \&do_open);
$menub->command(-label => "Close", -command => \&do_close);
$menub->separator;
$menub->command(-label => "Exit", -command => sub { exit });

Creating a Checkbutton



The checkbutton method adds a checkbutton item to the end of the menu. Like the 
command method, you are required to use the -label option to specify the text string 
to display in the menu with the checkbutton. All other checkbutton item

options are the same as those listed in "Specifying Items for the Menu" earlier in this 
chapter. Here's an example:

$menub = $mw->Menubutton(-text => "Options");
$menub->checkbutton(-label => "Confirm Quit?",
                    -variable => \$confirm_quit);

checkbutton is really a menu widget method, but it also works on a menubutton 
widget. The same is true of radiobutton, separator, and cascade.

Creating a Radiobutton

The radiobutton method adds a radiobutton item to the end of the menu. You must 
specify the text to be displayed in the menu by using the -label option.

$menub->radiobutton(-label=>"Radio item");

Creating a Separator

The separator method adds a separator line tot he end of the menu. It does not take 
any arguments:

$menub->separator ();

Adding a Cascade Menu

The Cascade method adds a cascade item to the end of the menu. You must specify the 
text to be displayed by using the label option. Use $menub-> entryconfigure
(-menu => $submenu) to assign the menu to be cascaded.

# assume we already created $menu_more
$menub->cascade (label => "More menu...");
$menub->entryconfigure ("More menu...", -menu => $menu_move);

Getting a Reference to the Menu Item

The menu mefhod returns a reference to the menu used within the menubutton widget. 
This allows us to create cascade entries with the actual menu as the parent of the 
cascaded menu; it also allows us access to all of the menu widget methods. For example, 
we could delete a menu item from our menu by using $menub->menu->delete(1), 
which would delete the second item in the menu. For more information on the menu 
widget methods, see "The Menu Widget" later in this chapter.



Complete Menubutton Examples

Menus are a more complicated widget than we've seen before because you don't always 
add items to them the same way. Sometimes you can use the simple -menuitems 
option, and other times you'll want to add to them dynamically. This section contains 
some full-length Perl scripts that create some useful menus.

Creating a Menubar

Here is the code that was used to create the window and menubar in Figure 11-4:

#!/usr/bin/perl -w
use Tk;
my $mw = MainWindow->new;
$mw->title("Menubutton");

$mw->Button(-text => "Exit",
            -command => sub { exit; })->pack(-
side => "bottom");

my $f = $mw->Frame(-relief => 'ridge', -borderwidth => 2);
$f->pack(-side => 'top', -anchor => 'n', -expand => 1, -
fill => 'x');

foreach (qw/File Edit Options Help/) {
  push (@menus, $f->Menubutton(-text => $_));
}

$menus[3]->pack(-side => 'right');
$menus[0]->pack(-side => 'left');
$menus[1]->pack(-side => 'left');
$menus[2]->pack(-side => 'left');

MainLoop;

First a frame was created across the top of the window and packed so it will resize itself 
dynamically when the window gets larger or smaller. Then the menubuttons were 
created and packed into the frame. Each of the menus has no items. We'll leave that as an 
exercise for the reader.

Dynamic Document List

In certain cases, you'll want to add and remove items from a menu dynamically. Many 
applications remember which documents you've most recently opened and keep them 
attached to the File menu for easier access later. This example does something similar, 
but I've simplified the problem-we'll just have a button that creates a new document 
name, and we'll display that document name in an entry



widget so we know which one we are editing. Using our menubutton and a few select methods from the 
menu widget, we can create a solution like this:

#!/usr/bin/perl -w
use Tk;
$mw = MainWindow->new;
$mw->title("Documents");

# Create a frame for our menubar across the top of the window
$f = $mw->Frame(-relief => 'ridge', -borderwidth => 2)
  ->pack(-side => 'top', -anchor => 'n', -expand => 1, -fill => 'x');

# Create the menubutton, with two items: New Doc and a separator
$filem = $f->Menubutton(-text => "File",
                        -tearoff => 0,
                        -menuitems => [ ["command" => "New Document",
                                         -command => \&new_document],
                                         "-"
                                      ]) ->pack(-side => 'left');
# We will open document 1 to begin with, and we want to limit the number
# of documents in our list to 0-9 (leaves 10 docs max in menu)
$doc_num = 1;
$doc_list_limit = 9;

# Create button that will do the same thing as the New Document menu item
$mw->Button(-text => "New Document",
            -command => \&new_document)->pack(-side => 'bottom',
                                             -anchor => 'e');
# The entry will display the current doc we are "editing".
$entry = $mw->Entry(-width => 80) ->pack(-expand => 1, -fill => 'both');

MainLoop;

# Creates the next doc in line, incs the doc counter
# Adds the new doc to the menu, and removes any docs from the
# menu that are over the limit (oldest out first)
sub new_document {
  my $name = "Document $doc_num";
  $doc_num++;

  push (@current, $name);
  $filem->command(-label => "$name",
                   -command => [ \&select_document, $name ]);

  &select_document ($name);

  if ($#current > $doc_list_limit) {
    $filem->menu->delete(2);
    shift (@current);
  }
}

  



sub select_document {
  my ($selected) = @_;

  $entry->delete(0, 'end');
  $entry->insert('end', "SELECTED DOCUMENT: $selected");
}

Figure 11-15 shows what our window looks like after we've created three documents:

Figure 11-15.
Example of Document History window

The Menu Widget

There are times when you won't want to use a menubutton widget. Perhaps you need to 
create some menus that will cascade from your menubutton. You still need to create the 
menus. You might also think of a way to use a menu that doesn't involve a button. For 
example, you could set up your application so the user right-clicks on a widget* and a 
related menu pops up, allowing the user to change configuration options.

It is also a good idea to be familiar with the methods for manipulating a menu, whether 
it's a menu widget by itself or the menu attached to a menubutton.

Creating the Basic Menu

To create a menu widget, invoke Menu from the desired parent of the menu:

$menu = $parent->Menu (options);

The menu widget is the only widget on which one of the geometry managers is not used 
directly. The menu is displayed to the user via a post directive:

$menu->post( ... );

Different arguments sent to post will determine how the menu is displayed. This 
method is discussed later in this chapter.

* Use "<Button-3>" with bind.



Menu Creation Options

As with any widget, there are options that affect how the menu widget looks and 
behaves. Many of the options for the menu widget were discussed in the menubutton 
widget portion of the chapter, so I'll only cover those that perform actions that aren't 
available with the menubutton widget or whose actions are different.

The following is a list of the options available for the menu widget:

-activebackground => color
Sets the color of the background behind the active menu item.

-activeborderwidth => amount
Sets the width of the edges of the active menu item's border.

-activeforeground => color
Sets the color of the text in the active menu item.

-background => color
Sets the color of the background of the entire menu.

-borderwidth => amount
Sets the width of the menu's edge.

-cursor => cursorname
Sets the cursor displayed when the mouse cursor is over the menu.

-disabledforeground => color
Sets the color of the text of any disabled menu items.

-font => font
Sets the of the text displayed in the menu.

-foreground => color
Sets the color of the text in the menu.

-menuitems => list
Defines a list of items to create in the menu.

-postcommand => callback
Sets the callback that is invoked before the menu is posted to the screen.

-relief => 'flat' | 'groove' | 'raised' | 'ridge' | 'sunken'
Sets the relief of the edges of the menu.

-selectcolor => color
Sets the color of the selection box in checkbutton or radiobutton items.



-takefocus => 0 | 1 | undef
Controls the ability to use the keyboard to traverse the menu. Default is 0.

-tearoff => 0 | 1
Determines whether or not the menu will contain the tear-off item as the first item. 
Default is 1.

Menu Style

The edges of the menu default to 'raised' with a -borderwidth of 2. This makes 
the menu look like a large button with multiple items of text listed in it. We can change 
the look of the menu edges by using the -relief option:

-relief => 'flat' | 'groove' | 'raised' | 'ridge' | 'sunken'

The menus in Figure 11-16 were created and then torn off so they are left on the screen. 
The actual menu edge is inside the window manager's decoration.

Figure 11-16.
Different relief options with menu widget

The width of the menu's edges (regardless of the -relief) are changed by using the -
borderwidth option:

-borderwidth => amount

Changing the -borderwidth always makes the different relief types stand out more, 
as shown in Figure 11-17.

Figure 11-17.
Menus with different relief options and -borderwidth set to 4



The -activeborderwidth option affects the active menu item (the one with the 
mouse cursor over it):

-activeborderwidth => amount

Menu Fonts and Cursors

The font of the text displayed in the entire menu is controlled with the -font option:

-font => font

Figure 11-18 shows a menu with a different font, "lucidasans-14". Fonts that can 
be used for the value of -font were covered in Chapter 3.

Figure 11-18.
Menu with a different font

To change the cursor displayed when the mouse cursor is over a menu widget, use the -
cursor option:

-cursor => cursorname

The default cursor for a menu widget is different than the window's default cursor. The 
default cursor for a menu is 'arrow', whereas the window cursor is an arrow that 
points the other way.

Calling a Subroutine Before Displaying the Menu

Before displaying the menu (via the post command or a menubutton), you can use the -
postcommand option to specify a subroutine to call:

-postcommand => callback

The form for the callback is the same as the one used in a button widget (described in 
Chapter 2). One of the best uses of the -postcommand option is to update the state of 
each menu item if needed. Here is an example that uses a menubutton widget but uses -
postcommand to perform an update of the menu before it is drawn:



# Create the menubutton
$menub = $mw->Menubutton(-text => "File", -tearoff => 0,
  -menuitems => [[ 'command' => "Open", -
command => \&do_something],
                 [ 'command' => "Save" -
command => \&do_something],
                 [ 'command' => "Close", -
command => \&do_something],
                 "_",
                 [ 'command' => "Exit", -
command => sub { exit }]]
  )->pack();
# A flag we use to see if the document has been saved yet.
$unsaved = 0;
# We have to wait until after we've created the menubutton to
# access the menu widget part of it:
$menub->menu()->configure(-postcommand => \&update_menu);

  

# This looks at some flags in our program and determines if the items
# should be updated or not
sub update_menu {
  if ($unsaved) {
    $menub->menu->entryconfigure(1, -state => "normal");
  } else {
    $menub->menu->entryconfigure(1, -state => "disabled");
  }
}

Specifying Menu Items

The -menuitems option allows you to create the menu and the menu items at the same time. 
The format for doing so is the same as the format for the menubutton's -menuitems option.

There is no AddItems method for a menu widget. The AddItems method is only available with 
the menubutton widget. You can use either the -menuitems option or the add method with a 
menu widget. add is described in the next section.

Menu Indexes

Like entry and text widgets, menu widgets have their own indexing scheme, as follows.

n
The items in a menu are numbered from 0 to n; 0 is the first item at the top of the menu, and n is 
the last item in the menu. (The tear-off item in a menu counts as index 0 if it is present. Use -
tearoff => 0 to turn it off.)

"active"
The menu item that is currently active (the mouse is over it and it is highlighted). If there are no 
menu items active, then "active" means the same as 'none'.



"end"
The last menu item in the menu. If there are no items in the menu, then 'end' means the same as 
"none".

"last"
Another way to say "end"

"none"
No item.

"@y"
The number is a y coordinate in the window. This form of index specification will resolve to the 
menu item closest to the y coordinate. "@0" means the same as 0.

"pattern"
The pattern is text to match the menu items against. The first menu item (starting with 0) 
it matches is used.

There aren't really that many menu widget methods. The most important methods are 
probably entryconfigure and delete because you'll use them more often than 
you'll use the others. Remember, if you are using a menubutton widget, you can invoke 
the menu widget method directly by using $menubutton->menu-> method().

Configuring the Menu Widget

The cget method returns the current value of an option. It only affects the options for 
the entire menu; there is an entrycget method that will return information about 
specific menu items. Both the configure and cget methods are discussed in detail in 
Appendix A.

Configuring Menu Items

The entrycget method queries a specific menu item and returns the information 
about that configuration option:

$menu->entrycget(index, -option);

The index determines which menu item entrycget affects. Any of the options that 
can be sent with the add method (covered in the following section) are valid.

The entryconfigure method returns or alters the configuration options of the menu 
item at index just as configure does for the entire menu widget:

$menu->entryconfigure (index, [-option, value, ...]);



You can specify no options to get the current configurations for all of the options at that 
index. You can specify a single option to get the value of only that option for that index. 
You can also specify multiple option/value pairs to set the values of those options for 
that index.

Adding Items

In addition to the -menuitems option, you can use the add method to add items to the 
end of a menu. The first argument to add is the type of menu item to be added. It should 
be one of the following: "command", "radiobutton", "checkbutton", 
"separator", or "cascade". Here is a usage statement:

$menu->add(type [ , options... ]);

The options that affect each menu item are the same as those for the -menuitems 
option: -activebackground, -activeforeground, -accelerator,

-background, -bitmap, -command, -font, -foreground, -image, -
indicatoron, -label, -menu, -offvalue, -onvalue, -selectcolor, -
selectimage, -state, -underline, -value, and -variable.

The results of the following two code snippets are identical:

# Snippet 1
# Using add for menu items
$menu = $mw->Menu;
$menu->add("command", -label => "Open",
           -command => \&open_file);
$menu->add("command", -label => "Close",
           -command => \&close_file);
#Snippet 2

# Sending a list intially using -menuitems option
$menu = $mw->Menu(-menuitems => [ ["command" => "Open",
                                    -command => \&open_file],
                                   ["command" => "Close",
                                    -command => \&close_file]
                                  ]);

Each additional call to add will add another item to the end of the menu. To add a menu 
item to somewhere other than the end of the menu, see the insert method (covered in 
the next section).

Instead of -text or -textvariable options, we use -label to indicate the text 
shown on the menu item. You should notice that we don't have a -labelvariable 
option. If you need to change the text shown in the menu item, you will need to use the 
entryconfigure method (discussed later in this chapter).

Inserting Menu Items



The insert method works exactly the same way the add method works, except the 
new menu item will be inserted right before the menu item at index. You cannot insert a 
menu item before the tear-off menu item because the tear-off must always be the first 
item in the menu:

$menu->insert(index, type [, options ... ]);

Here is an example:

$menu->insert("end", "radiobutton", -label=>"red");

Deleting Menu Items

To remove menu items from your menu, use the delete method:

$menu->delete(index);
# or..
$menu->delete(index1, index2);

You can delete one item by specifying only one index. You can delete more than one by 
specifying a range of indexes. Here are some examples:

$menu->delete ('last');   # deletes the last menu item
$menu->delete (0, 'end');
# deletes every menu item (except tear off)
$menu-
>delete ("Open");   # deletes the item that matches "Open"

Invoking Menu Items

The invoke method will try to invoke the menu item at the specified index (as if you 
clicked on it with the mouse):

$menu->invoke (index);

The specific result of the invocation depends on what type of menu item is at index. The 
result from any -command callback associated with that index will be returned by the 
invoke method.

$menu->invoke ("red");

Determining Item Type

The type method returns a string that indicates the type of menu item located at index:

$type = $menu->type(index);

The string returned will be one of the following: "command", "radiobutton", 
"checkbutton", "cascade", "separator", or "tearoff".



$type = $menu->type(0); # look at index 0

Translating Index Values

The index method returns the numerical index of the menu item at index:

$menu->index (index);

The code $menu->index('end') returns 9 if there are 10 menu items in the menu. 
The code $menu->index("Open") returns the index number of the menu item that 
matches "Open".

Displaying a Menu

If you aren't using a menubutton widget to display your menu, you need a way to display 
it. You can use the post method or the Popup method.

The post method displays the menu for you, but the menu only goes away after you 
select a menu item or specifically call unpost. The Popup displays the menu only 
while the mouse button is depressed.

The post method requires x and y coordinates to tell it where to place the menu on the 
screen. Typically, you call it wherever the user clicked (unless you want it to display in 
the same place all the time). Here is an example that displays the menu when the user 
clicks the right mouse button in a listbox:

# Create a menu with two items for our example
$menu = $mw->Menu(-tearoff => 0,
                  -menuitems => [['command' => "A"],
                                 ['command' => "B"]]);
$1b = $mw->Listbox () ->pack () ;
# create a binding on the listbox that will display our menu
# when we click with the right mouse button
$lb->bind ("<Button-3>", [ \&display_menu (), Ev('X'), Ev
('Y')]);
sub display_menu {
  my ($lb, $x, $y) = @_;
  $menu->post($x,$y);
}

I created a simple menu so we can get through the example quickly. I removed the tear-
off item from the menu because I don't like tear-off menus all over the place (but some 
users do, so keep this in mind). The bind is where I mapped the right mouse button to 
display the menu. I used Ev("X") and Ev("Y") to send the coordinates of the 
location in which the user clicked (see Chapter 14 for more information about Ev("X") 
and Ev("Y")). The subroutine simply calls post with the correct arguments.

The menu will be displayed even when the user lets go of the mouse button. It will 
unpost itself automatically when the user selects a menu item.



Another way to display a menu is to use Popup.. This causes the menu to be displayed 
only while the user holds down the mouse button. To select a menu item, you must click 
down the mouse button, slide the cursor to the desired item, and then let go of the mouse 
button. The Popup method can be called with no arguments or with one or two options. 
The options that affect Popup are -popover and -popanchor. Calling Popup like 
this

$menu->Popup();

displays the menu at the very center of your entire screen. This isn't very useful, so I 
recommend that you at least use the -popover option. The -popover option will 
take either the string "cursor" or a widget reference. The menu will be centered under 
the cursor or centered over the widget; for example:

$menu->Popup(-
popover => "cursor");  # Center menu under cursor
$menu->Popup(-
popover => $button);   # Center menu over $button
$menu->Popup(-
popover => $listbox);  #Center menu over $listbox

Notice that we are not using the syntax \$listbox. Because our scalars already 
contain a reference to a widget, we don't need to reference it again.

The second option, -popanchor, affects how the menu gets positioned relative to the -
popover argument (or the entire screen if -popover isn't specified). The -
popanchor option takes a string argument where the string is one of the following: 
"nw", "ne", "sw". or "se" For instance, if you would like to display the menu's 
upper-left corner where the user clicks, use this code:

$menu->Popup (-popover => "cursor", -popanchor => "nw");

This is how I like to create right-click menus that are associated with widgets. See the 
complete example in the ''Right-Click Menu Example."

Displaying a Cascading Menu

If your menu has a cascading menu associated with it, use postcascade to display it:

$menu->postcascade(index);

The postcascade method will unpost any other submenu and then post any cascade 
menu associated with the menu item located at index. If the menu item at index is not a 
cascade item type, then the only thing that happens is that any other submenus are 
unposted.

$menu->postcascade ("submenu");

Undisplaying a Menu



If you have displayed the menu on the screen using post, you can use unpost to 
remove it from the screen:

$menu->unpost();

This will unmap $menu from the window. If any cascaded menus of this menu are also 
displayed, they will be unmapped as well.

Getting the Position of an Item

The yposition method returns a decimal string that gives the y coordinate of the 
topmost pixel of the menu item at index:

$location = $menu->yposition(index);

Right-Click Menu Example

There are times you'll want to use a right-click menu, which is a menu that appears when 
you right-click on a particular widget or location in the application. A canvas is a perfect 
place to use a right-click menu; there are often so many different possible actions to take 
that associating different menus with different types of objects in the canvas is 
advantageous.

To create a right-click menu, simply create a menu widget, add the items to it as desired, 
and use the -command option to make the items perform useful tasks. To display the 
menu when the user right-clicks on the desired object, use the bind command:

$object->bind("<Button-3>", sub {$menu->Popup(-
popover => 'cursor'); });

You can use a right-click menu with a listbox to allow users to delete or edit the 
currently selected item.

Optionmenu Widget

The optionmenu is a specific implementation of a menubutton widget. The 

difference between the two is that the optionmenu automatically sets the -
indicatoron option to 1, removes the tear-off menu item, and handles the display of 
the menu in a slightly different way.

You can use an optionmenu when you want to give the user a choice between several 
different items but don't want to waste space with a listbox and scrollbar or with several 
radiobuttons. To add items, use the -options command instead of -menuitems or 
the other methods that allowed you to add to a menu or menubutton.

Creating and Configuring an Optionmenu

The optionmenu is created by using the Optionmenu method:



$optionmenu = $mw->Optionmenu( ... );

All the options that are available with a menubutton widget are also available for the 
optionmenu widget. The following options are specific to the optionmenu: -
textvariable, -options, -variable, and -command.

Instead of using a -menuitems option or other methods to add items to an 
optionmenu, use the -options option. It takes an anonymous list that can contain 
either strings or other anonymous lists. The idea behind an optionmenu is to select one 
item from a list of items. The text displayed is the currently selected menu item. The -
textvariable option determines where the displayed text is stored. There is also a -
variable option, which you can use to store a value that is different than the one 
shown on the menu. Specify the displayed value and the stored value by using the -
options option. If the displayed value is the same as the stored value, use a simple list:

-options => [1, 2, 3, 4, 5, 6], -textvariable => $number

To store a value other than the one shown, use this code:

-options => [["one",1], ["two",2], ["three",3],
             ["four",4], ["five",5], ["six",6]],
-textvariable => $displayed,
variable => $number

In this example, the written words are displayed in the menu (and are stored in 
$displayed), and the stored value (in $number) are the integers. The nondisplayed 
value can be any scalar value.

The -command option assigns a callback that will be executed when a selection has 
been made. The default arguments to the callback are the variables assigned with -
textvariable and then -variable (if it exists). You can use callbacks to perform 
an action based on the item selected from the optionmenu.

Here's a complete script that will allow you to see most of the optionmenu's useful 
features:

#!/usr/bin/perl -w

use Tk;

$mw = MainWindow->new;
$mw->title("Optionmenu");

$display_var = "ten";
$mw->Optionmenu (-command =>
  sub { print "ARGS: @_\n"; print "in optionmenu\n" ;},
               -textvariable => \$display_var,
               -variable => \$stored_var,
               -options => [["ten", 10],



                             ["twenty",20],
                             ["thirty",30]]
               )->pack();
MainLoop;

It's good idea to also create a label widget so the user is aware of the optionmenu's 
purpose (shown in Figure 11-19).

Figure 11-19.
Optionmenu with a label widget to the left

The only methods available with the optionmenu are the cget and configure 
methods. The cget method returns information about an option in the optionmenu. The 
configure method can get or set option values for the optionmenu widget. Both 
cget and configure are covered in detail in Appendix A.

Fun Things to Try

• Create one menu that has two items: Disabled and Normal. When you rightclick on a 
widget, the menu will pop up. If you select 'Disabled', that widget will be disabled. 
Selecting 'Normal' reenables that widget.

• Create an application with two menubuttons. Have the items on the first add and delete 
different types of menu items to the second menu.

• Take all the fun things from previous chapters and add menus to them. Add at least a 
File menu, with an Exit item. Be inventive!



12—
Frames

A frame widget is a boring widget at first glance. All it does is provide a place for other 
widgets to sit. This doesn't seem important, but it is. The geometry managers provided 
with Perl/Tk have some limitations (see Chapter 2, Geometry Management), and we can 
use frames to help them do their jobs better. We'll use pack as our example geometry 
manager throughout this chapter because it seems to be the most popular, but remember 
that the basic rules for using a frame apply to the other geometry managers as well.

A frame widget's job is to contain other widgets, accommodating the size of the widgets 
within. If you don't have any widgets packed into the frame, you won't see the frame. If 
the widgets inside the frame are resized for any reason, the frame will try to resize as 
well (either larger or smaller).*

Creating a Frame

Use the parent widget of the frame to invoke the Frame() method:

$frame = $parent->Frame( [ option => value, ... ])->pack();

The $parent can be a MainWindow, a toplevel, or another frame widget.** After the 
frame is created, it can become a parent to other widgets. You must have created the 
frame but not necessarily packed it on the screen for it to be the parent

* You can change this behavior by using packPropagate() or 
gridPropagate().

** Technically, any widget can be a parent of another widget, but I like to make my life 
easier when it comes to placing the widget inside the window. If I made a frame the child 
of a $button, I wouldn't be able to pack it inside the button. I would then have to use the 
-in option with pack, confusing myself even further. Keep it simple, and you'll be much 
happier.



of other widgets. Keep in mind that, even if you pack other widgets inside your frame, if 
you don't pack the frame as well, the other widgets won't show on the screen.

Just as with all the other widgets in Perl/Tk, the options specified in the Frame method 
will change how the frame looks inside the window. There are few options available 
with the frame widget, and they aren't complicated at all. This section covers all the 
options and what they do.

-background => color
Sets the color of the frame's background area (there is no foreground area).

-borderwidth => amount
Sets the width of the frame's edges. Default is 0.

-class => classname
Indicates the class associated with the frame in the option database. This option can 
actually be used on any widget, not just a frame.

-colormap => "new" | $window
Specifies whether to use a new colormap or share one with another widget in the 
application. Default is undef.

-container => 0 | 1
Tk8.0 only. If true, this frame will be used to contain another embedded application.

-cursor => cursorname
Changes the cursor to use when the mouse pointer is over the frame.

-height => amount
Sets the starting height of the frame in a valid screen distance.

-highlightbackground => color
Sets the color the highlight rectangle should be when the frame does not have keyboard 
focus.

-highlightcolor => color
Sets the color the highlight rectangle should be when the frame does have the keyboard 
focus. Default color is black.

-highlightthickness => amount
Sets the thickness of the highlight rectangle. Default is 0.

-label => labelstring
Adds a label to the Frame with the text "labelstring".



-labelPack => [ pack options ]
Specifies pack options for the label.

-labelVariable => \$variable
Specifies a variable that contains the text for the label.

-relief => 'flat' | 'groove' | 'raised" | 'ridge' | 'sunken' | 
'solid'
Changes the appearance of the edges of the widget. Default is 'flat'.

-takefocus => 0 | 1 | undef
Specifies whether the frame should take the focus. Default is 0.

-visual => "type #"
When used on an X Windows system, changes the depth of colors available to your 
application. Does nothing on Win32 systems.

-width => amount
Sets the starting width of the frame in a valid screen distance.

Frame Style

As with all widgets, you can use the -relief and -borderwidth options to change 
how the edges of a frame widget are drawn. The default -relief is 'flat', and the 
default -borderwidth is 0. If you want the frame to have any edges at all, make sure 
you change -borderwidth to something higher than 0. Unless you put something in a 
frame, you'll never see it. So, for the examples in Figure 12-1, I have inserted a label 
widget and an entry widget that state the relief of that frame. Note that I actually created 
a label widget by using Label() and did not use the -label option (see the next 
section).

Figure 12-1.
Different relief values for frames; borderwidth of 2 and borderwidth of 5



Using -relief and -borderwidth is a great way to find out where your frame is in 
the window. If you have a complicated window, it's confusing to remember which frame 
is where. I'll often add -borderwidth => 5, -relief => "groove" to my 
Frame command to find that frame in the window.

Adding a Label to a Frame

With Perl/Tk. you can add a label to your frame by using the -label option, which 
takes a text string as an argument:

$mw->Frame(-label => "My Frame:")->pack;
...
# configure label in frame later :
$frame->configure(-label => "My Frame:")->pack;

By default, the label is placed at the top of the frame, centered across the width (see 
Figure 12-2). Again, I put something in the frame so you can see the frame as well as the 
item in the frame. In this case, I placed a button with the default pack options in the 
frame. I also created the frame with -relief => 'groove', -
borderwidth => 2 options so you can see the edge.

Figure 12-2.
Frame with label in default position

You can change the location of the label inside the frame by using the -labelPack 
option. It takes an anonymous array as an argument, where the array contains any pack 
options for the label:

-labelPack => [ -side => 'left', -anchor => 'w']

Be careful to notice that this option has an uppercase letter in it. If you try to use -
labelPack without the capital "P," you'll get a compilation error. Also notice that 
there isn't a -labelGrid option available. You must use pack() to put widgets 
inside your frame if you are going to use the -label option. If you don't, bad things 
happen (your application might not run at all).

Instead of using a static text string with your frame's label, you can assign a variable by 
using the -labelVariable option (again, notice the capital V):



-labelVariable => \$label_text

When you change the contents of the variable $label_text, the label in the frame 
will change as well.

The instant you use the -label or -labelVariable option, a label is created and 
placed inside the frame. You can use these options either in the initial Frame() call or 
later with $frame->configure( ... ). If you use them later, the label is placed 
above all other widgets inside the frame.

Frames Aren't Interactive

The frame widget itself is not interactive; by default, it can't accept input from the user. 
The widgets inside it can, but the frame cannot. As always, the focus ability is controlled 
by the -takefocus option:

-takefocus => 0

With a frame widget, it is set to 0. If for some reason you need to get input from the user 
on your frame, you will need to change it to -takefocus => 1.

Colormap Complications

When you are running several applications at once and you start a web browser, you'll 
sometimes notice that the colors become corrupted. When you switch from an 
application to the browser, the colors in your other applications suddenly change. If you 
switch back from your browser to an application, the browser colors change. This is 
happening because the web browser is a color hog. It has requested more colors than the 
operating system can allocate at once. The OS must alter the colormap between 
applications to allow the active application to use the colors it wants to use. The 
colormap simply gives the operating system a way to keep track of who is using which 
colors.

Perl/Tk applications can have many colors too-you can get color-happy and make each 
button a different color of the rainbow. This can cause problems if there are other 
applications running that want a lot of different colors too. If other applications are color 
hogs, Perl/Tk will switch to black-and-white mode. If you don't like this behavior, you 
can use the -colormap option to override it. -colormap takes either the word 
"new" or a reference to another window. If given "new", it will create its own 
colormap. When you use -colormap with another window, the two windows will 
share the colormap. But there is one catch, and that is the -visual option.

The -visual option takes as an argument a string that contains a keyword and a 
number; for example:

-visual => "staticgrey 2"



The keyword can be any one of the following: staticgrey, greyscale, static- 
color, pseudocolor, truecolor, or directcolor. The number indicates the 
depth of color used (2 = black/white).

When you use -colormap to share the colormap between two windows, the -visual 
option for both must be the same. This means that -visual must be undef for both 
(the default) or it must have the same value. Neither -colormap nor -visual can be 
altered by using the configure method.

You will see both -colormap and -visual options in Chapter 13, Toplevel Widgets, 
also. We covered it here first because this is where we see it first. To be honest, you'll 
probably never use either option in either widget.

The Magical Class Option

You can force your frame to be in another class (besides frame) by using the -class 
option. Simply give it a string that is a unique class identifier;

-class => "Myframe"

For more information on using classes (and what good they can do you), see Chapter 13.

Frame Methods

The only methods available with the frame widget are cget and configure. These 
are described in detail in Appendix A, Configuring Widgets with configure and cget.

Fun Things to Try

When you use the Scrolled method, you are using frames without even knowing it. 
The newly scrolled widget is placed inside a frame with its scrollbars so that it behaves 
as one contained widget. Here are some other ways you can use frames:

• Create several lines of labels with entry widgets. Each 'line' needs to be in its own 
frame so it will look right.

• Place an image along one side of your application window. Put the widgets in a frame 
(on the left or on the right) and place the image on the other side of them.

• Place a scrolled listbox in your application window, a frame containing three buttons 
(OK, Cancel, Apply) along the bottom of the window, and a frame along the right 
containing two buttons (Delete, Add) that manipulate the listbox. By using frames, you 
can keep the buttons that belong together in one area instead of grouping them with other 
buttons that serve a different purpose.



13—
Toplevel Widgets

Any Perl/Tk application includes at least one toplevel widget. When you call the new 
method from the MainWindow class, you are creating a toplevel widget without even 
knowing it. You can create other toplevel widgets to be used in your application in 
additionto the MainWindow toplevel widget. The MainWindow is special because it 
automatically displays when you call MainLoop(). Other toplevel widgets in your 
program must be explicitly displayed somewhere in the code.

Here are some examples of how you can use toplevel widgets:

• Display informational text with a Close button.*

• Provide data gathering that is triggered by something the user does (for example, 
clicking a button).

All toplevel widgets have the same behavior: Each has decoration that is consistent with 
the system on which your application is run. Each toplevel can contain other widgets and/
or multiple groups of widgets (for example, they can be grouped in a frame widget).

The rest of the chapter will cover how to use toplevel widgets and what options allow 
you to change their behavior.

Creating a Toplevel Widget

To create a toplevel, call Toplevel from the desired parent widget, usually the 
MainWindow widget (you already know that to create a main window, you must

* Look at Tk::Dialog. It is designed to do this and uses a toplevel widget.

use MainWindow->new()). The returned item is a reference to the toplevel widget; 
the reference allows you to configure the widget, call methods on it, and place items 
within it. Here is a simple example:



use Tk;
$mw = MainWindow->new;
$mw->title("MainWindow");
$mw->Button(-text => "Toplevel", -command => \&do_toplevel)-
>pack();

MainLoop;
sub do_toplevel {
  if (! Exists ($tl)) {
    $tl = $mw->Toplevel();
    $tl->title("Toplevel");
    $tl->Button(-text => "Close",
                -command => sub { $tl->withdraw })->pack;
  } else {
    $tl->deiconify();
    $tl->raise();
  }
}

When you run this program, clicking on the Toplevel button in the main window creates 
the toplevel widget (if it needs to) and displays it. Clicking Close hides the toplevel from 
view. You need to test for the existence of the toplevel before you show it because you 
don't want to re-create it if it already exists and you don't want to try to show something 
that doesn't exist.

When the Close button is clicked, the toplevel is withdrawn. It still exists; it is just not 
visible to the user. This saves time the next time around by redisplaying the same 
window. You can also use withdraw if you don't want to show the toplevel while you 
are filling it with widgets. Simply use the withdraw method, place the interior 
widgets, and then redisplay the widget by using deiconify and raise.

These options can be specified in the call to Toplevel or by using the configure 
method.

-background => color
Sets the background color of the toplevel widget. Note that the background may be 
hidden by widgets placed in the toplevel if the toplevel is completely covered by widgets.

-borderwidth => amount
Sets the width of the border around the toplevel. Default is 0.

-class => classname
Sets the classname used with the option database for this toplevel widget.



-colormap => "new" | $window
Specifies whether to use a new colormap or share one with another widget in the 
application. Default is undef.

-container => 0 | 1
Tk8.0 only. If true, this window will contain an embedded application (see the -use 
option).

-cursor => cursorname
Sets the type of cursor used over the toplevel widget.

-height => amount
Sets the height of the toplevel.

-highlightbackground => color
Sets the color the highlight rectangle should be when the toplevel does not have focus.

-highlightcolor => color
Sets the color the highlight rectangle should be when the toplevel does have focus.

-highlightthickness => amount
Sets the thickness of the highlight rectangle. Default is 0.

-menu => $menu
Tk8.0 only. Indicates that the toplevel uses the menu in $menu across the top of the 
window.

-relief => 'flat' | 'groove' | 'raised' | 'ridge' | 'sunken' | 
'solid'
Changes the appearance of the edges of the toplevel. Default is 'flat'.

-screen => screenname
Sets the screen on which to place the toplevel. Cannot be changed by configure method.

-takefocus => 0 | 1 | undef
Determines if toplevel can have keyboard focus. Default is 0, meaning it cannot have 
keyboard focus.

-use => $windowid
Tk8.0 only. $windowid must contain a hex string of the window to embed in the 
toplevel. The -container option must have the value 1 to use this option.

-visual => "type #''
When used on an X Window System, changes the depth of colors available to your 
application. Does nothing on Win32 systems.



-width => amount
Sets the desired width of the toplevel.

Toplevel Methods

The methods available with the toplevel widget are listed and explained in the following 
sections (it is important to note that all of these methods apply to a MainWindow as 
well; a MainWindow is just a specialized toplevel widget). You haven't seen many of 
them before because toplevel is a different sort of widget than the others covered so far 
in this book. Also keep in mind that a lot of these methods were designed originally for 
use with a Unix windowing environment, and quite a few of them will state "No effect in 
Win32 system." Many of these functions serve no useful purpose to the typical ordinary 
Perl/Tk application, but I'll document them here for thoroughness.

Several of the methods here alter window manager properties, which often look like 
WM_PROPERTY_THING. These properties are also traditionally associated with the X 
Window system on Unix, but some still apply in Win32 systems as well. If a specific 
method doesn't say anything about which system it applies to, it will apply to both. If it 
only applies to one or the other (or only half-works in one system), this will be 
mentioned as well.

Configuring a Toplevel

Both cget and configure methods are used to set and get option values for a 
toplevel widget. See Appendix A for more detailed information on how to use these 
methods.

Sizing a Toplevel

You can use the geometry method to define or retrieve a geometry string. A geometry 
string determines the size and placement of a window on the screen. The geometry string 
is a concept that originated on Unix systems, and at first glance, it is a bit cryptic. Here is 
a regular expression that describes a complete geometry string:

^=?(\d+x\d+)?([+-]\d+[+-]\d+)?$

The equal sign can be omitted completely (and usually is). The first portion (\d+x\d
+) is the width and height (in that order) separated by an x. Both width and height are 
specified in pixels by default and in grid units if the window is gridded with the grid 
method (described later). The last portion of the geometry string represents the x and y 
coordinates of the location in which the toplevel should be placed on the screen. Both x 
and y are always in pixels. Here are a few examples of what some geometry strings look 
like:



300×300       # width and height both = 300
300×450       # width = 300, height = 450
300×450+0
+0   # width = 300, height = 450 placed in upper left corner
300×450-0-
0   # width = 300, height = 450 placed in lower right corner

  

300×450+10+10 # width = 300, height = 450
              # placed 10 pixels out from upper left corner
+0
+0          # window is 'natural' size, placed in upper left corner

When geometry is called with no arguments, the current geometry string is returned. You can 
also specify a new geometry by using geometry with the new geometry string as the 
argument. To set the size and position of the window immediately, you would do this:

$mw = MainWindow->new();
$mw->geometry("300×450+0+0");

If you specify only the width and height, the placement of the window is determined by the 
window manager. If you specify only the positioning, then the size of the window will be 
determined by the widgets placed within the toplevel, but the window will be placed at those x 
and y coordinates.

You can force the window back to its natural size by calling geometry () with an empty 
geometry string:

$toplevel->geometry("");

Maximum Size

You can use maxsize to restrict the largest size of the window. It takes two integers as 
arguments, as follows:

$toplevel->maxsize(300,300)

If you call maxsize without any arguments, you'll get an empty string or a list with two items 
in it representing the current values. Calling maxsize with two empty strings cancels the 
limitation.

Minimum Size

You can also restrict the smallest size of the window by using minsize. The window will 
always be at least the size specified:

$toplevel->minsize(100,100);



Calling minsize without arguments will return an empty string or a list containing the width 
and height respectively. Calling minsize with two empty strings will eliminate the minimum 
size restriction.

Limiting Resizing

You can control whether a window can be resized in width and/or height by using resizable:

$toplevel->resizable(1, 0)
($canwidth, $canheight) = $toplevel->resizable();

Specifying 1 means it is resizable, and 0 means it is nonresizable in the specified 
direction. If you don't specify any arguments, resizable returns a list with two items. 
The first item is a 1 or 0 and indicates whether if the width is resizable. The second item 
is a 1 or 0 and indicates whether if the height is resizable. By default, a window is 
resizable in both directions.

Using a Size Aspect

You can use the aspect method to force the window to stay a certain width and height:

$toplevel->aspect( [ minN, minD, maxN, maxD ]);

The aspect method does some very subtle things, and you'll probably never use it. If 
you do, play around with different values (starting with the example below) to get the 
effect you want

When you use the aspect method with no arguments, it returns either an empty string 
(if there are no constraints to the aspect of the window) or an array containing four 
elements:

($minN, $minD, $maxN, $maxD) = $toplevel->aspect;

Using these values, you can see how aspect controls the window:

($minN/$minD) < width/height < ($maxN/$maxD)

You can also send four empty strings to unset the aspect restrictions on the window. Try 
using $toplevel->aspect(1,2,3,1); the effect is subtle.

Setting the Title

You can change the text across the top of the window by using the title method:

$toplevel->title("This will be the title");



Pass a string in with title and the new title will appear immediately in the window, 
assuming the window is currently visible. If you don't pass an argument with title, 
the current title string is returned. For the X Window System, the default title of a 
window is the name used to run the program, and the first character of the name is 
uppercase. For Microsoft Windows, the title always starts out as Toplevel.

Showing the Toplevel

The deiconify method causes the toplevel to be displayed noniconified or deiconifies 
it immediately if the window has already been displayed once. If the window

has been withdrawn, a $toplevel->raise() must also be done to correctly display 
the window.

The raise method brings the toplevel to the front of all the other toplevel windows in 
the application if you call it with no arguments:

$toplevel->raise();

You can also put the toplevel in front of another toplevel:

$toplevel->raise($other_toplevel);

It is sometimes necessary to use both deiconify and raise to get the window to 
show up on the screen.

Withdrawing the Toplevel

When you create a window, it is a good idea to make it invisible while you fill it with 
widgets. You can do so by using the withdraw method:

$toplevel->withdraw();

If the window is already visible, withdraw will make the window manager forget 
about the window until it has been deiconified.

Iconifying the Toplevel

The iconify method forces the toplevel into iconified form:

$toplevel->iconify();

Iconifying is not the same as withdrawing the window; withdrawing the window will not 
show an icon on the desktop.

Specifying the Icon Bitmap



In the Unix X Window System, when you iconify your application, it is represented on 
the screen with a bitmap. You use the iconbitmap method to specify this bitmap:

$toplevel->iconbitmap();
$toplevel->iconbitmap("bitmap");

It takes a bitmap in the same form the -bitmap option supported by the button widget 
(see Chapter 3, The Basic Button). Calling iconbitmap with no arguments returns the 
current bitmap or an empty string. Calling iconbitmap with an empty string removes 
the current bitmap.

On Win32 systems, the application is kept in the Start taskbar with an unchangeable Tk 
icon and the name of the application. Using the iconbitmap method on a Win32 
system does nothing.

Specifying the Icon Mask

A mask for the icon bitmap can be specified by using the iconmask method 
(remember, this will only work with X Window Systems). It also takes a bitmap 
specified from a file or a default bitmap name (see -bitmap documentation in Chapter 
3). Where the bitmap mask has zeroes, no part of the normal icon bitmap will be 
displayed. Where the mask has ones, normal icon bitmaps will be displayed.

Calling iconmask with no arguments returns the current bitmap mask or an empty 
string if no bitmap is being used. Calling iconmask with an empty string unsets the 
mask:

$currentmask = $toplevel->iconmask();  # get the mask
$toplevel->iconmask("bitmapname");     # set the mask
$toplevel->iconmask("");               # unset the mask

Setting the Name of the Icon

The iconname method sets or returns the current text associated with the icon that is 
displayed when the application is iconified. You can pass in a new string or an empty 
string:

$toplevel->iconname("newname");
$current_name = $toplevel->iconname();

If you don't specify an argument at all, iconname returns the current iconname or an 
empty string. You can query and set the iconname on a Win32 system, but it doesn't do 
anything. This is a method that is used on the X Window System only.

Setting the Icon Position



The iconposition method suggests to the X Window Systems manager where the 
icon should be placed on the desktop when the application is iconified:

($x, $y) = $toplevel->iconposition();
$toplevel->iconposition($x, $y);

If x and y aren't specified, a list is returned containing only two items, the current x and 
y. If you call iconposition with two empty strings (one for each x and y), the 
suggestion to the window manager is cancelled.

Using a Window Instead of an Icon

Some systems (not Win32) support the idea of using a widget (or window) instead of a 
bitmap for an icon. Specify the widget by using the iconwindow method. To find out 
what the current widget is, call iconwindow with no arguments (an empty 

string is returned if there is no associated $widget). You can specify an empty string 
instead of $widget to cancel by using a widget for the icon:

$currentwindow = $toplevel->iconwindow(); # get
$toplevel->iconwindow($window);           # set
$toplevel->iconwindow("");                # unset

Determining the State

The state method returns one of three strings: "normal", "iconic", or 
"withdrawn".

$state = $toplevel->state();

The string indicates the state of the window when state is called.

Assigning an Application Name

The client method returns an empty string if your application doesn't have a name 
assigned to it.

$name = $toplevel->client( );
$toplevel->client("name");

To assign a name, send a string to the client method after you create your toplevel 
widget. You can use this in an .Xdefaults file in the X Window System to assign colors 
to your application.

Window Properties



The protocol method controls the following window properties: WM_DELETE_ 
WINDOW, WM_SAVE_YOURSELF, and WM_TAKE_FOCUS. The callback (if any) 
associated with each property will be invoked when the window manager recognizes the 
event associated with the property:

$toplevel->protocol ( [ property_name] [, callback ] );

The WM_DELETE_WINDOW property callback is invoked when the window has been 
deleted by the window manager. By default, there is a callback assigned by Perl/Tk that 
destroys the window. If you assign a new callback, your callback will be invoked instead 
of the default callback. If you need to save data associated with that window, do so in the 
callback and then invoke $toplevel->destroy() to mimic the correct behavior 
afterward.

The other two properties, WM_SAVE_YOURSELF and WM_TAKE_FOCUS, are 
much less commonly used. For instance, WM_TAKE_FOCUS is used in Unix systems 
but not in Win32. The presence of these properties is dependent on the window system 
you are running. If your application will be running on multiple systems, don't expect 
these properties to always be available. To find out if they

are available, assign each one a callback that does a print and then run the application 
to see if the print is ever invoked.

If you leave out the callback when you use protocol, the current callback assigned to 
that property will be returned (or an empty string if there isn't a current callback 
assigned). You can remove the callback by sending an empty string instead of the 
callback. If neither argument is specified, the method returns a list of all properties that 
have callbacks assigned to them.

Colormap Property

The colormapwindows method affects the WM_COLORMAP_WINDOWS 
property. This property is used to talk to the window manager about windows that have 
private colormaps. Using colormapwindows with no arguments returns a list of 
windows. The list contains windows (in order of priority) that have a different colormap 
than their parents:

@list = $toplevel->colormapwindows();

You can pass a list of windows to colormapwindows as well:

$toplevel->colormapwindows(@list);

If you don't use this function at all, Perl/Tk will take care of everything for you, although 
the order of the windows might be different.

The Command Property



The command method (not to be confused with the -command option used with most 
of the widgets) controls the WM_COMMAND property. When used with no arguments, 
command returns a list reference:

$listref = $toplevel->command();

The list holds the words of the command used to start the application. Use this bit of 
code to determine what your application command was (which is sometimes nothing):

$listptr = $mw->command();
foreach (@$listptr) {
  print "$_\n";
}

You can unset the WM_COMMAND property by sending an empty string:

$toplevel->command("");

The Focus Model

The focusmodel method controls whether or not the toplevel widget will give up the 
keyboard focus when another application or window should have it:

$toplevel->focusmodel( [ "active" | "passive" ] );

The default is "passive", meaning it will give up the keyboard focus. The changes 
present in your application depend completely on the type of window manager you are 
running your application under. My testing revealed no changes under Win32 or the X 
Window System.

Getting the Parent of the Toplevel

The frame method returns a hexadecimal string that is the "ID" of the parent of the 
toplevel widget:

$id = $toplevel->frame();

You can use $widget->id() to get the same ID from any widget in your application.

The Application Grid

There are a few complications with the grid method. Remember way back in Chapter 2 
there was a grid there also which controlled geometry management. To resolve this 
little problem, we have to call this grid method in a funny way:

$mw->wm('grid', ... );



We must use the Wm (stands for window manager) method to invoke grid indirectly.

Now that we have that cleared up, we can get into what wm('grid', ...) does. 
When you tell the window to grid, you are restricting the size it can be. The size must 
always snap to the grid as defined in grid. We have to remember the listbox widget and 
the -setgrid option back in Chapter 7, The Listbox Widget. Once you use -
setgrid => 1 on a listbox, you can use @list = $toplevel-> wm
('grid'); to determine the values used in the grid. The values I got on my system 
were 10, 10, 7, and 17. This means the base width and height were each 10 pixels and 
each grid unit incremented by 7 pixels in width and 17 pixels in height. You can change 
the grid size and increments by calling wm('grid', ...) with new values if you 
desire, but if you don't, Tk manages everything quite nicely for any of the gridded 
widgets.

You should also know that you can unset the grid values by using empty strings for each 
instead of new values.

Being the Leader

This is another method you'll never use, but it's good to know what you're not using it 
for. The group method makes a widget the group leader of related windows. For each 
toplevel that you want to be in $widget's group, call $toplevel->group
($widget). If $widget isn't specified, it will return the current group leader of 
$toplevel, or it will return an empty string if $toplevel isn't part of a group.

You can send an empty string to cancel toplevel's association with that group. That is, to 
remove a toplevel from the group, call $toplevel->group(" ").

Removing Decorations

To make a window with none of the normal window decorations (titlebar, borders, and 
so on) you can use the overrideredirect method with a true value:

$toplevel->overrideredirect(1); # Remove all decorations

Be careful though; you won't be able to move the window on the screen once it is drawn. 
If you forgot to put an exit button on it, you won't be able to quit the application 
gracefully (doing a CTRL-C in the window that started the script will kill it).

This is a way to make a splash screen-a screen that shows up as your application is 
loading. Remember that you must call MainLoop for it to show up at all.

Calling overrideredirect with no argument returns the current value (1 or 0):

$current_value = $toplevel->overrideredirect();



Calling overrideredirect again with a 0 value will not turn decorations back on 
once the window has been displayed.

Who Placed the Window?

When the toplevel widget is placed on the window, either the window manager tells the 
program where to be or the program tells the window manager where it wants to be. In 
some cases, the user positions the window manually when it comes up.

$who = $toplevel->positionfrom();
$toplevel->positionfrom("program");  # Try and force it

When called without argument, the positionfrom method returns information on 
which one happened. If it returns the string "program", an empty string, or a 
$widget, it means either the window manager or the program requested the position. If 
positionfrom returns the string "user", the user manually placed the window 
when it was created.

You can try to force which will happen by calling positionfrom with the 
"program" or "user" string, but it will only work if your window manager agrees 
with you.

Who Sized It?

The sizefrom method does the same thing positionfrom does except it returns 
information regarding the size of the window.

$who = $toplevel->sizefrom(); # "program" or "user"?
$toplevel->sizefrom("user");  # Try and force it

Not a Real Window

A transient window is one that isn't quite a real window (such as a pull-down menu). 
You can indicate to the window manager that the toplevel (for example, the pulldown 
menu) is related to its master (the window in which it is displayed) by using the 
transient method:

$mymaster = $toplevel->transient();
$toplevel->transient($master);

If you don't use any arguments with transient, it returns either the current master or 
an empty string.

Review



It is a good idea to use another toplevel widget instead of the MainWindow if there is too 
much information to fit in one window. Using toplevels to group information is also 
sometimes a good idea. When to use an additional toplevel is a design decision that 
you'll have to make. You don't want to have too many windows for the user to navigate, 
but a well-designed application might be able to make use of one or two. For instance, 
the Tk module comes with a Tk::Dialog module that lets you easily display messages to 
the user. Check out the documentation included with the Dialog.pm file for more 
information on how to use it.

Fun Things to Try

Take the Dynamic Document List example from the last chapter and make it create a 
new toplevel every time the user hits the New Document button. (Advanced: actually 
create or load a file.)



14—
Binding Events

Perl/Tk is an event-driven programming language. You design your program to respond 
to events generated by the program. Event sequences can be pushing a button, moving 
the mouse, or typing some characters with a keyboard. The relationship between the 
event sequence and the widget is called a binding.

Each widget provided with Perl/Tk has its own default bindings. For example, the button 
widget changes color when the mouse pointer is over the button and it invokes a callback 
that you specified when it is clicked. These are default bindings, ones that are created 
when you create the widget itself.

You can have your program respond to additional events by using the bind command 
to assign callbacks to different event sequences; the basic format is:

$widget->bind(sequence, callback);

In addition, you can override the default bindings by creating your own or just removing 
them.

The bind Method

To use the bind method, invoke it from the widget to which you would like to add the 
binding. For instance, if you want to add a binding to a button in $button, use 
$button->bind. In certain instances, you would use the main window

of your application: $mw->bind(...). There are several different sets of valid 
arguments you can send to bind. The following list explains them all:

$widget->bind();
Calling bind with no arguments returns a list of bind sequences (e.g. <Button-1>, 
<Key-D>) that have been created for that widget. It will not return any of the default 
bindings. Here's an example:

$button = $mw->Button( ... )->pack;
$button->bind("<Button-3>", sub { ... } );

@bindings = $button->bind();
print "Bindings for button :@bindings\n";
# would print:
# Bindings for button: <Button-3>



This function will return an empty string if there are no additional bindings for that 
widget.

$widget->bind (sequence);
You can determine what callback is associated with a bind sequence. Pass in the bind 
sequence (for example, "<Button-3>") as the first argument and the currently 
assigned callback will be returned. Expanding the preceding example, we can use the 
information in @bindings to see what callbacks are associated with them:

foreach (@bindings) {
  print "$_ is assigned callback ", $button->bind($_), "\n";
}
# <Button-3> is assigned callback Tk::Callback=CODE(0×91fdcc)

If you send a bind sequence that doesn't exist for that widget, you'll simply get an 
empty string as the result. Also, if you use a sequence that is considered a default 
binding (for example, "<Button-1>" on a button widget), you'll get an empty 
string as well (unless you've added another binding to it with bind).

$widget->bind (sequence, callback);
To have a callback invoked when a sequence happens, specify it after the sequence in the 
bind call. It can be any of the valid forms for callbacks discussed in Chapter 3. Here are 
a few examples:

$button->bind("<Button-3>", sub { print "Right clicked\n" });
$entry->bind
("<Return>", sub { print "Hit return in entry widget\n" });
$button->bind("<Button-1>", \&b1_addtl_action());
$canvas->Tk::bind("<Button-1>", [ \&draw_rectangle, Ev
("X"), Ev("Y") ]);

To remove a binding for a specific sequence, send an empty string for the callback.

$widget->bind (tag [, sequence, callback ] );
A tag is a way to refer to a widget class. You use tags if you wanted every widget of a 
certain type to have the same behavior. For instance, if you want a search menu to pop up 
when you right-click in the text widget, you can do this:



$t1 = $mw->Scrolled("Text")->pack(-expand => 1, -
fill => 'both');
$t2 = $mw->Scrolled("Text")->pack(-expand => 1, -
fill => 'both');

$menu = $mw->Menu(-menuitems => [ ["command" => "Search",
                                   -command => \&search_file],
                                  ["command" => "Search Again",
                                   -command => \&search_again]
                                 ],
                         -tearoff => 0);
$mw->bind(Tk::Text, "<Button-3>",
          sub { $menu->Popup (-popover => 'cursor'
                            -popanchor => "nw") });

Any text widgets you create inside the application would then have the search menu 
pop up over it. You would have to do a little work in the search routines to determine 
which text widget triggered the function, but you wouldn't have to recode the same 
bind sequence for each text widget you create.

In the preceding example, we specified the sequence ("<Button-3>") to be 
bound. If we didn't, we would get a list of the current callbacks associated with that 
event sequence.

The special tag 'all' can be used to refer to every widget and window in the 
application. But be careful; you'll get much more activity in your callback than you 
would think!

Arguments Sent to the Callback

The first argument to a callback assigned with bind is always a reference to the calling 
widget. This is true even when you bind to a widget class. You can use the reference 
passed in to retrieve information about the widget from which the sequence was invoked.

Here's an example of using a single entry widget:

$entry = $mw->Entry()->pack;
$entry->bind("<Return>", \&hit_return);
sub hit_return {
  my ($e) = @_;
  print "Entry contained: ", $e->get, "\n";
}



When you use bind to invoke a callback on an entire widget class, it makes the job of 
determining which widget was the subject of the event much easier:

$mw->Scrolled("Text")->pack(-expand => 1, -fill => 'both');
$mw->Scrolled("Text")->pack(-expand => 1, -fill =>'both');

$menu = $mw->Menu (-menuitems =>[ ["command" => "Save",
                                    -command => \&save_file],
                                   ["command" => "Open",
                                   -command => \&open_file]
                                  ],
                             -tearoff => 0);
$mw->bind(Tk::Text, "<Button-3>",
          sub {$menu->Popup(-popover => 'cursor') });
sub save_file {
  my ($text) = @_;
  open
(FH, ">outfile") || die "Couldn't open outfile for writing";
  print FH $text->get("1.0", "end");
  close (FH);
}

The call to bind uses Tk: :Text as the first argument. This will cause the bind to be 
applied to every text widget in the application. In this example, no matter which text 
widget is clicked, its contents will be written to "outfile". The application might 
also prompt the user for a different filename at that point, allowing it to actually do 
something useful.

Defining Event Sequences

So far, you've seen several different event sequences-<Button-3>, <Button-1>, 
and <Return>-but I haven't yet explained the format for building them. Although the 
examples you've seen may seem obvious and simple, event sequences can get much 
more complicated.

The event sequence is built from an optional modifier, an event, and an optional detail. 
They are separated by dashes and then placed between angle brackets:

<modifier-event-detail>

As we discuss all the possible bindings, keep in mind that it is possible for more than 
one event sequence to match. The more detailed matches will invoke their callbacks 
first. If a binding has been created on a specific button, and then another binding is 
created on all of the buttons, the specific-button bind callback will be invoked first, and 
then the more general all-button bind callback will be invoked.

Modifiers



A modifier is an event that happens at the same time the main event happens, such as 
holding down the Control key and clicking the mouse. The modifying

event must happen first in order for the entire event sequence to match (e.g., pressing the 
Control key and then pressing the mouse button).

The possible modifiers and their meanings are as follows:

Control
The Control key must be pressed down as the main event is happening (e.g., 
<Control-Button-1>).

Shift
The Shift key must be pressed down as the main event happens (e.g., <Shift-
Button-3>).

Lock
The Caps Lock key must be pressed to turn on caps lock (e.g., <Lock-Key-a>).

Alt
Causes the main event to match only if either of the Alt keys is pressed down while the 
main event happens (e.g., <Alt-Key-x>).

Microsoft Windows users should be aware that sometimes MS Windows doesn't 
allow the event notifier to notify applications that the left Alt key has been pressed. 
The left Alt key is normally the Alt key people use when switching between 
applications by using ALT-Tab. If the left Alt key doesn't work, try the right one 
before giving up. This warning also applies if you are using an X Window server (e.
g., Exceed) on MS Windows to access a Unix system.

Button# where # is 1, 2, 3, 4, or 5. You could also use B# as a shortcut.
These modifiers indicate that, before the rest of the event happens, the specified mouse-
button number must be depressed. For instance, if you want to trigger an event when the 
user clicks mouse button 1 and then mouse button 3, you can use the event <Button1-
Button-3> (or <B1-Button-3>). The same event would not be triggered if you 
clicked mouse button 3 and then mouse button 1. The events are order dependent.

It is not valid to use only <Button#> because, without the dash between 
"Button" and the number, you are indicating a modifier to another event type.

Double
Double is a special type of modifier that indicates the main event should happen twice. 
Double puts a constraint on the minimum amount of time between the repetitions of the 
main event. Double is most often used to indicate a double-click of a mouse button.



It is important to note that <Double-Button-1> is not equivalent to <Button-
1><Button-1>. Although they sort of mean the same thing, there is no 

time constraint with the <Button-1><Button-1> event. The second means 
"You clicked button 1, and then at some later point, you clicked button 1 again." 
The <Double-Button-1> event means "You clicked button 1, and within a 
certain time period, you clicked button 1 again."

Triple
Similar to Double, Triple is another special modifier type. It requires that themain event 
occur three times in rapid succession.

Another interesting thing to consider with Double and Triple modifiers is that they 
are cumulative. If you click five times quickly on a button, the first click would 
match at <Button-1> event, the second click would match a <Double-
Button-1> event, the third click would match Triple-Button-1> event, and 
the fourth click would also match a <Triple-Button-1>event, and so on. This 
is true only if the <Triple-Button-1> event is defined. If only <Double-
Button-1> is defined, the third click would reactivate that binding instead of the 
<Triple> binding. The timeline in Figure 14-1 shows when the events are 
generated.

Figure 14-1.
Cumulative double-clicking example

Meta (or M)
Requires that the Meta key be pressed during the main event. The Meta key is usually 
used on X Window Systems only.

Mod#or M#
This is also only used on X Window Systems. There are several modifiers (1-5); use Ev
('K') to determine where they are on your keyboard.

Event Types (with Optional Details)



The event portion of the event string is the event we are looking for. It can have a 
modifier or not (as specified in the preceding section). When the information says an 
event is triggered or generated, it means that the event has happened. If there is no 
callback associated with the event, it will look as if nothing has actually happened. The 
following is a list event types and the optional details where applicable.

ButtonPress (or Button)
A ButtonPress happens when a mouse button is pressed down. The Button event also 
refers to a ButtonPress; it's just a shorter way to write it. If you use the event 
<Button>, it refers to any mouse button, but you can specify a specific button by 
adding a detail: <Button-1>, <ButtonRelease-2>, and so on.

ButtonRelease
A ButtonRelease event happens when the mouse button is released. You can have 
different things happen based on the button being pressed down (Button or ButtonPress) 
and let up (ButtonRElease). You can spcify a detail to indicate a different button: 
<ButtonRelease-1, <ButtonRelease-2>, and so on. If a specific button isn't 
specified, any button will match the event.

Circulate
The Circulate event is generated when your application has more than one window and 
the stacking order is switched around.

Colormap
The Colormap event happens when the colormap for the widget (usually a toplevel) has 
changed.

Configure
The Configure event happens when a widget is configured. If you map a callback to this 
one, be careful; it can be called quite often. Every time the application window is 
resized, each widget within the window is configured, resulting in a Configure event 
being generated for those widgets. When the widget is first created, it also generates a 
Configure event.

Destroy
When the widget is destroyed, the Destroy event is generated. You can forcefully 
destroy a widget by using $widget->destroy().

Enter
The Enter event happens when the mouse cursor enters the area occupied by the widget. 
It is important to remember that this is not the ''user-presses-the-RETURN/Enter-
keyboard-key" event.

Expose
The Expose event happens when the window has been exposed.



FocusIn
When the widget receives the keyboard focus because the user has tabbed to it (or 
$widget->focus() happens in the program), the FocusIn event happens.

FocusOut
The FocusOut event is the opposite of FocusIn. When the keyboard focus leaves the 
widget, FocusOut is triggered.

Gravity
The Gravity event happens when the widget moves because the widget's parent changed 
size.

KeyPress (or Key)
When a key on the keyboard is pressed, the KeyPress (or Key) event is generated. It is 
possible to narrow this down to the specific key such as the "a" key by using a detail 
with the event: <Key-a>. If you want to determine which key was pressed to trigger the 
event, you can use Ev('K') as an argument with your callback:

$mw->bind("<Key>", [ \&check_key, Ev ('K') ]);

This has the effect of sending the key symbol for the key pressed as an argument to 
check_key. To find out which key symbols are for which keys, use this piece of 
code:

use Tk;
$mw = MainWindow->new;
$mw->bind("<Key>", [ sub { print "Key: $_[1]\n"; }, Ev
('K')] );
MainLoop;

As you press keys on the keyboard, you'll see their key symbols printed out on the 
screen. Notice that the shift characters above the numbers (such as $, %, ∧, and so 
on) come out as named ("dollar,", "percent," ''caret,", and so on).

KeyRelease
The KeyRelease event is the companion event to KeyPress. It is invoked when the key is 
released. Sometimes it is preferable to wait until the key has been released before doing 
anything.

Leave
The Leave event happens when the mouse cursor leaves the area occupied by the widget. 
Use Enter and Leave events to create two bindings for the same widget and you can do 
neat things such as change the mouse cursor while the mouse is in the widget (look into 
using -cursor first if it's available for that widget).

Map
The Map event happens when window has been mapped or opened (deiconified).



Motion
When the mouse moves around on the screen above your application, it generates a 
Motion event. This is another event that you don't want to bind to lightly because your 
callback will be triggered all the time. Granted, if you bind to just a single widget, you'll 
only get Motion events when you are passing over that widget, but that is still a lot of 
invocations of the callback. I suggest having a very good reason for binding to the 
Motion event.

Reparent
The Reparent event happens when parent of the bound widget has changed.

Unmap
The Unmap event happens when the bound window has been iconified.

Visibility
When a widget first becomes visible, it triggers the Visibility event. There are several 
ways a widget becomes visible in your application:

• When the application first starts up, and the widget is placed on the screen, it 
triggers a Visibility event. Note that if you create a widget and don't pack it onto the 
screen, a Visibility event will not be generated.

• When the widget is unpacked by using pack ('forget') and then repacked.

• When the window is resized and the widget suddenly comes into view (usually 
after the window has been made smaller and then resized larger).

• When the widget is inside another widget (such as a text or canvas widget) and 
scrolls back on the screen.

Event Information

You can find out information about an event by using the Ev method. There are many 
values you can use in a call to Ev, and they are thoroughly documented on the Perl/Tk 
documentation web site at http;//w4.lns.cornell.edu/~pubp/ptk/doc/bind.btm, which is 
maintained by Peter Prymmer, and http://www.perl.com/ ptk/pod/bind.pod.. I'll cover the 
values that you would want to use 99.9 percent of the time. Remember that certain 
values used with Ev are only valid for certain events. If you use an Ev value that doesn't 
apply, you'll get an undefined value.

Coordinates



To determine the coordinates at which the event happened, use Ev('x') and Ev
('y'). They return coordinates relative to the window in which the event happened. If 
you want coordinates relative to the root of your window system (desktop in Windows, 
Xroot in X), use uppercase X and Y: Ev('X') and Ev('Y').

Ev('X') and Ev('Y') are valid only for ButtonPress, ButtonRelease, KeyPress, 
KeyRelease, or Motion events.

Button Number

To find out which button number on the mouse was pressed, use Ev('b'). It is valid 
only for ButtonPress or ButtonRelease events. If you use Ev('b') with a <Button-
1> event, you would obviously get 1 back.

Height and Width

Use an 'h' to return the height and a 'w' to return the width associated with the event. 
The width and height returned indicate how large the widget is. For instance, if you want 
to find out the new size of a button after the window has been manually resized by the 
user, you can do this:

$button->bind("<Configure>", [ sub { print "H: $_[1], W: $_
[2]\n"; },
                               Ev('h'), Ev('w') ]);

The callback will only be invoked when the widget has been configured. This happens 
when the widget is first created and any time the widget is resized.

Ev('h') and Ev('w') are valid only for Configure, Expose, and GraphicsExpose 
events.

Keyboard Information

There are several ways to find out which keys the user has pressed on the keyboard. Use 
'K' to print out the value associated with that keycalled a keysym. If you use lowercase 
'K' you'll get the ASCII value associated with the key. Try this bit of code to see the 
difference:

$b->bind("<Key>", [ sub { print "ARGS: @_\n" }, Ev('K') ]);

Ev('k') and Ev('K') are valid only for KeyPress and KeyRelease events.

You can also get the keysym as a decimal number rather than a string by using Ev
('N').

Event Type



You can find out what type of event the callback is responding to by using Ev('T'). 
When responding to a KeyPress event, the string will be "KeyPress". It's pretty 
obvious, but sometimes it's useful if you are using the same callback to respond to 
several different events.

Bailing Out of a Callback Created with bind

To stop the processing within your callback, you can use a return statement to return 
control. This will not stop any further bound callbacks from being processed. To halt the 
processing of any and all callbacks bound to a widget/event combination, you can use 
Tk::break instead of the milder return.

The bindtags Method

To find out the tags associated with a widget, use the bindtags method; for example:

print join(' ', $button->bindtags()) ;
# prints this: Tk::Button .button . all
print join(' ', $mw->bindtags()) ;
#prints this: MainWindow . all

This tells us the order in which the widget will respond to binding callbacks. The first 
response is always to the class that the widget belongs to; Tk::Button in the first example 
and MainWindow in the second.

The information returned from bindtags isn't nearly as interesting as what you can do 
with arguments sent to it. To remove all specific bindings from a widget except those 
that apply to 'all'

$button->bindtags (['all']);

Now the button will not respond to being pressed, mouse movements, or the default 
bindings associated with the widget. As demonstrated in the Perl/Tk web page for 
bindtags, you can reverse the order in which the widget responds to events like this:

$b->bindtags(['all' ,$b->toplevel,ref($b),$b]);

We already know that 'all' means any bindings associated with the special 'all' 
bindtag. Using $b->toplevel returns the window $b lives in: MainWin-
dow=HASH(Ox9798d8). Using ref($b) gives the package $b belongs to: Tk::
Button. Finally, $b means the specific instance of $ b: Tk::Button=HASH
(Ox99c0cc).

HASH(Ox99cOcc) is a what we see when we print the value out. The hex number in 
parentheses is just the physical memory location of that widget. HASH means that it is 
stored in a hash structure.



Ways to Use bind

Using bind is a powerful way to make your application do things easily. You can add a 
binding to a listbox widget so it will display a menu when you right-click on it. Use 
bind with text tags to create a pseudo-html document. Add a double-click binding to 
the listbox so that something happens when a user double-clicks on an item in the 
listbox. There are more ways you can use bind than I could ever cover here. Just make 
sure you don't do anything that the user can't figure out (for example, triple-clicking 
while holding down the Control key is a bit obscure).



15—
Composite Widgets

So far, we have only discussed each basic widget separately. The Perl/Tk distribution 
also includes several composite widgets. Composite widgets are combinations of widgets 
that do something specific when they are combined. Here are some examples of 
composite widgets:

Optionmenu
Based on menubutton widget; it allows the user to select from a list of items on the 
menu.

LabEntry
Based on frame widget; it is an entry widgetwith a configurable label.

Dialog
Based on toplevel widget; it displays a bitmapand a message to the user.

I chose these examples because they demonstrate a good point about composite widgets.
They can be based on a widget (in this case, menubutton), on a frame that contains 
widgets, or ona toplevel widget that contains other widgets and is a complete window.

When I first started learning about composite widgets, I always felt like I was 
missingsomething. If I looked at the code out of the corner of my eye, it made sense. Yet 
if I looked at ithead on, I was suddenly utterly confused and wasn't sure what it was 
doing. The important thing toremember is that there is quite a bit that goes on behind the 
scenes that we take advantage ofwhen we are creating a composite widget.

My goal with this chapter isn't for you to write the most complex type of composite 
widget youcan think of. Simply understanding how composite widgets work is more 
than enough. You canbuild up slowly from there. The best thing to do is read through 
this chapter and then look at theexamples already included with the

distribution of Perl/Tk. The composite widgets included with the Tk module are 
complete, havebeen reviewed by many different people, and will do something when 
you run them (plus they areusually documented with pod documentation). Rather than 
show a do-nothing example in thischapter, I will refer you to real code.

Looking at an Example Sideways

I admit it. I like examples. They give me a starting point to come back to when I'm 
getting intothe nitty-gritty. Since there is quite a bit of nitty-gritty with composite 
widgets, we'll start simple andwork up from there.

If you look at the code for these composite widgets, the LabEntry has the smallest 
amount ofcode. Here is the LabEntry.pm widget code:

# Copyright (c) 1995-1997 Nick Ing-
Simmons. All rights reserved.
# This program is free software; you can redistribute it and/
or
# modify it under the same terms as Perl itself.
# Class LabeledEntry

package Tk::LabEntry;
require Tk::Frame;
@ISA = qw(Tk::Frame);

Construct Tk::Widget 'LabEntry';

sub Populate
{
 require Tk::Entry;



 # LabeledEntry constructor.
 #
 my($cw, $args) = @_;
 $cw->SUPER::Populate ($args);
 # Advertised subwidgets: entry.
 my $e = $cw->Entry();
 $e->pack(-expand => 1, -fill => 'both');
 $cw->Advertise ('entry' => $e);
 $cw->ConfigSpecs(DEFAULT => [$e]);
 $cw->Delegates(DEFAULT => $e);
 $cw->AddScrollbars ($e) if (exists $args->{-scrollbars});
}

1;

That's the complete set of code, comments and all. You can

tell it's a frame-based composite widget because of the line@ISA = qw(Tk::
Frame). We can look inProgramming Perl (O'Reilly, 1997) to find out what the 
@ISAarray is for: "Within each package a special array called @ISAtells Perl where else 
to look for a method if it can't find the method in that package."There's a lot more there 
about

how this implements inheritance, but I wouldn't want to overuse their words just to 
explain asimple concept: To have your composite widget work, you need this line in 
your code.* All the otherexplanation is nitty-gritty.**

Next step-how does the entry widget come into play? We know it gets createdbecause if 
we use a LabEntry, we see one on the screen. You'll notice there's only one subroutinein 
the whole file; that subroutine is called Populate. You never call itdirectly, but it does 
get called. The arguments to Populate are twoscalars. The first is a reference to the 
frame itself, and the second is a reference to a hash thatcontains all the argument pairs 
you would have used to create the widget. Here's an example ofcreating a LabEntry 
widget:

$label_entry = $mw->LabEntry(-textvariable => \$text,
                            -label => "Enter Name:",
                            -labelPack => [ -
side => 'left' ])->pack();

As you glance through the code, you know an entry widget is created because you see 
this line: my $e = $cw->Entry(). Then a bunch of weird stuff happens with 
Advertising, ConfigSpecs, and Delegates. For now let's just say that these functions 
allow the entry widget to behave as you would expect an entry widget to behave.

The LabEntry's label is created automatically because we use the - label option when 
we create it. If we look back to Chapter 12, Frames, we know that if we use the -label 
option with a frame, a label will be created for us. So what makes this a simple 
composite widget is that it takes advantage of the label alreadyincluded with a frame 
widget.

Location of Files

When you create your own composite widgets, you create a file that has the same name
(including capitalization) of your widget and has a .pm suffix. For instance, if you 
wantedto create a new composite widget called ListButton, you would place the code for 
it in a file calledListButton.pm.

In the code that uses your new widget, includeuse ListButton after theuse Tk at 
the top of your code, assuming you keep yourcomposite widget files (such as ListButton.
pm) in the same directory as the rest of yourapplication code. If not, before any use or 
require statements, add:

use lib ("dirl", "dir2");



pointing to whatever directory you're using for ListButton.pm.

* You really don't need to inherit from a frame, but most people do, and itmakes things 
a little simpler because you have an automatic container for your composite widget.

** The nitty-gritty would involve tracing through all the Perl/Tk code to seewhat gets 
called where, but we don't need that level of detail here.

Creating a Composite Widget Based on Frame

There are slight differences between creating a composite widget based on a frame 
andcreating one based on a toplevel. I will include a short example for each to give you 
an idea of whatyou can do.

Assuming you're making a composite widget called MyWidget,the first five lines you 
absolutely must have in your new composite widget file are:

package MyWidget;
require Tk::Frame;
@ISA = qw (Tk::Frame);
Construct Tk::Widget 'MyWidget';
sub Populate
{
  ...
}

You must declare your new widget as its own package, hence thepackage MyWidget 
line. (If you were going to have asubdirectory for your widgets, you would use 
DirName::MyWidget.

The next two lines are simple: require Tk::Frame tomake sure you have loaded 
the information necessary to use a frame widget, and then addTk::Frame to the @ISA 
variable. The next line calls theConstruct method from Tk::Widget (you could also 
write this asTk::Widget->Construct ("MyWidget") withthe name of your 
widget. In this call to Construct you do not add thename of the directory in which 
your widget resides.

By calling Construct, you create a constructor method for yournew MyWidget 
widget. This allows you to create a new MyWidget by calling theMyWidget method:

$newwidget = $mw->MyWidget(...);

You are creating a composite widget based on a frame, so you need to usePopulate to 
create your subwidgets and do any other necessaryconfiguration.

Inside Populate

It is a good idea to add a require statement for any other widgets you want to create 
in your composite widget. In the LabEntry code, we saw a require Tk::Entry 
because LabEntrycreates an entry widget.

Populate is called with two arguments: a reference to thecomposite widget and a 
reference to a hash. Assign these arguments to variables so you can usethem later:

my ($cw, $args) = @_;

The next thing you should do is deal with any specific options that apply to your 
entirecomposite widget. Do this by getting them out of the $args hashreference and 
then seeing if the value was defined:

$option_value = delete $args->{"-flag"};
if (defined $option_value) {
  ...
}



Let's say you want to use the option -filename, which will get thevalue associated 
with the -filename option into$filename:

$filename = delete $args-> {"filename"};
if (defined $filename) {
  #Open file...
  ...
}

After dealing with all the arguments that you want to pull out directly, it is a good idea to 
callSUPER::Populate like this:

$cw->SUPER::Populate ($args);

Next you should create the widgets you want in your composite widget. For instance, if 
youwant to create a listbox with several buttons, call the appropriate methods for each 
one. If you wantthe user to be able to manipulate those widgets, you should 
callAdvertise for each one.

Calling Advertise

The Advertise method allows you to use thesubwidget method to get directly at 
that widget later on in the program.For example, after you create the LabEntry, you can 
get a reference to the entry widget:

$label_entry = $mw->LabEntry (-textvariable => \$text,
                             -label => "Enter Name:",
                             -labelPack => [ -
side => 'left' ])->pack();
$entry = $label_entry->Subwidget ("entry");
$entered = $entry->get();

When you create a composite widget remember to add another call toAdvertise for 
each widget. For example, if you create an entry and abutton, you'll have two calls to 
Advertise:

$cw->Advertise('entry' => $e);
$cw->Advertise('button' => $button);

Calling Delegates

When you create a composite widget, you are essentially combining two or three 
widgets into one. When you invoke methods on the composite widget, you have to 
define what methods are actually called. Do so by using the Delegates method and 
sending it a reference to the widget you want to use:

$cw->Delegates (DEFAULT => $e);

All other subwidget methods of the composite will have to be accessed by using 
thesubwidget method and then invoking methods from there.

You can also use Delegates to call a method on a subwidget as follows:

$cw Delegates ('insert' => $scrolled_listbox,
               'delete' => $scrolled_listbox,
               DEFAULT => $e);

In this example, if the user calls $composite-insert(...)the method call will be 
passed along to the $scrolled_listbox-insertmethod. You cannot pass along 
any methods that your composite already defines. If you composite uses its own 
insert method, you would have to manually pass control to the subwidget yourself.

Calling ConfigSpecs



When you create a composite widget, you want to be able to callconfigure on it. You 
can use ConfigSpecs to do so. There are three different ways to call ConfigSpecs: 
create an option and a way to handle it, alias an option to another option, or specify a 
default widget that will handle all of the configure calls.

A simple composite widget such as LabEntry will callConfigSpecs just to set a 
default widget to handle all of the configuration. It called ConfigSpecs like this:

$cw->ConfigSpecs(DEFAULT => [$e]);

Specify DEFAULT as the first parameter, and then specify an anonymous list containing 
the widget to use as the second parameter. This way, anytime you callconfigure and 
use the composite widget reference, you'll be configuring the entry widget.

Creating an alias

You can use ConfigSpecs to create an alias for an option, possibly to make a short 
and long version of the same option. If you want to use-file and -file-name to 
mean exactly thesame thing, call ConfigSpecs like this:

$cw ConfigSpecs('-file' => '-filename');

Specify the alias first and the equivalent option second.

Defining options

To define an option and associate some action with it, callConfigSpecs like this:

$cw->ConfigSpecs(-newoption => [ <action>, "newOption",
                                 "NewOption", <fallbackvalue> ]);

The option you are creating the action for is listed first, and the second argument is an anonymous list 
consisting of four items. The first item is the action you want to take and should 
be"DESCENDANTS","ADVERTISED","SELF","CHILDREN","PASSIVE","METHOD","CALLBACK", 
or a$reference to a subwidget. The second and third items in the list have to do with the option database 
and can be left blank if you prefer. The fourth item is the default value of that option, usally undef or"" or 
whatever you want the default value of that option to be if the user doesn't specify it.

The action part of the list defines what happens. Each possible value is defined as follows:

DESCENDANTS
The configure for that option will be applied recursively to all descendants.

ADVERTISED
The configure will be applied to all advertised subwidgets.

SELF
The configure will be applied to the base widget (in this case, a frame, but the base widget can also be 
another composite widget).

CHILDREN
The configure will beapplied to all children.

PASSIVE
The value will be stored in$args. This is the way you would useConfigSpecs on any options that can 
be used at create time or bycustom methods of your composite widget.

METHOD
The method with the samename as the option will be called. For instance, if you call $cw->ConfigSpecs
(-newoption => ["METHOD", "", "", undef]) and then the user uses the-newoption 
option, the method newoption(which you still have to define in the file somewhere) will be invoked. 
When you cannot define anoption with one of the other settings, you can use METHOD.



CALLBACK
Invokes a method insideyour composite widget if that option is configured or sent when the widget is 
created. For instance,$cw->ConfigSpecs(-
myopt => ["CALLBACK", "myMethod", "MyMethod", undef]) would call the

subroutine myMethod when the option-myopt is used (also see BrowseEntry.pm'sConfigSpecs below for an example).

$reference
Forces a call to$reference->configure(-option => value) for thatoption. Usually $reference is a subwidget of the 
composite widget (forexample, an entry widget).

ConfigSpecs example

Here is the ConfigSpecs call from the Tk8.0 version ofBrowseEntry.pm:

$w->ConfigSpecs( -listwidth => [qw/PASSIVE listWidth ListWidth/, undef],

-listcmd => [qw/CALLBACK listCmd ListCmd/, undef],

-browscmd => [qw/CALLBACK browseCmd BrowseCmd/, undef],

-choices => [qw/METHOD choices Choices/, undef],

-state => qw/METHOD State State normal/],

-arrowimage =>  MR:3>[{-
image => $b), qw/
arrowImage ArrowImage/,
undef],

variable => "-textvariable",
   

DEFAULT => [$e] );
   

As you can see, you can send multiple pairs of information toConfigSpecs. In this example, there is onePASSIVE option, two 
CALLBACK options,and two METHOD options. Any other calls toconfigure with different options will be directed to the subwidget
$e. Take a look at the complete code to see what the methods pointedto in ConfigSpecs do.

Frame-Based Widget Review

Just to sum up, here's some pseudocode to show you how to create your own frame-basedcomposite widget:

$package NewWidget;
@ISA = qw(Tk::Frame);
Tk: :Widget->Construct('NewWidget');

sub Populate ()
{
  my ($cw, $args) = @_;

  # Handle any creation only options
  my $value = delete $args->{-option};
  if (defined $value) {
    ...
  }

  # Create any subwidgets you want to...
  $widget = $cw->Widget (...);

  



  $cw->Delegates();
  $cw->ConfigSpecs( ... );

}

sub myoption {
  ...
}

1;

Toplevel-Based Composite Widgets

There is one small difference between a composite widget based on a frame instead of 
atoplevel. If you want to be able to use ->new() to create your window,define 
InitObject instead of Populate. Mostof the composite widgets included with the 
Tk distribution do not do this, however. Look atColorEditor.pm and DialogBox.pm for 
examples of how to create a toplevel-based composite widget. All the rules for using 
ConfigDefaults are thesame.



16—
Methods for Any Widget

So far, most of the chapters in this book have concentrated on specific widgets. This 
chapter covers the methods that apply to all widgets. You'll probably never need most of 
these methods, but there are a few that you'll use frequently.

Many times, you'll use a MainWindow reference (usually $mw in our examples) to call 
these methods, but you can also call them from other widgets, such as $button, 
$checkbutton, and so on. Most of the methods are informational only, meaning you 
pass no arguments to them; you only get a value back.

We'll use the generic $widget here instead of a specific widget type. This will help 
you to remember that these are multipurpose methods.

Building a Family Tree

The following methods deal with the ancestors or children of widgets and how they were 
created: children, name, parent, toplevel, manager, and class.

Widget's Children

To determine the children of a widget (usually a toplevel or a frame), use the 
children method:

@kids = $widget->children();
# i.e. Tk::Button=HASH(0×85e3a0) Tk::Button=HASH(0×85e4a8)

The list returned contains scalars that are the children of $widget. You can then use 
those references to perform actions such as setting a background color or font.

Name of a Widget

To determine what the parent calls the widget use the name method:

$name = $widget->name();

You can combine the name and children method like this:

@kids = $widget->children();
foreach (@kids) {
  print "Name: ", $_->name(), "\n";
}

Here is example output from that code:

button
button1

Parent of a Widget

To get a reference to the parent of a widget, use the parent method:

$parent = $widget->parent();



The Widget's Toplevel

To get the toplevel widget that contains a widget, use toplevel:

$path = $widget->toplevel();

The $path returned is a number (that is, 8606484) that you can compare to another 
number that was returned from another call to toplevel to see if they are equal.

Widget's Manager

You can find out which geometry manager $widget used by calling manager:

$manager = $widget->manager();

It returns a string that describes the geometry manager; for instance, if it is a toplevel 
widget, it will return "grid", "pack", "place", or "wm". The manager method 
doesn't seem to work correctly on Windows 95, but it works on Unix and Windows NT.

The Widget's class

The class method returns a string that indicates which class it belongs to. For 
example, $listbox->class() returns "Listbox", and $menu->class() 
returns "Menu".

Widget's ID

You can get an ID string for a widget by using the id method:

$id = $widget->id();
print "$id\n";
# Prints 0×9c944c

The value returned is a hex value. This method does not work under Windows 95.

Widget's Path

You can get the pathname of the window by calling pathname and using the ID you 
retrieved with the id method:

$path = $widget->pathname($id);

There is also the PathName method:

$path = $mw->PathName();

This method prints out the path of the widget that is calling it. For example, my $mw 
would have a PathName of ".".

Color-Related Methods

There are four methods that deal with color: colormapfull, rgb, cells, and 
depth.

Is the Colormap Full?

To determine if the colormap for the widget is full, use colormapfull:



$isfull = $widget->colormapfull();

The colormapfull method returns a 1 if the colormap is full and 0 if it is not full.

Cell Count

The number of cells in the colormap can be obtained by using the cells method:

$count = $widget->cells();

The value returned is a number indicating the number of colors; for example, 64.

Color Depth

You can get the number of bits per pixel by using the depth method:

$depth = $widget->depth();
# $depth might contain "16"

Translate to RGB Value

You can translate a color name to the red, green, and blue values by using the rgb 
method. Send rgb a color name (valid color names were covered in Chapter 3) and it 
returns a list containing three items that represent the red, green, and blue numbers.

($red, $green, $blue) = $widget->rgb("color");

Now $red, $green, and $blue each contain an integer from 0 to 255.

Setting Colors

You can have your entire application based on one color automatically by using the 
setPalette method:

$widget->setPalette(color);

The background color of $widget is set to the specified color, and the colors for all 
other widgets are calculated based on that color. So if a button's edge is a lighter color 
than the background, it will show up a lighter shade of whatever color you picked. This 
method affects the entire application even if you only call it on a widget instead of a 
toplevel.

You can set colors for explicit options by specifying the name and then the color to 
associate with it. For instance, the following code will set all foreground items in the 
application to red and all backgrounds to blue:

$b->setPalette
("background" => "blue", "foreground" => "red");

Predefined Color Scheme

The bisque method sets the entire application to use a bisque scheme. Calling 
$widget->bisque() is the same as calling $widget->setPalette
("bisque").

Option Databases



Under the X Window System, a file named .Xdefaults in the user's home directory 
contains configuration information for X applications, including the colors and fonts an 
application should use. You can create the same type of file for Win32 systems and call 
it whatever you want. You might use a file like this to let your users change the 
application's color settings.

Typically the lines in this file look something like this:

screen*background: yellow
screen.button.foreground:green
screen*font: {Arial} 24 {normal}

The first item in each line should be the name of your application unless the options are 
for your application only. My test application was in a file named screen, so that is what 
I used as the first keyword in each line. The second keyword (if specified) is a widget 
type or name (you can specify a name for any widget by adding the -name option to the 
creation command of that widget). The third keyword is the "class" for which you want 
to set a default. You can set a default value for any of the options associated with a 
widget. See Appendix A to find out which class is associated with each widget type.

To read in this file, call optionReadfile with the location of the file (for example, 
"color_options" or "C:/ .Xdefaults" or ".Xdefaults"):

$widget->optionReadfile("filename");

Make sure to include a newline on the last line of this file or you'll get an error that says, 
''missing newline on line 2 at C:\PERL\lib\site\Tk\Submethods.pm line 16." This error 
doesn't make much sense except that the first line number it gives you matches the 
number of lines in the option file you are trying to read in. If you use $widget-
>option("readfile", ...) to call the method, you'll get a more sensible error 
message.

As the second argument to optionReadfile you can specify an optional priority, 
which should be one of "widgetDefault", "startupFile", "userDefault", 
or "interactive". The default priority is "interactive", which is the highest 
priority.

$widget->optionReadfile("filename", "widgetDefault");

You can add an option type in the program dynamically by using the optionAdd 
method (whether or not you have used optionReadfile):

$widget->optionAdd(pattern => value);

For example, we can change the font for the entire program like this:

$widget->optionAdd("screen*font", "{Arial} 24 {normal}");

The optionClear method should clear out any current option settings and reread the 
file (or retrieve them from the resource manager):

$widget->optionClear();

To determine the current setting for the value associated with a specified name and class, 
call optionGet:

$widget->optionGet (name, class);



The Application's Name

The name of the application that is used in the option file discussed earlier is by default the name of the file from 
which the script is run. You can use the appname method to change the name of the file:

$mw->appname("newname");

You can find out the current name of the application by calling appname with no arguments:

$name = $mw->appname();

Widget Existence

To determine if a widget has been created, use Exists($widget):

if (Exists($widget)) {
   ...
}

Note the uppercase "E" on this method. The Exists method is different from the built-in Perl exists method. 
Make sure you don't confuse the two.

Is the Widget Mapped?

To find out if the widget has been mapped to the screen, use the ismapped method:

if ($widget->ismapped())
  # Do something
} else {
  # map the widget
}

The ismapped method returns 1 if the widget is currently mapped to the screen and 0 if it is not.

Converting Screen Distances

If you prefer to use inches as a screen distance but you want to print out pixels, you can use the pixels method 
to convert any valid screen distance string into a pixel value; for example:

$pixels = $widget->pixels("2i"); # What is 2 inches in pixels?

$pixels = $widget->pixels("2m"); # What is 2 millimeters in pixels?



The pixels method rounds to the nearest whole pixel. You can get a fractional pixel result by using fpixels:

$pixels = $widget->fpixels("2i"); # What is 2 inches in pixels?

$pixels = $widget->fpixels("2m"); # What is 2 millimeters in pixels?

Size of Widget

You can use the following methods to find out the size of a widget in several different ways.

Widget's Geometry

The geometry method returns the geometry string for the widget in the form of widthxheight+x+y.

$geom = $widget->geometry();

The geometry string was discussed in detail in Chapter 13. Geometry values are specified in pixels.

Requested Height

The height of the widget is returned by the reqheight method:

$height = $widget->reqheight();

The widget itself determines the appropriate height.

Requested Width

The width of the widget can be determined by using the reqwidth method:

$width = $widget->reqwidth();

Actual Width

To get the width of the widget as it currently is drawn, use the width method:

$cur_width = $widget->width();

When the widget is first created, width will return a 1 until the application has finished drawing everything. After 
that, it will return the actual width of the widget.

Actual Height

To get the current height, use the height method:

$h = $widget->height();



Just like the width method, height returns a 1 when the widget is first created. You 
can use the update or the afterIdle method to force everything else to happen and 
then call height or width to get the finished values.

Widget Position

The methods in this section all deal with the position of a widget.

Position Relative to the Root Window

To determine which widget is at the point x,y;, use the containing method:

$which = $widget->containing($x, $y);

The $x and $y coordinates must be relative to the root window (or on a Microsoft 
Windows system, the desktop). An empty string is returned if there is no widget found at 
those coordinates. If there are several widgets located at those coordinates, the one 
closest to the front is returned.

Coordinates Relative to Parent

You can get the coordinates of the upper-left corner of a widget by using the x and y 
methods. The coordinates they return are relative to the parent of the widget:

$x = $widget->x();
$y = $widget->y();

Coordinates Relative to Root Window

To get the coordinates relative to the root window, you can use rootx and rooty on 
the widget:

$x = $widget->rootx();
$y = $widget->rooty();

The coordinates refer to the upper-left corner of the widget.

Virtual Desktop Coordinates

If you have a virtual desktop, there are special methods that will give coordinates 
relative to the virtual desktop. Virtual desktops are very common on the X Window 
System (such as the fvwm and tvtwm window managers), but they exist on Microsoft 
Windows as well.

To determine the height and width of the virtual desktop, use the vrootheight and 
vrootwidth methods:

$height = $widget->vrootheight();
$width = $widget->vrootwidth();

To get the coordinates of the widget's upper-left corner relative to the virtual desktop, 
use vrootx and vrooty:

$x = $widget->vrootx();
$y = $widget->vrooty();

All four of these methods return an empty string if a virtual desktop is not found.



Cursor Coordinates Relative to Desktop

You can use pointerx, pointery, and pointerxy to determine where the user 
clicked on the screen in a widget:

$x = $widget->pointerx();
$y = $widget->pointery();
($x, $y) = $widget->pointerxy();

All the coordinates returned are relative to the desktop (even if it is a virtual desktop).

Screen Information

The following methods all return information based on the screen (which can be a virtual 
desktop or a normal desktop) and the colors of the desktop.

Screen Name

Each screen you use has a name associated with it. To get the name, use the screen 
method:

$name = $widget->screen();

The name returned will be formatted as "displayName.screenIndex". My Windows 95 
machine returned ":0.0" as the screen name.

Screen Height and Width

The screen height and width is really just the resolution of the screen. Sometimes you 
might need information to determine how large a window can fit on a user's display. To 
get the height and width of the screen in pixels, use the screen-height and 
screenwidth methods:

$height = $widget->screenheight();
$width = $widget->screenwidth();

If my resolution is 768×1024, then screenheight returns 768 and screenwidth 
returns 1024. If you prefer to get the size of the screen in millimeters, then use 
screenmmheight and screenmmwidth:

$heightmm = $widget->screenmmheight();
$widthmm = $widget->screenmmwidth();

The same resolution, 768×1024, returns 203 millimeters as the height and 270 
millimeters as the width for my monitor.

Cell Count

The number of cells in the default colormap is retrieved by using screencells:

$count = $widget->screencells();

My Windows 95 machine has 64 cells in its default colormap.

Screen Depth

To determine the number of bits per pixel your screen has, use the screendepth 
method:



$depth = $widget->screendepth();

The depth of my Windows 95 machine is 16 bits per pixel.

Color Type

The type of color is defined by class, and it will be "directcolor", "grayscale", 
"pseudocolor", "staticcolor", "staticgray", or "truecolor". To 
determine the class for the screen that contains the widget, use screenvisual:

$type = $widget->screenvisual();

To determine the class of color for the widget itself, use visual:

$type = $widget->visual();

To find out the entire list of classes available for the current setup, use the 
visualsavailable method:

@list = $widget->visualsavailable

Each element in @list describes the visual and the color depth for that visual. For 
instance, on my Windows 95 machine, @list contained only one item: 
"truecolor 16".

Server Type

The type of server is available through the server method:

$servert_type = $widget->server();

My Windows 95 has a server type of "Windows 4.0 67109975 Win32".

Is the Widget Viewable?

A widget is determined viewable if the widget and all of its ancestors are mapped. You 
can ask the widget itself if it is viewable by using the viewable method:

$isviewable = $widget->viewable();

viewable returns 1 if the widget can be viewed and 0 if not.

Atom Methods

Each widget is assigned a name, which is called an atom. The atom has a string name 
(you can get it for each widget by using the name method) and a 32-bit ID. These 
methods are used internally to handle things such as the selection mechanism.

To get the 32-bit ID for a given widget, send the name of the widget to the atom 
method:

$id = $widget->atom($widget->name());

You can do the opposite and use the ID to get the name of the atom back. To do so, use 
the atomname method:

$name = $widget->atomname($id);



Ringing a Bell

To make the computer beep at the user, call bell:

$widget->bell();

Clipboard Methods

The following methods manipulate the internal Tk clipboard and also the Windows 
clipboard (either Unix or Win32).

To add data to the clipboard, use the clipboardAppend method:

$widget->clipboardAppend("data to add");

When you call clipboardAppend, you can specify a format by using the -format 
option with a value. The -format by default is "STRING", but it can

also be "ATOM". Another option can be specified, -type, which takes a string such as 
"STRING" or "FILE_NAME".

To clear out the clipboard, use clipboardClear:

$widget->clipboardClear();

Any data in the clipboard will be removed.

To find out what is in the clipboard, see the selectionGet method in the section 
entitled "Getting the Selection."

Selection Methods

Some widgets allow the user to make a selection. For example, the user can make a 
selection in the text, entry, and listbox widgets. You can manipulate the selection by 
using the following methods.

Clearing the Selection

To cleat the current selection from any widget (this will also clear an X selection) use 
SelectionClear:

$widget->SelectionClear();

You can specify a -selection option, which takes either "PRIMARY" or 
"CLIPBOARD". The default is "PRIMARY". Using "CLIPBOARD" clears out the 
clipboard as well.

Getting the Selection

To determine what the current selection for the application is, use SelectionGet:

$selection = $widget->SelectionGet();

You can also specify the -selection option with the SelectionGet method:

$clipboard = $widget->SelectionGet(-
selection => "CLIPBOARD");



The -selection method takes either "PRIMARY" or "CLIPBOARD". The default is 
"PRIMARY", so if you don't specify -selection, you will get back the value that 
represents thecurrent selection in the application. Using "CLIPBOARD" will return the 
value in the clipboard.

Assigning a Callback

You can call SelectionHandle to assign a callback that will automatically be 
invoked when the selection associated with $win changes:

$widget->SelectionHandle($win => \&subroutine);

When $win owns the selection, the callback will be invoked (in this example, 
subroutine). You can specify the options -format, -type, and-selection 
with the same possible values shown in the preceding code example. If you call 
SelectionHandle with an empty string as the callback, the previously assigned 
callback is removed.

Determining Owner

You can find out which widget on the screen currently owns the selection by calling 
SelectionOwner (a widget owns the selection if it has something selected in it):

$widget = $widget->SelectionOwner ();

You can also specify the -selection option with either "PRIMARY" or 
"CLIPBOARD" as the value to determine who owns the selection, or the current 
clipboard value, respectively.

Setting the Owner

To force a widget to own the selection, call SelectionOwn:

$widget->selectionOwn ();

You can also specify which type of selection to force by using the -selection option 
with "PRIMARY" or "CLIPBOARD". Finally, you can specify a -command option 
with an associated callback that will be invoked when that widget's selection is forced 
away.

Destroying a Widget

You can destroy a widget by calling destroy on the widget (using if Tk: :
Exists is recommended):

$widget->destroy () if Tk: :Exists ($widget);

If the widget is a parent of any other widgets, the other widgets are destroyed as well.

Focus Methods

When your application is running, you can force a widget to have the keyboard focus by 
calling focus on that widget:

$widget->focus ();



You might want to do this if you have an entry widget into which the user should start 
typing first. Calling focus right before MainLoop causes the widget to get the

focus right away. If you press the Tab key, the focus automatically changes from one 
widget to the next (remember that you can tell when a widget has the focus by the 
highlight rectangle around it). There are several methods that allow you to manipulate 
the focus.

To make the focus follow the mouse around, use focusFollowsMouse:

$widget->focusFollowsMouse ();

This method is buggy under both Windows 95 and Unix. A patch just recently came out 
for Tk8, so if you want to use this method and it isn't working, make sure you get the 
patch.

To find out which widget has the focus, call focusCurrent:

$who = $widget->focusCurrent();

To force a widget to have the focus even if the application isn't currently active, call 
focusForce:

$widget->focusForce();

This is not a nice thing to do, so try to not use it.

To find out which widget had the focus last, call focusLast:

$which = $widget->focusLast ();

If none of the widgets in the window has the focus, the toplevel is returned.

To find out the order in which the focus will change, you can use the focusNext and 
focusPrev methods:

$nextwidget = $widget->focusNext ();
$prevwidget = $widget->focusPrev ();

Grab Methods

When a window does a "grab" it means that it holds all of the keyboard and mouse input 
to itself. That window will not allow any other windows in the application to receive 
input. There is also a global grab, which means that no applications in the entire system 
can get input except the one window that has done the global grab. These methods are 
usually called from a toplevel widget.

To do a local grab for the widget, use grab

$widget->grab ();

A local grab means that you can interact with other windows in the system but not with 
other windows in the application. To do a global grab, use grabGlobal:

$widget->grabGlobal ();



$widget->grabGlobal ();

To ''ungrab", call grabRelease:

$widget->grabRelease ();

To find out which widget has done a grab, call grabCurrent:

$who = $widget->grabCurrent ();

To find out the current grab state of a $widget, call grabStatus:

$status = $widget->grabStatus ();

The grabStatus method returns a string that is "none", "local", or "global".

To find out all the windows that are currently under the influence of grab, use grabs to 
get a list back:

@windows = $widget->grabs ();

Interapplication Communication

You can use the send command to have Perl/Tk (and even Tcl/Tk) applications 
communicate back and forth. The arguments include an application to talk to and the 
command to execute in that application.

$widget->send ("application" => callback);

You can also specify the option -async, which will return control immediately instead 
of waiting for the callback to execute.

By default, your application will return an error to another application trying to 
communicate with it. If you want to actually receive communications from other 
applications, define Tk: :Receive ($widget, "command") and be very 
careful with what you do with the command string. Allowing any application to send 
unknown commands to your application can be dangerous.

When doing interapplication communication, it is a good idea to run your Perl script 
with the -T switch, which force taint checking.

Waiting for Events to Happen

At certain points in your application, it makes sense to wait until something happens. For 
instance, if you create a ColorEditor window and want it to assign the color the user 
selects to a variable, you can use waitVariable to wait until the variable is set.

To have a program wait until a variable's value is changed, call waitVariable:

$widget->waitVariable (\$var);



Processing will continue as soon as the value contained within $var is changed to 
something different. To wait until a $widget is visible, use waitVisibility:

$widget->waitVisibility ();

To wait until a widget is destroyed, call waitWindow:

$widget->waitWindow ();

When you call these methods, nothing will happen in your program until the requested 
for event has taken place.

An alternative to waitWindow is OnDestroy, where you specify a callback. The 
widget methods are still available when you use OnDestory:

$widget->OnDestroy (sub { ... });

File Events

There is a special method in Perl/Tk called fileevent. You can use it to watch and be 
notified when a file is readable or writable. Here is an example snippet of code that 
shows how it can used (this code is meant to be executed on a Unix system because we 
use the Unix tail command):*

use Tk;
open (FH, "tail -f -
n 25 text_file|") || die "Could not open file!\n";
my $mw = MainWindow->new ();
my $text = $mw->Scrolled ("Text",
                         -width => 80,
                         -height => 25) ->pack(-expand => 1);
$mw->fileevent (FH, 'readable', [\&insert_text]);
MainLoop;

sub insert_text
{
  my $curline;
  if ($curline = <FH>)
  {
    $text->insert ('end', $curline);
    $text->yview ('moveto', 100);
  }
  else
  {
    $mw->fileevent (FH, 'readable', "");
  }
}

* Thanks to my friend Phivu Nguyen for sharing his code with me.



This short program sits around and waits until a file is readable and then does an insert 
into a text box with the newly read information. You can also use 'writable'.

$mw->fileevent (FH, 'writable', callback);

If you get rid of the callback portion, the callback will be returned. Replace the callback 
with an empty string ("") and the callback is removed.

Parsing Command-Line Options

In the Unix world, it is standard practice to specify command-line options when you are 
invoking an application, especially a graphical program. Starting your program as 
myscript -geometry "80×40" would not be unusual. To have Perl/Tk 
automatically parse and apply these command-line options for you, just call CmdLine 
immediately after you create your MainWindow.

$mw->CmdLine ();

in Tk4, if you want to have CmdLine stop processing command-line arguments and 
leave some for you to deal with, add a double dash (-) before the arguments you want it 
to leave for you; for instance, myscript -geometry "80×40" --myopt.

In Tk8, the processing of options will stop when the first unknown option is found.

Another way to deal with command-line options is to use the Perl Getopts modules. 
Take a look in Programming Perl (O'Reilly, 1997) to find out how to use the methods 
available in Getopts. The methods inside Getopts don't handle the options for you; 
it just puts them in a structure that's easier to deal with.

Time Delays

There are times when you'll want to be able to delay the program a bit before going on, 
or maybe you'll want to execute the same command every minute. To have the program 
sleep for x number of milliseconds, call after with the number of milliseconds:

$widget->after (milliseconds);

To specify a callback that will be called after so many milliseconds instead of waiting, 
send a callback as the second argument to after:

$id = $widget->after (milliseconds, callback);
# i. e.
$id = $widget->after (1000, \&do_something);



If you want to execute a subroutine after the program has been idle for a while, call 
afterIdle:

$id = $widget->afterIdle (callback);

To cancel the call to after or afterIdle, use afterCancel with the $id 
returned by after:

$widget->afterCancel ($id);
# You can also do this:
$id->cancel ();

You can have the program repeatedly call the same callback by using the repeat 
method:

$widget->repeat (milliseconds, callback);
# i. e.
$widget->repeat (600, \&update_status);

If you destroy $widget, any calls to after and repeat are automatically canceled 
for you.



A—
Configuring Widgets with configure and cget

Every widget included in the Perl/Tk distribution (and some not included, but available 
separately) can use the configure and cget methods. No matter the widget, the 
arguments to these functions are the same, and the results passed back have the same 
format.

The configure method allows you to assign or change the value of an option to the 
widget. It can also be used to retrieve the current value of the option. The cget method 
cannot assign values, but simply retrieves them with simpler syntax than that of 
configure.

The configure Method

The basic format of the configure method is as follows:

$widget->configure( [ option => newvalue, ... ]);

Depending on the arguments passed to it, the configure method can do three things:

• Set or change the values of the options for $widget

• Get the current value of any option for $widget

• Get the current values for all of the options for $widget

To set or change the value for an option, send the option pair exactly as it would have 
appeared in the widget creation command:

$widget->configure(-option => newvalue);



Whatever effect the option has will take place immediately. To see the current values for 
a single option, send the option you are interested in as the argument. The return value 
depends on whether configure is called in list context or scalar context. In the 
following line, configure is called in list context (since its return value is being 
assigned to an array):

@info = $widget->configure(-highlightthickness);

In list context, an array of scalars is returned. The results of this call look like this:

-highlightthickness highlightThickness HighlightThickness 2 2

The following five values are in the returned array:

0 Option name

1 Option name from the option database (also as it would
appear in the .Xdefaults file)

2 Class in the option database

3 Default value of the option

4 Current value of the option

Often, all you're interested in is the current value of the option. If that's the case, call 
configure in scalar context by assigning the result to a scalar:

$val = $widget->configure(-highlightthickness);
print "$val\n";

The result would be:

2

If you want to see the list of values for all of the options the widget supports, use this 
format:

@config = $widget->configure();

@config is now an array of arrays. The easiest way to print out this information is to 
utilize Tk::Pretty, which will do all the hard work of traversing the arrays and then put 
the information into a readable form:



use Tk;
use Tk::Pretty;

$widget = $mw->Button;

@config = $widget->configure;
print Pretty @config;

The result is as follows:

['-
activebackground', activeBackground, Foreground, "#ececec', '#ececec'],
['-activeforeground',activeForeground,Background,Black,Black],['-
activeimage',
activeImage,ActiveImage,undef,undef],['-anchor','anchor',
Anchor, 'center',
'center'],['-background','background',Background,'#d9d9d9','#d9d9d9'],
['-bd',
borderWidth], ['-bg','background'],['-bitmap','bitmap',Bitmap,undef,
undef],
['-borderwidth',borderWidth,BorderWidth,2,2],['-command','command',
Command,
undef,bless([CODE(0x8189888)],Tk::Callback)],['-cursor','cursor',
Cursor,
undef,undef],['-disabledforeground',disabledForeground,
DisabledForeground,
'#a3a3a3','#a3a3a3'],['-fg','foreground'],['-font','font',Font,'-Adobe
-Helvetica-Bold-R-Normal--*-120-*-*-*-*-*-*','-Adobe-Helvetica-Bold-R-
Normal
--*-120-*-*-*-*-*-*'],['-foreground','foreground',Foreground,Black,
Black],
['-height','height',Height,0,0],['-highlightbackground',
highlightBackground,
HighlightBackground, '#d9d9d9','#d9d9d9'],['-highlightcolor',
highlightColor,
HighlightColor,Black,Black],['-highlightthickness',highlightThickness,
HighlightThickness,2,2],['-image','image',Image,undef,undef],['-
justify',
'justify',Justify,'center','center'],['-padx',padx,pad,3,9],['-pady',
pady,
Pad,1m,3],['-relief','relief','Relief,"raised','raised'],['-
state','state',
State,'normal','normal'],['-takefocus',takeFocus,TakeFocus,undef,
undef],



['-text','text',Text,undef,Do_Something],['-textvariable',textVariable,
Variable,undef,undef],['-underline','underline',Underline,-1,-1],['-
width',
'width',Width,0,0],['-wraplength',wrapLength,WrapLength,0,0]

Although this list may look nasty and ugly, it distinguishes between the different lists of lists for you 
by adding the [and] characters and the commas that separates them. Usually, you would only look at 
this list for debugging purposes. The default values for each widget are listed at the end of this 
appendix.

The cget Method

Instead of using configure to retrieve values, you can use the cget method:

$widget->cget(-option)

It only returns the current value (or address if the option stores a reference) of the option rather than 
the entire list that configure returns. Think of cget as standing for "configuration get.". Here is 
an example of how to use cget:

print $b->cget(-highlightthickness), "\n";
## Prints this:
2
# return reference :
print $option_menu->cget(-textvariable), "\n";
# return actual value:
Print ${$option_menu->cget(-textvariable)}, "\n";
# or...
$ref = $option_menu->cget(-textvariable);
print $$ref, "\n";

Default Values for Each Widget in Table Form

The following tables contain all of the options for each standard widget (in Tk8). The 
five columns represent the five values returned in the arrays for each option when 
configure is used. Note that column 5, "Current Value," will probably not mean 
much to you, but I've included it for completeness because you'll get it back when you 
run the same code.

The information in the tables was created by using this code snippet (substitute the 
correct widget in for Widget):



$w = $mw->Widget->pack;
@config = $w->configure();
print Pretty @config;

Button

Option name .Xdefault's name Class name Default Value Current Value

-activebackground activeBackground Foreground SystembuttonFace SystemButtonFace

-activeforeground activeForeground Background SystemButtonText SystemButtonText

-activeimage activeImage ActiveImage undef undef

-anchor anchor Anchor center center

-background background Background SystemButtonFace SystemButtonFace

-bd borderWidth    

-bg background    

bitmap bitmap Bitmap ndef undef

-borderwidth borderWidth BorderWidth 2 2

-command command Command undef undef

-cursor cursor Cursor undef undef

default default Default disabled disabled

-disabledforeground disabledForeground DisabledForeground SystemDisabledText SystemDisabledText

-fg foreground    

-font font Font {MS Sans Serif} 8 bless ({MS Sans
Serif} 8 Tk:: font

foreground foreground Foreground SystemButtonText SystemButtonText

-height height Height 0 0

-highlightbackground highlightBackground HighlightBackground SystemButtonFace SystemButtonFace



-highlightcolor highlightColor HighlightColor SystemWindowFrame SystemWindowFrame

highlightthickness highlightThickness HighlightThickness 1 1

-image image Image undef undef

-justify justify Justify center center

Button (continued)

Option name .Xdefault's name Class name .Default Value name Current Value

-padx padx pad 1 1

-pady pady pad 1 1

-relief relief Relief raised raised

-state state State normal normal

-takefocus takeFocus TakeFocus undef undef

-test text Text undef  

-textvaiable textVariable Variable undef undef

-underline underline underline -1 -1

-width width Width 0 0

-wraplength wrapLength WrapLength 0 0



Canvas

Option name .Xdefault's name Class name Default Value Current Value

-background background Background SystemButtonFace SystemButtonFace

-bd borderWidth    

-bg background    

-borderwidth borderWidth BorderWidth 0 0

-closeenough closeEnough closeEnough 1 1

-confine confine confine 1 1

-cursor cursor Cursor undef undef

-height height Height 7c 265

-highlightbackground highlightBackground HighlightBackground SystemButtonFace SystemButtonFace

Canvas (continued)

Option name .Xdefault's name Class name Default Value Current Value

-highlightcolor highlightColor HighlightColor SystemWindowFrame SystemWindowFrame

-highlightthickness highlightThickness HighlightThickness 2 2

-insertbackground insertBackground Foreround SystemButtonText SystemButtonText

-insertborderwidth insertBorderWidth BorderWidth 0 0

-insertofftime insertOffTime OffTime 300 300

-insertontime insertOnTime OnTime 600 600

-insertwidth insertWidth InsertWidth 2 2

-relief relief Relief flat flat

-scrollregion scrollRegion scrollRegion undef undef



-selectbackground selectBackground Foreground SystemHighlight SystemHighlight

-selectborderwidth selectBorderwidth BorderWidth 1 1

-selectforeground selectForground Background SystemHighlightText SystemHighlightText

-takefocus takeFocus TakeFocus undef undef

-width width Width 10c 378

-xscrollcommand xScrollCommand ScrollCommand undef undef

-xscrollincrement xScrollIncrement ScrollIncrement 0 0

-yscrollincrement yScrollCommand ScrollCommand undef undef

-yscrollincrement yScrollIncrement ScrollIncrement 0 0

Checkbutton

Option name .Xdefault's name Class name Default Value Current Value

-activebackgfound activeBackground Foreground SystemButtonFace SystemButtonFace

-activeforeground activeForeground Background SystemWindowText SystemWindowText

-anchor anchor Anchor center center

-background background Background SystemButtonFace SystemButtonFace

-bd borderWidth    

-bg background    

-bitmap bitmap Bitmap undef undef

-borderwidth borderWidth BorderWidth 2 2

-command command Command undef undef

-cursor cursor Cursor undef undef

-disabledforeground disabledForeground DisabledForeground SystemDisableText SystemDisabledText



-fg foreground    

-font font Font {MS Sans Serif} 8 bless({MS Sans
Serif} 8 Tk::font)

-foreground foreground Foreground SystemWindowText SystemWindowText

-height height Height 0 0

-highlightbackground highlightBackground HiglightBackground SystemButtonFace SystemButtonFace

-highlightcolor highlightColor HighlightColor SystemWindowFrame SystemWindowFrame

-highlightthickness highlightThickness HighlightThickness 1 1

-image image Image undef undef

-indicatoron indicatorOn IndicatorOn 1 1

-justify justify Justify center center

-offvalue offValue Value 0 0

Checkbutton (continued)

Option name .Xdefault's name Class name Default Value Current Value

-onvalue onValue Value 1 1

-padx padX pad 1 1

-pady padY Pad 1 1

-relief relief Relief flat flat

-selectimage selectColor Background SystemWindow SystemWindow

-selectimage selectimage SlectImage undef undef

-state state state normal normal

-takefocus takeFocus TakeFocus undef undef

-text text Text undef  



-textvariable textVariable Variable undef undef

-underline underline Underline -1 -1

-variable variable Variable undef undef

-width width Width 0 0

-wraplength wrapLength WrapLength 0 0

Entry

Option name .Xdefault's name Class name Default Value Current Value

-background background Background SystemWindow SystemWindow

-bd borderWidth    

-bd background    

-borderwidth borderWidth BorderWidth 2 2

-cursor cursor Cursor xterm xterm

-exoirtselection? exportSelection ExportSelection 1 1

Entry (continued)

Option name .Xdefault's name Class name Default Value Current Value

-fg foreground    

-font font Font {MS Sans Serif} 8 bless({MS Sans
Serif} 8 Tk::font)

-foreground foreground Foreground SystemWindowText SystemWindowText

-highlightbackground highlightBackground HighlightBackground StstemButtonFace SystemButtonFace

-highlightcolor highlighColor HighlightColor SystemWindowFrame SystemWindowFrame

-hightlightthickness highlightThickness HightThickness 0 0



-insertbackground insertBackground Foreground SystemWindowText SystemWindowText

-insertborderwidth insertBorderWidth BorderWidth 0 0

-insertofftime insertOffTime OffTime 300 300

-insertontime insertOnTime OnTime 600 600

-insertwidth insertWidth InsertWidth 2 2

-justify justify Justify left left

-relief relief Relief sunken sunken

-selectbackground selectBackground Foreground SystemHighlight SystemHighlight

-selectborderwidth selectBorderwidth BorderWidth 0 0

-selectforeground selectForeground Background SystemHighlightText SystemHighlightText

-show show Show undef undef

-state state State normal normal

-takefocus takeFocus TakeFocus undef undef

-textvariable Variable Variable undef undef

-width width Width 20 20

xscrollcommand xScrollCommand ScrollCommand undef undef



Frame

Option name .Xdefault's name Class name Default Value Current Value

-background background Background SystemButtonFace SystemButtonFace

-bd borderWidth    

-bd background    

-borderwidth borderWidth BorderWidth 0 0

-class class Class Frame Frame

-colormap colormap Colormap undef undef

-container container Container 0 0

-cursor cursor Cursor undef undef

-fg foreground    

-foreground foreground Foreground Black Black

-height height Height 0 0

-highlightbackground highlightBackground HighlightBackground SystemButtonFace SystemWindowFace

-highlightcolor highlightColor HighlightColor SystemWindowFrame SystemWindowFrame

-highlightthickness highlightThickness HiglightThickness 0 0

-label undef undef undef undef

-labelPack undef undef undef  

-labelVariable undef undef undef undef

-relief relief Relief flat flat

-takefocus takefocus TakeFocus 0 0

-visual visual Visual undef ''CodeSample-footnote">undef21,
undef

-width width Width 0 0



Label

Option name .Xdefault's name Class name Default Value Current Value

-anchor anchor Anchor center center

-background background Background SystemButtonFace SystemButtonFace

-bd borderWidth    

-bd background    

-bitmap -bitmap Bitmap undef undef

-borderwidth borderWidth BorderWidth 2 2

-cursor cursor Cursor undef undef

fg foreground    

-font font Font {MS Sans Serif} 8 bless({MS Sans
Serif} 8 Tk::font)

-foreground foreground Foreground SystemBottonText SystemButtonText

-height height Height 0 0

-highlightbackground highlightBackground HighlightBackground SystemButtonFace SystemButtonFace

-highlightcolor highlightColor HighlightColor SystemWindowFrame SystemWindowFrame

-highlightthickness highlighThickness HighlightThickness 0 0

-image image Image undef undef

justify justify Justify center center

-padx padX Pad 1 1

-pady padY Pad 1 1

-relief relief Relief flat flat

-takefocus takeFocus TakeFocus 0 0



-text text Text undef  

-textvariable textvariable Variable undef undef

Label (continued)

Option name .Xdefault's name Class name Default Value Current Value

-underline underline Underline -1 -1

-width width Width 0 0

-wraplength wrapLength WrapLength 0 0

Listbox

Option name .Xdefault's name Class name Default Value Current Value

-background background Background SystemButtonFace SystemButtonFace

-bd borderWidth    

-bg background    

-borderwidth borderWidth BorderWidth 2 2

-cursor cursor Cursor undef undef

-export selection exportSelection ExportSelection 1 1

-fg foreground    

-font font Font {MS Sans Serif} 8 bless ({MS Sans
Serif} 8 Tk::font)

-foreground foreground Foreground SystemButtonText SystemButtonText

-height height Height 10 10

-highlightbackground highlightBackground HighlightBackground SystemButtonFace SystemButtonFace

-highlightcolor highlightColor HighlightColor SystemWindowFrame SystemWindowFrame



-highlightthickness highlightThickness HighlightThickness 1 1

-relief relief Relief sunken sunken

-selectbackground selectBackground Foreground SystemHighlight SystemHighlight

Listbox (Continued)

Option name .Xdefault's name Class name Default Value Current value

-selectborderwidth selectBorderWidth BorderWidth 1 1

-selectforeground selectForeground Background SystemHighlightText SystemHighlightText

selectmode selectMode SelectMode browse browse

-setgrid setGrid SetGrid 0 0

-takefocus takeFocus TakeFocus undef undef

-width width Width 20 20

-xscrollcommand xScrollCommand ScrollCommand undef undef

-yscrollcommand yScrollCommand ScrollCommand undef undef

Menu

Option name .Xdefault's name Class name Default Value Current Value

-activebackground activeBackground Foreground SystemHighlight SystemHighlight

-activeborderwidth activeBorderWidth BorderWidth 1 1

-activeforeground activeForeground Background SystemHighlightText SystemHighlightText

-background background Background SystemButtonFace SystemButtonFace

-bd borderWidth    

-bg background    



-borderwidth borderWidth BorderWidth 1 1

-cursor cursor Cursor arrow arrow

-disabledforeground disabledForeground DisabledForeground SystemDisabledText SystemDisabledText

-fg Foreground    

-font font Font Tim 10 bless(Tim 10
Tk::font)

Menu (continued)

Option name .Xdefault's name Class name Default Value Current Value

-foreground foreground Foreground Black Black

-overanchor undef undef undef undef

-popanchor undef undef undef undef

-popover undef undef undef undef

-postcommand postCommand Command undef undef

-relief relief Relief flat flat

-selectcolor selectColor Background SystemMenuText SystemMenuText

-takefocus takeFocus TakeFocus 0 0

-tearoff tearOff TearOff 1 1

-tearoffcommand tearOffCommand TearOffCommand undef undef

-title title Title undef undef

-type type Type normal normal



Radiobutton

Option name .Xdefault's name Class name Default Value Current Value

-activebackground activeBackground Foreground SystemButtonFace SystemButtonFace

-activeforeground activeForeground Background SystemWindowText SystemWindowText

-anchor anchor Anchor center center

-background background Background SystemButtonFace SystemButtonFace

-bd borderWidth    

-bg background    

-bitmap bitmap Bitmap undef undef

-borderwidth borderWidth BorderWidth 2 2

Radiobutton (continued)

Option name .Xdefault's name Class name Default Value Current Value

-command command Command undef undef

-cursor cursor Cursor undef undef

-disabledforeground disabledForeground DisabledForeground SystemDisabledText SystemDisabledText

-fg foreground    

-font font Font {MS Sans Serif} 8 bless( {MS Sans
Serif} 8 Tk::font)

-foreground foreground Foreground SystemWindowText SystemWindowText

-height height Height 0 0

-heighlightbackground highlightBackground HeighlightBackground SystemWindowFrame SystemWindowFrame

-highlightcolor highlightColor HighlightColor SystemWindowFrame SystemWindowFrame

-highlightthickness highlightThickness HighlightThickness 1 1



-image image Image undef undef

-indicatoron indicatorOn IndicatorOn 1 1

-justify justify Justify center center

-padx padX Pad 1 1

-pady padY Pad 1 1

-relief relief Relief flat flat

-selectcolor selectColor Background SystemWindow SystemWindow

-selectimage selectImage SelectImage undef undef

-state state State normal normal

-takefocus takeFocus TakeFocus undef undef

-text text Text undef  

-textvariable textVariable Variable undef undef

Radiobutton (continued)

Option name .Xdefault's name Class name Default Value Current Value

-underline underline Underline -1 -1

-value value Value undef  

-variable variable Variable selectedButton undef

-width width Width 0 0

-wraplength wrapLength WrapLength 0 0



Scale

Option name .Xdefault's name Class name Default Value Current Value

-activebackground activeBackground Foreground SystemButtonFace SystemButtonFace

-background background Background SystemButtonFace SystemButtonFace

-bigincrement bigIncrement BigIncrement 0 0

-bd borderWidth    

-bg background    

-borderwidth borderWidth BorderWidth 2 2

-command command Command undef undef

-cursor cursor Cursor undef undef

-digits digits Digits 0 0

-fg foreground    

-font font Font {MS Sans Serif} 8 bless( {MS Same
Serif} 8 Tk::font)

-foreground foreground Foreground SystemButtonText SystemButtonText

-from from From 0 0

Scale (continued)

Option name .Xdefault's name Class name Default Value Current Value

-highlightbackground highlightBackground HighlightBackground SystemButtonFace SystemButtonFace

-highlightcolor highlightColor HighlightColor SystemWindowFrame SystemWindowFrame

-highlightthickness highlightThickness HighlightThickness 2 2

-label label Label undef undef

-length length Length 100 100



-orient orient Orient Vertical vertical

-relief relief Relief flat flat

-repeatdelay repeatDelay RepeatDelay 300 300

-repeatinterval repeatInterval RepeatInterval 100 100

-resolution resolution Resolution 1 1

-showvalue showValue ShowValue 1 1

-sliderlength sliderLength SliderLength 10m 38

-sliderrelief sliderRelief SliderRelief raised raised

-state state State normal normal

-takefocus takeFocus TakeFocus undef undef

-tickinterval tickInterval TickInterval 0 0

-to to To 100 100

-troughcolor troughColor Background SystemScrollbar SystemScrollbar

-variable variable Variable undef undef

-width width Width 5m 19

Scrollbar

Option name Xdefault's name Class name Default Value Current Value

-activebackground -activeBackground Foreground SystemButtonFace SystemButtonFace

-activerelief activeRelief Relief raised raised

-background background Background SystemButtonFace SystemButtonFace

-bd borderWidth    

-bg background    



-borderwidth borderWidth BorderWidth 0 0

-command command Command undef undef

-cursor cursor Cursor undef undef

-elementborderwidth elementBorderWidth BorderWidth -1 -1

-highlightbackground highlightBackground HighlightBackground SystemButtonFace SystemButtonFace

-highlightcolor highlightColor HighlightColor SystemWindowFrame SystemWindowFrame

-highlightthickness highlightThickness HighlightThickness 0 0

-jump jump Jump 0 0

-orient orient Orient vertical vertical

-relief relief Relief sunken sunken

-repeatdelay repeatDelay RepeatDelay 300 300

-repeatinterval repeatInterval RepeatInterval 100 100

-takefocus takeFocus TakeFocus undef undef

-troughcolor troughColor Background SystemScrollbar SystemScrollbar

-width width Width 13 13

Text

Option name .Xdefault's name Class name Default Value Current Value

-background background Background SystemWindow SystemWindow

-bd borderWidth    

-bg background    

-borderwidth borderWidth BorderWidth 2 2

-cursor cursor Cursor xterm xterm



-exportselection exportSelection ExportSelection 1 1

-fg foreground    

-font font Font {MS Sans Serif} 8 bless({MS Sans
Serif} 8 Tk::font)

-foreground foreground Foreground SustemWindowText SystemWindowText

-height height Height 24 24

-highlightbackground highlightBackground HighlightBackground SystemButtonFace SystemButtonFace

-highlightcolor highlightColor HighlightColor SystemWindowFrame SystemWindowFrame

-highlightthickness highlightThickness HighlightThickness 0 0

-insertbackground insertBackground Foreground SystemWindowText SystemWindowText

-insertborderwidth insertBorderWidth BorderWidth 0 0

-insertofftime insertOffTime OffTime 300 300

-insertontime insertOnTime OnTime 600 600

-insertwidth insertWidth InsertWidth 2 2

-padx padX Pad 1 1

-pady padY Pad 1 1

-relief relief Relief sunken sunken

-selectbackground selectBackground Foreground SystemHighlight SystemHighlight



Text (continued)

Option name .Xdefault's name Class name Default Value Current Value

-selectborderwidth selectBorderWidth BorderWidth 0 0

-selectforeground selectForeground Background SystemHighlightText SystemHighlightText

-setgrid setGrid SetGrid 0 0

-spacing1 spacing1 Spacing 0 0

-spacing2 spacing2 Spacing 0 0

-spacing3 spacing3 Spacing 0 0

-state state State normal normal

-tabs tabs Tabs undef undef

-takefocus takeFocus TakeFocus undef undef

-width width Width 80 80

-wrap wrap Wrap char char

-xscrollcommand xScrollCommand ScrollCommand undef undef

-yscrollcommand xScrollCommand ScrollCommand undef undef

Toplevel

Option name Xdefault's name Class name Default Value Current Value

-background background Background SystemButtonFace SystemButtonFace

-bd borderWidth    

-bg background    

-borderwidth borderWidth BorderWidth 0 0

-class class Class Toplevel Toplevel



-colormap colormap Colormap undef undef

-container container Container 0 0

Toplevel (continued)

Option name Xdefault's name Class name Default Value Current Value

-cursor cursor Cursor undef undef

-fg foreground    

-foreground foreground Foreground Black Black

-height height Height 0 0

-highlightbackground heighlightBackground HeighlightBackground SystemButtonFace SystemButtonFace

-highlightcolor highlightColor HighlightColor SystemWindowFrame SystemWindowFrame

-highlightthickness highlightThickness HighlightThickness 0 0

-menu menu Menu undef undef

-overanchor undef undef undef undef

-popanchor undef undef undef undef

-popover undef undef undef undef

-relief relief Relief flat flat

-screen screen Screen undef undef

-takefocus takeFocus TakeFocus 0 0

-title undef undef Toplevel Toplevel

-use use Use undef undef

-visual visual Visual undef undef

-width width Width 0 0





B—
Operating System Differences

Perl was originally written for Unix systems. The Tk module was meant for use with the 
X Window System, which is the graphical user interface associated with Unix. Since 
then, Perl has been ported for use on many other platforms, including Macintosh and 
Microsoft Windows (both 95 and NT). The same is true of the Tk module, although the 
ports for it followed along a bit more slowly. So now we have Perl available on all 
platforms and Perl/Tk available for both the X Window System (which can be emulated 
or run on many different platforms) and Microsoft Windows.

There are very few differences between how Perl/Tk operates on the Unix X Window 
System and how it operates on Microsoft Windows. Most of the differences come about 
because Microsoft Windows doesn't have all of the different functions that the X 
Windows System has. Throughout this book, you may have seen references to a method 
that didn't work on Windows 95 or that worked differently on Windows 95. I won't be 
covering all those minor differences again. One big difference between Unix and 
Windows is how to specify fonts. Appendix C, Fonts, covers font specifications in 
detail; see that appendix for information for both Unix and Windows.

Unix

All of the methods listed in this book should work well under Unix systems. There might 
be subtle differences between the different flavors of Unix (such as what type of value 
you get back on a Solaris machine compared to the values you get back on a Linux 
machine), but nothing that will cause your program to crash.

All of the screen shots for this book, except where noted, were taken from a Linux 
system running the X Window System with Motif-style windows. The window

manager I used specifically was fuwm, but the style of windows is similar to mwm. I 
don't cover the differences between window managers and how they change the style of 
the window. There are many other books available that discuss the X Window System 
and the window managers it uses.

Windows NT and 95



When you create a Perl/Tk window for Windows NT or Windows 95, the window comes 
up looking just like all your other windows do for those operating systems. For instance, 
it will have a small x in the upper-right corner that will kill the application. Just to the 
left of that x will be a small button that maximizes the window. To the left of the 
Maximize button is a small bar that will iconify the application. In the upper-left of the 
application is a small ''Tk" that, if clicked, will display a menu that gives options to 
minimize, maximize, or close the application. These are all standard features of an MS 
Windows window. The same functionality is present in the X Window System version 
of a Tk application; it just looks a little different (see Figure B-1).

Figure B-1.
A Win32 window and an X Windows window

Windows 95 Problems

I used both a Windows 95 machine and a Windows NT 4.0 (Service Pack 3) machine to 
test the code in this book. I did find some minor problems running applications under 
Windows 95. Windows NT did not seem to have the same problems, so if I had a choice 
between 95 and NT, I would develop and run Perl/Tk on Windows NT. Here is a list of 
some of the problems I ran into while I was testing Perl/Tk applications under Windows 
95 (note that these are not necessarily reproducible 100% of the time; I just wanted you 
to be aware that I did run into some minor problems):

• I created a Main Window with one button, resized the window, and couldn't click on 
the Exit button.

• The same scenario as the preceding item; clicking anywhere in the window after it was 
resized caused the button to be pressed.



• When I tabbed between applications, clicked in another application, and then went 
back to the Tk app, it didn't recognize the mouse. Clicking on the app icon in the start 
bar seems to fix this. (There doesn't seem to be any solid reproducible cause and effect 
for loss of mouse recognition.)

• The -underline option doesn't seem to work properly when I attempted to 
underline a letter in a menu option, so the corresponding key could be used as a 
keyboard shortcut.

• Some methods (most of which you wouldn't use because they are obscure) didn't return 
a reasonable value. These were noted throughout the book as they were discussed.

• When I clicked in a text widget to give it the keyboard focus and then clicked 
elsewhere, the text widget didn't give up the focus. You can use Shift-Tab to switch 
between widgets within the window once text has the focus, but it still doesn't seem to 
want to give up the focus (the cursor stays as an I bar cursor, and won't interact with the 
button at all).

• When I tried to display a photo as an image in a button (by using the -image option), 
the photo looked garbled.

Other than these minor problems, most of which probably wouldn't apply to a run-of-the-
mill application, everything worked well.

Selections

In the X Window System, the user can select text by simply highlighting it. In Microsoft 
Windows, you have to highlight the text and put it in the clipboard by typing CTRL-C 
(for Copy), pasting it back with CTRL-V or the equivalent for the application you're 
running. Perl/Tk does not interact with the clipboard like this. There are several widgets 
that have an -exportselection option (such as listbox and text) and still work as 
indicated; if they are set to zero, however, they won't copy the selected text to the 
clipboard.



C—
Fonts

This appendix describes how to use the new methods in Tk8.0 to create and maintain 
fonts. In Tk4, you could only pass a font string to -font option. You can still pass a 
font string in Tk8.0, but you can also use some methods to create your own named fonts 
and perform operations on them. First I'll go over the simple way to use a font string, 
which works in both versions. Then we'll get into the more complicated methods 
available with Tk8.0.

The Font String

When there is a -font option for a widget, you need to pass a string that indicates 
which font to use. There are several ways to specify a font string:

• Specify the name of a font with the fontCreate method (fontCreate is 
explained later in this chapter in "Font Methods").

• Use a string that describes the font and follows a predefined format (see Appendix B, 
Operating System Differences); for example, "Times 12 Normal."

• Use the name of a font that can be interpreted by the graphics display (typically a Unix 
system running X Windows). These strings usually have asterisks in them and are very 
hard for humans to comprehend.

To specify a font in a string, you first have to know which fonts are available on your 
system.

Determining Available Fonts

In Unix, you must specify fonts by using a long, drawn-out syntax with a lot of asterisks 
that represent families, size, type, and so on. In the X Window System, you can get a list 
of Unix fonts by running the command

xlsfonts > font_file

The file named font_file will now contain a huge list of fonts that you can use on 
your system. Be careful when picking fonts from this huge list. If you are going to be 
running your application from more than one system, the font you pick might not be 
available on all systems.



If you use Microsoft Windows, you'll have a different way of seeing what fonts are 
available. Click on the Start menu and select Settings (ρ) Control Panel. Once the 
Control Panel appears, double-click Fonts and a window similar to the one shown in 
Figure C-1 appears.

Figure C-1.
The Fonts from a Windows 95 System

My system has most of the standard fonts and a few that I've downloaded over the 
Internet, such as augie and Bard. If I want to use these fonts I have to know how to 
specify them. If you double-click on a font name, another window appears and displays 
detailed information about the font (see Figure C-2).

The information about the font includes how much space it takes up on the hard drive 
(64K in this case), what version it is, and its name. It also lists the available sizes. The 
Arial font starts at 12 points and goes up to 72 points. To use the -font option to 
specify this font for a widget (for instance, a button), you need to know the name of the 
font (Arial), the size, and the type (normal, bold, or italic). With these



Figure C-2.
The Arial font details

three pieces of information, you can build a font string: "Arial 24 normal".* 
That's all there is to it. To create a button with this font, use the -font option:

$mw->Button(-text => "Exit", -command => sub { exit },
            -font => "Arial 24 normal")->pack();

Figure C-3 shows a button with the default font, and one with a larger font.

Figure C-3.
A default size font button and one with Arial 24

If the name of the font has spaces in it such as Times New Roman, you still build the 
string the same way:

-font => "Times New Roman 12 normal"



* You might also see a font specified with curly braces around the name and the style 
of the font (e.g., "{Arial} 12 {normal}"). The curly braces are not required

You might see an error on the console when using this type of font specification:

SplitString 'Times New Roman 12 normal' at script line 7

You can ignore these errors, and as far as I know, there is no easy way to get rid of them. 
Hopefully, later versions of the Tk module will deal more gracefully with this (initial 
tests with Tk 8.0 show that this error no longer appears).

I don't recommend changing the font for the text on any of the standard widgets because 
you'll have to worry about whether the font is available. The only place you might 
absolutely have to change font is in the text widget, and then only if you are actually 
going to format the text.

One more thing: There is a Tk::Fonts module available, but it doesn't work correctly 
under Microsoft Windows (95 or NT). If you are using X Windows, you should play 
around with the Tk::Font a bit; it does have some useful features.

Font Methods

The following methods are available only with the newest version of Perl/Tk, which 
contains Tk8.0.

Create

The fontCreate method creates a new font.

$name = $widget->fontCreate();
$name = $widget->fontCreate(fontname);

You can either specify a font name or one will be generated in the format "fontX" where 
X is a number. You can specify options for the font:

$name = $widget->fontCreate(-size => 12);
$name = $widget->fontCreate(fontname, -size => 12);

The options you can use to create a font are as follows:

-family => name
The family name can be "courier", "times", or "helvetica". If you specify 
one of these, the closest match on your system will be used. You can also specify the 
name of a font that is specific to your machine (for example, "Moon Runes"), but it 
might not show up on other systems.



-size => amount
The amount specified for the font size indicates how big you want the font to be. If the 
amount is positive, the font will be sized in points. If the amount is negative, the font 
will be sized by using the absolute value of the amount in pixels.

-weight => "normal" | "bold"
The -weight option determines the thickness of the font.

-slant => "roman" | "italic"
The slant of the font is how far it tips over to one side. By default, "roman" means that 
the font is upright. Specifying "italic" as the value for -slant will tilt the font to 
the right slightly.

-underline => 0 | 1
If you want the characters to be underlined, specify 1 for the -underline option.

-overstrike => 0 | 1
A line is drawn through the text when -overstrike has a value of 1.

Configuring

You can change the options associated with a font by using the fontConfigure 
method. This method works just like a configure method does on any widget:

%optionsNvalues = $widget->fontConfigure(fontname);
$value = $widget->fontConfigure(fontname, -size);
$widget->fontConfigure(fontname, -
size => 24); # Change size to 24

You can use the same options with fontCreate and fontConfigure

Actual Information

If a specified font size is not available on the user's system, the system substitutes 
another font size, or even a different font altogether. You can find out which font is 
actually displayed by using the fontActual method. To get a list of all options and 
their values, call fontActual with just a font name:

%vals = $widget->fontActual (fontname);

To get the actual value for just one option:

$value = $widget->fontActual(fontname, -size);

Again, all the options used in fontCreate can be used with fontActual



Deleting

To delete one or more fonts, use the fontDelete method:

$widget->fontDelete(fontname);
$widget->fontDelete(font1, font2);

If the font is currently being used by a widget, it will not actually be deleted until the 
widget isn't using it anymore. If you re-create a font by using fontCreate with the 
name of the original font, the widgets that use the original font will use the new font 
information.

Text Size

You can find out how much space a text string that uses a particular font would take by 
calling fontMeasure:

$pixels = $widget->fontMeasure(fontname, textstring);

The value returned into $pixels is only an estimate because characters such as "\t" 
or "\n" aren't expanded before the measurement is taken.

Font Metrics

Metrics are details about a font: the ascent, descent, space between lines, and whether or 
not the font is proportional. You can use the fontMetrics method to get this 
information about a named font. Calling fontMetrics with only a font name gives 
you all the metrics and their values for that font:

%values = $widget->fontMetrics(fontname);

You can also find out the value of a specific metric by passing it in as an option:

$value = $widget->fontMetrics("fontname", -ascent);

Note that you cannot change a font's metrics. They are calculated when the font is created

The valid metric options are as follows:

-ascent
Measures the highest part of the font above the baseline. Amount returned is in pixels.

-descent
Measures the lowest part of the font below the baseline. Amount returned is in pixels.

-linespace
Measures the distance between two lines of text that use the same font. Amount returned 
is in pixels.



-fixed
Returns 1 if the font is a fixed width font (all characters take up the same amount of 
space, such as in Courier). Returns 0 if the font is proportional (each character takes up a 
different amount of space based on how fat or skinny it is; the letter "I" takes up less 
space than "M").

Families & Names

To find out all the font families that exist on a particular $widget's display, call 
fontFamilies:

@families = $widget->fontFamilies();

To determine the names of all the fonts that are defined, call fontName:

@names = $widget->fontNames();



Index

Symbols

,(comma), 6

-(minus sign), 36-37

=>, 6

^, 36

A

accelerators, 231

activate method, 150

activating scrollbar elements, 136

add method, 243-244

adding text, 197

AddItems method, 227, 234

addtag method, 201

Advertice method, 285

after method, 306

afterCancel method, 307

afterIdle method, 297, 307

aligning text, 178

all tag, 199

allocation rectangle, 22-28

expanding,19, 25

filling, 19, 24



Alt key, 274

anchoring widgets

allocation rectangle, 27

basic button, 58

bitmap item, 190

checkbutton, 83

createWindow method, 198

image item, 191

label, 103

menubutton widget, 222

overview, 52

pack, 19

place, 48

radiobutton, 96

text item, 195

anonymous subroutines, 63

appearance, widget (see style)

application

grid, 267

name, 265, 295

applications, communicating among, 304

appname 
method, 
295

arcs



arrows

line item, 191

scrollbar, 132

aspect method, 262

assigning callbacks (see callbacks, assigning)

atom, 300

(see also widgets, name)

atom method, 300

atomname method, 300

automatic window resizing, 32

B

background color (see color, options)

basic button

anchoring, 58

basic button (continued)

anonymous subroutines, 63

border width, 58

callbacks, 58, 62-64

color options, 58-59, 72-74

configuring, 79

creating, 57

cursor options, 58

disabling, 64

displaying



images, 59, 61

text, 60, 66

flashing, 79

focus, 59

font, setting, 58, 66

height, 59

invoking, 79

keyboard mapping, 72

naming conventions, 12

option list, 58-60

padding, 59

relief, 59

size, 70

state, 59

style, 68

text

justification, 59

wrapping, 60

underlining characters, 59

variable options, 59

width, 60

bbox method

canvas widget, 183, 202

listbox, 151

text widget, 173



bell method, 300

bind method, 270-272

canvas widget, 184

label widget, 107

listbox, 152

uses, 280

using with text tags, 168

valid argument list, 271

binding

events, 270-280

items using tags, 201

bindtags method, 280

bisque method, 293

bitmap

creating, 189

displaying

bitmap item, 190

checkbutton, 84

label widget, 103

menubutton widget, 222

radiobutton, 96

item option list, 189

options, 190

setting name and location, 58



(see also image)

border width

basic button, 58

canvas widget, 186

checkbutton, 84

entry widget, 109

frame widget, 252

label widget, 104

listbox, 143

menu widget, 239-240

menubutton widget, 222

radiobutton, 96

scale widget, 211

scrollbar, 129

text

tags, 164

widget, 155

toplevel widget, 258

bounding box, 151

(see also bbox method)

browse mode, listbox, 144

buffering, space, 38

Button method, 57

button (see basic button, checkbutton, or radiobutton)

ButtonPress event, 276



ButtonRelease event, 276

C

callbacks

arguments sent back, 272

assigning

basic button, 58, 62-64

canvas widget, 187

checkbutton, 83-84, 87

entry widget, 111

menu widget, 239, 241

radiobutton, 96

scale widget, 211, 213

scrollbar, 130, 133

selection, 301

text widget, 157

bind method, 272

stop processing, 279

(see also subroutine)

Camel book, 64

(see also Programming Perl)

Canvas method, 182

canvas widget, 181-209

adding text, 194

arc item, 188



bind method, using, 184

binding, 201

bitmap item, 190

bounding box coordinates, 202

callbacks, assigning, 187

color options, 186-187

configuring, 198

coordinate system, 182

creating

bitmaps, 189

canvas, 181

items, 188

cursor options, 186

deleting

items, 203

tags, 204

display list, changing, 203

example, 206

focus, setting, 187, 204

height, 186

indexes, text item, 196

inserting other widgets in, 197

item type, determining, 204

items, moving, 202



line item, 191

option list, 184-187

oval item, 193

polygon item, 194

rectangle item, 194

relief, 187

scaling, 205

scroll options, 187

scrollable region, 183

scrollbars with, 138

scrolling options, 185

tags, 199-201

text indexes with, 196

translating coordinates, 202

uses, 181

width, 187

canvasBind method, 184, 201

canvasx, canvasy methods, 202

Caps Lock key, 274

caret symbol, 36

cascade menu

adding, 235

item, 229

cascade method, 235

cascading menu, 247



cells method, 292

cget method

basic button, 79

canvas widget, 198

entry widget, 118

format, 311

frame widget, 256

label widget, 108

listbox, 147

menu widget, 243

menubutton widget, 233

optionmenu widget, 249

overview, 309

radiobutton, 100

scale widget, 216

scrollbar, 134

character spacing (see marks)

checkbutton, 81-93

anchoring, 83

bitmap, displaying, 84

border width, 84

callbacks, assigning, 84

color options, 83-85

configuring, 92



creating, 83, 234

cursor options, 84

flashing, 93

focus, 85

font, setting, 84

height, 84

checkbutton (continued)

image, displaying, 84, 90

indicator

color, setting, 89

displaying, 84

hiding, 89

storing status, 85

invoking, 93

on and off values, 88

option list, 83-85

overview, 81

relief, 85

state, 85

style, 91

text justification, 84

turning on and off, 93

underlining characters, 85

width, 85



with menubutton widget, 228

wrapping text, 85

Checkbutton method, 83

checkbutton method, 234

child widgets, 6, 290

children method, 290

circle tag, 199

Circulate event, 276

class method, 291

classes, with frame widget, 256

client method, 265

clipboard, manipulating, 300

clipboardAppend method, 300

clipboardClear method, 301

Cmd-Line method, 306

coding style, 8

color

basic button, 72-74

corruption, 255

depth, 253, 259, 292

highlight rectangle, 78

listbox, 145

options

arc item, 188

basic button, 58-59



bitmap item, 190

canvas widget, 186-187

checkbutton, 83, 85

entry widget, 109-110

frame widget, 252

label widget, 103-104

line item, 192

listbox widget, 143

menu widget, 239

menubutton widget, 222, 225

oval item, 193

postscript method, 204

radiobutton, 96-97

scale widget, 211-212

scrollbar, 129-130

text item, 195

text tags, 164

text widget, 155-157

toplevel widget, 258

scrollbar, 130

setting for application, 293

colormap

cell count, 292

determining if full, 292



options

frame widget, 252

postscript, 204

toplevel widget, 259, 266

problems, 255

Colormap event, 276

colormapfull method, 292

colormapwindows method, 266

columns

setting, 38

spanning, 37-38

(see also grid)

comma, 6

command method, 234, 266

command-line options, 306

communication among

applications, 304

widgets, 133

compare method, 173

composite widget, 281-289

advertise, calling, 285

alias, creating, 286

configure, calling, 286

creating based on a frame, 284

defining options, 287



delegates, calling, 286

example, 282

file location, 283

ConfigSpecs method, 286

Configure event, 276

configure method

basic button, 79

button widget, 313-314, 316-317, 319-323, 325, 327-329

canvas widget, 198, 312

checkbutton widget, 316

entry widget, 118, 317

format, 309

frame widget, 255-256, 319

label widget, 108, 320

listbox, 147

listbox widget, 321

menu widget, 243, 322

menubutton widget, 221, 233

optionmenu widget, 249

overview, 309

radiobutton, 100

radiobutton widget, 323

scale widget, 216, 325

scrollbar, 134



scrollbar widget, 327

text widget, 328

toplevel widget, 329

configuring

basic button, 79

canvas widget, 198

checkbutton, 92

entry widget, 118

label widget, 108

menu widget, 243

menubutton widget, 233

optionmenu widget, 248

radiobutton, 100

scale widget, 216

scrollbar, 127, 134

toplevel widget, 260

Construct method, 284

container

frame widget, 252

frames, 107

containing method, 297

Control key, 274

coordinate system, canvas widget, 182

coordinates



event, 278

setting, 48

translating, 202

coords method, 202, 216

counting items in a listbox, 150

createArc method, 188

createBitmap method, 189

createImage method, 190

createLine method, 191

createOval method, 193

createPolygon method, 194

createRectangle method, 194

createText method, 194

createWindow method, 197

creating

basic button, 57

canvas widget, 181

checkbutton, 83

entry widget, 109

frame widget, 251

label widget, 103

listbox, 141

menu widget, 238

menubutton, 220

optionmenu widget, 248



ovals, 193

polygons, 194

radiobutton, 94

rectangles, 194

scale widget, 210

scrollbar widget, 128

text widget, 154

toplevel widget, 257

widget, 6-7

current tag, 199

curselection method, 149

cursor

changing, 75

insert, 115, 119

options

basic button, 58

canvas widget, 186

checkbutton, 84

entry widget, 109-110

frame widget, 252

label widget, 104

menu widget, 239, 241

menubutton widget, 222

radiobutton, 97



scale widget, 211

scrollbar, 130

text widget, 156

toplevel widget, 259

cursor (continued)

positioning, 196

setting

listbox, 143

text widget, 155

D

databases, option, 293

dchars method, 196

debug function, 179

debugging code, 13, 179

defining event sequences, 273

deiconify method, 258, 262

delaying a program, 306

Delegates method, 286

delete method, 172

canvas widget, 203

entry widget, 118

listbox widget, 148

menu widget, 243-244

text widget, 172



deleting

items from

canvas widget, 203

listbox, 148

menu items, 244

tags, 204

text, 118, 172, 196

text tag, 170

delta method, 136

deltag method, 204

demo, widget, 72

depth method, 292

deselecting radiobuttons, 100

designing windows, 14

Destroy event, 276

destroy method, 302

destroy versus exit, 12

destroying widgets, 302

Dialog widget, 281

disabling buttons, 64

display list, changing, 203

displayed values, 214

displaying

menus, 245

widgets, 9



distances, screen, 295

dlineinfo method, 173

document list, dynamic, 236

double modifier, 274

dtag method, 204

dynamic document list, 236

E

embedding widgets, 176

enlarging widget, 38

Enter event, 276

entering passwords, 116

Entry method, 109

entry widget, 108-123

assigning content to a variable, 111

border width, 109

color options, 109-110

configuring, 118

creating, 109

cursor options, 109-110

deleting text, 118

determining contents, 119

focus, 111

font, setting, 110

indexes, 112-114



inserting text, 120

option list, 109-111

password entry, 116

relief, 110

relief options, 112

scrollbar use, 117

state, 110

text

justification, 110

selecting, 114

translating index values, 119

uses, 108

variable options, 111

width, 111

with

listbox, 152

scrollbars, 137

entrycget method, 233, 243

entryconfigure method, 234, 243

Ev method, 278

event

button number, 278

coordinates, 278

defined, 9

height, 279



keyboard information, 279

loop, 10

sequences, defining, 273

type, 275, 279

width, 279

Exists method, 295

exit versus destroy, 12

exiting the application, 12

expanding allocation rectangle, 19, 25

exporting text, 109

Expose event, 276

extended mode, listbox, 144

F

fileevent method, 305

filling

allocation rectangle, 19, 24

listbox, 141

find method, 201

finding tags, 201

flash method, 79, 93, 100

flashing

basic buttons, 79

checkbuttons, 93

radiobuttons, 100



focus

basic button, 59

canvas widget, 187

checkbutton, 85

entry widget, 111

frame widget, 253, 255

label widget, 104

listbox, 144

manipulating, 302

menu widget, 239

menubutton widget, 223

options, 77

radiobutton, 98

scale widget, 212

scrollbar, 130

setting, 204

text widget, 157

toplevel widget, 259, 267

focus method, 119, 204, 302

focusCurrent method, 303

focusFollowsMouse method, 303

focusForce method, 303

FocusIn event, 276

focusLast method, 303



focusmodel method, 267

FocusOut event, 276

font, setting

basic button, 58

checkbutton, 84

entry widget, 110

label widget, 104

listbox, 143

menu widget, 239-240

menubutton widget, 222

postscript method, 205

radiobutton, 97

scale widget, 211

text

item, 195

tags, 164

text widget, 156

font string, 334

fontActual method, 338

fontConfigure method, 338

fontCreate method, 334

fontDelete method, 338

fontFamilies method, 339

fontMeasure method, 338

fontMetrics method, 339



fontNames method, 339

fonts

configuring, 338

creating, 337

deleting, 338

families, 339

metrics, 339

specifying in buttons, 66

text widget, 157

Tk::Fonts module, 66

with Tk8.0 334

foreground color (see color, options)

fpixels method, 296

fraction method, 136

Frame method, 251

frame method, 267

frame widget, 251-256

adding a lable, 254

border width, 252

color options, 252

colormap

options, 252

problems, 255

creating, 251



cursor options, 252

defined, 7

fram widget (continued)

focus, 253, 255

height, 252

label, 252

option list, 252-253

relief, 253

style, 253

width, 253

frames, container, 107

functions

(see the individual method names)

G

geometry manager

deciding which to use, 56

overview, 9, 15

(see also pack, grid, and place)

geometry method, 260, 296

get method

entry widget, 111, 119

listbox, 148

scale widget, 216

scrollbar, 136



text widget, 172

getNames method, 175

Getopts modules, 306

gettags method, 201

GIF support, 61

grab method, 303

grabCurrent method, 304

grabGlobal method, 303

grabRelease method, 304

grabStatus method, 304

graphical user interface (see GUI)

graphics (see image)

Gravity event, 277

gravity, mark, 175

grid, 34-47

columns

setting, 38

spanning, 38

configuring columns and rows, 42

creating an empty cell, 37

determining widget location, 46

getting configuration information, 46

options, 38

padding widgets, 41

propagation, 46



removing widgets, 46

rows

setting, 38

spanning, 38

sizing text widget, 158

space buffer, 38

spanning columns/rows, 37, 39

special characters, 36

specifying rows and columns, 39

turning on or off, 143

grid method, 267

grid, setting, 157

gridColumnconfigure method, 43

gridForget method, 46

gridInfo method, 46

gridLocation method, 46

gridPropagate method, 46, 251

gridRowconfigure method, 43

gridSize method, 47

group method, 268

GUI

design considerations, 14

reasons to use, 2

H



hanging indent, 165

height

basic button, 59

button, 70

canvas widget, 186

checkbutton, 84

createWindow method, 198

event, 279

frame widget, 252

label widget, 104

listbox, 143

menubutton widget, 222

postscript method, 205

radiobutton, 97

setting, place, 48

text widget, 156

toplevel widget, 259

widget, specifying, 53

height method, 296

Hello World example

anonymous subroutine, 63

button in, 57

callbacks, 62

overview, 10-11

positioning widgets, 20



highlight rectangle, changing, 78

I

iconbitmap method, 263

iconify method, 263

iconmask method, 264

iconname method, 264

iconposition method, 264

inconwindow method, 264

icursor method, 119, 196

id method, 292

ID string, widget, 292

identify method, 137, 216

image

creating, 190

displaying

basic button, 59

checkbutton, 84

image item, 191

in a menu item, 232

in basic buttons, 61

in checkbuttons, 90

label widget, 104

menubutton widget, 223

radiobutton, 97



item, 191

indentation, setting, 165

index method

canvas widget, 196

entry widget, 119

listbox widget, 150

menu widget, 245

text widget, 172

indexes

bounding box, 151

comparing values, 173

entry widget, 112-114

listbox, 147

menu, 242

text, 196

text widget, 161-163

translating

into numerical equivalent, 150

values, 119, 172, 245

indicator

checkbutton, 89

color, 97

displaying, 84

options, menubutton widget, 223, 225



status, 97

status, storing, 85

insert cursor, 115, 119

(see also cursor, options)

insert method

canvas widget, 196-197

entry widget, 120

listbox, 147

menu widget, 244

text tag, 166

text widget, 155, 171

inserting

items in a listbox, 147

menu items, 244

text, 120, 171, 197

installing the Tk module, 5

invoke method, 79, 93, 100, 245

invoking

basic buttons, 79

checkbuttons, 93

menu items, 245

radiobuttons, 100

@ISA array, 282

ismapped method, 295

itemcget method, 199



itemconfigure method, 199

J

JPEG file support, 61

jump scroll, 130

justification, text

basic button, 59

checkbutton, 84

entry widget, 110

label widget, 104

menubutton widget, 223

radiobutton, 97

text

item, 195

tags, 165

widget, 160

K

keyboard

information, event, 279

mapping, 72

KeyPress event, 277

KeyRelease event, 277



L

Label method, 103

label widget, 102-10

anchoring, 103

bitmap, displaying, 103

border width, 104

color options, 103-104

configuring, 108

container frames, 107

creating, 103

cursor options, 104

focus, 104

height, 104

image, displaying, 104

option list, 103-105

padding, 104

relief options, 104-105

setting font, 104

status messages, 106

text

justification, 104

wrapping, 105

underlining characters, 104

uses, 103



variable options, 104

width, 105

labels

frame, 254

frame widget, 252

scale widget, 212, 214

LabEntry widget, 281-282

Leave event, 277

line

creating, 191

item options, 191

spacing, text widget, 157-158

listbox, 141-153

active versus selected, 150

border width, 143

color options, 143, 145

configuring, 147

counting items, 150

creating, 141

cursor, setting, 143

deleting items, 148

example script, 152

filling, 141

focus, setting, 144



font, setting, 143

height, 143

indexes, 147

inserting items, 147

options, 142

relief, 143

relief style, 146

resizing, 146

retrieving elements, 148

scolling methods, 151

scrollbar, assigning, 144

selection options, 144, 149-150

turning grid on or off, 143

width, 144

with

entry widget, 152

scrollbars, 138

Listbox method (see listbox)

listing widgets, 33

lower method, 203

M

MainLoop method, 257

MainLoop routine, 10-12

MainWindow class, 257



MainWindow method, 12, 15

MainWindow widget, 7

Map event, 277

mapping keys, 72

margin, setting, 165

markGravity method, 175

markNames method, 176

marks, 175-176

markSet method, 176

markUnset method, 176

$master, 46

maxsize method, 261

menu

displaying, 245

indexes, 242

uses, 218

Menu method, 238

menu method, 235

menu widget, 238-250

assigning callbacks, 239, 241

border width, 239-240

cascading menu, 247

color options, 239

configuring, 243

creating, 238



cursor options, 239, 241

deleting menu items, 244

example, 247

focus, setting, 239

font, setting, 239-240

indexes, translating values, 245

inserting menu items, 244

invoking menu items, 245

item type, determining, 245

option list, 239

relief, 239

style, 240

menubar, creating, 236

Menubutton method, 220

menubutton widget, 219-238

accelerators, 231

anchoring, 222

bitmap, displaying, 222

border width, 222

cascade menu, 235

cascade menu item, 229

checkbutton item, 228

color options, 222, 225

command item, 227



configuring, 233

creating, 220

cursor options, 222

examples, 236

focus, setting, 223

font, setting, 222

height, 222

image, displaying, 223

indicator options, 223, 225

items, adding, 234

option list, 221-224

padding, 223

radiobutton, 235

radiobutton item, 227

relief, 223

separator, 235

separator item, 231

state, 223

text

justification, 223

wrapping, 224

underlining characters, 224

width, 224

Meta key, 275



methods (see the individual method names)

metrics, font, 339

minsize method, 261

minus sign, 36-37

modifier, 273

modules, Perl/Tk

Getopts, 306

Tk::Dialog, 257

Motion event, 277

mouse cursor, changing, 75

move method, 202

moving items, canvas widget, 202

multiple mode, listbox, 145

N

name

application, 265, 295

widget, determining, 291

name method, 291, 300

naming conventions, widget, 12

nearest method, 151

new method, 257

next method, 303

O

offsetting text, 165

on and off values



checkbuttons, 88

radiobuttons, 98

OnDestroy method, 305

operating system differences, 145, 331-333

option databases, 293

Optionmenu method, 248

optionmenu widget, 248-249

configuring, 248

creating, 248

overview, 281

ordering widgets, 29

organizing widgets (see geometry manager)

orientation

scale widget, 212-213

scrollbar, 130

oval item options, 193-194

ovals, creating, 193

overrideredirect method, 268

overstrike, 165

owner, determining, 302



P

pack, 16-34

allocation rectangles, 22-28

anchoring widgets, 19, 27

automatic resizing, 32

getting configuration information, 32

listing widgets, 33

option list, 19

ordering widgets, 29

overview, 9

packing order, 19

padding widgets, 19, 29

positioning widgets, 20

screen distances, 31

sizing text widget, 158

unpacking widgets, 32

with frame widget, 251

packForget method, 32

packInfo method, 32

packing order, 19

packPropagate method, 32, 108, 251

packSlaves method, 33

padding

basic button, 59



label widget, 104

menubutton widget, 223

text widget, 156

widgets, 19, 29

window method, 178

parent method, 291

parent widgets

determining, 291

overview, 6

with frames, 251

password entries, 116

pathname method, 292

pathname, widget, 292

Perl

history, 1

reference, general, x

Tk extension (see Perl/Tk)

Perl/Tk

coding style, 8

debugging a program, 13

fonts, 334

Getopts modules, 306

history, 1

installing, 1, 5



modules (see modules, Perl/Tk), 257

quiting, 12

reasons to use, 3

Tk::Fonts module, 66

using in Perl scripts, 1

versions, 2

with

Unix, 331

Windows, 332

Photo method, 61

pictures (see image)

pixels method, 295

place, 47-56

absolute coordinates, 49

anchoring widgets, 52

getting configuration information, 55

options, 48

relative coordinates, 50

specifying height and width, 53

placeForget method, 55

placeInfo method, 55

placSlaves method, 55

placing widgets (see place)

pointerx, pointery, pointerxy methods, 298

polygons, creating, 194



Popup method, 245

positionfrom method, 268

positioning

cursor, 196

widgets, 20, 22, 297

(see also pack)

post method, 218, 245

postcascade method, 247

postscript method, 204

PostScript output, canvas widget, 204

PPM/PGM file support, 61

prev method, 303

print, printf, 13

Programming Perl, 64, 282, 306

protocol method, 265

Q

Quick Draw program, 207

quitting an application, 12

R

radiobutton, 93-100

anchoring, 96

assigning callbacks, 96



bitmap, displaying, 96

border width, 96

color options, 96-97

configuring, 100

creating, 94

cursor options, 97

flashing, 100

focus, 98

font, setting, 97

height, 97

highlight rectangle, 97

indicator

color, 97

status, 97

invoking, 100

menubutton widget, 235

on and off values, 98

option list, 96-98

overview, 81

relief, 97

selecting and deselecting, 100

state, 98

style, 99

text justification, 97



underlining characters, 98

variable options, 98

width, 98

with menubutton widget, 227

wrapping, text, 98

Radiobutton method, 95

radiobutton method, 235

raise method, 203, 258

range of values, scale widget, 213

rectangle

allocation (see allocation rectangle)

creating, 194

highlight, 78, 97

relief

canvas widget, 187

checkbutton, 85

entry widget, 110

frame widget, 253

label widget, 104

listbox, 143

menu widget, 239

menubutton widget, 223

options

basic button, 59



entry widget, 112

label widget, 105

listbox, 146

radiobutton, 97

scale widget, 212

scrollbar, 129-130

text

tags, 165

widget, 156

toplevel widget, 259

removing widgets, 46, 55

Reparent event, 278

repeat method, 307

reqheight method, 296

reqwidth method, 296

resizable method, 261

resizing

listbox, 14

window, automatic, 32

retrieving elements from a listbox, 148

rgb method, 293

RGB value, 293

right-click menu example, 247

rootx, rooty method, 297

rows



setting, 38

spanning, 38

(see also grid)

S

Scale method, 206, 210

scale widget, 210-217

assigning callbacks, 211

border width, 211

changing size, 215

color options, 211-212

configuring, 216

creating, 210

cursor options, 211

determining coordinates, 216

focus, setting, 212

font, setting, 211

identifying parts, 216

label options, 212, 214

option list, 211-212

orientation, 212-213

range of values, 213

relief, 212

setting value, 216

slider options, 212



scale widget (continued)

state, 212

uses, 210

value increments, displaying, 214

variable options, 212

width, 212

scaling the canvas widget, 205

scan method, 152

scanDragto method, 121, 179, 206

scanMark method, 121, 179, 206

scanning

canvas, 206

text, 121

screen

distances

converting, 295

units, 31

information, 298

screen method, 298

screencells method, 299

screendepth method, 299

screenheight method, 298

screenvisual method, 299

screenwidth method, 298



scrollable region, canvas widget, 183

scrollbar, 124-140

activating elements, 136

arrows, 132

assigning callbacks, 130, 133

border width, 129

color options, 129-130

communicating with other widgets, 133

configuring, 127, 134

creating, 128

cursor options, 130

defining, 124, 135

examples, 137

focus, setting, 130

option list, 129-130

orientation, 130

relief, 129-130

slider, 132

style, 131

using one with multiple widgets, 138

width, 130

with

entry widget, 117, 137

listbox, text, or canvas widgets, 138

scrollbar, assigning to widget, 144



Scrollbar method, 128

Scrolled method

canvas widget, 181, 184, 203

scrollbar widget, 125-128

scrolling

canvas widget, 206

listbox, 151

text, 121

search method, 174

searching text widget, 174

see method, 150, 173

sel tag, 164, 167

selectClear method, 197

select From method, 197

selecting

items in a listbox, 144

radiobutton, 100

text

canvas widget, 197

entry widget, 114

selection

method, 121, 149

mode, 143

options, listbox, 149-150



selectionAnchor method, 150

Selection Clear method, 301

selectionClear method, 149

SelectionGet method, 301

SelectionHandle method, 301

SelectionIncludes method, 149

SelectionOwn method, 302

selectionOwner method, 302

selectionPresent method, 122

selectionRange method, 122

selectionSet method, 149

selectionTo method, 122

selectTo method, 197

send method, 304

separator, creating, 235

separator item, 231

separator method, 235

server method, 300

server type, 300

set method, 135, 216setPalette method, 293

setting tab stops, 159

Shift key, 274

single mode, listbox, 144size method, 150

size, widget, 296



sizefrom method, 269

sizing

text widget, 158

toplevel widget, 260

widgets (see pack)

slider

scale widget, 212

scrollbar, 132

spacing

character (see marks)

line, 157-158

spanning rows and columns, 39

state

basic button, 59

checkbutton, 85

entry widget, 110

menubutton widget, 223

radiobutton, 98

scale widget, 212

toplevel widget, 265

status label, 106

stipple pattern

arc item, 189

line item, 192



oval item, 193

text item, 195

text tags, 164

stored values, 214

storing indicator status, 85

style

basic button, 68

checkbutton, 91

frame widget, 253

menu widget, 240

radiobutton, 99

scrollbar, 131

subroutine

anonymous, 63

references, 64

(see also callbacks)

Subwidget method, 184

SUPER::bind, 184

SUPER::Populate, 285

switches, search method, 174

syntax

options, 6

screen distances, 31

T

tab stops, setting, 159



tabs, setting, 157, 165

tag names

arc item, 189

bitmap item, 190

create Window method, 198

image item, 191

line item, 193

oval item, 193

text item, 195

tagAdd method, 166, 168

tagBind method, 169

tagCget method, 168

tagConfigure method, 167, 172

tagDelete method, 170

tagLower method, 170

tagNames method, 171

tagNextrange method, 171

tagRaise method, 170

tagRanges method, 171

tagRemove method, 170

tags

canvas widget, 199-201

finding, 201

text, 164-171



Tcl/Tk, 1, 4

tear-off items, 224

text

adding, 197

deleting, 118, 196

entering, 108

exporting, 109

in a canvas widget, 194

indexes, 196

inserting, 120, 171

item indexes, 196

justification (see justification, text)

scanning, 121

scrolling, 121

selecting, 197

selection options, entry widget, 114

tags, 164-171

adding to existing text, 168

border width, 164

changing priority, 170

color options, 164

configuring, 167

creating, 167



text, tags (continued)

deleting, 170

example, 166

font, setting, 164

justification, text, 165

option list, 164-165

relief, 165

removing tag from text, 170

stipple pattern, 164

underlining characters, 165

using bind method, 168

wrapping, text, 165

widget, 154-180

assigning callbacks, 157

border width, 155

changing appearance, 164

color options, 155-157

creating, 154

cursor options, 156

cursor , setting, 155

debugging, 179

deleting text, 172

embedding other widgets, 176

example, 160



font, setting, 156

font use, 157

grid, setting, 157

height, 156

indexes, 161-163

inserting text, 171

justification values, 160

line spacing, 157-158

marks, 175-176

option list, 155-157

padding, 156

relief, 156

scrollbars with, 138

searching contents, 174

setting tab stops, 159

sizing, 158

state, 157

tabs, 157

tag, 166

uses, 154

width, 157

wrapping (see wrapping, text)

Text method, 154

time delays, 306



title method, 11, 262

Tk clipboard, manipulating, 300

Tk (see Perl/Tk)

Tk::bind, 184, 201

Tk::break, 279

Tk::Button, 280

Tk::Dialog, 257

Tk::Fonts module, 66

Tk::Frame, 284

Tk::JPEG, 61

Tk::Widget, 284

Toplevel method, 257

toplevel method, 291

toplevel widget, 257-269

application grid, 267

border width, 258

color options, 258

colormap options, 259, 266

command property, 266

configuring, 260

creating, 257

cursor options, 259

defined, 7

focus model, 267

focus, setting, 259



height, 259

icon

bitmap, 263

mask, 264

name, 264

position, 264

option list, 258-259

relief, 259

setting title, 262

sizing, 260

state, 265

uses, 257

width, 259

window properties, 265

transient method, 269

translating to RGB value, 293

triple modifier, 275

type method, 204, 245

U

underlining characters

basic button, 59

checkbutton, 85

label widget, 104

menubutton widget, 224



radiobutton, 98

text tags, 165

Unix

color values, 73

fonts, 66

using Perl/Tk with, 331

Unmap event, 278

unpacking widgets, 32

unpost method, 247

update method, 297

V

value

displayed versus stored, 214

increments, scale widget, 214

range, scale widget, 213

variable options

basic button, 59

entry widget, 111

label widget, 104

radiobutton, 98

scale widget, 212

versions of Perl/Tk, 2

viewable method, 300

virtual desktop, 297



Visibility event, 278

visualsavailable method, 299

vrootheight method, 298

vrootwidth method, 298

W

waitVariable method, 304

waitWindow method, 305

widget types

basic button, 57-80

canvas, 181-209

checkbutton, 81-93

composite, 281-289

entry, 108-123

frame, 251-256

label, 102-108

listbox, 141-153

MainWindow, 7

menu, 238-248

menubutton, 220-238

optionmenu, 248-249

radiobutton, 93-100

scale, 210-217

scrollbar, 124-140

text, 154-180



toplevel, 257-269

widgets

anchoring, 27, 52

checkbutton, 83

place, 48

children, determining, 290

creating, 6-7

demo with Tk module, 72

destroying, 302

displaying, 9

embedding, 176

enlarging, 38

height, setting, 48

item, 197

listing, 33

name, 291

(see also atom)

naming conventions, 12

ordering, 29

organizing (see geometry manager)

padding, 29, 41

parent and child, 6

parent, determining, 291

pathname, 292

placing (see place)



position, 297

positioning, 20, 22

(see also pack)

removing, 46, 55

resizing, automatic, 32

screen information, 298

size, determining, 296

sizing, 19

(see also pack)

space buffer, 38

specifying width and height, 53

unpacking, 32

width, setting, 48

Widgettype method, 6

width

arc item, 189

basic button, 60

button, 70

canvas widget, 187

checkbutton, 85

createWindow method, 198

entrywidget, 111



About the Author

Nancy Walsh is a consultant for Sybase, Inc. She spent too many years at the University 
of Arizona, changing majors a multitude of times and finally ending up with a B. S. in 
computer science. Continuing on in life, she has worked mostly with Perl and Java in the 
last few years.

In the family tradition of not sitting still, Nancy has numerous hobbies, which include 
quilting (pieced and applique, hand and machine quilting), stained glass (anything that 
doesn't break yet), martial arts (she is approximately halfway to a black belt in Tae 
Kwon Do), amateur radio (QRP mostly), and reading (anything with words).

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from 
distribution channels. Distinctive covers complement our distinctive approach to 
technical topics, breathing personality and life into potentially dry subjects.



The bird on the cover of Learning Perl/Tk is a juvenile emu (Dromaius 
novaebollandiae). This large, flightless bird is found throughout the Australian bush 
steppes. The emu is one of the largest birds in existence, second only to its cousin the 
ostrich. Adult emus stand about 5 feet (1.5 m) high and weigh up to 120 pounds (55 kg). 
The grayish-brown emu's small wings contain only six or seven feathers. They are 
hidden by the long, hairlike rump plumage. Emus have extremely strong legs, which 
they use as defensive and offensive weapons when fighting. A human limb can be 
broken by a kick from an emu. Their powerful legs make emus strong swimmers and 
fast runners; they can reach speeds of up to 50 km/hour.

Male emus, which are slightly smaller than the females, tend to the incubation of eggs 
and the raising of the young. An emu nest contains up to fifteen to twentyfive deep green 
eggs, laid by several hens. Incubation of the eggs takes from twenty-five to sixty days. 
The large discrepancy in incubation time occurs because the male needs to leave the nest 
periodically to find food and drink. The length of time he is away affects the time for 
incubation. Newly hatched emus weigh about 15 ounces (440 g). They are fully grown at 
two to three years.

The relationship between emus and Australian farmers has always been an adversarial 
one; three coastal subspecies of emu have been exterminated. Because emus can jump 
over high fences, it is difficult to keep them out of fields, where they eat

and trample crops. In the arid Australian bush, emus also compete with cattle and sheep 
for grass and water. On the other hand, emus eat many insects that would otherwise eat 
crops. In 1932 Australian farmers declared war on the emus, making an all-out effort to 
eradicate them. Fortunately, the effort failed. The battle between emus and farmers 
continues to this day.

Edie Freedman designed the cover of this book, using a 19th-century engraving from the 
Dover Pictorial Archive. Kathleen Wilson designed the back cover and produced the 
cover layout with QuarkXPress 3.32, using the ITC Garamond font.

The interior design was done by Edie Freedman and modified by Nancy Priest, using the 
ITC Garamond Light and Garamond Book fonts. The text was prepared in FrameMaker 
5.5 by Mike Sierra. The illustrations were created by Robert Romano in Adobe 
Photoshop 5.0 and Macromedia Freehand 8.0. Quality assurance was provided by Ellie 
Fountain Maden, Jeffrey Liggett, Claire Cloutier LeBlanc, and Sheryl Avruch. This 
colophon was written by Clairemarie Fisher O'Leary. Editorial and production services 
were provided by TIPS Technical Publishing-copyediting by Judy Flynn, composition 
and indexing by Karen Brown of Scriptorium Publishing Services, Inc., proofreading by 
Rachel Anderson of Archer Editorial, and project management by Robert Kern.

Whenever possible, our books use a durable and flexible lay-flat binding, either 
RepKover(tm) or Otabind(tm). If the page count exceeds the maximum bulk possible for 
this type of binding, perfect binding is used.


	Table of Contents
	Preface
	Introduction to Perl/Tk
	Geometry Management
	The Basic Button
	Checkbuttons and Radiobuttons
	Label and Entry Widgets
	Scrollbars
	The Listbox Widget
	The Text Widget
	The Canvas Widget
	The Scale Widget
	Menus
	Frames
	Toplevel Widgets
	Binding Events
	Composite Widgets
	Methods for Any Widget
	Configuring Widgets with configure and cget
	Operating System Differences
	Index

