Instruction latencies and throughput for
AMD and Intel x86 processors

Torbjorn Granlund

2017-04-24 13:20Z

Copyright Torbjérn Granlund 2005-2017. Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice is preserved.
This report is work-in-progress. A newer version might be available here: https://gmplib.org/~tege/x86-timing.pdf

In this short report we present latency and throughput data for various x86 processors. We only present data
on integer operations. The data on integer MMX and SSE2 instructions is currently limited. We might present
more complete data in the future, if there is enough interest.

There are several reasons for presenting this report:

1. Intel’s published data were in the past incomplete and full of errors.
2. Intel did not publish any data for 64-bit operations.

3. To allow straightforward comparison of AMD and Intel pipelines.

The here presented data is the result of extensive timing tests. While we have made an effort to make sure the
data is accurate, the reader is cautioned that some errors might have crept in.

1 Nomenclature and notation

LNN means latency for NN-bit operation. TNN means throughput for NN-bit operation.

The term throughput is used to mean number of instructions per cycle of this type that can be sustained. That
implies that more throughput is better, which is consistent with how most people understand the term. Intel
use that same term in the exact opposite meaning in their manuals.

The notation "P6 0-E”, P4 F0”, etc, are used to save table header space. P4 means Pentium 4, which has
family number F (in hexadecimal). Then there are model numbers 0, 1, 2, etc, where 4 and above means the core
has the AMD defined 64-bit instructions. P6 means family 6, which is a big happy family with Pentium Pro,
Pentium 2, Pentium 3, Pentium M, Core and Core 2. For the P6 family, model numbers (0-F in hexadecimal)
and marketing names are not completely related; some method in the madness can be found in the table at the
end of this document.

In some of these tables, Core 2 numbers hide under the P6 F moniker (family 6, model F).

Family and model numbers are returned by the cpuid instruction.

2 How data was generated

The throughput numbers here have been generated using a loop with the measured instruction repeated many
times. This results in some cases in lower numbers than those claimed by the processor vendors. Our measure-
ment method requires that the entire pipeline (cache, decode, issue, execution, complete) can sustain the indi-
cated execution rate.

Measuring performance for immediate operands is tricky, as x86 encodes small immediate operands specially,
and as different cores are optimised for different ranges.

An example of how complex this can be is that Pentium FO-F2 can sustain 3 add r,i per cycle for —32768 <
i < 32767, but for larger immediate operands it can sustain only about 3/2 per cycle. Pentium F3 behaves
similarly, but for —65536 < 7 < 65535. This is not related to x86 instruction encoding; the exact same encoding
is used for greater immediate operands. (Operands that fit into a byte have a special encoding, though.)

3 Comments on table data

The Athlon and P6 results are somewhat orthogonal. The same cannot be said about the Pentium 4 results.

The Pentium 4 performance for 64-bit right shifts is really poor. 64-bit left shift as well as all 32-bit shift have
acceptable performance. It appears that the data path from the upper 32 bits to the lower 32 bit of the ALU,
is not well designed.

On Pentium 4, it is possible to reach much better 32-bit shl/sal/shr/sal r,c performance if dummy shift
instructions with immediate counts are strategically inserted. The best measured resulting performance is about
1.4 instructions/cycle.

On AMD K8, the odd man out is test r,i. The reason is that the encoding of this instruction doesn’t provide
any short immediate version. The L1 instruction cache can provide only 16 bytes per clock, but 3 test r,i
need 18 or 21 bytes (depending on register). The AMD K10 has a wider bus between the L1 instruction cache
and decoders, and can sustain 3 insns/cycle even for these long instructions. (One might think it is more than a
little silly to measure three consecutive test instructions, since these instructions are pointless without a branch
or set-on-condition instruction. But it gives some idea of the resource usage of these instructions, and we prefer
to keep the measurements orthogonal between instructions.)

The data for adc and sbb are approximate. A long chain of these instructions would have a recurrent dependency
on the carry flag. Our sequences break such dependencies by regularly executing a plain add, relying on out-
of-order execution and carry flag renaming. It is likely that slightly better performance could be achieved than
what is here indicated.

Sequences with adc and sbb interleaved with inc or dec run poorly on all P6 processors (including Core
processors), they result in a pipeline hiccough of about 12 cycles. That sort of problems cannot be represented
in the table numbers.

4 Your feedback

Please send feedback about this report to tg at gmplib (dot) org.

- N N [TR R N N N
4 9 gl NN NNNNNNSS HH A A A A A 22T | H A A HNNNN[H A A A A - NN
WM ~ PR —) ~ ~
< ~N ~ [ToQRToRuToRuTo)
Nw11111111151_511_111111113434__111111121211111 = A MMM
— ~— o © ©
—_ - - Q NN EIIERD N © 9
? £ laNjlaN N[Nl N[Z D NN I A A A A A A A A 2NN A AN NN A NN A A A A — = =T
MOT -] - . — -
S
IAmlllllllllem_m22_11111111ﬂ9m9__111111121211111 111Ww__
IR mmmm < ™
Dnm4444444441//M I FTNNNNATF TSNNSO
Me ~ ~ v~ ~—
© M m M N
D2M222222222MM.722.22222222//“%._222222222222222 222%//%
<3 ~
MD ~— - o - o -
ABM11111111161_611_111111114444__111111111111111 N NN O H
=) N~ N~
N N ~ NN M m ~ M m
D0M333333333//_ﬁ33_33333333////__33333.333333333 MO MM N
g
Ml — ~ ~ (q] ~—
AKm111111111415_W11_111111113333__111111111111111 AN AN AN NN
aS o N N N NN M m ~ S o
MKw333333333UU_/33_33333333UVUU__333332333333333 mmmT S
1 -~ ~—
®
AKm111111111415_“11_111111113333__111111111111111 222“..9__
—_ N NN NN N N Te)
0 3 W | S S — NANNNNSNNN A A NNNNNNNS NS NN N N A A A A
MK v v v~ ~— (32)
- = NN N NN NN [To)
[Sl S S A — NANNNNNNN A A NN N NN AN N
MW - - — — [a0]
- a3 o« NN NN NN NN
Q Rl S S A A L S U S U Sl R B B o AN AN NN NN N N AT A NN A ANANAN NN AN Y AN AN A H | A A
me v o - - ~
I R T Rl R IRl P I I < I R I I S I S IS B AR R R R IR I S N N =~ - N —“mmmmmnon
—_ - NN NN) N N o
QM F|m MMM mm oo HH I NN N ANNSNNANANN T I NN[mmo—Alm “;mmm—A | N A A =
MB v v N AN ~ i
R Rl B Rl N I R R o R T R I I S B o o I o R IR oS (Y o R B R B S oY N N A H N —Hmmmm 1 m
N
de3333333331U_ A = I NN AN AN ANANANANANA A A=A M H MmN M | N o H | -
i
S o 0
Ilellllllllsw_%n/_Q_111111114444__1111 N[N A~ M| =AM MM
N« [
dﬂm333333333ﬂﬂ_ oo NN NN NNNN A A A A e A oS ™o m |- S R
i
S B -
I%m11111111158_w22_111111112222__1111 AN N A A o H NN
i
P [To R ~|NS Dl o ~ o~ NQN©©O®S S S N~ N 00 001~ © [0 1) © |10 LN 0NN
YR NN AN N T AN HmH A SSSS T2 SSSYN] Y N s N VT IS
MF NN — - S S|~ - — - DT TR TR TR i — —H | — [N N o | - - O
<t]
fis]
Rl R R R R B L T R T B T N N o R I I I R O S BT NS N ol B R R R = o I I B o oV K AR
~
[w
e -H o oeH - - o o & ¥
HOH|H H M “ H 9 8 H|H A A-A 000 oo OO OO0 OH AN NN NN iom kR B[H M RN
rrrrrrrrrrrr,rrrrrrrrrrrrr,r,r,r,r,r,rrrrrrrrrrrrrrﬁMﬁMﬂrrrr
H HOHOHOH O H xxmpr,r,r,r,b, » &
N
—] o T T T T XK W L P > N n n d g 0
T Q|T HlO VI PIBAAH PO ¥X[HH H HAAHHSHAHA A A SHH S8 A S0 Q0 > 0 b b b BEld d o d d|lHH O Oy
dumroneeomuuidbdhahahahahhhhhhoooomeetomoooseeeeesszo
c 0 O M|lAB|ld d|-d § §E 8|0 v dlnw © ® 0 nnnnmnnenununyy 8 0P polgoggeoddddAHQ.0AH O

Table 1. Integer register instructions, 64-bit operations.

N N ~ N~ I~ N N
< 9 N NN AN ANNNNA|HS Al A A A A AT A A NNSNN D A A A AN NN A HH A NN
- S — — — —
> 2 o N NN
Nm11111111148_311111111117777__1111///21211_1111133__
~ —
—_ o) NN 0 0 O W0 N © 9
emm222222222//_ //11111111////__111122212/11_11111//__
me — — ~ = - — —
Pl Al Ao QNN A A A A A A HOWLWWW A A [A A N[H N A = (NG
WMm | [I
ABm | [!
fa) o 2 NN Mmoo m M
© LM MM MMM MM M|~ = | J|(MOMMMMMOONOOMONOSNNNSNT 1T;0MmMMmMMmMMmMMMMMmMMmM |1 ;MM oMmmMmo®MES N o
Ml — ~ = ~—
aecS o 2 NN Mmoo S ©
¥ Blommmonoomomn(-d— 1 Commommmommmo0NNNNI 1| momnmommoonmnmmonoon i omnonon(IN 00
b=l S g S
©
—~ 3 o| [0 0 W0 0 N NN NN NN NN
0 Sl s s v me| s N HHN AN NANANNSNN AT AT NN NN oSN o
MW M mjim | m m m — o — —
- 3 o N NN NN NN NN
0 Bl S S HHN AN NANNININN AT A NN AN NN oo
.mW — — = — - — -
IHm11111111134 PQNA[F T A AN NN A oo NN N~ N = = 1 mmmm
—_ o N NN NN) N N
QL Smmmmmimmlmon|l-N HHN AN AN NNNNNANANN T AN mm 1 [
.mB ~ ~ o N AN ~
PRl Hm a | m A m ot QNN AT NN NN S NN o NN N|H N =~ 1~ mm M
— N
mMm3333333331ﬂ_ H AN AN NN NNNNA A A e A HlMm H MM Ao A A=
s O
INm1111111113 _%22111111114444__1111 N[N H A | A A A AN MN I ™
I B 2 N
mem3333333331W_ A HN AN AN AN ANANANANA A A A H A A 13”33_1111111__
nr
0
ICm11111111135_%22111111112222__1111 N[+ N H = | A H NN
- < o|BO WL ~ N Slo oA NN NN~ O ® N N[0~ 0 [0 0 o N N
O Bl oA AN HS QIS s SNSSSSSSSN D T H NN Nt s NN~
<
IPmlllllllllwﬂ_zwmw111122228899__112211181m12_1 ©Y
n
e o e - - n a4 ¥
HOH|H MM “ H L O R R I R U N A A A P R e R N [e O L T T T g E o RIH oM M
rrrrrrrrrrrr;rrrrrrrrrrrJJJJJJrrrrrrrrrrrrrrﬁﬁmﬂrrrr
“ HOH M OH M M kel " e 2 P
R R IR
—] T T T T N W L P > N n o q O
<9 Qg Hlo ol A+ PlOLHH 8 A48 84 84 8- HH 84 S|lew v >0 5 55 Bld® 8 @[y O Q
dumroneeomuuidbhahahahahhhhhhoooomeetomoooseeeesszo
° 0 O M|l-A B|ld d|d § § 8|0 njnw © © © 0 0 0 nnnnnnn -y o 8 850p polgogg8godddAd0.0Ad e,

Table 1. Integer register instructions, 32-bit operations on 64-bit CPUs.

Intel P4 Intel P6| AMD

FO-F1 F2 |F3-F4| O-E K7

L32 T32 L32 T32 | L32 T32 |[L32 T32 L32 T32

add r,ri |1/2 3 |1/2 3 |1 2.5|1 2 1 2.7
sub r,ri [1/2 3 |1/2 3 |1 2.5|1 2 1 2.7
and r,r 1/2 2 (1/2 2 |1 1.75/1 2 12.7
or r,r 1/2 2 (1/2 2 |1 1.75/1 2 12.7
Xor r,r 1/2 2 (1/2 2 |1 1.7511 2 12.7
inc r 1/21.5|1/21.5|1 1 |1 2 1 3
dec r 1/21.5/1/21.5/1 1|1 2 |1 3
neg r 1/2 2 11/2 2|1 2|1 2 12.7
not r 1/2 2 {1/2 2 |1 1.7/11 2 12.7
imul r,ri 14 1/4|14 1/4|10 1 |4 1 4 1/2
mul T 14 1/10| 14 1/10(11 1/2|5 1/2 |63 1/3
div r 702 702 802 1/34 39 1/39
adc r,ri |7-81/6|7-81/6{10 1/4|2 o.75 |1 2
sbb r,ri |7-81/6|7-81/6|10 1/4|2 o0.75 |1 2
shl r,i 4 114 11171 1 12.7
sal r,i 4 114 111171 1 1 2.7
shr r,i 4 114 111171 1 12.7
sar r,i 4 114 11171 1 12.7
shl r,c 6 1/6| 6 1/6/2 1/2|1 1 12.7
sal r,c 6 1/6|/ 6 1/6/2 1/2|1 1 |1 2.7
shr r,c 6 1/6/ 6 1/6/2 1/2|1 1 |1 2.7
sar r,cC 6 1/6|/ 6 1/6/2 1/2|/1 1 |1 2.7
shld r,r,i |12 1/12(8 1/4|8 1/7|2 1/2 |2 1/2
shrd r,r,i |14 1/14| 8 1/4|8 1/7|2 1/2 |2 1/2
shld r,r,c |12 1/12(7 1/4|/9 1/8|2 1/2 |3 1/3
shrd r,r,c |14 1/14| 7 1/4|/9 1/8|2 1/2 |3 1/3
rol r,i 4 1/4| 4 1/4/1 1 |1 1 12.7
ror r,i 4 1/4| 4 1/4/1 1|1 1 12.7
rol r,c 6 1/6/ 6 1/6/2 1/2|1 1 |1 2.7
ror r,c 6 1/6|/ 6 1/6/2 1/2|1 1 |1 2.7
cmp r,ri (1/2 3 |1/2 3 |1 2.5|1 2 |1 2.7
test r,i 1/2 2 (1/2 2 |1 1.7|1 2 12.7
test r,r 1/2 2 11/2 2 |1 1.7|1 2 12.7
bt r,i 6 1/6/ 6 1/6/8 1/8/1 1 1 3
mov r,r (1/2 3 |1/2 3 |1 2.5|]1 2 |1 2.7
cmov r,r 6 1/6 1|10 1 (2 1/2|1 2.3
movzxr,r 1/2 3 |1/2 3 |1 2.5(1 2 |1 2.3
movsxr,r 1/2 2 (1/2 2 |1 1.75(11 2 |1 2.3
bswap r 7 o677 o67/1 2|2 1 |12.7
lea r,r+r 1/2 3 |1/2 3 |1 2.5|1 1 2 2.3
lea r,r+r*s | 3 1 | 3 1 |1 1.25/1 1 2 2.3
lea r,b+r+r | 1 1.5/ 1 1.5/ 2 1.17|1 1 2 3
lea r,btr+rxs| 4 1 | 4 1 |2 0.8|1 1 2 3
bsr r,r 8 1/2| 8 1/2(16 1/2|2 1 |9 1/8
bsf r,r 8 1/2| 8 1/2|16 1/2|2 1 |7 1/7

Table 2. Integer register instructions, 32-bit operations. Please note that this table lacks more recent CPUs as
well as some instructions which are present in the previous table.

Intel P4 | Intel P6 |[AMD| AMD AMD)| Intel

Fo-F2|F3-F4| D-E | F,17| K7 |K8-K9| K10 |Atom

L tT|L T|L T|L T|L T |L T L T|L T

paddq xmm,xmm 4 1/2|51/2|2 1/2/2 1 |- - |2 1 2 2|51/5
psubq xmm,xmm |4 1/2|51/2|21/2(2 1 |- - |2 1 |2 2|5 1/5
paddd xmm,xmm |2 1/2(21/2|1 1|1 2 |- - |2 1 |2 2|1 2
psubd xmm,xmm 21/2|21/2/1 1|1 2 |- -1]2 1 2 2|1 2
pmuludq xmm,xmm |6 1/2|7 1/2|4 1/2|{3 1 |- - |3 1/2|3 1|5 1/2
psllq xmm,xmm |2 1/2|2 1/2|21/2{1 1 |- - |2 1 |3 2|5 1/5
psrlq xmm,xmm |2 1/2/21/2|21/2{1 1 |- - |2 1 |3 2|51/5
psllq xmm,i 21/2(21/2|21/2)1 1 |- -|2 1 [2 2|1 1
psrlq xmm,i 21/2|21/2/21/2/]1 1 |- - |2 1 |2 21 1
pslldq xmm,i 41/2(41/2|31/3]2 1 |- -2 1 |3 2|1 1
psrldq xmm,i 41/2(41/2[31/3)2 1 |- - |2 1 |3 2[1 1
pand xmm,xmm |2 1/2(21/2|1 1|1 3 |- - |2 1 |2 2|1 2
pandn xmm,Xmm 21/2/21/2j]1 1|1 3 |- - |2 1 2 2|1 2
por xmm,xmm |2 1/2/21/2|1 1|1 3 |- - (2 1 |2 2|1 2
pxor xmm,xmm |2 1/2(21/2]1 11 3 |- - (2 1 |2 2|1 2
movq xmm,xmm |2 1/2|21/2/1 1|1 3 |- - (2 1 [2.53|1 2
punpckldq xmm,xmm|2 1/2/2 1/2/2 1/2{2 1/2|- -2 1 |3 2|1 1
psadbw xmm,xmm 41/2/4 1/2|4 1/2|3 1 |- -3 1/2|3 1|5 1/2
pshufd xmm,xmm,i (4 1/2|4 1/2|2 1/2/4 1 |- - |3 0.67| 3 2|1 1

Table 3. Subset of integer SSE instructions.

Intel P4 Intel P6 |AMD| AMD [AMD| Intel

Fo-F2|F3-F4| BID F | K7 K8-K9| K10 |Atom

LTIL T L T |[LT|IL T |L T |L T|J|L T

paddq mm,mm 2 12 1|-12 -11|21|- - |2 2 |2 2 |51/5
psubq mm,mm 2 12 1|-12 -11|21|- -|2 2 |2 2 |51/5
paddd mm,mm 2 1|12 1 1 1 /12|12 212 2 |2 2|1 2
psubd mm,mm 2 1(12 1 1 1 /12|12 212 2 |2 2|1 2
pmuludq mm,mm 6 1(7 1|-14 -11|31|- -3 1 |3 1 |4 1
prnul*w mm,mm 6 1|7 1/|-13 -|1|3 1|- -3 1 |3 1|4 1
pmaddwd mm, mm 6 1|7 1| 3 1 |3 1j- -3 1 (3 1|4 1
psllg mm,mm 2 1(2 1 1 1 /1 1(2 2|2 2 |2 2 (51/5
psrlq mm,mm 2 12 1] 1 1 |1 1j2 2|2 2 |2 2|51/5
psllg mm,i 2 112 1 1 1 /112 212 2 |2 2|1 1
psrlg mm,i 2 1(2 1 1 1 /112 212 2 |2 2|1 1
pand mm , mm 2 1|12 1 1 1 /13/2 212 2 |2 2|1 2
pandn mm,mm 2 1(2 1 1 1 /13|12 212 2 |2 2|1 2
por mm, mm 2 112 1 1 1 |1 3(]2 2|2 2 |2 2|1 2
pxor mm , mm 2 112 1 1 1 /13/2 212 2 |2 2|1 2
movq mm, mm 6 1|7 1 1 2 13|12 212 2 |2 2|1 2
punpckldg mm,mm 2 12 1 1 1 |1 12 212 2 |2 2|1 1
psadbw mm,mm 4 1|4 1(5]4 1/211]3 1|3 1 (3 1 (3 1 |4 1
pshufw mm,mm,i| 2 1{2 1 1 1 |1 1j2 212 2 |2 2|1 1

Table 4. Subset of integer MMX instructions.

Table remarks:

1. The latency is the indicated 5 cycles for the upper product half. The latency for the lower part is 4 cycles.
2. The latency is data dependent, the given numbers represent the worst case.

3. The latency is the indicated 6 cycles for the upper product half. The latency for the lower part is 4 cycles.
4. The latency is 77 cycles for model 0x17.

5. The latency is the indicated 10 cycles for the upper product half. The latency for the lower part is 3 cycles.
6. The latency is the indicated 4 cycles for the upper product half. The latency for the lower part is 3 cycles.

7. The latency is the indicated 2 cycles for the register result; the latency for the carry bit is just 1 cycle.
The immediate operand 0 is handled specially; it gives a latency of just 1 also to the result register.

