Introduction To Submarine Networks

Present & Future Challenge Historical Perspective Valey Kamalov, Vijay Vusirikala, Jose Chesnoy

Monday, August 5, 2019

Welcome from Google and OSA lecture # 1-1. Valey Kamalov. Introduction to Submarine Networks lecture # 2. Raynald Leconte. Cable ships and Marine equipment lecture # 1-2. Vijay Vusirikala. Introduction to Submarine Networks lecture # 4-1. Jean Christophe Antona. Optical transmission lecture # 10-1. Michael François. System Planning Roundtable 1. "Evolution of submarine networks and technology", Lead: Elizabeth Rivera Hartling

Outline

9:00-10:15

- ▶ Foreword to Subsea OFC, Valey
- ► What is a submarine Network, Valey
- ► Flying over 150 years of submarine cable technology, Valey 1:30-2:30
	- Modern networking: Life of a packet / Social Networks, Vijay
	- Google and Google Cloud global network, Vijay
	- Reaching the physical limit, Vijay
	- ► What's next, Vijay

Foreword to Subsea OFC Innovation School 2019

► Math is required in 2020

- *If I were again beginning my studies, I would follow the advice of Plato and start with mathematics (Galileo Galilei)*
- ► Spirit of innovation is desirable
	- *1st Trans-Atlantic Cable Adventure 1858 (lots of math involved)*
	- *Sputnik 1957 (and Sputnik moment), Apollo 1969 ………….*
- ► Worldwide tech talent gap is large
	- *A Star Is Born, Map of our students homeland*
	- *Young people need opportunities*
	- *Subsea industry needs young people, this school is to make you interested to join*

Subsea OFC 2019 Students

5

Information Revolution

massive amounts of data**centers** The information revolution led us to the age of the internet Optical communication networks play a key role in delivering

Further Growth Is Imminent

- ► The internet will continue to expand due to user population growth and internet penetration
	- *Previously inaccessible geographical regions in Africa and Asia will come online*
- ► Network growth will only be accelerated by improvements in integrated circuits
	- *● Nielsen's law of internet bandwidth states: A high-end user's connection speed grows by 50% per year.*
	- *● Nielsen's Law of Internet Bandwidth has held true throughout a 36-year period. That doesn't necessarily mean that it will continue to be true for the next several decades, but it's certainly likely*

Internet Penetration Finland >90%, Africa <40%

 $\sqrt{2}$

 $-90-100%$ $80 - 89%$ $-70-79%$
 $-60-69%$

50-59% \cdot 40-49% $-30 - 39%$

 $\frac{20-29\%}{10-19\%}$

 -9%

Kurzweil: evolutionary progress is [exponential](https://en.wikipedia.org/wiki/Exponential_function) because of [positive](https://en.wikipedia.org/wiki/Positive_feedback) [feedback](https://en.wikipedia.org/wiki/Positive_feedback) (2001 essay entitled "The Law of Accelerating Returns")

Challenges in Subsea Communication Industry

Challenge 1: continue exponential push (more fibers or more cables?) Challenge 2: add developing countries on the digital train (too expensive to build and maintain)

[Number of transistors on](https://en.wikipedia.org/wiki/Transistor_count) [the chip](https://en.wikipedia.org/wiki/Transistor_count)

What is a submarine Network

- ► Basic configurations
- ► Marine operations
- ► Submerged equipment
- ► Networks

What is a submarine network/ basic configurations

What is a submarine network/ marine operations

► Large part of Cable cost ▶ Present along lifetime • Survey • Installation \cdot maintenance Alcatel-Lucent

Marine operations: Survey

Marine operations: Installation

Marine Operations: maintenance & repair

What is a submarine network/ Cable

► Function

- Protect the optical fiber
- Power repeaters
- ► Properties
	- Optical
	- **Mechanical strength**
	- **Pressure**
	- **Abrasion**
	- Voltage
	- **Chemical**
	- H_2O barrier
	- H_2 barrier
	- Design life 25 years

What is a submarine network/ Cable

► All types based on the deep sea cable (Light Weight / LW)

What is a submarine network/ Repeater

► Function

- Amplify optical signal
- \bullet After attenuation through fiber

► Properties

- **Optical**
- Mechanical
- **Pressure**
- **Voltage**
- Water ingress with difficulty of mobile fiber penetrators
- Active equipment
	- Semiconductor Optical pump lasers
	- Specific qualification/redundancy for 25 years design life

What is a submarine network/ Repeater

► EDFA (Erbium Doped Fiber Amplifier)

- ► EDFA Introduced in 1994
- ► Few change since...
	- Transparent
	- Enabling WDM
	- Reliable
- ► Ongoing evolution
	- Higher power
	- Pump « farming »
	- \bullet C + L band (?)
	- Raman $(?)$
	- $SOA(?)$

What is a submarine network/ Branching Unit (BU)

► Function

• Split fiber path between 3 directions

Properties (similar to repeater)

- Optical
- \bullet Mechanical
- Pressure
- Voltage
- Water ingress with difficulty of mobile fiber penetrators

Active equipment

- Modern BU switch wavelengths and fibers
- The more complex wet plant equipment **21**

What is a submarine network/ basic configurations

Permits

Large capital investment

- ► Each cable is a Large capital investment
- Complexity requires long lifetime
	- Modern cables are often designed for 25 years of service
	- Successful installation
	- Operation
	- Repairs
- ► All above depend on the system architecture and component reliability
- ► Solid project management is the key to success

Experience of several generations of engineers

- ► Lecturers bring you real life expertize
	- Subsea cable design
	- **Installation**
	- Maintenance in the harsh environment
- ► Lecturers are top experts in the field, recognized globally. I want to sincerely thank Lecturers of this School who spent considerable time to prepare, and to share their knowledge and expertise
	- Establish friendship and mentorship Lecturer Student

Summer School Subsea OFC 2019

- ► School is intended to help the next generation of researchers and engineers who wants to change the world of subsea communications
- ► Could we find better and cheaper conductors compared to copper, which has been used since 1858? Could we find materials with better isolation properties than polyethylene, which was discovered almost a century ago?
- ► We have much more to do: the cost of submarine cables is unbearable for developing countries. Cable repair takes weeks. We lay cables at about the same speed as HMS "Agamemnon" did in 1858.

Innovations based on knowledge

► New ideas keep coming from the information transport community

- \bullet Shannon / 32 y.o.
- ► We transport an order of magnitude more bits than just five years ago
	- We encode information into phase, polarization, and amplitude of electro-magnetic wave.
- ► Michael Faraday would be proud of us knowing that we send over 10,000,000,000,000 bits every second across the Atlantic Ocean in a single strand of fiber.
- ► We would leave in awe Sir William Thomson (known as Lord Kelvin), who was the scientific leader of an 1858 endeavor

The Uniqueness 1

- ► The **SubOptic community** is unique in that it has to care about environmental impacts
- AND the safety of cables
- AND the safety of data
- AND maintain a fleet capable of overcoming the challenges of the high seas
- ► AND solve the multi-dimensional problems of submarine projects and complexity of project management

The Uniqueness 2

► The uniqueness of this engineering marvels is a combination of

- information science,
- nonlinear optics,
- electrical engineering,
- material science,
- engineering practices,
- project management,
- marine expertise,
- high reliability standard
- ► Undersea fiber communication systems will continue to serve society (with important contributions from the SubseaOFC2019 students?) **²⁸**

Outline.

- ► What is a submarine Network
- ► The endless race for capacity
- ► Life of a packet / Social Networks
- Flying over 150 years of submarine cable technology
	- Era of telegraphs
	- Era of Coaxial
	- Advent of fiber optics
- ► Basics of optical communications
- Reaching the physical limit
- ► What's next

Flying over 150 years of submarine cable technology

Source: G.Fouchard Elsevier 2015

30

150 years of submarine cable: telegraphic cable

The Great Eastern laying a cable 1866 (Original painting in ASN in Greenwich)

► USA connected to England in 1858

- 1 word per minute…and lasting 20 days....Not reliable at all
- ► Blue book in UK in 1861
	- Opening the telegraphic era
	- 25 cables in the Atlantic from 1858 to 1928
- ► Epics of Great Eastern !!!!!
- ► Fortune of Telcon in UK
	- Telcon becoming later STC still presently integrated in ASN

150 years of submarine cable: coaxial cable

- ► With TAT-1: Coaxial cables won definitely against radio
- ► USA thus entered the game
	- AT&T took the lead of TAT-2
	- TAT-2 target to transport 3kHz voice channels
	- AT&T Invented consortiums: 1st construction & maintenance agreement
	- AT&T Invented the IRU: easy to share capacity between cable users
	- AT&T invented the model of « specification and inspection »
		- **Permitting design in USA while production and lay was still European**
- ► From years 1960' all telegraphic cables were abandoned
	- With the transistor, wideband coaxial cables reached 40 MHz
	- In 20 years, STC and Alcatel built 250 000 km cables and 1000 repeaters

150 years of submarine cable: the advent of Optics

- Radiocommunication had not said its final word!!!!!!!
- April 6th 1965 Launch of Early Bird:
	- the the first communication satellite
- ► All countries equipped with their satellite earth stations from 1965
- ► During this « dark » time, coaxial cable technology stagnated
	- The common view in 1970 was that submarine cables are dead
- But submarine cables were saved by optical fibers!!!
	- Terrestrial radio-satellite stations all decommissioned before 2000 !
	- The idea that satellite can do better that submarine cables survived !

150 years of submarine cable: the advent of Optics

- ► What made possible optical cables
	- Invention of silica optical fibers: 1966 by KC.Kao (Nobel prize)
	- Simultaneous invention of the semiconductor laser by R.Hall (1962)
	- New competition of satellite telecommunications (Intelsat 1 in 1965/4 years in service)
	- Fast optical technology development
- ► In years 1960's:
	- Multimode fibers at 850 nm
	- single mode fibers at 1300 nm, then 1500 nm
- ► Key demonstration in 1970 with optical fibers
	- 20dB/km fiber + GaAs room temperature laser

150 years of submarine cable: the advent of optics

- ► First demonstration of regenerated optical cables
	- Demonstrator (2 repeaters) Antibes-Port Grimaud : 1984
	- First optical transoceanic **TAT-8** & TPC-3 in 1987 (1300nm 280 Mbit/s)
	- Second generation transoceanic TAT-9 in 1989 (1500nm 560Mbit/s)
- ► Modern cables came with optical amplification
	- Fiber amplifiers EDFA demonstration in 1986 (E.Desurvire)
	- First EDFA transoceanic cable **TAT-12/13** in 1996 (5 Gbit/s)
- ► Then the capacity of optical cables increased by X2 every year • 250 Tbit/s with TA DUNANT Cable
- Low latency Satellite Communication new competition cycle is coming

SpaceX(Elon Musk) 4,425 satellites with 24Tbit/s bandwidth

Compare to 2,000 Tbit/s international capacity today = 1% will be AFTER SpaceX is accomplished

new LEO satellites are designed for 5 years service (vs 25 years cables)

Figure 2.- SpaceX 4,425 satellites constellation

System characteristics

- 4,425 Satellites in 83 planes. Inclined orbits + polar orbits.
- User links @ Ku-band, gateway links @Ka-band Φ
- Optical crosslinks between satellites
- Digital payload with beam steering and shaping capabilities
- Medium size satellites 386 kg, in house designed. \bullet
- Target first launch 2019 (~170 Falcon 9 launches for ۰ full constellation deployment)
- Beginning of service 2020
Epilogue of historical survey: Believe in the future

► Submarine cables are enabling the today Internet

- Thanks to optical fiber and optical amplifiers
- ► Remember:
	- In 1920: submarine cables were challenged by radiocommunications
		- And could have disappeared in 1930
	- In 1980: submarine cables were challenged by satellites....
		- And could have disappeared in 1990
	- In 2019: submarine cables carry >99% of the intercontinental Internet traffic ▪ Satellites are still nice for television distribution and communication in the deserts….
- ► Submarine cables wait for their next challenger...

Outline

9:00-10:15

- ▶ Foreword to Subsea OFC, Valey
- ► What is a submarine Network, Valey
- ► Flying over 150 years of submarine cable technology, Valey 1:30-2:30
	- Modern networking: Life of a packet / Social Networks, Vijay
	- Google and Google Cloud global network, Vijay
	- Reaching the physical limit, Vijay
	- ► What's next, Vijay

The endless race for capacity: Global networks today

The endless race for capacity: 100 Years Ago !!!

Population (GDP) Gravity Models and Data center Overlay

- Capacity needs have traditionally followed population and GDP gravity models (user facing networks)
- Overlaid on this are datacenter connectivity trunks, if DCs are located in remote locations

Source : Telegeography

Google

The endless race for capacity: the virtuous cycle

Outline

- ► What is a submarine Network
- ► The endless race for capacity
- ► Life of a packet / Social Networks
	- Needs for more traffic
	- Google and Google Cloud Global Network
- ► Flying over 150 years of submarine cable technology
- ► Basics of optical communications
- ▶ Reaching the physical limit
- ► Zoom on upgrades
- ► From Telcos to OTTs
- ► What next

Lifetime of a packet - Social Networks

► Video demand quality: increasing video stream bit ► Slow progress of video compression

Source Alcatel-Lucent 2014

Lifetime of a packet - Social Networks

► The video bit rate stream increases

- Illustrating low impact of improved compression
- In addition the traffic grows due to increasing time per user

Google Cloud Platform

Our global infrastructure

Current regions and number of zones

Future regions and number of zones

- Edge points of presence
- CDN nodes
- Network
- Dedicated Interconnect

Google Subsea network- High level Overview

Google Optical Transport network Overview

Hyperscaler Datacenters

Our Datacenters

Cloud: The Last Decade, around 2000

Virtualization delivers capex savings to enterprise DCs

Cloud: Now

Public cloud frees enterprise from private HW infrastructure

Scheduling, virtual servers, fast growth

The Third Wave of Cloud

Serverless compute, actionable intelligence, and machine learning

Google DeepMind Challenge GO Match Enable Start-ups, Cat recognition, voice recognition

Google

Networking enables Cloud 3.0

Step Function in Networking and Cloud 3.0

Outline

- ► What is a submarine Network
- ► The endless race for capacity
- ► Life of a packet / Social Networks
- ► Flying over 150 years of submarine cable technology
- Basics of optical communications
	- \bullet Back to basics
	- The optical fiber
	- Optical communication
	- Modulation formats
- \blacktriangleright Reaching the physical limit
- ► What's next

► Digital communications

- Basics of communication is simple:
	- modulation of signal at the transmitter between 0 and 1

1 0 1 1 0 1 bit = 2 levels

• Multilevel by grouping several elementary bits together

In optical fibers: signal coded on a electromagnetic lightwave

- The more simple coding is Intensity Modulation (IM)
	- On Off Keying (switching the light On or Off)
- Decision is done by Direct Detection (DD)
- During 20 years IM/DD was the unique solution

- ► An optical signal is also an electromagnetic lightwave
	- Information can be carried by field amplitude (light intensity)
		- + optical phase (that can be represented by a vector on a circle)

The path from 10G to 100G: a 10x story

Legacy IMDD: 10 Gb/s per laser

The path from 10G to 100G: a 10x story

10x capacity increase: 100 Gb/s per laser

The next 10x : From 100G to 1T per carrier

Evolution of Digital Modulation

Proprietary + Confidential

But comes with complexity

Wavelength Division Multiplexing: Scaling Fiber **Capacity**

- In fiber optic systems we have
	- **THz of low loss** fiber spectrum
	- **THz of amplification** bandwidth
- We can use such a wideband by **multiplexing / demultiplexing multiple TX/RX pairs at different wavelengths** (colors)
- This technique is called **Wavelength Division Multiplexing (WDM)**
- In this way we can squeeze linearly scale the capacity of our system going from hundreds of **Gbps** of **capacity per channel** to **Tbps** of **fiber capacity**

Back to basics: Cable Capacity

Cable capacity =

- **(Spectral Density) X (Fiber Bandwidth) X (No. Fiber Pairs)**
- ► Spectral density (bits/s per Hz)
	- Has increased rapidly by increasing channel bit rate
- ► Fiber bandwidth
	- Determined by the Erbium spectrum of EDFA
- ► No. of Fiber Pairs
	- Number of fiber pair was typically 4FP to 6FP, Max 8FP
	- With DUNANT 12FP TA cable, SDM enabled 12/16/24FP cables

Outline

- ► What is a submarine Network
- ► The endless race for capacity
- ► Life of a packet / Social Networks
- ► Flying over 150 years of submarine cable technology
- ► Basics of optical communications
- Reaching the physical limit
	- Physical limit (Shannon)
- ► What's next

Scaling Subsea Capacity - Shannon's Playground

 $C = B \log_2(1 + SNR)$

Channel

capacity Bandwidth Signal to noise ratio

- **Two knobs** to play with
	- **Signal-to-Noise Ratio**
	- **Total** System **Bandwidth** (whole cable, i.e. multiple FPs)
- For **power limited** systems like subsea systems, it is **more effective to scale** the total system **bandwidth** (linear with capacity), rather **than** optimizing the **SNR** (log with capacity)
- More B = **more fibers**
- Higher SNR = more power, more repeaters, better quality fibers

Reaching the physical limit: Shannon Limit

Reaching the physical limit: Shannon Limit

(Note: intermediate values between QPSK, 8QAM, 16QAM will be achievable)

Remarks about Shannon limit

- Shannon theory established since a century...
- Theoretical spectral density $~10$ bit/s/Hz for transatlantic
- But practical penalties have to be considered
	- Ageing and repair operational margins today \sim 1 dB
	- Electrical analog ADC & DAC penalties today \sim 0,5dB
	- Non optimal FEC correction penalties today \sim 1 dB
	- Wavelength stability penalty today
	- Non-linear penalty coming with high OSNR (3 dB for 19dB OSNR)

Reaching the Shannon limit: cost impact

► 2015 (mature coherent technology) is a technology turning point

Outline

- ► What is a submarine Network
- ► The endless race for capacity
- ► Life of a packet / Social Networks
- ► Flying over 150 years of submarine cable technology
- ► Basics of optical communications
- ▶ Reaching the physical limit
- ► What's next for technology
Further Capacity Scaling: Linear vs Log Term in Shannon

Evolution of telecom applications

► Develop low cost solutions

• To feed internet everywhere to connect isolated populations (islands..)

► Optimising cost of terminals

- Use of higher baud rates for cost efficiency
	- Limited by the analog chain: 60Gbaud today -> 100 +Gbaud

► Wet plant cost

- Reducing material cost \star
- Targeting reduction of marine cost ★★★
● Reducing design life *****
- **Reducing design life** ?

Short-term and Long-term Objectives

" Most people overestimate what they can do in one year and underestimate what they can do in 10 years." - BILL GATES

Long Term Challenges in Subsea Systems

Challenges are beyond optronics

- High cost of cables and long project durations limits ubiquitous connectivity
- Capacity growth is higher than unit cost reduction
- Need for cable and landing physical diversity for high-availability services
- Marine operations largely unchanged for decades
- Slow cable laying and repair times
- Cable breaks and damages

Cable ships overview

The Gutta-Percha

Pallaquium Gutta

Tjipertir Plantation in Java

Compagnie du Gutta-Percha

Cable ships a long history

Goliath: **lays 1st international cable, UK-France, 1850-1** *Source: Illustrated London News*

John Pender, **named after pioneer cable maker, 1900** *Source: Cable & Wirel***ess**

*Great Eastern***: laying cable off Newfoundland, 1866** *Source: Canadian Government*

*Monarch***: laid 1st transatlantic telephone cable, 1955/6** *Source: www.atlantic-cable.com*

Cable ships : key elements

Cable ships : size and performances

Cable ships : engines

- Performances : engines should be able
	- \checkmark To sustain a transit speed of 12 knots
	- \checkmark To keep the working position with a sea state
	- \checkmark To pull a plough (bollard pull)
- Number of engines :
	- \checkmark Usually 4 engines
	- \checkmark The optimum of fuel consumption could be to use only 3 or even 2 engines in parallel. The 4 engines are used for transit

Cable ships : engines room

Cable ships : Stability

- Different devices for the propulsion:
	- \checkmark Azimuthal propellers with 360 \degree movement
	- \checkmark Transverse tunnel propellers
	- \checkmark The optimum of fuel consumption could be to use only 3 or even 2 engines in parallel. The 4 engines are used for transit
- The design of the bow is now optimizing the behaviour in the waves
- Dynamic Positioning : to keep an ac curate position a cable ship use satellite information acquisition to command the different propellers
	- \checkmark DP 2 : There is a double, independent system from data acquisition to propellers command

Sheaves and working D Deck

Cable tanks

Repeater and Branching Unit handling

Repeater and Branching Unit handling

Cable machines & cable drums

Jointing

Jointing

ROV

- \blacksquare The ROV has four functions
	- \checkmark Finding the cable
	- \checkmark Cutting the cable if necessary
	- \checkmark Gripping the cable with a rope
	- \checkmark Once the repair done, burial of the cable using high pressure tools

ROV :immersion

ROV : control room

- **Importance of coordinating the ROV** progression with the ship navigation
- **The ROV can be floating or progressing** on the sea bottom using its tracks

Bridge

Bridge

Grapnels : cutting

Grapnels : retrieving

Food and beverage

On board :

- The Captain also called Master is in charge of the vessel and of the people on board, including customer representatives
- The vessel is organized in 3 services:
	- \checkmark Bridge, navigation, and deck operations
	- \checkmark Engines and all electrical devices on board
	- \checkmark General services : administrative, accommodation and food
- The crew organization is different in each company, but there are 50 persons per ship : officers, petty officers and seamen (AB for the deck Able Seamen, with a unique experience)
- There is also a dedicated team for the cable operation :
	- \checkmark Telecom technician for measurement and relation with on shore stations
	- \checkmark Jointers
	- \checkmark ROV pilots and maintenance
	- \checkmark Reporting
- This team is about 10 to 12 people, it exists synergies between this team and the crew

Route and Slack control

- The key point of a good lay (installation or repair) is a good slack management tool and an accurate navigation on the planned route
- Prior to an installation, a survey has provided among others a Route Position List (RPL) that has to be final position of the cable on the seabed
- In order to lay, or relay in case of maintenance operation, the points to be controlled are
	- \checkmark The route followed by the vessel, according to the route that has been decided in the survey prior to installation
	- \checkmark The speed of the vessel
	- \checkmark The speed of the cable engine and the cable drums
- These points are referred to as Slack control. This allows the cable to be laid as flat as possible on the seabed and to avoid any kink due to wrong slack management
- There are several software that are dedicated to the slack management

Slack management : spaghetti and Chopsticks

The most important : the mascotte

- The troll of the Pierre de Fermat
- **Forever the Pierre de Fermat will** remember being born in Norway

Optical Transmission – Day 1

J.-C. ANTONA^N August 5th, 2019

J.-C. ANTONA in brief

1. Research engineer - Alcatel Modeling optical nonlinear impairments

Alcatel Submarine Networks System Design - Research & Techno.

2

Objectives

- Lecture 1: Basics of digital optical communications
	- Optical Fiber characteristics
	- Principles of digital optical communications
	- Directions towards high capacities
	- Transmitters and (coherent) receivers Optional / Advanced: Introduction to Shannon theory
- Lecture 2: signal distortions in a submarine cable
- Lecture 3: system design

Optical fibre = ultra-thin glass waveguide

- If core section is small,
- \rightarrow single-mode propagation of light starting from a given wavelength

Optical fibre = ultra-transparent glass waveguide

• Silica-based, ultra-transparent waveguide

Digital Optical Communications: principle

Digital Optical Communications: usual criterion of quality

Forward Error Correction (FEC) Transport data free of errors

- Encoding at Transmitter with redundancy bits
- Decoding and error correction at Receiver

• Message to transmit: information symbols $M_1, M_2, \ldots M_N \ldots$

• Organization per block of k symbols: $k = r$ rows $*$ c columns

• Parity check for each row, and column

- Transmitted message: block of k+1 columns and r+1 rows
	- Code length: $n = (c+1) (r+1)$, instead of $k = c r$

- Received block of k+1 columns and r+1 rows
	- Recalculation of check sums and comparison with received checks

Identification of 1 error per block,

Forward Error Correction (FEC) Transport data free of errors

- Encoding at Transmitter with redundancy bits
- Decoding and error correction at Receiver

Input BER Output BER Uncorrected 10^{-5} 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10^{-13} 10-11 10^{-9} 10^{-7} 10-5 10-3 10^{-1} **Corrected**

- Metric: Net Coding Gain
	- Extra-noise tolerated to reach a given BER (dB)

•
$$
NCG_{dB} = 10 * log_{10} \left(\frac{Q_{correct}^2}{Q_{uncorr}^2}\right) + 10 * log_{10}(code\ rate)
$$

• Typical **Type Overhead Net Coding Gain Application** Reed Solomon 239-255 7% 5.8dB Early 10G systems Product codes 7% 8.3dB 10-40G Soft Decision FECs Ex: 25% 11-12dB 100G+ coherent

Paths to high data rates

Increasing capacity 1. Higher modulation rates: Time-Division Multiplexing (TDM)

B=10Gbit/s electrical data streams 40Gbit/s electrical data streams

Commercially available transceivers are modulated at up to 70Gbaud (Gsymbols/s)

Increasing capacity : 2. Wavelength-Division Multiplexing (WDM)

Limitations of WDM

• Unmodulated light

• Unmodulated light

• Unmodulated light Power **Frequency** $Wavelength =$ Light speed Frequency Phase π Complex amplitude of the envelop Re Im Time \sqcup -field

• Unmodulated light

• Amplitude modulation : on-off keying (OOK)

• Phase modulation: Phase Shift Keying (PSK)

Binary PSK (BPSK)

Power **Frequency** $Wavelength =$ Light speed Frequency Phase $0, \pi$ Complex amplitude of the envelop Re Im Time \sqcup -field **1 bit / symbol** 0 1

• Phase modulation: Phase Shift Keying (PSK)

QPSK

(Quaternary PSK)

• Phase and amplitude modulation

$$
\begin{array}{c}\n\stackrel{\text{b}}{\text{d}} \\
\hline\n\text{Frequency}\n\end{array}
$$

Wavelength =
$$
\frac{Light\ speed}{Frequency}
$$

16 QAM (Quadrature Amplitude Modulation)

Complex amplitude of the envelop

Wavelength =
$$
\frac{Light\ speed}{Frequency}
$$

64 QAM (Quadrature Amplitude Modulation)

Complex amplitude of the envelop

6 bits / symbol

The more the symbols, the less the system is resilient to noise

4/ Polarization Division Multiplexing (PDM)

5/ Spatial division multiplexing (SDM)

- Spatial parallelism to increase transported capacities
- Options: Multi-fiber, multi-core, multi-mode

Directions to increase transported capacity

• $Nb_{\rm bits/symbol} = \log_2 (Nb_{\rm symbols})$

ALCATEL

Ex: 120 channels, PDM-16QAM, 25 G information symbol ℓ s = 24Tb/s $*$ Nb Fibers 31

Modulation of light: principle

Electro-optic modulator

Independant control of swing voltage V_{pp} and bias.

Generation of main modulation formats (pre-coherent era)

B=bit rate

From E. Desurvire et al., «EDFA, Device and System developments», Chapter 7, Wiley, 2002.

Generation of main modulation formats (pre-coherent era)

B=bit rate

From E. Desurvire et al., «EDFA, Device and System developments», Chapter 7, Wiley, 2002.

Generation of main modulation formats (pre-coherent era)

From E. Desurvire et al., «EDFA, Device and System developments», Chapter 7, Wiley, 2002.

Direct (single-ended or differential) detection schemes

Coherent detection: principle

Coherent receiver (polarization independent)

The photocurrents PD1, PD2, PD3 and PD4 provide full information on real and imaginary parts of signal along TE and TM polarization axes

100G Coherent systems architecture

Next step: Multi-format transceiver

 \rightarrow Once committed to polarization-diverse I/Q modulation, coherent detection and electronic DSP for 100G technology, rate-adaptation come at a minimal cost

Take-Away

 $Capacity = Nb_{spatial modes} * Nb_{wavelengths} * Nb_{polars} *$ Nb_{bit/symbol} **FEC** Overhead ∗ Symbol Rate **Signaling OH**

- Common modulations: Quadrature Amplitude Modulation
	- Uniform distribution of symbols, $Nb_{bit/symbol} = log_2(Nb_{\text{symbol}})$
	- High symbol count \rightarrow high rate, low resilience to noise
- $\begin{array}{c|c}\n\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\hline\n\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\hline\n\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\hline\n\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}\n\end{array} \text{Re}\{\mathsf{E}_{\mathsf{x}}\}$
- Forward Error correction: encoding / decoding with extra bits
	- Error free after decoding provided BER lower than threshold
- Software-defined "Coherent" transceivers
	- High rate **Digital Signal Processing** enables mitigation of line impairements…
	- and **adaptation of bit-rate** (modulation) to **Quality of Transmission** (distance, signal to noise ratio)

At the heart of digital communications

2nd principle of thermodynamics

Shannon's theory of entropy … in few words

- *Entropy is a simple metric for information (or disorder)*
- *Properties*
	- *Rare event = more information*
	- *Event X probability p^X* • *Independent events = Sum of information* $p_{X,Y} = p_X * p_Y$ **p^Y H(X,Y) = H(X) + H(Y)* $f(p_X * p_y) = f(p_X) + f(p_y)$

Entropy: $H(X) = f(p_X)$

$$
\rightarrow
$$
 f is a logarithm: $H(X) = -log_K (p_X)$

The New Hork Times MEN WALK ON MOON *ASTRONAUTS LAND ON A PLAIN* **FTER STEERING PAST**

- Entropy of an event $X:$ $H(X) = -log_k (p_X)$
- *Entropy* of a random process X of probablity law $p_x(x)$ • *= Average amount of information*

$$
H(X) = -\oint_{x} \log_{K}(p(x)) * p(x)
$$

• *Events (states) of equal probability H = logK(# events)*

• *Entropy of a random process X of probablity law* $p_X(x)$

$$
H(X) = -\sum_{i} log_{k} (p(x_{i})) * p(x_{i})
$$

- *Binary information: K=2 bit/symbol*
- *Example:*
	- *BPSK*

• *2 symbols, of probability ½*

• *H = - log² (½) 1 bit/symbol*

• *2 symbols, of equal probability ½*

- *H = - log² (½) 1 bit/symbol*
- *QPSK*
	- *4 symbols, of equal probability ¼* • *H = - log² (¼) 2 bits/symbol*
- *16QAM*
	- *16 symbols, of equal probability 1/16*
	- *H = -log² (1/16) 4 bits/symbol*

Episode II: Mutual information, Capacity

• *How many useful bits could emerge from the noise ? H(Y)-H(N)* • *Mutual information: I(X;Y) = H(X) – H(X|Y) = H(Y) – H(Y|X)*

H(X) redundancy

• *Medium capacity best modulation*

Episode II: Mutual information, Capacity

• *Medium capacity = Max^X (H(X+N)) – H(N)*

• *What can maximize the disorder in addition to a Gaussian noise ?* • *Another Gaussian process … under constraint of fixed variance*

Episode III: Shannon Capacity

• *Capacity achieving modulations*

• *Equally distributed symbols Gaussian distribution of symbols*

• *Shannon theorem : in theory (ideal modulation / demodulation)*

Capacity =
$$
log_2(1 + \frac{Signal power}{Noise power})
$$
 bit/symbol

Episode III: Shannon Capacity

• *Capacity achieving modulations*

• *Equally distributed symbols Gaussian distribution of symbols*

• *Shannon theorem : in theory (ideal modulation / demodulation)*

$$
Capacity = log_2 (1+ SNR) \quad bit/symbol
$$

Episode III: Shannon Capacity

• *Capacity achieving modulations*

• *Equally distributed symbols Gaussian distribution of symbols*

• *Shannon theorem : in theory (ideal modulation / demodulation)*

*Capacity = 2polars * Bandwidth * log² (1+ SNR) bit/s Assuming channel modulation rate = channel spacing*

• *X-QAM modulations and Shannon limit (Gaussian modulation)*

• *X-QAM modulations and Shannon limit (Gaussian modulation)*

At high SNR, whatever the size of the QAM modulation, there is a gap to Shannon limit.

> *Why ? X-QAM assumption = symbols on a grid, with same probability*

Towards Geometric / Probabilistic Constellation Shaping

• *X-QAM modulations and Shannon limit (Gaussian modulation)*

With 25% overhead ideal FEC, Achievable capacity becomes

• *X-QAM modulations and Shannon limit (Gaussian modulation)*

With 25% overhead ideal FEC, Achievable capacity becomes

Constant FEC, multi-format enables to stay more or less close to Shannon limit

Take-Away

 $Capacity = Nb_{spatial modes} * Nb_{wavelengths} * Nb_{polars} *$ Nb_{bit/symbol} **FEC** Overhead ∗ Symbol Rate **Signaling OH**

- Common modulations: Quadrature Amplitude Modulation
	- Uniform distribution of symbols, $Nb_{bit/symbol} = log_2(Nb_{\text{symbol}})$
	- High symbol count \rightarrow high rate, low resilience to noise

- Forward Error correction: encoding / decoding with extra bits
	- Error free after decoding provided BER lower than threshold
- Generalization:
	- Entropy (Av. nb bits/ symbol), mutual information (max spectral efficiency -Nb
bit/symbol **FEC Overhead** after propagation)
	- Shannon capacity limit: Max Nb
bit/symbol $\left(\frac{b(t/symbot)}{FEC\ overhead}\right) = \log_2(1+SNR)$, with Gaussian distribution of symbols

Life Cycle Of A Subsea Cable Project

Lecture 10-1 - System Planning Subsea Optical Fiber Communication Finland, 2019

Google Cloud

Life Cycle of a Subsea Cable Project

Lecture 10.1

Michael D Francois - Google Network Infrastructure Development

- 1. Background
- 2. Initial Concept
- 3. From Concept to Project
- 4. System Financing
- 5. Supplier Negotiations
- 6. Guarantees

Background

A Brief History

- 1837 Telegraph invented
- 1849 England to France subsea cable
	- Fails after 8 days
- 1851 England to France commercial success
	- Gutta-percha insulation
- 1858 First transatlantic cable
	- Fails after 3 weeks as it is ope rated at voltages too high for the insulation
- 1861 First US transcontinental telegraph cable completed
- 1868 First commercially successful transatlantic cable
- 1876 Bell patents telephone
- 1877 Transatlantic phone call on Telegraph cable fails
- 1883 Calls placed over 5 miles of underwater cable
- 1884 San Francisco-Oakland phone service on Gutta-perche insulated cable
- 1920 Chesapeake Bay cable uses loading cools underwater
- 1915 Transcontinental US phone service begin
- 1950 Repeated cable using polyethylene from FLorida to Havana
- 1956 TAT-1 goes into service
- 1967 HAW-1 goes into service
- $1980 s$ WDM systems begin to appear
- 1986 First international submarine cable, UK-Belgium
- 1988 First fiber optic submarine cable, TAT-8

Global Subsea Network

F Transatlantic Telegraph Cable 153 years ago - the SS Great Eastern

The SS Great Easterntook 14 days to sail from Ireland to Newfoundland and lay the 2nd transatlantic cable; the first transatlantic cable was in service for 3 weeks.

Transpacific Telephone Cable 55 years ago - TPC-1

New \$83 Million Cable Connects U.S. With Japan

President Johnson Tolks to Premier Ikeda, Opening Trans-Pacific Line

By EMERSON CHAPIN Special to The New York Times

TOKYO, Friday, June 19-President Johnson and Premier Hayato Ikeda inaugurated today a new trans-Pacific submarine cable that will vastly speed communications between Janan and North America.

In an exchange of congratulatory telephone calls with Mr. Ikeda, Mr. Johnson, speaking the White House. from Without months ?.. **Laborator**

New cable from Japan to Hawaii (solid line), joining the old line from Hawaii to San Francisco (dashes), will greatly expedite telephone service across the Pacific.

The first transatlantic Telephone cable was TAT-1, and was laid in 1956.

The first Transpacific submarine telephone cable was the aptly named [Trans Pacific Cable](https://en.wikipedia.org/wiki/Transpac_(cable_system)#Transpac_1) (TPC-1),which went into service on June 19, 1964. It was a coaxial cable linking Hawaii, Midway Atoll, Wake Island, Guam, and Japan.

In Hawaii it connected to [Hawaii No. 1](https://en.wikipedia.org/wiki/HAW-1) (HAW-1), to complete a path to the US mainland in Point Arena, CA. HAW1 was built in 1957, and was the first telephone cable to connect Hawaii to the continental 48 states.

Submarine Cable Ships

B Submarine Cable

Building And Deploying Wet Plant

Landing A Submarine Cable

Landing A Submarine Cable

A direct beach landing is the easiest way to land, but it is not always possible

TPC-1 (1964年開通)

SJC(2013年開通)

Japanese Film on TPC 1:http://www.kagakueizo.org/movie/industrial/78/

Transition from Sea to Land & Shore Plant

Beach Manhole (BMH) Construction

Background

- Submarine Cables have a Technical Complexity
	- They are composed of various high tech components which require engineering knowledge to design, evaluate, operate and maintain
- There is also an Administrative Complexity
	- Multi-national constraints
	- Long term supplier relationships
	- Geopolitical considerations
- Specific Skills are required for various aspects of a successful project
	- Marine Operations, Legal, Optical Engineering, Finance, Permitting, Planning. Negotiating, etc
- And the *Timescale* is significant
	- \circ From Concept to Contract-In-Force : $6 24$ months
	- \circ Construction : $12 24 +$ months
	- \circ Operation : 25 years (technical), \sim 15 years (commercial)

Background

- Price range of a subsea cable
	- \circ From $$10 \text{ m}$
		- Point-to-point repeaterless system short distance, though can still be international
	- To \$1b
		- Intercontinental transoceanic multipoint system
- System Quality Has To Meet Requirements
	- Outages
	- Planned System Life
	- High reliability
	- Technical Must Haves (Latency, Redundancy, Re liability, Capacity, etc)

Causes of Cable Faults

Google

Initial **Concept**

How Do We Plan Cables?

Business Case

- What are the drivers for a new submarine cable?
- Connectivity analysis
	- Connecting countries across oceans
		- Population
		- Internet penetration
		- Existing connectivity Does it scale?
		- Interconnection within global network -Does it fit?
	- Financial Analysis
		- \blacksquare Is there a return on the investment?
		- In what time frame?
- Metcalfe's Law
	- The value of a telecommunications network is proportional to the square of the number of users of the system.

Markets & Traffic

Market Types for Subsea Cable Systems Market Analysis

- Transoceanic:
	- Higher demand, potentially many capacity sellers
	- Capacity tends to become a commodity
- Regional:
	- Less demand, potentially fewer sellers
	- Less price pressure, long te rm purchase
	- Capacity remains a strategic re source
- Existing and planned resources with common connectivity and capacity analysis
	- Source and Destination
- SWOT Analysis
	- Strengths, Weaknesses, Opportunities, and Threats
	- Local partnerships, ave rage capacity cost, marginal capacity cost analysis, market size

Technical Design Decisions

Technology analysis

- Impact on capacity availability $&$ costs
- Pace of technology evolution
	- Advantages & availability of next generation
	- Is a major breakthrough expected?
- Which technology is best adapted to market ?
	- Do you need a plane or a car to travel 60 km?
	- Tailored to needs
- What is the best value for the money?
	- Return on Investment
	- Upgrades

Maintenance Decisions

Maintenance Clubs

- SEAIOCMA South East Asia and Indian Ocean Cable Maintenance Agreement
- ACMA Atlantic Cable Maintenance Agreement
- PIOCMA Pacific and Indian Ocean Cable Mutual Agreement
- NAZ North American Zone
- MECMA Mediterranean Cable Maintenance Agreement
- Yokohama Zone Agreement
- SPMMA South Pacific Marine Maintenance Agreement
- 20 CMA Two Oceans Cable Maintenance Agreement

Private Maintenance

● Arrangements between individual cable owners and ship owners

From Concept To Project

Confidential + Proprietary

Business Case

Why You Need One

Preparing the business case involves an assessment of:

- The opportunity
- potential benefits/revenues
- risks and mitigations
- technical solutions available
- costs (WACC/NPV)
- timeline
- impact on current operations, and
- capability to deliver the project

Is The Project Worth Doing?

- Executive Summary
- Deal Summary
	- Financial Appraisal
	- Sensitivity Analysis
	- Revenue Opportunity
- Project Definition
	- Background Information
	- Business Objective
	- Benefits and Limitations
	- Legal/Policy Risks and Mitigation Plan
	- Market Assessment
	- Technical/Network Risk and Mitigation Plan
	- Capacity Planning/Marketing Plan
	- Project/Purchasing Strategy
- Project Organization
	- Project Governance
	- Progress Reporting

Consortium Cables

Legal Structure

- No or lightweight legal entity
- Relationship based on a Construction and Maintenance Agreement (C&MA) or a Joint Build Agreement (JBA)
- Negotiated capacity allocation and usage rules
- Landing Rights

Re lationship Management

- Various committees are formed to reach consensus on issues
- Can be UN-like

Come In Many Flavors

- Large Consortiums of International Carriers
	- \circ SMW-3, AAE-1
- Mid-sized Consortius of Various Partners
	- Indigo, Havfrue
- Small Consortiums of Specialty Partners
	- O J G A
- Partnership Cables
	- Havfrue
- Shared Interests are Key to Success
- Decisions by consensus
- Voting right based on various factors
	- Mostly investment level

Private Cables

- Built by Telecom Operators to address specific requirements and/or seize opportunities
	- Telstra's Endeavour
- Built by Non-Carriers to address specific traffic flows, scalability and resiliency requirements ○ Google's Curie
- Business case needs to be strong to cover the level of investment
	- Risk and revenues are weighted differently by debt and equity providers

Legal Structure

- Entity structure based on tax/legal/regulatory policies
- Often involves partners for permits and landing rights
- Owned capacity allocation and negotiated usage rules
- Landing Rights/Permits

Re lationship Management

• Bilateral relationships with Customer and Supplier

Maintenance

• Several options available to cover marine maintenance

Forming A Consortium

If Your Analysis Leads You To A Consortium

- Each partner will have to build their own business case
- The economics and costs of capital may be different for each party
- The upside and risks will be different for each party
- Hopefully everyone's plan is NOT built on the same customer base
- Forming the consortium itself, and getting other parties interested, takes negotiations and an outcome that allows each party to pass their own hurdles

Market Assessment

- What is the addressable market for the cable?
- Why is the cable needed?
- Where does this cable go?
- Who will make use of this cable?
- When will this cable be Ready for Service?
- How will this cable meet requirements now, and in the future?
	- Capacity need projections (3–10 years)
		- Most sales occur early in system life
	- Competition (existing, planned and future)
		- Who else is serving or looking ar serving this route?
	- Capacity pricing (now & after)
		- How much capacity exists now, and how much later?
		- What is the effect of bringing the new capacity to market?

Market Data Points

Data Points

- GDP/Distribution of Wealth
- Population
- Internet Penetration Rate
- IP Usage
- Age of Population
- Education/Literacy
- New Applications
- Mobile vs Broadband vs Leased Line
- Number of Businesses

Example Sources

- UN-ITU
- Telegeography
- Market Analytic Firms
- Consultants

System Features

Design Considerations

- Ultimate Capacity
- Topology of System
- Fiber Count
- Traditional or SDM systems
- Wavelengths per Fiber Pair
- Type of Fiber
- Type of Armoring
- Repeated or Unrepeatered
- Branches and Type
- Number, type and spacing of repeaters
- Power Budget & Design
- Environmental Considerations
- Types of Landings
- SLTE
- Open Systems

Topologies

- Ring Southern Cross Cable System
	- Provides high reliability ar a higher cost

Semi Collapsed Ring - Australia Japan Cable

● Protects close to shore, where most damage occurs

Point to Point - CeltixConnect-1

● Least Expensive, No Protection

System Features

Cable configuration :

Fault history should be taken into account

- Channel system type
	- \ge fault per winter (6 months) per 400 km
	- Ring and double landing $(2 \times 200 \text{ km in}$ shallow water)
	- Unavailability: 0.3 day/year (single) landing \sim 7.5 d/y)
- Mediterranean system type
	- 1 fault every two years 1000 km (shallow water)
	- Single landing $(200 \text{ km} \text{ but } < 50 \text{ km} \text{ in})$ shallow)
	- Unavailability : 0.4 day/year (double landing ~ 0.01 d/y)

Initial Cable Route

It's a question of today's money vs future hedwins

Marine & Landing risk assessment: it's a business of experience

- In 150 years, you'll probably not be the first to go there
- Don't hesitate to call on the people who know
- Learn from past catastrophes (and success)

Beware: Regulatory Authorities, Ecologists and Fishermen love subsea systems (time & money consuming)

Some routes are better than others

System Features

Initial Cable Route

Landing selection

- Marine suitability (onshore, offshore activities)
- Backhaul connection (Is there someone out there?)
- Station size (DWDM upgrade !!!)

Route selection : Don't be pound wise and penny foolish: it is often better to protect once now, than repair ten times later

- Cable type and armor
- Burial (plough preferred)
- Shore ends
- Cable and Pipe crossings

Price estimates

- In-house
	- Determine equipment BoQ
	- Use previous unit prices
	- Estimate other costs
	- Always prepare data before engaging supplier
	- Try to understand their current position
- Rough Orders of Magnitude (ROM)
	- Most suppliers are happy to provide it
	- Not always very accurate
	- Should be a not to exceed cost
- First firm offers

Commercial Aspects To Consider

Product Design

- 10 g/10 0 g, Spectrum, Fiber Pairs, Protected, Unprotected, Upgrade rights,
- Upgrade rights
- Ownership or IRU
- Use Restrictions, Rights Transfer, Portability

Review of Market Prices

- vs existing: pricing higher would require no supply, is very hard to do
- vs planned: keep same level or lower if supply exists

Special offers

- Pre-sales
- Bulk purchase
- Can be driven by system configuration

Consortia - Carrier Perspective

- Notional capacity = capacity required to be sold to finance the initial system investment
- During the pre -sales process, pricing can be often be negotiated to cost place basis
- Upgrade capacity
	- There are variety of solutions
	- Forward pricing on wavelengths
	- Spectral pricing on fractional IRUs
		- Alien SLTE
	- Access to uplifts to system capacity can be negotiated for at a cost+ basis
	- Be aware that consortium sometimes need to work together to complete upgrades and establish timelines

Consortia - Non-Carrier Perspective

- Want to ensure swap/resale rights
- Want to controlupgrade timing

Commercial Aspects To Consider

Private cables

- Pre-sales (before CIF)
	- Demonstrate there is a market & reduces financial risk
	- Generally only covers part of the investment in the system cost
- Post-CIF capacity pricing
	- The Market Is Alway Right
	- Also, Sometimes The Market Is Wrong
		- Be prepared to adapt your pricing
		- Someone buys, someone sells, each wants to feel they got a good deal
	- Price Elasticity of Demand (E_d)
		- How much demand is there if nothing changes but the price?

Permitting

Landing & Operating

- Working permits: usually supplier's responsibility
- Authorizations in principle: right to land/own a system on national territory, RoW, etc. Usually cable owner's responsibility
- Telecom licenses : Cable owner/operator's re sponsibility (possibly through local partnership)

Exclusive Economic Zone / International Waters

- The United Nations Convention on the Law of the Sea (UNCLOS)
	- Also Called Montego Bay Convention
- 167 nations have ratified as of 20 16
	- The US Situation: Part XI: Minerals
- Waters are still disputed
	- South China Sea

Agreements with other seabed users

- Cable & pipe owners
- Oil exploration & platforms
- Sand dredgers
- Fishermen

EEZs Around The World

International Waters (Dark Blue) beyond EEZ (Light Blue)

Google

System Financing

b y

Financial Structures

Consortia are "full- equity/no-debt" schemes

- There is no debt to be repaid
- Cash flow must be budgeted
- The restrictions that can come with debt are avoided
- Step in rights may be part of the agreement

Private Cable can can have different types of fund sources

- Some companies an self fund
- Some may involve a mix of debt and equity
- This mix of funding can carry risk, that needs to have a mitigation plan

Different tranches may be needed over time, based on project success and market conditions

Financing

- **Consortiums**
	- Government Financing
	- Supplier Financing
	- Banks/Private Equity/Debt
	- Carrier Financing
	- Non-Carrier Financing
- Private Cables
	- Government Financing
	- Supplier Financing
	- Banks/Private Equity/Debt
	- Carrier Financing
	- Non-Carrier Financing

Expectations of Financing Entities

- Government Financing
	- Sometimes a grant to open access to an underserved market
	- Sometimes research driven
- Supplier Financing
	- Sometimes to cover a gap
- Banks/Private Equity/Debt
	- Looking for a return on investment
- Carrier Financing
	- Looking for a return on investment
- Non-Carrier Financing
	- Looking for ROI, but not necessarily on telecom products

WACC

- The weighted average cost of capital(WACC) is the rate that an entity (Consortium or Company) is expected to pay on average to all its security holders to finance the asset of the submarine cable.
- The WACC is the minimum return that a Company or Consortium must earn on the submarine cable to satisfy its creditors, owners, and other providers of capital.
- WACC helps in understanding the overall re turn of the investment. It is commonly used by Finance teams to evaluate the best opportunities for future endeavors.

The Formula for WACC $\text{WACC} = \left(\frac{E}{V} \times Re \right) + \left(\frac{D}{V} \times Rd \times (1- T c) \right)$

where:

- $E =$ Market value of the firm's equity $D =$ Market value of the firm's debt $V = E + D$ $Re = \text{Cost of equity}$
- $Rd = \text{Cost of debt}$
- $Tc =$ Corporate tax rate

Source : Investopedia

Generally used as the discount rate in an NPV calculation, and shown as percentage. Based on public filings, Walmart had a WACC of \sim 6.1% in 2016, was paying that amount for capital raised via debt and equity

NPV

- Net present value (NPV) is the difference between the present value of cash inflows and the present value of cash outflows over a period of time. NPV is used in capital budgeting and investment planning to analyze the profitability of a projected investment or project.
- The NPV rule says that only investments with a positive NPV should be invested in.
- A NPV that is positive indicates the projected earning/return exceed the costs that are anticipated to be incurred.

 R_t = Net cash inflow-outflows during a single period t $i =$ Discount rate or return that could be earned in alternative investments $t =$ Number of timer periods Source : Investopedia

Supplier **Negotiations**

- Be dispassionate: Emotions tend to blow up negotiations
- Prepare, and do you research, and prepare some more
- Make sure you are negotiating with the pe rson able to actually make the decision
- Focus on your goal, and not on who is right
- Make human contact
- Acknowledge the suppliers position and the ability
- Embrace difference; different can be good, can be profitable, and leaves room for creativity
- Negotiations
 • When people become irrational (it happens), use
 empathy to reduce the emotion. Otherwise no empathy to reduce the emotion. Otherwise no one will hear anything
	- Try to understand the supplier's position; you ne ed to know their motivation and goal if you are to persuade them
	- Incremental steps are best; trying to solve everything at once usually leads to failure
	- Know the standards! A powerful tool, and you can hold all sides to them
	- Be transparent, and not manipulative. This will be a long term relationship.

Supply Contract

- The end result of the business plan, engineering, project plan, financing and vendor negotiations is the Supply Contract
- The Supply Contract represents the common understanding between the cable owner(s) and builder
- When signed, this is generally when you are Contract-in-Force, and pre -sales end
- The contract's outcome is the submarine cable system
- The supply contract specifies the CAPEX that will be spent on the system
- A good Supply Contract is they key to a smooth implementation & a system that performs as designed
- Gives parameters so that the project has a timeline and budget
- It is key to maintain a good relationship with the supplier during implementation and beyond
- A fine contract should make lawyers unne cessary down the road

Suppliers

- Suppliers love Contract Variances
- Suppliers don't love commitments as much as CVs
- Make sure to speak to all suppliers, because more data points and knowledge helps when developing your business plan
- In the end, you will be in partnership with your supplier for decades, most likely
- Different suppliers are, of course, good at different things
- You can have multiple suppliers, but this can create complexities, and all relationships and responsibilities, handoffs and acceptance criteria need to be well document and understood

Steps to the Supply Contract

- Rough order of Magnitude (ROM)
- RFQ/ITT (Request for Quote/Invitation To Tender)
	- Needs to be prepared to allow a good comparison of offers
- Clarification and Follow Up
	- Have them sharpen pencils, be more specific
- Trim number of bidders
- Request Best and Final Offer (BAFO)
- Select your supplier based on best fit to all requirements

Supply Contract Contents

- **General Terms & Conditions**
- Supplier responsibilities : Scope of Work, pe rmits, custom clearance
- Purchaser protection: warranties & guarantee, liquidated damages
- Payment procedures
- Contract variations process
- Termination clause
- Force Majeure
- Transfer of Title upon meeting Acceptance Criteria
- Technical Specifications
	- Detailed technical description
	- Functionalities of equipment/system
	- Availability & reliability requirements
	- Safety/environmental requirements
	- Quality Assurance
	- Commissioning (tests & procedures)
		- Provisional Acceptance
	- Long-term assistance over system life
		- Including software

Guarantees

Guarantees & Warranties

- **Parental Guarantee**
	- Protects against insolvency of contractor
- Performance Guarantee
	- Protects buyer if system doesn't pe rform as promised
- Advance Payment Guarantee
	- Protect buyer who make payments at milestones of project doesn't complete

- Warranty
	- A financial guarantee to ensure satisfactory quality during a specific period
- Expressed Warranties
	- Written in the contract
- Implied Warranties
	- Nor written, but still binding

For more info on submarine cables

• Watch on YouTube: [A Journey To The Bottom Of The Internet](https://www.youtube.com/watch?v=H9R4tznCNB0&t=190s)

Marine Construction Overview

Chris Carobene

Vice President Marine & Network Construction

Confidential and Proprietary

Chris Carobene – 26 years at SubCom….!

Process Overview

Construction Activities

Vessels and Tools

CURIE Examples

Process Overview

Marine Construction - Objective

Building the Network

Install the equipment and infrastructure necessary for the undersea network

Maximize network performance by protecting submarine cables using a robust construction process

Managing and mitigating risk throughout the construction process

Project Process & Key Components

Construction Activities

Scope of Marine Construction

Four main phases of construction process:

- Planning
- Data Collection & Validation
- Execution
- Support & Maintenance

Key Risk Areas:

- **Personnel** Dangerous environment with high tensions and heavy machinery
- **Vessel, Tools & Equipment** Break-down causes delay and budget overrun
- **Cable System** Systems need to survive in a harsh environment for 25yrs

The majority of cable failures are the result of interaction with other human activity.

Historical Cable Fault Causes Guide Risk Assessment and Mitigation

80% of all cable faults are the result of external aggression (e.g. fishing & anchoring).

Suboptic 2019. M. Kordahi et al. New Orleans, LA, April 2019

ICPC Plenary 2019, A. Palmer-Felgate el al, Cape Town, April 2018. Averages over between 5 to 10 years of data depending on maintenance zone.

Given the economic and national-security importance of submarine cables, it's critical to protect them from physical damage.

Ship anchors and commercial fishing gear pose—by far—the most significant risks of damage to undersea cables.

•Fishing practices and patterns continue to be a **primary consideration** in undersea cable projects.

•**>90% of cable faults** (2010-2015) **are caused by external aggression**; of this percentage, ~75% are attributed to fishing or anchoring.

•An undersea cable repair can cost in excess of US **\$1 million** and typically takes 2+ weeks to return the cable to service—or more, depending on permitting requirements, weather, and other factors.

•**Regional variation in fishing risks are analyzed to tailor marine liaison analyses and outreach strategies.**

Initial Design - Desktop Study

Identify a safe and economical cable route

Design Considerations:

- Landing Points
- Maritime Boundaries
- Geopolitics Contested Areas
- Cable Fault Data Base
- Deep Burial
- Pre-Laid Shore Ends & Direct Landings
- Horizontal Directional Drilling
- Permitting & Fisherman Negotiations
- Natural and manmade obstacles
- Mineral/Oil & Gas exploration
- Cable selection
- Branching Unit deployments
- Other submarine cables
- Pipelines
- Unexploded Ordnance
- Cable / Pipeline Database

Agreement with other seabed users is critical to the survivability of the system

Risk Identification & Assessment

- Identify each risk
- Determine the threat level

Avoidance – Primary mitigation is to simply avoid

- Routing directly to deep water
- Avoiding areas of intense fishing and anchorages

Mitigation – When the risk can't be avoided

- Burial
- Cable Armoring

Risk Management balances cost of mitigation against the risk of future system downtime.

Planning Activities - Permitting

• **Landing Permits License – Permission to operate a telecom network**

• **Proprietary Permits**

- Rights of way, easements, wayleaves and seabed lease agreements
- **Cable Crossing Agreements**
- Pipeline Crossing Agreements
- Hydrocarbon and Mineral Lease Blocks/Concession agreements
- Environmental Impact Assessments
- EEZ notifications

• **Operational Permits**

- Notices to mariners
- Navy/coastguard permits/notifications
- Local authorities and municipalities
- Work Visas

• **Other Permissions may be Prerequisites**

- Fisheries
- Native communities

Early due diligence with all stakeholders is critical to minimizing the permitting interval.

Data Collection - Cable Route Survey

Data Collection – Survey & Inspections

 \checkmark Bathymetry, geotechnical, sub-bottom, and side scan data to support route engineering, cable selection, installation and burial

Analysis of Results – Results

- \checkmark Revised RPL & SLD
- \checkmark Cable Armoring & Protection
- \checkmark Burial Conditions
- \checkmark Recommendations for Installation Procedures

Design Validation - Cable Route Engineering

Installation Planning – Methods of Procedure

Modelling

GIS environment to display bathymetry, geophysical information, nautical charts, global maritime boundaries, oil and gas lease blocks.

Cable Route Engineering

Slack, cable type transition, repeater and joint body locations. Any changes to the route are calculated automatically and results are updated

Software modeling of the cable as it is deployed allows validation of the plan before heading to sea.

CONTRACTOR The british and the first state of the control time of color state of the sky lender and 1911 $\begin{array}{ll} 0.25\, \mathrm{GeV} & \\ 0.00\, \mathrm{GeV} & \\ \end{array}$ **SHIP COURSE SPEED & CABLE PAYOUT ACCURATE 3-D BATHYMETRY PLACEMENT AND LOG** 3-D CURRENT CABLE **PROFILE Treasure Parallel Control CABLE BODY CABLE PATH**

Computerized Cable Lay Plan

Electronic - Bottom Profile, Bathy and RPL

Installation Activities - Terrestrial

Shore End & Terrestrial

- Shallow water installation
- Cable landing operations
- Land cable installation
- Ocean ground bed installation
- Station cable terminations

Terminal Installation

- Station layout
- PFE installation
- SLTE installation
- ODF installation
- Fiber Guide installation
- Power and data cabling

Installation Activities – Marine

Route Clearance

- Clears out-of-service cables / discarded fishing nets
- Reduces risk to burial equipment
- Accommodates future maintenance

Main Lay & Burial

- Cable loading
- Cable installation
- Slack to cover seabed contours
- Burial to mitigate fishing & anchors
- Splicing and Testing

Post Lay Inspection & Burial

- Supplements the sea plow burial
- Verifies the installation

Surface Laying – Critical Angle

Critical Angle "alpha" is the entry angle that the cable makes with the surface of the water.

Alpha is a function of the cable's hydrodynamic constant and the vessel's speed:

$$
\alpha = \arccos\left(\sqrt{1 + \frac{1}{4} \left(\frac{H\pi}{V_s 180}\right)^4} - \frac{1}{2} \left(\frac{H\pi}{V_s 180}\right)^2\right)
$$

For critical angles less than 30°, alpha can be closely approximated:

 $\alpha = \frac{H}{A}$ *H V^s*

Surface Laying – Slack Management

Matching Alfa to the angle of the seabed ensures that the cable properly follows the seabed contours.

Burial Tools - Plows

- Modern **Subsea Telecom Cable Plow** simultaneous cable lay & burial
- **3m burial** capability
- Tow force of **80 tons** or greater

ROV Survey & Burial

- The ROV can be operated on tracks or in free-fly mode.
- Post main-lay the ROV deploys to the seabed.
- The cable is located using cameras, sonar or specialized cable detection equipment.
- The cable is inspected and/ or buried using water jets on deployable jetting swords.
- Burial takes place to target depth or a maximum of 3 jetting passes.
- When jetting is complete, a final inspection pass is conducted to record burial results.
- The ROV can also be used to cut, recover and bury cables during cable repair operations.

ROV Submarines

- Cable Burial **ROV** (Remotely Operated Vehicle)
- **2 or 3 meter** burial capability
- **Water jets** bury cable

Cable Ship Features

Installation – Cable Ships

Modern Cable Ship

- Multi-function cable lay vessel
- •World wide operations
- •140m LOA, 21m Beam, 8.4m Draft
- Berthing for 80 personnel
- 60 day endurance

SUBCOM RELIANCE

•Install, bury and maintain cables

Propulsion

- Rolls-Royce Diesel Electric
- Five (5) KRGB-9 Ulstein Bergen 1990kW Engines
- Ulstein Bow & Stern Thrusters (2 x Bow, 2 x Stern)

Navigation & Positioning

- Kongsberg SDP22 DP2
- Bandak MK12 Taut-wire for shallow operations
- Fanbeam & Radius for ranging to platform
- Kongsberg HIPAP 500
- EA500 Echsosounder
- Trimble Redundant DGPS

 $0.63n$

Cable Stowage

- Three (3) Main Lay Tanks
- 5500mt Capacity
- May be outfitted with:
	- loading arms
	- turntable

COM RELIANCE

Cable Lay

- 20 Wheel-Pair Linear Cable Engine
	- •16t Capacity

 \mathcal{L}

- Controllable Pinch Pressure
- 2 x 30t Cable Drum (4m diameter)
- 3 x WAMAC Dynamometers
- 3.5m dia stern sheaves
- Can be equipped with various quadrants and tensioners

Cable Jointing

- Interior jointing and testing area
- Specialized jointing equipment can be mobilized on cable highway or on stern

Cable Protection

• Storage interior/exterior to the vessel

RELIAN

- Sufficient rear deck space to install and deploy various protective elements
- Uraduct, bend stiffeners, concrete mattresses

EXXA

Post Installation - Cable Awareness & Support

To capture fishing risks, different tools are utilized to spatially and temporally identify fishing profiles to inform system design and ensure maximized cable awareness outreach strategies

Curie Project Highlights

Curie Cable System – Concept

Curie Cable System – Initial vs Final Routing

Curie Cable System: Segment 1 DTS Changes

Curie Cable System: Segment 1 DTS Changes

Based on advice from $\left[\begin{array}{ccc} \text{Other Cable} & \text{if } \\ \text{Other Cable} & \text{if } \\ \end{array}\right]$ Areas to avoid the Navy to avoid an underwater rangeur to DA over rocky terrain Original (Post Contract) New Segment 1 Segment 1 Green line Magenta Line Route East of this Line

Curie Cable System: Segment 1 DTS Changes

Local

 10_{on}

 200

2000 $v_{\theta_{Q_0}}$

 -2700

Curie Cable System: Segment 1 Mexico Bio Reserve Changes

CURIE – ROV Survey (Touch Down Monitoring)

Cable was recovered and re-laid away from obstructions.

CURIE – Jointing & Testing

20 at sea joints performed including:

- 1 final splice
- 1 Ship to Ship splice
- 3 branching unit installation
- 5 Tank to Tank
- 7 cuts / joints for Gain Tilt measurement testing
- 3 for weather and other operational events

CURIE – Jointing & Testing

CURIE – Landing in Chile

Direct Landing - 350m to shore

CURIE – Horizontal Directional Drill (California)

Dockweiler Park, Los Angeles, California

- 1,300m bored conduit
- County Harbor and Parks Scheduled events required all work to stop
- Hard and rocky conditions
- Weather delays
- High surf conditions
- Reduced work site

CURIE – Conduit Construction in Los Angeles

• Approx. 25,000ft of conduit installation with Manholes and Handholes

CURIE – Outside Plant (OSP)

City of Los Angeles Conduit Construction

Open Trench Construction

Directional Drilling

Terrestrial Cable Installation

NEC Orchestrating a brighter world

Networks Topologies and Supervisory

Yoshihisa INADA **NEC Corporation**

Biography

Mr. Yoshihisa Inada is Senior Manager at Submarine Network Division, NEC Corporation. He is currently the head of SLTE development group. Working in the submarine industry for the past 18 years, he has made significant contributions to the development of submarine cable transmission systems and relevant advanced products, from 10Gb/s to 100Gb/s and beyond.

He received his B.E. and M.E. degrees in Communication engineering from Osaka University in 1996 and 1998, respectively.

Contact

- Name : Yoshihisa INADA
- Title : Senior Manager, Submarine Network Division, NEC Corporation
- E-mail : y-inada@ak.jp.nec.com

Contents

- I. Network Topology
	- a. Overview
	- b. Network Topology of Submarine System

II. System Supervisory

- a. Overview
- b. Cable and Repeater Monitoring
- c. Fault Localization

III. Future Trend

Contents

- I. Network Topology
	- a. Overview
	- b. Network Topology of Submarine System
- II. System Supervisory
	- a. Overview
	- **b.** Cable and Repeater Monitoring
	- c. Fault Localization

HI. Future Trend

Network topology of sub-sea cable

Sub-sea cables play important roles as global infrastructure nowadays.

- \bullet 1995 = > Sub-sea cable : Satellite = 50:50
- \bullet 2014 = > Sub-sea cable : Satellite = 99:1

The network topology is to be optimized in following points.

- To maximize the system availability
	- Against the equipment failures (transponder failure, repeater failure..)
	- Against the cable failures (cable cut/damage..)
	- Against the optical path failure (fiber cut/damage..)
	- Against the powering path failure (powering line shunt..)
- To maximize the system flexibility
	- For the capacity (capacity expansion as demand)
	- For the connectivity (capacity connection change as demand)
- To justify the cost
	- Equipment cost (repeater, cable, transponder..)
	- Installation cost (vessel, landing..)
	- PJ management cost (Permission, Insurance..)

System Classify

Repeatered

- Amplified by chained repeaters
- \bullet ~ 15,000 km
- **Trans oceanic application**

▌Un-Repeatered

- Non amplified
- \bullet < 400 km
- Regional application

CLS : Cable Landing Station

Overview of Current Submarine Technologies

Cable

Regional system (Repeatered vs Un-Repeatered)

In regional systems, both repeatered and un-repeatered are candidates.

Transoceanic repeatered system

In transoceanic systems, there are several options for the network topology.

- Point-to-point
- Ring
	- Cable redundancy as route diversity
- Fishbone
	- Fiber redundancy as collapsed ring
	- Various optical path (Fixed OADM, Selectable OADM, Reconfigurable OADM)
	- Various powering path (Non-switching, Power switching)

Point-to-point

Point-to-point Configuration

Cable complete fault

Cable shunt fault

▌System availability

- Cable complete fault impacts on all the traffics
- Cable shunt fault does not impact thanks to double end feeding.

▌Flexibility

- Capacity is fixed at planning stage
- Connectivity is fixed at planning stage

▌System cost

● Baseline of submarine cable

Ring

Ring Configuration

Robustness to Cable Fault

▌System Availability

● Cable complete fault dose not impact thanks to route diversity

Flexibility

- Capacity is fixed at planning stage
- Connectivity is fixed at planning stage
- Both flexibilities can be improved by dry ROADM in station.

▌System cost

In general, double of point-to-point

Fishbone

BU: Branching Unit

▌System Availability

- Cable complete fault dose not impact on the traffics in other segment cables
- Cable shunt fault dose not impact thanks to double end feeding and power switching BU.

Flexibility

- Capacity can be changed as demand in case of ROADM BU
- Connectivity can be changed as demand in case of ROADM BU

▌System cost

● In general, lower than ring configuration

Widely introduced in the latest submarine network

Powering Topology (Availability)

(-)

PFF (-)

Features:

Shunt fault

in Trunk

PFF (+)

- **Trunk Double End Feeding** with Single End Feeding capability
- Branch : Full Equipment Redundancy
- BU : Power Path Reconfigurable

PFF $(-)$

Traffic Topology

 \circledR

Technology - Fiber-based Traffic Topology

- x 2 Fiber Pair Switch
- One (1) trunk fiber pair switched to two (2) branch FPs
- Switching State
	- State 1: 1-2
	- State 2: 1-3 & 2-4
- 2 x 2 Fiber Pair Switch
- Two (2) trunk fiber pair switched to two (2) branch FPs
- Switching State
	- State1: 1-2, 3-4
	- State2: 1-2, 3-5 & 4-6
	- State3: 3-4, 1-5 & 2-6

FP Switching Network in SDM -Examples

Trunk-Branch FP Sharing

Party A / B share branch FP Trunk - Branch FP Routing as needed

Shore-end Protection Network

 \checkmark Cable fault at shore end to be restored by FP Switching

Principle of OADM networks: Wavelength reuse

Equivalent circuits for opposite direction

Technology - Re-configurable OADM (RODAM)

Apply WSS for spectrum re-configuration

ROADM BU

- Unlimited add/drop ratio reconfigurability
- Tunable attenuation adjustment
- Reconfiguration and adjustment control by remote command from terminal station

WSS : Wavelength Selective Switching

Technology - Re-configurable OADM (RODAM)

W avelength [nm]

Optical Path(Flexibility)

Optical path reconfigurations under Cable Faults

Branch fault

▌ Optical switches in the BU react automatically against branch faults General criteria is to maximize trunk traffic availability

Connectivity options: Wet ROADM vs Dry ROADM

Wet ROADM

- **O** Lowest Latency T1-T3
- **O** Large OSNR T1-T3
- **O** Trunk traffic privacy

▌Dry ROADM

- **O** Lower equipment, installation and maintenance cost
- **O** Latency and OSNR penalty T1-T3

Dynamic submarine networks

23 © NEC Corporation 2019 NEC Confidential & Proprietary

Dynamic/Adaptive submarine networks

Dynamic/Adaptive submarine networks

Dynamic/Adaptive submarine networks

ELELE^T **Variable Rate TPND Adaptive rate Adaptive Spectral Efficiency WSS-ROADM** Dynamic bandwidth allocation **Hitless operation A B** $AB, SE=4$ $AC, SE=6$ $AB, SE=4$ BC, $SE=5$ LTE **ET** LTE LTE AB traffic: Human-to-Human – Business hours AC/CB traffic: Machine-to-Machine – Non Business hours wavelength wavelength Change of plans: DC is built in C Dynamic traffic pattern optimization data center **C** E l E. AB, $SE=4$ AC , $SE=6$ AB, $SE=4$ AC , $SE=5$ 0900h-2100h 2100h-0900h

Contents

- I. Network Topology
	- a. Overview
	- b. Network Topology of Submarine System

II. System Supervisory

- a. Overview
- b. Cable and Repeater Monitoring
- c. Fault Localization

III. Future Trend

Management Overview

Network Element Layer

▌Equipment composed in submarine network

- Submarine Line Terminal Equipment (SLTE)
- Power Feeding Equipment (PFE)
- **Wet Plant (Repeaters, Cable, BU)**
- Other transmission equipment...

SLTE PFE

Wet-plant Supervisory is unique function compared | Submarine Repeater to terrestrial network

Wet-plant Supervisory and Control

▌**Wet-plant equipment** is supervised and controlled remotely from SLTE

- Submarine Repeater
- Cable, Fiber
- Branching Unit (Power Switching, Optical Switching, ROADM)

Supervisory method

▌Command / Response method

- SV LSI in submarine repeater
- Direct measurement for each component operating condition
- **Two transmission method**
	- Dedicated WL
	- Superimpose to WDM traffic signal

▌Optical loop-back method

- Passive optical circuit in repeater
- Dedicated wavelength assignment
- Advanced signature analysis provides automatic fault localization and fault mode analysis function

Supervisory method (1): Command & Response

Active Method (Command & Response)

- A command from LTE invoke a response or reply from repeater.
	- Each repeater has Electric SV circuit and unique address.
- Output power, Input Power and LD current are read by SV circuit
- The communication method used is typically Amplitude Shift Keying ("ASK"), which modulation is applied to the overall optical output of SLTE or repeater

Supervisory method (2): Optical loop-back

Passive Method (All optical)

- SV signal (allocated in out band of traffic signal wavelengths) is launched from LTE (Tx) .
- Dedicated SV signal is returned through loop-back circuit in each repeater
- Returned SV signal is measured at LTE (Rx)
	- Roundtrip time : identify repeater location
	- Roundtrip optical level : measure Round trip gain
- Measured round trip gain is analyzed
	- Repeater power reduction
	- Span cable loss increase
	- Fiber cut

OTDR (Optical Time Domain Reflection)

Method

- Measure loopback signal or back-scattered light on time domain
	- $\sqrt{}$ Rayleigh back-scattered light
	- Fresnel reflection
	- Loopback signal through submarine repeater loopback circuit

OTDR Configuration

- **•** Transmitter sends a optical pulse signal to the fiber
- Back-scattered light or loopback signal returns to the OTDR through the fiber
- OTDR receiver directs to a Back-scattered light over time and analysis on time domain

Typical OTDR Configuration

Orchestrating a brighter world

Fault Mode Analysis

Repeater Loop-back Circuit

WSR: Wavelength Selective Reflector

 \setminus Orchestrating a brighter world \setminus \cdot

Cable Faulty Point Localization (C-OTDR)

- Standard OTDR equipment is not used for Repeatered submarine cable system, by the following reasons
- Isolator installed in Repeater; Isolator cut-off back scatted light
- Deterioration of receiver sensitivity by ASE noise of submarine repeater
- ▌C-OTDR (Coherent-Optical Time Domain Reflectometer) is widely used for faulty point localization of submarine cable system
	- High receiver sensitivity by coherent detection
	- Effective ASE noise reduction generated in submarine repeaters

Method

- Measure back-scattered light on time domain using **by coherent detector**
	- $\sqrt{}$ Rayligh back-scattered light
	- Fresnel reflection

C-OTDR

▌ C-OTDR Configuration

- Dedicated SV signal transmitter sends a probe light to the fiber.
- **The Rayleigh backscattered light** returns through the loop back circuit of submarine repeater.
- Monitoring system with C-OTDR receiver directs to a returned backscattered light over time and analysis on time domain.(OTDR method)
- Only C-OTDR trace for up-stream direction fiber is measurable.

C-OTDR (Coherent-Optical Time Domain Reflection) (3/3)

Fiber Trace Example

COTDR monitoring for submarine cable system

Point-to-point

System Monitoring Steps

System monitoring for Submarine Fault

Submarine Fault Localization Technique

▌OTDR Test / C-OTDR Test

Measure fiber break point along fiber

▌Direct Current Resistance (DCR) Test

- Apply direct current and read voltage
- The faulty point is estimated from the calculation from cable resistance and/or repeaters drop voltage, which were pre-measured before system installation at factory

▌Capacitance Test

- Measure capacitance of system
- The faulty point is estimated from the calculation from cable capacitance

DCR Measurement

DCR Calculation : $V_{CABLE} + V_{REP} + V_{BU} + V_{PFE} + V_{EARTH}$

Distance (km)

Contents

- I. Network Topology
	- a. Overview
	- b. Network Topology of Submarine System
- II. System Supervisory
	- a. Overview
	- **b.** Cable and Repeater Monitoring
	- c. Fault Localization

III. Future Trend

Network Supervisory by Artificial Intelligence

- Artificial intelligence techniques has been discussed in many areas of optical communication system
- AI techniques excel with abundance of data. Optical transmission has plenty of data.

Network Management by Artificial Intelligence

- Wet-plant supervisory becomes more important for recent submarine cable system
- Increased connectivity
- **Increased flexibility**

Fault localization becomes complicated

- Wet-plant fault localization and fault prediction is promising candidate of AI
- Analysis of plenty monitoring data from NEs from all the stations (Big data)
- Fault localization and root cause analysis without time consuming human investigation
- Fault prediction

Maintenance efficiency Improvement (cost reduction)

SDM Technology for Submarine Systems

Submarine systems have specific limitations

- Space limitations due to cable structure, manufacturing, handling and deployment
- Power limitations due to feeding of the optical amplifiers from the land

SDM can help increase capacity despite these limitations

- Higher signal density per cable area unit
- Higher power efficiency through sharing and pumping techniques

Different flavors of SDM

- Single core fiber SDM (SDM 1.0 or SDM 0.0): increasing number of fiber pairs (>8fp)
- **Multicore SDM: High density and good uniformity among cores**

Different flavors of SDM: Multicore fiber transmission

Multicore fibers have the potential to increase the core density in submarine cables

▌ NEC/KDDI confirmed for first time 6000km+ multicore transmission in 2012

Submarine Transmission with multicore fiber is confirmed long ago

◎ There is catch...special SLTE is required to eliminate inter-core crosstalk

Different flavors of SDM: Multicore fiber amplifiers

Connectivity in next gen SDM networks

▌Multicore technologies will enable many space channels with better power efficiency and space usage.

Then, network topology and traffic routing will gradually shift from wavelength switching to space-channel switching (FP first, FC later..)

\Orchestrating a brighter world

NEC brings together and integrates technology and expertise to create the ICT-enabled society of tomorrow.

We collaborate closely with partners and customers around the world, orchestrating each project to ensure all its parts are fine-tuned to local needs.

Every day, our innovative solutions for society contribute to greater safety, security, efficiency and equality, and enable people to live brighter lives.

August 6, 2019

Confidential and Proprietary

Submerged Plant Equipment Characteristics

High performance:

- Ultra-long transmission distance up to 14,000 km!!
- High data capacity: 250 Tb/s across the Atlantic!

Space & Power Limitations:

- All functionality must fit inside an undersea body.
- Equipment must be powered from shore through the cable conductor.

Reliability for a 25 year lifetime in the undersea environment:

- Water-proof and pressure-stabilized body
- High reliability optics/electronics.

Deployment:

• Equipment must support shipboard storage, deployment, and retrieval for repairs.

Unique technology for a unique environment

• **WMU:** Wavelength Management Units – (R)OADM

Outline

- Cable
- Repeaters
	- Amplification and gain equalization
	- Self-healing of a chain of amplifiers; gain tilt
	- Pump manifold and reliability
	- Line Monitoring and High Loss Loopbacks (HLLBs)
	- L-band amplification
	- The pressure vessel
- Branching Units
	- Fiber routing and optical switches Why only one branch leg (3 port BUs)?
	- Electrical reconfiguration Recovering from shunt faults
- Wavelength Management Units: (Reconfigurable) Optical Add Drop Multiplexing
- System Reliability

Undersea Fiber-Optic Cable

Cable Characteristics:

- **Fibers:** Benign environment for optical fibers
- **Strength:** For deployment and retrieval
- **Electrical:** Power for repeaters and network elements
- **Armoring:** Protection against external aggression

The Repeater

- The modern repeater is an amplifier for the optical data signals on the fiber
- Amplification for fiber pairs
	- both directions of traffic: east and west bound
- High performance design for ultra-long distance transmission
	- Forward pumping for low noise figure
	- Single stage design
- 25 year design life
	- High reliability components
	- Higher order pump manifold
- COTDR path for fault localization

Amplification

Erbium Doped Fiber (EDF):

- Amplification around 1550 nm
- Bandwidth around 4.5 THz (1529 1565 nm)
- Optical pumping near 980 nm
- Significant gain variation across the amplification bandwidth (gain shape)

Gain Flattening:

- Gain flattening filter (GFF) to minimize gain variation across the amplification band
	- GFF is typically a Fiber Bragg Grating (FBG)
	- FBG reflection tuned to follow the EDF shape
	- Optical isolators suppress reflections and avoid lasing of the amplifier
- 0.1 dB gain variation leads to 10 dB across 100 repeaters (ignoring spectral-hole burning – more later)

Gain Equalization

- **EDF Shape**
- **Fiber Loss Shape**
- **Raman Gain**
- **Spectral-Hole Burning**

Stimulated Raman Scattering

- Nonlinear scattering of light with optical phonons (lattice vibrations)
- A higher energy photon is scattered creating a phonon and lower energy photon

Intra-Band Raman Effect

Gain Equalization

- **EDF Shape**
- **Fiber Loss Shape**
- **Raman Gain**
- **Spectral-Hole Burning**

EDFAs tend to equalize power spectral density across the band

- Amplification depends on spectral loading of the EDFA
- Lower amplification where the power is high and higher amplification where the power is low
- Nonlinear effect
- Must be included when designing the gain management
- Tends to mitigate any residual gain error
- Tends limit effectiveness of pre-emphasis

Spectral Hole-Burning in a 5,000km Amplifier Chain

Spectral Hole-Burning in WDM Systems*

Measured and simulated gain vs. wavelength using an installed 6,650km undersea cable system

* A. N. Pilipetskii et al., OFC'03

Gain Management in System Assembly

Repeater Design

Main Contributors to Gain Variation

- EDF shape
- Fiber loss shape (see Marsha)
	- Fiber loss minimum near 1565 nm
- Intra-band Raman effect
- Spectral-hole burning

Gain Equalization for amplifier/span combination!

- Precise characterization and custom gain flattening filter for each system design
- Results in nominal amplifier design

What happens with manufacturing variations?

- Span loss is higher/lower than nominal
- EDFA gain is higher/lower than nominal

Repeaters run is constant pump power mode

- Output power set by pump power
- Nominal gain set by EDF length
	- Average inversion determines optical bandwidth

Spectral Tilt

• Deviation from nominal gain and/or loss leads to a spectral tilt (first order, also some shape)

Gain Management

- 1. Gain equalization per amplifier/span combination
	- Gain flattening filter (GFF) Typically a Fiber Bragg Grating
- 2. Gain tilt equalization
	- Adjustable (during system assembly) loss point (Loss Build Out LBO) every several spans
- 3. Second order gain shape correction to address systematic GFF shape error
	- Shape Correction Unit (custom gain equalization filter)

Gain Management During System Life

Loss Fault

SUBCOM

Pump Fault in a Chain of Repeaters

Repeater Pump Manifold

Pump Sharing: Higher Reliability

Traditional:

"Fiber Pair Independence" (One pump-pair per FP) (2.6 FIT per FPs)

New "Pump Sharing / Farming"

(Power shared over 2 FPs) (0.001 FIT per FP)

Higher Reliability

2FP = 1 set of "4 pumping 4 Fibers":

Pump Sharing: SDM / More Fiber Pairs

Pump Lasers are combined and shared in sets of four

"4 pumping 8 Fibers":

Support for twice as many FPs, with higher reliability

Line Monitoring System

Line Monitoring System

High-Loss Loopback Circuit For one Amp-Pair

- Provides Undersea Monitoring and Fault Detection
- All optical principle, no active components in the repeaters
- Two operating modes: HLLB mode and COTDR mode

In-Service Line Monitoring

Line Monitoring System Signals

• LMS tones on the short and long wavelength side of the data transmission band

Automated Signal Interpretation

- Automatic Signature Analysis detects changes in loop gain and extracts span loss and repeater output powers.
- Reported parameters include span length, span loss, repeater input and output power levels, and tilt

Active Line Monitoring Systems are also in use

• Input and output power levels detected with photodiodes and reported to shore via command channel

Example RPT for One Traffic Direction

Out-of-Service COTDR Measurements

Rayleigh Scattering

• Fiber reflects optical power back towards the transmitter $(< -30$ dB)

Optical Time Domain Reflectometry (OTDR)

• Send pulse, look for reflected signal

Coherent (Correlation) OTDR (COTDR)

- Send pulse (pattern) on outbound path, look for reflection on inbound path through High-Loss Loopback
- Works over multiple spans for >10,000 km
- **Locate faults with <1km accuracy**

C+L

C+L: Doubling Fiber Pair Bandwidth

- Amplification in the C-band (1529 1565 nm)
- Amplification in the L-band (1570 1608 nm) (if no light in C-band)

C+L Architecture

- Nearly double the capacity per fiber pair
- Enables compact cable designs with fewer fiber pairs for the same capacity

 $\ddot{4}$ FP

System Capacity

6FP.

8FP

4FP

Cost

Repeater Mechanical

Pressure Vessel

- Cylindrical shape
- Material: BeCu (also Stainless Steel or Titanium)
- Good to 8000m
	-

Cable to Repeater Coupling

Millennia Joint

Repeater Mechanical Design – 16 FP Repeater

Dual Amplifier Quad Supports 4 Fiber Pairs

Up to Four Dual Amp Quads in a Network

16 FP Repeater Network in Type 300 Repeater Housing

Loading Repeaters onto the Ship

Confidential and Proprietary | © 2019 SubCom, LLC **³⁹**

۳

Repeaters on Board Ship Ready for Deployment

Confidential and Proprietary | © 2019 SubCom, LLCC

Branching Units

The branching unit (BU) enables connections other than simple point to point

The Branching Unit

- A 3-port device: Trunk, A1 and A2
- Enables the creation of a branch of the main trunk
- Provides fiber routing and optical connectivity between 3 points
- Enables later network expansion

The branching unit can also contain remote controlled high voltage relays to enable switching of the power path

Cable Fault Recovery and Isolation:

- Recover from shunt faults (see also lectures by Katsuji Yamaguchi)
- Maintain traffic on unaffected segments during a ship repair
- Optical command control from shore

Power Switching States in the eBU

Power Switching States for Normal System Operation

Submarine System Powering with Branches

Powering submarine systems also requires creative architectures.

Future Network Expansion

- BUs with stubs can be inserted into a cable to enable future connectivity without cutting into the trunk cable
- Any number of trunk FPs can be accessed for connection to a branch state
- Stubs can also support later addition of WSS ROADM or Dry ROADM.

Today's branching units also contain remote controlled optical switches for even more functionality

User configurable remote fiber switching allows

- Autonomous or/and manual fault recovery
- Isolating the branch for a repair or later network expansion
- Adding and/or re-routing traffic in a branch

Fiber Switched BUs can provide intra-cable connectivity.

• Use for fault recovery, or for capacity routing flexibility.

Increases overall network availability.

• Protect on a FP basis, or use ROADMs to prioritize spectrum.

Increases path length:

• Could adjust channel data rates to match available OSNR.

BU placement is typically optimized for overall cable length

- Lower cost
- Lower latency

There are additional marine considerations to best protect the BU

• Seafloor conditions

(4-Port BUs exist for special applications)

Optical Add Drop Multiplexing

Enhanced Connectivity options

Multiple DLS on a single fiber pair

Bandwidth on a trunk fiber pair can be used for multiple DLS

Optical Add/Drop Multiplexing (OADM) Node

Components in an OADM Node include:

- Branching Unit
- OADM Unit:
	- Passive fixed filtering
	- Switchable filtering
	- Wavelength Selective Switch based filtering

Modular OADM options:

- OADM unit can be deployed when the branch is landed
- Simplified sparing (universal spare for BU)
- Repair operation does not affect express fiber pairs

Switched Filtering

The Wavelength Selective Switch (WSS) is a pixelated device that supports reconfigurable filtering

- Key specifications:
	- Grid-flexible channel plan with a fine granularity e.g. 6.25 GHz
	- Very steep filter edges

30 dB transition in approximately 20 GHz

Branching Node Example: PSBU + WSS ROADM

Reconfigurable Optical Add Drop Multiplexing

Wavelength Selective Switch based OADM nodes support

- In service, gridless capacity reallocation
- Inline dynamic gain equalization

System Reliability

System Reliability

System Design Life is typically 25 years

Transmission affecting failures require ship intervention

- Costly
- Takes time

Design for reliability

- High reliability components
- Redundancy

Expected number of ship repairs due to intrinsic failures is in the range of 0-3 depending on system size and complexity

Failure Rate

- A common measure for failure rate is FIT, defined as the number of failures in 109 device hours (114,046 years).
- Use average failure rate λ
- Probability of failure is

 $P_{fail} = 1 - e^{-\lambda t_{System}}$,

where t_{System} = 25 years

• Effective failure rate for redundant components $(n=2$ for 1x1)

 $\lambda_{effective} = \frac{-\ln(1 - P_{fod}^n)}{t_{\text{scat}}},$ t_{System}

- Total FIT is the sum of all single points of failure (including effective FIT rate from redundancy)
	- Reliability: $R=1-P_{fail}$

110 FIT means 2.4% will fail in 25 years

¹Confidence bound applies where acceleration of the key failure modes is possible. ²Taking laser redundancy into account.

> From *Undersea Fiber Communication Systems* 2nd Edition by Jose Chesnoy (Editor), Academic Press ISBN: 978-0128042694

Ship Repairs

- Failures are Poisson distributed.
- The expectation value of the distribution is the number of ship repairs.
- For Poisson the expectation value corresponds to the failure rate

Example

- 100 Repeaters
- 4 Fiber Pairs
- 800 Pumps (110 FIT)
- 19 Pump failures in 25 years
- 4x4 pump redundancy: no repeater failure due to pump failure
- Repeater: 11 FIT
- Expected number of ship repairs in 25 years: 0.24

External Aggression

Majority of cable failures are due to external events:

- Ship anchors
- Earthquakes and mud slides
- Abrasion

Good reasons to armor or bury cable near shore.

Summary

- Cable
- Repeaters
	- Amplification and gain equalization
	- Self-healing of a chain of amplifiers; gain tilt
	- Pump manifold and reliability
	- Line Monitoring and High Loss Loopbacks (HLLBs)
	- L-band amplification
	- The pressure vessel
- Branching Units
	- Fiber routing and optical switches
	- Electrical reconfiguration Recovering from shunt faults
- Wavelength Management Units: (Reconfigurable) Optical Add Drop Multiplexing
- System Reliability

Thank You

August 8, 2019

- Primary Cable Functions
- Foundations of Design
- Cable Types and Families
- Cable Characteristics and Handling
- Cable Qualification
- Cable Manufacture
- New Challenges

Fiber and Cable Go Hand in Hand

Cable **Protects the Fiber** and **Carries Power**

Fibers: Benign environment for optical fibers

Strength: For deployment and recovery

Electrical: Power for repeaters and network elements

Armoring: Protection against external aggression

Primary Cable Functions

Benign Environment against:

- Tensile stress
- Bending (cushion)
- Pressure
- Water diffusion
- Hydrogen penetration

- Abrasion Resistance
- Water penetration resistance (cable cut)

Powering:

- Low electrical resistance conductor
- Insulation from Sea Ground

Foundations of Design

Learning from our Forefathers

Foundation of Design -- Steel Strand Wire Configuration

Interlocking Strength Members Resist External Pressure – *Tried-and-True Cable Design*

Steel Strand Wire Approach

Steel Strand Wire Package Analysis

Finite Element Modeling - Compressive Load on Strand Wire Package

Functionality Satisfied -- Simply

* Original SL Cable used extruded tight buffer core that was changed to Loose Tube with $A_{\text{eff}} \sim 65 \mu m^2$ fibers

Cable Types and Families

Protected Cables

Cable Type Applications

Additional cable types are qualified such as DA-HA (High Abrasion), Dynamic Riser Cable for platforms, etc.

Armored Cables for Harsh, Shallow Areas

Cable Families: SL17-A1, SL17 and SL21

14mm OD versions of SL17-A1 and SL17, named SL14-A1 and SL14, are qualified for lower voltage applications

Cable Characteristics and Handling

Cable Mechanical Properties: Tensile Strength Ratings

Industry Standard Cable Tensile Strength Ratings

- ➢ Breaking Strength (Ultimate Tensile Strength, **UTS**)
	- Sufficiently larger than NTTS
	- Initial Strength-to-Weight Parameter ➔ **Cable Modulus = UTS / Weight in Water**
- ➢ Nominal **Transient** Tensile Strength (**NTTS**)
	- Maximum allowable short-term cable tension (cumulative over \sim 1 hour)
- ➢ Nominal **Operating** Tensile Strength (**NOTS**)
	- Maximum allowable *average operational tension* for repair period (typically 48 hours)
- ➢ Nominal **Permanent** Tensile Strength (**NPTS**)
	- Maximum allowable permanent tension applied to cable on the seabed after installation

Surface Laying – Critical Angle

Critical Angle "alpha" is the entry angle that the cable makes with the surface of the water.

Alpha is a function of the cable's hydrodynamic constant and the vessel's speed:

$$
\alpha = \arccos\left(\sqrt{1 + \frac{1}{4} \left(\frac{H\pi}{V_s 180}\right)^4} - \frac{1}{2} \left(\frac{H\pi}{V_s 180}\right)^2\right)
$$

Hydrodynamic constant – Related to Cable Weight in Water, Cable Diameter, and Drag Coefficient

For critical angles less than 30°, alpha can be closely approximated:

 $\alpha = \frac{H}{\sqrt{2}}$ *H V^s*

Critical Angle – Calculation of Catenary Length during Lay

For the same vessel speed…

Highest cable tension is during recovery (not laying) due to the downward drag force as the cable moves through the water

Cable Recovery

❑ **Recovery Tension**

- ➢ Proportional to **Water Depth** and **Cable Weight**
- ➢ Significantly affected by Recovery Conditions **Recovery Speed, Recovery Angle, Sea Conditions**

Recovery Tension @ Ship, Ts = wh + Tbottom + Twave-induced *(For a surface-laid cable,*

without a repeater)

From 5000m water depth:

SL17 LW Recovery Tension \sim 46 kN (SL17 LW NTTS = 58 kN) SL21 LW Recovery Tension \sim 62 kN (SL21 LW NTTS = 81 kN)

(For typical recovery conditions of 1 knot recovery speed, 75 degree lead angle, and 4m sea swell)

❑ **Recovery Depth Curves**

For Maximum Recovery Depth Calculation,

NTTS is set equal to **Ts**

Tensile Strength:

- ❑ Highest Cable Tension levels are typically encountered during Recovery at Maximum Depth
	- ➢ Recovery operations aim not to exceed **Nominal Transient Tensile Strength** (**NTTS**)

SL17 LW

Cable Qualification

Qualification Test Program

Cable qualification program in conformance with ITU-T Recommendation G.976

* Verification test

❑ Extended Range Temperature

Sample: 10-15km long cable on a reel, placed in an environmental temperature chamber

Test Description: Sample is subjected to a temperature profile ranging from -20 °C to +60 °C

Qualification Test Program

❑ Reverse Flexure with Temperature

Sample:

A ≥100m-long cable sample, placed in an environmental temperature chamber and subjected to small radius bending

Test Description:

Sample is subjected to flexing while at temperatures ranging fi -20° C to $+60^{\circ}$ C.

Simulates low-tension loading from the cable factory to the ship during very hot or very cold weather conditions

Cable Mechanical Properties

❑ Reverse Bend

Sample: 100m-long cable sample in a tensile bed.

Test Description:

- The cable is routed through three 3m diameter sheaves attached to a moveable carriage.
- Tension applied up to NTTS.
- Carriage traverses over a portion of the sample and impart cycles of reverse bends at different tension levels.

Cable Mechanical Properties

REVERSE BEND TEST

100 METERS

3-meter diameter sheaves

Moveable carriage traverses over a 70m portion of 100m long test specimen

100m test specimen

Qualification Test Program

❑ Tension/Torque/Elongation

Sample: 100m long cable sample in a tensile bed.

Test Description:

- Cable ends pinned against rotation.
- Tension applied incrementally to NTTS.
- Optical loss monitored, along with tension, torque and elongation.

❑ Tension/Rotation/Elongation

Sample: 100m long cable sample in a tensile bed.

Test Description:

- One cable end pinned against rotation, other end free to rotate.
- Tension applied incrementally to NTTS.
- Optical loss monitored, along with tension, rotation and elongation.

❑ Crush

Sample: ~5m long cable sample

Test Description:

The sample is placed between two flat plates over a 10cm long section of the cable, and then loaded.

Cable Manufacture

Cable Manufacturing -- Armoring

New Challenges

Next Generation Cable:

- Improved Fiber Cushioning for New Fibers?
- Higher Voltage Capability?
- More Economical & Efficient Power Conduction?
- New Insulating Material?
- Quicker Jointing Process?
- ???

How will you progress Subsea Communications?

Thank You

Optical Transmission – Lecture 2

Propagation impairments

Do you speak dB (deciBels) ?

• *We often express ratios in dB (logarithmic) scale* $X=A/B$ \rightarrow X_{dB} = 10log₁₀ (X) • $1x \leftrightarrow OdB$, $2x \leftrightarrow 3dB$, $10x \leftrightarrow 10dB$ • *Product of ratios = sum in dB 10 log10(X¹ * X2) = X1,dB + X2,dB*

Do you speak dB ?

• *We often express ratios in dB (logarithmic) scale*

$$
X=A/B \qquad \rightarrow \quad X_{dB} = 10 log_{10} (X)
$$

- \bullet *1* \leftrightarrow *OdB*, 2 \leftrightarrow 3dB, 10 \leftrightarrow 10dB
- *Product of ratios = sum in dB 10 log10(X¹ * X2) = X1,dB + X2,dB*

10 $log_{10}(X_1 \, / \, X_2) = X_1 \, dB - X_2 \, dB$

• *We also express powers in dBm = Ratio of the power « per mW »*

$$
P_{dBm} = 10 * \log_{10} \left(\frac{P_{Watt}}{10^{-3}Watt} \right)
$$

• *Product of power P¹ by ratio X*

$$
P_{2,d\beta m} = P_{1,d\beta m} + X_{d\beta}
$$

• *! We can sum Watts, not dBm*

Back to Lecture 1

- Software-defined "Coherent" transceivers
	- Linear receiver assisted by high rate **Digital Signal Processing** enables mitigation of line impairements…
	- and **adaptation of bit-rate** (modulation) to **Quality of Transmission** (distance, signal to noise ratio)

Impact of fiber attenuation

Fiber attenuation is low (0.15dB/km) but not enough to reach 1000 km

From optical amplification to amplifier noise

Limitation: **A**mplified **S**pontaneous **E**mission (**ASE**)

Principles of optical amplification

All Erbium ions in the fundamental state

Principles of optical amplification Optical pumping

Energy of a photon: $\frac{h*c}{\lambda}$ $= h\nu$

Pump photons transfer Erbium ions into an excited state

Principles of optical amplification Optical pumping

Energy of a photon: $\frac{h*c}{\lambda}$ $= h\nu$

Pump photons transfer Erbium ions into an excited state

Principles of optical amplification Population inversion

Strong pump power : almost all ions in level 2 Ready for signal amplification !

Principles of optical amplification Incoming signal photons in presence of population inversion

Competition between stimulated (+spontaneous) emission and absorption Population inversion \rightarrow Amplification (+ spontaneous emission noise)

Principles of optical amplification with EDFA Wideband amplification

Stark effect: myriad of sublevels \rightarrow amplification over wide range of wavelengths

Gain and population inversion

opulation inversion
\n
$$
G(\lambda_s) = \sigma_e(\lambda_s) \overline{N_2} - \sigma_a(\lambda_s) \overline{N_1}
$$
\n
$$
N_1 + N_2
$$

 $N_1 + N_2 = N_1$

Whatever the inversion, the gain is not flat!

With a constant gain (population inversion) one can control the spectral profile using a fixed equalization optical filter

Typical optical amplifier with optical equalization

Typical features of subsea repeaters

- Total output power : up to 21dBm
- Equalizing filter adapted to fixed inter-amplifier section (span)
- Flatness within \pm 0.1dB over up to 5THz (40nm)
- Noise figure \sim 4-5 dB

Quality of transmission parameter: OSNR

Amplified Spontaneous Emission (ASE)

- Additive Gaussian Noise
- Broadband noise: >4THz, 30nm

Optical Signal to Noise Ratio (OSNR)

$$
OSNR_{Bref} = \frac{P_{signal\ per\ channel}}{P_{noise,2\ polars,B_{ref}}}
$$

Expressed in dB, generally w/in 0.1nm (12.5GHz)

Amplifier characteristics: Total Output Power (TOP), noise figure (NF)

• Generated ASE noise:

•
$$
P_{ASE,B_{ref}} = NF * G * \frac{hc}{\lambda} * B_{ref}
$$

\nNoise Amplifier photon
\nFigure gain energy
\n(ITU)

- OSNR after 1 amplifier
	- Depends on input power

•
$$
OSNR_{B_{ref}} = \frac{P_{in\ per\ channel}}{NF} * K, \quad with\ K = \frac{\lambda}{hc*B_{ref}}
$$

Amplifier characteristics: Total Output Power (TOP), noise figure (NF)

Cascade of N identical repeaters

- Generated ASE noise:
	- \bullet * N
- OSNR after N amplifiers
	- Assuming same signal input power

Application : reach of terrestrial vs submarine systems

- $OSNR_{dB,0.1nm} \approx 58 + P_{out,total,Bm} \#channels_{dB} Loss_{dB} NF_{dB} N_{repeaters,dB}$
- SpanLoss_{dB} = Attenuation_{dB/km} * Repeater-spacing_{km}

OSNR in open cables: conventional vs natural bandwidth

- Convention: 0.1nm \rightarrow OSNR depends on terminal (# channels)
- Natural: **channel spacing** \rightarrow OSNR does not depend on terminal

$$
SNR_{ASE} = \frac{P_{signal,channel}}{P_{noise,channel\ spacing}} = \frac{P_{signal,total}}{P_{noise,total}}
$$

OSNR in open cables: conventional vs natural bandwidth

- Convention: 0.1nm \rightarrow OSNR depends on terminal (# channels)
- Natural: **channel spacing** \rightarrow OSNR does not depend on terminal
- Conversion:

$$
SNR_{ASE, dB} = OSNR_{ASE, B_{ref}, dB} + 10 * \log_{10} \left(\frac{B_{ref}}{Channel\ spacing}\right)
$$

or

 $SNR_{ASE, dB} \approx 38.9 + P_{out, tot, dBm} - Loss_{dB} - NF_{dB} - N_{rep, dB} - 10 \log_{10}(Ampl, Band_{THz})$

General formula of a cascade of amplifiers (1/3)

• OSNR degradation in presence of existing noise (OSNR_{in})

General formula of a cascade of amplifiers (2/3)

• OSNR degradation in presence of existing noise (OSNR_{in})

General formula of a cascade of amplifiers (3/3)

• OSNR degradation in presence of existing noise (OSNR_{in})

Exact OSNR with constant power amplifiers: signal & ASE droop

• Submarine repeaters = constant output power

- A fraction of total power is converted into noise
- The proportion of input signal decreases \rightarrow attenuation / droop

$$
\frac{P_{total}}{P_{signal}} = \frac{P_{signal} + P_{noise}}{P_{signal}} = 1 + \frac{1}{SNR_{ASE}}
$$

(SNRs expressed in channel spacing band)

Exact SNR after a cascade of repeaters

[J.-C. Antona et al, Mo1J.6, OFC'19]

- Cascade of fixed power amplifiers: product of attenuations matters $1 +$ 1 \overline{SNR}_{ASE} $= 11$ \boldsymbol{k} $1 +$ 1 \overline{SNR}_k Generalized droop (of signal and ASE) Individual theo. contributions
-

• 1st order approximation:
$$
SNR_{Drop,1st\ order} = SNR_{theo} - \frac{1}{2}
$$
 (for SNR>2dB)

 $OSNR_{Drop,1st,B_{ref}} = OSNR_{theo,B_{ref}} - \frac{1}{2}$ $\frac{1}{2} * \frac{Chi 2}{B_{ref}}$ B_{ref}

C+L wide-band amplification

- Most amplifiers operate in the C-band
	- 1528-1570nm
	- High gain => short EDF
- Possible operation in the L-band
	- 1570-1610nm
	- Low gain \rightarrow long EDF
- Wideband C+L amplifiers
	- Separate amplifiers and band Demux/Mux
	- Higher bandwidth, with a price to pay...

(Distributed) Raman amplification

Stimulated process

Molecular vibrations of $SiO₂$

- Yet Raman amplification
	- bandwidth and gain shape are tunable
	- can be distributed along the line fiber \rightarrow low NF

Raman-assisted amplification schemes

Refinement: Wavelength dependence Gain

- Despite filter at amplifiers + periodic Equalizers along the line
- Wavelength-dependent OSNR \rightarrow reduction of average OSNR
- Coping with that:
	- Today: (O)SNR equalization by channel power adjustment (pre-emphasis)
	- Future ?: wavelength-dependent bit-rate

Chromatic dispersion (or Group velocity dispersion)

- Origin: wavelength dependence of refractive index
- Thus group velocity depends on wavelength
- Chromatic dispersion (or group velocity dispersion, GVD)

$$
D = \frac{\partial}{\partial \lambda} \left(\frac{1}{v_g} \right) (ps/nm/km) \quad \text{ou} \quad \beta_2 = \frac{\partial}{\partial f} \left(\frac{1}{v_g} \right) (ps^2/km)
$$

Notation from Optics world Notation from Physics world

Chromatic dispersion

• Dispersion D is expressed in (ps/(nm.km))

D gives the arrival time after 1km fiber between two 1nm-spaced spectral components. From 10 to 100Gbaud: 100 times more stringent !!!

Evolution of dispersion maps in submarine cables

2000: NZDSF dispersion map

2005: DMF dispersion map

2010: Coherent dispersion map

- "Coherent" systems
	- Electronic mitigation
	- D+ fiber only:
		- Low attenuation, high effective area, high dispersion
		- \sim 0.15 dB/km 80-150 μ m² \sim 21 ps/nm/km

One transmission line, multiple sources of signal impairments

Origin of Optical nonlinearities

- Main limitation = ASE noise \rightarrow need higher optical powers...
- But not too much, please
	- Low optical powers ~ 20 dBm (100mW)
	- Low core effective area $\sim 100 \mu m^2$
	- \rightarrow High optical intensity: 1 billion W/m²

• 10 000 x solar radiation at top of Earth's atmosphere

Nonlinear Kerr effect

• 1/ High optical power variations modulate fiber refractive index

• $n = n(\omega) + n_2 * P(t) / A_{eff}$

- 2/ the refractive index modifies the local phase of total optical field
- 3/ interplay with chromatic dispersion \rightarrow phase and intensity modulation \rightarrow mess
- Impact on one channel:
	- intra-channel or inter-channel effect, nonlinear signal noise interaction

Nonlinear effects accumulation

- When P_0 or distance (N) increase, non-linear effects increase and degrade signal.
- Accumulation depends on cumulated dispersion at each section input… Non obvious.

Nonlinear impairments as an additive Gaussian noise

- With current systems
	- High modulation rate
	- Complex modulations
	- Coherent detection

Additive Gaussian noise → noise variance, (O)SNR_{NI} matter

Variance
$$
\propto N_{spans}^{1+\epsilon} * \left(\frac{P_{span\,input}}{A_{eff}}\right)^2 P_{Rx}
$$

 $\epsilon \sim 0$ for coherent dispersion maps, \sim 1 when inline dispersion compensation

∝ : analytical derivation in perturbative models (GN model…)

Practical cases

$$
SNR_{NL} \propto \frac{1}{N_{spans} * P_{ch}^2}
$$
 i.e.

$$
SNR_{NL,dB} = K - N_{spans,dB} - 2 * P_{ch,dBm}
$$

Combined with (O) SNR_{ASE}

$$
P_{ASE+NL} \approx P_{ASE} + P_{NL}
$$

 Ω 2 4 6 8 12
10 14
12 14 $\frac{10}{\frac{2}{5}}$ $\frac{10}{6}$ $\frac{10}{2}$ $\frac{10}{$ Power (dBx) SNRasedB SNRnldB SNR_NL+ASE dB

Optimum power: ASE noise = 2x NL noise

Practical cases

$$
SNR_{NL} \propto \frac{1}{N_{spans} * P_{ch}^2}
$$
 i.e.

$$
SNR_{NL,dB} = K - N_{spans,dB} - 2 * P_{ch,dBm}
$$

Combined with (O) SNR_{ASE}

CATEL

$$
\frac{P_{ASE+NL}}{P_{signal}} \approx \frac{P_{ASE}}{P_{signal}} + \frac{P_{NL}}{P_{signal}}
$$

Optimum power: ASE noise = 2x NL noise

Practical cases

$$
SNR_{NL} \propto \frac{1}{N_{spans} * P_{ch}^2}
$$
 i.e

$$
SNR_{NL,dB} = K - N_{spans,dB} - 2 * P_{ch,dBm}
$$

Combined with (O) SNR_{ASE}

ALCATEL

$$
\frac{1}{SNR_{ASE+NL}} \approx \frac{1}{SNR_{ASE}} + \frac{1}{SNR_{NL}}
$$

Optimum power: ASE noise = 2x NL noise

Application : reach of terrestrial vs submarine systems

- $OSNR_{dB,0.1nm} \approx 58 + P_{out,total,Bm} \#channels_{dB} Loss_{dB} NF_{dB} N_{repeaters,dB}$
- SpanLoss_{dB} = Attenuation_{dB/km} * Repeater-spacing_{km}

Signal impairments in the cable: Additive Gaussian noise models

• 2. Nonlinear (NL) noise due to high power density: (< 30% of impairments)

$$
SNR_{NL} \approx \frac{K_{models} * A_{eff}^2}{N_{spans}} * \frac{1}{N_{spans} * Power^2} - 1
$$
 often
neglected

• Coming: partial mitigation of NL at transceiver

Signal impairments in the cable: Additive Gaussian noise models

- More on Nonlinear (NL) noise
	- **The higher the chromatic dispersion, the better**
	- **The flatter the power spectral density, the better**
		- Why ? Peaks of power (in time / frequency) are detrimental
		- Channel rate as close as possible to channel spacing

• Details: NL noise seen by a channel stems from intra- and interchannel nonlinear effects, following:

•
$$
\sigma_{NL,tot}^2(ch \#i) = A_{NL} * P_{ch \#i}^2 + B_{NL} * \sum_{ch \#j \neq i} \frac{P_{ch \#j}^2}{|\lambda_j - \lambda_i|}
$$
 • Less channels @ constant TOP and channel type = \otimes

Power channel i Difference in wavelengths/frequencies

One transmission line, multiple sources of signal impairments

Guided Acoustic Wave Brillouin Scattering (GAWBS)

[M. Bolshtyanski et al, M4B.3, OFC'18]

Scatters incoming light in the forward direction, with small frequency shifts \rightarrow Crosstalk noise

$$
P_{GAWBS} \propto \frac{Distance}{A_{eff}^x} * P_{ch}
$$

characterized in M4B.3, OFC'18

 $X \sim 1$

Guided Acoustic Wave Brillouin Scattering (GAWBS)

[M. Bolshtyanski et al, M4B.3, OFC'18]

Scatters incoming light in the forward direction, with small frequency shifts \rightarrow Crosstalk noise

$$
SNR_{GAWBS} \propto \frac{A_{eff}^{x}}{Distance}
$$

characterized in M4B.3, OFC'18

Joint SNR, Line SNR, Gaussian SNR, Generalized SNR

• Most signal distortions coming from the line can be captured by the joint G-SNR:

$$
\frac{1}{G-SNR} = \frac{1}{SNR_{ASE}} + \frac{1}{SNR_{NL}} + \frac{1}{SNR_{GAWBS}}
$$

• We expect here that chromatic dispersion and PMD are compensated by transceiver

Aggregation of impairments: Cable SNR, GSNR

Optimum power P only depends on ASE and NL noises

Polarization Mode Dispersion (PMD)

- Origin:
	- Fibre is a cylindrical medium with a quasi-circular section
	- Small imperfections from construction and conditions of deployment (torsions, pressure, trains…)
- 3 consequences
	- 1. Slight birefringence.
	- 2. This birefringence evolves along fiber line
	- 3. and with time
- Which impact over signal?

Polarization Mode Dispersion (PMD)

• Fiber can be seen as a cascade of birefringent sections

In summary: transmission line = multiple sources of impairments modeled as Additive Gaussian noises

- 1. Amplifier noise (> 60% of impairments)
	- $SNR_{ASE, dB} \approx 38.9 + P_{out, tot, dBm} Loss_{dB} NF_{dB} N_{rep, dB} 10 \log_{10}(Ampl, Band_{THz})$
	- Correction with constant output power repeaters: -1/2 in linear scale
	- Extra-penalty expected with line non flatness
- 2. Nonlinear noise due to high power density: (< 30% of impairments)
	- At optimized power (max QoT), ASE noise = 2 x Nonlinear noise power
- 3. GAWBS: (< 10% of impairments)
- 4. Plus other sources of degradations, minor or signicantly mitigated by transceiver
- Aggregation into a line SNR: $\frac{1}{60}$ **GSNR** ≈ 1 SNRASE + 1 SNR_{NL} + 1 $\overline{SNR}_\textit{gawbs}$

Next: Design of an end to end system

- End to end performance model including transceiver
- Typical experiments to validate models / systems
- Power budget table
- Design of standard / SDM systems

Thank you

NEC Orchestrating a brighter world

Cable Powering

Yoshihisa INADA **NEC Corporation**

Contents

- I. Powering Method
	- a. Powering Method
	- b. Powering Design
	- c. Powering Topology
- II. Equipment for Powering
	- a. Power Feeding Equipment (PFE)
	- b. Power Path Switchable BU (PSBU)
	- c. Submarine Cable
- III. System Powering & Reconfiguration
	- a. System Powering and Redundancy
	- b. Power Path Re-configuration
	- c. Powering Management System

Contents

- I. Powering Method
	- a. Powering Method
	- b. Powering Design
	- c. Powering Topology
- II. Equipment for Powering
	- a. Power Feeding Equipment (PFE)
	- **b.** Power Path Switchable BU (PSBU)
	- c. Submarine Cable
- III. System Powering & Reconfiguration
	- a. System Powering and Redundancy
	- **b.** Power Path Re-configuration
	- c. Powering Management System

Powering Method

Purpose of Powering Feeding

▌To supply stable power to submersible repeaters

General Requirement :

- Stable power supply and high voltage applied up to 15kV for trans oceanic application
- High reliable power feeding system for operate 25 years or more
- Safety operation to personnel and system
- Fault analysis in case of cable failure

Powering Method

AC or DC ?

 \bullet AC

- •Easy for voltage conversion
	- → Flexible for voltage apply to repeater
- •Need transformer and rectifier in each repeaters
	- \rightarrow complicated power circuit in each repeater, less reliability...

Parallel or Series?

• Parallel

- •Supply current becomes sum of each repeater's current
	- → leading huge current and voltage drop through cable ...
	- \rightarrow Receiving voltage at each repeaters becomes unstable...

Direct Current and Series Circuit are applied for all submarine cable system

Orchestrating a brighter world NEC

Powering Design

Power Feeding Design Parameters

Specification of Power Feeding Equipment (PFE)

• Specified to generate maximum voltage under constant current

Consideration;

- Power feeding configuration
- Power feeding budget
- Margin consumed by repair

Withstand voltage limitation : up to 15KV

Taking into consideration all the devices; submersible plant, land/beach joint, land cable

Constant = Vnt

- *where V : apply voltage*
	- *n : device-specific parameter*
	- *t : elapsed time to failure of device*
- Maximum power feeding voltage must be less than the withstand voltage of all devices, reducing maximum voltage is more preferable to have an additional margin of safety

Power Feeding Budget

 \checkmark Aggregate the effects of all components contributing to voltage drops along electrical path

$$
V_{\text{SYSTEM}} = V_{\text{EARTH_GROUND}} + V_{\text{EATH_CABLE}} + V_{\text{PFE}} + V_{\text{LAND_CABLE}} + V_{\text{SUB_PLANT}} + V_{\text{SUB_CABLE}} + V_{\text{EPD}} + V_{\text{REPAR}}
$$
\nwhere, $V_{\text{SUB_CABLE}} = \text{Cable Resistance}$ x Cable Length x Feeding Current $V_{\text{SUB_PRANT}} = \Sigma V_{\text{Rep}} + \Sigma V_{\text{BU}}$

INEC

Power Feeding Current

▌Power feeding current is derived from repeater current requirement to maintain stable amplification characteristics

- Repeater optical output power
	- Power efficiency of Pump Laser Diode (LDs)
- Power consumption of control circuit
- Margin for electroding current

Current distribution in a repeater

Margin Design

Earth Potential Voltage (EPV)

- Potential difference between both PFE earths due to Earth's magnetic field
- In general, earth potential changes is caused by movement of the Earth's mantle.
- 0.1~0.3V/km (EPV) is considered based on historical experience.

Repair Allowance

- Design life of 25 yeas, cable repair must be considered.
- Cable repair requires additional cable insertion, typically 2.5 times of water depth per repair. Additional

Power Feeding Voltage and Max. Capacity

 \checkmark For ultra-long system, maximum voltage of PFE limits the max. capacity

Cable Capacity

- Number of fiber pairs (N_{FD})
- Repeater Bandwidth (BW)
- Shannon SE $[G-OSNR (N_{RFP},ROP,Fiber,L,BW)]$

Total Voltage

- Number of fiber pairs (N_{FP})
- Feeding current (L,ROP,BW)
- Cable resistance
- Number of repeaters (N_{PFD})

Repeater Output Power (ROP), Span Length (L) and the number of fiber pairs (N) are free parameters defining total voltage entirely the Capacity optimization

- \checkmark Fiber attenuation helps increasing span length (L), and reducing number of repeaters (N_{RFP})
- \checkmark Lower cable resistance of cable, but costly \rightarrow Apply Aluminum??
- \checkmark Repeater efficiency improvements reduce feeding current

Example of line Design impact in powering

Different line designs can provide the same capacity What is the best design in terms of power efficiency?

Capacity grows logarithmically with SNR and linearity with BW

Large SNR comes with Fiber Nonlinearity

Power efficient submarine networks operate al low OSNR and larger bandwidth (more fibers)

Powering Topology

Powering Mode

▌Double-End-Feeding (DEF)

 Feeding power from both end station

▌Single-End-Feeding (SEF)

 Feeding power from one end station

System Powering Example

▌ Trunk Segment : Double End Feeding Branch Segment : Single End Feeding

Contents

- I. Powering Method
	- a. Powering Method
	- **b.** Powering Design
	- c. Powering Topology
- II. Equipment for Powering
	- a. Power Feeding Equipment (PFE)
	- b. Power Path Switchable BU (PSBU)
	- c. Submarine Cable
- III. System Powering & Reconfiguration
	- a. System Powering and Redundancy
	- **b.** Power Path Re-configuration
	- c. Powering Management System

Power Feeding Equipment (PFE)

Power Feeding Equipment (1/4)

Major Functions

- Current control
	- Precise current control is required for stable system
- Polarity switching (when PSBU is deployed)
	- Polarity change is required for power re-configuration (detail to be discussed in Part III.)
- Voltage limitation
	- To avoid voltage generation beyond a specific value, the maximum output voltage is limited.
- Slow ramp up & down
	- To avoid large surge currents being injected into the line, the PFE controls the voltage ramp-up and ramp-down speeds.

Power Feeding Equipment (2/4)

Major Functions (cont.)

- Shutdown function
	- Auto-shutdown when high current, high voltage, and/or open circuit is detected
	- Auto-shutdown when operator access high voltage terminal
	- Emergency shutdown is provided for the event of an accident or other potential hazard

• Discharge function

- Cable end stores electric charge due to cable capacitance
- PFE provides discharge function
	- –Resistive Mode
	- –Short Mode

Power Feeding Equipment (3/4)

Major Functions (cont.)

- Electroding
	- \checkmark This function is used to identify the cable or cable fault location by cable ship
	- \checkmark Electroding tone is detected by tone detector (magnetic sensor) equipped on cable ship
	- Electroding tone (low frequency) is superposed on a nominal current or DC offset current

Power Feeding Equipment (4/4)

▌Configuration

Power Path Switchable BU (PSBU)

25 © NEC Corporation 2019 NEC Confidential & Proprietary

Powering Switchable - Branching Unit (PSBU)

▌Branching Unit (BU)

- BU is laid underwater for the trunk and branch system
- BU provides routing both optical fiber and power feeding path to trunk and branch landing stations
- \bullet PSBU \rightarrow Power path switchable BU

- Key Features for Power Feeding Routing
- Reconfiguration of PSBU status shall be performed by optical command
- Command operation shall be available as long as BU is powered any one of three leg, even branch power only
- Switch status is maintained even if the electric power is removed from the BU.
- \bullet "Hot switching" is feasible under single-end feeding \rightarrow Withstand up to 15KV
Powering Switchable - Branching Unit (PSBU)

Powering Switchable - Branching Unit (PSBU)

Remote Control of PSBU

- High Voltage Circuit
	- Highly reliable SW part
- Command Control of BU Switch
	- Control Command to be sent as serial data including BU address
	- Only the BU assigned by the address responds to the command signal
- Multi Control Path
	- BU can be controlled through multiple fiber paths
- Self Holding
	- BU power path status configured by the command maintains even when power supply stops

Submarine Cable

Submarine Cable Structure

 \checkmark Power is fed through copper tube in submarine cable Cable resistance is depending on thickness of copper

Contents

- I. Powering Method
	- **a.** Powering Method
	- **b.** Powering Design
	- c. Powering Topology
- II. Equipment for Powering
	- a. Power Feeding Equipment (PFE)
	- b. Power Path Switchable BU (PSBU)
	- c. Submarine Cable
- III. System Powering & Reconfiguration
	- a. System Powering and Redundancy
	- b. Power Path Re-configuration
	- c. Powering Management System

System Powering and Redundancy

Normal Power Feeding Configuration

Features:

- Trunk Double End Feeding with Single End Feeding capability
- Branch : Full Equipment Redundancy
- BU : Power Path Re-configurable

System Redundancy

▌ Trunk Power Feeding Path with Single End Feeding Capability

Maintain power even if power path failure happens

Power Feeding Path Failure

Equipment Redundancy

● Full Equipment Redundancy

Power Path Switching

● Power Path Switching to restore power feeding path for un-failed segment

Power Path Re-Configuration

Power Feeding Path Re-Configuration -Trunk Failure (1/3)

Power Feeding Path Re-Configuration -Trunk Failure (2/3)

Power Feeding Path Re-Configuration -Trunk Failure (3/3)

Power Feeding Path Re-Configuration -Branch Failure (1/4)

Power Feeding Path Re-Configuration -Branch Failure (2/4)

Power Feeding Path Re-Configuration -Branch Failure (3/4)

Power Feeding Path Re-Configuration -Branch Failure (4/4)

Powering Management System

Power Feeding Management System

Functions

- Monitor power feeding current and voltage for every station
- Manage PFE status
- Control and manage Power-Path Switching in BU
- Display the power feeding configuration
- Support powering procedure among stations

\Orchestrating a brighter world

NEC brings together and integrates technology and expertise to create the ICT-enabled society of tomorrow.

We collaborate closely with partners and customers around the world, orchestrating each project to ensure all its parts are fine-tuned to local needs.

Every day, our innovative solutions for society contribute to greater safety, security, efficiency and equality, and enable people to live brighter lives.

Optical Transmission – Lecture 3

From physics to system design

Back to propagation effects in the cable

• 1. Amplifier noise (ASE) (> 60% of impairments) $\left|\begin{array}{cc} P_{\text{sig,out}} \ (\bigvee \ \end{array}\right| P_{\text{sig,in}}\right|$ Gain G

 $SNR_{ASE, dB} \approx 38.9 + P_{out, tot, dBm} - Gain_{dB} - NF_{dB} - N_{rep, dB} - 10 * log_{10}(Bandwidth_{THz})$ *(within channel spacing band)*

From OSNR_{0.1nm,dB} to SNR_{dB}:
\n
$$
SNR_{dB} = OSNR_{dB,0.1nm} + 10 * log \left(\frac{12.5 GHz}{Channel spacing} \right)
$$
\n
$$
^{42} ECH2 corresponds to 0.1nm \text{ at 1550nm}
$$

12.5GHz corresponds to 0.1nm at 1550nm

• 2. Nonlinear (NL) noise due to high power density: (< 30% of impairments)

$$
SNR_{NL} \approx \frac{K_{models} * A_{eff}^2}{N_{spans}} * \frac{1}{N_{spans} * Power^2} - 1
$$
 often
neglected

• At optimized power (max Quality of Transmission),

ASE noise = 2 x Nonlinear noise power $SNR_{ASE,dB} = SNR_{NL,dB} - 3dB$

• Coming: partial mitigation of NL at transceiver

- More on Nonlinear (NL) noise
	- **The higher the local chromatic dispersion, the better**
	- **Increases with high cumulated chromatic dispersion, with quick saturation**
	- **The flatter the power spectral density, the better**
		- Why ? Peaks of power (in time / frequency) are detrimental
		- Channel rate as close as possible to channel spacing

Guided Acoustic Wave Brillouin Scattering (GAWBS)

[M. Bolshtyanski et al, M4B.3, OFC'18]

Scatters incoming light in the forward direction, with small frequency shifts \rightarrow Crosstalk noise

$$
P_{GAWBS} \propto \frac{Distance}{A_{eff}^x} * P_{ch}
$$

characterized in M4B.3, OFC'18

 $X \sim 1$

Guided Acoustic Wave Brillouin Scattering (GAWBS)

[M. Bolshtyanski et al, M4B.3, OFC'18]

Scatters incoming light in the forward direction, with small frequency shifts \rightarrow Crosstalk noise

$$
SNR_{GAWBS} \propto \frac{A_{eff}^{x}}{Distance}
$$

characterized in M4B.3, OFC'18

Joint SNR, Line SNR, Gaussian SNR, Generalized SNR

• Most signal distortions coming from the line can be captured by the joint G-SNR:

$$
\frac{1}{G-SNR} = \frac{1}{SNR_{ASE}} + \frac{1}{SNR_{NL}} + \frac{1}{SNR_{GAWBS}}
$$

• We expect here that chromatic dispersion and PMD are compensated by transceiver

Aggregation of impairments: Cable SNR, GSNR

Optimum power P only depends on ASE and NL noises

GSNR and distance (constant repeater spacing)

GSNR scales like 1/distance (-1dB/dB), with almost same optimum power

From GSNR to end to end performance

- Possible interconnection of cables with terrestrial sections, terminals through portals
- Same physics applies:
	- model impairment as an equivalent SNR, sum the inverse (G)SNRs...

Quality of Transmission (QoT) between 2 transceivers

- A usual metric is the Bit Error Rate (BER) before FEC decoding
	- or its translation into Q-factor, more precisely $Q^2_{dB} = 10 * \log_{10}(Q^2)$
		- With Q defined from relation: $BER = \frac{1}{2}$ 2 erfc $\left(\frac{Q}{\sqrt{Q}}\right)$ $\overline{2}$
		- Interest: Q² is usually proportional to electrical SNR
- BER is a function of the electrical SNR integrated in receiver band

$$
BER \approx x * \text{erfc}(\sqrt{K * SNR_e})
$$

x,K depend on the modulation

Physical limitations at modem side

Transmission independent

- Thermal, shot noises
- Bandwidth of E/O components
- Assembly / alignment

Model: Additive Gaussian noise

Back to back measurements: QoT vs external source of SNR

Physical limitations at modem side

Transmission dependent

- Av. impact of PDL / PMD
- Imperfect mitigation of chromatic dispersion due to
	- Resolution of implemented DSP
	- Laser linewidth

Characterization requires reliable emulation of impairment / model / simulations

End to end Gaussian noise model

- 1. Back to back characterization
	- Transponder tolerance to Gaussian noise (ASE noise) $QoT = f_{bth}(O-SNR)$
		- With possible refinements
- 2. Model transmission impairments as Gaussian noises
	- ASE noise, nonlinear effects, GAWBS,
	- G-(O)SNR matters

• 3. Infer end to end QoT using the back to back calibration $QoT_{predicted} = f_{btb}(GOSNR)$

Performance prediction relies in three pillars

RETHINKING GLOBAL NETWORKS

Performance of Open Cable: From Modeling to Wide Scale Experimental Assessment

Name: Jean-Christophe ANTONA Company: Alcatel Submarine Networks

Parametric study Experimental set-up

- 36nm loop testbed
	- $-$ CSF1 (110 μ m² fiber)
- Real-time tribs, calibrated in back to back
- Various configurations :

- Measurements of average $OSNR_{ASF}$ and Q^2 factor over the full C-band
- Comparisons with Q^2 factor predictions, aware of $OSNR_{ASF}$ measures

Performance prediction accuracy

+ Additional cases: 45, 69Gbaud, QPSK, TPCS, 16 000km

Nonlinear noise: coherent GN model, signal depletion GAWBS, CD limitations. Aggregation of noise: Gen. Droop

Accurate prediction whatever the configuration

Enough models and labs, let's design a cable

Main expectations from a customer

Turn-key system

Guarantee capacity "per fiber" over 25 years

Incl. manuf. Margins, time-fluctuations, repairs, customer margins

Demonstrate capacity at commissioning, with terminals

Open cable

Commit on agreed cable characteristics that will enable further interconnection with SLTE: OSNR_{ASE}, GOSNR (NL?), flatness, expectable capacity over time

Demonstrate OSNR / GOSNR at commissioning

Examples of characteristics to provide

᠇

End of life considerations

- Possible SNR_{ASF} degradations due to
	- Fiber ageing: typ. 0.002dB/km over 25 y
	- Pump failure:
		- Typ. 5% repeaters
		- 2pumps / FP = > 3dB extra loss
	- Repairs
		- Deep sea: one repair every 1000km: splice loss + 2-3 times water-depth * attenuation
		- Shallow water: one repair every ... 20km. Typical 0.5dB loss.

RETHINKING GLOBAL NETWORKS

MASTERCLASS: OPEN SUBMARINE NETWORKS

Name: Brian LAVALLEE, Pascal PECCI Company: Ciena, Alcatel Submarine Networks

RETHINKING GLOBAL NETWORKS

[OPEN system](#page-527-0)

OUTLINES

RETHINKING GLOBAL NETWORKS

OSNRASE Upper bound limit

OSNRASE targeted: $OSNR_{ASE} = 18.0$ dB/0.1nm for 120ch SNR_{ASE} =13.2 dB $-10.$ Log(37.5/12.5)

BW is chosen to be 4500 GHz or 36nm

with $SNR_{ASE}(dB) = 38.9-10xLog(BW_{THz}) + TOP-G-NF-NR$

All WET parameters considered in the upper bound capacity : TOP, G, NR, NF, BW

Sub⁽

IFTHINKING GI NRA

 0.1 nm = 12.5GHz @ 1550nm

Copyright © SubOptic2019 Slide 37

Different solutions to reach the same SNRASE

Many solutions: 120<N<310 & 6.5<Gain<17.0 dB

Sub**Optic 2019**

3 solutions will be studied. How can we differentiate them ?

OUTLINES

RETHINKING GLOBAL NETWORKS

Design rule

Define a SNRASE

Define the max amount of NLE based on the amount of NLE that transponders will compensate in X years

^{-&}gt; Only one solution

Design

Upper and lower capacities can characterize the WET part of submarine network

Optical Design reached

Inputs:

- 13 000 km
- \cdot SNR_{ASE}=13.2 dB
- BW=4500 GHz or 36nm
- Max level of NLE=3dB
- 150µm² / 0.156 dB/km

Outputs:

- 140 repeaters
- TOP=20.8dBm
- Gain=14.5dB
- Capacity per FP=32.4 Tb/s

Hypothesis:

Today's SLTE can reach 60% of Shannon capacity.

Our cable is a 5FP cable.

Cable capacity: Cable capacity=5 x 60% x 32.4T

Cable capacity~100 Tb/s What about power efficiency ?

INCREASING SYSTEM CAPACITY & EFFICIENCY WITH SDM How can SDM be achieved?

WHY SDM? Capacity evolution – soon 1Pb/s

WHY SDM? Higher capacity for the same power

What are the options to increase capacity by doubling the # of pumps?

WHY SDM? Higher capacity for the same power

WHY SDM? Higher capacity for the same power

WHY SDM? Higher capacity (+50%) for the same power

WHY SDM? Same capacity for lower power (-50%)

Cable Shannon capacity (Tb/s) $\frac{3}{2}$

Cable Shannon capacity (Tb/s) $\frac{3}{2}$

Capacity (Tb/s) $\frac{3}{2}$

Capacity (Tb/s) $\frac{2}{2}$

Capacity (Tb/s) $\frac{3}{2}$

Capacity (Tb/s) $\frac{3}{2}$ Cable with 2 fibre pairs A_{eff} 80 μ m² $24Tb/s$ \overline{c} \overline{c} \overline{c} \overline{c} \overline{c} \bullet TOP : Total output power per fibre

Option 3:

24

+ Add a fibre

- + Change type of fibre
- + Share the pump power
- + Reduce the current
- \rightarrow same cable capacity

WHY SDM? Extension to POP Standard - 8FP – 160 T cable

SDM - 12FP – 160 T cable

- Optimised \$/bit compared to traditional approach (max OSNR per fiber pair)
- Technical: Extend the limit of traditional approach
	- Cable capacity increase
	- Higher reachable distance
	- Increase speed of manufacturing

- Business
	- Fiber pair as a new granularity: Easier to swap/sell/manage
	- POP to POP connectivity

Future challenges of subsea optical cables

- Higher and higher capacities
- At reduced cost / bit
- Power efficiency
- Spatial parallelism
- Integration
- More monitoring and automation

• Global optimization: wet + dry + marine + ...

Zero loss "fibers" Zero margin operation Zero nonlinearities

Thank you

Constant total power vs constant gain amplifiers

Case study: 100 repeated sections, 3dB extra loss at first section

- Gain mode amplifiers
- Nominal :
	- Constant signal power
	- $SNR_{ref,dB} = K + P_{dBm} 20dB$

- Degradation at span 1
	- Signal power -3dB at each span
	- Doubled noise per span
	- SNR penalty = 3dB

Constant total power vs constant gain amplifiers

Case study: 100 repeated sections, 3dB extra loss at first section

- Gain mode amplifiers
- Nominal :
	- Slight signal + ASE droop
	- $SNR_{power} = SNR_{gain} 0.5$
	- Typically 0.1dB penalty
- Degradation at span 1
	- Signal power -3dB at 1st ampli
	- Equivalent to 1 more section
	- $Pen = 10 * log(\frac{101}{100})$ 100 $= 0.04dB$

Submarine portal

The portal is the frontier between the open cable from one vendor And terminals, extensions from other vendors

Primary mission: supervision of the cable, (band loading with ASE) Can be adapted to multi-terminals per cable/fiber, extensions

System Planning in Developing Markets

Table on Contents - System Planning in Developing Markets

- 1. Economic Market Analysis today and in 10 years
- 2. Telecoms Market Analysis today and in 10 years
- 3. Cable Station Design
- 4. Cable Station Operations
- 5. Government / Licensing Relations
- 6. Marine Maintenance
- 7. System Design Considerations

Market Analysis Today and in 10 years

- 1. GDP trends
	- a. Be aware of any technology, demographic, legal changes that can change your model.
	- b. Trends linear or polynomial?
- 2. STEM graduates per annum
	- a. University expense per anticipated income trends
	- b. Innovation from technology or demographics that can change your model.
- 3. Mobile broadband available to population*
- 4. Kms of fiber per person ratio
- 5. Internet exchange maturity, traffic ratio per population, traffic ratios in country vs. international.

Market Analysis Today and in 10 years - cont.

1. Carrier Neutral Data Centers

- a. Amount of critical IT load (MWs) available in country trend
- b. Power sustainability (% renewable and green)
- c. Power availability (timelines and MTBF)
- d. Land ownership
- e. Geography, environmental, weather, sustainability
- 2. Literacy rates
	- a. Reading literacy rate
	- b. Rate graduating with at least a grade 12 education
	- c. Coding literacy rate*
- 3. Existing cable market
	- a. Price trends per 10G / 100G / 1T
	- b. Telcos willing to swap and trade

Market Analysis Today and in 10 years - cont.

Do the previous two slides with your futures hat on - how will this country / region change in 10 years?

- Trendline from previous data.
- Inject strategic initiatives discounting for probability of success.
- Run Monte Carlo simulations to narrow down your assumptions.

Site Selection and Land Choice

- a. Zoning
- b. Ownership
- c. At coast or PFE at coast with CS inland?
	- i. \$150,000 / km for concrete encased conduit x two paths
	- ii. \$50,000 / km for direct burial but this is a risk for critical infra.
	- iii. ROW fees.
- d. Expansion space around your cable station for future use.
- e. BMH and conduits to your station / PFE
- f. Access to skilled labor
- g. Diversity from other assets
- h. Minimize distance to continental shelf and BU
- i. Insurance on the property and annual cost

Electrical

- a. Deviation and trend of power costs.
- b. Availability of high voltage feeds.
	- i. HV via tower tends to have higher reliability than LV delivered by pole.
	- ii. Timing for construction of the substation
- c. Substation (build yourself or have power company manage trade-offs)*
- d. Genset (minimum dual gensets N+N / Active + Active)
- e. Power storage
	- i. Two tanks if possible to clean old fuel while still providing protection.
	- ii. Determine tank size by fuel consumption rate over 96 hours + buffer.
	- iii. Filtering/warming if needed.
	- iv. Choose gensets that have trained local experts + supply chain for parts.
- f. Power distribution
	- i. Battery strings should be available for 8 hours
	- ii. N+N
- Google

Mechanical

- a. Choose a cooling technology for the market
	- i. DX for high humidity markets
	- ii. Chillers can be used for medium to low humidity markets.
	- iii. Choose technology based on the environment (sand, humid, dry, artic)
	- iv. Building Management System (BMS) should be tied into OSS if possible.
- b. Seismic zone considerations, engineer based on the zone
- c. Install and monitor leak detection sensors around electrical gear inclusive of roof.
- d. Choose materials to match the useful life of the asset and environment
- e. Ensure your drainage can move water away from the site at 1.25x peak historical amounts.
- f. Be aware of climate change PFE / CS should be a few meters above sea level if possible and engineered to withstand more dramatic temperature / weather shifts than historical.
- g. Local permitting should be studied.
	- i. The best designs sometimes cannot be implemented because of construction code challenges.
- ii. Choose architecture of sites that match the environment or have positive historical significance. Google

Security

- a. Have a physical perimeter around the site.
	- i. Concertina wire / barbed tape on top of a two meter high fence.
	- ii. Automobile blocking bollards
	- iii. Motion sensors around the security perimeter.
	- iv. Mantraps to control entry
	- v. Biometrics for recording
- b. Cloud based security system with local backup.
	- i. Cameras should not have any non-monitored areas.
	- ii. Cameras should be hard wired to a security office.
- c. Use a cloud based OSS to prevent cyber attacks.

Local Telecoms Considerations

- 1. Have 8 x 4" / 100mm duct times two diverse paths to the property boundary
	- a. Insert pull ropes / lines for ease of install later
	- b. Build a large lockable vault near the cable station property line and near telecoms ROW.
- 2. Site should be carrier neutral for anyone to pull fiber into
- 3. Dual right of way (ROW) for local telcos to enter (road, rail, gas pipe, or OPGW)
- 4. Call before you dig and/or civil penalties for fiber disturbance should be sponsored and/or advocated for with government.
- 5. Fiber should be sourced / placed to other cable stations in market for backup and restoration.

Seaward telecoms considerations

- 1. Maintain route position lists and marine maps.
- 2. Liaise with fisherman in market.
- 3. Audit and maintain BMH, ROW, and any HDD
- 4. Armoring considerations

Cable Station Operations

- 1. Operations support software should be in the cloud with a local backup
- 2. Security (physical and cyber) should be audited annually.
- 3. Training courses should be recorded for future new employees.
- 4. Mechanical, Electrical, and Telecoms equipment should follow regular maintenance schedules.
- 5. Attend supplier training and be tested on operations & maintenance. Have a succession management plan.
- 6. CAD / Document building allocations, as-builts, and designs.

Cable Station Operations - Cont

- 1. Own methods and procedures for the site.
- 2. AIS monitoring for marine outages
- 3. Monitor backhaul fiber (either via OTDR or Acoustic sensing)
- 4. Maintain outage escalation list as well as methods and procedures.
- 5. Audit outside plant (BMH, beach erosion, backhaul) regularly.
- 6. Maintain, test, and replenish spares. If supply chain is lengthy, maintain a spare of all critical components on site.
- 7. Train on any power work with the marine NOC as well as supplier trainers.
- 8. Each station should maintain a power safety officer as well as deputy PSO.

Government, Licensing Analysis

- 1) How many telcos and wireless operators, what are the barriers to entry?
- 2) How has the regulator made decisions over the past 10 years? What is the head of the regulators CV / Resume?
- 3) What are the government's goals now and in 10 years?
- 4) What are societal goals now and in 10 years?
- 5) What are import / export laws and supply chain health?
- 6) Meet with the local economic development ministry / bureau.
- 7) What is the history of nationalization of cables or default on sovereign debt?
- 8) What is the mean time between coups (ie non peaceful transitions of power)?
- 9) What is the process to receive a new license (if needed)

Marine Maintenance

- 1. AIS monitoring for marine outages
- 2. Maintain outage escalation list as well as methods and procedures.
- 3. Audit outside plant (BMH, beach erosion, backhaul) regularly.
- 4. Distribute accurate route position list / coastal marine maps once per year.
- 5. Develop relationship with marine NOC, monitor utilization, location of repair vessels, DMOQ with repair vessels using AIS.
- 6. Monitor marine laws (especially for Cabotage / flagging regulations). Be aware of marine permitting process for survey, build, and repair).
- 7. Monitor environmental laws (sea bed, coastal, and any time of year restrictions). Which agencies need to be notified and which timelines are needed.

System Design

- 1. Single landing or dual landing
	- a. Do you have two in country players who want the cable to land in their CS?
	- b. Can you build a "Y" landing for increased protection?
- 2. Cable armoring
	- a. Plough / bury where possible within budget
	- b. Repair with armor (what has been cut likely to be cut again)
- 3. Type of landing or branch?
	- a. Full landing
	- b. Full BU
	- c. Full BU with ROADM / WSS (part of a fiber)
	- d. Fiber switched BU (can route around a shore end cut)

August 6, 2019

Confidential and Proprietary

Submerged Plant Equipment Characteristics

High performance:

- Ultra-long transmission distance up to 14,000 km!!
- High data capacity: 250 Tb/s across the Atlantic!

Space & Power Limitations:

- All functionality must fit inside an undersea body.
- Equipment must be powered from shore through the cable conductor.

Reliability for a 25 year lifetime in the undersea environment:

- Water-proof and pressure-stabilized body
- High reliability optics/electronics.

Deployment:

• Equipment must support shipboard storage, deployment, and retrieval for repairs.

Unique technology for a unique environment

• **WMU:** Wavelength Management Units – (R)OADM

Outline

- Cable
- Repeaters
	- Amplification and gain equalization
	- Self-healing of a chain of amplifiers; gain tilt
	- Pump manifold and reliability
	- Line Monitoring and High Loss Loopbacks (HLLBs)
	- L-band amplification
	- The pressure vessel
- Branching Units
	- Fiber routing and optical switches Why only one branch leg (3 port BUs)?
	- Electrical reconfiguration Recovering from shunt faults
- Wavelength Management Units: (Reconfigurable) Optical Add Drop Multiplexing
- System Reliability

Undersea Fiber-Optic Cable

Cable Characteristics:

- **Fibers:** Benign environment for optical fibers
- **Strength:** For deployment and retrieval
- **Electrical:** Power for repeaters and network elements
- **Armoring:** Protection against external aggression

The Repeater

- The modern repeater is an amplifier for the optical data signals on the fiber
- Amplification for fiber pairs
	- both directions of traffic: east and west bound
- High performance design for ultra-long distance transmission
	- Forward pumping for low noise figure
	- Single stage design
- 25 year design life
	- High reliability components
	- Higher order pump manifold
- COTDR path for fault localization

Amplification

Erbium Doped Fiber (EDF):

- Amplification around 1550 nm
- Bandwidth around 4.5 THz (1529 1565 nm)
- Optical pumping near 980 nm
- Significant gain variation across the amplification bandwidth (gain shape)

Gain Flattening:

- Gain flattening filter (GFF) to minimize gain variation across the amplification band
	- GFF is typically a Fiber Bragg Grating (FBG)
	- FBG reflection tuned to follow the EDF shape
	- Optical isolators suppress reflections and avoid lasing of the amplifier
- 0.1 dB gain variation leads to 10 dB across 100 repeaters (ignoring spectral-hole burning – more later)

Gain Equalization

- **EDF Shape**
- **Fiber Loss Shape**
- **Raman Gain**
- **Spectral-Hole Burning**

Stimulated Raman Scattering

- Nonlinear scattering of light with optical phonons (lattice vibrations)
- A higher energy photon is scattered creating a phonon and lower energy photon

Intra-Band Raman Effect

Gain Equalization

- **EDF Shape**
- **Fiber Loss Shape**
- **Raman Gain**
- **Spectral-Hole Burning**

EDFAs tend to equalize power spectral density across the band

- Amplification depends on spectral loading of the EDFA
- Lower amplification where the power is high and higher amplification where the power is low
- Nonlinear effect
- Must be included when designing the gain management
- Tends to mitigate any residual gain error
- Tends limit effectiveness of pre-emphasis

Spectral Hole-Burning in a 5,000km Amplifier Chain

Spectral Hole-Burning in WDM Systems*

Measured and simulated gain vs. wavelength using an installed 6,650km undersea cable system

* A. N. Pilipetskii et al., OFC'03

Gain Management in System Assembly

Repeater Design

Main Contributors to Gain Variation

- EDF shape
- Fiber loss shape (see Marsha)
	- Fiber loss minimum near 1565 nm
- Intra-band Raman effect
- Spectral-hole burning

Gain Equalization for amplifier/span combination!

- Precise characterization and custom gain flattening filter for each system design
- Results in nominal amplifier design

What happens with manufacturing variations?

- Span loss is higher/lower than nominal
- EDFA gain is higher/lower than nominal

Repeaters run is constant pump power mode

- Output power set by pump power
- Nominal gain set by EDF length
	- Average inversion determines optical bandwidth

Spectral Tilt

• Deviation from nominal gain and/or loss leads to a spectral tilt (first order, also some shape)

Gain Management

- 1. Gain equalization per amplifier/span combination
	- Gain flattening filter (GFF) Typically a Fiber Bragg Grating
- 2. Gain tilt equalization
	- Adjustable (during system assembly) loss point (Loss Build Out LBO) every several spans
- 3. Second order gain shape correction to address systematic GFF shape error
	- Shape Correction Unit (custom gain equalization filter)

Gain Management During System Life

Loss Fault

SUBCOM

Pump Fault in a Chain of Repeaters

Repeater Pump Manifold

Pump Sharing: Higher Reliability

Traditional:

"Fiber Pair Independence" (One pump-pair per FP) (2.6 FIT per FPs)

New "Pump Sharing / Farming"

(Power shared over 2 FPs) (0.001 FIT per FP)

Higher Reliability

2FP = 1 set of "4 pumping 4 Fibers":

Pump Sharing: SDM / More Fiber Pairs

Pump Lasers are combined and shared in sets of four

"4 pumping 8 Fibers":

Support for twice as many FPs, with higher reliability

Line Monitoring System

Line Monitoring System

High-Loss Loopback Circuit For one Amp-Pair

- Provides Undersea Monitoring and Fault Detection
- All optical principle, no active components in the repeaters
- Two operating modes: HLLB mode and COTDR mode

In-Service Line Monitoring

Line Monitoring System Signals

• LMS tones on the short and long wavelength side of the data transmission band

Automated Signal Interpretation

- Automatic Signature Analysis detects changes in loop gain and extracts span loss and repeater output powers.
- Reported parameters include span length, span loss, repeater input and output power levels, and tilt

Active Line Monitoring Systems are also in use

• Input and output power levels detected with photodiodes and reported to shore via command channel

Example RPT for One Traffic Direction

Out-of-Service COTDR Measurements

Rayleigh Scattering

• Fiber reflects optical power back towards the transmitter $(< -30$ dB)

Optical Time Domain Reflectometry (OTDR)

• Send pulse, look for reflected signal

Coherent (Correlation) OTDR (COTDR)

- Send pulse (pattern) on outbound path, look for reflection on inbound path through High-Loss Loopback
- Works over multiple spans for >10,000 km
- **Locate faults with <1km accuracy**

C+L

C+L: Doubling Fiber Pair Bandwidth

- Amplification in the C-band (1529 1565 nm)
- Amplification in the L-band (1570 1608 nm) (if no light in C-band)

C+L Architecture

- Nearly double the capacity per fiber pair
- Enables compact cable designs with fewer fiber pairs for the same capacity

 $\ddot{4}$ FP

System Capacity

6FP.

8FP

4FP

Cost

Repeater Mechanical

Pressure Vessel

- Cylindrical shape
- Material: BeCu (also Stainless Steel or Titanium)
- Good to 8000m
	-

Cable to Repeater Coupling

Millennia Joint

Repeater Mechanical Design – 16 FP Repeater

Dual Amplifier Quad Supports 4 Fiber Pairs

Up to Four Dual Amp Quads in a Network

16 FP Repeater Network in Type 300 Repeater Housing

Loading Repeaters onto the Ship

Confidential and Proprietary | © 2019 SubCom, LLC **³⁹**

۳

Repeaters on Board Ship Ready for Deployment

Confidential and Proprietary | © 2019 SubCom, LLCC

Branching Units

The branching unit (BU) enables connections other than simple point to point

The Branching Unit

- A 3-port device: Trunk, A1 and A2
- Enables the creation of a branch of the main trunk
- Provides fiber routing and optical connectivity between 3 points
- Enables later network expansion

The branching unit can also contain remote controlled high voltage relays to enable switching of the power path

Cable Fault Recovery and Isolation:

- Recover from shunt faults (see also lectures by Katsuji Yamaguchi)
- Maintain traffic on unaffected segments during a ship repair
- Optical command control from shore

Power Switching States in the eBU

Power Switching States for Normal System Operation

Submarine System Powering with Branches

Powering submarine systems also requires creative architectures.

Future Network Expansion

- BUs with stubs can be inserted into a cable to enable future connectivity without cutting into the trunk cable
- Any number of trunk FPs can be accessed for connection to a branch state
- Stubs can also support later addition of WSS ROADM or Dry ROADM.

Today's branching units also contain remote controlled optical switches for even more functionality

User configurable remote fiber switching allows

- Autonomous or/and manual fault recovery
- Isolating the branch for a repair or later network expansion
- Adding and/or re-routing traffic in a branch

Fiber Switched BUs can provide intra-cable connectivity.

• Use for fault recovery, or for capacity routing flexibility.

Increases overall network availability.

• Protect on a FP basis, or use ROADMs to prioritize spectrum.

Increases path length:

• Could adjust channel data rates to match available OSNR.

BU placement is typically optimized for overall cable length

- Lower cost
- Lower latency

There are additional marine considerations to best protect the BU

• Seafloor conditions

(4-Port BUs exist for special applications)

Optical Add Drop Multiplexing

Enhanced Connectivity options

Multiple DLS on a single fiber pair

Bandwidth on a trunk fiber pair can be used for multiple DLS

Optical Add/Drop Multiplexing (OADM) Node

Components in an OADM Node include:

- Branching Unit
- OADM Unit:
	- Passive fixed filtering
	- Switchable filtering
	- Wavelength Selective Switch based filtering

Modular OADM options:

- OADM unit can be deployed when the branch is landed
- Simplified sparing (universal spare for BU)
- Repair operation does not affect express fiber pairs

Switched Filtering

The Wavelength Selective Switch (WSS) is a pixelated device that supports reconfigurable filtering

- Key specifications:
	- Grid-flexible channel plan with a fine granularity e.g. 6.25 GHz
	- Very steep filter edges

30 dB transition in approximately 20 GHz

Branching Node Example: PSBU + WSS ROADM

Reconfigurable Optical Add Drop Multiplexing

Wavelength Selective Switch based OADM nodes support

- In service, gridless capacity reallocation
- Inline dynamic gain equalization

System Reliability

System Reliability

System Design Life is typically 25 years

Transmission affecting failures require ship intervention

- Costly
- Takes time

Design for reliability

- High reliability components
- Redundancy

Expected number of ship repairs due to intrinsic failures is in the range of 0-3 depending on system size and complexity

Failure Rate

- A common measure for failure rate is FIT, defined as the number of failures in 109 device hours (114,046 years).
- Use average failure rate λ
- Probability of failure is

 $P_{fail} = 1 - e^{-\lambda t_{System}}$,

where t_{System} = 25 years

• Effective failure rate for redundant components $(n=2$ for 1x1)

 $\lambda_{effective} = \frac{-\ln(1 - P_{fod}^n)}{t_{\text{scat}}},$ t_{System}

- Total FIT is the sum of all single points of failure (including effective FIT rate from redundancy)
	- Reliability: $R=1-P_{fail}$

110 FIT means 2.4% will fail in 25 years

¹Confidence bound applies where acceleration of the key failure modes is possible. ²Taking laser redundancy into account.

> From *Undersea Fiber Communication Systems* 2nd Edition by Jose Chesnoy (Editor), Academic Press ISBN: 978-0128042694

Ship Repairs

- Failures are Poisson distributed.
- The expectation value of the distribution is the number of ship repairs.
- For Poisson the expectation value corresponds to the failure rate

Example

- 100 Repeaters
- 4 Fiber Pairs
- 800 Pumps (110 FIT)
- 19 Pump failures in 25 years
- 4x4 pump redundancy: no repeater failure due to pump failure
- Repeater: 11 FIT
- Expected number of ship repairs in 25 years: 0.24

External Aggression

Majority of cable failures are due to external events:

- Ship anchors
- Earthquakes and mud slides
- Abrasion

Good reasons to armor or bury cable near shore.

Summary

- Cable
- Repeaters
	- Amplification and gain equalization
	- Self-healing of a chain of amplifiers; gain tilt
	- Pump manifold and reliability
	- Line Monitoring and High Loss Loopbacks (HLLBs)
	- L-band amplification
	- The pressure vessel
- Branching Units
	- Fiber routing and optical switches
	- Electrical reconfiguration Recovering from shunt faults
- Wavelength Management Units: (Reconfigurable) Optical Add Drop Multiplexing
- System Reliability

Thank You

Subsea Terminal

Elizabeth Rivera Hartling August, 2019

Outline

- DAY 4: Submarine Terminal
	- Submarine Line Terminal Equipment (SLTE)
		- Functions, Features, Equipment & the Real Thing
	- Advanced Modems & Features
		- The evolution of modem technology for Subsea cables

First: A Career in Subsea

My Career – There are many Roles in Subsea!

- 10 Years @ Ciena:
	- and testing product on real cables all over the world -3 yrs
	-
	-
	-
- Subsea R&D Simulation & Modeling (SLDs, MATLAB) 2 yrs • Subsea R&D - Lab Work & Field Trials! Building lab test beds • Systems Engineering (SE) – Talking SLTE Technology – 4 yrs • Product Line Management (PLM) – Product Decisions – 1yr 1 Year @ Facebook (and counting):
	- Subsea Network Architecture & New Cable Builds

Submarine cables land all over the world. For many people, a career in Subsea = TRAVEL!

Where I've been: **C**) Field Trials

Canada

Conferences Cable Projects Greenland

Ocean

Niger

Jamibia

Atlantic

O Botswana

Suda

>85% of users are outside of the U.S

More than 2.7 Billion users across the Facebook family of apps including **Facebook , Instagram, WhatsApp, Messenger**

Data Centers

Facebook Data Center Locations

 $<\frac{1}{2}$

Odense, Denmark

Singapore

OUnder construction

Online

---- \pm 01001111 010010₋ **111 01001111 01001011 00** 1111 01001111 01003011 0010000 U1111 01061111 01001011 06100000 U **115 01001011 00100000 010.** 1111 010 1011 00100000 01010 1111 1111 **D11 001000000101001.** $11₁$ 11.00100000010100110. 113 00100000 01020011 010 **A011 00100000 01010011 01010** 01100100000010100110101010. J1011 0010000001010011 01010101 01 10010° = 001 00000 010100011 0101010101 010000 100101J 00100000 0 010011 01010101 01000010 0100101 00100000 01010011 01010101 01000010 01 \pm 01001011 00 100000 01010011 01010101 01000010 010. LGU1111 01001011 001 50000 016 0011 0101016 1 0100001 01010 10 00. **001011 00100000 01010011 01010101 0100**

Submarine Line Terminal Equipment (SLTE)

What is SLTE & What Does it Do?

few errors as possible (or with only as many as are correctable \odot)!

SLTE is what gets your data from one side of the ocean to the other with as

WDM Transmission

WDM transmission relies on optical multiplexers (MUX) and de-multiplexers (DEMUX) to seamlessly combine and split the waves for propagation.

a.k.a.

Transponder

Transceiver

Line Card

…all the same!

Optical Amplification

Most multi-span links amplify the waves before they enter the fiber, and after they exit, to ensure the best SNR possible for the wavelengths when they hit the optical receivers!

Submarine repeaters are designed for low noise figures, high reliability and for system fault recovery, all with a 25 year lifetime. This is why submarine repeaters operate in Total Output Power mode. • Cable repairs "recover" but often with some residual tilt

-
- Pump failures "self-correct" during their recovery due to SHB

Submarine Repeaters – Why TOP Mode?

- 3dB increase in span loss
- R2 gain increases 3dB to compensate
- R3 sees no change

Pump failure on R1:

- 3dB reduction in output power
- R2 is already at max gain
- R3 sees 3dB lower input power, increases gain 3dB to compensate
- R4 sees no change

Cable repair on Span #1:

The Need for Dummy Lights in Subsea

- So, if subsea amps always run at the same TOP setting, that means if you have one wavelength, it gets all the power! And If you have 100 wavelengths, they each get 1/100th of the power (approximately)
	- The performance of any wavelength on a given optical link is highly dependent on it being propagated at or near it's optimal power (i.e. optimal balance of linear & nonlinear noise)
- Thus, Subsea systems uses "dummy" wavelengths (waves that don't carry any real data, but consume excess repeater power), to ensure all waves stay at their optimal power all the time.
	- Recall: the distribution of gain across the spectrum is highly dependent on how the power of the wavelengths is balanced, particularly in TOP mode ("waterbed" analogy!)

Figure Ref: JLT Invited Tutorial: Wavelength Division Multiplexing in Long-Haul Transoceanic Transmission Systems, Neal S. Bergano, *Fellow IEEE, Fellow OSA*

Not all Dummies are Created Equal…

• There are two kinds of dummy lights used in Subsea:

- ASE based idlers (banded or channelized)
- Continuous Wave (CW) idlers (unmodulated lasers)

We will discuss more tomorrow on when and how each are used in upgrades and deployments!

Spectrum Power Management with Dummy Lights

Creating & Managing Dummy Waves

- Dummy Waves ideally need to be cheap, so ASE idlers are preferred, and are typically just generated as broadband noise
	- Can be generated very simply with cascaded amps
- With multiple signals from multiple sources (dummy waves & traffic waves), more advanced multiplexing / de-multiplexing is needed
- Wavelength Selective Switches (WSS) are used to enable source selection from a number of inputs, slice up the broadband ASE into desired sizing AND perform power control on a per wave basis

Submarine Line Terminating Equipment (SLTE)

We have now discussed the key functional building blocks of SLTE!

In reality, there are a few extra bits added:

- Optical Power Monitoring (OPM), which allows us to measure the optical spectrum (power vs frequency)
- Upgrade Couplers, which leave an open port for added equipment insertion in case you ever want to replace your equipment without traffic interruption
- Monitor Points, allowing you debugging capabilities at different points if anything ever goes wrong
- All these components are designed bidirectionally with dual fibers for management of each flow

SLTE – A Real Example

Courtesy of: ciena.

SLTE – A Real Example

Contractor Portable SLTE – For Field Trials! S \sim $\overline{\mathbf{c}}$ \bullet **START START** $\overline{\mathbf{C}}$ $\overline{}$ \bigcup \bullet mass LL. Or LL. ш ⊢ **Contract** \mathbf{U} \bullet **Contract** Portab

dal ent **ID** erm

Permanent SLTE – For Lab Tests!

 \mathbf{U}

 \blacksquare

 Ω

ES

<u>e anno 19</u>

Or

LL.

me Permanent SLTE Rack Diagram 86 \bullet mass \bullet \Box Rack ш ent **DI** erm $\mathbf{\Omega}$

A Submarine Line System in a Lab

Summary of SLTE & on to Advanced Modems!

We've covered the functions and building blocks of an SLTE. Now let's go into the many features of advanced modems: past, present and future!

Advanced Modems & Features
Key components – Receive Side

- Rx Laser or Local Oscillator (analog)
- Coherent Mixer (analog)
- ADCs (mixed analog to digital)
- Electro-optics (analog)
- ASIC (digital)

- Coherent Modulator (analog)
- DACs (mixed digital to analog)

Key components – Transmit Side

• Tx Laser (analog)

• ASIC (digital)

Coherent Modems – Quick Recap!

\$\$\$

Coherent Modems – The Workhorse

Advances in coherent modems have been THE core technology driver in the past decade to increasing capacity of fiber optic systems worldwide!

> Improvements have been made along a few key axes, each enabling us to do one or more of the following things:

> 1 – Increase the number of bits sent with each symbol (how many bits/symbol) 2 - Improve the performance, or noise tolerance, at a given capacity per wave (how far

those bits can travel)

3 – Increase the capacity on a single wave using the same modulation (how many symbols/s) \rightarrow more on this later!

1

Hybrid, PCS

Modulation Formats

Coherent SLTE Technology Generations

Question:

On a given link, will you get more capacity out of 200G or 300G waves?

It's a trick question @

- $(120 \times 37.5$ GHz = 4.5THz)
- $(60 \times 75 \text{GHz} = 4.5 \text{THz})$

• 200G could mean 33 Gbaud 16QAM, which might give you 24Tb/s of capacity

• 200G could also mean 66 Gbaud QPSK, which would give you 12Tb/s of capacity

Per wavelength capacity does not tell the whole story!! Spectral efficiency is the key capacity metric.

Bits, Bauds & Modulations

Q, or imaginary axis

33 Gbaud Wave, QPSK

- 33GHz channel, occupying 37.5GHz
- 25 Gsymbols/s for data, plus 32% OH
- QPSK constellation enables 2 bits/symbol
- 25 Gsymbols/s $*$ 2 bits/symbol $*$ 2 pols
- Channel capacity of 100 Gb/s in 37.5GHz
- Spectral Efficiency of 2.67 b/s/Hz

• 66GHz channel, occupying 75GHz • 50 Gsymbols/s for data, plus 32% OH • QPSK constellation enables 2 bits/symbol • 50 Gsymbols/s * 2 bits/symbol * 2 pols • Channel capacity of 200 Gb/s in 75GHz Spectral Efficiency of 2.67 b/s/Hz

66 Gbaud Wave, QPSK

-
-
-
-
-
-

99 Gbaud Wave, QPSK

- 99GHz channel, occupying 112.5GHz
- 75 Gsymbols/s for data, plus 32% OH
- QPSK constellation enables 2 bits/symbol
- 75 Gsymbols/s * 2 bits/symbol * 2 pols
- Channel capacity of 300 Gb/s in 112.5GHz
- Spectral Efficiency of 2.67 b/s/Hz

Per wavelength data rate is often used when comparing technology...but it can be deceiving!

Higher data rate does not always mean higher fiber capacity!

So Wait…What's the Point of Increasing Baud?

Reason #1: Cost

- ASIC development is the most expensive part of the coherent transponder
- High speed optics are challenging, but carry a smaller relative cost
- So, *with the same DSP*, fewer transponders at higher baud should result in a lower total cost of capacity

Maximizing Capacity with High Baud Multi-Rate Modems

Reason #2: Capacity (Wait, what?)

High baud, multi-rate modems have smaller required SNR step sizes between data rates, offering more granularity in extractable spectral efficiency on any given cable (and can easily mix data rates)

@ Cable SNR +1 dB: High Baud = 20.25 Tb/s Low Baud = 18 Tb/s

@ Cable SNR: High Baud = 18 Tb/s Low Baud = 18 Tb/s

@ Cable SNR -1 dB: High Baud = 15.75 Tb/s Low Baud = 12 Tb/s

*Capacity values are arbitrarily chosen and for example only!

Capacity as a Moving Target

Capacity for a given subsea optical design, is a continually *moving target* with time

- In recent years, achievable capacity on a cable has been highly variable, with rapid changes in modem technology driving significant capacity improvements over original design capacities
- We have many vendors continually innovating and implementing new features & improvements, it is difficult to truly categorize "generations" of coherent – tech is constantly evolving!
- One thing remains consistent: the trend is compressing both as we approach Shannon's Limit and as we design more and more linear cables ("SDM")

Coherent SLTE – Capacity Impact over the Years

Subsea Performance Designs

Every submarine cable is uniquely designed to optimize performance, cost and availability at the required propagation distance:

- 1. Optical performance is primarily a balancing act of 2 important aspects:
	- a. Linear performance (OSNR or SNR_{ASE})
	- b. Nonlinear performance (SPM/XPM/FWM/XPolM etc.)
- project
-

2. More performance almost always equals more cost, so engineering trade-offs need to be made to find an optimal solution to the specific needs of the

3. Availability drives many things, including marine routing (and as such distance)! There are some parts of the world where no subsea cable wants to go…

Like Here…

"Legacy" Submarine Wet Plant Designs

- Compensated systems used mixed fiber types to minimize dispersion & maximize performance of the target transmission technology of the time (Hint: it wasn't coherent!)
- Two Primary Fiber Strategies on Legacy Cables:
	- Dispersion Managed, 3-Fiber Strategy
		- 2 primary propagation fibers
		- 1 compensating fiber

Dispersion Managed Cables

- Slope Matched, 2-Fiber Strategy
	- 2 primary propagation fibers
	- 1 of the 2 fibers doubles for compensation

Fiber Type Acronyms

Dispersion Managed Cables: "LEAF" Category – LCF, LMF, NZDSF "LS" Category - RSF, HDF, NZDSF "NDSF" Category - DCF, CMF, CSF "DSF" Category – no aliases

> Slope Matched Cables: Positive – P, P-Type, D+ Negative – N, N-Type, D-

Noise Definitions

- Sources of noise:
	- Implementation Noise of the Transceiver SNR_{B2B}
		- DAC/ADC Quantization Noise
		- Thermal & Phase Noise
	- ASE from amplifiers SNR_{ASE}
		- Can be measured as OSNR via an OSA
		- Is AWGN (Additive White Gaussian Noise)
	- Non-Linear Interference SNR_{NLI}
		- Result of propagation in a non-linear medium
		- Kerr Effect: SPM, XPM, FWM, XPolM etc.
		- Not AWGN but with enough dispersion can be treated as AWGN

Evolution of Coherent Constellations

M.Reimer et al., Optimized 4 and 8 Dimensional Modulation Formats for Variable Capacity in Optical Networks, OFC 2016

Constellation Shaping

- Constellation shaping builds on the traditional "square" constellations, and takes advantage of advanced DSP to optimize the constellation for the specific application
	- Selected for type and quantity of noise present (fiber type, distance, channel powers, etc)

to get the best performance and highest bit rate possible:

Without shaping
mhol sent equal # of times
mhol sent equal # of times Every symbol sent equal # of times

With shaping

Low energy symbols favored, sent more often

Digital Subcarriers and Performance Impact

• Encoding data over multiple digital subcarriers on a single optical wavelength

- Improves non-linearities in key applications
	- High residual net dispersion favors a larger number of subcarriers
		- E.g. uncompensated NDSF
	- Low residual net dispersion favors a single subcarrier
		- NZDSF (or dispersion managed/compensated cables)

Subcarriers within High Baud Signals

- Subcarriers shown to improve performance of high baud systems • Demonstrated to reduce nonlinear effects
-
- Subcarriers can be coded individually
- Subcarriers can be used to make clock recovery more robust

Result is tighter channel spacing & good clock recovery

Nonlinear Compensation

Nonlinear Compensation (NLC) is another technique used to improve the performance (or reach) of an optical signal

There are numerous proposed methods with extensive research and publications, many of which are highly complex (and Ph.D worthy!)

One of the biggest challenges we face today is reducing the complexity of computationally intensive NLC implementations in DSP

 C_{mn} parameterizes single channel nonlinear interactions including details of pulse shaping and dispersion map.

- Z. Tao, et. al, Proc. SPIE (2013)
- Z. Tao, et. al, J. Lightwave Technol. (2011)
- Q. Zhuge, et. al, Proc. OFC (2014)
- Y. Gao, et. al, Opt. Express (2014)

M.Reimer et al., Prospects for real-time compensation of fiber nonlinearities, ECOC 2016

Nonlinear Pre-Compensation

Nonlinear pre-compensation techniques on single channels have proved highly effective, with multiple dBs performance improvements possible at low computational complexity

M.Reimer et al., Prospects for real-time compensation of fiber nonlinearities, ECOC 2016

Nonlinear Pre-Compensation

on one channel also couples to the nonlinear field of neighboring WDM channels.

- However, WDM environments create additional complexities, in that nonlinear pre-compensation applied
- This effect requires multi-channel consideration of nonlinear pre-compensation techniques, increasing the complexity of the required solution and reducing the benefits observed in single channel environments

M.Reimer et al., Prospects for real-time compensation of fiber nonlinearities, ECOC 2016

Coding in Next Gen SLTE Transponders

- Overheads between 15-50%
- Advanced FEC should be able to reach with 1 dB of Shannon
- FEC can account for 25-35% of DSP gates in some implementations
- PCS can enable use of use lower overhead FEC of ~20%
- FEC gain sharing has been proposed for performance optimization in WDM environments

Net Coding Gain (NCG) of modern and next gen FEC is around 13 dB in Gen 3-4 Coherent

Courtesy of: Infinera

What is Soft FEC

• <https://www.youtube.com/watch?v=81pTxPwB1Fw>

Summary

Modern day coherent modems have many tools to optimize performance for a given application:

- Probabilistic Constellation Shaping
- Multi-Dimensional Modulation Techniques
- Variable Baud & Bit Rates
- Soft FEC and FEC Gain Sharing
- Digital Subcarriers
- Nonlinear Compensation & Mitigation

Future modems will undoubtedly have even more degrees of freedom…but where are the limits?

…We'll discuss that tomorrow!

SNR [dB/0.1nm]

HIS LUGGAGE.

A PHOTON CHECKS INTO A HOTEL AND IS ASKED IF HE NEEDS ANY HELP WITH

"NO, I'M TRAVELLING LIGHT."

Same TOP, Nch, and NF for all examples! Only changing G and N_R N_R is Distance / Span Length – 1 and G is Span Length $*$ Fiber Loss per km

Lecture 11 - System Deployment & Life of a Cable

Alan Cheung - Google Global Network Infrastructure (GNA APAC)

Subsea Optical Fiber Communication Finland, 2019

Confidential + Proprietary

Table of Contents - System Deployment & Life of a Cable

- 1. [System Deployment What do you need to know?](#page-713-0)
- 2. [Project Implementation and Management](#page-733-0)
- 3. [Commissioning](#page-738-0)
- 4. [Acceptance](#page-740-0)
- 5. [Performance Bonds](#page-744-0)
- 6. [Construction Challenges](#page-746-0)
- 7. [System Budget \(Capex and Opex\)](#page-751-0)
- 8. [Check-list before Provisional Acceptance](#page-754-0)
- 9. [Operations and Maintenance](#page-756-0)
- 10. [Life of a cable \(marine repairs, capacity upgrade\)](#page-769-0)
- 11. [Decommissioning](#page-773-0)

System Deployment - What do you need to know?

- 1. Contractual Documents
	- a. Supply Contract
	- b. Joint Build Agreement
	- c. Landing Service Agreement
- 2. Purchasers Obligations
- 3. Supplier's Obligations and Scope of Work
- 4. People

Supply Contract

Supply Contract generally consists of 6 Parts

- Part 1 Terms and Conditions of Contract
- Part 2 Technical Specifications
- Part 3 Price Schedule
- Part 4 Plan of Work
- Part 5 Billing Schedule
- Part 6 Supplier's System Description

Supply Contract - Part 1 - Terms and Conditions of Contract

Key terms

- 1. Contract Price
- 2. Completion Date
- 3. Condition Precedent for Coming Into Force
	- a. BM0 downpayment ?
	- b. Government approval ?
	- c. Letter of Performance Guarantee?
	- d. Payment Assurance ?
- 4. Acceptance
- 5. No suspension rights by Supplier Supplier cannot suspend work even though non-payment from any of the Purchasers
- 6. Permits: Scope of Contractor
- 7. Liquidated Damages

8. Liability

- a) Normally cap at contract price with exception of personal injury and death and environmental damage, etc.
- b) Not joint but several liability among Purchasers
- 9. Financial liability of each Purchaser
- 10. Payment term
- 11. Force Majeure extension of time but no money

12. Warranty

13. Long term support

Google

Supply Contract - Part 2 - Technical Specifications

Key terms

- 1. Configuration
	- a. Main trunk and branches
	- b. Locations of Cable Landing Station / Point Of Presence
	- c. Locations of Beach Manholes
	- d. Number of Fibre Pairs
	- e. Power feeding configurations
	- f. Add / drop capacity to branch landings (e.g. optical switch and/or WSS)
	- g. Stubbed Branching Units, Optional landings if any
	- h. etc.
- 2. Transmission design parameters (e.g. OSNR, design capacity, etc.)
- 3. Commissioning Limit
- 4. Burial depths / Horizontal Directional Drilling (HDD) requirements
- 5. Route Position List / Cable types
- 6. Training

7. etc.

Supply Contract - Permit Matrix

The Contractor shall identify, plan, obtain and procure the necessary licences, operational permits, work permits, permit-in-principle ("PIP"), authorisations from the appropriate authorities and pipelines/cable crossing agreements

Confidential + Proprietary

Supply Contract - Part 3 - Price Schedule

A spreadsheet detailing the Supply Contract Cost giving the below breakdown

- 1. Project Management and Support
- 2. Submarine Plant International Waters
- 3. Submarine Plant Territorial Waters
- 4. Land Cable
- 5. Terminal Station Equipment
- 6. Training and Documentation
- 7. Marine Operations International Waters
- 8. Marine Operations Territorial Waters

Supply Contract - Cost Allocation (Example)

Supply Contract Cost Allocation

Google

Supply Contract - Price Breakdown

Supply Contract - Price Breakdown

Supply Contract - Part 4 - Plan of Work

Plan of Work to show the Milestones and Start / Finish date of each activity

Supply Contract - Part 4 - Plan of Work

Purchasers' Deliverables - Purchasers' critical delivery and option decision dates will be shown in the POW:

- Readiness of Beach Manhole
- Readiness of CLS
- Decision dates for options election (add / reduction of FP, branches, etc.)
- Finalisation of spares
- Finalisation of marine maintenance and depot storages
- NOC location
- Readiness of licence

Supply Contract - Part 6 - Supplier's System Descriptions

System Description is Supplier's document to specify how they implement the project so as to meet the Technical Specifications specified by the Purchasers.

- 1. Configuration and options
- 2. Optical connectivity
- 3. Power Configuration
- 4. Submerged plants
- 5. Terminal Station Equipment
- 6. System Performance
- 7. Acceptance test
- 8. Training
- 9. Documentations
- 10. Marine Descriptions
- 11. Permit Services Descriptions
- 12. Product descriptions
	- a. Cable
	- b. Repeaters
	- c. Branching Units
	- d. Management System
	- e. Dry Plants
	- f. SLTE, if applicable
	- g. etc.

Supply Contract - Part 5 - Billing Schedule

Billing Milestones with criteria for achievement are well defined. The % allocation on each BM is mutually agreed prior to Contract CIF.

Joint Build Agreement

Key terms

- 1. System Configuration
- 2. Investment Level and Cost sharing principles
3. Participating Interest and Voting Rights
- 3. Participating Interest and Voting Rights
- 4. Open access principles
- 5. Management Structure, Decision and Voting
	- a. Management Committee
	- b. Procurement Group
	- c. Investment & Administrative SubCommittee
	- d. O&M Working Group
- 6. Landing Parties / Service Providers Responsibility and Obligations
- 7. Decommissioning
- 8. Joint System Maintenance Document Key Terms
- 9. Terms of Reference for
	- a. PG
	- b. OMG
	- c. NOC
	- d. CBP

Joint Build Agreement - System Config & Cost Sharing

Trunk: Segment A & Segment B Branch: Segment C No. of FP: Trunk (5); Branch (2) OSNR: XX dB Design capacity: XX Tbps per FP

Joint Build Agreement - Open Access

Cable Landing Station

Google

Landing Service Agreement

Key terms

- 1. Facilities / Services to be provided
	- a. Beach Manhole (BMH)
	- b. Land route from BMH to Cable Landing Station
	- c. Cable Landing Station Space and power (X sq meters, Y kW)
	- d. Permit application
	- e. Negotiation and signing of any fishery agreement, pipeline agreement
	- f. Manpower for Operations and Maintenance (O&M)
	- g. Importer of Record
- 2. Non Recurrent Cost and Recurrent Cost
- 3. Open access

Purchasers' Obligations

- 1. Provision of cable landing facilities (Cable Landing Station, Land route, Beach Manhole)
- 2. Make timely payments to Supplier

- 3. Obtain Purchasers' permits
	- a. submarine cable landing license (e.g. FCC license in USA)
	- b. permits needed to operate the System

Supplier' Obligations and Scope of Work

- 1. Design review and demonstration of technology
- 2. Route engineering to optimise the cable route
- 3. Complete the work on time
	- a. Permits acquisition
	- b. manufacturing
	- c. Timely qualification for First Office Application (FOA)

People You need to know

- 1. Project Team from Supplier
	- a. Project Manager
	- **Contract Manager**
	- c. Marine Manager
	- d. Quality Manager
	- e. Escalation contact
- 2. Your own consortium members

Project Implementation and Management

Project Implementation

Project Management

- 1. Forming Subcommittees and Working Groups
- 2. Meetings / Conference Calls
	- a. Contractor Coordination meetings
	- b. Purchasers' internal meetings
- 3. Quality checks / audits
	- a. Factory audit
- 4. Factory Release Certificates
- 5. Sending Purchasers' shipboard representatives onboard vessels
- 6. Monthly Reports / Incident Reports

Committees / Meetings

Committees

- 1. Management Committee (MC) decision making exist throughout the cable life
- 2. Investment and Administrative SubCommittee (I&ASC) deal with Joint Build Agreement / Landing Party Agreements - exist throughout the cable life
- 3. Procurement Group (PG) deal with Suppliers
- 4. Technical Working Group (TWG) assist PG on technical matters
- 5. Marine Working Group (MWG) assist PG on marine matters
- 6. Operations and Maintenance SubCommittee Group (O&MSC) Established ~9-12 months before Provisional Acceptance to deal with O&M matters

Meetings

- 1. MC / I&ASC Bi-annually / Quarterly / Ad-hoc
- 2. PG Meeting / TWG / MWG / Contract Coordination Meetings Quarterly / Bi-monthly / Ad-hoc
- 3. O&MSC Meeting quarterly before PA; once annually after PA

Project Management - Reports

Monthly Report

- 1. Critical project risks
- 2. Update on Milestones
3. Near term decisions
- Near term decisions
- 4. Purchasers deliverables and due dates
- 5. Manufacturing status
- 6. Dry plant installation
- 7. Permit and license acquisition status
- 8. Installation Programs
- 9. New product development
- 10. Updated Plan of Work
- 11. Revised Billing Milestones and payment status

Marine Survey and Installation Report Ship Representative Reports

Outside Plant Installation Report Factory Release Certificate

Site Installation Report Testing and Commissioning Report

Commissioning

Confidential + Proprietary

Commissioning

High Tech & High Reliability Systems

- ► Recommendation: thorough testing & controlling by supplier & qualified inspection authority at
	- Pre-manufacturing
		- Technology Demonstration
		- **Qualification**
	- Manufacture
		- Component supply
		- Factory test
		- Assembly tests
	- Installation
		- Load & lay tests
		- On-site equipment tests
		- System test
- ► Why so many tests ?
	- System shall perform 25 years !
	- Time-consuming now but time-saving later
	- **Many functionalities**
- ► Test examples
	- Optical power, spectrum, margins, etc.
	- Confidence trials, software tests
	- OSNR, GOSNR, Gain Tilt and Gain Shape

► Test passed -> Get the cash and go to next one

Acceptance

Acceptance

1. Acceptance - rejection

2. Commercial Acceptance - commissioning test not fully satisfied -> accept part of the System for commercial traffic

- 3. Provisional Acceptance commissioning tests satisfied. May have some minor deficiencies but the System is good for carrying traffic.
- 4. Final Acceptance it is generally a 5-year period after PA to ensure the System is up and running before Final Acceptance.

Google

Commercial Acceptance

- 1. Purchasers are not satisfied with the results of the Acceptance Tests but wish to put a part of or all the System into Commercial Services.
- 2. Terms and conditions to be mutually agreed between Purchasers and Supplier
- 3. Supplier shall continue to carry the risk of loss of the System or relevant Segments
- 4. Upon Supplier's remedy the deficiencies to meet full conformance of contract, Purchasers will issue a Certificate of Provisional Acceptance.

Provisional Acceptance / Final Acceptance

Performance Bond

Confidential + Proprietary

Performance Bonds

Contract

In order to guarantee the good and timely execution of all of the Contractor's contractual obligations from the signature date of the Contract through Final Acceptance, Contractor shall provide a Letter of Performance Guarantee (LPG) for a value equal to 10% of the Contract Price, which shall be reduced to 5% of the Contract Price upon the Provisional Acceptance, in favour of the Purchasers and in the form of an irrevocable and unconditional Bank Guarantee issued by a bank approved by Purchasers.

1. Permits / License - often on the critical path

- 2. National Security Agreement Relevant authorities are increasingly more protective of its critical infrastructure.
- 3. Environment Impact Assessment increased durations and scopes

ENVIRONMENTAL **IMPACT ASSESSMENT**

NATIONAL SECURI

4. Fishery agreements

5. Pipeline / Cable crossing agreement

Phase-1 Cease Ploughing 500m before Crossing

Google

6. Weather delay - wind, weather, sea conditions and currents that would force curtailment of the work ("Unworkable Weather").

7. Route engineering - route selection, cost versus quality.

Delay in Completion

- 1. Liquidated Damages for late completion the compensation imposed on Supplier due to the delay in completion caused by Supplier
- 2. LD structure
	- a. Generally not exceeding 10% of the contract price
	- b. 0.1% of contract price per calendar day of delay up to 10% cap.

System Budget

System Budget (Capex)

G

System Budget (Opex)

Confidential + Proprietary

Check-list before Provisional Acceptance

Check-list before Provisional Acceptance

- 1. Satisfactory acceptance test
- 2. List of deficiency items, if any
- 3. Record of permits / licenses
- 4. Marine maintenance in place
- 5. Spare submersible plants, jointing kits
- 6. Readiness of Network Operation Centre (NOC)
- 7. Appointment of Central Billing Party (CBP)
- 8. Completion Training (NOC, CLS, land cable, etc.)
- 9. Land cable maintenance
- 10. Test equipment (CLS and depot)
- 11. System Manuals / Handbooks, update of Route Position List (RPL)
- 12. Joint System Maintenance Document
- 13. Alternative Data Communications Network
- 14. Supplier's issuance of performance bond from 10% of contract price to 5%
- 15. Check fulfilment of Terms of Reference of each SubCommittee and Working Groups
- 16. Press Release ?

Ready to Go !

Operations and Maintenance

Joint System Maintenance Document

JSMD sets out the agreed by all the Maintenance Authorities to be followed for all aspects concerning the maintenance and repair of equipment and facilities.

O&M Organisation, Maintenance Representatives and Contacts:

- a) Maintenance Authority
- b) Cable Landing Station contacts
- c) Marine Maintenance arrangement
- d) Land cable maintenance arrangement
- e) NOC

Power Safety: provides procedures to handle electrical and optical power handling during normal operation and during repair. To define Power Safety Rules and Power Safety Rules:

Power Safety Officer (PSO)

- a) Terminal Power Safety Office (TPSO)
- b) Deputy Terminal Power Safety Office (Deputy TPSO)
- c) Ship PSO

Joint System Maintenance Document (Cont'd/…)

Power Safety Message (PSM)

The purpose of power safety message (PSM) is to ensure the communication between cable stations and cableship during cable repair so as to avoid any misunderstanding among all the participants of the repair work and prevent any accident.

"One Action One PSM" is the fundamental rule and the most important for safety operation. The message to be used for the PSM must be as simple as possible so that cable stations and cableship can understand quickly and easily. Time to be used in PSM must be UTC in principle.

The exchange of PSM must be made on in a written form.

After receiving the PSM, recipient must be acknowledged by PSM.

Copies of PSMs must be retained in the submarine power safety logbooks.

Reference Number must be put on PSM.

Joint System Maintenance Document (Cont'd/…)

Power Safety Message (PSM) - PROHIBITED ACTIONS FOR POWER SAFETY OFFICER

- **s** To omit the respective power safety procedures and to communicate other PSOs verbally without exchange of power safety messages (PSM).
- **s** To prepare signed PSMs in advance of each process.
- ****
- **s** Not to observe power feeding process step by step.
- **is To make other staff to sign the PSM.**
- **E** To send PSM other than PSO or deputy PSO.
- **EX** To accept the existence of plural power control at the stations or cableships, in case of simultaneous cable repairs in the same system (in terms of power feeding configuration) by plural number of cableships.

Joint System Maintenance Document (Cont'd/…)

Power Safety Message (PSM) - Sample

Cableship CLS

PSM - ABC Cable Segment 1 Repair No. 1

Cableship to CLS PSM No. 1 Date

Cableship XX will arrive at repair ground at XX LT on DDMMYY. Cableship PSO is XXX, Deputy PSO is YYY.

Please nominate Terminal Station Power Safety Officer and your contact point and advise the PFE status.

Signature

PSM - ABC Cable Segment 1 Repair No. 1

Cableship to CLS PSM No. 2 Date

Your PSM No.1 is received. Please inform the power feeding (voltage and current) of your Power Feeding Equipment and transfer responsibility of power safety control from CLS to cableship.

Signature

Google

Marine Maintenance

Google

source: ICPC

Marine Maintenance

TE SubCom

 \bullet = TE SubCom

 $\bullet = ASN$

 \bullet = eMarine

Taichung, Taiwan (APMMSA)

Noumea, New Caledonia (SPMA)

Hamriya, UAE; Salalah, Oman

Portland, USA (NPMMSA)

Google

Marine Maintenance

Considerations for selection of Marine Maintenance Providers:

- 1. Geographical coverage
- 2. Based ports and depots locations
- 3. Capability of cableships and ROVs
- 4. Service availability
- 5. Number of scheduled cables covered
- 6. Commercial (Standing Charges, Running Costs, Storage Charges)
- 7. Direct Measure of Quality (DMOQ)
	- a. Time to mobilize Cableship
	- b. Average transit speed
	- c. Time to complete a cable repair
	- d. Time to issue Completion Report after the repair

NOC & Network Administrator

NOC = Network Operation Center

- Overall control of the System
- A 24/7 experienced team
- Location may be restricted due to licensing requirement

Tasks

- Monitor wet plant performance
- Coordinate fault localisation
- Coordinate cable repairs
- Coordinate planned maintenance
- Coordinate capacity upgrades
- Implement and supervise traffic
- Monitor traffic quality
- Generate capacity reports
- Keep logs of daily events (alarms, etc.)

NOC & Network Administrator - Activities

Google

NOC & Network Administrator - Report on Activated Capacity

NOC & Network Administrator - Report on Activated Capacity

Google

Life of a Cable

Life of a Cable

- 1. Cable Repairs
- 2. Update of JSMD, System Handbooks and maintenance procedures
- 3. Update of system parameters (SLD, RPL)
- 4. Marine Maintenance
- 5. Replenishment of spares
- 6. Renewal of licenses / permits
- 7. Compliance to regulations
- 8. Route diversions (land and subsea)

Life of a Cable

- 9. Cable Landing Station O&M
	- a. Security
	- b. Routine Maintenance
	- c. Repair and return
	- d. Land route patrol
- 10. Capacity Upgrades
- 11. Update of Mux Plan (channel assignment table)
- 12. Cable Protection / Awareness
- 13. Keeping of maintenance of records
- 14. O&M Budget Control

15. Annual O&M meetingGoogle

Capacity Upgrade

- 1. System is Dark on day-1. Need to augment capacity on a regular basis to meet demand
- 2. Open Cable: Purchasers can freely select any equipment suppliers
- 3. Consider individual upgrade versus consortium upgrade
- 4. Selection of upgrade supplier (cost, lead time, modulation formats, channel spacing, FEC limit, etc.)
- 5. Wavelength allocations / assignment
- 6. Guard band between spectrum from different suppliers and different technology
- 7. Ensure no interruption on existing capacity throughout the upgrade operations
- 8. Perform capacity upgrade during any maintenance window
- 9. Engage NOC to monitor traffic throughout the upgrade operation
- 10. Provide training to CLS and NOC if a new platform is introduced

Decommissioning

Confidential + Proprietary

Decommissioning

1. Decision on decommissioning or retirement shall be contemplated at JBA stage.

For example:

- i. Design life is 25 years
- ii. Unanimous decision: early decommissioning or retirement if the cable is operated for less than 25 years
- iii. Simple Majority: if the System has been in operations for more than 25 years

- 2. Upon decommissioning, Parties shall:
	- a. use all reasonable efforts to liquidate System
	- b. The net proceeds or costs of decommissioning such as removal / recovery of plants shall be shared by the Parties.

Photos - Cable Landing

Alternative Applications and SMART Cables

Simon WEBSTER NEC Europe Ltd.

Contents

- **Cabled Environmental Sensing** Ι.
- Context \bullet
- Dedicated vs. Multipurpose Systems \bullet
- SMART Cables concept and commercial challenges

Orchestrating a brighter world

- II. Oil & Gas Applications
- III. Summary

Acknowledgements

Special thanks to the ITU/WMO/UNESCO IOC Joint Task Force (JTF), for providing much of the content on climate change and SMART Cables

 \cdots particularly Bruce Howe, JTF Chair and Research Professor at University of Hawaii at Manoa

 $SMART = Scientific$ Monitoring And Reliable Telecommunications

The JTF is tasked with developing a **strategy and roadmap** that could lead to enabling the availability of submarine repeaters equipped with scientific sensors for ocean and climate monitoring and disaster risk reduction (tsunamis).

https://www.itu.int/en/ITU-T/climatechange/task-force-sc/Pages/default.aspx Orchestrating a brighter world

Contents

- **Cabled Environmental Sensing**
- Context
- Dedicated vs. Multipurpose Systems
- SMART Cables concept and commercial challenges

Orchestrating a brighter world

- II. Oil & Gas Applications
- III. Summary

Tsunamis

Climate – temperature vs cumulative CO₂

Temperature

NEC

Sea level rise

Sea level rise is not uniform in time and space $-$ it is accelerating

Sources:

- IPCC, WG I, 2013
- JTF
- J. T. Fasullo et al., Scientific Reports volume 6, Article number: 31245 (2016)

Ocean temperature rise

Few observations in deep water

 $0.3[°]$

 0.25 0.2 0.15 0.1 0.05 O -0.05

 -0.1

 $-0.15 -$

 -0.2 -0.25 $-0.3 -$

> Source: - IPCC, WG I, 2013

Declining sea ice extent and thickness

Source: NOAA, https://www.dimato.gov Orchestrating a brighter world

NEC

Techniques available

Satellite altimetry shows Global Mean Sea Level rise DART buoys send bottom pressure data to satellites

Source: R. S. Nerem et al., PNAS February $27,$ 2018 115 (9) 2022-2025

Other basic methods

Tsunamis - where do we need to measure?

Context - what could we gain from deep ocean measurements?

- Ocean bottom observations of earthquake and tsunami effects offer:
- Longer-term understanding of submarine seismic activity and tsunamis, including the establishment an accumulated database for future reference
- Increased global coverage may lead to reduced location uncertainties, better seismic magnitude calculations, and reduced detection thresholds
- Prompt real-time monitoring for early warning to the public

Ocean bottom observations of water temperature offer:

- Better understanding of global ocean currents
- Better models for climate science to refine predictions of climate change

How fast do seismic waves travel?

NEC

What can you achieve with advance earthquake warning?

What can you achieve with advance earthquake warning?

What can you achieve with advance earthquake warning?

Tsunami waves

Mainly triggered by subsea earthquakes with large vertical seafloor displacement

Metres deep Amplitude **Metres** water

Tsunami - "harbor wave"

Useful range of sensors

Earthquakes

- Small earthquakes: acceleration amplitudes as low as 10^{-9} ms⁻²
- Large earthquakes: up to 20 ms⁻²
- Observable earthquake frequencies cover a range from 0.02Hz to 100Hz
- Slow slip events may be observed on timescales such as days or months

Tsunamis

- \bullet Absolute pressure gauges DC 1Hz for tsunami monitoring
- Differential pressure gauges to observe broadband seismic waves 1/200 Hz to 20 Hz
- Measurement resolution as good as 1mm of water, operating down to 7700m WD

Date rate requirement is very low $-$ can be measured in kbps or Mbps

Ocean Bottom Observation Networks (Japan)

- **Early detection of earthquakes and** tsunamis
- Real time data transmission to on-shore stations
- Long-term 24/7 ocean bottom observation
- early warning to the public _{10 DONET 2} Contribute to disaster management through

Legend

- **In-Line Digital**-
- **In-LineAnalog**-
- **NODE** (Digital) \blacksquare

New observation networks for eastern Japan

Planned and owned by the Japanese Government

Multi-year plan accelerated after 2011
East Japan earthquake and tsunami

Completed in 2017 and now in use

Used for real-time observation of earthquakes and tsunamis as well as
long-term geophysical studies

Over 5,700km of submarine fiber optic cable

150 undersea units with seismometers and tsunami sensors

© NIED

NEC

In-line systems

Ocean Bottom Seismometer/ I sunami Sensors (2)

Ocean bottom observation units (in-line system)

Ocean bottom sensor unit (example)

Unit Configuration

- **Pressure Sensor (Tsunami Sensor)**
- Seismometer (ACC/VEL)
- Clinometer
- **Optical Amplifier**
- **Data Transmission**
- **Power Units**
- **Pressure Tight Case**
	- **Resistant to 8,000m depth**
	- **Beryllium Copper**

 $> 2 m$

Installation vessel (example)

Laying operation

NEPTUNE

NODE System (DONET by JAMSTEC)

DONET and DONET2

DONET: 5 nodes, 2000 - 4400m WD
DONET2: 7 nodes, 1400 - 2400m **WD**

Source: JAMSTEC

SMART Cables - the idea

A global array of sensors spanning the oceans

Sensor Module

Install routinely on new cables Deploy by cable ship, no maintenance

https://www.itu.int/en/ITU-T/climatechange/task-force-sc/Pages/default.aspx

John You, Nature, 2010 – Harnessing telecoms cables for science

ıbmarine cable repeater : tsunami buov ean observatory

- **Telecoms, plus science at low marginal cost**
- Cable repeaters host sensors, not to interfere
- Potential: trans-ocean, ~10,000 repeaters
- Initially: bottom pressure, temperature and acceleration

Source: JTF

On-going discussion on use of telecom cables

Joint Task Force ITU / UNESCO-IOC / WMO

A Joint Task Force to investigate the potential of using submarine telecommunications cables for ocean and climate monitoring and disaster warning, initiated by;

Discussions continue to take place among the participants including cable system owners, academic institutions, national agencies, consultants and system suppliers.

SMART repeaters

▌Wet demo – show science, mechanical packaging, **PETT** ng Unit Telecom + science ideally combine with telecom Shore station ▌Branch unit on commercial Telecom Functions (Multiple fibre pairs) Telecom cable only **Extra Power Conductor for Science Node** Extra Fibre Pair for Science Node ▌May need dual conductor Dual Conductor Cable (BU to shore station cable Branch Cable (BU to CTA) (Single Conductor) ▌Could develop/qualify BU **Cable Termination Assembly** Flying Lead (ROV connection) **Science Node** isolated power supply

Source: JTF

Fiber sensing (recent studies)

- Earthquakes detected by phase/length changes in fiber (ultrastable laser)
- Good correlation with terrestrial seismometers
- Potentially low impact on commercial telecoms systems
- Results suggest earthquake events can be located using cable

network

Source: G. Marra et al., Science 10.1126/science.aat4458 (2018)

SMART cables - the Idea

SMART: Sensor Enabled Scientific Monitoring and Reliable Telecommunications

SMART Cables - The Pitch to the Board

Additional risks to my cable? How much commercial traffic I am sacrificing? Will my cable take longer to build? Additional CapEx costs? Additional OpEx costs?

Security impacts on Telecom System?

Independence of Systems?

Design philosophy?

Marine installation impacts?

Testing and Commissioning?

Permitting?

Ship repair rate?

System Availability?

POW?

Backhaul Needs?

Space & Power?

CapEx vs. OpEx?

Reasonable Questions:

- Does the addition of sensors to a repeater increase its FIT rate?
- What about adding DC/DC converters to power a sensor pod?
- Is a higher voltage PFE needed to power the sensors?

Dedicated sensor cables are funded by governments / academia

Telecom cables are funded by telcos and content providers

SMART cables are ··· more difficult (so far)
Contents

- **Cabled Environmental Sensing** Ι.
- Context \bullet
- Dedicated vs. Multipurpose Systems \bullet
- SMART Cables concept and commercial challenges

II. Oil & Gas Applications

III. Summary

Contents

- **Cabled Environmental Sensing** Ι.
- Context \bullet
- Dedicated vs. Multipurpose Systems \bullet
- SMART Cables concept and commercial challenges

II. Oil & Gas Applications

III. Summary

Summary

\Orchestrating a brighter world

Subsea Upgrades

Elizabeth Rivera Hartling August, 2019

Outline

- Introduction to SubOptic
- DAY 5: Submarine Cable Upgrades
	- Upgrades on Legacy Cables
	- Open Cables & Convergence with Terrestrial
	- Open Cable Metrics OSNR & GSNR
	- Open Cable Commissioning & Acceptance
	- Future Evolution

What is SubOptic?

- SubOptic is the premier technical conference for the Subsea industry!
	- Established in 1986, held only once every 3 years
- SubOptic 2019 was just held in New Orleans in April:

• But SubOptic lives outside of the conference as well through it's working groups!

Copyright © SubOptic2019 Slide 4

Elizabeth Rivera Hartling Facebook (WG Chair)

Priyanth Mehta **Ciena**

Darwin Evans **Ciena**

Valey Kamalov Google

Mattia Cantono Google

Chris Mott **Telstra**

Pascal Pecci ASN

Philip Murphy **Telstra**

Paul Lomas **Telstra**

Alexei Pilipetskii Subcom

Eduardo Mateo NEC

Fatih Yaman NEC

Open Cables Working Group Team

The team has generated a very extensive **white paper** (book?) detailing collectively agreed ideas and recommendations on Open Cables, that can be

Table of Contents

Page 2 of 55 16115 words

consumed by *experts* and *non-experts* alike!

Subsea Open Cables: A Practical Perspective on the Guidelines and Gotchas

Key Takeaways:

- Open Cables have many benefits, including capacity maximization at system RFS, and allowing independent best of breed selection for both wetplant and SLTE technologies
- . New wetplant performance metrics are required that are fully independent from SLTE
	- o Comparing wetplant designs based on traditional turnkey capacity can be highly misleading
	- o Ongoing monitoring of wetplant performance over the system lifetime must have continuity and meaning regardless of SLTE technology used
- OSNR and GSNR, when considered together, can give a clear picture of the optical performance of a subsea system, offer a fair comparison between different wetplant designs, and enable 3rd party SLTE capacity estimation

Open Cables Working Group Output *We've been BUSY!*

Table of Contents

Subsea Open Cables: A Practical Perspect

Why Open Cables? A Brief History........

Discussing the Benefits of Open Cables....... Open Cables Giving Rise to New Challenge:

Introduction of OSNR and GSNR as Pai

OSNR Definitions and Conversion into SNR **GOSNR Definitions and Conversion into GS**

Measuring our Defined Metrics

SNR_{45E} and GSNR Measurement Introducti **GSNR Measurement Principle...... GSNR Measurement Procedure...**

Discussing the Impact of Errors

The Relative Impact of SNR4se and SNRNHO The Impact of SNRMODEM and GSNR on Capa Modem Capacity Quantization and the Imp

Considering the Architecture of Open

What to Ask for in an Open Cable ITT..

Why Traditional Capacity-based ITTs are r How Open Cables Can Overcome the Tradi Setting Capacity Targets and Assessing Ind Setting Wet Plant Optical Performance Des

Specifying, Commissioning & Acceptin

Data Differences Before & After RFS Design Specifications & Acceptance Criteri Commissioning & Acceptance Testing.........

Spectrum Sharing. How does GSNR vs

The Old Adage: Not All Spectrum is Created Strategies for Sharing Spectrum Equitably. Spectrum Sharing and Trending Towards

Sub**Optic2019 TO THE BEACH AND BEYOND**

RETHINKING GLOBAL NETWORKS

Subsea Upgrades

Shannon Limit

Shannon's Limit on Legacy Cables – Room to Grow with Coherent!

Enter: The "Upgrade Market"

Traditional "Turnkey" Subsea Cable Capacity Model

"Dry Vendor" Terrestrial Vendor Upgrade Vendor 3rd Party …all used the same!

Wait. But Why Terrestrial Vendors?

- Timing. It's everything. That's why.
- Terrestrial Optical companies were the first to develop and productize coherent technology and introduce it to the Subsea space.
- Some thought that coherent would never work in optical. • And when it did. It happened FAST, and changed the course of the
- subsea industry!
- The benefits of coherent were so big, it was too expensive NOT to adopt it.

Recap from Yesterday: SLTE Coupling Point

Below are the key functional building blocks of SLTE from yesterday!

SO how do we couple 2x SLTE onto one fiber?

- Upgrade Couplers, which leave an open port for added equipment insertion in case you ever want to replace your equipment without traffic interruption
- HOWEVER, the traditional model didn't have upgrades in mind, so most SLTE before this time did not have upgrade couplers.
- So, an Upgrade coupler either needs to be inserted (interrupting traffic momentarily), or a non-ideal coupling point needs to be found
	- Note, older SLTE often did not use WSS either!

What Would Really Happen?

line is not recommended, likely to be traffic affecting!

From Yesterday

Something along these lines:

Option 1: Overlay New & Old Technology

But power must be balanced, so typically CW idlers are placed as symmetrically as possible, and in some cases are strategically placed to minimize the impact of tilt.

Option 2: Traffic Migration to New Technology

Sometimes, there is little or no open spectrum remaining on a fiber. Space is needed for a new wave.

Option 2: Traffic Migration to New Technology

New wave is higher bandwidth, and can replace older ones 4:1 (or 10:1 if 100G is used)

Option 2: Traffic Migration to New Technology

Process can be repeated until full spectrum is replaced or target capacity is achieved. Dummy lights will be needed at some point.

Upgrade Considerations

- Coupling Point:
	- Sometimes, existing SLTE has an open coupling point that is suitable for use
	- If not, new coupler must be inserted during a brief maintenance activity window, where traffic will be interrupted
- Dummy Replacement:
	- If banded dummy lights are used, new channelized dummy lights will be gradually inserted, maintaining the same power levels. Guard bands are often needed.
	- Traffic channels can then be inserted one by one using new dummy lights. CW idlers may also be needed if optimal channel power is lower than what is available
- Traffic Migration:
	- If there is no open spectrum available, then a single wave may need to be removed and replaced by a new, higher bandwidth wave. Sometimes though, we can find space for just one wave on the outer edges! • Then traffic can be migrated onto the new wave, and older waves can be removed in a 4:1 (40G upgrade from 10G) or 10:1
	- (100G upgrade from 10G) ratio (or more!)
	- Coherent DP-PSK technology overlays with single pol. IMDD waves on legacy cables requires very careful power control and guard band management. Traffic soaks are crucial to ensuring performance long term.

Field Trials

- How They are Done:
	-
	-
- Why Field Trial?
	-
	- field trials are typically the norm for these applications
- New "Coherent" cable designs have since changed the norms...

• Field trials follow the same coupling and power replacement process as upgrades, however they are only temporary, and the steps need to be exactly reversed at the end of a field trial • Maintaining power and performance of existing traffic waves is highly critical, and not a trivial task!

• Field trials are typically used to prove a new technology works as expected, but just as importantly, used to characterize the performance effect of the old technology on the new technology • In particular for coherent technology overlays on older cables and 10G waves, there are many nonlinear effects at play that must be carefully considered. These can be difficult to simulate, especially with so many unknowns about the actual propagation conditions (the "black box"). So

What About Greenfield on Legacy Cables?

- There are many dimensions that can be used to optimize capacity on a legacy
	-

cable, with highly variable performance across the spectrum:

• Modulation formats, channel spacing, channel power, pre-dispersion, nonlinear mitigation & compensation techniques, carrier recovery techniques, etc.

What About Greenfield on Legacy Cables? QPSK not supported on 37.5GHz Good Margin Good Margin Low Margin / No Margin QPSK @ 37.5GHz QPSK @ 37.5GHz QPSK @ 37.5GHz QPSK not supported on 50GHz Good Margin Good Margin Good Margin Good Margin Low Margin / No Margin QPSK @ 37.5GHz QPSK @ 50GHz QPSK @ 50GHzQPSK @ 37.5GHz QPSK @ 50GHz <u>.</u> Good Margin Good Margin Good Margin Good Margin Good Margin QPSK @ 50GHz QPSK @ 37.5GHz QPSK @ 37.5GHz QPSK @ 50GHz QPSK @ 100GHz

BPSK @ 37.5GHz

Shannon Limit

Shannon's Limit on Legacy Cables – Room to Grow with Coherent!

Shannon Limit

Shannon's Limit on New Coherent Cables!

Shannon's Limit on New Coherent Cables!

Onto The "Open Cable Era"

Early "Upgrade" Subsea Cable Capacity Model

ANY Vendor SLTE

Modern Subsea "Open Cable" Model (Designed to be Open from Day 1!)

Open Cables & Convergence with Terrestrial

Basic OCI Requirements

- Line Amplifier:
	- interop with 3rd party SLTE while maintaining optical performance levels.
- Supervisory:
	-
- ASE:
	- ASE generation is required for acceptance & turn-up, dark fiber monitoring, and must not be inline with traffic path
- Optical Power Monitoring:
	- OCI must have OPM capabilities for direct Tx / Rx monitoring of wet plant. OPM needs to represent final spectral shape in and out of wet plant
- Open Coupling Ports:
	- Need open passive 3dB coupling ports for 2 x SLTE as the last element in Rx direction
	- Required coupling ports for COTDR to/from wet plant

An Open Cable Interface (OCI) is now defined as the boundary between wet plant and SLTE

• Line amp should be only active element inline with traffic path. Must have reasonable gain and power ranges to allow efficient

• Supervisory functions (monitoring & wet plant control) must be able to operate independent of 3rd party SLTE choice

Use Case 1: CLS to CLS, full termination

- Wet Vendor OCI:
	- ASE, Supervisory & OPM functions
	- Line amp replaced by SLTE amps
- Dry Vendor SLTE:
	- Gain controlled line amp(s), WSS, OPM, mux/demux, coupler(s)

CLS vs PoP and Why we Extend

Subsea cables land on the coast! (Near the sea…)

Bela

CLS vs PoP and Why we Extend

Subsea cables land on the coast! (Near the sea…)

• **BUT** that's not (usually) where the people are...and big data centers and fast internet want to be close to the densest populations of people!

Bela

- - ASE, Supervisory & OPM functions
	- Line amp replaced by SLTE amps
- Dry Vendor OPS:
	- OPS / coupler & line amp(s), OPM, OTDR
- Converged solution
- OPS / coupler & line amp(s), OPM, OTDR
-

Use Case 2: CLS to PoP, single span, prot. SW

Use Case 3: CLS to PoP, multi-span, restoration

- Dry Vendor SLTE + ROADM:
	- Gain ctrl line amp(s), multi-degree WSS', OPM/OTDR
	- Mux/demux

- Wet Vendor OCI:
	- ASE, Supervisory & OPM functions
	- Line amp replaced by SLTE amps
- Dry Vendor SLTE+ROADM:
	- Couplers, Gain ctrl line amp(s), multi-degree WSS', OPM/OTDR

End-to-End Design Considerations

- the Subsea OSNR (it was expensive!)
- Recall that OSNRs are additive (1/SNR summation)
	- (high loss) terrestrial link.

• The higher the SNR of your subsea link, the larger the penalty it will take from a low SNR

• We must be very careful when concatenating Subsea & Terrestrial links not to hurt

The *Benefits* **of Open Cables**

• Open Cables enable independent vendor selection for wet and dry technology, allowing *best of breed*

• Since SLTE technology cycles are typically faster than a Submarine cable build, and there are multiple DSP vendors with multiple chip generations, all with staggered availability over time, Open Cables also

- utilization on two very critical pieces of a subsea cable
- allow for **maximization of cable capacity at the time of cable RFS** (maximizing value)
- considering a *global subsea & terrestrial mesh network*

• Open Cables allow the use of preferred SLTE vendors, which can be essential operationally when

The *Challenges* **of Open Cables**

• Comparing different wetplant designs by the traditional turnkey method, with each vendor proposing their own unique SLTE capacity can be highly misleading (and therefore costly!)

• Industry standard wetplant **performance metrics** are needed that are *SLTE-independent* • OSNR and GSNR have been proposed. Higher OSNR generally equals higher capacity…as does higher GSNR

- - But how to compare different Open Cable wetplant designs and assess their performance?
- -
	- But neither tells the full story in isolation!!
- and meaning regardless of SLTE technology used
	- Upgrades that rip & replace press the reset button on Q-based performance tracking

• Ongoing monitoring of wetplant performance over the system lifetime must have continuity

Overcoming the *Challenges* **and Reaping the** *Benefits*

Open is being done today! On many cables…How?

- OSNR and GSNR, when *carefully* considered together, can:
	- Give a clear picture of the optical performance of a D+ subsea system
	- Offer a fair means of comparison between different wetplant designs
	- Enable 3rd party SLTE capacity estimation
	- Enable ongoing performance monitoring that is SLTE independent
-

• But, we **must** have consistency and industry agreed definitions and methodologies for measuring them (HINT: this was the goal of the SubOptic Working Group!)

OSNR & GSNR

Definitions: OSNR = Psig,△*f /N12.5GHz* $SNR = P_{sig, \Delta f} / N_{\Delta f}$

 $OSNR_{33Gbd} = P_{sig,33GHz} / N_{12.5GHz}$ $OSNR_{ggGbd} = P_{sig,99GHz} / N_{12.5GHz}$

 $OSNR_{33Gbd} \neq OSNR_{99Gbd}$

 $SNR_{33Gbd} = P_{sig,33GHz} / N_{33GHz}$

 $SNR_{ggGbd} = P_{sig,99GHz} / N_{ggGHz}$

 $SNR_{33Gbd} = SNR_{99Gbd}$

OSNR without context is not meaningful! We must know the conditions for it to be relevant.

As baud rates in the industry change, using SNR becomes critical to make meaningful comparisons.

Defining GSNR

and nonlinear (NLI) noise look the same (both are Gaussian)

- SNR_{ASF} is a direct measurement via an OSA of the linear noise only (OSNR)
- GSNR typically must be derived via a Q measurement from a (typically) QPSK transponder, which incorporates both linear and nonlinear noise
	- BUT also includes some modem impairments…more on this next…
- of the open cable

• The validity of GSNR is predicated on the assumption that in D+ cables, linear (ASE)

SNR_{NLI} SNR_{ASE} – GSNR (in dB)

• The delta between SNR_{ASF} and GSNR is the best indicator of degree of nonlinearity

How to Measure GSNR

GSNR is derived via a Q measurement from a (typically QPSK) modem, which incorporates both linear and nonlinear noise, as well as noise introduced by the modem during propagation

Modem Implementation

• Total System SNR

• 1 SNR_{MODEM} = $\mathbf{1}$ SNR_m $+ \sum_{i=0}^{4}$ $4\frac{1}{2}$ SNR_i

- SNR_i : PDL, CDC, Laser linewidth, and Wavelength tolerance
- Typically between 23-35 dB (SNR) each
	- *Monte-Carlo of $\sum_{i=0}^{4} 1/SNR_i$

• Modem Implementation

*See Monte Carlo simulation of impact of variable modem implementation penalties on GSNR in SubOptic Open Cables Working Group paper

Impact of Errors

- High OSNR and High TOP
	- $SNR_{ASE} = 18$ dB and $SNR_{NLI} = 20$ dB
	- Capacity estimation error between similar modems \sim 9%
- Low OSNR, SDM Design
	- $SNR_{ASE} = 8$ dB and $SNR_{NLI} = 15$ dB
	- Capacity estimation error between similar modems \sim 2%
	- System dominated by linear noise so "typical" modem implementations impact are negligible

*See Monte Carlo simulation of impact of variable modem implementation penalties on GSNR in SubOptic Open Cables Working Group paper

Commissioning & Acceptance

Key Parameter Table

- A key parameter table is used during the design parameter table of a subsea cable to specify the most important contributors to the system performance, along with the commissioning parameters
- Information about the line design, the type of fiber used, and and specifications of the repeaters are essential
- Usually commissioning parameters are specified as "average" with a set of boundary conditions, as it's very difficult to know the exact frequency dependencies that will exist until the cable is built!

Total SNRASE penalty for Repairs & Aging [dB]

Commissioning Parameters

- 1. Commissioning OSNR (average & worst case under X conditions)
- 2. Commissioning GSNR (average & worst case, under X conditions)
- 3. Slope of Tilt [dB/THz] & Gain Deviation [dB]

A typical set of Commissioning Parameters may include:

Frequency [THz]

Measuring OSNR – ASE Comb Method

ASE Comb, 100GHz

100GHz

. _.

Measuring OSNR – Channel Plucking

Full spectrum of (mostly bulk) modulated channels

Transmit spectrum @ 75GHz

Receive spectrum @ 75GHz

*Slope of tilt & gain deviation profile are also calculated from these Tx / Rx power profiles

However, channel plucking can cause small localized gain distortions from

SHB, and must be considered for an accurate measurement

Measuring OSNR – Channel Plucking

Measuring GOSNR

Commissioning Data Collected

• At System Commissioning, the true system performance, and all of its inherent frequency and pre-

- emphasis based dependencies can be characterized in detail.
- The collected data are highly valuable for detailed modeling of capacity for 3rd party SLTE
- The averages of this data can be used to compare against the Commissioning Parameters previously defined.

GSNR Testing can be time consuming, but as procedures become automated more data points can be collected!

What's really going on in there?

- What we can see at the Tx and Rx of the Subsea "black box" is only an indication of what's really going on through the 100's of subsea spans
- OSNR and GOSNR profiles at the Rx give good **indications** of the hidden linear and nonlinear characteristics of the cable, and thus the capacity we can achieve $\frac{P_{tx}}{P_{r}}$

L.Berg et al., Wet Plant Tilt Correction, SubOptic 2016

What can we measure that's useful?

- SNR profile of linear (OSNR) and nonlinear (GOSNR) noise better reflect the quality of the cable
- Tilt and gain excursions through propagation impact the linear SNR and the nonlinear SNR
- OSNR and GOSNR tilt and excursions, via a flat launch profile, give very good indications of the true conditions

Maximizing Subsea Capacity

known until system commissioning, and will undoubtedly **change over time** due to repairs and aging

Performance will always be variable across the spectrum of a given FP in a manner that **cannot be precisely** • Intersection with supported SLTE data rates changes with every SLTE generation, and every vendor (i.e. not all value from small

SNR advantages can be extracted at all times)

So what's the best equalization strategy? Flat launch or Equalized? And what kind of Equalization?

Maximizing Subsea Capacity

known until system commissioning, and will undoubtedly **change over time** due to repairs and aging

Performance will always be variable across the spectrum of a given FP in a manner that **cannot be precisely** • Intersection with supported SLTE data rates changes with every SLTE generation, and every vendor (i.e. not all value from small

SNR advantages can be extracted at all times)

Maximizing Subsea Capacity

known until system commissioning, and will undoubtedly **change over time** due to repairs and aging

Performance will always be variable across the spectrum of a given FP in a manner that **cannot be precisely** • Intersection with supported SLTE data rates changes with every SLTE generation, and every vendor (i.e. not all value from small

SNR advantages can be extracted at all times)

C&A on a Real Subsea Network

- 1. Commissioning OSNR (average & worst case under Flat & EQ conditions)
	- Across 12 FPs, may take a day or two (with automation)
- 2. Commissioning GSNR (average & worst case, under Flat & EQ conditions)
	- Across 12 FPs, may take 1 week (with very good automation)
- 3. Slope of Tilt [dB/THz] & Gain Deviation [dB]
	- Comes for free with Test 1. \odot

Our typical set of Commissioning Parameters:

- Our typical set of Commissioning Parameters (needs to be reduced to keep C&A reasonable): 1. Commissioning OSNR (average & worst case under Flat & EQ conditions)
	- Always test this everywhere. Equalized testing only on trunk FPs.
	- 2. Commissioning GSNR (average & worst case, under Flat & EQ conditions)
		- Tested on trunk path only, all 12 FPs.
	- 3. Slope of Tilt [dB/THz] & Gain Deviation [dB]
		- Still free with Test 1.

C&A on a Really Complex Subsea Network

Future Evolution

Where Do We Go From Here?

Where Do WE Go From Here?

#badsciencejokes

SUBSEA HYBRID ENERGY CABLES

Content

- In perspective
- Application & design
- The role of fibre optics

Towards a global power super grid?

Source: Ardelean, M., Minnebo, P., A China-EU electricity transmission link. (2017)

«Baby» super grids to harvest intermittent renewable energy sources

Source: https://northseawindpowerhub.eu

Offshore oil & gas in decline?

The North Sea

The Gulf of Mexico

The busy life of an oil & gas field

Source: AkerSolutions

applications & designs

The ingenious design of subsea fibre optic cables

ROC-2 URC-1

Power cables w/ integrated fibre optics

HVAC HVDC

The tallest building in Norway – for extrusion of power core insulation (!)

Specialized subsea cables w/ integrated fibre optics

ROV launch and recovery system

ROV lifting umbilical

Specialized subsea cables w/ integrated fibre optics

Control umbilical

the role of fibre optics

«The heat source»

Resistance to electrical current induce heat

Temperature rise dependent on material thermal conductivity and surface heat dissipation.

Temperature sensing – System learning & optimisation

Temperature sensing - Accurate localisation of faults by external heat source

Temperature sensing – tube leakage detection

Accoustic sensing - partial discharge detection

«The mechanical machine»

A cable is a machine, by dictionary definition: "An assembly of parts...that transmit forces, motion, and energy one to another in some predetermined manner and to some desired end."

Strain measurement of control umbilical

Approximate elevation profile of seabed

Limitations & trade off's

Towards self driven power links and grids in the future?

Real Time Temperature Rating

"All of old. Nothing else ever. Ever tried. Ever failed. No matter. Try again. Fail again. Fail better."

International Cable Protection Committee

ICPC has the vision of being the premier international submarine cable authority through providing leadership, knowledge and guidance on issues related to submarine cable security and reliability.

◆ ICPC has more than 175 MEMBERSin over 60 COUNTRIES \checkmark ICPC represents 97% of the world's subsea telecom cables \checkmark ICPC represents most cable ships that lay and repair submarine cables and a great number of leading international HVDC power cable operators/owners and manufacturers

International Cable Protection Committee

ICPC core functions :

- Publications
- Recommendations
- **Newsletters**
- Annual Plenary
- \checkmark Cable Films
- Notifications of cable laying and recovery
- Out reach to other seabed users
- Research

ICPC working groups:

- Affiliations
- Biodiversity Beyond National Jurisdiction (BBNJ)
- Business Plan
- Cable Security
- Media & Public Relations
- Recommendations

International Cable Protection Committee

Cable protection initiatives

- \checkmark International Hydrographic Organisation (IHO)—Charting
- \checkmark Environmental Research
- \checkmark Submarine Cable Repair Report Ocean Planning
- IMO-Strengthen COLREGS to provide for improved safety for ships during cable operations

Cable repair initiatives and permits

- Council for Security Cooperation in the Asia Pacific (CSCAP)
- Indonesia Cabotage
- International Maritime Organization: Convention on the International Regulations for Preventing Collisions at Sea (IMO–COLREGs)

ICPC publications

Compilation of an extensive, dedicated source of international cable legislation, legal articles and cases, and a topic index of reported cases and rulings involving submarine cables. The only such collection worldwide.

Compilation of a very large source of environmental information and data related to the installation maintenance and protection of submarine cables. Unique data available nowhere else. The global comparison of cable repair times produced annually showing average repairs per year, average time to begin repair, and repair cause breakdown.

A peer reviewed book, jointly

compiled by the United Nations Environment Programme (UNEP) and the ICPC titled :

Submarine Cables and the Oceans: Connecting the World.

The book has contributions from ICPC members, cable industry associates, ICPC's Marine Environmental Advisor (MEA) and International Cable Law Advisor (ICLA). From the ICPC website alone, the publication has been Downloaded over 72,000 times.

