C Programming for
Microcontrollers

Featuring ATMEL’s AVR Butterfly and the Free
WIinAVR Compiler

AVYR"®

Seeme seswe owssw ____ ome
Eessans seoses BMeosoe E4H5!--

Joe Pardue

SmileyMicros.com

Copyright © 2005 by Joe Pardue, All rights reserved.
Published by Smiley Micros

Smiley Micros

5601 Timbercrest Trail

Knoxville, TN 37909

Email: book@SmileyMicros.com
Web: http://www.SmileyMicros.com

ISBN 0-9766822-0-6

Products and services named in this book are trademarks or registered trademarks of their respective companies. In all
instances where Smiley Micros is aware of a trademark claim, the product name appears in initial capital letters, in all
capital letters, or in accordance with the vendor’s capitalization preferences. Readers should contact the appropriate
companies for complete information on trademarks and trademark registrations. All trademarks and registered trademarks
in this book are the property of their respective holders.

No part of this book, except the programs and program listings, may be reproduced in any form, or stored in a database of
retrieval system, or transmitted or distributed in any form, by any means, electronic, mechanical photocopying, recording,
or otherwise, without the prior written permission of Smiley Micros or the author. The programs and program listings, or
any portion of these, may be stored and executed in a computer system and may be incorporated into computer programs
developed by the reader.

NONE OF THE HARDWARE USED OR MENTIONED IN THIS BOOK IS GUARANTEED OR WARRENTED IN
ANY WAY BY THE AUTHOR. THE MANUFACTURERS OR THE VENDORS THAT SHIPPED TO YOU MAY
PROVIDE SOME COVERAGE, BUT THAT IS BETWEEN YOU AND THEM. NEITHER THE AUTHOR NOR
SMILEY MICROS CAN PROVIDE ANY ASSISTANCE OR COMPENSATION RESULTING FROM PROBLEMS
WITH THE HARDWARE.

PAY CAREFUL ATTENTION TO WHAT YOU ARE DOING. | FRIED MY FIRST BUTTERFLY WHILE
DEVELOPING THE ADC PROJECT. MY NICKNAME AT ONE COMPANY WAS ‘SMOKY JOE' FOR MY
TENDENCY TO MAKE DEVICES ISSUE COPIOUS QUANTITIES OF SMOKE. BLOWING STUFF UP IS A
NATURAL PART OF MICROCONTROLLER DEVELOPMENT. SET ASIDE SOME FUNDS TO COVER YOUR
MISTAKES.

REMEMBER — YOUR BUTTERFLY BOARD IS NOT GUARANTEED OR WARRENTED IN ANY WAY. YOU
FRY IT YOU EAT IT. YOU CAN GET ANOTHER FROM DIGI-KEY FOR $19.99 (Spring 2005) + SHIPPING
AND HANDLING.

The information, computer programs, schematic diagrams, documentation, and other material in this book are provided “as
is,” without warranty of any kind, expressed or implied, including without limitation any warranty concerning the
accuracy, adequacy or completeness of the material or the results obtained from the material or implied warranties.
Including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed.
Neither the publisher nor the author shall be responsible for any claims attributable to errors, omissions, or other
inaccuracies in the material in this book. In no event shall the publisher or author be liable for direct, indirect, special,
exemplar, incidental, or consequential damages in connection with, or arising out of, the construction, performance, or
other use of the material contained herein. Including, but not limited to, procurement of substitute goods or services; loss
of use, data, or profits; or business interruption however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence or otherwise) arising in any ay out of use, even if advised of the possibility of such
damage. In no case shall liability be implied for blindness or sexual impotence resulting from reading this statement
although the author suggests that if you did read all this then you really need to get a life.

For Marcia

God only knows what 1'd be without you...

Table of Contents:

Chapter L: INtrodUCLIONc.coiiiiiie e 11
WY €72ttt bbbt 12
WY AVR ...ttt sttt ettt st sttt b e reeneeneeneas 12
GOAIS ..t 14

Chapter 2: QUICK Start GUILEccoeeiiiecie e 17
SOTEWANE <.t bbbttt 19

WINAVR — ON, WNENEVETo 19
Programmers NOTEPAG.coueiieiieieeieseesie sttt 19
AVRStudio — FREE and darn well worth it.ccccoooeiiiiiinnincee, 20
Br@y++ Terminal:cccoveiiiieiiece e 20
HAIAWATE ... ettt enes 21
Constructing Your Development Platform..........cccocovveveiiniieenncic e 21
Blinking LEDs — Your First C Programcccccovveiieiiieeiie e 27
Write it in Programmers NOtepadccccvvveieeii e 27
Download to the Butterfly with AVRStUIO.........ccceviiiiiiiiiiec 31
BIINKY GOBS LIVE ..eeceieiiiecie ettt 33
Simulation With AVRSTUAIOooeiiiiiiiieieecce e 35
GOOD GRIEF! ...t 37
Chapter 3: A Brief Introduction to C — What Makes Blinky Blink?................... 39
COMIMENES ...t b et nb e ne e 39
INCIUTE FHIES ... 39
Expressions, Statements, and BIOCKSccccoccviviiiiii e 39

(@ 01C] -1 (0] £ PRRP 40
FIOW CONIOL ... 40
FUNCHIONS ..ttt 41
The Main() TRING ...ccveiiecice e et 42
Chapter 4: C Types, Operators, and EXPressionScccccveveeiieesiiesiieesiesnieesnes 45
Data TYPES ANU SIZES.......civeiieieieeie et 45
Variable NAMES ..o 49
CONSEANTS ... bbb 49
DECIAIATIONS. ... ettt ettt 50
ArthMEtiC OPEIatOrS........ueiiveieiieie e ens 50
Relational and Logical Operators..........ccccevvveiiieiiecsie e 52
BItWISE OPEIALOIS.....cuviieieiieeieeiesie et eee e ste et e e e et e e e e nae e sreeeeenes 53
Assignment Operators and EXPreSSioNS........cccccveeeieeveeieseese e se e 61

Conditional EXPrESSIONS......c..ooviiiiriiriiiieieieie ettt 62

Precedence and Order of EVAIUATION.........oooeiooiieeeeeeeeee e, 62

(0] =To! SRR OPRSTSP 65

Port INpUt and OULPUL........ccveiierieeiesie e 65

Cylon Eye Speed and Polarity Controlcccccovveiiievie e 70
Chapter 5: C CONrol FIOW.........ccoviiiicc e 73
Statements and BIOCKSc.ooiiiiiieiiie e 73
IT-EISe and EISE-ITccuoiiiiiee e 74
SWITCR. . s 75
Loops — While, For and DO-While...........ccoveviiiiiie e 78
Break and CONLINUE.cooiiiiiieieeie e s 79
GOt0 AN LADEIS ... 80

A few practical examples: strlen, atoi, it0a, reVerse.........ccccccvevveiieeieesnenn, 81
Chapter 6: C Functions and Program StrUCTUIES..........ccccververiiereerieeieseesieeeeseens 87
FUNCEION BASICS ... ettt st 87
RETUINS .ttt 89
Variables External, Static, and RegiSter...........ccccvevveiieiiie i 90

BT ol 0] 0SSOSR 91
HEAAEIS. ... et 92
BIOCKS. ...t 92
INIETALIZALION ... et 92
RECUISION ...ttt ettt bbb 93
PrEPIOCESSON ..ttt ettt et et e et e e e et e e e b e e e e e enb e e nnaa e e nnaes 94

o 0] [£ USSR 98

Is anybody out there? Communicating with a PC...........ccccovveviiiiiciie, 98
Chapter 7: Microcontroller Interrupts and TIMErS.......cccccevieeveiiieneerecie e 109
L0 (T U] o] £SO 109

o (0] 17 £SO 114
Grab your joystick — and test your interruptS........ccccocevvveeiie e csie e, 114
TIMEIS/COUNTETS ...ttt bbbttt 119
Calibrating the Butterfly oSCIIator:ccoovieiiiiiiiiecce e 121

o (0] 17 £ USSR 128
Precision BIHNKING.......ccoiiiiieic e 128

Pulse Width Modulation — LED Brightness Controlccccccevvenee. 134

Pulse Width Modulation - Motor Speed Controlcccccceeveeiieevieenee. 137
SPEEUOMELETcuiieeie ettt te e e naenreas 144
Chapter 8: C POINtErs and AITaYS.........ccvueiverieiieieere e s e seeseesie e see e 153

Addresses of Variablesoooooeeeeee 153

E N £ T PRSP 159
FIFOs and LIFOs: Stacks and Queues (Circular Buffers)cccccceevennens 167
FUNCEION POINTETS. ...ttt 169
Complex Pointer and Array Algorithms..........cccccovvieiiveiecicceee e 170
(0] =To! SRS UPPPPRS 171
V(IS =] o =] PSPPSR 171

Does anybody know what time it is? A Real Time Clock....................... 178

Music to my ears. “Play it again Sam.”.........ccccccvivevviiienieene e 189
Chapter 9 — Digital Meets Analog — ADC and DAC..........cccccevivivieiieciec e, 207
But First - ADebugging Taleccevveiiiieiiese e 207
Analog to Digital CONVEISIONcccveiiiiiiiiiie e 210

o (0] 17 £ USSR 216
DAC and ADC - Function Generator / Digital Oscilloscope.................. 227
Chapter 10: C SIIUCTUIESveeieeiiecieerie e te et sae e e ae e nnees 241
SEIUCTUIE BASICS... ettt 241
Structures and FUNCTIONScoviiiiiieieicse e 243
SEIUCTUIE ATTAYS. ...ttt et ettt e e e e e sna e e e nsb e e e naeeannns 246
B/ 0L =) OSSR 246
UNTONS <.ttt sttt re et et st e beenbeeneenreas 247
BIE-TIEIUS ... 247
(0] =0t USSP 251
Finite State Machine.........ccoooiiiei e 251
Chapter 11 The BUterfly LCDcooviiieieeciece e 261
PC t0 LCD teSt PrOgram....ccceeuieiieeieesiieesiee e esies e siee e siesssnesssessaeensens 262
(000] 0 [0d (11 [0 o FOU OSSPSR 270
APPENTIX 1: ProjeCt KitS....civeiiieieiieiie s 273
Appendix 2: Soldering Tutorial..........cccoooviiiiii e 275
Appendix 3: Debugging Taleccooveiiiieiece e 279
AppendiX 4: ASCH Tableoooeie e 283
Appendix 5: Decimal, Hexadecimal, and Binary...........c.cccoevevvivevieeneeiieseennen, 285
Appendix 6: Motor Speed Control Wheel............cccoooviiiiiiiiiiiceec i 287
Appendix 7: HYperTerminal...........cccooiveieiieiieeie e 289

Table of Figures:
Figure 1: Dennis Ritchie, inventor of the C programming language stands next to
Ken Thompson, original inventor of Unix, designing the original Unix

operating system at Bell Labs on @ PDP-11..........cccccoceiiiiviiiiiciiic e 11
Figure 2: The Butterfly front...........cooeiieie e 21
Figure 3: RS-232 CONNECLIONS.eoiiieiiieiiie ittt 22
Figure 4: Battery holder, switch, and batteries.cccccovevieiiiiiecin e, 23
Figure 5: External battery connection to Butterfly ... 23
Figure 6: Butterfly hooked up t0 RS-232........ccoiiiieiiie e 24
Figure 7: Bray's TErMINAl.........ccoouiiiiiiiiic e 24
Figure 8: Enter name to send to the Butterfly.........cccccovevieiecici i, 25
Figure 9: Blinky wiring diagram and photo of wired boardc..cccceevveennnn 26
Figure 10: Hardware setup for BIINKY..........ccccovvviiiiiiee e 27
Figure 11: From the cover of the Battlestar Galactica comic Red Cylon.............. 34
Figure 12: from page 92 of the ATMegal69 data booKcccceevverviiiriennnnnn, 58
Figure 13 ATMegal69 Block Diagram..........ccccceeiieiiieiiieeiic e 65
Figure 14: Port 1/0 switch input and LED OUEPUL..........ccocoveiieeie i, 69
Figure 15: Bit 7 high Figure 16: Bit 7 IOW........ccoovevieiiiciicceece e 71
Figure 17: Pulse Width Modulation Duty Cycle.........cccccoveviieviveieiiece e 134
Figure 18: Motor Speed Control Schematic and Parts.............ccccceeevieiieciinnne, 137
Figure 19: Motor Speed Control Breadboard Labeled...........c.ccccovvvecveninnen. 138
Figure 20: Motor Speed Control Hardwareccccoovevieiieicie e, 138
FIgUIrE 21: MOTOI BASEecveeieeeieec et 139
Figure 22: Motor Wheel Stationary and Spinningcccccevvvveveeiieciec e, 139
Figure 23: Opto Interrupt SWitch - H21AL......ccoovoieiieeee e 145
Figure 24: Opto Interrupter Glued on Motor Baseccccoevevieeieecieeiiecnene, 145
FIgure 25: SPEEUOIMELEToiveie et es 146
Figure 26: The PDP-11 could be programmed by switches, though Dennis Ritchie

used a Teletype machine to write the C programming language. 153
Figure 27: 10-bit successive approximation ADC Figure..........cccccceevveiieerinene. 211
Figure 28: Potentiometer SCemMAtiC............ccovvverveiiesiiere e 225
Figure 29: Voltage measuremMeNt..........ccveiveiiieeiie e 226
Figure 30: R-2R reSistor ladder.........c.coveveiiiiiee e 228
Figure 31: Breadboard of R-2ZR DAC ... 228
Figure 32: Breadboard R-2R DAC WITINGccooiverieiieiieseeieseesie e 229
Figure 33: R-2R DAC with OSCIlIOSCOPEcccvevvveieiieieeiece e 229

Figure 34: Function Generator / Digital Oscilloscope on HyperTerminal.......... 230

Figure 35: Sine Wave Figure 36: Square Wave...........ccccceveeiereeneeieseennnnn, 231

Figure 37: Triangle Wave Figure 38: Sawtooth Wavecccccevvieieennnne, 231
Figure 39 BUtterfly MeNU.........c.ccveiiiie e 253
Figure 40: Cheap soldering iron, solder and wick from JAMECO..................... 276

Figure 41: Seasoning the tiP.......ccccoeiieiriie e 276

Chapter 1: Introduction

Chapter 1: Introduction

C Programming and microcontrollers are two big topics, practically continental in
size, and like continents, are easy to get lost in. Combining the two is a little like
traipsing from Alaska to Tierra del Fuego. Chances are you’ll get totally lost and
if the natives don’t eat you, your infected blisters will make you want to sit and
pout. I’ve been down this road so much that I probably have my own personal rut
etched in the metaphorical soil, and | can point to all the sharp rocks I’ve stepped
on, all the branches that have whacked me in the face, and the bushes from which
the predators leapt. If you get the image of a raggedy bum stumbling through the
jungle, you’ve got me right. Consider this book a combination roadmap,
guidebook, and emergency first aid Kit for your journey into this fascinating, but
sometimes dangerous world.

I highly recommend that you get the book, ‘The C Programming Language —
second edition’ by Kernighan and Ritchie, here after referred to as K&R. Dennis
Ritchie, Figure 1, wrote C, and his book is the definitive source on all things C.

o o

b H;‘_. r-‘:-;.""_;ﬁ
e || -|-'u'H'“""

Figure 1: Dennis Ritchie, inventor of the C programming language stands next to Ken
Thompson, original inventor of Unix, designing the original Unix operating system at Bell
Labs on a PDP-11

11

Chapter 1: Introduction

I have chosen to follow that book’s organization in this book’s structure. The main
difference is that their book is machine independent and gives lots of examples
based on manipulating text, while this book is machine dependent, specifically
based on the AVR microcontroller, and the examples are as microcontroller
oriented as | can make them.

Why C?

Back in the dark ages of microprocessors, software development was done
exclusively in the specific assembly language of the specific device. These
assembly languages were character based ‘mnemonic’ substitutions for the
numerical machine language codes. Instead of writing something like: 0x12 0x07
O0xA4 0x8F to get the device to load a value into a memory location, you could
write something like: MOV 22 MYBUFFER+7. The assembler would translate
that statement into the machine language for you. I’ve written code in machine
language (as a learning experiment) and believe me when 1 tell you that assembly
language is a major step up in productivity. But a device’s assembly language is
tied to the device and the way the device works. They are hard to master, and
become obsolete for you the moment you change microcontroller families. They
are specific purpose languages that work only on specific microprocessors. C is a
general-purpose programming language that can work on any microprocessor that
has a C compiler written for it. C abstracts the concepts of what a computer does
and provides a text based logical and readable way to get computers to do what
computers do. Once you learn C, you can move easily between microcontroller
families, write software much faster, and create code that is much easier to
understand and maintain.

Why AVR?

As microprocessors evolved, devices increased in complexity with new hardware
and new instructions to accomplish new tasks. These microprocessors became
known as CISC or Complex Instruction Set Computers. Complex is often an
understatement; some of the CISCs that I’ve worked with have mind-numbingly
complex instruction sets. Some of the devices have so many instructions that it
becomes difficult to figure out the most efficient way to do anything that isn’t
built into the hardware.

12

Chapter 1: Introduction

Then somebody figured that if they designed a very simple core processor that
only did a few things but did them very fast and efficiently, they could make a
much cheaper and easier to program computer. Thus was born the RISC, Reduced
Instruction Set Computers. The downside was that you had to write additional
assembly language software to do all the things that the CISC computer had built
in. For instance, instead of calling a divide instruction in a CISC device, you
would have to do a series of subtractions to accomplish a division using a RISC
device. This ‘disadvantage’ was offset by price and speed, and is completely
irrelevant when you program with C since the complier generates the assembly
code for you.

Although I’ll admit that ‘CISC versus RISC’ and ‘C versus assembly language’
arguments often seem more like religious warfare than logical discourse, | have
come to believe that the AVR, a RISC device, programmed in C is the best way to
microcontroller salvation (halleluiah brother).

The folks that designed the AVR as a RISC architecture and instruction set while
keeping C programming language in mind. In fact they worked with C compiler
designers from IAR to help them with the hardware design to help optimize it for
C programming.

Since this is an introductory text I won’t go into all the detailed reasons I’ve
chosen the AVR, I’ll just state that | have a lot of experience with other
microcontrollers such as Intel’s 8051, Motorola’s 68xxxes, Zilog’s Z’s, and
Microchip’s PIC’s and I’m done with them (unless adequately paid — hey, I’m no
zealot). These devices are all good, but they require expensive development
boards, expensive programming boards, and expensive software development
tools (don’t believe them about the “free’ software, in most cases the ‘free’ is for
code size or time limited versions).

The AVR is fast, cheap, in-circuit programmable, and development software can
be had for FREE (really free, not crippled or limited in any way). I’ve paid
thousands of dollars for development boards, programming boards, and C
compilers for the other devices, but never again -- | like free. The hardware used
in this text, the ATMEL Butterfly Evaluation Board can be modified with a few
components to turn it into a decent development system and the Butterfly and

13

Chapter 1: Introduction

needed components can be had for less than $40.00 (See Appendix 1 Project
Kits). You can’t get a better development system for 10 times this price and you
can pay 100 times this and not get as good.

Okay, maybe | am a zealot.

Goals

What | hope to accomplish is to help you learn some C programming on a
specific microcontroller and provide you with enough foundation knowledge that
you can go off on your own somewhat prepared to tackle the plethora (don’t you
just love that word, say it 10 times real quick) of microcontrollers and C
programming systems that infest the planet.

Both C programming and microcontrollers are best learned while doing projects.
I’ve tried to provide projects that are both useful and enhance the learning
process, but I’ve got to admit that many of the early projects are pretty lame and
are put in mainly to help you learn C syntax and methods.

Suggested Prerequisites:

e You should be able to use Windows applications.

e You should have an elementary knowledge of electronics, or at least be
willing to study some tutorials as you go along so that you’ll know things
like why you need to use a resistor when you light up an LED.

e I’ve received lots of suggestions about what needs to be in this book.
Some folks are adamant that one must first learn assembly language and
microcrocontroller architecture and basic electronics and digital logic and
bla bla bla before even attempting C on microcontrollers. | politely
disagree and say that you should just jump right in learn whats fun for
you. You’ll run across lots of stuff that you will want to learn about, but |
won’t cover in the book so you should be able to bracket your ignorance
(and mine) making a note when you hit something you don’t know but
would like to. Then you can learn it later. I’'m using lots of things that
aren’t directly relevant to C programming (like communicating with a
microcontroller from a PC using a serial port or like what the heck is that
transistor motor driver thingee...). If you get really curious, then
GOOGLE for a tutorial on the topic.

14

Chapter 1: Introduction

By the time you complete the text and projects you will:

Have an intermediate understanding of the C programming language.
Have a elementary understanding microcontroller architecture.
Be able to use the WinAVR and AVR Studio tools to build programs.
Be able to use C to develop microcontroller functions such as:
o Port Inputs and Outputs
Read a joystick
Use timers
Program a Real Time Clock
Communicate with PC
Conduct analog to digital and digital to analog conversions
Measure temperature, light, and voltage
Control motors
Make music
Control the LCD
Flash LEDs like crazy

OO0OO0O0O0O00O0O0O0

On the CD you will find the ATMEL ATMEGA169 data book. At 364 pages, it is
the comprehensive source of information for the microcontroller used on the AVR
Butterfly board. Open it on your PC with Adobe Acrobat and look around a bit:
intimidating isn’t it? But don’t worry; one of the purposes of this text is to give
you enough knowledge so that you can winnow the wheat from the chaff in the
data book and pull out what you need for your C based control applications.

I know how easy it is to get bogged down in all the detail and lose momentum on
this journey, so we’ll begin with the ‘Quick Start’ chapter by learning only enough
to make something interesting happen: kind of a jet plane ride over the territory.
Then we will proceed at a comfortable pace from the simple to the complex using
as interesting examples as | can come up with. I’m partial to LEDs so you are
going to see a lot of flashing lights before we are through, and hopefully the lights
won’t be from you passing out from boredom and boinking your head on the
keyboard.

15

Chapter 2: Quick Start Guide

Chapter 2: Quick Start Guide

The purpose of this quick start guide is to help you modify the Butterfly hardware
S0 you can use it as a development board and to show you how to use the FREE
software for writing and compiling C code and downloading it from your PC to
the Butterfly.

The AVR Butterfly is an evaluation kit for the ATMEGAL169 microcontroller that
was custom designed with an AVR core and peripherals to make it both a general-
purpose microcontroller and an LCD controller. This little board is by far (at this
writing) the lowest cost system for learning and developing that I’ve ever seen. |
don’t know how much these things cost them to make, but Digi-Key
(www.digikey.com) sells them for $19.99 (Spring 2005), which has to be a real
loss leader for ATMEL (www.ATMEL.com). But their loss is our gain, and I’'m
sure they are happy to prime-the-pump a little, knowing that we’ll get hooked on
the AVR and buy lots of their product.

It is simply amazing what the Butterfly has built in:

100 segment LCD display

4 Mbit (that’s 512,000 bytes!) dataflash memory

Real Time Clock 32.768 kHz oscillator

4-way joystick, with center push button

Light sensor

Temperature sensor

ADC voltage reading, 0-5V

Piezo speaker for sound generation

Header connector pads for access to peripherals

RS-232 level converter for PC communications

Bootloader for PC based programming without special hardware
Pre-programmed demos with source code

Built-in safety pin for hanging from you shirt (GEEK POWER?)
Kitchen sink.

I mean this thing has everything (except a kitchen sink... sorry). If anyone can
find a development platform with anywhere near this much for this price, | want
to hear about it. And, no, I don’t own stock in ATMEL, or work for them, I just

17

Chapter 2: Quick Start Guide

couldn’t find anything that comes close to this system for my goal of teaching C
programming for AVR microcontrollers (or any microcontrollers for that matter).
If | seem to be raving a bit, get used to it, | do that a lot.

There are sufficient instructions on the AVR Butterfly box to show you how to use
all the built-in functions. Play with it now before you risk destroying it in the next
step. Don’t say | didn’t warn you. If you break it, you’ll have to order a new one
from Digi-Key (www.digikey.com). | shudder to think how many of these things
will get burned up, blown up, stepped on, and drenched in coffee. And that’s just
me this morning.

Note: in order to save you money, rather than selling you the Butterfly and the
experiments Kits, you will find a parts list (Appendix 1) so that you can buy this
stuff directly from the vendors. But check my website: www.smileymicros.com,
no telling what you’ll find. (Hopefully, not a ‘going out of business’ sale.)

If you purchased the e-book, you can download the WinAVR software from
http://sourceforge.net/projects/winavr (this book uses version 20040404) and the
AVRStudio software from the http://www.atmel.com web site. On the ATMEL
website search for the AVRStudio version 4.11 (later versions may not correlate to
this book). If, for some reason, these sites are not available (I can’t guarantee what
they’ll do to their sites) look on the http://www.smileymicros.com website for
updated information on how to get the software. If you purchased a hard copy of
the book, you will find the software on the accompanying CD.

Don’t get bogged down in all the installation choices given, just accept suggested
defaults so your installation will match this book. And, as an aside, by the time
you install all this software, the WinAVR and the AVRStudio will have new and
improved versions available on their web sites. DON’T USE THEM! This text is
based on the versions on the CD or on the SmileyMicros.com web site and using
the new and improved software may only confuse things. Of course, by the time
you finish this text, you will be encouraged to get the latest and greatest, by then
you’ll know all you need to use it wisely.

18

http://www.smileymicros.com/
http://sourceforge.net/projects/winavr
http://www.smileymicros.com/

Chapter 2: Quick Start Guide

Software

We will use three FREE software packages, the WIinAVR compiler from
sourceforge.net, the AVRStudio 4 from ATMEL, and Br@y++’s Terminal.

WIinAVR — Oh, Whenever...

WInAVR is a set of tools for C programming the AVR microcontroller family. A
bunch of folks have volunteered their time to write this software and give it away
as part of the free software movement (www.sourceforge.net). These folks
generously giving there time to help others is almost enough to change my cynical
opinion of humanity. You can spend thousands on C compilers for
microcontrollers and before WinAVR you had to spend several hundred even for a
crappy compiler. This software is FREE, but SourceForge has expenses so send
them some money at www.sourceforge.net/donate.

At http://sourceforge.net/projects/winavr/ you see the summary:

“WIinAVR (pronounced "whenever") is a suite of executable, open source
software development tools for the ATMEL AVR series of RISC microprocessors
hosted on the Windows platform. Includes the GNU GCC compiler for C and
C++.”

Go to: http://winavr.sourceforge.net/index.html and check out their homepage.

But don’t get too distracted with all that yet, just use the tools as shown here, and
once you reach the end of this book, then you’ll have the skills to fully exploit
those web sites.

Programmers Notepad

We’ll be writing our software using the most excellent Programmers Notepad,
another FREE program available at sourceforge.net and included in the WinAVR
distribution package. Imagine what Microsoft would charge for this FREE
software. Be a good guy or gal and send them some money at
http://www.pnotepad.org.

19

http://www.sourceforge.net/
http://www.sourceforge.net/donate
http://sourceforge.net/projects/winavr/
http://winavr.sourceforge.net/index.html
http://www.pnotepad.org/

Chapter 2: Quick Start Guide

AVRStudio — FREE and darn well worth it.

AVR Studio is provided free by the good folks at ATMEL Corporation, who seem
to understand that the more help they give developers, the more they will sell their
microcontrollers. Actually, this too could cost hundreds and still be darn well
worth it, but unless you just really like Norway, don’t send them any money,
they’ll get theirs on the backend when you start buying thousands of AVRs for
your next great invention.

The AVR Studio will be used for two things: first, to download your software to
the AVR Bultterfly, and second, to simulate the ATMEGA169 running your
software.

Br@y++ Terminal:

The original Quick Start Guide chapter used HyperTerminal, which is hard to
setup, clunky, and hated by so many folks on the AVRFreaks.net forum that |
contacted Br@y++ and he gave me permission to use and distribute his highly
recommended and easy to use and understand terminal package. You can get it at
http://bray.velenje.cx/avr/terminal or http://www.smileymicros.com. It is shown in
Figure 7: Bray's Terminal. The examples in the text still show the HyperTerminal,
but it shouldn’t be a problem substituting Bray’s. If you want to use
HyperTerminal, the introduction to it is in Appendix 1.

20

http://bray.velenje.cx/avr/terminal
http://www.smileymicros.com/

Chapter 2: Quick Start Guide

Hardware

Constructing Your Development Platform

Light Sensor

]

p—— e S e SR R o LI
! i : x L. 1
Pin 2 i>l"l'ﬁﬂﬂf§ i o . e e nnﬂn&:gﬁiﬂ%ﬂr‘i

PORTB PORTD
Pin 1 ‘ GND +3V JTAG ‘ ‘ GND

Figure 2: The Butterfly front

+3V ‘ ‘ ISP ‘

Solder the female headers to the ADC, PORTB, and PORTD lands. Note that the
square pads are pinl and that PORTB and PORTD seem to have 10 pins, but they

don’t, pins 9 and 10 are ground and power respectively (see Figure 2).

The RS-232 Connection:

Communication with the PC requires three lines: TXD, RXD, and GND. The
TXD is the transmit line (data from the PC to the Butterfly), RXD is the receive
line (data from the microcontroller to the PC) and GND is the common ground.
Notice that there is a bit of relativity in this equation, the microcontroller’s RXD
wire is the PC’s TXD wire and vice versa. | can’t count the number of times 1’ve

21

Chapter 2: Quick Start Guide

done stupid things like connecting the microcontroller’s RXD pin to the DB-9
RXD pin, because | didn’t think ‘RXD - receive - relative to what?’

The parts list has a DB-9 female solder cup RS-232 connector. Follow the
illustrations in Figure 3.

e VR Butterfly S
USART (J406) connector: pinl RXD e o ¢‘|||'IIEI.I__I

USART (J406) connector: pin2 TXD e
USART (J406) connector: pin3 GND @
PiERes

B Solder cup backside pin 5 - GND |
N Solder cup backside pin 3- TXD |
Solder cup backside pin 2 - RXD |

Figure 3: RS-232 connections.

NOTICE HOW THE RXD AND TXD LINES CROSS OVER - PAY
CAREFULATTENTIONAS IT IS EASY TO GET THESE REVERSED.

Constructing the power supply:

The Butterfly comes with a CR2450 coin battery that will power the LCD for a
long time, but will be used up quickly by the RS-232 connection and our
experiments. Remove the coin battery and construct a battery pack with parts
from the JAMECO parts list (Appendix 7) using the following pictures. Be sure
and get the power, red wire, and ground, black wire, correct: as shown in Figure 4
and Figure 5.

NOTE: ALL THE ILLUSTRATIONS SHOW PORTD WITH AN 8-PIN HEADER AND THE POWER WIRES
SOLDERED IN PLACE. THE PARTS KIT SPECIFIES 10-PIN CONNECTORS FOR BOTH PORTS B AND D. USE
THE 10-PIN HEADER ON PORTD AND INSERT RATHER THAN SOLDER THE POWER WIRES.

22

Chapter 2: Quick Start Guide

%

Figure 5: External battery connection to Butterfly

A few days after making the power supply I left it on all night, so | added an LED
(Figure 4) to the switch so that I’d know that it was on. You can solder the long
leg of an LED to the rightmost pin on the switch, where the +3v goes to the
Butterfly, and then solder a 330 resistor to the short leg and the resistor to the rivet
at the base of the battery on the right. The LED is lit when the switch is to +3V.

Test your Connection using Brays Terminal:

Hook your RS-232 cable to the Butterfly as in Figure 6. The run Bray’s Terminal,
(well, Br@y++’s to be exact — available at http://bray.velenje.cx/avr/terminal and
http://www.smileymicros.com) and configure it as in Figure 7 with the radio
buttons set to select your COM port, 19200 Baud rate, 8 Data bits, parity of none,
1 Stop bits, and no handshaking. Click the connect button. Turn on your Butterfly

23

Chapter 2: Quick Start Guide

power supply, then with the joystick button centered press it and watch the stream

Bootloader telling you that it is alive and ready to be boot loaded, or perhaps it is
just curious as to what’s going on?

Figure 6: Butterfly hooked up to RS-232

& Terminal v1.9b - 20040714 - by Broy++

GEFFEEr — COM Port Baudrate ———— ~Data bits~| ~Parity —— Stop Bits—) —Handshaking -
T DReaeeant e COM] " 600 " 14400 ¢ 57600 5 * none || &1 % none
Qgﬁ”’;"el © coma || © 1200 @ 19200 © 115200 ~ o oodd || RTS/CTS
| O O || 2400 ¢ 28800 ¢ 126000 | Ceven || 15 || XONMXOFF
—dbout. || & LOMS ||~ 400 ¢ 38400 ¢ 266000 © 7 C mak || " RTS/CTS+XON/XOFF
it || € 7 || © 9800 " 56000 ¢ custom || * 8 space || © 2 ¢ RTSonT%
Sellings _ _ i
[~ AutoDis/Connect [~ Time [~ Shieamlog customBR RxClear E3cts EJco
Set fi ASCIivabl
Lswom et o on Top W I~ ICR-LF [0 o7 4] Docuueie| Guph | ==
— == 25N Nt TS
CLEAR | _ResetCounter | [13 :] Counter = 0 & Sting Startlog | Stoplog r Dec_ [T Hex [Bin
TTINITIININT
Transmit
CLEAR | SendFile | |~ CR=CR+LF Script EDTR EJRTS
|triangle -> Send
- - 7 Transmit Macro:
| | M1| [1000] ™
| =] w2 1000 2]
| =] w3 oo =
Commected Rz 14 [Tz 0 \ ‘ 7

Figure 7: Bray's Terminal

24

Chapter 2: Quick Start Guide

If you don’t get the string of question marks, then try the other COM ports (in
Figure 7 only COM1 and COMS3 are shown for my machine, yours may be
different. Press disconnect then connect and try again. If it still doesn’t work,
carefully check that the RS-232 cable is connected. Try again. Still no? Recheck
that you’ve got the DB-9 soldered correctly to your Butterfly. Try again. Still no?
Is it turned on? If you move the joystick upward do you get the LCD scrolling
message? Yes? Turn it off and on and press the center again. Still no? If its not
working by this point go back and meticulously retry everything you can think of,
including passing a dead chicken over the setup while chanting voodoo hymns. It
took me a while to get all this running and | supposedly know what 1I’m doing, so
don’t feel bad if this is a little harder than you might hope. (You get what you pay
for).

In a moment you will scoop out the Butterfly’s brains, toss them aside, and stick
in some brains that Igor got from a garage sale, so let’s do one final test on the
Butterfly as it came out of the package. If all goes well, you will eventually be
able to reload the Butterfly’s original brains, but all seldom goes will, as Igor will
readily attest.

With the Butterfly hooked up to the RS-232 port and the Br@y++ Terminal
running, turn the Butterfly on and click the joystick up to get the LCD scrolling.
Move the joystick straight down three times till you see ‘Name’ then move the
joystick to the right twice till you see ‘Enter name’ then move the joystick straight
down once and you will see ‘Download name’ then push down the joystick center
for a moment until you see ‘Waiting for input’. Now write a name in the bottom
text panel of the Br@y++ Terminal (Figure 8) and hit enter (or push it gently if
you prefer). The name you entered should be scrolling across the LCD as shown
in Figure 6.

N
G Transmit

CLEAR Send File [~ CR=CR+LF

Use this gray [triangle
window to send SHILEY MICROS
characters to the
Butterfly, not the
white one above.

Figure 8: Enter name to send to the Butterfly

25

Chapter 2: Quick Start Guide

Let’s Blink Some LED’s:

- EmEwsEE - W N " EoEm
-

nnnnn [R LR L P I |

Figure 9: Blinky wiring diagram and photo of wired board

All the parts are listed in the JAMECO parts list Appendix 1. Put the LEDs in the
breadboard with the short leg on the resistor side. Use the 330-Ohm resistors to
jumper to the ground strip. You’ll need to make a bunch of jumper wires, cut 9
pieces about 4 inches long strip each end about 3/8 inch, and connect them to the
breadboard as shown in Figure 9, with the right most LED connected to pin 1 of
PORTD (Figure 2) and subsequent pins connected sequentially. The pins are
numbered with the odd pins on the bottom of the PORTD land and the even pins
on the top. Cut a 6” wire and use it to connect the ground strip to the ground pin
of PORTB as shown.

Now connect your RS-232 cable between the computer and the RS-232 connector
you soldered to the Butterfly. Your hardware should look like Figure 10.

26

Chapter 2: Quick Start Guide

DURACELL

AETTONQG

Figure 10: Hardware setup for Blinky.

Blinking LEDs — Your First C Program

You might wonder why blinking an LED is the first project, when traditional C
programming texts start with the classic “Hello, world” program. It certainly
seems that since the Butterfly has an LCD that can show the words it would be
easy. But the reality is that controlling the LCD is much more complex than
blinking an LED, so we’ll save the LCD for later when we’ve gotten a better
handle on things.

e Make a directory called Blinky for this project.
e Copy ‘.../WinAVR/Samples/makefile’ (notice that it has no extension) to
the Blinky directory.

Write it in Programmers Notepad

Pro grammers
Motepad [...

Find Programmers Notepad that was installed as part of
WinAVR (you should have an icon for it on your desktop) and open it. You
will need to add a tool, which will let you use the AVR Studio simulator.

e Open the Tools menu and click on Options.

27

Chapter 2: Quick Start Guide

4,4 Programmers Motepad 2

| File Edt view | Tooks ‘Window Help

J 0= | = | = Line Endings r
[Projects ¥ seTebs [
[WinayR] Make Al W
[WinAWR] Make Clean [E]
["inanR] Program FE
Stop Too|s il

e In the Options window select Tools:

opions £
v Yisual Help [Allow multiple instances of Programmers Matepad ko stark
SEYIB [~ Maximise nevs document windows
- Schemes
Fi:Ies ™ Show full file path in document windows
i Mew Files
L. Alernate Files) ;
Took Files in the most recently used list: I 4 (1 ko 50}
Defaults:
[Show Line Mumbers
Line Endings: - [yindows (CRLF) =l
V¥ Lse the tah character For indentation
Tab Width: I 4
Help | (0] 4 I Cancel |

e Then select Add:

28

Chapter 2: Quick Start Guide

Dptions x|
G;eneral p— In mary cases it may be useful to set up external tools such as compilers or
o Yisual Help — syntay checkers, You can set these tools up here,
Style
. Schemes
Files Scheme: I(Nc-ne - Galobal Toals) j
i Mew Files
alternate Files Nalme | Command | Params | J
[WinAWR] Make all make, exe all
[WinaAWR] Make Clean make. exe clean
[inaAYR] Program make.exe program
Add | Edit: | Remove
nake: The First ikem in any list will be the default tool,
Help | K I Cancel |

e Change the check box to look like:

8l Edit Tool

—Tool:

Mame: | [winaWR] Make Extcoff

Command: I rmake, exe

=
o

| Folder: I a.d

Parameters: I extcoff

Shorbout: INone LI

Save

i |Current File j

[This tool will madify the current file,

Special Symbols:
ZF File Mame %d: Path of File
%n: File Mame [no ext] % Column
L Current Line Mumber %% Percent Sumbol
%Y Aszk for parameters Fwi: Current word
%p: Current Project File % Project Group File

— Oukpuk:
Iv Capture oukpuk?

IUse the main output window,

[Clear output before Funning?

" Look For a custom pattern:

% Lse the builk-in errar parser. j

-

example: %efrit)

Pattern Symbols:
#F. File Mame
El: Line Mumber
%c: Colurmn

29

o]

Cancel |

Chapter 2: Quick Start Guide

Click OK.
Click File, then New, then C/C++, and name it Blinky.c.
Save in Blinky directory and CAREFULLY TYPE exactly as shown:

// Blinky.c

#include <avr/io.h>
#include <avr/delay.h>

int main (void)

{
// set PORTD for output
DDRD = OxFF;
while(1) {
for(int 1 = 1; 1 <= 128; i = i*2)
PORTD = i;
_delay_loop_2(30000);
}
for(int 1 = 128; 1 > 1; 1 -= 1/2)
PORTD = 1i;
delay loop_ 2(30000);
}
}
return 1;
}

Open File and again save ‘Blinky.c’ to your Blinky directory
NOTE: YOU MUST ADD THE EXTENSION “.c’ TO THE NAME
Open the file “‘makefile’ in your Blinky directory.

Change these lines:

MCU = atmegal28

Output format. (can be srec, ihex, binary)
FORMAT = ihex

30

Chapter 2: Quick Start Guide

Target file name (without extension).
TARGET = main

e ToO:

MCU = atmegal69

Output format. (can be srec, ihex, binary)
FORMAT = ihex

Target file name (without extension).
TARGET = Blinky

e Close and save changes to makefile to the Blinky directory.

e Open Tools and click [WinAVR] Make All to make your Blinky.hex file

e Open Tools and click [WinAVR] Make Extcoff to make your Blinky_coff
file.

Download to the Butterfly with AVRStudio

AVR Studio 4

Find AVR Studio (you should have an icon for it on your
desktop) and open it.

e Inthe File menu Open *...\Blinky\Blinky.cof

e Select the AVR Simulator and the ATMEGAL169 as:

31

Chapter 2: Quick Start Guide

Select device and debug platform

Select debug platform and device

Debug Platfarm: Device:

JTAGICE mkll ATmegall3 A
ICE40 ATmegal28 ;
ICERD ATmegalk

ATmegalBl

ATmegalb2

ATmegalb3

ATmegalkBl

ATmega32
ATmegad2l
ATmegald2d v

r

Help J Bach | et | J Cancel | wer, 4.09.338

e Select Finish

e DO NOT try to run the simulation; the delay loop will take forever to run.
We’ll use the simulator later.

e Turn the Butterfly off.

e Press and hold down the joystick button.

e Back to the AVR Studio, open the Tools menu and WHILE HOLDING
DOWN THE JOYSTICK BUTTON click the AVR Prog menu item. Then
wait until you see:

AYRprog E] @El
i~ Hex file
Blirky. ke
Browse... Exit...
Flazh -
Frogram | Werify ‘ Fiead |
. EEPROM
Frogram | Werify ‘ Fiead ‘
Device -
_-'J Advanced...

32

Chapter 2: Quick Start Guide

e Release the joystick button. Your finger hurts doesn’t it? Enter Blinky.hex
in the ‘Hex file’ box. Press the program button and the program should
magically flow from your PC into the AVR Butterfly Flash memory.

e AVR Prog will say: Erasing Programming Verifying OK.

e WHEN YOU WANT TO DOWNLOAD A DIFFERENT HEX FILE,
DON’T FORGET TO CHANGE THE HEX FILE NAME. DON’T SAY I
DIDN'T WARN YOU AFTER YOU WASTE TIME SCRATCHING
YOUR HEAD OVER WHY YOUR NEW PROGRAM SEEMS TO RUN
EXACTLY LIKE THE LAST ONE YOU DOWNLOADED. | make this
mistake a lot.

e |f instead of the above window you get:

AvrProg Ej
' Mo supported board Found!
L3 AYRprog version 1,37

e Go back a few steps and try again. You probably left Bray’s Terminal
running so it has locked the port. Then maybe not.

Blinky Goes Live

e Turn the power supply off and then back on, the LCD will be blank, click
the joystick up (maybe a couple of times) and:

33

Chapter 2: Quick Start Guide

2 ANE Hitierily

e Your LEDs should be making like a Cylon with the light bouncing back
and forth. If you don’t know what a Cylon is, try Googling Battlestar
Galactica, not that I’m recommending the series, but the bad guys had
great eyes:

Figure 11: From the cover of the Battlestar Galactica comic Red Cylon.

When you compiled Blinky.c you may have suspected that a lot of stuff was going
on in the background, and you would have been right. The compiler does a lot of
things, and fortunately for us, we don’t really need to know how it does what it

34

Chapter 2: Quick Start Guide

does. We only need to know how to coax it to do what we need it to do, which in
our case is convert Blinky.c into Blinky.hex that we can download to the
Butterfly. If you raise the hood on WinAVR you would see a massively complex
set of software that has been created over the years by folks involved in the open
software movement. When you get a little extra time check out
www.sourceforge.net.

When you have questions about WinAVR, and you will, check out the forums on
www.AVRFreaks.net, especially the gcc forum, since WinAVR uses gcc to
compile the C software. Try searching the forums before asking questions since
someone has probably already asked your question and received good responses.
Forum helpers tend to get annoyed with newbies who don’t do sufficient
background research before asking questions.

Simulation with AVRStudio

Now that you’ve gone to the trouble to construct the hardware, and have the
burned fingers to prove it... guess what? You didn’t need to do any of that to test
Blinky or get an introduction to C programming for microcontrollers. With a
minor modification you can run Blinky in the AVR Studio simulator and learn the
introductory C programming ideas in the next chapter without any of the
hardware. | decided to do things the hard way, ummm... hardware way because
our goal is to control ‘real’ things like LEDs, not virtual things like little boxes on
your PC screen. Theoretically, we could have a whole slew of virtual things to
control, from LEDs to motors to full blown Cylon robots reeking havoc on your
screen, which actually sounds kind of fun, but not nearly so much fun as having a
real Cylon robot stomping around your neighborhood scaring the noodles out of
your enemies. Fun aside, it is often more practical to simulate software before
running it in the real world. You wouldn’t want your Cylon to mistake you, the
imperious leader, for an enemy, would you?

The simulator runs your program in a virtual environment that is MUCH slower
than the real microcontroller. Most of your code will run plenty fast to simulate,
but some things, such as the delay functions take too long to simulate. In Blinky
we call _delay_loop_2(30000); We don’t know yet how this function works, but
we can guess that we are telling it to do something 30000 times. If we simulate

35

Chapter 2: Quick Start Guide

the delay, the simulated LEDs will move at geologic speeds, making glaciers
seem fast, so we remove the delay before simulation.

e Open Blinky.c in Programmers Notepad and save it to a new directory,
SimBlinky, as SimBlinky.c.

e Put comment lines in front of both of the _delay loop_2() function calls

1IN main():

/[_delay_loop_2(30000);

Open the makefile in the Blinky directory

Change the target: TARGET = SimBlinky

Save the makefile to the SimBlinky directory

Run the Make All, then Make Extcoff.

In the AVRStudio open the SimBlinky.coff file.

e In the AVRStudio Workspace window click the 1/0 ATmegal69, then the
PORTD, you should see: (the following image shows PORTB instead of
PORTD, -- live with it)

FEOa= | =

Workspace x #ir

Hame | Walue | Bitz | '
+ & stack Monikar ”
= B8 110 ATmegalso oeint
+-J " AD_COMVERTER {
+- 1 ANALOG_COMPARATOR
+-[F) BOOT_LOAD
+ 3 cru
+-[] EEPROM
+- %3 EXTERNAL_INTERRUPT
+-59 ITAG
+ & misc
+- 52 PORTA
--=2 PORTB
=2 PORTE 000 OOOO00004d
¥ DORE 000 OOO0O0000d
=2 e 0 00000000
PORTC
PORTD
PORTE

wiol

i isithitd

-
]
jex)
=
Rl

e [

+.=2 prRTA bt 1
Srroject Eyo | @info i B cicy

- Frogram - 8/16| abc.| Address: |0=0 Cals

e In the toolbar click the AutoStep button:

36

Chapter 2: Quick Start Guide

FIER -

e The simulator will run showing the LED scan as a scan of the PORTD and
PIND items in the Workspace window:(this shows PORTB but you’ll

actually see PORTD)
=22 PORTE

=2 PORTE

¥ DORE
=2 PINE

EEEECEEN
C LD L]]
EERCEEEN

e See, I told you it wasn’t as much fun as watching real LEDs blink.
e Spend some time with the AVR Studio simulator and associated help files;
you’ll find the effort well worth it in the long run.

GOOD GRIEF!

That was a “‘Quick Start’???? Well, maybe things would go quicker if you wanted
to pay a fortune for a software and hardware development system, but for FREE
software, and unbelievably cheap hardware, you’ve got to expect to do a little
more of the work yourself. Besides, you couldn’t pay for all the debugging
education | bet you got just trying to follow what I was telling you. If you think
the ‘Quick Start’ section was confusing, you should try reading all the stuff it’s

based on.

37

Chapter 3: A Brief Introduction to C — What Makes Blinky Blink?

Chapter 3: A Brief Introduction to C — What
Makes Blinky Blink?

This section takes a very brief look at Blinky.c to help begin understanding what
each line means. Later, these items will be covered in greater detail in context of
programs written specifically to aid in learning the C programming language as it
is used for common microcontroller applications.

Comments
You can add comments (text the compiler ignores) to you code two ways.

For a single line of comments use double back slashes as in
// Blinky.c

For multiline comments, begin them with /* and end them with */ as in:

/*

Blinky.c is a really great first program for microcontrollers

it causes eight LEDs to scan back and forth like a Cylon’s eyes
*/

Include Files

#include <avr/io.h>
#include <avr/delay.h>

The “#include’ is a preprocessor directive that instructs the compiler to find the
file in the <> brackets and tack it on at the head of the file you are about to
compile. The io.h provides data for the port we use, and the delay.h provides the
definitions for the delay function we call.

Expressions, Statements, and Blocks

Expressions are combinations of variables, operators, and function calls that
produce a single value. For example:

PORTD = OXFF — counter++

39

Chapter 3: A Brief Introduction to C — What Makes Blinky Blink?

This is an expression that sets the voltage on pins on Port D to +3v or Ov based on
the value of the variable ‘counter’ subtracted from OxFF (a hex number - we’ll
learn about these and ports later). Afterwards the counter is incremented.

Statements control the program flow and consist of keywords, expressions, and
other statements. A semicolon ends a statement. For example:

TempInCelsius = 5 * (TemplnFahrenheit-32)/9;

This is a statement that could prove useful if the Butterfly’s temperature readings
are derived in Fahrenheit, but the user wants to report them in Celsius.

Blocks are compound statements grouped by open and close braces: { }. For
example:

for(int 1 = 1; 1 <= 128; i = i*2)

PORTD = ~i;
delay loop_2(30000);
}

This groups the two inner statements to be run depending on the condition of the
“for’ statement.

Operators

Operators are symbols that tell the compiler to do things such as set one variable
equal to another, the ‘=" operator, as in ‘DDRB = OxFF' or the *++’ operator for
adding 1, as in ‘counter++’.

Flow Control

Flow control statements dictate the order in which a series of actions are
preformed. For example: “for’ causes the program to repeat a block. In Blinky we
have:

for(int 1 = 1; 1 <= 128; 1 = 1*2)

{

}

// Do something

40

Chapter 3: A Brief Introduction to C — What Makes Blinky Blink?

On the first pass, the compiler evaluates the “for’ statement, notes that ‘i’ is equal
to 1 which is less than 128, so it runs the block of ‘Do something’ code. After
running the block the ‘for’ expression is reevaluated with ‘i’ now equal to the
previous ‘i’ multiplied by 2 ‘i = i*2” which is 2 and 2 <= 128 is true, so the block
is run again. Next loop, i = 4, and so on till i = 256, and ‘256 <=128’ is no longer
true, so the program stops running the loop and goes to the next statement
following the closing bracket.

Quick now, how many times does this loop run? The series of ‘i’ values evaluated
against the ‘<= 128’ is “1,2,4,8,16,32,64,128,256° and since it takes the 256 as the
cue to quit, the loop runs 8 times.

The while(“expression’) statement tests the ‘expression’ to see if it is true and
allows the block to run if it is, then it retests the expression, looping thru the block
each time it finds the expression true. The program skips the block and proceeds
to the next statement when the expression is false. The while(1) will run the loop
forever because ‘1’ is the definition of true (false is defined as 0).

Functions

A function encapsulates a computation. Think of them as building material for C
programming. A house might be built of studs, nails, and panels. The architect is
assured that all 2x4 studs are the same, as are each of the nails and each of the
panels, so there is no need to worry about how to make a 2x4 or a nail or a panel,
you just stick them where needed and don’t worry how they were made. In the
Blinky program, the main() function twice uses the _delay loop_2() function. The
writer of the main() function doesn’t need to know how the
_delay_loop_2(30000) function does its job, he only needs knows what it does
and what parameters to use, in this case 30000, will cause a delay of about 1/8
second.

The _delay loop_2() function is declared in the header delay.h and the makefile is
set up so that the compiler knows were to look for it.

Encapsulation of code in functions is a key idea in C programming and helps
make chunks of code more convenient to use. And just as important, it provides a
way to make tested code reusable without having to rewrite it. The idea of
function encapsulation is so important in software engineering that the C++

41

Chapter 3: A Brief Introduction to C — What Makes Blinky Blink?

language was developed primarily to formalize these and related concepts and
force their use.

The Main() Thing

All C programs must have a ‘main’ function that contains the code that is first run
when the program begins.

int main (void)

// Do something

}
Blinky has:
int main (void)
{
// set PORTD for output
DDRD= OxFF;
while(1)
for(int i = 1; i <= 128; i = i*2)
{
PORTD = ~i;
delay loop_2(30000);
}
for(int 1 = 128; 1 > 1; i -= i/2)
PORTD = ~i;
delay loop_2(30000);
}
}
}

42

Chapter 3: A Brief Introduction to C — What Makes Blinky Blink?

In this function we leave C for a moment and look at things that are specific to the
AVR microcontroller. The line:

DDRD = OXFF;

Sets the microcontroller Data Direction Register D to equal 255. This tells the
microcontroller that Port D pins, which are hooked up to our LEDs, are to be used
to output voltage states (which we use to turn the LEDs on and off). We use the
hexadecimal version, OxFF, of 255 here because it is easier to understand what’s
happening. You disagree? Well, by the time you finish this text, you’ll be using
hexadecimal numbers like a pro and understand they do make working with
microcontrollers easier, but for now, just humor me.

The program tests the while(1) and finding it true, proceeds to the “for’ statement,
which is also true and passes to the line:

PORTD = ~i;

Which causes the microcontroller to set the Port D pins to light up the LEDs with
the value of ~i. The ‘~’ inverts the value of i , we’ll learn more about this later.

Say what? Okay, ‘i’ starts off equal to 1, which in binary is 00000001 (like
hexadecimal, you’ll grow to love binary). This provides +3v on the rightmost
LED, lighting it up and leaves the other LEDs unlit at Ov.

The first “for’ loop runs eight times, each time moving the lit LED to the left, then
it exits. In the next “for’ loop the -= operator subtracts i/2 from i and sets i equal to
the results causing the LED to move to the right. When it is finished the loop runs
again... for how long? Right... forever. Or at least until either the universe ends
or you unplug the Butterfly.

NOTE: the Butterfly LCD dances like crazy with each LED pass, because some
of the Port D pins are also tied to the LCD. It’s a bug in our design, but in the
world of marketing it would be called a free bonus feature available exclusively to
you for an unheard of low price if you act immediately. Will it harm the LCD?
Probably not, but I don’t know for sure, so don’t leave Blinky running overnight.

43

Chapter 3: A Brief Introduction to C — What Makes Blinky Blink?

That’s enough for a quickie introduction. We skimmed over a lot that you’ll see in
detail later. You now know just enough to be dangerous and | hope the learning
process hasn’t caused your forehead to do too much damage too your keyboard.

44

Chapter 4: C Types, Operators, and Expressions

Chapter 4. C Types, Operators, and
Expressions

Data Types and Sizes

Seen on a shirt at a Robhothon event:

There are exactly 10 types of people in the world.
Those who understand binary numbers and those who dont.

If this doesn’t make sense to you now, it will in a minute.

Bits

The first computers were people with quill pens who spent their lives calculating
tables of things like cannonball trajectories to help soldiers more accurately
slaughter their enemies. Later mechanical computers, with brass gears and cams,
were developed to make the slaughter cheaper, quicker, and easier. Then one day a
genius figured that you could do all this computing even easier if you used
switches. Switches can be off or on, and the fundamental datum is the ‘bit” with
exactly two “binary’, states. We variously refer to these states as ‘0 and 1’ or ‘on
and off” or ‘true and false’. It’s the latter that allows us to use bits to automate
Boolean logic and thus the modern binary logic computer entered the world and
now slaughter is so cheap, quick and easy to compute that anybody can do it.
Maybe this is skimming the topic a bit (har!) but a full explanation would begin
with the first sentence of Genesis and only hit its stride about the time Albert
Turing offed himself as his unjust reward for saving the free world, and while
fascinating, it won’t get us blinking LEDs any quicker, so Let’s move on.

Each of our LEDs is connected to a microcontroller pin that can have two voltage
states: ground or +3v, which can be manipulated as a data bit.

Bytes

The AVR and many other microcontrollers physically handle data in 8-bit units
called bytes, a data type that can have 256 states, 0 thru 255. This is shown in the
following sequence of states, (leaving out 9 thru 247, see Appendix 5 to see them
all, and be sure to take a magnifying glass):

45

Chapter 4: C Types, Operators, and Expressions

00000000 =0 1111000 = 248
00000001 =1 1111001 = 249
00000010 =2 1111010 = 250
00000011 =3 (9 thru 247) 1111011 =251
00000100 =4 1111100 = 252
00000101 =5 1111101 = 253
00000110 =6 1111110 = 254
00000111 =7 1111111 = 255
00001000 =8

Look at our Cylon eye and notice that we have 8 LEDs with one lit at a time
scrolling back and forth. What you are seeing is 8 of the 256 possible states being
presented in a sequence that fools us into thinking we are seeing a back and forth
scrolling motion. If the presentation sequence were random, we’d just see the
light blinking on and off chaotically. Using binary numbers where the lit LED is
represented by 1 shown next to the hexadecimal and decimal equivalent, what we
are seeing is:

00000001 =0x01=1
00000010 = 0x02 = 2
00000100 = 0x04 = 4
00001000 = 0x08 =8
00010000 = 0x10 =16
00100000 = 0x20 = 32
01000000 = 0x40 = 64
10000000 = 0x80 = 128
01000000 = 0x40 = 64
00100000 = 0x20 = 32
00010000 = 0x10 =16
00001000 = 0x08 =8
00000100 = 0x04 = 4
00000010 = 0x02 = 2
00000001 =0x01=1

In microcontroller applications, we will often be dealing with the states of byte-
sized ports, like Port D. A port is a place where ships come and go, or in the case

46

Chapter 4: C Types, Operators, and Expressions

of a microcontroller it is a place where outside voltages (Ov or 3v) can be read or
set.

We use binary and hexadecimal numbers for ports because it is cumbersome and
non-intuitive to think of port data as decimal numbers, Quick, what will 66 look
like on our LEDs? Quick, what will 01000010 look like on our LEDs? Since
01000010 = 66, you see my point? And | bet you get the joke at the beginning of
this section.

The hexadecimal system is another commonly seen number system used in
microcontrollers. It has a base of 16, that is 16 states per digit:

0,1,2,3,4,56,7,89 A B,C,D,E,and F.

Since we use numbers to the base 10 because we have ten digits, fingers if you
count the thumb as a finger, to count with. It might help to imagine an alien with
16 fingers, or better yet: 4 hands with three fingers and on thumb on each. In C, a
hexadecimal number is preceded by Ox. The hex byte representation of the
decimal number 129 is 0x81. The decimal and binary equivalents of the hex
numbers are:

0 = 0000 = 0x0
1=0001 =0x1
2=0010 = 0x2
3=0011=0x3
4 = 0100 = 0x4
5=0101 = 0x5
6 = 0110 = 0x6
7 =0111 = Ox7
8 = 1000 = 0x8
9=1001 = 0x9
10 = 1010 = OxA
11 = 1011=0xB
12 = 1100 = OxC
13 =1101 = 0xD
14 = 1110 = OxE
15 =1111 = OxF

47

Chapter 4: C Types, Operators, and Expressions

It is very common for new users of hex numbers to make the mistake of saying,
“Well there are 16 hex integers, so OxF, the last one, is 16.” We make this mistake
because we think of counting beginning with 1, but for most computer use you’ll
see counting beginning with 0. 0 is the first integer and 15 is the 16" integer.
When you count like a computer your first digit (left thumb?) is 0 not 1. If a
computer had those alien hands to count on, the first thumb would be 0 and the
last would be 15 (OxF if it was speaking hex instead of dec). Try to keep this in
mind because it will bite you later.

Experienced microcontroller programmers memorize the binary equivalent of hex
digits and find hex numbers very useful. For instance, given 0xA9, what would
the LEDs (or the voltage states of an 8-bit register) look like? If you memorize the
table, you come up with OxA = 1010 and 0x9 = 1001, so the LEDs (voltage states)
will look like: 10101001. As pointed out earlier, ask the same question in decimal,
what will 169 look like on the LEDs and good luck, on doing that in your head.
Look at Appendix 5 to see all the byte states in decimal, hexadecimal, and binary.
Finally, all jokes equating byte to bite are prohibited.

char

The name of this data type is short for character, and is typically used to represent
a character in the ASCII character set (Appendix 4 — ASCII Table). Originally,
there were 127 ASCII characters used by Teletype machines to transmit and
receive data. You will note that in Figure 1, you see Dennis Ritchie, who wrote C,
standing next to Ken Thompson, who wrote UNIX, working on a Teletype
machine. Clunky as they were (the Teletype, not Ritchie and Thompson),
Teletypes were light years ahead of entering data by individual switches
representing each bit of data. Teletypes send and receive characters so a lot of C,
especially the standard library, is character oriented. The number of bits in a char
is machine dependent, but in all machines I’ve encountered including the AVR, a
char is an 8-bit byte which can have 256 bit states. The computer uses this byte of
data as representing a signed value from —-128 to + 127.

The ASCII code was extended to include characters for 128 to 255 primarily to do
weird European characters, math symbols, and character graphics on early PCs.

48

Chapter 4: C Types, Operators, and Expressions

unsigned

If the modifier unsigned is used in the definition of a char variable: ‘unsigned
char’, the value is from 0 to 255. Many C compilers will have ‘byte’ or ‘Byte’
defined as equaling ‘unsigned char’. The ‘byte’ keyword is not part of C, but it is
very convenient, since in microcontrollers we usually use a lot of numbers, but
not a lot of “char’acters.

int

On AVR microcontrollers int declares a 16 bit data variable as having values from
—32768 to +32767. A variable declared with ‘unsigned int’ will have a value from
0 to 65535.

The long and short of it

Everybody else makes that dumb joke at this point, so why be different?

You can declare variables as ‘short int” and ‘long int’. For C the size is machine
dependent, but on many systems a short int is the same as an int, 16 bits, while a
long int is 32 bits.

Variable Names

The changeable data you are processing is stored in bytes of RAM, Random
Access Memory, at specific addresses. Variables are names that provide an alias
for the address being used. We’ll look at the gory details in the ‘Variables
External, Static, and Register’ section of.

Constants

Constants are data that cannot be changed by the program and are usually stored
in ROM, Read Only Memory. We could just type in the constant value wherever
needed, but that will get old quick, so we alias the value with a name. We usually
do this in a header file or at the start of the software module, which adds the
advantage that if we ever want to change the constant we can do it once in the
definition instead of at each occurrence in the code. By convention, constant
names are all caps. For example we might want to use pi in calculation (pi
containts a decimal so we use the float data type) so we define as follows:

#define Pl 3.1415926

49

Chapter 4: C Types, Operators, and Expressions

We can then use PI anywhere in our software and the compiler will automatically
substitute the numerical value for it:

float pieCircumference

= 0.0;
float piePanRadius = 0.0;

pieCircumference = Pl * (piePanRadius”?);

Declarations

A declaration is a text statement that declares to the complier how your words are
to be used. When you declare ‘unsigned char counter = 0” you are telling the
compiler that when it encounters the word “‘counter’ to consider it as data stored at
some specific location with the alias name ‘counter’ that can have values from 0
to 255, but in this case initially has a value of 0.

Arithmetic Operators

Operators seem like ordinary arithmetic or algebra symbols, and they mostly are.
But they are different from arithmetic or algebra often enough that you need to
pay attention when operations don’t act like you think they should. The compiler
might just be doing what you told it to do, rather than what you wanted it to do.
An example of the kind of confusion you can run into when you use the ‘=’
assignment operator and the ‘==""is equal to’ operator:

X =Yy;
if(x==y) _delay_loop 2(30000);

The first statement assigns x to the value of y. The second calls the
_delay_loop_2(30000) function if x is equal to y. What about:

iT(x=y) _delay_loop_2(30000); //BAD STATEMENT
This will set x equal to y, and then call the _delay loop_2(30000) function. The
‘if” becomes meaningless because the condition, x=y, is always true, so the delay
will always run. The WinAVR compiler will think something is strange and issue
this warning:

Warning: suggest parentheses around assignment used as truth value

50

Chapter 4: C Types, Operators, and Expressions

Which will scroll by so fast you won’t see it, so you’ll assume the compile was
good. Notice how clear (NOT) this warning was? Most complier warnings are
even more cryptic. Not all compilers will flag this error with a warning. It is a
very easy mistake to make, and you will feel really dumb after an hour of
debugging, looking for something obscure, only to find a lousy missing ‘=’

character. | do this all the time.

Note: Some of these operators may seem strange at this point, but they are
explained fully in later sections. Then they’ll seem really strange.

Table 1: Arithmetic Operators

Operator | Name Example | Defined

* Multiplication | x*y Multiply x times y

/ Division xly Divide x by y

% Modulo X%y Provide the remainder of x divided by y
+ Addition X+y Add xandy

- Subtraction X-y Subtract y from x

++ Increment X++ Increment x after using it

-- Decrement --X Decrement x before using it

- Negation -X Multiply x by -1

+ Unary Plus +X Show x is positive (not really needed)

Table 2: Data Access and Size Operators

Operator | Name Example | Defined

[Array element X[6] Seventh element of array X

: Member selection PORTD.2 | Bit2 of Port D

-> Member selection pStruct->x | Member x of the structure pointed to
by pStruct

* Indirection *p Contents of memory located at
address p

& Address of &X Address of the variable x

51

Chapter 4: C Types, Operators, and Expressions

Table 3: Miscellaneous Operators

Operator | Name Example | Defined
0 Function wait(10) call wait with an argument of 10
(type) Type cast (double)x | x converted to a double
?: Conditional X?y:z If X is not 0 evaluate y, otherwise evaluate
z
, Sequential X++,y++ Increment x first, then increment y
evaluation

Relational and Logical Operators

Table 4: Logical and Relational Operators

Operator | Name Example | Defined

> Greater than x>y 1if xis greater than y, otherwise 0

>= Greater than | x>=y 1 if x is greater than or equal to v,
or equal to otherwise 0

< Less than X<y 1if x is less than y, otherwise 0

<= Less than or | x<=y 1 if x is less than or equal to y, otherwise
equal to 0

== Equal to X== 1 if x equals y, otherwise 0

1= Not equal to x!= 1if x is not equal to y, otherwise 0

! Logical NOT | Ix 1if x is 0, otherwise 0

&& Logical AND | x&&y 0 if either x or y is O, otherwise 1

I Logical OR X|ly 0 if both x and y are 0, otherwise 1

52

Chapter 4: C Types, Operators, and Expressions

Bitwise Operators
Table 5: Bitwise Operators

Operator | Name Example | Defined
~ Bitwise complement | ~x Changes 1 bits to 0 and 0 bits to 1
NOT

& Bitwise AND X&Y Bitwise AND of x and y

| Bitwise OR x|y Bitwise OR of x and y

A Bitwise exclusive OR XNy Bitwise XOR of x and y

<< Left shift X<<2 Bits in x shifted left 2 bit
positions

>> Right shift X>>3 Bits in x shifted right 3 bit
positions

Bitwise operators are critically important in microcontroller software. They allow
us to do many things in C that can be directly and efficiently translated into
microcontroller machine operations. Keep in mind that these operators work on
bits but are similar enough to the logical operators that you will get confused.
Let’s look at the truth tables for &, |, and *:

AND OR XOR

0&0=0 0]0=0 070=0
0&1=0 0|1=1 0r1=1
1&0=0 1]|0=1 170=1
1&1=1 1|1=1 171=0

Let’s create a variable, myByte and do some bitwise operations on it:
unsigned char myByte = 0;

We can set bit 3 (numbering from the right starting with 0):
myByte = myByte | 0x08;

To see what’s happening Let’s look at these in binary:

myByte = 00000000 = Ox00

53

Chapter 4: C Types, Operators, and Expressions

0x08 = 00001000 = 0x08

OR = 00001000 = 0x08

Suppose myByte = OxFF:

myByte 11111111
0x08 = 00001000

OR = 11111111 = OxFF

Or maybe myByte = 0x55:

0x55
0x08

myByte 01010101
0x08 = 00001000

OR = 01011101 = Ox5D

This all shows that only the 3™ bit of myByte is affected by the OR operation,
since it is the only bit equal to 1 in 0x08.

Now let’s do the same thing with the & operator:
unsigned char myByte = 0;

We can set bit 3 with:
myByte = myByte & 0x08;

To see what’s happening Let’s look at these in binary:

myByte 00000000 0x00
0x08 = 00001000 = 0Ox08

AND = 00000000

Suppose myByte = OxFF:

myByte = 11111111 = OxFF
0x08 = 00001000 =

54

Chapter 4: C Types, Operators, and Expressions

AND = 00001000

Or maybe myByte = 0x55:

myByte = 01010101 =
0x08 = 00001000 = Ox08

AND = 00000000 = 0x00

And maybe myByte = OxAA:

myByte = 10101011 = OxAA
0x08 = 00001000 =

AND = 00001000 = 0x08

In each of the above cases we are only dealing with a single bit, but we might be
interested in any or all of the bits. One of the most important features of using
masks with bitwise operators is that it allows us to set or clear a specific bit or set
of bits in a byte without knowing or affecting the bits we aren’t interested in. For
example, suppose we are only interested in bits 0, 2, and 6. Let’s set bit 6,
regardless of its present value, then clear bits O and 2, also regardless of their
present value and, here’s the trick, leave bits 1, 2, 4, 5, and 7 as they were when
we began. Let’s have myByte starting equal to the secret to life the universe and
everything, which according to Douglas Adams is 42, but remember that the start
value doesn’t matter to us since we are going to force 3 bits to values regardless
of the start value.

NOTE:
myByte = myByte | 0x08;
is the same as
myByte |= 0x08;
which we will use from no on.
At the beginning myByte is equal to 42 = 0x2B = 00101011. We set bit 6 with:
myByte |= 0x40;

which does the following:

55

Chapter 4: C Types, Operators, and Expressions

myByte = 00101011 = Ox2B
= 01000000 =

AND = 01101011 = Ox6B

Next we want to clear bits 0 and 2:
myByte &= OxFA;
which does the following:

myByte = 01101011
0x40 = 11111010

AND = 01101010 = Ox6A
So in summary we set bits with ‘|” and clear bits with ‘&’.

The Butterfly Software has a clever snippet in LCD_driver.c where the ‘&’ and
‘~” operators are used to convert a lowercase letter to a capital:

// c is a letter
if (c >= "a") // Convert to upper case
c &= ~0x20; // if necessary

This statement first checks to see if the character c is greater than or equal to ‘a’
and uses the convenient fact that in ASCII the letters are sequential with the
capitals beginning at 0x41 and the lowercase beginning at 0x61. So if the
character is >= 0x61 then it is lowercase and we can derive the uppercase version
by subtracting 0x20. So why do we use ‘c &= ~0x20’ instead of subtracting as in
‘c -= 0x20°? Well, it is more efficient for the machine to take the inverse of the
minuend and then AND it with the subtrahend (this by the way, is the first time
since grammar school that I’ve actually used minuend and subtrahend, I’'m
amazed that these terms actually stuck. Maybe it was the teachers steely glare and
the dangerous looking pointer she held.) Let’s look at it shall we?

0x20
~0x20

00100000
11011111

56

Chapter 4: C Types, Operators, and Expressions

“a” = 0x61 = 01100001
= 11011111

AND = 01000001 = 0Ox41 = “A’

This is a lot harder for us than ordinary subtraction, but much easier for the
machine.

While using &= and/or |= is acceptable, the Butterfly code generally does this a
little differently, not to make your life harder, but to make the code a little clearer,
though it won’t seem that way at first. When we create masks to set or clear bits,
we will name the bits so for instance the first bit in port D is named PDO and we
can guess that the eighth bit is named PD7. That’s simple, but it gets hairy when
we give complicated names to all the bits in the dozens of registers. For instance
in the TimerO register: TCCROA, Timer/Counter Control Register A we have the
following bits named (page 90 ATMEGA169 databook):

Timer/Counter Control
Register A — TCCROA

Blt 7 5 5 4 a 2 1 0
| FocoA | WGMoo | COMoA1 | COModo | WGMo1 Csoz CS01 csoo |

ReadWrite W RAW RAW AW AW Rw RAY AW

Initial Value 0 0 0 0 0 0 0 0

Bit 7 = FOCOA — Force Output Compare A

Bit 6 = WGMO00 — Waveform Generation Mode 0
Bit 5 = COMOAL — Compare Match Output Mode 1
Bit 4 = COMOAOQ — Compare Match Output Mode 0
Bit 3 = WGMO01 - Waveform Generation Mode 1
Bit 2 = CS02 - Clock Select Bit 2

Bit 1 = CS01 - Clock Select Bit 1

Bit 0 = CS00 — Clock Select Bit 0

Bits 0, 1, and 2 the Clock Select Bits are defined as:

57

Chapter 4: C Types, Operators, and Expressions

Table 53. Clock Select Bit Description

CS02 | CS01 | CS00 | Description
0 0 0 No clock source (Timer/Counter stopped)
0 0 1 clkyo/(No prescaling)
0 1 0 clky/8 (From prescaler)
0 1 1 clk;,o/64 (From prescaler)
1 0 0 clkn/256 (From prescaler)
1 0 1 clkjn/1024 (From prescaler)
1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.

Figure 12: from page 92 of the ATMegal69 data book

Let’s initialize the timer with:

We use the left shift operator <<’ to shift the number before the operand to the
numeric position in the byte specified by the number following the operand. In
the case of (1<<WGMO01) we shift a 1 to the left by WGMOL1 bit positions, and we

see from iom169.h:

WGMOL1 = 3, so (1<<WGMO01) is the same as (1<<3) and means to shift 0000001
three places left to 00001000. Now look at The TCCROA register and notice
where the WGMOL1 bit is located. Ah ha! Like | said, we have a way of dealing

// Set Fast PWM mode and CLK/256 prescaler
TCCROA |= (1<<WGMO1)] (1<<WGMO00) | (4<<CS00);

/* TCCROA */

#define
#define
#define
#define
#define
#define
#define
#define

with a bit by a name.

FOCOA
WGMOO
COMOA1
COMOAO
WGMO1
CS02
CS01
CS00

OFRrNWAMUUITON

58

Chapter 4: C Types, Operators, and Expressions

But wait, wouldn’t that mean that (4<<CS00) means we are setting the CS00 bit
to 4? But a bit can only be 0 or 1 so how the heck do we set a bit to 4?. Well, or
course we don’t. The CS00 = 0, so we are left shifting the number 4 by 0 meaning
we aren’t doing any shifting of the 4, we are just ORing it with the other two
values:

TCCROA |= (1<<WGMO1) | (1<<WGMOO) | (4<<CS00);

Since 4 = 00000100, we will be setting the CS02 bit, not the CS00 bit. So why
didn’t we say (1<<CS02) instead of (4<<CS00)? And the answer is ‘because’.
Actually the answer is that the lower three bytes of the TCCORA register can be
considered a three bit field for a number used to select the clock. The number 4
selects the clock/256 prescaler (see the Clock Select Bit table in Figure 12 above).
Now we can see that (5<<CS00) would mean set the clock to clk/1024 and so
forth. We will often think in terms of multi-bit fields.

Our goal was to “Set Fast PWM mode, CLK/256 prescaler’ (this will be explained
later in the timer section) so we want to set bits 6, 3, and 2 (01001100 = 0x4C)
without affecting the other bits. If we OR it like before we would:

TCCORA |= 0x4C;
Which is:
TCCORA XXXXXXXX = we don’t know, or need too.

0x4C = 01001100

OR = x1xx11lxx = our bits are set the rest are not
changed.

The only problem is what does it mean to setup the timer with 0x4C? When you
see TCCORA |= 0x4C; you don’t know what it is doing and you have to derive
the binary and look in the data book to figure it out. But using:

TCCROA |= (1<<WGMO1)] (1<<WGMO00) | (4<<CS00);

The (1<<WGMO01)|(1<<WGMO00)|(4<<CS00) is the same as 0x4C except that we
can read that we are setting both the Waveform Generation bits and we are setting

59

Chapter 4: C Types, Operators, and Expressions

the clock prescaler to 4, we may still have to use the data book to look at the
Waveform generator and Clock Select tables, but it is still clearer isn’t it?

Which gives you a better chance at knowing what is going on?

TCCORA |= 0Ox4C;

\ersus:
TCCROA |= (1<<WGMO1)] (1<<WGMO00) | (4<<CS00);

Heck, I don’t know, but it is how the guys in Norway do it so we’ll give them the
benefit of the doubt and do it the Norway way and be able to steal all that cool
Butterfly code.

Testing Bits

Now we have our timer setup, but suppose there is a function that needs to know
how the Waveform Generator is set so that it can choose among several
alternative actions? We can test a bit by using the AND operator, but not assigning
any values. For example:

Waveform Generator Modes:

WGMO01 | WGMO0 Mode

0 0 Normal

0 1 PWM, phase correct
1 0 CTC

1 1 Fast PWM

if(1(TCCORA & WGMO1) && 1(TCCORA & WGMOO))

{
// do this only if in the normal mode
}
else if(I(TCCORA & WGMO1) && (TCCORA & WGMOO))
{
// do this only if in the PWM, phase correct mode
}

else if((TCCORA & WGMO1) && 1(TCCORA & WGMOO))

// do this only if in the CTC mode

60

Chapter 4: C Types, Operators, and Expressions

else if((TCCORA & WGMO1) && (TCCORA & WGMOO))

// do this only if in the Fast PWM mode
}

The (TCCORA & WGMO01) test will be 1, true, only if the WGMO1 bit is 1,
likewise for the (TCCORA & WGMO00) statement. The (TCCORA & WGMO01),
adding the “I” or NOT to the statement means that it is true only if the innards of
the () are false. The “if” statement will only be true if both the first and (logical
AND = &&) the second are true. So we’ve used two bitwise ANDs and a logical
AND in this statement.

AND I hope it is clear. It isn’t, so get out the pencil and paper computer and work
through it till it is. Seriously, when | was editing and reread this section | had a
‘good grief” moment. But this is critical since we will be doing lots of clearing
and setting control register bits. And it is as simple as | can make it, so do
carefully walk through the example, pencil and paper in hand and work each
example.

Assignment Operators and Expressions

Table 6: Assignment Operators

Operator | Name Example | Defined

= Assignment X=y Put the value of y into x
+= Compound X+=y This provides a short cut way to write and
-= assignment expression, the example:
*= X +=y; is the same as

= X=X+ y,

%=

<<=

>>=

&=

N—

|:

61

Chapter 4: C Types, Operators, and Expressions

Conditional Expressions

You will frequently need to make decisions based on external conditions. For
example, if the temperature is above 150° F, turn the fan on, if it is under 100° F,
turn the fan off. You could write this as:

if(temp > 150)
Fan(ON);
else
Fan(OFF);

Or you could use the C conditional operator ?: (

Table 3) as below:

temp > 150 ? Fan(ON) : Fan(OFF);

The operation has the form: expressonl ? expression2 : expression3, and follows
the rule that if expressionl is true (non-zero value) then use expression2,
otherwise use expression3. This operator seems a little gee-wiz-impress-your-
friends and not as clear as the if-else expression, but you’ll see this expression a
lot, so get used to it.

Precedence and Order of Evaluation
When a statement has a sequence of operators such as:

X =50+ 10/ 2 — 20 * 4;

The compiler follows an order of calculation based on operator precedence (Table
7). But what the compiler does, may not be what you intended. Calculate the
value of x. Did you get 40? If you performed the calculations sequentially as
listed you get:

X=50+10/2 —-20 * 4
X=60/72-20*4

X =30 -20 * 4

X =10 * 4

X = 40

62

Chapter 4: C Types, Operators, and Expressions

So the answer is 40, right? Wrong, according to C it is —25. The compiler does the
division and multiplication first, then the addition and subtraction:

X =50+10/2 —-20 * 4
X =50+ 10 /7 2 — 80

X =50 + 5 - 80

X = 55 — 80

X = =25

Some C gurus will memorize the precedence and associatively table and actually
write statements like x = 50 + 10 / 2 — 20 * 4. Such clever programmers are
dangerous and should be avoided when possible. The Germans have a word for
clever: kluge, and in programming ‘kluge’ is a well-deserved insult. Don’t be
clever be clear. Clever programming is difficult to read and understand. If the
clever programmer gets run over by a truck (hopefully) his code will be inherited
by some poor guy who will have to figure things out. DO NOT memorize the
Table of Operator Precedence and Associatively in C. DO use ’(* and)’ to
make your program clear!

Which is clearer:
50 + 10 / 2 — 20 * 4;

X
or:

X =50+ (10 /7 2) — (20 * 4);
The second adds nothing for the compiler, but tells the reader what was intended.
But what if you really meant to have the operations performed in the order listed?

Then you would write:
x = ((((50 + 10) / 2) — 20) * 4);

Which would make x = 40. The parentheses can get mighty confusing, but not
nearly as confusing as their absence.

Table 7: Operator Precedence and Associativity in C

Operator Type Operators Associativity
Expression oM. -> Left to right
Unary -+~ 1 * & ++ -- sizeof(type) Right to left
Multiplicative *[% Left to right
Additive +- Left to right

63

Chapter 4: C Types, Operators, and Expressions

Shift << >> Left to right
Relational (inequality) <<=>>= Left to right
Relational (equality) === Left to right
Bitwise AND & Left to right
Bitwise XOR A Left to right
Bitwise OR | Left to right
Logical AND && Left to right
Logical OR | Left to right
Conditional ?: Right to left
Assignment = *= [= %= += -= <<= >>= &= |= | Right to left
N—
Sequential evaluation , Left to right

64

Chapter 4: C Types, Operators, and Expressions

Projects

Port Input and Output

[H Y
r

b
r

=

PFO.FFT PAD.- PAT POD- PCT E

PORTF CRLERS PCATA CANERS PCRTC CAIVERS

EE

P

Eg_

& Ta FEGISTER D&TA DIR. DATA REGIETER DATADR. DA TA REGISTER)] D&TADIR.
| PCATF REG. PORTF PCATA REG FORTA PCATC REG

I 88T DATA BUS I

CALE.05C
NTERNAL
CECLLATOR
........................ ceciLLaTcR: |
1
B H WATCHO0S
FONTER ™3 TIMER THNG AD
---------------- I. T CONTRZL

LCD
FPRCGRAM SRAM Il > MWCUCONTROL OINTROLLE!
-‘| FLASH I :I REGISTER rl LAVER
-

d
)
1
1
)
'
)
]
1
]
1
)
)
1
:
]
1
]
)
'
)
)
1
]
'
)
)
]
)
]
)
)
]
H
)
1
1

..... 1 1 I —, !

L)
TNSTRICTICH P THER_ | H
easteR | | Forpoes |0 omuners e i
FEGETERS [*77"] '
)
X 1
1
)
]
]
1
L
T
1
'
]
'
'
)
'
1
)
1
)
:
)
)
1
1
]
1
]
1
H
]
1
1
)
'
1
]
]
1
'
)
1

&

[EX)

cecmbhese ==

MNSTRUCTION NTERRUPT
CECCCER LHT
tavh cPU FEGETER |1

!
e

UKES
UHNERSAL “_:II I
USART SEFIAL NTERFACE &
[

g DWTA REGISTER| DATACIR DATA REGISTER D&TA DIR. DATAREGISTER DATADR.
i 4 PORTE REG. FORTE PCATE FEG FORTB PCATD REG. PCATD
g
Q

2 DaTa FEG |[DaTA DIR.
7 ice
s

POATE DRIVERS PORTS DANERS PORTD DFIVERS

FED- PET PBO. FRT P0O- POT PG - PG

Figure 13 ATMegal69 Block Diagram

We skimmed over a lot in Chapter 2 so that we could get some LEDs blinking.
Let’s now take a more detailed look at 1/O ports.

65

Chapter 4: C Types, Operators, and Expressions

When this book was written, Digi-Key listed AVRs with as few as 6 1/0 pins on
the ATTINY1l ($0.54) to as many as 54 on the ATMEGA169 ($8.60), the
microcontroller used on the Butterfly. Most of these pins are organized into ports,
collections of pins that are setup and used with port specific access and control
registers. Many of the pins have more than one possible function: they can be
used to input or output digital logic data or they might be used for detecting
external interrupts or as input for clocks or for analog to digital conversions and
so on. In this section we’ll be looking at digital 1/0.

The ATMEGAL169 on the Butterfly has six 8-bit and one 4-bit general purpose 1/0
ports shown in Figure 13 ATMegal69 Block Diagram (copied from the
ATMegal69 data book page 3, Figure 2.) Looks mighty complex doesn’t it? Well
this is a simplified block diagram of a circuit that is vastly more complex. When
you see a photomicrograph of these chips they resemble aerial photos of a vast
ancient city with streets laid out in a grid surrounded by a wall. The ports are the
gates to the city where the ancient electrons riding their very tiny ancient donkeys
enter and leave the city. I’d continue in this vein but then 1’d probably win a prize
in the awful metaphor competition so I’ll stop.

ATmegal69 Silicon Die Curtesty of Christopher Tarnovsky from Flylogic.net

66

Chapter 4: C Types, Operators, and Expressions

Each port has three associated I/O memory locations, that act as guards
determining who shall pass (guess | won’t stop):

1. Data Direction Register - DDRx — Read/Write
2. Data Register — PORTx — Read/Write
3. Port Input Pins — PINX — Read Only

For example port A has: PORTA, DDRA, and PINA.
When used for general purpose 1/0 the port Data Direction Register must be set to
tell the micro whether a pin will be used for input or output. To use a pin for
input, set the associated DDRX bit to 0; to use it as output set it to 1. For example,
to use the upper 4 bits of PORTD as inputs and the lower 4 bits as output, set the
bits to 00001111, which, as we’ve seen, in hex is 0xOF:

DDRD = 0x0F;

In this project we will set port B to input data from switches and port D to output
+3V to drive LEDs. We use the PINB register to read the switches from port B
and write the value to port D using the PORTD register.
First we set the DDRB register so that all the pins are used as inputs:

DDRB = 0x00.
Next we set the DDRD register so that all the pins are used as outputs:

DDRD = OxFF.

Then we write an infinite loop that gets the switch data from port B using PINB
and equates it to PORTD that will light the LEDs.

Open a new C/C++ file in Programmers Notepad and write the following
program. Save it as PortlO.c in a new directory PortlO.

// PortlO.c
#include <avr/io.h>

67

Chapter 4: C Types, Operators, and Expressions

int main (void)

{
// Init port pins
DDRB = 0x00; // set port B for input
DDRD = OxFF; // set port D for output
while(1)
PORTD = PINB;
}
}

Open the makefile in the Blinky directory and save it to the PortlO directory then

change:
TARGET = PortlO.

Follow the Blinky example to write, compile, and download this little program.
Remember to turn the Butterfly off and back on, then hold down the center
joystick button before and while clicking on the ‘AVR prog...” menu item in
AVRStudio. Also remember to browse to the PortlO.hex file in AVRStudio (I
often forget to change the hex file and end up programming the Butterfly with an
earlier hex file). And finally after the code downloads, remember to turn the
Butterfly off and back on then click the joystick to the upper position to start the
program.

If everything goes as planned, the LEDs will display the state of the switches as
shown below. | told you we’d have some lame examples.

68

Chapter 4: C Types, Operators, and Expressions

T LT

Y samad ded

- LI

LI

==

Figure 14: Port 1/O switch input and LED output

69

Chapter 4: C Types, Operators, and Expressions

Cylon Eye Speed and Polarity Control

In this example we will use port B to input data that we will use to control the
Cylon eye movement rate and the LED polarity. By polarity 1 mean that we will
set either all the LEDs on except the sweep LED which will be off, or all the
LEDs off and the sweep LED on. We will control the polarity with the switch
connected to the port B pin 7, leaving the lower pins to allow us to set the speed
increase factor from 0 to 127.

In this example we will use the ~ bitwise operator to invert the LEDs on port D.

Open PortlO.c in Personal Notepad and save it as CylonEyes.c in a new directory
CylonEyes. Make the following changes to the main() function

// CylonEyes.c
#include <avr/io.h>
#include <avr/delay.h>

int main (void)

{
// declare and initialize the scroll delay_count
unsigned long delay count = 10000;

// declare a variable for the speed increase
unsigned long increase = 0;

// declare a variable for the polarity
unsigned char polarity = 0;

// Init port pins
DDRB = 0x00; // set port B for input
DDRD = OxFF; // set port D for output

while(l)

{
// read the switches
increase = PINB;

// set the polarity
if(increase > 127)
{
increase -= 127;
polarity = 1;

70

Chapter 4: C Types, Operators, and Expressions

else polarity = 0O;

// set the delay count
delay_count = 5000 + (increase * 500);

// scroll those eyes
for(int 1 = 1; 1 <= 128; i = i*2)

if(polarity) PORTD = ~i;
else PORTD = 1i;

_delay loop_2(delay_count);

}
for(int 1 = 128; 1 > 1; i -= 1/2)
{
if(polarity) PORTD = ~i;
else PORTD = i;
_delay_loop_2(delay_count);
}

}

Open the makefile in the Blinky directory and change TARGET = CylonEyes then
save it to the CylonEyes directory. Compile, load, and play.

r_-“;. AVERE Rurterfiy] 1
Samma— []

T - -, iy E

-

Figure 15: Bit 7 high Figure 16: Bit 7 low

71

Chapter 4: C Types, Operators, and Expressions

72

Chapter 5: C Control Flow

Chapter 5: C Control Flow

We specify the order in which computations are performed with control
statements. We’ve already peeked at some of these concepts, now Let’s jerk open
the kimono and take a good hard look.

Statements and Blocks

Expressions such as PORTD = ~i or _delay _loop_2(30000) or i -= 128 become
statements when they are followed by a semicolon:

PORTD = ~i;
delay loop_ 2(30000);
i -= 128;

The semicolon terminates the statement.

Compound statements are made by enclosing a group of statements or
declarations in block delimited by braces ‘{* and “}’. This causes the compiler to
handle the block as a unit.

Tale of a bug:
I wrote the following statement:

while(QuarterSecondCount < 17600);
QuarterSecondCount = 0;

Then decided that the 17600 wait count was too long so | changed it to 2200:

while(QuarterSecondCount < 2200)//17600);
QuarterSecondCount = 0;

But | wanted to leave the 17600 in case | ever needed it again, so | commented it
out. Do you see a problem here?

Well, what | meant to say was:

while(QuarterSecondCount < 2200);
QuarterSecondCount = 0O;

73

Chapter 5: C Control Flow

Which is two statements, the first waits while an interrupt increments
QuarterSecondCount in the background, and once that is finished the
QuarterSecondCount is set to zero. What the compiler saw was:

while(QuarterSecondCount < 2200)
QuarterSecondCount = 0;

because the compiler doesn’t see the comments — the \\17600;. See the problem
yet?

Well how about he equivalent statement:
while(QuarterSecondCount < 2200) QuarterSecondCount = O;

The compiler also doesn’t know about the line break, all it sees is the last
statement, which says that while QuarterSecondCount is less than 2200, set
QuarterSecondCount to 0. So each time the interrupt incremented
QuarterSecondCount, this statement set it back to zero.

This is the kind of bug, that after spending X amount of time locating, you
carefully hide it from your boss lest she think you are stupid or careless or both.
Fortunately, I am my own boss, so I’ve learned to live with my stupid and careless
employee. (I fired myself once, but that just didn’t work out.)

If-Else and Else-If

We can make decisions using the if-else statement:

if (expression)
statementl
else
statement2

If the expression has a non-zero result (it is true), then we do statement 1, if the

expression has a 0 result (it is false) we do statement 2. We can make a list of
related decisions using else if:

74

Chapter 5: C Control Flow

ifT (expressionl)
statementl

else if (expression2)
statement?2

else if (expression3d)
statement3

else
statement4

In this case each expression will be evaluated sequentially looking for the first
non-zero (true) expression and if they all equal 0 (false) we do statement 4. You
can omit the final else statement if you want to do nothing if all the expressions
are 0 (false). We will use an example of this construction later when we write an
example program for using the joystick interrupts:

if(input == KEY_PLUS)PORTD= ~0x01;

else if(input == KEY_NEXT)PORTD = ~0x02;
else if(input == KEY_PREV)PORTD = ~0x04;
else if(input == KEY_MINUS)PORTD = ~0x08;
else 1f(input == KEY_ENTER)PORTD = ~0x10;

Which may be read as: if the input is equal to KEY_PLUS then set port D equal
to the inverse of a byte equal to 1 (a byte of 1 is binary 00000001, the inverse is
11111110 and since we output a 0 to a pin to light and LED, this statement lights
the LED). If the first line is true then the rest of the statements are skipped. If the
first line isn’t true, then each line is evaluated sequentially until a true expression
is found or it drops out the bottom and does nothing.

Switch

The “if else’ construction limits us to expressions that are either true or false. If we
want to make decisions using expressions that can have any numeric result we use
the switch statement that selects an expression with results equal to a specified
constant.

75

Chapter 5: C Control Flow

switch (expression) {
case constant expressionl : statements
case constant expression2 : statements
case constant expression3l : statements
default: statements

}

We can redo the if else if block used in the joystick interrupt example using a

switch statement as follows:
switch(input){

case KEY_PLUS :
PORTD = ~0x01;
break:

case KEY_NEXT :
PORTD = ~0x02;
break;

case KEY_PREV :
PORTD = ~0x04;
break;

case KEY_MINUS :
PORTD = ~0x08;
break;

case KEY_ENTER :
PORTD = ~0x10;
break;

default:

}

So if the ‘input’ == KEY_NEXT, then PORTD = ~0x01. The ‘break’ statement
causes an immediate exit from the switch block. If you want to continue
evaluating cases against the input, leave out the break and the subsequent
statements will be looked at.

You can let cases fall through, which can be handy in circumstances such as
evaluating character input where you don’t care if the character is a capital or
lower case letter, or perhaps you want the same response for a range of integers:

switch(input){
case “a’ :
case “A’ :
DoaAQ);
break;
case “b”

76

Chapter 5: C Control Flow

case “B” :
DobBQ);

break;

case “0° :

case “1’

case “2’

case “37 :
Gofer0123Q);
break;

case “4’

case “5’

case “6”

case “77 :
Goferd567();
break;

default:
DoDefault();
break;

}
This can be compacted as:

switch(input){

case “a’ : case “A’
DoaAQ);
break;

case “b’ : case “B”
DobB();
break;
case “0” - case “1” : case “2° : case “3”
Gofer0123Q);
break;
case “4” : case “5” : case “6” . case “7’
Goferd567(Q);
break;
default:
DoDefault();
break;

}

Switch statements are error prone and a frequent source of head boinking bugs
(one where you boink your head for being dumb enough to leave out a break

77

Chapter 5: C Control Flow

statement). The break after default: isn’t even necessary, but is recommended (by
K&R) as a good practice to help you remember to use it when you add a
statement to the end of the list.

Loops — While, For and Do-while

We’ve been using while for a while (har!).

while(expression)

// Do stuff while expression is true

}

While will repeat the associated statement or block as long as the expression is
true.

The code fragment:

Xint 1;
hile(1 <= 128)

w

{
PORTD = i;
delay loop_ 2(30000);
i = i1*2;

}

This does exactly the same thing as the for loop in our first example program:
for(int 1 = 1; 1 <= 128; 1 = 1*2)
PORTD = i;
_delay_loop_2(30000);
}
The for loop is constructed as follows:

for(expressonl; expression2; expresson3)

// Do stuff

78

Chapter 5: C Control Flow

Usually expressionl and expression3 are assignments or function calls and
expression2 is a test of some sort. The expressions can be any expression
including the empty expression which is nothing followed by a semicolon:

for(:)

// Do stuff forever
¥

This is an alternative way to do the while(1) eternal loop.

You can usually accomplish the same goal using either while or for statements.
Generally it is clearer to use for loops with a simple initialization and
incrementing such as:

for(int 1 = 1; 1 <= 128; i = i*2)

// Do stuff while I less than or equal 128
}

But its really a matter of personal preference though most C dudes will want to
smack you around a little if you don’t do it their way.

While and for loops test for the termination condition before running the block,
‘do while’ runs the block first insuring that the block will be run at least once:

do
// Do stuff at least once

while(expression);

Break and Continue

A break statement throws you out of the loop immediately and without regard for
the terminating expression. It only throws you out of the innermost loop in nested
loops.

79

Chapter 5: C Control Flow

A continue statement causes the loop to skip the following statements in the block
and start the loop over again. You won’t see this often, but it can come in handy
for amazingly complex decision loops. Gurus use it a lot for job security.

Goto and Labels

There are those who would burn you at the stake for using ‘goto’. I’m not one of
those, but | won’t throw water on you when some other C dude sets you on fire
for this heresy. The goto statement is probably the laziest, most unnecessary,
confusing, and potentially harmful thing you can stick in your code. It allows you
to jump all over the place without regard to logic or common sense, creating the
infamous ‘spaghetti code’. But | have used it on occasion to escape a deeply
nested loop as a quick fix for a bug when | didn’t have time to rewrite the code
like it should have been written in the first place. But | have never shown anyone
such code; | have my pride you know. Anyway, the goto statement causes a jump
to a label as follows:

while(expression){
for(expression;expression;expression){
do{
if(expression){
switch(expression){
case expression:

if(expression) expression;
else goto GETMEOUTOFHERE! ;

break;
case expression:
expression;
break;
default:
break;
}
Jwhile(expression)
}
}
GETMEOUTOFHERE! :

// Put more code here, or better yet, rewrite the nested loops above.

80

Chapter 5: C Control Flow

A few practical examples: strlen, atoi, itoa, reverse

In a serial communications project that we’ll get to later, we will want to convert
numbers into character strings to use in communicating with the PC. There are
functions in the Standard Library, stdlib.h, that do everything we need; however,
to help us learn Let’s write them ourselves (with some help from K&R).

/INOTE: stolen from K&R p. 39 strlen function

int strLen(char s[])

{ o
int i;
i = 0;
while(s[i] = "\0")
++i;
return i;
}

In strlen, we accept a pointer to a string (we’ll talk about pointers later). The
string is an array of characters with a terminal character ‘\0” (we’ll talk about
arrays later). The while statement evaluates each character, incrementing the
index, i, until the terminal character is found. The return value is the number of
characters, not including the terminal character.

In C the single and double quotes have specific meaning: when you see ‘X’ the
compiler sees the ASCII number for the single character x; when you see “x” the
compiler sees a string with the character x followed by the string termination
character “\0’. Whenever you see two characters a backslash and a following
character like \0’, the C compiler sees this as a single nonprintable character
called an “escape sequence’.

In the serial communications project we will use several escape sequences, for
example ‘\r’ is a non-printable character that tells the Teletype machine to return
the print head to the left of the platen and roll the paper one line. What? You
aren’t using a Teletype machine? Maybe not, but you are using a direct ancestor
of one, and C was written on one, so thou shouldest get thyself used to
anachronisms.

81

Chapter 5: C Control Flow

We define non-printable characters using escape sequences and | guess this is just
about as good a place as any to show them all:

Table 8: Escape Sequences

\a alert (bell)
\b backspace
\f formfeed

\n newline

\r carriage return
\t horizontal tab
\v vertical tab

\\ backslash

\? question mark
\’ single quote
\” double quote

\000 octal number
\xhh hexadecimal number
\0 null

Before you look at the next function, take out you paper and pencil computer and
come up with an algorithm for converting an ASCII character string of numerals
into an integer, for example convert the string of char data types: “1234” to the int
1234. Give this some thought and see what you come up with. I’m serious now,
do it or the rest of the ink in the book will fade away and you’ll have an expensive
drawing pad. Need a hint? Look at Table 9: ASCII Table (in appendixes) and note
that the characters for 1, 2, 3, and 4 are sequential integer numerals, 0x31, 0x32,
0x33, and 0x34.

//NOTE: stolen from K&R p. 43 atoi function
int atoi(char s[])

{
int i, n;
n=20;
for(i

= 0; s[i] >= "0" && s[i] <= "97; ++I)
n=10 *n+ (s[i] - "07);
return n;

82

Chapter 5: C Control Flow

}

The atoi, ASCII to integer, function converts a string of ASCII characters
representing the integers O thru 9 into an integer number equivalent to the string.
If you didn’t figure this one out yourself then use your paper and pencil computer
to run the function with char s[] equaling “1,2,3,4,\0” to see how it works. Note the
condition in the ‘for’ statement will cause the loop to bail if one of the characters
is not equal to or between ‘0’ and “9’. This gets us out of the loop, but not out of
trouble. In a robust function, we would have some kind of error reporting
mechanism so that code calling atoi could know that it sent a bad string and so the
calling function could build in some way to recover. We’ll get into all that later
and be careful not to make mistakes now. (Famous last words)

The conversion algorithm relies on the convenient fact that the ASCII characters
for integers are represented by a sequence of numbers. ‘0’ is 0x30 in ASCII, ‘1’ is
0x31, and so on. So if s[i] = “1’, the character, we get (s[i] — ‘0”) = 1, the integer.
That is, we subtract the character ‘0’ which has a value of 0x30 from the character
‘1’ which has a value of 0x31, leaving us with the number 1. Voila: ASCII to
integer.

We start with n = 0, so the first time thru the 10*n = 0 and the character is
converted to the 1’s position in the integer. For each subsequent pass, the n has a
value so it gets multiplied by 10 providing the 10’s, 100’s, and so forth.

You were asked to think about this algorithm before looking at the atoi function.
Don’t be concerned if yours wasn’t as simple and elegant as this one. Mine
wasn’t. It takes a while to start thinking like a computer. Then your brain turns to
silicon and people avoid you.

Now think about the problem of reversing the characters in an array. How would
you do this? Try it on the pencil and paper computer, then look at the reverse
function.

//NOTE: stolen from K&R p. 62 reverse function
// reverse: reverse a string s in place
void reverse(char s[])

{

intc, i, J;

83

Chapter 5: C Control Flow

= strLen(s)-1; i < j; i++, j—-){

1
sil:
o

for (i =0,
s

n un o
1 III:!_I

Qi

1
1
}

This is pretty straightforward. Put the first char from the array in a box, then put
the last character in the array in the position of the first character, then take the
stored character and put it in the last position in the array. Mover your index in
one position on both ends and repeat.

Now try to develop an algorithm for converting an integer to an ASCII string.
Mine worked, but wasn’t even close in the quality of the actual function in K&R.
Oh, well.

//NOTE: stolen from K&R p. 64 itoa function
void itoa(int n, char s[])

t
int i, sign;
if ((sign = n) < 0) // record sign
n = -n; // make n positive
i =0;
do { // generate digits in reverse order
s[i++] = n % 10 + "0"; // get next digit
} while ((n /= 10) > 0); // delete it
if (sign < 0)
s[i++] = "-7;
s[i] = "\0"; // add null terminator for string
reverse(s);
}

In my attempt at this, | never thought to do it backwards then reverse the string.
First store the integer in the ‘sign’ variable and we get the sign of the integer by
using the ‘if’ statement to see if the integer is less than 0, if so, we multiple it by —
1 to make it positive. Then we use do while, because we want to have at least one
digit. Now get out your paper and pencil computer and run the number 1234
through the do while loop, since no amount of explaining will be as effective as
running the numbers yourself. Don’t be tempted to succumb to boredom and blow

84

Chapter 5: C Control Flow

this off, you must be able to understand this at this point in the book. And it will
be on the test.

85

Chapter 6: C Functions and Program Structures

Chapter 6: C Functions and Program
Structures

Function Basics

About now you are probably wondering why you bought the Butterfly and all that
cool hardware. Where are the projects? Let’s blow something up! Patience
grasshopper, we’ll have a project at the end of this chapter and many more later. It
will be worth it, I promise.

We’ve been using functions enough that by now you probably have a good
intuitive feel for them, but Let’s be formal and define some things. First a ‘reuse’
of what was said earlier:

Encapsulation is a key idea in C programming and provides the possibility of
making chunks of code convenient to use. And just as important, it provides a way
to make tested code reusable while not allowing the programmer to mess with it
and chance breaking something. These ideas are so important in software
engineering that the C++ language was developed primarily to formalize these
concepts and force their use.

One of the main functions of functions (har!) is to break computations up into
logical chunks and separate them to help clarify the code. If you find yourself
writing a function that seems to be doing two separable things, try separating it
into two functions.

A function must be declared before it is defined somewhere, usually in a header
file or before the main() function. For example:

void sendChar(char) ;

Which tells the compiler that the sendChar() function takes a char as an argument
and doesn’t return anything when finished. The compiler can use this information
to make sure you are using it correctly when you make calls to the function.

A function definition is the function text as:

void sendChar(char myData)

87

Chapter 6: C Functions and Program Structures

// Do stuff with the variable “data’
b

Note that the argument now not only has the type ‘char’ but a specific variable
‘myData’. It doesn’t matter what you name the argument in the calling function,
as long as the type matches, so:

sendChar(myByte);

This is just fine, since the sendchar function will use the data in ‘myByte’ as the
data in ‘myData’ in the function definition. An important consideration is that the
data in “myByte’ is copied to sendchar(myByte), but the variable ‘myByte’ is not
sent. Think about this. In the calling function, *‘myByte’ is an alias for the address
of some data, in this case a char. The called function takes that char and puts in
memory at another address aliased, in this case, with the name ‘myData’.
‘myByte’ and ‘myData’ have the same value but are not stored in the same place.
The function only sees a copy of ‘myByte’ not the actual ‘myByte’ itself. If the
function chages the ‘myData’ variable, that change is not reflected in the calling
functions ‘myByte’ variable. This is a source of a surprising number of bugs
among novice C programmers. To clarify let’s make a function adder that adds
two numbers.

void adder(unsigned char al, unsigned char a2, unsigned char r)

{

r = al + a2;
if(r == 2) getrewarded();

else getboinked();
}

Let’s call it in main()

int main()

{
unsigned char addl = 1;
unsigned char add2 = 1;

unsigned char results = 0;

adder(addl,add2,results);

88

Chapter 6: C Functions and Program Structures

if(results == 2) getrewardd();
else getboinked();
}

If you think 1 + 1 = 2 prepare to get boinked. You’ll getrewarded() in adder() and

getboinked() in main(). In the adder function, r = 2, but this doesn’t change the
‘results’ in the parameter list in the function call to adder in the main() function.

Returns

Ouch! Boinking hurts, so Let’s make adder work right, we change the return type
from void to char and declare r as an unsigned char:

char adder(unsigned char adl, unsigned char al)

{
unsigned char rj;
r = al + a2;
if(r == 2) getrewarded();
else getboinked();
return r;
}

And in main we set ‘results’ equal to adder so it gets set to the data returned by
adder:

int main()

{
unsigned char addl =
unsigned char add2 =
unsigned char results = 0;

1;
1;

results = adder(addl,add2);

if(results == 2) getrewarded();
else getboinked();
}

Now we get two rewards. If we want to skip the reward we could write adder:

89

Chapter 6: C Functions and Program Structures

char adder(unsigned char adl, unsigned char al)

{
}

return al + a2;

And we have a concise and totally useless function. If we want to add 1 and 1, we
just add them.

Variables External, Static, and Register

Another way to do the adder() thing would be to use and external variable
(global). These are variables defined outside any function, usually in a header or
before main() and are available for any function to use. We could have written:

void adder(unsigned char, unsigned char);
unsigned char results = 0;

int main()

{
unsigned char addl = 1;
unsigned char add2 = 1;

adder(addl,add2);

if(results == 2) getrewarded();
else getboinked();

}
void adder(unsigned char adl, unsigned char al)
{
results = al + a2;
}

Which would work fine. Unless of course an interrupt triggered right after we set
results in adder() and changed it to 3. Then when the interrupt finishes and we
look at results in main() we get boinked again. This is a good reason to avoid
external variables. You never know where they’ve been or what kind of nasty stuff
they might track in. Also they permanently occupy memory, while defining
‘results’ in adder would only use memory when adder is called, and release the
memory when finished.

90

Chapter 6: C Functions and Program Structures

Scope
Variable names have scope, meaning the locations where they are recognized, that
determine how they can be used.

Variable names declared in a function are recognized only in that particular
function. For example, you can have multiple functions with the int i declared
local to that function and they won’t interfere with each other. Likewise, a
variable declared within a block remains local to that block.

External variables have scope from the point they are declared to the end of the
text file. If you compile a file, you can call functions in it from other files, but you
cannot use an external variable declared in another file.

There is a difference in the definition and the declaration of external variables. If
you use the extern keyword as in:

extern int tramp;

you have declared that tramp will be an int, but you have not defined it. To use
tramp you must define it in each file that will use it. Something like:

int tramp = NULL;
This must appear in a source file that uses it. For example:

In filel:
extern double gadabout;
extern char harlot;

In file2:
double gadabout = 0;
char harlot = “?7;

In this case changes to gadabout and harlot in filel will also appear in file2 and
visa versa. Maybe I’m being harsh calling them tramp, gadabout, and harlot, but
externs are even more prone to being who-knows-where and doing who-knows-
what than regular external variables so they are bug prone.

91

Chapter 6: C Functions and Program Structures

An example bug comes when you create an extern:

extern int upcount;

in filel and declare it in files 1 and 2 and put your code aside for a few months,
then get busy on file3 and decide that you need an external variable to do some up
counting, so you declare it int upcount = 0; forgetting that it has already been
declared as an extern in filel which you have stuck in a library and no longer look
at. Then you start getting weird bugs where the seemingly impossible event
occurs that your upcount is getting changed unpredictably. This kind of error is so
common that it was one of the reasons C++ was invented. Use externs if
absolutely necessary (sometimes nothing else will do) but use them with extreme
caution.

Headers

Header files are a convenient place to stick all the stuff that you put before the
main() function. They are files with a suffix of .h and are declared as:

#include <LEDblinker.h>
#include “PCcomm.h”

If the declaration uses <filename> the compiler looks in an implementation
defined location, usually an ‘include’ directory. If it uses “filename” the compiler
looks in the same directory that the source program was located. The choice will
depend on how you’ve decided to organize your development file system.

Blocks

Initialization

If you don’t explicitly set a variable equal to some value, external and static
variables are guaranteed to be initialized to zero; automatic and register variables
are guaranteed to be initialized to random garbage. It’s good practice to always
initialize a variable.

External and static variables must be initialized with a constant expression, but

you can use other variables in the initialization of automatic and register
variables:

92

Chapter 6: C Functions and Program Structures

int dosomething(int x, int y, int z)

{
int a = 0;
intb=x+y + 2z - 12;
// do stuff

3

Recursion

Recursion happens when a function calls itself. I’ve never called myself. I’'m
afraid that | might answer the phone and then have to deal with the philosophical
or psychiatric implications. However, C has no problems with functions calling
themselves, other than the psychiatric problems it tends to cause programmers
when confronted with a recursive function and the task of figuring out what’s
going on. C Gurus love recursive functions.

void recursivefunc(double data)

{
double mess;
// Do some stuff
recursivefunc(mess);
// Do more stuff

}

You’ll find recursion used quite appropriately in some standard library functions
and in many data sorting applications. But recursion can be very problematic in
microcontrollers where we are usually limited in RAM memory. Each time you
call a function some data is put on the stack using RAM that isn’t released until
the function returns. Each function you call within a function puts more data on
the stack locking up more RAM. Recursive functions look like a good way
quickly and unpredictably fill the stack leading to the often-fatal condition known
as blowing your stack. Your stack usually starts at the end of RAM and builds
downward. Your variables usually start at the beginning of RAM and build
upward. So putting too much on the stack may push it down far enough overwrite
variables. That may kill your code immediately or only occasionally, like at the
worse possible moment. Maybe 1’m just not smart enough, but I’ve never written
a recursive function for a microcontroller and | don’t plan on it. For the same
reason, | also try not to nest function calls too deep.

93

Chapter 6: C Functions and Program Structures

Preprocessor
The preprocessor runs before the compiler as a separate first step.

#include

We have already discussed a little about #include but now would be a good time
to mention how to use them to prevent name conflicts. We saw in the discussion
on ‘extern’ that it is possible to forget that you have declared a variable name as
an extern in one file then define a variable using a name in another file causing
potential fun results, that is if you consider it fun to stay up all night to find a
stupid bug. One way to lessen the likelihood of such is to keep a single header file
for all the C source files in a program. For instance, if we decide to build a Killer
Cylon Robot, we might want to write different C sources files for the various
components we need:

CylonEyes.c

CylonLegs.c

CylonArms.c
CylonBlaster.c
CylonEnemyDiscriminator.c
and so forth...

We could create a header file CylonKillerRobot.h, include it in each of the project
files and use it for all of our variable and function declarations. By putting all the
definitions in this file we lessen the likelihood of creating a name conflict that
causes the code in CylonEnemyDiscriminator.c to substititute ‘theProgrammer’
for ‘theEnemy’ leading to the programmer learning that bugs yield extreme
boinking.

#define
The #define directive tells the preprocessor to substitute a specified arbitrary
sequence of characters anywhere it sees a specific token:

#define token arbl arb2 arb3

Which causes the complier to substitute ‘arbl arb2 arb2’ everywhere it sees
‘token’.

94

Chapter 6: C Functions and Program Structures

One possible source of problems occurs when you reuse a token. You might write:

#define Up O

And come back a month later, when your header file has 500 lines and forget that
you have already defined Up and add:

#define Up 1

The preprocessor uses the last #define and you won’t get any warnings, other than
this one. But you probably will get some mysterious bugs that you’ll blame on the
hardware until much later you finally see what you’ve done and apply a well-
deserved boink to your own head.

Macro Substitution

We can use #define to make a simple token that replaces a complex, or frequently
used expression. For example we may want to determine the larger of two
variables:

#define larger(X, y) (C O>Y) ?2 () -))

Which we would use as:

int a= 9;
int b = 7;
int c = 0;

c = larger(a, b);
The preprocessor replaces the last statement with:

c=(C@>b) ? @ : (b)):
Which is what the compiler sees.

The expression larger(a, b) looks like a function but isn’t. A macro is substituted
in the code anywhere that it is used, while a function is located in only one place
and is called each time it is used. The big difference from a microcontroller
perspective is that nothing is pushed on the stack when a macro is used, unlike

95

Chapter 6: C Functions and Program Structures

functions, which use extra RAM. Also macros create in-line code that can be
faster than function calls (no processor overhead). And finally, macros don’t
require formally declared data types:

double da = 12;
double db = 14;
double dc = 7;
double dd = O;

dd = larger((db-da), dc);

If larger() was a function, the parameters require a data type such as int or double,
but couldn’t use both (okay, there is casting, but that’s another topic).

Conditional Inclusion

Often microcontrollers come in families that differ only in a few features, pinouts,
memory size, and register locations. You can write C code for the entire family if
you substitute alias for the things that differ. Let’s say that SuprMicl6 uses pins
12 and 13 for USART transmit and receive, while SuprMic8 uses pins 6 and 14,
and SuprMic4 uses pins 1 and 2. We put the following in our SuprMic.h file:

#iT SuprMicX == 16

define TXD 12
define RXD 13
#elif SuprMicX ==

define TXD 6
define RXD 14
#elif SuprMicX = 4
define TXD 1
define RXD 2
#else

error “No definition for SuprMicX TXD and RXD pins."
#endif

If we are using the SuprMic8 in our Killer Cylon Robot project we should put the
following in our CylonKillerRobot.h file:

#ifndef SuprMicX
define SuprMicX = 8
include <SuprMic.h>

96

Chapter 6: C Functions and Program Structures

#endi

The ifndef means ‘“if not defined’ so that the preprocessor will use the #define
SuprMicX = 8 and #include <SuprMic.h> lines only the first time it sees the
#ifndef SuprMicX line. This prevents the preprocessor from attaching the
contents of SuprMic.h in each file that uses CylonKillerRobot.h

As a matter of standard practice, always begin a header file with an #ifndef
statement and a #define so that the preprocessor will only use that header’s data
once in a project. If you put the header data in more than once you may get a lot
of compiler errors about multiple declarations.

97

Chapter 6: C Functions and Program Structures

Projects

Is anybody out there? Communicating with a PC

Most microcontrollers are buried deep in some device where they run in merry
isolation from the rest of the world. Their programs are burned into them and
never change. But there are many instances when we might want to communicate
with a microcontroller. The Butterfly uses a joystick and an LCD, which is fine
for its built-in applications. For anything more complex, like changing the
microcontroller software, nothing beats using the PC’s RS232 serial
communications port to communicate with the microcontroller through its
Universal Synchronous Asynchronous Receiver Transmitter, USART, peripheral.
The microcontroller and the PC must agree on the transmission speed in data bits
per second, Baud rate, the number of bits per data unit, Data Bits, the parity of the
data, Parity, the number of stop bits, Stop Bits, and Flow Control. (Refer to
Constructing Your Development System section of Chapter 2 for the required
settings) All this information is somewhat arcane and is legacy from even before
Teletype machines. Fortunately the USART takes care of most of this stuff for
you, so you don’t need to understand it. If you are really interested, get Jan
Axelson’s Serial Port Complete (www.lvr.com).

What we need is a method to send commands and data from the PC and receive
responses from the Butterfly. In this section we will develop a generic command
interpreter skeleton that we will reuse in later programs. In this project we will
use this skeleton to build a demonstration that let’s the PC send a command name
and a number to the Butterfly. The Butterfly will respond with text.

We will put this software in four files:
PC_Comm.h
PC_Comm.c
Demonstrator.h
Demonstrator.C

The PC_Comm files have many things in them that are well beyond our C

training at this point, so just copy them and don’t think too hard about it yet. We
will revisit each function later as we increase our knowledge. You should have no

98

Chapter 6: C Functions and Program Structures

trouble understanding anything in the Demonstrator files. If you do, review. In
future projects we will only need to make changes to Demonstrator.h and
Demonstrator.c.

Demonstrator

Create a new PC Comm directory and in Programmer’s Notepad open a new
C/C++ file and write:

// Demonstrator.h CommDemo version
void initializer(void);
void parselnput(char *);

void Comml(char *);
void Comm2(char *);
void Comm3(char *);
void Comm4(char *);

void responder(char *, char);

Save this file as Demonstrator.h.

In Programmer’s Notepad open a new C/C++ file and write:

// Demonstrator.c PC Comm version
#include "PC_Comm.h"

void initializer()

{
// Calibrate the oscillator:
OSCCAL_calibration();
// Initialize the USART
USARTINitQ;

// say hello
sendString(""\rPC_Comm.c ready to communicate.\r");

// identify yourself specifically
sendString(""\rYou are talking to the PC_Comm demo.\r");

}

void parselnput(char s[])

99

Chapter 6: C Functions and Program Structures

{

// parse first character
switch (s[0])
{

case "c":
ifC (s[1] == "0™) && (s[2] == "m™) && (s[3] == "m"))
switch (s[4]) // parse the fifth character
{

case "a":
Comml(s);
break;
case "b":
Comm2(s);
break;
case "c":
Comm3(s);
break;
case "d":
Comm4(s);
break;
default:
sendString(""\rYou sent: "");
sendChar(s[0]);
sendString(""" - 1 don"t understand.\r');
}
break;
case "d":
iTC (s[1] == "e") && (s[2] == "m") && (s[3] == "0") && (s[4] == "?%))
sendString(*'You are talking to the PC_Comm demo.\r™");
break;
case "h":

ifC (s[1] == "e™) && (s[2] == "1™) && (s[3] == "1") && (s[4] == "o0™))

sendString(*"Hello yourself\r™);

break;
default:

sendString(*'\rYou sent: "');

sendChar(s[0]);

sendString(""" - 1 don"t understand_\r'");

break;

¥
s[0] = "\0O";

void Comml(char s[])

{
responder(s,s[4]);
s
void Comm2(char s[])
{
responder(s,s[4]);

100

Chapter 6: C Functions and Program Structures

}
void Comm3(char s[])
{
responder(s,s[4]):
}
void Comm4(char s[])
{
responder(s,s[4]);
}
void responder(char s[], char c)
{
char sComm[11];
unsigned char i =5, j = 0;
while(C (s[i] '= "\0") & (<= 11))
{
ifC (s[i] >= "07) && (s[i] <= "97))
{
sComm[j++] = s[i++];
}
else
{
sendString("'Error - Comm');
sendChar(c);
sendString("" received a non integer: ');
sendChar(s[i]);
sendChar("\r*");
}
}
sComm[j] = "\0";
if(>11)
sendString("Error - Comm'™);
sendChar(c);
sendString("" number too large\r');
sendChar("\r");
}
else
{
sendString(""\rThank you for sending the number: ');
sendString(sComm) ;
sendChar("\r");
}
}

101

Chapter 6: C Functions and Program Structures

Save this file as Demonstrator.c.
PC_Comm

The next two programs, PC_Comm.h and PC_Comm.c can be copied from the
CD to the CommDemo directory, or if you want a preview of coming attractions,
you can open a new C/C++ file in Programmer’s Notepad and write:

// PC_Comm.h

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/delay.h>

#include <stdlib.h>

#include "Demonstrator.h"

void OSCCAL_calibration(void) ;
void USARTiInit(void);

char isCharAvailable(void);
char receiveChar(void);

void sendChar(char) ;

void sendString(char *);

Save this file as PC_Comm.h.

In Programmer’s Notepad open a new C/C++ file and write:
// PC_Comm.c

#include "PC_Comm.h"

int main(void)

{
char string[64];
unsigned char count = 0;

// run the initialization routine
initializerQ);

//Begin forever chatting with the PC
for(;;)

// Check to see if a character is waiting
if(isCharAvailable() == 1)

// If a new character is received, get it
string[count++] = receiveChar();

// receive a packet up to 64 bytes long

102

Chapter 6: C Functions and Program Structures

if(string[count-1] == *"\n")// HyperTerminal string ends with \r\n
{

string[count-2] = *\0"; //convert to a string
parselnput(string);

string[0] = "\0~;

count = O;

}
else if(count > 64)

{
count = 0O;
string[0] = "\0~;
sendString("Error - received > 64 characters™);
3
3
¥
return O;
3
char isCharAvailable()
{
// Does the RXO bit of the USART Status and Control Register
// indicate a char has been received?
it ((UCSROA & (0x80))) return 1;
else return O;
3

char receiveChar()

// Return the char in the UDRO register
return UDRO;

}
void sendChar(char data)
t
int i =0;
// To send data with the USART put the data in the USART data register
UDRO = data;
// Check to see if the global interrupts are enabled
iT(SREG & 0x80)
// Wait until the byte is sent or we count out
while (I'(UCSROA&Ox40) && (i<10000))
i++;
}
else // Wait until the byte is sent
while('(UCSROA&O0x40));
// Clear the TXCflag
UCSROA=UCSROA|0x40;
}

103

Chapter 6: C Functions and Program Structures

void sendString(char s[])

{
int i = 0;

while(i < 64) // don"t get stuck if it is a bad string

if(s[i] == *\0") break; // quit on string terminator
sendChar(s[i++]);

}

void USARTInit()

{
// Increase the oscillator to 2 Mhz for the 19200 baudrate:
CLKPR = (1<<CLKPCE); // set Clock Prescaler Change Enable
// set prescaler = 4, Inter RC 8Mhz / 4 = 2Mhz
CLKPR = (1<<CLKPS1);

// Set the USART baudrate registers for 19200
UBRROH = 0;//(unsigned char)(baudrate>>8);
UBRROL = 12;//(unsigned char)baudrate;

// Enable 2x speed change
UCSROA = (1<<U2X0);

// Enable receiver and transmitter
UCSROB = (1<<RXENO) | (1<<TXENO)] (0<<RXCIEO)|] (0<<UDRIEO);

// Set the USART to asynchronous at 8 bits no parity and 1 stop bit
UCSROC = (0<<UMSELO) | (0<<UPMOO) | (0<<USBSO0) | (3<<UCSZ00) | (0<<UCPOLO);

//Calibrate the internal OSCCAL byte, using the external
/732,768 kHz crystal as reference
void OSCCAL_calibration(void)
{
unsigned char calibrate = 0;//FALSE;
int temp;
unsigned char templL;

CLKPR = (1<<CLKPCE); // set Clock Prescaler Change Enable
// set prescaler = 8, Inter RC 8Mhz / 8 = 1Mhz
CLKPR = (1<<CLKPS1) | (1<<CLKPSO0);

TIMSK2 = 0; //disable OCIE2A and TOIE2

ASSR = (1<<AS2); //select asynchronous operation of timer2 (32,768kHz)
OCR2A = 200; // set timer2 compare value

TIMSKO = 0; // delete any interrupt sources

TCCR1B = (1<<CS10); // start timerl with no prescaling

TCCR2A = (1<<CS20); // start timer2 with no prescaling

//wait for TCN2UB and TCR2UB to be cleared

104

Chapter 6: C Functions and Program Structures

while((ASSR & 0x01) | (ASSR & 0x04));

// wait for external crystal to stabilise
for(int i = 0; i < 10; i++)
_delay_loop_2(30000);

while(Icalibrate)

{

cli(Q); 7/ mt __disable_interrupt(); // disable global

TIFR1
TIFR2

OXFF; // delete TIFR1 flags
OXFF; // delete TIFR2 flags

TCNT1H
TCNT1L ;
TCNT2 = O; // clear timer2 counter

0; // clear timerl counter
0

interrupt

while (I'(TIFR2 && (1<<O0CF2A))); // wait for timer2 compareflag

TCCR1B = 0; // stop timerl

sei(); // __enable_interrupt(); // enable global interrupt

if ((TIFR1 && (1<<TOV1)))

temp = OXFFFF; // if timerl overflows, set the temp to OxFFFF

}

else
{ // read out the timerl counter value
tempL = TCNT1L;
temp = TCNT1H;
temp = (temp << 8);
temp += templ;
b

if (temp > 6250)

OSCCAL--; // the internRC oscillator runs to fast, decrease the OSCCAL

s
else if (temp < 6120)

OSCCAL++; // the internRC oscillator runs to slow,
s

else
calibrate = 1;//TRUE; // the interRC is correct

TCCR1B = (1<<CS10); // start timerl

}

Save this file as PC_Comm.c.

Finally make these changes to the makefile:

105

increase the OSCCAL

Chapter 6: C Functions and Program Structures

Target file name (without extension).
TARGET = PC_Comm

List C source files here. (C dependencies are automatically
generated.)
SRC = $(TARGET).c

SRC += CommDemo.c
Using CommDemo:

Download the code to the Butterfly.
Open HyperTerminal
Start the program.

In HyperTerminal you should see:

PC_Comm.c ready to communicate.
You are talking to the PC_Comm demo.

Type in:

demo?

You should receive:

You are talking to the PC_Comm demo.

Type in:

hello

You should receive:
Hello yourself

Type in:

coo

You should receive:

You sent: " - | don't understand.

Type in:
commal23

You should receive:
Thank you for sending the number: 123

106

Chapter 6: C Functions and Program Structures

Type in:

commb4567

You should receive:

Thank you for sending the number: 4567

Type in:

commcl123456789012

You should receive:

Error - Commc number too large

Type in:
commd890

You should receive:
Thank you for sending the number: 890

This is a lot of software. Don’t worry about he PC_Comm yet, but you should
fully understand the demonstrator.c and demonstrator.h files by now. If not,
carefully review.

107

Chapter 7: Microcontroller Interrupts and Timers

Chapter 7: Microcontroller Interrupts and
Timers

Interrupts and Timers are critical to microcontroller applications, but they have
nothing to do with the C programming language. | can’t think of a good way to
progressively discuss C and smoothly mix in these topics so we will stop with the
C for a while and look at our hardware. Interrupts and timers will be helpful in
making later projects more useful.

C knows nothing about interrupts or timers. These things are machine dependent
and specific. While the general concepts will apply to other microcontroller
families, the specifics are for the AVR family and specifically for the ATmegal69.

Interrupts

We usually use one of two methods in microcontroller software to check to see if
an event has occurred: polling and interrupts. Polling occurs when a section of
code, usually an infinite loop in main(), looks to see if an event has occurred. For
instance, it may check pin 6 to see if the voltage is +3 or 0 (logic true or false),
and if +3 do one thing and if 0 do another. If the microcontroller hardware is
designed so that pin 6 can be used to interrupt the program, then we don’t have to
poll the pin, we can set up the software so that when the pin state we are
interested in, say falling from +3v to Ov, an interrupt function will be called.

Interrupts are much like interrupts in daily life. The telephone, for instance,
interrupts your activities by its insistent ringing. But imagine how it would be if
you had to poll the telephone to receive calls. Periodically, you’d pick up the
receiver and say ‘Hello, anybody out there?’ and your caller would shriek, “I’ve
been waiting for an hour! Why don’t you check your phone every five minutes
like a normal person?” The ringing interrupting workflow might be annoying, but
if someone is calling you to tell you that your garage is on fire, you want to know
about it immediately.

Microcontrollers respond to interrupts much like you would. Maybe you are
reading a book and the phone rings. You use you fingernail to scratch a mark next

109

Chapter 7: Microcontroller Interrupts and Timers

to the line you were reading and dog-ear the page before closing the book. Then
you answer the phone and when the call is finished and you’ve put out the fire in
your garage, you can refer to the desecrations to your book and go right back to
where you left off your reading.

From the hardware perspective an interrupt causes the microcontroller to stop
what it is doing, store sufficient data so that later it can get back to what it was
doing, look to see which interrupt happened, run the interrupt code, and when
finished restore the machine to its state before the interrupt occurred using the
previously stored data.

Interrupts are great, but they provide an avenue for some particularly pernicious
bugs. For example when your code is reading an integer from memory and since
an integer is made of two bytes it gets the first byte, then is stopped by an
interrupt that changes the value of the integer before returning control to the part
of the code that was reading the integer which then gets the second byte of the
integer. The integer will be wrong because it will be made half from the pre-
interrupt value and half from the post-interrupt value. The crazy making
debugging problem is that the interrupt can happen at any time, maybe only very
rarely during the integer read. Your system can run like a champ and then locks up
for no apparent reason. You don’t want this kind of bug in your pacemaker. You
prevent this bug by disabling interrupts before reading variables that can be
changed by interrupts then enabling them after you’ve got the correct number.

We’ll study interrupts by using some fairly intense code based on the Butterfly
software used to read the joystick. If you compare the software used in this
example to the Butterfly software you might think I stole some of it. And you’d be
correct. That is one of the central principles of software engineering: if it ain’t
nailed down - steal it. Heck, if it is nailed down, get a crowbar and rip it up. It’s
also called “‘code reuse’ and you’d be stupid to reinvent the wheel by trying to
write something from scratch when you have perfectly good code already
available. There are only two reasons to write stuff you can steal, one is that you
want to learn by doing, and the other is to avoid a lawsuit - if the software doesn’t
specifically state that it can be used, then it is copyrighted. Hopefully, 1 won’t get
sued.

110

Chapter 7: Microcontroller Interrupts and Timers

Some of this code will have concepts that will be explained later. Expect a little
confusion. Now may be a good time for a nap.

The Atmegal69 data book lists 23 interrupts in Table 22 on page 47. Two of these
interrupts, the Pin Change Interrupts: PCIO and PCI1 are triggered by changes on
some of the port pins. Pins on Port E can be configured to trigger a PCIO interrupt
and pins on Port B can be configured to trigger a PCI1 interrupt.

The joystick just happens to be attached to pins on both Port B and Port E making
it an ideal candidate to study interrupts with the added benefit that when we get
though, we’ll be able to use the joystick like it was intended. The joystick pins

map as follows:

A=up
B = down

7
OF

Center

D

L) ory | el | e | b=t | B2

PB4
PB6
PB7
PE2
PE3

Common — L

O = center push

D = left
C =right

111

Chapter 7: Microcontroller Interrupts and Timers

The PCMSKU1 register controls, which pins contribute to the interrupt, if a bit is
set to 1 the corresponding bit in Port B is enabled to trigger the PCI1 interrupt. A
0 disables the interrupt for a pin. To enable the buttons of interest:

Port B bit position 7 6 5 4 3 2 1 0
PCMSK1 bit 1 1 X 1 X X X X

We use ‘X’ to indicate that we don’t care what that bit is. Since some other part of
the software might be using that bit, we want to leave it as is. The statement:

PCMSK1 |= ((1<<PINB4)|(1<<PINB6)|(1<<PINB7))

Changes bits 4, 6, and 7 to 1 and leaves the rest of the bits as they were. As a
review, remember what the ‘|” does: 1|1=1, 1|0=1, 0|1=1, and 0]0=0. So the 1 bits
will set to one no matter what they were in PCMSK1 and the 0 bits will set the
PCMSKZ1 bit to 1 if it was already 1 and to 0 if it was already 0. If this is still
obscure get out the pencil-and-paper-computer and play with it a bit. It is a critical
concept for understanding microcontrollers.

We are going to use: (1<<PINB4)|(1<<PINB6)|(1<<PINB7) several places in our
code, so let’s look at a new item that will simplify our lives, the #define
preprocessor directive. If we put:

#define PINB_MASK ((1<<PINB4)](1<<PINB6)|(1<<PINB7))

In our code, usually after the #include directives and before the main() function,
the preprocessor will substitute ((1<<PINB4)|(1<<PINB6)|(1<<PINB7)) for each
occurrence of PINB_MASK in the code. So we can write:

PCMSKB = PINB_MASK;
in our source file but the C compiler will see:
PCMSK1 = ((1<<PINB4)](1<<PINB6) | (1<<PINB7))
The External Interrupt Mask Register, EIMSK, and External Interrupt Flag

Register, EIFR are discussed on page 78 of the data book. We set them to enable
the PCI1 interrupt as follows:

112

Chapter 7: Microcontroller Interrupts and Timers

EIFR = (1<<PCIF0)](1<<PCIF1);
EIMSK = (1<<PCIEO)|(1<<PCIE1);

The program will jump to the interrupt routine when the interrupt is triggered, but
where is the interrupt routine? The location is determined by the address ‘vector’
listed in Table 22, page 47 of the data book. We use the following code to access
the PCI1 interrupt:

SIGNAL(SIG_PIN_CHANGE1)

// Do something
}

SIGNAL is defined in the WinAVR include directory in signal.h, which defines
some macros to handle interrupt functions using the gcc compiler. We’ll get to
macros later.

Interrupt handling is defined specifically for a particular microcontroller and a
particular C compiler and it is not portable like most of C. The original Butterfly
code was built using the IAR C compiler and uses this format for interrupts:

#pragma vector = PCINTO_ vect
__interrupt void PCINTO_interrupt(void)

// Do something

We’ll get to pragmas later. IAR handles interrupts one-way and WinAVR does it
another.

Let’s review:
e \We setup a register, PCMSK1, to indicate which port B pins can cause
interrupts.

e We setup the External Interrupt Mask Register, EIMSK, and External
Interrupt Flag Register, to enable the PCI1 interrupt.

e \We provided the SIGNAL(SIG_PIN_CHANGEL) code to be called when
the interrupt occurs.

113

Chapter 7: Microcontroller Interrupts and Timers

Projects

Grab your joystick — and test your interrupts

Create a new directory Joystick and copy the PC_comm. and Demonstrator .c and
.h files from the PC_comm. directory.

In Programmers Notepad change Demonstrator.h to:
// Demonstrator.h Joystick version

#include <avr/signal.h>
#include <inttypes.h>

#define KEY_UP 0
#define KEY_DOWN 1
#define KEY_LEFT 2
#define KEY_RIGHT 3
#define KEY_PUSH 4
#define KEY_INVALID 5

#define BUTTON_A 6 // UP
#define BUTTON_B 7 // DOWN
#define BUTTON_C 2 // LEFT
#define BUTTON_D 3 /7 RIGHT
#define BUTTON_O 4 // PUSH

#define PINB_MASK ((1<<PINB4)|(1<<PINB6)|(1<<PINB7))
#define PINE_MASK ((1<<PINE2)|(1<<PINE3))

#define TRUE 1
#define FALSE O

// declare functions

void PinChangelnterrupt(void);
char getkey(void);

void initializer(void);

void parselnput(char *);

void joystick(void);

Open the Demonstrator.c and change it to:

114

Chapter 7: Microcontroller Interrupts and Timers

// Demonstrator.c Joystick version

#include "PC_Comm.h"
#include ""Demonstrator.h"

// declare global variables
volatile char KEY = 0;

volatile char KEY_VALID
volatile char ENABLED =

= 0;
0;

void initializer()

{

// Calibrate the oscillator:
OSCCAL_calibration();

// Initialize the USART
USARTINIt(Q;

// Init port pins
DDRB |= 0OxD8;

PORTB |= PINB_MASK;
DDRE = 0x00;

PORTE |= PINE_MASK;

// Enable pin change interrupt on PORTB and PORTE
PCMSKO = PINE_MASK;

PCMSK1 = PINB_MASK;

EIFR = (1<<6) | (1<<7);

EIMSK = (1<<6)|(1<<7);

DDRD
DDRB

OxFF; // set PORTD for output
0X00; // set PORTB for input

PORTB
PORTD

OxFF; // enable pullup on for input
OXFF; // set LEDs off

// say hello

sendString(""\rPC_Comm.c ready to communicate.\r");

// identify yourself specifically

sendString(*'You are talking to the JoyStick demo.\r");

}

void parselnput(char s[])
{

115

Chapter 7: Microcontroller Interrupts and Timers

// parse fTirst character
switch (s[0])
{

case "J":
if((s[1] == "0%) && (s[2] == "y"))
jJoystick(Q);
break;

case "d":

IT((s[1]=="e")&&(s[2]=="m")&&(s[3]=="0")&&(s[4]=="7"))
sendString(*'You are talking to the JoyStick
demo.\r'");
break;
default:
sendString(""\rYou sent: "');
sendChar(s[0]);
sendString(*"" - 1 don"t understand.\r");
break;

3
S[0] = "\0";:
3

void joystick(Q)

iT(ENABLED == 0) ENABLED = 1;
else ENABLED = O;

SIGNAL(SIG_PIN_CHANGEO)

PinChangelnterrupt();
}

SIGNAL(SIG_PIN_CHANGEL)

PinChangelnterrupt();
}

void PinChangelnterrupt(void)

{

char buttons;
char key;

buttons = (~PINB) & PINB_MASK;
buttons |= (~PINE) & PINE_MASK;

116

Chapter 7: Microcontroller Interrupts and Timers

// Output virtual keys

if (buttons & (1<<BUTTON_A))
key = KEY_UP;

else if (buttons & (1<<BUTTON_B))
key = KEY_DOWN;

else if (buttons & (1<<BUTTON_C))
key = KEY_LEFT;

else if (buttons & (1<<BUTTON_D))
key = KEY_RIGHT;

else i1if (buttons & (1<<BUTTON_0))
key = KEY_PUSH;

else
key = KEY_INVALID;

if(key 1= KEY_INVALID)
if (1KEY_VALID)

KEY = key; // Store key in global key buffer
KEY_VALID = TRUE;

}

//Delete pin change interrupt flags
EIFR = (1<<PCIF1l) | (1<<PCIFO0);

i F(ENABLED)
{

getkey();
}

}
char getkey(void)
{

char k;

cli(); // disable interrrupts so "KEY" won"t change while in
use

if (KEY_VALID) // Check for unread key in buffer

k = KEY;
KEY_VALID = FALSE;
}

else

117

Chapter 7: Microcontroller Interrupts and Timers

k = KEY_INVALID; // No key stroke available
sei(); // enable interrupts

if(k 1= KEY_INVALID)

{
sendString("'The joystick position is: ');
switch(k)
{
case KEY_UP:
sendString(*"'UP™);
break;
case KEY_DOWN:
sendString(*'DOWN'™) ;
break;
case KEY_LEFT:
sendString("'LEFT™);
break;
case KEY_RIGHT:
sendString(""RIGHT™) ;
break;
case KEY_PUSH:
sendString(*'PUSH™) ;
break;
default:
sendString(*'?"™");
break;
}
sendChar("\r*);
}
return K;

}

Compile it and download to the Butterfly (remembering to browse to the correct
directory).

Using joystick
Using HyperTerminal, you should see:

PC_Comm.c ready to communicate.

118

Chapter 7: Microcontroller Interrupts and Timers

You are talking to the Joystick demo.

Type in:

joy

Move the joystick to the left and you should receive:
The joystick position is: LEFT

Move the joystick to the right and you should receive:
The joystick position is: RIGHT

Move the joystick up and you should receive:
The joystick position is: UP

Move the joystick down and you should receive:
The joystick position is: DOWN

Push the joystick while centered t and you should receive:
The joystick position is: PUSH

I’m tired and going to bed. Tomorrow we’ll look at timers. | may get so excited
that | won’t be able to sleeeeeppp ummm errr zzzzzz....

Timers/Counters

Good morning! In Blinky.c we set the timing of the blinks using the
_delay_loop_2(delaycount). The delay function uses a 16-bit count that takes 4
cycles/loop. This loop runs in the CPU, which can do nothing else while it is
running. You set the period of the delay by sending a parameter for the number of
‘4 cycles’ you want to waste. Knowing the time per cycle allows you to set the
time of the delay. Cycle wasting delays are a simple way to control some types of
periodic events, but the simplicity comes at the cost of totally occupying the CPU
while wasting the specified time. That’s a good idea if you don’t need to do
anything else while the delay is running, but it makes a lousy way to mark time if
you have anything else going on. Timers are peripheral devices that run
independent of the CPU and only bother the CPU when set up to do so. The
bothering can take the form of setting a flag that the CPU can poll, or throwing an
interrupt to break into normal operations.

119

Chapter 7: Microcontroller Interrupts and Timers

The reason we usually see Timer/Counter hooked together is that the
Timer/Counter peripheral keeps time by counting pulses. The pulses can come
from a synchronous periodic source providing an accurate time count, or the
pulses can come from an asynchronous non-periodic source providing an accurate
count of the input pulses. In the first case we could be counting pulses from the
32.768 kHz watch crystal and keep accurate time. In the second case we could be
counting pulses from a light beam interrupter circuit and keep an accurate count
of the number of people entering a door and breaking the light beam.

The ATmegal69 has three Timer/Counters, two 8 bit and one 16 bit. A timer
overflows when it counts up to its maximum value (255 for the 8 bit and 65535
for the 16 bit devices) and resets to 0. We can get the Timer to overflow at lower
values by putting a value in the OCR, Output Compare Register, for the specified
timer and that timer will compare the value with the count and when they match it
will set a flag or throw an interrupt. It can also be set to overflow to 0 on a match.

The timers can be configured for input capture events, where a change on a pin
will cause the timer to save the count when the event occurred. This input capture
count can be used to measure the width of external pulse. If the external pulses are
periodic, we have a frequency counter.

The Timer/Counter runs independent of program execution and there are three
ways for the program to monitor and react to Timer/Counter events.

1. Poll the overflow flags.
2. Break program execution with an interrupt.
3. Let the timer automatically change the level of output pins.

The clock of the Timer/Counters uses a prescaler connected to a multiplexer The
prescaler is used to divide the input clock and the multiplexer selects which of the
divided signals is used as the input clock. The clock source for the prescaler can
be an external clock such as the 32.768 kHz crystal or it can use the system clock.

120

Chapter 7: Microcontroller Interrupts and Timers

Calibrating the Butterfly oscillator:

We first used the OSCCAL_calibration() function in the PC_Comm project,
claiming that we would explain it later. Well, it’s later and, wow, it’s time to
understand how it works.

If you try to tell time with the uncalibrated oscillator built into the ATmegal69,
you can expect to gain or lose a couple of hours a day. These oscillators produce
very precise pulse trains, but due to manufacturing variables, the pulse timing
varies from chip to chip and do not correlate to ‘real’ time. Real time is
determined by the National Bureau of Standards and references an atomic clock.
To calibrate the built-in oscillator to real time requires an external crystal that has
been precisely trimmed to pulse in time with the NBS clock. The Butterfly uses
an external 32.768 kHz watch crystal to calibrate the oscillator to run at 8 MHz.
Watch crystals are accurate, cheap, and make keeping human time easy (‘easy’
being another relative term).

We can get an accurate count of a time period by counting pulses from the watch
crystal. For instance if we count 32768 pulses we know that one second has
passed. We use a shorter known good period to calibrate the internal oscillator by
setting the oscillator to generate x pulses in the known good time period.
Remember that the oscillator is running at about 8 MHz, so we are going to get a
lot more counts from it than we will get from the watch crystal. If we count 32768
pulses from the watch crystal and 8 million pulses from the oscillator in the same
period, we know the 8 MHz is accurate. That is, we get 8 million counts from the
oscillator in the same period we get 32768 counts (one second) from the crystal
meaning the oscillator is running at exactly 8 million pulses per second. But we
will actually use a much shorter period and have smaller counts. If the oscillator
count is too small for the period we change the value in a register to speed it up,
and if it is too large we change the register to slow it down. We do this in a loop to
keep bracketing the speed until it gets as accurate as we can make it. Sounds easy,
but as you’ll quickly see, it is a real pain just to get the registers all set up

properly.
In this section we will learn how the Butterfly oscillator is calibrated. This is

presented in two sections, the first shows the OSCCAL _calibration function, and
the second gives a detailed explanation.

121

Chapter 7: Microcontroller Interrupts and Timers

OSCCAL_calibration() function — the code:

Purpose : Calibrate the internal OSCCAL byte, using the external
32,768 kHz crystal as reference

/ xxxxxxxxxxxx
*

* Function name : OSCCAL_calibration
*

* Returns : None

*

* Parameters : None

*

*

*

*

B e *% f

void OSCCAL_calibration(void)

{
unsigned char calibrate = FALSE;
int temp;
unsigned char templL;

CLKPR = (1<<CLKPCE); // set Clock Prescaler Change Enable
// set prescaler = 8, Inter RC 8vhz / 8 = 1Mhz
CLKPR = (1<<CLKPS1) | (1<<CLKPSO0);

TIMSK2 = 0; //disable OCIE2A and TOIE2

ASSR = (1<<AS2); //select asynchronous operation of timer2
(32,768kHz)

OCR2A = 200; // set timer2 compare value

TIMSKO = 0; // delete any interrupt sources

TCCR1B = (1<<CS10); // start timerl with no prescaling

TCCR2A = (1<<CS20); // start timer2 with no prescaling

//wait for TCN2UB and TCR2UB to clear
while((ASSR & 0x01) | (ASSR & 0x04));

Delay(1000); // wait for external crystal to stabilise

while(!calibrate)

{
cli(QQ; // mt __disable_interrupt(); // disable global
interrupt
TIFR1 = OxFF; // delete TIFR1 flags
TIFR2 = OXxFF; // delete TIFR2 flags

122

Chapter 7: Microcontroller Interrupts and Timers

TCNT1H = O; // clear timerl counter
TCNT1L = O;
TCNT2 = 0; // clear timer2 counter

// wait for timer2 compareflag
while (I(TIFR2 && (1<<OCF2A)));

TCCR1B = 0; // stop timerl
sei(); // __enable_interrupt(); // enable global interrupt
if ((TIFR1 && (1<<TOV1)))

temp = OxFFFF; // if timerl overflows, set the temp to OxFFFF
s

else
{ // read out the timerl counter value
tempL = TCNT1L;
temp = TCNT1H;
temp = (temp << 8);
temp += templL;
}

if (temp > 6250)

OSCCAL--; //RC oscillator runs to fast, decrease OSCCAL
glse if (temp < 6120)

OSCCAL++;//RC oscillator runs to slow, increase OSCCAL

}

else
calibrate = TRUE; // the interRC is correct

TCCR1B = (1<<CS10); // start timerl

OSCCAL_calibration() function — detailed explanation
The “System Clock and Clock Options’ section of the ATmegal69 data book tells

more than you’ll ever want to know about the ATmegal69's clock. Let’s focus on
only what we need for our system.

123

Chapter 7: Microcontroller Interrupts and Timers

The Clock Prescale Register, CLKPR, is discussed beginning on page 30 of the
data book. Bit 7 of CLKPR is the prescaler enable bit, CLKPCE (an alias for bit
7), so the statement:

CLKPR = (1<<CLKPCE);
enables the Clock Prescaler Change.

The Clock Prescaler Select Bits CLKPS0, CLKPS1, CLKPS2, and CLKPS3 are
alias for the lower 4 bits of CLKPR and are used to select a clock division factor.
Since registers are preset to 0, we OR CLKPS1 and CLKPSO as 1 and get 0011
which provides a clock division factor of 8, this divides the 8 MHz oscillator by 8
giving a 1 MHz clock:

CLKPR = (1<<CLKPS1) | (1<<CLKPSO);

The Timer/Counter2 Interrupt Mask Register, TIMSKZ2, is set to 0 to disable the
OCIE2A, output compare, and TOIE2, overflow enable, interrupts (p 141 data
book if you want the gory details).

TIMSK2 = O;

We must set the Asynchronous Timer/Counter2, AS2, bit 3 of the Asynchronous
State Register, ASSR, to allow an external clock connected to the Timer
Oscillator, TOSC1, pin 24 of the microcontroller to be used to for asynchronous
operation of timer2 (32,768kHz):

ASSR = (1<<AS2);

The Output Compare Register A, OCR2A, contains a value, 200, that will be
continuously compared with the Timer Count 2, TCNT2, register

OCR2A = 200;

The Timer/CounterQ Interrupt Mask Register, TIMSKO, is set to O to delete any
interrupt sources (p 93 data book).

TIMSKO = O;

124

Chapter 7: Microcontroller Interrupts and Timers

The Timer/Counterl Control Register B, TCCR1B and the Timer/Counter2
Control Register A, TCCR2A, are set to start timerl and timer2 with no
prescaling:

TCCR1B
TCCR2A

(1<<CS10);
(1<<CS20);

After setting all these registers we wait for the TCNT2 and the TCRU2B registers
to be set from temporary memory, by waiting for the Timer/Counter2 Update
Busy, TCN2UB, and the Timer/Counter2 Update Register Busy, TCCR2A, bits of
the ASSR register to be cleared (p 139 data book).

while((ASSR & 0x01) | (ASSR & 0x04));

Wait a while for the crystal to stabilize:

Delay(1000);
ALL THIS AND WE HAVEN’T EVEN STARTED CALIBRATING YET!
Getting registers set properly to do much of anything in a microcontroller can be a
long and frustrating exercise, and another good reason to steal code where
possible.
We start calibrating by running a loop in which you make adjustments to the
internal oscillator and comparing the results to the external clock, looping until
you get it right.
Set a flag:

unsigned char calibrate = FALSE;
to terminate the loop when true:

while(!calibrate)

On each pass you do the following:

125

Chapter 7: Microcontroller Interrupts and Timers

Disable global interrupts:
cliQ;
Clear the timer interrupt flags:

TIFR1
TIFR2

OXFF;
OXFF;

Clear the timer counts:

TCNT1H = O;
TCNT1L = O;
TCNT2 = O;

Wait for the timer to reach the count

while (I(TIFR2 && (1<<OCF2A)));

Stop the timer:
TCCR1B = 0;
Enable global interrupts
sei();
Has Timer/Counterl overflowed? If so set our temp variable to OXFFFF.

if ((TIFR1 && (1<<TOV1)))

{
temp = OXFFFF;//if timerl overflows, set the temp to OxFFFF

}
Otherwise read the timerl counter value into the temp variable

else

{
tempL = TCNTI1L;
temp TCNT1H;
temp (temp << 8);

126

Chapter 7: Microcontroller Interrupts and Timers

temp += tempL;
}

Is temp greater than 62507 If so decrement the Oscillator Calibration Register,
OSCCAL

if (temp > 6250)

OSCCAL--;//RC oscillator runs to fast, decrease OSCCAL
b

Otherwise, if temp is less than 6120, increment OSCCAL.

else if (temp < 6120)

OSCCAL++; //RC oscillator runs to slow, increase OSCCAL
b

If temp is between 6250 and 6120 the calibration is complete and we can go
home.

else
calibrate = TRUE; // the interRC is correct

But before we turn out the light, we start the timer:

TCCR1B = (1<<CS10); // start timerl

Now if you are beginning to think all this is mighty confusing, you are finally
beginning to understand the core truth of microcontroller programming. It IS
mighty confusing. And frustrating and bug infested and time consuming and ego
destroying and... well, you name it. But finally getting something working is the
greatest pleasure known to mankind, (if you overlook sex, eating, parenting, and
anything else you like to do). A word of advice: if you don’t actually get some
pleasure from working out these puzzles you don’t need to be doing this for a
career. Try professional knife fighting... you’ll survive longer. This complexity is
primary reason to ‘reuse’ code. And speaking of stealing them naked, the
following project uses code lifted directly from the WinAVR port of the ATMEL
Butterfly code.

127

Chapter 7: Microcontroller Interrupts and Timers

Projects

Precision Blinking

Let’s use interrupts and timers to provide precise control over the blink rate for an
LED. We’ll let the PC send data as a character string to the microcontroller and let
the microcontroller set a timer interrupt to trip at the specified rate and toggle an
LED.

First Let’s think about setting a timer to throw an interrupt every millisecond. The
USART initialization sets the system oscillator to 2 MHz. We set the Timer0
prescaler

to clk/8 which gives a 250 kHz input to the timer/counter. Then we set a compare
value of 250 so the timer throws an interrupt every 250 counts: 250000/250 =
1000, and we get interrupted a thousand times a second, almost like having a
toddler around.

We set timer0 to do a compare interrupt:

TIMSKO = (1<<OCIEOA);

Then we set the timerO compare register to 250:

OCROA = 250;

Finally we set the Timer/Counter Control Register A to the Clear Timer on
Compare waveform and the prescaler to divide the clock by 8:

// Set Clear on Timer Compare (CTC) mode, CLK/8 prescaler
TCCROA = (1<<WGM01)] (0<<WGMO00)] (1<<CS01);

But, heck Let’s get fancy and allow ourselves to change the compare value by
sending data from the PC. We write the MilliSec_init and the set OCR)A
functions:

void MilliSec_init(unsigned char count)

// Initialize TimerO.

128

Chapter 7: Microcontroller Interrupts and Timers

// Enable timerO compare interrupt
TIMSKO = (1<<OCIEOA);

// Sets the compare value
set _OCROA(count);

// Set Clear on Timer Compare (CTC) mode, CLK/8 prescaler
TCCROA = (1<<WGM01)] (0<<WGMO00)] (1<<CS01);

}

void set OCROA(unsigned char count)

// Sets the compare value
OCROA = count;
}

Now we can initialize the timer when the program starts and change the compare
value when we feel like it. Let’s reuse the PC_Comm code to generate an
annoying LED precision blinker that’s actually an 8-bit counter. As you will see,
or rather won’t see, you can’t see the LED blinking at the fastest rates in the lower
4 bits, but you can see blinking in the slower upper 4 bits. The lowest bit tog%les
the LED 1000 times a second, it is on for 1000™ of a second then off for 1000™ of
a second, which yields a blink period of 500 Hz. Each LED blinks at half the rate
of the prior LED, so the blink periods for each LED are:

LEDO =500 Hz.
LED1 = 250 Hz.
LED2 = 125 Hz.
LED3 =62.5 Hz.
LED4 = 31.25 Hz.
LEDS = 15.625 Hz.
LEDG = 7.8125 Hz.
LED7 = 3.90625 Hz.

If we tell the Butterfly to set the compare to 125, then the interrupt occurs at 2000
Hz and the fastest blink period becomes 1000 Hz.

129

Chapter 7: Microcontroller Interrupts and Timers

What happens if we send it 100? Well, 250000/100 = 2500, so we would get a
1250 Hz blink.

How do we get a 60 Hz blink? We can get LED3 to blink at 60 Hz if the base rate
is 480 Hz, which we can get from 960 interrupts per second, which we could get
from a compare count of 260.41666... and we ain’t gonna get that for two
reasons: one, the count overflows at 255 and two, we are dealing with integers. If
we set the compare to 130 we get a rate of 1923.076923 which yields 60.096...Hz
on LEDD5, pretty darn close, but we have an error of 1 — (60/60.09615385) * 100
=0.16 %, not bad at all. But is it close enough? Only you can decide that

Create a new directory Precision Blinking and copy the PC_Comm. and
Demonstrator .c and .h files from the PC_Comm. directory.

In Programmers Notepad change Demonstrator.h to:

// Demonstrator.h Precision Blinking version

#include <avr/signal _h>
#include <inttypes.h>

void initializer(void);
void parselnput(char *);

int parse_ctc(char *);
void set_ctc(int);

void MilliSec_init(unsigned char count);
void set OCROA(unsigned char count);

In Programmers Notepad change Demonstrator.c to:

// Demonstrator.c Precision Blinking version

#include "PC_Comm.h"
#include '""Demonstrator.h"

unsigned char milliseconds = O;
void initializer()

{

// Calibrate the oscillator:

130

Chapter 7: Microcontroller Interrupts and Timers

OSCCAL_calibration();

// Initialize the USART
USARTINIt();

// set PORTD for output
DDRD = OxFF;

MilliSec_init(250); // default to 1000 Hz

// say hello

sendString(""\rPC_Comm.c ready to communicate.\r");

// identify yourself specifically

sendString('You are talking to the Precision Blinking demo.\r");

}

void parselnput(char s[])

{
// parse first character
switch (s[0])
{

case "c":

iIfC (s[1] == "t7) && (s[2] == "c7))

parse_ctc(s);

break;
case "d":
iT((s[1]=="e")&&(s[2]=="m")&&(s[3]=="0")&&(s[4]=="""))
sendString("'You are talking to the Precision Blinking demo.\r");
break;

default:

sendString(*'\rYou sent: *');

sendChar(s[0]);

sendString("" - I don"t understand.\r");

break;

by
s[0] = "\0~;
¥
int parse_ctc(char s[])

{
char ctc[11];

unsigned char i = 3, j = 0;
while((s[i] '= "\0") & (g <= 11))
{

ifC (s[i] >= "07) && (s[i] <= "97))
{

131

Chapter 7: Microcontroller Interrupts and Timers

ctc[j++] = s[i++];
}

else

{

sendString("Error - Parse_ctc received a non integer: ");
sendChar(s[i]):
sendChar("\r*");
return O;
}
}

ctc[j] = "\0~;

if(g>4)// must be < 256
{

sendString("'Error - Parse_ctc number too large');
return O;

set_ctc(atoi(ctc));
T

return 1;

}

void set_ctc(int count)

{
char ctc[11];

sendString("'Setting the Compare Timer Count to: ');
itoa(count,ctc,10);

sendString(ctc);

sendChar("\r");

MilliSec_init(count);

}

/*

The USART init set the system oscillator to 2 mHz. We set the TimerO
prescaler to clk/8 which gives a 250 kHz input to the timer/counter. A
compare of 250 throws an interrupt every millisecond.

*/

void MilliSec_init(unsigned char count)

{

// Initialize TimerO.

// Enable timerO compare interrupt
TIMSKO = (1<<OCIEOA);

132

Chapter 7: Microcontroller Interrupts and Timers

// Sets the compare value
set_OCROA(count);

// Set Clear on Timer Compare (CTC) mode, CLK/8 prescaler
TCCROA = (1<<WGMO01)] (0<<WGMOO)] (1<<CS01);

}
void set_OCROA(unsigned char count)

// Sets the compare value
OCROA = count;

// Interrupt occurs once per millisecond
SIGNAL(SI1G_OUTPUT_COMPAREOQ)

PORTD = milliseconds++;

}

Compile it and download to the Butterfly (remembering to browse to the correct
directory).

Using Precision Blinking:
In HyperTerminal you will see:
PC_Comm.c ready to communicate.

You are talking to the Precision Blinking demo.

Type in:
ctc100

You receive:
Setting the Compare Timer Count to: 100

Note that a ctc value of 250 resets the interrupt to 1 millisecond providing a 500
Hz pulse on LEDO and a 3.90625 Hz. pulse on LED?7.

133

Chapter 7: Microcontroller Interrupts and Timers

Pulse Width Modulation — LED Brightness Control

When we continuously turn a port pin on and off at equal intervals, we get a pulse
train like the system clock. The pulse frequency is the number of pulses we
generate in one second, usually referred to as Hz pronounced ‘hurts’ named after
the Hertz rental car company. Okay, | lied; it is actually named for... hey, you can
Google this as easily as | can.

For an equal interval pulse train the pin is high half the time and low half the time.
This is called a 50% duty cycle (Figure 17). We can vary the duty cycle from 0%,
always off, to 100%, always on, or anything in between.

We have set up our LEDs so that the Port D pins source +3v to turn them on.
When the pin is set to low, 0 volts, no current flows so the LEDs are off. The
current flows thru 330-ohm resistors providing 9 mA of current and a power of
.027 watts. That’s not much power for light bulbs, but enough for LEDs. In the
precision blinking project we were only giving the LED power half the time. The
on/off time doubles for each LED, but they are all on for only half the time, so
they are using only .027/2 = 0.0135watts. By cutting the on time in half, we get a
25% duty cycle and 0.0135/2 = 0.00675 watts, less power and less light output.
Hey, | think | see a way to control the LED brightness. If we keep the frequency
of pulses constant, but lower or raise the on time it is on, we can control the
power to the LED and the light output from it.

50% Duty Cycle

75% Duty Cycle

25% Duty Cycle

Figure 17: Pulse Width Modulation Duty Cycle

134

Chapter 7: Microcontroller Interrupts and Timers

We have already seen that the human eye perceives fast blinking LEDs as being
constantly on. Our eyes also see rapidly pulsed light as having brightness
somewhere between the peak and the average. This means that a high intensity
pulse with a low duty cycle pulse looks brighter than it would powered by a direct
current providing the same power as the average of the pulsed signal. Our
perceptual peculiarity gives us a way to provide a brighter seeming light with less
power if we use PWM. So not only can we control the brightness, we can do a
trick to fool the eye into thinking it’s seeing something brighter even though we
are using less power. This is good news for our power use, but bad news in trying
to extrapolate duty cycle to perceived brightness. Cutting the duty cycle in half
does not translate into a halving of the perceived brightness.

Let’s write a program to allow us to play with the frequency and the duty cycle
then we can play with the parameters and see how we think they affect brightness.

Is it hard to write the PWM code? Nope, all we have to do is change the
waveform generation bits in the TCCORA register from WGMO1 = 1 and
WGMO00 = 0 to WGMO01 = 0 and WGMO00 = 1.

Create a new directory, PWM, and copy the .c and .h files and the makefile from
the Precision Blinking directory. In the Demonstrator files milliSeclInit routine
change:

// Set Clear on Timer Compare (CTC) mode, CLK/8 prescaler
TCCROA = (1<<WGM01)] (0<<WGMO00)] (1<<CS01);

to:
// Set PWM Phase Correct mode, CLK/8 prescaler
TCCROA = (0<<WGMO1)|] (1<<WGM00)] (1<<CS01);

and in the SIGNAL(SIG_OUTPUT_COMPAREDQ) change:

PORTD = milliseconds++;

to:
iF(PORTD &= 1) cbi(PORTD, 0);
else sbi(PORTD, 0);

135

Chapter 7: Microcontroller Interrupts and Timers

Fire up HyperTerminal and try some ctc values noticing how LED 0 changes
brightness.

That was so0000. easy. If you feel cheated because it was soooo easy, then read
the section on Timer/counterQ in the data book As usual these programs are so000
easy once you know how to do them, but a major bear and a half trying to
decipher the data book to get the few tidbits you really need.

136

Chapter 7: Microcontroller Interrupts and Timers

Pulse Width Modulation - Motor Speed Control

Let’s modify the LED PWM software a little and use it to control the speed of a
motor. But first, Let’s design and build the hardware. We’ll use parts from the
JAMECO parts list: a 9v motor, a 9v battery, a 9v battery connector, a 4N28
optoisolator, a TIP115 power transistor, a 330 Ohm resistor, and a 2.2K Ohm
resistor. I’ve included the optoisolator for the simple reason that it helps lessen the
possibility that we’ll destroy the Butterfly when messing with this circuit. |
actually managed to burn up both the optoisolator and the power transistor when
fooling with this design so, at least for me, this is not overkill. Since this is not an
electronics text, we won’t learn anything about how the circuit works. Just follow

the illustrations and you shouldn’t have any problems.

-l , OFTOISOLATOR

330
4

PORTD Pin1 &
2y

2

9V Battery

2kl

Butterfly Ground

Figure 18: Motor Speed Control Schematic and Parts

137

A9V Battery

Chapter 7: Microcontroller Interrupts and Timers

330 Ohm to 4N28 pin 1 T° PORTD PIN 1

- fn =

® m | 2.2k Ohm from 4N28

® m | pin51toTIP115 pin1

-
L]

::::::::::5::::"”'
A

4N28 pin 4 to 9v GND

+9v to TIP115 pin 3

) \

Motor ato TIP115 pin 2

Figure 19: Motor Speed Control Breadboard Labeled

Figure 20: Motor Speed Control Hardware

138

Chapter 7: Microcontroller Interrupts and Timers

The motor base is made with foam core board (you could use corrugated box
board) cut and glued (crappily) to hold a motor. The upright on the left will be
used in the next project to hold an optointerrupter.

Figure 22: Motor Wheel Stationary and Spinning

The wheel pattern is located in Appendix 6. Print it out and stick it to a piece of
sturdy thin cardboard. | put some electrical tape on the motor shaft and made
some radial cuts in the center of the wheel and slipped it over the tape. It works.
The cutout will be used in the next project.

139

Chapter 7: Microcontroller Interrupts and Timers

// Demonstrator.c Motor Speed Control version

#include "PC_Comm.h"
#include ""Demonstrator.h"

#define PINB_MASK ((1<<PINB4)|(1<<PINB6)|(1<<PINB7))
#define PINE_MASK ((1<<PINE2)](1<<PINE3))

unsigned char milliseconds = O;

unsigned int second = 0; // count to 1000 and trigger one second
event

unsigned int speed = 0; // IR detector count per second

unsigned int lastspeed = 0; // IR detector count per second

void initializer()

{
// Calibrate the oscillator:
OSCCAL_calibration();
// Initialize the USART
USARTINIt();
// Set for pin change on PINBO
PCMSKO = (1 << PINBO); //
EIFR = (1 << 7); // flag for PCINT15-8
EIMSK = (1 << 7); // mask for PCINT15-8
DDRB = 0X00; // set PORTB for input
PORTB = OxFF; // enable pullup on for input
// set PORTD for output
//DDRD = OxFF;
DDRD = (1 << PINDO); // set pin 0 to output
PORTD = (1 << PINDO); // set pin 0 to enable pullup
milliSeclnit(127); // 50% duty cycle 1kHz signal
// say hello
sendString(""\rPC_Comm.c ready to communicate.\r");
// identify yourself specifically
sendString(*'You are talking to the Motor Speed Control
demo_\r'");
sendString(M'setxxx to set speed\r');
}

140

Chapter 7: Microcontroller Interrupts and Timers

void parselnput(char s[])

{
// parse first character
switch (s[0])
{
case "s":
iT(C (s[1] == "e") && (s[2] == "t%))
parse_set(s);
break;
case "d":
iTC (s[1] == "e") && (s[2] == "m") && (s[3] ==
"0") && (s[4] == "?7))
sendString(*'You are talking to the Motor Speed
Control
demo.\r");
break;
default:
sendString(*"\rYou sent: "');
sendChar(s[0]);
sendString(™"" - I don"t understand.\r");
break;
}
s[0] = "\O0";
}
int parse_set(char s[])
{

char set[11];
unsigned char 1 = 3, j = 0;

while((s[i] '= "\0") && (j <= 11))
{

if((s[i] >= "0") && (s[i] <= "97))
{

set[i++] = s[i++];
}

else

{

sendString(*Error - Parse_set received a non integer: ");
sendChar(s[i]);

sendChar(*"\r");

return O;

}

141

Chapter 7: Microcontroller Interrupts and Timers

set[j] = "\0";
iT(g>4)// must be < 256

sendString("Error - Parse_set number too large'™);
return O;

b
else

{
}

return 1;

set_speed(atoi(set));

}

void set_speed(int count)

{
char speed[11];

sendString(''Setting the Compare Timer Count to: ');
itoa(count,speed,10);

sendString(speed);

sendChar(*\r=);

milliSeclnit(count);

/*

The USART init set the system oscillator to 2 mHz. We set the
TimerO prescaler

to clk/8 which gives a 250 kHz input to the timer/counter. A
compare of 250 throws

an interrupt every millisecond.

*/

void milliSeclnit(unsigned char count)

// Enable timerO compare interrupt
TIMSKO = (1<<OCIEQA);

// Sets the compare value
setOCROA(count);

// Set PWM Phase Correct mode, CLK/8 prescaler

142

Chapter 7: Microcontroller Interrupts and Timers

}

TCCROA = (0<<FOCOA)] (0<<WGM0O1)] (1<<WGMOO) | (1<<CS01);

void setOCROA(unsigned char count)

// Sets the compare value

OCROA = count;

// Interrupt occurs twice per Millisec, timed for PWM
SIGNAL(SI1G_OUTPUT_COMPAREO)

// Toggle PORtD pin O
if(PORTD &= 1) cbi(PORTD, 0);

else sbi(PORTD, 0);

& Butterfly - HyperTerminal
File Edit Wiew Call Transfer Help

.Dﬁ‘, = & =0 E

£

PC_Comm.c ready to communicate.
You are talking to the Motor Speed

setxxy to set speed
sel?200

Setting the Compare
setld

Setting the Compare
selhf

Setting the Compare
setl100

Setting the Compare

Timer Count to:
Timer Count to:
Timer Count to:

Timer Count to:

Control demo.

200
10
o0
106

Connecked 0:01:13 AMSIW

19200 5-nl-1

UM

143

Chapter 7: Microcontroller Interrupts and Timers

Speedometer

We used an optoisolator to separate the motor power circuits from the Butterfly to
help lessen the likelihood of blowing something up. A device similar to an
optoisolator is an optointerrupter, which has an air channel between the IR light
emitting diode and the IR detector transistor, see Figure 23. An opaque object
passed between the diode and the detector causes the transistor to turn off thus
‘interrupting’ the current. We can tie the transistor to a pin on the Butterfly and
detect the interruption. Did you notice the opening cut in the wheel in Figure 22?
(when you cut out the slot, glue it just under the inner side of the slot to help keep
the wheel balanced) If you rig up the motor base so that the wheel spins thru the
slot in the optointerrupter, each time the opening passes; the transistor turns on
and back off when the slot has passed. If we write our software so that a voltage
change on the pin attached to the optointerrupter causes an interrupt in the
Butterfly, we can count those interrupts. If we count for exactly one second we
have the number of times the wheel rotates per second, which is the rotational
speed in Hz. Cool!

Solder long wires to the optoisolator, and then add electrical tape to prevent the
legs from shorting. Next carefully glue it to the motor base in a position so that
the wheel rotates thru it. Make sure the wheel is balanced and will turn cleanly
(easier said than done) and fully block and unblock the optoisolator slot as the
wheel turns, Figure 22.

144

Chapter 7: Microcontroller Interrupts and Timers

Figure 24: Opto Interrupter Glued on Motor Base

Wiring:
e Optoisolator pin 1 to +3v
e Optoisolator pin 2 to a 200 Ohm resistor

145

Chapter 7: Microcontroller Interrupts and Timers

e 200 Ohm resistor to Butterfly GND
e Optoisolator pin 3 to PORTB pin 4 (remember counting starts at 0)
e Optoisolator pin 4 to Butterfly GND

You will notice that you learned the mechanical engineering skills needed for this
project in kindergarten. Though most kindergarteners could probably do a more
attractive job than I did, it works.

1 b,
IR, o

Figure 25: Speedometer

Create a Speedometer directory and copy the motor control software to it. Make
the following changes in Demonstrator.c:

// Demonstrator.c Speedometer version

#include "PC_Comm.h"
#include "'Demonstrator.h"

146

Chapter 7: Microcontroller Interrupts and Timers

unsigned char milliseconds = O;

unsigned int second = 0;//count to 1000 and trigger one second
event

unsigned int speed = 0; // IR detector count per second

unsigned int lastspeed = 0; // IR detector count per second

void initializer()

{
// Calibrate the oscillator:
OSCCAL_calibration();
// Initialize the USART
USARTINIt();
// Init port pins
DDRB |= 0x08;
PORTB |= ((1<<PINB4));//|(1<<PINB6)|(1<<PINB7));
// Enable pin change interrupt on PORTB
PCMSK1 = ((1<<PINB4));//](1<<PINB6) | (1<<PINB7));
EIFR = (1<<6) | (1<<7);
EIMSK = (1<<6)|(1<<7);
DDRD = OxFF; // set PORTD for output
PORTD = OXFF; // set LEDs off
milliSeclnit(127); // 50% duty cycle 1kHz signal
// say hello
sendString(""\rPC_Comm.c ready to communicate.\r");
// identify yourself specifically
sendString(*'You are talking to the Speedometer demo.\r'");
sendString(""setxxx" to set speed\r"Hz" to get speed in
Hertz\r');
}
void parselnput(char s[])
{

// parse Tirst character
switch (s[0])
{

case "s":

iTC (s[1] == "e”) && (s[2] == "t7))

parse_set(s);

147

Chapter 7: Microcontroller Interrupts and Timers

break;
case "H":
itC (s[11 == "z%))
sendSpeed();
break;
case "d":
iT(C (s[1] == "e") && (s[2] == "m") && (S[3] ==
"0") && (s[4] == "?7))
sendString("'You are talking to the Speedometer
demo.\r"");
break;
default:
sendString(*"\rYou sent: "');
sendChar(s[0]);
sendString(™"" - I don"t understand.\r");
break;

3
S[0] = "\0";:

void sendSpeed()

{
char spd[11];
sendString("'Speed = ');
itoa(lastspeed,spd,10);
sendString(spd);
sendChar("\r");

3

int parse_set(char s[])

{

char set[11];
unsigned char 1 = 3, j = 0;

while((s[i] '= "\0") && (j <= 11))
{

if((s[i] >= "07) && (s[i] <= "9%))
{
set[j++] = s[i++];

else

148

Chapter 7: Microcontroller Interrupts and Timers

}

sendString("Error - Parse_set received a
non integer: ");
sendChar(s[i]);
sendChar("\r");
return O;

}
set[j] = "\0";

it(J>4)// must be < 256

{
sendString("'Error - Parse_set number too large\r™);
return O;

}

else

{ -
set_speed(atoi(set));

}

return 1;

void set _speed(int count)

{

}
/*

char speed[11];

sendString(*'Setting the Compare Timer Count to: ');
itoa(count,speed,10);

sendString(speed);

sendChar("\r");

milliSeclnit(count);

The USART init set the system oscillator to 2 mHz. We set the
Timer0O prescaler to clk/8 which gives a 250 kHz input to the
timer/counter. A compare of 250 throws an interrupt every
millisecond.

*/

void milliSecInit(unsigned char count)

// Enable timerO compare interrupt

TIMSKO = (1<<OCIEOA);

149

Chapter 7: Microcontroller Interrupts and Timers

// Sets the compare value
setOCROA(count);

// Set PWM Phase Correct mode, CLK/8 prescaler
TCCROA = (0<<FOCO0A) | (0<<WGMO1)] (1<<WGM0OO) | (1<<CS01);

}
void setOCROA(unsigned char count)

// Sets the compare value
OCROA = count;

}

// Interrupt occurs twice per Millisec, timed for PWM
SIGNAL(SI1G_OUTPUT_COMPAREO)

{ // Toggle PORTD pin O
iT(PORTD &= 1) cbi(PORTD, 0);
else sbi(PORTD, 0);
// get the speed count once per second
if(second++ >= 1000)
{
second = 0;
lastspeed = speed; // store most recent speed in Hz
speed = O;
}
}
SIGNAL(SIG_PIN_CHANGE1)
{
speed++;
}

We’ve made a couple of simple changes. We reused the pin interrupt code from
the joystick software and in the interrupt routine we increment a speed counter
variable. Once per second we copy the speed counter value to ‘lastspeed’ variable,
which we report as the speed in Hz when requested.

Compile and load, remembering to reset the AVRStudio programming tool to use
the correct PC_Comm.hex, which | forgot AGAIN! Open HyperTerminal, toggle

150

Chapter 7: Microcontroller Interrupts and Timers

the power to the Butterfly, move the joystick to the up position for a moment, and
you should see something like the following:

& Butterfly - HyperTerminal E”EIFEJ

File Edit View Call Transfer Help

D = 3 07

7

PC_Comm.c ready to communicate.

You are talking to the Speedometer demo.
‘setuxx’ to set speed

"Hz' to get speed in Hertz

Speed = 214

ﬁetting the Compare Timer Count to: 58
z

Speed = 58 =

4 | *
Connected 0:00:30 AMSTW 19200 5-N-1 RO e UM rint

Play with it for a while and you’ll see that this isn’t particularly accurate. But
what do you expect for cardboard and glue?

151

Chapter 8: C Pointers and Arrays

Chapter 8: C Pointers and Arrays

Addresses of variables

During the stone age of computers, when C was written, programming was done
by positioning switches and looking at lights.

Figure 26: The PDP-11 could be programmed by switches, though Dennis Ritchie used a
Teletype machine to write the C programming language.

One set of switches represented data another represented the address of a memory
location that you wanted to stick the data. Addresses are sequential and represent
contiguous memory locations.

153

Chapter 8: C Pointers and Arrays

I once hand built an 8051 microprocessor ‘system” with SRAM memory attached
to huge lantern battery (SRAM forgets if the power goes off) and switches
attached to the data and address ports. | would set a data byte then set an address
(two bytes) and push a button to write the data to the SRAM. When it was all
loaded, | pressed another button to start the 8051. I bet you can guess what | had
the program do. That’s right: blink LEDs. Later | wrote a program that allowed
the 8051 to communicate with an original IBM PC and download large programs
from the PC, and once loaded — run them. | carefully wrote my primitive
bootloader on paper in assembly language, then translated it from assembly to
machine code, then hand entered it. The bootloader was only 81 bytes long. |
bragged about this incessantly and saw many a set of eyes glaze over. Anyone
who knew anything about what | was doing suggested, after rolling his eyes to
clear the glaze, that | get an EPROM programmer and write my code on a PC, like
a normal person. They just didn’t get it -- | wanted to design the cheapest possible
system and factored in my time as equal to zero dollars. Some of us prefer to do
things the hard way if something is to be learned and | learned beyond any doubt
just how hard it is to correctly enter 81 lousy bytes on a hand made computer.
Fortunately for me I’m too darn stubborn to admit defeat and made the thing work
until I accidentally disconnected the battery and had to reenter all the data. 81
bytes may not seem like much until you try to enter them and their addresses in
binary on DIP switches. After all the cursing died down I retired my machine,
bought an EPROM programmer, and joined the real world.

That experience more than any other, burned into my mind the relation of data
and addresses, a seemingly trivial relation until you get to C where this topic
causes more confusion and bugs than any other.

Data is stored in memory locations — real tangible things made of silicon. These
locations have addresses — information about the whereabouts of memory
locations. Memory is a place. Addresses tell us how to find the place. Sometimes
confusion occurs when we realize that addresses are just numbers and can become
data that can be stored in memory locations having... addresses. The data at one
memory location can be the address of another memory location whose data may
or may not be an address. Data is just a number, in our case an 8-bit byte. When
the data is the address of another location of data it is called a pointer. This might
seem simple, but pointers can become so confusing and error prone that many
higher programming languages won’t let the programmer touch them. This ability

154

Chapter 8: C Pointers and Arrays

to confuse is why C gurus love pointers and will go to incredible lengths to
obfuscate their code with them.

Pointers are the reason that many refer to C as a mid-level rather than a high level
programming language. In high level languages the programmer only deals with
data and the compiler makes all the decisions about the addresses. In low-level
languages, like assemblers, the programmer assigns the addresses to the data. In
C, we are not required to play with addresses, but are allowed to if we want to.
And, dangerous as they are, some things can only be done using pointers. Pointers
also allow us to do many things more efficiently and cleverly than would
otherwise be the case.

There are many reasons to use pointers, as a simple example consider writing a
function that will do something with data from a sequence of contiguous locations
in memory. Say you have a string: “Say you have a string:” 22 characters
followed by a null character “\0’ all contiguous following the first memory
location, an address that we will give the alias of MemStart. We know that ‘S’ is
located at MemStart and MemStart + 1 stores ‘a’, and so on to MemStart + 23
which stores ‘\0’. If we want our function to handle this sequence, we could send
all 23 bytes as parameters to the function, meaning that they would all be pushed
on the stack before the function call and pulled off by the function. But we know
that we need to go light on the stack in microcontrollers, so we would like to us a
different method. Easy, just send the variable MemStart as the parameter and have
the function start looking there and increment sequentially through memory until
it sees “\O” which we will agree always ends this kind of sequence (like for
example, a string which is defined to end with “\0’). Now instead of using 23
parameters and pushing 23 bytes on the stack we only have to use one parameter
and push only two bytes (addresses are ints, which as you may remember are two
bytes long).

Sounds simple, and it is once you get the hang of it, but unfortunately many
novice programmers use pointers in much the same way a toddler would use an
AK-47. To paraphrase the oft-stated defense of guns, ‘pointers don’t Kkill
programs, programmers kill programs.’

To quote K&R, p 93: “Pointers have been lumped with the goto statement as a
marvelous way to create impossible-to-understand programs. This is certainly true

155

Chapter 8: C Pointers and Arrays

when they are used carelessly, and it is easy to create pointers that point
somewhere unexpected. With discipline, however, pointers can also be used to
achieve clarity and simplicity.”

I once used a pointer to sequentially access the video buffer of an IBM PC. | made
a simple “fence-post’ error, that is, | started a count with 1 instead of 0, and wrote
the last data byte to an address that was one byte outside of the video buffer. That
byte was only occasionally important enough to crash the system. When your
computer crashes intermittently with no apparent rhyme or reason, you may well
be suffering from a bad pointer use. It can be a damn hard bug to find.

To recap: variables (RAM stored data) that contain the address of other variables
are called pointers. You can have pointers to data, pointers to pointers, pointers to
pointers to pointers to... but let’s try to keep it as simple and clear as possible
(whoops... too late).

We declare a variable to be a pointer by preceding its name with an *, called the
indirection or dereferencing operator:

int *q; // g is a pointer to an int
We get the address of a variable using &, called the address operator:
q = &v; // put the address of v in the pointer q

Never in that annals of mnemonics have two worse choices been made for
symbols. Instead of *, the letters “ptr’ could have been chosen for pointer, and for
&, the letters ‘addof’. There is no indicator in the second use of the variable name
‘q’ that it is a pointer, but the compiler could have been written to require that
some suffix follow the pointer everywhere, thus helping us know what we are
dealing with. But NOOOQO.... * and & were chosen, and confusion reigns eternal.
We could fix this problem by adding a couple of defines to alias the * and & as ptr
and addof, and we could require that we always name pointers in such a way that
we always know it is a pointer, but since our goal is to learn C as Ritchie and
ANSI intended and not my version of C, we’ll do it the hard way. What? you
don’t think it will be hard to remember what the * and & do? Wait till you run
into things like:

156

Chapter 8: C Pointers and Arrays

char C*CxO)LDO

which is on p. 126 of K&R and translates to: ‘X is a function returning a pointer to
an array of pointers to functions returning char.” Yes, they are serious, and | have
encountered much worse. Be very afraid.

Let’s look at some examples:

= 10, y = 20, z[30];
iptrFred; // iptrFred is a pointer to an int

iptrFred = &x; //iptrFred now contains the address of the variable x

y = *iptrFred; // y is now equal 10;

*iptrFred = 0; // x is now equal O

iptrFred = &z[0]; //iptrFred now points to the first element in array z

Pay careful attention to the presence or absence of the indirection operator as it
dereferences and wonder why on earth they chose both ‘indirection’ and
‘dereference’ as the names of the operator, when one weird word would have been
plenty?

More examples:

*iptrFred = *iptrFred + 10; // adds 10 to the content of z[0]
*iptrFred += 10; // same as above

y = *ptrFred + 20; // sets y equal to the content of z[0] + 20
++*iptrFred; // increments the content of z[0]

(*iptrFred)++; // after using the content of z[0] increment it to z[1]
*iptrFred++; // iptrFred now points to z[1]

The last two may have caused you to go ‘say what?’ It has to do with operator
precedence. Now is a good time to thank the stars that this is a self-teaching book
and | can’t test you on this stuff.

Function Arguments

Arguments are passed to functions by value, and as we saw in an earlier
discussion of functions, there is no way for a function to affect the value the
variable passed to it in the function that did the passing. Okay, Let’s show an
example:

157

Chapter 8: C Pointers and Arrays

void funcl(Q)

char olay = “m”;
%uncZ(oIay);
X -
void func2(char olay)
{
5Iay++;
}

After olay is incremented in func2 it is equal ‘n’, but this change has no effect on
olay in funcl. The name ‘olay’ in both functions is pure coincidence. We could
have func2:

void func2(char yalo)

{

§alo++;
}

and accomplished the same task.

But Let’s define:

void func2(char *)

Then use it
void funcl(Q)
{
char olay = “m”;

func2(&olay); // give func2 the address of the variable olay

}

158

Chapter 8: C Pointers and Arrays

void func2(char *yalo)

{

*yalo++; // the variable at address *yalo is iIncremented

}

This time func2 increments olay in funcl and olay becomes ‘n” in both.

Arrays

Arrays are groups of consecutive objects. We could write a code fragment for
responding to a ‘?” by sending each character of “Hello World!” as follows:

if (val=="7")

{

}

Looks like a group of consecutive objects to me. Formally, we would define and

sendchar ("H
sendchar("e
sendchar ("1
1
o]

sendchar (" ;
sendchar ("
sendchar ("
sendchar("w*
sendchar("o"
sendchar("r*

sendchar ("1
sendchar("d
sendchar("17);
sendchar(*"\r");

)
)
)
)
)
)
)
)
)
)
)

initialize an array for this in C as:

char greet[] = "Hello, world!\r*";

And write a function that scans the array sending chars until it finds the “*’

void SayHowdy(Q)

{

159

Chapter 8: C Pointers and Arrays

char greet[] = "Hello, world!\r*";

for(int 1 =0 ; greet[i] 1= "*"; i++)
{

}

sendchar(greet[i]);

}

Pointers and arrays have a strong relation in C. Any array-subscripting operation
can also be done with pointers. Pointers are said to be faster than arrays, but they
are much harder to understand for novice programmers (and those of us with
rapidly diminishing brain cells). Since speed is an issue in microcontrollers, and
pointers are faster we need to learn how pointers and arrays relate and apply it in
code segments that must be made to run faster. Let’s look at some examples.

char howdy[6];

Sets aside an array of six contiguous byte-sized memory locations.

int howdy[6];

Sets aside an array of twelve contiguous bytes sized memory locations, since each
int requires two bytes of memory.

We*ve seen before how to assign data:

howdy[0] = “h~”;
howdy[1] = “0”;
howdy[2] = “w~”;
howdy[3] = “d”;
howdy[4] = “y~;
howdy[5] = “\0~”;

or we can do this when we define the array:
char howdy[] = {“h”,’0”,’w”,’d”,’y”,’\0};
Here’s a puzzle for you:

char *confuseus;
char c;

160

Chapter 8: C Pointers and Arrays

confuseus = &howdy[0];
confuseus += 4;
c = *confuseus;

No tricks, what does ¢ equal? Right, ‘y’ the 4™ element of the howdy array. If it
wasn’t clear, try it with comments:

char *confuseus; // create a char pointer
char c; // create a char variable;

confuseus = &howdy[0]; //set confuseus to point to the howdy array;

confuseus += 4; // set it to point to howdy[4]
c = *confuseus; //set the contents of ¢ to the contents of howdy[4]

Clear?
Okay, what about:

char cl, c2;

cl
c2

*(confuseus + 1);
*confuseus + 1;

cl now equals ‘0’ and c2 equals “i’.
Groan.

For c1 we added 1 to the address of confuseus before we dereferenced it with the
indirection operator. For c2 we dereferenced it, making it equal to ‘h’ then we
added 1 to ‘h” NOT the address, making it equal the char numerically following
‘h’, which is “i’.

Double groan.
We can express the array position using pointers:
inti = 4;

char cl,c2;
char* confuseusmore;

cl = howdy[i]; // cl = “y” using array notation

161

Chapter 8: C Pointers and Arrays

c2 = *Chowdy + 4); // c2 = “y” using pointer notation

confuseusmore
confuseusmore

&howdy[i]; // confuseusmore points to “y’
howdy + i - 1; //confuseusmore points to “d”

To test this, make a new directory Pointer Array Test, copy the stuff from PC
Comm directory. Change the Demonstrator.c to:

// Demonstrator.h Pointer Array Test version

void initializer(void);
void Test(void);

void SayHowdy(void);

void Confuseus(void);
void Confuseusmore(void);

void parselnput(char *);

Change the Demonstrator.c to:

// Demonstrator.c Pointer Array Test version
#include "PC_Comm.h"
void initializer()

{
// Calibrate the oscillator:

OSCCAL_calibration(Q);
// Initialize the USART
USARTINitQ;

// say hello
sendString(""\rPointer Array Test.\r\r");

Test(Q);
}
void parselnput(char s[])
// Do nothing in this test

}
void Test()
{

// The hard way
sendChar("H");

162

Chapter 8: C Pointers and Arrays

sendChar("e*
sendChar("I1*
sendChar("I*
sendChar("o*
sendChar(® *

)
)
)
):
)
sendChar("w");
sendChar("o")
sendChar("r=)
sendChar("17%);
sendChar("d");
sendChar("!");
sendChar("\r");

SayHowdy Q) ;
Confuseus();
Confuseusmore();
3
void SayHowdy()
char greet[] = "Hello, world!\r*";
sendString("'\riln SayHowdy(O\r");

for(int i =0 ; greet[i] !'= "*"; i++)

{
sendChar(greet[i]);
3
T
void Confuseus()
{
char howdy[] = {"h","0","w","d","y","\0"};
char *confuseus; // create a char pointer
char c; // create a char variable;
char cl, c2; // and a couple more

sendString(""\rIn ConfuseusQO\r");

confuseus = &howdy[0]; // set confuseus to point to the howdy array;
confuseus += 4; // set it to point to howdy[4]
c = *confuseus; // set the contents of c to the contents of howdy[4]

sendString("'c = *confuseus; = ");
sendChar(c);

sendChar(*\r*);

confuseus -= 4; // reset the pointer

cl = *(confuseus + 1);

163

Chapter 8: C Pointers and Arrays

sendString('cl = *(confuseus + 1); = ");
sendChar(cl);
sendChar("\r");
c2 = *confuseus + 1;
sendString(’'c2 = *confuseus + 1; = ");
sendChar(c2);
sendChar("\r");
}
void Confuseusmore()
{
char howdy[] = {"h","0","w","d","y","\0"};
inti = 4;
char cl1,c2;
char* confuseusmore;
sendString(""\rIn Confuseusmore(Q\r');
cl = howdy[i]; // cl = "y" using array notation
sendString(*'cl = howdy[i]; = ");
sendChar(cl);
sendChar("\r");
c2 = *(howdy + 4); // c2 = "y" using pointer notation
sendString(*'c2 = *(howdy + 4); = ");
sendChar(c2);
sendChar("\r");
confuseusmore = &howdy[i]; // confuseusmore points to “y*
sendString(*'‘confuseusmore = &howdy[i]; = ");
sendChar (*confuseusmore) ;
sendChar("\r");
confuseusmore = howdy + i - 1; // confuseusmore points to "d*
sendString('confuseusmore = howdy + i - 1; = ");
sendChar (*confuseusmore) ;
sendChar("\r~);
}

164

Chapter 8: C Pointers and Arrays

& Butterfly - HyperTerminal
File Edit WView Call Transfer Help

Pointer Array Test. %
Hello world!

In SayHowdy()
Hello, world!

In Confuseus()

¢ = =confuseus; =y

cl = ={confuseus + 1);
c2 = =confuseus +~ 1; =

0

et

In Confuseusmore()
cl = howdylil; = vy
c?2 = =x(howdy + 4); =y

confuseusmore = &howdyl1l; =y
confuseusmore = howdy + 1 - 1: = d
<
Sl — X
Connected 0:00:35 AMNSTW 19200 3-N-1 AF MLUM :

Confuseusmoreandmoreandmore. Enough is too much. Let’s look at a practical
example:

int stringLength(char *string)

for(int 1 = 0; *string !'= “\0”; string++) i++;
return i;

}

Calling stringLength(howdy) or stringLength(&howdy[0]) both return 5. The
stringLength function compares the character in the string with ‘\0” and if it isn’t
that character then it increments the string pointer and the length count and loops.
Simple, easy and straightforward.

Let’s look at a practical example from the AVR port of the Butterfly code. Real
software from real working programmers:

165

Chapter 8: C Pointers and Arrays

/*******************7\'**

* Function name : ReadEEPROM

* Returns : None
* Parameters : Pointer to string, number of bytes to read,

address in EEPROM
* Purpose : Write byte(s) to the EEPROM

***/

void LoadEEPROM(char *pBuffer, char num_bytes, unsigned int EE_START_ADR)
{

unsigned char i;
for (i=0;i<num_bytes;i++) {

pBuffer[i]=eeprom_read_byte 169(&EE_START_ADR); // Load parameters
EE_START_ADR++;

}
}

The purpose of this function is to read data from the EEPROM. The parameter list
includes a pointer to a string, ‘char *pBuffer’, the number of bytes to read, ‘char
num_bytes, and the starting address for the EEPROM, ‘EE_START_ADR’

The caller sets up a string buffer with enough space for the requested number of
bytes and calls LoadEEPROM with a pointer to the string, along with the
requested length and the starting address of the EEPROM. The LoadEEPROM
function runs a loop and for each pass the function eeprom_read_byte 169 is
called with the address of the starting address of the EEPROM as a parameter, this
function gets the byte and returns it so it can be put in the pBuffer array.

This function is used in vcard.c as follows:

// Load name from EEPROM
LoadEEPROM(Name, indexps, EEPROM_START + 1);

using these declarations:

from vcard.h
#define STRLENGHT 25
#define EEPROM_START 0x100

at head of vcard.c:
uint8_t indexps = 0;
char Name[STRLENGHT];

166

Chapter 8: C Pointers and Arrays

This is a perfectly good function, but it requires that the user never ask for more
bytes than the size of the pBuffer array. What if we set indexps = 50? The
LoadEEPROM will fill the Name[STRLENGHT] array and the 25 bytes of RAM
that follow the array. Since the second 25 bytes wasn’t allocated to this function
we have no way of knowing what’s supposed to be stored there, but we overwrite
it anyway and almost certainly cause havoc.

It would be good programming practice to add a line that checked the array size
and the number of bytes before calling the LoadEEPROM function, and if there’s
a problem generate an error.

iF(NAMESIZE >= indexps){
// Load name from EEPROM
LoadEEPROM(Name, indexps, EEPROM_START + 1);

}

else
ErrorMessage(““LoadEEPROM error: number of bytes requested >
array size”);

But we are smart and we’d never make such a dumb error, so why bother adding
the extra code that only slows things down and increases the code size and is a
pain to type? The obvious answer is that the mistakes we make will often be
painfully dumb.

FIFOs and LIFOs: Stacks and Queues (Circular Buffers)

Stacks
Assembly language programmers frequently use the stack when calling
subroutines and running algorithms.

Stacks are like those piles of trays in cafeterias, we take trays off the top and the
dishwasher piles them back on the top. The top trays are usually wet and the
bottom trays never get used. It is important to us that the we never try to use the
tray below the bottom tray because it doesn’t exist, the analogy breaks down and
we have a blown stack, as shown earlier when we discussed how C uses a stack
when calling functions. Sometimes you’ll see ‘fifo’ to refer to these kinds of

167

Chapter 8: C Pointers and Arrays

stacks, fifo stands for “first in first out’. In control applications it is sometimes
convenient to have fifos, private stacks, to manipulate data.

#define STACKSIZE 100

unsigned char myStack[STACKSIZE]; // create a data stack
char stackCount = O;
unsigned char myvalue = 0; // create a byte variable

// Do some controlling

// push a byte on the stack

if (stackCount++ < STACKSIZE) // don’t blow your stack
*myStack++ = myValue;

else
error(““You almost blew your stack! - overflow);

// Do some more controlling

// pull a byte off the stack

if(stackCount-- > 0) //don’t blow itvin the other directon
myValue = *--myStack;

else

error(“You almost blew your stack! - underflow”);

Queues (Circular Buffers)

If stacks are like lunchroom trays, then queues are like the line of students waiting
to get a tray. The last one in line is the last one to get a tray. A circular buffer is
more like a game of hot potato where the students form a circle and pass a hot
pototo from one to the next and it keeps circulating indefinitely around. The hot
potato in our analogy is actually the pointer to the next address in the queue. For
real students it would probably be a joint or a bottle of cheap alcohol.

#define QUEUESIZE 100

unsigned char myQueue[QUEUESIZE]; // create a queue

unsigned char *nextInQueue; //define a pointer to an unsigned char
char queueCount = 0;

unsigned char myValue = 0; // create a byte variable

NextInQue = myQueue; // set pointer

// Do some controlling

168

Chapter 8: C Pointers and Arrays

// Put a byte in the queue
if(queueCount++ < QUEUESIZE)
*nextInQueue++ = myValue;//load myValue and incr pointer
else{ // circle the buffer
nextInQueue = myQueue; // reset pointer
queueCount = 0; // reset counter
*nextInQueue++ = myValue; //load myValue and incr pointer

}

// Do some more controlling

// Get the oldest byte from the queue
if(queueCount < QUEUESIZE)
myValue = *NextInQue + 1;
else // we’ve reached the end so circle around
myValue = myQueue[O0];

Function Pointers

Functions are not variables, but we can define pointers to them anyway. The
question is: ‘why would we want to?” The answer is that sometimes it is
convenient to keep a list of functions that we can choose based on the functions
position in the list. (Uhhh.......)

We can declare a pointer to a function as follows:
char (*pStateFunc)(char);

which says that pStateFunc is a pointer to a function that takes a char as a
parameter and returns a character when finished.

If we have another function declared:
char anotherFunction(char);
We can set the pointer as follows:
pStateFunc = anotherFunction;

Now:
char returnChar, sendChar;

sendChar = “17;

169

Chapter 8: C Pointers and Arrays

returnChar
returnChar

anotherFunction(sendChar);
pStateFunc(sendChar);

both calls work exactly the same.

This may seem about as useful as a bicycle for fish, but you’ll see a good example
in our discussion of state machines (oooh, oooh, I can hardly wait), in the
meantime, try to hold this in your head until we get there.

Complex Pointer and Array Algorithms

C is an ideal language for solving complex data processing and scientific
computing problems. Many a computer scientist has made a living being clever
and publishing the results. Which is good for us, because almost any complex
problem we will come across has already been solved for us. Whether its sorting a
database or doing a really fast Fast Fourier Transform, the algorithm will be
published somewhere convenient. Try googling ‘C FFT’ to see what | mean. Even
if you have lots of time and enjoy solving puzzles, you aren’t likely to develop a
better solution than you can borrow. It’s your call.

I hereby declare further pointer discussion to be ‘advanced’ and beyond the needs

of our study. Take a look at the last half of K&R’s chapter on Pointers and Arrays
and you’ll thank me.

170

Chapter 8: C Pointers and Arrays

Projects

Messenger
Arrays in RAM and ROM

Microcontrollers have limited memory, especially RAM, Random Access
Memory. ROM, Read Only Memory, is much cheaper to make, so there is usually
a lot more ROM than RAM. The AVR microcontrollers have a type of memory
that is somewhat intermediate between RAM and ROM called Flash ROM. It
functions like ROM, but can be rewritten using special hardware and software
functions.

RAM s like money and beauty, you can never have too much of it, but in
microcontrollers you can often have too little: alas, microcontrollers are ugly and
poor. C programs require RAM. You can write assembly programs that can be
burned into ROM, and run on microcontrollers that have no RAM, but C requires
RAM to keep a stack for parameters and return addresses and to store arrays,
among other things. [The AVR is a special case in that it has 32 general purpose
registers that can be used as RAM for very tiny and carefully written C programs,
so it is possible to write C programs for AVR devices with no ‘RAM?’, but that’s
another story.]

When we define an array of constants we should be able leave it in ROM, since
the elements are constants and we won’t need to change them. But our C compiler
puts arrays in the data section of RAM. If we have lots of constant data in arrays,
say strings, or conversion factor tables, or timing and tone data for songs, we are
going to needlessly lose a lot of RAM.

The following is an example of how to store a string and an array in flash ROM,
and keep it there:

const char ERROR_YOUFOOBARED[] PROGMEM = "You fouled up beyond
repair.\r\0";

The PROGMEM modifier is not C and is specific to the WinAVR compiler. The
AVR has special Load Program Memory, LPM, instructions to get data from the

171

Chapter 8: C Pointers and Arrays

flash ROM, but this is not C and needs to be wrapped with some code to make its
use C-like, which is what the PROGMEM does. The details get more complex
than we want right now so just thank the guys who figured this out for you by
sending them some money at: http://www.sourceforge.net/donate.

We send this string to the PC by defining a sendFString function:

// Send a string located in Flash ROM
void sendFString(const char *pFlashStr)

{ _ _
uint8_t 1;

// The "for" logic terminates if the byte is "\0" or if i = 60.
// "\0" is "null® and terminates C strings

// The 60 prevents too much overrun if we get a bad pointer

// and it limits the string size

for (i = 0; pgm_read_byte(&pFlashStr[i]) && i1 < 60; i++)

{

}

sendChar (pgm_read_byte(&pFlashStr[i]));
}

The function takes a constant character pointer as an argument. We can send a
string as follows:

sendFString(&ERROR_YOUFOOBARED[O]) ;

which explicitly shows that we are sending the address of the first element in the
array. Or we could use the simpler:

sendFString(ERROR_YOUFOOBARED) ;

which is exactly the same thing since the ERROR_YOUFOOBARED is a
constant character pointer to the so-named array. (Aren’t you glad | didn’t say
‘eponymous array’?).

Using an array of pointers to arrays.
The first time | saw an array of pointers to arrays | thought somebody was either

putting me on or trying to obfuscate the code for job security. But I’ve learned
that, complex as it sounds, it’s actually a useful programming technique.

172

Chapter 8: C Pointers and Arrays

Let’s define a set of arrays:

const char ERROR_YOUFOOBARED[] PROGMEM = "You fouled up beyond
repair_\r\0";

const char ERROR_SNAFUED[] PROGMEM = *Situation normal, all fouled
up-\r\o”;

const char ERROR_STOPTHEMADNESS[] PROGMEM = '"'Stop the madness!\r\0";
const char ERROR_WHERE[] PROGMEM = "Where did you learn to program?\r\0";
const char ERROR_RTFM[] PROGMEM = "Read the freaking manual !\r\0";

And then we define an array of pointers to arrays, initializing it with... pointers to
the arrays:

const char *ERROR_TBL[] = { ERROR_YOUFOOBARED, ERROR_SNAFUED, \
ERROR_STOPTHEMADNESS, ERROR_WHERE, ERROR_RTFM };

Now Let’s specify that we write a program that begins by outputting the following
to HyperTerminal,

Enter a O for error message: You fouled up beyond repair.
Enter a 1 for error message: Situation normal, all fouled up.
Enter a 2 for error message: Stop the madness!

Enter a 3 for error message: Where did you learn to program?
Enter a 4 for error message: Read the freaking manual!

In the software we store these string arrays in addition to the error arrays:

const char ENTER[] PROGMEM = "Enter a '';
const char FOR[] PROGMEM = " for error message: "
char ¢ = "0%;

Then we send the lot to HyperTerminal with the following loop:

char ¢ = "0";

for(int 1 = 0; 1 <5; i++)

{
sendFString(ENTER);
sendChar(c + i);
sendFString(FOR) ;
sendFString(ERROR_TBL[i1);

}

HyperTerminal first receives the ENTER array: ‘Enter a ‘. Next we sent the
character ‘0’ + i, (this allows us to sequentially send 0 to 4 in this loop). Then we

173

Chapter 8: C Pointers and Arrays

send the FOR message. And finally we send the pointer to the string array stored
in the ERROR_TBL in the i position. Okay, this is a bit complex so Let’s write
some code to show what we’re talking about.

The messenger software.

We are going to upgrade the PC_Comm software so we can use this messenger
stuff in later code. This will save us the RAM that has up to now been wasted on
constant strings. (Note — don’t use the old PC_Comm code after this).

Create a new directory, Messenger, and copy from the PC_Comm directory the .c
and .h files and the makefile.

In Programmers Notepad create a new file Messages.h:

// Messages.h

// identify yourself specifically
const char TALKING_TO[] PROGMEM = '\r\rYou are talking to the \0";
const char WHO_DEMO[] PROGMEM = **"Messenger® demo.\r\r\0";

// bad command
const char BAD_COMMAND1[] PROGMEM
const char BAD_COMMAND2[] PROGMEM

"\rYou sent: *"\0";
"* — 1 don"t understand.\r\0";

const char ENTER[] PROGMEM = "Enter a "';
const char FOR[] PROGMEM = " for error message: "';

const char ERROR_YOUFOOBARED[] PROGMEM = "'You fouled up beyond
repair.\r\0";

const char ERROR_SNAFUED[] PROGMEM = *'Situation normal, all fouled
up-\r\o";

const char ERROR_STOPTHEMADNESS[] PROGMEM = "'Stop the madness!\r\0";
const char ERROR_WHERE[] PROGMEM = "Where did you learn to program?\r\0";
const char ERROR_RTFM[] PROGMEM = "Read the freaking manual '\r\0";

const char *ERROR_TBL[] = { ERROR_YOUFOOBARED, ERROR_SNAFUED,
ERROR_STOPTHEMADNESS, ERROR_WHERE, ERROR_RTFM 3};

and save it in the Messenger directory.

Add to the PC_Comm.h file:

#include <avr/pgmspace.h>

174

Chapter 8: C Pointers and Arrays

void sendFString(const char *);

Add to the PC_Comm.c file:

// Send a string located in Flash ROM
void sendFString(const char *pFlashStr)

{ _ _
uint8_t 1;

// The "for" logic terminates if the byte is "\0" or if i = 60.
// "\0" is "null® and terminates C strings

// The 60 prevents too much overrun if we get a bad pointer

// and it limits the string size

for (i = 0; pgm_read_byte(&pFlashStr[i]) && i < 60; i++)

{

}

sendChar (pgm_read_byte(&pFlashStr[i]));
}

Change Demonstrator.h to:

// Demonstrator.h Messenger version
void initializer(void);

void parselnput(char *);
void showMessage(char);

Change Demonstrator.c to:

// Demonstrator.c Messenger version

#include "PC_Comm.h"
#include ""Messages.h"

void initializer(Q)

{
// Calibrate the oscillator:
OSCCAL_calibration();

// Initialize the USART
USARTINitQ);

// Display instructions on PC
sendFString(TALKING_TO);
sendFString(WHO_DEMO) ;

char ¢ = "0";

175

Chapter 8: C Pointers and Arrays

for(int i = 0; i < 5; i++)

{
sendFString(ENTER) ;
sendChar(c + i);
sendFString(FOR);
sendFString(ERROR_TBL[i]);
}
}
void parselnput(char s[])
{
if(C (s[0] <= "4") && (s[0] >= "0")) // 5 error messages
{
showMessage(s[0]);
}
else
{
// parse first character
switch (s[0])
{
case "d":
if((s[1=="e")&&(s[2]=="m")&&(s[3]=="0")&&(s[4]=="7"))
sendFString(TALKING_TO);
sendFString(WHO_DEMO) ;
break;
default:
sendFString(BAD_COMMAND1) ;
sendChar(s[0]):
sendFString(BAD_COMMAND2) ;
break;
¥
s[0] = "\0~;
}
void showMessage(char mess)
{
int num = atoi(&mess);
sendFString(ERROR_TBL[num]); // Send the song title to the PC
}

Compile, load to the Butterfly, and in HyperTerminal you will see:

You are talking to the "Messenger® demo.

176

Chapter 8: C Pointers and Arrays

Enter a O for error message: You fouled up beyond repair.
Enter a 1 for error message: Situation normal, all fouled up.
Enter a 2 for error message: Stop the madness!

Enter a 3 for error message: Where did you learn to program?
Enter a 4 for error message: Read the freaking manual!

Test it as follows:

étop the madness!

sou fouled up beyond repair.
éituation normal, all fouled up.
@here did you learn to program?
Eead the freaking manual!

You sent: "5" - 1 don"t understand.

Let me add a postscript to this by saying again that this memory use is not about
C, it is about the AVR microcontroller and how to conserve limited RAM by
using Flash ROM. It is important to keep C and the microcontroller specific
‘fixes” separate in your head, because what we just learned works great on the
AVR using the WinAVR compiler, but won’t work using other compilers for the

AVR, and is completely useless for other microcontrollers.

177

Chapter 8: C Pointers and Arrays

Does anybody know what time it is? A Real Time Clock.

Let’s combine our knowledge of interrupts with what we learned in the messenger
project to make a simple real time clock. This was derived from the more capable
clock in the Butterfly software.

A one second interrupt

We saw how to use the 32.768kHz watch crystal to calibrate the cpu clock
oscillator in the chapter on timers and interrupts. While that calibration makes the
oscillator accurate enough for communicating with the PC via the USART, it isn’t
accurate enough to keep real time like a watch. We will use Timer/counter2 with
the watch crystal as an input so that when the count reaches 32768, we will know
that one-second has passed and can throw an interrupt allowing us to do
something at exact one second intervals. Notice that 32768 is 0x8000 in
hexadecimal and 1000000000000000 in binary, this is no accident since the
crystals were designed to allow digital systems to keep real time (well, ‘real’ to
humans anyway). The low speed (kilohertz verus mega or giga hertz) and
precision timing allowed watches more accurate than expensive mechanical
chronometers to be manufactured so cheaply that its not unusual to find one as a
prize in a box of cereal, though they aren’t milk proof and are a bit too crunchy.

We start the software by using a delay loop to wait for the external crystal to
stabilize.

for(int i = 0; i < 10; i++)
_delay_loop_2(30000);

Disable global interrupts.
cliQ;

Clear the Timer/Counter 2 Output Interrupt Enable, TOIE2, bit in the
Timer/Counter 2 Interrupt Mask Register, TIMSK2, to disable the timer output
interrupt enable.

cbi (TIMSK2, TOIE2);

178

Chapter 8: C Pointers and Arrays

Select Timer2 asynchronous operation AS2: Asynchronous Timer/Counter2, AS2
bit in the Asynchronous Status Register, ASSR.

ASSR = (1<<AS2);
Clear the Timer/Counter 2, TCNTZ2, count register.
TCNT2 = 0;

Select the divide by 128 prescale factor in the Timer Counter Control Register,
TCCR2A. The watch crystal pulses 32768 times in one second and 128*256 =
32768, so with a 128 prescaler, the timer counts to 256 and overflows once per
second.

TCCR2A |= (1<<CS22) | (1<<CS20);

Wait for the TCN2UB: Timer/Counter2 Update Busy and the TCR2UB:
Timer/Counter Control Register2 Update Busy bits of the, ASSR, to be cleared.

while((ASSR & 0x01) | (ASSR & 0x04));

Clear the Timer/Counter2 Interrupt Flags Register, TIFR2.

TIFR2 = OXFF;

Set the Timer/Counter 2 Output Interrupt Enable, TOIE2, bit in the Timer/Counter
2 Interrupt Mask Register, TIMSKZ2, to enable the timer output interrupt enable.

sbi(TIMSK2, TOIE2);
And finally, enable the global interrupts.
sei);

Now the SIGNAL(S1G_OVERFLOW2) function will be called once per second
(as shown in the code section) so we can use it to keep track of seconds.

Converting Computer Time to Human Readable Time

We can keep a count of seconds, but what good does it do us if our watch reads
402417 If the count started at midnight then this number of seconds would

179

Chapter 8: C Pointers and Arrays

indicate that the time is ten minutes and 41 seconds after eleven in the morning.
And that conversion is easy compared to the numbers you get if you set your
watch at thirty-three seconds after three twenty in the afternoon on May 11™ of
2005 and you are reading the number two years seventy-eight days six hours
fourteen minutes and seven seconds later. So we are going to need to do some
computing to convert the count to something we can read.

We’ll briefly explore one way to convert time from byte sized data to ASCII text
strings that we can understand.

BCD - Binary Coded Decimal

Binay Coded Decimal is a coding trick that eases the storage and conversion of
binary numbers, say a count of the crystal beats, to decimal numbers, like you’d
want to display on a watch LCD. We can divide an 8-bit byte into two 4-bit
nibbles each of which can represent a number with a range of 0 to 16. That’s one
of the reasons for the use of hexadecimal notation discussed earlier. And it allows
us to store as single decimal integers, 0 to 9, in a nibble and two in a byte, one
integer in each nibble.

If a the decimal number in a byte is less than 99, we can convert it to a BCD byte
using the following algorithm:

Set the initial byte (in C we use char) to some two digit value.
char initialbyte = 54;
Declare a variable for the upper nibble value.
char high = 0;
Count the tens in initialbyte.
¥hile (initialbyte >= 10)

high++;
initialbyte -= 10;

180

Chapter 8: C Pointers and Arrays

After this runs the initialbyte now contains only the ones integer from the original
byte and high char contains the tens, that is: high = 5 and intialbyte = 4. We
combine the high and low nibbles to get the converted byte.

convertedbyte = (high << 4) | initialbyte;

This algorithm is used in the CHAR2BCD2 function in the software.
Converting a byte to the ASCII equivalent decimal character using BCD.

We define two bytes Tens and Ones and a third byte, Number, which we set to a
value in the range of 0 to 99.

char Tens 0;
char Ones 0;
char Number = 54;

We wuse the character to BCD algorithm written as the function
CHAR2BCD?2(char) in the software section below to convert the Number to the
BCD equivalent in Tens.

Tens = CHAR2BCD2(Number);

Now Tens has the BCD of the tens in the upper nibble and of the ones in the lower
nibble. We can convert this to an ASCII character for the integer by remembering
that the numerical value of ASCII ‘0’ is 48 and each following char integer is a
simple increment of the previous one. Meaning that adding the number 4 to the
value of the ASCII character ‘0°, which is 48, yields the ASCII character ‘4’,
(48+4 = 52 which is the ASCII decimal value of the character ‘4’). So the
conversion of a decimal integer to its ASCII equivalent character is the simple
addition of 48 to the decimal integer.

Since the CHAR2BCD?2 function loaded both the tens and ones parts of Number
into Tens, we need to extract the Ones and the Tens so that we can add 48 to get
the ASCII characters for Number.

Ones = Tens;
Ones = (Ones & OxOF) + "0F;

181

Chapter 8: C Pointers and Arrays

Finally we get the Tens by right shifing the byte 4-bits, which we use as the ASCII
character offset.

Tens = (Tens >> 4) + "0";
We’ll use these ideas in the showClock function in the software.
The Real Timer Clock Software

In the software you will encounter: uint8 t, which is WIinAVR specific and
denotes what would normally we called ‘unsigned char’ and is the same as a byte.

Create a new directory, Real Time Clock, and copy the .c and .h files and the
makefile from the Messenger directory.

Open Messenger.h in Programmers Notepad and write:

// identify yourself specifically
const char TALKING_TO[] PROGMEM = '\rYou are talking to the ";
const char WHO DEMO[] PROGMEM = *"""Real Time Clock" demo.\r";

// bad command
const char BAD COMMAND1[] PROGMEM
const char BAD COMMAND2[] PROGMEM

"\rYou sent: ;
"* — 1 don"t understand.\r";

const char ENTER[] PROGMEM = "Enter '';

const char TEXT_GET[] PROGMEM ""get® to get the time and
date_\r"';

const char TEXT_SEC[] PROGMEM """secXX" to set the second";
const char TEXT_MIN[] PROGMEM ""minXX" to set the minute";
const char TEXT_HOUR[] PROGMEM ""hourXX®" to set the hour";
const char TEXT_TOXX[]1 PROGMEM " to XX.\r';

const char ERROR_NUMBER[] PROGMEM = *\rERROR - number must be
less than *';

const char ERROR_60[] PROGMEM
const char ERROR_12[] PROGMEM

' 60.\r";
" 12.\r";

const char THE TIME_IS[] PROGMEM = "'The time is: ";

Open Demonstrator.h and write:

182

Chapter 8: C Pointers and Arrays

// Demonstrator.h Real Timer Clock version

void initializer(void);
void parselnput(char *);

void setSecond(char *);
void setMinute(char *);
void setHour(char *);

char CHAR2BCD2(char input);
void RTC_init(void);

void showClock(void);
void setClock(void);

Open Demonstrator.c and write:

// Demonstrator.c Real Time Clock version

#include "PC_Comm.h"
#include ""Messages.h"

unsigned char gSECOND;
unsigned char gMINUTE;
unsigned char gHOUR;

void initializer(Q)

// Calibrate the oscillator:
OSCCAL_calibration();

// Initialize the USART
USARTINitQ);

// Initialize the RTC
RTC_init();

// Display instructions on PC
sendFString(TALKING_TO);
sendFString(WHO_DEMO) ;
sendFString(ENTER);
sendFString(TEXT_GET);
sendFString(ENTER);
sendFString(TEXT_SEC);
sendFString(TEXT_TOXX);
sendFString(ENTER) ;
sendFString(TEXT_MIN);
sendFString(TEXT_TOXX) ;
sendFString(ENTER);

183

Chapter 8: C Pointers and Arrays

sendFString(TEXT_HOUR);
sendFString(TEXT_TOXX);

}
void parselnput(char s[])
{
// parse first character
switch (s[0])
{
case "g":
ifC (s[1] == "e") && (s[2] == "t"))
showClock();
break;
case "s":
iTC (s[1] == "e") && (s[2] == "c"))
setSecond(s);
break;
case "m":
ifC (s[1] == "i") && (s[2] == "n"))
setMinute(s);
break;
case "h":
ifC (s[1] == "0") && (s[2] == "u") && (s[3] == "r"))
setHour(s);
break;
case "d":
iT((s[1]=="e")&&(s[2]=="m")&&(s[3]=="0")&&(s[4]=="""))
sendFString(TALKING_TO);
sendFString(WHO_DEMO) ;
break;
default:
sendFString(BAD_COMMAND1) ;
sendChar(s[0]);
sendFString(BAD_COMMAND2) ;
break;
}
s[0] = "\0~;
}
void setSecond(char s[])
{

char str[] = {0,0,"\0"};
int sec;

184

Chapter 8: C Pointers and Arrays

}

str[0]
str[1]

s[31;
s[4];

sec = atoi(str);
if(sec <= 60)

gSECOND = (uint8_t)sec;

}

else

{
sendFString(ERROR_NUMBER) ;
sendFString(ERROR_60);

}

void setMinute(char s[])

{

}

char str[] = {0,0,"\0"};

int min;
str[0] = s[3];
str[1] = s[4];

min = atoi(str);
if(min <= 60)

{
gMINUTE = (uint8_t)min;

}

else

{
sendFString(ERROR_NUMBER) ;
sendFString(ERROR_60);

}

void setHour(char s[])

{

char str[] = {0,0,"\0"};

int hour;
str[0] = s[4];
str[1] = s[5];

hour = atoi(str);
if(hour <= 12)
{

}

else

{

gHOUR = (uint8_t)hour;

sendFString(ERROR_NUMBER) ;

185

Chapter 8: C Pointers and Arrays

sendFString(ERROR_12);

}

}

void showClock(void)

{
uint8_t HH, HL, MH, ML, SH, SL;
HH = CHAR2BCD2(gHOUR);
HL = (HH & OxOF) + "0%;
HH = (HH >> 4) + "0";
MH = CHAR2BCD2(gMINUTE);
ML = (MH & OxOF) + "0-;
MH = (MH >> 4) + "07;
SH = CHAR2BCD2(gSECOND);
SL = (SH & OxOF) + "0%;
SH = (SH >> 4) + "0";
sendFString(THE_TIME_IS);
sendChar (HH);
sendChar(HL);
sendChar(":%);
sendChar(MH) ;
sendChar (ML) ;
sendChar(":");
sendChar (SH);
sendChar(SL);
sendChar("\r*);

}

// convert a character into a binary coded decimal chracter in the range
// 0 to 99 resulting byte has tens in high nibble and ones in low nibble
char CHAR2BCD2(char input)

{
char high = 0;
while (input >= 10) // Count tens
high++;
input -= 10;
}
return (high << 4) | input; // Add ones and return answer
}

186

Chapter 8: C Pointers and Arrays

// initialize Timer/counter2 as asynchronous using the 32.768kHz watch
// crystal.
void RTC_init(void)

}

// wait for external crystal to stabilise
for(int 1 = 0; 1 < 10; i++)
_delay_loop_2(30000);
cliQ; // disable global interrupt
cbi(TIMSK2, TOIE2); // disable OCIE2A and TOIE2
ASSR = (1<<AS2); // select asynchronous operation of Timer2
TCNT2 = 0; // clear TCNT2A

// select precaler: 32.768 kHz / 128 = 1 sec between each overflow
TCCR2A |= (1<<CS22) | (1<<(CS20);

// wait for TCN2UB and TCR2UB to be cleared
while((ASSR & 0x01) | (ASSR & 0x04));

TIFR2 = OxFF; // clear interrupt-flags
sbi(TIMSK2, TOIE2); // enable Timer2 overflow interrupt

sei(); // enable global interrupt

// initial
gSECOND
gMINUTE
gHOUR

me and date setting

ti
0;
0;
0;

// one second interrupt from 32kHz watch crystal
SIGNAL(SI1G_OVERFLOW2)

gSECOND++; // increment second

if (gSECOND == 60)
{
gSECOND = 0;
OMINUTE++; // increment minute

if (gMINUTE > 59)
{
gMINUTE = O;
gHOUR++; // increment hour

if (gHOUR > 12)

187

Chapter 8: C Pointers and Arrays

gHOUR = O;

}

Using Real Time Clock:

After compiling and loading the code, in HyperTerminal you should see:

You are talking to the "Real Time Clock®™ demo.
Enter "get" to get the time and date.

Enter "secXX"™ to set the second to XX.

Enter "minXX" to set the minute to XX.

Enter "hourXX®" to set the hour to XX.

Get the current time:

get
The time is: 12:00:03

Which initially should be a few seconds past 12. Set the current time as follows:

sec45
min4
hourll

Then you can get the correct time:

get
The time is: 11:05:01
get
The time is: 11:05:12
get
The time is: 11:05:17

188

Chapter 8: C Pointers and Arrays

Music to my ears. “Play it again Sam.”

We are going to pillage the Butterfly code again and play some tunes to further
illustrate the use of pointers and arrays.

More on pointers to arrays

In the original Butterfly code written with the IAR compiler, in sound.c, songs are
selected using these definitions:

__Fflash int _ flash *Songs[] = { FurElise, Mozart, /*Minuet,
AuldLangSyne,*/ Sirenel, Sirene2, Whistle, O0};

int _ flash *pSong; // pointer to the different songs in flash

The _ flash is not C, it is a special IAR modifier that allows access to Flash ROM
as if it was regular C style RAM. In use:

pSong = Songs[songd]; // point to this song

Loads pSong with the pointer to the tune indicated by the song variable. All nice
and C like. Unfortunately, the WinAVR compiler isn’t quite as C-like in the way it
allows access to Flash ROM. Not that I’m criticizing, | think the WinAVR port of
the gcc tools to the AVR platform is a miracle of dedication and technical
prowess, not to mention: free. But | won’t mention free. Especially not
repeatedly: free, free, free. So this is a miraculous little free compiler (send them
some money at: http://www.sourceforge.net/donate.)

The port of the Butterfly code from not-free IAR compiler to the free WinAVR

was done by:
Martin Thomas, Kaiserslautern, Germany
mthomas@rhrk.uni-kl.de
http://www.siwawi.arubi.uni-kl.de/avr_projects/

who did an outstanding job. When you finally learn enough to really evaluate the
Butterfly code, you will come to appreciate the intelligence and hard work that
this gentleman (my assumption) did for you. Yes, you. And for free. So when you
see the way he translated the relatively simple appearing song selection statement,
you can agree with his comment below: ‘// looks too complicated’, without
getting fussy about it.

189

Chapter 8: C Pointers and Arrays

First look at his version of the definitions:

// pointer-array with pointers to the song arrays
const int *Songs[] PROGMEM = { FurElise, Mozart, Minuet,
AuldLangSyne, Sirenel, Sirene2, Whistle, 0};

const int *pSong; // mt point to a ram location (pointer array
Songs)

The _ flash of the IAR compiler is replaced by the PROGMEM. And the actual
use is as follows:

// mt pSong = Songs[song]; // point to this song
pSong=(int*)pgm_read_word(&Songs[song]); // looks too
complicated. ..

Yep, | agree: ‘// looks too complicated’, but I have no intention to try to fix it and
make it look more C-like. | doubt seriously that | have the time or the skill. In
programming microcontrollers in C we sometimes have to dance lightly around
ANSI C and use what works.

What the statement says is: we equate a constant integer pointer pointer to a cast
of an integer pointer of the function pgm_read_word, which takes as a parameter
the address of the song element of the Songs[] array. What we are doing is
sending this address to a function that knows how to extract a pointer to Flash
RAM. Looks too complicated... but so what, it works.

Setting the frequency

Tones are setup by putting an integer from the song table in the Timerl Input
Capture Register 1, ICR1, which in this case is used to set the counter top value.
The values are taken from the Butterfly code and are based on a cpu clock
running at 1 MHz. Since we are using a cpu clock of 2 MHz for the USART,
adjustments are made that help but do not truly compensate for the difference.

We select a base frequency of 220Hz (the A note) and calculate the frequency for

subsequent notes using the notes position on the musical scale following a. For
instance, CO is 3 after A:

190

Chapter 8: C Pointers and Arrays

Tone = 220*2~(NOTE/12)

When NOTE = CO we get:

Tone = 220*27(3/12) = 261.6256.

We get the frequency to generate for the tone with:

Timer value = 1IMhz / Tone / 2

For the CO we would have:

Timer value = 1000000 / 261,6256... / 2 = 1911

So when we want to generate a CO we set Timerl to generate a phase/frequency
correct PWM with a top value calculated as above. We then compensate for our
using a 2Mhz cpu clock by doubling the value using a left bit shift of one
position. (In case you didn’t get this earlier, left shifting a byte or integer doubles
it if there is headroom. Headroom means the value is less than half the possible
value, 256/2 for a byte.)

A few tones from the sound.h table:

#define a 2273 // tone O
#define xa 2145 // tone 1
#define ax 2145 // tone 1
#define b 2024 // tone 2
#define cO 1911 // tone 3

Setting the tempo

The tempo, in this case, is the length of time we play the tone. The TimerO calls
the Play_Tune function at 10ms intervals. It begins by getting the tempo from the
first position of the array and putting it into a Tempo variable. The next time
Play Tune is called, if Tempo is not O, it decrements the tempo and exits. It
continues to do this until the Tempo is 0, when it rereads the tempo and starts
over.

191

Chapter 8: C Pointers and Arrays

Setting the duration

The duration and the frequency are paired values in the table. The duration is the
length of time that the following tone should be played. Play Tune gets the
duration

and tone from the table and loads them into the Duration variable and the Timerl
top count. It starts the tone and then exits. When called again by TimerO, if the
Duration is not 0, Duration is decremented and the function exits leaving the tone
playing. When Duration is decremented to 0, Play_Tune gets the next set of
values for the Duration and the timer and starts the next tone. If the Duration
value read from the table is O, this indicates that the tune has been played through,
so it checks the next byte and if that byte is 1, it starts the tune over, if O it ends
the tune. Clever, eh?

An example song array — Fur Elise

const int FurElise[] PROGMEM=

{
3

8,e2, 8,xd2, 8,e2, 8,xd2, 8,e2, 8,bl, 8,d2, 8,c2, 4,al,
8,p, 8,cl, 8,el, 8,al, 4,bl1, 8,p, 8,el, 8,xgl, 8,bl, 4,c2,
8,p, 8,el, 8,e2, 8,xd2, 8,e2, 8,xd2, 8,e2, 8,bl, 8,d2,
8,c2, 4,al, 8,p, 8,cl, 8,el, 8,al, 4,bl, 8,p, 8,el, 8,c2,
8,bl, 4,al,

0, 1

};

Using the Piezo-element to make sound

The piezo-element is the large black square on the back of the Butterfly. It
contains a sheet of material that deforms when electricity is applied to it (the
piezo electric effect). This deformation can be made at audio frequencies allowing
the element to produce sound waves in the air. Our piezo-element is connected to
PortB pin 5, which is also the OC1A pin that can be configured as an output for
the Timerl waveform generator. We will configure the Timerl waveform
generator so that it will use PWM to generate tones.

192

Chapter 8: C Pointers and Arrays

Initializing the Timerl for PWM to the piezo-element.
We initialize Timerl to generate a PWM waveform as follows:

We set Timer/Counter Control Register A, TCCR1A, so that the OC1A pin (PortB
pin 5) will be set when up counting and cleared when down counting.

TCCR1A = (1<<COM1A1);

We set the TCCR1B for phase and frequency correct PWM with a top value in
ICRL.

TCCR1B = (1<<WGM13);

We set the TCCR1B to start Timer 1 with no prescaling

sbi(TCCR1B, CS10);

We set the Output Compare Register 1 High to 0 and Low to the value in the
\olume variable. A lower value of Volume will produce a higher volume.

OCRA1H
OCRA1L

0;
Volume;

Generating the tone using PWM from Timerl

When Play_Tune is called periodically by Timer0O, we set the Timerl TCCR1B,
the Timer/Counterl High and Low registers, TCNT1H TCNT1L , and the Input
Capture Register 1, ICR1H, which in this case is used to set the counter top value.

In Play_Tune:

If the song calls for a pause we stop Timerl, otherwise we start it

if((pgm_read_word(pSong + Tone) == p) | (pgm_read_word(pSong + Tone) == P))
cbi (TCCR1B, CS10); // stop Timerl, prescaler(l)

else
sbi(TCCR1B, CS10); // start Timerl, prescaler(l)

We then load the tone value from the song array.

193

Chapter 8: C Pointers and Arrays

temp_hi = pgm_read_word(pSong + Tone); // read out the PWM-value

The Tone is an integer, so we get it into a temporary variable and shift it right by 8
bits and load that value into the high byte of the counter top. Except that we
actually only shift it right by 7 bits to adjust it (cut it in half) to compensate for the
use of a 2MHz system clock in this applications (for the USART) when a 1 MHz
clock was used in the original Butterfly code.

temp_hi >>= 7;
We clear the Timerl count.

TCNT1H = O;
TCNT1L = O;

We load the counter top value high byte.
ICR1H = temp_hi;
Finally we load the counter top value low byte and adjust it for the 2 MHz clock.

ICR1L = pgm_read word(pSong + Tone);
ICRIL <<= 1;

Using the TimerO0 interrupt to play a tune

As mentioned above the TimerQ interrupt calls the Play_Tune function every 10
ms. We set up the TimerO much as we’ve seen before:

// Enable timer0O compare interrupt
TIMSKO = (1<<OCIEOA);

// Sets the compare value
OCROA = 38;

// Set Clear on Timer Compare (CTC) mode, CLK/256 prescaler
TCCROA = (1<<WGM01)] (0<<WGMO00)] (4<<CS00);

194

Chapter 8: C Pointers and Arrays

The Play it again Sam Software.

For some reason, the Butterfly code commented out the songs Minuet and
AuldLangSyne, but the WinAVR version uses them, so we get to hear two songs
absent on the store-bought Butterfly.

Create a new directory: Play it again Sam, and copy the .c and .h files and the
makefile from the Messenger directory. From the WinAVR Butterfly port, bf _gcc
directory copy sound.c and sound.h. In Programmers Notepad, create a new
C/C++ file, tunes.h and add:

// tunes.h

#include "sound.h"

Then copy the following from sound.c to tunes.h

/**

A song is defined by a table of notes. The first byte sets

the tempo. A high byte will give a low tempo, and opposite.
Each tone consists of two bytes. The first gives the length of
the tone, the other gives the frequency. The frequencies for
each tone are defined in the "sound.h'. TimerO controls the
tempo and the length of each tone, while Timerl with PWM gives
the frequency. The second last byte is a "0" which indicates
the end, and the very last byte makes the song loop if it"s
1", and not loop if it"s "0".

o o % % 2k X 3 X o X

FTEAEEIAEXEIAITAEAITEAEAXEAEAXTEAEAXTEAEAXTEAEAXTXAEAXITXAAXTXAALAXAAXATXAAXAXAAXAAAXTXAAXATAXAXAXXAXAAXAXALAXi L)

// mt _ flash char TEXT_SONG1[] = "Fur Elise";
const char TEXT_SONG1[] PROGMEM = "Fur Elise";

// __flash int FurElise[] =

const int FurElise[] PROGMEM=

{
3,
8,e2, 8,xd2, 8,e2, 8,xd2, 8,e2, 8,b1, 8,d2, 8,c2, 4,al, 8,p, 8,cl, 8,el, 8,al, 4,b1,
8,p, 8,el, 8,xg1, 8,b1, 4,c2, 8,p, 8,el,
8,e2, 8,xd2, 8,e2, 8,xd2, 8,e2, 8,bl, 8,d2, 8,c2, 4,al,
8,p, 8,c1, 8,el, 8,al, 4,b1, 8,p, 8,el, 8,c2, 8,bl, 4,al,

195

Chapter 8: C Pointers and Arrays

0, 1
}:
// __flash char TEXT_SONG2[] = "Turkey march'';
const char TEXT_SONG2[] PROGMEM = "Turkey march";

/l__flash int Mozart[] =

const int Mozart[] PROGMEM =

{
3,
16,xf1, 16,el, 16,xdl, 16,el1, 4,91, 16,al, 16,91, 16,xFf1l,
16,91,4,b1, 16,c2, 16,bl, 16,xal, 16,bl, 16,xf2, 16,e2,
16,xd2, 16,e2, 16,xf2, 16,e2, 16,xd2, 16,e2, 4,92, 8,e2,
8,92, 32,d2, 32,e2, 16,xf2, 8,e2, 8,d2, 8,e2, 32,d2, 32,e2,
16,xf2, 8,e2, 8,d2, 8,e2, 32,d2, 32,e2, 16,xf2, 8,e2, 8,d2,
8,xc2, 4,b1, 0, 1

};

// mt song 3 & 4 where commented out by ATMEL - see their readme

// well, the gcc-geek wants all the songs ;-)

const char TEXT_SONG3[] PROGMEM = "Minuet";

const int Minuet[] PROGMEM =

{
2,
4,d2, 8,91, 8,al, 8,bl1, 8,c2, 4,d2, 4,91, 4,91, 4,e2, 8,c2,
8,d2, 8,e2, 8,xf2, 4,92, 4,91, 4,91, 4,c2, 8,d2, 8,c2,
8,b1l, 8,a1, 4,bl1, 8,c2, 8,bl, 8,al1, 8,91, 4,xfl, 8,91,
8,al, 8,b1, 8,91, 4,b1, 2,al,
0, 1

};

char TEXT_SONG4[] PROGMEM = "Auld Lang Syne';

const int AuldLangSyne[] PROGMEM =

{
3,
4,92, 2,c3, 8,c3, 4,c3, 4,e3, 2,d3, 8,c3, 4,d3, 8,e3, 8,d3,
2,c3, 8,c3, 4,e3, 4,93, 2,a3, 8,p, 4,a3, 2,93, 8,e3, 4,e3,
4,c3, 2,d3, 8,c3, 4,d3, 8,e3, 8,d3, 2,c3, 8,a2, 4,a2, 4,92,
2,c3, 4,p,
0, 1

};

196

Chapter 8: C Pointers and Arrays

// __flash char TEXT_SONG5[] = “"Sirenel";
const char TEXT_SONG5[] PROGMEM = "Sirenel™;

// __flash int Sirenel[] =

const int Sirenel[] PROGMEM =

{
0,
32,400, 32,397, 32,394, 32,391, 32,388, 32,385, 32,382,
32,379, 32,376, 32,373, 32,370, 32,367, 32,364, 32,361,
32,358, 32,355, 32,352, 32,349, 32,346, 32,343, 32,340,
32,337, 32,334, 32,331, 32,328, 32,325, 32,322, 32,319,
32,316, 32,313, 32,310, 32,307, 32,304, 32,301, 32,298,
32,298, 32,301, 32,304, 32,307, 32,310, 32,313, 32,316,
32,319, 32,322, 32,325, 32,328, 32,331, 32,334, 32,337,
32,340, 32,343, 32,346, 32,349, 32,352, 32,355, 32,358,
32,361, 32,364, 32,367, 32,370, 32,373, 32,376, 32,379,
32,382, 32,385, 32,388, 32,391, 32,394, 32,397, 32,400,
0, 1

¥

//__flash char TEXT_SONG6[] = "Sirene2';
const char TEXT_SONG6[] PROGMEM = "Sirene2";

// _flash int Sirene2[] =
const int Sirene2[] PROGMEM =

{
3,
4,c2, 4,92,
0, 1
3
//__flash char TEXT_SONG7[] = "Whistle";
const char TEXT_SONG7[] PROGMEM = "Whistle";

// _flash int Whistle[] =

const int Whistle[] PROGMEM =

{
0,
32,200, 32,195, 32,190, 32,185, 32,180, 32,175, 32,170,
32,165, 32,160, 32,155, 32,150, 32,145, 32,140, 32,135,
32,130, 32,125, 32,120, 32,115, 32,110, 32,105, 32,100,
8,p, 32,200, 32,195, 32,190, 32,185, 32,180, 32,175,
32,170, 32,165, 32,160, 32,155, 32,150, 32,145, 32,140,
32,135, 32,130, 32,125, 32,125, 32,130, 32,135, 32,140,

197

Chapter 8: C Pointers and Arrays

32,145, 32,150, 32,155, 32,160, 32,165, 32,170, 32,175,
32,180, 32,185, 32,190, 32,195, 32,200,
0, 0

3

// pointer-array with pointers to the song arrays

// mt: _ flash int __ flash *Songs[] = { FurElise, Mozart,
// /*Minuet, AuldLangSyne,*/ Sirenel, Sirene2, Whistle, 0};
const int *Songs[] PROGMEM = { FurElise, Mozart, Minuet,
AuldLangSyne, Sirenel, Sirene2, Whistle, 0};

//mt: _ flash char __ _flash *TEXT_SONG_TBL[] = { TEXT_SONG1,
// TEXT_SONG2, /*TEXT_SONG3, TEXT_SONG4,*/TEXT_SONG5, TEXT_SONG6,
// TEXT_SONG7, O};

//// mt: 16 ram-bytes (8 words) "wasted"™ - TODO

//// PGM_P TEXT_SONG_TBL[] PROGMEM = { TEXT_SONG1, TEXT_SONG2,
// /*TEXT_SONG3, TEXT_SONG4,*/TEXT_SONG5, TEXT_SONG6, TEXT_SONG7,
// 0};

const char *TEXT_SONG_TBL[] = { TEXT_SONG1, TEXT_SONG2,
TEXT_SONG3, TEXT_SONG4, TEXT_SONG5, TEXT_SONG6, TEXT_SONG7, 0};

//__flash char PLAYING[] = "PLAYING";
const char PLAYING[] PROGMEM = "PLAYING";

//mt: int _ flash *pSong; //pointer to the different songs in flash
const int *pSong; // mt point to a ram location (pointer array Songs)

static char Volume =
static char Duration
static char Tone = 0;
static char Tempo;

Save tunes.h to the Play it again Sam directory.

Copy the sounds.h file from the WIinAVR port of the Butterfly code, bf gcc
directory to the Play it again Sam directory. No changes, we’ll just steal the whole
thing.

Change the contents of the messages.h file to:

// identify yourself specifically
const char TALKING TO[] PROGMEM = *"\rYou are talking to the ";

198

Chapter 8: C Pointers and Arrays

const

char WHO_DEMO[] PROGMEM = *""Play it again Sam® demo.\r"';

// bad command

const
const

const
const
const
const
const

"\rYou sent: "";
"* — 1 don"t understand.\r";

char BAD_COMMANDL[] PROGMEM
char BAD_COMMAND2[] PROGMEM

char ENTER[] PROGMEM = "Enter ";

char TEXT_FUR_ELISE[] PROGMEM = "1 for Fur Elise.\r";

char TEXT_TURKEY_MARCH[] PROGMEM = "2 for Turkey march.\r";
char TEXT_MINUET[] PROGMEM = "3 for Minuet.\r';

char TEXT_AULD_LANG_SYNE[] PROGMEM = "4 for Auld Lang

Syne _\r"';

const
const
const
const
const
const
const

"5 for Sirenel.\r";
"6 for Sirene2.\r";

char TEXT_SIRENEL[] PROGMEM
char TEXT_SIRENE2[] PROGMEM

+ 100

char TEXT_WHISTLE[] PROGMEM = "7 for Whistle.\r";
char VOLUME_UP[] PROGMEM = "'+ to increase';

char VOLUME_DOWN[] PROGMEM = *"- to decrease";
char THE _VOLUME[] PROGMEM = ' the volume.\r";

char STOP[] PROGMEM ="stop to stop the music.\r" ;

Change the Demonstrator.c to:

// Demonstrator.c PWM version

#include "PC_Comm.h"
#include "Messages.h"

#include "tunes.h"

void initializer()

{

// Calibrate the oscillator:
OSCCAL_calibration();

// Initialize the USART
USARTINIt();

// Initialize timer0O to play a tune
Timer0_Init(Q);

// initialize piezo-element
sbi(DDRB, 5); // set OClA as output
sbi (PORTB, 5); // set OC1A high

// Display instructions on PC

199

Chapter 8: C Pointers and Arrays

sendFString(TALKING_TO);
sendFString(WHO_DEMO);

sendFString(ENTER);
sendFString(TEXT_FUR_ELISE);
sendFString(ENTER);
sendFString(TEXT_TURKEY_MARCH) ;
sendFString(ENTER) ;
sendFString(TEXT_AULD LANG_SYNE);
sendFString(ENTER) ;
sendFString(TEXT_SIRENEL);
sendFString(ENTER);
sendFString(TEXT_SIRENE2);
sendFString(ENTER);
sendFString(TEXT_WHISTLE);
sendFString(ENTER) ;

sendFString(VOLUME_UP);
sendFString(THE_VOLUME) ;
sendFString(ENTER);
sendFString(VOLUME_DOWN) ;
sendFString(THE_VOLUME) ;
sendFString(ENTER) ;
sendFString(STOP);

}

void parselnput(char s[])

if((s[0] <= "7") && (s[0] >= "1")) // 7 tunes
{

startTune(s[0]);
3

else

// parse first character
switch (s[0])
{

case "+°":
volumeUp(Q);
break;
case "-":
volumeDown() ;
break;
case "s°":
if((s[1] == "t") && (s[2] ==
stopTune();

200

"0") && (s[3] == "p))

Chapter 8: C Pointers and Arrays

break;
case "d":
iIf((s[1]=="e")&&(s[2]=="m")&&(sS[3]=="0")&& (s[4 =="?%))
sendFString(TALKING_TO);
sendFString(WHO _DEMO);
break;
default:
sendFString(BAD_COMMAND1) ;
sendChar(s[0]);
sendFString(BAD_COMMAND2) ;
break;

}

s[0] = "\0";
}
}

void volumeUp(Q)

if(Volume >= 250)
Volume = 250;
else
Volume += 50;

OCRA1H
OCRA1L

0;
Volume;

}

void volumeDown()

if(Volume < 11)
Volume = 6;
else
Volume -= 50;

OCRA1H = O;
OCRA1L = Volume;

}

void stopTune()
{
cbi (TCCR1B, 0); // stop Playing
TCCR1A = O0;
TCCR1B = 0;
sbi (PORTB, 5); // set OC1A high

201

Chapter 8: C Pointers and Arrays

void startTune(char tune)

{

int song = atoi(&tune) - 1;

stopTune();
Tone = O;
Tempo = 0;
Duration = O;

// Send the song title to the PC
sendFString(TEXT_SONG_TBL[song]);
sendChar("\r");

// 1ooks too complicated..
pSong=(int*)pgm_read word(&Songs[song]);

Sound_Init();

void Sound_Init(void)

{

}

// Set 0OC1A when upcounting, clear when downcounting
TCCR1A = (1<<COM1Al1);

// Phase/Freq-correct PWM, top value = ICR1

TCCR1B = (1<<WGM13);

sbi (TCCR1B, CS10); // start Timerl, prescaler(l)
// Set a initial value iIn the OCR1A-register
OCRA1H = 0;

// This will adjust the volume on the buzzer, lower value
// =>higher volume
OCRA1L = Volume;

void Play Tune(void)

{

int temp_hi;

char loop;

202

Chapter 8: C Pointers and Arrays

if(1Tone)
Duration = 0;

Tempo = (uint8_t)pgm_read word(pSong + 0);

Tempo <<= 1; // compensate for using 2 MHz clock

Tone = 1; //Start the song from the beginning
}

if(1Tempo)
{
if(Duration) // Check if the length of the tone has "expired"
Duration--;

else if(pgm_read_word(pSong + Tone))// 1f not the song end

// store the duration

Duration = (DURATION_SEED/pgm_read_word(pSong+Tone));
Duration <<= 1;// compensate for using 2 MHz clock
Tone++; // point to the next tone in the Song-table

// if pause
if((pgm_read_word(pSong+Tone) == p)|
(pgm_read_word(pSong+Tone) == P))

cbi(TCCR1B, CS10); // stop Timerl, prescaler(l)
else

sbi (TCCR1B, CS10); // start Timerl, prescaler(l)

cliQ;

// read out the PWM-value
temp_hi = pgm_read_word(pSong + Tone);
temp_hi >>= 7; // move integer 8 bits to the right

TCNT1H

0; // reset TCNT1H/L
TCNT1L o

01

ICR1H = temp_hi; // load ICR1H/L
ICR1L = pgm_read_word(pSong + Tone);
ICR1L <<= 1; // compensate for using 2 MHz clock

sei);

Tone++; // point to the next tone in the Song-table

203

Chapter 8: C Pointers and Arrays

else // the end of song

{
Tone++; // point to the next tone in the Song-table

// get the byte that tells if the song should loop or not
loop = (uint8 _t)pgm read word(pSong + Tone);

if(loop)
{
Tone = 1;
}
else // if not looping the song
{
Tone = 0;
cbi (TCCR1B, 0); // stop Playing
TCCR1A = 0;
TCCR1B = O;
sbi(PORTB, 5); // set 0OC1A high
}
}
Tempo = (uint8_t)pgm_read word(pSong + 0);
else
Tempo--;
}
void TimerO_Init(void)
{
// Initialize TimerO.
// Used to give the correct time-delays in the song
// Enable timerO compare interrupt
TIMSKO = (1<<OCIEOQA);
// Sets the compare value
OCROA = 38;
// Set Clear on Timer Compare (CTC) mode, CLK/256 prescaler
TCCROA = (1<<WGMO1)] (0<<WGMO00)] (4<<CS00);
}

204

Chapter 8: C Pointers and Arrays

SIGNAL(SI1G_OUTPUT_COMPAREO)
{

}

Play Tune();

Finally change Demonstrator.h to:
// Demonstrator.h PWM version

void initializer(void);
void parselnput(char *);

int parseTune(char *);
void startTune(char);

void volumeUp(void);
void volumeDown(void);
void stopTune(void);

void Sound_Init(void);
void TimerO_Init(void);

Using Play it again Sam:

This is what you should see in HyperTerminal, and an example of use:

You are talking to the "Play it again Sam®™ demo.

Enter 1 for Fur Elise.

Enter 2 for Turkey march.

Enter 3 for Minuet.

Enter 4 for Auld Lang Syne.
Enter 5 for Sirenel.

Enter 6 for Sirene2.

Enter 7 for Whistle.

Enter + to increase the volume.

Enter - to decrease the volume.
Enter stop to stop the music.

4
Auld Lang Syne
1

Fur Elise

205

Chapter 9 — Digital Meets Analog — ADC and DAC

Chapter 9 — Digital Meets Analog — ADC and
DAC

But First - A Debugging Tale

In the ADC project that follows, I liberally ‘borrowed’ code from the Butterfly,
adding my own inimitable style to allow a user from the PC to ask for a measure
of light, temperature, and voltage. All was well except for a tiny problem with the
voltage measurement. Tiny as in the first time | tried to measure voltage on the
Butterfly | destroyed it. Well destroyed is a bit harsh. It looks just like it always
did, but it doesn’t work. Fortunately I know myself so I had ordered six Butterflys
because, as | said elsewhere, my nickname is Smoky Joe since my favorite
learning method is producing copious quantities of smoke in my hardware
projects. The Butterfly didn’t smoke though. It just died. Belly up, legs in the air,
ready for a pin thru the thorax to be box mounted in the Dead Butterfly Museum.
But Lepidopteron death is not what this is about. | eventually found that | had
done something unbelievably stupid and since you wouldn’t believe it, I won’t
relate that tale. Lets just say this event led me to becoming a bit paranoid about
the voltage measurement part of the Butterfly hardware and | went forward on
tiptoes and slightly hyperventilating as | proceeded with the ADC code.

My next version was able to read the light just fine, and the temperature just fine,
and the voltage just one time.

When | requested: volt the hardware responded to HyperTerminal with: The
reading is 1.1 volts.

And promptly died. No further responses to the PC. My response involved lots of
obscenities and complaints about flushing another $19.99, but the Butterfly
wasn’t destroyed this time, it rebooted just fine and only crashed when | asked for
‘volt’. My first assumption, reasonable | thought, was that it’s the light level in the
room. Sound crazy? Well, it seems that the light sensor affects the Butterfly
voltage reference and we have to measure the ambient room light to calibrate the
voltage reference before we measure volts. So | covered the light sensor and the
Butterfly still crashed. Then | went the other direction and put a bright light on it
to no avail. So | thought that if its all that sensitive to light derived voltages
maybe the USART traffic voltage is propagating about unpredictably and
screwing things up. The USART uses a higher voltage than the Butterfly and they

207

Chapter 9 — Digital Meets Analog — ADC and DAC

have included a voltage inverter circuit that looked like a prime candidate to
radiate messy voltages that might combine with a voltage on the Voltage In pin
and might, theoretically, cause a problem. So I changed PC_Comm so that it sent
the PC a “!I” every time it received a character. In HyperTerminal | got:

ylotlti?
tHe

1.1.3
vhod]dté

So after requesting ‘volt’ the Butterfly was no longer exclaiming with a ‘!’ but
decided it wanted to play cards with a black club, or perhaps more reasonably, |
thought, the “!” was being scrambled on reception by the PC because the Baud rate
had changed (I’ve seen that happen before). So | reread the data sheet on the
USART and diddled with the Butterfly schematics and tried a few coding
changes. Hours passed and still no fix. I messed with the USART initialization
function, the ADC initialization function, the ADC read function, the oscillator
calibration function and generally had myself a merry old goose chase for about
half a day. Nothing fixed the problem, but at least the Butterfly didn’t explode nor
make the least bit of smoke, the code was consistently responding with a black
club rather than the ‘!’ but at least it was running.

Finally, in total desperation, | tried what | should have tried in the first place. |
bracketed code by commenting out sections (putting // in front of a line) to see
where exactly the problem occurred. Eventually | got to the get\olt function and
started commenting out sections. This is a time consuming process, each time you
comment something out, you have to recompile, load, and test the code. It takes a
while. So here is the get\olt code:

void getvolt()
{
char voltintpart[]= {""0","\0"};
char voltfractpart[]= {"0","\0"};
int intpart = 0O;
int fractpart
int ADCresult

0;
0;

ADCresult = ADC_read();
intpart = ADCresult/50;

208

Chapter 9 — Digital Meets Analog — ADC and DAC

fractpart = ADCresult%50;

itoa(intpart, voltintpart, 10);
itoa(fractpart, voltfractpart, 10);

// Send the voltage to the PC
sendString("'The reading is ');
sendChar(voltintpart [0]);
sendChar(".");
sendChar(voltfractpart [0]);
sendString(” volts.\r");

}

I commented out each logical part and still nothing worked. Finally, because there
was nothing logical to try, | commented out the itoa functions. And the Butterfly
no longer messed up. Also, it started returning ‘!’ rather than the black club for
each character | sent it. Of course, it didn’t return the correct voltage, because |
wasn’t converting it to ASCII, but it was running fine otherwise and correctly
returned the light and temperature. The itoa function is in the standard library, so |
assumed that it must have a problem. | changed it to the itoa function (and the
other support functions) that we wrote at the end of Chapter 6. Guess what? They
also fail! I went for a long walk.

Later, after more staring at the function I noticed:

char voltintpart[]= {""0","*\0"};
char voltfractpart[]= {"0","\0"};

These can’t be the problem, can they? They work just fine in the original Butterfly
code. But many years ago | learned the hard way that if you assign memory to an
array and then foolishly write beyond that memory, say to voltintpart[2], the third
element of the array which only has two elements you will in fact write to the byte
in memory that follows the array bytes which may not cause a problem if nothing
else is using that byte, or it might just change it from the ASCII code for an
explanation point to the Microsoft extended ASCII code for a black club. So I
enlarged them to:

char voltintpart[]= {"0","0",0","\0"};
char voltfractpart[]= {""0",0","0","\0"};

And the code works just fine.

209

Chapter 9 — Digital Meets Analog — ADC and DAC

Why, you may ask, didn’t the designers of the standard library require the itoa
function to check the size of the array before using it? Good question. My guess is
that the standard library functions were written to be as fast and small as possible.
They also likely assumed nobody would be stupid enough to send it an array that
was too small, and if they are that dumb, they deserve what they get. C is fast,
small, and mean. C++ was designed to take out some of the meanness by forcing
features that protect the programmer from himself, but this was done at the
expense of size, speed, and simplicity. Other higher-level languages provide even
more protection and are even larger, slower, and more complex. You almost
certainly won’t be using C to write programs for windows based programs on a
PC where you’ve got plenty of hardware speed and memory and high level
development tools, but for microcontrollers with their limited speed and memory,
C probably has the best set of tradeoffs. | acknowledge that the arguments for the
choice of a programming language borders on the religious, so | say that if you
choose not to use C, you will be eternally damned.

Debugging can be a maddeningly frustrating process, especially if you are on a
deadline. | spent half a day finding this problem. I didn’t make my array large
enough. HALF A DAY! Am I stupid? No, I’m not. This kind of debugging is part
and parcel of working with microcontrollers. If you have the wrong attitude, you
will drive yourself nuts trying to find these bugs. What is the right attitude? It is to
understand that you have to be really smart, work very hard, and know a lot about
C programming and microcontrollers to make a mistake this dumb. You have to
keep telling yourself over and over: “This is better than putting shingles on roofs
in the summer.” | understand that alcohol also helps as does having an obsessive-
compulsive disorder. Speaking of which, Let’s move on to the next project.

Analog to Digital Conversion

What is Analog to Digital Conversion?

During a discussion with one of my EE professors about Analog to Digital
Conversion, | made the mistake of bringing up Heraclitus and Democritus and the
ancient debate about the fundamental nature of reality: is reality made of a
continuum of a single thing (analog) or of bits of multiple things (digital). He
shook his head, as my profs often did, and said, “Son, | don’t give a damn what
some sheep header said 3,000 years ago, this IS an analog world!” Humpf! | say it

210

Chapter 9 — Digital Meets Analog — ADC and DAC

depends on your perspective. To electronics, Heraclitus was right and the world is
analog and you can’t step in the same river twice since the only constant is
change. To computers, Democritus was right, the world is digital (well, he said
atomic, but it’s the same thing philosophically speaking) and you can theoretically
step in the same river twice if you arrange the atoms (bits) of the river the same
way.

Another professor of mine, also shaking his head, said, “Son, a difference that
makes no difference is no difference!” So Let’s drop this right here and say that
the world we want to control is analog and the world we will use to control it is
digital, and somewhere up there in philosopher heaven Heraclitus and Democritus
can give each other a big hug.

Analog to Digital Conversion by Successive Approximation

We want to measure voltage, and in the real world, voltages can be any value
whatever, they represent a continuum of electromotive force. There are many
ways to convert an analog signal to a digital value each having strengths and
weaknesses, we will examine successive approximation since that is what the
AVR uses.

‘ Analog Input

10-bit DAC >—,—>

Successive Approximation
Register

Start Conversion
Control Logic
I

1

Oscillator

Data Registers

Figure 27: 10-bit successive approximation ADC Figure

211

Chapter 9 — Digital Meets Analog — ADC and DAC

Figure 27 shows a simplified diagram of a successive approximation. This method
uses an analog comparator and a digital to analog converter. An analog
comparator, in this case, is a device that has two analog inputs one for the external
voltage and the other for the voltage from the DAC (Digital to Analog Converter
that can accept a digital number and output a voltage proportional to that number
— we’ll examine these later). If the voltage on the DAC is lower than the external
voltage, the analog comparator outputs a O, if it is higher it outputs a 1. The
ATmegal69 DAC is 10-bits, meaning that it can output 1024 steps from 0 and its
maximum voltage.

Let’s look at the case where the maximum voltage that the DAC can produce is
3.0 volts. We have 10-bits to play with so we can keep approximating in 0.00293
(3.0/1024) volt steps. Let’s set the input voltage to 1.234 volts. We use a binary
search technique that starts in the middle and bisects each successive voltage. We
start by bisecting the 3 volts by sending the number 512 to the DAC, which then
outputs 1.5 volts; the comparator will output a 1, meaning that the DAC voltage is
too high. So we bisect the 1.5 volts by sending the DAC 256 to reset it to 0.75
volt and get a 0 meaning that the DAC voltage is now lower than the input
voltage. Next we bisect the 1.5-0.75 volts by sending 384 to the DAC output
1.215 volts and get a 0, too low. We keep successively approximating until we
find that the voltage is between1.233 and 1.236 volts. This is the best we can do
with 0.003 volt steps.

Analog to Digital Conversion with the ATMEGA169

The ATmegal69 has a 10-bit successive approximation Analog to Digital
Converter connected to an 8-channel analog multiplexer allowing connection to
one of eight voltage inputs on PortF. During conversion the voltage is held
constant by a sample and hold circuit. Look in the data book on page 195, figure
82 for a block diagram of the ADC circuit.

The minimum value is GND and the maximum is determined by the voltage on
the AREF pin (minus 1-bit in the least significant bit). We can use an external
voltage reference attached to this pin, or we can tell the AVR to connect it to
either AVCC or to an internal 1.1 volt reference. This setup allows us to improve
noise immunity by connecting a decoupling capacitor to the AREF to help

212

Chapter 9 — Digital Meets Analog — ADC and DAC

stabilize the internal voltage reference. The Butterfly uses a 100 nF capacitor for
this purpose.

There are 8 analog input channels ADCO — ADC7 on the Port F pins PFO — PF7.
These pins are connected to an analog multiplexer that can connect any of the pins
to the analog comparator. The channel is selected by setting the MUX0 — MUX4
bits in the ADMUX register.

The ADC is enabled/disabled by setting/clearing the ADEN bit in the ADCSRA
(ADC Control and Status Register A). Since the ADC consumes power it is
recommended that you turn it off when not in use.

The ADC readings are put in the ADC Data Registers ADCH and ADCL. In
normal operation you read the ADCL first, then the ADCH to ensure that both
registers contain the value of a single conversion.

An ADC interrupt can be set to trigger when a conversion is complete.
Starting a Conversion
There are several ways to start a conversion.

Write a 1 to the ADC Start Conversion bit ADSC to start a conversion. This bit
stays high while the conversion is in progress and is cleared by the hardware
when the conversion completes.

You can enable auto triggering by setting the ADC Auto Trigger bit, ADATE. The
trigger source is determined by setting the ADTS2:0 ADC Auto Trigger Source
bits in the ADCSRB register. The triggers can be:

Free Running mode

Analog Comparator

External Interrupt Request 0
Timer/Counter0 Compare Match
Timer/Counter0 Overflow

Timer Counter Compare Match B
Timer/Counterl Overflow

213

Chapter 9 — Digital Meets Analog — ADC and DAC

e Timer/Counter 1 Capture Event
Conversion Timing

The successive approximations are clocked between 50kHz and 200kHz to get the
maximum resolution. You can use higher sampling rate frequencies, but you get
lower resolution. The sampling rate is determined by the input clock and by a
prescaler value set in the ADPS bits of the ADCSRA register. The first conversion
takes 25 clock cycles to initialize the hardware. Normal conversions take 13 clock
cycles and auto triggered conversions take 13.5.

Changing Channels

There are some complexities involved in changing channels and voltage
references that lead to the recommendation that you always wait till a conversion
is complete before making a change. If this is inconvenient, read the data book
and figure it out yourself.

Digital Noise Reduction

The CPU and 1/O peripherals can generate a lot of electrical noise that affect the
accuracy of the ADC. We can put the system to sleep to shut it up and then take
our ADC readings in the quietened environment. Details in the data book.

Conditioning the Analog Input Signal

The accuracy of the conversion will depend on the quality of the input signal. A
few recommendations:

e Filter out signal components higher than the Nyquist sampling frequency
(double the frequency of interest) with a low pass filter.

e Sampling time depends on the time needed to charge the sample and hold
circuit so always use a source with an output impedance of 10 kOhm or
less.

e Use only slowly varying signals.

e Keep analog signal paths as short as possible.

e Use the ADC noise canceller function.

214

Chapter 9 — Digital Meets Analog — ADC and DAC

e If any of the ADC port pins are used for digital output, don’t switch them
while a conversion is going on.

Accuracy
The data book has some cursory discussion of the extremely dense topic of ADC
accuracy. Just be aware that in the accompanying project we don’t use any of

these recommendations, so take the accuracy of our measurements with a grain of
salt.

215

Chapter 9 — Digital Meets Analog — ADC and DAC

Projects

We will write code to allow us to use HyperTerminal to request a reading from the
light, temperature and voltage sensors of the Butterfly. You’ve already seen the
debugging tale above so you know how much fun I had writing this stuff, so enjoy
it or else.

Initializing the ADC

The Butterfly has the ATmegal69 pin 62, (AREF) connected to a bypass capacitor
to help lessen noise on the ADC, so we set the ADMUX bits 6 and 7 to 0 to select
the 'use external reference' option. We use the ‘input’ variable to set the
multiplexer. to connect the ADC to pin 61 (ADCO) using the ADMUX register
(data book p 207).

ADMUX = input; // external AREF and ADCx

Next we set the ADC Control and Status Register A. The ADEN bit enables the
ADC. The ADPSKx bits select the prescaler.

// set ADC prescaler to , 1MHz / 8 = 125kHz
ADCSRA = (1<<ADEN) | (1<<ADPS1) | (1<<ADPS0);

Finally we take a dummy reading, which basically allows the ADC to hack up any
hairballs before we take any real readings

input = ADC_read();

void ADC_init(char input)

{
ADMUX = input; // external AREF and ADCx
// set ADC prescaler to , 1MHz / 8 = 125kHz
ADCSRA = (1<<ADEN) | (1<<ADPS1) | (1<<ADPSO0);
input = ADC_read(); // clear hairballs

}

216

Chapter 9 — Digital Meets Analog — ADC and DAC

Reading the ADC

We save power by turning off the voltage on the light and temperature sensors
when they are not used, so now we turn them on, in case they are being used.

sbi (PORTF, PF3);
sbi (DDRF, DDF3);

Next we enable the ADC.

sbi (ADCSRA, ADEN); // Enable the ADC

Then we do another hairball clearing dummy read.

ADCSRA |= (1<<ADSC); // do single conversion
And we wait till the conversion is complete.

while('(ADCSRA & 0x10));//wait Tor conversion done, ADIF flag
active

Now we repeat this 8 times for better accuracy.

// do the ADC conversion 8 times for better accuracy
for(i=0;i1<8;i++)

{
ADCSRA |= (1<<ADSC); // do single conversion
// wait for conversion done, ADIF flag active
while(1(ADCSRA & 0x10));
ADC_temp = ADCL; // read out ADCL register
ADC_temp += (ADCH << 8); // read out ADCH register
// accumulate result (8 samples) for later averaging
ADCr += ADC_temp;

}

We divide by 8, which conveniently is done by left shifting 3 bits. Weren’t we
lucky that we chose to do 8 samples and save processing time by avoiding a
division?

ADCr = ADCr >> 3; // average the 8 samples

217

Chapter 9 — Digital Meets Analog — ADC and DAC

We turn the sensors off to save power.

cbi (PORTF,PF3); // mt cbi(PORTF, PORTF3); // disable the VCP
cbi (DDRF,DDF3); // mt cbi(DDRF, PORTF3);

And we disable the ADC and return the calculated value.
cbi (ADCSRA, ADEN); // disable the ADC

return ADCr;

Giving us the ADC_read function:

int ADC_read(void)
{
char i;
int ADC_temp;
// mt int ADC = 0 ;
int ADCr = O;

// To save power, the voltage over the LDR and the NTC is
// turned off when not used. This is done by controlling the
// voltage from an 1/0-pin (PORTF3)

sbi (PORTF, PF3); // Enable the VCP (VC-peripheral)

sbi(DDRF, DDF3); // sbi(DDRF, PORTF3);

sbi (ADCSRA, ADEN); // Enable the ADC

//do a dummy readout Ffirst
ADCSRA |= (1<<ADSC); // do single conversion

// wait for conversion done, ADIF flag active
while(T(ADCSRA & 0x10));

// do the ADC conversion 8 times for better accuracy
for(i=0;i1<8;i++)
{

ADCSRA |= (1<<ADSC); // do single conversion

// wait for conversion done, ADIF flag active
while(1(ADCSRA & 0x10));

ADC_temp = ADCL; // read out ADCL register

218

Chapter 9 — Digital Meets Analog — ADC and DAC

ADC_temp += (ADCH << 8); // read out ADCH register

// accumulate result (8 samples) for later averaging
ADCr += ADC_temp;
}

ADCr = ADCr >> 3; // average the 8 samples

cbi (PORTF,PF3); // disable the VCP
cbi (DDRF,DDF3); // mt cbi(DDRF, PORTF3);

cbi (ADCSRA, ADEN); // disable the ADC
return ADCr;

}

Light Meter

The Butterfly has a Light Dependent Resistor, LDR, connected to ADC channel 2.
The resistance of the LDR decreases as the light increases, so the voltage
measured will decrease as light decreases.
We write the getLight function:
void getLight()
{

char light[]= {"0","0","0","\0"};

int ADCresult = O;

// Initialize the ADC to the light sensor channel
ADC_init(2);

ADCresult = ADC read();
itoa(ADCresult, light, 10);

// Send the temperature to the PC
sendString("'The light reading is ");

sendString(light);
sendString("" somethings.\r");

}

This is straightforward and returns a value for the light. The light units
‘somethings’ is a precise scientific measure that means: ‘I don’t have a clue as to

219

Chapter 9 — Digital Meets Analog — ADC and DAC

how the ADC value translates to light intensity’. | have no idea what the data
means other than the amount of light is inversely proportional to the data sent
back, just like it is supposed to be. I guess we could try to calibrate it in Lumens,
or furlongs or something... nah, Let’s move on.

Temperature Meter

We will measure the temperature in Fahrenheit and use an array of constants to
convert the value from a voltage to a temperature. The table is from the Butterfly
code.

// Positive Fahrenheit temperatures (ADC-value)

const int TEMP_Fahrenheit_pos[] PROGMEM =

{ // from O to 140 degrees
938, 935, 932, 929, 926, 923, 920, 916, 913, 909, 906, 902,
898, 894, 891, 887, 882, 878, 874, 870, 865, 861, 856, 851,
847, 842, 837, 832, 827, 822, 816, 811, 806, 800, 795, 789,
783, 778, 772, 766, 760, 754, 748, 742, 735, 729, 723, 716,
710, 703, 697, 690, 684, 677, 670, 663, 657, 650, 643, 636,
629, 622, 616, 609, 602, 595, 588, 581, 574, 567, 560, 553,
546, 539, 533, 526, 519, 512, 505, 498, 492, 485, 478, 472,
465, 459, 452, 446, 439, 433, 426, 420, 414, 408, 402, 396,
390, 384, 378, 372, 366, 360, 355, 349, 344, 338, 333, 327,
322, 317, 312, 307, 302, 297, 292, 287, 282, 277, 273, 268,
264, 259, 255, 251, 246, 242, 238, 234, 230, 226, 222, 219,
215, 211, 207, 204, 200, 197, 194, 190, 187,

}:
void getTemperature()
{
char fahr[]= {0","0","0","*\0"};

int ADCresult = 0;
int 1 = 0;

// Initialize the ADC to the temperature sensor channel
//ADC_init(0);

ADMUX = 0;//input;

ADCresult = ADC _read();

/* The pgm_read_word() function is part of WinAVR and reads
a word from the program space with a 16-bit (near) address,

220

Chapter 9 — Digital Meets Analog — ADC and DAC

}

as in the table. When a table entry is found that is less
than the ADC result we break and i equals the temperature
in Fahrenheit. Pretty clever, huh? Wish 1 thought of it,
but I borrowed it from the WinAVR version of the Butterfly
code. I"I1l quit owning up to all this theft and from now on
if you see something clever (the good kind of clever) just
assume that 1 stole it. */

for (i=0; i<=141; i++)
ifT (ADCresult > pgm_read_ word(&TEMP_Fahrenheit_pos[i]))

break;

/* Next we convert the integer ADCresult to a string that
we can transmit to the PC. Let’s use a function from the
standard library. We add #include <stdlib.h> to our file.
Then we can use the itoa() function, which converts and
integer to an ASCII character array terminated with "\O".
*/

itoa(i, fahr, 10);

// Send the temperature to the PC
sendString("'The temperature is ");
sendString(fahr);

sendString("" degrees Fahrenheit.\r");

The @#%#&*#!11! Volt Meter

If you read the debugging tale, you know where the “@#%#&*#!11!1” comes

from.

void getvolt()

{

char voltintpart[]= {"0","0","0","\0"};
char voltfractpart[]= {"0","0","0","\0"};
int intpart = 0O;

int fractpart = 0O;

int ADCresult = 0;

221

Chapter 9 — Digital Meets Analog — ADC and DAC

}

ADCresult = ADC_read();
intpart = ADCresult/50;
fractpart = ADCresult%50;

itoa(intpart, voltintpart, 10);
itoa(fractpart, voltfractpart, 10);

// Send the voltage to the PC
sendString("'The reading is ');
sendChar(voltintpart [0]);
sendChar(".%);
sendChar(voltfractpart [0]);
sendString("" volts.\r"");

The initializer and the parselnput functions:

Open a new directory, ADC, and copy the Demonstrator and PC_Comm .c and .h
files from the last project. Change the Demonsrator.c by adding the following
functions and the above functions. Compile, load, and test.

#include "'PC_Comm.h"
#include "Demonstrator.h"

void initializer()

{

// Calibrate the oscillator:
OSCCAL_calibration();

// Initialize the USART
USARTINIit();

ADC_init(l);

// say hello

sendString(""\rPC_Comm.c ready to communicate.\r");

// identify yourself specifically

sendString(*'You are talking to the ADC demo.-\r');

// show commands

sendString(*'Commands:\r'");

sendString(""light - returns a light value\r'™);
sendString("temp - returns the temperature in fahrenheit\r');
sendString(*'volt - returns a voltage value\r');

222

Chapter 9 — Digital Meets Analog — ADC and DAC

void parselnput(char s[])

// parse first character
switch (s[0])
{

case "I":
iIf(Gs[1]=="1") && (s[2]=="g")&& (s[3]=="h") && (s[4 =="t"))
getLight(Q);
break;
case "t":
iIf((s[1] == "e™) && (s[2] == "m")&& (s[3] == "p"))
getTemperature();
break;
case "v-":
iT((s[1] == "0") && (s[2] == "I1™)&& (s[3] == "t"))
getvVolt();
break;
case "d":

iT((s[1]=="e") && (s[2]=="m") && (s[3]1=="0") && (s[4]=="7%))

sendString(*'You are talking to the ADC demo.-\r');
break;

default:
sendString(""\rYou sent: "');
sendChar(s[0]);
sendString(*"" - I don"t understand.\r");
break;

}

s[0] = "\0";
}
Using ADC

When you turn on the Butterfly you should see the following on HyperTerminal:

PC_Comm.c ready to communicate.

You are talking to the ADC demo.

Commands:

light - returns a light value

temp - returns the temperature in fahrenheit
volt - returns a voltage value

Type in:

223

Chapter 9 — Digital Meets Analog — ADC and DAC

temp

The response looks like:

The temperature is 78 degrees Fahrenheit.
Turn on a fan! 78 degrees Fahrenheit is too darn hot to work.
Put a flashlight on the light sensor and type in:
light
The response is a low number for a high light level:
The light reading is 236 somethings.
Using the room light and type in:
light
The response is a low number for a medium light level:
The light reading is 645 somethings.
Put your finger over the sensor to block the room light and type:
light
The response is a low number for a low light level:
The light reading is 1004 somethings.
Type in:
volt

The response looks like:

224

Chapter 9 — Digital Meets Analog — ADC and DAC

The reading is 0.0 volts.

Urrrrmmmm... Oh yes, if we are going to measure voltage, we need to put a
voltage on pin 2 of J407 on the Butterfly. But first we need solder some wires on a
potentiometer so we can vary a voltage. The JAMECO parts list has a 10 k Ohm
potentiometer listed. As in Figure 28, we connect one side to +3v and the other to
GND, then we connect the middle to pin 1 of J407, the ADC connector, as shown
in Figure 26. By turning the potentiometer shaft we move a wiper connected to
the center wire up or down. The full +3v is dropped across the potentiometer and
the center leg ‘sees’ a voltage proportional to the resistance above and below it.

+3v

3 k Ohms above

10 k Ohms +2.1v
Potentiometer

7 k Ohms below

GND

Figure 28: Potentiometer Schematic

225

Chapter 9 — Digital Meets Analog — ADC and DAC

Pin 1 of J407 connects to Pin21 of J407 connects to
center leg of potentiometer Butterfly Ground

==

r Bulter

LI R

Butterfly Ground

Figure 29: Voltage measurement

Now we can get some responses. Try turning the potentiometer to various settings
and in response to a volt command you should see something like:

volt
The reading is 2.1 volts.
volt
The reading is 3.0 volts.
volt
The reading is 1.4 volts.
volt
The reading is 0.4 volts.

226

Chapter 9 — Digital Meets Analog — ADC and DAC

DAC and ADC - Function Generator / Digital Oscilloscope

In this project we will use a Digital to Analog Converter, DAC, made with a R-2R
resistor ladder circuit that will output voltages from 0 to +3v in 255 steps. We will
use voltage values stored in look-up tables to generate ‘functions’ which in this
case are repeating wave forms: sine, square, triangle, and sawtooth. Since this is
an educational enterprise we will reuse the software with the millisecond interrupt
making our ‘wave’ frequencies pretty slow.

We will also develop a Digital Oscilloscope, using the Butterfly’s ADC and
reusing the ADC project software to read the data from our Function Generator.
Since Digital Oscilloscopes normally cost tens of thousands of dollars, you can
expect some compromises. This thing is very very very ... very slow. (And the
‘screen’ is rotated 90 degrees.) If you set the “ctc’ to 250 you can see the wave
output on HyperTerminal. If you set ‘ctc’ to 1, you can see the signal on a real
oscilloscope.

We will output the look-up table data on port D and attach the pins as shown in
Figure 27. An R-2R resistor ladder looks a little magical, and the circuit analysis,
though simple in concept, turns out to be fairly complex, but it makes a
reasonably accurate DAC for very little cost. Usually you’ll see two resistor
values in this type circuit, in our case we would use a single 4.4k Ohm resistor in
place of the two 2.2k resistors, but since we got 100 2.2k resistors from our
JAMECO list, Let’s just use two of each for the 4.4k resistors. The 2.2k and 4.4k
are not magical numbers; you can use any value for R as long as the other is 2R
and not be so low as to drain the battery or so high as to block the current.

Using the 2.2k resistors from the JAMECO list construct your DAC using the
schematic in Figure 27, which is illustrated by the close-up photo in Figure 28, a
medium distant photo in Figure 29, and the full setup in Figure 30 complete with
a sine wave on an oscilloscope.

If you don’t have an oscilloscope, just connect the output of the DAC to the
Butterfly ADC on J407, just like with the potentiometer as shown in Figure 29.
Now you can read the output using HyperTerminal and have a really slow crappy
sideways oscilloscope as shown in Figure 34.

227

Chapter 9 — Digital Meets Analog — ADC and DAC

Analog Out

PORTD.7

2.2k

2.2k

2.2k

PORTD.6

2.2k

2.2k

2.2k

PORTD.5

2.2k

2.2k

2.2k

PORTD.4

2.2k

2.2k

2.2k

PORTD.3

2.2k

2.2k

2.2k

PORTD.2

2.2k

2.2k

2.2k

PORTD.1

2.2k

2.2k

2.2k

PORTD.O

2.2k

2.2k

2.2k

2.2k

Figure 30: R-2R resistor ladder

Figure 31: Breadboard of R-2R DAC

228

Chapter 9 — Digital Meets Analog — ADC and DAC

Figure 32: Breadboard R-2R DAC wiring

Figure 33: R-2R DAC with Oscilloscope

229

Chapter 9 — Digital Meets Analog — ADC and DAC

& Butterfly - HyperTerminal

File Edit ¥iew Call Transfer Help
D& @3 08
G
You are talking to the 'Function Generator’ demo.
Enter ctcx, where » is 0 to 255.
Enter sine to start sine wave.
Enter sguare to start square wave.
Enter sawtooth to start sawtooth wave.
Enter triangle to start triangle wave.
Setting wave to sine
-
E.3
~
=
*
s
k.3
=
-
&
=~
*
-
*
&
- v
< | >
Cornected 0:00:12 BMSTY 19200 8-M-1 S T i f

Figure 34: Function Generator / Digital Oscilloscope on HyperTerminal

e — ; « Dutterfly - Hypor Terminal

Fle Cdt View Cal Trafer Help Fle Edt View Cal Troccfer Help
Do o3 08 & DE &3 OB o
- -
- "
" -
" -
- "
- "
" "
- £ 4
¢ » e B
Connected 0:01:51 ANSTW 13200 801 M Connected 00359 B 19200 B-h-1 M

230

Chapter 9 — Digital Meets Analog — ADC and DAC

Figure 35: Sine Wave Figure 36: Square Wave

« Bulterfly - Hyper Terminal
Fin Edt View Cal Tramfer Help

D& & DY &

« Butterfly - Hyper Terminal
Fle Edk View Col Traroher beb

D =3 0B ofF

< ¢ ¥

conectesd 00259 ANsIW 1200 81 o Connected 0.04:58 NS 19200 -1 N

Figure 37: Triangle Wave Figure 38: Sawtooth Wave

Your skills as a C programmer should be to the point where you can read and
understand all the software for this project without further comment. So I’'ll just
give you the listing and let you have at it.

// Demonstrator.h Function Generator / Digital Oscilloscope version

void initializer(void);
void parselnput(char *);
void showMessage(char);

int parse_ctc(char *);
void set_ctc(int);

void startWave(int);

void startSine(void);
void startSquare(void);
void startSawtooth(void);
void startTriangle(void);

void DigitalOscilloscopeTimerinit(void);

void MilliSec_init(unsigned char count);
void set_OCROA(unsigned char count);

void ADC_init(void);
int ADC_read(void);

231

Chapter 9 — Digital Meets Analog — ADC and DAC

// Demonstrator.c Function Generator / Digital Oscilloscope version

#include "PC_Comm.h"
#include "Messages.h"
#include "WaveTables_h"

0:
0:-

unsigned char count
unsigned char tenth
//unsigned long signal

0; // used for test

void initializerQ)

{
// Calibrate the oscillator:
OSCCAL_calibration();

// Initialize the USART
USARTinit(Q;

// set PORTD for output
DDRD = OxFF;

// Display instructions on PC
sendFString(TALKING_TO);
sendFString(WHO_DEMO) ;

sendFString(ENTER) ;
sendFString(TEXT_CTC);

sendFString(ENTER);
sendFString(TEXT_SINE);
sendFString(TO_START);
sendFString(TEXT_SINE);
sendFString(WAVE) ;

sendFString(ENTER) ;
sendFString(TEXT_SQUARE) ;
sendFString(TO_START);
sendFString(TEXT_SQUARE) ;
sendFString(WAVE) ;

sendFString(ENTER);
sendFString(TEXT_SAWTOOTH) ;
sendFString(TO_START);
sendFString(TEXT_SAWTOOTH) ;
sendFString(WAVE) ;

sendFString(ENTER) ;
sendFString(TEXT_TRIANGLE);
sendFString(TO_START);
sendFString(TEXT_TRIANGLE);
sendFString(WAVE) ;

MilliSec_init(250); // default to 1000 Hz

DigitalOscilloscopeTimerInit();

232

Chapter 9 — Digital Meets Analog — ADC and DAC

ADC_init(Q);

startSine();
}
void parselnput(char s[])
{

// parse first character
switch (s[0])
{

case "s":
ifC (s[1] == "i") && (s[2] == "n")&& (s[3] == "e"))
startSine();
else if((s[1]=="g")&&(s[2]=="u")&&(s[3]=="a")&&(s[4]=="r")&&(s[5]=="¢e"))
startSquare();

else if((s[1]=="a")&&(s[2]=="w"&&(sS[3]=="t")&&(s[4]=="0")&&(s[5]=="0")
&&(s[6]1=="t")&&(s[71=="h"))
startSawtooth();
break;
case"t":
iIT((s[11=="r")&&(s[2]=="1")&&(s[3]=="a")&&(s[4]=="n")&&(s[6]=="g") &&(s[6]=
="1")&&(s[7]1=="e"))
startTriangle();
break;
case "c":
if((s[1] == "t7) && (s[2] == "c7))
parse_ctc(s);
break;
case "d":
ifC (s[1] == "e") && (s[2] == "m") && (S[3] == "0") && (s[4] == "?"))
sendFString(TALKING_TO);
sendFString(WHO_DEMO) ;
break;
defaul t:
sendFString(BAD_COMMAND1);
sendChar(s[0]);
sendFString(BAD_COMMAND2) ;

break;
3
s[0] = "\0~;

int parse_ctc(char s[1)

{
char ctc[11];
unsigned char 1 = 3, j = 0;

while((s[i] '= "\0") & (j <= 11))
{

ifC (s[i] >= "07) && (s[i] <= "97))
{
ctc[j++] = s[i++];

else

233

Chapter 9 — Digital Meets Analog — ADC and DAC

{
sendFString(ERROR_NONINT) ;
sendChar(s[il);
sendChar(*"\r");
return O;

3

}
ctc[j] = "\0";
if(J>4)// must be < 256

sendFString(ERROR_NUMTOLARGE) ;

return O;
}
else
{
set_ctc(atoi(ctc));

}
return 1;

}

void set_ctc(int count)

{
char ctc[11];
sendString(*'Setting the Compare Timer Count to: ');
itoa(count,ctc,10);
sendString(ctc);
sendChar("\r");
MilliSec_init(count);

}

void startWave(int wave)

{
sendFString(TEXT_SETTING) ;
sendFString(TEXT_WAVE_TBL[wave]); // Send the song title to the PC
sendChar("\r");
pWave=(int*)pgm_read_word(&Waves[wave]); // looks too complicated..

}

void startSine()

{
startWave(0);

}

void startSquare()

{
startWave(1);

}

void startSawtooth()

{
startWave(2);

}

234

Chapter 9 — Digital Meets Analog — ADC and DAC

void startTriangle()

{
}

startWave(3);

/*

The USART init set the system oscillator to 2 mHz. We set the TimerO prescaler

to clk/8 which gives a 250 kHz input to the timer/counter. A compare of 250 throws
an interrupt every millisecond.

*/

void MilliSec_init(unsigned char count)

// Initialize TimerO.

// Enable timerO compare interrupt
TIMSKO = (1<<OCIEOQA);

// Sets the compare value
set_OCROA(count);

// Set Clear on Timer Compare (CTC) mode,
TCCROA = (1<<WGMO1)]| (0O<<WGMOO)]| (1<<CS02)] (0<<CS01)] (0<<CS00);

}

// Initialize for 1 millisecond interrupt
void DigitalOscilloscopeTimerinit()

// Initialize Timer2.

// Enable timer2 compare interrupt
TIMSK2 = (1<<OCIE2A);

// Sets the compare value
OCR2A = 1;

// Set Clear on Timer Compare (CTC) mode,
TCCR2A = (1<<WGM21) | (0<<WGM20) | (1<<CS22) | (0<<CS21)] (0<<CS20);

void set_OCROA(unsigned char count)

// Sets the compare value
OCROA = count;

// Interrupt occurs once per millisecond
SIGNAL(S1G_OUTPUT_COMPAREO)

{

// signal += pgm_read_word(pWave + count); // used for test
PORTD = pgm_read_word(pWave + count++); // read table
tenth++;

}

235

Chapter 9 — Digital Meets Analog — ADC and DAC

// Interrupt occurs once per millisecond
SIGNAL(SIG_OUTPUT_COMPARE2)

{
int sig = 0;
sig = ADC_read();
if (tenth >= 10)
{
tenth = 0;
for(int 1 = 0; 1 < (sig/4); i++)
{
sendChar(® *);
3
sendChar("*");
sendChar("\r~);
}
/* // Test code to output wave from table to HyperTerminal
if (tenth >= 10)
{
tenth = 0;
signal /= 50;
for(int 1 = 0; 1 < signal; i++)
{
sendChar(® ");
3
sendChar("*");
sendChar("\r");
signal = 0;
3
*/
b
/
ADC common functions
*/

void ADC_init()
{
int dummy = O;

ADMUX = 1;

// set ADC prescaler to , 1MHz / 8 = 125kHz
ADCSRA = (1<<ADEN) | (1<<ADPS1) | (1<<ADPS0);

// Take a dummy reading , which basically allows the ADC

// to hack up any hairballs before we take any real readings
dummy = ADC_read();

236

Chapter 9 — Digital Meets Analog — ADC and DAC

}

int ADC_read(void)
{
char i;
int ADC_temp;
// mt int ADC = 0 ;
int ADCr = 0;

// To save power, the voltage over the LDR and the NTC is turned off when not
used
// This is done by controlling the voltage from a 1/0-pin (PORTF3)

sbi(PORTF, PF3); // mt sbi(PORTF, PORTF3); // Enable the VCP (VC-
peripheral)
sbi(DDRF, DDF3); // sbi(DDRF, PORTF3);
sbi (ADCSRA, ADEN); // Enable the ADC
//do a dummy readout first
ADCSRA |= (1<<ADSC); // do single conversion
while(T (ADCSRA & 0x10)); // wait for conversion done, ADIF flag active
for(i=0;i<8;i++) // do the ADC conversion 8 times for better
accuracy
{
ADCSRA |= (1<<ADSC); // do single conversion
while(T(ADCSRA & 0x10)); // wait for conversion done, ADIF flag active
ADC_temp = ADCL; // read out ADCL register
ADC_temp += (ADCH << 8); // read out ADCH register
ADCr += ADC_temp; // accumulate result (8 samples) for later
averaging
ADCr = ADCr >> 3; // average the 8 samples
cbi (PORTF,PF3); // mt cbi(PORTF, PORTF3); // disable the VCP

cbi(DDRF,DDF3); // mt cbi(DDRF, PORTF3);
cbi (ADCSRA, ADEN); // disable the ADC

return ADCr;

3
// WaveTables.h
const int Sine[] PROGMEM =

{

0x80,0x83,0x86,0x89,0x8c,0x8F,0x92,0x95,0%x98,0x9c,0x9f,0xa2,0xa5,0xa8,0xab,0xae,
0xb0,0xb3,0xb6,0xb9,0xbc,0xbf,0xcl,0xc4,0xc7,0xc9,0xcc,0xce,0xdl,0xd3,0xd5,0xd8,
Oxda,Oxdc,0xde,0xe0,0xe2,0xe4,0xe6,0xe8,0xea,Oxec,0xed,0xef,0xF0,0xF2,0xF3,0xF5,
0xf6,0xf7,0xF8,0xF9,0xFa,0xFb,0xFfc,0xFc,0xFfd,O0xFe,0xFe,OxFF,OxFfF,OxFF,OxFF,OxFF,
OxfF,OxFf,OxFF,OxFfF,OxFF,OxFF,0xFe,0xFe,0xFd,O0xFc,0xFc,0xFb,0xFa,0xF9,0xF8,0xF7,
0xf6,0xf5,0xF3,0xF2,0xf0,0xef,0xed,Oxec,0xea,0xe8,0xe6,0xe4,0xe2,0xe0,0xde,0xdc,
Oxda,0xd8,0xd5,0xd3,0xd1,0xce,0xcc,0xc9,0xc7,0xc4,0xcl,0xbf,0xbc,0xb9,0xb6,0xb3,
0xb0,0xae,0xab,0xa8,0xa5,0xa2,0x9f,0x9c,0x98,0x95,0x92,0x8F,0x8c,0x89,0x86,0x83,

237

Chapter 9 — Digital Meets Analog — ADC and DAC

0x80,0x7c,0x79,0x76,0x73,0x70,0x6d,0x6a,0x67,0x63,0x60,0x5d,0x5a,0x57,0x54,0x51,
0x4f,0x4c,0x49,0x46,0x43,0x40,0x3e,0x3b,0x38,0x36,0x33,0x31,0x2e,0x2c,0x2a,0x27,
0x25,0%x23,0x21,0x1f,0x1d,0x1b,0x19,0x17,0x15,0x13,0x12,0x10,0x0Ff,0x0d,0x0c,0x0a,
0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x03,0x02,0x01,0x01,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x05,0x06,0x07,0x08,
0x09,0x0a,0x0c,0x0d,0x0f,0x10,0x12,0x13,0%x15,0x17,0x19,0x1b,0x1d,0x1Ff,0x21,0x23,
0x25,0x27,0x2a,0x2c,0x2e,0x31,0x33,0x36,0x38,0x3b,0x3e,0x40,0x43,0x46,0x49,0x4c,
0x4f,0x51,0x54,0x57,0x5a,0x5d,0x60,0x63,0x67,0x6a,0x6d,0x70,0x73,0x76,0x79,0x7c
¥

const int Square[] PROGMEM =

{

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFf,
OxFF,OxFF,OxFF,OxFF,OxFF, OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF, OxFF,OxFF,OxFF,OxFF,
OxFF,OxFF,OxFF,OxFF,OxFF, OxFF,OxFF,OxFF, OXFF,OxFF, OxFF,OxFF, OxFF,OxFF,OxFF,OxFf,
OxTF, OxFf,OxFF,OxFf,OxFF, OxFF,OxFf,OxFF,OxTF,OxFf, OxFF,OxFfF,OxFf, OxFF,OxFf,OxFf,
OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,
OxFF,OxFF,OxFF,OxFF,OxFF, OxFF,OxFF,OxFF,OXFF,OxFF,OxFF,OxFF, OxFF,OxFF,OxFF,OxFf,
OxFF,OxFf,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFf,OxFf,
OXTF, OxFf,OxFF,OxFf,OxFF, OxFF,OxFf,OxFf,OxFF, OxFF, OxFF,OxFF,OxFf, OxFF, OxFf,OxFf
¥

const int Sawtooth[] PROGMEM =

{

0x00,0x01,0x02,0x03,0x04,0x05,0x06 ,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d, 0x0e ,0x0F,
0x10,0x11,0x12,0x13,0x14,0x15,0%x16,0x17,0x18,0x19,0x1a,0x1lb,0x1c,0x1d,0x1le,0x1f,
0x20,0x21,0x22,0x23,0x24,0x25,0%x26,0x27,0x28,0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2Ff,
0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x3b,0x3c,0x3d,0x3e,0x3F,
0x40,0x41,0x42,0x43,0x44,0x45,0x46,0x47 ,0x48,0x49,0x4a,0x4b,0x4c,0x4d,0x4e,0x4f,
0x50,0x51,0x52,0x53,0x54,0x55,0x56 ,0x57,0x58,0x59,0x5a,0x5b,0x5c,0x5d,0x5e,0x5F,
0x60,0x61,0x62,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x6b,0x6c,0x6d,0x6e,0x6F,
0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7¥F,
0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8a,0x8b,0x8c,0x8d,0x8e,0x8F,
0x90,0x91,0x92,0x93,0x94,0x95,0x96 ,0x97 ,0x98,0x99,0x9a,0x9b,0x9c,0x9d, 0x9%e,0x9f,
Oxa0,0xal,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xab,0xac,0xad,Oxae,Oxaf,
0xb0,0xb1,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xbb,0xbc,0xbd,O0xbe ,0xbf,
0xc0,0xcl,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xcb,0xcc,0xcd,Oxce,0xcf,
0xd0,0xd1,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xdb,0xdc,0xdd,Oxde,Oxdf,
0Oxe0,0xel,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xeb,0xec,0xed,Oxee,Oxef,
0xf0,0xFf1l,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFa,0xFb,0xFc,0xFd,OxFe,OxFf
¥

const int Triangle[] PROGMEM =

{

0x00,0x02,0x04,0x06,0x08,0x0a,0x0c,0x0e,0x10,0x12,0x14,0x16,0x18,0x1a,0x1lc,0xle,
0x20,0x22,0x24,0x26,0x28,0x2a,0x2c,0x2e,0x30,0x32,0x34,0x36,0x38,0x3a,0x3c,0x3e,
0x40,0x42,0x44,0x46,0x48,0x4a,0x4c,0x4e,0x50,0x52,0x54,0x56 ,0x58,0x5a,0x5c,0x5e,
0x60,0x62,0x64 ,0x66,0x68,0x6a,0x6¢c,0x6e,0x70,0x72,0x74,0x76,0x78,0x7a,0x7c,0x7e,
0x80,0x82,0x84,0x86,0x88,0x8a,0x8c,0x8e,0x90,0x92,0x94,0x96,0x98,0x9%a,0x9c,0x9%e,

238

Chapter 9 — Digital Meets Analog — ADC and DAC

Oxa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xac,0xae,0xb0,0xb2,0xb4,0xb6,0xb8,0xba,0xbc,0xbe,
0xc0,0xc2,0xc4,0xc6,0xc8,0xca,0xcc,0xce,0xd0,0xd2,0xd4,0xd6,0xd8,0xda,0xdc,0xde,
0Oxe0,0xe2,0xe4,0xe6,0xe8,0xea,0xec,0xee,0xf0,0xF2,0xF4,0xF6,0xF8,0xFa,0xfc,0xfe,
Oxff,0xfd,0xfb,0xF9,0xF7,0xF5,0xF3,0xF1,0xef,0xef,0xeb,0xe9,0xe7,0xe5,0xe3,0xel,
0Oxdf,0xdd,0xdb,0xd9,0xd7,0xd5,0xd3,0xd1,0xcf,0xcf,0xcb,0xc9,0xc7,0xc5,0xc3,0xcl,
0Oxb¥,0xbd,0xbb,0xb9,0xb7,0xb5,0xb3,0xbl,0xaf,0xaf,0xab,0xa9,0xa7,0xa5,0xa3,0xal,
0x9f,0x9d,0x9b,0x99,0x97,0x95,0x93,0x91,0x8F,0x8F,0x8b,0x89,0x87,0x85,0x83,0x81,
0x7f,0x7d,0x7b,0x79,0x77,0x75,0x73,0x71,0x6F,0x6F,0x6b,0x69,0x67,0x65,0x63,0x61,
0x5fF,0x5d,0x5b,0x59,0x57,0x55,0x53,0x51,0x4F,0x4F,0x4b ,0x49,0x47,0x45,0x43,0x41,
0x3f,0x3d,0x3b,0x39,0x37,0x35,0x33,0x31,0x2f,0x2F,0x2b,0x29,0x27,0x25,0x23,0x21,
0x1f,0x1d,0x1b,0x19,0x17,0%x15,0x13,0x11,0x0f,0x0f,0x0b,0x09,0x07,0x05,0x03,0x01
};

const char TEXT_WAVE1[] PROGMEM = "'sine";
const char TEXT_WAVE2[] PROGMEM = ''square';
const char TEXT_WAVE3[] PROGMEM = "'sawtooth';
const char TEXT_WAVE4[] PROGMEM = "triangle";

// pointer-array with pointers to the wave arrays
const int *Waves[] PROGMEM = { Sine, Square, Sawtooth, Triangle, 0};

const char *TEXT_WAVE_TBL[] = { TEXT_WAVE1l, TEXT_WAVE2, TEXT_WAVE3, TEXT_WAVE4,
03};

const int *pWave; // point to a ram location (pointer array Waves)

239

Chapter 10: C Structures

Chapter 10: C Structures

Structure Basics

A structure is a collection of variables that may be of different types all grouped
together under a single name. They are like records in other programming
languages and form a data unit that is convenient to handle. This convenience is
very useful in large programs because it allows us to group related variables and
handle them as a ‘family’ rather than as individuals. For example:

struct Pardue {
string Joe = “Joe”;
string Clay = “Clay”;
string Beth = “Beth”;
}

groups Joe, Clay, and Beth all in the Pardue family structure. In software we can
refer to me as: Joe.Pardue or Joe->Pardue depending on the use.

Structures can come in all sizes. A small one would be useful in the PWM project
to link the pulse frequency to the pulse width. A larger one could be used in the
RTC project to link together all the time and date variables into a unit.

Let’s look at a simple structure for pulse width modulation data. As we’ve seen
we do PWM by varying the pulse frequency and the pulse width. We can declare
a structure:

struct pwm {
int pulseFreq;
unsigned char pulseWidth;

¥

We use the keyword struct to start the declaration, then provide the structure a
name, and enclose the variable members in a block. The structure tag ‘pwm’ is
optional and we can name the structure later when it is defined. The variable
names are tied to the structure and we can legally define a variable ‘int pulseFreq’
later and use it separate from the structure, the compiler would differentiate

241

Chapter 10: C Structures

between pulseFreq and pwm.pulseFreq. As we’ll see in a minute, this reuse of
names, normally a no-no, can help clarify code.

The structure declaration creates a data type, and like other data types variables
can be declared to be of that type:

int X, y, z;
struct { .. } X, VY, z;

Usually you see this done as:

struct pwm {

int pulseFreq;

unsigned char pulseWidth;
Ipulserl,pulser2,pulser3;

which creates three instances, pulserl,pulser2,pulser3, of the struct pwm.

This “‘declaration versus instantiation’ of a structure is an important concept that
you’ll see a lot if you move on up to C++. The first declaration of pwm did not
have a variable list following it, so it exists as a prototype and no memory is
allocated. In the second version, where we added the variables, pulserl,pulser2,
and pulser3, we actually create three copies (instances) of the structure in
memory. Not only is instantiation important word in the object oriented
programming world, it’s very geeky to find uses for it in ordinary conversation.
“Hey babe, wanna instantiate our procreative potential?”

We can instantiate our struct and assign data to it:

struct pwm pulserl = { 1000, 127};

which defines a pulse with a frequency of 1 kHz and a 50% duty cycle (remember
— 127 is half of 255 which is 100%).

We access members of structs using the structure member operator *.’:

int x,y;

x = pulserl._pulseFreq; // x now equals 1000

242

Chapter 10: C Structures

y = pulserl._pulseWidth // y now equals 127;

Structures can be nested:

struct pwms {
struct pwm pulserl;
struct pwm pulser2;
struct pwm pulser2;
int numPulsers = 3;
ImyPWMS ;

and to access pulserl pulseFreq we use:

X = myPWMS.pulserl.pulseFreq;
While it may not seem like it at this time, this kind of syntax can make programs
easier to write and understand, with the usually warning that C gurus will use

them to impress and thereby confuse you.

Structures and Functions
You can do four things to a structure:

1. Copy it

2. Assign to it as a unit

3. Take its address with &
4. Access its members

Let’s write some functions to modulate some pulses and see how to use structures
with them. We could approach this three ways:

1. Pass components to the functions separately.
2. Pass an entire structure to the function.
3. Pass a pointer to a structure to the function.

In a moment we’ll see why #3 is best.

243

Chapter 10: C Structures

We will write a function makePWM to initialize a PWM structure by accepting an
int and an unsigned char as arguments and returning a pointer to a pwm structure.
First Let’s redo the struct:

struct {
int pulseFreq;
unsigned pulseWidth;

Jpwm;
then we write our function:

struct pwm makePWM(int pulseFreq, unsigned char pulseWidth)

{
struct pwm temp;
temp.pulseFreq = pulseFreq;
temp.pulseWidth = pulseWidth;
return temp;

}

In this function we reuse the names pulseFreq and pulseWidth and cause no
conflict because one set is bound to the struct and the other is bound to the
function.

We can use makePWM to dynamically initialize structures:

struct pwm pulserlk50;
struct pwm pulserlk25;
struct pwm pulser4klO;

pulserlk50 = makePWM(1000,128);//make a 50% duty 1000 kHz pulse
pulserlik25 = makePWM(1000,64);//make a 25% duty 1000 kHz pulse
pulser4dkl10 = makePWM(4000,25);//make a 10% duty 4000 kHz pulse

When we use a structure as an argument in a function we send a copy of the
structure to the function. For tiny structures, this won’t matter much, but for large
structures we can eat a lot of RAM, since the entire structure will be pushed onto
the stack. Let’s write a function to find the pulse with the greatest width in a list of
3 pwm structs:

244

Chapter 10: C Structures

struct pwm widestPWM(struct pwm pulserl, struct pwm pulser2,
struct pwm pulser2,)

{
if(pulserl.width > pulser2.width)
if (pulserl.width > pulser3.width) return pulserl;
else if (pulser2.width > pulser3.width) return pulser2
return pulser3;
}

But that’s one big memory hog. We can save stack memory by defining a function
to use struct pointers as paramerters:

// Declare a function with struct pointers as parameters
struct pwm widestPWM(struct pwm *, struct pwm *, struct pwm *);

// Define it
struct pwm widestPWM(struct pwm *pl, struct pwm *p2, struct pwm *p2)
{

if(pl.width > p2.width)

{

}
else if (p2->width > p->width) return p2

return p3;

if (pl->width > p3->width) return pl;

}

Here we use the structure pointer operator ‘->’ to access members of the struct
passed by a pointer. Novices stumble all over using the structure member operator
*.” and the structure pointer operator ‘->’ operator, so be forewarned.

We use this function as follows:

struct pwm pulserlk50;
struct pwm pulserlk25;
struct pwm pulser4klO;
struct pwm myWidestPWM;

myWidestPWM = widestPWM(&pulserlk50, &pulserlk25, &pulser4klO;

245

Chapter 10: C Structures

Structure Arrays

In the last section we used:

struct pwm pulserlk50;
struct pwm pulserlk25;
struct pwm pulser4klO;

pulserlik50 = makePWM(1000,128);//make a 50% duty 1000 kHz pulse
pulserlik25 = makePWM(1000,64);//make a 25% duty 1000 kHz pulse
pulser4dkl10 = makePWM(4000,25);//make a 10% duty 4000 kHz pulse

We could have defined an array of these structures and made them as follows

struct pwm pulser[] = {
{ 1000, 128 };
{ 1000, 64 };
{ 4000, 25);

}

Actually the prior, non-array version probably makes more sense because the
instance names carry more user information. pulserlk25 versus pulser[1]. But
there are cases where arrays of structures come in real handy.

Typedef
C allows us to create new data type names with the typedef facility.

typedef unsigned char Byte;

would cause the compiler to handle anything declared as Byte as if it was an
unsigned char. Only actual C types can be aliased in this manner. Typedef works
somewhat like define, in that it provides an alias, but defines are handled by the
preprocessor and more limited in what they can do.

Typedefs are useful in making software more readable: Byte makes more sense in
our use than unsigned char. Another use is to facilitate portability of software by
putting machine specific types in typedefs so you can change them as you change
machines.

246

Chapter 10: C Structures

Unions

A union provides a way to have a type that may be of different sizes depending on
the circumstances of its use.

We use a union in prgmspacehlp.h to store a float or an int in the same program
memory:

union
{
int i[2]; // uintl6_t
float T;
3 u;
Bit-fields

ANSI C defines bit-fields as a member of a structure or union that is defined to be
a cluster of bits. This cluster can be a single bit, as would be used for a flag, or a
4-bit nibble, or any number of bits you might want to define. These fields can be
very useful, but unfortunately, in many microcontrollers, these bit-fields slow
things down (the compiler promotes bit to larger data types) so for efficiency
sake, bits are best dealt with using bit masking, which compiles to faster and
smaller assembly code. Bit masking simply uses a constant to define the position
of a bit in a byte and allows you to read or write only that bit using the bitwise
operators. We will look at the C-way, since we are learning C, then the mask-way
since we want to be as efficient as possible.

Bit-Fields the C-way

In our examples above we have often declared an object as an unsigned char when
that object could only have two values: TRUE or FALSE. Using bit-fields we can
declare eight similar variables in a single unsigned char (note — not true for
WIinAVR, which promotes them to eight bytes).

We could define:

unsigned char calibrate = FALSE;

247

Chapter 10: C Structures

to control a loop:

while(Icalibrate) { // do something while calibrate == FALSE};

which runs as long as calibrate equals FALSE. We could have used:

struct {
unsigned int calibrate : 1;
unsigned int this : 1;
unsigned int that : 1;
unsigned int the : 1;

unsigned int other : 1;
unsigned int tobe: 1;
unsigned int or!tobe : 1;
unsigned int hello : 1;

} flags;

Setting aside 8 flags in the space formerly used by calibrate. Now we control the
loop:

while(!flags.calibrate)
That is, we could have done this in an ideal world. In the real world, our compiler
would allow us to use the above syntax, but would assign 8 bytes to do the job.
K&R notes: “Almost everything about fields is implementation dependent.”

Bit-fields the masking-way

This is mostly a review of stuff presented with the bitwise operator section, but
reviews are good. Let’s look at a bit-masking example from OSCCAL.C:

We define an alias name for the Timer/Counter 2 Interrupt Flag Register:

#define TIFR2 _SFR_108(0x17)

Noting that the _SFR_I108(0x17) is itself an alias defined elsewhere, but
eventually is aliased to a specific register address on our ATMEGA169.

We next define two ‘bit-fields’ in the TIFR2 register;

248

Chapter 10: C Structures

#define OCF2A 1
#define TOV2 0

Next we write a function that causes our code to wait for the timer2 compare flag,
OCF2A, which is bit one of the Timer/Counter2 Interrupt Flag Register:

while (I(TIFR2 && (1<<0CF2A)));// wait for timer2 compareflag
So this usage will do the same as a bit-field, but with greater efficiency.

Let’s look at another example where we assign Port B to a ‘bit-field structure’
without using bit-fields or structures. First we get the address of the Port B
registers from i10169.h which also has defines for each bit.

/* Port B */

#define PINB _SFR_108(0x03)
#define DDRB _SFR_108(0x04)
#define PORTB _SFR_108(0x05)

#define PB7
#define PB6
#define PB5
#define PB4
#define PB3
#define PB2
#define PB1
#define PBO

OFRrNWAMUUTON

In the Butterfly software main.c file, the initialization function has:

PORTB = (15<<PB0); // Enable pullup on

And we ask, what’s with the 15? Well, 15 in hex is OXE which in binary is 1110,
so since PB0O == 0, what we are doing is setting PORTB equal to 00001110 << 0,
remembering that ‘<<’ is the left-shift operator we know that we actually aren’t
doing anything, or rather we are left shifting 15 zero times, which is doing
nothing if I’ve ever seen nothing, which | haven’t but... back to our story, we are
setting PORTB pins 1, 2, and 3 to 1 thus enabling the pull-ups on port B pins 2, 3,
and 4. And that ends this discussion.

249

Chapter 10: C Structures

This alternative bit-field technique is a compromise between the K&R way of
doing things in C and the machine efficient way of doing things in C for
microcontrollers.

250

Chapter 10: C Structures

Projects

Finite State Machine

I initially thought about naming this section “Finite State Machines, Lions, Tigers,
and Bears... Oh My!” because the topic seems a bit scary. And | must admit that
there are graduate level Computer Science courses taught on this subject, so it can
get very scary indeed. But, fortunately for us, the fundamental concepts that we
will use are fairly easy to grasp, and we don’t need to go to great depths to get
what we need.

The basic ideas behind finite state machines are used to tame systems that seem
impossibly complex. A computer is a finite state machine. At any given moment
the computer state is defined by a bunch of transistor states, off or on, 0’s and 1’s.
The computer inputs a set of 0’s and 1’s, from some external source, checks its
current state and changes both the current state and the output state based on the
current state and the input state.

Actually you and I can be seen as state machines. Right now my state is “‘typing’.
If my ears input the sound of a screeching tiger my state will change to ‘running
like hell.” And, if my ‘running like hell” state isn’t >= the tigers ‘running like hell’
state, my future state may sequence through *being lunch’, being digested’, and
‘being tiger poop.’

When you think about it, the Butterfly, as simple as it is, does a lot of stuff. How
does the software keep track of what it is doing? How does it know to keep doing
it? How does it know when to do something different? And how does it know
what to do next?

Say the Butterfly is outputting a value on PORTD and you diddle the joystick,
how does it respond to being diddled? You may recall this switch statement from
Chapter 5.

switch(input){
case KEY_PLUS :
PORTD = ~0x01;
break:

251

Chapter 10: C Structures

case KEY_NEXT :
PORTD = ~0x02;
break;

case KEY_PREV :
PORTD = ~0x04;
break;
case KEY_MINUS :
PORTD = ~0x08;
break;

case KEY_ENTER :
PORTD = ~0x10;
break;

default:

}

This is a state machine. The current state is the value of PORTD. The input is the
joystick position. The case statement for the specific joystick input sets the next
state in PORTD. If this switch statement is enclosed in a for(;;){}block, the
Butterfly’s states and transitions are all known, so the possibilities are finite and
you have yourself a finite state machine. What could be simpler? (Usually said
right before things get complex.)

But, of course, the Butterfly out of the box does a lot of stuff. And it has a lot of
state machines controlling its behavior. One is the menu state machine, which is
really the core state machine as far as a user is concerned. Here is an illustration
of the Butterfly menu structure:

252

Chapter 10: C Structures

‘ AVR Butterfly ‘4—»{ Revision ‘ Change clock format

‘ Time ‘4—»{ Clock H "12:35:45" ‘4—»{ Adjust clock ‘

‘ Date H "03:04:25" ‘4—»{ Adjust date ‘

Music ‘4—»{ Fur Elise ‘ Change date format

Turkey march
Adjust volume by pressing joystick

Sirenel UP/DOW N while playing

"Your name" H Enter name ‘

4
o
3
o

‘ Temperature "+24C"["+75F" ‘ Shift between Celsius and Fahrenheit by
I pressing the joystick UP/DOWN
Voltage "3Vv5"
‘ Light "ADC28A" ‘
‘ Options Display H Adjust contrast ‘

l

Bootloader H Jump to Bootloader ‘

l

Power Save Mode H Press ENTER to sleep ‘

l

Auto Power Save H 5-90 minutes, OFF ‘

1 1T 1 1

Figure 39 Butterfly Menu

253

Chapter 10: C Structures

At one moment the Butterfly may be scrolling the LCD with your name. Then
you click the joystick down and it shows you the time. It needs to keep some sort
of data set that contains what it is doing now and how to react to inputs and what
to do next based on what is doing now.

We can think about input stimulated state transitions like this:

If I am doing A_state and
if A_input happens, then | enter Q7_state
else if B_input happens, then | enter YM_state
else if C_input happens, then | enter X15_state
/[and so on
else if XXX_input happens, then | enter Mental_state
If I am doing B_state and
if A_input happens, then | enter B_state
else if B_input happens, then | enter A_state
else if C_input happens, then | enter Y_state
/[and so on
and XXX_input happens, then | enter Pros_state
/[and so on
If I am doing XXX _state and
if A_input happens, then | enter Alpha_state
else if B_input happens, then | enter Beta_state
else if C_input happens, then | enter Gamma_state
// and so on
else if XXX_input happens, then | enter Tennessee_state

From the Butterfly menu we see that we can do this like:

If I am showing “AVR Butterfly” on the LCD and
if the joystick is clicked left, then I enter the Revision state
else if the joystick is clicked down, then | enter the Time state
If I am showing the “Time” on the LCD and
if the joystick is clicked left, then I enter the Clock state
else if the joystick is clicked down, then I enter the Music state
// and so on
If I am showing “Options” on the LCD and

254

Chapter 10: C Structures

if the joystick is clicked left, then | enter the Display state
else if the joystick is clicked down, then | enter the AVR Butterfly
state

For each state, we must know the next state that we must enter for each possible
input state. That’s going to be a lot of data so lets use what we’ve learned about
structures to keep track of it. First we define two generic structures that we will

later instantiate for each specific state, input, and next state data set.

[ASIDE: As mentioned before, the Butterfly software was written using an I1AR
compiler and ported to the Win AVR complier. There are a lot of notes in the code
that begin // mt. This is a note added by Martin Thomas who did the porting.
Kudo’s to Martin, but I’ve removed his notes from the discussion as they are not
relevant to what we are trying to learn here.]

In Menu.h we find the definitions of data structures for our menu state and menu
next state that contains the three relevant variables:

typedef struct PROGMEM

unsigned char state; // the current state

PGM_P pText; // pointer to some text in FLASH memory

char (*pFunc)(char input); // pointer to a function
} MENU_STATE;

typedef struct PROGMEM
{

unsigned char state; // the current state

unsigned char input; / the input stimulus

unsigned char nextstate; // the resulting next state
} MENU_NEXTSTATE;

The MENU_STATE structure provides the data we need to find the function that
should be run while in the specified state. The MENU_NEXTSTATE structure
provides the data we need to find the next state given the present state and an
input state.

Let’s deal with the MENU_STATE structure first. We see that we can have 256

states, and can associate a text name and a function pointer with each. The
function pointer is defined as taking a character input value and returning a

255

Chapter 10: C Structures

character to the caller. We define an array of instances of this structure in Menu.h
as follows:

const MENU_STATE menu_state[] PROGMEM = {

// STATE STATE TEXT STATE_FUNC
{ST_AVRBF, MT_AVRBF, NULL},
{ST_AVRBF_REV, NULL, Revision},
{ST_TIME, MT_TIME, NULL},
{ST_TIME_CLOCK, MT_TIME_CLOCK, NULL},

// Lots more stuff

{0, NULL, NULL},
};

We can use this as:

menu_state[1].state is defined as ST_AVRBF_REV
menu_state[1].pText is defined as NULL
menu_state[1].pFunc is defined as Revision

You will note in the table that each state has either a state text or a state function
defined, but not both, that complication will be explained later.

For the MENU_NEXTSTATE structure we also have 256 possible states, and 256
possible inputs for each state, and 256 possible next states for all those, that’s
65536 possible state transitions for each state, fortunately we won’t need that
many. We define an array of instances of this structure in Menu.h as follows:

const MENU_NEXTSTATE menu_nextstate[] PROGMEM = {

// STATE INPUT NEXT STATE
{ST_AVRBF, KEY_PLUS, ST_OPTIONS},
{ST_AVRBF, KEY_NEXT, ST_AVRBF_REV},
{ST_AVRBF, KEY_MINUS, ST_TIME},

// Lots more states

{0, 0, 0}
3

We can use this as:

256

Chapter 10: C Structures

menu_nextstate[1].state is defined as ST_AVRBF
menu_nextstate[1].input is defined as KEY_NEXT
menu_nextstate[1].nextstate is defined as ST _AVRBF _REV

We can search this array of structures to find out what we need to do if we are in
the ST_AVRBEF state and the input is KEY_NEXT, we find that particular
structure and see that the next state is ST_AVRBF_REV. Now all we have to do is
find out what we need to do if our next state is ST_AVRBF_REV, which we can
do by searching the menu_state array to find the ST_AVRBF_REV entry. We see
that there is a function defined for this state, and equate the function pointer to it.
Then we can call that function.

Clear so far?

The main() function slorps into an infinite loop, part of which, depending on the
state, is used to search the menu_state array. The following code snippit compares
the present state with the next state [if (nextstate != state)] and, being very
reasonable, does nothing if they are the same. If the states differ, main() sets the
global state variable to the nextstate variable and then accesses the menu_state
structure array to change the current state to the next state.:

if (nextstate != state)
{

state = nextstate;

for (i=0; pgm_read_byte(&menu_state[i].state); i++)

{
if (pgm_read byte(&menu_state[i].state) == state)

statetext =(PGM_P)pgm_read word(&menu_state[i].pText);
pStateFunc = (PGM_VOID_P)pgm _read word(&menu_state[i].pFunc);
break;

}
}
}

Since we took ST_AVRBF_REV to be the next state, so searching the array

causes the snippet to make the function pointer, pStateFunc, point to the Revision
function.

257

Chapter 10: C Structures

Whoa, there | was clicking right along and suddenly, I lost it; maybe its time to
review what I’ve said so far?

We have two data structures, one for storing the text and function
associated with a state and one for finding the next state given the current
state and the input.

We have two structure arrays, one for each of the structures, which define
all the states and transitions.

We have code for searching each of these arrays. One finds the function
associated with a given state and the other finds the next state to use given
the current state and the inputs.

Now how should we use this? We could sit in an infinite loop checking the inputs
and then looking at the current state and seeing if a transition to a new state is
called for. Hey, sounds like a plan. We could write our main() function as follows,
hopefully commented to crystal clarity:

unsigned char state; // holds the current state, according to
“menu.h”

int main(void)

{

// Define our local copies of the state variables
unsigned char nextstate;

PGM_P statetext;

char (*pStateFunc)(char);

char input;

// Define a loop counter
uint8_t i; // char i;

// Initial state variables

state = nextstate = ST_AVRBF;
statetext = MT_AVRBF;

pStateFunc = NULL;

for (;3) // Main loop

// read the joystick buttons
input = getkey();

258

Chapter 10: C Structures

it (pStateFunc) // ITf a state function is pointed to

{
// When a state function is pointed to, we must call it
// and get the results as the nextstate variable
nextstate = pStateFunc(input);

}

else if (input !'= KEY_NULL) // If not, and input not NULL

{
// We call the StateMachine function to examine the
// MENU_NEXTSTATE array to find the nextstate
nextstate = StateMachine(state, input);

3

// Now we know what the next state is
if (nextstate != state) // Do only if the state has changed
{

state = nextstate; // The state changed, so reset it

// Read the MENU_STATE array until we find the entry
// matching the current state
for (i=0; pgm_read byte(&menu_state[i].state); i++)

// 1f we find the entry
it (pgm_read_byte(&menu_state[i].state) == state)

// We load the state variables from that entry

statetext =(PGM_P)pgm_read word(&menu_state[i].pText);

pStateFunc
=(PGM_VOID_P)pgm_read_word(&menu_state[i]-pFunc);

// And we exit the loop

break;

// 1f we found an entry for the pStateFunc, we now loop
back

// to the top were we run it.

}
}
} //End Main loop

return O;

}

Of course, the actual Butterfly main() function does a lot of other stuff, but this
should help you understand the menu state machine part.

259

Chapter 10: C Structures

I know, believe me | know. This is hard stuff, but you should be able to walk
through the Butterfly state machine code now and fully understand how it works.
If you don’t... well, maybe you want to back up to the pointers section and read
slowly till you are back here again. Don’t feel bad, C takes a while to get used to
and the guys who wrote the Butterfly software have very long, cold, and dark
winters to hunker down with little else to do other than get used to C
programming, well, there are the Reindeer...

260

Chapter 11 The Butterfly LCD

Chapter 11 The Butterfly LCD

I read a book (I think it was David Brin’s “Practice Effect’) where some primitive
people found a digital watch with an LCD display. They were amazed that
whoever made the thing was able to train all the little black bugs to run around
and align themselves in such peculiar patterns. And that’s the extent of the detail
I’ll give on the underlying technology of LCDs. We’ll concentrate instead on
using C to train the little black bugs to do our tricks. If you must know the magic,
then Atmel has an application note: AVR065: LCD Driver for the STK502 and
AVR Butterfly available from their website that will get you deep into the gory
details. And the Atmegal69 data book has a nice chapter ‘LCD Controller’ that is
a sure cure for insomnia.

To keep our ignorance even more intact we will begin by using software based on
the LCD-Test software available on http://www.Siwawi.arubi.uni-
kl.de/avr_projects/#bf app noting that the main.c file begins with the confidence
building:

/I mt - used for debugging only - may not work

However, with a few changes and some shoehorning it all into a demonstrator
module, it works just fine. We use these functions without attempting to
understand them. Another way to say this is that we will enhance our productivity
by reusing existing code and conform to object oriented principles by not
allowing ourselves to mess with perfectly good software.

Functions at our disposal in LCD_functions module:

e void LCD_putc(uint8_t digit, char character);
0 Writes a character to the LCD digit
e void LCD_puts(char *pStr, char scrollmode);
0 Writes a string to the LCD
0 *pStris a pointer to the string
o scrollmode is not used
e void LCD_puts_f(const char *pFlashStr, char scrollmode);
0 Writes to the LCD a string stored in flash
0 *pFlashStr is a pointer to the flash string

261

Chapter 11 The Butterfly LCD

o scrollmode is not used
e void LCD_Clear(void);

0 Clearsthe LCD
e void LCD_Colon(char show);

o If show = 0 disables Colon, otherwise enables Colon
e char SetContrast(char input);

0 Uses the value of input from 0 to 15 to set the contrast

PC to LCD test program

Lets modify our messenger program so that we can send strings to the Butterfly to
display on the LCD. We will also add commands to set the contrast, show/hide the
colon, clear the display, set the flash rate, and send strings with flashing
characters.

Instead of running off willy-nilly and writing software, lets start with a short
specification of what we want to test from the PC users perspective.

We will test each function by sending the following command strings to the
Butterfly:

e PUTCdigitcharacter to test LCD_putc(uint8_t digit, char character);
o Send PUTCdigitcharacter where character is a char to be displayed
and digit is the LCD segment to display the input on. For example
PUTCB6A will cause the character A to be displayed on the 6" LCD
digit.
o \Verify function by seeing the correct char in the correct position
e PUTF totest LCD_ puts_f(const char *pFlashStr, char scrollmode);
o \Verify function by seeing the correct string on the LCD
e PUTSstring to test LCD_puts(char *pStr, char scrollmode);
0 Send PUTSstring where string is a string to be displayed. For
example PUTSHello World! will cause the LCD to display ‘Hello
World!”.
o \Verify function by seeing the correct string on the LCD
e CLEAR o test LCD_Clear(void);

262

Chapter 11 The Butterfly LCD

o0 Send CLEAR while displaying text on the LCD
o Verify function by seeing the LCD clear
e COLON to test LCD_Colon(char show);
o0 Send COLON,on/off where on/off is either ON or OFF
o Verify function by seeing colons on LCD turn on or off
o SETCH## to test char SetContrast(char input);
0 Send SETC## where ## is from 0 to 15 and sets the contrast.

We will use this to design the functions needed on the Butterfly. We already have
a command processor designed, so we will reuse that to call the functions on
receipt of the correct command.

e PUTCdigitcharacter
o Call LCD_putc(digit, character);
o Send “Called LCD_putc” to PC where # are the values sent in
decimal
o PUTF
0 Set a pointer, *pFlashStr, to a string in flash
o Call LCD_puts_f(*pFlashStr, scrollmode);
o Send “Called LCD_puts_f” to the PC.
e PUTSstring
0 Load the string and point pStr to it.
o Call LCD_puts(*pStr, scrollmode);
o Send “Called LCD_puts with “string’” to the PC where string is the
string sent.
e CLEAR
o Call LCD_Clear();
0 Send “Called “LCD_Clear()” to the PC
e COLON#
o If#==1call LCD_Colon(1);
o Elseif#==0call LCD_Colon(0);
0 Send “Called LCD_Colon” to the PC where # is the one sent.
o SETC##
o0 Convert ## characters to a numerical value ‘input’
o Call SetContrast(input);

263

Chapter 11 The Butterfly LCD

o Send “Called SetContrast to the PC where # is the decimal number
sent.

NOTE: In LCD_driver.c must comment out #include “main.h”

Now that we have our specification we can run off willy-nilly and write the
software.

We write the Demonstrator.h file:

// Demonstrator.h LCD demo version
void initializer(void);
void parselnput(char *);

And the Demonstrator.c file:

// Demonstrator.c LCD demo version

#include "PC_Comm.h"
#include '"‘Demonstrator.h"
#include "LCD_test.h"
#include "LCD_driver.h"
#include "LCD_functions.h"

// identify yourself specifically
const char TALKING_TO[] PROGMEM = "\r\rYou are talking to the \0";
const char WHO_DEMO[] PROGMEM = *"<“LCD" demo.-\r\r\0";

// bad command
const char BAD_COMMAND1[] PROGMEM
const char BAD_COMMAND2[] PROGMEM

"\rYou sent: "\0";
" - 1 don"t understand.\r\0";

const char LCD_START_msg[] PROGMEM = "LCD demo\0";
void initializer()

// Calibrate the oscillator:
OSCCAL_calibration();

// Initialize the USART
USARTINit();

// initialize the LCD
LCD_Init();

// Display instructions on PC

264

Chapter 11 The Butterfly LCD

sendFString(TALKING_TO);
sendFString(WHO_DEMO) ;

LCD_puts_f(LCD_START _msg, 1);

}

void parselnput(char s[])

// parse first character
switch (s[0])
{

case "d":

if((s[1] == "e") & (s[2] ==

sendFString(TALKING_TO);
sendFString(WHO_DEMO);
break;

case "C":

if((s[1] == "L") && (s[2] ==

ONCLEARQ);

else if ((s[1] == "0")&&(s[2]

ONnCOLON(s);
break;
case "P*

if((s[1] == "U") && (s[2] ==

OnPUTC(S);

else if((s[1] == "U") && (s[2

OnPUTF(s);

m*) && (s[3]

"0") & (s[4] == "?))

"E*) && (S[3] == "A") && (s[4] == "R"))

== "L")&&(s[3] == "07)8&&(s[4] == "N*))

"T*) && (s[3]

D))

== "T") & (s[3] == "F"))

else if((s[1] == "U") && (s[2] == "T) && (S[3] == "S"))

OnPUTS(S);
break;
case "S° :

if((s[1]== C")&&(S[2 =="R")&&(s[3]=="0")&&(s[4]=="L")&&(s[5] == "L"))

ONnSCROLL(S);

else if((s[1] == "E") && (s[2] == "T") && (s[3] == "C"))

OnSETC(S);
break;

default:
sendFString(BAD_COMMAND1) ;
sendChar(s[0]);
sendFString(BAD_COMMAND2) ;
break;

s[0] = °\0";

}

We write, the Messenges.h, LCD_test.h and LCD_test.c files:

// Messages.h

265

Chapter 11 The Butterfly LCD

// LCD test messages

const char PUTF_msg[] PROGMEM
const char PUTS_msg[] PROGMEM
const char PUTC_msg[] PROGMEM "Called LCD_putc\r\0";
const char CLEAR_msg[] PROGMEM = *"LCD_Clear()\r\0";

const char COLON_msg[] PROGMEM = ""Called LCD_Colon\r\0";
const char SETC_msg[] PROGMEM = "Called SetContrast\r\0';
const char SCROLL_msg[] PROGMEM = "Called OnScrollI\r\0";

"Called LCD_puts_f \0";

// LCD_test.h

void OnPUTF(char *PUTFstr);
void OnPUTS(char *pStr);
void OnPUTC(char *PUTCstr);
void OnCLEAR(void);

void OnCOLON(char *pOnoff);
void OnSETC(char *SETCstr);
void OnSCROLL(char *SCROLL);

// LCD_test.c

#include "LCD driver.h"
#include "LCD_functions.h"
#include "LCD_test.h"
#include "PC_Comm.h"
#include "Messages.h"

// Start-up delay before scrolling a string over the LCD.
extern char gLCD_Start_Scroll_Timer;

//PUTF,#

//Verify that # represents a valid string in flash.
//Set the pFlashStr pointer to the string

//Call LCD_puts_f(*pFlashStr, scrollmode);

//Send "Called LCD_puts_f" to the PC

void OnPUTF(char *PUTFstr)

"Called LCD_puts with \0";

"LCD_driver.c"

{ sendFString(PUTF_msg);
PGM_P text;
text = PSTR('LCD_put_f test\0"); // won"t show the _
LCD_puts_f(text, 1);

}

//PUTS,string

//Load the string and point pStr to it.
//Call LCD_puts(*pStr, scrollmode);

266

Chapter 11 The Butterfly LCD

//Send "Called LCD_puts with "string™" to the PC.
void OnPUTS(char *pStr)

{

sendFString(PUTS_msQ);

sendString(pStr);

LCD_puts(&pStr[4].,0); //0Overlook the PUTS part of the string
}

//PUTC,digit,character

//Call LCD_putc(digit, character);
//Send "Called LCD_putc™ to PC.
void OnPUTC(char *PUTCstr)

{ uint8_t digit;
sendFString(PUTC_msQg);
digit = (uint8_t)(PUTCstr[4] - 48);// convert to integer
if(digit <= 6)
LCD_putc(digit,PUTCstr[5]);
LCD_UpdateRequired(1,0);
}
}
//CLEAR

//Call LCD_Clear();
//Send "*Called "LCD_Clear()™ to the PC
void OnCLEAR(void)

{
sendFString(CLEAR_msQ);
LCD_Clear();

}

//COLON,on/off

//Verify that on/off is either "ON" or "OFF"
//1F ON call LCD_Colon(1);

//Else call LCD_Colon(0);

//Send ""Called LCD_Colon" to the PC.

void OnCOLON(char *pOnoff)

{
sendFString(COLON_msg);

i fF(POnoffF[5] == "1%)
{

LCD_Colon(1);

267

Chapter 11 The Butterfly LCD

}
else if (POnoff[5] == "0%)
{

LCD_Colon(0);

}

//SETC
//Call SetContrast(input);
//Send ""Called SetContrast(#) to the PC where # is the decimal number
//sent. Note values are from 0 to 15
void OnSETC(char *SETCstr)
{
char temp[] = {"\0","\0","\0"};
int input;

sendFString(SETC_msg);

temp[0] = SETCstr[4];
temp[1] = SETCstr[5];

input = atoi(temp);
SetContrast(input);

}

// SCROLL

// Start scroll if input == 1

// Stop scroll if input ==

// Send “Called OnScroll” to the PC
void OnSCROLL(char *scroll)

{
sendFString(SCROLL_msQ);
if(scroll[6] == "17)
gScrolIMode = 1; // Scroll if text is longer than display size
gScroll = 0;
gLCD_Start_Scroll_Timer = 3; //Start-up delay before scrolling
}
else if (scroll[6] == "0%)
gScrollMode = 0;
gScroll = 0;
}
}

268

Chapter 11 The Butterfly LCD

Modify the makefile with:

SRC += Demonstrator.c \
LCD test.c \
LCD_driver.c \
LCD_functions.c

And we make sure the LCD_driver and LCD_functions .h and .c files are in the
same directory as the rest. Compile and download as usual.

Open Bray’s Terminal and connect to the Butterfly. You should see:
You are talking to the "LCD" demo.

And the Butterfly LCD will be scrolling “LCD DEMO”

In the output window of Bray’s Terminal type:
CLEAR

The LCD will clear. Now type:

PUTCOA
PUTC1B

And you will see AB on the LCD. Type in:
SCROLL1

And the LCD will scroll the AB. Type in:
SCROLLO

And the LCD will stop scrolling the AB. Type in:
PUTF

And the LCD will show:

269

Chapter 11 The Butterfly LCD

LCD PUT F TEST

Notice that the message in flash was ‘LCD put_f test’ but the underline isn’t
shown on the LCD because there isn’t one in the LCD character set. However,
there is no good reason not to have this character sense all you have to do us use
the bottom most little black bug, an exercise that, as they say, will be left to the
student. (Teachers make this statement not because they want to educate the
student, but because they are too lazy to do it themselves. Or maybe that’s just
me.)

Conclusion

You will find that much of C programming for microcontrollers uses various
‘tricks’ to modify C to be more efficient for a specific microcontroller and a
specific compiler. These tricks are often found by reading programs written by
experienced programmers. You have access to the Butterfly software as modified
by the folks using WinAVR, bf _gcc_20031205.zip, and | suggest you read it since
these guys are the real experts. But do be careful. One of the main reasons to use
C is to write portable code, so be sure you make you tricks easily retrickable for
other systems.

Now that you’re familiar with C and the Butterfly software, go to the WinAVR
directory and find the avr_libc user manual. At 185 pages, it provides excellent
documentation for the avr_libc subset of the Standard C Library for the ATMEL’s
AVR. It also provides some other goodies, such as start up examples and good
solid example code to learn from. Since, they did such a good job documenting
this resource, I’ll go no further, other than to say that this library will likely
become an indispensable tool for your programming future.

Well, I hope you met your goals for using this book.

You should have gained a basic understanding microcontroller architecture. You
should have an intermediate understanding of the C programming language. You
should be able to use the WinAVR and AVRStudio tools to build programs. You
should be able to use C to develop microcontroller functions such as: Port Inputs
and Outputs, read a joystick, use timers, program Real Time Clocks, communicate

270

Chapter 11 The Butterfly LCD

with PC, conduct analog to digital and digital to analog conversions, measure
temperature, light, and voltage, control motors, control an LCD.

If 1 was successful in helping you achieve these goals, after you tell all your
friends, you might want to keep tabs of my website: www.smileymicros.com to
see what other good stuff is available.

Happy programming!

271

Appendix 1: Project Kits

Appendix 1: Project Kits

Note: check the website: www.smileymicros.com to see if any of these items
are available there for less (don’t forget to include shipping and handling in
your calculations when figuring ‘less’).

Parts Lists (Prices for Spring 2005):

From Digi-Key:

Note: Digi-Key charges a $5 handling charge on all orders under $25. Since the
AVR Butterfly is $19.99 they add the $5 charge, but if you buy $5.01 additional
items, they drop the $5 handling charge, giving you $5 worth of stuff for a penny.

So add $1.84 of extra parts to the order and get $5 free. | like free, don’t you?

Description Part Number Quan | Price/Unit | Total
AVR Butterfly ATAVRBFLY-ND 1 19.99 19.99
D-SUB 9 female solder cup 209F-ND 1 0.63 0.63
Female header single 2 pin S4002-ND 1 0.21 0.21
Female header single 3 pin S4003-ND 1 0.30 0.30
Female header single 4 pin S4004-ND 1 0.39 0.39
Female header double 10 pin S4205-ND 2 0.82 1.64
Subtotal 23.16
MORE STUFF — see note | Your choice - see note 1.84
Total 25.00
From JAMECO:

Description Part Number Quan | Price/Unit | Total
Breadboard 20722CP 1 8.95 8.95
Wire cutter striper 127870 1 5.49 5.49
22 awg 100’ white solid wire 36880 1 5.49 5.49
Battery holder — 2 size D 216389 1 0.89 0.89
Switch 204142 1 0.39 0.39
Data 1/0

LEDs red 11797 10 0.19 1.90
Resistors 330 Ohm 1/8 watt 107967 100 0.0069 0.69

273

Appendix 1: Project Kits

8 position DIP switch 30842 1 0.89 0.89
Potentiometer — 10 kOhm | 264410 1 118 118
PWM Motor Control

Motor 231896CA 1 0.99 0.99
Power Transistor — TIP115 288526 1 0.48 0.48
Optoisolator — 4N28 41013 1 0.46 0.46
Diode — 1N4001 35975CA 10 0.03 0.30
9v Connector 216451 1 0.34 0.34
Slotted Interrupter - H21A1 114091CL 1 0.69 0.69
2.2 k Ohm resistor 108054 100 0.0069 0.69
Solder Kit

Description Part Number Quan | Price/Unit Total
Soldering iron 208987 1 2.99 2.99
Solder 170456 1 1.39 1.39
Solder wick 410801 1 1.49 1.49

274

Appendix 2: Soldering Tutorial

Appendix 2: Soldering Tutorial

I’ve got a pretty good soldering station that | inherited from a company that |
worked for that went belly-up. They couldn’t pay me for the last month’s work |
did, so they let me load up on equipment which was either generous of them or
saved them from paying to have it hauled off. But since this text is trying to get
the most educational value for the least educational buck, I thought 1I’d get the
cheapest soldering iron I could find and see if it would work well enough for
student use. The iron in Figure 40 was less than three bucks from JAMECO and
worked just fine.

First warning: these things get hot, cause fires, and char skin. If you burn yourself
more than once, join the club. Some of us are just harder to train. Saying don’t set
up your soldering station near anything flammable, seems silly, but remember, my
nickname is Smokey Joe and there are reasons for that.

Second warning: the solder has a rosin core and produces a nice trail of smoke
that contains God-knows-what kind of chemicals and heavy metals. This smoke is
very intelligent and will head straight for your nose. If you want to see real magic
at work, try changing your position and soldering techniques to avoid the smoke:
nothing works! Smart smoke will find you. Use a cheap fan to blow away from
your soldering area and share the toxic crap with everybody in the room.

I’ve also included solder wick on the JAMECO list. This is braided copper wire
and does what its name implies, it wicks solder. Just stick it to the bad glob you
want to remove, heat it up and watch the power of capillary action and note that
your are holding the copper between your thumb and forefinger about one inch
from the tip of the soldering iron which quickly teaches you that copper is a poor
insulator. Yeouch... is a common soldering term.

275

Appendix 2: Soldering Tutorial

Figure 41: Seasoning the tip

When you first plug in your soldering iron stand by with the solder and as soon as
the tip heats up (takes a while on a cheap iron) liberally coat it with solder as
shown in Figure 41. The rest of the tip will rapidly loose its shiny newness and
develop a burned look. The seasoned part will remain shiny and useful.

Get an old cellulose or natural sponge to use to clean the excess solder off the tip.
Keep it moist and when the tip gets crapped up with charred resin, circuit board,
and finger-burn goo, just wipe it on the sponge and ... ssssssttt... it’s all clean and
shiny again. Don’t use a synthetic sponge unless you really like the stench of
burning plastic.

276

Appendix 2: Soldering Tutorial

Now go and scrounge some broken circuit boards from a dumpster somewhere.
You might have to bust open some discarded electronic device, the older and
cheaper the better. Now look at those solder joins. That’s what a good join is
supposed to look like. It looks like the solder melted, adhered, and slumped
around whatever it is on. Now use the wick to clean off some joins, and then try
to resolder them. Heat the join area and put the solder to it. Don’t heat the solder
and stick it to the join. Don’t take too long, get it on and get the tip away. ‘Too
long’ is subjective, just get the join soldered as quickly as possible. Piece of cake.
If your join is bulbous or looks like it is sitting on the join and didn’t slump into
it, it is a bad solder. If it looks dull and crinkly rather than smooth and shiny, it is a
bad solder. This isn’t rocket science; you should be an expert in a couple of
minutes. And be thankful that we won’t be using any surface mount parts. That
ain’t easy to do with a cheap iron.

277

Appendix 3: Debugging Tale

Appendix 3: Debugging Tale

Sometimes you have to search high and low to find out what a something really
means. For instance, we often see the sbhi() function, as in Butterfly main.c:

sbi(DDRB, 5); // set OC1A as output
sbi(PORTB, 5); // set OC1A high

We search around a while and eventually in sfr_def.h we find:
[** \def sbi

\ingroup avr_sfr

\deprecated

\code #include <avr/io.h>\endcode
For backwards compatibility only. This macro will eventually be removed.

Set bit \c bit in 10 register \c sfr. */
#define sbi(sfr, bit) (SFR_BYTE(sfr) |= _BV(bit))
This means that sbi() is not a function, it’s a macro, and a deprecated one at that.
By deprecation, they mean that we shouldn’t use in and eventually it may go
away. To understand what it does though, we need to find the definition of
SFR_BYTE(sfr) and _BV/(bit) and we can now guess these aren’t functions, but
macros. More searching and in the same header we find:

#define _SFR_BYTE(sfr) _MMIO_BYTE(_SFR_ADDR(sfr))

Hmmm... that’s not a lot of help so more searching to find out what
_MMIO_BYTE and SFR_ADDR mean. In the same header we find:

#define _MMIO_BYTE(mem_addr) (*(volatile uint8_t *)(mem_addr))

Okay, we still don’t know. So we look for uint8_t, which is tucked away in the
bf _gcc directory readme.txt:

- changed some char to uint8_t to avoid compiler warnings.

279

Appendix 3: Debugging Tale

Now we can speculate that uint8_t is a char. | say speculate because going further
would require poking around in the gcc compiler stuff, and 1’d rather live with my
guess than suffer that. Anyway, I’ve already lost track of what | was trying to
figure out in the first place. All theses layers of deception can be quite dense.
Let’s state what we found.

_MMIO_BYTE is a macro that declares mem_addr to be a pointer to a volatile
char pointer. I’m getting scared, how about you?

Backing up a bit we look at the _SFR_BYTE macro and see that it provides
_MMIO_BYTE with a mem_addr of the type SFR_ADDR. Oh, bother. What is
a_SFR_ADDR? Well, in sfr_defs.h we find:

#define _SFR_ADDR(sfr) _SFR_MEM_ADDR(sfr)

Which doesn’t help so we look for SFR_MEM_ADDR and find:

#define _SFR_MEM_ADDR(sfr) ((uint16_t) &(sfr))

We now know that SFR_ADDR is an alias for SFR_MEM_ADDR which is
macro to declare sfr as a uint16_t, and we’ll guess that’s a 16 bit integer. What the
heck is the & for? Let’s do some substitutions. If you remember we were trying to

understand the meaning of the sbi macro and it had _SFR_BYTE(sfr) in it so:

We had: _SFR_BYTE(sfr)
which is and alias for: _MMIO_BYTE(_SFR_ADDR(sfT))

the SFR_ADDR aliased _MMIO_BYTE(_SFR_MEM_ADDR(sfr))
that aliased _MMIO_BYTE(((uintl6_t) &(sfr)))

and _MMIO_BYTE aliased (*(volatile uint8_t *)(((uintl6_t) &(sfr))))
which we can substitute for the _SFR_BYTE(sfr) in the sbi macro

#define sbi(sfr, bit) (SFR_BYTE(sfr) |= _BV(bit))

280

Appendix 3: Debugging Tale

Substitution yields:
#define sbi(sfr, bit) ((*(volatile uint8_t *)(((uintl6_t) &(sfr)))) |=_BV(bit))
And BV is? In pgmspace.h it is:
#define _BV(bit) (1 << (bit))
More substitiuton yields:
#define sbi(sfr, bit) ((*(volatile uint8_t *)(((uintl6_t) &(sfr)))) |= (1 << (bit)))
By the by, what’s a volatile? It is an implementation specific type qualifier that
tells a complier to suppress optimization that might, in our case, screw things up if
we are using pointers to memory mapped registers. We don’t want the compiler to
help us by using some other memory address since a register is hardwired into the
machine and though addressed like memory, isn’t ordinary memory. \Volatile also
tells the compiler that that the so modified variable can change unexpectedly (like
by an interrupt) so it needs to be checked each time it is used and not just stored
somewhere like on the stack.
More substitution for an actual use of sbi:

shi(PORTB, 5); I/ set OC1A high
yields:
((*(volatile uint8_t *)(((uintl6_t) &(PORTB)))) |= (1 <<(5)))
But the complier doesn’t know what PORTB is. What is it?
From i0169.h
#define PORTB _SFR_I08(0x05)/* PORTB */

and _SFR_108 id defined in sfrdefs.h:

281

Appendix 3: Debugging Tale

#define _SFR_108(io_addr) _MMIO_BYTE((io_addr) + 0x20)
Goody, we already know what _ MMIO_BYTE is so we can do substitutions:

PORTB is_SFR_108(0x05)
_SFR_108(0x05) is_MMIO_BYTE((0x05) + 0x20)

_MMIO_BYTE((0x05) + 0x20) is (*(volatile uint8_t *)((0x05) + 0x20))
yields:

((*(volatile uint8_t *)(((uint16_t) &((*(volatile uint8_t *)((0x05) + 0x20))))))
|= (1<<(5)

What we wrote was:
sbi(PORTB, 5); // set OC1A high
What the compiler sees is:

((*(volatile uint8_t *)(((uint16_t) &((*(volatile uint8_t *)((0x05) + 0x20)))))) |=
(1<<(5)

Aren’t you glad you aren’t a compiler?

282

Appendix 4. ASCII Table

Appendix 4: ASCII Table

Table 9: ASCII Table

Char

Dec Hex | Char

Dec

Char Dec

ASCI1 Name Description

nul
bel
bs
ht
np
nl
cr
vt
esc

sp

+ INA T RRHH

OCO~NOUDMWNEON!

30 Oxle
31 Ox1f

NV oI A

null byte

bell character
backspace
horizontal tab
formfeed
newline
carriage return
vertical tab
escape

space

C Escape

\O
\a
\b
\t
\f
\n
\r

Db /PN X=E<LCHOVWITO UVOZEIrXNO=TITOTMOOT>E

Sequence

283

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
(del) 127

| A= N X E<CHNSOQOTOSSmxmmTQ=H000TQ®

Appendix 5: Decimal, Hexadecimal, and Binary

Appendix 5: Decimal, Hexadecimal, and
Binary

Table 10: Decimal, Hexadecimal, and Binary Conversion

Dec Hex Bin Dec Hex Bin Dec Hex Bin Dec Hex Bin

0 0 00000000 64 40 01000000 128 80 10000000 192 cO 11000000
1 1 00000001 65 41 01000001 129 81 10000001 193 c1 11000001
2 2 00000010 66 42 01000010 130 82 10000010 194 c2 11000010
3 3 00000011 67 43 01000011 131 83 10000011 195 c3 11000011
4 4 00000100 68 44 01000100 132 84 10000100 196 c4 11000100
5 5 00000101 69 45 01000101 133 85 10000101 197 c5 11000101
6 6 00000110 70 46 01000110 134 86 10000110 198 c6 11000110
7 7 00000111 71 47 01000111 135 87 10000111 199 c7 11000111
8 8 00001000 72 48 01001000 136 88 10001000 200 c8 11001000
9 9 00001001 73 49 01001001 137 89 10001001 201 c9 11001001
10 a 00001010 74 4a 01001010 138 8a 10001010 202 ca 11001010
11 b 00001011 75 4b 01001011 139 8b 10001011 203 cb 11001011
12 c¢ 00001100 76 4c 01001100 140 8c 10001100 204 cc 11001100
13 d 00001101 77 4d 01001101 141 8d 10001101 205 cd 11001101
14 e 00001110 78 4e 01001110 142 8e 10001110 206 ce 11001110
15 f 00001111 79 4f 01001111 143 8f 10001111 207 cf 11001111

16 10 00010000 80 50 01010000 144 90 10010000 208 dO 11010000
17 11 00010001 81 51 01010001 145 91 10010001 209 dl1 11010001
18 12 00010010 82 52 01010010 146 92 10010010 210 d2 11010010
19 13 00010011 83 53 01010011 147 93 10010011 211 d3 11010011
20 14 00010100 84 54 01010100 148 94 10010100 212 d4 11010100
21 15 00010101 85 55 01010101 149 95 10010101 213 d5 11010101
22 16 00010110 86 56 01010110 150 96 10010110 214 d6 11010110
23 17 00010111 87 57 01010111 151 97 10010111 215 d7 11010111
24 18 00011000 88 58 01011000 152 98 10011000 216 d8 11011000
25 19 00011001 89 59 01011001 153 99 10011001 217 d9 11011001
26 la 00011010 90 5a 01011010 154 9a 10011010 218 da 11011010
27 1b 00011011 91 5b 01011011 155 9b 10011011 219 db 11011011
28 1c 00011100 92 5c 01011100 156 9c 10011100 220 dc 11011100
29 1d 00011101 93 5d 01011101 157 9d 10011101 221 dd 11011101
30 l1le 00011110 94 5e 01011110 158 9e 10011110 222 de 11011110
31 1f 00011111 95 5f 01011111 159 9f 10011111 223 df 11011111
32 20 00100000 96 60 01100000 160 a0 10100000 224 e0 11100000
33 21 00100001 97 61 01100001 161 al 10100001 225 el 11100001
34 22 00100010 98 62 01100010 162 a2 10100010 226 e2 11100010
35 23 00100011 99 63 01100011 163 a3 10100011 227 e3 11100011
36 24 00100100 100 64 01100100 164 a4 10100100 228 e4 11100100
37 25 00100101 101 65 01100101 165 a5 10100101 229 e5 11100101
38 26 00100110 102 66 01100110 166 a6 10100110 230 e6 11100110
39 27 00100111 103 67 01100111 167 a7 10100111 231 e7 11100111
40 28 00101000 104 68 01101000 168 a8 10101000 232 e8 11101000
41 29 00101001 105 69 01101001 169 a9 10101001 233 e9 11101001
42 2a 00101010 106 6a 01101010 170 aa 10101010 234 ea 11101010

285

Appendix 5: Decimal, Hexadecimal, and Binary

00101011
00101100
00101101
00101110
00101111
00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

01101011
01101100
01101101
01101110
01101111
01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010
01111011
01111100
01111101
01111110
01111111

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

286

10101011
10101100
10101101
10101110
10101111
10110000
10110001
10110010
10110011
10110100
10110101
10110110
10110111
10111000
10111001
10111010
10111011
10111100
10111101
10111110
10111111

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

11101011
11101100
11101101
11101110
11101111
11110000
11110001
11110010
11110011
11110100
11110101
11110110
11110111
11111000
11111001
11111010
11111011
11111100
11111101
11111110
11111111

Appendix 6: Motor Speed Control Wheel

Appendix 6: Motor Speed Control Wheel

287

Appendix 7: HyperTerminal

Appendix 7: HyperTerminal

This book origianally used HyperTerminal for PC communications, but some
folks were so adamant in their revulsion of HyperTerminal that | had to finally
admit that maybe this wasn’t just the pervasive hatred of MicroSoft, but was due
to HyperTerminal itself. It is very hard to get set up and going properly and some
folks said it was buggy and unreliable. | received permission from Br@y++ to use
his terminal so that is the one shown in the Quick Start Section. The remaining
sections still have illustrations from HyperTerminal, but you can and probably
should use Bray’s Terminal since it is simple and lots of folks love it. Both are
free.

Test Your Connection:

The Butterfly comes with built-in code that allows you to communicate with a PC
COM Port to change “Your name”. This is a good way to see if your hardware is
working like it should be.

e Connect an RS-232 cable between your Butterfly and your PC as in Figure

10. Open HyperTerminal

e On you PC taskbar GOTO Start, Programs, Accessories,
Communications and click on HyperTerminal, then take a deep breath,
because HyperTerminal was not really designed with your use in mind,
so it can be confusing (but it IS free).

e Where it asks for a new connection name, call it Thunderfly or
something equally memorable, and select the least dorky icon you can
find in the list. | favor the atom next to the phone, because it makes no
sense whatever.

Connection Description

% MNew Connection

Enter a name and choose an icon for the connection:

i
ThunderFly

o]

289

Appendix 7: HyperTerminal

The “New Connections Properties’ window opens and select the COM
Port you are connected to:

New Connection Properties

Connect To | Sattiﬁgs

S ev"‘ MNew Connection Change lcon...

Country/region:

Enter the area code withaut the long-distance prefix.
Area code:

Phane rurmber: |

Connect using _.CDM1 M

Conexant BEK ACLink Modem
COM3
TEPAP [Winsock]

If you don’t know what Com Port you are connected to:

Your computer’s manual will tell which COM Port you are using. But
since you’ve lost your manual...

Click the start button

Click the settings button

Click the control panel button

(If you are using XP, hunt around, it’s all there somewhere)

In the control panel, click the System button

Depending on your OS, hunt for the Hardware panel, and then click
the Device Manager button (Why does Microsoft have to do this
differently on every 0S?)

In the Device Manager, expand the Ports(COM & LPT)

If fortune smiles, you’ll only have one COM Port and it will be
COML.

If you have multiple COM Ports that aren’t being used, then go find
that darn manual! Or look at you connections on the back of your PC
and hope one of them is labeled, or just plug it in an guess which COM
Port it is connected to. If you guess wrong, just try the next one
COM1, COM2, COM3... until it works, and next time you buy a PC,
put the manual somewhere that you can find it.

290

Appendix 7: HyperTerminal

e Set the COM Port communications parameters:
e Bits per second to 19200, data bits to 8, parity to None, stop bits to 1,
and flow control to None

COM1 Properties

Fort Settings |

Bits per second: | 15200

Data bits: |8 v
Paiity: | Nore v

Stop bits: |1 v
Flow cantrol: | None v

e Click OK and the Properties Window appears, click the Settings tab.

ThunderFly Properties

| EonnectTo-! Settings |

Function, arraw, and ctrl keps act ag
(& Teminal keys) Windows keys

Backspace key sendz
@ cuH (O Del (O ChlH, Space, Ctil+H

E muilation:

IAuto detect w | Termninal 5 etup:.

Telnet teminal I |&NSI

Backscroll buffer lines: iEDD -
[Play sound when connecting ar disconnecting
[Input Tranglation...] | ASCI Setup... |

[Ok H Cancel]

291

Appendix 7: HyperTerminal

e And the ASCII Setup button, and fill out that Window as below:

ASCIl Setup

ASCH Sending
Send ine endz with line feeds
Echo typed characters locally

Line delay: |0 | millizeconds.

Character delay: EI | millsecands.

| ASCH Receiving

Append line feeds to incoming line ends
[] Force incoming data ta 7-bit ASCH
“Wrap lines that exceed terminal width

I] | [Cancel

e By now you are almost surely as sick of HyperTerminal as | am, but if
you’ve done everything right (and if you are like me, you haven’t) you’re
ready to program “Your Name” in the Butterfly.

On the Butterfly click the joystick down until you see NAME.

Click the joystick right to “ENTER NAME”

Click the joystick down to “DOWNLOAD NAME”

Center the joystick and press it. (By the way, do you know where the term
‘joystick’ comes from?) The message “WAITNG FOR INPUT ON
RS232” appears on the LCD.

e Return to the PC and HyperTerminal. Type ‘Hello world” and hit enter.

292

Appendix 7: HyperTerminal

& ThunderFly - HyperTerminal
File Edit View Call Transfar Help

DF # 8 0H &

Hello world

Connected 0:00:32 Auto detect Auto detect £ - UK

e You’ll now see your message scrolling across the Butterfly LCD. If not,

notice that you have three areas that you can mess up:

e Soldering and connecting the RS232

e Selecting the correct COM Port

e Setting up HyperTerminal properly
So if its not working by this point go back and meticulously retry everything you
can think of, including passing a dead chicken over the setup while chanting
voodoo hymns. It took me a while to get all this running and | supposedly know
what I’m doing, so don’t feel bad if this is a little harder than you might hope.
(You get what you pay for)

293

Index

Index
e 51
e 51
D 52
D s 52
#AefiNe .o, 94
HINCIUDE ..o, 94
00 ittt e eerr e 51
G0 ittt 61
& i, 51, 53, 56
& i, 52
&= i 61
() e 52
Eal PRI 51
FaE 61
L e 52
... 51
L e 51
I e 61
2 e 52
[oo, 51
LA PRPRRRRRR 53
D et 61
[53, 56
| 52
T 61
e 53
S TR 51
o 51
e 61
L 52
et e 53
KT ittt 61
s 52
T 61

295

T 61
e 52
> 52
e 51
D 52
> e 53
D TSR o0l
ADC 21, 207, 208, 212, 213, 214,

215, 216, 217, 218, 219, 220, 221,
222,223, 225, 227, 231, 233, 236,
237

Adition......cevvveeiiiiiee e, 51
AAress Of ...cvveeiieniiie e 51
Addresses of variables................. 153
Analog to Digital Conversion210
Arithmetic Operators............c.c...... 50
Array element.........coceeeeiiiieeeeiinnnen. 51
array of pointers to arrays............ 172
AITAYS .o 153, 159
Arrays in RAM and ROM........... 171
ASCIl o, 82, 181, 283
assembly language 12,13, 154
Assignment Operators................... 61
ASSOCIALIVILY ..o 62
ATMEGAL69 15, 17, 20, 31, 66, 248
1 (0] [T 81
AVRStudio..... 19, 20, 31, 35, 68, 150

BCD - Binary Coded Decimal .. 180
binary..43, 45, 46, 47, 48, 53, 54, 59,
75, 154, 186, 212, 249

Binary Coded Decimal.............. 180
Bit-fields........ccooeviiiiii 247
BitS .o 45, 53, 60, 98, 124
Bits per secondccccevevieennnenn 291

Index

Bitwise AND.......ccooevviiiinriieeeeeeniinns 53
Bitwise complementccccevveenns 53
Bitwise ORccvveeeeeeiiiiiiireeeeeee e, 53
BlocKS......ccoeeiiiiiiinnns 39, 40, 73, 92
Breakcoovveeieiieiiie e 79
Brightness Control 134
BYIES. ... 45
calibration..........cccoevvevveiiiiin e, 121
CASE . uuuuurrrrrrrrrrrerrererererererrrrrerraraeaee 76
o7 | AT 52,190
(0] 0 F= | g 48
Circular Buffers..........cco...... 167, 168
CISC.oieeee e, 12,13
COM.....oovvviiinenns 289, 290, 291, 293
COMOAD.....cccooeeeeeeireiee e, 57, 58
COMOAL.....cc.ovveeiiieiieeeen, 57, 58
(070] 1010 11T 0 £ 161
CommeNntscoeevvvveeeeee i, 39
Conditional 52, 62, 64, 96
Conditional Inclusion.................... 96
Connections Properties 290
CoNnStantS........covevvvreeeeeee i, 49
COoNtINUE ..o 79
Control FIOWcocvviiiiiiiiieene, 73
COUNLEIS v 119

CS00.... 57, 58, 59, 60, 194, 204, 235
CS0157, 58, 128, 129, 133, 135, 143,

150, 235
CSO2....ocovvveeieeieennn, 57, 58, 59, 235
Cylon......... 34, 35, 39, 46, 70, 94, 96
CYIONEYES.C..coovvvrririeeeee e, 70
) AN O 207
Data TYPES....cccovvviiiieiiieeiieesiieens 45
databooK..........coeeiviiiiiiecee, 15
Debugging...... 51, 73, 110, 207, 210,
216, 221, 279
Declarationscoceevveveeiieeenenne 50

296

DECremMeNt......cceevcivieeeeiiieeeeeiiieeeens 51
DEMONSEratoOr-C .uvveeeeeeeriiiiirrrreeenenns 99
Demonstrator.h..........cccceevnneen.. 99
Digi-Key.......cccovevnene 17, 18, 66, 273
Digital Oscilloscope.................... 227
Digital to Analog Conversion 227
DiViSION ..o 51
Do-while......cocoovviiiiee 78
durationccccevveveiieie e 192
Encapsulation ... 87
Equal to ..cocoviiiieeeee e, 52
Escape Sequencescccceveveenienne 82
Expressions............ 39, 45, 61, 62, 73
External variable.............c...c.o...... 90
FIFOS oo 167
Flow Controlcccccveveenne. 40, 98
FOCOA.....ccoveeeee, 58, 143, 150
FOCA ... 57
FOr e 78
frequency.....cccccceveeiec e, 190

Function... 52, 87, 122, 157, 166, 169,
227, 230, 231, 232

Function Arguments.............c....... 157
Function Generator 227
Function Pointerscc.ccceveeneen. 169
Functions................. 41, 87, 169, 243
GOAlS ... 14
{70] (o J 80
Greater thanevvvvvevvvvvveneninnnnn, 52
Headers........cccoeeveeeiiiiiiie i 92

hexadecimal .. 43, 46, 47, 48, 82, 180

Hyperterminal 103, 118, 133, 136,
150, 173, 176, 188, 216, 223, 227,
230, 236, 289, 292, 293

If-Else and Else-If......c.oovvvvviiiin. 74
Include FileS.......cco 39
016 =T 10T T 51

Index

INAIrection........coovvvvvieieiiiie e, 51
INE e 49
INEITUPT ... 178
INtErruptsc.oevvieeeieecie e, 109
TE0@. e 81

JAMECO 22, 26, 137, 225, 227, 273,
275, 276

joystick 15, 32, 33, 68, 75, 76, 98,
110, 111, 114, 116, 118, 119, 150,
151, 270, 292

LabelS ...ccvviieiiiiiee e 80

LED..23, 26, 43, 46, 69, 70, 75, 128,
129, 134, 136, 137

LEDs ..15, 26, 27, 34, 35, 36, 39, 43,
45, 46, 47, 48, 65, 67, 68, 70, 115,
134, 135, 147, 154, 273

Left Shiftooovvveeiieeceeecee e, 53
Less thanccceeveveeiiienniie e 52
LIFOS ..o 167
Light .o, 219
Light Meter.........ccocevviiiviiieinnn, 219
Logical.......cceevrierieniiee 52, 64
Logical NOTcccceevviieeceiiieee e, 52
[o] o o PSS 49
LOOPS . eiiiiieeiiee e 78
machine language.........c.cccccceeuvnnee. 12
Macro Substitution........................ 95
MaiN()...ooeeevreeeeere e 42
MaSKINGcovveeiieiieie e, 248
Member selectionccccevvvvvennnen. 51
messenger software 174
MOAUIO ... 51
Motor Speed Control................... 137
Multiplication..........cccveevvivveeeiinnnnn. 51
NEgationcccvvveeviiiieeeeiiieee e 51
nitialization..........cccocceveveieiiennenne. 92

297

Operators.. 40, 45, 50, 51, 52, 53, 61,
63

optoisolator.............cccceuveenee. 137, 144
Order of Evaluation............c.......... 62
OSCCAL_calibration.................. 122

oscillator... 99, 104, 105, 115, 121, 123,
124,125, 127, 128, 130, 132, 140,
142, 147, 149, 162, 175, 178, 183,
199, 208, 222, 232, 235

O O 111 o 102
O O o 1111 A o 102
PIEZO ..o 192
play atunecooevvevieiineinnenn, 194
POINTEIS....vviiiiiieee e 153
pointers to arrays........cccceeevveenen. 189
potentiometer..........cccoevvvververnenn. 225
Precedence.........cccveviiniienciiinnnn, 62
preprocessor 39, 94, 95, 97, 112, 246
Preprocessorocvveviveeiiveeiiieeenns 9
Programmers Notepad...... 19, 27, 36,
114, 130, 174, 182, 195
Pulse Width Modulation...... 134, 137
PWM ..o 193
QUEBUES ..., 167, 168

Real Time Clock...15, 178, 182, 183,
188

Real Timer Clock Software......... 182
RECUISION.....vvieivieeiiee e 93
Register variable...............ccocnene. 90
RETUMMNS .ovveee e, 89
(1Y £ 81
Right shift ..o, 53
RISC...ooi e, 13
RS-232...cveiiiiieeennn, 21, 22, 26, 289
RXD oo 21,22, 96
Sawtooth Wave..........cccccceveeenneen. 231

Index

SCOPE .ot 91
Simulationcoeveveeiiiieee i, 35
simulator.......cccocveeeeiveenee, 27,32, 35
Sine Wave.......cccccoeevveeeiiciine e, 231
sourceforge.............. 19, 35, 172, 189
Speedometer........coevvvveieeiiieeinnn, 144
Square Wave.........cccocveveeiieeninns 231
StACKS v 167
Statements.......ccccoeevveeeenns 39, 40, 73
Statements and Blocks................... 73
Static variable.........ccccoeveeiivieenen. 90
) £ (=1 DR 81
Structure Arraysccceveeevveeninns 246
SEIUCTUIES oo 241
Structures and Functions............. 243
SUBLIACtION.....cccvv i, 51
Successive Approximation.......... 211
SWILCN. v, 75
Tale of abug.......cccccovvevviiiiiiens 73
TCCORAcoeeeve 59, 60, 61, 135

TCCROA 57, 58, 59, 60, 128, 129,
133, 135, 143, 150, 194, 204, 235
Temperaturecccoocveevveeniinnens 220

298

Temperature Meter.........ccccocveen. 220
tEMPO...eeiii e 191
Testing BitScccocveveeveeveeieiienns 60
TimerQ interruptcceevvvevveenen. 194
TIMErS .o 109, 119
Triangle Waveccccceceveiveeen. 231
TXD oo 21, 22, 96
Typedef......cooviiiiiiieee, 246
Unary PIUScooeveiiiire e 51
UNIONS ...ooevieiieccie e 247
UNSIgNedoovveieeeeee e 49
Variable Namescccccceevvevnnne, 49
Variables.......cccoocevveveiiieieeie e 90
VoIt Metercooovevvviieiiiecee, 221
Waveform Generator Modes......... 60

WGMO0057, 58, 59, 60, 61, 128, 129,
133, 135, 143, 150, 194, 204, 235

WGMO01 57, 58, 59, 60, 61, 128, 129,
133, 135, 143, 150, 194, 204, 235

WInAVR. 15, 18, 19, 27, 31, 35, 113,
171,177,182, 189, 195, 198, 220,
221, 247, 270

D o
Q Uniley Miese>

www.SmileyMicros.com.

299

300

	Chapter 1: Introduction
	Why C?
	Why AVR?
	Goals

	Chapter 2: Quick Start Guide
	Software
	WinAVR – Oh, Whenever…
	Programmers Notepad
	AVRStudio – FREE and darn well worth it.
	Br@y++ Terminal:

	Hardware
	Constructing Your Development Platform

	Blinking LEDs – Your First C Program
	Write it in Programmers Notepad
	Download to the Butterfly with AVRStudio
	Blinky Goes Live
	Simulation with AVRStudio

	GOOD GRIEF!

	Chapter 3: A Brief Introduction to C – What Makes Blinky Bli
	Comments
	Include Files
	Expressions, Statements, and Blocks
	Operators
	Flow Control
	Functions
	The Main() Thing

	Chapter 4: C Types, Operators, and Expressions
	Data Types and Sizes
	Seen on a shirt at a Robothon event:
	Bits
	Bytes
	The long and short of it

	Variable Names
	Constants
	Declarations
	Arithmetic Operators
	Relational and Logical Operators
	Bitwise Operators
	Testing Bits

	Assignment Operators and Expressions
	Conditional Expressions
	Precedence and Order of Evaluation
	Projects
	Port Input and Output
	Cylon Eye Speed and Polarity Control

	Chapter 5: C Control Flow
	Statements and Blocks
	If-Else and Else-If
	Switch
	Loops – While, For and Do-while
	Break and Continue
	Goto and Labels
	A few practical examples: strlen, atoi, itoa, reverse

	Chapter 6: C Functions and Program Structures
	Function Basics
	Returns
	Variables External, Static, and Register
	Scope
	Headers
	Blocks
	Initialization
	Recursion
	Preprocessor
	Macro Substitution
	Conditional Inclusion

	Projects
	Is anybody out there? Communicating with a PC
	Demonstrator
	PC_Comm
	Using CommDemo:

	Chapter 7: Microcontroller Interrupts and Timers
	Interrupts
	Projects
	Grab your joystick – and test your interrupts
	Using joystick

	Timers/Counters
	Calibrating the Butterfly oscillator:
	OSCCAL_calibration() function – detailed explanation
	ALL THIS AND WE HAVEN’T EVEN STARTED CALIBRATING YET!

	Projects
	Precision Blinking
	Using Precision Blinking:

	Pulse Width Modulation – LED Brightness Control
	Pulse Width Modulation - Motor Speed Control
	Speedometer

	Chapter 8: C Pointers and Arrays
	Addresses of variables
	Function Arguments
	Arrays
	FIFOs and LIFOs: Stacks and Queues (Circular Buffers)
	Stacks
	Queues (Circular Buffers)

	Function Pointers
	Complex Pointer and Array Algorithms
	Projects
	Messenger
	Arrays in RAM and ROM

	Does anybody know what time it is? A Real Time Clock.
	A one second interrupt
	Converting Computer Time to Human Readable Time
	The Real Timer Clock Software

	Music to my ears. “Play it again Sam.”
	More on pointers to arrays
	Setting the frequency
	Setting the duration
	An example song array – Fur Elise
	Using the Piezo-element to make sound
	Initializing the Timer1 for PWM to the piezo-element.
	Generating the tone using PWM from Timer1
	Using the Timer0 interrupt to play a tune

	Chapter 9 – Digital Meets Analog – ADC and DAC
	But First - A Debugging Tale
	Analog to Digital Conversion
	What is Analog to Digital Conversion?
	Analog to Digital Conversion by Successive Approximation
	Analog to Digital Conversion with the ATMEGA169
	Starting a Conversion
	Conversion Timing
	Changing Channels
	Digital Noise Reduction
	Conditioning the Analog Input Signal
	Accuracy

	Projects
	Initializing the ADC
	Reading the ADC
	Light Meter
	Temperature Meter
	The @#%#&*#!!!! Volt Meter
	Using ADC

	DAC and ADC - Function Generator / Digital Oscilloscope

	Chapter 10: C Structures
	Structure Basics
	Structures and Functions
	Structure Arrays
	Typedef
	Unions
	Bit-fields
	Bit-Fields the C-way
	Bit-fields the masking-way

	Projects
	Finite State Machine

	Chapter 11 The Butterfly LCD
	PC to LCD test program
	Conclusion

	Appendix 1: Project Kits
	Data I/O
	PWM Motor Control

	Appendix 2: Soldering Tutorial
	Appendix 3: Debugging Tale
	Appendix 4: ASCII Table
	Appendix 5: Decimal, Hexadecimal, and Binary
	Appendix 6: Motor Speed Control Wheel
	Appendix 7: HyperTerminal
	Index

