
Inside the M
achine

Computers perform countless tasks ranging
from the business critical to the recreational,
but regardless of how differently they may look
and behave, they’re all amazingly similar in
basic function. Once you understand how the
microprocessor—or central processing unit (CPU)—
works, you’ll have a firm grasp of the fundamental
concepts at the heart of all modern computing.

Inside the Machine, from the co-founder of the highly
respected Ars Technica website, explains how
microprocessors operate—what they do and how
they do it. The book uses analogies, full-color
diagrams, and clear language to convey the ideas
that form the basis of modern computing. After
discussing computers in the abstract, the book
examines specific microprocessors from Intel,
IBM, and Motorola, from the original models up
through today’s leading processors. It contains the
most comprehensive and up-to-date information
available (online or in print) on Intel’s latest
processors: the Pentium M, Core, and Core 2 Duo.
Inside the Machine also explains technology terms
and concepts that readers often hear but may not
fully understand, such as “pipelining,” “L1 cache,”
“main memory,” “superscalar processing,” and
“out-of-order execution.”

Stokes

Jon “Hannibal” Stokes is co-founder and Senior CPU Editor of Ars Technica. He has written for a variety
of publications on microprocessor architecture and the technical aspects of personal computing. Stokes
holds a degree in computer engineering from Louisiana State University and two advanced degrees in the
humanities from Harvard University. He is currently pursuing a Ph.D. at the University of Chicago.

Includes discussion of:

• Parts of the computer and microprocessor
• Programming fundamentals (arithmetic

instructions, memory accesses, control
flow instructions, and data types)

• Intermediate and advanced microprocessor
concepts (branch prediction and speculative
execution)

• Intermediate and advanced computing
concepts (instruction set architectures,
RISC and CISC, the memory hierarchy, and
encoding and decoding machine language
instructions)

• 64-bit computing vs. 32-bit computing
• Caching and performance

Inside the Machine is perfect for students of
science and engineering, IT and business
professionals, and the growing community
of hardware tinkerers who like to dig into the
guts of their machines.

A
n Illustrated Introduction to M

icroprocessors and Com
puter A

rchitecture

6 89 1 45 7 10 42 7

5 4 9 9 5

9 7 81 5 93 2 71 04 6

ISBN: 978-1-59327-104-6

$49.95 ($61.95 cdn)	 shelve in: Computer Hardware

A Look Inside the Silicon Heart of Modern Computing

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

An Illustrated Introduction to
Microprocessors and Computer Architecture

Jon Stokes

“This is, by far, the most well written text that I have seen on the subject
of computer architecture.”

—John Stroman, Technical Account Manager, Intel

INSIDE THE MACHINE

San Francisco

®

itm_TITLE_COPY.fm Page iv Wednesday, March 14, 2007 2:57 PM
INSIDE THE MACHINE. Copyright © 2007 by Jon Stokes.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

Printed in Canada

10 09 08 07 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-104-2
ISBN-13: 978-1-59327-104-6

Publisher: William Pollock
Production Editor: Elizabeth Campbell
Cover Design: Octopod Studios
Developmental Editor: William Pollock
Copyeditors: Sarah Lemaire, Megan Dunchak
Compositor: Riley Hoffman
Proofreader: Stephanie Provines
Indexer: Nancy Guenther

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Stokes, Jon
 Inside the machine : an illustrated introduction to microprocessors and computer architecture / Jon
Stokes.
 p. cm.
 Includes index.
 ISBN-13: 978-1-59327-104-6
 ISBN-10: 1-59327-104-2
 1. Computer architecture. 2. Microprocessors--Design and construction. I. Title.
 TK7895.M5S76 2006
 621.39'2--dc22
 2005037262

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

The photograph in the center of the cover shows a small portion of an Intel 80486DX2 microprocessor die at 200x
optical magnification. Most of the visible features are the top metal interconnect layers which wire most of the on-die
components together.

Cover photo by Matt Britt and Matt Gibbs.

To my parents, who instilled in me a love of learning and education,
and to my grandparents, who footed the bill.

B R I E F C O N T E N T S

Preface .. xv

Acknowledgments ... xvii

Introduction ... xix

Chapter 1: Basic Computing Concepts ... 1

Chapter 2: The Mechanics of Program Execution ... 19

Chapter 3: Pipelined Execution .. 35

Chapter 4: Superscalar Execution .. 61

Chapter 5: The Intel Pentium and Pentium Pro .. 79

Chapter 6: PowerPC Processors: 600 Series, 700 Series, and 7400................................ 111

Chapter 7: Intel’s Pentium 4 vs. Motorola’s G4e: Approaches and Design Philosophies...... 137

Chapter 8: Intel’s Pentium 4 vs. Motorola’s G4e: The Back End 161

Chapter 9: 64-Bit Computing and x86-64 ... 179

Chapter 10: The G5: IBM’s PowerPC 970 .. 193

Chapter 11: Understanding Caching and Performance... 215

Chapter 12: Intel’s Pentium M, Core Duo, and Core 2 Duo ... 235

Bibliography and Suggested Reading ... 271

Index .. 275

C O N T E N T S I N D E T A I L

PREFACE xv

ACKNOWLEDGMENTS xvii

INTRODUCTION xix

1
BASIC COMPUTING CONCEPTS 1

The Calculator Model of Computing ... 2
The File-Clerk Model of Computing ... 3

The Stored-Program Computer .. 4
Refining the File-Clerk Model .. 6

The Register File ... 7
RAM: When Registers Alone Won’t Cut It ... 8

The File-Clerk Model Revisited and Expanded ... 9
An Example: Adding Two Numbers ... 10

A Closer Look at the Code Stream: The Program .. 11
General Instruction Types ... 11
The DLW-1’s Basic Architecture and Arithmetic Instruction Format 12

A Closer Look at Memory Accesses: Register vs. Immediate ... 14
Immediate Values .. 14
Register-Relative Addressing ... 16

2
THE MECHANICS OF PROGRAM EXECUTION 19

Opcodes and Machine Language .. 19
Machine Language on the DLW-1 ... 20
Binary Encoding of Arithmetic Instructions .. 21
Binary Encoding of Memory Access Instructions .. 23
Translating an Example Program into Machine Language 25

The Programming Model and the ISA ... 26
The Programming Model .. 26
The Instruction Register and Program Counter ... 26
The Instruction Fetch: Loading the Instruction Register 28
Running a Simple Program: The Fetch-Execute Loop 28

The Clock .. 29
Branch Instructions .. 30

Unconditional Branch .. 30
Conditional Branch ... 30

Excursus: Booting Up .. 34

3
PIPELINED EXECUTION 35

The Lifecycle of an Instruction ... 36
Basic Instruction Flow .. 38
Pipelining Explained ... 40
Applying the Analogy ... 43

A Non-Pipelined Processor ... 43
A Pipelined Processor .. 45
The Speedup from Pipelining .. 48
Program Execution Time and Completion Rate .. 51
The Relationship Between Completion Rate and Program Execution Time 52
Instruction Throughput and Pipeline Stalls ... 53
Instruction Latency and Pipeline Stalls .. 57
Limits to Pipelining ... 58

4
SUPERSCALAR EXECUTION 61
Superscalar Computing and IPC .. 64
Expanding Superscalar Processing with Execution Units .. 65

Basic Number Formats and Computer Arithmetic ... 66
Arithmetic Logic Units .. 67
Memory-Access Units ... 69

Microarchitecture and the ISA .. 69
A Brief History of the ISA ... 71
Moving Complexity from Hardware to Software .. 73

Challenges to Pipelining and Superscalar Design ... 74
Data Hazards ... 74
Structural Hazards ... 76
The Register File ... 77
Control Hazards ... 78

5
THE INTEL PENTIUM AND PENTIUM PRO 79
The Original Pentium .. 80

Caches .. 81
The Pentium’s Pipeline .. 82
The Branch Unit and Branch Prediction .. 85
The Pentium’s Back End .. 87
x86 Overhead on the Pentium .. 91
Summary: The Pentium in Historical Context ... 92

The Intel P6 Microarchitecture: The Pentium Pro .. 93
Decoupling the Front End from the Back End ... 94
The P6 Pipeline ... 100
Branch Prediction on the P6 .. 102
The P6 Back End ... 102
CISC, RISC, and Instruction Set Translation ... 103
The P6 Microarchitecture’s Instruction Decoding Unit 106
The Cost of x86 Legacy Support on the P6 ... 107
Summary: The P6 Microarchitecture in Historical Context 107

Conclusion .. 110
x Contents in Detai l

6
POWERPC PROCESSORS: 600 SERIES,
700 SERIES, AND 7400 111

A Brief History of PowerPC .. 112
The PowerPC 601 .. 112

The 601’s Pipeline and Front End .. 113
The 601’s Back End .. 115
Latency and Throughput Revisited .. 117
Summary: The 601 in Historical Context .. 118

The PowerPC 603 and 603e ... 118
The 603e’s Back End ... 119
The 603e’s Front End, Instruction Window, and Branch Prediction 122
Summary: The 603 and 603e in Historical Context 122

The PowerPC 604 .. 123
The 604’s Pipeline and Back End .. 123
The 604’s Front End and Instruction Window ... 126
Summary: The 604 in Historical Context .. 129

The PowerPC 604e .. 129
The PowerPC 750 (aka the G3) ... 129

The 750’s Front End, Instruction Window, and Branch Instruction 130
Summary: The PowerPC 750 in Historical Context 132

The PowerPC 7400 (aka the G4) ... 133
The G4’s Vector Unit ... 135
Summary: The PowerPC G4 in Historical Context .. 135

Conclusion .. 135

7
INTEL’S PENTIUM 4 VS. MOTOROLA’S G4E:
APPROACHES AND DESIGN PHILOSOPHIES 137

The Pentium 4’s Speed Addiction ... 138
The General Approaches and Design Philosophies of the Pentium 4 and G4e 141
An Overview of the G4e’s Architecture and Pipeline ... 144

Stages 1 and 2: Instruction Fetch ... 145
Stage 3: Decode/Dispatch ... 145
Stage 4: Issue ... 146
Stage 5: Execute ... 146
Stages 6 and 7: Complete and Write-Back ... 147

Branch Prediction on the G4e and Pentium 4 ... 147
An Overview of the Pentium 4’s Architecture ... 148

Expanding the Instruction Window .. 149
The Trace Cache ... 149

An Overview of the Pentium 4’s Pipeline ... 155
Stages 1 and 2: Trace Cache Next Instruction Pointer 155
Stages 3 and 4: Trace Cache Fetch ... 155
Stage 5: Drive .. 155
Stages 6 Through 8: Allocate and Rename (ROB) 155
Stage 9: Queue ... 156
Stages 10 Through 12: Schedule .. 156
Stages 13 and 14: Issue ... 157
Contents in Detai l xi

Stages 15 and 16: Register Files .. 158
Stage 17: Execute ... 158
Stage 18: Flags ... 158
Stage 19: Branch Check ... 158
Stage 20: Drive ... 158
Stages 21 and Onward: Complete and Commit ... 158

The Pentium 4’s Instruction Window ... 159

8
INTEL’S PENTIUM 4 VS. MOTOROLA’S G4E:
THE BACK END 161

Some Remarks About Operand Formats .. 161
The Integer Execution Units .. 163

The G4e’s IUs: Making the Common Case Fast ... 163
The Pentium 4’s IUs: Make the Common Case Twice as Fast 164

The Floating-Point Units (FPUs) .. 165
The G4e’s FPU .. 166
The Pentium 4’s FPU ... 167
Concluding Remarks on the G4e’s and Pentium 4’s FPUs 168

The Vector Execution Units .. 168
A Brief Overview of Vector Computing .. 168
Vectors Revisited: The AltiVec Instruction Set ... 169
AltiVec Vector Operations .. 170
The G4e’s VU: SIMD Done Right .. 173
Intel’s MMX .. 174
SSE and SSE2 .. 175
The Pentium 4’s Vector Unit: Alphabet Soup Done Quickly 176
Increasing Floating-Point Performance with SSE2 .. 177

Conclusions ... 177

9
64-BIT COMPUTING AND X86-64 179

Intel’s IA-64 and AMD’s x86-64 ... 180
Why 64 Bits? .. 181
What Is 64-Bit Computing? .. 181
Current 64-Bit Applications .. 183

Dynamic Range .. 183
The Benefits of Increased Dynamic Range, or,

How the Existing 64-Bit Computing Market Uses 64-Bit Integers 184
Virtual Address Space vs. Physical Address Space 185
The Benefits of a 64-Bit Address .. 186

The 64-Bit Alternative: x86-64 ... 187
Extended Registers .. 187
More Registers .. 188
Switching Modes .. 189
Out with the Old ... 192

Conclusion .. 192
xii Contents in Detai l

10
THE G5: IBM’S POWERPC 970 193

Overview: Design Philosophy .. 194
Caches and Front End .. 194
Branch Prediction ... 195
The Trade-Off: Decode, Cracking, and Group Formation .. 196

The 970’s Dispatch Rules ... 198
Predecoding and Group Dispatch ... 199
Some Preliminary Conclusions on the 970’s Group Dispatch Scheme 199

The PowerPC 970’s Back End .. 200
Integer Unit, Condition Register Unit, and Branch Unit 201
The Integer Units Are Not Fully Symmetric ... 201
Integer Unit Latencies and Throughput ... 202
The CRU .. 202
Preliminary Conclusions About the 970’s Integer Performance 203

Load-Store Units .. 203
Front-Side Bus ... 204
The Floating-Point Units ... 205
Vector Computing on the PowerPC 970 .. 206
Floating-Point Issue Queues ... 209

Integer and Load-Store Issue Queues ... 210
BU and CRU Issue Queues ... 210
Vector Issue Queues .. 211

The Performance Implications of the 970’s Group Dispatch Scheme 211
Conclusions ... 213

11
UNDERSTANDING CACHING AND PERFORMANCE 215

Caching Basics .. 215
The Level 1 Cache ... 217
The Level 2 Cache ... 218
Example: A Byte’s Brief Journey Through the Memory Hierarchy 218
Cache Misses ... 219

Locality of Reference ... 220
Spatial Locality of Data .. 220
Spatial Locality of Code ... 221
Temporal Locality of Code and Data ... 222
Locality: Conclusions ... 222

Cache Organization: Blocks and Block Frames .. 223
Tag RAM .. 224
Fully Associative Mapping ... 224
Direct Mapping .. 225
N-Way Set Associative Mapping ... 226

Four-Way Set Associative Mapping ... 226
Two-Way Set Associative Mapping ... 228
Two-Way vs. Direct-Mapped .. 229
Two-Way vs. Four-Way ... 229
Associativity: Conclusions .. 229
Contents in Detai l xiii

Temporal and Spatial Locality Revisited: Replacement/Eviction Policies and
Block Sizes ... 230

Types of Replacement/Eviction Policies .. 230
Block Sizes ... 231

Write Policies: Write-Through vs. Write-Back ... 232
Conclusions ... 233

12
INTEL’S PENTIUM M, CORE DUO, AND CORE 2 DUO 235
Code Names and Brand Names .. 236
The Rise of Power-Efficient Computing ... 237
Power Density .. 237

Dynamic Power Density .. 237
Static Power Density ... 238

The Pentium M ... 239
The Fetch Phase .. 239
The Decode Phase: Micro-ops Fusion ... 240
Branch Prediction .. 244
The Stack Execution Unit .. 246
Pipeline and Back End ... 246
Summary: The Pentium M in Historical Context ... 246

Core Duo/Solo .. 247
Intel’s Line Goes Multi-Core .. 247
Core Duo’s Improvements ... 251
Summary: Core Duo in Historical Context ... 254

Core 2 Duo ... 254
The Fetch Phase .. 256
The Decode Phase ... 257
Core’s Pipeline ... 258

Core’s Back End .. 258
Vector Processing Improvements .. 262
Memory Disambiguation: The Results Stream Version of

Speculative Execution .. 264
Summary: Core 2 Duo in Historical Context .. 270

BIBLIOGRAPHY AND SUGGESTED READING 271
General .. 271
PowerPC ISA and Extensions ... 271
PowerPC 600 Series Processors ... 271
PowerPC G3 and G4 Series Processors .. 272
IBM PowerPC 970 and POWER ... 272
x86 ISA and Extensions .. 273
Pentium and P6 Family .. 273
Pentium 4 .. 274
Pentium M, Core, and Core 2 .. 274
Online Resources ... 274

INDEX 275
xiv Contents in Detai l

P R E F A C E
“The purpose of computing is insight, not numbers.”

—Richard W. Hamming (1915–1998)

When mathematician and computing pioneer Richard
Hamming penned this maxim in 1962, the era of digital
computing was still very much in its infancy. There were
only about 10,000 computers in existence worldwide;
each one was large and expensive, and each required
teams of engineers for maintenance and operation. Getting results out of
these mammoth machines was a matter of laboriously inputting long strings
of numbers, waiting for the machine to perform its calculations, and then
interpreting the resulting mass of ones and zeros. This tedious and painstak-
ing process prompted Hamming to remind his colleagues that the reams of
numbers they worked with on a daily basis were only a means to a much higher
and often non-numerical end: keener insight into the world around them.

In today’s post-Internet age, hundreds of millions of people regularly use
computers not just to gain insight, but to book airline tickets, to play poker,
to assemble photo albums, to find companionship, and to do every other sort
of human activity from the mundane to the sublime. In stark contrast to the

way things were 40 years ago, the experience of using a computer to do math
on large sets of numbers is fairly foreign to many users, who spend only a
very small fraction of their computer time explicitly performing arithmetic
operations. In popular operating systems from Microsoft and Apple, a small
calculator application is tucked away somewhere in a folder and accessed
only infrequently, if at all, by the majority of users. This small, seldom-used
calculator application is the perfect metaphor for the modern computer’s
hidden identity as a shuffler of numbers.

This book is aimed at reintroducing the computer as a calculating device
that performs layer upon layer of miraculous sleights of hand in order to hide
from the user the rapid flow of numbers inside the machine. The first few
chapters introduce basic computing concepts, and subsequent chapters work
through a series of more advanced explanations, rooted in real-world hard-
ware, that show how instructions, data, and numerical results move through
the computers people use every day. In the end, Inside the Machine aims to
give the reader an intermediate to advanced knowledge of how a variety of
microprocessors function and how they stack up to each other from multiple
design and performance perspectives.

Ultimately, I have tried to write the book that I would have wanted to
read as an undergraduate computer engineering student: a book that puts
the pieces together in a big-picture sort of way, while still containing enough
detailed information to offer a firm grasp of the major design principles
underlying modern microprocessors. It is my hope that Inside the Machine’s
blend of exposition, history, and architectural “comparative anatomy” will
accomplish that goal.
xvi Preface

A C K N O W L E D G M E N T S

This book is a distillation and adaptation of over eight
years’ worth of my technical articles and news report-
ing for Ars Technica, and as such, it reflects the insights
and information offered to me by the many thousands
of readers who’ve taken the time to contact me with
their feedback. Journalists, professors, students, industry professionals, and,
in many cases, some of the scientists and engineers who’ve worked on the
processors covered in this book have all contributed to the text within these
pages, and I want to thank these correspondents for their corrections, clari-
fications, and patient explanations. In particular, I’d like to thank the folks
at IBM for their help with the articles that provided the material for the part
of the book dealing with the PowerPC 970. I’d also like to thank Intel Corp.,
and George Alfs in particular, for answering my questions about the processors
covered in Chapter 12. (All errors are my own.)

I want to thank Bill Pollock at No Starch Press for agreeing to publish
Inside the Machine, and for patiently guiding me through my first book.
Other No Starch Press staff for whom thanks are in order include Elizabeth
Campbell (production editor), Sarah Lemaire (copyeditor), Riley Hoffman
(compositor), Stephanie Provines (proofreader), and Megan Dunchak.

I would like to give special thanks to the staff of Ars Technica and to the
site’s forum participants, many of whom have provided me with the construc-
tive criticism, encouragement, and education without which this book would
not have been possible. Thanks are also in order for my technical prereaders,
especially Lee Harrison and Holger Bettag, both of whom furnished invalu-
able advice and feedback on earlier drafts of this text. Finally, I would like to
thank my wife, Christina, for her patience and loving support in helping me
finish this project.

Jon Stokes
Chicago, 2006
xviii Acknowledgments

I N T R O D U C T I O N

Inside the Machine is an introduction to computers that
is intended to fill the gap that exists between classic
but more challenging introductions to computer
architecture, like John L. Hennessy’s and David A.
Patterson’s popular textbooks, and the growing mass
of works that are simply too basic for motivated non-specialist readers. Readers
with some experience using computers and with even the most minimal
scripting or programming experience should finish Inside the Machine with a
thorough and advanced understanding of the high-level organization of
modern computers. Should they so choose, such readers would then be well
equipped to tackle more advanced works like the aforementioned classics,
either on their own or as part of formal curriculum.

The book’s comparative approach, described below, introduces new
design features by comparing them with earlier features intended to solve
the same problem(s). Thus, beginning and intermediate readers are
encouraged to read the chapters in order, because each chapter assumes
a familiarity with the concepts and processor designs introduced in the
chapters prior to it.

More advanced readers who are already familiar with some of the
processors covered will find that the individual chapters can stand alone.
The book’s extensive use of headings and subheadings means that it can
also be employed as a general reference for the processors described,
though that is not the purpose for which it was designed.

The first four chapters of Inside the Machine are dedicated to laying the
conceptual groundwork for later chapters’ studies of real-world micropro-
cessors. These chapters use a simplified example processor, the DLW, to
illustrate basic and intermediate concepts like the instructions/data distinc-
tion, assembly language programming, superscalar execution, pipelining,
the programming model, machine language, and so on.

The middle portion of the book consists of detailed studies of two popular
desktop processor lines: the Pentium line from Intel and the PowerPC line
from IBM and Motorola. These chapters walk the reader through the chrono-
logical development of each processor line, describing the evolution of the
microarchitectures and instruction set architectures under discussion. Along
the way, more advanced concepts like speculative execution, vector processing,
and instruction set translation are introduced and explored via a discussion
of one or more real-world processors.

Throughout the middle part of the book, the overall approach is what
might be called “comparative anatomy,” in which each new processor’s novel
features are explained in terms of how they differ from analogous features
found in predecessors and/or competitors. The comparative part of the book
culminates in Chapters 7 and 8, which consist of detailed comparisons of
two starkly different and very important processors: Intel’s Pentium 4 and
Motorola’s MPC7450 (popularly known as the G4e).

After a brief introduction to 64-bit computing and the 64-bit extensions
to the popular x86 instruction set architecture in Chapter 9, the microarchi-
tecture of the first mass-market 64-bit processor, the IBM PowerPC 970, is
treated in Chapter 10. This study of the 970, the majority of which is also
directly applicable to IBM’s POWER4 mainframe processor, concludes the
book’s coverage of PowerPC processors.

Chapter 11 covers the organization and functioning of the memory
hierarchy found in almost all modern computers.

Inside the Machine’s concluding chapter is given over to an in-depth
examination of the latest generation of processors from Intel: the Pentium
M, Core Duo, and Core 2 Duo. This chapter contains the most detailed
discussion of these processors available online or in print, and it includes
some new information that has not been publicly released prior to the
printing of this book.
xx In t roduct ion

B A S I C C O M P U T I N G C O N C E P T S

Modern computers come in all shapes and sizes, and
they aid us in a million different types of tasks ranging
from the serious, like air traffic control and cancer
research, to the not-so-serious, like computer gaming
and photograph retouching. But as diverse as computers are in their
outward forms and in the uses to which they’re put, they’re all amazingly
similar in basic function. All of them rely on a limited repertoire of tech-
nologies that enable them do the myriad kinds of miracles we’ve come to
expect from them.

At the heart of the modern computer is the microprocessor —also commonly
called the central processing unit (CPU)—a tiny, square sliver of silicon that’s
etched with a microscopic network of gates and channels through which
electricity flows. This network of gates (transistors) and channels (wires or
lines) is a very small version of the kind of circuitry that we’ve all seen when
cracking open a television remote or an old radio. In short, the micro-
processor isn’t just the “heart” of a modern computer—it’s a computer in
and of itself. Once you understand how this tiny computer works, you’ll have

a thorough grasp of the fundamental concepts that underlie all of modern
computing, from the aforementioned air traffic control system to the silicon
brain that controls the brakes on a luxury car.

This chapter will introduce you to the microprocessor, and you’ll begin
to get a feel for just how straightforward computers really are. You need
master only a few fundamental concepts before you explore the micro-
processor technologies detailed in the later chapters of this book.

To that end, this chapter builds the general conceptual framework on
which I’ll hang the technical details covered in the rest of the book. Both
newcomers to the study of computer architecture and more advanced readers
are encouraged to read this chapter all the way through, because its abstrac-
tions and generalizations furnish the large conceptual “boxes” in which I’ll
later place the specifics of particular architectures.

The Calculator Model of Computing

Figure 1-1 is an abstract graphical representation of what a computer does.
In a nutshell, a computer takes a stream of instructions (code) and a stream
of data as input, and it produces a stream of results as output. For the pur-
poses of our initial discussion, we can generalize by saying that the code stream
consists of different types of arithmetic operations and the data stream consists
of the data on which those operations operate. The results stream, then, is
made up of the results of these operations. You could also say that the results
stream begins to flow when the operators in the code stream are carried out
on the operands in the data stream.

Figure 1-1: A simple representation of
a general-purpose computer

NOTE Figure 1-1 is my own variation on the traditional way of representing a processor’s
arithmetic logic unit (ALU), which is the part of the processor that does the addi-
tion, subtraction, and so on, of numbers. However, instead of showing two operands
entering the top ports and a result exiting the bottom port (as is the custom in the
literature), I’ve depicted code and data streams entering the top ports and a results
stream leaving the bottom port.

Instructions Data

Results
2 Chapter 1

To illustrate this point, imagine that one of those little black boxes in the
code stream of Figure 1-1 is an addition operator (a + sign) and that two of
the white data boxes contain two integers to be added together, as shown in
Figure 1-2.

Figure 1-2: Instructions are combined
with data to produce results

You might think of these black-and-white boxes as the keys on a
calculator—with the white keys being numbers and the black keys being
operators—the gray boxes are the results that appear on the calculator’s
screen. Thus the two input streams (the code stream and the data stream)
represent sequences of key presses (arithmetic operator keys and number
keys), while the output stream represents the resulting sequence of numbers
displayed on the calculator’s screen.

The kind of simple calculation described above represents the sort of
thing that we intuitively think computers do: like a pocket calculator, the
computer takes numbers and arithmetic operators (such as +, –, ÷, ×, etc.) as
input, performs the requested operation, and then displays the results. These
results might be in the form of pixel values that make up a rendered scene in a
computer game, or they might be dollar values in a financial spreadsheet.

The File-Clerk Model of Computing

The “calculator” model of computing, while useful in many respects, isn’t the
only or even the best way to think about what computers do. As an alterna-
tive, consider the following definition of a computer:

A computer is a device that shuffles numbers around from place to
place, reading, writing, erasing, and rewriting different numbers in
different locations according to a set of inputs, a fixed set of rules
for processing those inputs, and the prior history of all the inputs
that the computer has seen since it was last reset, until a predefined
set of criteria are met that cause the computer to halt.

We might, after Richard Feynman, call this idea of a computer as a
reader, writer, and modifier of numbers the “file-clerk” model of computing
(as opposed to the aforementioned calculator model). In the file-clerk model,
the computer accesses a large (theoretically infinite) store of sequentially
arranged numbers for the purpose of altering that store to achieve a desired
result. Once this desired result is achieved, the computer halts so that the
now-modified store of numbers can be read and interpreted by humans.

The file-clerk model of computing might not initially strike you as all
that useful, but as this chapter progresses, you’ll begin to understand how
important it is. This way of looking at computers is powerful because it
emphasizes the end product of computation rather than the computation
itself. After all, the purpose of computers isn’t just to compute in the
abstract, but to produce usable results from a given data set.

532 + =
Basic Comput ing Concepts 3

NOTE Those who’ve studied computer science will recognize in the preceding description the
beginnings of a discussion of a Turing machine. The Turing machine is, however, too
abstract for our purposes here, so I won’t actually describe one. The description that
I develop here sticks closer to the classic Reduced Instruction Set Computing (RISC)
load-store model, where the computer is “fixed” along with the storage. The Turing
model of a computer as a movable read-write head (with a state table) traversing a
linear “tape” is too far from real-life hardware organization to be anything but confus-
ing in this discussion.

In other words, what matters in computing is not that you did some math,
but that you started with a body of numbers, applied a sequence of operations
to it, and got a body of results. Those results could, again, represent pixel
values for a rendered scene or an environmental snapshot in a weather
simulation. Indeed, the idea that a computer is a device that transforms one
set of numbers into another should be intuitively obvious to anyone who has
ever used a Photoshop filter. Once we understand computers not in terms of
the math they do, but in terms of the numbers they move and modify, we can
begin to get a fuller picture of how they operate.

In a nutshell, a computer is a device that reads, modifies, and writes
sequences of numbers. These three functions—read, modify, and write—
are the three most fundamental functions that a computer performs, and
all of the machine’s components are designed to aid in carrying them out.
This read-modify-write sequence is actually inherent in the three central
bullet points of our initial file-clerk definition of a computer. Here is the
sequence mapped explicitly onto the file-clerk definition:

A computer is a device that shuffles numbers around from place to
place, reading, writing, erasing, and rewriting different numbers in
different locations according to a set of inputs [read], a fixed set of
rules for processing those inputs [modify], and the prior history of
all the inputs that the computer has seen since it was last reset
[write], until a predefined set of criteria are met that cause the
computer to halt.

That sums up what a computer does. And, in fact, that’s all a computer
does. Whether you’re playing a game or listening to music, everything that’s
going on under the computer’s hood fits into this model.

NOTE All of this is fairly simple so far, and I’ve even been a bit repetitive with the explana-
tions to drive home the basic read-modify-write structure of all computer operations. It’s
important to grasp this structure in its simplicity, because as we increase our computing
model’s level of complexity, we’ll see this structure repeated at every level.

The Stored-Program Computer

All computers consist of at least three fundamental types of structures
needed to carry out the read-modify-write sequence:

Storage
To say that a computer “reads” and “writes” numbers implies that
there is at least one number-holding structure that it reads from and
4 Chapter 1

writes to. All computers have a place to put numbers—a storage
area that can be read from and written to.

Arithmetic logic unit (ALU)
Similarly, to say that a computer “modifies” numbers implies that the
computer contains a device for performing operations on numbers. This
device is the ALU, and it’s the part of the computer that performs arith-
metic operations (addition, subtraction, and so on), on numbers from
the storage area. First, numbers are read from storage into the ALU’s
data input port. Once inside the ALU, they’re modified by means of an
arithmetic calculation, and then they’re written back to storage via the
ALU’s output port.

The ALU is actually the green, three-port device at the center of
Figure 1-1. Note that ALUs aren’t normally understood as having a code
input port along with their data input port and results output port. They
do, of course, have command input lines that let the computer specify
which operation the ALU is to carry out on the data arriving at its data
input port, so while the depiction of a code input port on the ALU in
Figure 1-1 is unique, it is not misleading.

Bus
In order to move numbers between the ALU and storage, some means of
transmitting numbers is required. Thus, the ALU reads from and writes
to the data storage area by means of the data bus, which is a network of
transmission lines for shuttling numbers around inside the computer.
Instructions travel into the ALU via the instruction bus, but we won’t cover
how instructions arrive at the ALU until Chapter 2. For now, the data bus
is the only bus that concerns us.

The code stream in Figure 1-1 flows into the ALU in the form of a
sequence of arithmetic instructions (add, subtract, multiply, and so on).
The operands for these instructions make up the data stream, which flows
over the data bus from the storage area into the ALU. As the ALU carries
out operations on the incoming operands, the results stream flows out of the
ALU and back into the storage area via the data bus. This process continues
until the code stream stops coming into the ALU. Figure 1-3 expands on
Figure 1-1 and shows the storage area.

The data enters the ALU from a special storage area, but where does
the code stream come from? One might imagine that it comes from the
keypad of some person standing at the computer and entering a sequence
of instructions, each of which is then transmitted to the code input port of
the ALU, or perhaps that the code stream is a prerecorded list of instruc-
tions that is fed into the ALU, one instruction at a time, by some manual or
automated mechanism. Figure 1-3 depicts the code stream as a prerecorded
list of instructions that is stored in a special storage area just like the data
stream, and modern computers do store the code stream in just such a
manner.
Basic Comput ing Concepts 5

Figure 1-3: A simple computer, with an ALU
and a region for storing instructions and data

NOTE More advanced readers might notice that in Figure 1-3 (and in Figure 1-4 later)
I’ve separated the code and data in main memory after the manner of a Harvard
architecture level-one cache. In reality, blocks of code and data are mixed together in
main memory, but for now I’ve chosen to illustrate them as logically separated.

The modern computer’s ability to store and reuse prerecorded sequences
of commands makes it fundamentally different from the simpler calculating
machines that preceded it. Prior to the invention of the first stored-program
computer,1 all computing devices, from the abacus to the earliest electronic
computing machines, had to be manipulated by an operator or group of
operators who manually entered a particular sequence of commands each
time they wanted to make a particular calculation. In contrast, modern com-
puters store and reuse such command sequences, and as such they have a
level of flexibility and usefulness that sets them apart from everything that
has come before. In the rest of this chapter, you’ll get a first-hand look at the
many ways that the stored-program concept affects the design and capabili-
ties of the modern computer.

Refining the File-Clerk Model

Let’s take a closer look at the relationship between the code, data, and
results streams by means of a quick example. In this example, the code
stream consists of a single instruction, an add, which tells the ALU to add
two numbers together.

Storage Area

ALU

1 In 1944 J. Presper Eckert, John Mauchly, and John von Neumann proposed the first stored-
program computer, the EDVAC (Electronic Discrete Variable Automatic Computer), and in
1949 such a machine, the EDSAC, was built by Maurice Wilkes of Cambridge University.
6 Chapter 1

The add instruction travels from code storage to the ALU. For now, let’s
not concern ourselves with how the instruction gets from code storage to
the ALU; let’s just assume that it shows up at the ALU’s code input port
announcing that there is an addition to be carried out immediately. The
ALU goes through the following sequence of steps:

1. Obtain the two numbers to be added (the input operands) from data
storage.

2. Add the numbers.

3. Place the results back into data storage.

The preceding example probably sounds simple, but it conveys the basic
manner in which computers—all computers—operate. Computers are fed
a sequence of instructions one by one, and in order to execute them, the
computer must first obtain the necessary data, then perform the calculation
specified by the instruction, and finally write the result into a place where the
end user can find it. Those three steps are carried out billions of times per
second on a modern CPU, again and again and again. It’s only because the
computer executes these steps so rapidly that it’s able to present the illusion
that something much more conceptually complex is going on.

To return to our file-clerk analogy, a computer is like a file clerk who
sits at his desk all day waiting for messages from his boss. Eventually, the
boss sends him a message telling him to perform a calculation on a pair of
numbers. The message tells him which calculation to perform, and where in
his personal filing cabinet the necessary numbers are located. So the clerk
first retrieves the numbers from his filing cabinet, then performs the calcula-
tion, and finally places the results back into the filing cabinet. It’s a boring,
mindless, repetitive task that’s repeated endlessly, day in and day out, which
is precisely why we’ve invented a machine that can do it efficiently and not
complain.

The Register File

Since numbers must first be fetched from storage before they can be added,
we want our data storage space to be as fast as possible so that the operation
can be carried out quickly. Since the ALU is the part of the processor that
does the actual addition, we’d like to place the data storage as close as
possible to the ALU so it can read the operands almost instantaneously.
However, practical considerations, such as a CPU’s limited surface area,
constrain the size of the storage area that we can stick next to the ALU. This
means that in real life, most computers have a relatively small number of very
fast data storage locations attached to the ALU. These storage locations are
called registers, and the first x86 computers only had eight of them to work
with. These registers, which are arrayed in a storage structure called a register
file, store only a small subset of the data that the code stream needs (and we’ll
talk about where the rest of that data lives shortly).
Basic Comput ing Concepts 7

Building on our previous, three-step description of what goes on when a
computer’s ALU is commanded to add two numbers, we can modify it as
follows. To execute an add instruction, the ALU must perform these steps:

1. Obtain the two numbers to be added (the input operands) from two
source registers.

2. Add the numbers.

3. Place the results back in a destination register.

For a concrete example, let’s look at addition on a simple computer
with only four registers, named A, B, C, and D. Suppose each of these registers
contains a number, and we want to add the contents of two registers together
and overwrite the contents of a third register with the resulting sum, as in the
following operation:

Upon receiving an instruction commanding it to perform this addition
operation, the ALU in our simple computer would carry out the following
three familiar steps:

1. Read the contents of registers A and B.

2. Add the contents of A and B.

3. Write the result to register C.

NOTE You should recognize these three steps as a more specific form of the read-modify-write
sequence from earlier, where the generic modify step is replaced with an addition
operation.

This three-step sequence is quite simple, but it’s at the very core of how
a microprocessor really works. In fact, if you glance ahead to Chapter 10’s
discussion of the PowerPC 970’s pipeline, you’ll see that it actually has
separate stages for each of these three operations: stage 12 is the register
read step, stage 13 is the actual execute step, and stage 14 is the write-back
step. (Don’t worry if you don’t know what a pipeline is, because that’s a topic
for Chapter 3.) So the 970’s ALU reads two operands from the register file,
adds them together, and writes the sum back to the register file. If we were
to stop our discussion right here, you’d already understand the three core
stages of the 970’s main integer pipeline—all the other stages are either just
preparation to get to this point or they’re cleanup work after it.

RAM: When Registers Alone Won’t Cut It

Obviously, four (or even eight) registers aren’t even close to the theoretically
infinite storage space I mentioned earlier in this chapter. In order to make a
viable computer that does useful work, you need to be able to store very large

Code Comments

A + B = C Add the contents of registers A and B, and place the result in C, overwriting
whatever was there.
8 Chapter 1

data sets. This is where the computer’s main memory comes in. Main memory,
which in modern computers is always some type of random access memory (RAM),
stores the data set on which the computer operates, and only a small portion
of that data set at a time is moved to the registers for easy access from the
ALU (as shown in Figure 1-4).

Figure 1-4: A computer with a register file

Figure 1-4 gives only the slightest indication of it, but main memory is
situated quite a bit farther away from the ALU than are the registers. In fact,
the ALU and the registers are internal parts of the microprocessor, but main
memory is a completely separate component of the computer system that is
connected to the processor via the memory bus. Transferring data between
main memory and the registers via the memory bus takes a significant
amount of time. Thus, if there were no registers and the ALU had to read
data directly from main memory for each calculation, computers would run
very slowly. However, because the registers enable the computer to store data
near the ALU, where it can be accessed nearly instantaneously, the computer’s
computational speed is decoupled somewhat from the speed of main memory.
(We’ll discuss the problem of memory access speeds and computational
performance in more detail in Chapter 11, when we talk about caches.)

The File-Clerk Model Revisited and Expanded

To return to our file-clerk metaphor, we can think of main memory as a
document storage room located on another floor and the registers as a
small, personal filing cabinet where the file clerk places the papers on
which he’s currently working. The clerk doesn’t really know anything

Main Memory

CPU

ALU

Registers
Basic Comput ing Concepts 9

about the document storage room—what it is or where it’s located—because
his desk and his personal filing cabinet are all he concerns himself with. For
documents that are in the storage room, there’s another office worker, the
office secretary, whose job it is to locate files in the storage room and retrieve
them for the clerk.

This secretary represents a few different units within the processor, all
of which we’ll meet Chapter 4. For now, suffice it to say that when the boss
wants the clerk to work on a file that’s not in the clerk’s personal filing
cabinet, the secretary must first be ordered, via a message from the boss, to
retrieve the file from the storage room and place it in the clerk’s cabinet so
that the clerk can access it when he gets the order to begin working on it.

An Example: Adding Two Numbers

To translate this office example into computing terms, let’s look at how the
computer uses main memory, the register file, and the ALU to add two
numbers.

To add two numbers stored in main memory, the computer must
perform these steps:

1. Load the two operands from main memory into the two source registers.

2. Add the contents of the source registers and place the results in the
destination register, using the ALU. To do so, the ALU must perform
these steps:

a. Read the contents of registers A and B into the ALU’s input ports.

b. Add the contents of A and B in the ALU.

c. Write the result to register C via the ALU’s output port.

3. Store the contents of the destination register in main memory.

Since steps 2a, 2b, and 2c all take a trivial amount of time to complete,
relative to steps 1 and 3, we can ignore them. Hence our addition looks
like this:

1. Load the two operands from main memory into the two source registers.

2. Add the contents of the source registers, and place the results in the des-
tination register, using the ALU.

3. Store the contents of the destination register in main memory.

The existence of main memory means that the user—the boss in our
filing-clerk analogy—must manage the flow of information between main
memory and the CPU’s registers. This means that the user must issue
instructions to more than just the processor’s ALU; he or she must also
issue instructions to the parts of the CPU that handle memory traffic.
Thus, the preceding three steps are representative of the kinds of instruc-
tions you find when you take a close look at the code stream.
10 Chapter 1

A Closer Look at the Code Stream: The Program

At the beginning of this chapter, I defined the code stream as consisting of
“an ordered sequence of operations,” and this definition is fine as far as it
goes. But in order to dig deeper, we need a more detailed picture of what the
code stream is and how it works.

The term operations suggests a series of simple arithmetic operations
like addition or subtraction, but the code stream consists of more than just
arithmetic operations. Therefore, it would be better to say that the code
stream consists of an ordered sequence of instructions. Instructions, generally
speaking, are commands that tell the whole computer—not just the ALU,
but multiple parts of the machine—exactly what actions to perform. As we’ve
seen, a computer’s list of potential actions encompasses more than just
simple arithmetic operations.

General Instruction Types
Instructions are grouped into ordered lists that, when taken as a whole,
tell the different parts of the computer how to work together to perform a
specific task, like grayscaling an image or playing a media file. These ordered
lists of instructions are called programs, and they consist of a few basic types of
instructions.

In modern RISC microprocessors, the act of moving data between
memory and the registers is under the explicit control of the code stream, or
program. So if a programmer wants to add two numbers that are located in
main memory and then store the result back in main memory, he or she
must write a list of instructions (a program) to tell the computer exactly what
to do. The program must consist of:

a load instruction to move the two numbers from memory into the
registers

an add instruction to tell the ALU to add the two numbers

a store instruction to tell the computer to place the result of the addition
back into memory, overwriting whatever was previously there

These operations fall into two main categories:

Arithmetic instructions
These instructions tell the ALU to perform an arithmetic calculation
(for example, add, sub, mul, div).

Memory-access instructions
These instructions tell the parts of the processor that deal with main
memory to move data from and to main memory (for example, load
and store).

NOTE We’ll discuss a third type of instruction, the branch instruction, shortly. Branch
instructions are technically a special type of memory-access instruction, but they access
code storage instead of data storage. Still, it’s easier to treat branches as a third category
of instruction.
Basic Comput ing Concepts 11

The arithmetic instruction fits with our calculator metaphor and is the
type of instruction most familiar to anyone who’s worked with computers.
Instructions like integer and floating-point addition, subtraction, multipli-
cation, and division all fall under this general category.

NOTE In order to simplify the discussion and reduce the number of terms, I’m temporarily
including logical operations like AND, OR, NOT, NOR, and so on, under the general
heading of arithmetic instructions. The difference between arithmetic and logical
operations will be introduced in Chapter 2.

The memory-access instruction is just as important as the arithmetic
instruction, because without access to main memory’s data storage regions,
the computer would have no way to get data into or out of the register file.

To show you how memory-access and arithmetic operations work together
within the context of the code stream, the remainder of this chapter will use a
series of increasingly detailed examples. All of the examples are based on a
simple, hypothetical computer, which I’ll call the DLW-1.2

The DLW-1’s Basic Architecture and Arithmetic Instruction Format

The DLW-1 microprocessor consists of an ALU (along with a few other units
that I’ll describe later) attached to four registers, named A, B, C, and D for
convenience. The DLW-1 is attached to a bank of main memory that’s laid
out as a line of 256 memory cells, numbered #0 to #255. (The number that
identifies an individual memory cell is called an address.)

The DLW-1’s Arithmetic Instruction Format

All of the DLW-1’s arithmetic instructions are in the following instruction
format:

instruction source1, source2, destination

There are four parts to this instruction format, each of which is called a
field. The instruction field specifies the type of operation being performed
(for example, an addition, a subtraction, a multiplication, and so on). The
two source fields tell the computer which registers hold the two numbers
being operated on, or the operands. Finally, the destination field tells the
computer which register to place the result in.

As a quick illustration, an addition instruction that adds the numbers in
registers A and B (the two source registers) and places the result in register C
(the destination register) would look like this:

2 “DLW” in honor of the DLX architecture used by Hennessy and Patterson in their books on
computer architecture.

Code Comments

add A, B, C Add the contents of registers A and B and place the result in C, overwriting
whatever was previously there.
12 Chapter 1

The DLW-1’s Memory Instruction Format

In order to get the processor to move two operands from main memory
into the source registers so they can be added, you need to tell the processor
explicitly that you want to move the data in two specific memory cells to two
specific registers. This “filing” operation is done via a memory-access instruc-
tion called the load.

As its name suggests, the load instruction loads the appropriate data from
main memory into the appropriate registers so that the data will be available
for subsequent arithmetic instructions. The store instruction is the reverse of
the load instruction, and it takes data from a register and stores it in a location
in main memory, overwriting whatever was there previously.

All of the memory-access instructions for the DLW-1 have the following
instruction format:

instruction source, destination

For all memory accesses, the instruction field specifies the type of memory
operation to be performed (either a load or a store). In the case of a load, the
source field tells the computer which memory address to fetch the data from,
while the destination field specifies which register to put it in. Conversely, in
the case of a store, the source field tells the computer which register to take
the data from, and the destination field specifies which memory address to
write the data to.

An Example DLW-1 Program

Now consider Program 1-1, which is a piece of DLW-1 code. Each of the lines
in the program must be executed in sequence to achieve the desired result.

Program 1-1: Program to add two numbers from main memory

Suppose the main memory looked like the following before running
Program 1-1:

Line Code Comments

1 load #12, A Read the contents of memory cell #12 into register A.

2 load #13, B Read the contents of memory cell #13 into register B.

3 add A, B, C Add the numbers in registers A and B and store the result in C.

4 store C, #14 Write the result of the addition from register C into memory cell #14.

#11 #12 #13 #14

12 6 2 3
Basic Comput ing Concepts 13

After doing our addition and storing the results, the memory would be
changed so that the contents of cell #14 would be overwritten by the sum of
cells #12 and #13, as shown here:

A Closer Look at Memory Accesses: Register vs. Immediate

The examples so far presume that the programmer knows the exact memory
location of every number that he or she wants to load and store. In other
words, it presumes that in composing each program, the programmer has at
his or her disposal a list of the contents of memory cells #0 through #255.

While such an accurate snapshot of the initial state of main memory may
be feasible for a small example computer with only 256 memory locations,
such snapshots almost never exist in the real world. Real computers have
billions of possible locations in which data can be stored, so programmers
need a more flexible way to access memory, a way that doesn’t require each
memory access to specify numerically an exact memory address.

Modern computers allow the contents of a register to be used as a memory
address, a move that provides the programmer with the desired flexibility.
But before discussing the effects of this move in more detail, let’s take one
more look at the basic add instruction.

Immediate Values

All of the arithmetic instructions so far have required two source registers as
input. However, it’s possible to replace one or both of the source registers
with an explicit numerical value, called an immediate value. For instance, to
increase whatever number is in register A by 2, we don’t need to load the
value 2 into a second source register, like B, from some cell in main memory
that contains that value. Rather, we can just tell the computer to add 2 to A
directly, as follows:

#11 #12 #13 #14

12 6 2 8

Code Comments

add A, 2, A Add 2 to the contents of register A and place the result back into A,
overwriting whatever was there.
14 Chapter 1

I’ve actually been using immediate values all along in my examples, but
just not in any arithmetic instructions. In all of the preceding examples, each
load and store uses an immediate value in order to specify a memory address.
So the #12 in the load instruction in line 1 of Program 1-1 is just an immediate
value (a regular whole number) prefixed by a # sign to let the computer
know that this particular immediate value is a memory address that desig-
nates a cell in memory.

Memory addresses are just regular whole numbers that are specially
marked with the # sign. Because they’re regular whole numbers, they can be
stored in registers—and stored in memory—just like any other number.
Thus, the whole-number contents of a register, like D, could be construed by
the computer as representing a memory address.

For example, say that we’ve stored the number 12 in register D, and that we
intend to use the contents of D as the address of a memory cell in Program 1-2.

Program 1-2: Program to add two numbers from main memory using an address stored in
a register

Program 1-2 is essentially the same as Program 1-1, and given the same
input, it yields the same results. The only difference is in line 1:

Since the content of D is the number 12, we can tell the computer to
look in D for the memory cell address by substituting the register name
(this time marked with a # sign for use as an address), for the actual
memory cell number in line 1’s load instruction. Thus, the first lines of
Programs 1-1 and 1-2 are functionally equivalent.

This same trick works for store instructions, as well. For example, if we
place the number 14 in D we can modify the store command in line 4 of
Program 1-1 to read as follows: store C, #D. Again, this modification would
not change the program’s output.

Line Code Comments

1 load #D, A Read the contents of the memory cell designated by the number
stored in D (where D = 12) into register A.

2 load #13, B Read the contents of memory cell #13 into register B.

3 add A, B, C Add the numbers in registers A and B and store the result in C.

4 store C, #14 Write the result of the addition from register C into memory cell #14.

Program 1-1, Line 1 Program 1-2, Line 1

load #12, A load #D, A
Basic Comput ing Concepts 15

Because memory addresses are just regular numbers, they can be stored
in memory cells as well as in registers. Program 1-3 illustrates the use of a
memory address that’s stored in another memory cell. If we take the input
for Program 1-1 and apply it to Program 1-3, we get the same output as if
we’d just run Program 1-1 without modification:

Program 1-3: Program to add two numbers from memory using an address stored in a
memory cell.

The first instruction in Program 1-3 loads the number 12 from memory
cell #11 into register D. The second instruction then uses the content of D
(which is the value 12) as a memory address in order to load register A into
memory location #12.

But why go to the trouble of storing memory addresses in memory cells
and then loading the addresses from main memory into the registers before
they’re finally ready to be used to access memory again? Isn’t this an overly
complicated way to do things?

Actually, these capabilities are designed to make programmers’ lives
easier, because when used with the register-relative addressing technique
described next they make managing code and data traffic between the
processor and massive amounts of main memory much less complex.

Register-Relative Addressing

In real-world programs, loads and stores most often use register-relative
addressing, which is a way of specifying memory addresses relative to a
register that contains a fixed base address.

For example, we’ve been using D to store memory addresses, so let’s say
that on the DLW-1 we can assume that, unless it is explicitly told to do other-
wise, the operating system always loads the starting address (or base address)
of a program’s data segment into D. Remember that code and data are
logically separated in main memory, and that data flows into the processor
from a data storage area, while code flows into the processor from a special
code storage area. Main memory itself is just one long row of undifferentiated
memory cells, each one byte in width, that store numbers. The computer
carves up this long row of bytes into multiple segments, some of which store
code and some of which store data.

Line Code Comments

1 load #11, D Read the contents of memory cell #11 into D.

2 load #D, A Read the contents of the memory cell designated by the number in D
(where D = 12) into register A.

3 load #13, B Read the contents of memory cell #13 into register B.

4 add A, B, C Add the numbers in registers A and B and store the result in C.

5 store C, #14 Write the result of the addition from register C into memory cell #14.
16 Chapter 1

A data segment is a block of contiguous memory cells that a program
stores all of its data in, so if a programmer knows a data segment’s starting
address (base address) in memory, he or she can access all of the other
memory locations in that segment using this formula:

base address + offset

where offset is the distance in bytes of the desired memory location from the
data segment’s base address.

Thus, load and store instructions in DLW-1 assembly would normally
look something like this:

In the case of the load, the processor takes the number in D, which is the
base address of the data segment, adds 108 to it, and uses the result as the
load’s destination memory address. The store works in the exact same way.

Of course, this technique requires that a quick addition operation (called
an address calculation) be part of the execution of the load instruction, so this is
why the load-store units on modern processors contain very fast integer addition
hardware. (As we’ll learn in Chapter 4, the load-store unit is the execution
unit responsible for executing load and store instructions, just like the
arithmetic-logic unit is responsible for executing arithmetic instructions.)

By using register-relative addressing instead of absolute addressing (in which
memory addresses are given as immediate values), a programmer can write
programs without knowing the exact location of data in memory. All the
programmer needs to know is which register the operating system will place
the data segment’s base address in, and he or she can do all memory accesses
relative to that base address. In situations where a programmer uses absolute
addressing, when the operating system loads the program into memory, all
of the program’s immediate address values have to be changed to reflect the
data segment’s actual location in memory.

Because both memory addresses and regular integer numbers are stored
in the same registers, these registers are called general-purpose registers (GPRs).
On the DLW-1, A, B, C, and D are all GPRs.

Code Comments

load #(D + 108), A Read the contents of the memory cell at location #(D + 108) into A.

store B, #(D + 108) Write the contents of B into the memory cell at location #(D + 108).
Basic Comput ing Concepts 17

T H E M E C H A N I C S O F P R O G R A M
E X E C U T I O N

Now that we understand the basics of computer organi-
zation, it’s time to take a closer look at the nuts and
bolts of how stored programs are actually executed by
the computer. To that end, this chapter will cover
core programming concepts like machine language,
the programming model, the instruction set architec-
ture, branch instructions, and the fetch-execute loop.

Opcodes and Machine Language

If you’ve been following the discussion so far, it shouldn’t surprise you to
learn that both memory addresses and instructions are ordinary numbers
that can be stored in memory. All of the instructions in a program like
Program 1-1 are represented inside the computer as strings of numbers.
Indeed, a program is one long string of numbers stored in a series of
memory locations.

How is a program like Program 1-1 rendered in numerical notation so
that it can be stored in memory and executed by the computer? The answer
is simpler than you might think.

As you may already know, a computer actually only understands 1s and
0s (or “high” and “low” electric voltages), not English words like add, load,
and store, or letters and base-10 numbers like A, B, 12, and 13. In order for the
computer to run a program, therefore, all of its instructions must be rendered
in binary notation. Think of translating English words into Morse code’s dots
and dashes and you’ll have some idea of what I’m talking about.

Machine Language on the DLW-1
The translation of programs of any complexity into this binary-based machine
language is a massive undertaking that’s meant to be done by a computer, but
I’ll show you the basics of how it works so you can understand what’s going
on. The following example is simplified, but useful nonetheless.

The English words in a program, like add, load, and store, are mnemonics
(meaning they’re easy for people to remember), and they’re all mapped to
strings of binary numbers, called opcodes, that the computer can understand.
Each opcode designates a different operation that the processor can perform.
Table 2-1 maps each of the mnemonics used in Chapter 1 to a 3-bit opcode
for the hypothetical DLW-1 microprocessor. We can also map the four
register names to 2-bit binary codes, as shown in Table 2-2.

The binary values representing both the opcodes and the register codes
are arranged in one of a number of 16-bit (or 2-byte) formats to get a complete
machine language instruction, which is a binary number that can be stored in
RAM and used by the processor.

Table 2-1: Mapping of Mnemonics to
Opcodes for the DLW-1

Mnemonic Opcode

add 000

sub 001

load 010

store 011

Table 2-2: Mapping of Registers to
Binary Codes for the DLW-1

Register Binary Code

A 00

B 01

C 10

D 11
20 Chapter 2

NOTE Because programmer-written instructions must be translated into binary codes before
a computer can read them, it is common to see programs in any format—binary,
assembly, or a high-level language like BASIC or C, referred to generically as
“code” or “codes.” So programmers sometimes speak of “assembler code,” “binary
code,” or “C code,” when referring to programs written in assembly, binary, or C
language. Programmers also will often describe the act of programming as “writing
code” or “coding.” I have adopted this terminology in this book, and will henceforth
use the term “code” regularly to refer generically to instruction sequences and
programs.

Binary Encoding of Arithmetic Instructions

Arithmetic instructions have the simplest machine language instruction
formats, so we’ll start with them. Figure 2-1 shows the format for the machine
language encoding of a register-type arithmetic instruction.

Figure 2-1: Machine language format for a register-type instruction

In a register-type arithmetic instruction (that is, an arithmetic instruc-
tion that uses only registers and no immediate values), the first bit of the
instruction is the mode bit. If the mode bit is set to 0, then the instruction
is a register-type instruction; if it’s set to 1, then the instruction is of the
immediate type.

Bits 1–3 of the instruction specify the opcode, which tells the computer
what type of operation the instruction represents. Bits 4–5 specify the instruc-
tion’s first source register, 6–7 specify the second source register, and 8–9
specify the destination register. The last six bits are not needed by register-to-
register arithmetic instructions, so they’re padded with 0s (they’re zeroed out
in computer jargon) and ignored.

Now, let’s use the binary values in Tables 2-1 and 2-2 to translate the add
instruction in line 3 of Program 1-1 into a 2-byte (or 16-bit) machine language
instruction:

Assembly Language Instruction Machine Language Instruction

add A, B, C 00000001 10000000

0 1 2 3 4 5 6 7

mode opcode source1 source2

Byte 1

8 9 10 11 12 13 14 15

destination 000000

Byte 2
The Mechanics of Program Execut ion 21

Here are a few more examples of arithmetic instructions, just so you can
get the hang of it:

Increasing the number of binary digits in the opcode and register
fields increases the total number of instructions the machine can use and the
number of registers it can have. For example, if you know something about
binary notation, then you probably know that a 3-bit opcode allows the pro-
cessor to map up to 23 mnemonics, which means that it can have up to 23, or
8, instructions in its instruction set; increasing the opcode size to 8 bits would
allow the processor’s instruction set to contain up to 28, or 256, instructions.
Similarly, increasing the number of bits in the register field increases the
possible number of registers that the machine can have.

Arithmetic instructions containing an immediate value use an immediate-
type instruction format, which is slightly different from the register-type format
we just saw. In an immediate-type instruction, the first byte contains the
opcode, the source register, and the destination register, while the second
byte contains the immediate value, as shown in Figure 2-2.

Figure 2-2: Machine language format for an immediate-type instruction

Here are a few immediate-type arithmetic instructions translated from
assembly language to machine language:

Assembly Language Instruction Machine Language Instruction

add C, D, A 00001011 00000000

add D, B, C 00001101 10000000

sub A, D, C 00010011 10000000

Assembly Language Instruction Machine Language Instruction

add C, 8, A 10001000 00001000

add 5, A, C 10000010 00000101

sub 25, D, C 10011110 00011001

0 1 2 3 4 5 6 7

mode opcode source destination

Byte 1

8 9 10 11 12 13 14 15

8-bit immediate value

Byte 2
22 Chapter 2

Binary Encoding of Memory Access Instructions

Memory-access instructions use both register- and immediate-type instruction
formats exactly like those shown for arithmetic instructions. The only
difference lies in how they use them. Let’s take the case of a load first.

The load Instruction

We’ve previously seen two types of load, the first of which was the immediate
type. An immediate-type load (see Figure 2-3) uses the immediate-type
instruction format, but because the load’s source is an immediate value (a
memory address) and not a register, the source field is unneeded and must
be zeroed out. (The source field is not ignored, though, and in a moment
we’ll see what happens if it isn’t zeroed out.)

Figure 2-3: Machine language format for an immediate-type load

Now let’s translate the immediate-type load in line 1 of Program 1-1 (12 is
1100 in binary notation):

The 2-byte machine language instruction on the right is a binary repre-
sentation of the assembly language instruction on the left. The first byte
corresponds to an immediate-type load instruction that takes register A as its
destination. The second byte is the binary representation of the number 12,
which is the source address in memory that the data is to be loaded from.

The second type of load we’ve seen is the register type. A register-type
load uses the register-type instruction format, but with the source2 field
zeroed out and ignored, as shown in Figure 2-4.

In Figure 2-4, the source1 field specifies the register containing the
memory address that the processor is to load data from, and the destination
field specifies the register that the loaded data is to be placed in.

Assembly Language Instruction Machine Language Instruction

load #12, A 10100000 00001100

0 1 2 3 4 5 6 7

mode opcode 00 destination

Byte 1

Byte 2

8-bit immediate source address

8 9 10 11 12 13 14 15
The Mechanics of Program Execut ion 23

Figure 2-4: Machine language format for a register-type load

For a register-relative addressed load, we use a version of the immediate-
type instruction format, shown in Figure 2-5, with the base field specifying
the register that contains the base address and the offset stored in the second
byte of the instruction.

Figure 2-5: Machine language format for a register-relative load

Recall from Table 2-2 that 00 is the binary number that designates
register A. Therefore, as a result of the DLW-1’s particular machine language
encoding scheme, any register but A could theoretically be used to store the
base address for a register-relative load.

The store Instruction

The register-type binary format for a store instruction is the same as it is for a
load, except that the destination field specifies a register containing a desti-
nation memory address, and the source1 field specifies the register contain-
ing the data to be stored to memory.

The immediate-type machine language format for a store, pictured in
Figure 2-6, is also similar to the immediate-type format for a load, except that
since the destination register is not needed (the destination is the immediate
memory address) the destination field is zeroed out, while the source field
specifies which register holds the data to be stored.

source1 00

0 1 2 3 4 5 6 7

mode opcode

Byte 1

destination 000000

Byte 2

8 9 10 11 12 13 14 15

base

8-bit immediate offset

0 1 2 3 4 5 6 7

mode opcode destination

Byte 1

Byte 2

8 9 10 11 12 13 14 15
24 Chapter 2

itm02_03.fm Page 25 Thursday, January 11, 2007 10:44 AM
Figure 2-6: Machine language format for an immediate-type store

The register-relative store, on the other hand, uses the same immediate-
type instruction format used for the register-relative load (Figure 2-5), but
the destination field is set to a nonzero value, and the offset is stored in the
second byte. Again, the base address for a register-relative store can theo-
retically be stored in any register other than A, although by convention it’s
stored in D.

Translating an Example Program into Machine Language
For our simple computer with four registers, three instructions, and 256
memory cells, it’s tedious but trivial to translate Program 1-1 into machine-
readable binary representation using the previous tables and instruction
formats. Program 2-1 shows the translation.

Program 2-1: A translation of Program 1-1 into machine language

The 1s and 0s in the rightmost column of Program 2-1 represent the
high and low voltages that the computer “thinks” in.

Real machine language instructions are usually longer and more complex
than the simple ones I’ve given here, but the basic idea is exactly the same.
Program instructions are translated into machine language in a mechanical,
predefined manner, and even in the case of a fully modern microprocessor,
doing such translations by hand is merely a matter of knowing the instruction
formats and having access to the right charts and tables.

Of course, for the most part the only people who do such translations by
hand are computer engineering or computer science undergraduates who’ve
been assigned them for homework. This wasn’t always the case, though.

Line Assembly Language Machine Language

1 load #12, A 10100000 00001100

2 load #13, B 10100001 00001101

3 add A, B, C 00000001 10000000

4 store C, #14 10111000 00001110

8-bit immediate destination address

Byte 2

8 9 10 11 12 13 14 15

sourceopcode

0 1 2 3 4 5 6 7

mode

Byte 1

00
The Mechanics of Program Execut ion 25

The Programming Model and the ISA

Back in the bad old days, programmers had to enter programs into the
computer directly in machine language (after having walked five miles in
the snow uphill to work). In the very early stages of computing, this was done
by flipping switches. The programmer toggled strings of 1s and 0s into the
computer’s very limited memory, ran the program, and then pored over the
resulting strings of 1s and 0s to decode the answer.

Once memory sizes and processing power increased to the point where
programmer time and effort were valuable enough relative to computing
time and memory space, computer scientists devised ways of allowing the
computer to use a portion of its power and memory to take on some of the
burden of making its cryptic input and output a little more human-friendly.

In short, the tedious task of converting human-readable programs into
machine-readable binary code was automated; hence the birth of assembly
language programming. Programs could now be written using mnemonics,
register names, and memory locations, before being converted by an
assembler into machine language for processing.

In order to write assembly language programs for a machine, you have
to understand the machine’s available resources: how many registers it has,
what instructions it supports, and so on. In other words, you need a well-
defined model of the machine you’re trying to program.

The Programming Model

The programming model is the programmer’s interface to the microprocessor.
It hides all of the processor’s complex implementation details behind a
relatively simple, clean layer of abstraction that exposes to the programmer
all of the processor’s functionality. (See Chapter 4 for more on the history
and development of the programming model.)

Figure 2-7 shows a diagram of a programming model for an eight-register
machine. By now, most of the parts of the diagram should be familiar to you.
The ALU performs arithmetic, the registers store numbers, and the input-
output unit (I/O unit) is responsible for interacting with memory and the rest
of the system (via loads and stores). The parts of the processor that we haven’t
yet met lie in the control unit. Of these, we’ll cover the program counter and the
instruction register now.

The Instruction Register and Program Counter

Because programs are stored in memory as ordered sequences of instruc-
tions and memory is arranged as a linear series of addresses, each instruction
in a program lives at its own memory address. In order to step through and
execute the lines of a program, the computer simply begins at the program’s
starting address and then steps through each successive memory location,
fetching each successive instruction from memory, placing it in a special
register, and executing it as shown in Figure 2-8.
26 Chapter 2

Figure 2-7: The programming model for a simple eight-register machine

The instructions in our DLW-1 computer are two bytes long. If we
assume that each memory cell holds one byte, then the DLW-1 must step
through memory by fetching instructions from two cells at a time.

Figure 2-8: A simple computer with instruction and
data registers

A
B
C
D
E
F
G
H

Program Counter

Instruction Register

Proc. Status Word (PSW)

Control Unit Registers

ALU

I/O Unit

Data Bus

Address Bus

CPU

Instruction
Register

Registers

Main Memory

ALU
The Mechanics of Program Execut ion 27

For example, if the starting address in Program 1-1 were #500, it would
look like Figure 2-9 in memory (with the instructions rendered in machine
language, not assembly language, of course).

Figure 2-9: An illustration of Program 1-1 in memory,
starting at address #500

The Instruction Fetch: Loading the Instruction Register

An instruction fetch is a special type of load that happens automatically for every
instruction. It always takes the address that’s currently in the program counter
register as its source and the instruction register as its destination. The control
unit uses a fetch to load each instruction of a program from memory into the
instruction register, where that instruction is decoded before being executed;
and while that instruction is being decoded, the processor places the address
of the next instruction into the program counter by incrementing the address
that’s currently in the program counter, so that the newly incremented address
points to the next instruction the sequence. In the case of our DLW-1, the
program counter is incremented by two every time an instruction is fetched,
because the two-byte instructions begin at every other byte in memory.

Running a Simple Program: The Fetch-Execute Loop

In Chapter 1 we discussed the steps a processor takes to perform calculations
on numbers using the ALU in combination with a fetched arithmetic instruc-
tion. Now let’s look at the steps the processor takes in order to fetch a series
of instructions—a program—and feed them to either the ALU (in the case of
arithmetic instructions) or the memory access hardware (in the case of loads
and stores):

1. Fetch the next instruction from the address stored in the program counter,
and load that instruction into the instruction register. Increment the
program counter.

2. Decode the instruction in the instruction register.

3. Execute the instruction in the instruction register, using the following
rules:

a. If the instruction is an arithmetic instruction, execute it using the
ALU and register file.

b. If the instruction is a memory access instruction, execute it using
the memory-access hardware.

These three steps are fairly straightforward, and with one modification
they describe the way that microprocessors execute programs (as we’ll see
in the section “Branch Instructions” on page 30). Computer scientists often

#500 #501 #502 #503 #504 #505 #506 #507

load #12, A load #13, B add A, B, C store C, #14
28 Chapter 2

refer to these steps as the fetch-execute loop or the fetch-execute cycle. The fetch-
execute loop is repeated for as long as the computer is powered on. The
machine iterates through the entire loop, from step 1 to step 3, over and over
again many millions or billions of times per second in order to run
programs.

Let’s run through the three steps with our example program as shown
in Figure 2-9. (This example presumes that #500 is already in the program
counter.) Here’s what the processor does, in order:

1. Fetch the instruction beginning at #500, and load load #12, A into the
instruction register. Increment the program counter to #502.

2. Decode load #12, A in the instruction register.

3. Execute load #12, A from the instruction register, using the memory-
access hardware.

4. Fetch the instruction beginning at #502, and load load #13, B in the
instruction register. Increment the program counter to #504.

5. Decode load #13, B in the instruction register.

6. Execute load #13, B from the instruction register, using the memory-
access hardware.

7. Fetch the instruction beginning at #504, and load add A, B, C into the
instruction register. Increment the program counter to #506.

8. Decode add A, B, C in the instruction register.

9. Execute add A, B, C from the instruction register, using the ALU and
register file.

10. Fetch the instruction at #506, and load store C, #14 in the instruction
register. Increment the program counter to #508.

11. Decode store C, #14 in the instruction register.

12. Execute store C, #14 from the instruction register, using the memory-
access hardware.

NOTE To zoom in on the execute steps of the preceding sequence, revisit Chapter 1, and
particularly the sections“Refining the File-Clerk Model” on page 6 and “RAM: When
Registers Alone Won’t Cut It” on page 8. If you do, you’ll gain a pretty good under-
standing of what’s involved in executing a program on any machine. Sure, there are
important machine-specific variations for most of what I’ve presented here, but the gen-
eral outlines (and even a decent number of the specifics) are the same.

The Clock

Steps 1 through 12 in the previous section don’t take an arbitrary amount of
time to complete. Rather, they’re performed according to the pulse of the
clock that governs every action the processor takes.

This clock pulse, which is generated by a clock generator module on the
motherboard and is fed into the processor from the outside, times the func-
tioning of the processor so that, on the DLW-1 at least, all three steps of the
fetch-execute loop are completed in exactly one beat of the clock. Thus, the
The Mechanics of Program Execut ion 29

program in Figure 2-9, as I’ve traced its execution in the preceding section,
takes exactly four clock beats to finish execution, because a new instruction is
fetched on each beat of the clock.

One obvious way to speed up the execution of programs on the DLW-1
would be to speed up its clock generator so that each step takes less time to
complete. This is generally true of all microprocessors, hence the race among
microprocessor designers to build and market chips with ever-higher clock
speeds. (We’ll talk more about the relationship between clock speed and
performance in Chapter 3.)

Branch Instructions

As I’ve presented it so far, the processor moves through each line in a pro-
gram in sequence until it reaches the end of the program, at which point the
program’s output is available to the user.

There are certain instructions in the instruction stream, however, that
allow the processor to jump to a program line that is out of sequence. For
instance, by inserting a branch instruction into line 5 of a program, we could
cause the processor’s control unit to jump all the way down to line 20 and
begin executing there (a forward branch), or we could cause it to jump back
up to line 1 (a backward branch). Because a program is an ordered sequence
of instructions, by including forward and backward branch instructions, we
can arbitrarily move about in the program. This is a powerful ability, and
branches are an essential part of computing.

Rather than thinking about forward or backward branches, it’s more
useful for our present purposes to categorize all branches as being one of the
following two types: conditional branches or unconditional branches.

Unconditional Branch
An unconditional branch instruction consists of two parts: the branch instruction
and the target address.

jump #target

For an unconditional branch, #target can be either an immediate value,
like #12, or an address stored in a register, like #D.

Unconditional branches are fairly easy to execute, since all that the com-
puter needs to do upon decoding such a branch in the instruction register is
to have the control unit replace the address currently in the program counter
with branch’s target address. Then the next time the processor goes to fetch
the instruction at the address given by the program counter, it’ll fetch the
address at the branch target instead.

Conditional Branch
Though it has the same basic instruction format as the unconditional
branch (instruction #target), the conditional branch instruction is a
30 Chapter 2

little more complicated, because it involves jumping to the target
address only if a certain condition is met.

For example, say we want to jump to a new line of the program only if
the previous arithmetic instruction’s result is zero; if the result is nonzero,
we want to continue executing normally. We would use a conditional
branch instruction that first checks to see if the previously executed
arithmetic instruction yielded a zero result, and then writes the branch
target into the program counter if it did.

Because of such conditional jumps, we need a special register or set
of registers in which to store information about the results of arithmetic
instructions—information such as whether the previous result was zero or
nonzero, positive or negative, and so on.

Different architectures handle this in different ways, but in our DLW-1,
this is the function of the processor status word (PSW) register. On the DLW-1,
every arithmetic operation stores different types of data about its outcome in
the PSW upon completion. To execute a conditional branch, the DLW-1
must first evaluate the condition on which the branch depends (e.g., “is the
previous arithmetic instruction’s result zero?” in the preceding example) by
checking the appropriate bit in the PSW to see if that condition is true or
false. If the branch condition evaluates to true, then the control unit replaces
the address in the program counter with the branch target address. If the
branch condition evaluates to false, then the program counter is left as-is,
and the next instruction in the normal program sequence is fetched on the
next cycle.

For example, suppose we had just subtracted the number in A from the
number in B, and if the result was zero (that is, if the two numbers were equal),
we want to jump to the instruction at memory address #106. Program 2-2
shows what assembler code for such a conditional branch might look like.

Program 2-2: Assembler code for a conditional branch

The jumpz instruction causes the processor to check the PSW to determine
whether a certain bit is 1 (true) or 0 (false). If the bit is 1, the result of the
subtraction instruction was 0 and the program counter must be loaded with
the branch target address. If the bit is 0, the program counter is incremented
to point to the next instruction in sequence (which is the add instruction in
line 18).

There are other bits in the PSW that specify other types of information
about the result of the previous operation (whether it is positive or negative,
is too large for the registers to hold, and so on). As such, there are also other

Line Code Comments

16 sub A, B, C Subtract the number in register A from the number in register B and
store the result in C.

17 jumpz #106 Check the PSW, and if the result of the previous instruction was zero,
jump to the instruction at address #106. If the result was nonzero,
continue on to line 18.

18 add A, B, C Add the numbers in registers A and B and store the result in C.
The Mechanics of Program Execut ion 31

types of conditional branch instructions that check these bits. For instance,
the jumpn instruction jumps to the target address if the result of the preceding
arithmetic operation was negative; the jumpo instruction jumps to the target
address if the result of the previous operation was too large and overflowed
the register. If the machine language instruction format of the DLW-1 could
accommodate more than eight possible instructions, we could add more
types of conditional jumps.

Branch Instructions and the Fetch-Execute Loop

Now that we have looked at the basics of branching, we can modify our three-
step summary of program execution to include the possibility of a branch
instruction:

1. Fetch the next instruction from the address stored in the program
counter, and load that instruction into the instruction register.
Increment the program counter.

2. Decode the instruction in the instruction register.

3. Execute the instruction in the instruction register, using the following
rules:

a. If the instruction is an arithmetic instruction, then execute it using
the ALU and register file.

b. If the instruction is a memory-access instruction, then execute it
using the memory hardware.

c. If the instruction is a branch instruction, then execute it using the
control unit and the program counter. (For a taken branch, write
the branch target address into the program counter.)

In short, you might say that branch instructions allow the programmer to
redirect the processor as it travels through the instruction stream. Branches
point the processor to different sections of the code stream by manipulating
its control unit, which, because it contains the instruction register and pro-
gram counter, is the rudder of the CPU.

The Branch Instruction as a Special Type of Load

Recall that an instruction fetch is a special type of load that happens auto-
matically for every instruction and that always takes the address in the program
counter as its source and the instruction register as its destination. With that
in mind, you might think of a branch instruction as a similar kind of load,
but under the control of the programmer instead of the CPU. The branch
instruction is a load that takes the address specified by #target as its source
and the instruction register as its destination.

Like a regular load, a branch instruction can take as its target an address
stored in a register. In other words, branch instructions can use register-
relative addressing just like regular load instructions. This capability is useful
because it allows the computer to store blocks of code at arbitrary places in
memory. The programmer doesn’t need to know the address where the
32 Chapter 2

block of code will wind up before writing a branch instruction that jumps to
that particular block; all he or she needs is a way to get to the memory
location where the operating system, which is responsible for managing
memory, has stored the starting address of the desired block of code.

Consider Program 2-3, in which the programmer knows that the
operating system has placed the address of the branch target in line 17 in
register C. Upon reaching line 17, the computer jumps to the address stored
in C by copying the contents of C into the instruction register.

Program 2-3: A conditional branch that uses an address stored in a register

When a programmer uses register-relative addressing with a branch
instruction, the operating system must load a certain register with the base
address of the code segment in which the program resides. Like the data
segment, the code segment is a contiguous block of memory cells, but its
cells store instructions instead of data. So to jump to line 15 in the currently
running program, assuming that the operating system has placed the base
address of the code segment in C, the programmer could use the following
instruction:

Branch Instructions and Labels

In programs written for real-world architectures, branch targets don’t usually
take the form of either immediate values or register-relative values. Rather,
the programmer places a label on the line of code to which he or she wants
to jump, and then puts that label in the branch’s target field. Program 2-4
shows a portion of assembly language code that uses labels.

 sub A, B, A
 jumpz LBL1
 add A, 15, A
 store A, #(D + 16)
LBL1: add A, B, B
 store B, #(D + 16)

Program 2-4: Assembly language code that uses labels

Line Code Comments

16 sub A, B, A Subtract the number in register A from the number in register B and
store the result in A.

17 jumpz #C Check the PSW, and if the result of the previous instruction was
zero, jump to the instruction at the address stored in C. If the result
was nonzero, continue on to line 18.

18 add A, 15, A Add 15 to the number in A and store the result in A.

Code Comments

jump #(C + 30) Jump to the instruction located 30 bytes away from the start of the code
segment. (Each instruction is 2 bytes in length, so this puts us at the 15
instruction.)
The Mechanics of Program Execut ion 33

In this example, if the contents of A and B are equal, the computer will
jump to the instruction with the label LBL1 and begin executing there,
skipping the instructions between the jump and the labeled add. Just as the
absolute memory addresses used in load and store instructions are modified
at load time to fit the location in memory of the program’s data segment,
labels like LBL1 are changed at load time into memory addresses that reflect
the location in memory of the program’s code segment.

Excursus: Booting Up

If you’ve been around computers for any length of time, you’ve heard the
terms reboot or boot up used in connection with either resetting the computer
to its initial state or powering it on initially. The term boot is a shortened
version of the term bootstrap, which is itself a reference to the seemingly
impossible task a computer must perform on start-up, namely, “pulling itself
up by its own bootstraps.”

I say “seemingly impossible,” because when a computer is first powered
on there is no program in memory, but programs contain the instructions
that make the computer run. If the processor has no program running when
it’s first powered on, then how does it know where to fetch the first instruc-
tion from?

The solution to this dilemma is that the microprocessor, in its power-on
default state, is hard-wired to fetch that first instruction from a predetermined
address in memory. This first instruction, which is loaded into the processor’s
instruction register, is the first line of a program called the BIOS that lives in
a special set of storage locations—a small read-only memory (ROM) module
attached to the computer’s motherboard. It’s the job of the BIOS to perform
basic tests of the RAM and peripherals in order to verify that everything is
working properly. Then the boot process can continue.

At the end of the BIOS program lies a jump instruction, the target of
which is the location of a bootloader program. By using a jump, the BIOS
hands off control of the system to this second program, whose job it is to
search for and load the computer’s operating system from the hard disk.
The operating system (OS) loads and unloads all of the other programs
that run on the computer, so once the OS is up and running the computer
is ready to interact with the user.
34 Chapter 2

P I P E L I N E D E X E C U T I O N

All of the processor architectures that you’ve looked at
so far are relatively simple, and they reflect the earliest
stages of computer evolution. This chapter will bring
you closer to the modern computing era by introducing
one of the key innovations that underlies the rapid
performance increases that have characterized the past
few decades of microprocessor development: pipelined
execution.

Pipelined execution is a technique that enables microprocessor designers
to increase the speed at which a processor operates, thereby decreasing the
amount of time that the processor takes to execute a program. This chapter
will first introduce the concept of pipelining by means of a factory analogy,
and it will then apply the analogy to microprocessors. You’ll then learn how
to evaluate the benefits of pipelining, before I conclude with a discussion of
the technique’s limitations and costs.

NOTE This chapter’s discussion of pipelined execution focuses solely on the execution of
arithmetic instructions. Memory instructions and branch instructions are pipelined
using the same fundamental principles as arithmetic instructions, and later chapters
will cover the peculiarities of the actual execution process of each of these two types of
instruction.

The Lifecycle of an Instruction

In the previous chapter, you learned that a computer repeats three basic
steps over and over again in order to execute a program:

1. Fetch the next instruction from the address stored in the program
counter and load that instruction into the instruction register.
Increment the program counter.

2. Decode the instruction in the instruction register.

3. Execute the instruction in the instruction register.

You should also recall that step 3, the execute step, itself can consist of
multiple sub-steps, depending on the type of instruction being executed
(arithmetic, memory access, or branch). In the case of the arithmetic
instruction add A, B, C, the example we used last time, the three sub-steps
are as follows:

1. Read the contents of registers A and B.

2. Add the contents of A and B.

3. Write the result back to register C.

Thus the expanded list of actions required to execute an arithmetic
instruction is as follows (substitute any other arithmetic instruction for add
in the following list to see how it’s executed):

1. Fetch the next instruction from the address stored in the program
counter and load that instruction into the instruction register.
Increment the program counter.

2. Decode the instruction in the instruction register.

3. Execute the instruction in the instruction register. Because the instruction
is not a branch instruction but an arithmetic instruction, send it to the
arithmetic logic unit (ALU).

a. Read the contents of registers A and B.

b. Add the contents of A and B.

c. Write the result back to register C.
36 Chapter 3

At this point, I need to make a modification to the preceding list. For
reasons we’ll discuss in detail when we talk about the instruction window
in Chapter 5, most modern microprocessors treat sub-steps 3a and 3b as
a group, while they treat step 3c, the register write, separately. To reflect this
conceptual and architectural division, this list should be modified to look as
follows:

1. Fetch the next instruction from the address stored in the program
counter, and load that instruction into the instruction register.
Increment the program counter.

2. Decode the instruction in the instruction register.

3. Execute the instruction in the instruction register. Because the instruc-
tion is not a branch instruction but an arithmetic instruction, send it to
the ALU.

a. Read the contents of registers A and B.

b. Add the contents of A and B.

4. Write the result back to register C.

In a modern processor, these four steps are repeated over and over again
until the program is finished executing. These are, in fact, the four stages in
a classic RISC1 pipeline. (I’ll define the term pipeline shortly; for now, just
think of a pipeline as a series of stages that each instruction in the code
stream must pass through when the code stream is being executed.) Here
are the four stages in their abbreviated form, the form in which you’ll most
often see them:

1. Fetch

2. Decode

3. Execute

4. Write (or “write-back”)

Each of these stages could be said to represent one phase in the lifecycle
of an instruction. An instruction starts out in the fetch phase, moves to the
decode phase, then to the execute phase, and finally to the write phase. As I men-
tioned in “The Clock” on page 29, each phase takes a fixed, but by no means
equal, amount of time. In most of the example processors with which you’ll
be working in this chapter, all four phases take an equal amount of time;
this is not usually the case in real-world processors. In any case, if the DLW-1
takes exactly 1 nanosecond (ns) to complete each phase, then the DLW-1
can finish one instruction every 4 ns.

1 The term RISC is an acronym for Reduced Instruction Set Computing. I’ll cover this term in more
detail in Chapter 5.
Pipel ined Execut ion 37

Basic Instruction Flow

One useful division that computer architects often employ when talking
about CPUs is that of front end versus back end. As you already know, when
instructions are fetched from main memory, they must be decoded for
execution. This fetching and decoding takes place in the processor’s front
end.

You can see in Figure 3-1 that the front end roughly corresponds to the
control and I/O units in the previous chapter’s diagram of the DLW-1’s
programming model. The ALU and registers constitute the back end of the
DLW-1. Instructions make their way from the front end down through the
back end, where the work of number crunching gets done.

Figure 3-1: Front end versus back end

We can now modify Figure 1-4 to show all four phases of execution
(see Figure 3-2).

A

B

C

D

Program Counter (PC)

Instruction Register

Proc. Status Word (PSW)

Control Unit Registers

ALUI/O Unit

Data Bus

Front End Back End

Address
Bus
38 Chapter 3

Figure 3-2: Four phases of execution

From here on out, we’re going to focus primarily on the code stream,
and more specifically, on how instructions enter and flow through the
microprocessor, so the diagrams will need to leave out the data and results
streams entirely. Figure 3-3 presents a microprocessor’s basic instruction flow
in a manner that’s straightforward, yet easily elaborated upon.

Figure 3-3: Basic instruction flow

Fetch

Decode

Execute

Write

Fetch

Decode

Execute

Write

Front End

Back End

ALU
Pipel ined Execut ion 39

In Figure 3-3, instructions flow from the front end’s fetch and decode
phases into the back end’s execute and write phases. (Don’t worry if this
seems too simple. As the level of complexity of the architectures under
discussion increases, so will the complexity of the diagrams.)

Pipelining Explained

Let’s say my friends and I have decided to go into the automotive manu-
facturing business and that our first product is to be a sport utility vehicle
(SUV). After some research, we determine that there are five stages in
the SUV-building process:

Stage 1: Build the chassis.

Stage 2: Drop the engine into the chassis.

Stage 3: Put the doors, a hood, and coverings on the chassis.

Stage 4: Attach the wheels.

Stage 5: Paint the SUV.

Each of these stages requires the use of highly trained workers with very
specialized skill sets—workers who are good at building chasses don’t know
much about engines, bodywork, wheels, or painting, and likewise for engine
builders, painters, and the other crews. So when we make our first attempt to
put together an SUV factory, we hire and train five crews of specialists, one
for each stage of the SUV-building process. There’s one crew to build the
chassis, one to drop the engines, one to put the doors, hood, and coverings
on the chassis, another for the wheels, and a painting crew. Finally, because
the crews are so specialized and efficient, each stage of the SUV-building
process takes a crew exactly one hour to complete.

Now, since my friends and I are computer types and not industrial engi-
neers, we had a lot to learn about making efficient use of factory resources.
We based the functioning of our first factory on the following plan: Place all
five crews in a line on the factory floor, and have the first crew start an SUV at
Stage 1. After Stage 1 is complete, the Stage 1 crew passes the partially finished
SUV off to the Stage 2 crew and then hits the break room to play some foos-
ball, while the Stage 2 crew builds the engine and drops it in. Once the
Stage 2 crew is done, the SUV moves down to Stage 3, and the Stage 3 crew
takes over, while the Stage 2 crew joins the Stage 1 crew in the break room.

The SUV moves on down the line through all five stages in this way, with
only one crew working on one stage at any given time while the rest of the
crews sit idle. Once the completed SUV finishes Stage 5, the crew at Stage 1
starts on another SUV. At this rate, it takes exactly five hours to finish a single
SUV, and our factory completes one SUV every five hours.

In Figure 3-4, you can see the SUV pass through all five stages. The SUV
enters the factory floor at the beginning of the first hour, where the Stage 1
crew begins work on it. Notice that all of the other crews are sitting idle while
the Stage 1 crew does its work. At the beginning of the second hour, the
Stage 2 crew takes over, and the other four crews sit idle while waiting on
40 Chapter 3

Stage 2. This process continues as the SUV moves down the line, until at the
beginning of the sixth hour, one SUV stands completed and while another
has entered Stage 1.

Figure 3-4: The lifecycle of an SUV in a non-pipelined factory

Fast-forward one year. Our SUV, the Extinction LE, is selling like . . .
well, it’s selling like an SUV, which means it’s doing pretty well. In fact, our
SUV is selling so well that we’ve attracted the attention of the military and
have been offered a contract to provide SUVs to the U.S. Army on an ongoing
basis. The Army likes to order multiple SUVs at a time; one order might
come in for 10 SUVs, and another order might come in for 500 SUVs. The
more of these orders that we can fill each fiscal year, the more money we can
make during that same period and the better our balance sheet looks. This,
of course, means that we need to find a way to increase the number of SUVs
that our factory can complete per hour, known as our factory’s SUV completion
rate. By completing more SUVs per hour, we can fill the Army’s orders faster
and make more money each year.

The most intuitive way to go about increasing our factory’s SUV comple-
tion rate is to try and decrease the production time of each SUV. If we can
get the crews to work twice as fast, our factory can produce twice as many
SUVs in the same amount of time. Our crews are already working as hard
as they can, though, so unless there’s a technological breakthrough that
increases their productivity, this option is off the table for now.

Since we can’t speed up our crews, we can always use the brute-force
approach and just throw money at the problem by building a second assembly
line. If we hire and train five new crews to form a second assembly line, also
capable of producing one car every five hours, we can complete a grand total
of two SUVs every five hours from the factory floor—double the SUV comple-
tion rate of our present factory. This doesn’t seem like a very efficient use of
factory resources, though, since not only do we have twice as many crews
working at once but we also have twice as many crews in the break room at
once. There has to be a better way.

1hr 2hr 3hr 4hr 5hr 6hr

Completed
SUVs

Factory
Floor
Pipel ined Execut ion 41

Faced with a lack of options, we hire a team of consultants to figure out a
clever way to increase overall factory productivity without either doubling the
number of crews or increasing each individual crew’s productivity. One year
and thousands of billable hours later, the consultants hit upon a solution.
Why let our crews spend four-fifths of their work day in the break room,
when they could be doing useful work during that time? With proper sched-
uling of the existing five crews, our factory can complete one SUV each hour,
thus drastically improving both the efficiency and the output of our assembly
line. The revised workflow would look as follows:

1. The Stage 1 crew builds a chassis.
2. Once the chassis is complete, they send it on to the Stage 2 crew.
3. The Stage 2 crew receives the chassis and begins dropping the engine in,

while the Stage 1 crew starts on a new chassis.

4. When both Stage 1 and Stage 2 crews are finished, the Stage 2 crew’s
work advances to Stage 3, the Stage 1 crew’s work advances to Stage 2,
and the Stage 1 crew starts on a new chassis.

Figure 3-5 illustrates this workflow in action. Notice that multiple crews
have multiple SUVs simultaneously in progress on the factory floor. Compare
this figure to Figure 3-4, where only one crew is active at a time and only one
SUV is on the factory floor at a time.

Figure 3-5: The lifecycle of an SUV in a pipelined factory

So as the assembly line begins to fill up with SUVs in various stages of
production, more of the crews are put to work simultaneously until all of the
crews are working on a different vehicle in a different stage of production.
(Of course, this is how most of us nowadays in the post-Ford era expect a
good, efficient assembly line to work.) If we can keep the assembly line full
and keep all five crews working at once, we can produce one SUV every hour:
a fivefold improvement in SUV completion rate over the previous comple-
tion rate of one SUV every five hours. That, in a nutshell, is pipelining.

1hr 2hr 3hr 4hr 5hr 6hr 7hr

Completed
SUVs

Factory
Floor
42 Chapter 3

While the total amount of time that each individual SUV spends in pro-
duction has not changed from the original five hours, the rate at which the
factory as a whole completes SUVs has increased drastically. Furthermore,
the rate at which the factory can fulfill the Army’s orders for batches of
SUVs has increased drastically, as well. Pipelining works its magic by making
optimal use of already existing resources. We don’t need to speed up each
individual stage of the production process, nor do we need to drastically
increase the amount of resources that we throw at the problem; all that’s
necessary is that we get more work out of resources that are already there.

Applying the Analogy

Bringing our discussion back to microprocessors, it should be easy to see
how this concept applies to the four phases of an instruction’s lifecycle. Just
as the owners of the factory in our analogy wanted to increase the number of
SUVs that the factory could finish in a given period of time, microprocessor
designers are always looking for ways to increase the number of instructions
that a CPU can complete in a given period of time. When you recall that a
program is an ordered sequence of instructions, it becomes clear that
increasing the number of instructions executed per unit time is one way
to decrease the total amount of time that it takes to execute a program.
(The other way to decrease a program’s execution time is to decrease the
number of instructions in the program, but this chapter won’t address that
approach until later.) In terms of our analogy, a program is like an order
of SUVs from the military; just like increasing our factory’s output of SUVs
per hour enabled us to fill orders faster, increasing a processor’s instruction
completion rate (the number of instructions completed per unit time) enables
it to run programs faster.

A Non-Pipelined Processor
The previous chapter briefly described how the simple processors described
so far (e.g., the DLW-1) use the clock to time its internal operations. These

W H Y T H E S U V F A C T O R Y ?

The preceding discussion uses a factory analogy to explain pipelining. Other books
use simpler analogies, like doing laundry, for instance, to explain this technique,
but there are a few reasons why I chose a more elaborate and lengthy analogy to
illustrate what is a relatively simple concept. First, I use factory analogies throughout
this book, because assembly line-based factories are easy for readers to visualize
and there’s plenty of room for filling out the mental image in interesting ways in
order to make a variety of related points. Second, and perhaps even more impor-
tantly, the many scheduling-, queuing- and resource management–related problems
that factory designers face have direct analogies in computer architecture. In many
cases, the problems and solutions are exactly the same, simply translated into a
different domain. (Similar queuing-related problem/solution pairs also crop up in
the service industry, which is why analogies involving supermarkets and fast food
restaurants are also favorites of mine.)
Pipel ined Execut ion 43

non-pipelined processors work on one instruction at a time, moving each
instruction through all four phases of its lifecycle during the course of
one clock cycle. Thus non-pipelined processors are also called single-cycle
processors, because all instructions take exactly one clock cycle to execute
fully (i.e., to pass through all four phases of their lifecycles).

Because the processor completes instructions at a rate of one per clock
cycle, you want the CPU’s clock to run as fast as possible so that the processor’s
instruction completion rate can be as high as possible.

Thus you need to calculate the maximum amount of time that it takes
to complete an instruction and make the clock cycle time equivalent to that
length of time. It just so happens that on the hypothetical example CPU, the
four phases of the instruction’s lifecycle take a total of 4 ns to complete. There-
fore, you should set the duration of the CPU clock cycle to 4 ns, so that the
CPU can complete the instruction’s lifecycle—from fetch to write-back—in a
single clock. (A CPU clock cycle is often just called a clock for short.)

In Figure 3-6, the blue instruction leaves the code storage area, enters
the processor, and then advances through the phases of its lifecycle over the
course of the 4 ns clock period, until at the end of the fourth nanosecond, it
completes the last phase and its lifecycle is over. The end of the fourth nano-
second is also the end of the first clock cycle, so now that the first clock cycle
is finished and the blue instruction has completed its execution, the red
instruction can enter the processor at the start of a new clock cycle and go
through the same process. This 4 ns sequence of steps is repeated until, after
a total of 16 ns (or four clock cycles), the processor has completed all four
instructions at a completion rate of 0.25 instructions/ns (= 4 instructions/
16 ns).

Figure 3-6: A single-cycle processor

Fetch

Decode

Execute

Write

Completed
Instructions

Stored
Instructions

CPU

1ns 2ns 3ns 4ns 5ns 6ns 7ns 8ns 9ns
44 Chapter 3

Single-cycle processors like the one in Figure 3-6 are simple to design, but
they waste a lot of hardware resources. All of that white space in the diagram
represents processor hardware that’s sitting idle while it waits for the instruc-
tion that’s currently in the processor to finish executing. By pipelining the
processor in this figure, you can put more of that hardware to work every
nanosecond, thereby increasing the processor’s efficiency and its perfor-
mance on executing programs.

Before moving on, I should clarify a few concepts illustrated in Figure 3-6.
At the bottom is a region labeled “Completed Instructions.” Completed
instructions don’t actually go anywhere when they’re finished executing;
once they’ve done their job of telling the processor how to modify the
data stream, they’re simply deleted from the processor. So the “Completed
Instructions” box does not represent a real part of the computer, which
is why I’ve placed a dotted line around it. This area is just a place for you
to keep track of how many instructions the processor has completed in
a certain amount of time, or the processor’s instruction completion rate
(or completion rate, for short), so that when you compare different types of
processors, you’ll have a place where you can quickly see which processor
performs better. The more instructions a processor completes in a set
amount of time, the better it performs on programs, which are an ordered
sequence of instructions. Think of the “Completed Instructions” box as a
sort of scoreboard for tracking each processor’s completion rate, and check
the box in each of the subsequent figures to see how long it takes for the
processor to populate this box.

Following on the preceding point, you may be curious as to why the
blue instruction that has completed in the fourth nanosecond does not
appear in the “Completed Instructions” box until the fifth nanosecond.
The reason is straightforward and stems from the nature of the diagram.
Because an instruction spends one complete nanosecond, from start to finish,
in each stage of execution, the blue instruction enters the write phase at the
beginning of the fourth nanosecond and exits the write phase at the end of
the fourth nanosecond. This means that the fifth nanosecond is the first
full nanosecond in which the blue instruction stands completed. Thus at
the beginning of the fifth nanosecond (which coincides with the end of the
fourth nanosecond), the processor has completed one instruction.

A Pipelined Processor

Pipelining a processor means breaking down its instruction execution
process—what I’ve been calling the instruction’s lifecycle—into a series of
discrete pipeline stages that can be completed in sequence by specialized hard-
ware. Recall the way that we broke down the SUV assembly process into five
discrete steps—with one dedicated crew assigned to complete each step—
and you’ll get the idea.

Because an instruction’s lifecycle consists of four fairly distinct phases, you
can start by breaking down the single-cycle processor’s instruction execution
Pipel ined Execut ion 45

process into a sequence of four discrete pipeline stages, where each pipeline
stage corresponds to a phase in the standard instruction lifecycle:

Stage 1: Fetch the instruction from code storage.

Stage 2: Decode the instruction.

Stage 3: Execute the instruction.

Stage 4: Write the results of the instruction back to the register file.

Note that the number of pipeline stages is called the pipeline depth. So the
four-stage pipeline has a pipeline depth of four.

For convenience’s sake, let’s say that each of these four pipeline stages
takes exactly 1 ns to finish its work on an instruction, just like each crew in
our assembly line analogy takes one hour to finish its portion of the work on
an SUV. So the original single-cycle processor’s 4 ns execution process is now
broken down into four discrete, sequential pipeline stages of 1 ns each in
length.

Now let’s step through another diagram together to see how a pipelined
CPU would execute the four instructions depicted in Figure 3-7.

Figure 3-7: A four-stage pipeline

At the beginning of the first nanosecond, the blue instruction enters
the fetch stage. After that nanosecond is complete, the second nanosecond
begins and the blue instruction moves on to the decode stage, while the
next instruction, the red one, starts to make its way from code storage to the
processor (i.e., it enters the fetch stage). At the start of the third nanosecond,
the blue instruction advances to the execute stage, the red instruction
advances to the decode stage, and the green instruction enters the fetch
stage. At the fourth nanosecond, the blue instruction advances to the write

Completed
Instructions

Stored
Instructions

CPU Fetch

Decode

Execute

Write

1ns 2ns 3ns 4ns 5ns 6ns 7ns 8ns 9ns
46 Chapter 3

stage, the red instruction advances to the execute stage, the green instruc-
tion advances to the decode stage, and the purple instruction advances to
the fetch stage. After the fourth nanosecond has fully elapsed and the fifth
nanosecond starts, the blue instruction has passed from the pipeline and is
now finished executing. Thus we can say that at the end of 4 ns (= four clock
cycles), the pipelined processor depicted in Figure 3-7 has completed one
instruction.

At start of the fifth nanosecond, the pipeline is now full and the processor
can begin completing instructions at a rate of one instruction per nanosecond.
This one instruction/ns completion rate is a fourfold improvement over
the single-cycle processor’s completion rate of 0.25 instructions/ns (or four
instructions every 16 ns).

Shrinking the Clock

You can see from Figure 3-7 that the role of the CPU clock changes slightly
in a pipelined processor, compared to the single-cycle processor shown in
Figure 3-6. Because all of the pipeline stages must now work together
simultaneously and be ready at the start of each new nanosecond to hand
over the results of their work to the next pipeline stage, the clock is needed
to coordinate the activity of the whole pipeline. The way this is done is
simple: Shrink the clock cycle time to match the time it takes each stage to
complete its work so that at the start of each clock cycle, each pipeline stage
hands off the instruction it was working on to the next stage in the pipeline.
Because each pipeline stage in the example processor takes 1 ns to complete
its work, you can set the clock cycle to be 1 ns in duration.

This new method of clocking the processor means that a new instruction
will not necessarily be completed at the close of each clock cycle, as was the
case with the single-cycle processor. Instead, a new instruction will be com-
pleted at the close of only those clock cycles in which the write stage has been
working on an instruction. Any clock cycle with an empty write stage will add
no new instructions to the “Completed Instructions” box, and any clock cycle
with an active write stage will add one new instruction to the box. Of course,
this means that when the pipeline first starts to work on a program, there will
be a few clock cycles—three to be exact—during which no instructions are
completed. But once the fourth clock cycle starts, the first instruction enters
the write stage and the pipeline can then begin completing new instructions
on each clock cycle, which, because each clock cycle is 1 ns, translates into a
completion rate of one instruction per nanosecond.

Shrinking Program Execution Time

Note that the total execution time for each individual instruction is not
changed by pipelining. It still takes an instruction 4 ns to make it all the way
through the processor; that 4 ns can be split up into four clock cycles of 1 ns
each, or it can cover one longer clock cycle, but it’s still the same 4 ns. Thus
pipelining doesn’t speed up instruction execution time, but it does speed up
program execution time (the number of nanoseconds that it takes to execute an
entire program) by increasing the number of instructions finished per unit
Pipel ined Execut ion 47

of time. Just like pipelining our hypothetical SUV assembly line allowed us to
fill the Army’s orders in a shorter span of time, even though each individual
SUV still spent a total of five hours in the assembly line, so does pipelining
allow a processor to execute programs in a shorter amount of time, even
though each individual instruction still spends the same amount of time
traveling through the CPU. Pipelining makes more efficient use of the CPU’s
existing resources by putting all of its units to work simultaneously, thereby
allowing it to do more total work each nanosecond.

The Speedup from Pipelining
In general, the speedup in completion rate versus a single-cycle implementa-
tion that’s gained from pipelining is ideally equal to the number of pipeline
stages. A four-stage pipeline yields a fourfold speedup in the completion rate
versus a single-cycle pipeline, a five-stage pipeline yields a fivefold speedup, a
twelve-stage pipeline yields a twelvefold speedup, and so on. This speedup is
possible because the more pipeline stages there are in a processor, the more
instructions the processor can work on simultaneously, and the more instruc-
tions it can complete in a given period of time. So the more finely you can slice
those four phases of the instruction’s lifecycle, the more of the hardware that’s
used to implement those phases you can put to work at any given moment.

To return to our assembly line analogy, let’s say that each crew is made
up of six workers, and that each of the hour-long tasks that each crew per-
forms can be readily subdivided into two shorter, 30-minute tasks. So we can
double our factory’s throughput by splitting each crew into two smaller, more
specialized crews of three workers each, and then having each smaller crew
perform one of the shorter tasks on one SUV per 30 minutes.

Stage 1: Build the chassis.

Crew 1a: Fit the parts of the chassis together and spot-weld the joints.

Crew 1b: Fully weld all the parts of the chassis.

Stage 2: Drop the engine into the chassis.

Crew 2a: Place the engine into the chassis and mount it in place.

Crew 2b: Connect the engine to the moving parts of the car.

Stage 3: Put the doors, a hood, and coverings on the chassis.

Crew 3a: Put the doors and hood on the chassis.

Crew 3b: Put the other coverings on the chassis.

Stage 4: Attach the wheels.

Crew 4a: Attach the two front wheels.

Crew 4b: Attach the two rear wheels.

Stage 5: Paint the SUV.

Crew 5a: Paint the sides of the SUV.

Crew 5b: Paint the top of the SUV.
48 Chapter 3

After the modifications described here, the 10 smaller crews in our
factory now have a collective total of 10 SUVs in progress during the course
of any given 30-minute period. Furthermore, our factory can now complete
a new SUV every 30 minutes, a tenfold improvement over our first factory’s
completion rate of one SUV every five hours. So by pipelining our assembly
line even more deeply, we’ve put even more of its workers to work con-
currently, thereby increasing the number of SUVs that can be worked on
simultaneously and increasing the number of SUVs that can be completed
within a given period of time.

Deepening the pipeline of the four-stage processor works on similar
principles and has a similar effect on completion rates. Just as the five
stages in our SUV assembly line could be broken down further into a
longer sequence of more specialized stages, the execution process that
each instruction goes through can be broken down into a series of much
more than just four discrete stages. By breaking the processor’s four-stage
pipeline down into a longer series of shorter, more specialized stages,
even more of the processor’s specialized hardware can work simultaneously
on more instructions and thereby increase the number of instructions that
the pipeline completes each nanosecond.

We first moved from a single-cycle processor to a pipelined processor
by taking the 4 ns time period that the instruction spent traveling through
the processor and slicing it into four discrete pipeline stages of 1 ns each in
length. These four discrete pipeline stages corresponded to the four phases
of an instruction’s lifecycle. A processor’s pipeline stages aren’t always going
to correspond exactly to the four phases of a processor’s lifecycle, though.
Some processors have a five-stage pipeline, some have a six-stage pipeline,
and many have pipelines deeper than 10 or 20 stages. In such cases, the CPU
designer must slice up the instruction’s lifecycle into the desired number of
stages in such a way that all the stages are equal in length.

Now let’s take that 4 ns execution process and slice it into eight discrete
stages. Because all eight pipeline stages must be of exactly the same duration
for pipelining to work, the eight pipeline stages must each be 4 ns ÷ 8 = 0.5 ns
in length. Since we’re presently working with an idealized example, let’s
pretend that splitting up the processor’s four-phase lifecycle into eight
equally long (0.5 ns) pipeline stages is a trivial matter, and that the results
look like what you see in Figure 3-8. (In reality, this task is not trivial and
involves a number of trade-offs. As a concession to that reality, I’ve chosen
to use the eight stages of a real-world pipeline—the MIPS pipeline—in
Figure 3-8, instead of just splitting each of the four traditional stages in two.)

Because pipelining requires that each pipeline stage take exactly one
clock cycle to complete, the clock cycle can now be shortened to 0.5 ns
in order to fit the lengths of the eight pipeline stages. At the bottom of
Figure 3-8, you can see the impact that this increased number of pipeline
stages has on the number of instructions completed per unit time.
Pipel ined Execut ion 49

Figure 3-8: An eight-stage pipeline

Completed
Instructions

Stored
Instructions

CPU Fetch1

Fetch2

Decode

Execute

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Data1

Data2

Tag Ch.

Write

Completed
Instructions

Stored
Instructions

CPU Fetch1

Fetch2

Decode

Execute

4.5 5 5.5 6 6.5 7 7.5 8 8.5

Data1

Data2

Tag Ch.

Write
50 Chapter 3

The single-cycle processor can complete one instruction every 4 ns, for
a completion rate of 0.25 instructions/ns, and the four-stage pipelined pro-
cessor can complete one instruction every nanosecond for a completion rate
of one instructions/ns. The eight-stage processor depicted in Figure 3-8
improves on both of these by completing one instruction every 0.5 ns, for a
completion rate of two instructions/ns. Note that because each instruction
still takes 4 ns to execute, the first 4 ns of the eight-stage processor are still
dedicated to filling up the pipeline. But once the pipeline is full, the processor
can begin completing instructions twice as fast as the four-stage processor
and eight times as fast as the single-stage processor.

This eightfold increase in completion rate versus a single-cycle design
means that the eight-stage processor can execute programs much faster than
either a single-cycle or a four-stage processor. But does the eightfold increase
in completion rate translate into an eightfold increase in processor perfor-
mance? Not exactly.

Program Execution Time and Completion Rate

If the program that the single-cycle processor in Figure 3-6 is running
consisted of only the four instructions depicted, that program would have
a program execution time of 16 ns, or 4 instructions ÷ 0.25 instructions/ns.
If the program consisted of, say, seven instructions, it would have a program
execution time of 7 instructions ÷ 0.25 instructions/ns = 28 ns. In general,
a program’s execution time is equal to the total number of instructions in
the program divided by the processor’s instruction completion rate (number
of instructions completed per nanosecond), as in the following equation:

program execution time = number of instructions in program / instruction
completion rate

Most of the time, when I talk about processor performance in this book,
I’m talking about program execution time. One processor performs better
than another if it executes all of a program’s instructions in a shorter
amount of time, so reducing program execution time is the key to increasing
processor performance.

From the preceding equation, it should be clear that program execution
time can be reduced in one of two ways: by a reduction in the number of
instructions per program or by an increase in the processor’s completion
rate. For now, let’s assume that the number of instructions in a program is
fixed and that there’s nothing that can be done about this term of the equa-
tion. As such, our focus in this chapter will be on increasing instruction
completion rates.

In the case of a non-pipelined, single-cycle processor, the instruction
completion rate (x instructions per 1 ns) is simply the inverse of the instruc-
tion execution time (y ns per 1 instruction), where x and y have different
numerical values. Because the relationship between completion rate and
instruction execution time is simple and direct in a single-cycle processor,
Pipel ined Execut ion 51

an nfold improvement in one is an nfold improvement in the other. So
improving the performance of a single-cycle processor is really about
reducing instruction execution times.

With pipelined processors, the relationship between instruction execution
time and completion rate is more complex. As discussed previously, pipelined
processors allow you to increase the processor’s completion rate without
altering the instruction execution time. Of course, a reduction in instruction
execution time still translates into a completion rate improvement, but the
reverse is not necessarily true. In fact, as you’ll learn later on, pipelining’s
improvements to completion rate often come at the price of increased instruc-
tion execution times. This means that for pipelining to improve performance,
the processor’s completion rate must be as high as possible over the course
of a program’s execution.

The Relationship Between Completion Rate and Program Execution Time

If you look at the “Completed Instructions” box of the four-stage processor
back in Figure 3-7, you’ll see that a total of five instructions have been com-
pleted at the start of the ninth nanosecond. In contrast, the non-pipelined
processor illustrated in Figure 3-6 sports two completed instructions at the
start of the ninth nanosecond. Five completed instructions in the span of 8 ns
is obviously not a fourfold improvement over two completed instructions in
the same time period, so what gives?

Remember that it took the pipelined processor 4 ns initially to fill up
with instructions; the pipelined processor did not complete its first instruc-
tion until the end of the fourth nanosecond. Therefore, it completed fewer
instructions over the first 8 ns of that program’s execution than it would have
had the pipeline been full for the entire 8 ns.

When the processor is executing programs that consist of thousands of
instructions, then as the number of nanoseconds stretches into the thousands,
the impact on program execution time of those four initial nanoseconds,
during which only one instruction was completed, begins to vanish and the
pipelined processor’s advantage begins to approach the fourfold mark. For
example, after 1,000 ns, the non-pipelined processor will have completed 250
instructions (1000 ns ÷ 0.25 instructions/ns = 250 instructions), while the pipe-
lined processor will have completed 996 instructions [(1000 ns – 4 ns) ÷ 1
instructions/ns]—a 3.984-fold improvement.

What I’ve just described using this concrete example is the difference
between a pipeline’s maximum theoretical completion rate and its real-world
average completion rate. In the previous example, the four-stage processor’s
maximum theoretical completion rate, i.e., its completion rate on cycles
when its entire pipeline is full, is one instruction/ns. However, the processor’s
average completion rate during its first 8 ns is 5 instructions/8 ns = 0.625
instructions/ns. The processor’s average completion rate improves as it
passes more clock cycles with its pipeline full, until at 1,000 ns, its average
completion rate is 996 instructions/1000 ns = 0.996 instructions/ns.
52 Chapter 3

At this point, it might help to look at a graph of the four-stage pipeline’s
average completion rate as the number of nanoseconds increases, illustrated
in Figure 3-9.

Figure 3-9: Average completion rate of a four-stage pipeline

You can see how the processor’s average completion rate stays at zero until
the 4 ns mark, after which point the pipeline is full and the processor can
begin completing a new instruction on each nanosecond, causing the average
completion rate for the entire program to curve upward and eventually to
approach the maximum completion rate of one instruction/ns.

So in conclusion, a pipelined processor can only approach its ideal
completion rate if it can go for long stretches with its pipeline full on every
clock cycle.

Instruction Throughput and Pipeline Stalls

Pipelining isn’t totally “free,” however. Pipelining adds some complexity to
the microprocessor’s control logic, because all of these stages have to be kept
in sync. Even more important for the present discussion, though, is the fact
that pipelining adds some complexity to the ways in which you assess the
processor’s performance.

Instruction Throughput

Up until now, we’ve talked about microprocessor performance mainly in
terms of instruction completion rate, or the number of instructions that the
processor’s pipeline can complete each nanosecond. A more common perfor-
mance metric in the real world is a pipeline’s instruction throughput, or the
number of instructions that the processor completes each clock cycle. You might
be thinking that a pipeline’s instruction throughput should always be one
instruction/clock, because I stated previously that a pipelined processor
completes a new instruction at the end of each clock cycle in which the write
stage has been active. But notice how the emphasized part of that definition
qualifies it a bit; you’ve already seen that the write stage is inactive during

20 40 60 80 100

0.2

0.4

0.6

0.8

1

Average
Instruction
Throughput

(instructions/clock)

Clock Cycles
Pipel ined Execut ion 53

clock cycles in which the pipeline is being filled, so on those clock cycles, the
processor’s instruction throughput is 0 instructions/clock. In contrast, when
the instruction’s pipeline is full and the write stage is active, the pipelined
processor has an instruction throughput of 1 instruction/clock.

So just like there was a difference between a processor’s maximum
theoretical completion rate and its average completion rate, there’s also
a difference between a processor’s maximum theoretical instruction
throughput and its average instruction throughput:

Instruction throughput
The number of instructions that the processor finishes executing on
each clock cycle. You’ll also see instruction throughput referred to as
instructions per clock (IPC).

Maximum theoretical instruction throughput
The theoretical maximum number of instructions that the processor can
finish executing on each clock cycle. For the simple kinds of pipelined
and non-pipelined processors described so far, this number is always one
instruction per cycle (one instruction/clock or one IPC).

Average instruction throughput
The average number of instructions per clock (IPC) that the processor
has actually completed over a certain number of cycles.

A processor’s instruction throughput is closely tied to its instruction
completion rate—the more instructions that the processor completes each
clock cycle (instructions/clock), the more instructions it also completes over
a given period of time (instructions/ns).

We’ll talk more about the relationship between these two metrics in a
moment, but for now just remember that a higher instruction throughput
translates into a higher instruction completion rate, and hence better
performance.

Pipeline Stalls

In the real world, a processor’s pipeline can be found in more conditions
than just the two described so far: a full pipeline or a pipeline that’s being
filled. Sometimes, instructions get hung up in one pipeline stage for multiple
cycles. There are a number of reasons why this might happen—we’ll discuss
many of them throughout this book—but when it happens, the pipeline is
said to stall. When the pipeline stalls, or gets hung in a certain stage, all of the
instructions in the stages below the one where the stall happened continue
advancing normally, while the stalled instruction just sits in its stage, and all
the instructions behind it back up.

In Figure 3-10, the orange instruction is stalled for two extra cycles in the
fetch stage. Because the instruction is stalled, a new gap opens ahead of it in
the pipeline for each cycle that it stalls. Once the instruction starts advancing
through the pipeline again, the gaps in the pipeline that were created by the
stall—gaps that are commonly called “pipeline bubbles”—travel down the
pipeline ahead of the formerly stalled instruction until they eventually leave
the pipeline.
54 Chapter 3

Figure 3-10: Pipeline stalls in a four-stage pipeline would look different
without the effect of the “bubbles.”

Pipeline stalls—or bubbles—reduce a pipeline’s average instruction
throughput, because they prevent the pipeline from attaining the maxi-
mum throughput of one finished instruction per cycle. In Figure 3-10, the
orange instruction has stalled in the fetch stage for two extra cycles, creating
two bubbles that will propagate through the pipeline. (Again, the bubble is
simply a way of signifying that the pipeline stage in which the bubble sits is
doing no work during that cycle.) Once the instructions below the bubble
have completed, the processor will complete no new instructions until the
bubbles move out of the pipeline. So at the ends of clock cycles 9 and 10, no
new instructions are added to the “Completed Instructions” region; normally,
two new instructions would be added to the region at the ends of these two
cycles. Because of the bubbles, though, the processor is two instructions
behind schedule when it hits the 11th clock cycle and begins racking up
completed instructions again.

The more of these bubbles that crop up in the pipeline, the farther away
the processor’s actual instruction throughput is from its maximum instruction
throughput. In the preceding example, the processor should ideally have
completed seven instructions by the time it finishes the 10th clock cycle, for
an average instruction throughput of 0.7 instructions per clock. (Remember,
the maximum instruction throughput possible under ideal conditions is one
instruction per clock, but many more cycles with no bubbles would be needed
to approach that maximum.) But because of the pipeline stall, the processor
only completes five instructions in 10 clocks, for an average instruction
throughput of 0.5 instructions per clock. 0.5 instructions per clock is half the

Completed
Instructions

Stored
Instructions

CPU Fetch

Decode

Execute

Write

5ns 6ns 7ns 8ns 9ns 10ns 11ns
Pipel ined Execut ion 55

theoretical maximum instruction throughput, but of course the processor
spent a few clocks filling the pipeline, so it couldn’t have achieved that after
10 clocks, even under ideal conditions. More important is the fact that 0.5
instructions per clock is only 71 percent of the throughput that it could have
achieved were there no stall (i.e., 0.7 instructions per clock). Because pipeline
stalls decrease the processor’s average instruction throughput, they increase
the amount of time that it takes to execute the currently running program.
If the program in the preceding example consisted of only the seven instruc-
tions pictured, then the pipeline stall would have resulted in a 29 percent
program execution time increase.

Look at the graph in Figure 3-11; it shows what that two-cycle stall does to
the average instruction throughput.

Figure 3-11: Average instruction throughput of a four-stage pipeline with a two-cycle stall

The processor’s average instruction throughput stops rising and begins
to plummet when the first bubble hits the write stage, and it doesn’t recover
until the bubbles have left the pipeline.

To get an even better picture of the impact that stalls can have on a
pipeline’s average instruction throughput, let’s now look at the impact that
a stall of 10 cycles (starting in the fetch stage of the 18th cycle) would have
over the course of 100 cycles in the four-stage pipeline described so far. Look
at the graph in Figure 3-12.

After the first bubble of the stall hits the write stage in the 20th clock, the
average instruction throughput stops increasing and begins to decrease. For
each clock in which there’s a bubble in the write stage, the pipeline’s instruc-
tion throughput is 0 instructions/clock, so its average instruction throughput
for the whole period continues to decline. After the last bubble has worked
its way out of the write stage, then the pipeline begins completing new instruc-
tions again at a rate of one instruction/cycle and its average instruction
throughput begins to climb. And when the processor’s instruction through-
put begins to climb, so does its completion rate and its performance on
programs.

20 40 60 80 100

0.2

0.4

0.6

0.8

1

Average
Instruction
Throughput

(instructions/clock)

Clock Cycles
56 Chapter 3

Figure 3-12: Average instruction throughput of a four-stage pipeline with a 10-cycle stall

Now, 10 or 20 cycles worth of stalls here and there may not seem like
much, but they do add up. Even more important, though, is the fact that the
numbers in the preceding examples would be increased by a factor of 30 or
more in real-world execution scenarios. As of this writing, a processor can
spend from 50 to 120 nanoseconds waiting on data from main memory. For a
3 GHz processor that has a clock cycle time of a fraction of a nanosecond, a
100 ns main memory access translates into a few thousand clock cycles worth
of bubbles—and that’s just for one main memory access out of the many
millions that a program might make over the course of its execution.

In later chapters, we’ll look at the causes of pipeline stalls and the many
tricks that computer architects use to overcome them.

Instruction Latency and Pipeline Stalls

Before closing out our discussion of pipeline stalls, I should introduce
another term that you’ll be seeing periodically throughout the rest of the
book: instruction latency. An instruction’s latency is the number of clock cycles
it takes for the instruction to pass through the pipeline. For a single-cycle
processor, all instructions have a latency of one clock cycle. In contrast, for
the simple four-stage pipeline described so far, all instructions have a latency
of four cycles. To get a visual image of this, take one more look at the blue
instruction in Figure 3-6 earlier in this chapter; this instruction takes four
clock cycles to advance, at a rate of one clock cycle per stage, through each of
the four stages of the pipeline. Likewise, instructions have a latency of eight
cycles on an eight-stage pipeline, 12 cycles on a 12-stage pipeline, and so on.

In real-world processors, instruction latency is not necessarily a fixed
number that’s equal to the number of pipeline stages. Because instructions
can get hung up in one or more pipeline stages for multiple cycles, each extra
cycle that they spend waiting in a pipeline stage adds one more cycle to their
latency. So the instruction latencies given in the previous paragraph (i.e., four
cycles for a four-stage pipeline, eight cycles for an eight-stage pipeline, and

20 40 60 80 100

0.2

0.4

0.6

0.8

1

Average
Instruction
Throughput

(instructions/clock)

Clock Cycles
Pipel ined Execut ion 57

so on) represent minimum instruction latencies. Actual instruction latencies
in pipelines of any length can be longer than the depth of the pipeline,
depending on whether or not the instruction stalls in one or more stages.

Limits to Pipelining
As you can probably guess, there are some practical limits to how deeply you
can pipeline an assembly line or a processor before the actual speedup in
completion rate that you gain from pipelining starts to become significantly
less than the ideal speedup that you might expect. In the real world, the
different phases of an instruction’s lifecycle don’t easily break down into an
arbitrarily high number of shorter stages of perfectly equal duration. Some
stages are inherently more complex and take longer than others.

But because each pipeline stage must take exactly one clock cycle to
complete, the clock pulse that coordinates all the stages can be no faster
than the pipeline’s slowest stage. In other words, the amount of time it takes
for the slowest stage in the pipeline to complete will determine the length of
the CPU’s clock cycle and thus the length of every pipeline stage. This means
that the pipeline’s slowest stage will spend the entire clock cycle working,
while the faster stages will spend part of the clock cycle idle. Not only does
this waste resources, but it increases each instruction’s overall execution time
by dragging out some phases of the lifecycle to take up more time than they
would if the processor was not pipelined—all of the other stages must wait a
little extra time each cycle while the slowest stage plays catch-up.

So, as you slice the pipeline more finely in order to add stages and increase
throughput, the individual stages get less and less uniform in length and
complexity, with the result that the processor’s overall instruction execution
time gets longer. Because of this feature of pipelining, one of the most diffi-
cult and important challenges that the CPU designer faces is that of balancing
the pipeline so that no one stage has to do more work to do than any other.
The designer must distribute the work of processing an instruction evenly to
each stage, so that no one stage takes up too much time and thus slows down
the entire pipeline.

Clock Period and Completion Rate

If the pipelined processor’s clock cycle time, or clock period, is longer than its
ideal length (i.e., non-pipelined instruction execution time/pipeline depth),
and it always is, then the processor’s completion rate will suffer. If the instruc-
tion throughput stays fixed at, say, one instruction/clock, then as the clock
period increases, the completion rate decreases. Because new instructions
can be completed only at the end of each clock cycle, a longer clock cycle trans-
lates into fewer instructions completed per nanosecond, which in turn
translates into longer program execution times.

To get a better feel for the relationship between completion rate, instruc-
tion throughput, and clock cycle time, let’s take the eight-stage pipeline from
Figure 3-8 and increase its clock cycle time to 1 ns instead of 0.5 ns. Its first
9 ns of execution would then look as in Figure 3-13.
58 Chapter 3

Figure 3-13: An eight-stage pipeline with a 1 ns clock period

As you can see, the instruction execution time has now increased from
an original time of 4 ns to a new time of 8 ns, which means that the eight-
stage pipeline does not complete its first instruction until the end of the
eighth nanosecond. Once the pipeline is full, the processor pictured in
Figure 3-13 begins completing instructions at a rate of one instruction per
nanosecond. This completion rate is half the completion rate of the ideal
eight-stage pipeline with the 0.5 ns clock cycle time. It’s also the exact same
completion rate as the one instruction/ns completion rate of the ideal four-
stage pipeline. In short, the longer clock cycle time of the new eight-stage
pipeline has robbed the deeper pipeline of its completion rate advantage.
Furthermore, the eight-stage pipeline now takes twice as long to fill.

Take a look at the graph in Figure 3-14 to see what this doubled execu-
tion time does to the eight-stage pipeline’s average completion rate curve
versus the same curve for a four-stage pipeline.

It takes longer for the slower eight-stage pipeline to fill up, which means
that its average completion rate—and hence its performance—ramps up
more slowly when the pipeline is first filled with instructions. There are many
situations in which a processor that’s executing a program must flush its
pipeline entirely and then begin refilling it from a different point in the
code stream. In such instances, that slower-ramping completion rate curve
causes a performance hit.

Completed
Instructions

Stored
Instructions

CPU Fetch1

Fetch2

Decode

Execute

1 2 3 4 5 6 7 8 9

Data1

Data2

Tag Ch.

Write
Pipel ined Execut ion 59

Figure 3-14: Average instruction completion rate for four- and eight-stage
pipelines with a 1 ns clock period

In the end, the performance gains brought about by pipelining depend
on two things:

1. Pipeline stalls must be avoided. As you’ve seen earlier, pipeline stalls
cause the processor’s completion rate and performance to drop. Main
memory accesses are a major cause of pipeline stalls, but this problem
can be alleviated significantly by the use of caching. We’ll cover caching
in detail in Chapter 11. Other causes of stalls, like the various types of
hazards, will be covered at the end of Chapter 4.

2. Pipeline refills must be avoided. Flushing the pipeline and refilling it
again takes a serious toll on both completion rate and performance.
Once the pipeline is full, it must remain full for as long as possible if the
average completion rate is to be kept up.

When we look more closely at real-world pipelined processors in later
chapters, you’ll see these two issues come up again and again. In fact, much
of the rest of the book will be about how the different architectures under
discussion work to keep their pipelines full by preventing stalls and ensuring
a continuous and uninterrupted flow of instructions into the processor from
the code storage area.

The Cost of Pipelining

In addition to the inherent limits to performance improvement that we’ve
just looked at, pipelining requires a nontrivial amount of extra bookkeeping
and buffering logic to implement, so it incurs an overhead cost in transis-
tors and die space. Furthermore, this overhead cost increases with pipeline
depth, so that a processor with a very deep pipeline (for example, Intel’s
Pentium 4) spends a significant amount of its transistor budget on pipeline-
related logic. These overhead costs place some practical constraints on how
deeply you can pipeline a processor. I’ll say a lot more about such constraints
in the chapters covering the Pentium line and the Pentium 4.

Average
Completion

Rate
(instructions/ns)

Time (ns)

4-stage pipeline

8-stage pipeline

20 40 60 80 100

0.2

0.4

0.6

0.8

1

60 Chapter 3

S U P E R S C A L A R E X E C U T I O N

Chapters 1 and 2 described the processor as it is visible
to the programmer. The register files, the processor
status word (PSW), the arithmetic logic unit (ALU),
and other parts of the programming model are all
there to provide a means for the programmer to
manipulate the processor and make it do useful work.
In other words, the programming model is essentially
a user interface for the CPU.

Much like the graphical user interfaces on modern computer systems,
there’s a lot more going on under the hood of a microprocessor than the
simplicity of the programming model would imply. In Chapter 12, I’ll talk
about the various ways in which the operating system and processor collab-
orate to fool the user into thinking that he or she is executing multiple pro-
grams at once. There’s a similar sort of trickery that goes on beneath the
programming model in a modern microprocessor, but it’s intended to fool

the programmer into thinking that there’s only one thing going on at a time,
when really there are multiple things happening simultaneously. Let me
explain.

Back in the days when computer designers could fit relatively few
transistors on a single piece of silicon, many parts of the programming
model actually resided on separate chips attached to a single circuit board.
For instance, one chip contained the ALU, another chip contained the
control unit, still another chip contained the registers, and so on. Such
computers were relatively slow, and the fact that they were made of multiple
chips made them expensive. Each chip had its own manufacturing and
packaging costs, so the more chips you put on a board, the more expensive
the overall system was. (Note that this is still true today. The cost of pro-
ducing systems and components can be drastically reduced by packing the
functionality of multiple chips into a single chip.)

With the advent of the Intel 4004 in 1971, all of that changed. The 4004
was the world’s first microprocessor on a chip. Designed to be the brains of
a calculator manufactured by a now defunct company named Busicom, the
4004 had 16 four-bit registers, an ALU, and decoding and control logic all
packed onto a single, 2,300-transistor chip. The 4004 was quite a feat for its
day, and it paved the way for the PC revolution. However, it wasn’t until Intel
released the 8080 four years later that the world saw the first true general-
purpose CPU.

During the decades following the 8080, the number of transistors that
could be packed onto a single chip increased at a stunning pace. As CPU
designers had more and more transistors to work with when designing new
chips, they began to think up novel ways for using those transistors to increase
computing performance on application code. One of the first things that
occurred to designers was that they could put more than one ALU on a chip
and have both ALUs working in parallel to process code faster. Since these
designs could do more than one scalar (or integer, for our purposes) operation
at once, they were called superscalar computers. The RS6000 from IBM was
released in 1990 and was the world’s first commercially available superscalar
CPU. Intel followed in 1993 with the Pentium, which, with its two ALUs,
brought the x86 world into the superscalar era.

For illustrative purposes, I’ll now introduce a two-way superscalar version
of the DLW-1, called the DLW-2 and illustrated in Figure 4-1. The DLW-2
has two ALUs, so it’s able to execute two arithmetic instructions in parallel
(hence the term two-way superscalar). These two ALUs share a single register
file, a situation that in terms of our file clerk analogy would correspond to
the file clerk sharing his personal filing cabinet with a second file clerk.

As you can probably guess from looking at Figure 4-1, superscalar
processing adds a bit of complexity to the DLW-2’s design, because it needs
new circuitry that enables it to reorder the linear instruction stream so that
some of the stream’s instructions can execute in parallel. This circuitry has to
ensure that it’s “safe” to dispatch two instructions in parallel to the two exe-
cution units. But before I go on to discuss some reasons why it might not be
safe to execute two instructions in parallel, I should define the term I just
used—dispatch.
62 Chapter 4

Figure 4-1: The superscalar DLW-2

Notice that in Figure 4-2 I’ve renamed the second pipeline stage decode/
dispatch. This is because attached to the latter part of the decode stage is a
bit of dispatch circuitry whose job it is to determine whether or not two
instructions can be executed in parallel, in other words, on the same clock
cycle. If they can be executed in parallel, the dispatch unit sends one instruc-
tion to the first integer ALU and one to the second integer ALU. If they can’t
be dispatched in parallel, the dispatch unit sends them in program order to
the first of the two ALUs. There are a few reasons why the dispatcher might
decide that two instructions can’t be executed in parallel, and we’ll cover
those in the following sections.

It’s important to note that even though the processor has multiple ALUs,
the programming model does not change. The programmer still writes to the
same interface, even though that interface now represents a fundamentally
different type of machine than the processor actually is; the interface repre-
sents a sequential execution machine, but the processor is actually a parallel
execution machine. So even though the superscalar CPU executes instruc-
tions in parallel, the illusion of sequential execution absolutely must be
maintained for the sake of the programmer. We’ll see some reasons why
this is so later on, but for now the important thing to remember is that main
memory still sees one sequential code stream, one data stream, and one
results stream, even though the code and data streams are carved up inside
the computer and pushed through the two ALUs in parallel.

Main Memory

CPU

ALU1

ALU2
Superscalar Execut ion 63

Figure 4-2: The pipeline of the superscalar DLW-2

If the processor is to execute multiple instructions at once, it must be
able to fetch and decode multiple instructions at once. A two-way superscalar
processor like the DLW-2 can fetch two instructions at once from memory on
each clock cycle, and it can also decode and dispatch two instructions each
clock cycle. So the DLW-2 fetches instructions from memory in groups of
two, starting at the memory address that marks the beginning of the current
program’s code segment and incrementing the program counter to point
four bytes ahead each time a new instruction is fetched. (Remember, the
DLW-2’s instructions are two bytes wide.)

As you might guess, fetching and decoding two instructions at a time
complicates the way the DLW-2 deals with branch instructions. What if the
first instruction in a fetched pair happens to be a branch instruction that has
the processor jump directly to another part of memory? In this case, the
second instruction in the pair has to be discarded. This wastes fetch band-
width and introduces a bubble into the pipeline. There are other issues
relating to superscalar execution and branch instructions, and I’ll say more
about them in the section on control hazards.

Superscalar Computing and IPC

Superscalar computing allows a microprocessor to increase the number
of instructions per clock that it completes beyond one instruction per clock.
Recall that one instruction per clock was the maximum theoretical instruction
throughput for a pipelined processor, as described in “Instruction Through-
put” on page 53. Because a superscalar machine can have multiple instructions

Fetch

Decode/
Dispatch

ALU2

Execute

Write

Front End

Back End

ALU1
64 Chapter 4

in multiple write stages on each clock cycle, the superscalar machine can
complete multiple instructions per cycle. If we adapt Chapter 3’s pipeline
diagrams to take account of superscalar execution, they look like Figure 4-3.

Figure 4-3: Superscalar execution and pipelining combined

In Figure 4-3, two instructions are added to the Completed Instructions
box on each cycle once the pipeline is full. The more ALU pipelines that a
processor has operating in parallel, the more instructions it can add to that
box on each cycle. Thus superscalar computing allows you to increase a pro-
cessor’s IPC by adding more hardware. There are some practical limits to how
many instructions can be executed in parallel, and we’ll discuss those later.

Expanding Superscalar Processing with Execution Units

Most modern processors do more with superscalar execution than just add-
ing a second ALU. Rather, they distribute the work of handling different
types of instructions among different types of execution units. An execution
unit is a block of circuitry in the processor’s back end that executes a certain
category of instruction. For instance, you’ve already met the arithmetic logic
unit (ALU), an execution unit that performs arithmetic and logical opera-
tions on integers. In this section we’ll take a closer look at the ALU, and
you’ll learn about some other types of execution units for non-integer arith-
metic operations, memory accesses, and branch instructions.

Completed
Instructions

Stored
Instructions

CPU
Fetch

Decode

Execute

Write

1ns 2ns 3ns 4ns 5ns 6ns 7ns
Superscalar Execut ion 65

Basic Number Formats and Computer Arithmetic

The kinds of numbers on which modern microprocessors operate can be
divided into two main types: integers (aka fixed-point numbers) and floating-
point numbers. Integers are simply whole numbers of the type with which
you first learn to count in grade school. An integer can be positive, negative,
or zero, but it cannot, of course, be a fraction. Integers are also called fixed-
point numbers because an integer’s decimal point does not move. Examples
of integers are 1, 0, 500, 27, and 42. Arithmetic and logical operations involv-
ing integers are among the simplest and fastest operations that a micropro-
cessor performs. Applications like compilers, databases, and word processors
make heavy use of integer operations, because the numbers they deal with
are usually whole numbers.

A floating-point number is a decimal number that represents a fraction.
Examples of floating-point numbers are 56.5, 901.688, and 41.9999. As you
can see from these three numbers, the decimal point “floats” around and
isn’t fixed in once place, hence the name. The number of places behind the
decimal point determines a floating-point number’s accuracy, so floating-
point numbers are often approximations of fractional values. Arithmetic and
logical operations performed on floating-point numbers are more complex
and, hence, slower than their integer counterparts. Because floating-point
numbers are approximations of fractional values, and the real world is kind
of approximate and fractional, floating-point arithmetic is commonly found
in real world–oriented applications like simulations, games, and signal-
processing applications.

Both integer and floating-point numbers can themselves be divided into
one of two types: scalars and vectors. Scalars are values that have only one
numerical component, and they’re best understood in contrast with vectors.
Briefly, a vector is a multicomponent value, most often seen as an ordered
sequence or array of numbers. (Vectors are covered in detail in “The Vector
Execution Units” on page 168.) Here are some examples of different types
of vectors and scalars:

Returning to the code/data distinction, we can say that the data
stream consists of four types of numbers: scalar integers, scalar floating-
point numbers, vector integers, and vector floating-point numbers. (Note
that even memory addresses fall into one of these four categories—scalar
integers.) The code stream, then, consists of instructions that operate on
all four types of numbers.

Integer Floating-Point

Scalar 14
−500
37

1.01
15.234
−0.0023

Vector {5, −7, −9, 8}
{1,003, 42, 97, 86, 97}
{234, 7, 6, 1, 3, 10, 11}

{0.99, −1.1, 3.31}
{50.01, 0.002, −1.4, 1.4}
{5.6, 22.3, 44.444, 76.01, 9.9}
66 Chapter 4

The kinds of operations that can be performed on the four types of
numbers fall into two main categories: arithmetic operations and logical
operations. When I first introduced arithmetic operations in Chapter 1,
I lumped them together with logical operations for the sake of convenience.
At this point, though, it’s useful to distinguish the two types of operations
from one another:

Arithmetic operations are operations like addition, subtraction,
multiplication, and division, all of which can be performed on any
type of number.

Logical operations are Boolean operations like AND, OR, NOT, and
XOR, along with bit shifts and rotates. Such operations are performed
on scalar and vector integers, as well as on the contents of special-
purpose registers like the processor status word (PSW).

The types of operations performed on these types of numbers can be
broken down as illustrated in Figure 4-4.

Figure 4-4: Number formats and operation types

As you make your way through the rest of the book, you may want to
refer back to this section occasionally. Different microprocessors divide these
operations among different execution units in a variety of ways, and things
can easily get confusing.

Arithmetic Logic Units

On early microprocessors, as on the DLW-1 and DLW-2, all integer arithmetic
and logical operations were handled by the ALU. Floating-point operations
were executed by a companion chip, commonly called an arithmetic coprocessor,
that was attached to the motherboard and designed to work in conjunction
with the microprocessor. Eventually, floating-point capabilities were inte-
grated onto the CPU as a separate execution unit alongside the ALU.

Arithmetic Operations

Logic Operations

Vector
Operations

Scalar
Operations

Integer

Floating-
Point
Superscalar Execut ion 67

Consider the Intel Pentium processor depicted in Figure 4-5, which
contains two integer ALUs and a floating-point ALU, along with some
other units that we’ll describe shortly.

Figure 4-5: The Intel Pentium

This diagram is a variation on Figure 4-2, with the execute stage replaced
by labeled white boxes (SIU, CIU, FPU, BU, etc.) that designate the type of
execution unit that’s modifying the code stream during the execution phase.
Notice also that the figure contains a slight shift in terminology that I should
clarify before we move on.

Until now, I’ve been using the term ALU as synonymous with integer
execution unit. After the previous section, however, we know that a micro-
processor does arithmetic and logical operations on more than just integer
data, so we have to be more precise in our terminology. From now on, ALU
is a general term for any execution unit that performs arithmetic and logical
operations on any type of data. More specific labels will be used to identify
the ALUs that handle specific types of instructions and numerical data. For
instance, an integer execution unit (IU) is an ALU that executes integer arith-
metic and logical instructions, a floating-point execution unit (FPU) is an ALU
that executes floating-point arithmetic and logical instructions, and so on.
Figure 4-5 shows that the Pentium has two IUs—a simple integer unit (SIU)
and a complex integer unit (CIU)—and a single FPU.

Execution units can be organized logically into functional blocks for
ease of reference, so the two integer execution units can be referred

Write

Back End

Front End

Branch
Unit

Floating-
Point
Unit

FPU

BU

CIU (U)SIU (V)

Decode

Instruction Fetch

Control Unit

Integer Unit
68 Chapter 4

to collectively as the Pentium’s integer unit. The Pentium’s floating-point unit
consists of only a single FPU, but some processors have more than one FPU;
likewise with the load-store unit (LSU). The floating-point unit can consist
of two FPUs—FPU1 and FPU2—and the load-store unit can consist of LSU1
and LSU2. In both cases, we’ll often refer to “the FPU” or “the LSU” when we
mean all of the execution units in that functional block, taken as a group.

Many modern microprocessors also feature vector execution units, which
perform arithmetic and logical operations on vectors. I won’t describe vector
computing in detail here, however, because that discussion belongs in another
chapter.

Memory-Access Units

In almost all of the processors that we’ll cover in later chapters, you’ll see a pair
of execution units that execute memory-access instructions: the load-store unit
and the branch execution unit. The load-store unit (LSU) is responsible for the
execution of load and store instructions, as well as for address generation. As
mentioned in Chapter 1, LSUs have small, stripped-down integer addition
hardware that can quickly perform the addition required to compute an
address.

The branch execution unit (BEU) is responsible for executing conditional
and unconditional branch instructions. The BEU of the DLW series reads
the processor status word as described in Chapter 1 and decides whether
or not to replace the program counter with the branch target. The BEU
also often has its own address generation unit for performing quick address
calculations as needed. We’ll talk more about the branch units of real-world
processors later on.

Microarchitecture and the ISA

In the preceding discussion of superscalar execution, I made a number of
references to the discrepancy between the linear-execution, single-ALU
programming model that the programmer sees and what the superscalar
processor’s hardware actually does. It’s now time to flesh out that distinction
between the programming model and the actual hardware by introducing
some concepts and vocabulary that will allow us to talk with more precision
about the divisions between the apparent and the actual in computer
architecture.

Chapter 1 introduced the concept of the programming model as an
abstract representation of the microprocessor that exposes to the programmer
the microprocessor’s functionality. The DLW-1’s programming model con-
sisted of a single, integer-only ALU, four general-purpose registers, a program
counter, an instruction register, a processor status word, and a control unit.
The DLW-1’s instruction set consisted of a few instructions for working with
different parts of the programming model: arithmetic instructions (e.g., add
and sub) for the ALU and general-purpose registers (GPRs), load and store
instructions for manipulating the control unit and filling the GPRs with data,
Superscalar Execut ion 69

and branch instructions for checking the PSW and changing the PC. We can
call this programmer-centric combination of programming model and
instruction set an instruction set architecture (ISA).

The DLW-1’s ISA was a straightforward reflection of its hardware, which
consisted of a single ALU, four GPRs, a PC, a PSW, and a control unit. In
contrast, the successor to the DLW-1, the DLW-2, contained a second ALU
that was invisible to the programmer and accessible only to the DLW-2’s
decode/dispatch logic. The DLW-2’s decode/dispatch logic would examine
pairs of integer arithmetic instructions to determine if they could safely be
executed in parallel (and hence out of sequential program order). If they
could, it would send them off to the two integer ALUs to be executed simul-
taneously. Now, the DLW-2 has the same instruction set architecture as the
DLW-1—the instruction set and programming model remain unchanged—
but the DLW-2’s hardware implementation of that ISA is significantly different
in that the DLW-2 is superscalar.

A particular processor’s hardware implementation of an ISA is generally
referred to as that processor’s microarchitecture. We might call the ISA intro-
duced with the DLW-1 the DLW ISA. Each successive iteration of our hypo-
thetical DLW line of computers—the DLW-1 and DLW-2—implements the
DLW ISA using a different microarchitecture. The DLW-1 has only one ALU,
while the DLW-2 is a two-way superscalar implementation of the DLW-ISA.

Intel’s x86 hardware followed the same sort of evolution, with each
successive generation becoming more complex while the ISA stayed largely
unchanged. Regarding the Pentium’s inclusion of floating-point hardware,
you might be wondering how the programmer was able to use the floating-
point hardware (i.e., the FPU plus a floating-point register file) if the original
x86 ISA didn’t include any floating-point operations or specify any floating-
point registers. The Pentium’s designers had to make the following changes
to the ISA to accommodate the new functionality:

First, they had to modify the programming model by adding an FPU and
floating-point–specific registers.

Second, they had to extend the instruction set by adding a new group of
floating-point arithmetic instructions.

These types of ISA extensions are fairly common in the computing world.
Intel extended the original x86 instruction set to include the x87 floating-
point extensions. The x87 included an FPU and a stack-based floating-point
register file, but we’ll talk in more detail about the x87’s stack-based archi-
tecture in the next chapter. Intel later extended x86 again with the introduc-
tion of a vector-processing instruction set called MMX (multimedia extensions),
and again with the introduction of the SSE (streaming SIMD extensions) and
SSE2 instruction sets. (SIMD stands for single instruction, multiple data and is
another way of describing vector computing. We’ll cover this in more detail
in “The Vector Execution Units” on page 168.) Similarly, Apple, Motorola,
and IBM added a set of vector extensions to the PowerPC ISA in the form of
AltiVec, as the extensions are called by Motorola, or VMX, as they’re called
by IBM.
70 Chapter 4

A Brief History of the ISA

Back in the early days of computing, computer makers like IBM didn’t build
a whole line of software-compatible computer systems and aim each system
at a different price/performance point. Instead, each of a manufacturer’s
systems was like each of today’s game consoles, at least from a programmer’s
perspective—programmers wrote directly to the machine’s unique hardware,
with the result that a program written for one machine would run neither on
competing machines nor on other machines from a different product line
put out by the manufacturer’s own company. Just like a Nintendo 64 will run
neither PlayStation games nor older SNES games, programs written for one
circa-1960 machine wouldn’t run on any machine but that one particular
product from that one particular manufacturer. The programming model
was different for each machine, and the code was fitted directly to the hard-
ware like a key fits a lock (see Figure 4-6).

Figure 4-6: Software was custom-fitted
to each generation of hardware

The problems this situation posed are obvious. Every time a new machine
came out, software developers had to start from scratch. You couldn’t reuse
programs, and programmers had to learn the intricacies of each new piece
of hardware in order to code for it. This cost quite a bit of time and money,
making software development a very expensive undertaking. This situation
presented computer system designers with the following problem: How do
you expose (make available) the functionality of a range of related hardware
systems in a way that allows software to be easily developed for and ported
between those systems? IBM solved this problem in the 1960s with the launch
of the IBM System/360, which ushered in the era of modern computer
architecture. The System/360 introduced the concept of the ISA as a layer
of abstraction—or an interface, if you will—separated from a particular
processor’s microarchitecture (see Figure 4-7). This means that the infor-
mation the programmer needed to know to program the machine was
abstracted from the actual hardware implementation of that machine.
Once the design and specification of the instruction set, or the set of
instructions available to a programmer for writing programs, was separated
from the low-level details of a particular machine’s design, programs written
for a particular ISA could run on any machine that implemented that ISA.

Thus the ISA provided a standardized way to expose the features of a
system’s hardware that allowed manufacturers to innovate and fine-tune that
hardware for performance without worrying about breaking the existing
software base. You could release a first-generation product with a particular

Software

Hardware
Superscalar Execut ion 71

ISA, and then work on speeding up the implementation of that same ISA for
the second-generation product, which would be backward-compatible with
the first generation. We take all this for granted now, but before the IBM
System/360, binary compatibility between different machines of different
generations didn’t exist.

Figure 4-7: The ISA sits between the software and the hardware, providing a
consistent interface to the software across hardware generations.

The blue layer in Figure 4-7 simply represents the ISA as an abstract
model of a machine for which a programmer writes programs. As mentioned
earlier, the technical innovation that made this abstract layer possible was
something called the microcode engine. A microcode engine is sort of like a
CPU within a CPU. It consists of a tiny bit of storage, the microcode ROM,
which holds microcode programs, and an execution unit that executes those
programs. The job of each of these microcode programs is to translate a
particular instruction into a series of commands that controls the internal
parts of the chip. When a System/360 instruction is executed, the microcode
unit reads the instruction in, accesses the portion of the microcode ROM
where that instruction’s corresponding microcode program is located, and
then produces a sequence of machine instructions, in the processor’s internal
instruction format, that orchestrates the dance of memory accesses and func-
tional unit activations that actually does the number crunching (or whatever
else) the architectural instruction has commanded the machine to do.

By decoding instructions this way, all programs are effectively running
in emulation. This means that the ISA represents a sort of idealized model,
emulated by the underlying hardware, on the basis of which programmers
can design applications. This emulation means that between iterations of a
product line, a vendor can change the way their CPU executes a program,
and all they have to do is rewrite the microcode program each time so the
programmer will never have to be aware of the hardware differences because
the ISA hasn’t changed a bit. Microcode engines still show up in modern
CPUs. AMD’s Athlon processor uses one for the part of its decoding path that
decodes the larger x86 instructions, as do Intel’s Pentium III and Pentium 4.

The key to understanding Figure 4-7 is that the blue layer represents a
layer of abstraction that hides the complexity of the underlying hardware
from the programmer. The blue layer is not a hardware layer (that’s the
gray one) and it’s not a software layer (that’s the peach one), but it’s a
conceptual layer. Think of it like a user interface that hides the complexity

2nd-Generation Hardware

Instruction Set
Architecture

Software

1st-Generation Hardware

Instruction Set
Architecture

Software
72 Chapter 4

of an operating system from the user. All the user needs to know to use the
machine is how to close windows, launch programs, find files, and so on. The
UI (and by this I mean the WIMP conceptual paradigm—windows, icons,
menus, pointer—not the software that implements the UI) exposes the
machine’s power and functionality to the user in a way that he or she can
understand and use. And whether that UI appears on a PDA or on a desktop
machine, the user still knows how to use it to control the machine.

The main drawback to using microcode to implement an ISA is that
the microcode engine was, in the beginning, slower than direct decoding.
(Modern microcode engines are about 99 percent as fast as direct execution.)
However, the ability to separate ISA design from microarchitectural imple-
mentation was so significant for the development of modern computing that
the small speed hit incurred was well worth it.

The advent of the reduced instruction set computing (RISC) movement in the
1970s saw a couple of changes to the scheme described previously. First and
foremost, RISC was all about throwing stuff overboard in the name of speed.
So the first thing to go was the microcode engine. Microcode had allowed ISA
designers to get elaborate with instruction sets, adding in all sorts of complex
and specialized instructions that were intended to make programmers’ lives
easier but that were in reality rarely used. More instructions meant that you
needed more microcode ROM, which in turn meant larger CPU die sizes,
higher power consumption, and so on. Since RISC was more about less, the
microcode engine got the ax. RISC reduced the number of instructions in
the instruction set and reduced the size and complexity of each individual
instruction so that this smaller, faster, and more lightweight instruction set
could be more easily implemented directly in hardware, without a bulky
microcode engine.

While RISC designs went back to the old method of direct execution of
instructions, they kept the concept of the ISA intact. Computer architects
had by this time learned the immense value of not breaking backward com-
patibility with old software, and they weren’t about to go back to the bad old
days of marrying software to a single product. So the ISA stayed, but in a
stripped-down, much simplified form that enabled designers to implement
directly in hardware the same lightweight ISA over a variety of different
hardware types.

NOTE Because the older, non-RISC ISAs featured richer, more complex instruction sets, they
were labeled complex instruction set computing (CISC) ISAs in order to distin-
guish them from the new RISC ISAs. The x86 ISA is the most popular example of a
CISC ISA, while PowerPC, MIPS, and Arm are all examples of popular RISC ISAs.

Moving Complexity from Hardware to Software
RISC machines were able to get rid of the microcode engine and still retain
the benefits of the ISA by moving complexity from hardware to software.
Where the microcode engine made CISC programming easier by providing
programmers with a rich variety of complex instructions, RISC programmers
depended on high-level languages, like C, and on compilers to ease the
burden of writing code for RISC ISAs’ restricted instruction sets.
Superscalar Execut ion 73

Because a RISC ISA’s instruction set is more limited, it’s harder to write
long programs in assembly language for a RISC processor. (Imagine trying to
write a novel while restricting yourself to a fifth grade vocabulary, and you’ll
get the idea.) A RISC assembly language programmer may have to use many
instructions to achieve the same result that a CISC assembly language pro-
grammer can get with one or two instructions. The advent of high-level
languages (HLLs), like C, and the increasing sophistication of compiler
technology combined to effectively eliminate this programmer-unfriendly
aspect of RISC computing.

The ISA was and is still the optimal solution to the problem of easily and
consistently exposing hardware functionality to programmers so that soft-
ware can be used across a wide range of machines. The greatest testament
to the power and flexibility of the ISA is the longevity and ubiquity of the
world’s most popular and successful ISA: the x86 ISA. Programs written for
the Intel 8086, a chip released in 1978, can run with relatively little modifi-
cation on the latest Pentium 4. However, on a microarchitectural level, the
8086 and the Pentium 4 are as different as the Ford Model T and the Ford
Mustang Cobra.

Challenges to Pipelining and Superscalar Design

I noted previously that there are conditions under which two arithmetic
instructions cannot be “safely” dispatched in parallel for simultaneous exe-
cution by the DLW-2’s two ALUs. Such conditions are called hazards, and
they can all be placed in one of three categories:

Data hazards

Structural hazards

Control hazards

Because pipelining is a form of parallel execution, these three types of
hazards can also hinder pipelined execution, causing bubbles to occur in
the pipeline. In the following three sections, I’ll discuss each of these types
of hazards. I won’t go into a huge amount of detail about the tricks that
computer architects use to eliminate them or alleviate their affects, because
we’ll discuss those when we look at specific microprocessors in the next few
chapters.

Data Hazards

The best way to explain what a data hazard is to illustrate one. Consider
Program 4-1:

Program 4-1: A data hazard

Line # Code Comments

1 add A, B, C Add the numbers in registers A and B and store the result in C.

2 add C, D, D Add the numbers in registers C and D and store the result in D.
74 Chapter 4

Because the second instruction in Program 4-1 depends on the out-
come of the first instruction, the two instructions cannot be executed
simultaneously. Rather, the add in line 1 must finish first, so that the result
is available in C for the add in line 2.

Data hazards are a problem for both superscalar and pipelined execution.
If Program 4-1 is run on a superscalar processor with two integer ALUs, the
two add instructions cannot be executed simultaneously by the two ALUs.
Rather, the ALU executing the add in line 1 has to finish first, and then the
other ALU can execute the add in line 2. Similarly, if Program 4-1 is run on a
pipelined processor, the second add has to wait until the first add completes
the write stage before it can enter the execute phase. Thus the dispatch
circuitry has to recognize the add in line 2’s dependence on the add in line 1,
and keep the add in line 2 from entering the execute stage until the add in line
1’s result is available in register C.

Most pipelined processors can do a trick called forwarding that’s aimed at
alleviating the effects of this problem. With forwarding, the processor takes
the result of the first add from the ALU’s output port and feeds it directly
back into the ALU’s input port, bypassing the register-file write stage. Thus
the second add has to wait for the first add to finish only the execute stage, and
not the execute and write stages, before it’s able to move into the execute
stage itself.

Register renaming is a trick that helps overcome data hazards on superscalar
machines. Since any given machine’s programming model often specifies
fewer registers than can be implemented in hardware, a given microprocessor
implementation often has more registers than the number specified in the
programming model. To get an idea of how this group of additional registers
is used, take a look at Figure 4-8.

In Figure 4-8, the DLW-2’s programmer thinks that he or she is using a
single ALU with four architectural general-purpose registers—A, B, C, and D—
attached to it, because four registers and one ALU are all that the DLW
architecture’s programming model specifies. However, the actual superscalar
DLW-2 hardware has two ALUs and 16 microarchitectural GPRs implemented
in hardware. Thus the DLW-2’s register rename logic can map the four archi-
tectural registers to the available microarchitectural registers in such a way as
to prevent false register name conflicts.

In Figure 4-8, an instruction that’s being executed by IU1 might think
that it’s the only instruction executing and that it’s using registers A, B, and C,
but it’s actually using rename registers 2, 5, and 10. Likewise, a second instruc-
tion executing simultaneously with the first instruction but in IU2 might also
think that it’s the only instruction executing and that it has a monopoly on
the register file, but in reality, it’s using registers 3, 7, 12, and 16. Once both
IUs have finished executing their respective instructions, the DLW-2’s write-
back logic takes care of transferring the contents of the rename registers back
to the four architectural registers in the proper order so that the program’s
state can be changed.
Superscalar Execut ion 75

itm04_03.fm Page 76 Thursday, January 11, 2007 10:23 AM
Figure 4-8: Register renaming

Let’s take a quick look at a false register name conflict in Program 4-2.

Program 4-2: A false register name conflict

In Program 4-2, there is no data dependency, and both add instructions
can take place simultaneously except for one problem: the first add reads the
contents of A for its input, while the second add writes a new value into A as its
output. Therefore, the first add’s read absolutely must take place before the
second add’s write. Register renaming solves this register name conflict by
allowing the second add to write its output to a temporary register; after both
adds have executed in parallel, the result of the second add is written from
that temporary register into the architectural register A after the first add has
finished executing and written back its own results.

Structural Hazards
Program 4-3 contains a short code example that shows superscalar execution
in action. Assuming the programming model presented for the DLW-2,
consider the following snippet of code.

Line # Code Comments

1 add A, B, C Add the numbers in registers A and B and store the result in C.

2 add D, B, A Add the numbers in registers B and D and store the result in A.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

A
B
C
D

ALU Registers

Rename Buffer

A
B
C
D

IU1 Registers

A
B
C
D

IU2 Registers

Programming Model
(Architecture)

Hardware Implementation
(Microarchitecture)
76 Chapter 4

Program 4-3: A structural hazard

At first glance, there appears to be nothing wrong with Program 4-3.
There’s no data hazard, because the two instructions don’t depend on each
other. So it should be possible to execute them in parallel. However, this
example presumes that both ALUs share the same group of four registers.
But in order for the DLW-2’s register file to accommodate multiple ALUs
accessing it at once, it needs to be different from the DLW-1’s register file in
one important way: it must be able to accommodate two simultaneous writes.
Otherwise, executing Program 4-3’s two instructions in parallel would trigger
what’s called a structural hazard, where the processor doesn’t have enough
resources to execute both instructions at once.

The Register File

In a superscalar design with multiple ALUs, it would take an enormous
number of wires to connect each register directly to each ALU. This problem
gets worse as the number of registers and ALUs increases. Hence, in super-
scalar designs with a large number of registers, a CPU’s registers are grouped
together into a special unit called a register file. This unit is a memory array,
much like the array of cells that makes up a computer’s main memory, and
it’s accessed through a special interface that allows the ALU to read from or
write to specific registers. This interface consists of a data bus and two types
of ports: the read ports and the write ports. In order to read a value from a
single register in the register file, the ALU accesses the register file’s read
port and requests that the data from a specific register be placed on the
special internal data bus that the register file shares with the ALU. Likewise,
writing to the register file is done through the file’s write port.

A single read port allows the ALU to access a single register at a time, so
in order for an ALU to read from two registers simultaneously (as in the case
of a three-operand add instruction), the register file must have two read ports.
Likewise, a write port allows the ALU to write to only one register at a time,
so a single ALU needs a single write port in order to be able to write the results
of an operation back to a register. Therefore, the register file needs two read
ports and one write port for each ALU. So for the two-ALU superscalar design,
the register file needs a total of four read ports and two write ports.

It so happens that the amount of die space that the register file takes up
increases approximately with the square of the number of ports, so there is a
practical limit on the number of ports that a given register file can support.
This is one of the reasons why modern CPUs use separate register files to
store integer, floating-point, and vector numbers. Since each type of math
(integer, floating-point, and vector) uses a different type of execution unit,
attaching multiple integer, floating-point, and vector execution units to a
single register file would result in quite a large file.

Line # Code Comments

15 add A, B, B Add the numbers in registers A and B and store the result in B.

16 add C, D, D Add the numbers in registers C and D and store the result in D.
Superscalar Execut ion 77

There’s also another reason for using multiple register files to accom-
modate different types of execution units. As the size of the register file
increases, so does the amount of time it takes to access it. You might recall
from “The File-Clerk Model Revisited and Expanded” on page 9 that we
assume that register reads and writes happen instantaneously. If a register
file gets too large and the register file access latency gets too high, this can
slow down register accesses to the point where such access takes up a notice-
able amount of time. So instead of using one massive register file for each
type of numerical data, computer architects use two or three register files
connected to a few different types of execution units.

Incidentally, if you’ll recall “Opcodes and Machine Language” on
page 19, the DLW-1 used a series of binary numbers to designate which of
the four registers an instruction was accessing. Well, in the case of a register
file read, these numbers are fed into the register file’s interface in order to
specify which of the registers should place its data on the data bus. Taking
our two-bit register designations as an example, a port on our four-register
file would have two lines that would be held at either high or low voltages
(depending on whether the bit placed on each line was a 1 or a 0), and these
lines would tell the file which of its registers should have its data placed on
the data bus.

Control Hazards

Control hazards, also known as branch hazards, are hazards that arise when the
processor arrives at a conditional branch and has to decide which instruction
to fetch next. In more primitive processors, the pipeline stalls while the
branch condition is evaluated and the branch target is calculated. This stall
inserts a few cycles of bubbles into the pipeline, depending on how long it
takes the processor to identify and locate the branch target instruction.

Modern processors use a technique called branch prediction to get around
these branch-related stalls. We’ll discuss branch prediction in more detail in
the next chapter.

Another potential problem associated with branches lies in the fact that
once the branch condition is evaluated and the address of the next instruc-
tion is loaded into the program counter, it then takes a number of cycles to
actually fetch the next instruction from storage. This instruction load latency is
added to the branch condition evaluation latency discussed earlier in this
section. Depending on where the next instruction is located—such as in a
nearby cache, in main memory, or on a hard disk—it can take anywhere from
a few cycles to thousands of cycles to fetch the instruction. The cycles that the
processor spends waiting on that instruction to show up are dead, wasted
cycles that show up as bubbles in the processor’s pipeline and kill performance.
Computer architects use instruction caching to alleviate the effects of load
latency, and we’ll talk more about this technique in the next chapter.
78 Chapter 4

T H E I N T E L P E N T I U M A N D
P E N T I U M P R O

Now that you’ve got the basics of microprocessor archi-
tecture down, let’s look at some real hardware to see
how manufacturers implement the two main concepts
covered in the previous two chapters—pipelining and
superscalar execution—and introduce an entirely new
concept: the instruction window. First, we’ll wrap up
our discussion of the fundamentals of microprocessors
by taking a look at the Pentium. Then we’ll explore in
detail the P6 microarchitecture that forms the heart of the Pentium Pro,
Pentium II, and Pentium III. The P6 microarchitecture represents a
fundamental departure from the microprocessor designs we’ve studied so
far, and an understanding of how it works will give you a solid grasp of the
most important concepts in modern microprocessor architecture.

The Original Pentium

The original Pentium is an extremely modest design by today’s standards.
Transistor budgets were smaller when the chip was introduced in 1993, so
the Pentium doesn’t pack nearly as much hardware onto its die as a modern
microprocessor. Table 5-1 summarizes its features.

A glance at a diagram of the Pentium (see Figure 5-1) shows that it has
two integer ALUs and a floating-point ALU, along with some other units that
I’ll describe later. The Pentium also has a level 1 cache—a component of the
microprocessor that you haven’t yet seen. Before moving on, let’s take a
moment to look in more detail at this new component, which acts as a code
and data storage area for the processor.

Figure 5-1: The basic microarchitecture of the
original Intel Pentium

Table 5-1: Summary of Pentium Features

Introduction Date March 22, 1993

Manufacturing Process 0.8 micron

Transistor Count 3.1 million

Clock Speed at Introduction 60 and 66 MHz

Cache Sizes L1: 8KB instruction, 8KB data

x86 ISA Extensions MMX added in 1997

Write

Back End

Front End

Branch
Unit

Floating-
Point
Unit

FPU

BU

CIU (U)SIU (V)

Decode

Instruction Fetch

Control Unit

Integer Unit
80 Chapter 5

Caches

So far, I’ve talked about code and data as if they were all stored in main
memory. While this may be true in a limited sense, it doesn’t tell the whole
story. Though processor speeds have increased dramatically over the past
two decades, the speed of main memory has not been able to keep pace. In
every computer system currently on the market, there’s a yawning speed gap
between the processor and main memory. It takes such a huge number of
processor clock cycles to transfer code and data between main memory and
the registers and execution units that if no solution were available to alleviate
this bottleneck, it would kill most of the performance gains brought on by
the increase in processor clock speeds.

Very fast memory that could close some of the speed gap is indeed avail-
able, but it’s too expensive to be widely used in a PC system’s main memory.
In fact, as a general rule of thumb, the faster the memory technology, the
more it costs per unit of storage. As a result, computer system designers fill
the speed gap by placing smaller amounts of faster, more expensive memory,
called cache memory, in between main memory and the registers. These caches,
which are depicted in Figure 5-2, hold chunks of frequently used code and
data, keeping them within easy reach of the processor’s front end.

In most systems, there are multiple levels of cache between main
memory and the registers. The level 1 cache (called L1 cache or just L1 for
short) is the smallest, most expensive bit of cache, so it’s located the closest
to the processor’s back end. Most PC systems have another level of cache,
called level 2 cache (L2 cache or just L2), located between the L1 cache and main
memory, and some systems even have a third cache level, L3 cache, located
between the L2 cache and main memory. In fact, as Figure 5-2 shows, main
memory itself is really just a cache for the hard disk drive.

When the processor needs a particular piece of code or data, it first
checks the L1 cache to see if the desired item is present. If it is—a situation
called a cache hit—it moves that item directly to either the fetch stage (in the
case of code) or the register file (in the case of data). If the item is not
present—a cache miss—the processor checks the slower but larger L2 cache.
If the item is present in the L2, it’s copied into the L1 and passed along to
the front end or back end. If there’s a cache miss in the L2, the processor
checks the L3, and so on, until there’s either a cache hit, or the cache miss
propagates all the way out to main memory.

One popular way of laying out the L1 cache is to have code and data
stored in separate halves of the cache. The code half of the cache is often
referred to as the instruction cache or I-cache, and the data half of the cache
is referred to as the data cache or D-cache. This kind of split cache design has
certain performance advantages and is used in the all of the processors
discussed in this book.

NOTE The split L1 cache design is often called the Harvard architecture as an homage to
the Harvard Mark I. The Mark I was a relay-based computer designed by IBM and
shipped to Harvard in 1944, and it was the first machine to incorporate the conceptual
split between code and data explicitly into its architecture.
The In te l Pent ium and Pent ium Pro 81

Figure 5-2: The memory hierarchy of a computer system, from the
smallest, fastest, and most expensive memory (the register file) to
the largest, slowest, and least expensive (the hard disk)

Back when transistor budgets were much tighter than they are today, all
caches were located somewhere on the computer’s system bus between the
CPU and main memory. Today, however, the L1 and L2 caches are commonly
integrated onto the CPU die itself, along with the rest of the CPU’s circuitry.
An on-die cache has significant performance advantages over an off-die cache
and is essential for keeping today’s deeply pipelined superscalar machines full
of code and data.

The Pentium’s Pipeline

As you’ve probably already guessed, a superscalar processor doesn’t have
just one pipeline. Because its execute stage is split up among multiple exe-
cution units that operate in parallel, a processor like the Pentium can be
said to have multiple pipelines—one for each execution unit. Figure 5-3
illustrates the Pentium’s multiple pipelines.

Processor Register File

L1 Cache

Hard Disk Drive

Main Memory
82 Chapter 5

Figure 5-3: The Pentium’s pipelines

As you can see, each of the Pentium’s pipelines shares four stages in
common:

Fetch

Decode-1

Decode-2

Write

It’s when an instruction reaches the execute phase of its lifecycle that it
enters a more specialized pipeline, specific to the execution unit.

A processor’s various execution units can have different pipeline depths,
with the integer pipeline usually being the shortest and the floating-point pipe-
line usually being the longest. In Figure 5-3, you can see that the Pentium’s two
integer ALUs have single-stage pipelines, while the floating-point unit has a
three-stage pipeline.

Write

Back End

Front End

Floating-
Point
Unit

CIU-1SIU-1FPU-1
FPU-2
FPU-3

Decode-1

Decode-2

Instruction Fetch

L1 Instruction Cache

Integer Unit
The In te l Pent ium and Pent ium Pro 83

Because the integer pipeline is the shortest, it’s normally taken to be
the default pipeline in discussions of a processor’s microarchitecture. So
when you see a reference, either in this text or in another text, to a super-
scalar processor’s pipeline or basic pipeline, you should assume it’s referring
to the processor’s integer pipeline.

The Pentium’s basic integer pipeline is five stages long, with the stages
broken down as follows:

1. Prefetch/Fetch Instructions are fetched from the instruction cache
and aligned in prefetch buffers for decoding.

2. Decode-1 Instructions are decoded into the Pentium’s internal instruc-
tion format using a fast set of hardware-based rules. Branch prediction
also takes place at this stage.

3. Decode-2 Instructions that require the microcode ROM are decoded
here. Also, address computations take place at this stage.

4. Execute The integer hardware ALU executes the instruction.

5. Write-back The results of the computation are written back to the
register file.

These stages should be familiar to you, although the first three stages are
slightly different from those of the simple four-stage pipelines described so
far. Let’s take a quick trip through the Pentium’s pipeline stages, so that you
can examine each one in a bit more detail.

The prefetch/fetch stage corresponds to the fetch phase of the standard
instruction lifecycle. Unlike the simple, uniformly sized two-byte instructions
of our example DLW architecture, x86 instructions can range in size from 1
to 17 bytes in length, though the average instruction length is a little under 3
bytes. x86’s widely variable instruction length complicates the Pentium’s fetch
stage, because instructions cannot simply be fetched and then fed directly
into the decode stage. Instead, x86 instructions are first fetched into a buffer,
where each instruction’s boundaries are detected and marked. From this
buffer, the marked instructions are then aligned and sent to the Pentium’s
decode hardware.

The decode phase of the Pentium’s execution process is split into two
pipeline stages, the first of which corresponds most closely to the decode pipe-
line stage with which you’re already familiar. The decode-1 stage takes the
newly fetched instruction and decodes it into the Pentium’s internal instruc-
tion format, so that it can be used to tell the processor’s execution units how
to manipulate the data stream. The decode-1 stage also involves the Pentium’s
branch unit, which checks the currently decoding instruction to see if it’s
a branch, and if it is a branch, to determine its type. It’s at this point that
branch prediction takes place, but we’ll cover branch prediction in more
detail in a moment.

The main difference between the Pentium’s five-stage pipeline and the
four-stage pipelines discussed in Chapter 3 lies in the second decode stage.
RISC ISAs, like the primitive DLW ISA of Chapters 1 and 2, support only a
few simple, load-store addressing modes. In contrast, the x86 ISA supports
84 Chapter 5

multiple complex addressing modes, which were originally designed to make
assembly language programmers’ lives easier but ended up making everyone’s
lives more difficult. These addressing modes require extra address compu-
tations, and these computations are relegated to the decode-2 stage, where
dedicated address computation hardware handles them before dispatching
the instruction to the execution units.

The decode-2 stage is also where the Pentium’s microcode ROM kicks in.
The Pentium decodes many x86 instructions directly in its decoding hardware,
but the longer instructions are decoded by means of a microcode ROM, as
described in the section “A Brief History of the ISA” on page 71.

Once instructions have been decoded, the Pentium’s control unit deter-
mines when they can be dispatched to the back end and to which execution
unit. So the control unit’s job is to coordinate the movement of instructions
from the processor’s front end to its back end, so that they can enter the
execute and write-back phases of the execution process.

The last two pipeline stages—execute and write-back—should be familiar
to you by now. The next major section will describe the Pentium’s execution
units, so think of it as a more detailed discussion of the execute stage.

The Branch Unit and Branch Prediction

Before we take a closer look at the back end of the Pentium, let’s look at one
aspect of the Pentium’s front end in a bit more detail: the branch unit (BU).

On the right side of the Pentium’s front end, shown earlier in Figure 5-1,
notice a branch unit attached to the instruction fetch and decode/dispatch
pipeline stages. I’ve depicted the branch unit as part of the front end of the
machine—even though it technically still counts as a memory access unit—
because the BU works closely with the instruction fetcher, steering it by
means of the program counter to different sections of the code stream.

The branch unit contains the branch execution unit (BEU) and the branch
prediction unit (BPU), and whenever the front end’s decoder encounters a
conditional branch instruction, it sends it to the BU to be executed. The
BU in turn usually needs to send it off to one of the other execution units
to have the instruction’s branch condition evaluated, so that the BU can
determine if the branch is taken or not taken. Once the BU determines that
the branch has been taken, it has to get the starting address of the next block
of code to be executed. This address, the branch target, must be calculated,
and the front end must be told to begin fetching code at the new address.

In older processors, the entire processor just sort of sat idle and waited for
the branch condition to be evaluated, a wait that could be quite long if the
evaluation involved a complex calculation of some sort. Modern processors
use a technique called speculative execution, which involves making an educated
guess at which direction the branch will ultimately take and then beginning
execution at the new branch target before the branch’s condition is actually
evaluated. This educated guess is made using one of a variety of branch
prediction techniques, about which I’ll talk more in a moment. Speculative
execution is used to keep the delays associated with evaluating branches
from introducing bubbles into the pipeline.
The In te l Pent ium and Pent ium Pro 85

Instructions that are speculatively executed cannot write their results
back to the register file until the branch condition is evaluated. If the BPU
predicted the branch correctly, those speculative instructions can then be
marked as non-speculative and have their results written back just like
regular instructions.

Branch prediction can backfire when the processor incorrectly predicts a
branch. Such mispredictions are bad, because if all of those instructions that
the processor has loaded into the pipeline and begun speculatively executing
turn out to be from the wrong branch target, the pipeline must be flushed
of the erroneous, speculative instructions and their attendant results. After
this pipeline flush, the front end must then fetch the correct branch target
address so that the processor can begin executing at the right place in the
code stream.

As you learned in Chapter 3, flushing the pipeline of instructions and
then refilling it again causes a huge hit to the processor’s average completion
rate and overall performance. Furthermore, there’s a delay (and therefore a
few cycles worth of pipeline bubbles) associated with calculating the correct
branch target and loading the new instruction stream into the front end.
This delay can degrade performance significantly, especially on branch-
intensive code. It is therefore imperative that a processor’s branch prediction
hardware be as accurate as possible.

There are two main types of branch prediction: static prediction and
dynamic prediction. Static branch prediction is simple and relies on the assump-
tion that the majority of backward-pointing branches occur in the context of
repetitive loops, where the branch instruction is used to determine whether
or not to repeat the loop again. Most of the time, a loop’s exit condition will
be false, which means that the loop’s branch will evaluate to taken, thereby
instructing the machine to repeat the loop’s code one more time. This being
the case, static branch prediction merely assumes that all backward branches
are taken. For a branch that points forward to a block of code that comes later
in the program, the static predictor assumes that the branch is not taken.

Static prediction is very fast because it doesn’t involve any table lookups
or calculations, but its success rate varies widely with the program’s instruc-
tion mix. If the program is full of loops, static prediction works fairly well; if
it’s not full of loops, static branch prediction performs quite poorly.

To get around the problems associated with static prediction, computer
architects use a variety of algorithms for predicting branches based on a
program’s past behavior. These dynamic branch prediction algorithms usually
involve the use of both of two types of tables—the branch history table (BHT)
and the branch target buffer (BTB)—to record information about the outcomes
of branches that have already been executed. The BHT creates an entry for
each conditional branch that the BU has encountered on its last few cycles.
This entry includes some bits that indicate the likelihood that the branch
will be taken based on its past history. When the front end encounters a
branch instruction that has an entry in its BHT, the branch predictor uses
this branch history information to decide whether or not to speculatively
execute the branch.
86 Chapter 5

Should the branch predictor decide to execute the branch speculatively,
it needs to know exactly where in memory the branch is pointing—in other
words, it needs a branch target. The BTB stores the branch targets of pre-
viously executed branches, so when a branch is taken, the BPU grabs the
speculative branch target from the BTB and tells the front end to begin
fetching instructions from that address. Hopefully, the BTB contains an
entry for the branch you’re trying to execute, and hopefully that entry is
correct. If the branch target either isn’t there or is wrong, you’ve got a
problem. I won’t get into the issues surrounding BTB performance, but
suffice it to say that a larger BTB is usually better, because it can store more
branch targets and thus lower the chances of a BTB miss.

The Pentium uses both static and dynamic branch prediction techniques
to prevent mispredictions and branch delays. If a branch instruction does
not have an entry in the BHT, the Pentium uses static prediction to decide
which path to take. If the instruction does have a BHT entry, dynamic pre-
diction is used. The Pentium’s BHT holds 256 entries, which means that it
does not have enough space to store information on most of the branches in
an average program. Nonetheless, the BHT allows the Pentium to predict
branches with a much higher success rate, from 75 to 85 percent, according
to Intel, than if it used static prediction alone. The Pentium also uses a
BTB to store predicted branch targets. In most of Intel’s literature and
diagrams, the BTB and BHT are combined under the label the front-end
BTB and are considered a single structure.

The Pentium’s Back End

The Pentium’s superscalar back end is fairly straightforward. It has two
five-stage integer pipelines, which Intel has designated U and V, and one
six-stage floating-point pipeline. This section will take a closer look at each
of these ALUs.

The Integer ALUs

The Pentium’s U and V integer pipes are not fully symmetric. U, as the
default pipe, is slightly more capable and contains a shifter, which V lacks.
For this reason, in Figure 5-1, I’ve labeled the U pipe simple integer unit (SIU)
and the V pipe complex integer unit (CIU). Most of the designs that we’ll study
throughout this book have asymmetrical integer units, where one integer
unit is more complex and capable of handling more types of instructions
than the other, simpler unit.

The Pentium’s integer units aren’t fully independent. There is a set
of restrictions, which I won’t take time to outline, that places limits on
which combinations of integer instructions can be issued in parallel. All
told, though, the Pentium’s two integer units initially provided solid enough
integer performance for it to be competitive in its day, especially for integer-
intensive office apps.

The final thing worth noting about the Pentium’s two integer ALUs is
that they are responsible for many of the processor’s address calculations.
The In te l Pent ium and Pent ium Pro 87

More recently designed processors have specialized hardware for handling
the address calculations associated with loads and stores, but on the Pentium
these calculations are done in the integer ALUs.

The Floating-Point ALU

Floating-point operations are usually more complex to implement than
integer operations, so floating-point pipelines often feature more stages
than integer pipelines. The Pentium’s six-stage floating-point pipeline is no
exception to this rule. The Pentium’s floating-point performance is limited
by two main factors. First, the processor can only dispatch both a floating-
point and an integer operation simultaneously under extremely restrictive
circumstances. This isn’t too bad, though, because floating-point and integer
code are rarely mixed. The second factor, the unfortunate design of the x87
floating-point architecture, is more important.

In contrast to the average RISC ISA’s flat floating-point register file, the
x87 register file contains eight 80-bit registers arranged in the form of a stack.
A stack is a simple data storage structure commonly used by programmers
and some scientific calculators to perform arithmetic.

NOTE Flat is an adjective that programmers use to describe an array of elements that is logi-
cally laid out so that any element is accessible via a simple address. For instance, all
of the register files that we’ve seen so far are flat, because a programmer needs to know
only the name of the register in order to access that register. Contrast the flat file with the
stack structure described next, in which elements that are inside the data structure are
not immediately and directly accessible to the programmer.

As Figure 5-4 illustrates, a programmer writes data to the stack by pushing
it onto the top of the stack via the push instruction. The stack therefore grows
with each new piece of data that is pushed onto its top. To read data from
the stack, the programmer issues a pop instruction, which returns the top-
most piece of data and removes that data from the stack, causing the stack
to shrink.

As the stack grows and shrinks, the variable ST, which stands for the stack
top, always points to the top element of the stack. In the most basic type of
stack, ST is the only element of the stack that can be directly accessed by the
programmer—it is read using the pop command, and it is written to using the
push command. This being the case, if you want to read the blue element
from the stack in Figure 5-4, you have to pop all of the elements above it, and
then you have to pop the blue element itself. Similarly, if you want to alter
the blue element, you first have to pop all of the elements above it. Then
you pop the blue element itself, alter it, and then push the modified element
back onto the stack.

Because the first item that you place in a stack is not accessible until
you’ve removed all the items above it, a stack is often called a FILO (first in,
last out) data structure. Contrast this with a traditional queue structure, like a
supermarket checkout line, which is a FIFO (first in, first out) structure.
88 Chapter 5

Figure 5-4: Pushing and popping data on a simple stack

All of this pushing and popping sounds like a lot of work, and you might
wonder why anyone would use such a data structure. As it turns out, a stack
is ideal for certain specialized types of applications, like parsing natural lan-
guage, keeping track of nested procedure calls, and evaluating postfix arith-
metic expressions. It was the stack’s utility for evaluating postfix arithmetic
expressions that recommended it to the designers of the x87 floating-point
unit (FPU), so they arranged the FPU’s eight floating-point registers as a
stack.

NOTE Normal arithmetic expressions, like 5 + 2 – 1 = 6, are called infix expressions, because
the arithmetic operators (+ and –) are situated in between the numbers on which they
operate. Postfix expressions, in contrast, have the operators affixed to the end of the
expression, e.g. 521–+ = 6. You could evaluate this expression from left to right using a
stack by pushing the numbers 5, 2, and 1 onto the stack (in that order), and then pop-
ping them back off (first 1, then 2, and finally 5) as the operators at the end of the
expression are encountered. The operators would be applied to the popped numbers as
they appear, and the running result would be stored in the top of the stack.

The x87 register file is a little different than the simple stack described
two paragraphs ago, because ST is not the only variable through which the
stack elements can be accessed. Instead, the programmer can read and
write the lower elements of the stack by using ST with an index value that
designates the desired element’s position relative to the top of the stack.
For example, in Figure 5-5, the stack is at its tallest when the green value
has just been pushed onto it. This green value is accessed via the variable
ST(0), because it occupies the top of the stack. The blue value, because it is
three elements down from the top of the stack, is accessed via ST(3).

Empty Stack Push () Push () Push ()

3

Push ()Push () Pop Pop

ST
ST

ST
3ST

3ST
3ST

ST
The In te l Pent ium and Pent ium Pro 89

Figure 5-5: Pushing and popping data on the x87 floating-point register stack

In general, to read from or write to a specific register in the stack, you
can just use the form ST(i), where i is the number of registers from the top of
the stack.

Programming purists might suggest that since you can access its stack
elements arbitrarily, it’s kind of pointless to still call the x87 register file a stack.
This would be true except for one catch: For every floating-point arithmetic
instruction, at least one of the operands must be the stack top. For instance,
if you want to add two floating-point numbers, one of the numbers must
be in the stack top and the other can be in any of the other registers. For
example, the instruction

fadd ST, ST(5)

performs the operation

ST = ST + ST(5)

Though the stack-based nature of x87’s floating-point register file was
originally a boon to assembly language programmers, it soon began to
become an obstacle to floating-point performance as compilers saw more
widespread use. A flat register file is easier for a compiler to manage, and
the newer RISC ISAs featured not only large, flat register files but also
three-operand floating-point instructions.

While compiler tricks are arguably enough to make up for x87’s two-
operand limit under most circumstances, they’re not quite able to overcome
both the two-operand limit and the stack-based limit. So compiler tricks alone
won’t eliminate the performance penalties associated with both of these

Empty Stack Push ()

3
4
5
6
7

ST(0)
ST(1)
ST(2)

ST(0)
ST(1)
ST(2)
ST(3)

ST(0)
ST(1)
ST(2)
ST(3)
ST(4)

3
4
5
6

ST(0)
ST(1)
ST(2)
ST(3)

3
4
5

ST(0)
ST(1)
ST(2)

3
4

ST(0)
ST(0) ST(1)

Push () Push ()

Push ()Push () Pop Pop
90 Chapter 5

quirks combined. The stack-based register file is bad enough that a micro-
architectural hack is needed in order simulate a flat register file and thereby
keep the x87’s design from hobbling floating-point performance.

This microarchitectural hack involves turbocharging a single instruction:
fxch. The fxch instruction is an ordinary x87 instruction that allows you to
swap any element of the stack with the stack top. For example, if you wanted
to calculate ST(2) = ST(2) + ST(6), you might execute the code shown in
Program 5-1:

Program 5-1: Using the fxch instruction

Now, here’s where the microarchitectural hack comes in. On all modern
x86 designs, from the original Pentium up to but not including the Pentium 4,
the fxch instruction can be executed in zero cycles. This means that for all
intents and purposes, fxch is “free of charge” and can therefore be used when
needed without a performance hit. (Note, however, that the fxch instruction
still takes up decode bandwidth, so even when it’s “free,” it’s not entirely
“free.”) If you stop and think about the fact that, before executing any floating-
point instruction (which has to involve the stack top), you can instantaneously
swap ST with any other register, you’ll realize that a zero-cycle fxch instruction
gives programmers the functional equivalent of a flat register file.

To revisit the previous example, the fact that the first instruction in
Program 5-1 executes “instantaneously,” as it were, means that the series of
operations effectively looks as follows:

fadd ST(2), ST(6)

There are in fact some limitations on the use of the “free” fxch instruc-
tion, but the overall result is that by using this trick, both the Pentium and its
successors get the effective benefits of a flat register file, but with the afore-
mentioned hit to decode bandwidth.

x86 Overhead on the Pentium

There are a number of places, like the Pentium’s decode-2 stage, where
legacy x86 support adds significant overhead to the Pentium’s design. Intel
has estimated that a whopping 30 percent of the Pentium’s transistors are
dedicated solely to providing x86 legacy support. When you consider the fact
that the Pentium’s RISC competitors with comparable transistor counts could
spend those transistors on performance-enhancing hardware like execution
units and cache, it’s no wonder that the Pentium lagged behind some of its
contemporaries when it was first introduced.

Line # Code Comments

1 fxch ST(2) Place the contents of ST(2) into ST and the contents of ST into ST(2).

2 fadd ST, ST(6) Add the contents of ST to ST(6).

3 fxch ST(2) Place the contents of ST(2) into ST and the contents of ST into ST(2).
The In te l Pent ium and Pent ium Pro 91

A large chunk of the Pentium’s legacy-supporting transistors are eaten
up by its microcode ROM. Chapter 4 explained that one of the big benefits
of RISC processors is that they don’t need the microcode ROMs that CISC
designs require for decoding large, complex instructions. (For more on x86
as a CISC ISA, see the section “CISC, RISC, and Instruction Set Translation”
on page 103.)

The front end of the Pentium also suffers from x86-related bloat, in that
its prefetch logic has to take account of the fact that x86 instructions are not
a uniform size and hence can straddle cache lines. The Pentium’s decode
logic also has to support x86’s segmented memory model, which means
checking for and enforcing code segment limits; such checking requires its
own dedicated address calculation hardware, in addition to the Pentium’s
other address hardware.

Summary: The Pentium in Historical Context

The primary factor constraining the Pentium’s performance versus its RISC
competitors was the fact that its entire front end was bloated with hardware
that was there solely to support x86 features which, even at the time of the
processor’s introduction, were rapidly falling out of use. With transistor
budgets as tight as they were in 1993, each of those extra address adders
and prefetch buffers—not to mention the microcode ROM—represented
a painful expenditure of scarce resources that did nothing to enhance the
Pentium’s performance.

Fortunately for Intel, Pentium’s legacy support headaches weren’t the
end of the story. There were a few facts and trends working in the favor of
Intel and the x86 ISA. If we momentarily forget about ISA extensions like
MMX, SSE, and so on, and the odd handful of special-purpose instructions,
like Intel’s CPU identifier instruction, that get added to the x86 ISA every so
often, the core legacy x86 ISA is fixed in size and has not grown over the years.
Similarly, with one exception (the P6, covered next), the amount of hardware
that it takes to support such instructions has not tended to grow either.

Transistors, on the other hand, have shrunk rapidly since the Pentium
was introduced. When you put these two facts together, this means that the
relative cost (in transistors) of x86 support, a cost that is mostly concentrated
in an x86 CPU’s front end, has dropped as CPU transistor counts have
increased.

x86 support accounts for well under 10 percent of the transistors on
the Pentium 4, and this percentage is even smaller for the very latest Intel
processors. This steady and dramatic decrease in the relative cost of legacy
support has contributed significantly to the ability of x86 hardware to catch
up to and even surpass its RISC competitors in both integer and floating-
point performance. In other words, Moore’s Curves have been extremely
kind to the x86 ISA.
92 Chapter 5

In spite of the high price it paid for x86 support, the Pentium was com-
mercially successful, and it furthered Intel’s dominance in the x86 market
that the company had invented. But for Intel to take x86 performance to the
next level, it needed to take a series of radical steps with the follow-on to the
Pentium, the Pentium Pro.

NOTE Here and throughout this book, I use the term Moore’s Curves in place of the more
popular phrase Moore’s Law. For a detailed explanation of the phenomenon referred
to by both of these terms, see my article at Ars Technica entitled “Understanding
Moore’s Law” (http://arstechnica.com/paedia/m/moore/moore-1.html).

The Intel P6 Microarchitecture: The Pentium Pro

Intel’s P6 microarchitecture, first implemented in the Pentium Pro, was by any
reasonable metric a resounding success. Its performance was significantly
better than that of the Pentium, and the market rewarded Intel handsomely
for it. The microarchitecture also proved extremely scalable, furnishing Intel
with a good half-decade of desktop dominance and paving the way for
x86 systems to compete with RISC in the workstation and server markets.
Table 5-2 summarizes the evolution of the P6 microarchitecture’s features.

What was the P6’s secret, and how did it offer such a quantum leap
in performance? The answer is complex and involves the contribution of
numerous technologies and techniques, the most important of which had
already been introduced into the x86 world by Intel’s smaller x86 competitors
(most notably, AMD’s K5): the decoupling of the front end’s fetching and
decoding functions from the back end’s execution function by means of an
instruction window.

Figure 5-6 illustrates the basic P6 microarchitecture. As you can see, this
microarchitecture sports a quite a few prominent features that distinguish it
fundamentally from the designs we’ve studied thus far.

Table 5-2: The Evolution of the P6

Pentium Pro Vitals Pentium II Vitals Pentium III Vitals

Introduction Date November 1, 1995 May 7, 1997 February 26, 1999

Process 0.60/0.35 micron 0.35 micron 0.25 micron

Transistor Count 5.5 million 7.5 million 9.5 million

Clock Speed at Introduction 150, 166, 180, and 200 MHz 233, 266, and 300 MHz 450 and 500 MHz

L1 Cache Size 8KB instruction, 8KB data 16KB instruction,
16KB data

16KB instruction,
16KB data

L2 Cache Size 256KB or 512KB (on-die) 512KB (off-die) 512KB (on-die)

x86 ISA Extensions MMX SSE added in 1999
The In te l Pent ium and Pent ium Pro 93

Figure 5-6: The Pentium Pro

Decoupling the Front End from the Back End

In the Pentium and its predecessors, instructions travel directly from the
decoding hardware to the execution hardware, as depicted in Figure 5-7. In
this simple processor, instructions are statically scheduled by the dispatch logic
for execution by the two ALUs. First, instructions are fetched and decoded.
Next, the control unit’s dispatch logic examines a pair of instructions using a
set of hardwired rules to determine whether or not they can be executed in
parallel. If the two instructions can be executed in parallel, the control unit
sends them to the two ALUs, where they’re simultaneously executed on the
same clock cycle. When the two instructions have completed their execution

Back End

Commit

Reorder Buffer
(ROB)

Commitment Unit

Front End

Floating-
Point
Unit

FPU
SIUCIU

Load-Store Unit

Reorder Buffer (ROB)

Integer Unit

Port 0 Port 1Port 4 Port 3 Port 2 Port 0

Store
Data

Store
Addr.

Load
Addr.

Reservation Station (RS)

Translate x86/
Decode

Branch
Unit

BU
Instruction Fetch

Memory Access Units Scalar ALUs
94 Chapter 5

phase (i.e., their results are available on the data bus), they’re put back in
program order, and their results are written back to the register file in the
proper sequence.

Figure 5-7: Static scheduling in the original Pentium

This static, rules-based approach to dispatching instructions is rigid and
simplistic, and it has two major drawbacks, both stemming from the fact that
although the code stream is inherently sequential, a superscalar processor
attempts to execute parts of it in parallel. Specifically, static scheduling

adapts poorly to the dynamic and ever-changing code stream;

makes poor use of wider superscalar hardware.

Because the Pentium can dispatch at most two operations simultaneously
from its decode hardware to its execution hardware on each clock cycle, its
dispatch rules look at only two instructions at a time to see if they can or can-
not be dispatched simultaneously. If more execution hardware were added to
the Pentium, and the dispatch width were increased to three instructions
per cycle (as it is in the P6), the rules for determining which instructions go
where would need to be able to account for various possible combinations
of two and three instructions at a time in order to get those instructions to
the right execution unit at the right time. Furthermore, such rules would
inevitably be difficult for programmers to optimize for, and if they weren’t
overly complex, there would necessarily exist many common instruction
sequences that would perform suboptimally under the default rule set.
In plain English, the makeup of the code stream would change from
application to application and from moment to moment, but the rules
responsible for scheduling the code stream’s execution on the Pentium’s
back end would be forever fixed.

Fetch

Decode/
Dispatch

Write-Back

ALU2

Front End

Back End

ALU1

Execute Execute
The In te l Pent ium and Pent ium Pro 95

The Issue Phase

The solution to the dilemma posed by static execution is to dispatch newly
decoded instructions into a special buffer that sits between the front end and
the execution units. Once this buffer collects a handful of instructions that
are waiting to execute, the processor’s dynamic scheduling logic can examine
the instructions and, after taking into account the state of the processor
and the resources currently available for execution, issue instructions from
the buffer to the execution units at the most opportune time and in the
optimal order. The dynamic scheduling logic has quite a bit of freedom to
reorder the code stream so that instructions execute optimally, even if it
means that two (or more) instructions must be executed not just in parallel
but in reverse order. With dynamic scheduling, the current context in which
a particular instruction finds itself executing can have much more of an
impact on when and how it’s executed. In replacing the Pentium’s control
unit with the combination of a buffer and a dynamic scheduler, the P6
microarchitecture replaces fixed rules with flexibility.

Of course, instructions that have been issued from the buffer to the
execution units out of program order must be put back in program order
once they’ve completed their execution phase, so another buffer is needed
to catch the instructions that have completed execution and to place them
back in program order. We’ll discuss that second buffer more in a moment.

Figure 5-8 shows the two new buffers, both of which work together to
decouple the execute phase from the rest of the instruction’s lifecycle.

In the processor depicted in Figure 5-8, instructions flow in program
order from the decode stage into the first buffer, the issue buffer, where they
sit until the processor’s dynamic scheduler determines that they’re ready to
execute. Once the instructions are ready to execute, they flow from the issue
buffer into the execution unit. This move, when instructions travel from the
issue buffer where they’re scheduled for optimal execution into the execution
units themselves, is called issuing.

There are a number of factors that can prevent an instruction from
executing out of order in the manner described earlier. The instruction may
depend for input on the results of an as-yet-unexecuted instruction, or it may
be waiting on data to be loaded from memory, or it may be waiting for a busy
execution unit to become available, or any one of a number of other condi-
tions may need to be met before the decoded instruction is ready to be sent
off to the proper execution unit. But once the instruction is ready, the sched-
uler sees that it is issued to the execution unit, where it will be executed.

This new twist on the standard instruction lifecycle is called out-of-order
execution, or dynamic execution, and it requires the addition of two new phases
to our instruction’s lifecycle, as shown in Table 5-3. The first new phase is the
issue phase, and it encompasses the buffering and reordering of the code
stream that I’ve just described.

The issue phase is implemented in different ways by different processors.
It may take multiple pipeline stages, and it may involve the use of multiple
buffers arranged in different configurations. What all of the different imple-
mentations have in common, though, is that instructions enter the issue
96 Chapter 5

phase and then wait there for an unspecified amount of time until the
moment is right for them to execute. When they execute, they may do so
out of program order.

Figure 5-8: Dynamic scheduling using buffers

Aside from its use in dynamic scheduling, another important function of
the issue buffer is that it allows the processor to “squeeze” bubbles out of the
pipeline prior to the execution phase. The buffer is a queue, and instructions
that enter it drop down into the bottommost available entry.

Table 5-3: Phases of a Dynamically Scheduled
Instruction’s Lifecycle

1 Fetch
In order

2 Decode/dispatch

3 Issue Reorder

4 Execute Out of order

5 Complete Reorder

6 Write-back (commit) In order

Commit Unit

Fetch

ALU2

Front End

Back End

ALU1

Execute Execute

Write-Back

Issue

Complete

Decode/
Dispatch
The In te l Pent ium and Pent ium Pro 97

So if an instruction is preceded by a pipeline bubble, when it enters the
issue buffer, it will drop down into the empty space directly behind the
instruction ahead of it, thereby eliminating the bubble.

Of course, the issue buffer’s ability to squeeze out pipeline bubbles
depends on the front end’s ability to produce more instructions per cycle
than the back end can consume. If the back end and front end move in lock
step, the pipeline bubbles will propagate through the issue queues into the
back end.

The Completion Phase

The second phase that out-of-order execution adds to an instruction’s
lifecycle is the completion phase. In this phase, instructions that have finished
executing, or completed execution, wait in a second buffer to have their results
written back to the register file in program order. When an instruction’s results
are written back to the register file and the programmer-visible machine state
is permanently altered, that instruction is said to commit. Instructions must
commit in program order if the illusion of sequential execution is to be main-
tained. This means that no instruction can commit until all of the instructions
that were originally ahead of it in the code stream have committed.

The requirement that all instructions must commit in their original
program order is what necessitates the second buffer shown in Figure 5-8.
The processor needs a place to collect instructions as they complete the out-
of-order execution phase of their lifecycle, so that they can be put back in
their original order before being sent to the final write stage, where they’re
committed. Like the issue buffer described earlier, this completion buffer
can take a number of forms. We’ll look at the form that this buffer takes in
the P6 shortly.

I stated previously that an instruction sits in the completion phase’s
buffer, which I’ll call the completion buffer for now, and waits to have its result
written back to the register file. But where does the instruction’s result wait
during this interim period? When an instruction is executed out of order, its
result goes into a special rename register that has been allocated especially
for use by that instruction. Note that this rename register is part of the
processor’s internal bookkeeping apparatus, which means it is not a part of
the programming model and is therefore not visible to the programmer. The
result waits in this hidden rename register until the instruction commits, at
which time the result is written from the rename register into the programmer-
visible architectural register file. After the instruction’s result is committed,
the rename register then goes back into the pool of available rename
registers, where it can be assigned to another instruction on a later cycle.

The P6’s Issue Phase: The Reservation Station

The P6 microarchitecture feeds each newly decoded instruction into a buffer
called the reservation station (RS), where it waits until all of its execution require-
ments are met. Once they’ve been met, the instruction then moves out of the
reservation station into an execution unit (i.e., it is issued), where it executes.
98 Chapter 5

A glance at the P6 diagram (Figure 5-6) shows that up to three instruc-
tions per cycle can be dispatched from the decoders into the reservation
station. And as you’ll see shortly, up to five instructions per cycle can be
issued from the reservation station into the execution units. Thus the
Pentium’s original superscalar design, in which two instructions per cycle
could dispatch from the decoders directly into the back end, has been
replaced with a buffered design in which three instructions can dispatch
into the buffer and five instructions can issue out of it on any given cycle.

This buffering action, and the decoupling of the front end’s fetch/
decode bandwidth from the back end’s execution bandwidth that it enables,
are at the heart of the P6’s performance gains.

The P6’s Completion Phase: The Reorder Buffer

Because the P6 microarchitecture must commit its instructions in order, it
needs a place to keep track of the original program order of each instruction
that enters the reservation station. Therefore, after the instructions are
decoded, they must travel through the reorder buffer (ROB) before flowing into
the reservation station. The ROB is like a large logbook in which the P6 can
record all the essential information about each instruction that enters the
out-of-order back end. The primary function of the ROB is to ensure that
instructions come out the other side of the out-of-order back end in the same
order in which they entered it. In other words, it’s the reservation station’s
job to see that instructions are executed in the most optimal order, even if
that means executing them out of program order. It’s the reorder buffer’s
job to ensure that the finished instructions get put back in program order
and that their results are written to the architectural register file in the
proper sequence. To this end, the ROB stores data about each instruction’s
status, operands, register needs, original place in the program, and so on.

So newly decoded instructions flow into the ROB, where their relevant
information is logged in one of 40 available entries. From there, they pass on
to the reservation station, and then on to the back end. Once they’re done
executing, they wait in the ROB until they’re ready to be committed.

The role I’ve just described for the reorder buffer should be familiar to
you at this point. The reorder buffer corresponds to the structure that I
called the completion buffer earlier, but with a few extra duties assigned to it.

If you look at my diagram of the P6 microarchitecture, you’ll notice that
the reorder buffer is depicted in two spots: the front end and the commit unit.
This is because the ROB is active in both of these phases of the instruction’s
lifecycle. The ROB is tasked with tracking instructions as they move through
the phases of their lifecycle and with putting the instructions back in program
order at the end of their lifecycle. So newly decoded instructions must be
given a tracking entry in the ROB and have a temporary rename register
allocated for their private use. Similarly, newly executed instructions must
wait in the ROB before they can commit by having the contents of the
temporary rename register that holds their result permanently written to
the architectural register file.
The In te l Pent ium and Pent ium Pro 99

As implied in the previous sentence, not only does the P6’s ROB act as a
completion buffer and an instruction tracker, but it also handles register
renaming. Each of the P6 microarchitecture’s 40 ROB entries has a data field
that holds program data just like an x86 register. These fields give the P6’s
back end 40 microarchitectural rename registers to work with, and they’re
used in combination with the P6’s register allocation table (RAT) to implement
register renaming in the P6 microarchitecture.

The Instruction Window

The reservation station and the reorder buffer together make up the heart
of the P6’s out-of-order back end, and they account for its drastic clock-for-
clock performance advantage over the original Pentium. These two buffers—
the one for reshuffling and optimizing the code stream (the RS) and the
other for unshuffling and reordering the code stream (the ROB)—enable
the P6 processor to dynamically and intelligently adapt its operation to fit the
needs of the ever-changing code stream.

A common metaphor for thinking about and talking about the P6’s RS +
ROB combination, or analogous structures on other processors, is that of an
instruction window. The P6’s ROB can track up to 40 instructions in various
stages of execution, and its reservation station can hold and examine up to
20 instructions to determine the optimal time for them to execute. Think of
the reservation station’s 20-instruction buffer as a window that moves along the
sequentially ordered code stream; on any given cycle, the P6 is looking through
this window at that visible segment of the code stream and thinking about
how its hardware can optimally execute the 20 or so instructions that it sees
there.

A good analogy for this is the game of Tetris, where a small preview
window shows you the next piece that will come your way while you’re
deciding how best to place the currently falling piece. Thus at any given
moment, you can see a total of two Tetris pieces and think about how those
two should fit with the pieces that have gone before and those that might
come after.

The P6 microarchitecture’s job is a little harder than the average Tetris
player’s, because it must maneuver and optimally place as many as three
falling pieces at a time; hence it needs to be able to see farther ahead into
the future in order to make the best decisions about what to place where and
when. The P6’s wider instruction window allows the processor to look further
ahead in the code stream and to juggle its instructions so that they fit together
with the currently available execution resources in the optimal manner.

The P6 Pipeline

The P6 has a 12-stage pipeline that’s considerably longer than the Pentium’s
five-stage pipeline. I won’t enumerate and describe all 12 stages individually,
but I will give a general overview of the phases that the P6’s pipeline passes
through.
100 Chapter 5

BTB access and instruction fetch
The first three-and-a-half pipeline stages are dedicated to accessing the
branch target buffer and fetching the next instruction. The P6’s two-
cycle instruction fetch phase is longer than the Pentium’s one-cycle fetch
phase, but it keeps the L1 cache access latency from holding back the
clock speed of the processor as a whole.

Decode
The next two-and-a-half stages are dedicated to decoding x86 instructions
and breaking them down into the P6’s internal, RISC-like instruction
format. We’ll discuss this instruction set translation, which takes place
in all modern x86 processors and even in some RISC processors, in
more detail shortly.

Register rename
This stage takes care of register renaming and logging instructions in
the ROB.

Write to RS
Writing instructions from the ROB into the RS takes one cycle, and it
occurs in this stage.

Read from RS
At this point, the issue phase of the instruction’s lifecycle is under way.
Instructions can sit in the RS for an unspecified number of cycles before
being read from the RS. Even if they’re read from the RS immediately
after entering it, it takes one cycle to move instructions out of the RS,
through the issue ports and into the execution units.

Execute
Instruction execution can take one cycle, as in the case of simple
integer instructions, or multiple cycles, as in the case of floating-point
instructions.

Commit
These two final cycles are dedicated to writing the results of the instruc-
tion execution back into the ROB, and then committing the instructions
by writing their results from the ROB into the architectural register file.

Lengthening the P6’s pipeline as described in this chapter has two primary
beneficial effects. First, it allows Intel to crank up the processor’s clock speed,
since each of the stages is shorter and simpler and can be completed quicker.
The second effect is a little more subtle and less widely appreciated.

The P6’s longer pipeline, when combined with its buffered decoupling
of fetch/decode bandwidth from execution bandwidth, allows the processor
to hide hiccups in the fetch and decode stages. In short, the nine pipeline
stages that lie ahead of the execute stage combine with the RS to form a deep
buffer for instructions. This buffer can hide gaps and hang-ups in the flow
of instructions in much the same way that a large water reservoir can hide
interruptions in the flow of water to a facility.
The In te l Pent ium and Pent ium Pro 101

But on the downside (to continue the water reservoir example), when
one dead animal is spotted floating in the reservoir, the whole thing has to
be flushed. This is sort of the case with the P6 and a branch misprediction.

Branch Prediction on the P6
The P6’s architects expended considerably more resources than its prede-
cessor on branch prediction and managed to boost dynamic branch predic-
tion accuracy from the Pentium’s approximately 75 percent rate to upwards
of 90 percent. The P6 has a 512-entry BHT + BTB, and it uses four bits to
record branch history information (compared to the Pentium’s two-bit
predictor). The four-bit prediction scheme allows the Pentium to store more
of each branch’s history, thereby increasing its ability to correctly predict
branch outcomes.

As you learned in Chapter 2, branch prediction gets more important as
pipelines get longer, because a pipeline flush due to a misprediction means
more lost cycles and a longer recovery time for the processor’s instruction
throughput and completion rate.

Consider the case of a conditional branch whose outcome depends on
the result of an integer calculation. On the original Pentium, the calculation
happens in the fourth pipeline stage, and if the branch prediction unit
(BPU) has guessed incorrectly, only three cycles worth of work would be lost
in the pipeline flush. On the P6, though, the conditional calculation isn’t
performed until stage 10, which means 10 cycles worth of work get flushed if
the BPU guesses incorrectly.

When a dynamically scheduled processor executes instructions specula-
tively, those speculative instructions and their results are stored in the ROB
just like non-speculative instructions. However, the ROB entries for the spec-
ulative instructions are marked as speculative and prevented from committing
until the branch condition is evaluated. When the branch condition has been
evaluated, if the BPU guessed correctly, the speculative instructions’ ROB
entries are marked as non-speculative, and the instructions are committed
in order. If the BPU guessed incorrectly, the speculative instructions and their
results are deleted from the ROB without being committed.

The P6 Back End
The P6’s back end (illustrated in Figure 5-9) is significantly wider than that
of the Pentium. Like the Pentium, it contains two asymmetrical integer
ALUs and a separate floating-point unit, but its load-store capabilities have
been beefed up to include three execution units devoted solely to memory
accesses: a load address unit, a store address unit, and a store data unit. The load
address and store address units each contain a pair of four-input adders for
calculating addresses and checking segment limits; these are the adders
that show up in the decode-1 stage of the original Pentium.

The asymmetrical integer ALUs on the P6 have single-cycle throughput
and latency for most operations, with multiplication having single-cycle
throughput but four-cycle latency. Thus, multiply instructions execute faster
on the P6 than on the Pentium.
102 Chapter 5

Figure 5-9: The P6 back end

The P6’s floating-point unit executes most single- and double-precision
operations in three cycles, with five cycles needed for multiply instructions.
The FPU is fully pipelined for most instructions, so that most instructions
execute with a single-cycle throughput. Some instructions, like floating-point
division and square root, are not pipelined and take 18 to 38 and 29 to 69
cycles, respectively.

From the present overview’s perspective, the most noteworthy feature of
the P6’s back end is that its execution units are attached to the reservation
station via five issue ports, as shown in Figure 5-9.

This means that up to five instructions per cycle can pass from the reser-
vation station through the issue ports and into the execution units. This five–
issue port structure is one of the most recognizable features of the P6, and
when later designs (like the PII) added execution units to the microarchi-
tecture (like MMX units), they had to be added on the existing issue ports.

If you looked closely at the Pentium Pro diagram, you probably noticed
that there were already two units that shared a single port in the original
Pentium Pro: the simple integer unit and the floating-point unit. This means
that there are some restrictions on issuing a second integer computation and a
floating-point computation, but these restrictions rarely affect performance.

CISC, RISC, and Instruction Set Translation

Like the original Pentium, the P6 spends extra time in the decode phase, but
this time, the extra cycle and a half goes not to address calculations but to
instruction set translation. ISA translation is an important technique used in
many modern processors, but before you can understand how it works you
must first become acquainted with two terms that often show up in computer
architecture discussions: RISC and CISC.

One of the most important ways in which the x86 ISA differs from that of
both the PowerPC ISA (described in the next chapter) and the hypothetical
DLW ISA presented in Chapter 2 is that it supports register-to-memory and
memory-to-memory format arithmetic instructions. On the DLW architecture,

Back End

Floating-
Point
Unit

SIUCIU

Load-Store UnitInteger Unit

Port 0 Port 1 Port 4 Port 3 Port 2Port 0

Store
Data

Store
Addr.

Load
Addr.

Memory Access UnitsScalar ALUs

FPU

Branch
Unit

Port 1

BU

Reservation Station (RS)
The In te l Pent ium and Pent ium Pro 103

source and destination operands for every arithmetic instruction had to be
either registers or immediate values, and it was the programmer’s responsi-
bility to include in the program the load and store instructions necessary to
ensure that the arithmetic instructions’ source registers were populated with
the correct values from memory and their results written back to memory.
On the x86 architecture, the programmer can voluntarily surrender control
of most load-store traffic to the processor by using source and/or destination
operands that are memory locations. If the DLW architecture supported
such operations, they might look like Program 5-2:

Program 5-2: Arithmetic instructions using memory-to-memory and memory-to-register
formats

Adding the contents of two memory locations, as in line 1 of Program 5-2,
still requires the processor to load the necessary values into registers and store
the results. However, in memory-to-register and memory-to-memory format
instructions, these load and store operations are implicit in the instruction.
The processor must look at the instruction and figure out that it needs to
perform the necessary memory accesses; then it must perform them before
and/or after it executes the arithmetic part of the instruction. So for the
add in line 1 of Program 5-2, the processor would have to perform two loads
before executing the addition. Similarly, for the subtractions in lines 2 and 3,
the processor would have to perform one load before executing the sub-
traction and one store afterwards.

The use of such register-to-memory and memory-to-memory format
instructions shifts the burden of scheduling memory traffic from the pro-
grammer to the processor, freeing the programmer to focus on other aspects
of coding. It also has the effect of reducing the number of instructions that a
programmer must write (or code density) in order to perform most tasks. In
the days when programmers programmed primarily in assembly language,
compilers for high-level languages (HLLs) like C and FORTRAN were primitive,
and main memories were small and expensive, ISA qualities like programmer
ease-of-use and high code density were very attractive.

A further technique that ISAs like x86 use to lessen the burden on pro-
grammers and increase code density is the inclusion of ISA-level support for
complex data types like strings. A string is simply a series, or “string,” of contig-
uous memory locations of a certain length. Strings are often used to store ASCII
text, so a short string might store a word, or a longer string might store a whole
sentence. If an ISA includes instructions for working with strings—and the

Line # Code Comments

1 add #12, #13, A Add the contents of memory locations #12 and #13 and place the
result in register A.

2 sub A, #15, #16 Subtract the contents of register A from the contents of memory
location #15 and store the result in memory location #16.

3 sub A, #B, #100 Subtract the contents of register A from the contents of the memory
location pointed to by #B and store the result in memory location
#100.
104 Chapter 5

x86 ISA does—assembly language programmers can write programs like text
editors and terminal applications in a much shorter length of time and with
significantly fewer instructions than they could if the ISA lacked such support.

Complex instructions, like the x86 string manipulation instructions,
carry out complex, multistep tasks and therefore stand in for what would
otherwise be many lines of RISC assembler code. These types of instructions
have serious drawbacks, though, when it comes to performing the kind of
dynamic scheduling and out-of-order execution described earlier in this
chapter. String instructions, for instance, have latencies that can vary with
the length of the string being manipulated—the longer the string, the
more cycles the instruction takes to execute. Because their latencies are not
predictable, it’s difficult for the processor to schedule them optimally using
the dynamic scheduling mechanisms described previously.

Finally, complex instructions often vary in the number of bytes they
need in order to be rendered in machine language. Such variable-length
instructions are more difficult to fetch and decode, and once they’re
decoded, they’re more difficult to schedule.

Because of its use of multiple instruction formats (register-to-memory
and memory-to-memory) and complex, variable-length instructions, x86 is an
example of an approach to processor and ISA design called complex instruc-
tion set computing (CISC). Both DLW and PowerPC, in contrast, represent
an approach called reduced instruction set computing (RISC), in which
all machine language instructions are the same length, fewer instruction
formats are supported, and complex instructions are eliminated entirely.
RISC ISAs are harder to program for in assembly language, so they assume
the existence and widespread use of high-level languages and sophisticated
compilers. For RISC programmers who use a high-level language like C, the
burden of scheduling memory traffic and handling complex data types shifts
from the processor to the compiler. By shifting the burden of scheduling
memory accesses and other types of code to the compiler, processors that
implement RISC ISAs can be made less complex, and because they’re less
complex, they can be faster and more efficient.

It would be nice if x86, which is far and away the world’s most popular
ISA, were RISC, but it isn’t. The x86 ISA is a textbook example of a CISC ISA,
and that means processors that implement x86 require more complicated
microarchitectures. At some point, x86 processor designers realized that in
order to use the latest RISC-oriented dynamic scheduling techniques to
speed x86-based architectures without the processor’s complexity spinning
out of control, they’d have to limit the added complexity to the front end by
translating x86 CISC operations into smaller, faster, more uniform RISC-like
operations for use in the back end. AMD’s K6 and Intel’s P6 were two early
x86 designs that used this type of instruction set translation to great advantage.
The technique was so successful that all subsequent x86 processors from both
Intel and AMD have used instruction set translation, as have some RISC
processors like IBM’s PowerPC 970.
The In te l Pent ium and Pent ium Pro 105

The P6 Microarchitecture’s Instruction Decoding Unit
The P6 microarchitecture breaks down complex, variable-length x86 instruc-
tions into one or more smaller, fixed-length micro-operations (aka micro-ops,
µops, or uops) using a decoding unit that consists of three separate decoders,
depicted in Figure 5-10: two simple/fast decoders, which handle simple x86
instructions and can produce one decoded micro-op per cycle; and one
complex/slow decoder, which handles the more complex x86 instructions
and can produce up to four decoded micro-ops per cycle.

Sixteen-byte groups of architected x86 instructions are fetched from the
I-cache into the front end’s 32-byte instruction queue, where predecoding
logic first identifies each instruction’s boundaries and type before aligning
the instructions for entry into the decoding hardware. Up to three x86
instructions per cycle can then move from the instruction queue into the
decoders, where they’re converted to micro-ops and passed into a micro-op
queue before going to the ROB. Together, the P6’s three decoders are capable
of producing up to six decoded micro-ops per cycle (four from the complex/
slow decoder plus one from each of the two simple/fast decoders) for con-
sumption by the micro-op queue. The micro-op queue, in turn, is capable of
passing up to three micro-ops per cycle into the P6’s instruction window.

Figure 5-10: The P6 microarchitecture’s decoding hardware

Simple Decoder

Simple Decoder

Complex
Decoder

Microcode
Engine

L1 Instruction Cache

Translate/
x86 Decode

6-entry
Micro-op
Queue

40-entry
Reorder Buffer

(ROB)

x86 instruction path

micro-op instruction path

2 x 16-byte
Fetch Buffer
106 Chapter 5

Simple x86 instructions, which can be decoded very rapidly and which
break down into only one or two micro-ops, are by far the most common type
of instruction found in an average x86 program. So the P6 dedicates most of its
decoding hardware to these types of instructions. More complex x86 instruc-
tions, like string manipulation instructions, are less common and take longer
to decode. The P6’s complex/slow decoder works in conjunction with the
microcode ROM to handle the really complex legacy instructions, which are
translated into sequences of micro-ops that are read directly from the ROM.

The Cost of x86 Legacy Support on the P6

All of this decoding and translation hardware takes up a lot of transistors.
MDR estimates that close to 40 percent of the P6’s transistor budget is spent
on x86 legacy support. If correct, that’s even higher than the astonishing
30 percent estimate for the original Pentium, and even if it’s incorrect, it
still suggests that the cost of legacy support is quite high.

At this point, you’re probably thinking back to the conclusion of the first
part of this chapter, in which I suggested that the relative cost of x86 support
has decreased with successive generations of the Pentium. This is still true,
but the trend didn’t hold for the first instantiation of the P6 microarchi-
tecture: the original 133 MHz Pentium Pro. The Pentium Pro’s L1 cache was a
modest 16KB, which was small even by 1995 standards. The chip’s designers
had to skimp on on-die cache, because they’d spent so much of their tran-
sistor budget on the decoding and translation hardware. Comparable RISC
processors had two to four times that amount of cache, because less of the
die was taken up with front-end logic, so they could use the space for cache.

When the P6 microarchitecture was originally launched in its Pentium
Pro incarnation, transistor counts were still relatively low by today’s standards.
But as Moore’s Curves marched on, microprocessor designers went from
thinking, “How do we squeeze all the hardware that we’d like to put on the
chip into our transistor budget?” to “Now our generous transistor budget will
let us do some really nice things!” to “How on earth do we get this many
transistors to do useful, performance-enhancing work?”

What really drove the decrease in subsequent generations’ costs for x86
support was the increase in L1 cache sizes and the L2 cache’s move onto the
die, because the answer to that last question has—until recently—been,
“Let’s add cache.”

Summary: The P6 Microarchitecture in Historical Context

This concluding section provides an overview of the P6 microarchitecture in
its various incarnations. The main focus here is on fitting everything together
and giving you a sense of the big picture of how the P6 evolved. The historical
narrative outlined in this section seems, in retrospect, to have unfolded over
a much longer length of time than the seven years that it actually took to go
from the Pentium Pro to the Pentium 4, but seven years is an eternity in
computer time.
The In te l Pent ium and Pent ium Pro 107

The Pentium Pro

The processor described in the preceding section under the name P6 is the
original, 133 MHz Pentium Pro. As you can see from the processor compari-
son in Table 5-2, the Pentium Pro was relatively short on transistors, short
on cache, and short on features. In fact, the original Pentium eventually
got rudimentary SIMD computing support in the form of Intel’s MMX
(Multimedia Extensions), but the Pentium Pro didn’t have enough room
for that, so SIMD got jettisoned in favor of all that fancy decoding logic
described earlier.

In spite of all its shortcomings, though, the Pentium Pro did manage
to raise the x86 performance bar significantly. Its out-of-order execution
engine, dual integer pipelines, and improved floating-point unit gave it
enough oomph to get the x86 ISA into the commodity server market.

The Pentium II

MMX didn’t make a return to the Intel product line until the Pentium II.
Introduced in 1997, this next generation of the P6 microarchitecture
debuted at speeds ranging from 233 to 300 MHz and sported a number of
performance-enhancing improvements over its predecessor.

First among these improvements was an on-die, split L1 cache that was
doubled in size to 32KB. This larger L1 helped boost performance across the
board by keeping the PII’s lengthy pipeline full of code and data.

The P6’s basic pipeline stayed the same in the PII, but Intel widened the
back end as depicted in Figure 5-11 by adding the aforementioned MMX
support in the form of two new MMX execution units: one on issue port 0
and the other on issue port 1. MMX provided vector support for integers
only, though. It wasn’t until the introduction of Streaming SIMD Extensions
(SSE) with the PIII that the P6 microarchitecture got support for floating-
point vector processing.

Figure 5-11: The Pentium II’s back end

Back End

MMX Unit

MMX1MMX0

Floating-
Point
Unit

SIUCIU

Load-Store UnitInteger Unit

Port 0 Port 1Port 0 Port 1 Port 4 Port 3 Port 2Port 0

Store
Data

Store
Addr.

Load
Addr.

Memory Access UnitsScalar ALUsVector ALUs

FPU

Branch
Unit

Port 1

BU

Reservation Station (RS)
108 Chapter 5

The Pentium II’s integer and floating-point performance was relatively
good compared to its CISC competitors, and it helped further the trend,
started by the Pentium Pro, of x86 commodity hardware’s migration into
the server and workstation realms. However, the PII still couldn’t stand up
to RISC designs built on the same process with similar transistor counts.
Its main advantage was in bang for the buck, whereas the more expensive
RISC chips specialized in pure bang.

The Pentium III

Intel introduced its next P6 derivative, the Pentium III (PIII), in 1999 at
450 MHz on a 0.25 micron manufacturing process. The first version of the
Pentium III, code-named Katmai, had a 512KB off-die L2 cache that shared
a small piece of circuit board (called a daughtercard) with the PIII. While
this design offered fair performance, the PIII didn’t really begin to take off
from a performance standpoint until the introduction of the next version
of the PIII, code-named Coppermine, in early 2000.

Coppermine was produced on a 0.18 micron manufacturing process,
which means that Intel could pack more transistors onto the processor die.
Intel took advantage of this capability by reducing the PIII’s L2 cache size to
256KB and moving the cache onto the CPU die itself. Having the L2 on the
same die as both the CPU and the L1 cache dramatically reduced the L2
cache’s access time, a fact that more than made up for the reduction in cache
size. Coppermine’s performance scaled well with increases in clock speed,
eventually passing the 1 GHz milestone shortly after AMD’s Athlon.

The Pentium III processor introduced two significant additions to
the x86 ISA, the most important of which was a set of floating-point SIMD
extensions to the x86 architecture called Streaming SIMD Extensions
(SSE). With the addition of SSE’s 70 new instructions, the x86 architecture
completed much more of what had been lacking in its support for vector
computing, making it more attractive for applications like games and
digital signal processing. I’ll cover the MMX and SSE extensions in more
detail in Chapter 8, but for now it’s necessary to say a word about how the
extensions were implemented in hardware.

The Pentium III’s designers added the majority of the new SSE hardware
on issue port 1 (see the back end in Figure 5-12). The new SSE units attached
to port 1 handle vector SIMD addition, shuffle, and reciprocal arithmetic
functions. Intel also modified the FPU on port 0 to handle SSE multiplies.
Thus the Pentium III’s main FPU functional block is responsible for both
scalar and vector operations.

The PIII also introduced the infamous processor serial number (PSN), along
with new x86 instructions aimed at reading the number. The PSN was a unique
serial number that marked each processor, and it was intended for use in
securing online commercial transactions. However, due to concerns from
privacy advocates, the PSN was eventually dropped from the Pentium line.
The In te l Pent ium and Pent ium Pro 109

Figure 5-12: The Pentium III’s back end

Conclusion

The Pentium may not have outperformed its RISC contemporaries, but it was
superior enough to its x86-based competition to keep Intel comfortably in
command of the commodity PC market. Indeed, prior to the rise of Advanced
Micro Devices (AMD) as a serious competitor, Intel had the luxury of setting
the pace of progress in the x86 PC space. Products were released when Intel
was ready to release them, and clock speeds climbed when Intel was ready for
them to climb. Intel’s competitors were left to respond to what the larger
chipmaker was doing, with their own x86 products always lagging significantly
behind Intel’s in performance and popularity.

AMD’s Athlon was the first x86 processor to pose any sort of threat to
Intel’s technical dominance, and by the time the PIII made its debut in
1999, it was clear that Intel and AMD were locked in a “gigahertz race” to
see who would be the first to introduce a processor with a 1 GHz clock speed.
The P6 microarchitecture in its PIII incarnation was Intel’s horse in this race,
and that basic design eventually reached the 1 GHz mark shortly after AMD’s
Athlon. Thus a microarchitecture that started out at 150 MHz eventually
carried x86 beyond 1 GHz and into the lucrative server and workstation
markets that RISC architectures had traditionally dominated.

The gigahertz race had a profound effect not only on the commodity PC
market but also on the Pentium line itself, insofar as the next chip to bear
the Pentium name—the Pentium 4—bore the marks of the gigahertz race
stamped into its very architecture. If Intel learned anything in those last few
years of the P6’s life, it learned that clock speed sells, and it kept that lesson
foremost in its mind when it designed the Pentium 4’s NetBurst microarchi-
tecture. (For more on the Pentium 4, see Chapters 7 and 8.)

Back End

MMX/SSE Unit
FP/SSE

Unit

SIUCIU

Load-Store UnitInteger Unit

Port 0 Port 1Port 1 Port 1Port 0 Port 4 Port 3 Port 2Port 0

Store
Data

Store
Addr.

Load
Addr.

Memory Access UnitsScalar ALUsVector ALUs

Branch
Unit

Port 1

BU

Reservation Station (RS)

FPU &
VFMULMMX1MMX0 VFADD

VSHUFF
VRECIP
110 Chapter 5

P O W E R P C P R O C E S S O R S :
6 0 0 S E R I E S , 7 0 0 S E R I E S ,

A N D 7 4 0 0

Now that you’ve been introduced to the first half
of Intel’s Pentium line in the previous chapter, this
chapter will focus on the origins and development
of another popular family of microprocessors: the
PowerPC (or PPC) line of processors produced from
the joint efforts of Apple, IBM, and Motorola. Because
the PowerPC family of processors is extremely large and can be found in an
array of applications that ranges from mainframes to desktop PCs to routers
to game consoles, this chapter’s coverage of PowerPC will present only a
small and limited sample of the processors that implement the PowerPC
ISA. Specifically, this chapter will focus exclusively on a subset of the PowerPC
chips that have been shipped in Apple products, because these chips are
the most directly comparable to the Pentium line in that they’re aimed
at the “personal computer” market.

A Brief History of PowerPC

The PowerPC architecture has its roots in two separate architectures. The first
of these is an architecture called POWER (Performance Optimization With
Enhanced RISC), IBM’s RISC architecture developed for use in mainframes
and servers. The second is Motorola’s 68000 (aka the 68K) processor, which
prior to PowerPC, formed the core of Apple’s desktop computing line.

To make a long story very short, IBM needed a way to turn POWER
into a wider range of computing products for use outside the server closet,
Motorola needed a high-end RISC microprocessor in order to compete in the
RISC workstation market, and Apple needed a CPU for its personal computers
that would be both cutting-edge and backward compatible with the 68K.

Thus the AIM (Apple, IBM, Motorola) alliance was born, and with it
was also born a subset of the POWER architecture dubbed PowerPC. PowerPC
processors were to be jointly designed and produced by IBM and Motorola
with input from Apple, and were to be used in Apple computers and in the
embedded market. The AIM alliance has since passed into history, but
PowerPC lives on, not only in Apple computers but in a whole host of
different products that use PowerPC-based chips from Motorola and IBM.

The PowerPC 601

In 1993, AIM kicked off the PowerPC party by releasing the 32-bit PowerPC 601
at an initial speed of 66 MHz. The 601, which was based on IBM’s older RISC
Single Chip (RSC) processor and was originally designed to serve as a “bridge”
between POWER and PowerPC, combines parts of IBM’s POWER architecture
with the 60x bus developed by Motorola for use with their 88000. As a bridge,
the 601 supports a union of the POWER and PowerPC instruction sets, and it
enabled the first PowerPC application writers to easily make the transition
from the older ISA to the newer.

NOTE The term 32-bit may be unfamiliar to you at this point. If you’re curious about what
it means, you might want to skip ahead and skim the chapter on 64-bit computing,
Chapter 9.

Table 6-1 summarizes the features of the PowerPC 601.

Table 6-1: Features of the PowerPC 601

Introduction Date March 14, 1994

Process 0.60 micron

Transistor Count 2.8 million

Die Size 121 mm2

Clock Speed at Introduction 60–80 MHz

Cache Sizes 32KB unified L1

First Appeared In Power Macintosh 6100/60
112 Chapter 6

Even though the joint IBM-Motorola team in Austin, Texas had only
12 months to get this chip off the ground, it was a very nice and full-featured
RISC design for its time.

The 601’s Pipeline and Front End

In the previous chapter, you learned how complex the different Pentiums’
front ends and pipelines tend to be. There is none of that with the 601, which
has a classic four-stage RISC integer pipeline:

1. Fetch

2. Decode/dispatch

3. Execute

4. Write-back

The fact that PowerPC’s RISC instructions are all the same size means
that the 601’s instruction fetch logic doesn’t have the instruction alignment
headaches that plague x86 designs, and thus the fetch hardware is simpler
and faster. Back when transistor budgets were tight, this kind of thing could
make a big difference in performance, power consumption, and cost.

The PowerPC Instruction Queue

As you can see in Figure 6-1, up to eight instructions per cycle can be fetched
directly into an eight-entry instruction queue (IQ), where they are decoded
before being dispatched to the back end. Get used to seeing the instruction
queue, because it shows up in some form in every single PPC model that we’ll
discuss in this book, all the way down to the PPC 970.

The instruction queue is used mainly for detecting and dealing
with branches. The 601’s branch unit scans the bottom four entries of the
queue, identifying branch instructions and determining what type they
are (conditional, unconditional, etc.). In cases where the branch unit has
enough information to resolve the branch immediately (e.g., in the case of
an unconditional branch, or a conditional branch whose condition depends
on information that’s already in the condition register), the branch instruc-
tion is simply deleted from the instruction queue and replaced with the
instruction located at the branch target.

NOTE The PowerPC condition register is the analog of the processor status word on the Pentium.
We’ll discuss the condition register in more detail in Chapter 10.

This branch-elimination technique, called branch folding, speeds per-
formance in two ways. First, it eliminates an instruction (the branch) from
the code stream, which frees up dispatch bandwidth for other instructions.
Second, it eliminates the single-cycle pipeline bubble that usually occurs
immediately after a branch. All of the PowerPC processors covered in this
chapter perform branch folding.
PowerPC Processors : 600 Ser ies, 700 Series, and 7400 113

Figure 6-1: PowerPC 601 microarchitecture

If the branch unit determines that the branch is not taken, it allows the
branch to propagate to the bottom of the queue, where the dispatch logic
simply deletes it from the code stream. The act of allowing not-taken branches
to fall out of the instruction queue is called fall-through, and it happens on all
the PowerPC processors covered in this book.

Non-branch instructions and branch instructions that are not folded sit in
the instruction queue while the dispatch logic examines the four bottommost
entries to see which three of them it can send off to the back end on the next
cycle. The dispatch logic can dispatch up to three instructions per cycle out
of order from the bottom four queue entries, with a few restrictions, of which
one is the most important for our immediate purposes: Integer instructions
can be dispatched only from the bottommost queue entry.

Instruction Scheduling on the 601

Notice that the 601 has no equivalent to the Pentium Pro’s reorder buffer
(ROB) for keeping track of the original program order. Instead, instructions
are tagged with what amounts to metadata so that the write-back logic can
commit the results to the register file in program order. This technique of
tagging instructions with program-order metadata works fine for a simple,
statically scheduled design like the 601 with a very small number of in-flight

Scalar
 Arithmetic Logic Units

Back End

Front End

IU-1

BU

SU

Decode/Dispatch

Instruction Fetch

Write

Instruction Queue

FPU-1
FPU-2

Floating-
Point
Unit

Integer
ALU

System
Unit

Branch
Unit
114 Chapter 6

instructions. But later, dynamically scheduled PPC designs would require
dedicated structures for tracking larger numbers of in-flight instructions and
making sure that they commit their results in order.

The 601’s Back End
From the dispatch stage, instructions go into the 601’s back end, where
they’re executed by each of three different execution units: the integer unit,
the floating-point unit, or the branch unit. Let’s take a look at each of these
units in turn.

The Integer Unit

The 601’s 32-bit integer unit is a straightforward fixed-point ALU that is
responsible for all of the integer math—including address calculations—
on the chip. While x86 designs, like the original Pentium, need extra address
adders to keep all of the address calculations associated with x86’s multiplicity
of addressing modes from tying up the back end’s integer hardware, the 601’s
RISC, load-store memory model means that it can feasibly handle memory
traffic and regular ALU traffic with a single integer execution unit.

So the 601’s integer unit handles the following memory-related functions,
most of which are moved off into a dedicated load-store unit in subsequent
PPC designs:

integer and floating-point load-address calculations

integer and floating-point store-address calculations

integer and floating-point load-data operations

integer store-data operations

Cramming all of these load-store functions into the 601’s single integer
ALU doesn’t exactly help the chip’s integer performance, but it is good
enough to keep up with the Pentium in this area, even though the Pentium
has two integer ALUs. Most of this integer performance parity probably comes
from the 601’s huge 32KB unified L1 cache (compare that to the Pentium’s
8KB split L1), a luxury afforded the 601 by the relative simplicity of its front-
end decoding hardware.

A final point worth noting about the 601’s integer unit is that multi-cycle
integer instructions (e.g., integer multiplies and divides) are not fully pipelined.
When an instruction that takes, say, five cycles to execute entered the IU, it
ties up the entire IU for the whole five cycles. Thankfully, the most common
integer instructions are single-cycle instructions.

The Floating-Point Unit

With its single floating-point unit, which handles all floating-point calculations
and store-address operations, the 601 was a very strong performer when it
was first launched.

The 601’s floating-point pipeline is six stages long, and includes the
four basic stages outlined earlier in this chapter, but with an extra decode
stage and an extra execute stage. What really sets the chip’s floating-point
PowerPC Processors : 600 Ser ies, 700 Series, and 7400 115

hardware apart when compared to its contemporaries is the fact that not only
are almost all single-precision operations fully pipelined, but most double-
precision (64-bit) floating-point operations are as well. This means that for
single-precision operations (with the exception of divides) and most double-
precision operations, the 601’s floating-point hardware can turn out one
instruction per cycle with a two-cycle latency.

Another great feature of the 601’s FPU is its ability to do single-precision
fused multiply-add (fmadd) instructions with single-cycle throughput. The fmadd
is a core digital signal processing (DSP) and scientific computing function,
so the 601’s fast fmadd capabilities make it well suited to these types of applica-
tions. This single-cycle fmadd capability is actually a significant feature of the
entire PowerPC computing line, from the 601 on down to the present day, and
it is one reason why these processors have been so popular for media and
scientific applications.

Another factor in the 601’s floating-point dominance is that its integer
unit handles all of the memory traffic (with the FPU providing the data for
floating-point stores). This means that during long stretches of floating-point–
only code, the integer unit acts like a dedicated load-store unit (LSU), whose
sole purpose is to keep the FPU fed with data.

Such an FPU + LSU combination performs well for two reasons: First,
integer and floating-point code are rarely mixed, so it doesn’t matter for per-
formance if the integer unit is tied up with floating-point–related memory
traffic. Second, floating-point code is often data-intensive, with lots of loads
and stores, and thus high levels of memory traffic to keep a dedicated
LSU busy.

When you combine both of these factors with the 601’s hefty 32KB L1
cache and its ability to do single-cycle fused multiply-adds at a rate of one per
clock, you have a floating-point force to be reckoned with in 1994 terms.

The Branch Execution Unit

The 601’s branch unit (BU) works in combination with the instruction fetcher
and the instruction queue to steer the front end of the processor through
the code stream by executing branch instructions and predicting branches.
Regarding the latter function, the 601’s BU uses a simple static branch pre-
dictor to predict conditional branches. I’ll talk a bit more about branch
prediction and speculative execution in covering the 603e in “The PowerPC
603 and 603e” on page 118.

The Sequencer Unit

The 601 contains a peculiar holdover from the IBM RSC called the sequencer
unit. The sequencer unit, which I’ll admit is a bit of a mystery to me, appears to
be a small, CISC-like processor with its own 18-bit instruction set, 32-word
RAM, microcode ROM, register file, and execution unit, all of which are
embedded on the 601. Its purpose is to execute some legacy instructions
particular to the older RSC; to take care of housekeeping chores like self-test,
reset, and initialization functions; and to handle exceptions, interrupts,
and errors.
116 Chapter 6

The inclusion of the sequencer unit on the 601 is quite obviously the result
of the time crunch that the 601 team faced in bringing the first PowerPC
chip to market; IBM admitted this much in its 601 white paper. The team
started with IBM’s RSC as its basis and began redesigning it to implement the
PowerPC ISA. Instead of throwing out the sequencer unit, a component that
played a major role in the functioning of the original RSC, IBM simply scaled
back its size and functionality for use in the 601.

I don’t have any exact figures, but I think it’s safe to say that this embedded
subprocessor unit took up a decent amount of die space on the 601 and that
the design team would have thrown it out if it had had more time. Subsequent
PowerPC processors, which didn’t have to worry about RSC legacy support,
implemented all of the (non–RSC-related) functions of the 601’s sequencer
unit by spreading them out into other functional blocks.

Latency and Throughput Revisited

On superscalar processors like the 601 and its more modern counterparts,
different instructions take different numbers of cycles to pass through the
processor. Different execution units often have different pipeline depths,
and even within one execution unit, different instructions sometimes take
different numbers of cycles. Regarding this latter case, one instruction can
take longer to pass through an ALU than another instruction, either because
the instruction has a mandatory stall in a certain stage or because the partic-
ular subunit that is handling the instruction has a longer pipeline than the
other subunits that together make up the ALU. This being the case, it no
longer makes sense for us to simplistically treat instruction latency as a property
of the processor as a whole. Rather, instruction latency is actually a matter of
the individual instruction, so our discussion will reflect that from now on.

Earlier, we defined an instruction’s latency as the minimum number of
cycles that an instruction must spend in the execution phase. Here are the
latencies of some commonly used PowerPC instructions on the PowerPC G4,
a processor that we’ll discuss in “The PowerPC 7400 (aka the G4)” on page 133:

Notice that most of the instructions take only one cycle to execute, while
a few, like division and multiplication, take more. An integer division for a full
word, for example, takes 19 cycles to execute, while a 32-bit multiply takes 6
cycles. This means that the division instruction sits in IU1’s integer pipeline
for 19 cycles, and during this time, no other instruction can execute in IU1.

Mnemonic Cycles to Execute

add 1

and 1

cmp 1

divw 19

mul 6
PowerPC Processors : 600 Ser ies, 700 Series, and 7400 117

Now let’s look at the floating-point instruction latencies for the G4:

These latencies are listed a bit differently than the integer instruction laten-
cies. The numbers separated by dashes tell how long the instruction spends
in each of the FPU’s three pipeline stages. Most of the instructions listed spend
one cycle in each stage, for a total of three cycles in the G4’s FPU pipeline, so
if a program is using only these instructions, the FPU can start and finish one
instruction on each cycle.

A few instructions, like floating-point division, have only a single number
in the latency column. This is because an fdiv ties up the entire floating-point
pipeline when executing. While an fdiv is grinding out its 32 cycles in the FPU,
no other instructions can execute along with it in the floating-point pipeline.
This means that any floating-point instructions that come immediately after
the fdiv in the code stream must wait in the instruction queue because they
cannot be dispatched while the fdiv is executing.

Summary: The 601 in Historical Context

The 601 could spend a ton of transistors (at least, a ton for its day) on a 32KB
cache, because its front end was so much simpler than that of its x86 counter-
part, the Intel Pentium. This was a significant advantage to using RISC at
that time. The chip made its debut in the PowerMac 6100 to good reviews, and
it put Apple in the performance lead over its x86 competition. The 601 was
definitive in firmly establishing the cult of Apple as a high-end computer maker.

Nonetheless, the 601 did leave some room for improvement. The
sequencer unit that it inherited from its mainframe ancestor took up valuable
die space that could have been put to better use. With a little more time to
tweak it, the 601 could have been closer to perfect. But near perfection would
have to wait for the one-two punch of the 603e and 604.

The PowerPC 603 and 603e

While one team was putting the finishing touches on the 601, another team
at IBM’s Sommerset Design Center in Austin had already begun working
on the 601’s successor—the 603. The 603 was a significantly different design
than the 601, so it was less of an evolutionary shift than it was a completely
different processor. Table 6-2 summarizes the features of the PowerPC 603
and 603e.

Mnemonic Cycles to Execute

fabs 1-1-1

fadd 1-1-1

fdiv 32

fmadd 1-1-1

fmul 1-1-1

fsub 1-1-1
118 Chapter 6

The 603 was designed to run on very little power, because Apple needed
a chip for its PowerBook line of laptop computers. As a result, the processor
had a very good performance-per-watt ratio on native PowerPC code, and in
fact was able to match the 601 in clock-for-clock performance even though it
had about half the number of transistors as the older processor. But the 603’s
smaller 16KB split L1 cache meant that it was pretty bad at emulating the
legacy 68K code that formed a large part of Apple’s OS and application base.

As a result, the 603 was relegated to the very lowest end of Apple’s product
line (the Performas, beginning with the 6200, and the all-in-ones designed
for the education market, beginning with the 5200), until a tweaked version
(the 603e) with an enlarged, 32KB split cache was released. The 603e
performed better on emulated 68K code, so it saw widespread use in the
PowerBook line.

This section will take a quick look at the microarchitecture of the 603e,
illustrated in Figure 6-2, because it was the version of the 603 that saw the
most widespread use.

NOTE The 604 was also released at the same time as the original 603. The 604, which was
intended for Apple’s high-end products just like the 603e was intended for its low-end
products, was yet another brand new design. We’ll cover the 604 in “The PowerPC 604”
on page 123.

The 603e’s Back End

Like the 601, the 603e sports the classic RISC four-stage pipeline. But unlike
the 601, which can decode and dispatch up to three instructions per cycle
to any of its execution units—including its branch unit—the 603e has one
important restriction that constrains how it uses its dispatch bandwidth of
three instructions per cycle.

On the 603e, and on all processors derived from it (the 750 and the
7400/7410), branches that aren’t folded or don’t fall through are dispatched
from the instruction queue to the branch unit over a dispatch bus that isn’t
connected to any of the other execution units. This way, branch instructions
don’t take up any of the available dispatch bandwidth that feeds the main
part of the back end. The 603e and its derivatives can dispatch one branch
instruction per cycle to the branch unit over this particular bus.

Table 6-2: Features of the PowerPC 603 and 603e

PowerPC 603 Vitals PowerPC 603e Vitals

Introduction Date May 1, 1995 October 16, 1995

Process 0.50 micron 0.50 micron

Transistor Count 1.6 million 2.6 million

Die Size 81 mm2 98 mm2

Clock Speed at Introduction 75 MHz 100 MHz

L1 Cache Size 16KB split L1 32KB split L1

First Appeared In Macintosh Performa 5200CD Macintosh Performa 6300CD
PowerPC Processors : 600 Ser ies, 700 Series, and 7400 119

Figure 6-2: Microarchitecture of the PowerPC 603e

Non-branch instructions can dispatch at a rate of up to two instructions
per cycle to the back end, which means that the 603 has a maximum dispatch
rate of three instructions per cycle (two non-branch + one branch). However,
because two non-branch instructions per cycle can dispatch, branch instruc-
tions are often ignored when discussing the dispatch rate of the 603 and its
successors. Therefore, these processors are often said to have a dispatch rate
of up to two instructions per cycle, even though the dispatch rate is technically
three instructions per cycle.

Write

Commit Unit

Memory Access
UnitsScalar Arithmetic Logic Units

Back End

Front End

Branch
Unit

LSU-1
LSU-2

IU-1

BU

VPU-1

Decode/Dispatch
(ROB + Rename)

Instruction Fetch

Instruction Queue

Reservation
Station

Reservation
Station

CR

Reservation
Station

Reservation
Station

FPU-1
FPU-2
FPU-3

Floating-
Point Unit

Integer
ALU

System
Unit

Completion Queue
(ROB)

Load-
Store
Unit
120 Chapter 6

The 603e’s dispatch logic takes a maximum of two non-branch instruc-
tions per cycle from the bottom of the instruction queue and passes them to
the back end, where they are executed by one of five execution units:

Integer unit

Floating-point unit

Branch unit

Load-store unit

System unit

Notice that this list contains two more units than the analogous list for
the 601: the load-store unit (LSU) and the system unit. The 603e’s load-store
unit takes over all of the address-calculating labors that the older 601 foisted
onto its lone integer ALU. Because the 603e has a dedicated LSU for per-
forming address calculations and executing store-data operations, its
integer unit is freed up from having to handle memory traffic and can
therefore focus solely on integer arithmetic. This helps improve the 603e’s
performance on integer code.

The 603e’s dedicated system unit also takes over some of the functions
of the 601’s integer unit, in that it handles updates to the PowerPC condition
register. We’ll talk more about the condition register in Chapter 10, so don’t
worry if you don’t know what it is. The 603e’s system unit also contains a
limited integer adder, which can take some of the burden off the integer
ALU by doing certain types of addition. (The original 603’s system unit
lacked this feature.)

The 603e’s basic floating-point pipeline differs from that of the 601 in that
it has one more execute stage and one less decode stage. Most floating-
point instructions have a three-cycle latency (and a one-cycle throughput)
on the 603e, compared to a two-cycle latency on the 601. This three-cycle
latency/one-cycle throughput design wouldn’t be bad at all if it weren’t for
one serious problem: At its very fastest, the 603e’s FPU can only execute three
instructions every four cycles. In other words, after every third single-cycle
floating-point instruction, there is a mandatory pipeline bubble. I won’t get
into the reason for this, but the 603e’s FPU took a nontrivial hit to perfor-
mance for this three-instruction/four-cycle design.

The other, perhaps more serious, flaw in the 603e’s FPU is that it is not
fully pipelined for multiply operations. Double-precision multiplies—and this
includes double-precision fmadds—spend two cycles in the execute stage, which
means that the 603e’s FPU can complete only one double-precision multiply
every two cycles.

603e’s floating-point unit isn’t all bad news, though. It still has the stan-
dard PPC ability to do single-precision fmadd operations, with a four-cycle
latency and a one-cycle throughput. This fast fmadd ability helped the architec-
ture retain much of its usefulness for DSP, scientific, and media applications,
in spite of the aforementioned drawbacks.
PowerPC Processors : 600 Ser ies, 700 Series, and 7400 121

The 603e’s Front End, Instruction Window, and Branch Prediction

Up to two instructions per cycle can be fetched into the 603e’s six-entry
instruction queue. From there, a maximum of two instructions per cycle
(one fewer than the 601) can be dispatched from the two bottom entries in
the IQ to the reservation stations in the 603e’s back end.

Not only does the 603e dispatch one fewer instruction per cycle to its back
end than the 601 does, but its overall approach to superscalar and out-of-order
execution differs from that of the 601 in another way, as well. The 603e uses
a dedicated commit unit, which contains a five-entry completion queue (analogous
to the P6’s ROB) for keeping track of the program order of in-flight instruc-
tions. When instructions execute out of order, the commit unit refers to the
information stored in the completion queue and puts the instructions back
in program order before committing them.

To use a term that figured prominently in our discussion of the Pentium,
the 603 is the first PowerPC processor to feature dynamic scheduling via a
full-blown instruction window, complete with a ROB and reservation stations.
We’ll talk more about the concept of the instruction window and about the
structures that make it up (the ROB and the reservation stations) in the next
section on the 604. For now, it suffices to say that the 603’s instruction window is
quite small compared to that of its successors—three of its four reservation
stations are only single-entry, and one is double-entry (the one attached to
the load-store unit). Because the 603’s instruction window is so small, it needs
relatively few rename registers to temporarily hold execution results prior to
commitment. The 603 has five general-purpose rename registers, four
floating-point rename registers, and one rename register each for the
condition register (CR), link register (LR), and count register (CTR).

The 603 and 603e follow the 601 in their ability to do speculative execu-
tion by means of a simple, static branch predictor. Like the static predictor
on the 601, the 603e’s predictor marks forward branches as not taken and
backward branches as taken. This static branch predictor is simple and fast,
but it is only mildly effective compared to even a weakly designed dynamic
branch predictor. If PPC users in the 603e/604 era wanted dynamic branch
prediction, they had to upgrade to the 604.

Summary: The 603 and 603e in Historical Context

With its stellar performance-per-watt ratio, the 603 was a great little processor,
and it would have made a good low- to midrange desktop processor as well if
it weren’t for Apple’s legacy 68K code base. The 603e’s tweaks and larger cache
size helped with the legacy problems somewhat, but the updated chip still played
second fiddle in Apple’s product line to the larger, much more powerful 604.

You haven’t seen the last of the 603e, though. The 603e’s design formed
the basis for what would eventually become Motorola’s PowerPC 7400—aka the
G4—which we’ll cover in “The PowerPC 7400 (aka the G4)” on page 133.
122 Chapter 6

The PowerPC 604

At the same time the 603 was making its way toward the market, the 604 was
in the works as well. The 604 was to be Apple’s high-end PPC desktop proc-
essor, so its power and transistor budgets were much higher than that of the
603. Table 6-3 summarizes the 604’s features, and a quick glance at a diagram
of the 604 (see Figure 6-3) shows some obvious ways that it differs from its
lower-end sibling. For example, in the front end, the length of the instruction
queue has been increased by two entries. In the back end, two more integer
units have been added, and the CR logical unit has been removed. These
changes reflect some important differences in the overall approach of the
604, differences that will be examined in greater detail shortly.

The 604’s Pipeline and Back End

The 604’s pipeline is deeper than that of the 601 and the 603, and it consists
of the following six stages:

In the 604, the standard RISC decode/dispatch phase is split into two
stages, as is the write-back phase. I’ll explain just how these two new pipeline
stages work in the section on the instruction window, but for now all you need
to understand is that this lengthened pipeline enables the 604 to reach higher
clock speeds than its predecessors. Because each pipeline stage is simpler, it
takes less time to complete, which means that the CPU’s clock cycle time can
be shortened.

Table 6-3: Features of the PowerPC 604 and 604e

PowerPC 604 PowerPC 604e

Introduction Date May 1, 1995 July 19, 1996

Process 0.50 micron 0.35 micron

Transistor Count 3.6 million 5.1 million

Die Size 197 mm2 148 mm2

Clock Speed at Introduction 120 MHz 180–200 MHz

L1 Cache Size 32KB split L1 64KB split L1

First Appeared In PowerMac
9500/120

Power Computing PowerTower Pro 200
(PowerMac 9500/180 on August 7, 1996)

Four Phases of the Standard RISC Pipeline Six Stages of the 604’s Pipeline

Fetch 1. Fetch

Decode/dispatch 2. Decode

3. Dispatch (ROB and rename)

Execute 4. Execute

Write-back 5. Complete

6. Write-back
PowerPC Processors : 600 Ser ies, 700 Series, and 7400 123

Figure 6-3: PowerPC 604 microarchitecture

Aside from the longer pipeline, another factor that really sets the 604
apart from the other 600-series PPC designs discussed so far is its wider back
end. The 604 can execute up to six instructions per clock cycle in the following
six execution units:

Branch unit (BU)/condition register unit (CRU)

Load-store unit (LSU)

Floating-point unit (FPU)

Write

Commit Unit

Memory Access
UnitsScalar Arithmetic Logic Units

Back End

Front End

LSU-1

BU

CR

VPU-1
CIU-2
CIU-3

Decode/Dispatch

Instruction Fetch

Instruction Queue

Integer
ALU

Reserv.
Station

Reserv.
Station

Reorder Buffer
(16-entry)

FPU-1
FPU-2
FPU-3

Floating-
Point Unit

Reserv.
Station

Reserv.
Station

Reserv.
Station

SIU-1SIU-1 CIU-1

Branch
Unit

Load-
Store
Unit
124 Chapter 6

Three integer units (IU)

Two simple integer units (SIUs)

One complex integer unit (CIU)

Unlike the other 600-series processors, the 604 has multiple integer units.
This division of labor, where multiple fast integer units executed simple integer
instructions and one slower integer unit execute complex integer instructions,
will be discussed in more detail in Chapter 8. Any integer instruction that takes
only a single cycle to execute can pass through one of the two SIUs. On the
other hand, integer instructions that take multiple cycles to execute, like
integer divides, have to pass through the slower CIU.

Like the 603e, the 604 has register renaming, a technique that is facilitated
by the 12-entry register rename file attached to the 32-entry general-purpose
register file. These rename buffers allow the 604’s execution units more options
for avoiding false dependencies and register-related stalls.

The 604’s floating-point unit does most single- and double-precision opera-
tions with a three-cycle latency, just like the 603e. Unlike the 603e, though,
the 604’s floating-point unit is fully pipelined for double-precision multiplies.
Floating-point division and two other instructions take from 18 to 33 cycles
on the 604, as on the 603e. Finally, the 604’s 32-entry floating-point register
file is attached to an 8-entry floating-point rename register buffer.

The 604’s load-store unit (LSU) is also similar to that of the 603e. Like the
603e’s LSU, it contains an adder for doing address calculations and handles
all load-store traffic, but unlike the 603e, it’s connected to deeper load and
store queues and allows a little more flexibility for the optimal reordering of
memory operations.

The 604’s branch unit also features a dynamic branch prediction scheme
that’s a vast improvement over the 603e’s static branch predictor. The 604
has a large, 512-entry branch history table (BHT) with two bits per entry for
tracking branches, coupled with a 64-entry branch target address cache (BTAC),
which is the equivalent of the Pentium’s BTB.

As always, the more transistors you spend on branch prediction, the
better performance is, so the 604’s more advanced branch unit helps it quite
a bit. Still, in the case of a misprediction, the 604’s longer pipeline has to pay a
higher price than its shorter-pipelined predecessors in terms of performance.
Of course, the bigger performance loss associated with a misprediction is
also the reason the 604 needs to spend those extra resources on branch
prediction.

Notice that the list of execution units on page 124 is missing a unit that is
present on the 603e: the system unit. The 603e’s system unit handled updates
to the PPC condition register, a function that was handled by the integer exe-
cution unit on the older 601. The 604 moves the responsibility of dealing with
the condition register onto the branch unit. So the 604’s branch unit contains
a separate execution unit that handles all logical operations that involve the
PowerPC condition register. This condition register unit (CRU) shares a
PowerPC Processors : 600 Ser ies, 700 Series, and 7400 125

dispatch bus and some other resources with the branch execution unit, so
it’s not a fully independent execution unit like the 603e’s system unit. What
does this BU/CRU combination do for performance? It probably doesn’t have
a huge impact, but whatever impact it does have is significant enough to where
the 604’s immediate successor—the 604e—adds an independent execution
unit to the back end for CR logical operations.

The 604’s Front End and Instruction Window

The 604’s front end and instruction window look like a combination of the
best features of the 601 and the 603e. Like the 601, the 604’s instruction
queue is eight entries deep. Instructions are fetched from the L1 cache into
the instruction queue, where they’re decoded before being dispatched to the
back end. Branches that can be folded are folded, and the 604’s dispatch logic
can dispatch up to four instructions per cycle (up from two on the 603e and
three on the 601) from the bottom four entries of the instruction queue to
the back end’s execution units.

During the 604’s dispatch stage, rename registers and a reorder buffer
entry are assigned to each dispatching instruction. When the instruction is
ready to dispatch, it’s sent either directly to an execution unit or to an execu-
tion unit’s reservation station, depending on whether or not its operands are
available at the time of dispatch. Note that the 604 can dispatch at most one
instruction to each execution unit, and there are certain rules that govern
when the dispatch logic can dispatch an instruction to the back end. We’ll
cover these rules in more detail in a moment, but for now you need to be
aware of one of the rules: An instruction cannot dispatch if the execution
unit that it needs is not available.

The Issue Phase: The 604’s Reservation Stations

In Figure 6-3, you probably noticed that each of the 604’s execution units has
a reservation station attached to it; this includes a reservation station each
(not depicted) for the branch execution and condition register units that
make up the branch unit. The 604’s reservation stations are relatively small,
two-entry (the CIU’s reservation station is single-entry), first-in first-out (FIFO)
affairs, but they make up the heart of the 604’s instruction window, because
they allow the instructions assigned to one execution unit to issue out of
program order with respect to the instructions that are assigned to the other
execution units.

This works as follows: The dispatch stage sends instructions into the
reservation stations (i.e., the issue phase) in program order, and, with one
important exception (described in the next paragraph), the instructions pass
through their respective reservation stations in order. An instruction enters
the top of a reservation station, and as the instructions ahead of it issue, it moves
down the queue, until it eventually exits through the bottom (i.e., it issues).
126 Chapter 6

Therefore, we can say each instruction issues in order with respect to the other
instructions in its same reservation station. However, the various reservation
stations can issue instructions at different times, with the result that instruc-
tions issue out of order from the perspective of the overall program flow.

The simple integer units function a little differently than described earlier,
because they allow instructions to issue from their two-entry reservation stations
out of order with respect to the other instructions in their own execution unit.
So unlike other types of instructions described previously, integer instructions
can move through their respective reservation stations and pipelines out of
program order, not just with respect to the overall program flow, but with
respect to the other instructions in their own reservation station.

The reservation stations in the 604 and its architectural successors exist
to keep instructions that lack their input operand data but are otherwise
ready to dispatch from tying up the instruction queue. If an instruction meets
all of the other dispatch requirements (see “The Four Rules of Instruction
Dispatch”), and if its assigned execution unit is available but it just doesn’t
yet have access to the part of the data stream that it needs, it dispatches to
the appropriate execution unit’s reservation station so that the instructions
behind it in the instruction queue can move up and be dispatched.

The small size of the 604’s reservation stations compared to similar struc-
tures on the P6 is due to the fact that the 604’s pipeline is relatively short.
Pipeline stalls aren’t quite as devastating for performance on a machine with
a 6-stage pipeline as they are on a machine with a 12-stage pipeline, so the
604 doesn’t need as large of an instruction window as its super-pipelined
counterparts.

The Four Rules of Instruction Dispatch

Here are the four most important rules governing instruction dispatch on
the 604:

The in-order dispatch rule
Before an instruction can dispatch, all of the instructions preceding that
instruction must have dispatched. In other words, instructions dispatch
from the instruction queue in program order. It is not until instructions
have arrived at the reservation stations, where they may issue out of order
to the execution units, that the original program order is disrupted.

The issue buffer/execution unit availability rule
Before the dispatch logic can send an instruction to an execution unit’s
reservation station, that reservation station must have an entry available.
If an instruction doesn’t need to go to a reservation station because its
inputs are available at the time of dispatch, the required execution unit
must have a pipeline slot available, and the unit’s reservation station
must be empty (i.e., there are no older instructions waiting to execute)
before the instruction can be sent to the execution unit. (This rule is
modified on the PowerPC 7450—aka G4e—and we’ll cover the modifi-
cation in “The PowerPC 7400 (aka the G4)” on page 133.)
PowerPC Processors : 600 Ser ies, 700 Series, and 7400 127

The completion buffer availability rule
For an instruction to dispatch, there must be space available in the
completion queue so that a new entry can be created for the instruction.
Remember, the completion queue (or ROB) keeps track of the program
order of each in-flight instruction, so any instruction that enters the out-
of-order back end must be logged in the completion queue first.

The rename register availability rule
There must be enough rename registers available to temporarily store
the results for each register that the instruction will modify.

If a dispatched instruction meets the requirements imposed by these
rules, and if it meets the other more instruction-specific dispatch rules not
listed here, it can dispatch from the instruction queue to the back end.

All of the PowerPC processors discussed in this chapter that have reserva-
tion stations are subject to (at least) these four dispatch rules, so keep these
rules in mind as we talk about instruction dispatch throughout the rest of this
chapter. Note that all of the processors—including the 604—have additional
rules that govern the dispatch of specific types of instructions, but these four
general dispatch rules are the most important.

The Completion Phase: The 604’s Reorder Buffer

As with the P6 microarchitecture, the reservation stations aren’t the only
structures that make up the 604’s instruction window. The 604 has a 16-entry
reorder buffer (ROB) that performs the same function as the P6 micro-
architecture’s much larger 40-entry ROB.

The ROB corresponds to the simpler completion queue on older PPC
processors. In the dispatch stage, not only are instructions sent to the back
end’s reservation stations, but entries for the dispatched instructions are
allocated an entry in the ROB and a set of rename registers. In the com-
pletion stage, the instructions are put back in program order so that their
results can be written back to the register file in the subsequent write-back
stage. The completion stage corresponds to what I’ve called the completion
phase of an instruction’s lifecycle, and the write-back stage corresponds to
what I’ve called the commit phase.

The 604’s ROB is much smaller than the P6’s ROB for the same reason
that the 604’s reservation stations are fewer: the 604 has a much shallower
pipeline, which means that it needs a much smaller instruction window
for tracking fewer in-flight instructions in order to achieve the same
performance.

The trade-off for this lack of complexity and lower pipeline depth is a
lower clock speed. The 6-stage 604 debuted in May 1995 at 120 MHz, while
the 12-stage Pentium Pro debuted later that year (November 1995) at speeds
ranging from 150 to 200 MHz.
128 Chapter 6

Summary: The 604 in Historical Context

With a 32KB split L1 cache, the 604 had a much heftier cache than its prede-
cessors, which it needed to help keep its deeper pipeline fed. The larger cache,
higher dispatch and issue rate, wider back end, and deeper pipeline made for a
solid RISC performer that was easily able to keep pace with its x86 competitors.

Still, the Pentium Pro was no slouch, and its performance was scaling
well with improvements in processor manufacturing techniques. Apple
needed more power from AIM to keep the pace, and more power is what
they got with a minor microarchitectural revision that came to be called
the 604e.

The PowerPC 604e

The 604e built on gains made by the 604 with a few core changes that
included a doubling of the L1 cache size (to 32KB instruction/32KB data)
and the addition of a new independent execution unit: the condition register
unit (CRU).

The previous 600-series processors had moved the responsibility for
handling condition register logical operations back and forth among various
units (the integer unit in the 601, the system unit in the 603/603e, and the
branch unit in the 604). Now with the 604e, these operations got an execu-
tion unit of their own. The 604e sported a functional block in its back end
that was dedicated to handling condition register logical operations, which
meant that these not uncommon operations didn’t tie up other execution
units—like the integer unit or the branch unit—that had more serious
work to do.

The 604e’s branch unit, now that it was free from having to handle CR
logical operations, got a few expanded capabilities that I won’t detail here.
The 604e’s caches, in addition to being enlarged, also got additional copy-
back buffers and a handful of other enhancements.

The 604e was ultimately able to scale up to 350 MHz once it moved from
a 0.35 to a 0.25 micron manufacturing process, making it a successful part for
Apple’s budding RISC media workstation line.

The PowerPC 750 (aka the G3)

The PowerPC 750—known to Apple users as the G3—is a design based heavily
on the 603/603e. Its four-stage pipeline is the same as that of the 603/603e,
and many of the features of its front end and back end will be familiar to you
from our discussion of the older processor. Nonetheless, the 750 sports a few
very powerful improvements over the 603e that make it faster than even the
604e, as you can see in Table 6-4.
PowerPC Processors : 600 Ser ies, 700 Series, and 7400 129

.

The 750’s significant improvement in performance over the 603/603e is
the result of a number of factors, not the least of which are the improvements
that IBM made to the 750’s integer and floating-point capabilities.

A quick glance at the 750’s layout (see Figure 6-4) reveals that its back end
is wider than that of the 603. More specifically, where the 603 has a single
integer unit, the 750 has two—a simple integer unit (SIU) and complex inte-
ger unit (CIU). The 750’s complex integer unit handles all integer instructions,
while the simple integer unit handles all integer instructions except multiply
and divide. Most of the integer instructions that execute in the SIU are
single-cycle instructions.

Like the 603 (and the 604), the 750’s floating-point unit can execute all
single-precision floating-point operations—including multiply—with a latency
of three cycles. And like the 603, early versions of the 750 had to insert a
pipeline bubble after every third floating-point instruction in its pipeline;
this is fixed in later IBM-produced versions of the 750. Double-precision
floating-point operations, with the exception of operations involving mul-
tiplication, also take three cycles on the 750. Double-precision multiply and
multiply-add operations take four cycles, because the 750 doesn’t have a full
double-precision FPU.

The 750’s load-store unit and system register unit perform the same
functions described in the preceding section for the 603, so they don’t merit
further comment.

The 750’s Front End, Instruction Window, and Branch Instruction

The 750 fetches up to four instructions per cycle into its six-entry instruction
queue, and it dispatches up to two non-branch instructions per cycle from
the IQ’s two bottom entries. The dispatch logic follows the four dispatch rules
described earlier when deciding when an instruction is eligible to dispatch,
and each dispatched instruction is assigned an entry in the 750’s six-entry
ROB (compare the 603’s five-entry ROB).

Table 6-4: Features of the PowerPC 750

Introduction Date September 1997

Process 0.25 micron

Transistor Count 6.35 million

Die Size 67 mm2

Clock Speed at Introduction 200–300 MHz

Cache Sizes 64KB split L1, 1MB L2

First Appeared In Power Macintosh G3
130 Chapter 6

Figure 6-4: Microarchitecture of the PowerPC 750

As on the 603 and 604, newly dispatched instructions enter the reserva-
tion station of the execution unit to which they have been dispatched, where
they wait for their operands to become available so that they can issue. The
750’s reservation station configuration is similar to that of the 603 in that, with
the exception of the two-entry reservation station attached to the 750’s LSU,
all of the execution units have single-entry reservation stations. And like the
603, the 750’s branch unit has no reservation station.

Because the 750’s instruction window is so small, it has half the rename
registers of the 604. Nonetheless, the 750’s six general-purpose and six floating-
point rename registers still put it ahead of the 603’s number of rename registers
(five GPRs and four FPRs). Like the 603, the 750 has one rename register
each for the CR, LR, and CTR.

Write

Completion
Queue

Commit Unit

Scalar Arithmetic Logic Units
Memory Access

Units

Back End

Front End

Floating-
Point Unit

FPU-1
FPU-2
FPU-3

IU1-1 IU2-1 LSU-1
LSU-2

BU

Decode/Dispatch

Instruction Fetch

Instruction Queue

Reserv.
Station

Reserv.
Station

Reserv.
Station

Reserv.
Station

Branch
Unit

Integer
Unit

Load-
Store
Unit
PowerPC Processors : 600 Ser ies, 700 Series, and 7400 131

You would think that the 750’s smaller reservation stations and shorter
ROB would put it at a disadvantage with respect to the 604, which has a larger
instruction window. But the 750’s pipeline is shorter than that of the 604, so
it needs fewer buffers to track fewer in-flight instructions. More importantly,
though, the 750 has one very clever trick up its sleeve that it uses to keep its
pipeline full.

Recall that standard dynamic branch prediction schemes generally use
a branch history table (BHT) in combination with a branch target buffer (BTB)
to speculate on the outcome of branch instructions and to redirect the
processor’s front end to a different point in the code stream based on this
speculation. The BHT stores information on the past behavior (taken or not
taken) of the most recently executes branch instructions, so that the processor
can determine whether or not it should take these branches if it encounters
them again. The target addresses of recently taken branches are stored in the
BTB, so that when the branch prediction hardware decides to speculatively
take a branch, it has immediate access to that branch’s target address without
having to recalculate it. The target address of the speculatively taken branch
is loaded from the BTB into the instruction register, so that on the next fetch
cycle, the processor can begin fetching and speculatively executing instruc-
tions from the target address.

The 750 improves on this standard scheme in a very clever way. Instead
of storing only the target addresses of recently taken branches in a BTB, the
750’s 64-entry branch target instruction cache (BTIC) stores the instruction that
is located at the branch’s target address. When the 750’s branch prediction
unit examines the 512-entry BHT and decides to speculatively take a branch,
it doesn’t have to go to code storage to fetch the first instruction from that
branch’s target address. Instead, the BPU loads the branch’s target instruction
directly from the BTIC into the instruction queue, which means that the
processor doesn’t have to wait around for the fetch logic to go out and fetch
the target instruction from code storage. This scheme saves valuable cycles,
and it helps keep performance-killing bubbles out of the 750’s pipeline.

Summary: The PowerPC 750 in Historical Context

In spite of its short pipeline and small instruction window, the 750 packed quite
a punch. It managed to outperform the 604, partially because of a dedicated
back-side L2 cache interface that allowed it to offload L2 traffic from the front-
side bus. It was so successful that a 604 derivative was scrapped in favor of just
building on the 750. The 750 and its immediate successors, all of which went
under the name of G3, eventually found widespread use both as embedded
devices and across Apple’s entire product line, from its portables to its
workstations.

The G3 lacked one important feature that separated it from the x86
competition, though: vector computing capabilities. While comparable
PC processors supported SIMD in the form of Intel’s and AMD’s vector
132 Chapter 6

extensions to the x86 instruction set, the G3 was stuck in the world of scalar
computing. So when Motorola decided to develop the G3 into an even
more capable embedded and media workstation chip, this lack was the first
thing it addressed.

The PowerPC 7400 (aka the G4)

The Motorola MPC7400 (aka the G4) was designed as a media processing
powerhouse for desktops and portables. Apple Computer used the 7400 as
the CPU in the first version of their G4 workstation line, and this processor
was later replaced by a lower-power version—the 7410—before the 7450
(aka the G4+ or G4e) was introduced. Today, the successors to the 7400/7410
have seen widespread use as embedded processors, which means that they’re
used in routers and other non-PC devices that need a microprocessor with
low power consumption and strong DSP capabilities. Table 6-5 lists the
features of the PowerPC 7400.

Figure 6-5 illustrates the PowerPC 7400 microarchitecture.
Except for the addition of SIMD capabilities, which we’ll discuss in the

next chapter, the G4 is essentially the same as the 750. Motorola’s technical
summary of the G4 has this to say about the G4 compared to the 750:

The design philosophy on the MPC7410 (and the MPC7400)
is to change from the MPC750 base only where required to
gain compelling multimedia and multiprocessor performance.
The MPC7410’s core is essentially the same as the MPC750’s,
except that whereas the MPC750 has a 6-entry completion queue
and has slower performance on some floating-point double-
precision operations, the MPC7410 has an 8-entry completion
queue and a full double-precision FPU. The MPC7410 also adds
the AltiVec instruction set, has a new memory subsystem, and can
interface to the improved MPX bus.

—MPC7410 RISC Microprocessor Technical Summary, section 3.11.

Table 6-5: Features of the PowerPC 7400

Introduction Date September 1999

Process 0.20 micron

Transistor Count 10.5 million

Die Size 83 mm2

Clock Speed at Introduction 400–600 MHz

Cache Sizes 64KB split L1, 2MB L2 supported via on-chip tags

First Appeared In Power Macintosh G4
PowerPC Processors : 600 Ser ies, 700 Series, and 7400 133

Figure 6-5: Microarchitecture of the PowerPC 7400

Aside from the vector execution unit, the most important difference in
the back ends of the two units lies in the G4’s improved FPU. The G4’s FPU
is a full-blown double-precision FPU, and it does single- and double-precision
floating-point operations, including multiply and multiply-add, in three fully-
pipelined cycles.

With respect to the instruction window, the G4 has the same number
and configuration of reservation stations as the 750. (Note that the G4’s two
vector execution units, which were not present on the 750, each have a one-
entry reservation station.) The only difference is that the G4’s instruction
queue has been lengthened to eight entries from the 750’s original six as a
way of reducing dispatch bottlenecks.

Write

Completion
Queue

Commit Unit

Scalar Arithmetic Logic Units
Memory Access

UnitsVector Arithmetic Logic Units

Back End

Front End

Floating-
Point Unit

FPU-1
FPU-2
FPU-3

IU1-1 IU2-1 LSU-1
LSU-2

BU

VPU-1 VCIU-1VSIU-1
VCIU-2
VCIU-3

VFPU-1
VFPU-2
VFPU-3
VFPU-4

Decode/Dispatch

Instruction Fetch

Instruction Queue

Vector
Permute

Unit
Vector
ALU

Reserv.
Station

Reserv.
Station

Reserv.
Station

Reserv.
Station

Reserv.
Station

Reserv.
Station

Branch
Unit

Integer
Unit

Load-
Store
Unit
134 Chapter 6

The G4’s Vector Unit

In the late 1990s, Apple, Motorola, and IBM jointly developed a set of SIMD
extensions to the PowerPC instruction set for use in the PowerPC processor
series. These SIMD extensions went by different names: IBM called them
VMX, and Motorola called them AltiVec. This book will refer to these exten-
sions using Motorola’s AltiVec label.

The new AltiVec instructions, which I’ll cover in detail in Chapter 8, were
first introduced in the G4. The G4 executes these instructions in its vector
unit, which consists of two vector execution units: the vector ALU (VALU) and
the vector permute unit (VPU). The VALU performs vector arithmetic and logical
operations, while the VPU performs permute and shift operations on vectors.

To support the AltiVec instructions, which can operate on up to 128 bits of
data at a time, 32 new 128-bit vector registers were added to the PowerPC ISA.
On the G4, these 32 architectural registers are accompanied by 6 vector
rename registers.

Summary: The PowerPC G4 in Historical Context
The G4’s AltiVec instruction set was a hit, and it began to see widespread use
by Apple and by Motorola’s embedded customers. But there was still much
room for improvement to the G4’s AltiVec implementation. In particular, the
vector unit’s single VALU was tasked with handling all integer and floating-
point vector operations. Just like scalar code benefits from the presence of
multiple specialized scalar ALUs, vector performance could be improved by
splitting the burden of vector computation among multiple specialized VALUs
operating in parallel. Such an improvement would have to wait for the succes-
sor to the G4—the G4e.

The major problem with the G4 was that its short, four-stage pipeline
severely limited the upward scalability of its clock rate. While Intel and AMD
were locked in the gigahertz race, Motorola’s G4 was stuck around the 500 MHz
mark for quite a long time. As a result, Apple’s x86 competitors soon surpassed
it in both clock speed and performance, leaving what was once the most power-
ful commodity RISC workstation line in serious trouble with the market.

Conclusion

The 600 series saw the PPC line go from the new kid on the block to a mature
RISC alternative that brought Apple’s PowerMac workstation to the forefront
of personal computing performance. While the initial 601 had a few teeth-
ing problems, the line was in great shape after the 603e and 604e made it
to market. The 603e was a superb mobile chip that worked well in Apple’s
laptops, and even though it had a more limited instruction dispatch/commit
bandwidth and a smaller cache than the 601, it still managed to beat its
predecessor because of its more efficient use of transistors.
PowerPC Processors : 600 Ser ies, 700 Series, and 7400 135

The 604 doubled the 603’s instruction dispatch and commit bandwidth,
and it sported a wider back end and a larger instruction window that enabled
its back end to grind through more instructions per clock. Furthermore, its
pipeline was deepened in order to increase the number of instructions per
clock and to allow for better clock speed scaling. The end result was that the
604 was a strong enough desktop chip to keep the PowerMac comfortably in
the performance game.

It’s important to remember, though, that the 600 series reigned at a time
when transistor budgets were still relatively small by today’s standards, so the
PowerPC architecture’s RISC nature gave it a definite cost, performance, and
power consumption edge over the x86 competition. This is not to say that the
600 series was always in the performance lead; it wasn’t. The performance
crown changed hands a number of time during this period.

During the heyday of the 600 series and into the dawn of the G3 era, the
fact that PowerPC was a RISC ISA was a strong mark in the platform’s favor.
But as Moore’s Curves drove transistor counts and MHz numbers ever higher,
the relative cost of legacy x86 support began to go down and the PowerPC
ISA’s RISC advantage started to wane. By the time the 7400 hit the market,
x86 processors from Intel and AMD were already catching up to it in perform-
ance, and by the time the gigahertz race was over, Apple’s flagship workstation
line was in trouble. The 7400’s clock speed and performance had stagnated
for too long during a period when Intel and AMD were locked in a heated
price/performance competition.

Apple’s stop-gap solution to this problem was to turn to symmetric
multiprocessing (SMP) in order to increase the performance of its desktop
line. (See Chapter 12 for a more detailed discussion of SMP.) By offering
computers in which two G4s worked together to execute code and process
data, Apple hoped to pack more processing power into its computers in
a way that didn’t rely on Motorola to ramp up clock speeds. The dual G4
met with mixed success in the market, and it wasn’t until the debut of the
significantly redesigned PowerPC 7450 (aka G4+ or G4e) that Apple saw the
per-processor performance of its workstations improve. The introduction of
the G4e into its workstation line enabled Apple to recover some ground in its
race with its primary competitor in the PC space—systems based on Intel’s
Pentium 4.
136 Chapter 6

I N T E L ’ S P E N T I U M 4 V S .
M O T O R O L A ’ S G 4 E : A P P R O A C H E S

A N D D E S I G N P H I L O S O P H I E S

Now that we’ve covered not only the microprocessor
basics but also the development of two popular x86
and PowerPC processor lines, you’re equipped to com-
pare and to understand two of the processors that have
been among the most popular examples of these two
lines: Intel’s Pentium 4 and Motorola’s G4e.

When the Pentium 4 hit the market in November 2000, it was the first
major new x86 microarchitecture from Intel since the 1995 introduction of
the Pentium Pro. In the years prior to the Pentium 4’s launch, the Pentium
Pro’s P6 core dominated the market in its incarnations as the Pentium II and
Pentium III, and anyone who was paying attention during that time learned
at least one major lesson: Clock speed sells. Intel was definitely paying atten-
tion, and as the Willamette team members labored away in Hillsboro, Oregon,
they kept MHz foremost in their minds. This singular focus is evident in every-
thing from Intel’s Pentium 4 promotional and technical literature down to

the very last detail of the processor’s design. As this chapter will show, the
successor to the most successful x86 microarchitecture of all time was a
machine built from the ground up for stratospheric clock speed.

NOTE Willamette was Intel’s code name for the Pentium 4 while the project was in develop-
ment. Intel’s projects are usually code-named after rivers in Oregon. Many companies
use code names that follow a certain convention, like Apple’s use of the names of large
cats for versions of OS X.

Motorola introduced MPC7450 in January 2001, and Apple quickly
adopted it under the G4 moniker. Because the 7450 represented a significant
departure from the 7400, the 7450 was often referred to as the G4e or the
G4+, so throughout this chapter we’ll call it the G4e. The new processor had
a slightly deeper pipeline, which allowed it to scale to higher clock speeds, and
both its front end and back ends boasted a whole host of improvements that
set it apart from the original G4. It also continued the excellent performance/
power consumption ratio of its predecessors. These features combined to
make it an excellent chip for portables, and Apple has exploited derivatives
of this basic architecture under the G4 name in a series of innovative desktop
enclosure designs and portables. The G4e also brought enhanced vector
computing performance to the table, which made it a great platform for
DSP and media applications.

This chapter will examine the trade-offs and design decisions that the
Pentium 4’s architects made in their effort to build a MHz monster, paying
special attention to the innovative features that the Pentium 4 sported and
the ways that those features fit with the processor’s overall design philosophy
and target application domain. We’ll cover the Pentium 4’s ultradeep pipe-
line, its trace cache, its double-pumped ALUs, and a host of other aspects
of its design, all with an eye to their impact on performance. As a point of
comparison, we’ll also look at the microarchitecture of Motorola’s G4e. By
examining two microprocessor designs side by side, you’ll gain a deeper
understanding of how the concepts outlined in the previous chapters play
out in a pair of popular, real-world designs.

The Pentium 4’s Speed Addiction

Table 7-1 lists the features of the Pentium 4.

Table 7-1: Features of the Pentium 4

Introduction Date April 23, 2001

Process 0.18 micron

Transistor Count 42 million

Clock Speed at Introduction 1.7 GHz

Cache Sizes L1: Approximately 16KB instruction, 16KB data

Features Simultaneous Multithreading (SMT, aka “hyperthreading”)
added in 2003. 64-bit support (EM64T) and SSE3 added in
2004. Virtualization Technology (VT) added in 2005.
138 Chapter 7

While some processors still have the classic, four-stage pipeline, described
in Chapter 1, most modern CPUs are more complicated. You’ve already
seen how the original Pentium had a second decode stage, and the P6 core
tripled the standard four-stage pipeline to 12 stages. The Pentium 4, with a
whopping 20 stages in its basic pipeline, takes this tactic to the extreme. Take
a look at Figure 7-1. The chart shows the relative clock frequencies of Intel’s
last six x86 designs. (This picture assumes the same manufacturing process
for all six cores.) The vertical axis shows the relative clock frequency, and the
horizontal axis shows the various processors relative to each other.

Figure 7-1: The relative frequencies of Intel’s processors

Intel’s explanation of this diagram and the history it illustrates is
enlightening, as it shows where their design priorities were:

Figure [3.2] shows that the 286, Intel386™, Intel486™, and Pentium®
(P5) processors had similar pipeline depths—they would run at
similar clock rates if they were all implemented on the same silicon
process technology. They all have a similar number of gates of
logic per clock cycle. The P6 microarchitecture lengthened the
processor pipelines, allowing fewer gates of logic per pipeline
stage, which delivered significantly higher frequency and perfor-
mance. The P6 microarchitecture approximately doubled the
number of pipeline stages compared to the earlier processors and
was able to achieve about a 1.5 times higher frequency on the same
process technology. The NetBurst microarchitecture was designed
to have an even deeper pipeline (about two times the P6 micro-
architecture) with even fewer gates of logic per clock cycle to allow
an industry-leading clock rate.

—The Microarchitecture of the Pentium 4 Processor, p. 3.

As you learned in Chapter 2, there are limits to how deeply you can
pipeline an architecture before you begin to reach a point of diminishing
returns. Deeper pipelining results in an increase in instruction execution
time; this increase can be quite damaging to instruction completion rates if
the pipeline has to be flushed and refilled often. Furthermore, in order to
realize the throughput gains that deep pipelining promises, the processor’s
clock speed must increase in proportion to its pipeline depth. But in the real

Re
la

tiv
e

Fr
eq

ue
nc

y

3

2.5

2

1.5

1

0.5

0

1 1 1 1

1.5

2.5

286 386 486 P5 P6 P4P
In te l ’ s Pent ium 4 vs. Motoro la’s G4e: Approaches and Design Phi losophies 139

world, speeding up the clock of a deeply pipelined processor to match its
pipeline depth is not all that easy.

Because of these drawbacks to deep pipelining, many critics of the
Pentium 4’s microarchitecture, dubbed NetBurst by Intel, have suggested that
its staggeringly long pipeline was a gimmick—a poor design choice made for
reasons of marketing and not performance and scalability. Intel knew that
the public naïvely equated higher MHz numbers with higher performance,
or so the argument went, so they designed the Pentium 4 to run at strato-
spheric clock speeds and in the process, made design trade-offs that would
prove detrimental to real-world performance and long-term scalability.

As it turns out, the Pentium 4’s critics were both wrong and right. In
spite of the predictions of its most ardent detractors, the Pentium 4’s perform-
ance has scaled fairly well with its clock rate, a phenomenon that readers
of this book would expect given the section “Pipelining Explained” on page 40.
But though they were wrong about its performance, the Pentium 4’s critics
were right about the origins of the processor’s deeply pipelined approach.
Revelations from former members of the Pentium 4’s design team, as well
as my own off-the-record conversations with Intel folks, all indicate that the
Pentium 4’s design was the result of a marketing-driven focus on clock speeds
at the expense of actual performance and long-term scalability.

It’s my understanding that this fact was widely known within Intel, even
though it was not, and probably never will be, publicly acknowledged. We
now know that during the course of the Pentium 4’s design, the design team
was under pressure from the marketing folks to turn out a chip that would
give Intel a massive MHz lead over its rivals. The reasoning apparently went
that MHz was a single number that the general public understood, and they
knew that, just like with everything in the world—except for golf scores—
higher numbers are somehow better.

When it comes to processor clock speeds, higher numbers are indeed
better, but industry-wide problems with the transition to a 90-nanometer
process caused problems for NetBurst, which on the whole relied on ever-
increasing clock rates and ever-rising power consumption to maintain a per-
formance edge over its rivals. As Intel ran into difficulties keeping up the
regularly scheduled increases in the Pentium 4’s clock rate, the processor’s
performance increases began to level off, even as its power consumption
continued to rise.

Regardless of the drawbacks of the NetBurst architecture and its long-term
prospects, the Pentium 4 line of processors has been successful from both
commercial and performance standpoints. This is because the Pentium 4’s
way of doing things has advantages for certain types of applications—
especially 3D and streaming media applications—even though it carries
with it serious risks.
140 Chapter 7

The General Approaches and Design Philosophies of the
Pentium 4 and G4e

The drastic difference in pipeline depth between the G4e and the Pentium 4
reflects some very important differences in the design philosophies and goals
of the two processors. Both processors try to execute as many instructions as
quickly as possible, but they attack this problem in two different ways.

The G4e’s approach to performance can be summarized as “wide and
shallow.” Its designers added more functional units to its back end for exe-
cuting instructions, and its front end tries to fill up these units by issuing
instructions to each functional unit in parallel. In order to extract the max-
imum amount of instruction-level parallelism (ILP) from the linear code stream,
the G4e’s front end first moves a small batch of instructions onto the chip.
Then, its out-of-order (OOO) execution logic examines them for hazard-
causing dependencies, spreads them out to execute in parallel, and then
pushes them through the back end’s nine execution units. Each of the G4e’s
execution units has a fairly short pipeline, so the instructions take very few
cycles to move through and finish executing. Finally, in the G4e’s final pipe-
line stages, the instructions are put back in their original program order
before the results are written back to memory.

At any given moment, the G4e can have up to 16 instructions simulta-
neously spread throughout the chip in various stages of execution. As you’ll
see when we look at the Pentium 4, this instruction window is quite small.
The end result is that the G4e focuses on getting a small number of instruc-
tions onto the chip at once, spreading them out widely to execute in parallel,
and then getting them off the chip in as few cycles as possible. This “wide and
shallow” approach is illustrated in Figure 7-2.

The Pentium 4 takes a “narrow and deep” approach to moving through
the instruction stream, as illustrated in Figure 7-3. The fact that the
Pentium 4’s pipeline is so deep means that it can hold and work on quite
a few instructions at once, but instead of spreading these instructions out
more widely to execute in parallel, it pushes them through its narrower
back end at a higher rate.

It’s important to note that in order to keep the Pentium 4’s fast back end
fed with instructions, the processor needs deep buffers that can hold and
schedule an enormous number of instructions. The Pentium 4 can have
up to 126 instructions in various stages of execution simultaneously. This way,
the processor can have many more instructions on chip for the OOO exe-
cution logic to examine for dependencies and then rearrange to be rapidly
fired to the execution units. Or, another way of putting this is to say that
the Pentium 4’s instruction window is very large.
In te l ’ s Pent ium 4 vs. Motoro la’s G4e: Approaches and Design Phi losophies 141

Figure 7-2: The G4e’s approach to performance

It might help you to think about these two approaches in terms of a fast
food drive-through analogy. At most fast food restaurants, you can either
walk in or drive through. If you walk in, there are five or six short lines that
you can get in and wait to have your order processed by a single server in one
long step. If you choose to drive through, you’ll wind up on a single long line,
but that line is geared to move faster because more servers process your order
in more, quicker steps. In other words:

1. You pull up to the speaker and tell them what you want.

2. You pull up to a window and pay a cashier.

3. You drive around and pick up your order.

Front End

Back End

Code Stream
142 Chapter 7

Figure 7-3: The Pentium 4’s approach to performance

Because the drive-through approach splits the ordering process up into
multiple, shorter stages, more customers can be waited on in a single line
because there are more stages of the ordering process for different customers
to find themselves in. The G4e takes the multiline, walk-in approach, while
the Pentium 4 takes the single-line, drive-through approach.

As we’ve already discussed, the more deeply pipelined a machine is, the
more severe a problem pipeline bubbles and pipeline fills become. When the
Pentium 4’s designers set high clock speeds as their primary goal in crafting
the new microarchitecture, they had to do a lot of work to keep the pipeline

Back End

Front End

Code Stream
In te l ’ s Pent ium 4 vs. Motoro la’s G4e: Approaches and Design Phi losophies 143

from stalling and to keep branches from being mispredicted. The Pentium 4’s
enormous branch prediction resources and deep buffers represent a place
where the Pentium 4 spends a large number of transistors to alleviate the
negative effects of its long pipeline, transistors that the G4e spends instead
on added execution units.

An Overview of the G4e’s Architecture and Pipeline

The diagram in Figure 7-4 shows the basics of the G4e’s microarchitecture,
with an emphasis on representing the pipeline stages of the front end and
back end. You might want to mark this page so you can refer to it throughout
this section.

Figure 7-4: The basic microarchitecture of the G4e

Write

Completion
Queue

Commit Unit

Scalar Arithmetic Logic Units
Memory Access

UnitsVector Arithmetic Logic Units

Back End

Front End

RSRSRSRS

FPU

FPU-1
FPU-2
FPU-3
FPU-4
FPU-5
Finish

IU1a-1 IU2-1 LSU-1
LSU-2

VPU-1
VPU-2

RS RS RS RS RS RS RS RS

VCIU-1VSIU-1
Finish VCIU-2

VCIU-3
VCIU-4

VFPU-1
VFPU-2
VFPU-3
VFPU-4

Decode/Dispatch

Instruction Queue

Instruction Fetch-1

Instruction Fetch-2

Vector
Permute

Unit

Vector ALU

Vector Issue
Queue

FP Issue
Queue

General Issue
Queue

Integer Unit

BU

Load-
Store
Unit

Branch
Unit

Finish
144 Chapter 7

Before instructions can enter the G4e’s pipeline, they have to be avail-
able in its 32KB instruction cache. This instruction cache, together with the
32KB data cache, makes up the G4e’s 64KB L1 cache. An instruction leaves
the L1 and goes down through the various front-end stages until it hits the
back end, at which point it’s executed by one of the G4e’s eight execution
units (not counting the branch execution unit, which we’ll talk about in a
second).

As I’ve already noted, the G4e breaks down the G4’s classic, four-stage
pipeline into seven, shorter stages:

Notice that the G4e dedicates one pipeline stage each to the character-
istic issue and complete phases that bracket the out-of-order execution phase
of a dynamically scheduled instruction’s lifecycle.

Let’s take a quick look at the basic pipeline stages of the G4e, because
this will highlight some of the ways in which the G4e differs from the original
G4. Also, an understanding of the G4e’s more classic RISC pipeline will
provide you with a good foundation for our upcoming discussion of the
Pentium 4’s much longer, more peculiar pipeline.

Stages 1 and 2: Instruction Fetch

These two stages are both dedicated primarily to grabbing an instruction
from the L1 cache. Like its predecessor, the G4, the G4e can fetch up to four
instructions per clock cycle from the L1 cache and send them on to the next
stage. Hopefully, the needed instructions are in the L1 cache. If they aren’t
in the L1 cache, the G4e has to hit the much slower L2 cache to find them,
which can add up to nine cycles of delay into the instruction pipeline.

Stage 3: Decode/Dispatch

Once an instruction has been fetched, it goes into the G4e’s 12-entry instruc-
tion queue to be decoded. Once instructions are decoded, they’re dispatched
at a rate of up to three non-branch instructions per cycle to the proper issue
queue.

Note that the G4e’s dispatch logic dispatches instructions to the issue
queues in accordance with “The Four Rules of Instruction Dispatch” on
page 127. The only modification to the rules is in the issue buffer rule; instead

G4 G4e

1 Fetch 1 Fetch-1

2 Fetch-2

2 Decode/dispatch 3 Decode/dispatch

4 Issue

3 Execute 5 Execute

6 Complete

4 Write-back 7 Write-back (Commit)
In te l ’ s Pent ium 4 vs. Motoro la’s G4e: Approaches and Design Phi losophies 145

of requiring that the proper execution unit and reservation station be
available before an instruction can be dispatched, the G4e requires that
there be space in one of the three issue queues.

Stage 4: Issue
The issue stage is the place where the G4e differs the most from the G4.
Specifically, the presence of the G4e’s three issue queues endows it with
power and flexibility that the G4 lacks.

As you learned in Chapter 6, instructions can stall in the original G4’s
dispatch stage if there is no execution unit available to take them. The G4e
eliminates this potential dispatch stall condition by placing a set of buffers,
called issue queues, in between the dispatch stage and the reservation
stations. On the G4e, it doesn’t matter if the execution units are busy and
their reservation stations are full; an instruction can still dispatch to the
back end if there is space in the proper issue queue.

The six-entry general issue queue (GIQ) feeds the integer ALUs and can
accept up to three instructions per cycle from the dispatch unit. It can also
issue up to three instructions per cycle out of order from its bottommost three
entries to any of the G4e’s three integer units or to its LSU.

The four-entry vector issue queue (VIQ) can accept up to two instructions
per cycle from the dispatch unit, and it can issue up to two instructions per
cycle from its bottommost two entries to any two of the four vector execution
units. But note that unlike the GIQ, instructions must issue in order from the
bottom of the VIQ.

Finally, the single-entry floating-point issue queue (FIQ) can accept one
instruction per cycle from the dispatch unit, and it can issue one instruction
per cycle to the FPU.

With the help of the issue queues, the G4e’s dispatcher can keep
dispatching instructions and clearing the instruction queue, even if the
execution units and their attached reservation stations are full. Further-
more, the GIQ’s out-of-order issue ability allows integer and memory
instructions in the code stream to flow around instructions that are stalled in
the execute phase, so that a stalled instruction doesn’t back up the pipeline
and cause pipeline bubbles. For example, if a multicycle integer instruction
is stalled in the bottom GIQ entry because the complex integer unit is busy,
single-cycle integer instructions and load/store instructions can continue to
issue to the simple integer units and the LSU from the two slots behind the
stalled instruction.

Stage 5: Execute
The execute stage is pretty straightforward. Here, the instructions pass from
the reservation stations into the execution units to be executed. Floating-
point instructions move into the floating-point execution unit, vector instruc-
tions move into one of the four AltiVec units, integer instructions move into
one of the G4e’s four integer execution units, and memory accesses move
into the LSU. We’ll talk about these units in a bit more detail when we
discuss the G4e’s back end.
146 Chapter 7

Stages 6 and 7: Complete and Write-Back
In these two stages, the instructions enter the completion queue to be put
back into program order, and their results are written back to the register
file. It’s important that the instructions are rearranged to reflect their
original ordering so that the illusion of in-order execution is maintained.
The user needs to think that the program’s commands were executed one
after the other, the way they were written.

Branch Prediction on the G4e and Pentium 4

The G4e and the Pentium 4 each use both static and dynamic branch pre-
diction techniques to prevent mispredictions and branch delays. If a branch
instruction does not have an entry in the BHT, both processors will use static
prediction to decide which path to take. If the instruction does have a BHT
entry, dynamic prediction is used. The Pentium 4’s BHT is quite large;
at 4,000 entries, it has enough space to store information on most of the
branches in an average program.

The earlier PIII’s branch predictor had a success rate of around 91 per-
cent, and the Pentium 4 allegedly uses an even more advanced algorithm
to predict branches, so it should perform even better. The Pentium 4 also
uses a BTB to store predicted branch targets. Note that in most of Intel’s
literature and diagrams, the BTB and BHT are combined under the label
the front-end BTB.

The G4e has a BHT size of 2,000 entries, up from 512 entries in the
original G4. I don’t have any data on the G4e’s branch prediction success
rate, but I’m sure it’s fairly good. The G4e has a 128-entry BTIC, which is
twice as large as the original G4’s 64-entry BTIC. The G4e’s BTIC stores the
first four instructions in the code stream starting at each branch target, so it
goes even further than the original G4 in preventing branch-related pipeline
bubbles.

Because of its long pipeline, the Pentium 4 has a minimum misprediction
penalty of 20 clock cycles for code that’s in the L1 cache—that’s the minimum,
but the damage can be much worse, especially if the correct branch can’t be
found in the L1 cache. (In such a scenario, the penalty is upward of 30 cycles.)
The G4e’s seven-stage pipeline doesn’t pay nearly as high of a price for mis-
prediction as the Pentium 4, but it does take more of a hit than its four-stage
predecessor, the G4. The G4e has a minimum misprediction penalty of six
clock cycles, as opposed to the G4’s minimum misprediction penalty of only
four cycles.

In conclusion, both the Pentium 4 and the G4e spend more resources
than their predecessors on branch prediction, because their deeper pipelines
make mispredicted branches a major performance killer.

The Pentium 4 and G4e do actually have one more branch prediction
trick up their sleeves that’s worth at least noting, even though I won’t discuss
it in any detail. That trick comes in the form of software branch hints, or extra
information that a compiler or programmer can attach to conditional branch
instructions. This information gives the branch predictor clues as to the
In te l ’ s Pent ium 4 vs. Motoro la’s G4e: Approaches and Design Phi losophies 147

expected behavior of the branch, whether the compiler or programmer
expects it to be taken or not taken. There doesn’t seem to be much infor-
mation available on how big of a help these hints are, and Intel at least
recommends that they be used sparingly since they can increase code size.

An Overview of the Pentium 4’s Architecture

Even though the Pentium 4’s pipeline is much longer than that of the
G4e, it still performs most of the same functions. Figure 7-5 illustrates the
Pentium 4’s basic architecture so that you can compare it to the picture of
the G4e presented in Figure 7-4. Due to space and complexity constraints,
I haven’t attempted to show each pipeline stage individually like I did with
the G4e. Rather, I’ve grouped the related ones together so you can get a
more general feel for the Pentium 4’s layout and instruction flow.

Figure 7-5: Basic architecture of the Pentium 4

Write

Re-order Buffer
(ROB)

Completion Unit

Back End

Front End

FPU &
Vector
ALU

LOAD STORE

BU

BU
(TC)

SIU2SIU1 SIU2SIU1 CIU

Translate x86/
Decode

Instruction Fetch

Integer Units
FPU &
Vector
STORE

FPU
SIMD

Fast Integer
Scheduler

Simple FP
Scheduler

Memory
Scheduler

Memory
Queue

uop
Queue

Slow Int. & General FP
Scheduler

Integer & General FP
Queue

Reorder Buffer (ROB)

L1 Instruction Cache
(Trace Cache)

Trace Cache Fetch

Load-Store Unit

Port 0 Load
Port

Store
Port

Port 0 Port 1 Port 1 Port 1

Branch
Unit

FPU
SIMD
148 Chapter 7

The first thing to notice about Figure 7-5 is that the L1 instruction cache
is actually sitting after the fetch and decode stages in the Pentium 4’s front
end. This oddly located instruction cache—called the trace cache—is one
of the Pentium 4’s most innovative and important features. It also greatly
affects the Pentium 4’s pipeline and basic instruction flow, so you have to
understand it before we can talk about the Pentium 4’s pipeline in detail.

Expanding the Instruction Window

Chapter 5 talked about the buffering effect of deeper pipelining on the P6
and how it allows the processor to smooth out gaps and hiccups in the code
stream. The analogy I used was that of a reservoir, which can smooth out
interruptions in the flow of water from a central source.

One of the innovations that makes this reservoir approach effective is the
decoupling of the back end from the front end by means of the reservation
station (RS). The RS is really the heart of the reservoir approach, a place where
instructions can collect in a pool and then issue when their data become avail-
able. This instruction pool is what decouples the P6’s fetch/decode bandwidth
from its execution bandwidth by enabling the P6 to continue executing
instructions during short periods when the front end gets hung up in either
fetching or decoding the next instruction.

With the advent of the Pentium 4’s much longer pipeline, the reserva-
tion station’s decoupling just isn’t enough. The Pentium 4’s performance
plummets when the front end cannot keep feeding instructions to the back
end in extremely rapid succession. There’s no extra time to wait for a complex
instruction to decode or for a branch delay—the high-speed back end needs
the instructions to flow quickly.

One route that Intel could have taken would have been to increase the
size of the code reservoir, and in doing so, increase the size of the instruction
window. Intel actually did do this—the Pentium 4 can track up to 126 instruc-
tions in various stages of execution—but that’s not all they did. More drastic
measures were required to keep the high-speed back end from depleting the
reservoir before the front end could fill it.

The answer that Intel settled on was to take the costly and time-consuming
x86 decode stage out of the basic pipeline. They did this by the clever trick of
converting the L1 cache—a structure that was already on the die and there-
fore already taking up transistors—into a cache for decoded micro-ops.

The Trace Cache

As the previous chapter mentioned, modern x86 chips convert complex x86
instructions into a simple internal instruction format called a micro-operation
(aka micro-op, µop, or uop). These micro-ops are uniform, and thus it’s easier
for the processor to manage them dynamically. To return to the previous
chapter’s Tetris analogy, converting all of the x86 instructions into micro-ops
is kind of like converting all of the falling Tetris pieces into one or two types
of simple piece, like the T and the block pieces. This makes everything easier
to place, because there’s less complexity to manage on the fly.
In te l ’ s Pent ium 4 vs. Motoro la’s G4e: Approaches and Design Phi losophies 149

The older P6 fetches x86 instructions from the L1 instruction cache
and translates them into micro-ops before passing them on to the reser-
vation station to be scheduled for execution. The Pentium 4, in contrast,
fetches groups of x86 instructions from the L2 cache, decodes them into
strings of micro-ops called traces, and then fits these traces into its modified
L1 instruction cache (the trace cache). This way, the instructions are already
decoded, so when it comes time to execute them, they need only to be fetched
from the trace cache and passed directly into the back end’s buffers.

So the trace cache is a reservoir for a reservoir; it builds up a large pool
of already decoded micro-ops that can be piped directly into the back end’s
smaller instruction pool. This helps keep the high-speed back end from
draining that pool dry.

Shortening Instruction Execution Time

As noted earlier, on a conventional x86 processor like the PIII or the Athlon,
x86 instructions make their way from the instruction cache into the decoder,
where they’re broken down into multiple smaller, more uniform, more easily
managed instructions called micro-ops. (See the section on instruction set
translation in Chapter 3.) These micro-ops are actually what the out-of-order
back end rearranges, executes, and commits.

This instruction translation happens each time an instruction is executed,
so it adds a few pipeline stages to the beginning of the processor’s basic pipe-
line. Notice in Figures 7-6 and 7-7 that multiple pipeline stages have been
collapsed into each other—instruction fetch takes multiple stages, translate
takes multiple stages, decode takes multiple stages, and so on.

For a block of code that’s executed only a few times over the course of a
single program run, this loss of a few cycles to retranslation each time isn’t
that big of a deal. But for a block of code that’s executed thousands and
thousands of times (e.g., a loop in a media application that applies a series
of operations to a large file), the number of cycles spent repeatedly trans-
lating and decoding the same group of instructions can add up quickly. The
Pentium 4 reclaims those lost cycles by removing the need to translate those
x86 instructions into micro-ops each time they’re executed.

The Pentium 4’s instruction cache takes translated, decoded micro-ops
that are primed and ready to be sent straight out to the back end and arranges
them into little mini-programs called traces. These traces, and not the x86
code that was produced by the compiler, are what the Pentium 4 executes
whenever there’s a trace cache hit, which is over 90 percent of the time. As
long as the needed code is in the trace cache, the Pentium 4’s execution
path looks as in Figure 7-7.

As the front end executes the stored traces, the trace cache sends up to
three micro-ops per cycle directly to the back end, without the need for them
to pass through any translation or decoding stages. Only when there’s a trace
cache miss does that top part of the front end kick in order to fetch and
decode instructions from the L2 cache. The decoding and translating steps
brought on by a trace cache miss add another eight pipeline stages onto the
150 Chapter 7

Figure 7-6: Normal x86 processor’s critical execution path

beginning of the Pentium 4’s pipeline. You can see that the trace cache saves
quite a few cycles over the course of a program’s execution, thereby shorten-
ing the average instruction execution time and average instruction latency.

The Trace Cache’s Operation

The trace cache operates in two modes. Execute mode is the mode pictured
above, where the trace cache feeds stored traces to the execution logic to
be executed. This is the mode that the trace cache normally runs in. When
there’s an L1 cache miss, the trace cache goes into trace segment build mode.
In this mode, the front end fetches x86 code from the L2 cache, translates it
into micro-ops, builds a trace segment with it, and loads that segment into the
trace cache to be executed.

Notice in Figure 7-7 that the trace cache execution path knocks the BPU
out of the picture along with the instruction fetch and translate/decode
stages. This is because a trace segment is much more than just a translated,
decoded, predigested slice of the same x86 code that compiler originally
produced. The trace cache actually uses branch prediction when it builds a

Write

BU

L1 Instruction Cache

Trans. x86 / Decode2

Instruction Fetch1

Allocate/Schedule3

Execute ExecuteExecute4

5

Branch
Unit
In te l ’ s Pent ium 4 vs. Motoro la’s G4e: Approaches and Design Phi losophies 151

Figure 7-7: The Pentium 4’s critical execution path

trace. As shown in Figure 7-8, the trace cache’s branch prediction hardware
splices code from the branch that it speculates the program will take right
into the trace behind the code that it knows the program will take. So if you
have a chunk of x86 code with a branch in it, the trace cache builds a trace
from the instructions up to and including the branch instruction. Then, it
picks which branch it thinks the program will take, and it continues building
the trace along that speculative branch.

Having the speculative execution path spliced in right after the branch
instruction confers on the trace cache two big advantages over a normal instruc-
tion cache. First, in a normal machine, it takes the branch predictor and BPU
some time to do their thing when they come across a conditional branch
instruction—they have to figure out which branch to speculatively execute,
load up the proper branch target, and so on. This whole process usually

4 Write

BU

BU
(TC)

Translate x86/
Decode

Instruction Fetch

L1 Instruction Cache
(Trace Cache)

Trace Cache Fetch1

Allocate/Schedule2

Execute ExecuteExecute3

Branch
Unit
152 Chapter 7

Figure 7-8: Speculative execution using the trace cache

adds at least one cycle of delay after every conditional branch instruction, a
delay that often can’t be filled with other code and therefore results in a
pipeline bubble. With the trace cache, however, the code from the branch
target is already sitting there right after the branch instruction, so there’s no
delay associated with looking it up and hence no pipeline bubble. In other
words, the Pentium 4’s trace cache implements a sort of branch folding, like
what we previously saw implemented in the instruction queues of PowerPC
processors.

The other advantage that the trace cache offers is also related to its
ability to store speculative branches. When a normal L1 instruction cache
fetches a cache line from memory, it stops fetching when it hits a branch
instruction and leaves the rest of the line blank. If the branch instruction is
the first instruction in an L1 cache line, then it’s the only instruction in that
line and the rest of the line goes to waste. Trace cache lines, on the other
hand, can contain both branch instructions and the speculative code after
the branch instruction. This way, no space in the trace cache’s six–micro-op
line goes to waste.

Most compilers take steps to deal with the two problems I’ve outlined
(the delay after the branch and the wasted cache line space). As you saw,
though, the trace cache solves these problems in its own way, so programs
that are optimized to exploit these abilities see some advantages from them.

One interesting effect that the trace cache has on the Pentium 4’s front
end is that x86 translation/decode bandwidth is for the most part decoupled
from dispatch bandwidth. You saw previously how the P6, for instance, spends
a lot of transistor resources on a three different x86 decoders so that it can
translate enough clunky x86 instructions each cycle into micro-ops to keep the

x86 Instruction Stream

Trace Segment

Speculative Instruction Path

Branch Instruction
In te l ’ s Pent ium 4 vs. Motoro la’s G4e: Approaches and Design Phi losophies 153

back end fed. With the Pentium 4, the fact that most of the time program code
is fetched from the trace cache in the form of predigested micro-ops means
that a high bandwidth translator/decoder isn’t necessary. The Pentium 4’s
decoding logic only has to kick on whenever there’s an L1 cache miss, so it was
designed to decode only one x86 instruction per clock cycle. This is one-third
the maximum theoretical decode bandwidth of the P6, but the Pentium 4’s
trace cache allows it to meet or exceed the P6’s real-world average dis-
patch rate.

The trace cache’s handling of very long, multi-cycle x86 instructions is
worth taking a look at, because it’s quite clever. While most x86 instructions
decode into around two or three micro-ops, there are some exceedingly
long (and thankfully rare) x86 instructions (e.g., the string manipulation
instructions) that decode into hundreds of micro-ops. Like the P6, the
Pentium 4 has a special microcode ROM that decodes these longer
instructions so that the regular hardware decoder can concentrate on
decoding the smaller, faster instructions. For each long instruction, the
microcode ROM stores a canned sequence of micro-ops, which it spits out
when fed that instruction.

To keep these long, prepackaged sequences of micro-ops from polluting
the trace cache, the Pentium 4’s designers devised the following solution:
Whenever the trace cache is building a trace segment and it encounters one
of the long x86 instructions, instead of breaking it down and storing it as a
micro-op sequence, the trace cache inserts into the trace segment a tag that
points to the section of the microcode ROM containing the micro-op sequence
for that particular instruction. Later, in execute mode, when the trace cache
is streaming instructions out to the back end and it encounters one of these
tags, it stops and temporarily hands control of the instruction stream over to
the microcode ROM. The microcode ROM spits out the proper sequence of
micro-ops (as designated by the tag) into the instruction stream, and then
hands control back over to the trace cache, which resumes putting out instruc-
tions. The back end, which is on the other end of this instruction stream,
doesn’t know or care if the instructions are coming from the trace cache or
the microcode ROM. All it sees is a constant, uninterrupted stream of
instructions.

Intel hasn’t said exactly how big the trace cache is—only that it holds
12,000 micro-ops. Intel claims this is roughly equivalent to a 16KB to 18KB
I-cache.

By way of finishing up our discussion of the trace cache and introducing
our detailed walk-through of the Pentium 4’s pipeline, I should note two
final aspects of the trace cache’s effect on the pipeline. First, the trace cache
still needs a short instruction fetch stage so that micro-ops can be fetched
from it and sent to the allocation and scheduling logic. When we look at the
Pentium 4’s basic execution pipeline, you’ll see this stage. Second, the trace
cache actually has its own little BPU for predicting the directions and return
addresses of branches within the trace cache itself. So the trace cache doesn’t
eliminate branch processing and prediction entirely from the picture; it just
alleviates their effects on performance.
154 Chapter 7

An Overview of the Pentium 4’s Pipeline

Now let’s step back and take a look at the Pentium 4’s basic execution pipeline.
Here’s a breakdown of the various pipeline stages.

Stages 1 and 2: Trace Cache Next Instruction Pointer

In these stages, the Pentium 4’s trace cache fetch logic gets a pointer to the
next instruction in the trace cache.

Stages 3 and 4: Trace Cache Fetch

These two stages fetch an instruction from the trace cache to be sent to the
back end.

Stage 5: Drive

This is the first of two special drive stages in the Pentium 4’s pipeline, each of
which is dedicated to driving signals from one part of the processor to the
next. The Pentium 4 runs so fast that sometimes a signal can’t make it all the
way to where it needs to be in a single clock pulse, so the processor dedicates
some pipeline stages to letting these signals propagate across the chip. These
drive stages are there because the Pentium 4’s designers intend for the chip
to reach such stratospheric clock speeds that stages like this are absolutely
necessary.

At the end of these first five stages, the Pentium 4’s trace cache sends up
to three micro-ops per cycle into a large, FIFO micro-op queue. This in-order
queue, which sits in between the Pentium 4’s front end and back end, smoothes
out the flow of instructions to the back end by squeezing out any fetch- or
decode-related bubbles. Micro-ops enter the top of the queue and fall down
to rest at the lowest available entry, directly above the most recent micro-op to
enter the queue. Thus, any bubbles that may have been ahead of the micro-
ops disappear from the pipeline at this point. The micro-ops leave the bottom
of the micro-op queue in program order and proceed to the next pipeline
stage.

Stages 6 Through 8: Allocate and Rename (ROB)

In this group of stages, up to three instructions per cycle move from the
bottom of the micro-op queue and are allocated entries in the Pentium 4’s
ROB and rename registers. With regard to the latter, the x86 ISA specifies
only eight GPRs, eight FPRs, and eight VPRs, but the Pentium 4 has 128 of
each type of register in its rename register files.

The allocator/renamer stages also allocates each micro-op an entry in
one of the two micro-op queues detailed in the next section and can send up
to three micro-ops per cycle into these queues.
In te l ’ s Pent ium 4 vs. Motoro la’s G4e: Approaches and Design Phi losophies 155

Stage 9: Queue

To implement out-of-order execution, the Pentium 4 flows micro-ops from
its trace cache through the ROB and into two deep micro-op queues that sit
between its instructions’ dispatch and execution phases. These two queues
are the memory micro-op queue and the arithmetic micro-op queue. The memory
micro-op queue holds memory operations (loads and stores) that are destined
for the Pentium 4’s LSU, while the arithmetic micro-op queue holds all other
types of operations.

The two main micro-op queues are roughly analogous to the G4e’s issue
queues, but with one crucial difference: the Pentium 4’s micro-op queues are
FIFO queues, while the G4e’s issue queues are not. For the Pentium 4, this
means an instruction passes into and out of a micro-op queue in program order
with respect to the other instructions in its own queue. However, instructions
can still exit the bottom of each queue out of program order with respect to
instructions in the other queue.

These two micro-op queues feed micro-ops into the scheduling logic in
the next stage.

Stages 10 Through 12: Schedule

The micro-op queues described in the preceding section are only part of the
Pentium 4’s dynamic scheduling logic. The other half consists of a set of four
micro-op schedulers whose job it is to schedule micro-ops for execution and
to determine to which execution unit the micro-ops should be passed. Each
of these schedulers consists of a smaller, 8- to 12-entry micro-op queue attached
to a bit of scheduling logic. The scheduler’s scheduling logic arbitrates with
the other schedulers for access to the Pentium 4’s four issue ports, and it
removes micro-ops from its in-order scheduling queue and sends them
through the right port at the right time.

An instruction cannot exit from a scheduling queue until its input
operands are available and the appropriate execution unit is available.
When the micro-op is ready to execute, it is removed from the bottom of
its scheduling queue and passed to the proper execution unit through one
of the Pentium 4’s four issue ports, which are analogous to the P6 core’s
five issue ports in that they act as gateways to the back end’s execution
units.

Here’s a breakdown of the four schedulers:

Memory scheduler
Schedules memory operations for the LSU.

Fast IU scheduler
Schedules ALU operations (simple integer and logical instructions) for
the Pentium 4’s two double-speed integer execution units. As you’ll see
in the next chapter, the Pentium 4 contains two integer ALUs that run at
twice the main core’s clock speed.
156 Chapter 7

Slow IU/general FPU scheduler
Schedules the rest of the integer instructions and most of the floating-
point instructions.

Simple FP scheduler
Schedules simple FP instructions and FP memory operations.

These schedulers feed micro-ops through the four dispatch ports
described in the next stage.

Stages 13 and 14: Issue

The P6 core’s reservation station sends instructions to the back end via one
of five issue ports. The Pentium 4 uses a similar scheme, but with four issue
ports instead of five. There are two memory ports for memory instructions: the
load port and the store port, for loads and stores, respectively. The remaining
two ports, called execution ports, are for all the other instructions: execution
port 0 and execution port 1. The Pentium 4 can send a total of six micro-ops
per cycle through the four execution ports. This issue rate of six micro-ops per
cycle is more micro-ops per cycle than the front end can fetch and decode
(three per cycle) or the back end can complete (three per cycle), but that’s
okay because it gives the machine some headroom in its middle so that it can
have bursts of activity.

You might be wondering how six micro-ops per cycle can move through
four ports. The trick is that the Pentium 4’s two execution ports are double-
speed, meaning that they can dispatch instructions (integer only) on the
rising and falling edges of the clock. But we’ll talk more about this in the
next chapter. For now, here’s a breakdown of the two execution ports and
which execution units are attached to them:

Execution port 0:

Fast integer ALU1 This unit performs integer addition, subtraction,
and logical operations. It also evaluates branch conditionals and exe-
cutes store-data micro-ops, which store data into the outgoing store
buffer. This is the first of two double-speed integer units, which operate
at twice the core clock frequency.

Floating-point/SSE move This unit performs floating-point and SSE
moves and stores. It also executes the FXCH instruction, which means that
it’s no longer “free” on the Pentium 4.

Execution port 1:

Fast integer ALU2 This very simple integer ALU performs only integer
addition and subtraction. It’s the second of the two double-speed inte-
ger ALUs.

Slow integer ALU This integer unit handles all of the more time-
consuming integer operations, like shift and rotate, that can’t be
completed in half a clock cycle by the two fast ALUs.
In te l ’ s Pent ium 4 vs. Motoro la’s G4e: Approaches and Design Phi losophies 157

Floating-point/SEE/MMX ALU This unit handles floating-point and
SSE addition, subtraction, multiplication, and division. It also handles all
MMX instructions.

In Figure 7-5, I’ve labeled the instruction flow paths going into each
execution unit to show which dispatch port instructions must pass through
in order to reach which execution unit.

Stages 15 and 16: Register Files

This stage is where the execution units, upon receiving the instructions,
read each instruction’s input operands from the appropriate register file.
To return to the discussion from Chapter 1, this step is the read step in the
read-execute-write cycle of computation.

Stage 17: Execute

In this stage, the instructions are actually executed by the back end’s execution
units. We’ll take a closer look at the Pentium 4’s back end in the next chapter.

Stage 18: Flags

If an instruction’s outcome stipulates that it needs to set any flags in the PSW,
then it does so at this stage.

Stage 19: Branch Check

Here’s the stage where the Pentium 4 checks the outcome of a conditional
branch to see if it has just wasted 19 cycles of its time executing some code
that it’ll have to throw away. By stage 19, the branch condition has been
evaluated, and the front end knows whether or not the branch predictor’s
guess was right or not.

Stage 20: Drive

You’ve already met the drive stage. Again, this stage is dedicated to propa-
gating signals across the chip.

Stages 21 and Onward: Complete and Commit

Although Intel only lists the last part of the execution phase—stage 20—as
part of the “normal Pentium 4 pipeline,” for completeness, I’ll include the
write-back phase. Completed instructions file into their pre-assigned entries
in the ROB, where they’re put back in program order before having their
results update the machine’s architectural state.
158 Chapter 7

As you can see, the Pentium 4’s 20-stage pipeline does much of the same
work in mostly the same order as the G4e’s seven-stage pipeline. By dividing
the pipeline into more stages, though, the Pentium 4 can reach higher clock
rates. As I’ve already noted, this deeply pipelined approach fits with the
Pentium 4’s “narrow and deep” design philosophy.

The Pentium 4’s Instruction Window

Before I discuss the nature of the Pentium 4’s instruction window, note that
I’m using the terms instruction pool and instruction window somewhat inter-
changeably. These two terms represent two slightly different metaphors for
thinking about the set of queues and buffers positioned between a processor’s
front end and its back end. Instructions collect up in these queues and
buffers—just like water collects in a pool or reservoir—before being drained
away by the processor’s back end. Because the instruction pool represents a
small segment of the code stream, which the processor can examine for
dependencies and reorder for optimal execution, this pool can also be said
to function as a window on the code stream. Now that that’s clear, let’s take a
look at the Pentium 4’s instruction window.

As I explained in the previous chapter, the older P6 core’s RS and ROB
made up the heart of its instruction window. The Pentium 4 likewise has a
ROB for tracking micro-ops, and in fact, and its 126-entry ROB is much larger
than that of the P6. The buffer functions of the P6’s reservation station,
however, have been divided among multiple structures. The previous section’s
pipeline description explains how these structures are configured.

This partitioning of the instruction window into memory and arithmetic
portions by means of the two scheduling queues has the effect of ensuring
that both types of instructions will always have space in the window, and that
an overabundance of one instruction type will not crowd the other type out of
the window. The multiple schedulers provide fine-grained control over the
instruction flow, so that it’s optimally reordered for the fast execution units.

All of this deep buffering, scheduling, queuing, and optimizing is essential
for keeping the Pentium 4’s high-speed back end full. To return yet again to
the Tetris analogy, imagine what would happen if someone were to double the
speed at which the blocks fall; you’d hope that they would also double the size
of the look-ahead window to compensate. The Pentium 4 greatly increases
the size of the P6’s instruction window as a way of compensating for the fact
that the arrangement of instructions in its core is made so much more critical
by the increased clock speed and pipeline depth.

The downside to all of this is that the schedulers and queues and the very
large ROB all add complexity and cost to the Pentium 4’s design. This com-
plexity and cost are part of the price that the Pentium 4 pays for its deep
pipeline and high clock speed.
In te l ’ s Pent ium 4 vs. Motoro la’s G4e: Approaches and Design Phi losophies 159

I N T E L ’ S P E N T I U M 4 V S .
M O T O R O L A ’ S G 4 E :

T H E B A C K E N D

In this chapter, I’ll explain in greater detail the back
end of both the Pentium 4 and the G4e. I’ll talk about
the execution resources that each processor uses for
crunching code and data, and how those resources
contribute to overall performance on specific types of
applications.

Some Remarks About Operand Formats

Unlike the DLW and PowerPC ISAs described so far, the x86 ISA uses a two-
operand format for both integer and floating-point instructions. If you want
to add two numbers in registers A and B, the instruction would look as follows:

add A, B

itm08_03.fm Page 162 Thursday, January 11, 2007 10:28 AM
This command adds the contents of A to the contents of B and places the
result in A, overwriting whatever was previously in A in the process. Expressed
mathematically, this would look as follows:

A = A + B

The problem with using a two-operand format is that it can be incon-
venient for some sequences of operations. For instance, if you want to add A
to B and store the result in C, you need two operations to do so:

Program 8-1

The first instruction in Program 8-1 copies the contents of A into C so that
A’s value is not erased by the addition, and the second instruction adds the
two numbers.

With a three-operand or more format, like many of the instructions in
the PPC ISA, the programmer gets a little more flexibility and control. For
instance, you saw earlier that the PPC ISA has a three-operand add instruction
of the format

add destination, source1, source2

So if you want to add the contents of register 1 to the contents of register
2 and store the result in register 3 (i.e., r3 = r1 + r2), you just use the follow-
ing instruction:

add 3, 2, 1

Some PPC instructions support even more than three operands, which
can be a real boon to programmers and compiler writers. In “AltiVec Vector
Operations” on page 170, we’ll look in detail at the G4e AltiVec instruction
set’s use of a four-operand instruction format.

The PPC ISA’s variety of multiple-operand formats are obviously more
flexible than the one- and two-operand formats of x86. But nonetheless,
modern x86 compilers are quite advanced and can overcome many of the
aforementioned problems through the use of hidden microarchitectural
rename registers and various scheduling algorithms. The problems with
x86’s two-operand format are much more of a liability for floating-point and
vector code than for integer code. We’ll talk more about this later, though.

Line # Code Comments

1 mov C, A Copy the contents of register A to register C.

2 add C, B Add the numbers in registers C and B and store the result in C, overwriting
the previous contents of C.
162 Chapter 8

The Integer Execution Units

Though the Pentium 4’s double-pumped integer execution units got quite a bit
of press when Netburst was first announced, you might be surprised to learn
that both the G4e and the Pentium 4 embody approaches to enhancing inte-
ger performance that are very similar. As you’ll see, this similarity arises from
both processors’ application of the computing design dictum: Make the common
case fast.

For integer applications, the common case is easy to spot. As I outlined
in Chapter 1, integer instructions generally fall into one of two categories:

Simple/fast integer instructions
Instructions like add and sub require very few steps to complete and are
therefore easy to implement with little overhead. These simple instruc-
tions make up the majority of the integer instructions in an average
program.

Complex/slow integer instructions
While addition and subtraction are fairly simple to implement, multipli-
cation and division are complicated to implement and can take quite a
few steps to complete. Such instructions involve a series of additions and
bit shifts, all of which can take a while. These instructions represent only
a fraction of the instruction mix for an average program.

Since simple integer instructions are by far the most common type of
integer instruction, both the Pentium 4 and G4e devote most of their integer
resources to executing these types of instructions very rapidly.

The G4e’s IUs: Making the Common Case Fast

As was explained in the previous chapter, the G4e has a total of four IUs.
The IUs are divided into two groups:

Three simple/fast integer execution units—SIUa, SIUb, SIUc
These three simple IUs handle only fast integer instructions. Most of the
instructions executed by these IUs are single-cycle, but there are some
multi-cycle exceptions to this rule. Each of the three fast IUs is fed by a
single-entry reservation station.

One complex/slow integer execution unit—CIU
This single complex IU handles only complex integer instructions like
multiply, divide, and some special-purpose register instructions, includ-
ing condition register (CR) logical operations. Instructions sent to this
IU generally take four cycles to complete, although some take longer.
Note that divides, as well as some multiplication instructions, are not
fully pipelined and thus can tie up the entire IU for multiple cycles. Also,
instructions that update the PPC CR have an extra pipeline stage—called
finish—to pass through before they leave the IU (more on this shortly).
Finally, the CIU is fed by a two-entry reservation station.
In te l ’ s Pent ium 4 vs. Motorola’s G4e: The Back End 163

By dedicating three of its four integer ALUs to the fastest, simplest,
and most common instructions, the G4e is able to make the common case
quite fast.

Before moving on, I should note that the finish stages attached to the
ends of some of the execution unit pipelines are new in the G4e. These
finish stages are dedicated to updating the condition register to reflect the
results of any arithmetic operation that needs to do such updating (this
happens infrequently). It’s important to understand that at the end of the
execute stage/start of the finish stage, an arithmetic instruction’s results are
available for use by dependent instructions, even though the CR has not yet
been updated. Therefore, the finish stage doesn’t affect the effective latency
of arithmetic instructions. But for instructions that depend on the CR—like
branch instructions—the finish stage adds an extra cycle of latency.

One nice thing that the PPC ISA has going for it is its large number of
general-purpose registers (GPRs) for storing integers and addresses. This
large number of architectural GPRs (32 to be exact) gives the compiler plenty
of flexibility in scheduling integer operations and address calculations.

In addition to the PPC ISA’s 32 GPRs, the G4e provides 16 microarchi-
tectural general-purpose rename registers for use by the on-chip scheduling
logic. These additional registers, not visible to the compiler or programmer,
are used by the G4e to augment the 32 GPRs, thereby providing more flexi-
bility for scheduling the processor’s execution resources and keeping them
supplied with data.

The Pentium 4’s IUs: Make the Common Case Twice as Fast

The Pentium 4’s integer functional block takes a very similar strategy to
the G4e for speeding up integer performance. It contains one slow integer
execution unit and two fast integer execution units. By just looking at the
number of integer execution units, you might think that the Pentium 4
has less integer horsepower than the G4e. This isn’t quite the case, though,
because the Pentium 4’s two fast IUs operate at twice the core clock speed, a trick
that allows them to look to the outside world like four fast IUs.

The Pentium 4 can issue two integer instructions per cycle in rapid
succession to each of the two fast IUs—one on the rising edge of the clock
pulse and one on the falling edge. Each fast ALU can process an integer
instruction in 0.5 cycles, which means it can process a total of two integer
instructions per cycle. This gives the Pentium 4 a total peak throughput of
four simple integer instructions per cycle for the two fast IUs combined.

Does this mean that the Pentium 4’s two double-speed integer units are
twice as powerful as two single-speed integer units? No, not quite. Integer
performance is about much more than just a powerful integer functional
block. You can’t squeeze peak performance out of an integer unit if you
can’t keep it fed with code, and the Pentium 4 seems to have a weakness
in this area when it comes to integer code.

We talked earlier in this book about how, due to the Pentium 4’s “narrow
and deep” design philosophy, branch mispredictions and cache misses can
degrade performance by introducing pipeline bubbles into the instruction
164 Chapter 8

stream. This is especially a problem for integer performance, because integer-
intensive applications often contain branch-intensive code that exhibits poor
locality of reference. As a result, branch mispredictions in conjunction with cache
latencies can kill integer performance. (For more information about these
issues, see Chapter 11.)

As most benchmarks of the Pentium 4 bear out, in spite of its double-
pumped ALUs, the Pentium 4’s “narrow and deep” design is much more
suited to floating-point applications than it is to integer applications. This
floating-point bias seems to have been a deliberate choice on the part of the
Pentium 4’s designers—the Pentium 4 is designed to give not maximum but
acceptable performance on integer applications. This strategy works because
most modern processors (at least since the PIII, if not the PII or Pentium
Pro) are able to offer perfectly workable performance levels on consumer-
level integer-intensive applications like spreadsheets, word processors, and
the like. Though server-oriented applications like databases require higher
levels of integer performance, the demand for ever-increasing integer per-
formance just isn’t there in the consumer market. As a way of increasing the
Pentium 4’s integer performance for the server market, Intel sells a version
of the Pentium 4 called the Xeon, which has a much larger cache.

Before moving on to the next topic, I should note that one character-
istic of the Pentium 4 that bears mentioning is its large number of micro-
architectural rename registers. The x86 ISA has only eight GPRs, but the
Pentium 4 augments these with the addition of a large number of rename
registers: 128 to be exact. Since the Pentium 4 keeps so many instructions
on-chip for scheduling purposes, it needs these added rename resources to
prevent the kinds of register-based resource conflicts that result in pipeline
bubbles.

The Floating-Point Units (FPUs)

While the mass market’s demand for integer performance may not be
picking up, its demand for floating-point seems insatiable. Games, 3D
rendering, audio processing, and almost all other forms of multimedia-
and entertainment-oriented computing applications are extremely floating-
point intensive. With floating-point applications perennially driving the home
PC market, it’s no wonder that the Pentium 4’s designers made their design
trade-offs in favor of FP performance over integer performance.

In terms of the way they use the processor and cache, floating-point appli-
cations are in many respects the exact opposite of the integer applications
described in the preceding section. For instance, the branches in floating-
point code are few and extremely predictable. Most of these branches occur
as exit conditions in small chunks of loop code that iterate through a large
dataset (e.g., a sound or image file) in order to modify it. Since these loops
iterate many thousands of times as they work their way through a file, the
branch instruction that is the exit condition evaluates to taken many thou-
sands of times; it only evaluates to not taken once—when the program exits
In te l ’ s Pent ium 4 vs. Motorola’s G4e: The Back End 165

the loop. For such types of code, simple static branch prediction, where the
branch prediction unit guesses that all branches will be taken every time,
works quite well.

This description also points out two other ways in which floating-point
code is the opposite of integer code. First, floating-point code has excellent
locality of reference with respect to the instruction cache. A floating-point–
intensive program, as I’ve noted, spends a large part of its execution time in
relatively small loops, and these loops often fit in one of the processor caches.
Second, because floating-point–intensive applications operate on large data
files that are streamed into the processor from main memory, memory band-
width is extremely important for floating-point performance. So while integer
programs need good branch prediction and caching to keep the IUs fed with
instructions, floating-point programs need good memory bandwidth to keep
the FPUs fed with data.

Now that you understand how floating-point code tends to operate, let’s
look at the FPUs of the G4e and Pentium 4 to see how they tackle the problem.

The G4e’s FPU

Since the G4e’s designers have bet on the processor’s vector execution
units (described shortly) to do most of the serious floating-point heavy
lifting, they made the G4e’s FPU fairly simple and straightforward. It has
a single pipeline for all floating-point instructions, and both single- and
double-precision operations take the same number of cycles. (This ability
to do double-precision FP is important mostly for scientific applications
like simulations.) In addition, one single- or double-precision operation
can be issued per cycle, with one important restriction (described later in
this section). Finally, the G4e inherits the PPC line’s ability to do single-
cycle fmadds, and this time, both double- and single-precision fmadds have
a single-cycle throughput.

Almost all of the G4e’s floating-point instructions take five cycles to
complete. There are a few instructions, however, that can take longer (fdiv,
fre, and fdiv, for example). These longer instructions can take from 14 to 35
cycles to complete, and while they’re executing, they hang up the floating-
point pipeline, meaning that no other instructions can be done during
that time.

One rarely discussed weakness of the G4e’s FPU is the fact that it isn’t
fully pipelined, which means that it can’t have five different instructions in five
different stages of execution simultaneously. Motorola’s software optimiza-
tion manual for the 7450 states that if the 7450’s first four stages of execution
are occupied, the FPU will stall on the next cycle. This means that the FPU’s
peak theoretical instruction throughput is four instructions every five cycles.

It could plausibly be said that the PowerPC ISA gives the G4e a slight
advantage over the Pentium 4 in terms of floating-point performance.
However, a better way of phrasing that would be to say that the x86 ISA
(or more specifically, the x87 floating-point extensions) puts the Pentium 4
at a slight disadvantage with respect to the rest of the world. In other words,
166 Chapter 8

the PPC’s floating-point implementation is fairly normal and unremarkable,
whereas the x87 has a few quirks that can make life difficult for FPU designers
and compiler writers.

As mentioned at the outset of this chapter, the PPC ISA has instructions
with one-, two-, three-, and four-operand formats. This puts a lot of power in
the hands of the compiler or programmer as far as scheduling floating-point
instructions to minimize dependencies and increase throughput and perfor-
mance. Furthermore, this instruction format flexibility is augmented by a
flat, 32-entry floating-point register file, which yields even more scheduling
flexibility and even more performance.

In contrast, the instructions that make up the x87 floating-point exten-
sions support two operands at most. You saw in Chapter 5 that the x87’s very
small eight-entry register file has a stack-based structure that limits it in certain
ways. All Pentium processors up until the Pentium 4 get around this stack-
related limitation with the “free” fxch instruction described in Chapter 5, but
on the Pentium 4, fxch is no longer free.

So the Pentium 4’s small, stack-based floating-point register file and two-
operand floating-point instruction format put the processor at a disadvantage
compared to the G4e’s cleaner PowerPC floating-point specification. The
Pentium 4’s 128 floating-point rename registers help alleviate some of the
false dependencies that arise from the low number of architectural registers,
but they don’t help much with the other problems.

The Pentium 4’s FPU

There are two fully independent FPU pipelines on the Pentium 4, one of
which is strictly for floating-point memory operations (loading and storing
floating-point data). Since floating-point applications are extremely data-
and memory-intensive, separating the floating-point memory operations and
giving them their own execution unit helps a bit with performance.

The other FPU pipeline is for all floating-point arithmetic operations,
and except for the fact that it doesn’t execute memory instructions, it’s very
similar to the G4e’s single FPU. Most simple floating-point operations take
between five and seven cycles, with a few more complicated operations (like
floating-point division) tying up the pipeline for a significantly longer time.
Single- and double-precision operations take the same number of cycles, with
both single- and double-precision floating-point numbers being converted
into the x87’s internal 80-bit temporary format. (This conversion is done for
overflow reasons and doesn’t concern us here.)

So the Pentium 4’s FPU hardware executes instructions with slightly
higher instruction latencies than the FPU of its predecessor, the P6 (for
example, three to five cycles on the P6 for common instructions), but because
the Pentium 4’s clock speed is so much higher, it can still complete more
floating-point instructions in a shorter period of time. The same is true of
the Pentium 4’s FPU in comparison with the G4e’s FPU—the Pentium 4
takes more clock cycles than the G4e to execute floating-point instructions,
but those clock cycles are much faster. So Pentium 4’s clock-speed advantage
In te l ’ s Pent ium 4 vs. Motorola’s G4e: The Back End 167

and high-bandwidth front-side bus give it a distinct advantage over the
Pentium III in floating-point–intensive benchmarks and enable it to be
more than competitive with the G4e in spite of x87’s drawbacks.

Concluding Remarks on the G4e’s and Pentium 4’s FPUs

The take-home message in the preceding discussion can be summed up
as follows: While the G4e has fairly standard, unremarkable floating-point
hardware, the PPC ISA does things the way they’re supposed to be done—
with three-operand or more instructions and a large, flat register file. The
Pentium 4, on the other hand, has slightly better hardware but is hobbled
by the legacy x87 ISA. The exact degree to which the x87’s weaknesses affect
performance has been debated for as long as the x87 has been around, but
there seems to be a consensus that the situation is less than ideal.

The other thing that’s extremely important to note is that when it comes
to floating-point performance, a good memory subsystem is absolutely key.
It doesn’t matter how good a processor’s floating-point hardware is—if you
can’t keep it fed, it won’t be doing much work. Therefore, floating-point
performance on both Pentium 4– and G4e-based systems depends on each
system’s available memory bandwidth.

The Vector Execution Units

One key technology on which both the Pentium 4 and the G4e rely for per-
formance in their most important type of application—media applications
(image processing, streaming media, 3D rendering, etc.)—is Single Instruc-
tion, Multiple Data (SIMD) computing, also known as vector computing. This
section looks at SIMD on both the G4e and the Pentium 4.

A Brief Overview of Vector Computing

Chapter 1 discussed the movement of floating-point and vector capabilities
from co-processors onto the CPU die. However, the addition of vector
instructions and hardware to a modern, superscalar CPU is a bit more
drastic than the addition of floating-point capability. A microprocessor is
a Single Instruction stream, Single Data stream (SISD) device, and it has been
since its inception, whereas vector computation represents a fundamentally
different type of computing: SIMD. Figure 8-1 compares the SIMD and SISD
in terms of a simple diagram that was introduced in Chapter 1.

As you can see in Figure 8-1, an SIMD machine exploits a property of
the data stream called data parallelism. Data parallelism is said to be present
in a dataset when its elements can be processed in parallel, a situation that
most often occurs in large masses of data of a uniform type, like media files.
Chapter 1 described media applications as applications that use small, repeti-
tious chunks of code to operate on large, uniform datasets. Since these small
chunks of code apply the same sequence of operations to every element of a
large dataset, and these datasets can often be processed out of order, it makes
sense to use SIMD to apply the same instructions to multiple elements at once.
168 Chapter 8

Figure 8-1: SISD versus SIMD

A classic example of a media application that exploits data parallelism is
the inversion of a digital image to produce its negative. The image processing
program must iterate through an array of uniform integer values (pixels)
and perform the same operation (inversion) on each one. Consequently,
there are multiple data points on which a single operation is performed, and
the order in which that operation is performed on the data points doesn’t
affect the outcome. The program could start the inversion at the top of the
image, the bottom of the image, or in the middle of the image—it doesn’t
matter as long as the entire image is inverted.

This technique of applying a single instruction to multiple data elements
at once is quite effective in yielding significant speedups for many types of
applications, especially streaming media, image processing, and 3D rendering.
In fact, many of the floating-point–intensive applications described previously
can benefit greatly from SIMD, which is why both the G4e and the Pentium 4
skimped on the traditional FPU in favor of strengthening their SIMD units.

There were some early, ill-fated attempts at making a purely SIMD
machine, but the SIMD model is simply not flexible enough to accommo-
date general-purpose code. The only form in which SIMD is really feasible
is as a part of a SISD host machine that can execute branch instructions
and other types of code that SIMD doesn’t handle well. This is, in fact,
the situation with SIMD in today’s market. Programs are written for a SISD
machine and include SIMD instructions in their code.

Vectors Revisited: The AltiVec Instruction Set

The basic data unit of SIMD computation is the vector, which is why SIMD
computing is also known as vector computing or vector processing. Vectors, which
you met in Chapter 1, are nothing more than rows of individual numbers, or
scalars. Figure 8-2 illustrates the differences between vectors and scalars.

A simple CPU operates on scalars one at a time. A superscalar CPU
operates on multiple scalars at once, but it performs a different operation
on each instruction. A vector processor lines up a whole row of scalars, all
of the same type, and operates on them in parallel as a unit.

Instructions Data

Results

Instructions Data

Results

SISD SIMD
In te l ’ s Pent ium 4 vs. Motorola’s G4e: The Back End 169

Figure 8-2: Scalars versus vectors

Vectors are represented in what is called a packed data format, in which
data are grouped into bytes or words and packed into a vector of a certain
length. To take Motorola’s AltiVec, for example, each of the 32 AltiVec
registers is 128 bits wide, which means that AltiVec can operate on vectors
that are 128 bits wide. AltiVec’s 128-bit wide vectors can be subdivided into

16 elements, where each element is either an 8-bit signed or unsigned
integer or an 8-bit character;

8 elements, where each element is a 16-bit signed or unsigned integer;

4 elements, where each element is either a 32-bit signed or unsigned
integer, or a single-precision (32-bit) IEEE floating-point number.

Figure 8-3 can help you visualize how these elements are packed
together.

Figure 8-3: Vectors as packed data formats

AltiVec Vector Operations

Motorola’s AltiVec literature divides the types of vector operations that
AltiVec can perform into four useful and easily comprehensible categories.
Because these categories offer a good way of dividing up the basic things you
can do with vectors, I’ll use Motorola’s categories to break down the major
types of vector operations. I’ll also use pictures similar to those from Motorola’s
AltiVec literature, modifying them a bit when needed.

Before looking at the types of operations, note that AltiVec’s instruction
format supports up to four operands, laid out as follows:

AltiVec_instruction source1, source2, filter/mod, destination

8

2

7

4

5
6

1

3 82 74 5 61 3

8 27 45 613

Scalars Vectors

16 × 8 Bits

8 × 16 Bits

4 × 32 Bits
170 Chapter 8

itm08_03.fm Page 171 Thursday, January 11, 2007 10:28 AM
The main difference to be noted is the presence of the filter/mod
operand, also called a control operand or control vector. This operand specifies
a register that holds either a bit mask or a control vector that somehow
modifies or sets the terms of the operation. You’ll see the control vector in
action when we look at the vector permute.

AltiVec’s four-operand format is much more flexible than the two-
operand format available to Intel’s SIMD instructions, making AltiVec a
much more ideal vector processing instruction set than the Pentium line’s
SSE or SSE2 extensions. The x86 ISA’s SIMD extensions are limited by their
two-operand format in much the same way that the x86 floating-point
extension is limited by its stack-based register file.

Motorola’s categories for the vector operations that the AltiVec can
perform are as follows:

intra-element arithmetic
intra-element non-arithmetic
inter-element arithmetic
inter-element non-arithmetic

Intra-Element Arithmetic and Non-Arithmetic Instructions
Intra-element arithmetic operation is one of the most basic and easy-to-grasp
categories of vector operation because it closely parallels scalar arithmetic.
Consider, for example, an intra-element addition. This involves lining up
two or three vectors (VA, VB, and VC) and adding their individual elements
together to produce a sum vector (VT). Figure 8-4 contains an example of
intra-element arithmetic operation at work on three vectors, each of which
consists of four 32-bit numbers. Other intra-element operations include
multiplication, multiply-add, average, and minimum.

Intra-element non-arithmetic operations basically work the same way as intra-
element arithmetic functions, except for the fact that the operations per-
formed are different. Intra-element non-arithmetic operations include
logical operations like AND, OR, and XOR.

Figure 8-4 shows an intra-element addition involving three vectors of
pixel values: red, blue, and green. The individual elements of the three
vectors are added to produce a target vector consisting of white pixels.

Figure 8-4: Intra-element arithmetic operations

+ + + +

VA

VB

VC

VT
In te l ’ s Pent ium 4 vs. Motorola’s G4e: The Back End 171

The following list summarizes the types of vector intra-element instruc-
tions that AltiVec supports:

integer logical instructions

integer arithmetic instructions

integer compare instructions

integer rotate and shift instructions

floating-point arithmetic instructions

floating-point rounding and conversion instructions

floating-point compare instructions

floating-point estimate instructions

memory access instructions

Inter-Element Arithmetic and Non-Arithmetic Instructions

Inter-element arithmetic operations are operations that happen between the
elements in a single vector. An example of an inter-element arithmetic
operation is shown in Figure 8-5, in which the elements in one vector are
added together and the total is stored in an accumulation vector—VT.

Figure 8-5: An inter-element sum across operation

Inter-element non-arithmetic operations are operations like vector permute,
which rearrange the order of the elements in an individual vector. Figure 8-6
shows a vector permute instruction. VA and VB are the source registers that
hold the two vectors to be permuted, VC contains the control vector that tells
AltiVec which elements it should put where, and VT is the destination register.

Figure 8-6: An inter-element permute operation

+

VA

VT

VA

VB

VC

VT

VA[3] VA[1] VB[4] VB[1]
172 Chapter 8

The following list summarizes the types of vector inter-element instruc-
tions that AltiVec supports:

Alignment support instructions

Permutation and formatting instructions

Pack instructions

Unpack instructions

Merge instructions

Splat instructions

Shift left/right instructions

The G4e’s VU: SIMD Done Right

The AltiVec extension to PowerPC adds 162 new instructions to the PowerPC
instruction set. When Motorola first implemented AltiVec support in their
PowerPC processor line with the MPC 7400, they added 32 new AltiVec
registers to the G4’s die, along with two dedicated AltiVec SIMD functional
units. All of the AltiVec calculations were done by one of two fully-pipelined,
independent AltiVec execution units.

The G4e improves significantly on the original G4’s AltiVec implemen-
tation. The processor boasts four independent AltiVec units, three of which
are fully pipelined and can operate on multiple instructions at once. These
units are as follows:

Vector permute unit
This unit handles the instructions that rearrange the operands within a
vector. Some examples are permute, merge, splat, pack, and unpack.

Vector simple integer unit
This unit handles all of the fast and simple vector integer instructions.
It’s basically just like one of the G4e’s three fast IUs, except vectorized.
This unit has only one pipeline stage, so most of the instructions it exe-
cutes are single-cycle.

Vector complex integer unit
This is the vector equivalent of the G4e’s one slow IU. It handles the
slower vector instructions, like multiply, multiply-add, and so on.

Vector floating-point unit
This unit handles all vector floating-point instructions.

The G4e can issue up to two AltiVec instructions per clock cycle, with
each instruction going to any one of the four vector execution units. All of
the units, with the exception of the VSIU, are pipelined and can operate on
multiple instructions at once.

All of this SIMD execution hardware is tied to a generous register file
that consists of 32 128-bit architectural registers and 16 additional vector
rename registers.
In te l ’ s Pent ium 4 vs. Motorola’s G4e: The Back End 173

Intel’s MMX

The story of MMX and SSE/KNI/MMX2 is quite a bit more complicated
than that of AltiVec, and there are a number of reasons why this is so.
To begin with, Intel first introduced MMX as an integer-only SIMD solution,
so MMX doesn’t support floating-point arithmetic at all. Another weakness
of MMX is the fact that Intel jumped through some hoops to avoid adding
a new processor state, hoops that complicated the implementation of MMX.
I’ll deal with this in more detail in “SSE and SSE2” on page 175.

Where AltiVec’s vectors are 128 bits wide, MMX’s are only 64 bits wide.
These 64-bit vectors can be subdivided into:

8 elements (a packed byte), where each element is an 8-bit integer;

4 elements (a packed word), where each element is a 16-bit signed or
unsigned integer;

2 elements (packed double word), where each element is a 32-bit signed
or unsigned integer.

These vectors are stored in eight MMX registers, based on a flat-file
model. These eight registers, MM0 to MM7, are aliased onto the x87’s stack-
based floating-point registers, FP0 to FP7. Intel did this in order to avoid
imposing a costly processor state switch any time you want to use MMX instruc-
tions. The drawback to this approach is that floating-point operations and
MMX operations must share a register space, so a programmer can’t mix
floating-point and MMX instructions in the same routine. Of course, since
there’s no mode bit for toggling the register file between MMX and floating-
point usage, there’s nothing to prevent a programmer from pulling such a
stunt and corrupting his floating-point data by overwriting it with integer
vector data.

The fact that a programmer can’t mix floating-point and MMX instruc-
tions normally isn’t a problem, though. In most programs, floating-point
calculations are used for generating data, while SIMD calculations are used
for displaying it.

In all, MMX added 57 new instructions to the x86 ISA. The MMX instruc-
tion format is pretty much like the conventional x86 instruction format:

MMX_instruction mmreg1, mmreg2

In this instruction, mmreg1 is the both the destination and source operand,
meaning that mmreg1 gets overwritten by the result of the calculation. For the
reasons outlined in the previous discussion of operand formats, this two-
operand instruction format isn’t nearly as optimal as AltiVec’s four-operand
format. Furthermore, MMX instructions lack that third filter/mod vector
that AltiVec has. This means that you can’t do those one-cycle, arbitrary two-
vector permutes.
174 Chapter 8

SSE and SSE2

Even as MMX was being rolled out, Intel knew that its 64-bit nature and
integer-only limitation made it seriously deficient as a vector processing
solution. An article in an issue of the Intel Technology Journal tells this story:

In February 1996, the product definition team at Intel presented
Intel’s executive staff with a proposal for a single-instruction-
multiple-data (SIMD) floating-point model as an extension to IA-
32 architecture. In other words, the “Katmai” processor, later to be
externally named the Pentium III processor, was being proposed.
The meeting was inconclusive. At that time, the Pentium®
processor with MMX instructions had not been introduced and
hence was unproven in the market. Here the executive staff were
being asked essentially to “double down” their bets on MMX
instructions and then on SIMD floating-point extensions. Intel’s
executive staff gave the product team additional questions to
answer and two weeks later, still in February 1996, they gave the
OK for the “Katmai” processor project. During the later definition
phase, the technology focus was refined beyond 3D to include
other application areas such as audio, video, speech recognition,
and even server application performance. In February 1999, the
Pentium III processor was introduced.

—Intel Technology Journal, Second Quarter, 1999

Intel’s goal with SSE (Streaming SIMD Extensions, aka MMX2/KNI) was
to add four-way, 128-bit SIMD single-precision floating-point computation to
the x86 ISA. Intel went ahead and added an extra eight 128-bit architectural
registers, called XMM registers, for holding vector floating-point instructions.
These eight registers are in addition to the eight MMX/x87 registers that
were already there. Since these registers are totally new and independent,
Intel had to hold their nose and add an extra processor state to accommo-
date them. This means a state switch if you want to go from using x87 to
MMX or SSE, and it also means that operating system code had to be
rewritten to accommodate the new state.

SSE still had some shortcomings, though. SSE’s vector floating-point
operations were limited to single-precision, and vector integer operations
were still limited to 64 bits, because they had to use the old MMX/x87
registers.

With the introduction of SSE2 on the Pentium 4, Intel finally got its
SIMD act together. On the integer side, SSE2 finally allows the storage of
128-bit integer vectors in the XMM registers, and it modifies the ISA by
extending old instructions and adding new ones to support 128-bit SIMD
integer operations. For floating-point, SSE2 now supports double-precision
SIMD floating-point operations. All told, SSE2 adds 144 new instructions,
some of which are cache control instructions.
In te l ’ s Pent ium 4 vs. Motorola’s G4e: The Back End 175

The Pentium 4’s Vector Unit: Alphabet Soup Done Quickly

Now that you know something about SSE2, let’s look at how it’s implemented
on the Pentium 4. In keeping with the Pentium 4’s “narrow, deep, and fast”
approach, the Pentium 4 does not sport any dedicated SSE2 pipelines. Rather,
both FPU pipes double as VU pipes, meaning that the FPU memory unit also
handles vector memory operations and the FPU arithmetic unit also handles
vector arithmetic operations. So in contrast to the G4e’s four vector arithmetic
units, the Pentium 4 has one vector arithmetic unit that just does everything—
integer, floating-point, permutes, and so on.

So, with only one execution pipeline to handle all vector and floating-
point operations, you’re probably wondering how the Pentium 4’s designers
expected it to perform competitively on the media applications for which it
was obviously designed. The Pentium 4 is able to offer competitive SIMD
performance based on a combination of three factors:

relatively low instruction latencies

extremely high clock speeds

a high-bandwidth caching and memory subsystem

Let’s take a look at these factors and how they work together.
The Pentium 4 optimization manual lists in Section C the average

latencies of the most commonly used SIMD instructions. A look through
the latency tables reveals that the majority of single- and double-precision
arithmetic operations have latencies in the four- to six-cycle range. In other
words, most vector floating-point instructions go through four to six pipeline
stages before leaving the Pentium 4’s VU. This number is relatively low for
a 20-stage pipeline design like the Pentium 4, especially considering that
vector floating-point instructions on the G4e go through four pipeline
stages on average before leaving the G4e’s vector FPU.

Now, considering the fact that at the time of this writing, the Pentium 4’s
clock speed is significantly higher than (roughly double) that of the G4e, the
Pentium 4’s ability to execute single- and double-precision vector floating-
point operations in almost the same number of clock cycles as the G4e means
that the Pentium 4 executes these operations almost three times as fast in
real-world, “wall clock” time. So the Pentium 4 can get away with having only
one VU, because that VU is able to grind through vector operations with a
much higher instruction completion rate (instructions/ns) than the G4e.
Furthermore, as the Pentium 4’s clock speed increases, its vector crunching
power grows.

Another piece that’s crucial to the whole performance picture is the
Pentium 4’s high-bandwidth FSB, memory subsystem, and low-latency cach-
ing subsystem. I won’t cover these features here, but I’ll just note that the
Pentium 4 has large amounts of bandwidth at its disposal. All this bandwidth
is essential to keeping the very fast VU fed with data, and as the Pentium 4’s
clock speed has increased, bandwidth has played an even larger role in
vector processing performance.
176 Chapter 8

Increasing Floating-Point Performance with SSE2

I mentioned earlier that MMX uses a flat register file, and the same is true of
both SSE and SSE2. The eight, 128-bit XMM registers are arranged as a flat
file, which means that if you’re able to replace an x87 FP operation with an
SSE or SSE2 operation, you can use clever resource scheduling to avoid the
performance hit brought on by the Pentium 4’s combination of a stack-based
FP register file and a non-free fxch instruction. Intel’s highly advanced com-
piler has proven that converting large amounts of x87 code to SSE2 code can
yield a significant performance boost.

Conclusions

The preceding discussion should make it clear that the overall design
approaches outlined in the first half of this chapter can be seen in the back
ends of each processor. The G4e continues its “wide and shallow” approach
to performance, counting on instruction-level parallelism (ILP) to allow it to
squeeze the most performance out of code. The Pentium 4’s “narrow and
deep” approach, on the other hand, uses fewer execution units, eschewing
ILP and betting instead on increases in clock speed to increase performance.

Each of these approaches has its benefits and drawbacks, but as I’ve
stressed repeatedly throughout this chapter, microarchitecture is by no
means the only factor in the application performance equation. Certain
properties of the ISA that a processor implements can influence performance.
In te l ’ s Pent ium 4 vs. Motorola’s G4e: The Back End 177

6 4 - B I T C O M P U T I N G
A N D x 8 6 - 6 4

On a number of occasions in previous chapters, I’ve
discussed some of the more undesirable aspects of the
PC market’s most popular instruction set architecture—
the x86. The x86 ISA’s complex addressing modes,
its inclusion of unwieldy and obscure instructions, its
variable instruction lengths, its dearth of architectural
registers, and its other quirks have vexed programmers,
compiler writers, and microprocessor architects for
years.

In spite of these drawbacks, the x86 ISA continues to enjoy widespread
commercial success, and the number of markets in which it competes con-
tinues to expand. The reasons for this ongoing success are varied, but one
factor stands out as by far the most important: inertia. The installed base of
x86 application software is huge, and the costs of an industry-wide transition to
a cleaner, more classically RISC ISA would enormously outweigh any benefits.
Nonetheless, this hasn’t stopped many folks, including the top brass at Intel,
from dreaming of a post-x86 world.

Intel’s IA-64 and AMD’s x86-64

As of this writing, there have been two important attempts to move main-
stream, commodity desktop and server computing beyond the 32-bit x86 ISA,
the first by Intel and the second by Intel’s chief rival, Advanced Micro Devices
(AMD). In 1994, Intel and Hewlett-Packard began work on a completely
new ISA, called IA-64. IA-64 is a 64-bit ISA that embodies a radically different
approach to performance from anything the mainstream computing market
has yet seen. This approach, which Intel has called Explicitly Parallel Instruction
Computing (EPIC), is a mix of a very long instruction word (VLIW) ISA, predication,
speculative loading, and other compiler-oriented, performance-enhancing
techniques, many of which had never been successfully implemented in a
commercial product line prior to IA-64.

Because IA-64 represents a total departure from x86, IA-64–based pro-
cessors cannot run legacy x86 code natively. The fact that IA-64 processors
must run the very large mass of legacy x86 code in emulation has posed a
serious problem for Intel as they try to persuade various segments of the
market to adopt the new architecture.

Unfortunately for Intel, the lack of backward compatibility isn’t the only
obstacle that IA-64 has had to contend with. Since its inception, Intel’s IA-64
program has met with an array of setbacks, including massive delays in meet-
ing development and production milestones, lackluster integer performance,
and difficulty in achieving high clock speeds. These and a number of other
problems have prompted some wags to refer to Intel’s first IA-64 implemen-
tation, called Itanium and released in 2001, as Itanic. The Itanium Processor
Family (IPF) has since found a niche in the lucrative and growing high-end
server and workstation segments. Nonetheless, in focusing on Itanium Intel
left a large, 64-bit sized hole in the commodity workstation and server markets.

In 1999, with Itanium development beset by problems and clearly some
distance away from commercial release, AMD saw an opening to score a
major blow against Intel by using a 64-bit derivative of Intel’s own ISA to
jump-start and dominate the nascent commodity 64-bit workstation market.
Following on the success of its Athlon line of desktop processors, AMD took
a gamble and bet the company’s future on a set of 64-bit extensions to the
x86 ISA. Called x86-64, these extensions enabled AMD to produce a line of
64-bit microprocessors that are cost-competitive with existing high-end and
midrange x86 processors and, most importantly, backward-compatible with
existing x86 code. The new processor architecture, popularly referred to by
its code name Hammer, has been a commercial and technical success.

Introduced in April 2003 after a long series of delays and production
problems, the Hammer’s strong benchmark performance and excellent
adoption rate spelled trouble for any hopes that Intel may have had for the
mainstream commercial adoption of its Itanium line. Intel conceded as much
when in 2004, they took the unprecedented step of announcing support for
AMD’s extensions in their own x86 workstation and server processors. Intel
calls these 64-bit extensions IA-32e, but in this book we’ll refer to them by
AMD’s name—x86-64.
180 Chapter 9

Because x86-64 represents the future of x86 for both Intel and AMD, this
chapter will look in some detail at the new ISA. As you’ll see, x86-64 is more
than just a 64-bit extension to the 32-bit x86 ISA; it adds some new features as
well, while getting rid of some obsolete ones.

Why 64 Bits?

The question of why we need 64-bit computing is often asked but rarely
answered in a satisfactory manner. There are good reasons for the confusion
surrounding the question, the first of which is the rarely acknowledged fact
that “the 64-bit question” is actually two questions:

1. How does the existing 64-bit server and workstation market use 64-bit
computing?

2. What use does the consumer market have for 64-bit computing?

People who ask the 64-bit question are usually asking for the answer to
question 1 in order to deduce the answer to question 2. This being the case,
let’s first look at question 1 before tackling question 2.

What Is 64-Bit Computing?

Simply put, the labels 16-bit, 32-bit, or 64-bit, when applied to a microprocessor,
characterize the processor’s data stream. You may have heard the term 64-bit
code ; this designates code that operates on 64-bit data.

In more specific terms, the labels 64-bit, 32-bit, and so on designate the
number of bits that each of the processor’s general-purpose registers (GPRs)
can hold. So when someone uses the term 64-bit processor, what they mean is a
processor with GPRs that store 64-bit numbers. And in the same vein, a 64-bit
instruction is an instruction that operates on 64-bit numbers that are stored in
64-bit GPRs.

Figure 9-1 shows two computers, one a 32-bit computer and the other a
64-bit computer.

In Figure 9-1, I’ve tried my best to modify Figure 1-3 on page 6 in order
to make my point. Don’t take the instruction and code sizes too literally, since
they’re intended to convey a general feel for what it means to “widen” a
processor from 32 bits to 64 bits.

Notice that not all of the data in memory, the cache, or the registers is
64-bit data. Rather, the data sizes are mixed, with 64 bits being the widest.
We’ll discuss why this is and what it means shortly.

Note that in the 64-bit CPU pictured in Figure 9-1, the width of the code
stream has not changed; the same-sized machine language instruction could
theoretically represent an instruction that operates on 32-bit numbers or an
instruction that operates on 64-bit numbers, depending on the instruction’s
default data size. On the other hand, the widths of some elements of the data
and results streams have doubled. In order to accommodate the wider data
stream, the sizes of the processor’s registers and the sizes of the internal data
paths that feed those registers must also be doubled.
64-Bi t Comput ing and x86-64 181

Figure 9-1: 32-bit versus 64-bit computing

Now look at the two programming models illustrated in Figure 9-2—one
for a 32-bit processor and another for a 64-bit processor.

Figure 9-2: 32-bit versus 64-bit programming models

The registers in the 64-bit ISA pictured in Figure 9-2 are twice as wide
as those in the 32-bit ISA, but the size of the instruction register (IR) that
holds the currently executing instruction is the same in both processors.
Again, the data stream has doubled in size, but the instruction stream has
not. You might also note that the program counter (PC) has doubled in size.
We’ll talk about the reason for this in the next section.

Main Memory

CPU

ALU

Registers

Main Memory

CPU

ALU

Registers

Control Unit

PC

IR

PSW

A
B
C
D
E
F
G
H

Registers

I/O Unit

ALU

A
B
C
D
E
F
G
H

Registers

Program Counter (PC)

IR

PSW

Control Unit

I/O Unit

ALU

32-Bit 64-Bit
182 Chapter 9

The discussion up so far about widened instruction and data registers
has laid out the simple answer to the question, “What is 64-bit computing?”
If you take into account the fact that the data stream is made up of multiple
types of data—a fact hinted at in Figure 9-1—the answer gets a bit more
complicated.

For the simple processor pictured in Figure 9-2, the two types of data
that can be processed are integer data and address data. As you’ll recall from
Chapter 1, addresses are really just integers that designate a memory address,
so address data is just a special type of integer data. Hence, both data types
are stored in the GPRs, and both integer and address calculations are done
by the arithmetic logic unit (ALU).

Many modern processors support two additional data types: floating-
point data and vector data. Each of these two data types has its own set of
registers and its own execution unit(s). The following table compares all four
data types in 32-bit and 64-bit processors:

You can see from this table that the difference the move to 64 bits makes
is in the integer and address hardware. The floating-point and vector hard-
ware stays the same.

Current 64-Bit Applications

Now that you know what 64-bit computing is, let’s look at the benefits of
increased integer and address sizes.

Dynamic Range
The main thing that a wider integer gives you is increased dynamic range.
Instead of giving a one-line definition of the term dynamic range, I’ll just
explain how it works.

In the base-10 number system which you’re all accustomed to, you can
represent a maximum of 10 integers (0 to 9) with a single digit. This is
because base-10 has 10 different symbols with which to represent numbers.
To represent more than 10 integers, you need to add another digit, using a
combination of two symbols chosen from among the set of 10 to represent
any one of 100 integers (00 to 99). The formula you can use to compute
the number of integers (dynamic range, or DR) you can represent with
an n-digit base-10 number is

DR = 10n

Data Type Register Type Execution Unit
x86 Width
(in Bits)

x86-64 Width
(in Bits)

Integer GPR ALU 32 64

Address GPR ALU or AGU 32 64

Floating-point FPR FPU 80 80

Vector VR VPU 128 128
64-Bi t Comput ing and x86-64 183

So a one-digit number gives you 101 = 10 possible integers, a two-digit
number 102 = 100 integers, a three-digit number 103 = 1,000 integers, and
so on.

The base-2, or binary, number system that computers use has only two
symbols with which to represent integers: 0 and 1. Thus, a single-digit binary
number allows you to represent only two integers—0 and 1. With a two-digit
(or two-bit) binary, you can represent four integers by combining the two
symbols (0 and 1) in any of the following four ways:

Similarly, a three-bit binary number gives you eight possible combinations,
which you can use to represent eight different integers. As you increase
the number of bits, you increase the number of integers you can represent.
In general, n bits allow you to represent 2n integers in binary. So a 4-bit
binary number can represent 24 = 16 integers, an 8-bit number gives you
28 = 256 integers, and so on.

In moving from a 32-bit GPR to a 64-bit GPR, the range of integers
that a processor can recognize and perform arithmetic calculations on goes
from 232 = 4.3e9 to 264 = 1.8e19. The dynamic range, then, increases by a
factor of 4.3 billion. Thus a 64-bit integer can represent a much larger range
of numbers than a 32-bit integer.

The Benefits of Increased Dynamic Range, or, How the Existing 64-Bit
Computing Market Uses 64-Bit Integers

Some applications, mostly in the realm of scientific computing and simula-
tions, require 64-bit integers because they work with numbers outside the
dynamic range of 32-bit integers. When the magnitude of the result of a cal-
culation exceeds the range of possible integer values that the machine can
represent, you get a situation called either overflow (the result was greater than
the highest positive integer) or underflow (the result was less than the largest
negative integer). When this happens, the number you get in the register
isn’t the right answer. There’s a bit in the x86’s processor status word that
allows you to check to see if an integer arithmetic result has just exceeded
the processor’s dynamic range, so you know that the result is erroneous.
Such situations are very, very rare in integer applications. I personally have
never run into this problem, although I have run into the somewhat related
problem of floating-point round-off error a few times.

Binary Base-10

00 0

01 1

10 2

11 3
184 Chapter 9

Programmers who run into integer overflow or underflow problems on
a 32-bit platform have the option of using a 64-bit integer construct provided
by a high-level language like C. In such cases, the compiler uses two registers
per integer—one for each half of the integer—to do 64-bit calculations in
32-bit hardware. This has obvious performance drawbacks, making it less
desirable than a true 64-bit integer implementation.

In addition to scientific computing and simulations, there is another
application domain for which 64-bit integers can offer real benefits: cryptog-
raphy. Most popular encryption schemes rely on the multiplication and
factoring of very large integers, and the larger the integers, the more secure
the encryption. AMD and Intel are hoping that the growing demand for
tighter security and more encryption in the mainstream business and
consumer computing markets will make 64-bit processors attractive.

Larger GPRs don’t just make for larger integers, but they make for larger
addresses, as well. In fact, larger addresses are the primary advantage that
64-bit computers have over their 32-bit counterparts.

Virtual Address Space vs. Physical Address Space

Throughout this book, I’ve been referring to three different types of storage—
the caches, the RAM, and the hard disk—without ever explicitly describing
how all three of these types fit together from the point of view of a pro-
grammer. If you’re not familiar with the concept of virtual memory, you might
be wondering how a programmer makes use of the hard disk for code and
data storage if load and store instructions take memory addresses as source
and destination operands. Though this brief section only scratches the
surface of the concept of virtual memory, it should give you a better idea of
how this important concept works.

Every major component in a computer system must have an address. Just
like having a phone number allows people to communicate with each other
via the phone system, having an address allows a computer’s components to
communicate with each other via the computer’s internal system of buses. If
a component does not have an address, no other component in the system
can communicate with it directly, either for the purpose of reading from it,
writing to it, or controlling it. Video cards, SCSI cards, memory banks, chip-
sets, processors, and so on all have unique addresses. Even more importantly
for our purposes, storage devices such as the hard disk and main memory
also have unique addresses, and because such devices are intended for use as
storage, they actually look to the CPU like a range of addresses that can be
read from or written to.

Like a phone number, each component’s address is a whole number
(i.e., an integer), and as you learned earlier in our discussion of dynamic
range, the width of an address (the number of digits in the address) deter-
mines the range of possible addresses that can be represented.
64-Bi t Comput ing and x86-64 185

A range of addresses is called an address space, and in a modern 32-bit
desktop computer system, the processor and operating system work together
to provide each running program with the illusion that it has access to a flat
address space of up to 4GB in size. (Remember the 232 = 4.3 billion number?
Those 4.3 billion bytes are 4GB, which is the number of bytes that a 32-bit
computer can address.) One large portion of this virtual address space that a
running program sees consists of addresses through which it can interact
with the operating system, and through the OS with the other parts of the
system. The other portion of the address space is set aside for the program to
interact with main memory. This main memory portion of the address space
always represents only a part of the total 4GB virtual address space, in many
cases about 2GB.

This 2GB chunk of address space represents a kind of window through
which the program can look at main memory. Note that the program can
see and manipulate only the data it has placed in this special address space,
so on a 32-bit machine, a program can see only about 2GB worth of addresses
at any given time. (There are some ways of getting around this, but those
don’t concern us here.)

The Benefits of a 64-Bit Address
Because addresses are just special-purpose integers, an ALU and register
combination that can handle more possible integer values can also handle
that many more possible addresses. This means that each process’s virtual
address space is greatly increased on a 64-bit machine, allowing each process
to “see” a much larger range of virtual addresses. In theory, each process on
a 64-bit computer could have an 18 million–terabyte address space.

The specifics of microprocessor implementation dictate that there’s a
big difference between the amount of address space that a 64-bit address
value could theoretically yield and the actual sizes of the virtual and physical
address spaces that a given 64-bit architecture supports. In the case of x86-64,
the actual size of the Hammer line’s virtual addresses is 48 bits, which makes
for about 282 terabytes of virtual address space. (I’m tempted to say about
this number what Bill Gates is falsely alleged to have said about 640KB back
in the DOS days: “282 terabytes ought to be enough for anybody.” But don’t
quote me on that in 10 years when Doom 9 takes up three or four hundred
terabytes of hard disk space.) x86-64’s physical address space is 40 bits wide,
which means that an x86-64 system can support about one terabyte of
physical memory (RAM).

So, what can a program do with up to 282 terabytes of virtual address
space and up to a terabyte of RAM? Well, caching a very large database in it is
a start. Back-end servers for mammoth databases are one place where 64 bits
have long been a requirement, so it’s no surprise to see 64-bit offerings billed
as capable database platforms.

On the media and content creation side of things, folks who work with
very large 2D image files also appreciate the extra address space. A related
application domain where large amounts of memory come in handy is in
simulation and modeling. Under this heading you could put various CAD
186 Chapter 9

itm09_03.fm Page 187 Thursday, January 11, 2007 10:37 AM
tools and 3D rendering programs, as well as things like weather and scientific
simulations, and even, as I’ve already half-jokingly referred to, real-time 3D
games. Though the current crop of 3D games (as of 2006) probably wouldn’t
benefit from greater than 4GB of address space, it’s certain that you’ll see a
game that benefits from greater than 4GB of address space within the next
few years.

There is one drawback to the increase in memory space that 64-bit
addressing affords. Because memory address values (or pointers, in pro-
grammer lingo) are now twice as large, they take up twice as much cache
space. Pointers normally make up only a fraction of all the data in the cache,
but when that fraction doubles, it can squeeze other useful data out of the
cache and degrade performance.

NOTE Some of you who read the preceding discussion would no doubt point out that 32-bit
Xeon systems are available with more than 4GB of RAM. Furthermore, Intel allegedly has
a fairly simple hack that it could implement to allow its 32-bit systems to address up to
512GB of memory. Still, the cleanest and most future-proof way to address the 4GB
ceiling is a 64-bit pointer.

The 64-Bit Alternative: x86-64

When AMD set out to alter the x86 ISA in order to bring it into the world of
64-bit computing, they took the opportunity to do more than just widen the
GPRs. x86-64 makes a number of improvements to x86, and this section
looks at some of them.

Extended Registers

I don’t want to get into a historical discussion of the evolution of what
eventually became the modern x86 ISA, as Intel’s hardware went from 4-bit
to 8-bit to 16-bit to 32-bit. You can find such discussions elsewhere, if you’re
interested. I’ll only point out that what we now consider to be the “x86 ISA”
was first introduced in 1978 with the release of the 8086. The 8086 had four
16-bit integer registers and four 16-bit registers that were intended to hold
memory addresses but also could be used as integer registers. (The four
integer registers, though, could not be used to store memory addresses in
16-bit addressing mode.) This gave the 8086 a total of eight integer registers,
four of which could also be used to store addresses.

With the release of the 386, Intel extended the x86 ISA to support 32-
bit integers by doubling the size of original eight 16-bit registers. In order
to access the extended portion of these registers, assembly language pro-
grammers used a different set of register mnemonics.

With x86-64, AMD has done pretty much the same thing that Intel did to
enable the 16-bit to 32-bit transition—it has doubled the sizes of the eight
GPRs and assigned new mnemonics to the extended registers. However,
extending the existing eight GPRs isn’t the only change AMD made to the
x86 register model.
64-Bi t Computing and x86-64 187

More Registers

One of the oldest and longest-running gripes about x86 is that the program-
ming model has only eight GPRs, eight FPRs, and eight SIMD registers. All
newer RISC ISAs support many more architectural registers; the PowerPC
ISA, for instance, specifies 32 of each type of register. Increasing the number
of registers allows the processor to keep more data where the execution units
can access it immediately; this translates into a reduced number of loads and
stores, which means less memory subsystem traffic and less waiting for data to
load. More registers also give the compiler or programmer more flexibility to
schedule instructions so that dependencies are reduced and pipeline bubbles
are kept to a minimum.

Modern x86 CPUs get around some of these limitations by means of a
trick called register renaming, described in Chapter 4. Register renaming
involves putting extra, “hidden,” internal registers onto the die and then
dynamically mapping the programmer-visible registers to these internal,
machine-visible registers. The Pentium 4, for instance, has 128 of these
microarchitectural rename registers, which allow it to store more data closer
to the ALUs and reduce false dependencies.

In spite of the benefits of register renaming, it would still be nicer to
have more registers directly accessible to the programmer via the x86 ISA.
This would allow a compiler or an assembly language programmer more
flexibility and control to statically optimize the code. It would also allow a
decrease in the number of memory access instructions (loads and stores).
In extending x86 to 64 bits, AMD has also taken the opportunity to double
the number of programmer-visible GPRs and SIMD registers.

When running in 64-bit mode, x86-64 programmers have access to eight
additional GPRs, for a total of 16 GPRs. Furthermore, there are eight new
SIMD registers, added for use in SSE/SSE2 code. So the number of GPRs
and SIMD registers available to x86-64 programmers has gone from eight
each to 16 each. Take a look at Figure 9-3, which contains a diagram from
AMD that shows the new programming model.

Notice that they’ve left the x87 floating-point stack alone. This is because
both Intel and AMD are encouraging programmers to use SSE/SSE2 for
floating-point code, instead of x87. I’ve discussed the reason for this before,
so I won’t recap it here.

Also notice that the PC is extended. This was done because the PC holds
the address of the next instruction, and since addresses are now 64-bit, the
PC must be widened to accommodate them.
188 Chapter 9

itm09_03.fm Page 189 Thursday, January 11, 2007 10:37 AM
Figure 9-3: The x86-64 programming model

Switching Modes

Full binary compatibility with existing x86 code, both 32-bit and older 16-bit
flavors, is one of x86-64’s greatest strengths. x86-64 accomplishes this using
a nested series of modes. The first and least interesting mode is legacy mode.
When in legacy mode, the processor functions exactly like a standard x86
CPU—it runs a 32-bit operating system and 32-bit code exclusively, and none
of x86-64’s added capabilities are turned on. Figure 9-4 illustrates how legacy
mode works.

32-bit x86

GPRs x87/MMX SSE/SS2

x86-64

64-bit

80-bit

128-bit

PC
64-Bi t Computing and x86-64 189

Figure 9-4: x86-64 legacy mode

In short, the Hammer in legacy mode looks like just another x86
processor.

It’s in the 64-bit long mode that things start to get interesting. To run
application software in long mode, you need a 64-bit operating system. Long
mode provides two submodes—64-bit mode and compatibility mode—in which
the OS can run either x86-64 or vanilla x86 code. Figure 9-5 should help you
visualize how long mode works. (In this figure, x86 Apps includes both 32-
bit and 16-bit x86 applications.)

Figure 9-5: x86-64 long mode

So, legacy x86 code (both 32-bit and 16-bit) runs under a 64-bit OS in
compatibility mode, and x86-64 code runs under a 64-bit OS in 64-bit mode.
Only code running in long mode’s 64-bit submode can take advantage of
all the new features of x86-64. Legacy x86 code running in long mode’s

32-Bit OS

x86
Apps

 Legacy Mode

64-Bit
Mode

Compatibility
Mode

64-Bit OS

x86-64
Apps

x86
Apps

 Long Mode
190 Chapter 9

compatibility submode, for example, cannot see the extended parts of the
registers, cannot use the eight extra registers, and is limited to the first 4GB
of memory.

These modes are set for each segment of code on a per-segment
basis by means of two bits in the segment’s code segment descriptor. The chip
examines these two bits so that it knows whether to treat a particular chunk of
code as 32-bit or 64-bit. Table 9-1 (from AMD) shows the relevant features of
each mode.

Notice that Table 9-1 specifies 64-bit mode’s default integer size as 32 bits.
Let me explain.

We’ve already discussed how only the integer and address operations are
really affected by the shift to 64 bits, so it makes sense that only those instruc-
tions would be affected by the change. If all the addresses are now 64-bit,
there’s no need to change anything about the address instructions apart
from their default pointer size. If a load in 32-bit legacy mode takes a 32-bit
address pointer, then a load in 64-bit mode takes a 64-bit address pointer.

Integer instructions, on the other hand, are a different matter. You don’t
always need to use 64-bit integers, and there’s no need to take up cache space
and memory bandwidth with 64-bit integers if your application needs only
smaller 32- or 16-bit ones. So it’s not in the programmer’s best interest to have
the default integer size be 64 bits. Hence, the default data size for integer
instructions is 32 bits, and if you want to use a larger or smaller integer, you
must add an optional prefix to the instruction that overrides the default. This
prefix, which AMD calls the REX prefix (presumably for register extension), is
one byte in length. This means that 64-bit instructions are one byte longer,
a fact that makes for slightly increased code sizes.

Increased code size is bad, because bigger code takes up more cache and
more bandwidth. However, the effect of this prefix scheme on real-world code
size depends on the number of 64-bit integer instructions in a program’s

Table 9-1: x86-64 Modes

Mode
Operating

System
Required

Application
Recompile
Required

Defaults1

Address
Size (Bits)

Operand
Size (Bits)

Register
Extensions2

GPR Width
(Bits)

Long mode3

64-bit mode

New 64-bit OS

Yes 64

32

Yes 64

Compatibility
mode No

32
No 32

16

Legacy mode4 Legacy 32-bit
or16-bit OS No

32 32
No 32

16 16
1 Defaults can be overridden in most modes using an instruction prefix or system control bit.
2 Register extensions includes eight new GPRs and eight new XMM registers (also called SSE registers).
3 Long mode supports only x86 protected mode. It does not support x86 real mode or virtual-8086 mode. Also, it does not support
task switching.
4 Legacy mode supports x86 real mode, virtual-8086 mode, and protected mode.
64-Bi t Comput ing and x86-64 191

instruction mix. AMD estimates that the average increase in code size from
x86 code to equivalent x86-64 code is less than 10 percent, mostly due to the
prefixes.

It’s essential to AMD’s plans for x86-64 that there be no performance
penalty for running in legacy or compatibility mode versus long mode.
The two backward-compatibility modes don’t give you the performance-
enhancing benefits of x86-64 (specifically, more registers), but they don’t
incur any added overhead, either. A legacy 32-bit program simply ignores
x86-64’s added features, so they don’t affect it one way or the other.

Out with the Old

In addition to beefing up the x86 ISA by increasing the number and sizes of
its registers, x86-64 also slims it down by kicking out some of the older and
less frequently used features that have been kept thus far in the name of
backward compatibility.

When AMD’s engineers started looking for legacy x86 features to jettison,
the first thing to go was the segmented memory model. Programs written
to the x86-64 ISA use a flat, 64-bit virtual address space. Furthermore, legacy
x86 applications running in long mode’s compatibility submode must run in
protected mode. Support for real mode and virtual-8086 mode are absent in
long mode and available only in legacy mode. This isn’t too much of a hassle,
though, since, except for a few fairly old legacy applications, modern x86 apps
use protected mode.

Conclusion

x86 wasn’t the only consumer ISA to make the 64-bit leap in the first few
years of the 21st century. IBM’s 970, more popularly known as the G5,
brought the PowerPC ISA moved into the same commodity 64-bit desktop
and server space as AMD’s Hammer. The next chapter will take an in-depth
look at the G5, comparing it to the processors we’ve studied so far.
192 Chapter 9

T H E G 5 : I B M ’ S P O W E R P C 9 7 0

The last PowerPC processor to succeed the Motorola
74xx family as the heart of Apple’s workstation line is
the IBM PowerPC 970—the processor in Apple’s G5
computer. This chapter takes an in-depth look at this
processor, comparing it to Motorola’s 7455 and, where
appropriate, Intel’s Pentium 4.

I’ll begin by taking a look at the 970’s overall design philosophy, and
then I’ll step through the stages of the 970’s pipeline, much as we did in the
previous two chapters on the Pentium 4 and G4e. Then we’ll talk about
instruction fetching, decoding, dispatching, issuing, execution, and comple-
tion, and we’ll end with a look at the 970’s back end.

At the outset, I should note that one of the most significant features of
the 970 is its 64-bit integer and address hardware. If you want to learn more
about 64-bit computing—what it can and cannot do, and what makes a 64-bit
processor like the 970 different from 32-bit processors like the G4e and
Pentium 4—make sure to read Chapter 9.

NOTE With the exception of the section on vector processing, most of the discussion below is
relevant to IBM’s POWER4 microarchitecture—the multiprocessor server micro-
architecture on which the PowerPC 970 is based.

Overview: Design Philosophy

In the previous chapters’ comparison of the design philosophies behind the
Pentium 4 and G4e, I tried to summarize each processor’s overall approach to
organizing its execution resources to squeeze the most performance out of
today’s software. I characterized the G4e’s approach as wide and shallow,
because the G4e moves a few instructions through its very wide back end in
as few clock cycles as possible. I contrasted this approach to the Pentium 4’s
narrow and deep approach, which focuses on pushing large numbers of instruc-
tions through a narrow back end over the course of a many clock cycles.

Using similar language, the 970’s approach could be characterized as wide
and deep. In other words, the 970 wants to have it both ways: an extremely
wide back end and a 14-stage (integer) pipeline that, while not as deep as the
Pentium 4’s, is nonetheless built for speed. Using a special technique, which
we’ll discuss shortly, the 970 can have a whopping 200 instructions on-chip
in various stages of execution, a number that dwarfs not only the G4e’s
16-instruction window but also the Pentium 4’s 126-instruction one.

You can’t have everything, though, and the 970 pays a price for its “more is
better” design. When we discuss instruction dispatching and out-of-order exe-
cution on the 970, you’ll see what trade-offs IBM made in choosing this design.

Figure 10-1 shows the microarchitecture’s main functional blocks, and it
should give you a preliminary feel for just how wide the 970 is.

Don’t worry if all the parts of Figure 10-1 aren’t immediately intelligible,
because by the time this chapter is finished, you’ll have a good understand-
ing of everything depicted there.

Caches and Front End

Let’s take a short look at the caches for the 970 and the G4e. Table 10-1
should give you a rough idea of how the two chips compare.

Table 10-1 shows that the 970 sports a larger instruction cache than the
G4e. This is because the 970’s pipeline is roughly twice the length of the G4e’s,
which means that like the Pentium 4, the 970 pays a much higher performance
penalty when its pipeline stalls due to a miss in the I-cache. In short, the 970’s
64KB I-cache is intended to keep pipeline bubbles out of the chip’s pipeline.

Table 10-1: The Caches of the PowerPC 970 and G4e

L1 I-cache L1 D-cache L2 Cache

PowerPC 970 64KB, direct-mapped 32KB, two-way assoc. 512KB, eight-way assoc.

G4e 32KB, eight-way assoc. 32KB, eight-way assoc. 256KB, eight-way assoc.
194 Chapter 10

Figure 10-1: The IBM PowerPC 970

When you combine the 970’s 32KB D-cache with its sizable 512KB L2, its
high-speed double data rate (DDR) front-side bus and its support for up to
eight data prefetch streams, you can see that this chip was made for floating-
point- and SIMD-intensive media applications. This chip performs better on
vector code than the G4e just based on these features alone.

Branch Prediction

Because of the depth of its pipeline and the width of its back end, the 970’s
designers spent a sizable chunk of the chip’s resources on branch prediction.
Like a high-hit-rate instruction cache, accurate branch prediction is essential
if the 970 is to keep its pipeline full and its extensive execution resources in
constant use. As such, the 970’s extremely robust branch prediction unit (BPU)

Instruction
Fetch Branch

Scan

Branch
Predict

Instruction
Queue

Decode, Crack,
& Group

Front End

Branch
Unit

0 1 2 3 4

Vector Perm.
Queues

Vector Math
Queues

Floating-Point
Queues

Integer/Load-Store
Queues 1

Integer/Load-Store
Queues 2

CR/Branch Exec.
Queues

Vector
Permute

Vector
Simple
Integer

Vector
Complex
Integer

Vector
Floating-

Point
FPU1 FPU2 IU1 LSU1 LSU2 IU2

Condition
Register

Unit

Branch
Exec.
Unit

Vector Processing Unit Floating-Point
Unit

Integer
Unit

Load-Store
Unit

Integer
Unit

CR
Unit

Branch
Unit

Back End

0 1 2 3 4

Completion Queue

Write

Commit Unit
The G5: IBM’s PowerPC 970 195

is one of its greatest strengths. This section takes a closer look at the top half
of the 970’s front end and at the role that branch prediction plays in steering
that front end through the instruction stream.

The 970’s instruction fetch logic fetches up to eight instructions per
cycle from the L1 I-cache into an instruction queue, and on each fetch, the
front end’s branch unit scans these eight instructions in order to pick out
up to two branches. If either of the two branches is conditional, the branch
prediction unit predicts the condition’s outcome (taken or not taken) and
possibly its target address using one of two branch prediction schemes.

The first branch prediction scheme employed by the 970 is the standard
BHT-based scheme first described in Chapter 5. The 970’s BHT has 16 K
entries—four times the number of entries in the Pentium 4’s BHT and eight
times the number of entries in the G4’s BTIC. For each of these 16 K entries,
a one-bit flag tells the branch predictor whether the branch should be taken
or not taken.

The second scheme involves another 16 K entry table called the global pre-
dictor table. Each entry in this global predictor table is associated with an 11-bit
vector that records the actual execution path taken by the previous 11 fetch
groups. The processor uses this vector, which it constantly keeps up to date with
the latest information, to set another one-bit flag for the global predictor table
that specifies whether the branch should be taken or not taken.

Finally, there’s a third 16 K entry table that’s used by the 970’s front
end to keep track of which of the two schemes works best for each branch.
When a branch is finally evaluated, the processor compares the success of
both schemes and records in this selector table which scheme has done the
best job so far of predicting the outcome of that particular branch.

Spending all those transistors on such a massive amount of branch
prediction resources may seem like overkill right now, but when you’ve
completed the next section, you’ll see that the 970 can’t afford to intro-
duce any unnecessary bubbles into its pipeline.

The Trade-Off: Decode, Cracking, and Group Formation

As noted earlier, IBM’s PowerPC 970 fetches eight instructions per cycle
from the L1 cache into an instruction queue, from which the instructions
are pulled for decoding at a rate of eight per cycle. This compares quite
favorably to the G4e’s four instructions per cycle fetch and decode rate.

Much like the Pentium 4 and its predecessor, the P6, the PowerPC 970
translates PowerPC instructions into an 86-bit internal instruction format that
not only makes the instructions easier for the back end to schedule, but also
explicitly encodes register dependency information. IBM calls these internal
instructions IOPs, presumably short for internal operations. Like micro-ops
on the Pentium 4, it is these IOPs that are actually executed out of order
by the 970’s back end. And also like micro-ops, cracking instructions down
into multiple, more atomic and more strictly defined IOPs can help the
back end squeeze out some extra instruction-level parallelism (ILP) by
giving it more freedom to schedule code.
196 Chapter 10

One important difference to note is that the architected PowerPC
instructions are very close in form and function to the 970’s IOPs, and in
fact, the latter are probably just a restricted subset of the former. (That this
is definitely true is not clear from the publicly available documentation.) The
Pentium 4, in contrast, uses an internal instruction format that is significantly
different in many important respects from the x86 ISA. So the process of
“ISA translation” on the 970 is significantly less complex and less resource-
intensive than the analogous process on the Pentium 4.

Almost all the PowerPC ISA instructions, with a few exceptions, translate
into exactly one IOP on the 970. Of the instructions that translate into more
than one IOP, IBM distinguishes two types:

A cracked instruction is an instruction that splits into exactly two IOPs.

A millicoded instruction is an instruction that splits into more than
two IOPs.

This difference in the way instructions are classified is not arbitrary.
Rather, it ties into a very important design decision that the POWER4’s
designers made regarding how the chip tracks instructions at various stages
of execution.

Dispatching and Issuing Instructions on the PowerPC 970

If you take a look at the middle of the large PPC 970 diagram in Figure 10-1,
notice that right below the Decode, Crack, and Group phase I’ve placed a group
of five boxes. These five boxes represent what IBM calls a dispatch group (or
group, for short), and each group consists of five IOPs arranged in program
order according to certain rules and restrictions. It is these organized and
packaged groups of five IOPs that the 970 dispatches in parallel to the six
issue queues in its back end.

I probably shouldn’t go any further in discussing how these groups work
without first explaining the reason for their existence. By assembling IOPs
together into specially ordered groups of five for dispatch and completion,
the 970 can track these groups, and not individual IOPs, through the various
stages of execution. So instead of tracking 100 individual IOPs in-flight as they
work their way through the 100 or so execution slots available in the back
end, the 970 need track only 20 groups. IOP grouping, then, significantly
reduces the overhead associated with tracking and reordering the huge
volume of instructions that can fit into the 970’s deep and wide design.

As noted earlier, the 970’s peculiar group dispatch scheme doesn’t go
into action until after the decode stage. Decoded PowerPC instructions flow
from the bottom of the 970’s instruction queue in order and fill up the five
available dispatch slots in a group (four non-branch instructions and one
branch instruction). Once the five slots have been filled from the instruction
queue, the entire group is dispatched to the back end, where the individual
instructions that constitute it (loads, stores, adds, fadds, etc.) enter the tops of
their respective issue queues (i.e., an add goes into an integer issue queue, a
fadd goes into a floating-point issue queue, etc.).

When the individual IOPs in a group reach their proper issue queues, they
can then be issued out of program order to the execution units at a rate of
The G5: IBM’s PowerPC 970 197

eight IOPs/cycle for all the queues combined. Before they reach the comple-
tion stage, however, they need to be placed back into their group so that an
entire group of five IOPs can be completed on each cycle. (Don’t worry if this
sounds a bit confusing right now. The group dispatch and formation scheme
will become clearer when we discuss the 970’s peculiar issue queue structure.)

The price the 970 pays for the reduced bookkeeping overhead afforded
it by the dispatch grouping scheme is a loss of execution efficiency brought
on by the diminished granularity of control that comes from being able to
dispatch, schedule, issue, and complete instructions on an individual basis.
Let me explain.

The 970’s Dispatch Rules
When the 970’s front end assembles an IOP group, there are certain rules it
must follow. The first rule is that the group’s five slots must be populated with
IOPs in program order, starting with the oldest IOP in slot 0 and moving up
to newest IOP in slot 4. Another rule is that all branch instructions must go
in slot 4, and slot 4 is reserved for branch instructions only. This means that
if the front end can’t find a branch instruction to put in slot 4, it can issue
one less instruction that cycle.

Similarly, there are some situations in which the front end must insert
noops into the group’s slots in order to force a branch instruction into slot 4.
Noop (pronounced “no op”) is short for no operation. It is a kind of non-
instruction instruction that means “Do nothing.” In other words, the front
end must sometimes insert empty execution slots, or pipeline bubbles, into
the instruction stream in order to make the groups comply with the rules.

The preceding rules aren’t the only ones that must be adhered to when
building groups. Another rule dictates that instructions destined for the
conditional register unit (CRU) can go only in slots 0 and 1.

And then there are the rules dealing with cracked and millicoded
instructions. Consider the following from IBM’s POWER4 white paper:

Cracked instructions flow into groups as any other instructions
with one restriction. Both IOPs must be in the same group. If both
IOPs cannot fit into the current group, the group is terminated
and a new group is initiated. The instruction following the cracked
instruction may be in the same group as the cracked instruction,
assuming there is room in the group. Millicoded instructions
always start a new group. The instruction following the millicoded
instruction also initiates a new group.

And that’s not all! A group has to have the following resources available
before it can even dispatch to the back end. If just one of following resources
is too tied up to accommodate the group or any of its instructions, then the
entire group has to wait until that resource is freed up before it can dispatch:

Group completion table (GCT) entry
The group completion table is the 970’s equivalent of a reorder buffer
or completion queue. While a normal ROB keeps track of individual
in-flight instructions, the GCT tracks whole dispatch groups. The GCT
has 20 entries for keeping track of 20 active groups as the groups’
198 Chapter 10

constituent instructions make their way through the ~100 execution
slots available in the back end’s pipelines. Regardless of how few instruc-
tions are actually in the back end at a given moment, if those instructions
are grouped so that all 20 GCT entries happen to be full, no new groups
can be dispatched.

Issue queue slot
If there aren’t enough slots available in the appropriate issue queues to
accommodate all of a group’s instructions, the group must wait to dispatch.
(In a moment I’ll elaborate on what I mean by “appropriate issue queues.”)

Rename registers
There must be enough register rename resources available so that any
instruction that requires register renaming can issue when it’s dispatched
to its issue queue.

Again, when it comes to the preceding restrictions, one bad instruction
can keep the whole group from dispatching.

Because of its use of groups, the 970’s dispatch bandwidth is sensitive
to a complex host of factors, not the least of which is a sort of “internal
fragmentation” of the group completion table that could potentially arise
and needlessly choke dispatch bandwidth if too many of the groups in the
GCT are partially or mostly empty.

In order to keep dispatch bottlenecks from stopping the fetch/decode
portion of the pipeline, the 970 can buffer up to four dispatch groups in a
four-entry dispatch queue. So if the preceding requirements are not met and
there is space in the dispatch queue, a dispatch group can move into the
queue and wait there for its dispatch requirements to be met.

Predecoding and Group Dispatch
The 970 uses a trick called predecoding in order to move some of the work of
group formation higher up in the pipeline, thereby simplifying and speeding
up the latter decode and group formation phases in the front end. As instruc-
tions are fetched from the L2 cache into the L1 I-cache, each instruction is
predecoded and marked with a set of five predecode bits. These bits indicate
how the instruction should be grouped—in other words, if it should be first
in its group, last in its group, or unrestricted; if it will be a microcoded instruc-
tion; if it will trigger an exception; if it will be split or not; and so on. This
information is used by the decode and group formation hardware to quickly
route instructions for decoding and to group them for dispatch.

The predecode hardware also identifies branches and marks them for
type—conditional or unconditional. This information is used by the 970’s
branch prediction hardware to implement branch folding, fall-through,
and branch prediction with minimal latencies.

Some Preliminary Conclusions on the 970’s Group Dispatch Scheme
In the preceding section, I went into some detail on the ins and outs of group
formation and group dispatching in the 970. If you only breezed through
The G5: IBM’s PowerPC 970 199

the section and thought, “All of that seems like kind of a pain,” then you got
90 percent of the point I wanted to make. Yes, it is indeed a pain, and that
pain is the price the 970 pays for having both width and depth at the same
time. The 970’s big trade-off is that it needs less logic to support its long pipe-
line and extremely wide back end, but in return, it has to give up a measure
of granularity, flexibility, and control over the dispatch and issuing of its
instructions. Depending on the makeup of the instruction stream and how
the IOPs end up being arranged, the 970 could possibly end up with quite a
few groups that are either mostly empty, partially empty, or stalled waiting
for execution resources.

So while the 970 may be theoretically able to accommodate 200 instruc-
tions in varying stages of fetch, decode, execution, and completion, the reality
is probably that under most circumstances, a decent number of its execution
slots will be empty on any given cycle due to dispatch, scheduling, and com-
pletion limitations. The 970 makes up for this with the fact that it just has so
many available slots that it can afford to waste some on group-related pipeline
bubbles.

The PowerPC 970’s Back End

The PowerPC 970 sports a total of 12 execution units, depending on how you
count them. Even a more conservative count that lumps together the three
SIMD integer and floating-point units and doesn’t count the branch execution
unit would still give nine execution units.

In the following three sections, I’ll discuss each of the 970’s execution
units, comparing them to the analogous units on the G4e, and in some cases
the Pentium 4. As the discussion develops, keep in mind that a simple com-
parison of the types and numbers of execution units for each of the three
processors is not at all adequate to the task of sorting out the real differences
between the processors. Rather, there are complicating factors that make com-
parisons much more difficult than one might naïvely expect. Some of these
factors will be evident in the sections dealing with each type of execution
unit, but others won’t turn up until we discuss the 970’s issue queues in the
last third of the chapter.

NOTE As I cover each part of the 970’s back end, I’ll specify the number of rename registers of
each type (integer, floating-point, vector) that the 970 has. If you compare these num-
bers to the equivalent numbers for the G4e, you’ll see that 970 has many more rename
registers than its predecessor. This increased number of rename registers is necessary
because the 970’s instruction window (up to 200 instructions in-flight) is significantly
higher than that of the G4e (up to 16 instructions in-flight). The more instructions a
processor can hold in-flight at once, the more rename registers it needs in order to pull
off the kinds of tricks that a large instruction window enables you to do—i.e., dynamic
scheduling, loop unrolling, speculative execution, and the like. In a nutshell, more
instructions on the chip in various stages of execution means more data needs to be
stored in more registers.
200 Chapter 10

Integer Unit, Condition Register Unit, and Branch Unit
In the chapters on the Pentium 4 and G4e, I described how both of these
processors embody a similar approach to integer computation in that they
divide integer operations into two types: simple and complex. Simple integer
instructions, like add, are the most common type of integer instruction and
take only one cycle to execute on most hardware. Complex integer instruc-
tions (e.g., integer division) are rarer and take multiple cycles to execute.

In keeping with the quantitative approach to computer design’s central
dictum, “Make the common case fast,”1 both the Pentium 4 and G4e split up
their integer hardware into two specialized types of execution units: a group
of units that handle only simple, single-cycle instructions and a single unit
that handles complex, multi-cycle instructions. By dedicating the majority of
their integer hardware solely to the rapid execution of the most common
types of instructions (the simple, single-cycle ones), the Pentium 4 and the
G4e are able to get increased integer performance out of a smaller amount
of overall hardware.

Think of the multiple fast IUs (or SIUs) as express checkout lanes for
one-item shoppers and the single slow IU as a general-purpose checkout lane
for multiple-item shoppers in a supermarket where most of the shoppers
only buy a single item. This kind of specialization keeps that one guy who’s
stocking up for Armageddon from slowing down the majority of shoppers
who just want to duck in and grab eggs or milk on the way home from work.

The PPC 970 differs from both of these designs in that it has two
general-purpose IUs that execute almost all integer instructions. To return to
the supermarket analogy, the 970 has two general-purpose checkout lanes in a
supermarket where most of the shoppers are one-item shoppers. The 970’s
two IUs are attached to 80 64-bit GPRs (32 architected and 48 rename).

Why doesn’t the 970 have more specialized hardware (express checkout
lanes) like the G4e and Pentium 4? The answer is complicated, and I’ll take an
initial stab at answering it in a moment, but first I should clear something up.

The Integer Units Are Not Fully Symmetric
I said that the 970’s two IUs execute “almost all” integer instructions, because
the units are not, in fact, fully symmetric. One of the IUs performs fixed-
point divides, and the other handles SPR operations. So the 970’s IUs are
slightly specialized, but not in the same manner as the IUs of the G4e and
Pentium 4. If the G4e and Pentium 4 have express checkout lanes, the 970
has something more akin to a rule that says, “All shoppers who bought some-
thing at the deli must go through line 1, and all shoppers who bought
something at the bakery must go through line 2; everyone else is free to
go through either line.”

Thankfully, integer divides and SPR instructions are relatively rare, so
the impact on performance of this type of forced segregation is minimized.
In fact, if the 970 didn’t have the group formation scheme, this seemingly

1 See John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Approach,
Third Edition (Morgan Kauffman Publishers: 2003).
The G5: IBM’s PowerPC 970 201

minor degree of specialization might hardly be worth commenting on. But
as it stands, group-related scheduling issues turn this specialization into a
potentially negative factor—albeit a minor one—for integer performance
for reasons that we’ll discuss later on in this chapter.

Integer Unit Latencies and Throughput

The vast majority of integer instructions take one cycle to execute on the 970,
while a few more complex integer instructions can take more cycles. Note
that this one-cycle number signifies integer throughput. As a result, simple,
non-dependent integer IOPs can issue and finish at a rate of one per cycle.
Dependent integer IOPs, on the other hand, must be separated by a dead
cycle, giving a latency of two cycles. Note that this two-cycle latency applies
to operations in the same IU or in different IUs.

In the end, this unfortunate increase in latency is somewhat than miti-
gated by other factors, which I’ll discuss shortly. Nonetheless, the two-cycle
latency issue has turned out to have a non-trivial impact on the 970’s integer
performance.

The CRU

I haven’t said all there is to say about the 970’s integer-processing capabilities,
so the preceding summary isn’t quite complete. As I mentioned, the 970
divides up its integer resources in a slightly different way from that of the
Pentium 4 or G4e.

Some of the operations handled by the integer units on the Pentium 4
and G4e are instead handled in different places by the 970. Specifically, there’s
one type of fixed-point operation normally handled by an integer unit that
in the 970’s case gets its own separate execution unit. The 970 has a dedi-
cated unit for handling logical operations related to the PPC’s condition
register: the CRU. On the G4e these condition register (CR) operations are
handled by the complex integer unit. Thus the 970, in giving these operations
their own separate unit, takes some of the processing load off of the two
integer units.

The PowerPC Condition Register

The CR is a part of the PowerPC ISA that handles some of the functions of
the x86’s processor status word (PSW), but in a more flexible and programmer-
friendly way. Almost all PowerPC arithmetic operations, when they finish
executing, have the option of setting various bits (or flags) in the PPC’s 32-bit
condition register as a way of recording information about their outcome
for future reference (in other words, Was the result positive or negative?
Did it overflow or underflow the register?). So you might think of the CR as a
place to store metadata for arithmetic results. Subsequent instructions, like
conditional branch instructions, can then check the CR’s flags and thereby
use that metadata to decide what to do.
202 Chapter 10

The flag combinations that instructions can set in the condition register
are called condition codes, and the condition register has room enough to store
up to eight separate condition codes, which can describe the outcome of eight
different instructions. Enabling the programmer to manipulate those con-
dition codes are a collection of PowerPC instructions that perform logical
operations (AND, OR, NOT, NOR, etc.) directly on the flags in the CR.
The CRU is the execution unit that executes those instructions.

Preliminary Conclusions About the 970’s Integer Performance
To summarize, the G4e dedicates the majority of its integer hardware to
the execution of simple, one-cycle instructions, with the remainder of the
hardware dedicated to the execution of less common complex instructions.
In contrast, with two rare exceptions, all of the PPC 970’s integer hardware
can execute almost any type of integer instruction. Table 10-2 shows a break-
down of how the three types of integer operations we’ve discussed—simple,
complex, and CR logical—are handled by the G4e and the 970.

As you can see from Table 10-2, the G4e has more and more specialized
integer hardware at its disposal than the 970. Also, in terms of instruction
latencies, the G4e’s integer hardware is slightly faster for common, simple
integer operations than that of the 970. Finally, as I hinted at earlier and will
develop in more detail shortly, the 970’s integer performance—as well its
performance on other types of code—is fairly sensitive to compiler optimiza-
tion and scheduling. All of this adds up to make 32-bit integer computation
the place where the 970 looks the weakest compared to the competition.

Load-Store Units
Chapter 1 discussed the difference between instructions that access memory
(loads and stores) and instructions that do actual computation (integer
instructions, floating-point instructions, etc.). Just like integer instructions
are executed in the IUs and floating-point instructions are executed in the
FPUs, memory access instructions have their own specialized execution units
in the form of one or more load-store units (LSUs).

Chapter 1 also discussed the fact that in order to access memory via a
load or a store, it’s usually necessary to perform an address calculation so the
processor can figure out the location in memory that it should access. Even
though such address calculations are just simple integer operations, they’re
usually not handled by the processor’s integer hardware. Instead, all of the
processors under discussion here have dedicated address generation hardware
as part of their LSUs. Consequently, address generation takes place as part of
the execution phase of the LSU’s pipeline.

Table 10-2: Integer Operations on the PowerPC 970 and G4e

Simple Int. Complex Int. CR Logical SPR

PPC 970 IU1, IU2 IU1, IU21

1 IU2 handles all divides on the 970.

CRU IU1

G4e SIU1-SIU3 CIU CIU CIU
The G5: IBM’s PowerPC 970 203

The G4e has one LSU that executes all of the loads and stores for the
entire chip (integer, floating-point, and vector). As mentioned earlier, the
G4e’s LSU contains dedicated integer hardware for address calculations.

The 970 has two identical LSUs execute all of the loads and stores for the
entire chip. This gives it literally twice the load-store hardware of the G4e,
which it needs in order to keep all the instructions in its much larger instruc-
tion window fed with data. The 970’s load-store hardware is more comparable
to that of the Pentium 4, which also features a larger instruction window.

Front-Side Bus

A bus is an electrical conduit that connects two components in a computer
system, allowing them to communicate and share data and/or code. If a com-
puter system is like a large office building, then buses are like the phone lines
that keep all the employees connected to each other and to the outside world.

The front-side bus (FSB) is the bus that connects the computer’s CPU to the
core logic chipset. If buses are the phone lines of a computer system, then
the core logic chipset is the operator and switchboard. The core logic chipset,
or chipset for short, opens and closes bus connections between components
and routes data around the system. Figure 10-2 shows a simple computer
system consisting of a CPU, RAM, a video card, a hard drive, and a chipset.

Figure 10-2: Core logic chipset

Core Logic
Chipset Front-Side BusMemory Bus

AGP
Bus

ATA
Bus
204 Chapter 10

As you can see from Figure 10-2, the front-side bus is the processor’s sole
means of communication with the rest of the system, so it needs to be very fast.

A processor’s front-side bus usually operates at a clock speed that is some
fraction of the core clock speed of the CPU, and the 970 is no different. On the
first release of Apple’s G5 towers, the 970’s front-side bus operates at half the
clock speed of the 970. So for a 2 GHz 970, the FSB runs at 1 GHz DDR. (DDR
stands for double data rate, which means that the bus physically runs at 500 MHz,
but data is transferred on the rising and falling edges of the clock pulse.)
The 970 can run at other multiples of the FSB clock, including three, four,
and six times the FSB clock speed.

Because the 970’s front-side bus is composed of two unidirectional
channels, each of which is 32 bits wide, the total theoretical peak bandwidth
for the 900 MHz bus is 7.2GB per second. Address and control information is
multiplexed onto the bus along with data, so IBM estimates that the bus’s total
peak bandwidth for data alone (after subtracting the bandwidth used for
address and control information) is somewhere around 6.4GB per second.

In the end, this high-bandwidth FSB is one of the 970’s largest perfor-
mance advantages over its competitors. The 970’s two LSUs place high
demands on the FSB in order to keep the 970’s large instruction window
full and its wide back end fed with data. When coupled with a high-
bandwidth memory subsystem like dual-channel DDR400, the 970’s fast
FSB and dual LSUs make it a great media workstation platform.

The Floating-Point Units

The G4e’s very straightforward floating-point implementation has a single
FPU that takes a minimum of five cycles to finish executing the fastest floating-
point instructions. (Some instructions take many more cycles.) The FPU is
served by 48 microarchitectural floating-point registers (32 registers for the
PPC ISA and 16 additional rename registers). Finally, single- and double-
precision floating-point operations take the same amount of time.

The 970’s floating-point implementation is almost exactly like the G4e’s,
except there’s twice as much hardware. The 970 has two identical FPUs, each
of which can execute the fastest floating-point instructions (like the fadd) in
six cycles. As with the G4e, single- and double-precision operations take the
same amount of time to execute. The 970’s two FPUs are fully pipelined for
all operations except floating-point divides, which are very costly in terms of
cycles and stall both FPUs. And finally, the 970 has a larger number of FPRs:
80 total microarchitectural registers, where 32 are PowerPC architectural
registers and the remaining 48 are rename registers.

Before moving on, I should note one peculiarity in the way that the
970 handles floating-point instructions. Some floating-point instructions—
particularly the fused multiply-add series of instructions—are not translated
into IOPs by the decode hardware, but instead are executed directly by the
FPU. The reason for this is fairly straightforward.
The G5: IBM’s PowerPC 970 205

Recall from Chapter 4 that the amount of die space taken up by the reg-
ister file increases approximately with the square of the number of register
file ports. The vast majority of PowerPC instructions specify at most two source
registers and one destination register, which means that they use at most two
register file read ports and one register file write port. However, there is a
handful of PowerPC instructions that require more ports. In order to keep
the size of the 970’s register files to a minimum, the 970’s designers opted
not to add more ports to the register files in order to accommodate this small
number of instructions. Instead, the 970 has two ways of keeping this small
group of instructions from stalling due to the structural hazards that might
be brought on by their larger-than-average port requirements:

Non–floating-point instructions that require more than three ports total
are dealt with at the decode stage. All of the 970’s IOPs are restricted to
read at most two registers and write at most one register, so instructions
that do not obey this restriction are cracked into multiple IOPs that do
obey it.

There are a few types of floating-point instructions that do not fit the
three-port requirement, the most common of which is the fused multi-
ply-add series of instructions. For performance reasons, cracking a float-
ing-point fused multiply-add instruction into multiple IOPs is neither
necessary nor desirable. Instead, such instructions are simply passed to
the FPU as decoded PowerPC instructions—not as IOPs—where they
execute by accessing the register file on more than one cycle. Since these
instructions take multiple cycles to execute anyway, the extra register file
read and/or write cycles are simply overlapped with computation cycles
so that they don’t add to the instruction’s latency.

As the preceding discussion indicates, the 970’s floating-point hardware
compares quite favorably with that of the G4e. Twice the hardware does not
necessarily equal twice the performance, but it’s clear that the 970 performs
significantly better, clock for clock, on floating-point code. This performance
advantage is not only due to the doubled amount of floating-point hardware,
but also to the 970’s longer pipeline and clock-speed advantage. Furthermore,
the 970’s fast front-side bus (effectively half the core clock speed), when
coupled with a high-bandwidth memory subsystem, gives it a distinct advan-
tage over the G4e in bandwidth-intensive floating-point code. Note that this
last point also applies to vector code, but more on that in a moment.

Vector Computing on the PowerPC 970

The G4e’s AltiVec implementation is the strongest part of its design. With
four fully pipelined vector processing units, it has plenty of hardware to go
around. As a brief recap from the last chapter, here’s a breakdown of the
G4e’s four AltiVec units:

vector permute unit (VPU)

vector simple integer unit (VSIU)
206 Chapter 10

vector complex integer unit (VCIU)

vector floating-point unit (VFPU)

All of this vector execution hardware is tied to a generous register file that
consists of thirty-two 128-bit architectural registers and sixteen additional
vector rename registers. Furthermore, each of the units is attached to a
four-entry vector issue queue that can issue two vector ops per cycle to any
of the four vector units.

NOTE The SIMD instruction set known as AltiVec was codeveloped by both IBM and Motorola,
and it is co-owned by both of them. Motorola has a trademark on the AltiVec name, so
in most of IBM’s literature (but not all), the instruction set is referred to as VMX, presum-
ably for Vector Multimedia Extensions. VMX and AltiVec are therefore two different
names for the same group of 162 vector instructions added to the PowerPC ISA. This
chapter uses the name AltiVec for both the G4e and the 970.

The 970’s AltiVec implementation looks pretty much like the original
G4’s—the MPC7400—except for the addition of issue queues for dynamic
execution. The 970 has the following units:

vector permute unit (VPU)

vector arithmetic logic unit (VALU)

vector simple integer unit (VSIU)

vector complex integer unit (VCIU)

vector floating-point unit (VFPU)

These units are attached to 80 vector registers—32 architectural registers
and 48 rename registers.

Notice that the vector execution units listed here are essentially the same
units as in the G4e, but they’re grouped differently. This grouping makes all
the difference. Take a look at the simplified diagram in Figure 10-3.

The 970 can dispatch up to four vector IOPs per cycle total to its two
vector logical issue queues—two IOPs per cycle in program order to the 16-
entry VPU logical issue queue and two IOPs per cycle in program order to
the 20-entry VALU logical issue queue. (Each of these logical issue queues
consists physically of a pair of interleaved queues that operate together as a
single queue, but we’ll talk more about how the logical queues are actually
implemented in a moment.) Each of the two logical queues can then issue
one vector operation per cycle to any of the units attached to it. This means
that the 970 can issue one IOP per cycle to the VPU and one IOP per cycle to
any of the VALU’s three subunits.

As you can see, if you place the 970’s vector unit and the G4e’s vector unit
side by side, the 970 and the G4e can issue the same number of vector instruc-
tions per cycle to their AltiVec units, but the 970 is much more limited in the
combinations of instructions it can issue, because one of its two instructions
must be a vector permute. For instance, the G4e would have no problem
issuing both a complex integer instruction and a simple integer instruction to
its VCIU and VSIU in the same cycle, whereas the 970 would only be able to
issue one of these in a cycle.
The G5: IBM’s PowerPC 970 207

itm10_03.fm Page 208 Wednesday, October 25, 2006 1:57 PM
Figure 10-3: The 970’s vector unit

Table 10-3 replicates a chart from Apple that compares the AltiVec
execution unit latencies for the two G4s and the 970.2

Notice that the 970’s vector instruction latencies are close to those in the
G4e, which is an excellent sign given the fact that the 970’s pipeline is longer
and its issue queues are much deeper (18 instructions on the 970 versus 4
instructions on the G4e). The 970’s larger instruction window and deeper
issue queues allow the processor to look farther ahead in the instruction

2 This is a truncated version of Apple’s AltiVec Instruction Cross-Reference (http://
developer.apple.com/hardware/ve/instruction_crossref.html).

Table 10-3: Vector Instruction Latencies for the G4, G4e, and 970

Hardware Unit 7400/7410 7450/7455 PPC 970

Vector simple integer unit (VSIU) 1 1 21

1 An extra cycle latency is required if the data is next used in VPU.

Vector complex integer unit (VCIU) 3 4 51

Vector floating-point unit (VFPU) 4 (5)2

2 The VFPU takes an extra cycle if Java mode is turned on. (It is off by default on Mac OS X,
but on by default on Mac OS 9.)

4 (5)2,3

3 Some FP-related VSIU instructions were moved to the VFPU for later G4. These only take
two cycles instead of the usual 4 (5).

81

Vector permute unit (VPU) 1 2 24

4 An extra cycle latency is required if the data is next used in VCIU/VSIU/VFPU.

1 IOP
per cycle

4 IOPs
per cycle

(total)

1 IOP
per cycle

Vector Arithmetic Logic Units

VPU-1
VPU-2

VCIU-1VSIU-1
VCIU-2
VCIU-3
VCIU-4

VFPU-1
VFPU-2
VFPU-3
VFPU-4

Vector
Permute

Unit

Vector ALU

0 1 2 3 4

Vector
Issue

Queues

Vector
Issue

Queues
208 Chapter 10

stream and extract more instruction-level parallelism (ILP) from the vector
instruction stream. This means that the 970’s vastly superior dynamic sched-
uling hardware can squeeze more performance out of slightly inferior vector
execution hardware, a capability that, when coupled with a high-bandwidth
memory subsystem and an ultrafast front-side bus, enable its vector perfor-
mance to exceed that of the G4e.

Floating-Point Issue Queues

Figure 10-1 shows the five dispatch slots connected to issue queues for each
of the functional units or groups of functional units. Figure 10-1 is actually
oversimplified, since the true relationship between the dispatch slots, issue
queues, and functional units is more complicated than depicted there. The
actual physical issue queue configuration is a bit hard to explain in words,
so Figure 10-4 shows how the floating-point issue queues really look.

Figure 10-4: The 970’s floating-point issue queues

Each of the floating-point execution units is fed by what I’ve called a
logical issue queue. As you can see in Figure 10-4, each 10-entry logical issue
queue actually consists of an interleaved pair of five-entry physical issue queues,
which together feed a single floating-point execution unit.

Figure 10-4 also shows how the four non-branch dispatch slots each feed
a specific physical issue queue. Floating-point IOPs that dispatch from slots
0 and 3 go into the tops of the two physical issue queues that are attached
to them. Similarly, floating-point IOPs that dispatch from slots 1 and 2 go

Logical Issue
Queue 1

Logical Issue
Queue 2

FPU1 FPU2

Floating-Point
Unit

0 1 2 3 4
The G5: IBM’s PowerPC 970 209

into the tops of their two attached physical issue queues. As IOPs issue from
different places in the physical queues, the IOPs “above” them in the queue
“fall down” to fill in the gaps.

Each pair of physical issue queues—the pair attached to slots 0 and 3,
and the pair attached to slots 1 and 2—is interleaved and functions as a
single “logical” issue queue. An IOP can issue from a logical issue queue to
an execution unit when all of its sources are set, and the oldest IOP with all
of its sources set in a logical queue is issued to the attached execution unit.
This means that, as is the case with the G4e’s issue queues, instructions are
issued in program order from within each logical issue queue, but out of
program order with respect to the overall code stream.

NOTE The term logical issue queue is one that I’ve coined for the purposes of this chapter,
and is not to my knowledge used in IBM’s literature. IBM prefers the phrase common
interleaved queues.

It’s important for me to emphasize that individual IOPs issue from
their respective logical issue queues completely independent of their dispatch
group. So the execution units’ schedulers are blind to which group an IOP
is in when it comes time to schedule the IOP and issue it to an execution
unit. Thus the dispatch groups are allowed to break apart after they reach
the level of the issue queue, and they’re reassembled after execution in the
group completion table (GCT).

Integer and Load-Store Issue Queues

The integer and load-store execution units are fed by issue queues in a similar
manner to the floating-point units, but they’re slightly more complex because
they share issue queues. Take a look at Figure 10-5 to see how this works.

As with the floating-point issue queues, integer or memory access
IOPs in dispatch slots 0 and 3 go into the two integer physical issue queues
that are specifically intended for them. The twist is that this pair of queues is
shared by two execution units: IU1 and LSU1. So integer or memory IOPs from
slots 0 and 3 are sent into the appropriate issue queue pair—or logical issue
queue—and these IOPs then issue to either IU1 or LSU1 as the integer sched-
uler sees fit. Similarly, integer or memory access IOPs from dispatch slots
1 and 2 go into their respective physical queues, both of which feed IU2
and LSU2. As with the floating-point issue queues, these four 9-entry inter-
leaved queues should be thought of as being grouped into two 18-entry logical
issue queues, where each logical issue queue works together with the appro-
priate scheduler to feed a pair of execution units.

BU and CRU Issue Queues

The branch unit and condition register unit issue queues work in a similar
manner to what I’ve described previously, with the differences depending on
grouping and issue restrictions. So the CRU has a single 10-entry logical issue
queue comprised of two issue queues with five entries each, one for slot 0
210 Chapter 10

Figure 10-5: The 970’s IU and LSU issue queues

and one for slot 1 (because CR IOPs can be placed only in slots 0 and 1).
The branch execution unit has a single logical issue queue comprised of one
12-entry issue queue for slot 4 (because branch IOPs can go only in slot 4).

Vector Issue Queues
The vector issue queues are laid out slightly different than the other issue
queues. The vector issue queue configuration is depicted in Figure 10-6.

The vector permute unit is fed from one 16-entry (four entries × four
queues) logical issue queue connected to all four non-branch dispatch slots,
and the vector ALU is fed from a 20-entry (five entries × four queues) logical
issue queue that’s also connected to all four non-branch dispatch slots. As with
all of the other issue queue pairs, one IOP per cycle can issue in order from
each logical issue queue to any of the execution units that are attached to it.

The Performance Implications of the 970’s Group Dispatch
Scheme

Because of the way it affects the 970’s issue queue design, the group formation
scheme has some interesting performance implications. Specifically, proper
code scheduling is important in ways that it wouldn’t normally be for the
other processors discussed here.

0 1 2 3 4

Integer/LSU
Logical Issue

Queue 2

Integer/LSU
Logical Issue

Queue 1

IU1 LSU1 LSU2 IU2

Integer
Unit

Load-Store
Unit

Integer
Unit
The G5: IBM’s PowerPC 970 211

Figure 10-6: The 970’s vector issue queues

Instead of trying to explain this point, I’ll illustrate it with an example.
Let’s look at an instruction with few group restrictions—the floating-point add.
The 970’s group formation rules dictate that the fadd can go into any of the
four dispatch slots, and which slot it goes into in turn dictates which of the
970’s two identical FPUs executes it. As I explained in the previous section,
if the fadd goes into slots 0 or 3, it is dispatched to the logical issue queue
associated with FPU1; if it goes into dispatch slot 1 or 2, it is dispatched to the
logical issue queue associated with FPU2. This means that the FPU instruction
scheduling hardware is restricted in ways that it wouldn’t be if both FPUs were
fed from a common issue queue, because half the instructions are forced
into one FPU and half the instructions are forced into the other FPU. Or at
least this 50/50 split is how it’s supposed to work out under optimal circum-
stances, when the code is scheduled properly so that it dispatches IOPs
evenly into both logical issue queues.

Because of the grouping scheme and the two separate logical issue
queues, it seems that keeping both FPUs busy by splitting the computation
load between them is very much a matter of scheduling instructions for
dispatch so that no single FPU happens to get overworked while the other
goes underutilized. Normally, this kind of load balancing among execution
units would happen at the issue queue level, but in the 970’s case, it’s con-
strained by the structure of the issue queues themselves.

1 IOP
per cycle

4 IOPs
per cycle

(total)

1 IOP
per cycle

Vector Arithmetic Logic Units

VPU-1
VPU-2

VCIU-1VSIU-1
VCIU-2
VCIU-3
VCIU-4

VFPU-1
VFPU-2
VFPU-3
VFPU-4

Vector
Permute

Unit

Vector Arithmetic Logic Unit

Vector Logical
Issue Queue 1

Vector Logical
Issue Queue 2

0 1 2 3 4
212 Chapter 10

This load balancing at the dispatch level isn’t quite as simple as it may
sound, because group formation takes place according to a specific set of rules
that ultimately constrain dispatch bandwidth and subsequent instruction issue
in very specific and peculiar ways. For instance, an integer instruction that’s
preceded by, say, a CR logical instruction, may have to move over a slot to
make room because the CR logical instruction can go only in slots 0 and 1.
Likewise, depending on whether an instruction near the integer IOP in the
instruction stream is cracked or millicoded, the integer IOP may have to
move over a certain number of slots; if the millicoded instruction breaks
down into a long string of instructions, that integer IOP may even get
bumped over into a later dispatch group. The overall result is that which
queue an integer IOP goes into very much depends on the other (possibly
non-integer) instructions that surround it.

The take-home message here is that PowerPC code that’s optimized
specifically for the 970 performs significantly better on the processor than
legacy code that’s optimized for other PowerPC processors like the G4e.

Of course, no one should get the impression that legacy code runs poorly
on the 970. It’s just that the full potential of the chip can’t be unlocked with-
out properly scheduled code. Furthermore, in addition to the mitigating factors
mentioned in the section on integer performance (for example, deep OOOE
capabilities, or high-bandwidth FSB), the fact that quantitative studies have
shown the amount of ILP inherent in most RISC code to be around two
instructions per clock means that the degenerate case described in the
FPU example should be exceedingly rare.

Conclusions

While the 970’s group dispatch scheme does suffer from some of the draw-
backs described in the preceding section, it must be judged a success in
terms of its impact on the processor’s performance per watt. That this dis-
patch scheme has a significant positive impact on performance per watt is
evidenced by the fact that Intel’s Pentium M processor also uses a similar
grouping mechanism to achieve greater power efficiency. Furthermore,
Intel continues to employ this grouping mechanism more extensively with
each successive revision of the Pentium M, as the company seeks to mini-
mize power consumption without sacrificing number-crunching capabilities.
Thus such grouping mechanisms will only become more widespread as micro-
processor designers become ever more sensitive to the need to balance
performance and power consumption.

Because the 970 can track more instructions with less power-hungry book-
keeping logic, it can spend more transistors on execution units, branch
prediction resources, and cache. This last item—cache—is an especially
important performance-enhancing element in modern processors, for
reasons that will be covered in Chapter 11.
The G5: IBM’s PowerPC 970 213

U N D E R S T A N D I N G C A C H I N G A N D
P E R F O R M A N C E

This chapter is intended as a general introduction to
CPU caching and performance. Because cache is critical
to keeping the processors described so far fed with code
and data, you can’t understand how computer systems
function without first understanding the structure and
functioning of the cache memory hierarchy. To that end, this chapter covers
fundamental cache concepts like spatial and temporal locality, set associa-
tivity, how different types of applications use the cache, the general layout
and function of the memory hierarchy, and other cache-related issues.

Caching Basics

In order to really understand the role of caching in system design, think of
the CPU and memory subsystem as operating on a consumer-producer model
(or client-server model): The CPU consumes information provided to it by the
hard disks and RAM, which act as producers.

Driven by innovations in process technology and processor design, CPUs
have increased their ability to consume at a significantly higher rate than the
memory subsystem has increased its ability to produce. The problem is that
CPU clock cycles have gotten shorter at a faster rate than memory and bus
clock cycles, so the number of CPU clock cycles that the processor has to wait
before main memory can fulfill its requests for data has increased. With each
CPU clockspeed increase, memory is getting farther and farther away from
the CPU in terms of the number of CPU clock cycles.

Figures 11-1 and 11-2 illustrate how CPU clock cycles have gotten shorter
relative to memory clock cycles.

To visualize the effect that this widening speed gap has on overall system
performance, imagine the CPU as a downtown furniture maker’s workshop
and the main memory as a lumberyard that keeps getting moved farther and
farther out into the suburbs. Even if you start using bigger trucks to cart all
the wood, it’s still going to take longer from the time the workshop places an
order to the time that order gets filled.

NOTE I’m not the first person to use a workshop and warehouse analogy to explain caching.
The most famous example of such an analogy is the Thing King game, which is widely
available on the Internet.

Sticking with the furniture workshop analogy, one solution to this
problem would be to rent out a small warehouse in town and store the
most commonly requested types of lumber there. This smaller, closer
warehouse would act as a cache that sits between the lumberyard and the
workshop, and you could keep a driver on hand at the workshop who could
run out at a moment’s notice and quickly pick up whatever you need from
the warehouse.

Of course, the bigger your warehouse, the better, because it allows you
to store more types of wood, thereby increasing the likelihood that the raw
materials for any particular order will be on hand when you need them. In

Figure 11-1: Slower CPU clock Figure 11-2: Faster CPU clock
216 Chapter 11

the event that you need a type of wood that isn’t in the nearby warehouse,
you’ll have to drive all the way out of town to get it from your big, suburban
lumberyard. This is bad news, because unless your furniture workers have
another task to work on while they’re waiting for your driver to return with
the lumber, they’re going to sit around in the break room smoking and
watching The Oprah Winfrey Show. And you hate paying people to watch
The Oprah Winfrey Show.

The Level 1 Cache
I’m sure you’ve figured it out already, but the smaller, closer warehouse in
this analogy is the level 1 cache (L1 cache or L1, for short). The L1 can be
accessed very quickly by the CPU, so it’s a good place to keep the code and
data that the CPU is most likely to request. (In a moment, we’ll talk in more
detail about how the L1 can “predict” what the CPU will probably want.) The
L1’s quick access time is a result of the fact that it’s made of the fastest and
most expensive type of static RAM, or SRAM. Since each SRAM memory cell
is made up of four to six transistors (compared to the one-transistor-per-cell
configuration of DRAM), its cost per bit is quite high. This high cost per bit
means that you generally can’t afford to have a very large L1 unless you really
want to drive up the total cost of the system.

In modern CPUs, the L1 sits on the same piece of silicon as the rest of
the processor. In terms of the warehouse analogy, this is a bit like having the
warehouse on the same block as the workshop. This has the advantage of
giving the CPU some very fast, very close storage, but the disadvantage is that
now the main memory (the suburban lumberyard) is just as far away from the
L1 as it is from the processor. If data that the CPU needs is not in the L1—
a situation called a cache miss—it’s going to take quite a while to retrieve that
data from memory. Furthermore, remember that as the processor gets faster,
the main memory gets “farther” away all the time. So while your warehouse
may be on the same block as your workshop, the lumberyard has now moved
not just out of town but out of the state. For an ultra–high-clock-rate processor
like the P4, being forced to wait for data to load from main memory in order
to complete an operation is like your workshop having to wait a few days for
lumber to ship in from out of state.

Check out Table 11-1, which shows common latency and size information
for the various levels of the memory hierarchy. (The numbers in this table
are shrinking all the time, so if they look a bit large to you, that’s probably
because by the time you read this, they’re dated.)

Table 11-1: A Comparison of Different Types of Data Storage

Level Access Time Typical Size Technology Managed By

Registers 1–3 ns 1KB Custom CMOS Compiler

Level 1 Cache (on-chip) 2–8 ns 8KB–128KB SRAM Hardware

Level 2 Cache (off-chip) 5–12 ns 0.5MB–8MB SRAM Hardware

Main Memory 10–60 ns 64MB–1GB DRAM Operating system

Hard Disk 3,000,000–10,000,000 ns 20GB–100GB Magnetic Operating system/user
Unders tanding Caching and Performance 217

Notice the large gap in access times between the L1 and the main
memory. For a 1 GHz CPU, a 50 ns wait means 50 wasted clock cycles. Ouch!
To see the kind of effect such stalls have on a modern, hyperpipelined
processor, see “Instruction Throughput and Pipeline Stalls” on page 53.

The Level 2 Cache
The solution to this dilemma is to add more cache. At first you might think you
could get more cache by enlarging the L1, but as I said earlier, cost considera-
tions are a major factor limiting L1 cache size. In terms of the workshop ana-
logy, you could say that rents are much higher in town than in the suburbs, so
you can’t afford much in-town warehouse space without the cost of rent eating
into your bottom line, to the point where the added costs of the warehouse
space would outweigh the benefits of increased worker productivity. You have
to fine-tune the amount of warehouse space that you rent by weighing all the
costs and benefits so that you get the maximum output for the least cost.

A better solution than adding more in-town warehouse space would be
to rent some cheaper, larger warehouse space right outside of town to act as
a cache for the in-town warehouse. Similarly, processors like the P4 and G4e
have a level 2 cache (L2 cache or L2) that sits between the L1 and main memory.
The L2 usually contains all of the data that’s in the L1 plus some extra. The
common way to describe this situation is to say that the L1 subsets the L2,
because the L1 contains a subset of the data in the L2.

A series of caches, starting with the page file on the hard disk (the lumber-
yard) and going all the way up to the registers on the CPU (the workshop’s
work benches), is called a cache hierarchy. As you go up the cache hierarchy
towards the CPU, the caches get smaller, faster, and more expensive to
implement; conversely, as you go down the cache hierarchy, the caches get
larger, cheaper, and much slower. The data contained in each level of the
hierarchy is usually mirrored in the level below it, so for a piece of data that’s
in the L1, there are usually copies of that same data in the L2, main memory,
and hard disk’s page file. Each level in the hierarchy subsets the level below
it. We’ll talk later about how all of those copies are kept in sync.

In Figure 11-3, the red cells are the code and data for the program that
the CPU is currently running. The blue cells are unrelated to the currently
running program. This figure, which will become even clearer once you read
“Locality of Reference” on page 220, shows how each level of the cache
hierarchy subsets the level below it.

As Table 11-1 indicates, each level of the hierarchy depicted in Figure 11-3
is controlled by a different part of the system. Data is promoted up the hier-
archy or demoted down the hierarchy based on a number of different criteria;
in the remainder of this chapter we’ll concern ourselves only with the top
levels of the hierarchy.

Example: A Byte’s Brief Journey Through the Memory Hierarchy
For the sake of example, let’s say the CPU issues a load instruction that tells
the memory subsystem to load a piece of data (in this case, a single byte)
into one of its registers. First, the request goes out to the L1, which is
218 Chapter 11

Figure 11-3: Code and data in the cache hierarchy

checked to see if it contains the requested data. If the L1 does not contain the
data and therefore cannot fulfill the request—in other words, a cache miss
occurs—the request propagates down to the L2. If the L2 does not contain the
desired byte, the request begins the relatively long trip out to main memory.
If main memory doesn’t contain the data, you’re in big trouble, because then
it has to be paged in from the hard disk, an act that can take a relative eternity
in CPU time.

Let’s assume that the requested byte is found in main memory. Once
located, the byte is copied from main memory, along with a bunch of its
neighboring bytes in the form of a cache block or cache line, into the L2 and
L1. When the CPU requests this same byte again, it will be waiting for it
there in the L1, a situation called a cache hit.

Cache Misses
Computer architects usually divide cache misses up into three different types
depending on the situation that brought about the miss. I’ll introduce these
three types of misses at appropriate points over the course of the chapter,
but I can talk about the first one right now.

A compulsory miss is a cache miss that occurs because the desired data
was never in the cache and therefore must be paged in for the first time in
a program’s execution. It’s called a compulsory miss because, barring the use
of certain specialized tricks like data prefetching, it’s the one type of miss
that just can’t be avoided. All cached data must be brought into the cache for
the very first time at some point, and the occasion for doing so is normally a
compulsory miss.

The two other types of cache misses are misses that result when the CPU
requests data that was previously in the cache but has been evicted for some
reason or other. We’ll discuss evictions in “Temporal and Spatial Locality
Revisited: Replacement/Eviction Policies and Block Sizes” on page 230,
and I’ll cover the other two types of cache misses as they come up through-
out the course of this chapter.

Registers

L1 Cache

L2 Cache

RAM

Main Memory

CPU
Unders tanding Caching and Performance 219

Locality of Reference

Caching works because of a very simple property exhibited to one degree
or another by all types of code and data: locality of reference. We generally
find it useful to talk about two types of locality of reference: spatial locality
and temporal locality.

Spatial locality
Spatial locality is a fancy label for the general rule that if the CPU needs an
item from memory at any given moment, it’s likely to need that item’s neighbors next.

Temporal locality
Temporal locality is the name we give to the general rule that if an item in
memory was accessed once, it’s likely to be accessed again in the near future.

Depending on the type of application, both code and data streams can
exhibit spatial and temporal locality.

Spatial Locality of Data

Spatial locality of data is the easiest type of locality to understand, because
most of you have used media applications like MP3 players, DVD players, and
other types of applications whose datasets consist of large, ordered files. Con-
sider an MP3 file, which has a bunch of blocks of data that are consumed by
the processor in sequence from the file’s beginning to its end. If the CPU is
running iTunes and it has just requested second 1:23 of a five-minute MP3,
you can be reasonably certain that next it’s going to want seconds 1:24, 1:25,
and so on. This is the same with a DVD file, and with many other types of
media files like images, AutoCAD drawings, and 3D game levels. All of these
applications operate on large arrays of sequentially ordered data that get
ground through in sequence by the CPU again and again.

Business applications like word processors also have great spatial locality
for data. If you think about it, few people open six or seven documents in a
word processor and quickly alternate between them typing one or two words
in each. Most of us just open up one or two relatively modest-sized files and
work in them for a while without skipping around too much within the same
file. These files are stored in contiguous regions of memory, where they can
be brought quickly into the cache in a few large batches.

Ultimately, spatial locality is just a way of saying that related chunks of
data tend to clump together in memory, and since they’re related, they also
tend to be processed together in batches by the CPU.

In Figure 11-4, as in Figure 11-3, the red cells are related chunks of data
stored in the memory array. This figure shows a program with fairly good
spatial locality, since the red cells are clumped closely together. In an appli-
cation with poor spatial locality, the red cells would be more randomly
distributed among the unrelated blue cells.
220 Chapter 11

Spatial Locality of Code
Spatial locality applies to code just like it does to data—most well-written
code tries to avoid jumps and branches so that the processor can execute
through large contiguous blocks uninterrupted. Games, simulations, and
media processing applications tend to have decent spatial locality for code,
because such applications often feature small blocks of code (called kernels)
operating repeatedly on very large datasets.

Figure 11-4: Spatial locality

When it comes to spatial locality of code for business applications, the
picture is mixed. If you think about the way that you use a word processor,
it’s easy to see what’s going on. As you create a document, most of you are
constantly pressing different formatting buttons and invoking different
menu options. For instance, you might format one word in italics, change
the paragraph spacing, and then save the file, all in sequence. Each of these
actions invokes a very different part of the code in a large application like
Microsoft Word; it’s not likely that the code for the File Save menu option
is stored right next to the code that formats a font in italics. The way you
use a word processor forces the CPU to jump around from place to place
in memory in order to retrieve the correct code. However, the segment of
the code stream that implements each individual action (i.e., saving a file,
formatting a font, and so on) usually exists in memory as a fairly large, spatially
localized chunk—very much like a little subprogram within the larger appli-
cation. While the code for the File Save menu action might be quite far
away from the code for the italics formatting option, both of these chunks
of code exhibit good spatial locality as small programs in their own right.

What this means for a cache designer is that business applications need
large instruction caches to be able to collect all of the most frequently used
clumps of code that correspond to the most frequently executed actions and
Unders tanding Caching and Performance 221

pack them together in the cache. If the instruction cache is too small, the
different clumps get swapped out as different actions are performed. If the
instruction cache is large enough, many of these subprograms will fit and
there’s little swapping needed. Incidentally, this is why business applications
performed so poorly on Intel’s original cacheless Celeron processor.

Temporal Locality of Code and Data
Consider a simple Photoshop filter that inverts an image to produce a
negative; there’s a small piece of code that performs the same inversion on
each pixel, starting at one corner and going in sequence all the way across
and down to the opposite corner. This code is just a small loop that gets
executed repeatedly, once on each pixel, so it’s an example of code that is
reused again and again. Media applications, games, and simulations, because
they use lots of small loops that iterate through very large datasets, have
excellent temporal locality for code.

The same large, homogenous datasets that give media applications and
the like good temporal locality for code also given them extremely poor
temporal locality for data. Returning to the MP3 example, a music file is
usually played through once in sequence and none of its parts are repeated.
This being the case, it’s actually a waste to store any of that file in the data
cache, since it’s only going to stop off there temporarily before passing
through to the CPU.

When an application, like the aforementioned MP3 player, fills up the
cache with data that doesn’t really need to be cached because it won’t be
used again and as a result winds up bumping out of the cache data that will
be reused, that application is said to “pollute” the cache. Media applications,
games, and the like are big cache polluters, which is why they weren’t too
affected by the original Celeron’s lack of cache. Because these applications’
data wasn’t going to be needed again any time soon, the fact that it wasn’t in
a readily accessible cache didn’t really matter.

The primary way in which caches take advantage of temporal locality is
probably obvious by this point: Caches provide a place to store code and data
that the CPU is currently working with. By working with, I mean that the CPU
has used it once and is likely to use it again. A group of related blocks of
code and/or data that the CPU uses and reuses over a period of time in
order to complete a task is called a working set. Depending on the size of a
task’s working set and the number of operations it takes the CPU to complete
that task, spatial and temporal locality—and with them the cache hierarchy—
will afford a greater or lesser performance increase on that task.

Locality: Conclusions
One point that should be apparent from the preceding discussion is that
temporal locality implies spatial locality, but not vice versa. That is to say,
data that is reused is always related (and therefore collects into spatially
localized clumps in memory), but data that is related is not always reused.
An open text file is an example of reusable data that occupies a localized
region of memory, and an MP3 file is an example of non-reusable (or
streaming) data that also occupies a localized region of memory.
222 Chapter 11

The other thing that you probably noticed from this section is the fact
that memory access patterns for code and memory access patterns for data
are often very different within the same application. For instance, media
applications have excellent temporal locality for code but poor temporal
locality for data. This fact has inspired many cache designers to split the L1
into two regions—one for code and one for data. The code half of the cache
is called the instruction cache, or I-cache, while the data half of the cache is
called the data cache, or D-cache. This partitioning can result in significant
performance gains, depending on the size of the cache, the types of appli-
cations normally run on the system, and a variety of other factors.

Cache Organization: Blocks and Block Frames

One way that caches take advantage of locality of reference is by loading data
from memory in large chunks. When the CPU requests a particular piece of
data from the memory subsystem, that piece gets fetched and loaded into the
L1 along with some of its nearest neighbors. The actual piece of data that was
requested is called the critical word, and the surrounding group of bytes that
gets fetched along with it is called a cache line or cache block. By fetching
not only the critical word but also a group of its neighbors and loading
them into the cache, the CPU is prepared to take advantage of the fact that
those neighboring bytes are the most likely to be the ones it will need to
process next.

Cache blocks form the basic unit of cache organization, and RAM is also
organized into blocks of the same size as the cache’s blocks. When a block is
moved from RAM to the cache, it is placed into a special slot in the cache
called a block frame. Figure 11-5 shows a set of cache blocks stored in RAM and
a cache with an empty set of block frames.

Figure 11-5: Blocks and block frames

RAM

L1 Cache

Block Frames

Blocks

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Unders tanding Caching and Performance 223

Cache designers can choose from a few different schemes for governing
which RAM blocks can be stored in which of the cache’s block frames. Such a
scheme is called a cache placement policy, because it dictates where in the cache
a block from memory can be placed.

Tag RAM

When the CPU requests a byte from a particular block from RAM, it needs to
be able to determine three things very quickly:

whether or not the needed block is actually in the cache (i.e., whether
there is a cache hit or a cache miss)

the location of the block within the cache (in the case of a cache hit)

the location of the desired byte (or critical word) within the block
(again, in the case of a cache hit)

A cache accommodates all three needs by associating a special piece
of memory—called a tag—with each block frame in the cache. The tag
holds information about the blocks currently being stored in the frame,
and that information allows the CPU to determine the answer to all three
of the questions above. However, the speed with which that answer comes
depends on a variety of factors.

Tags are stored in a special type of memory called the tag RAM. This
memory has to be made of very fast SRAM because it can take some time
to search it in order to locate the desired cache block. The larger the cache,
the greater the number of blocks, and the greater the number of blocks, the
more tag RAM you need to search and the longer it can take to locate the
correct block. Thus the tag RAM can add unwanted access latency to the
cache. As a result, you not only have to use the fastest RAM available for
the tag RAM, but you also have to be smart about how you use tags to map
RAM blocks to block frames. In the following section, I’ll introduce the
three general options for doing such mapping, and I’ll discuss some of the
pros and cons of each option.

Fully Associative Mapping

The most conceptually simple scheme for mapping RAM blocks to cache block
frames is called fully associative mapping. Under this scheme, any RAM block can
be stored in any available block frame. Fully associative mapping is depicted
in Figure 11-6, where any of the red RAM blocks can go into any of the red
cache block frames.

The problem with fully associative mapping is that if you want to retrieve
a specific block from the cache, you have to check the tag of every single block
frame in the entire cache because the desired block could be in any of the
frames. Since large caches can have thousands of block frames, this tag
searching can add considerable delay (latency) to a fetch. Furthermore, the
larger the cache, the worse the delay gets, since there are more block frames
and hence more block tags to check on each fetch.
224 Chapter 11

Direct Mapping
Another, more popular way of organizing the cache is to use direct mapping.
In a direct-mapped cache, each block frame can cache only a certain subset of
the blocks in main memory.

Figure 11-6: Fully associative mapping

In Figure 11-7, each of the red blocks (blocks 0, 8, and 16) can be
cached only in the red block frame (frame 0). Likewise, blocks 1, 9, and 17
can be cached only in frame 1, blocks 2, 10, and 18 can be cached only in
frame 2, and so on. Hopefully, the pattern here is apparent: Each frame
caches every eighth block of main memory. As a result, the potential number
of locations for any one block is greatly narrowed, and therefore the number of
tags that must be checked on each fetch is greatly reduced. For example,
if the CPU needs a byte from blocks 0, 8, or 16, it knows that it only has to check
the tag associated with frame 0 to determine if the desired block is in the
cache and to retrieve it if it is. This is much faster and more efficient than
checking every frame in the cache.

There are some drawbacks to this scheme, though. For instance,
what if blocks 0 to 3 and 8 to 11 combine to form an eight-block working set
that the CPU wants to load into the cache and work on for a while? The
cache is eight blocks long, but since it’s direct-mapped, it can only store
four of these particular blocks at a time. Remember, blocks 0 and 8 have
to go in the same frame, as do blocks 1 and 9, 2 and 10, and 3 and 11.
As a result, the CPU must load only four blocks of this eight-block set at
a time, and swap them in and out as it works on different parts of the set.
If the CPU wants to work on this whole eight-block set for a long time,
that could mean a lot of swapping. Meanwhile, half of the cache is going
completely unused! While direct-mapped caches are almost always faster

RAM

L1 Cache

Block Frames

Blocks

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Unders tanding Caching and Performance 225

than fully associative caches due to the shortened amount of time it
takes to locate a cached block, they can still be inefficient under some
circumstances.

Figure 11-7: Direct mapping

Note that the kind of situation described here, where the CPU would
like to store multiple blocks but it can’t because they all require the same
frame, is called a collision. In the preceding example, blocks 0 and 8 are said
to collide, since they both want to fit into frame 0 but can’t. Misses that result
from such collisions are called conflict misses, the second of the three types of
cache miss that I mentioned earlier.

N-Way Set Associative Mapping

One way to get some of the benefits of direct-mapped caches while lessening
the amount of cache space wasted due to collisions is to restrict the caching
of main memory blocks to a subset of the available cache frames. This tech-
nique is called set associative mapping, and a few popular implementations of it
are described below.

Four-Way Set Associative Mapping
To see an example of what it means to restrict main memory blocks in a
subset of available cache frames, take a look at the Figure 11-8, which
illustrates four-way set associative mapping.

In Figure 11-8, any of the red blocks can go anywhere in the red set of
frames (set 0) and any of the light yellow blocks can go anywhere in the light
yellow set of frames (set 1). Think of the four-way associative cache like this:
You took a fully associative cache and cut it in two, restricting half the main
memory blocks to one side and half the main memory blocks to the other.

RAM

L1 Cache

Block Frames

Blocks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7
226 Chapter 11

Figure 11-8: Four-way set associative mapping

This way, the odds of a collision are greatly reduced versus the direct-mapped
cache, but you still don’t have to search all the tags on every fetch like you
did with the fully associative cache. For any given fetch, you need search only
a single, four-block set to find the block you’re looking for, which in this case
amounts to half the cache.

The cache pictured in Figure 11-8 is said to be four-way set associative
because the cache is divided into sets of four frames each. Since this cache
has only eight frames, it can accommodate only two four-frame sets. A larger
cache could accommodate more four-frame sets, reducing the odds of a
collision even more.

Figure 11-9 shows a four-way set associative cache like the one in
Figure 11-8, but with three sets instead of two. Notice that there are fewer
red main memory blocks competing for space in set 0, which means lower
odds of a collision.

In addition to its decreased odds of a collision, a four-way set associative
cache has a low access latency because the number of frames that must be
searched for a block is limited. Since all the sets consist of exactly four frames,
no matter how large the cache gets, you’ll only ever have to search through
four frames (or one full set) to find any given block. This means that as the
cache gets larger and the number of sets that it can accommodate increases,
the tag searches become more efficient. Think about it. In a cache with three
sets, only one-third of the cache (or one set) needs to be searched for a given
block. In a cache with four sets, only one-fourth of the cache is searched.
In a cache with one hundred four-block sets, only one-hundredth of the
cache needs to be searched. The relative search efficiency scales with
the cache size.

RAM

L1 Cache

Block Frames

Blocks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1
Unders tanding Caching and Performance 227

Figure 11-9: Four-way set associative mapping with three block frames

Two-Way Set Associative Mapping

Another way to increase the number of sets in the cache without actually
increasing the cache size is to reduce the number of blocks in each set.
Check out Figure 11-10, which shows a two-way set associative cache.

Figure 11-10: Two-way set associative mapping

RAM

L1 Cache

Block Frames

Blocks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2

RAM

L1 Cache

Block Frames

Blocks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3
228 Chapter 11

To get a better idea of what’s going on, let’s compare the two-way asso-
ciative cache to both the direct-mapped and the four-way cache. For the sake
of comparison, assume that the cache size and the memory size both stay
constant. And as you read the comparison, keep in mind that since each
increase in the level of associativity (i.e., from two-way to four-way, or from
four-way to eight-way) also increases the number of tags that must be checked
in order to locate a specific block, an increase in associativity also means an
increase in the cache’s latency.

Two-Way vs. Direct-Mapped
With the two-way cache, the number of potential collisions (and hence the
miss rate) is reduced compared to the direct-mapped scheme. However,
the number of tags that must be searched for each fetch is twice as high.
Depending on the relative sizes of the cache and main memory, this may or
may not increase the cache’s overall latency to the point that the decreased
conflict miss rate is worth it.

Two-Way vs. Four-Way
Though a two-way cache’s latency is less than that of a four-way cache, its
number of potential collisions (and hence its miss rate) is higher. Just as with
the preceding comparison, how a two-way associative cache compares to a
four-way associative cache depends on just how much latency the four-way
cache’s increase in associativity ends up costing versus the decrease in
conflict miss rate.

Associativity: Conclusions
In general, it turns out that when you factor in current technological
conditions (the speed of tag RAM, the range of sizes that most caches fall
into, and so on), some level of associativity less than or equal to eight-way
turns out to be optimal for most caches. Any more than eight-way associativity
and the cache’s latency is increased so much that the decrease in miss rate
isn’t worth it. Any less than two-way associativity and the number of collisions
often increases the miss rate to the point that the decrease in latency isn’t
worth it. There are some direct-mapped caches out there, though.

Before I conclude the discussion of associativity, there are two minor
bits of information that I should include for the sake of completeness. First,
though you’ve probably already figured it out, a direct-mapped cache is simply
a one-way set associative cache, and a fully associative cache is an n-way set
associative cache, where n is equal to the total number of blocks in the cache.

Second, the cache placement formula, which enables you to compute
the set in which an arbitrary block of memory should be stored in an n-way
associative cache, is as follows:

(block_address) MOD (number_of_sets_in_cache)
Unders tanding Caching and Performance 229

I recommend trying out this formula on some of the preceding examples.
It might seem like a boring and pointless exercise, but if you take five minutes
and place a few blocks using this simple formula in conjunction with the
preceding diagrams, everything I’ve said in this section will really fall into
place for you in a “big picture” kind of way. And it’s actually more fun to do
that it probably sounds.

Temporal and Spatial Locality Revisited: Replacement/Eviction
Policies and Block Sizes

Caches can increase the amount of benefit they derive from temporal locality
by implementing an intelligent replacement policy (also called, conversely, an
eviction policy). A replacement policy dictates which of the blocks currently in
the cache will be replaced by any new block that gets fetched in. (Or, another
way of putting it is that an eviction policy dictates which of the blocks currently
in the cache will be evicted in order to make room for any new blocks that
are fetched in.)

Types of Replacement/Eviction Policies
One way to implement a replacement policy would be to pick a block at
random to be replaced. Other possible replacement policies would be a
FIFO policy, a LIFO policy, or some other such variation. However, none of
these policies take into account the fact that any block that was recently used
is likely to be used again soon. With these simple policies, you wind up evicting
blocks that will be used again shortly, thereby increasing the cache miss rate
and eating up valuable memory bus bandwidth with a bunch of unnecessary
fetches.

The ideal replacement policy would be one that makes room for an
incoming block by evicting the cache block that is destined to go unused for
the longest period of time. Unfortunately, computer architects haven’t yet
devised a way of infallibly predicting the future, so there’s no way to know for
sure which of the blocks that are currently residing in the cache is the one
that will go the longest time before being accessed again.

Even if you can’t predict the future, you can make an educated guess
based on what you know of the cache’s past behavior. The optimal replace-
ment policy that doesn’t involve predicting the future is to evict the block
that has gone the longest period of time without being used, or the least
recently used (LRU) block. The logic here is that if a block hasn’t been used in
a while, it’s less likely to be part of the current working set than a block that
was more recently used.

An LRU algorithm, though ideal, isn’t quite feasible to implement in
real life. Control logic that checks each cache block to determine which one
is the least recently used not only would add complexity to the cache design,
but such a check would also take up valuable time and thereby add unwanted
latency to each replacement. Most caches wind up implementing some type
of pseudo-LRU algorithm that approximates true LRU by marking blocks as
more and more dirty the longer they sit unused in the cache. When a new
block is fetched into the cache, the dirtiest blocks are the first to be replaced.
230 Chapter 11

Sometimes, blocks that aren’t all that dirty get replaced by newer blocks,
just because there isn’t enough room in the cache to contain the entire
working set. A miss that results when a block containing needed data has
been evicted from the cache due to a lack of cache capacity is called a
capacity miss. This is the third and final type of cache miss.

Block Sizes

In the section on spatial locality I mentioned that storing whole blocks is one
way that caches take advantage of spatial locality of reference. Now that you
know a little more about how caches are organized internally, you can look a
closer at the issue of block size.

You might think that as cache sizes increase, you can take even better
advantage of spatial locality by making block sizes even bigger. Surely fetching
more bytes per block into the cache would decrease the odds that some part
of the working set will be evicted because it resides in a different block. This
is true to some extent, but you have to be careful. If you increase the block
size while keeping the cache size the same, you decrease the number of
blocks that the cache can hold. Fewer blocks in the cache means fewer sets,
and fewer sets means that collisions and therefore misses are more likely.
And of course, with fewer blocks in the cache, the likelihood decreases that
any particular block that the CPU needs will be available in the cache.

The upshot of all this is that smaller block sizes allow you to exercise
more fine-grained control of the cache. You can trace out the boundaries of
a working set with a higher resolution by using smaller cache blocks. If your
cache blocks are too large, you wind up with a lot of wasted cache space,
because many of the blocks will contain only a few bytes from the working
set while the rest is irrelevant data. If you think of this issue in terms of
cache pollution, you can say that large cache blocks are more prone to
pollute the cache with non-reusable data than small cache blocks.

Figure 11-11 shows the memory map we’ve been using, sitting in a cache
with large block sizes.

Figure 11-11: Memory map with large block sizes
Unders tanding Caching and Performance 231

Figure 11-12 shows the same map, but with the block sizes decreased.
Notice how much more control the smaller blocks allow over cache pollution.
The smaller cache blocks have a higher average ratio of red to blue in each
block, which means that it’s easier to keep the precise contours of the work-
ing set in the cache.

Figure 11-12: Memory map with small block sizes

The other problems with large block sizes are bandwidth related. The
larger the block size, the more data is fetched with each load, so large block
sizes can really eat up memory bus bandwidth, especially if the miss rate is
high. A system therefore needs plenty of bandwidth if it’s going to make
good use of large cache blocks. Otherwise, the increase in bus traffic can
increase the amount of time it takes to fetch a cache block from memory,
thereby adding latency to the cache.

Write Policies: Write-Through vs. Write-Back

So far, this entire chapter has dealt with only one type of memory traffic:
loads, or requests for data from memory. I’ve talked only about loads because
they make up the vast majority of memory traffic. The remainder of memory
traffic is made up of stores, which in simple uniprocessor systems are much
easier to deal with. In this section, I’ll explain how to handle stores in single-
processor systems with just an L1. When you throw in more caches and multiple
processors, things get more complicated than I want to go into here.

Once a retrieved piece of data is modified by the CPU, it must be stored
or written back out to main memory so that the rest of the system has access
to the most up-to-date version of it.

There are two ways to deal with such writes to memory. The first way is
to immediately update all the copies of the modified data in each level of
the cache hierarchy to reflect the latest changes. A piece of modified data
would be written to both the L1 and main memory so that all of its copies
are current. Such a policy for handling writes is called write-through, since it
writes the modified data through to all levels of the hierarchy.
232 Chapter 11

A write-through policy can be nice for multiprocessor and I/O–intensive
system designs, since multiple clients are reading from memory at once and
all need the most current data available. However, the multiple updates per
write required by this policy can greatly increase memory traffic. For each
store, the system must update multiple copies of the modified data. If there’s
a large amount of data that has been modified, this increased write activity
could eat up quite a bit of memory bandwidth that could be used for the
more important load traffic.

The alternative to write through is write-back, and it can potentially result
in less memory traffic. With a write-back policy, changes propagate down to
the lower levels of the hierarchy as cache blocks are evicted from the higher
levels. An updated piece of data in an L1 cache block will not be updated in
main memory until that block is evicted from the L1. The trade-off for write-
back is that it’s more complex to keep the multiple copies of the data in sync,
especially in a multiprocessor system.

Conclusions

There is much, much more that can be said about caching; this chapter has
covered only the basic concepts. As main memory moves farther away from
the CPU in terms of CPU clock cycles, the importance of caching will only
increase. For modern microprocessor systems, larger on-die caches have
turned out to be one of the simplest and most effective uses for the increased
transistor budgets that new manufacturing process technologies afford.
Unders tanding Caching and Performance 233

I N T E L ’ S P E N T I U M M , C O R E
D U O , A N D C O R E 2 D U O

In March 2003, Intel officially launched the Pentium M,
a new x86 processor designed specifically for the mobile
computing market. The Pentium M was a success from
both performance and power efficiency perspectives,
with the result that the immediate successor to the
Pentium M, called Core Duo, made its way out of the
portable niche and into desktop computers.

Core Duo’s combination of high performance and low power consump-
tion made it clearly superior to processors based on Intel’s aging Netburst
microarchitecture, and in the fall of 2005, Intel announced plans to unify its
entire x86 product line, from portables all the way up to servers, on the follow-
up to Core Duo: a brand new, power-efficient, 64-bit microarchitecture called
Core. The desktop implementation of Core is the new Core 2 Duo processor
line from Intel, while server products based on Core are sold under the
venerable Xeon brand.

This chapter covers the major design aspects of the Pentium M, Core
Duo, and Core 2 Duo, comparing the microarchitectures of these three
related processors with the Intel processors covered in previous chapters.
I’ll talk about the major new features common to all three designs, like
micro-ops fusion and the improved branch predictor, as well as each
processor’s individual innovations. Finally, I’ll discuss memory instruction
reordering, and I’ll explain how a feature called memory disambiguation
enables Core 2 to perform a kind of speculative execution on a processor’s
outgoing results stream.

Code Names and Brand Names

As far back as the launch of the Pentium 4 line, Intel began emphasizing
the difference between microarchitecture and implementation. This differ-
ence, which is discussed in the section “Processor Organization and Core
Microarchitecture” on page 247 has taken on new importance with the intro-
duction of multi-core processors like the Core Duo. A particular processor
from Intel might have three different names associated with it: a brand name
for the processor itself (e.g., Pentium 4), a separate brand name for the micro-
architecture that the processor implements (e.g., Netburst), and a commonly
used code name that refers to a particular variant (e.g., Prescott) within a
larger family of closely related microarchitectures that share a brand name.
(Willamette, Northwood, Prescott, and Cedar Mill are all variants of Intel’s
Netburst microarchitecture that are used in different Pentium 4–branded
processors.) The reader (and the author of computer books) is therefore
forced to juggle three different commonly used names when referring to any
one processor: the microarchitecture’s code name, the microarchitecture’s
brand name, and the processor’s brand name.

The processors described in this chapter are commonly known by the
code names that Intel assigned to their microarchitectures prior to their
launch. The first version of the Pentium M was called Banias, and a later
revision was called Dothan; the code name for Core Duo was Yonah. The code
name situation for Core 2 Duo is a bit complicated, and will be unraveled in
the appropriate section. These code names are still used periodically by Intel
and others, so you’ll often need to be familiar with them in order to know
which design is being discussed in a particular article or white paper.

Figure 12-1 should help you understand and keep track of the different
names and codenames used throughout this chapter. Note that the related
information for the Pentium 4 is included for reference.

Figure 12-1: Code names and official brand names for some recent Intel architectures and
implementations

Pentium 4 Pentium M Core Duo/Solo

Willamette, Prescott, etc. Banias, Dothan Yonah Merom/Conroe/Woodcrest

Core 2 Duo/Solo

Netburst Intel Core
Microarchitecture

Intel Original Mobile
Microarchitecture

Microarchitecture
Code Name

Microarchitecture
Brand Name

Processor
Brand Name
236 Chapter 12

To forestall any potential confusion, I have avoided the use of both the
brand names and the code names for the microarchitectures under discussion.
Instead, I typically employ the official brand name that Intel has given the
desktop processor (as opposed to the mobile or server processor) that imple-
ments a particular microarchitecture.

The Rise of Power-Efficient Computing

Although the so-called “mobile revolution” had clearly arrived by the time
Intel introduced the Pentium M in 2003, the previous years’ rapid growth in
portable computer sales wasn’t the only reason Intel and other processor
manufacturers had begun to pay serious attention to the power dissipation of
their chips. As transistor sizes steadily shrank and designers became able to
cram more power-hungry circuits into each square millimeter of a chip’s
surface area, a new barrier to processor performance loomed on the near
horizon: the power wall.

Power wall is a term used by Intel to describe the point at which its chips’
power density (the number of watts dissipated per unit area) began to seriously
limit further integration and clockspeed scaling. The general idea behind
the power wall is straightforward. Though the explanation here leaves out a
number of factors like the effects of per-device capacitance and supply voltage,
it should nonetheless give you enough of a handle on the phenomenon that
you can understand some of the major design decisions behind the processors
covered in this chapter.

Power Density

The amount of power that a chip dissipates per unit area is called its power
density, and there are two types of power density that concern processor
architects: dynamic power density and static power density.

Dynamic Power Density

Each transistor on a chip dissipates a small amount of power when it is
switched, and transistors that are switched rapidly dissipate more power than
transistors that are switched slowly. The total amount of power dissipated per
unit area due to switching of a chip’s transistors is called dynamic power density.
There are two factors that work together to cause an increase in dynamic
power density: clockspeed and transistor density.

Increasing a processor’s clockspeed involves switching its transistors
more rapidly, and as I just mentioned, transistors that are switched more
rapidly dissipate more power. Therefore, as a processor’s clockspeed rises, so
does its dynamic power density, because each of those rapidly switching tran-
sistors contributes more to the device’s total power dissipation. You can also
increase a chip’s dynamic power density by cramming more transistors into
the same amount of surface area.
In te l ’ s Pent ium M, Core Duo, and Core 2 Duo 237

Figure 12-2 illustrates how transistor density and clockspeed work
together to increase dynamic power density. As the clockspeed of the device
and the number of transistors per unit area rise, so does the overall dynamic
power density.

Figure 12-2: Dynamic power density

Static Power Density

In addition to clockspeed-related increases in dynamic power density, chip
designers must also contend with the fact that even transistors that aren’t
switching will still leak current during idle periods, much like how a faucet
that is shut off can still leak water if the water pressure behind it is high
enough. This leakage current causes an idle transistor to constantly dissipate
a trace amount of power. The amount of power dissipated per unit area
due to leakage current is called static power density.

Transistors leak more current as they get smaller, and consequently
static power densities begin to rise across the chip when more transistors
are crammed into the same amount of space. Thus even relatively low clock-
speed devices with very small transistor sizes are still subject to increases in
power density if leakage current is not controlled. If a silicon device’s
overall power density gets high enough, it will begin to overheat and will
eventually fail entirely. Thus it’s critical that designers of highly integrated
devices like modern x86 processors take power efficiency into account when
designing a new microarchitecture.

Power density is a major, growing concern for every type of micro-
processor, regardless of the type of computer in which the processor is

Transistor Density

Cl
oc

ks
pe

ed

Power
Density
238 Chapter 12

intended to be used. The same types of power-aware design decisions
that are important for a mobile processor are now just as critical for a
server processor.

The Pentium M

In order to meet the new challenges posed by the power-efficient computing
paradigm, Intel’s Israel-based design team drew on the older, time-tested P6
microarchitecture as the basis for its new low-power design, the Pentium M.
The Pentium M takes the overall pipeline organization and layout of the P6
in its Pentium III incarnation and builds on it substantially with a number of
innovations, allowing it to greatly exceed its predecessor in both power
efficiency and raw performance (see Table 12-1).

Most of the Pentium M’s new features are in its front end, specifically in
its fetch, decode, and branch-prediction hardware.

The Fetch Phase
As I explained in Chapter 5, the original P6 processor fetches one 16-byte
instruction packet per cycle from the I-cache into a buffer that’s two instruc-
tion packets (or 32 bytes) deep. (This fetch buffer is roughly analogous to the
PowerPC instruction queue [IQ] described in previous chapters.) From the
fetch buffer, x86 instructions can move at a rate of up to three instructions
per cycle into the P6 core’s three decoders. This fetch and decode process
is illustrated in Figure 12-3.

On the Pentium M and its immediate successor, Core Duo, the fetch
buffer has been widened to 64 bytes. Thus the front end’s predecode hard-
ware can hold and examine up to four 16-byte instruction packets at a time.
This deeper buffer, depicted in Figure 12-4, is necessary to keep the newer
design’s much improved decode hardware (described later) from starving.

A second version of the Pentium M, commonly known by its code name,
Dothan, modifies this 64-byte fetch buffer to do double duty as a hardware
loop buffer. This fetch/loop buffer combination is also used in the Pentium
M’s successor, the Core Duo.

Table 12-1: Features of the Pentium M

Introduction Date March 12, 2003

Process 0.13 micron

Transistor Count 77 million

Clock Speed at Introduction 1.3 to 1.6 GHz

L1 Cache Size 32KB instruction, 32KB data

L2 Cache Size (on-die) 1MB
In te l ’ s Pent ium M, Core Duo, and Core 2 Duo 239

Figure 12-3: The P6 architecture’s fetch and decode hardware

The Hardware Loop Buffer

A hardware loop buffer caches the block of instructions that is located inside a
program loop. Because the instructions inside a loop are repeated many times,
storing them in a front-end buffer keeps the processor from having to re-fetch
them on each loop iteration. Thus the loop buffer is a feature that saves power
because it cuts down on the number of accesses to the I-cache and to the
branch prediction unit’s branch target buffer.

The Decode Phase: Micro-ops Fusion
One of the most important ways that Intel’s Pentium M architects were able
to get more performance out of the P6 architecture was by improving on the
predecessor design’s decode rate.

You’ll recall from Chapter 5 that each of the P6’s two simple/fast decoders
can output a maximum of one micro-op per cycle to the micro-op queue,
for a total of two micro-ops per cycle. All instructions that translate into more
than one micro-op must use the single complex/slow decoder, which can
output up to four micro-ops per cycle. Thus, the P6 core’s decode hardware
can output a maximum of six micro-ops per cycle to its micro-op queue.

Simple Decoder

Simple Decoder

Complex
Decoder

Microcode
EngineTranslate/

x86 Decode

6-entry
Micro-op
Queue

40-entry
Reorder Buffer

(ROB)

x86 instruction path

micro-op instruction path

2 x 16-byte
Fetch Buffer

L1 Instruction Cache
240 Chapter 12

Figure 12-4: The Pentium M’s fetch and decode hardware

For certain types of operations, especially memory operations, the P6’s
decoding scheme can cause a serious bottleneck. As I’ll discuss in more
detail later, x86 store instructions and a specific category of load instructions
decode into two micro-ops, which means that most x86 memory accesses
must use the complex/slow decoder. During bursts of memory instructions,
the complex/slow decoder becomes backed up with work while the other
two decoders sit idle. At such times, the P6’s decoding hardware decodes
only two micro-ops per cycle, a number far short of its peak decode rate,
six micro-ops per cycle.

The Pentium M’s redesigned decoding unit contains a new feature
called micro-ops fusion that eliminates this bottleneck for memory accesses
and enables the processor to increase the number of x86 instructions per
cycle that it can convert to micro-ops. The Pentium M’s two simple/fast decod-
ers are able to take certain x86 instructions that normally translate into two
micro-ops and translate them into a single fused micro-op. These two decoders
can send either one micro-op per cycle or one fused micro-op per cycle to
the micro-op queue, as depicted in Figure 12-5. Because both simple and fast
decoders can now process these formerly two–micro-op memory instructions,
the Pentium M’s front end can actually achieve the maximum decode rate
of six micro-ops per cycle during long stretches of memory traffic.

Simple Decoder

Simple Decoder

Complex
Decoder

Microcode
EngineTranslate/

x86 Decode

Micro-op
Queue

Reorder Buffer
(ROB)

4 x 16-byte
Fetch Buffer

L1 Instruction Cache

x86 instruction path

micro-op instruction path

fused micro-op instruction path
In te l ’ s Pent ium M, Core Duo, and Core 2 Duo 241

Figure 12-5: Micro-ops fusion on the Pentium M

From the micro-op queue, each fused micro-op moves on to the instruc-
tion window, where it is assigned to a single ROB and RS entry and tracked
just like a normal micro-op through the rest of the Pentium M’s pipeline.
Note that the Pentium M’s back end treats the two constituent parts of a fused
micro-op as independent of each other for the purposes of issuing and exe-
cution. Thus the two micro-ops that make up a fused micro-op can issue in
parallel through two different issue ports or serially through the same port,
whichever is appropriate. Once the two micro-ops have completed execution,
they’re committed together as a single fused micro-op.

The two types of instructions that can be translated into fused micro-ops
are the store instruction type and the load-op instruction type.

Fused Stores

Store instructions on x86 processors, including not only Intel processors but
also those from AMD, are broken down during the decode phase into two
micro-ops: a store-address micro-op and a store-data micro-op. The store-
address micro-op is the instruction that tells the address generation hardware
to calculate the address in memory where the data is to be stored. This micro-
op is sent to the store-address execution unit in the back end’s load-store unit
(LSU) for execution. The store-data micro-op is the instruction that writes
the data to be stored into the outgoing store-data buffer. From the store data
buffer, the data will be written out to memory when the store instruction
commits; this micro-op is executed by the store-data execution unit, which is
also located in the LSU.

Simple Decoder

Simple Decoder

Complex
Decoder

Micro-op
Queue

Variable-length x86 instruction

Micro-fused store

Micro-fused load-op

Micro-op
242 Chapter 12

The Pentium M’s instruction decoding hardware decodes the store
operation into two separate micro-ops, but it then fuses these two micro-ops
together before writing them to a single, shared entry in the micro-op queue.
As noted earlier, the instructions remain fused until they’re issued through
an issue port to the actual store unit, at which point they’re treated separately
by the back end. Because the store-address and store-data operations are
inherently parallel and are performed by two separate execution units on
two separate issue ports, these two micro-ops can issue and execute in
parallel—the data can be written to the store buffer at the same time that
the store address is being calculated. When both micro-ops have completed
execution, the core’s commitment unit again treats them as if they are fused.

Fused Loads

A load-op, or read-modify instruction, is exactly what it sounds like: a two-part
instruction that loads data from memory into a register and then performs
an operation on that data. Such instructions are broken down by the decod-
ing hardware into two micro-ops: a load micro-op that’s issued to the load
execution unit and is responsible for calculating the source address and
then loading the needed data, and a second micro-op that performs some
type of operation on the loaded data and is executed by the appropriate
execution unit.

Load-op instructions are treated in much the same way as store instruc-
tions with respect to decoding, fusion, and execution. The load micro-op is
fused with the second micro-op, and the two are tracked as a single micro-op
in the processor’s instruction window. As with the fused stores described
earlier, the two constituent parts of the fused micro-op issue and execute
separately before being committed together.

Note that unlike the store-address and store-data micro-ops that make up
a fused store, the two parts of a fused load-op instruction are inherently serial,
because the load operation must be executed first. Thus the two parts of the
fused load-op must be executed in sequence.

The Impact of Micro-ops Fusion

Intel claims that micro-ops fusion on the Pentium M reduces the number of
micro-ops in the instruction window by over 10 percent. Fewer micro-ops in-
flight means that a larger number of instructions can be tracked with the same
number of ROB and RS entries. Thus the Pentium M’s re-order, issue, and
commit width is effectively larger than the number of ROB and RS entries
alone would suggest. The end result is that, compared to its predecessors,
the Pentium M can bring out more performance from the same amount of
instruction tracking hardware, a feature that gives the processor more
performance per watt of power dissipated.

As you might expect, the Pentium M sees the most benefit from micro-
ops fusion during sustained bursts of memory operations. During long
stretches of memory traffic, all three of the Pentium M’s decoders are able
to work in parallel to process incoming memory instructions, thereby tripling
the decode bandwidth of the older P6 core. Intel estimates that this improved
In te l ’ s Pent ium M, Core Duo, and Core 2 Duo 243

memory instruction decode bandwidth translates into a 5 percent perform-
ance boost for integer code and a 9 percent boost for floating-point code,
the former benefiting more from store fusion and the latter benefiting
equally from store and load-op fusion.

NOTE You may have noticed that the Pentium M’s micro-ops fusion feature works remarkably
like the PowerPC 970’s instruction grouping scheme, insofar as both processors bind
translated instructions together in the decode phase before dispatching them as a group
to the back end. The analogy between the Pentium M’s micro-ops fusion feature and the
970’s group dispatch feature isn’t perfect, but it is striking, and both features have a
similarly positive effect on performance and power consumption.

Branch Prediction

As you learned in “Caching Basics” on page 215, the ever-growing distance
(in CPU cycles) between main memory and the CPU means that precious
transistor resources spent on branch prediction hardware continue to give
an ever larger return on investment. For reasons of both performance and
power efficiency, Intel spent quite a few transistors on the Pentium M’s
branch predictor.

The Pentium M’s branch predictor is one place where the newer design
borrows from the Pentium 4 instead of the P6. The Pentium M adopts the
Pentium 4’s already powerful branch prediction scheme and expands on it
by adding two new features: a loop detector and an indirect predictor.

The Loop Detector

One of the most common types of branches that a processor encounters is
the exit condition of a loop. In fact, loops are so common that the static
method of branch prediction, in which all branches are assumed to be loop
exit conditions that evaluate to taken, works reasonably well for processors
with shallow pipelines.

One problem with static branch predictors is that they always make a
wrong prediction on the final iteration of the loop—the iteration on which
the branch evaluates to not taken—thereby forcing a pipeline stall as the
processor recovers from the erroneous prediction. The other, more important
problem with static prediction is that it works poorly for non-loop branches,
like standard if-then conditionals. In such branches, a static prediction of
taken is roughly the equivalent of a coin toss.

Dynamic predictors, like the Pentium 4’s branch predictor, fix this
shortcoming by keeping track of the execution history of a particular branch
instruction in order to give the processor a better idea of what its outcome
on the current pass will probably be. The bigger the table used to track the
branch’s history, the more data the branch predictor has to work with and
the more accurate its predictions can be. However, even a relatively sizable
branch history table (BHT) like that of the Pentium 4 doesn’t have enough
space to store all the relevant execution history information on the loop
244 Chapter 12

branches, since they tend to take a very large number of iterations. Therefore
loops that go through many iterations will always be mispredicted by a
standard dynamic branch predictor.

The Pentium M’s loop detector addresses this problem by analyzing the
branches as they execute, in order to identify which branches are loop exit
conditions. For each branch that the detector thinks is a loop exit condition,
the branch prediction hardware initializes a special set of counters in the
predictor table to keep track of how many times the loop actually iterates.
If loops with even fairly large numbers of iterations always tend to iterate the
same number of times, then the Pentium M’s branch predictor can predict
their behavior with 100 percent accuracy.

In sum, the loop detector plugs into the Pentium M’s P4-style branch
predictor and augments it by providing it with extra, more specialized data
on the loops of the currently executing program.

The Indirect Predictor

The second type of specialized branch predictor that the Pentium M uses is
the indirect predictor. As you learned in Chapter 1, branches come in two
flavors: direct and indirect. Direct branches have the branch target explicitly
specified in the instruction, which means that the branch target is fixed at
load time. Indirect branches, on the other hand, have to load the branch
target from a register, so they can have multiple potential targets. Storing
these potential targets is the function of the branch target buffer (BTB)
described in Chapter 5.

Direct branches are the easiest to predict and can often be predicted
with upward of 97 percent accuracy. Indirect branches, in contrast, are
notoriously difficult to predict, and some research puts indirect branch
prediction using the standard BTB method at around 75 percent accuracy.

The Pentium M’s indirect predictor works a little like the branch history
table that I’ve described, but instead of storing information about whether or
not a particular branch was taken the past few times it was executed, it stores
information about each indirect branch’s favorite target addresses—the
targets to which a particular branch usually likes to jump and the conditions
under which it likes to jump to them. So the Pentium M’s indirect branch
predictor knows that a particular indirect branch in the BHT with a specific
set of favorite target addresses stored in the BTB tends to jump to one target
address under this set of conditions, while under that set of conditions, it likes
to jump to another.

Intel claims that the combination of the loop detector and indirect
branch predictor gives the Pentium M a 20 percent increase in overall branch
prediction accuracy, resulting in a 7 percent real performance increase.

Improved branch prediction gives the Pentium M a leg up not only in
performance but also in power efficiency. Because of its improved branch
prediction capabilities, the Pentium M wastes fewer cycles and less energy
speculatively executing code that it will then have to throw away once it
learns that it mispredicted a branch.
In te l ’ s Pent ium M, Core Duo, and Core 2 Duo 245

The Stack Execution Unit
Another feature that Intel introduced with the Pentium M is the stack
execution unit, a piece of hardware that’s designed to reduce the number of
in-flight micro-ops that the processor needs to keep track of.

The x86 ISA includes stack-manipulation instructions like pop, push, ret,
and call, for use in passing parameters to functions in function calls. During
the course of their execution, these instructions update x86’s dedicated stack
pointer register, ESP. In the Netburst and P6 microarchitectures, this update was
carried out by a special micro-op, which was generated by the decoder and
charged with using the integer execution units to update ESP by adding to it
or subtracting from it as necessary.

The Pentium M’s dedicated stack execution unit eliminates these special
ESP-updating micro-ops by monitoring the decoder’s instruction stream for
incoming stack instructions and keeping track of those instructions’ changes
to ESP. Updates to ESP are handled by a dedicated adder attached to the stack
execution unit instead of by the integer execution units, as in previous designs.
Because the Pentium M’s front end has dedicated hardware for tracking the
state of ESP and keeping it updated, there’s no need to issue those extra ESP-
related micro-ops to the back end.

This technique has a few benefits. The obvious benefit is that it reduces
the number of in-flight micro-ops, which means fewer micro-ops and less
power consumed per task. Then, because there are fewer integer micro-ops
in the back end, the integer execution units are free to process other instruc-
tions, since they don’t have to deal with the stack-related ESP updates.

Pipeline and Back End
The exact length of the Pentium M’s pipeline has never been publicly
disclosed, but Intel has stated that it is slightly longer the older P6’s 12-stage
pipeline. One or two new pipeline stages were added to the Pentium M’s
front end phase for timing purposes, with the result that the newer processor
can run at a higher clockspeed than its predecessor.

Details of the Pentium M’s back end are also scarce, but it is alleged to be
substantially the same as that of the Pentium III. (See Chapter 5 for details of
the PIII’s back end.)

Summary: The Pentium M in Historical Context
The Pentium M started out as a processor intended solely for mobile devices,
but it soon became clear to Intel that this much-improved version of the P6
microarchitecture had far more performance-per-watt potential than the
aging, high-clockspeed Netburst microarchitecture that was currently at the
heart of the company’s desktop and server offerings. This being the case,
Intel’s Israeli team began working on an improved version of the Pentium M
that was intended for use outside the mobile market.
246 Chapter 12

Core Duo/Solo

The successor to the Pentium M (almost as widely known in computing
circles by its code name, Yonah, as by its official name, Core Duo/Solo) builds
on the Pentium M’s microarchitecture and brings it to new levels of per-
formance and power efficiency (see Table 12-2). However, Core Duo is
mainly an evolutionary, transitional design that sits between the Pentium M
and the more radically improved Core 2 Duo described in the next major
section of this chapter. This section will briefly cover the major ways that
Core Duo improves on the Pentium M before moving on to the next
section’s more detailed coverage of Core 2 Duo.

Intel’s Line Goes Multi-Core

The Intel microarchitectures covered in previous chapters, especially the
Pentium 4’s Netburst microarchitecture, were designed so that their perform-
ance scaled primarily with clockspeed increases. But as you learned in the
earlier section on power density, the viability of this approach has been
rapidly diminishing in conjunction with shrinking transistor sizes. Instead
of trying to run a single narrow instruction stream faster by increasing the
processor’s clockspeed, multi-core processors like Core Duo are designed to
exploit Moore’s Curves by integrating multiple copies of a microarchitecture
onto a single piece of silicon in order to execute multiple instruction streams
in parallel.

Processor Organization and Core Microarchitecture

Thus far, the discussions of microprocessor organization in this book have
placed all of a processor’s different components into a few basic categories.
My descriptions and illustrations depict processors as being divided primarily
into a front end and a back end, with each of these two main divisions consist-
ing of various high-level functional blocks (decode unit, branch-prediction
unit, integer unit, load-store unit, etc.), which are themselves made up of
more specialized units (simple/fast decoders, complex integer execution
unit, floating-point ALU, store-address unit, etc.).

Table 12-2: Features of the Core Solo/Duo

Introduction Date January 5, 2006

Process 65 nanometer

Transistor Count 151 million

Clock Speed at Introduction 1.66 to 2.33 GHz

L1 Cache Size 32KB instruction, 32KB data

L2 Cache Size (on-die) 2MB

x86 ISA Extensions SSE3
In te l ’ s Pent ium M, Core Duo, and Core 2 Duo 247

All of these different levels of organization come together to comprise a
processor’s core microarchitecture, or simply core, for short. Note that a processor’s
core is typically understood to include the L1 cache, as well. Thus you’ll often
encounter references in computing literature to the P6 core, the Netburst core,
the Pentium core, and so on, all of which are short-hand ways of referring to a
particular combination of L1 cache, front-end, and back-end hardware as
distinct from the other components on the processor die (for example, the
L2 cache or less commonly integrated components like an L3 cache or a
memory controller).

Figure 12-6 shows the floor plan of an Intel Pentium M processor. This is
a picture of the actual processor die, with the core microarchitecture marked
and distinguished from the L2 cache.

Figure 12-6: The floor plan of an Intel Pentium M processor

NOTE The common use of the term core almost certainly explains Intel’s decision to use the
name Core in the branding of its new microarchitectures and their implementations.

Often, it’s also useful to draw a distinction between a microarchitecture—
conceived more abstractly as a particular arrangement of front end and back
end hardware—and one or more specific implementations of that microarchi-
tecture. These implementations take the form of distinct microprocessor
products that are either based on the same microarchitecture (as in the
case of the Core 2 Duo E6300 [2MB of L2 cache] and Core 2 Extreme X6800
[4MB of L2 cache], both of which implement the Intel Core microarchitec-
ture) or on closely related microarchitectures that can be grouped together
into the same family (for example, the original Pentium 4 and the Pentium 4
with HyperThreading, both of which implement variants of the Netburst
microarchitecture).

L2 Cache Core
248 Chapter 12

Multiprocessing and Chip Multiprocessing

For years, server, workstation, and even some consumer computers have
used a technique called multiprocessing to increase the amount of execution
hardware available to operating systems and applications. In a nutshell,
multiprocessing is simply the integration of more than one processor core
into a single computer system. In a traditional multiprocessor system, separate
processor cores are implemented on separate pieces of silicon and are
packaged as separate integrated circuits, as shown in Figure 12-7.

Figure 12-7: A multiprocessor computer

However, the semiconductor industry has now moved to a technique
called chip multiprocessing (CMP), where two or more processor cores are
integrated onto the same silicon die. Under the CMP paradigm, the term
microprocessor now refers to an integrated circuit that implements multiple
copies of a core architecture on a single silicon die. Figure 12-8 is an abstract
representation of a CMP computer containing what is commonly called a
dual-core processor, a processor with two cores on the same die.

Different kinds of multi-core processors are often distinguished by their
levels of integration. Some multi-core processors, like Intel’s Netburst-based
Pentium D, have cores that share only a silicon substrate—each core has a
private L2 cache, and all inter-core communication buses are off-die. At the
other end of the spectrum is a more highly integrated multi-core processor
like the Core Duo, shown in Figure 12-9.

The two cores that make up the Core Duo each have a private L1 cache,
but they share an L2 cache. The Core Duo also includes some arbitration
logic that helps control access to the shared L2, so that neither core is able
to soak up all the L2 bus bandwidth for itself.
In te l ’ s Pent ium M, Core Duo, and Core 2 Duo 249

Figure 12-8: A chip multiprocessing (CMP) computer

NOTE The dual-core processors in the Intel Core Duo/Solo line are named Core Duo, while
their smaller, cheaper, less powerful single-core counterparts are named Core Solo.

The shared L2 offers a number of advantages, not the least of which is an
increase in the ability of the two cores to share data without using a bus. If
both cores are using the same working set of code and/or data, then that
working set can be placed in the shared L2 where the cores can easily access
it simultaneously. Core Duo’s shared L2 also saves power, because both cores
use a single, shared bus to access it.

Figure 12-9: The floor plan of an Intel Core Duo processor

L2 Cache

Core 1

Core 2
250 Chapter 12

Core Duo’s Improvements

Core Duo’s architects took the basic microarchitecture of the second version
of the Pentium M, codenamed Dothan, and made a number of improvements
aimed at bringing the design to higher levels of performance and power
efficiency. These improvements are described briefly in the sections here.

Micro-ops Fusion of SSE and SSE2 store and load-op Instructions

On the Pentium M, only x86 and x87 load-op and store instructions can be
micro-fused. All SSE and SSE2 load-op and store instructions must therefore
pass through the Pentium M’s single complex/slow decoder, a situation that
creates a serious bottleneck for 128-bit vector code with lots of memory traffic.

Intel fixed this bottleneck for Core Duo by enabling all three of the new
processor’s decoders to generate fused micro-ops for SSE and SSE2 load-op
and store instructions. Thus Core Duo’s decode phase can send up to three
fused 128-bit load-op and/or store micro-ops per cycle into the micro-op
queue. Because vector code is typically memory-intensive, Core Duo’s ability
to use any of its three decoders to process vector memory instructions is
critical to the design’s improved vector performance.

Micro-ops Fusion and Lamination of SSE and SSE2 Arithmetic Instructions

Even more significant for Core Duo’s vector performance than micro-fused
memory accesses is the fact that Core Duo also expands the use of micro-ops
fusion to encompass 128-bit vector arithmetic instructions. For reasons that
I’ll explain in this chapter’s discussion of Core 2 Duo, most SSE and SSE2
instructions decode into multiple micro-ops (typically from two to four) on
the Pentium III, Pentium 4, Pentium M, and Core Duo. This means that SSE
and SSE2 vector instructions have been bottlenecked at the decode phase on
processors prior to Core Duo because they can only be decoded by the slow/
complex decoder.

On Core Duo, 128-bit SSE and SSE2 vector instructions that decode into
a pair of 64-bit micro-ops can be translated into a single fused micro-op by all
three of the front end’s decoders. Furthermore, vector instructions that
decode into two micro-op pairs (for a total of four micro-ops per instruction)
can be translated by the decoders into a single laminated micro-op. This
laminated micro-op functions like a normal fused micro-op—it breaks apart
into its four constituent micro-ops during the execute phase, but it’s tracked
and committed using a single ROB entry.

Core Duo’s ability to generate fused and laminated micro-ops for SSE
and SSE2 instructions is a crucial part of its superior vector performance.
Not only do lamination and the extension of micro-ops fusion to the SSE
family of instructions improve performance by eliminating a decode bottle-
neck, but these techniques also add to the design’s power efficiency by
enabling it to track more micro-ops using a smaller instruction window.
In te l ’ s Pent ium M, Core Duo, and Core 2 Duo 251

Micro-ops Fusion of Miscellaneous Non-SSE Instructions

Core Duo also supports micro-ops fusion of a few new types of instructions
that had been forced to use the complex/slow decoder in previous designs.
These new instruction types include indirect branch instructions, compare/
test immediate and memory instructions, and some store immediate to
memory instructions. Finally, a handful of other multi-micro-op instructions
had the number of micro-ops into which they decode reduced, freeing up
dispatch, issue, and retire bandwidth.

Improved Loop Detector

One of the problems with the Pentium M’s loop detector is that it fails to
detect loops that have a very low number of iterations. Core Duo’s loop
detector can detect loops with smaller iteration counts, a feature that saves
power and improves performance by lowering the number of instruction
fetches and BTB accesses.

SSE3

Core Duo introduces a new member into the SSE family of ISA extensions:
SSE3. The SSE3 instruction set consists of 13 new instructions, which Intel’s
Software Developer’s Manual summarizes as follows:

One x87 FPU instruction used in integer conversion

One SIMD integer instruction that addresses unaligned data loads

Two SIMD floating-point packed ADD/SUB instructions

Four SIMD floating-point horizontal ADD/SUB instructions

Three SIMD floating-point LOAD/MOVE/DUPLICATE instructions

Two thread-synchronization instructions

These new instructions fill in some gaps left in the SSE family and in the
x87 extensions, mostly in the areas of byte shuffling and floating-point inter-
element arithmetic. These are the areas in which the SSE family has been
weakest when compared with AltiVec.

Floating-Point Improvement

When programmers use the x87 floating-point instructions to perform floating-
point computations, they have multiple options available to them for dealing
with the more complicated aspects of floating-point math like number formats
and rounding behavior. The x87 FPU has a special register called the floating-
point control word (FPCW), which programmers can use to tell the FPU how
they’d like it to handle these issues. In short, the FPCW holds configuration
data for the floating-point unit, and programmers write new data into that
register whenever they’d like to change the FPU’s configuration.

All Intel designs prior to Core Duo have assumed that programmers very
rarely write to the FPCW. Because of this assumption, Intel’s chip architects
have never associated any rename registers with the FPCW. As it turns out,
however, some types of programs contain code that writes to the FPCW fairly
252 Chapter 12

frequently, most often to change the FPU’s rounding control options. For
such programs, a single copy of the FPCW is a significant bottleneck, because
the entire floating-point pipeline must stall until that one register is finished
being updated.

Core Duo is the first Intel processor to feature a set of microarchitectural
rename registers for the FPCW. These four new rename registers enable Core
Duo to extract more parallelism from floating-point code by eliminating false
register name conflicts associated with the FCPW. (For more on false register
name conflicts, data hazards, and register renaming, see Chapter 4.)

Integer Divide Improvement

Integer divisions are rare in most code, but when they do occur, they stall the
complex integer unit for many cycles. The CIU must grind through the large
number of computations and bit shifts that it takes to produce a division
result; no other instructions can enter the CIU’s pipeline during this time.

Core Duo’s complex integer unit tries to shorten integer division’s long
latencies by examining each x86 integer divide instruction (idiv) that it
encounters in order to see if it can exit the division process early. For idiv
instructions that have smaller data sizes and need fewer iterations inside the
ALU hardware to produce a valid result, the integer unit stops the division
once the required number of iterations has completed. This technique
reduces average idiv latencies because the ALU no longer forces every idiv,
regardless of data size, to go through the same number of iterations. In some
cases, an idiv that would take 12 cycles on Dothan takes only 4 cycles on Core
Duo, and in others the latency can be reduced from 20 cycles (Dothan) to
12 cycles (Core Duo).

Virtualization Technology

The SSE3 instructions aren’t the only new extensions added to the x86 ISA.
Intel also used Core Duo to introduce its Virtualization Technology, called
VT-x, along with a set of supporting ISA extensions called Virtual Machine
Extensions (VMX).

VT-x is worthy of its own chapter, but I’ll summarize it very briefly here.
In a nutshell, VT-x enables a single processor to run multiple operating
system/application stacks simultaneously, with each stack thinking that it has
complete control of the processor. VT-x accomplishes this by presenting a
virtual processor to each operating system instance. A virtual machine monitor
(VMM) then runs at a level beneath the operating systems, closest to the
processor hardware, and manages the multiple operating system instances
running on the virtual processors.

With virtualization technology, a single, possibly underutilized multi-
core processor can be made to do the work of multiple computers, thereby
keeping more of its execution hardware busy during each cycle. Indeed,
VT-x can be thought of as a way to increase power efficiency simply by giving
the processor more work to do, so that fewer execution slots per cycle are
wasted due to idleness.
In te l ’ s Pent ium M, Core Duo, and Core 2 Duo 253

Summary: Core Duo in Historical Context
Core Duo’s improvements on the Dothan design enabled Intel to offer a
dual-core part with the power dissipation characteristics of previous single-
core parts. Because it integrated two cores onto a single die, Core Duo could
also offer a significant speedup for workloads involving multiple instruction
streams (or threads of execution in computer science parlance). However,
more radical changes to the microarchitecture were needed if Intel was to
meet its goal of dramatically increasing performance on single instruction
streams without also increasing clockspeed and power consumption.

Core 2 Duo
The Intel Core microarchitecture introduced in the Core 2 Duo line of
processors represents Intel’s most ambitious attempt since the Pentium Pro
to increase single-threaded performance independently of clockspeeds.
Because its designers took a “more hardware” instead of “more clockspeed”
approach to performance, Core is bigger and wider than just about any
mass-market design that has come before it (see Table 12-3). Indeed, this
“more of everything” is readily apparent with a glance at the diagram of the
new microarchitecture in Figure 12-10.

In every phase of Core’s 14-stage pipeline, there is more of just about
anything you could think of: more decoding logic, more re-order buffer
space, more reservation station entries, more issue ports, more execution
hardware, more memory buffer space, and so on. In short, Core’s designers
took everything that has already been proven to work and added more of it,
along with a few new tricks and tweaks.

Core is wider in the decode, dispatch, issue, and commit pipeline phases
than every processor covered in this book except the PowerPC 970. Core’s
instruction window, which consists of a 96-entry reorder buffer and a 32-entry
reservation station, is bigger than that of any previous Intel microarchitecture
except for Netburst. However, as I’ve mentioned before, bigger doesn’t auto-
matically mean better. There are real-world limits on the number of instruc-
tions that can be executed in parallel, so the wider the machine, the more
execution slots per cycle that can potentially go unused because of limits to
instruction-level parallelism (ILP). Furthermore, Chapter 3 described how
memory latency can starve a wide machine for code and data, resulting in a

Table 12-3: Features of the Core 2 Duo/Solo

Introduction Date July 27, 2006

Process 65 nanometer

Transistor Count 291 million

Clock Speed at Introduction 1.86 to 2.93 GHz

L1 Cache Size 32KB instruction, 32KB data

L2 Cache Size (on-die) 2MB or 4MB

x86 ISA Extensions EM64T for 64-bit support
254 Chapter 12

waste of execution resources. Core has a number of features that are there
solely to address ILP and memory latency issues and to ensure that the
processor is able to keep its execution units full.

Figure 12-10: The Intel Core microarchitecture

NOTE The Intel Core microarchitecture family actually consists of three nearly identical
microarchitectural variants, each of which is known by its code name. Merom is the
low-power mobile microarchitecture, Conroe is the desktop microarchitecture, and
Woodcrest is the server microarchitecture.

In the front end, micro-ops fusion and a new trick called macro-fusion
work together to keep code moving into the back end; and in the back end,
a greatly enlarged instruction window ensures that more instructions can
reach the execution units on each cycle. Intel has also fixed an important
SSE bottleneck that existed in previous designs, thereby massively improving
Core’s vector performance over that of its predecessors.

In the remainder of this chapter, I’ll talk about all of these improvements
and many more, placing each of Core’s new features in the context of Intel’s
overall focus on balancing performance, scalability, and power consumption.

Commit

Re-order Buffer
(ROB)

Commitment Unit

Back End

Scalar ALUsVector ALUs Memory Access Units

MMX/SSE Unit Floating-Point
Unit Integer Unit Load-Store UnitBranch

Unit

CIU2CIU1

Port 0 Port 1

SIU

Port 5Port 5Port 1 Port 5 Port 0 Port 4 Port 3 Port 2

Store
Data

Store
Addr.

Load
Addr.

Port 5

BU

Port 1Port 0

MMX0
F/VMOV

MMX1
F/VMOV

FADD
VFADD

FMUL
VFMUL

MMX5
F/VMOV VSHUF

Front End

Reorder Buffer (ROB)

Translate x86/
Decode Branch

Unit

BPU
Instruction Fetch

Reservation Station (RS)
In te l ’ s Pent ium M, Core Duo, and Core 2 Duo 255

The Fetch Phase

As I’ll discuss in more detail later, Core has a higher decode rate than any of
its predecessors. This higher decode rate means that more radical design
changes were needed in the fetch phase to prevent the decoder from being
starved for instructions. A simple increase in the size of the fetch buffer
wouldn’t cut it this time, so Intel tried a different approach.

Core’s fetch buffer is only 32 bytes—the size of the fetch buffer on the
original P6 core. In place of an expanded fetch buffer, Core sports an entirely
new structure that sits in between the fetch buffer and the decoders: a bona
fide instruction queue.

Core’s 18-entry IQ, depicted in Figure 12-11, holds about the same
number of x86 instructions as the Pentium M’s 64-byte fetch buffer. The
predecode hardware can move up to six x86 instructions per cycle from the
fetch buffer into the IQ, where a new feature called macro-fusion is used to
prepare between four and five x86 instructions each cycle for transfer from
the IQ to the decode hardware.

Figure 12-11: Core’s fetch and decode hardware

L1 Instruction Cache

Translate/
x86 Decode

2 x 16-byte
Fetch Buffer

x86 instruction path

macro-fused instruction path

micro-op instruction path

fused micro-op instruction path

Reorder Buffer
(ROB)

Simple Decoder

Simple Decoder

Complex
Decoder

Simple Decoder

Microcode
Engine

Micro-op
Buffer

18-entry
Instruction

Queue
256 Chapter 12

NOTE Core’s instruction queue also takes over the hardware loop buffer function of previous
designs’ fetch buffers.

Macro-Fusion

A major new feature of Core’s front end hardware is its ability to fuse pairs of
x86 instructions together in the predecode phase and send them through a
single decoder to be translated into a single micro-op. This feature, called
macro-fusion, can be used only on certain types of instructions; specifically,
compare and test instructions can be macro-fused with branch instructions.

Core’s predecode phase can send one macro-fused x86 instruction per
cycle to any one of the front end’s four decoders. (As we’ll see later, Core has
four instruction decoders, one more than its predecessors.) In turn, the decode
phase as a whole can translate one macro-fused x86 instruction into a macro-
fused micro-op on each cycle. (No more than one such macro-fused micro-op
can be generated per cycle.)

All told, macro-fusion allows the predecode phase to send to the decode
phase a maximum of either

four normal x86 instructions per cycle, or

three normal x86 instructions plus one macro-fused instruction, for a
total of five x86 instructions per cycle.

Moving five instructions per cycle into the decode phase is a huge
improvement over the throughput of three instructions per cycle in previous
designs. By enabling the front end to combine two x86 instructions per cycle
into a single micro-op, macro fusion effectively enlarges Core’s decode,
dispatch, and retire bandwidth, all without the need for extra ROB and RS
entries. Ultimately, less book-keeping hardware means better power efficiency
per x86 instruction for the processor as a whole, which is why it’s important
for Core to approach the goal of one micro-op per x86 instruction as closely
as possible.

The Decode Phase

Core’s widened back end can grind through micro-ops at an unprecedented
rate, so Intel needed to dramatically increase the new microarchitecture’s
decode rate compared with previous designs so that more micro-ops per
cycle could reach the back end. Core’s designers did a few things to achieve
this goal.

I’ve already talked about one innovation that Core uses to increase its
decode rate: macro-fusion. This new capability has the effect of giving Core
an extra decoder for “free,” but remember that this free decoder that macro-
fusion affords is only good for certain instruction types. Also, the decode
phase as a whole can translate only one macro-fused x86 instruction into a
macro-fused micro-op on each cycle. (No more than one such macro-fused
micro-op can be generated per cycle.)
In te l ’ s Pent ium M, Core Duo, and Core 2 Duo 257

Intel also expanded the decode phase’s total throughput by adding a
brand new simple/fast decoding unit, bringing Core’s number of simple/
fast decoders up to three. The three simple/fast decoders combine with the
complex/slow decoder to enable Core’s decoding hardware to send up to
seven micro-ops per cycle into the micro-op queue, from which up to four
micro-ops per cycle can pass into the ROB. The newly expanded decoding
unit was depicted in Figure 12-11.

Finally, Intel has increased Core’s decode rate by making a change to the
back end (described later) that now permits 128-bit SSE instructions to be
decoded into a single micro-op instead of a fused micro-op pair, as in previous
designs. Thus Core’s new front end design brings the processor much closer
to the goal of one micro-op per x86 instruction.

Core’s Pipeline
Core’s 14-stage pipeline is two stages longer than the original 12-stage P6
pipeline. Both of Core’s new stages were added in the processor’s front end.
The first new stage was added in the fetch/predecode phase to accommodate
the instruction queue and macro-fusion, and the second stage was added to
help out with 64-bit address translation.

Intel has not yet made available a detailed breakdown of Core’s pipeline
stages, so the precise locations of the two new stages are still unknown.

Core’s Back End

One of the most distinctive features of the older P6 design is its back end’s
issue port structure, described in Chapter 5. Core uses a similar structure in
its back end, although there are some major differences between the issue
port and reservation station (RS) combination of Core and that of the P6.

To get a sense of the historical development of the issue port scheme,
let’s take a look at the back end of the original Pentium Pro.

As you can see from Figure 12-12, ports 0 and 1 host the arithmetic hard-
ware, while ports 2, 3, and 4 host the memory access hardware. The P6 core’s
reservation station is capable of issuing up to five instructions per cycle to the
execution units—one instruction per issue port per cycle.

As the P6 core developed through the Pentium II and Pentium III, Intel
began adding execution units to handle integer and floating-point vector
arithmetic. This new vector execution hardware was added on ports 0 and 1,
with the result that by the time the PIII was introduced, the P6 back end
looked like Figure 12-13.

The PIII’s core is fairly wide, but the distribution of arithmetic execution
resources between only two of the five issue ports means that its performance
can sometimes be bottlenecked by a lack of issue bandwidth (among other
things). All of the code stream’s vector and scalar arithmetic instructions are
contending with each other for two ports, a fact that, when combined with
the two-cycle SSE limitation that I’ll outline in a moment, means the PIII’s
vector performance could never really reach the heights of a cleaner design
like Core.
258 Chapter 12

Figure 12-12: The Pentium Pro’s back end

Almost nothing is known about the back ends of the Pentium M and
Core Duo processors because Intel has declined to release that infor-
mation. Both are rumored to be quite similar in organization to the back
end of the Pentium III, but that rumor cannot be confirmed based on
publicly available information.

Figure 12-13: The Pentium III’s back end

For Core, Intel’s architects added a new issue port for handling
arithmetic operations. They also changed the distribution of labor on
issue ports 1 and 2 to provide more balance and accommodate more
execution hardware. The final result is the much wider back end that is
shown in Figure 12-14.

Each of Core’s three arithmetic issue ports (0, 1, and 5) now con-
tains a scalar integer ALU, a vector integer ALU, and hardware to perform
floating-point, vector move, and logic operations (the F/VMOV label in
Figure 12-14). Let’s take a brief look at Core’s integer and floating-point
pipelines before moving on to look at the vector hardware in more detail.

Back End

Floating-
Point
Unit

SIUCIU

Load-Store UnitInteger Unit

Port 0 Port 1 Port 4 Port 3 Port 2Port 0

Store
Data

Store
Addr.

Load
Addr.

Memory Access UnitsScalar ALUs

FPU

Branch
Unit

Port 1

BU

Reservation Station (RS)

MMX/SSE Unit
FP/SSE

Unit

SIUCIU

Load-Store UnitInteger Unit

Port 0 Port 1Port 1 Port 1Port 0 Port 4 Port 3 Port 2Port 0

Store
Data

Store
Addr.

Load
Addr.

Memory Access UnitsScalar ALUsVector ALUs

Branch
Unit

Port 1

BU

Reservation Station (RS)

FPU &
VFMULMMX 1MMX 0 VFADD

VSHUFF
VRECIP

Back End
In te l ’ s Pent ium M, Core Duo, and Core 2 Duo 259

Figure 12-14: The back end of the Intel Core microarchitecture

Integer Units

Core’s back end features three scalar 64-bit integer units: one complex
integer unit that’s capable of handling 64-bit multiplication (port 0); one
complex integer unit that’s capable of handling shift instructions, rotate
instructions, and 32-bit multiplication (port 1); and one simple integer
unit (port 5).

The new processor’s back end also has three vector integer units that
handle MMX instructions, one each on ports 0, 1, and 5. This abundance of
scalar and vector integer hardware means that Core can issue three vector
or scalar integer operations per cycle.

Floating-Point Units

In the P6-derived processors leading up to Core, there was a mix of
floating-point hardware of different types on the issue ports. Specifically, the
Pentium III added vector floating-point multiplication to its back end by
modifying the existing FPU on port 0 to support this function. Vector floating-
point addition was added as a separate VFADD (or PFADD, for packed floating-
point addition) unit on port 1. Thus, the floating-point arithmetic capabilities
were unevenly divided among the Pentium III’s two issue ports as follows:

Port 0

Scalar addition (x87 and SSE family)

Scalar multiplication (x87 and SSE family)

Vector multiplication

Port 1

Vector addition

Core cleans up this arrangement, which the Pentium M and Core Duo
probably also inherited from the Pentium III, by consolidating all floating-
point multiplication functions (both scalar and vector) into a single VFMUL
unit on port 0; similarly, all vector and scalar floating-point addition functions
are brought together in a single VFADD unit on port 1.

Scalar ALUsVector ALUs Memory Access Units

MMX/SSE Unit Floating-Point
Unit Integer Unit Load-Store UnitBranch

Unit

Back End

CIU2CIU1

Port 0 Port 1

SIU

Port 5Port 5Port 1 Port 5 Port 0 Port 4 Port 3 Port 2

Store
Data

Store
Addr.

Load
Addr.

Port 5

BU

Port 1Port 0

MMX0
F/VMOV

MMX1
F/VMOV

FADD
VFADD

FMUL
VFMUL

MMX5
F/VMOV VSHUF

Reservation Station (RS)
260 Chapter 12

itm12_03.fm Page 261 Thursday, January 11, 2007 10:40 AM
Core’s distribution of floating-point labor therefore looks as follows:

Port 0
Scalar multiplication (single- and double-precision, x87 and SSE
family)
Vector multiplication (four single-precision or two double-precision)

Port 1
Scalar addition (single- and double-precision, x87 and SSE family)
Vector addition (four single-precision or two double-precision)

The Core 2 Duo is the first x86 processor from Intel to support double-
precision floating-point operations with a single-cycle throughput. Thus,
Core’s floating-point unit can complete up to four double-precision or
eight single-precision floating-point operations on every cycle. To see just
how much of an improvement Core’s floating-point hardware offers over
its predecessors, take a look at Table 12-4, which compares the throughputs
(number of instructions completed per cycle) of scalar and vector floating-
point instructions on four generations of Intel hardware.

In Table 12-4, the rows with green shaded backgrounds denote vector
operations, while those with blue shaded backgrounds denote scalar opera-
tions. The throughput numbers for all double-precision operations are bold.
With the exception of the fadd and fmul instructions, all of the instructions
listed belong to the SSE family. Here are a few SSE instructions interpreted for
you, so that you can figure out which operations the instructions perform:

addss: scalar, single-precision addition

addsd: scalar, double-precision addition

mulps: packed (vector), single-precision multiplication

mulpd: packed (vector), double-precision multiplication

Table 12-4: Throughput numbers (cycles/instruction) for vector and
scalar floating-point instructions on five different Intel processors

Instruction Pentium III Pentium 4
PentiumM/
Core Duo Core 2 Duo

fadd1

1 x87 instruction

1 1 1 1

fmul1 2 2 2 2

addss 1 2 1 1

addsd 2 1 1

addps 2 2 2 1

addpd 2 2 1

mulss 1 2 1 1

mulsd 2 2 1

mulps 2 2 2 1

mulpd 2 4 1
In te l ’ s Pent ium M, Core Duo, and Core 2 Duo 261

Core’s designers were able to achieve this dramatic speedup in scalar
and vector floating-point performance by widening the floating-point data-
paths from 80 bits to 128 bits, as described below.

Vector Processing Improvements

One of Core’s most significant improvements over its x86 predecessors is in
the area of vector processing, or SIMD. Not only does Core feature the
expanded vector execution resources described earlier, but the rate at which
it executes the SSE family of 128-bit vector instructions has been doubled
from one instruction every two cycles to one instruction per cycle. To under-
stand how Core’s designers achieved this throughput improvement, it’s
necessary to take a look at the limitations of Intel’s previous implementations
of the SSE family.

128-bit Vector Execution on the P6 Through Core Duo

When Intel finally got around to adding 128-bit vector support to the Pentium
line with the introduction of streaming SIMD extensions (SSE), the results
weren’t quite what programmers and users might have hoped for. SSE arrived
on the Pentium III with two disadvantages, both of which have continued to
plague every Intel processor prior to Core 2 Duo that implements SSE and its
successors (SSE2 and SSE3).

On the ISA side, SSE’s main drawback is the lack of support for three-
operand instructions, a problem that was covered in Chapter 8.

On the hardware implementation side, 128-bit SSE operations suffer
from a limitation that’s the result of Intel shoehorning 128-bit opera-
tions onto the 80-bit internal floating-point datapaths of the P6 and
Pentium 4.

The former problem is a permanent part of the SSE family, but the latter
is a fixable problem that can be traced to some specific decisions Intel made
when adding SSE support to the Pentium III and the Pentium 4.

When Intel originally modified the P6 core to include support for
128-bit vector operations, it had to hang the new SSE execution units off of
the existing 80-bit data bus that previous designs had been using to ferry
floating-point and MMX operands and results between the execution units
and floating-point/MMX register file.

In order to execute a 128-bit instruction using its 80-bit data bus and
vector units, the P6 and its successors must first break down that instruction
into a pair of 64-bit micro-ops that can be executed on successive cycles. To
see how this works, take a look at Figure 12-15, which shows (in a very abstract
way) what happens when the P6 decodes and executes a 128-bit SSE instruc-
tion. The decoder first splits the instruction into two 64-bit micro-ops—one
for the upper 64 bits of the vector and another for the lower 64 bits. Then
this pair of micro-ops is passed to the appropriate SSE unit for execution.
262 Chapter 12

Figure 12-15: How the P6 executes a 128-bit vector operation

The result of this hack is that all 128-bit vector operations take a
minimum of two cycles to execute on the P6, Pentium 4, Pentium M, and
Core Duo—one cycle for the top half and another for the bottom half.
Compare this to the single-cycle throughput and latency of simple 128-bit
AltiVec operations on the PowerPC G4e described in Chapters 7 and 8.

128-bit Vector Execution on Core

The Core microarchitecture that powers the Core 2 Duo is the first to give
x86 programmers a single-cycle latency for 128-bit vector operations. Intel
achieved this reduced latency by making the floating-point and vector internal
data buses 128 bits wide. Core’s 128-bit floating-point/vector datapaths mean
only a single micro-op needs to be generated, dispatched, scheduled, and
issued for each 128-bit vector operation. Not only does the new design elim-
inate the latency disadvantage that has plagued SSE operations so far, but it
also improves decode, dispatch, and scheduling bandwidth because half as
many micro-ops are generated for 128-bit vector instructions.

Figure 12-16 shows how Core’s 128-bit vector execution hardware decodes
and executes an SSE instruction using a single micro-op.

Instructions
Data
Results 128-bit SSE instruction

Translate x86/
Decode

Instruction Fetch

64-bit micro-ops

Vector
ALU

Execute
In te l ’ s Pent ium M, Core Duo, and Core 2 Duo 263

Figure 12-16: How Core executes a 128-bit vector operation

As you can see, the vector ALU’s data ports, both input and output, have
been enlarged in order to accommodate 128 bits of data at a time.

When you combine these critical improvements with Core’s increased
amount of vector execution hardware and its expanded decode, dispatch,
issue, and commit bandwidth, you get a very capable vector processing
machine. (Of course, SSE’s two-operand limitation still applies, but there’s
no helping that.) Core can, for example, execute a 128-bit packed multiply,
128-bit packed add, 128-bit packed load, 128-bit packed store, and a macro-
fused cmpjcc (a compare + a jump on condition code) all in the same cycle.
That’s essentially six instructions in one cycle—quite a boost from any
previous Intel processor.

Memory Disambiguation: The Results Stream Version of Speculative Execution
As I explained previously, micro-ops fusion and the added simple/fast
decoder give Core’s front end the ability to decode many more memory
instructions per cycle than its predecessors. Much of the benefit of this
expanded capability would be lost, however, had Intel not also found a way
to greatly increase the number of memory instructions per cycle that Core
can execute.

Instructions
Data
Results

128-bit micro-op

128-bit SSE instruction

Translate x86/
Decode

Instruction Fetch

Execute

Vector
ALU
264 Chapter 12

itm12_03.fm Page 265 Wednesday, October 25, 2006 2:17 PM
In order to increase the number of loads and stores that can be executed
on each cycle, Core uses a technique on its memory instruction stream that’s
somewhat like speculative execution. But before you can understand how
this technique works, you must first understand exactly how the other x86
processors covered in this book execute load and store instructions.

The Lifecycle of a Memory Access Instruction

In Chapter 3, you learned about the four primary phases that every
instruction goes through in order to be executed:

1. Fetch

2. Decode

3. Execute

4. Write

You also learned that these four phases are broken into smaller steps,
and you’ve even seen a few examples of how these smaller steps are arranged
into discrete pipeline stages. However, all of the pipeline examples that
you’ve seen so far have been for arithmetic instructions, so now it’s time to
take a look at the steps involved in executing memory access instructions.

Table 12-5 compares the specific steps needed to execute an add instruc-
tion with the steps needed to execute a load and a store. As you study the
table, pay close attention to the green shaded rows. These rows show stages
where instructions are buffered and possibly reordered.

As you can see from Table 12-5, the execution phase of a memory access
instruction’s lifecycle is more complicated than that of a simple arithmetic
instruction. Not only do load and store instructions need to access the register
file and perform arithmetic operations (address calculations), but they must
also access the data cache. The fact that the L1 data cache is farther away from
the execution units than the register file and the fact that a load instruction
could miss in the L1 data cache and incur a lengthy L2 cache access delay
mean that special arrangements must be made in order to keep memory
instructions from stalling the entire pipeline.

The Memory Reorder Buffer

The P6 and its successors feed memory access instructions into a special
queue where they’re buffered as they wait for the results of their address
calculations and for the data cache to become available. This queue, called
the memory reorder buffer (MOB), is arranged as a FIFO queue, but under certain
conditions, instructions earlier in the queue can bypass an instruction that’s
stalled later in the queue. Thus memory instructions can access the data
cache out of program order with respect to one another, a situation that
improves performance but brings the need for an additional mechanism to
prevent problems associated with memory aliasing.
In te l ’ s Pent ium M, Core Duo, and Core 2 Duo 265

itm12_03.fm Page 266 Thursday, January 11, 2007 10:40 AM
.

Memory Aliasing

I explained in Chapter 5 why out-of-order processors must first put instruc-
tions back in program order before officially writing their results to the
programmer-visible register file: You can’t modify an architectural register
until you’re sure that all of the previous instructions that read that location
have completed execution; to do otherwise would destroy the integrity of the
sequential programming model.

Table 12-5: A comparison of the stages of execution of an arithmetic instruction and two memory access instructions.

add load store

Fetch Fetch the add from the instruc-
tion cache.

Fetch the load from the instruc-
tion cache.

Fetch the store from the instruction
cache.

Decode Decode the add. Decode the load into a load-
address micro-op.

Decode the store into store-
address and store-data micro-ops.

Issue Wait in the RS to execute the
add out-of-order.

Wait in the RS to execute the
load-address out-of-order.

Wait in the RS to execute the store-
address and store-data out-of-
order.

store-address: store-data:

Execute Read the operands from the
register file.

Read an address and
possibly an index value
from the register file.1

Read an
address and
possibly an
index value
from the
register file.1

Read the data to
be stored from
the register file.

Add the two operands using
the ALU.

Calculate the source address
using the address generation
units (AGUs).

Calculate the
destination
address using
the address
generation units
(AGUs).

Wait in the memory re-order
buffer (MOB) for an opportu-
nity to access the data cache.

Wait in the memory re-order
buffer (MOB) for an opportunity
to access the data cache.

Read the data from the data
cache, using the address
calculated by the load-address
micro-op

Write the data to the data cache,
using the address calculated in the
store-data micro-op.

Complete Wait in the ROB to commit the
add in order.

Wait in the ROB to commit the
load-address in order.

Wait in the ROB to commit the
store-address and store-data in
order.

Commit Write the result into the register
file, set any flags, and remove
the instruction from the ROB.

Write the loaded data into the
register file, set any flags, and
remove the instruction from the
ROB.

Set any flags, and remove the
instruction from the ROB.

1 Depending on the type of address (i.e., register relative or immediate), this register could be an architectural register or a rename
register that’s allocated to hold the immediate value.
266 Chapter 12

The need for accesses to programmer-visible storage to be committed in
program order applies to main memory just as it does to the register file. To
see an example of this, consider Program 12-1. The first line stores the number
13 in an unknown memory cell, and the next line loads the contents of the
red memory cell into register A. The final line is an arithmetic instruction
that adds the contents of registers A and B and places the result in register C.

Program 12-1: A program with a load and a store,
where the store’s target is unknown.

Figures 12-17 and 12-18 show two options for the destination address
of the store: either the red cell (Figure 12-17) or an unrelated blue cell (Fig-
ure 12-18). If the store ends up writing to the red cell, then the store must
execute before the load so that the load can then read the updated value from
the red cell and supply it to the following add instruction (via register A). If the
store writes its value to the blue cell, then it doesn’t really matter if that store
executes before or after the load, because it is modifying an unrelated memory
location.

When a store and a load both access the same memory address, the two
instructions are said to alias. Figure 12-17 is an example of memory aliasing,
while Figure 12-18 is not.

L O A D S A N D S T O R E S :

T O S P L I T , O R N O T T O S P L I T ?

You may be wondering why a load is decoded into a single load-address micro-op,
while a store is decoded into store-address and store-data micro-ops. Doesn’t the
load also have to access the cache, just like the store does with its store-data micro-
op? The load instruction does indeed access the cache, but because the load-address
and load-data operations are inherently serial, there’s no point in separating them
into two distinct micro-ops and assigning them to two separate execution pipelines.
The two parts of the store operation, in contrast, are inherently parallel. Because the
computer can begin calculating a store’s destination address at the same time it is
retrieving the store’s data from the register file, both of these operations can be
performed simultaneously by two different micro-ops and two separate execution
units. Thus the P6 core design and its successors feature a single execution unit (the
load unit) and a single micro-op for load instructions, and two execution units (the
store-address unit and the store-data unit) and their two corresponding micro-ops
for store instructions.

store 13,

load ,A

add A,B,C

Program 12-1 Main Memory
In te l ’ s Pent ium M, Core Duo, and Core 2 Duo 267

Memory Reordering Rules

In order to avoid aliasing-related problems, all of the Intel processors prior
to Core obey the following rules when reordering memory operations in
the MOB:

1. Stores must always commit in program order relative to other stores.

2. No load can commit ahead of an aliased store-data micro-op.

3. No load can commit ahead of a store-data micro-op with an unknown
target address.

Rule #3 dictates that no load is allowed to be moved (or “hoisted”) above
a store with an undefined address, because when that store’s address becomes
available, the processor might find that a load and store are accessing the same
address (i.e., the load and store are aliased). Because of memory aliasing, this
kind of load hoisting is not allowed on x86 processors prior to Core.

False Aliasing

As it turns out, the kind of load-store aliasing that rule #3 above is intended
to prevent is exceedingly rare. The vast majority of the memory accesses in
the MOB window do not alias, so they could theoretically proceed indepen-
dently of one another. Thus the practice of preventing any load from com-
mitting until every last store in the MOB has a known target address unneces-
sarily restricts the number of memory instructions that the processor can
commit each cycle.

Because most load-store pairs don’t alias, processors like the P6 that play
it safe lose quite a bit of performance to false aliasing, where the processor
assumes that two or more memory accesses alias, when in reality they do not.
Let’s take a look at exactly where this performance loss comes from.

Figure 12-19 shows a cycle-by-cycle breakdown of how aliased and non-
aliased versions of Program 12-1 execute on processors like the P6 and
Pentium 4, which use conservative memory access reordering assumptions.

In both instances, the store-address micro-op must execute first so that
it can yield a known destination address for the store-data micro-op. This
destination address has to be available before any of the memory accesses
that are waiting in the MOB can be carried out. Because the destination
address of the store is not available until the end of the second cycle when
the store-address micro-op has finished calculating it, the processor cannot
execute either the store or the load until the third cycle or later.

Figure 12-17: An aliased
load-store pair

Figure 12-18: A non-aliased
load-store pair

store 13,

load ,A

add A,B,C

store 13,

load ,A

add A,B,C
268 Chapter 12

Figure 12-19: Execution without memory disambiguation

When the destination address of the store becomes available at the
outset of cycle three, if it turns out that the memory accesses are aliased, the
processor must wait another cycle for the store-data micro-op to update the
red memory cell before it can execute the load. Then, the load executes, and
it too takes an extra cycle to move the data from the red memory cell into the
register. Finally, on the seventh cycle, the add is executed.

If the processor discovers that the accesses are not aliased, the load can
execute immediately after the store-data micro-op and before the store-address
micro-op. In other words, for non-aliased accesses, the processor will move
the load up in the queue so that it executes before the less critical, “fire-and-
forget” store instruction.

Memory Disambiguation

Core’s memory disambiguation hardware attempts to identify instances of false
aliasing so that in instances where the memory accesses are not aliased, a
load can actually execute before a store’s destination address becomes
available. Figure 12-20 illustrates non-aliased memory accesses with and
without the reordering opportunity that memory disambiguation affords.

Figure 12-20: Execution with and without memory disambiguation

When the non-aliased accesses execute with memory disambiguation,
the load can go ahead and execute while the store’s address is still unknown.
The store, for its part, can just execute whenever its destination address
becomes available.

Non-aliased accesses
with conservative reordering

Aliased accesses
with no reordering

store-data 13,

store-addr 13,

load ,A

add A,B,C

store-addr 13,

load ,A

add A,B,C
store-data 13,

Non-aliased accesses
with disambiguation

Non-aliased accesses
with conservative reordering

store-data 13,
load ,A

store-data 13,

store-addr 13, store-addr 13,

load ,A

add A,B,C
add A,B,C
In te l ’ s Pent ium M, Core Duo, and Core 2 Duo 269

Re-ordering the memory accesses in this manner enables our example
processor to execute the addition a full cycle earlier than it would have without
memory disambiguation. If you consider a large instruction window that
contains many memory accesses, the ability to speculatively hoist loads
above stores could save a significant number of total execution cycles.

Intel has developed an algorithm that examines memory accesses in
order to guess which ones are probably aliased and which ones aren’t. If the
algorithm determines that a load-store pair is aliased, it forces them to commit
in program order. If the algorithm decides that the pair is not aliased, the
load may commit before the store.

In cases where Core’s memory disambiguation algorithm guesses incor-
rectly, the pipeline stalls, and any operations that were dependent on the
erroneous load are flushed and restarted once the correct data has been
(re)loaded from memory.

By drastically cutting down on false aliasing, Core eliminates many cycles
that are unnecessarily wasted on waiting for store address data to become
available. Intel claims that memory disambiguation’s impact on performance
is significant, especially in the case of memory-intensive floating-point code.

Summary: Core 2 Duo in Historical Context

Intel’s turn from the hyperpipelined Netburst microarchitecture to the power-
efficient, multi-core–friendly Core microarchitecture marks an important
shift not just for one company, but for the computing industry as a whole.
The processor advances of the past two decades—advances described in detail
throughout this book—have been aimed at increasing the performance of
single instruction streams (or threads of execution). The Core microarchitecture
emphasizes single-threaded performance as well, but it is part of a larger,
long-term project that involves shifting the focus of the entire computing
industry from single-threaded performance to multithreaded performance.
270 Chapter 12

B I B L I O G R A P H Y A N D
S U G G E S T E D R E A D I N G

General
Hennessy, John and David Patterson. Computer Architecture: A Quantitative

Approach. 3rd ed. San Francisco: Morgan Kaufmann, 2002.

Hennessy, John and David Patterson. Computer Organization and Design:
the Hardware/Software Interface. 3rd ed. San Francisco: Morgan
Kaufmann, 2004.

Shriver, Bruce and Bennett Smith. The Anatomy of a High-Performance
Microprocessor: A Systems Perspective. Los Alamitos, CA: Wiley-IEEE
Computer Society Press, 1998.

PowerPC ISA and Extensions
AltiVec Technology Programming Environment’s Manual. rev. 0.1. Motorola, 1998.

Diefendorff, Keith. “A History of the PowerPC Architecture.” Communications
of the ACM 37, no. 6 (June 1994): 28–33.

Fuller, Sam. “Motorola’s AltiVec Technology” (white paper). Motorola, 1998.

PowerPC 600 Series Processors
Denman, Marvin, Paul Anderson, and Mike Snyder. “Design of the PowerPC

604e Microprocessor.” Presented at Compcon ‘96. Technologies for the
Information Superhighway: Digest of Papers, 126–131. Washington, DC:
IEEE Computer Society, 1996.

Gary, Sonya, Carl Dietz, Jim Eno, Gianfranco Gerosa, Sung Park, and Hector
Sanchez. “The PowerPC 603 Microprocessor: A Low-Power Design for
Portable Applications.” Proceedings of the 39th IEEE Computer Society
International Conference. IEEE Computer Science Press, 1994, 307–15.

PowerPC 601 RISC Microprocessor User’s Manual. IBM and Motorola, 1993.

PowerPC 601 RISC Microprocessor Technical Summary. IBM and Motorola, 1995.

PowerPC 603e RISC Microprocessor User’s Manual. IBM and Motorola, 1995.

PowerPC 603e RISC Microprocessor Technical Summary. IBM and Motorola, 1995.

PowerPC 604 RISC Microprocessor User’s Manual. IBM and Motorola, 1994.

PowerPC 604 RISC Microprocessor Technical Summary. IBM and Motorola, 1994.

PowerPC 620 RISC Microprocessor Technical Summary. IBM and Motorola, 1994.

PowerPC G3 and G4 Series Processors
MPC750 User’s Manual. rev. 1. Motorola, 2001.

MPC7400 RISC Microprocessor Technical Summary, rev. 0. Motorola, 1999.

MPC7410/MPC7400 RISC Microprocessor User’s Manual, rev. 1. Motorola, 2002.

MPC7410 RISC Microprocessor Technical Summary, rev. 0. Motorola, 2000.

MPC7450 RISC Microprocessor User’s Manual, rev. 0. Motorola, 2001.

Seale, Susan. “PowerPC G4 Architecture White Paper: Delivering Performance
Enhancement in 60x Bus Mode” (white paper). Motorola, 2001.

IBM PowerPC 970 and POWER
Behling, Steve, Ron Bell, Peter Farrell, Holger Holthoff, Frank O’Connell,

and Will Weir. The POWER4 Processor Introduction and Tuning Guide. 1st ed.
(white paper). IBM, November 2001.

DeMone, Paul. “A Big Blue Shadow over Alpha, SPARC, and IA-64.” Real
World Technologies (October 2000). http://www.realworldtech.com/
page.cfm?AID=RWT101600000000.

DeMone, Paul. “The Battle in 64 bit Land, 2003 and Beyond.” Real World
Technologies (January 2003). http://www.realworldtech.com/page.cfm?
AID=RWT012603224711.

DeMone, Paul. “Sizing Up the Super Heavyweights.” Real World Technologies
(October 2004). http://www.realworldtech.com/page.cfm?ArticleID=
RWT100404214638.

Diefendorff, Keith. “Power4 Focuses on Memory Bandwidth: IBM
Confronts IA-64, Says ISA Not Important.” Microprocessor Report 13,
no. 13 (October 1999).

Sandon, Peter. “PowerPC 970: First in a new family of 64-bit high performance
PowerPC processors.” Presented at the Microprocessor Forum, San Jose,
CA, October 14–17, 2002.
272 Bibl iography and Sugges ted Reading

Stokes, Jon. “IBM’s POWER5: A Talk with Pratap Pattnaik.” Ars Technica,
October 2004. http://arstechnica.com/articles/paedia/cpu/POWER5.ars.

Stokes, Jon. “PowerPC 970: Dialogue and Addendum.” Ars Technica, October
2002. http://arstechnica.com/cpu/03q2/ppc970-interview/ppc970-
interview-1.html.

Tendler, J. M., J. S. Dodson, J. S. Fields, Jr., H. Le, and B. Sinharoy,
“POWER4 System Microarchitecture.” IBM Journal of Research and
Development 46, no. 1 (January 2002): 5–25.

x86 ISA and Extensions

Granlund, Torbjorn. “Instruction latencies and throughput for AMD and
Intel x86 processors” (working paper). Swox AB, September 2005.
http://www.swox.com/doc/x86-timing.pdf.

Gwennap, Linley. “Intel’s MMX Speeds Multimedia: Instruction-Set Exten-
sions to Aid Audio, Video, and Speech.” Microprocessor Report 10, no. 3
(March 1996).

Mittal, Millind, Alex Peleg, and Uri Weiser. “MMX Technology Architecture
Overview.” Intel Technology Journal 1, no. 1 (August 1997).

Thakkar, Shreekant and Tom Huff. “The Internet Streaming SIMD Exten-
sions.” Intel Technology Journal 3, no. 2 (May 1999).

Pentium and P6 Family

Case, Brian. “Intel Reveals Pentium Implementation Details: Architectural
Enhancements Remain Shrouded by NDA.” Microprocessor Report 7,
no. 4 (March 1993).

Fog, Agner. “How to optimize for the Pentium family of microprocessors,” 2004.

Fog, Agner. Software optimization resources.“The microarchitecture of Intel and
AMD CPU’s: An optimization guide for assembly programmers and
compiler makers.” 2006. http://www.agner.org/optimize.

Gwennap, Linley. “Intel’s P6 Uses Decoupled Superscalar Design: Next Gen-
eration of x86 Integrates L2 Cache in Package with CPU.” Microprocessor
Report 9, no. 2 (February 16, 1995).

Keshava, Jagannath and Vladimir Pentkovski. “Pentium III Processor Imple-
mentation Tradeoffs.” Intel Technology Journal 3, no. 2, (Q2 1999).

Intel Architecture Optimization Manual. Intel, 2001.

Intel Architecture Software Developer’s Manual, vols. 1–3. Intel, 2006.

P6 Family of Processors Hardware Developer’s Manual. Intel, 1998.

Pentium II Processor Developer’s Manual. Intel, 1997.

Pentium Pro Family Developer’s Manual, vols. 1–3. Intel, 1995.
Bibl iography and Sugges ted Reading 273

Pentium 4
“A Detailed Look Inside the Intel NetBurst Micro-Architecture of the Intel

Pentium 4 Processor” (white paper). Intel, November 2000.

Boggs, Darrell, Aravindh Baktha, Jason Hawkins, Deborah T. Marr, J. Alan
Miller, Patrice Roussel, Ronak Singhal, Bret Toll, and K.S. Venkatraman,
“The Microarchitecture of the Intel Pentium 4 Processor on 90nm
Technology.” Intel Technology Journal 8, no. 1 (February 2004).

DeMone, Paul. “What's Up With Willamette? (Part 1).” Real World Technologies
(March 2000). http://www.realworldtech.com/page.cfm?ArticleID=
RWT030300000001.

Hinton, Glenn, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean,
Alan Kyker, Desktop Platforms Group, and Patrice Roussel. “The Micro-
architecture of the Pentium 4 Processor.” Intel Technology Journal 5 no. 1
(February 2001).

Intel Pentium 4 Processor Optimization Manual. Intel, 2001.

Pentium M, Core, and Core 2

Gochman, Simcha, Avi Mendelson, Alon Naveh, and Efraim Rotem.
“Introduction to Intel Core Duo Processor Architecture.” Intel
Technology Journal 10, no. 2 (May 2006).

Gochman, Simcha, Ronny Ronen, Ittai Anati, Ariel Berkovits, Tsvika
Kurts, Alon Naveh, Ali Saeed, Zeev Sperber, and Robert C. Valentine.
“The Intel Pentium M Processor: Microarchitecture and Performance.”
Intel Technology Journal 7, no. 2 (May 2003).

Kanter, David. “Intel’s Next Generation Microarchitecture Unveiled.” Real
World Technologies (March 2006). http://realworldtech.com/page.cfm?
ArticleID=RWT030906143144.

Mendelson, Avi, Julius Mandelblat, Simcha Gochman, Anat Shemer,
Rajshree Chabukswar, Erik Niemeyer, and Arun Kumar. “CMP
Implementation in Systems Based on the Intel Core Duo Processor.”
Intel Technology Journal 10, no. 2 (May 2006).

Wechsler, Ofri. “Inside Intel Core Microarchitecture: Setting New
Standards for Energy-Efficient Performance.” Technology@Intel
Magazine (March 2006).

Online Resources

Ace’s Hardware http://aceshardware.com.

AnandTech http://anandtech.com.

ArsTechnica http://arstechnica.com.

Real World Technologies http://realworldtech.com.

sandpile.org http://sandpile.org.

X-bit labs http://xbitlabs.com.
274 Bibl iography and Sugges ted Reading

I N D E X

Note: Page numbers in italics refer to
figures. A page number followed by an
italic n refers to a term in the footnote of
that page.

Symbols and Numbers
(hash mark), for memory

address, 15
2-way set associative mapping, 228,

228–229
vs. 4-way, 229
vs. direct mapping, 229

4-way set associative mapping,
226–227, 228

vs. 2-way, 229
32-bit computing, vs. 64-bit, 182
32-bit integers, x86 ISA support

for, 187
64-bit address space, 186–187
64-bit computing, 181–183

vs. 32-bit, 182
current applications, 183–187

64-bit mode, in x86-64, 190, 191

A
absolute addressing, vs. register-

relative addressing, 17
add instruction, 6–7, 11

executing, 8
on PowerPC, 117
steps to execute, 265, 266
three-operand format for

PowerPC, 162
addition of numbers, steps for

performing, 10

addpd instruction, throughput on
Intel processors, 261

addps instruction, throughput on
Intel processors, 261

addresses
on 32-bit vs. 64-bit processors, 183
64-bit, benefits of, 186–187
calculation of, 17
calculations in load-store

units, 203
as integer data, 183
register-relative, 16–17
virtual vs. physical space, 185–186

address generation, by load-store
unit, 69

address space, 186
addsd instruction, throughput on

Intel processors, 261
addss instruction, throughput on

Intel processors, 261
Advanced Micro Devices (AMD)

64-bit workstation market
opening for, 180

Athlon processor, 72, 110
x86-64, 187–192

added registers, 188
extended registers, 187
programming model, 189
switching modes, 189–192

AIM (Apple, IBM, Motorola)
alliance, 112

allocate and rename stages, on
Pentium 4, 155

AltiVec, 135. See also Motorola
AltiVec

ALU. See arithmetic logic unit (ALU)

AMD. See Advanced Micro Devices
(AMD)

and instruction, cycles to execute on
PowerPC, 117

Apple. See also PowerPC (PPC)
G3. See PowerPC 750 (G3)
G4. See PowerPC 7400 (G4)
G4e. See Motorola G4e
G5, 193. See also PowerPC 970

(G5)
Performas, 119
PowerBook, 119

approximations of fractional
values, 66

arithmetic
coprocessor, 67
instructions, 11, 12, 36

actions to execute, 36–37
binary code for, 21–22
format, 12
immediate values in, 14–16

micro-op queue, 156
operations, 67

arithmetic logic unit (ALU), 2, 5, 6,
67–69

multiple on chip, 62
on Pentium, 88–91
on Pentium 4, schedulers for, 156
storage close to, 7

Arm, 73
assembler, 26
assembler code, 21
assembly language, beginnings, 26
associative mapping

fully, 224, 225
n-way set, 226–230, 227

Athlon processor (AMD), 72, 110
average completion rate, 52–53
average instruction throughput, 54

pipeline stalls and, 56–57

B
back end, 38, 38

on Core 2 Duo, 258–270, 260
on Pentium, 87–91

floating-point ALUs, 88–91
integer ALUs, 87–88

on Pentium II, 108
on Pentium III, 110
on Pentium M, 246
on Pentium Pro, 94–100,

102–103, 103
on PowerPC 603 and 603e,

119–121
on PowerPC 604, 123–126
on PowerPC 970, 200–203

backward branch, 30
bandwidth, and cache block size, 232
Banias, 236
base-10 numbering system, 183–184
base address, 16, 17
BEU (branch execution unit), 69, 85

on PowerPC 601, 116
BHT. See branch history table (BHT)
binary code, 21

for arithmetic instructions, 21–22
binary notation, 20
BIOS, 34
blocks and block frames, for caches,

223, 223–224
sizes of, 231–232

Boolean operations, 67
bootloader program, 34
bootstrap, 34
boot up, 34
BPU (branch prediction unit), 85
branch check stage, in Pentium 4

pipeline, 158
branch execution unit (BEU), 69, 85

on PowerPC 601, 116
branch folding, 113

by Pentium 4 trace cache, 153
branch hazards, 78
branch history table (BHT), 86

on PowerPC 604, 125
on PowerPC 750, 132
on PowerPC 970, 196

branch instructions, 11, 30–34
and fetch-execute loop, 32
and labels, 33–34
on PowerPC 750, 130–132
on PowerPC 970, 198
register-relative address with, 33
as special type of load, 32–33
in superscalar systems, 64
276 INDEX

branch prediction, 78
on Pentium, 84, 85–87
on Pentium M, 244–245
on Pentium Pro, 102
on PowerPC 603, 122
on PowerPC 970, 195–196
for trace cache, 151–152

branch prediction unit (BPU), 85
branch target, 85, 87
branch target address cache (BTAC),

on PowerPC 604, 125
branch target buffer (BTB), 86

P6 pipeline stage to access, 101
on PowerPC 750, 132

branch target instruction cache
(BTIC), on PowerPC 750, 132

branch unit
issue queue for, 210–211
on Pentium, 85–87
on PowerPC 604, 125

brand names for Intel processors,
236–237

BTAC (branch target address cache),
on PowerPC 604, 125

BTB. See branch target buffer (BTB)
BTIC (branch target instruction

cache), on PowerPC 750, 132
bubbles in pipeline, 54–55, 55, 78

avoiding on PowerPC 970, 196
insertion by PowerPC 970 front

end, 198
for Pentium 4, 164
and pipeline depth, 143
squeezing out, 97–98

buffers. See also branch target buffer
(BTB); reorder buffer (ROB)

for completion phase, 98
dynamic scheduling with, 97
fetch, on Intel Core Duo, 239
front-end branch target, 87, 147
hardware loop, 240
issue, 96
memory reorder, 265, 268
between Pentium Pro front end

and execution units, 96
bus, 5, 204

Busicom, 62
business applications, spatial local-

ity of code for, 221–222

C
cache, 81–82

basics, 215–219
blocks and block frames for, 219,

223, 223–224
hierarchy, 218, 219

byte’s journey through,
218–219

hit, 81, 219
level 1, 81, 217–218
level 2, 81, 218
level 3, 81
line, 219
locality of reference and,

220–223
memory, 81
miss, 81, 217

capacity, 231
compulsory, 219
conflict, 226

placement formula, 229
placement policy, 224
on PowerPC 970, 194–195
replacement policy, 230–232
tag RAM for, 224
write policies for, 232–233

caching, instruction, 78
calculator model of computing, 2,

2–3
capacity miss, 231
C code, 21
Cedar Mill, 236
central processing unit (CPU), 1.

See also microprocessor
channels, 1
chip multiprocessing, 249,

249–250, 250
chipset, 204, 204–205
CISC (complex instruction set

computing), 73, 105
CIU (complex integer unit), 68, 87

on PowerPC 750, 130
INDEX 277

clock, 29–30
cycle

CPU vs. memory and bus, 216
instruction completion per,

53–54
in pipelined processor, 47

generator module, 29–30
period, and completion rate,

58–60
speed

and dynamic power
density, 237

of front-side bus, 205
importance of, 137–138
market focus on, 140
for Pentium 4, 167
for Pentium 4, vs. G4e, 176
for Pentium 4 integer units, 164

cmp instruction, cycles to execute on
PowerPC, 117

code, 2
spatial locality of, 221–222
temporal locality of, 222

code names for Intel processors,
236–237

code segment descriptor, 191
code stream, 2, 11–14

flow of, 5
coding, 21
collision, 226
commands, reusing prerecorded

sequences, 6
commit cycle, in Pentium Pro

pipeline, 101
commit phase, 128
commit unit, on PowerPC 603, 122
common interleaved queues, 210
compatibility mode, in x86-64,

190, 191
compilers, for high-level languages

(HLLs), 104
complete stage, for G4e, 147
completion buffer availability

rule, 128
completion phase

in instruction lifecycle, 98
on PowerPC 604, 128

completion queue, on PowerPC 603,
122

completion rate
and clock period, 58–60
and program execution time,

51–52
complex instruction set computing

(CISC), 73, 105
complex integer instructions, 201
complex integer unit (CIU), 68, 87

on PowerPC 750, 130
complexity, moving from hardware

to software, 73–74
complex/slow integer execution

units, on G4e, 163
complex/slow integer

instructions, 163
compulsory cache miss, 219
computer

costs of systems, 62
definition, 3, 4
general-purpose, 2
memory hierarchy, 82
power efficiency, 237–239
with register file, 9
stored-program, 4–6

computing
calculator model of, 2, 2–3
file-clerk model of, 3–7

conceptual layer, 72
condition codes, 203
condition register unit (CRU), 129

issue queue for, 210–211
on PowerPC, 121
on PowerPC 604, 125–126
on PowerPC 970, 198, 202

conditional branch, 30–34, 78
conflict misses, 226
Conroe, 255
control hazards, 78
control operand, in AltiVec vector

operation, 171
control unit, in Pentium, 85
control vector, in AltiVec vector

operation, 171
Coppermine, 109
core logic chipset, 204, 204–205
278 INDEX

core microarchitecture of
processor, 248

CPU (central processing unit), 1.
See also microprocessor

CPU clock cycle, 44
instruction completion per,

53–54
vs. memory and bus clock

cycles, 216
in pipelined processor, 47

cracked instruction, 197, 198, 206
CRU. See condition register

unit (CRU)
cryptography, 185

D
data

comparison of storage
options, 217

spatial locality of, 220
temporal locality of, 222

databases, back-end servers for, 186
data bus, 5
data cache (D-cache), 81, 223
data hazards, 74–76
data parallelism, 168
data segment, 16–17
data stream, 2

flow of, 5
daughtercard, 109
D-cache (data cache), 81, 223
DDR. See double data rate (DDR)

front-side bus
decode/dispatch stage, 63

for G4e, 145–146
decode phase of instruction, 37

for Core 2 Duo, 256, 257–258
for Pentium M, 240–244, 241, 242

Decode stages in Pentium pipeline,
84–85

decoding x86 instructions, in P6
pipeline, 101

destination field, 12
destination register, 8

binary encoding, 21
digital image, data parallelism for

inverting, 169

direct mapping, 225–226, 226
vs. two-way set associative

mapping, 229
dirty blocks in cache, 230
dispatch group, 197
dispatch queue, on PowerPC 970,

199
dispatch rules, on PowerPC 970,

198–199
divw instruction, cycles to execute

on PowerPC, 117
DLW-1 hypothetical computer

arithmetic instruction format, 12
example program, 13–14
machine language on, 20–21
memory instruction format, 13

DLW-2 hypothetical computer
decode/dispatch logic, 70
pipeline, 64
two-way superscalar version,

62–64, 63
Dothan, 236, 251

fetch buffer, 239
double data rate (DDR) front-side

bus, 205
on PowerPC 970, 195

double-speed execution ports, on
Pentium 4, 157

drive stages, on Pentium 4, 155
dual-core processor, 249
dynamic branch prediction, 86–87,

147, 244
dynamic execution, 96
dynamic power density,

237–238, 238
dynamic range, 183–184

benefits of increased, 184–185
dynamic scheduling

with buffers, 97
instruction’s lifecycle phases, 97

E
Eckert, J. Presper, 6n
EDVAC (Electronic Discrete

Variable Automatic
Computer), 6n

embedded processors, 133
INDEX 279

emulation, 72
encryption schemes, 185
EPIC (Explicitly Parallel Instruc-

tion Computing), 180
evicted data from cache, 219
eviction policy for cached data,

230–232
execute mode for trace cache, 151
execute stage of instruction, 37

for G4e, 146
in Pentium 4 pipeline, 158
in Pentium pipeline, 84–85
in Pentium Pro pipeline, 101

execution. See also program execu-
tion time

phases, 39
time requirements, and comple-

tion rate, 51–52
execution ports, on Pentium 4, 157
execution units, 17

empty slots, 198
expanding superscalar process-

ing with, 65–69
micro-op passed to, 156
on Pentium, 83

Explicitly Parallel Instruction
Computing (EPIC), 180

F
fabs instruction, cycles to

execute, 118
fadd instruction

cycles to execute, 118
on PowerPC 970, 212
throughput on Intel

processors, 261
fall-through, 114
false aliasing, 268
fast integer ALU1 and ALU2 units,

on Pentium 4, 157
fast IU scheduler, on Pentium 4, 156
fdiv instruction, cycles to

execute, 118
fetch buffer, on Intel Core Duo, 239
fetch-execute loop, 28–29

and branch instructions, 32

fetch groups, on PowerPC 970, 196
fetch phase of instruction, 37

for Core 2 Duo, 256, 256–257
for Pentium M, 239–240

Feynman, Richard, 3
fields in instruction, 12
FIFO (first in, first out) data

structure, 88
file-clerk model of computing, 3–7

expanded, 9–10
refining, 6–7

FILO (first in, last out) data
structure, 88

filter/mod operand, 171
finish pipeline stage, on PPC CR,

163, 164
FIQ. See floating-point issue

queue (FIQ)
first in, first out (FIFO) data

structure, 88
first in, last out (FILO) data

structure, 88
fixed-point ALU, on PowerPC 601,

115
fixed-point numbers, 66
flags stage, in Pentium 4

pipeline, 158
flat floating-point register file, 88
flat register file, vs. stack, 90
floating-point ALUs, on Pentium,

88–91
floating-point applications,

Pentium 4 design for, 165
floating-point control word (FPCW),

in Intel Core Duo, 252
floating-point data type, on 32-bit

vs. 64-bit processors, 183
floating-point execution unit

(FPU), 68, 165–168
on Core 2 Duo, 260–262
on G4, 134
on G4e, 166–167
on Pentium, 69
on Pentium 4, 167–168
on PowerPC 601, 115–116
on PowerPC 750, 130
on PowerPC 970, 205–206
280 INDEX

floating-point instructions
latencies for G4, 118
throughput on Intel

processors, 261
floating-point issue queue (FIQ)

for G4e, 146
on PowerPC 970, 209, 209–211

floating-point numbers, 66
floating-point/SEE/MMX ALU, on

Pentium 4, 158
floating-point/SSE move unit, on

Pentium 4, 157
floating-point vector processing, in

Pentium III, 108
flushing pipeline, 86

performance impact of, 60
fmadd instruction, 116

cycles to execute, 118
on G4e, 166
on PowerPC 603, 121

fmul instruction
cycles to execute, 118
throughput on Intel

processors, 261
forward branch, 30
forwarding by pipelined

processors, 75
four-way set associative mapping,

226–227, 228
vs. two-way, 229

FPCW (floating-point control
word), in Intel Core
Duo, 252

FPU. See floating-point execution
unit (FPU)

fractional values,
approximations of, 66

front end, 38, 38
for Pentium Pro, 94–100
for PowerPC 601, 113–115

instruction queue, 113–114
instruction scheduling,

114–115
for PowerPC 603, 122
for PowerPC 604, 126–128
for PowerPC 750, 130–132
for PowerPC 970, 194–195

front-end branch target buffer,
87, 147

front-end bus, on PowerPC 970,
203–205

fsub instruction, cycles to
execute, 118

fully associative mapping, 224, 225
fused multiply-add (fmadd) instruc-

tion. See fmadd instruction
fxch instruction, 91, 167

G

G3 (Apple). See PowerPC (PPC)
750 (G3)

G4. See PowerPC (PPC) 7400 (G4)
G4e. See Motorola G4e
games, 187
gaps in pipeline, 54–55, 55. See also

bubbles in pipeline
gates, 1
GCT. See group completion

table (GCT)
general issue queue (GIQ), for

G4e, 146
general-purpose registers (GPRs), 17

and bit count, 181
on PPC ISA, 164

gigahertz race, 110
GIQ (general issue queue),

for G4e, 146
global predictor table, on

PowerPC 970, 196
GPRs. See general-purpose registers

(GPRs)
group completion table (GCT), 210

internal fragmentation, 199
on PowerPC 970, 198–199

group dispatch on PowerPC 970,
197, 199

conclusions, 199–200
performance implications,

211–213

H

Hammer processor architecture, 180
hard drives

vs. other data storage, 217
page file on, 218
INDEX 281

hardware
ISA implementation by, 70
moving complexity to software,

73–74
hardware loop buffer, 240
Harvard architecture level 1 cache,

6, 81
hazards, 74

control, 78
data, 74–76
structural, 76–77

high-level languages (HLLs), com-
pilers for, 104

I
IA-64, 180
IBM. See also PowerPC (PPC)

AltiVec development, 207
POWER4 microarchitecture, 194
RS6000, 62
System/360, 71
VMX, 70, 135, 253

I-cache (instruction cache), 78,
81, 223

idiv instruction, 253
ILP (instruction-level parallelism),

141, 196
immediate-type instruction

format, 22
immediate values, in arithmetic

instructions, 14–16
indirect branch predictor, on

Pentium M, 245
infix expressions, 89
in-order instruction dispatch

rule, 127
input, 2
input operands, 8
input-output (I/O) unit, 26
instruction

bus, 5
cache (I-cache), 78, 81, 223
completion rate

of microprocessor, 45, 51
relationship with program exe-

cution time, 52–53
decoding unit, on Pentium Pro,

106, 106–107

execution time, trace cache and,
150–151

fetch, 28
fetch logic, on PowerPC 970, 196
fetch stages, for G4e, 145
field, 12
latency, pipeline stalls and, 57–58
pool, for Pentium 4, 149, 159
queue

on Core, 256
on PowerPC 601, 113–114

register, 26
loading, 28

scheduling, on PowerPC 601,
114–115

window
for Core 2 Duo, 254
for G4, 134
for Pentium 4, 141, 149, 159
for Pentium Pro, 93
for PowerPC 603, 122
for PowerPC 604, 126–128
for PowerPC 750, 130–132

instruction-level parallelism (ILP),
141, 196

instructions, 11
basic flow, 38–40, 39
first, microprocessor hard-wired

to fetch, 34
general types, 11–12
lifecycle of, 36–37

phases, 45–46
load latency, 78
parallel execution of, 63
per clock, and superscalar

computers, 64–65
preventing execution out of

order, 96
rules of dispatch on PowerPC 604,

127–128
throughput, 53–54
writing results back to register, 98

instruction set, 22, 69–70
instruction set architecture (ISA)

extensions, 70
hardware implementation of, 70
history of, 71–73, 72
microarchitecture and, 69–74
282 INDEX

instruction set translation, on
Pentium Pro, 103, 105

integer ALUs, on Pentium, 87–88
integer execution units (IUs), 68,

163–165
on Core 2 Duo, 260
on G4e, 163–164
issue queue for, 210, 211
on Pentium, 69
on PowerPC 601, 115
on PowerPC 604, 125

integer instructions
and default integer size, 191
PowerPC 970 performance of, 203

integer pipeline, 84
integers, 66

on 32-bit vs. 64-bit processors, 183
division on Core Duo, 253

Intel
code names and brand names,

236–237
Itanium Processor family, 180
MMX (Multimedia Extensions),

70, 108, 174
project names, 138
relative frequencies of

processors, 139
Intel 4004, 62
Intel 8080, 62
Intel 8086, 74, 187
Intel Celeron processor, 222
Intel Core 2 Duo, 254–258

back end, 258–270, 260
floating-point execution units

(FPUs), 260–262
integer execution units

(IUs), 260
decode phase of instruction, 256,

257–258
double-precision floating-point

operations on, 261
features, 254
fetch phase of instruction, 256,

256–257
floating-point instruction

throughput, 261
in historical context, 270
memory disambiguation,

264–270

microarchitecture, 255
pipeline, 258
vector processing, 262–264

Intel Core Duo/Solo, 235, 247–254
back end, 259
features, 247
fetch buffer, 239
floating-point control word

(FPCW), 252
floor plan of, 250
in historical context, 254
integer division, 253
loop detector, 252
micro-ops fusion in, 251–252
multi-core processor on, 247–250
Streaming SIMD Extensions

(SSE), 252
Virtualization Technology, 253

Intel P6 microarchitecture, 93. See
also Intel Pentium Pro

fetch and decode hardware, 240
Intel Pentium, 62, 68, 80–93

back end, 87–91
floating-point ALUs, 88–91
integer ALUs, 87–88

basic microarchitecture, 80
branch unit and branch

prediction, 85–87
caches, 81–82
features, 80
floating-point unit in, 69
in historical context, 92–93
integer unit in, 69
level 1 cache, 80
pipeline, 82–85, 83

stages, 84–85
static scheduling, 95
x86 overhead on, 91–92

Intel Pentium II
back end, 108
features, 93

Intel Pentium III, 109
back end, 110, 259
bottleneck potential, 258
features, 93
floating-point instruction

throughput, 261
floating-point vector

processing in, 108
INDEX 283

Intel Pentium 4, 74, 110, 138–140
approach to performance, 143
architecture, 148, 148–154
branch prediction, 147–148
critical execution path, 152
features, 138
floating-point execution unit

(FPU) for, 167–168
floating-point instruction

throughput, 261
vs. G4e, 137
general approaches and design

philosophy, 141–144
instruction window, 159
integer execution units (IUs),

163, 164–165
internal instruction format, 197
pipeline, 155–159
vector unit, 176

Intel Pentium D, 249
Intel Pentium M, 235, 239–246

back end, 259
branch prediction, 244–245
decode phase, 240–244, 241, 242
features, 239
fetch phase, 239–240
floating-point instruction

throughput, 261
floor plan of, 248
pipeline and back end, 246
stack execution unit on, 246
versions, 236

Intel Pentium Pro, 93–109, 94
back end, 102–103, 103, 259
branch prediction in, 102
cost of legacy x86 support on, 107
decoupling front end from

back end, 94–100
features, 93
floating-point unit in, 103
in historical context, 107–109
instruction set translation, 103
instruction window, 100
issue phase, 96–98
level 1 cache, 107
microarchitecture’s instruction

decoding unit, 106, 106–107
pipeline, 100–102

reorder buffer, 99–100
reservation station (RS),

98–99, 100
Intel Technology Journal, 175
Intel x86 hardware, 70
inter-element arithmetic and non-

arithmetic operations,
172–173

internal operations (IOPs), 196
intra-element arithmetic and non-

arithmetic operations,
171–172

I/O (input-output) unit, 26
IOPs (internal operations), 196
ISA. See instruction set architecture

(ISA)
issue buffer, 96
issue buffer/execution unit avail-

ability rule, 127
issue phase

on Pentium Pro, 96–98
on PowerPC 604, 126–127

issue ports, on Pentium 4, 157–158
issue queues

for branch unit and condition
register, 210–211

for G4e, 146
for integer and load-store execu-

tion units, 210, 211
on PowerPC 970, 199
vector, 211, 212
vector logical, 207

issue stage
for G4e, 146
for Pentium 4, 157–158

issuing, 96
Itanium Processor family, 180
IU. See integer execution units (IUs)

J
jumpn instruction, 32
jumpo instruction, 32
jumpz instruction, 31

K
Katmai, 109

processor, 175
kernels, 221
284 INDEX

L
L1 cache. See level 1 cache
L2 cache. See level 2 cache
L3 cache, 81
labels, and branch instructions,

33–34
laminated micro-op, 251
laptop (portable) computers, 237
latency of instruction

for Pentium 4 SIMD
instructions, 176

pipeline stalls and, 57–58
for PowerPC 970 integer unit, 202
for string instructions, 105
on superscalar processors,

117–118
tag RAM and, 224

leakage current, from idle
transistor, 238

least recently used (LRU) block,
and cache replacement
policy, 230

legacy mode, in x86-64, 189, 190, 191
level 1 cache, 81, 217–218

vs. other data storage, 217
on Pentium, 80
on Pentium II, 108
on Pentium 4, 149
on PowerPC 601, 115
splitting, 223

level 2 cache, 81, 218
vs. other data storage, 217
for Pentium III, 109

level 3 cache, 81
lines, 1
load address unit, on P6 back

end, 102
load balancing, on PowerPC 970,

212–213
load hoisting, 268
loading, operating system, 34
load instruction, 11, 15, 23–24

branch instruction as special
type, 32–33

micro-ops for, 267
programmer and control of, 104
register-relative address, 24

steps to execute, 265, 266
translating into fused micro-ops,

242, 243
load port, on Pentium 4, 157
load-store units (LSUs), 17

issue queue for, 210, 211
on Pentium, 69
on PowerPC 603 and 603e, 121
on PowerPC 604, 125
on PowerPC 970, 203–205

locality of reference, 220–223
for floating-point code, 166
for integer-intensive

applications, 165
logical issue queues, 207, 210
logical operations, 12, 67

as intra-element non-arithmetic
operations, 171

long mode, in x86-64, 190, 191
loop detector

on Core Duo, 252
on Pentium M, 244–245

LRU (least recently used) block,
and cache replacement
policy, 230

LSU. See load-store units (LSUs)

M
machine instructions, 72
machine language, 19–25

on DLW-1, 20–21
translating program into, 25
use in early computing, 26

machine language format, for
register-relative load, 24

machine language instruction, 20
macro-fusion, 255, 257
main memory, 9
mapping

direct, 225–226, 226
fully associative, 224, 225
n-way set associative, 226–230, 227

Mark I (Harvard), 81
Mauchly, John, 6n
maximum theoretical completion

rate, 52–53
maximum theoretical instruction

throughput, 54
INDEX 285

media applications
cache pollution by, 222
vector computing for, 168

memory
access to contents, 14
address, storage by memory

cell, 16
aliasing, 265, 266–267
bus, 9
disambiguation on Core 2 Duo,

264–270
for floating-point

performance, 168
hierarchy on computer, 82
instruction format, 13
lifecycle of access instruction,

265, 266
micro-op queue, 156
vs. other data storage, 217
ports, on Pentium 4, 157
RAM, 8–10
reorder buffer, 265

rules for, 268
scheduler, on Pentium 4, 156
speed of, 81

memory-access instructions, 11, 12
binary encoding, 23–25

memory-access units, 69
branch unit as, 85

memory-to-memory format arith-
metic instructions, 103–104

Merom, 255
micro-operations (micro-ops; μops;

uops), 106, 149
fusion, 240–244

in Core Duo, 251–252
in Pentium 4, 150
queue, 106

memory, 156
on Pentium 4, 155

schedulers for, 156–157
microarchitecture, and ISA, 69–74
microcode engine, 72, 73
microcode programs, 72
microcode ROM, 72

in Pentium, 85, 92
in Pentium 4, 154

micro-ops. See micro-operations
microprocessor, 1

clock cycle, 44
instruction completion per,

53–54
vs. memory and bus clock

cycles, 216
in pipelined processor, 47

core microarchitecture of, 248
errors from exceeding dynamic

range, 184–185
hard-wired to fetch first

instruction, 34
increasing number of instruc-

tions per time period, 43
interface to, 26
microarchitecture vs.

implementations, 248
non-pipelined, 43–45, 44
pipelined, 45–48
three-step sequence, 8

millicoded instruction, 197, 198
MIPS, 73
MMX (Multimedia Extensions), 70,

108, 174
mnemonics, 20
mode bit, 21
Moore’s Curves, 92, 93
μops. See micro-operations
Motorola. See PowerPC (PPC)
Motorola 68000 processor, 112
Motorola AltiVec, 70, 135, 169–170

development, 207
G4e units, 206–207
vector operations, 170–173

inter-element arithmetic and
non-arithmetic operations,
172–173

intra-element arithmetic and
non-arithmetic operations,
171–172

Motorola G4, vector instruction
latencies on, 208

Motorola G4e
architecture and pipeline,

144–147
branch prediction, 147–148
caches, 194
286 INDEX

dedicated integer hardware for
address calculations, 204

floating-point execution unit
(FPU) for, 166–167

general approaches and design
philosophy, 141–144

integer execution units (IUs),
163–164

integer hardware, 203
microarchitecture, 144
vs. Pentium 4, 137
performance approach, 142
pipeline stages, 145–147
vector instruction

latencies on, 208
Motorola G5. See PowerPC (PPC)

970 (G5)
Motorola MPC7400. See PowerPC

(PPC) 7400 (G4)
Motorola MPC7450, 138
mul instruction, cycles to execute on

PowerPC, 117
mulpd instruction, throughput on

Intel processors, 261
mulps instruction, throughput on

Intel processors, 261
mulsd instruction, throughput on

Intel processors, 261
mulss instruction, throughput on

Intel processors, 261
multi-core processors, 247
Multimedia Extensions (MMX), 70,

108, 174
multiprocessing, 249, 249–250

N

NetBurst architecture, 139, 140, 235
code names for variations, 236

non-pipelined microprocessor,
43–45, 44

noops (no operation), 198
Northwood, 236
notebook (portable) computers, 237
numbers, basic formats, 66–67, 67
n-way set associative mapping,

226–230, 227

O
offset, 17
on-die cache, 82
opcodes, 19–25
operands, 12

formats, 161–162
operating system, loading, 34
operations, 11
out-of-order execution, 96
output, 2
overflow of register, 32, 184
overhead cost, for pipeline, 60
overheating, 238

P
packed floating-point addition

(PFADD), 260
page file, on hard drive, 218
parallel execution of instructions, 63
Pentium. See Intel Pentium
performance, 51

branch prediction and, 86, 125
gains from pipelining, 60
of Pentium 4, 140

Performance Optimization
With Enhanced RISC
(POWER), 112

PFADD (packed floating-point
addition), 260

physical address space, vs. virtual,
185–186

pipeline, 37, 40–43, 42
challenges, 74–78
cost of, 60
depth, 46
of DLW-2 hypothetical

computer, 64
flushing, 86
limits to, 58–60, 139–140
on Pentium, 82–85, 83
on Pentium M, 246
on PowerPC 601, 113–115

instruction queue, 113–114
instruction scheduling,

114–115
on PowerPC 604, 123–126
INDEX 287

pipeline, continued
speedup from, 48–51, 50
stages, 45
and superscalar execution, 65
trace cache effect on, 154

pipeline stalls, 54–57
avoiding, 60
instruction latency and, 57–58

pipelined execution, 35
pipelined microprocessor, 45–48
pointers, 187
polluting the cache, 222
pop instruction, 88, 89
portable computers, 237
ports, for PowerPC instructions, 206
postfix expressions, 89
POWER (Performance

Optimization With
Enhanced RISC), 112

power density of chip, 237–239
power-efficient computing, 237–239
PowerPC (PPC), 73, 111

AltiVec extension, 173
brief history, 112
instruction set architecture

(ISA), 70, 162
PowerPC (PPC) 601, 112–118, 135

back end, 115–117
branch execution unit

(BEU), 116
floating-point unit, 115–116
integer unit, 115
sequencer unit, 116–117

features, 112
in historical context, 118
latency and throughput, 117–118
microarchitecture, 114
pipeline and front end, 113–115

instruction queue, 113–114
instruction scheduling,

114–115
PowerPC (PPC) 603 and 603e,

118–122, 135
back end, 119–121
features, 119
front end, instruction window,

and branch prediction, 122
in historical context, 122
microarchitecture, 120

PowerPC (PPC) 604, 119,
123–129, 136

features, 123
front end and instruction

window, 126–128
microarchitecture, 124
pipeline and back end, 123–126
reorder buffer, 128
reservation station (RS), 126–127

PowerPC (PPC) 604e, 129
PowerPC (PPC) 750 (G3), 129–133

features, 130
front end, instruction window,

and branch instruction,
130–132

vs. G4, 133
in historical context, 132–133
microarchitecture, 131

PowerPC (PPC) 970 (G5), 193
back end, 200–203
branch prediction, 195–196
caches and front end, 194–195
decode, cracking and group

formation, 196–200
dispatching and issuing

instructions, 197–198
design philosophy, 194
dispatch rules, 198–199
floating-point execution units

(FPUs), 205–206
floating-point issue queue (FIQ),

209, 209–211
group dispatch scheme

conclusions, 199–200
performance implications,

211–213
integer execution units (IUs),

201–202
performance conclusions, 203

load-store units (LSUs) and
front-end bus, 203–205

microarchitecture, 195
predecoding and group

dispatch, 199
vector computing, 206–209, 207
vector instruction

latencies on, 208
288 INDEX

PowerPC (PPC) 7400 (G4),
133–135, 138

AltiVec support, 173
features, 133
in historical context, 135
microarchitecture, 134
scalability of clock rate, 135

power wall, 237
PPC. See PowerPC
predecoding, on PowerPC 970, 199
Prefetch/Fetch stage in Pentium

pipeline, 84–85
Prescott, 236
processors. See microprocessor
processor serial number (PSN), 109
processor status word (PSW)

register, 31, 67
condition register for functions

of, 202–203
productivity, pipelining and, 42
program, 11–14
program counter, 26
program execution time

and completion rate, 51–52
decreasing, 43, 47–48
relationship with completion

rate, 52–53
programmers, early processes, 26
programming model, 26, 27, 69–70

32-bit vs. 64-bit, 182
early variations, 71

pseudo-LRU algorithm, 230
PSN (processor serial number), 109
PSW register. See processor status

word (PSW) register
push instruction, 88, 89
pushing data to stack, 88, 89

Q
queue. See also issue queues

instruction
on Core, 256
on PowerPC 601, 113–114

micro-op, 106, 155
stage, on Pentium 4, 156
vector issue (VIQ), for G4e, 146

R
RAM (random access memory),

8–10
RAT (register allocation table), on

Pentium Pro, 100
read-modify instruction, 243
read-modify-write sequence, 4
read-only memory (ROM), 34
reboot, 34
reduced instruction set computing

(RISC), 73–74, 105
instructions in PowerPC, 113
load-store model, 4

refills of pipeline, performance
impact of, 60

register allocation table (RAT), on
Pentium Pro, 100

register files, 7–8
stages on Pentium 4, 158

register-relative address, 16–17
with branch instruction, 33

register renaming
to overcome data hazards, 75, 76
P6 pipeline stage for, 101
on PowerPC 604, 125

registers, 7
mapping to binary codes, 20
vs. other data storage, 217

register-to-memory format arith-
metic instructions, 103–104

register-type arithmetic instruction,
21–22

rename register availability rule, 128
rename registers, 98

on Pentium 4, 165
on PowerPC 604, 126
on PowerPC 750, 131
on PowerPC 970, 199, 200

reorder buffer (ROB), 265
on Pentium 4, 159
on Pentium Pro, 99–100
on PowerPC 604, 126, 128
rules for, 268

reservation station (RS)
on P6 core, 258
P6 pipeline stages for writing to

and reading from, 101
INDEX 289

reservation station (RS), continued
on Pentium 4, 149
on Pentium Pro, 98–99, 100
on PowerPC 604, 126–127
on PowerPC 750, 131

results, 4
results stream, 2
REX prefix, 191
RISC. See reduced instruction set

computing (RISC)
ROB. See reorder buffer (ROB)
ROM (read-only memory), 34
RS. See reservation station (RS)
RS6000 (IBM), 62

S
scalar operations, 62
scalars, vs. vectors, 66, 170
schedule stage, on Pentium 4,

156–157
segmented memory model, 192
sequencer unit, on PowerPC 601,

116–117
sequentially ordered data, and

spacial locality, 220
set associative mapping, 226
SIMD (Single Instruction, Multiple

Data) computing, 168, 169
extensions to PowerPC instruc-

tion set, 135
simple/fast integer execution units,

on G4e, 163
simple/fast integer instructions, 163
simple FP scheduler, on Pentium 4,

157
simple integer instructions, 201
simple integer unit (SIU), 68, 87

on PowerPC 750, 130
single-cycle processors, 44, 49, 50
SISD (Single Instruction stream,

Single Data stream) device,
168, 169

SIU. See simple integer unit (SIU)
slow integer ALU unit, on

Pentium 4, 157
slow IU/general FPU scheduler, on

Pentium 4, 157

SMP (symmetric
multiprocessing), 136

software
early, custom-fitted to hardware,

71, 71
moving hardware complexity to,

73–74
software branch hits, 147–148
source field, 12
source registers, 8, 21
spatial locality of code, 221–222
spatial locality of data, 220
speculative execution, 85–86

path, 152–153, 153
results stream version of, 264–270

SRAM (static RAM), for L1
cache, 217

SSE. See Streaming SIMD
Extensions (SSE)

ST (stack top), 88
stack, 88

vs. flat register file, 90
swapping element with stack

top, 91
stack execution unit, on Pentium M,

246
stack pointer register, 246
stack top (ST), 88
static branch prediction, 86
static power density, 238–239
static prediction, 147
static RAM (SRAM), for L1

cache, 217
static scheduling, in Pentium Pro,

94–95, 95
storage, 4–5
store address unit, on P6 back

end, 102
store data unit, on P6 back end, 102
stored-program computer, 4–6
store instruction, 11

micro-ops for, 267
programmer and control of, 104
register-type binary format for,

24–25
translating into fused micro-ops,

242–243
write-through for, 233
290 INDEX

store port, on Pentium 4, 157
Streaming SIMD Extensions (SSE),

70, 262–263
on Core Duo, 252
floating-point performance

with, 177
implementation of, 176
Intel’s goal for, 175
on Pentium III, 108, 109

strings, ISA-level support for,
104–105

structural hazards, 76–77
sum vector (VT), 171
superscalar computers, 62

challenges, 74–78
expanding with execution units,

65–69
and instructions per clock, 64–65
latency and throughput, 117–118

SUV-building process, pipelining
in, 40–43, 42

swapping stack element with
stack top, 91

symmetric multiprocessing
(SMP), 136

system unit, on PowerPC 603
and 603e, 121

T
tag RAM, 224
tags for cache

direct mapping, 225–226, 226
fully associative mapping with,

224, 225
n-way set associative mapping,

226–230, 227
temporal locality of code and

data, 222
throughput

for floating-point instructions on
Intel processors, 261

for PowerPC 970 integer unit, 202
of superscalar processors,

117–118
trace cache

fetch stages, on Pentium 4, 155
next instruction pointer stages,

on Pentium 4, 155

in Pentium 4, 149–154
and instruction execution

time, 150–151
operation, 151–154

traces, 150
trace segment build mode, 151
transistors, 1

density, and dynamic power
density, 237

number on chip, 62
translating program into machine

language, 25
Turing machine, 4
two-way set associative mapping,

228, 228–229
vs. direct mapping, 229
vs. four-way, 229

U
U integer pipe, 87
unconditional branch, 30
underflow, 184
uops. See micro-operations

V
variable-length instructions, 105
vector ALU (VALU), 135
vector complex integer unit,

on G4e, 173
vector computing

on 32-bit vs. 64-bit processors, 183
and AltiVec instruction set,

169–170
G3 and, 132–133
inter-element operations,

172–173
intra-element operations,

171–172
MMX (Multimedia

Extensions), 174
overview of, 168–169
on PowerPC 970, 206–209, 207

vector execution units, 69, 168–177
vector floating-point multiplication,

on Pentium III, 260
vector floating-point unit,

on G4e, 173
INDEX 291

vector issue queue (VIQ),
for G4e, 146

vector logical issue queues, 207
vector permute unit (VPU), 135

on G4e, 173
issue queue for, 211, 212

vectors, vs. scalars, 66, 170
vector simple integer unit,

on G4e, 173
vector unit, on G4, 135
very long instruction word (VLIW)

ISA, 180
V integer pipe, 87
VIQ (vector issue queue),

for G4e, 146
virtual address space, vs. physical,

185–186
Virtualization Technology

(VT-x), 253
Virtual Machine Extensions (VMX),

70, 135, 253
virtual machine monitor

(VMM), 253
virtual processor, 253
VLIW (very long instruction word)

ISA, 180
VMM (virtual machine

monitor), 253
VMX (Virtual Machine Extensions),

70, 135, 253
von Neumann, John, 6n
VPU. See vector permute unit (VPU)
VT-x (Virtualization

Technology), 253

W
Wilkes, Maurice, 6n
Willamette, 138, 236
wires, 1
Woodcrest, 255
working set, 222
write-back, for cache, 233

write-back stage
for G4e, 147
in Pentium pipeline, 84–85

write phase of instruction, 37
write policies, for caches, 232–233
write-through, 232–233

X

x86 computers
critical execution path, 151
drawbacks and benefits, 179
ISA, 73, 74

vs. PowerPC ISA, 103–105
vs. PowerPC, 136
registers for, 7

x86 instructions
cost of legacy support, 107, 136
decoding in P6 pipeline, 101
and IA-64 processors, 180
limitations, 84
overhead on Pentium, 91–92
trace cache handling of

multi-cycle, 154
x86-64, 187–192

extensions, 180
Hammer virtual address

size in, 186
programming model, 189
switching modes, 189–192

x87 computers
floating-point extensions, 70, 167
floating-point registers as stack, 89
pushing and popping data on

register stack, 90
register file, 88

Xeon, 165, 235
XMM registers, 175

Y

Yonah, 236, 247
292 INDEX

More No-Nonsense Books from

WRITE GREAT CODE, VOLUME 2
Thinking Low-Level, Writing High-Level
by RANDALL HYDE

Today’s computer science students aren’t always taught how to choose high-
level language statements carefully to produce efficient code. Write Great
Code, Volume 2: Thinking Low-Level, Writing High-Level shows software engi-
neers what too many college and university courses don’t: how compilers
translate high-level language statements and data structures into machine
code. Armed with this knowledge, readers will be better informed about
choosing the high-level structures that will help the compiler produce
superior machine code, all without having to give up the productivity and
portability benefits of using a high-level language.

MARCH 2006, 640 PP., $44.95 ($58.95 CDN)
ISBN 1-59327-065-8

THE TCP/IP GUIDE
A Comprehensive, Illustrated Internet Protocols Reference
by CHARLES M. KOZIEROK

Finally, an encyclopedic, comprehensible, well-illustrated, and completely
current guide to the TCP/IP protocol suite for both newcomers and sea-
soned professionals. This complete reference details the core protocols that
make TCP/IP internetworks function, as well as the most important TCP/IP
applications. It includes full coverage of PPP, ARP, IP, IPv6, IP NAT, IPSec,
Mobile IP, ICMP, and much more. It offers a detailed view of the TCP/IP
protocol suite, and it describes networking fundamentals and the important
OSI Reference Model.

OCTOBER 2005, 1616 PP. HARDCOVER, $79.95 ($107.95 CDN)
ISBN 1-59327-047-X

SILENCE ON THE WIRE
A Field Guide to Passive Reconnaissance and Indirect Attacks
by MICHAL ZALEWSKI

Author Michal Zalewski has long been known and respected in the hacking
and security communities for his intelligence, curiosity, and creativity, and
this book is truly unlike anything else out there. In Silence on the Wire, Zalewski
shares his expertise and experience to explain how computers and networks
work, how information is processed and delivered, and what security threats
lurk in the shadows. No humdrum technical white paper or how-to manual
for protecting one’s network, this book is a fascinating narrative that explores
a variety of unique, uncommon, and often quite elegant security challenges
that defy classification and eschew the traditional attacker-victim model.

APRIL 2005, 312 PP., $39.95 ($53.95 CDN)
ISBN 1-59327-046-1

NO STARCH PRESS

HACKING THE CABLE MODEM
What Cable Companies Don’t Want You to Know
by DERENGEL

In the beginning there was dial-up, and it was slow; then came broadband in
the form of cable, which redefined how we access the Internet, share infor-
mation, and communicate with each other online. Hacking the Cable Modem
goes inside the device that makes Internet via cable possible and, along the
way, reveals secrets of many popular cable modems, including products from
Motorola, RCA, WebSTAR, D-Link, and more. Written for people at all skill
levels, the book features step-by-step tutorials with easy to follow diagrams,
source code examples, hardware schematics, links to software (exclusive to
this book!), and previously unreleased cable modem hacks.

SEPTEMBER 2006, 320 PP., $29.95 ($37.95 CDN)
ISBN 1-59327-101-8

THE DEBIAN SYSTEM
Concepts and Techniques
by MARTIN F. KRAFFT

The Debian System introduces the concepts and techniques of the Debian
operating system, explaining their usage and pitfalls and illustrating the
thinking behind each of the approaches. The book’s goal is to give you
enough insight into the workings of the Debian project and operating
system that you will understand the solutions that have evolved as part of
the Debian system over the past decade. While targeted at the well-versed
Unix/Linux administrator, the book can also serve as an excellent resource
alongside a standard Linux reference to quickly orient you to Debian’s
unique philosophy and structure. Co-published with Open Source Press,
an independent publisher based in Munich that specializes in the field of
free and open source software.

SEPTEMBER 2005, 608 PP. W/DVD, $44.95 ($60.95 CDN)
ISBN 1-59327-069-0

PHONE:
800.420.7240 OR

415.863.9900
MONDAY THROUGH FRIDAY,
9 AM TO 5 PM (PST)

FAX:
415.863.9950
24 HOURS A DAY,
7 DAYS A WEEK

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

MAIL:
NO STARCH PRESS

555 DE HARO ST, SUITE 250
SAN FRANCISCO, CA 94107
USA

C O L O P H O N

Inside the Machine was laid out in Adobe FrameMaker. The font families used
are New Baskerville for body text, Futura for headings and tables, and Dogma
for titles.

The book was printed and bound at Friesens in Altona, Manitoba in Canada.
The paper is Weyerhaeuser 60# Husky Offset, which is an acid-free paper.

U P D A T E S

Visit www.nostarch.com/insidemachine.htm for updates, errata, and other
information.

Inside the M
achine

Computers perform countless tasks ranging
from the business critical to the recreational,
but regardless of how differently they may look
and behave, they’re all amazingly similar in
basic function. Once you understand how the
microprocessor—or central processing unit (CPU)—
works, you’ll have a firm grasp of the fundamental
concepts at the heart of all modern computing.

Inside the Machine, from the co-founder of the highly
respected Ars Technica website, explains how
microprocessors operate—what they do and how
they do it. The book uses analogies, full-color
diagrams, and clear language to convey the ideas
that form the basis of modern computing. After
discussing computers in the abstract, the book
examines specific microprocessors from Intel,
IBM, and Motorola, from the original models up
through today’s leading processors. It contains the
most comprehensive and up-to-date information
available (online or in print) on Intel’s latest
processors: the Pentium M, Core, and Core 2 Duo.
Inside the Machine also explains technology terms
and concepts that readers often hear but may not
fully understand, such as “pipelining,” “L1 cache,”
“main memory,” “superscalar processing,” and
“out-of-order execution.”

Stokes

Jon “Hannibal” Stokes is co-founder and Senior CPU Editor of Ars Technica. He has written for a variety
of publications on microprocessor architecture and the technical aspects of personal computing. Stokes
holds a degree in computer engineering from Louisiana State University and two advanced degrees in the
humanities from Harvard University. He is currently pursuing a Ph.D. at the University of Chicago.

Includes discussion of:

• Parts of the computer and microprocessor
• Programming fundamentals (arithmetic

instructions, memory accesses, control
flow instructions, and data types)

• Intermediate and advanced microprocessor
concepts (branch prediction and speculative
execution)

• Intermediate and advanced computing
concepts (instruction set architectures,
RISC and CISC, the memory hierarchy, and
encoding and decoding machine language
instructions)

• 64-bit computing vs. 32-bit computing
• Caching and performance

Inside the Machine is perfect for students of
science and engineering, IT and business
professionals, and the growing community
of hardware tinkerers who like to dig into the
guts of their machines.

A
n Illustrated Introduction to M

icroprocessors and Com
puter A

rchitecture

6 89 1 45 7 10 42 7

5 4 9 9 5

9 7 81 5 93 2 71 04 6

ISBN: 978-1-59327-104-6

$49.95 ($61.95 cdn)	 shelve in: Computer Hardware

A Look Inside the Silicon Heart of Modern Computing

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

An Illustrated Introduction to
Microprocessors and Computer Architecture

Jon Stokes

“This is, by far, the most well written text that I have seen on the subject
of computer architecture.”

—John Stroman, Technical Account Manager, Intel

	Preface
	Acknowledgments
	Introduction
	Basic Computing Concepts
	The Calculator Model of Computing
	The File-Clerk Model of Computing
	The Stored-Program Computer
	Refining the File-Clerk Model

	The Register File
	RAM: When Registers Alone Won’t Cut It
	The File-Clerk Model Revisited and Expanded
	An Example: Adding Two Numbers

	A Closer Look at the Code Stream: The Program
	General Instruction Types
	The DLW-1’s Basic Architecture and Arithmetic Instruction Format
	The DLW-1’s Arithmetic Instruction Format
	The DLW-1’s Memory Instruction Format
	An Example DLW-1 Program

	A Closer Look at Memory Accesses: Register vs. Immediate
	Immediate Values
	Register-Relative Addressing

	The Mechanics of Program Execution
	Opcodes and Machine Language
	Machine Language on the DLW-1
	Binary Encoding of Arithmetic Instructions
	Binary Encoding of Memory Access Instructions
	The load Instruction
	The store Instruction

	Translating an Example Program into Machine Language

	The Programming Model and the ISA
	The Programming Model
	The Instruction Register and Program Counter
	The Instruction Fetch: Loading the Instruction Register
	Running a Simple Program: The Fetch-Execute Loop

	The Clock
	Branch Instructions
	Unconditional Branch
	Conditional Branch
	Branch Instructions and the Fetch-Execute Loop
	The Branch Instruction as a Special Type of Load
	Branch Instructions and Labels

	Excursus: Booting Up

	Pipelined Execution
	The Lifecycle of an Instruction
	Basic Instruction Flow
	Pipelining Explained
	Applying the Analogy
	A Non-Pipelined Processor
	A Pipelined Processor
	Shrinking the Clock
	Shrinking Program Execution Time

	The Speedup from Pipelining
	Program Execution Time and Completion Rate
	The Relationship Between Completion Rate and Program Execution Time
	Instruction Throughput and Pipeline Stalls
	Instruction Throughput
	Pipeline Stalls

	Instruction Latency and Pipeline Stalls
	Limits to Pipelining
	Clock Period and Completion Rate
	The Cost of Pipelining

	Superscalar Execution
	Superscalar Computing and IPC
	Expanding Superscalar Processing with Execution Units
	Basic Number Formats and Computer Arithmetic
	Arithmetic Logic Units
	Memory-Access Units

	Microarchitecture and the ISA
	A Brief History of the ISA
	Moving Complexity from Hardware to Software

	Challenges to Pipelining and Superscalar Design
	Data Hazards
	Structural Hazards
	The Register File
	Control Hazards

	The Intel Pentium and Pentium Pro
	The Original Pentium
	Caches
	The Pentium’s Pipeline
	The Branch Unit and Branch Prediction
	The Pentium’s Back End
	The Integer ALUs
	The Floating-Point ALU

	x86 Overhead on the Pentium
	Summary: The Pentium in Historical Context

	The Intel P6 Microarchitecture: The Pentium Pro
	Decoupling the Front End from the Back End
	The Issue Phase
	The Completion Phase
	The P6’s Issue Phase: The Reservation Station
	The P6’s Completion Phase: The Reorder Buffer
	The Instruction Window

	The P6 Pipeline
	Branch Prediction on the P6
	The P6 Back End
	CISC, RISC, and Instruction Set Translation
	The P6 Microarchitecture’s Instruction Decoding Unit
	The Cost of x86 Legacy Support on the P6
	Summary: The P6 Microarchitecture in Historical Context
	The Pentium Pro
	The Pentium II
	The Pentium III

	Conclusion

	PowerPC Processors: 600 Series, 700 Series, and 7400
	A Brief History of PowerPC
	The PowerPC 601
	The 601’s Pipeline and Front End
	The PowerPC Instruction Queue
	Instruction Scheduling on the 601

	The 601’s Back End
	The Integer Unit
	The Floating-Point Unit
	The Branch Execution Unit
	The Sequencer Unit

	Latency and Throughput Revisited
	Summary: The 601 in Historical Context

	The PowerPC 603 and 603e
	The 603e’s Back End
	The 603e’s Front End, Instruction Window, and Branch Prediction
	Summary: The 603 and 603e in Historical Context

	The PowerPC 604
	The 604’s Pipeline and Back End
	The 604’s Front End and Instruction Window
	The Issue Phase: The 604’s Reservation Stations
	The Four Rules of Instruction Dispatch
	The Completion Phase: The 604’s Reorder Buffer

	Summary: The 604 in Historical Context

	The PowerPC 604e
	The PowerPC 750 (aka the G3)
	The 750’s Front End, Instruction Window, and Branch Instruction
	Summary: The PowerPC 750 in Historical Context

	The PowerPC 7400 (aka the G4)
	The G4’s Vector Unit
	Summary: The PowerPC G4 in Historical Context

	Conclusion

	Intel’s Pentium 4 vs. Motorola’s G4e: Approaches and Design Philosophies
	The Pentium 4’s Speed Addiction
	The General Approaches and Design Philosophies of the Pentium 4 and G4e
	An Overview of the G4e’s Architecture and Pipeline
	Stages 1 and 2: Instruction Fetch
	Stage 3: Decode/Dispatch
	Stage 4: Issue
	Stage 5: Execute
	Stages 6 and 7: Complete and Write-Back

	Branch Prediction on the G4e and Pentium 4
	An Overview of the Pentium 4’s Architecture
	Expanding the Instruction Window
	The Trace Cache
	Shortening Instruction Execution Time
	The Trace Cache’s Operation

	An Overview of the Pentium 4’s Pipeline
	Stages 1 and 2: Trace Cache Next Instruction Pointer
	Stages 3 and 4: Trace Cache Fetch
	Stage 5: Drive
	Stages 6 Through 8: Allocate and Rename (ROB)
	Stage 9: Queue
	Stages 10 Through 12: Schedule
	Stages 13 and 14: Issue
	Stages 15 and 16: Register Files
	Stage 17: Execute
	Stage 18: Flags
	Stage 19: Branch Check
	Stage 20: Drive
	Stages 21 and Onward: Complete and Commit

	The Pentium 4’s Instruction Window

	Intel’s Pentium 4 vs. Motorola’s G4e: The Back End
	Some Remarks About Operand Formats
	The Integer Execution Units
	The G4e’s IUs: Making the Common Case Fast
	The Pentium 4’s IUs: Make the Common Case Twice as Fast

	The Floating-Point Units (FPUs)
	The G4e’s FPU
	The Pentium 4’s FPU
	Concluding Remarks on the G4e’s and Pentium 4’s FPUs

	The Vector Execution Units
	A Brief Overview of Vector Computing
	Vectors Revisited: The AltiVec Instruction Set
	AltiVec Vector Operations
	Intra-Element Arithmetic and Non-Arithmetic Instructions
	Inter-Element Arithmetic and Non-Arithmetic Instructions

	The G4e’s VU: SIMD Done Right
	Intel’s MMX
	SSE and SSE2
	The Pentium 4’s Vector Unit: Alphabet Soup Done Quickly
	Increasing Floating-Point Performance with SSE2

	Conclusions

	64-Bit Computing and x86-64
	Intel’s IA-64 and AMD’s x86-64
	Why 64 Bits?
	What Is 64-Bit Computing?
	Current 64-Bit Applications
	Dynamic Range
	The Benefits of Increased Dynamic Range, or, How the Existing 64-Bit Computing Market Uses 64-Bit Integers
	Virtual Address Space vs. Physical Address Space
	The Benefits of a 64-Bit Address

	The 64-Bit Alternative: x86-64
	Extended Registers
	More Registers
	Switching Modes
	Out with the Old

	Conclusion

	The G5: IBM’s PowerPC 970
	Overview: Design Philosophy
	Caches and Front End
	Branch Prediction
	The Trade-Off: Decode, Cracking, and Group Formation
	Dispatching and Issuing Instructions on the PowerPC 970
	The 970’s Dispatch Rules
	Predecoding and Group Dispatch
	Some Preliminary Conclusions on the 970’s Group Dispatch Scheme

	The PowerPC 970’s Back End
	Integer Unit, Condition Register Unit, and Branch Unit
	The Integer Units Are Not Fully Symmetric
	Integer Unit Latencies and Throughput
	The CRU
	The PowerPC Condition Register

	Preliminary Conclusions About the 970’s Integer Performance

	Load-Store Units
	Front-Side Bus
	The Floating-Point Units
	Vector Computing on the PowerPC 970
	Floating-Point Issue Queues
	Integer and Load-Store Issue Queues
	BU and CRU Issue Queues
	Vector Issue Queues

	The Performance Implications of the 970’s Group Dispatch Scheme
	Conclusions

	Understanding Caching and Performance
	Caching Basics
	The Level 1 Cache
	The Level 2 Cache
	Example: A Byte’s Brief Journey Through the Memory Hierarchy
	Cache Misses

	Locality of Reference
	Spatial Locality of Data
	Spatial Locality of Code
	Temporal Locality of Code and Data
	Locality: Conclusions

	Cache Organization: Blocks and Block Frames
	Tag RAM
	Fully Associative Mapping
	Direct Mapping
	N-Way Set Associative Mapping
	Four-Way Set Associative Mapping
	Two-Way Set Associative Mapping
	Two-Way vs. Direct-Mapped
	Two-Way vs. Four-Way
	Associativity: Conclusions

	Temporal and Spatial Locality Revisited: Replacement/Eviction Policies and Block Sizes
	Types of Replacement/Eviction Policies
	Block Sizes

	Write Policies: Write-Through vs. Write-Back
	Conclusions

	Intel’s Pentium M, Core Duo, and Core 2 Duo
	Code Names and Brand Names
	The Rise of Power-Efficient Computing
	Power Density
	Dynamic Power Density
	Static Power Density

	The Pentium M
	The Fetch Phase
	The Hardware Loop Buffer

	The Decode Phase: Micro-ops Fusion
	Fused Stores
	Fused Loads
	The Impact of Micro-ops Fusion

	Branch Prediction
	The Loop Detector
	The Indirect Predictor

	The Stack Execution Unit
	Pipeline and Back End
	Summary: The Pentium M in Historical Context

	Core Duo/Solo
	Intel’s Line Goes Multi-Core
	Processor Organization and Core Microarchitecture
	Multiprocessing and Chip Multiprocessing

	Core Duo’s Improvements
	Micro-ops Fusion of SSE and SSE2 store and load-op Instructions
	Micro-ops Fusion and Lamination of SSE and SSE2 Arithmetic Instructions
	Micro-ops Fusion of Miscellaneous Non-SSE Instructions
	Improved Loop Detector
	SSE3
	Floating-Point Improvement
	Integer Divide Improvement
	Virtualization Technology

	Summary: Core Duo in Historical Context

	Core 2 Duo
	The Fetch Phase
	Macro-Fusion

	The Decode Phase
	Core’s Pipeline

	Core’s Back End
	Integer Units
	Floating-Point Units
	Vector Processing Improvements
	128-bit Vector Execution on the P6 Through Core Duo
	128-bit Vector Execution on Core

	Memory Disambiguation: The Results Stream Version of Speculative Execution
	The Lifecycle of a Memory Access Instruction
	The Memory Reorder Buffer
	Memory Aliasing
	Memory Reordering Rules
	False Aliasing
	Memory Disambiguation

	Summary: Core 2 Duo in Historical Context

	Bibliography and Suggested Reading
	General
	PowerPC ISA and Extensions
	PowerPC 600 Series Processors
	PowerPC G3 and G4 Series Processors
	IBM PowerPC 970 and POWER
	x86 ISA and Extensions
	Pentium and P6 Family
	Pentium 4
	Pentium M, Core, and Core 2
	Online Resources

	Index
	Updates

