
Keystroke Recognition Using WiFi Signals

Kamran Ali† Alex X. Liu†‡ Wei Wang‡ Muhammad Shahzad†

†Dept. of Computer Science and Engineering, Michigan State University, USA
‡State Key Laboratory for Novel Software Technology, Nanjing University, China

†{alikamr3,alexliu,shahzadm}@cse.msu.edu, ‡ww@nju.edu.cn

ABSTRACT

Keystroke privacy is critical for ensuring the security of com-
puter systems and the privacy of human users as what being
typed could be passwords or privacy sensitive information.
In this paper, we show for the first time that WiFi signals
can also be exploited to recognize keystrokes. The intuition
is that while typing a certain key, the hands and fingers of a
user move in a unique formation and direction and thus gen-
erate a unique pattern in the time-series of Channel State
Information (CSI) values, which we call CSI-waveform for
that key. In this paper, we propose a WiFi signal based
keystroke recognition system called WiKey. WiKey consists
of two Commercial Off-The-Shelf (COTS) WiFi devices, a
sender (such as a router) and a receiver (such as a laptop).
The sender continuously emits signals and the receiver con-
tinuously receives signals. When a human subject types on
a keyboard, WiKey recognizes the typed keys based on how
the CSI values at the WiFi signal receiver end. We imple-
mented the WiKey system using a TP-Link TL-WR1043ND
WiFi router and a Lenovo X200 laptop. WiKey achieves
more than 97.5% detection rate for detecting the keystroke
and 96.4% recognition accuracy for classifying single keys.
In real-world experiments, WiKey can recognize keystrokes
in a continuously typed sentence with an accuracy of 93.5%.

Categories and Subject Descriptors

C.2.1 [Network Architecture]: Wireless Communica-
tions; D.4.6 [Security and Protectione]: Keystroke re-
covery

Keywords

Gesture recognition; Wireless security; Keystroke recovery;
Channel State Information; COTS WiFi devices

1. INTRODUCTION
Keystroke privacy is critical for ensuring the security of

computer systems and the privacy of human users as what
being types could be passwords or privacy sensitive in-
formation. The research community has studied various

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

MobiCom’15, September 7–11, 2015, Paris, France.

c© 2015 ACM. ISBN 978-1-4503-3619-2/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2789168.2790109.

ways to recognize keystrokes, which can be classified into
three categories: acoustic emission based approaches, elec-
tromagnetic emission based approaches, and vision based
approaches. Acoustic emission based approaches recognize
keystrokes based on either the observation that different keys
in a keyboard produce different typing sounds [1, 2] or the
observation that the acoustic emanations from different keys
arrive at different surrounding smartphones at different time
as the keys are located at different places in a keyboard [3].
Electromagnetic emission based approaches recognize key-
strokes based on the observation that the electromagnetic
emanations from the electrical circuit underneath different
keys in a keyboard are different [4]. Vision based approaches
recognizes keystrokes using vision technologies [5].

In this paper, we show for the first time that WiFi signals
can also be exploited to recognize keystrokes. WiFi signals
are pervasive in our daily life at home, offices, and even
shopping centers. The key intuition is that while typing a
certain key, the hands and fingers of a user move in a unique
formation and direction and thus generate a unique pattern
in the time-series of Channel State Information (CSI) values,
which we call CSI-waveform, for that key. The keystrokes
of each key introduce relative unique multi-path distortions
in WiFi signals and this uniqueness can be exploited to re-
cognize keystrokes. Due to the high data rates supported by
modern WiFi devices, WiFi cards provide enough CSI val-
ues within the duration of a keystroke to construct a high
resolution CSI-waveform for each keystroke.

We propose a WiFi signal based keystroke recognition sys-
tem called WiKey. WiKey consists of two Commercial Off-
The-Shelf (COTS) WiFi devices, a sender (such as a router)
and a receiver (such as a laptop), as shown in Figure 1. The
sender continuously emits signals and the receiver continu-
ously receives signals. When a human subject types in a
keyboard, on the WiFi signal receiver end, WiKey recog-
nizes the typed keys based on how the CSI value changes.
CSI values quantify the aggregate effect of wireless phenom-
ena such as fading, multi-paths, and Doppler shift on the
wireless signals in a given environment. When the environ-
ment changes, such as a key is being pressed, the impact
of these wireless phenomena on the wireless signals change,
resulting in unique changes in the CSI values. There are
three key technical challenges. The first technical challenge
is to segment the CSI time series to identify the start time
and end time of each keystroke. We studied the character-
istics of typical CSI-waveforms of different keystrokes and
observed that the waveforms of different keys show a similar
rising and falling trends in the changing rate of CSI values.

90

Figure 1: WiKey System

Based on this observation, we design a keystroke extraction
algorithm that utilizes CSI streams of all transmit-receive
antenna (TX-RX) pair pairs to determine the approximate
start and end points of individual keystrokes in a given CSI-
waveform by continuously matching the trends in CSI time
series with the experimentally observed trends using a slid-
ing window approach.

The second technical challenge is to extract distinguishing
features for generating classification models for each of the
37 keys (10 digits, 26 alphabets and 1 space-bar). As the
keys on a keyboard are closely placed, conventional features
such as maximum peak power, mean amplitude, root mean
square deviation of signal amplitude, second/third central
moment, rate of change, signal energy or entropy, and num-
ber of zero crossings cannot be used because the values of
these features for adjacent keys are almost identical. To
address this challenge, we use the CSI-waveform shapes of
each key from each TX-RX antenna pair as features. As the
waveforms for each key contain a large number of samples,
we apply the Discrete Wavelet Transform (DWT) technique
on these waveforms to reduce the number of samples while
keeping the shape preserving time and frequency domain in-
formation intact. We use the waveforms resulting from the
DWT of individual keystrokes as their shape features.

The third technical challenge is to compare shape fea-
tures of any two keystrokes. The midpoints of extracted
CSI-wavforms of different keystrokes rarely align with each
other because the start and end points determined by ex-
traction algorithm are never exact. Moreover, the lengths
of different keystroke waveforms also differ because the dur-
ation of pressing any key is often different. Consequently,
the midpoints and lengths of shape features do not match
either. Another issue is that the shape of different keystroke
waveforms of the same key are often distorted versions of
each other because of slightly different formation and dir-
ection of motion of hands and fingers while pressing that
key. Thus, two shape features cannot be compared using
standard measures like correlation coefficient or Euclidean
distance. To address this challenge, we use the Dynamic
Time Warping (DTW) technique to quantify the distance
between the two shape features. DTW can find the min-
imum distance alignment between two waveforms of differ-
ent lengths.

The key novelty of this paper is on proposing the first
WiFi signal based keystroke recognition approach. Some re-
cent work uses CSI values to recognize variousmacro aspects
of human movements such as falling down [6], household
activities [7], detection of human presence [8], and estim-
ating the number of people in a crowd [9]. These schemes
extract coarse grained information from the CSI values to
recognize the macro-movements such as falling down or re-
cognizing fullbody/limb gestures. They cannot be directly

adapted to recognize keystrokes because such coarse grained
information does not capture the minor variations in the CSI
values caused by human micro-movements such as those of
hands and fingers while typing. Some recent work, namely
WiHear, uses CSI values to extract the micro-movements
of mouth to recognize 9 syllables in the spoken words [10].
However, WiHear uses special hardware including direc-
tional antennas and stepper motors to direct WiFi beams
towards speaker’s mouth and extract the micro-movements.
We implemented theWiKey system using COTS devices, i.e.
a TP-Link TL-WR1043ND WiFi router and a Lenovo X200
laptop with Intel 5300 WiFi NIC. In the evaluation process,
we build a keystroke database of 10 human subjects with
IRB approval. WiKey achieves more than 97.5% detection
rate for detecting the keystroke and 96.4% recognition ac-
curacy for classifying single keys. In real-world experiments,
WiKey can recognize keystrokes in a continuously typed sen-
tence with an accuracy of 93.5%.

In this paper, we have shown that fine grained activity
recognition is possible by using COTS WiFi devices. Thus,
the techniques proposed in this paper can be used for sev-
eral HCI applications. Examples include zoom-in, zoom-out,
scrolling, sliding, and rotating gestures for operating per-
sonal computers, gesture recognition for gaming consoles,
in-home gesture recognition for operating various household
devices, and applications such as writing and drawing in the
air. Other than being a potential attack, our WiKey tech-
nology can be potentially used to build virtual keyboards
where human users type on a printed keyboard.

2. RELATED WORK

2.1 Device Free Activity Recognition
Device-free activity recognition solutions use the vari-

ations in wireless channel to recognize human activities in a
given environment. Existing solutions can be grouped into
three categories: (1) Received Signal Strength (RSS) based,
(2) CSI based, and (3) Software Defined Radio (SDR) based.

RSS Based: Sigg et al. proposed activity recognition
schemes that utilize RSS values of WiFi signals to recog-
nize four activities including crawling, lying down, standing
up, and walking [11,12]. They achieved activity recognition
rates of over 80% for these four activities. To obtain the
RSS values from WiFi signals, they used USRPs, which are
specialized hardware devices compared to the COTS WiFi
devices that we used in our work. While RSS values can be
used for recognizing macro-movements, they are not suit-
able to recognize the micro-movements such as those of fin-
gers and hands in keyboard typing because RSS values only
provide coarse-grained information about the channel vari-
ations and do not contain fine-grained information about
small scale fading and multi-path effects caused by these
micro-movements.

CSI Based: CSI values obtained from COTS WiFI net-
work interface cards (NICs) (such as Intel 5300 and Ath-
eros 9390) have been recently proposed for activity recogni-
tion [6–10, 13] and localization [14–16]. Han et al. proposed
WiFall that detects fall of a human subject in an indoor
environment using CSI values [6]. Zhou et al. proposed a
passive human detection scheme which exploits multi-path
variations for detecting human presence in an indoor envir-
onment using CSI values [8]. Zou et al. proposed Electronic
Frog Eye that counts the number of people in a crowd using

91

CSI values by treating the people reflecting the WiFi signals
as “virtual antennas” [9]. Wang et al. proposed E-eyes that
exploits CSI values for recognizing household activities such
as washing dishes and taking a shower [7]. Nandakumar et
al. leverage the CSI and RSS information from off-the-shelf
WiFi devices to classify four arm gestures - push, pull, lever,
and punch [13]. The fundamental difference between these
schemes and our scheme is that these schemes extract coarse
grained features from the CSI values provided by the COTS
WiFi NIC to perform these tasks while our proposed scheme
refines these CSI to capture fine grained variations in the
wireless channel for recognizing keystrokes. Wang et al. pro-
pose WiHear that uses CSI values recognizes the shape of
mouth while speaking to detect whether a person is utter-
ing one of a set of nine predefined nine syllables [10]. While
WiHear can capture the micro-movements of lips, it uses
special purpose directional antennas with stepper motors
for directing the antenna beams towards a person’s mouth
to obtain a clean signal for recognizing mouth movements.
In contrast, our proposed scheme does not use any special
purpose equipment and recognizes the micro-movements of
fingers and hands using COTS WiFi NIC.

SDR Based: Researchers have proposed schemes that
utilize SRDs and special purpose hardware to transmit and
receive custom modulated signals for activity recognition
[17–20]. Pu et al. proposed WiSee that uses a special pur-
pose receiver design on USRPs to extract small Doppler
shifts from OFDM WiFi transmissions to recognize human
gestures [17]. Kellogg et al. proposed to use a special pur-
pose analog envelop detector circuit for recognizing gestures
within a distance of up to 2.5 feet using backscatter sig-
nals from RFID or TV transmissions [18] . Lyonnet et al.
use micro Doppler signatures to classify gaits of human
subjects into multiple categories using specialized Doppler
radars [19]. Adib et al. proposed WiTrack that uses a spe-
cially designed frequency modulated carrier wave radio fron-
tend to track human movements behind a wall [20]. Recently,
Chen et al. proposed an SDR based custom receiver design
which can be used to track keystrokes using wireless sig-
nals [21]. In contrast to all these schemes, our scheme does
not use any specialized hardware or SDRs rather utilizes
COTS WiFi NICs to recognize keystrokes.

2.2 Keystrokes Recognition
To the best of our knowledge, there is no prior work on re-

cognizing keystrokes by leveraging variations in wireless sig-
nals using commodity WiFi devices. Other than the SDRs
based keystroke tracking approach proposed in [21] which
uses wireless signals to track keystrokes, researchers have
proposed several keystrokes recognition schemes that are
based on other sensing modalities such as acoustics [1–3,22],
electromagnetic emissions [4], and video cameras [5]. Next,
we give a brief overview of the other existing schemes that
utilize these sensing modalities to recognize keystrokes.

Acoustics Based: Asonov et al. proposed a scheme
to recognize keystrokes by leveraging the observation that
different keys of a given keyboard produce slightly dif-
ferent sounds during regular typing [1]. They used back-
propagation neural network for keystroke recognition and
fast fourier transform (FFT) of the time window of every
keystroke peak as features for training the classifiers. Zhuang
et al. proposed another scheme that recognizes keystrokes
based on the sounds generated during key presses [2]. They

used cepstrum features [22] instead of FFT as keystroke fea-
tures and used unsupervised learning with language model
correction on the collected features before using them for
supervised training and recognition of different keystrokes.
Zhu et al. proposed a context-free geometry-based approach
for recognizing keystrokes that leverage the acoustic eman-
ations from keystrokes to first calculate the time difference
of keystroke arrival and then estimate the physical locations
of the keystrokes to identify which keys are pressed [3].

Electromagnetic Emissions Based Vuagnoux et al.
used a USRP to capture the electromagnetic emanations
while pressing the keys [4]. These electromagnetic emana-
tions originated from the electrical circuit underneath each
key in conventional keyboards. The authors proposed to cap-
ture the entire raw electromagnetic spectrum and process it
to recognize the keystrokes. Unfortunately, this scheme is
highly susceptible to background electromagnetic noise that
exists in almost all environments these days such as due to
microwave ovens, refrigerators, and televisions.

Video Camera Based Balzarotti et al. proposed
ClearShot that processes the video of a person typing to
reconstruct the sentences (s)he types [5]. The authors pro-
pose to use context and language sensitive analysis for re-
constructing the sentences.

3. CHANNEL STATE INFORMATION
Modern WiFi devices that support IEEE 802.11n/ac

standard typically consist of multiple transmit and mul-
tiple receive antennas and thus support MIMO. Each MIMO
channel between each transmit-receive (TX-RX) antenna
pair of a transmitter and receiver comprises of multiple sub-
carriers. These WiFi devices continuously monitor the state
of the wireless channel to effectively perform transmit power
allocations and rate adaptations for each individual MIMO
stream such that the available capacity of the wireless chan-
nel is maximally utilized [23]. These devices quantify the
state of the channel in terms of CSI values. The CSI val-
ues essentially characterize the Channel Frequency Response
(CFR) for each subcarrier between each transmit-receive
(TX-RX) antenna pair. As the received signal is the res-
ultant of constructive and destructive interference of several
multipath signals scattered from the walls and surrounding
objects, the disturbances caused by movement of hands and
fingers while typing on a keyboard near the WiFi receiver
not only lead to changes in previously existing multipaths
but also to the creation of new multipaths. These changes
are captured in the CSI values for all subcarriers between
every TX-RX antenna pair and can then be used to recog-
nize keystrokes.

Let MT denote the number of transmit antennas, MR de-
note the number of receive antennas and Sc denote the num-
ber of OFDM sub-carriers. Let Xi and Yi represent theMT

dimensional transmitted signal vector and MR dimensional
received signal vector, respectively, for subcarrier i and let
Ni represent an MR dimensional noise vector. AnMR×MT

MIMO system at any time instant can be represented by the
following equation.

Yi = HiXi +Ni i ∈ [1, Sc] (1)

In the equation above, the MR ×MT dimensional channel
matrix Hi represents the Channel State Information (CSI)
for the sub-carrier i. Any two communicating WiFi devices
estimate this channel matrix Hi for every subcarrier by reg-

92

ularly transmitting a known preamble of OFDM symbols
between each other. For each Tx-Rx antenna pair, the driver
of our Intel 5300 WiFi NIC reports CSI values for Sc = 30
OFDM subcarriers of the 20 MHz WiFi Channel [24]. This
leads to 30 matrices with dimensions MR × MT per CSI
sample.

4. NOISE REMOVAL
The CSI values provided by commodity WiFi NICs are

inherently noisy because of the frequent changes in internal
CSI reference levels, transmit power levels, and transmis-
sion rates. To use CSI values for recognizing keystrokes, such
noise must first be removed from the CSI time series. For
this, WiKey first passes the CSI time series from a low-
pass filter to remove high frequency noises. Unfortunately, a
simple low pass filter does not denoise the CSI values very ef-
ficiently. Although strict low-pass filtering can remove noise
further, it causes loss of useful information from the signal as
well. To extract useful signal from the noisy CSI time series,
WiKey leverages our observation that the variations in the
CSI time series of all subcarriers due to the movements of
hands and fingers are correlated. Therefore, it applies Prin-
cipal Component Analysis (PCA) on the filtered subcarriers
to extract the signals that only contain variations caused by
movements of hands. Next, we first describe the process of
applying the low-pass filter on the CSI time series and then
explain how WiKey extracts hand and finger movement sig-
nal using our PCA based approach.

4.1 Low Pass Filtering
The frequency of variations caused due to the movements

of hands and fingers lie at the low end of the spectrum
while the frequency of the noise lies at the high end of the
spectrum. To remove noise in such a situation, Butterworth
low-pass filter is a natural choice which does not signific-
antly distort the phase information in the signal and has
a maximally flat amplitude response in the passband and
thus does not distort the hand and finger movement signal
much. WiKey applies the Butterworth filter on the CSI time
series of all subcarriers in each TX-RX antenna pair so that
every stream experiences similar effects of phase distortion
and group delay introduced by the filter. Although this pro-
cess helps in removing some high frequency noise, the noise
is not completely eliminated because Butterworth filter has
slightly slow fall off gain in the stopband.

We observed experimentally that the frequencies of the
variations in CSI time series due to hand and finger move-
ments while typing approximately lie anywhere between 3Hz
to 80 Hz. As we sample CSI values at a rate of Fs = 2500
samples/s, we set the cut-off frequency ωc of the Butter-
worth filter at ωc = 2π∗f

Fs

= 2π∗80
2500

≈ 0.2 rad/s. Figure

2(a) shows the amplitudes of the unfiltered CSI waveform
of a keystroke and Figure 2(b) shows the resultant from the
Butterworth filter. We observe that Butterworth filter suc-
cessfully removes most of the bursty noises from the CSI
waveforms.

4.2 PCA Based Filtering
We observed experimentally that the movements of hands

and fingers results in correlated changes in the CSI time
series for each subcarrier in every transmit-receive antenna
pair. Figure 3 plots the amplitudes of CSI time series of 10
different subcarriers for one transmit-receive antenna pair

0 500 1000 1500
10

11

12

13

14

15

16

17

18

19

Sample

A
m

p
li
tu

d
e

(a) Original time series

0 500 1000 1500
11

12

13

14

15

16

17

Sample

A
m

p
li

tu
d

e

(b) Filtered time series

Figure 2: Original and filtered CSI time series

while a user was repeatedly pressing a key. We observe from
this figure that all subcarriers show correlated variations in
their time series when the user presses the keys. The sub-
carriers that are closely spaced in frequency show identical
variations whereas the subcarriers that farther away in fre-
quency show non-identical changes. Despite non-identical
changes, a strong correlation still exists even across the sub-
carriers that are far apart in frequency. WiKey leverages this
correlation and calculates the principal components from all
CSI time series. It then chooses those principal components
that represent the most common variations among all CSI
time series.

2000 4000 6000 8000

1.8
2

2.2
2.4
2.6

2000 4000 6000 8000

3

4

A
b

s
o

lu
te

 V
a

lu
e

0 2000 4000 6000 8000

7

8

9

0 2000 4000 6000 8000

9
10
11
12
13

0 2000 4000 6000 8000

12

14

16

Sample

(a) # 1,2,3,4,5

2000 4000 6000 8000

12

14

16

2000 4000 6000 8000

12

14

16

0 2000 4000 6000 8000

9

10

0 2000 4000 6000 8000

18

20

22

0 2000 4000 6000 8000

2

2.5

3

Sample

(b) # 5,10,15,20,25

Figure 3: Correlated variations in subcarriers

There are two main advantages of using PCA. First, PCA
reduces the dimensionality of the CSI information obtained
from the 30 subcarriers in each TX-RX stream, which is
useful because using information from all subcarriers for
keystroke extraction and recognition significantly increases
the computational complexity of the scheme. Consequently,
PCA automatically enables WiKey to obtain the signals that
are representative of hand and finger movements, without
having to devise new techniques and define new parameters
for selecting appropriate subcarriers for further processing.
Second, PCA helps in removing noise from the signals by
taking advantage of correlated varations in CSI time series
of different subcarriers. It removes the uncorrelated noisy
components, which can not be removed through traditional
low pass filtering. This PCA based noise reduction is one
of the major reasons behind high keystroke extraction and
recognition accuracies of our scheme.

93

5. KEYSTROKE EXTRACTION
WiKey segments the CSI time series to extract the CSI

waveforms for individual keystrokes. For this, WiKey oper-
ates on the CSI time series resulting from the butterworth
filtering. Let Ht,r(i) be an Sc×1 dimensional vector contain-
ing the CSI values of the Sc subcarriers between an arbitrary
TX-RX antenna pair t− r for the ith CSI sample. Let Ht,r

be an N × Sc dimensional matrix containing the CSI values
of the Sc subcarriers between an arbitrary TX-RX antenna
pair t − r for N consecutive CSI samples. This matrix is
given by the following equation.

Ht,r = [Ht,r(1)|Ht,r(2)|Ht,r(3)|...|Ht,r(N)]T (2)

The columns of the matrix Ht,r represent the CSI time series
for each OFDM subcarrier. To detect the starting and end-
ing points of any arbitrary key, WiKey first normalizes the
Ht,r matrix such that every CSI stream has zero mean and
unit variance. We denote the normalized version of Ht,r by
Zt,r. WiKey then performs the PCA based dimensionality
reduction and denoising (as described in Section 4.2) on Zt,r

and the resultant waveforms are further processed to detect
the starting and ending points of the keystrokes from this
particular TX-RX antenna pair. WiKey repeats this pro-
cess on the CSI time series for all antenna pairs and obtains
values for starting and ending points for keys based on the
CSI time series from each antenna pair one by one. Finally,
WiKey combines the starting and ending points obtained
from all TX-RX antenna pairs to calculate a robust estimate
of starting and ending points of the time windows contain-
ing those keystrokes. Next we explain these steps in more
detail.

5.1 PCA on Normalized Stream
Let Φ

{1:p}
Z be an Sc × p dimensional matrix that contains

the top p principal components obtained from PCA on Zt,r.
We remove the first component from those top p principal
components based on our observation that the first compon-
ent captures majority of the noise, while subsequent com-
ponents contain information about movements of hands and
fingers while typing. This happens because PCA ranks prin-
cipal components in descending order of their variance, due
to which the noisy components with higher variance gets
ranked among top principal components. Due to correlated
nature of variations in multiple CSI time series, the removal
of this PCA component does not lead to any significant in-
formation loss as remaining PCA components still contain
enough information required for successfully detecting start-
ing and ending points of the keystrokes.

If we exclude the first component, the projection of the
CSI stream Zt,r of t-r transmit-receive antenna pair onto the

remaining principal components Φ
{2:p}
Z can then be written

as:

Z
{2:p}
t,r = Zt,r × Φ

{2:p}
Z (3)

where Z
{2:p}
t,r is an N × (p− 1) dimensional matrix contain-

ing the projected CSI streams in its columns. We choose
the p = 4 in our implementation based on our observation
that only top 4 principal components contained most signi-
ficant variations in CSI values caused by different keystrokes.
Figure 4(a) shows the result of projecting normalized CSI
time series Zt,r onto its top 4 principal components. We ob-
serve from Figure 4(b) that by removing the first principle

1000 2000 3000 4000 5000 6000 7000

−1

0

1

2

3

4

5

6

7

Sample

P
ro

je
c

te
d

 C
S

I
v

a
lu

e
s

PCA 1

PCA 2

PCA 3

PCA 4

(a) Top 4 projections

1000 2000 3000 4000 5000 6000 7000

−1

0

1

2

3

4

5

6

7

Sample

P
ro

je
c
te

d
 C

S
I
v
a
lu

e
s

PCA 2

PCA 3

PCA 4

(b) Projections 2, 3 & 4

Figure 4: PCA of Z-normalized CSI stream Zt,r

component, we essentially remove the most noisy projection
among the all 4 projections of Zt,r.

5.2 Keystroke Detection
Although existing DFAR schemes propose techniques to

automatically detect the start and end of activities, they
can not be directly adapted for use in detecting the start
and end of keystrokes. Existing schemes use simple threshold
based algorithms for detecting the start and end of activit-
ies. While, threshold based schemes work well for macro-
movements, they are not well suited for micro-movements
such as those of hands and fingers while typing, where we
need to precisely segment time series of keystrokes that are
closely spaced in time. Unlike general purpose threshold
based algorithms, we propose a keystroke detection al-
gorithm that provides better detection accuracy, since it
is strictly based on the experimentally observed shapes of
different keystroke waveforms. The intuition behind our al-
gorithm is that the CSI time series of every keystroke shows
a typical increasing and decreasing trend in rates of change
in CSI time series, similar to the one shown in Figure 2. To
detect such increase and decrease in rates of change in CSI
time series, our algorithm uses a moving window approach to
detect the increasing and decreasing trends in rates of change
in all p−1 time series for each transmit-receive antenna pair
i.e., on each column of Z2:p

t,r . Our algorithm detects the start-
ing and ending points of keystrokes in following six steps.

First, the algorithm calculates the mean absolute devi-
ation (MAD) for each of the p− 1 time series for each win-
dow of size W at j-th iteration. This is done primarily to
detect the extent of variations in the values of a given time
series. The main reason behind choosing MAD instead of
variance is that in calculating, the deviations from the mean
are squared which gives more weight to extreme values. In

94

cases where a time series contains outliers, this results in
undue weight given to those outlying values and that sig-
nificantly corrupts the measure of deviation. The MAD is
calculated using following equation.

△mj [k] =

∑j+W

i=j
|Z{k}

t,r (i)− Z
{k}
t,r (j : j +W)|

W
(4)

where Z
{k}
t,r (j : j+W) represents the vector of means of the

kth projected CSI stream in j-th window. It calculates the
value of △mj for each sample point j and for the principle
components 2 ≤ k ≤ p.

Second, the algorithm adds the mean absolute deviations
in each waveform to calculate a combined measure △Mj

of MAD in all p − 1 waveforms, which is calculated in the
following equation.

△Mj =

p∑

k=2

△mj [k] (5)

Third, the algorithm compares △Mj to a heuristically set
threshold Thresh. Let δj = △Mj − Thresh, then δj > 0
shows that the current window j contains significant vari-
ations in CSI amplitudes.

Fourth, the algorithm compares δj to its value in last win-
dow δj−1 to detect increasing or decreasing trend in detec-
ted variations. When δj − δj−1 > 0, there is an increasing
trend in the rate of change in combined MAD (△Mj) of CSI
time series and vice versa. These increasing and decreas-
ing trends are captured in variables iu and du, respectively.
The algorithm increments the value of iu by 1 whenever
δj − δj−1 > 0 and du by 1 whenever δj − δj−1 < 0. Let
σ represent forgetting factor, which is used to “forget” the
variations caused by noise to avoid false positives. To forget
such variations, the algorithm decrements both iu and du by
1 if △Mj < Thresh for a duration of σW .

Fifth, as soon as the values of iu and du exceed empir-
ically determined thresholds Iu and Du, respectively, the
algorithm detects the start of the keystroke. As soon as the
algorithm detects a keystroke, it estimates the starting point
sm and ending point em of the keystroke waveforms using
following equations.

sm = j − βW −Bleft (6)

em = j − βW + tavg +Bright (7)

where tavg is the average number of data points spanned by
waveforms of different keystrokes, β is the span factor which
determines the estimated starting point of the keystroke and
Bleft and Bright are guard intervals on both sides of the
estimated keystroke interval. The guard intervals ensure that
the detected keystroke waveforms are complete.

Last, our algorithm calculates the sum of powers in all
waveforms lying within those starting and ending points
and then compares this combined power with a sum power
threshold (Pavg) to confirm the presence of a complete key-
stroke within that interval. This ensures that the training
models are built using only those waveforms which contain
complete shapes of the keystrokes. Once keystroke detec-
tion is confirmed, the algorithm finally returns the starting
point (sm) of the detected keystroke and jumps △tavg data
points ahead of sm to look for next keystroke, where △tavg

is the average number of data points between arrival of two
consecutive keystrokes. From the CSI data set we collected

from our volunteers, we observed that on average the wave-
forms of a keystroke spanned tavg ≈ 650 data points and
average number of data points between arrival of two con-
secutive keystrokes was △tavg ≈ 1250 data points at the
CSI sampling rate of Fs = 2500 samples/s. We empirically
determined appropriate values for the remaining constants
including W , Du, Iu, σ, β, Bleft, Bright, Thresh and Pavg.

5.3 Combining Results from Antenna Pairs
As mentioned earlier, we obtain the starting points of key-

strokes independently from each TX-RX antenna pair. Let
St,r represent the set containing the starting points of all
keystrokes obtained from the keystroke detection algorithm
applied on the antenna pair t − r. First, we obtain the set
St,r for each t − r pair. Second, we take the average of all
the starting points that are within △tavg of each other in
all sets St,r to obtain a robust estimate of starting points of
keystrokes. Third, based on experimentally measured aver-
age span tavg of different keystrokes, we calculate the ending
points of all keystrokes by simply adding tavg to the corres-
ponding starting point.

5.4 Extracting Keystroke Waveforms
Once the algorithm calculates the set of starting and cor-

responding ending points for keystrokes, we use those points
to extract the waveforms from CSI matrix Ht,r. Let Km,t,r

represent the CSI waveform of mth keystroke extracted from
the antenna pair t-r. Let sm represent the average of the
starting points for the mth keystroke from all antenna pairs.
We can express Km,t,r in terms of Ht,r follows.

Km,t,r = Ht,r(sm : sm + tavg) (8)

After extracting the CSI waveforms Km,t,r from all sub-
carriers of the t-r antenna pair, we apply PCA on those CSI
waveforms to remove the noisy components and obtain the
components that represent the variations caused by move-
ments of hands and fingers.

Unlike principle components derived from normalized
streams, it is difficult to decide which PCA component rep-
resents noise and should be removed from the top p principal
components for the case of Km,t,r. The difficulty arises be-
cause Km,t,r contains the set of waveforms for a specific
keystroke instead of the whole CSI stream, due to which
the variance of noisy component often becomes small. We
observe that the noisy PCA component keeps changing po-
sitions between 1st and 2nd place among the sorted PCA
components for different extracted keystroke waveforms. In
order to get rid of this problem, we first project Km,t,r onto

all top q principal components. Let Φ
{1:q}
K be an Sc × q di-

mensional matrix that represent the top q principal compon-

ents in Km,t,r obtained after applying PCA and K
{1:q}
m,t,r be

an L × q dimensional matrix containing the projected CSI
streams in its columns, where L is the length of segmented

keystroke waveform. Thus, K
{1:q}
m,t,r is given by the following

equation.

K
{1:q}
m,t,r = Km,t,r × Φ

{1:q}
K (9)

In our implementation, we choose q = 4. This choice is again
based on the observation that the top 4 principal compon-
ents contain enough information about keystrokes required
to achieve high accuracy during classification.

To detect which waveform in K
{1:q}
m,t,r represents the noisy

projection, we chose the top 2 projected waveforms and di-

95

vide each of them into R bins and calculate the variances
in those bins. We then compare the variances calculated for
different bins of one waveform with the corresponding bins
of the other waveform. The waveform that has larger num-
ber of higher variance bins is considered to be the noisy

projection, which we remove from K
{1:q}
m,t,r to finally get q−1

waveforms. Here we leverage the fact that although over-
all variance of a noisy projection may be smaller than the
variance of other waveforms, but if the waveform is divided
into appropriate number of smaller bins then the number of
bins in which the variance of the noisy projection is higher
than the corresponding bins of other waveforms is always
larger. This is because the impact of noise is more dominant
in smaller time windows compared to larger time windows.
We used R=10 in our implementation of WiKey.

PCA can lead to different ordering of principal compon-
ents in waveforms of different keystrokes of the same key, be-
cause the ordering of waveforms done by PCA is based solely
on the value of their variance, which can change even if a
key is pressed in a slightly different way. This is problematic
because to recognize the keystrokes, we need to compare the
projections of an unseen key with the corresponding projec-
tions of the keys in the training data. In order to minimize
the possibility of reordering, we order the projected key-
stroke waveforms in descending order of their peak to peak
values before using the waveforms for feature extraction and
classifier training.

6. FEATURE EXTRACTION
To differentiate between keystrokes, we need to extract

features that can uniquely represent those keystrokes. As
different keys on a keyboard are closely placed, standard fea-
tures such as maximum peak power, mean amplitude, root
mean square deviation of signal amplitude, second/third
central moments, rate of change, signal energy or entropy,
and number of zero crossings cannot be used because ad-
jacent keys give almost the same values for these features.
Tables 1 and 2 show means and variances of some of these
features calculated for 2nd waveform in the extracted CSI-
waveforms for keystrokes of alphabetic keys pressed by a
users. It can be observed that the values of these features
for different keys (for example ‘c’ and ‘d’) come out to be
very similar. Looking at the means calculated for features
like energy and number of zero crossings in Table 1, it seems
that they have different values for different keys. But as we
observe from Table 2, the variance of those features is high.
Due to the reasons above, it becomes infeasible to use these
features for keystroke classification. Frequency analysis is
also not feasible because the frequency components in key-
strokes of many different keys are similar. Another reason
behind inapplicability of frequency domain analysis is that
they lead to complete loss of time domain information.

From our data set, we have observed that although the
frequency components in most keys are similar, they occur
at different time instants for different keys. Therefore, we use
shapes of the extracted keystroke waveforms as their features
because the shapes retain both time and frequency domain
information of the waveforms and are thus more suited for
use in classification. We observed experimentally that the
shapes of different keystroke waveforms were quite different
from each other, as shown by Figure 5(a) and 5(b).

Directly using the extracted keystroke waveforms as key-
stroke features leads to high computational costs in the

classification process because waveforms contain hundreds
of data points per keystroke. Therefore, we apply Discrete
Wavelet Transform (DWT) to compress the extracted key-
stroke waveforms while preserving most of the time and fre-
quency domain information.

The DWT of a discrete signal y[n] can be written in terms
of wavelet basis functions as:

y[n] =
1√
L

∑

k

λ(j0, k)ϕj0,k(n) +
1√
L

∞∑

j=j0

∑

k

γ(j, k)ψj,k(n)

where L represents the length of signal y[n]. The functions
ϕj,k(n) are called scaling functions, where as the correspond-
ing coefficients λ(j, k) are known as scaling or approximation
coefficients. Similarly, the functions ψj,k(n) are known as
wavelet functions and the corresponding coefficients γ(j, k)
are known as wavelet or detail coefficients. To calculate ap-
proximation and detail coefficients, the scaling and wavelet
functions are chosen such that they are orthonormal to each
other. Thus, the following condition holds.

〈ψj,k(n), ϕj0,m(n)〉 = δj,j0δk,m

Based on the condition above, the approximation and detail
coefficients calculated for j-th scale can then be written as:

λ(j, k) = 〈y[n], ϕj+1,k(n)〉 = 1√
L

∑

n

y[n]ϕj+1,k(n)

γ(j, k) = 〈y[n], ψj+1,k(n)〉 = 1√
L

∑

n

y[n]ψj+1,k(n)

To achieve desired compression using DWT, we need to
select appropriate wavelet and scaling filters. We tested the
accuracy of our classifier using two different wavelet filters:
Daubechies and Symlets. We choose Daubechies D4 (four
coefficients per filter) wavelet and scaling filters because
the models trained with the DWT features extracted us-
ing these filters achieved higher classification accuracy. For
each keystroke, we perform DWT 3 times on each one of
its (q − 1) = 3 waveforms, which is achieved by applying
DWT on the approximation coefficients obtained from the
previous steps. We choose to apply DWT 3 times because
this preserves enough details of those waveforms required for
successful classification while achieving maximum compres-
sion. WiKey uses only the approximation coefficients as key-
stroke features and discards the detail coefficients because
approximation coefficients alone result in good classification
accuracy. Therefore, we have 3×MT ×MR keystroke shapes
for every keystroke, i.e. the approximation coefficients of all
3 waveforms extracted from the CSI time series in each TX-
RX antenna pair, where MT is the number of transmitting
antennas and MR is the number of receiving antennas. Fig-
ures 5(a) through 5(d) show feature extraction procedure
performed on the 2nd keystroke waveforms for keys ‘i’ and
‘o’, extracted from TX-1, RX-1 antenna pair.

7. CLASSIFICATION
After obtaining DWT based shape features of keystrokes,

WiKey builds training models for classification using them.
As WiKey needs to compare shape features of different key-
strokes, we need a comparison metric that provides an effect-
ive measure of similarity between shape features of two key-
strokes. WiKey uses a well-known method called dynamic
time warping (DTW) that calculates the distance between

96

0 200 400 600 800
−2

−1

0

1

2

3

Sample

V
a
lu

e

0 200 400 600 800
−2

−1

0

1

2

3

sample

V
a
lu

e

1
2
3

1
2
3

(a) Keystroke waveforms for key i

0 200 400 600 800
−2

−1

0

1

2

3

sample

V
a
lu

e

0 200 400 600 800
−4

−2

0

2

4

6

Sample

V
a
lu

e

1
2
3

1
2
3

(b) Keystroke waveforms for key o

0 50 100
−4

−3

−2

−1

0

1

2

temporal units

A
p

p
ro

x
im

a
ti

o
n

 C
o

e
e

ff
ic

ie
n

ts

(c) DWT features of i

from 2nd waveforms

0 50 100
−4

−2

0

2

4

temporal units

A
p

p
ro

x
im

a
ti

o
n

 C
o

e
ff

ic
ie

n
ts

(d) DWT features of o

from 2nd waveforms

Figure 5: Feature extraction from 2nd keystroke waveforms extracted from TX-1, RX-1 for I and O

Table 1: Average values of features extracted from keystrokes of keys a-z collected from user 10
Features a b c d e f g h i j k l m n o p q r s t u v w x y z

Mean amplitude -0 -0.04 0.0124 -0.03 0.045 -0.043 -0.076 -0.06 0.014 -0.03 0.03 -0.01 -0 0.032 0.02 0.03 -0.012 0.008 0.054 7E-04 -0.013 -0.02 -0 -0.1 -0.02 0.06
Second central moment 0.08 0.133 0.0801 0.083 0.156 0.1818 0.6523 0.263 0.12 0.231 0.33 0.11 0.1 0.108 0.09 0.19 0.1022 0.051 0.245 0.192 0.062 0.12 0.097 0.26 0.09 0.21
Third central moment 0.02 -0.03 0.0036 -0.01 0.029 -0.06 -0.919 -0.05 -0.01 -0.1 0.05 0.02 -0 0.01 0.01 0.04 -0.006 0.003 0.098 -0.101 -0.01 0.029 0.023 -0 -0.02 0.04

RMS deviation 0.27 0.359 0.2782 0.285 0.385 0.4244 0.7899 0.506 0.332 0.472 0.57 0.32 0.3 0.323 0.29 0.43 0.3137 0.222 0.472 0.434 0.242 0.335 0.306 0.5 0.3 0.45
Energy 71.5 116.6 69.788 73.34 137.5 159.43 570.8 232.1 104.8 201.4 288 95.2 83.7 94.98 75.6 167 88.928 44.22 215.5 167.1 54.56 104.4 84.48 227 81.5 182

Entropy 9.76 9.762 9.7616 9.762 9.762 9.7616 9.7616 9.762 9.762 9.762 9.76 9.76 9.76 9.762 9.76 9.76 9.7616 9.762 9.762 9.762 9.762 9.762 9.762 9.76 9.76 9.76
Zero Crossings 11.8 6.913 12.363 6.225 6.4 4.375 4.075 3.4 12.08 9.088 6.05 13.7 10 9.063 13.8 12.9 11.85 15.41 6.35 12.85 16.75 11.88 14.3 6.48 10.1 7.55

waveforms by performing optimal alignment between them.
Using DTW distance as the comparison metric between key-
stroke shape features, WiKey trains an ensemble of k-nearest
neighbour (kNN) classifiers using those features from all TX-
RX antenna pairs. WiKey obtains decisions from each clas-
sifier in the ensemble and uses majority voting to obtain
final result. Next, we first explain how we apply DTW on
the keystroke shape features and then explain how we train
the ensemble of classifiers.

7.1 Dynamic Time Warping
DTW is a dynamic programming based solution for ob-

taining minimum distance alignment between any two wave-
forms. DTW can handle waveforms of different lengths and
allows a non-linear mapping of one waveform to another by
minimizing the distance between the two. In contrast to Eu-
clidean distance, DTW gives us intuitive distance between
two waveforms by determining minimum distance warping
path between them even if they are distorted or shifted
versions of each other. DTW distance is the Euclidean dis-
tance of the optimal warping path between two waveforms
calculated under boundary conditions and local path con-
straints [25]. In our experiments, DTW distance proves to
be very effective metric for comparing two shape features of
different keystrokes. WiKey uses the open source implement-
ation of DTW in the Machine Learning Toolbox (MLT) by
Jang [26]. WiKey uses local path constraints of 27, 45, and
63 degrees while determining minimum cost warping path
between two waveforms. For the features extracted for keys
‘i’ and ‘o’ shown in figures 5(a) and 5(b), the DTW distance
among features of key ‘i’ was 18.79 and the DTW distance
among features of key ‘o’ was 19.44. However, the average
DTW distance between features of these keys was 44.2.

7.2 Classifier Training
To maximize the advantage of having multiple shape fea-

tures per keystroke obtained from multiple transmit-receive
antenna pairs, we build separate classifiers for each of those
shape features. We build an ensemble of 3×MT ×MR clas-
sifiers using kNN classification scheme. WiKey requires the
user to provide training data for the keystrokes to be recog-
nized and each classifier is trained using the corresponding
features extracted from CSI time series from all TX-RX an-

tenna pairs. To classify a detected keystroke, WiKey feeds
the shape features of that keystroke to their corresponding
kNN classifiers and obtains a decision from each classifier in
the ensemble. Each kNN classifier searches for the majority
class label among k nearest neighbors of the corresponding
shape feature using DTW distance metric. WiKey calculates
the final result through majority voting on the decisions of
all kNN classifiers in the ensemble.

8. IMPLEMENTATION & EVALUATION

8.1 Hardware Setup
We implemented our scheme using off-the-shelf hardware

devices. Specifically, we use a Lenovo X200 laptop with Intel
Link 5300 WiFi NIC as the receiver that connects to the
three antennas of the X200 laptop. The X200 laptop has
2.26GHz Intel Core 2 Duo processor with 4GB of RAM and
Ubuntu 14.04 as its operating system. We used TP-Link TL-
WR1043NDWiFi router as transmitter operating in 802.11n
APmode at 2.4GHz. We collect the CSI values from the Intel
5300 NIC using a modified driver developed by Halperin et
al. [24]. The transmitter has 2 antennas and the receiver has
3 antennas, i.e.,MT = 2 andMR = 3. This gives 3×2×3 =
18 classification models for each key in our evaluations.

We place the X200 laptop at a distance of 30 cm from
the keyboard such that the back side of its screen faces the
keyboard on which the users type and its screen is within the
line-of-sight (LOS) of the WiFi router it is connected to. The
distance of WiFi router from the target keyboard is 4 meters.
The CSI values are measured on ICMP ping packets sent
from the WiFi router, i.e., the TP-Link TL-WR1043ND, to
the laptop at high data rate of about 2500 packets/s. Setting
a higher ping frequency leads to higher sampling rate of CSI,
which ensures that the time resolution of the CSI values is
high enough for capturing maximum details of different type
of keystrokes.

8.2 Data Collection
To evaluate the accuracy of WiKey, we collected train-

ing and testing dataset from 10 users. These 10 users were
general university students who volunteered for the experi-
ments and only 2 out of them had some know how of wire-
less communication. Users 1–9 first provided 30 samples for

97

Table 2: Variance of different features extracted from keystrokes of keys a-z collected from user 10
Features a b c d e f g h i j k l m n o p q r s t u v w x y z

Mean amplitude 0.00029 4E-04 0.0003 1E-04 4E-04 0.0002 0.0003 8E-04 5E-04 5E-04 5E-04 2E-04 5E-04 3E-04 3E-04 5E-04 0.0003 0.00018 6E-04 4E-04 3E-04 1E-04 3E-04 4E-04 6E-04 4E-04
Second central moment 0.00513 0.003 0.0011 0.001 0.007 0.0028 0.1008 0.012 0.005 0.009 0.016 0.006 0.002 0.003 0.002 0.007 0.0017 0.00041 0.03 0.003 0.001 0.006 0.002 0.007 0.003 0.005
Third central moment 0.00155 9E-04 0.0001 2E-04 0.002 0.0033 0.7021 0.002 0.001 0.007 0.009 0.017 5E-04 3E-04 5E-04 0.003 0.0003 7.70E-05 0.024 0.003 1E-04 0.015 9E-04 0.001 6E-04 0.003

RMS deviation 0.0108 0.006 0.0031 0.004 0.011 0.0038 0.0348 0.011 0.011 0.01 0.012 0.009 0.006 0.005 0.004 0.008 0.0042 0.00196 0.026 0.004 0.004 0.008 0.004 0.007 0.007 0.007
Energy 3874.59 2283 816.91 912.4 5204 2160 76863 9315 3925 6846 12094 4883 1679 2153 1150 5048 1296.2 308.95 23201 2181 886.9 4714 1403 5166 2100 4147

Entropy 0
Zero Crossings 26.3859 12.36 33.196 12.94 9.433 6.2627 3.9943 3.585 44.91 13.14 12.58 31.14 28.51 15.25 29.24 24.09 21.673 17.3847 12.21 17.7 36.85 21.63 27.71 13.67 31.49 6.529

each of the 37 keys (26 alphabets, 10 digits and 1 space bar)
by pressing that key multiple times. After this, these users
typed the sentence S1 = “the quick brown fox jumped over
the lazy dog” two times, without spaces.

To evaluate how the number of training samples impact
the accuracy, we collected 80 samples for each of the 37 keys
from User 10. Afterwards, this user typed each of the follow-
ing sentences 5 times, without spaces: S1 =“the quick brown
fox jumps over the lazy dog”, S2 = “nobody knew why the
candles blew out”, S3 =“the autumn leaves look like golden
snow”, S4 = “nothing is as profound as the imagination”
and S5 = “my small pet mouse escaped from his cage”. We
asked users to type naturally with multiple fingers but only
press one key at a time while keeping the average keystroke
inter-arrival time at 1 second. After recording the CSI time
series for each of the above experiments, we first applied our
keystroke extraction algorithm on those recorded CSI time
series to extract the CSI waveforms for individual keys and
then extracted the DWT based shape features from each of
the extracted keystroke waveforms.

8.3 Keystroke Extraction Accuracy
We evaluate the accuracy of our keystroke extraction al-

gorithm in terms of the detection ratio, which is defined as
the total number of correctly detected keystrokes in a CSI
time series divided by the total number of actual keystrokes.

The detection ratio of our proposed algorithm is more than
97.5%. Figure 6(a) shows the color map showing the percent-
age of the missed keystrokes of all 37 keys for all 10 users.

U
s
e
rs

Keys
SPa b c d e f g h i j k l mn o p q r s t u v w x y z 1 2 3 4 5 6 7 8 9 0

1

2

3

4

5

6

7

8

9

10

(a) Colormap for missed keys

1 2 3 4 5 6 7 8 9 10

86

88

90

92

94

96

98

Users

E
x
tr

a
c
ti

o
n

 r
a
te

 (
%

)

(b) Keystroke extraction rates
per user averaged over all keys

Figure 6: Keystroke extraction results

The darker areas represent higher rate of missed key-
strokes. We can observe from this figure that the number
of missed keystrokes vary for different individuals depend-
ing upon their typing behaviors. For example we observed
that the keystrokes of user 4 were missed in higher per-
centage with average detection ratio of 91.8% whereas the
keystrokes of user 10 were not missed at all with average de-
tection ratio of 100% calculated over all 37 keys. The lower
extraction accuracy for user 4 shows that more keystrokes
were missed, which is due to the significant difference in his
typing behavior compared to other users. The accuracy of
our scheme for such a user can be increased significantly by
tuning the parameters of our algorithm for the given user.

We also observe from this figure that the keystrokes that are
missed are usually those for which fingers move very little
when typing. For example, in pressing keys ‘a’, ‘d’, ‘f’, ‘i’, ‘j’
and ‘x’ the hands and fingers move very little, and thus the
variations in the CSI values sometimes go undetected. Fig-
ure 6(b) shows the keystroke extraction rate for each user
averaged over all 37 keys. The experimental results show
that our keystroke extraction algorithm is robust because it
consistently achieves high performance over different users
without requiring any user specific tuning of system para-
meters.

8.4 Classification Accuracy
We evaluate the classification accuracy of WiKey through

two sets of experiments. In the first set of experiments, we
build classifiers for each of the 10 users using 30 samples
and measure the 10-fold cross validation accuracy of those
classifiers. In the second set of experiments, we build clas-
sifier for user 10 while increasing the number of samples
from 30 to 80 in order to observe the impact of increase in
the number of training samples on the classification accur-
acy. Cross validation automatically picks a part of data for
training and remaining for testing and does not use any data
in testing that was used in training. Recall that the WiKey
uses kNN classifiers for recognizing keys. In all of following
experiments, we set k = 15.

8.4.1 Accuracy with 30 Samples per Key

We evaluate the classification accuracy of WiKey in terms
of average accuracy per key and average accuracy on all
keys of any given user. We also present confusion matrices
resulting from our experiments. A confusion matrix tells
us which key was recognized by WiKey as which key with
what percentage. We calculate the average accuracy per key
by taking the average of confusion matrices obtained from
all users and average accuracy on all keys of any given user
by averaging the accuracy on all keys within the confusion
matrix of that user. For each user, we trained each classifier
using features from 30 samples of each key. We conducted
our experiments on all 37 keys as well as on only 26 alphabet
keys and performed 10-fold cross validation to obtain the
confusion matrices.

WiKey achieves an overall keystroke recognition accuracy
of 82.87% in case of 37 keys and 83.46% in case of 26 al-
phabetic keys when averaged over all keys and users. Fig-
ure 7 shows the recognition accuracy for each key across all
users for the 26 alphabetic keys. Similarly, Figure 8 shows
the recognition accuracy for each key across all users for all
37 keys. Figure 9 shows the average recognition accuracy
achieved by each user for both 26 keys and 37 keys. We ob-
serve that the recognition accuracy for 26 alphabetic keys is
on average greater than the recognition accuracy for the all
37 keys. This is because the keystroke waveforms of the digit
keys (0-9) often show similarity with keystroke waveforms of

98

alphabet keys in the keyboard row staring with QWE, which
leads to slightly greater number of misclassifications.

a b c d e f g h i j k l m n o p q r s t u v w x y z
65

70

75

80

85

90

Keys

A
c

c
u

ra
c

y
 (

%
)

Figure 7: Mean accuracy for keys A-Z (Users 1-10)

SPa b c d e f g h i j k l m n o p q r s t u v w x y z 1 2 3 4 5 6 7 8 9 0
65

70

75

80

85

90

Keys

A
c

c
u

ra
c

y
 (

%
)

Figure 8: Mean accuracy for all 37 keys (Users 1-10)

Figure 9: Per user average classifier accuracies

8.4.2 Accuracy vs. the Size for Training Set

To determine the impact of the number for training
samples on the accuracy of WiKey, we again perform two
sets of experiments: one for 26 alphabetic keys and other
for all 37 keys.

The accuracy of WiKey increases when the number of
training samples per key are increased from 30 to 80. Figure
10 shows the results from 10-fold cross validation for the 26
alphabetic keys when 80 training samples are used per key.
We observe from this figure that the recognition accuracy
increased from 88.3% (as seen in Figure 9) to 96.4% when
the number of training samples are increased from 30 to 80.
Figure 11 shows the results from 10-fold cross validation for
all 37 keys when 80 training samples are used per key. We
again observe that the recognition accuracy increased from
85.95% (as seen in Figure 9) to 89.7% when the number of
training samples are increased from 30 to 80. The gray-scale
maps of the confusion matrix obtained after 10-fold cross-
validation on 80 training samples of User 10 is shown in
Figure 12.

a b c d e f g h i j k l m n o p q r s t u v w x y z

70

75

80

85

90

95

100

Keys

A
c

c
u

ra
c

y
 (

%
)

Figure 10: Accuracy for keys A-Z from user 10

SPa b c d e f g h i j k l m n o p q r s t u v w x y z 1 2 3 4 5 6 7 8 9 0
70

75

80

85

90

95

100

Keys

A
c

c
u

ra
c

y
 (

%
)

Figure 11: Accuracy for all 37 keys from user 10

8.4.3 Effects of CSI Sampling Rate and Number of
Training Samples

In previous experiments, we used high CSI sampling rate
of 2500 samples/s. Furthermore, the 10-fold cross valida-
tion automatically chose 10% of the data for testing and
remaining 90% for training. Next, we evaluate the effect of
changing the CSI sampling rate and the percentage of data
used for training on accuracy. To extract keystrokes, we
halved the values used for W , Du, Iu, Bleft, and Bright.
We performed X−fold cross validation (2 ≤ X ≤ 10) on the
data obtained for alphabetic keys from user 10. Figure 13
plots the accuracies for number of folds varying from 2 to
10, where each plotted value if the average over all alpha-
bet keys. We observe from Figure 13 that the accuracies
dropped compared to previously achieved accuracy because
of the drop in resolution of keystroke shapes due to reduced
sampling rate. We also observe that recognition accuracies
of the keys for which hands and fingers move little were
affected the most. When 50% of data was used for train-
ing, i.e., for 2-fold cross validation, the accuracies for keys
‘j’,‘x’,‘v’ and ‘p’ dropped below 60%. However, the average
accuracy remained approximately 80% for all folds.

8.5 Real-world Evaluation on Sentences
To evaluate WiKey in real world scenarios, we collected

CSI data for different sentences typed by users 1-10 as men-
tioned earlier in Section 8.2. For recognition of keystrokes in
sentences, we performed training using the dataset of indi-
vidual keystrokes and the keystrokes extracted from datasets
obtained from typing the sentences were used as test data.

WiKey achieves an average keystroke recognition accur-
acy of 77.43% for typed sentences when 30 training samples
per key were used. For each user, we trained classifiers us-
ing 30 samples for each of the 26 alphabetic keys. We then
applied our keystroke extraction algorithm to first extract
waveforms of individual keys, applied PCA on them to de-
noise the waveforms and then extracted the shape features
for each extracted key and feeded them to the classifiers to

99

SP a b c d e f g h i j k l m n o p q r s t u v w x y z 1 2 3 4 5 6 7 8 9 0

SP
a
b
c
d
e
f
g
h
i
j

k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z
0
1
2
3
4
5
6
7
8
9

Figure 12: Color map of user 10’s confusion matrix

Cross Validation Folds
2 3 4 5 6 7 8 9 10

P
e

rc
e

n
ta

g
e

 A
c

c
u

ra
c

ie
s

50

55

60

65

70

75

80

85

90

Figure 13: Multifold cross-validated average ac-
curacies for user 10’s lower resolution keystrokes

recognize the keystrokes in the sentence. Figure 14 shows
the keystroke recognition accuracy for the sentences typed
by each user.

WiKey achieves an average keystroke recognition accuracy
is 93.47% in continuously typed sentences with 80 training
samples per key. We first trained classifiers using 80 samples
for each of the 26 alphabetic keys and then fed them with
keystrokes from typed sentences. Figure 15 shows the key-
stroke recognition accuracy for all the sentences (S1 to S5)
typed by user 10. The average keystroke recognition ac-
curacy rate for user 10 in previous experiment, which used
30 samples for training classifiers was just 80%. Thus, we
can conclude that increasing the number of training samples
increases the accuracy of WiKey.

Figure 14: Keystroke recognition for sentences col-
lected from all users using 30 samples per key

Figure 15: Keystroke recognition for sentences col-
lected from user 10 using 80 samples per key

9. LIMITATIONS
In this section, we discuss the key limitations of the cur-

rent implementation of WiKey.
Currently WiKey works well only under relatively stable

and controlled environments. The accuracy of our current
scheme is affected by variations in the environment such as
human motion in surrounding areas, changes in orientation
and distance of transceivers, typing speeds, and keyboard
layout and size. Next, we elaborate some limitations of our
current implementation of WiKey.

Interference Free Surroundings. During our experi-
ments, we assumed that the major motion is due to key-
strokes of the target user only and no other major motion
such as walking occurs in the room where CSI data is col-
lected. WiKey is currently designed for and tested with
only two persons in a room i.e. the person guiding the user
during data collection and the user himself. WiKey may
be extended to allow small movement in the environment
e.g. having multiple persons walking in a library, however
this would require training WiKey with the profiles of those
activities and adding the capability to subtract the wave-
forms of those activities to extract the waveforms of key-
strokes. Furthermore, most of the parameters used in our
keystroke extraction algorithm are scenario dependent and
need to be changed if CSI sampling rates or physical envir-
onment changes such as change in distance or orientation
of transceivers. In future, we plan to develop schemes for
automatic tuning of system parameters.

Devices Positioning. We tested the accuracy of WiKey
using the same keyboard for all users while keeping the
transceivers at the same distance and in same direction with
respect to the keyboard. Furthermore, we took all samples
from any given user on the same day because it took around
2 hours to get complete data from each user. It was diffi-
cult for the users to spare time to provide data for different
orientations and distances and on multiple days. Therefore,
we put the laptop at a fixed distance and direction from
the user and used maximum sampling rate to get maximum
information from CSI time series. Figures 16 and 17 show
the shapes of the waveforms for key ‘5’ when distance and
orientation of receiver is changed with respect to the tar-
get keyboard, while WiFi AP is at 2 meters distance from
the keyboard. We increased the distance linearly, while re-
maining in LOS of the transmitter. We observe from these
figures that not only the shapes of the waveforms change
but the measured variations (e.g. peak to peak values) due
to keystrokes also attenuate. Similarly, when changing ori-

100

100 200 300

-20

-10

0

10

50 cm

100 200 300

-20

-15

-10

-5

0

5

70 cm

100 200 300

-20

-10

0

10

90 cm

100 200 300

-20

-15

-10

-5

0

5

110 cm

Figure 16: Change in shape with RX distance

entation, we observed that as we orient away from LOS of
transmitter, the variations attenuate progressively. Similar
trends were observed when AP was placed at different dis-
tances from keyboard, while keeping the receiver 30cm from
keyboard, as shown in figure 19. These observations are con-
sistent with the results of previous studies [27] [28] that also
show that CSI values tend to be different at different loca-
tions in an area. Figure 18 shows how CSI waveforms of the
key look on different days. The dissimilarities in CSI wave-
forms can be attributed to inconsistencies in user’s typing
behavior on different days. As the shapes of waveforms tend
to differ on different days or when distance and orientation
of transceivers change, in its current form, WiKey needs to
be trained in each given scenario.

100 200 300 400

-20

-15

-10

-5

0

45o

100 200 300

-20

-15

-10

-5

0

90o

100 200 300

-20

-15

-10

-5

0

5

10

0o

Figure 17: Change in shape of with angle

100 200 300

-50

-40

-30

-20

-10

0

10

Day 2

50 100 150 200

-60

-40

-20

0

20

40

Day 3

100 200 300

-50

-40

-30

-20

-10

0

10
Day 1

Figure 18: Change in shape with days

50 100 150 200

-5

0

5

4m

50 100 150 200

-10

-5

0

5

10
6m

100 200 300

-20

-15

-10

-5

0

5

10

2m

Figure 19: Change in shape with AP distance

Controlled Typing. During data collection, we instructed
the users not to move their heads or other body parts signi-
ficantly while typing. However, we allowed natural motions
which occur commonly when a person types, such as eye
winking and movements in the arm, shoulder and fingers on
the side of the hand being used for typing. We also instruc-
ted the users to type one key at a time while keeping the
inter arrival time of keystrokes between 0.5 to 1 second to
facilitate correct identification of start and end times of key-
strokes. However, we did allow users to use multiple fingers
for typing so that they use whichever finger they naturally
use to press any given key.

CSI Sampling Rate. The sampling rate of CSI is dir-
ectly related to allowable inter-arrival times of keystrokes
i.e., how fast a user can be allowed to type. Both keystroke
extraction and keystroke recognition accuracies depend on

the time resolution of CSI values. The time resolution is
high, there are more samples between two keystrokes, which
increases the keystroke extraction accuracy. Similarly, when
the time resolution is high, there are more samples for each
keystroke; consequently, there is more information in the
CSI waveform, which increases the keystroke recognition
accuracy. We used highest possible sampling rate of 2500
samples/second, which translates to 2500 packets/second.
Although real-world WiFi APs may not transmit at such
high rates, an attacker can use his own AP to transmit ping
packets at such a high rate to launch the attack.

Training Requirements. When collecting data from
users, we did not bind the users to be consistent in their
typing behavior. Consequently, waveforms for different key-
strokes for a specific key were sometimes inconsistent even
though we collected data from the users in the same sitting.
To get high recognition accuracies with such a data, WiKey
requires many samples per key from each user which may
be difficult to obtain in real life attack scenarios. Still, there
exist ways through which an attacker can obtain the train-
ing data. For example, an attacker can start an online chat
session with a person sitting near him and record CSI values
while chatting with him.

User Specific Training. In our current implementation of
WiKey, we train the classifiers using one user and test the
classifier using the test samples from the same user. How-
ever, we hypothesize that if we train our classifier using a
large number of users, the trained classifier will be able to
capture commonalities between users and will then be able
to recognize the keystrokes of any unknown user. At the
same time, we also acknowledge that it is extremely chal-
lenging to build such a universal classifier that works for
almost every user because WiFi signals are susceptible to
various factors such as finger length/width, typing styles,
and environmental noise.

10. CONCLUSION
In this paper, we make the following key contributions.

First, we propose the first WiFi based keystroke recognition
approach, which exploits the variations in CSI values caused
by the micro-movements of hands and fingers in typing. The
key intuition is that while typing a certain key, the hands
and fingers of a user move in a unique formation and direc-
tion and thus generate a unique pattern in the time-series of
CSI values for that key. Second, we propose a keystroke ex-
traction algorithm that automatically detects and segments
the recorded CSI time series to extract the waveforms for in-
dividual keystrokes. Third, we implemented and evaluated
the WiKey system using a TP-Link TL-WR1043ND WiFi
router and a Lenovo X200 laptop. Our experimental res-
ults show that WiKey achieves more than 97.5% detection
rate for detecting the keystroke and 96.4% recognition ac-
curacy for classifying single keys. In real-world experiments,
WiKey can recognize keystrokes in a continuously typed sen-
tence with an accuracy of 93.5%. The key scientific value
of this work is in demonstrating the possibility of recogniz-
ing micro-gestures such as keystrokes using commodity WiFi
devices. We have shown that our technique works in con-
trolled environments, and in future we plan to address the
problem of mitigating the effects of more harsh wireless en-
vironments by building on our micro-gesture extraction and
recognition techniques proposed in this paper.

101

11. REFERENCES

[1] Dmitri Asonov and Rakesh Agrawal. Keyboard
acoustic emanations. In 2012 IEEE Symposium on
Security and Privacy, pages 3–3. IEEE Computer
Society, 2004.

[2] Li Zhuang, Feng Zhou, and J Doug Tygar. Keyboard
acoustic emanations revisited. ACM Transactions on
Information and System Security (TISSEC), 13(1):3,
2009.

[3] Tong Zhu, Qiang Ma, Shanfeng Zhang, and Yunhao
Liu. Context-free attacks using keyboard acoustic
emanations. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications
Security, pages 453–464. ACM, 2014.

[4] Martin Vuagnoux and Sylvain Pasini. Compromising
electromagnetic emanations of wired and wireless
keyboards. In USENIX Security Symposium, pages
1–16, 2009.

[5] Davide Balzarotti, Marco Cova, and Giovanni Vigna.
Clearshot: Eavesdropping on keyboard input from
video. In Security and Privacy, 2008. SP 2008. IEEE
Symposium on, pages 170–183. IEEE, 2008.

[6] Chunmei Han, Kaishun Wu, Yuxi Wang, and Lionel M
Ni. Wifall: Device-free fall detection by wireless
networks. In INFOCOM, 2014 Proceedings IEEE,
pages 271–279. IEEE, 2014.

[7] Yan Wang, Jian Liu, Yingying Chen, Marco Gruteser,
Jie Yang, and Hongbo Liu. E-eyes: device-free
location-oriented activity identification using
fine-grained wifi signatures. In Proceedings of the 20th
annual international conference on Mobile computing
and networking, pages 617–628. ACM, 2014.

[8] Zimu Zhou, Zheng Yang, Chenshu Wu, Longfei
Shangguan, and Yunhao Liu. Towards omnidirectional
passive human detection. In INFOCOM, 2013
Proceedings IEEE, pages 3057–3065. IEEE, 2013.

[9] Wei Xi, Jizhong Zhao, Xiang-Yang Li, Kun Zhao,
Shaojie Tang, Xue Liu, and Zhiping Jiang. Electronic
frog eye: Counting crowd using wifi. In INFOCOM,
2014 Proceedings IEEE, pages 361–369, April 2014.

[10] Guanhua Wang, Yongpan Zou, Zimu Zhou, Kaishun
Wu, and Lionel M Ni. We can hear you with wi-fi! In
Proceedings of the 20th annual international
conference on Mobile computing and networking, pages
593–604. ACM, 2014.

[11] Stephan Sigg, Shuyu Shi, Felix Buesching, Yusheng Ji,
and Lars Wolf. Leveraging rf-channel fluctuation for
activity recognition: Active and passive systems,
continuous and rssi-based signal features. In
Proceedings of International Conference on Advances
in Mobile Computing & Multimedia, page 43. ACM,
2013.

[12] Stephan Sigg, Markus Scholz, Shuyu Shi, Yusheng Ji,
and Michael Beigl. Rf-sensing of activities from
non-cooperative subjects in device-free recognition
systems using ambient and local signals. Mobile
Computing, IEEE Transactions on, 13(4):907–920,
2014.

[13] Rajalakshmi Nandakumar, Bryce Kellogg, and
Shyamnath Gollakota. Wi-fi gesture recognition on
existing devices. arXiv preprint arXiv:1411.5394, 2014.

[14] Souvik Sen, Jeongkeun Lee, Kyu-Han Kim, and Paul
Congdon. Avoiding multipath to revive inbuilding wifi
localization. In Proceeding of the 11th annual
international conference on Mobile systems,
applications, and services, pages 249–262. ACM, 2013.

[15] Jiang Xiao, Kaishun Wu, Youwen Yi, and Lionel M
Ni. Fifs: Fine-grained indoor fingerprinting system. In
Computer Communications and Networks (ICCCN),
2012 21st International Conference on, pages 1–7.
IEEE, 2012.

[16] Zheng Yang, Zimu Zhou, and Yunhao Liu. From rssi
to csi: Indoor localization via channel response. ACM
Computing Surveys (CSUR), 46(2):25, 2013.

[17] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and
Shwetak Patel. Whole-home gesture recognition using
wireless signals. In Proceedings of the 19th annual
international conference on Mobile computing &
networking, pages 27–38. ACM, 2013.

[18] Bryce Kellogg, Vamsi Talla, and Shyamnath
Gollakota. Bringing gesture recognition to all devices.
In Usenix NSDI, volume 14, 2014.

[19] Bastien Lyonnet, Cornel Ioana, and Moeness G Amin.
Human gait classification using microdoppler
time-frequency signal representations. In Radar
Conference, 2010 IEEE, pages 915–919. IEEE, 2010.

[20] Fadel Adib, Zach Kabelac, Dina Katabi, and Robert C
Miller. 3d tracking via body radio reflections. In
Usenix NSDI, volume 14, 2013.

[21] Bo Chen, Vivek Yenamandra, and Kannan Srinivasan.
Tracking keystrokes using wireless signals. In
Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and
Services, pages 31–44. ACM, 2015.

[22] Donald G Childers, David P Skinner, and Robert C
Kemerait. The cepstrum: A guide to processing.
Proceedings of the IEEE, 65(10):1428–1443, 1977.

[23] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David
Wetherall. 802.11 with multiple antennas for dummies.
ACM SIGCOMM Computer Communication Review,
40(1):19–25, 2010.

[24] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David
Wetherall. Tool release: gathering 802.11 n traces with
channel state information. ACM SIGCOMM
Computer Communication Review, 41(1):53–53, 2011.

[25] Meinard Müller. Dynamic time warping. Information
retrieval for music and motion, pages 69–84, 2007.

[26] Jyh-Shing Roger Jang. Machine learning toolbox,
available at
http://mirlab.org/jang/matlab/toolbox/machinelearning,
accessed on december 23, 2014.

[27] Neal Patwari and Sneha K Kasera. Robust location
distinction using temporal link signatures. In
Proceedings of the 13th annual ACM international
conference on Mobile computing and networking, pages
111–122. ACM, 2007.

[28] Neal Patwari and Sneha K Kasera. Temporal link
signature measurements for location distinction.
Mobile Computing, IEEE Transactions on,
10(3):449–462, 2011.

102

	Introduction
	Related Work
	Device Free Activity Recognition
	Keystrokes Recognition

	Channel State Information
	Noise Removal
	Low Pass Filtering
	PCA Based Filtering

	Keystroke Extraction
	PCA on Normalized Stream
	Keystroke Detection
	Combining Results from Antenna Pairs
	Extracting Keystroke Waveforms

	Feature Extraction
	Classification
	Dynamic Time Warping
	Classifier Training

	Implementation & Evaluation
	Hardware Setup
	Data Collection
	Keystroke Extraction Accuracy
	Classification Accuracy
	Accuracy with 30 Samples per Key
	Accuracy vs. the Size for Training Set
	Effects of CSI Sampling Rate and Number of Training Samples

	Real-world Evaluation on Sentences

	Limitations
	Conclusion
	References

